/* auditfilter.c -- filtering of audit events * * Copyright 2003-2004 Red Hat, Inc. * Copyright 2005 Hewlett-Packard Development Company, L.P. * Copyright 2005 IBM Corporation * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include <linux/kernel.h> #include <linux/audit.h> #include <linux/kthread.h> #include <linux/mutex.h> #include <linux/fs.h> #include <linux/namei.h> #include <linux/netlink.h> #include <linux/sched.h> #include <linux/slab.h> #include <linux/security.h> #include "audit.h" /* * Locking model: * * audit_filter_mutex: * Synchronizes writes and blocking reads of audit's filterlist * data. Rcu is used to traverse the filterlist and access * contents of structs audit_entry, audit_watch and opaque * LSM rules during filtering. If modified, these structures * must be copied and replace their counterparts in the filterlist. * An audit_parent struct is not accessed during filtering, so may * be written directly provided audit_filter_mutex is held. */ /* Audit filter lists, defined in <linux/audit.h> */ struct list_head audit_filter_list[AUDIT_NR_FILTERS] = { LIST_HEAD_INIT(audit_filter_list[0]), LIST_HEAD_INIT(audit_filter_list[1]), LIST_HEAD_INIT(audit_filter_list[2]), LIST_HEAD_INIT(audit_filter_list[3]), LIST_HEAD_INIT(audit_filter_list[4]), LIST_HEAD_INIT(audit_filter_list[5]), #if AUDIT_NR_FILTERS != 6 #error Fix audit_filter_list initialiser #endif }; static struct list_head audit_rules_list[AUDIT_NR_FILTERS] = { LIST_HEAD_INIT(audit_rules_list[0]), LIST_HEAD_INIT(audit_rules_list[1]), LIST_HEAD_INIT(audit_rules_list[2]), LIST_HEAD_INIT(audit_rules_list[3]), LIST_HEAD_INIT(audit_rules_list[4]), LIST_HEAD_INIT(audit_rules_list[5]), }; DEFINE_MUTEX(audit_filter_mutex); static inline void audit_free_rule(struct audit_entry *e) { int i; struct audit_krule *erule = &e->rule; /* some rules don't have associated watches */ if (erule->watch) audit_put_watch(erule->watch); if (erule->fields) for (i = 0; i < erule->field_count; i++) { struct audit_field *f = &erule->fields[i]; kfree(f->lsm_str); security_audit_rule_free(f->lsm_rule); } kfree(erule->fields); kfree(erule->filterkey); kfree(e); } void audit_free_rule_rcu(struct rcu_head *head) { struct audit_entry *e = container_of(head, struct audit_entry, rcu); audit_free_rule(e); } /* Initialize an audit filterlist entry. */ static inline struct audit_entry *audit_init_entry(u32 field_count) { struct audit_entry *entry; struct audit_field *fields; entry = kzalloc(sizeof(*entry), GFP_KERNEL); if (unlikely(!entry)) return NULL; fields = kzalloc(sizeof(*fields) * field_count, GFP_KERNEL); if (unlikely(!fields)) { kfree(entry); return NULL; } entry->rule.fields = fields; return entry; } /* Unpack a filter field's string representation from user-space * buffer. */ char *audit_unpack_string(void **bufp, size_t *remain, size_t len) { char *str; if (!*bufp || (len == 0) || (len > *remain)) return ERR_PTR(-EINVAL); /* Of the currently implemented string fields, PATH_MAX * defines the longest valid length. */ if (len > PATH_MAX) return ERR_PTR(-ENAMETOOLONG); str = kmalloc(len + 1, GFP_KERNEL); if (unlikely(!str)) return ERR_PTR(-ENOMEM); memcpy(str, *bufp, len); str[len] = 0; *bufp += len; *remain -= len; return str; } /* Translate an inode field to kernel respresentation. */ static inline int audit_to_inode(struct audit_krule *krule, struct audit_field *f) { if (krule->listnr != AUDIT_FILTER_EXIT || krule->watch || krule->inode_f || krule->tree || (f->op != Audit_equal && f->op != Audit_not_equal)) return -EINVAL; krule->inode_f = f; return 0; } static __u32 *classes[AUDIT_SYSCALL_CLASSES]; int __init audit_register_class(int class, unsigned *list) { __u32 *p = kzalloc(AUDIT_BITMASK_SIZE * sizeof(__u32), GFP_KERNEL); if (!p) return -ENOMEM; while (*list != ~0U) { unsigned n = *list++; if (n >= AUDIT_BITMASK_SIZE * 32 - AUDIT_SYSCALL_CLASSES) { kfree(p); return -EINVAL; } p[AUDIT_WORD(n)] |= AUDIT_BIT(n); } if (class >= AUDIT_SYSCALL_CLASSES || classes[class]) { kfree(p); return -EINVAL; } classes[class] = p; return 0; } int audit_match_class(int class, unsigned syscall) { if (unlikely(syscall >= AUDIT_BITMASK_SIZE * 32)) return 0; if (unlikely(class >= AUDIT_SYSCALL_CLASSES || !classes[class])) return 0; return classes[class][AUDIT_WORD(syscall)] & AUDIT_BIT(syscall); } #ifdef CONFIG_AUDITSYSCALL static inline int audit_match_class_bits(int class, u32 *mask) { int i; if (classes[class]) { for (i = 0; i < AUDIT_BITMASK_SIZE; i++) if (mask[i] & classes[class][i]) return 0; } return 1; } static int audit_match_signal(struct audit_entry *entry) { struct audit_field *arch = entry->rule.arch_f; if (!arch) { /* When arch is unspecified, we must check both masks on biarch * as syscall number alone is ambiguous. */ return (audit_match_class_bits(AUDIT_CLASS_SIGNAL, entry->rule.mask) && audit_match_class_bits(AUDIT_CLASS_SIGNAL_32, entry->rule.mask)); } switch(audit_classify_arch(arch->val)) { case 0: /* native */ return (audit_match_class_bits(AUDIT_CLASS_SIGNAL, entry->rule.mask)); case 1: /* 32bit on biarch */ return (audit_match_class_bits(AUDIT_CLASS_SIGNAL_32, entry->rule.mask)); default: return 1; } } #endif /* Common user-space to kernel rule translation. */ static inline struct audit_entry *audit_to_entry_common(struct audit_rule *rule) { unsigned listnr; struct audit_entry *entry; int i, err; err = -EINVAL; listnr = rule->flags & ~AUDIT_FILTER_PREPEND; switch(listnr) { default: goto exit_err; #ifdef CONFIG_AUDITSYSCALL case AUDIT_FILTER_ENTRY: if (rule->action == AUDIT_ALWAYS) goto exit_err; case AUDIT_FILTER_EXIT: case AUDIT_FILTER_TASK: #endif case AUDIT_FILTER_USER: case AUDIT_FILTER_TYPE: ; } if (unlikely(rule->action == AUDIT_POSSIBLE)) { printk(KERN_ERR "AUDIT_POSSIBLE is deprecated\n"); goto exit_err; } if (rule->action != AUDIT_NEVER && rule->action != AUDIT_ALWAYS) goto exit_err; if (rule->field_count > AUDIT_MAX_FIELDS) goto exit_err; err = -ENOMEM; entry = audit_init_entry(rule->field_count); if (!entry) goto exit_err; entry->rule.flags = rule->flags & AUDIT_FILTER_PREPEND; entry->rule.listnr = listnr; entry->rule.action = rule->action; entry->rule.field_count = rule->field_count; for (i = 0; i < AUDIT_BITMASK_SIZE; i++) entry->rule.mask[i] = rule->mask[i]; for (i = 0; i < AUDIT_SYSCALL_CLASSES; i++) { int bit = AUDIT_BITMASK_SIZE * 32 - i - 1; __u32 *p = &entry->rule.mask[AUDIT_WORD(bit)]; __u32 *class; if (!(*p & AUDIT_BIT(bit))) continue; *p &= ~AUDIT_BIT(bit); class = classes[i]; if (class) { int j; for (j = 0; j < AUDIT_BITMASK_SIZE; j++) entry->rule.mask[j] |= class[j]; } } return entry; exit_err: return ERR_PTR(err); } static u32 audit_ops[] = { [Audit_equal] = AUDIT_EQUAL, [Audit_not_equal] = AUDIT_NOT_EQUAL, [Audit_bitmask] = AUDIT_BIT_MASK, [Audit_bittest] = AUDIT_BIT_TEST, [Audit_lt] = AUDIT_LESS_THAN, [Audit_gt] = AUDIT_GREATER_THAN, [Audit_le] = AUDIT_LESS_THAN_OR_EQUAL, [Audit_ge] = AUDIT_GREATER_THAN_OR_EQUAL, }; static u32 audit_to_op(u32 op) { u32 n; for (n = Audit_equal; n < Audit_bad && audit_ops[n] != op; n++) ; return n; } /* Translate struct audit_rule to kernel's rule respresentation. * Exists for backward compatibility with userspace. */ static struct audit_entry *audit_rule_to_entry(struct audit_rule *rule) { struct audit_entry *entry; int err = 0; int i; entry = audit_to_entry_common(rule); if (IS_ERR(entry)) goto exit_nofree; for (i = 0; i < rule->field_count; i++) { struct audit_field *f = &entry->rule.fields[i]; u32 n; n = rule->fields[i] & (AUDIT_NEGATE|AUDIT_OPERATORS); /* Support for legacy operators where * AUDIT_NEGATE bit signifies != and otherwise assumes == */ if (n & AUDIT_NEGATE) f->op = Audit_not_equal; else if (!n) f->op = Audit_equal; else f->op = audit_to_op(n); entry->rule.vers_ops = (n & AUDIT_OPERATORS) ? 2 : 1; f->type = rule->fields[i] & ~(AUDIT_NEGATE|AUDIT_OPERATORS); f->val = rule->values[i]; err = -EINVAL; if (f->op == Audit_bad) goto exit_free; switch(f->type) { default: goto exit_free; case AUDIT_PID: case AUDIT_UID: case AUDIT_EUID: case AUDIT_SUID: case AUDIT_FSUID: case AUDIT_GID: case AUDIT_EGID: case AUDIT_SGID: case AUDIT_FSGID: case AUDIT_LOGINUID: case AUDIT_PERS: case AUDIT_MSGTYPE: case AUDIT_PPID: case AUDIT_DEVMAJOR: case AUDIT_DEVMINOR: case AUDIT_EXIT: case AUDIT_SUCCESS: /* bit ops are only useful on syscall args */ if (f->op == Audit_bitmask || f->op == Audit_bittest) goto exit_free; break; case AUDIT_ARG0: case AUDIT_ARG1: case AUDIT_ARG2: case AUDIT_ARG3: break; /* arch is only allowed to be = or != */ case AUDIT_ARCH: if (f->op != Audit_not_equal && f->op != Audit_equal) goto exit_free; entry->rule.arch_f = f; break; case AUDIT_PERM: if (f->val & ~15) goto exit_free; break; case AUDIT_FILETYPE: if (f->val & ~S_IFMT) goto exit_free; break; case AUDIT_INODE: err = audit_to_inode(&entry->rule, f); if (err) goto exit_free; break; } } if (entry->rule.inode_f && entry->rule.inode_f->op == Audit_not_equal) entry->rule.inode_f = NULL; exit_nofree: return entry; exit_free: audit_free_rule(entry); return ERR_PTR(err); } /* Translate struct audit_rule_data to kernel's rule respresentation. */ static struct audit_entry *audit_data_to_entry(struct audit_rule_data *data, size_t datasz) { int err = 0; struct audit_entry *entry; void *bufp; size_t remain = datasz - sizeof(struct audit_rule_data); int i; char *str; entry = audit_to_entry_common((struct audit_rule *)data); if (IS_ERR(entry)) goto exit_nofree; bufp = data->buf; entry->rule.vers_ops = 2; for (i = 0; i < data->field_count; i++) { struct audit_field *f = &entry->rule.fields[i]; err = -EINVAL; f->op = audit_to_op(data->fieldflags[i]); if (f->op == Audit_bad) goto exit_free; f->type = data->fields[i]; f->val = data->values[i]; f->lsm_str = NULL; f->lsm_rule = NULL; switch(f->type) { case AUDIT_PID: case AUDIT_UID: case AUDIT_EUID: case AUDIT_SUID: case AUDIT_FSUID: case AUDIT_GID: case AUDIT_EGID: case AUDIT_SGID: case AUDIT_FSGID: case AUDIT_LOGINUID: case AUDIT_PERS: case AUDIT_MSGTYPE: case AUDIT_PPID: case AUDIT_DEVMAJOR: case AUDIT_DEVMINOR: case AUDIT_EXIT: case AUDIT_SUCCESS: case AUDIT_ARG0: case AUDIT_ARG1: case AUDIT_ARG2: case AUDIT_ARG3: case AUDIT_OBJ_UID: case AUDIT_OBJ_GID: break; case AUDIT_ARCH: entry->rule.arch_f = f; break; case AUDIT_SUBJ_USER: case AUDIT_SUBJ_ROLE: case AUDIT_SUBJ_TYPE: case AUDIT_SUBJ_SEN: case AUDIT_SUBJ_CLR: case AUDIT_OBJ_USER: case AUDIT_OBJ_ROLE: case AUDIT_OBJ_TYPE: case AUDIT_OBJ_LEV_LOW: case AUDIT_OBJ_LEV_HIGH: str = audit_unpack_string(&bufp, &remain, f->val); if (IS_ERR(str)) goto exit_free; entry->rule.buflen += f->val; err = security_audit_rule_init(f->type, f->op, str, (void **)&f->lsm_rule); /* Keep currently invalid fields around in case they * become valid after a policy reload. */ if (err == -EINVAL) { printk(KERN_WARNING "audit rule for LSM " "\'%s\' is invalid\n", str); err = 0; } if (err) { kfree(str); goto exit_free; } else f->lsm_str = str; break; case AUDIT_WATCH: str = audit_unpack_string(&bufp, &remain, f->val); if (IS_ERR(str)) goto exit_free; entry->rule.buflen += f->val; err = audit_to_watch(&entry->rule, str, f->val, f->op); if (err) { kfree(str); goto exit_free; } break; case AUDIT_DIR: str = audit_unpack_string(&bufp, &remain, f->val); if (IS_ERR(str)) goto exit_free; entry->rule.buflen += f->val; err = audit_make_tree(&entry->rule, str, f->op); kfree(str); if (err) goto exit_free; break; case AUDIT_INODE: err = audit_to_inode(&entry->rule, f); if (err) goto exit_free; break; case AUDIT_FILTERKEY: if (entry->rule.filterkey || f->val > AUDIT_MAX_KEY_LEN) goto exit_free; str = audit_unpack_string(&bufp, &remain, f->val); if (IS_ERR(str)) goto exit_free; entry->rule.buflen += f->val; entry->rule.filterkey = str; break; case AUDIT_PERM: if (f->val & ~15) goto exit_free; break; case AUDIT_FILETYPE: if (f->val & ~S_IFMT) goto exit_free; break; case AUDIT_FIELD_COMPARE: if (f->val > AUDIT_MAX_FIELD_COMPARE) goto exit_free; break; default: goto exit_free; } } if (entry->rule.inode_f && entry->rule.inode_f->op == Audit_not_equal) entry->rule.inode_f = NULL; exit_nofree: return entry; exit_free: audit_free_rule(entry); return ERR_PTR(err); } /* Pack a filter field's string representation into data block. */ static inline size_t audit_pack_string(void **bufp, const char *str) { size_t len = strlen(str); memcpy(*bufp, str, len); *bufp += len; return len; } /* Translate kernel rule respresentation to struct audit_rule. * Exists for backward compatibility with userspace. */ static struct audit_rule *audit_krule_to_rule(struct audit_krule *krule) { struct audit_rule *rule; int i; rule = kzalloc(sizeof(*rule), GFP_KERNEL); if (unlikely(!rule)) return NULL; rule->flags = krule->flags | krule->listnr; rule->action = krule->action; rule->field_count = krule->field_count; for (i = 0; i < rule->field_count; i++) { rule->values[i] = krule->fields[i].val; rule->fields[i] = krule->fields[i].type; if (krule->vers_ops == 1) { if (krule->fields[i].op == Audit_not_equal) rule->fields[i] |= AUDIT_NEGATE; } else { rule->fields[i] |= audit_ops[krule->fields[i].op]; } } for (i = 0; i < AUDIT_BITMASK_SIZE; i++) rule->mask[i] = krule->mask[i]; return rule; } /* Translate kernel rule respresentation to struct audit_rule_data. */ static struct audit_rule_data *audit_krule_to_data(struct audit_krule *krule) { struct audit_rule_data *data; void *bufp; int i; data = kmalloc(sizeof(*data) + krule->buflen, GFP_KERNEL); if (unlikely(!data)) return NULL; memset(data, 0, sizeof(*data)); data->flags = krule->flags | krule->listnr; data->action = krule->action; data->field_count = krule->field_count; bufp = data->buf; for (i = 0; i < data->field_count; i++) { struct audit_field *f = &krule->fields[i]; data->fields[i] = f->type; data->fieldflags[i] = audit_ops[f->op]; switch(f->type) { case AUDIT_SUBJ_USER: case AUDIT_SUBJ_ROLE: case AUDIT_SUBJ_TYPE: case AUDIT_SUBJ_SEN: case AUDIT_SUBJ_CLR: case AUDIT_OBJ_USER: case AUDIT_OBJ_ROLE: case AUDIT_OBJ_TYPE: case AUDIT_OBJ_LEV_LOW: case AUDIT_OBJ_LEV_HIGH: data->buflen += data->values[i] = audit_pack_string(&bufp, f->lsm_str); break; case AUDIT_WATCH: data->buflen += data->values[i] = audit_pack_string(&bufp, audit_watch_path(krule->watch)); break; case AUDIT_DIR: data->buflen += data->values[i] = audit_pack_string(&bufp, audit_tree_path(krule->tree)); break; case AUDIT_FILTERKEY: data->buflen += data->values[i] = audit_pack_string(&bufp, krule->filterkey); break; default: data->values[i] = f->val; } } for (i = 0; i < AUDIT_BITMASK_SIZE; i++) data->mask[i] = krule->mask[i]; return data; } /* Compare two rules in kernel format. Considered success if rules * don't match. */ static int audit_compare_rule(struct audit_krule *a, struct audit_krule *b) { int i; if (a->flags != b->flags || a->listnr != b->listnr || a->action != b->action || a->field_count != b->field_count) return 1; for (i = 0; i < a->field_count; i++) { if (a->fields[i].type != b->fields[i].type || a->fields[i].op != b->fields[i].op) return 1; switch(a->fields[i].type) { case AUDIT_SUBJ_USER: case AUDIT_SUBJ_ROLE: case AUDIT_SUBJ_TYPE: case AUDIT_SUBJ_SEN: case AUDIT_SUBJ_CLR: case AUDIT_OBJ_USER: case AUDIT_OBJ_ROLE: case AUDIT_OBJ_TYPE: case AUDIT_OBJ_LEV_LOW: case AUDIT_OBJ_LEV_HIGH: if (strcmp(a->fields[i].lsm_str, b->fields[i].lsm_str)) return 1; break; case AUDIT_WATCH: if (strcmp(audit_watch_path(a->watch), audit_watch_path(b->watch))) return 1; break; case AUDIT_DIR: if (strcmp(audit_tree_path(a->tree), audit_tree_path(b->tree))) return 1; break; case AUDIT_FILTERKEY: /* both filterkeys exist based on above type compare */ if (strcmp(a->filterkey, b->filterkey)) return 1; break; default: if (a->fields[i].val != b->fields[i].val) return 1; } } for (i = 0; i < AUDIT_BITMASK_SIZE; i++) if (a->mask[i] != b->mask[i]) return 1; return 0; } /* Duplicate LSM field information. The lsm_rule is opaque, so must be * re-initialized. */ static inline int audit_dupe_lsm_field(struct audit_field *df, struct audit_field *sf) { int ret = 0; char *lsm_str; /* our own copy of lsm_str */ lsm_str = kstrdup(sf->lsm_str, GFP_KERNEL); if (unlikely(!lsm_str)) return -ENOMEM; df->lsm_str = lsm_str; /* our own (refreshed) copy of lsm_rule */ ret = security_audit_rule_init(df->type, df->op, df->lsm_str, (void **)&df->lsm_rule); /* Keep currently invalid fields around in case they * become valid after a policy reload. */ if (ret == -EINVAL) { printk(KERN_WARNING "audit rule for LSM \'%s\' is " "invalid\n", df->lsm_str); ret = 0; } return ret; } /* Duplicate an audit rule. This will be a deep copy with the exception * of the watch - that pointer is carried over. The LSM specific fields * will be updated in the copy. The point is to be able to replace the old * rule with the new rule in the filterlist, then free the old rule. * The rlist element is undefined; list manipulations are handled apart from * the initial copy. */ struct audit_entry *audit_dupe_rule(struct audit_krule *old) { u32 fcount = old->field_count; struct audit_entry *entry; struct audit_krule *new; char *fk; int i, err = 0; entry = audit_init_entry(fcount); if (unlikely(!entry)) return ERR_PTR(-ENOMEM); new = &entry->rule; new->vers_ops = old->vers_ops; new->flags = old->flags; new->listnr = old->listnr; new->action = old->action; for (i = 0; i < AUDIT_BITMASK_SIZE; i++) new->mask[i] = old->mask[i]; new->prio = old->prio; new->buflen = old->buflen; new->inode_f = old->inode_f; new->field_count = old->field_count; /* * note that we are OK with not refcounting here; audit_match_tree() * never dereferences tree and we can't get false positives there * since we'd have to have rule gone from the list *and* removed * before the chunks found by lookup had been allocated, i.e. before * the beginning of list scan. */ new->tree = old->tree; memcpy(new->fields, old->fields, sizeof(struct audit_field) * fcount); /* deep copy this information, updating the lsm_rule fields, because * the originals will all be freed when the old rule is freed. */ for (i = 0; i < fcount; i++) { switch (new->fields[i].type) { case AUDIT_SUBJ_USER: case AUDIT_SUBJ_ROLE: case AUDIT_SUBJ_TYPE: case AUDIT_SUBJ_SEN: case AUDIT_SUBJ_CLR: case AUDIT_OBJ_USER: case AUDIT_OBJ_ROLE: case AUDIT_OBJ_TYPE: case AUDIT_OBJ_LEV_LOW: case AUDIT_OBJ_LEV_HIGH: err = audit_dupe_lsm_field(&new->fields[i], &old->fields[i]); break; case AUDIT_FILTERKEY: fk = kstrdup(old->filterkey, GFP_KERNEL); if (unlikely(!fk)) err = -ENOMEM; else new->filterkey = fk; } if (err) { audit_free_rule(entry); return ERR_PTR(err); } } if (old->watch) { audit_get_watch(old->watch); new->watch = old->watch; } return entry; } /* Find an existing audit rule. * Caller must hold audit_filter_mutex to prevent stale rule data. */ static struct audit_entry *audit_find_rule(struct audit_entry *entry, struct list_head **p) { struct audit_entry *e, *found = NULL; struct list_head *list; int h; if (entry->rule.inode_f) { h = audit_hash_ino(entry->rule.inode_f->val); *p = list = &audit_inode_hash[h]; } else if (entry->rule.watch) { /* we don't know the inode number, so must walk entire hash */ for (h = 0; h < AUDIT_INODE_BUCKETS; h++) { list = &audit_inode_hash[h]; list_for_each_entry(e, list, list) if (!audit_compare_rule(&entry->rule, &e->rule)) { found = e; goto out; } } goto out; } else { *p = list = &audit_filter_list[entry->rule.listnr]; } list_for_each_entry(e, list, list) if (!audit_compare_rule(&entry->rule, &e->rule)) { found = e; goto out; } out: return found; } static u64 prio_low = ~0ULL/2; static u64 prio_high = ~0ULL/2 - 1; /* Add rule to given filterlist if not a duplicate. */ static inline int audit_add_rule(struct audit_entry *entry) { struct audit_entry *e; struct audit_watch *watch = entry->rule.watch; struct audit_tree *tree = entry->rule.tree; struct list_head *list; int err; #ifdef CONFIG_AUDITSYSCALL int dont_count = 0; /* If either of these, don't count towards total */ if (entry->rule.listnr == AUDIT_FILTER_USER || entry->rule.listnr == AUDIT_FILTER_TYPE) dont_count = 1; #endif mutex_lock(&audit_filter_mutex); e = audit_find_rule(entry, &list); if (e) { mutex_unlock(&audit_filter_mutex); err = -EEXIST; /* normally audit_add_tree_rule() will free it on failure */ if (tree) audit_put_tree(tree); goto error; } if (watch) { /* audit_filter_mutex is dropped and re-taken during this call */ err = audit_add_watch(&entry->rule, &list); if (err) { mutex_unlock(&audit_filter_mutex); goto error; } } if (tree) { err = audit_add_tree_rule(&entry->rule); if (err) { mutex_unlock(&audit_filter_mutex); goto error; } } entry->rule.prio = ~0ULL; if (entry->rule.listnr == AUDIT_FILTER_EXIT) { if (entry->rule.flags & AUDIT_FILTER_PREPEND) entry->rule.prio = ++prio_high; else entry->rule.prio = --prio_low; } if (entry->rule.flags & AUDIT_FILTER_PREPEND) { list_add(&entry->rule.list, &audit_rules_list[entry->rule.listnr]); list_add_rcu(&entry->list, list); entry->rule.flags &= ~AUDIT_FILTER_PREPEND; } else { list_add_tail(&entry->rule.list, &audit_rules_list[entry->rule.listnr]); list_add_tail_rcu(&entry->list, list); } #ifdef CONFIG_AUDITSYSCALL if (!dont_count) audit_n_rules++; if (!audit_match_signal(entry)) audit_signals++; #endif mutex_unlock(&audit_filter_mutex); return 0; error: if (watch) audit_put_watch(watch); /* tmp watch, matches initial get */ return err; } /* Remove an existing rule from filterlist. */ static inline int audit_del_rule(struct audit_entry *entry) { struct audit_entry *e; struct audit_watch *watch = entry->rule.watch; struct audit_tree *tree = entry->rule.tree; struct list_head *list; int ret = 0; #ifdef CONFIG_AUDITSYSCALL int dont_count = 0; /* If either of these, don't count towards total */ if (entry->rule.listnr == AUDIT_FILTER_USER || entry->rule.listnr == AUDIT_FILTER_TYPE) dont_count = 1; #endif mutex_lock(&audit_filter_mutex); e = audit_find_rule(entry, &list); if (!e) { mutex_unlock(&audit_filter_mutex); ret = -ENOENT; goto out; } if (e->rule.watch) audit_remove_watch_rule(&e->rule); if (e->rule.tree) audit_remove_tree_rule(&e->rule); list_del_rcu(&e->list); list_del(&e->rule.list); call_rcu(&e->rcu, audit_free_rule_rcu); #ifdef CONFIG_AUDITSYSCALL if (!dont_count) audit_n_rules--; if (!audit_match_signal(entry)) audit_signals--; #endif mutex_unlock(&audit_filter_mutex); out: if (watch) audit_put_watch(watch); /* match initial get */ if (tree) audit_put_tree(tree); /* that's the temporary one */ return ret; } /* List rules using struct audit_rule. Exists for backward * compatibility with userspace. */ static void audit_list(int pid, int seq, struct sk_buff_head *q) { struct sk_buff *skb; struct audit_krule *r; int i; /* This is a blocking read, so use audit_filter_mutex instead of rcu * iterator to sync with list writers. */ for (i=0; i<AUDIT_NR_FILTERS; i++) { list_for_each_entry(r, &audit_rules_list[i], list) { struct audit_rule *rule; rule = audit_krule_to_rule(r); if (unlikely(!rule)) break; skb = audit_make_reply(pid, seq, AUDIT_LIST, 0, 1, rule, sizeof(*rule)); if (skb) skb_queue_tail(q, skb); kfree(rule); } } skb = audit_make_reply(pid, seq, AUDIT_LIST, 1, 1, NULL, 0); if (skb) skb_queue_tail(q, skb); } /* List rules using struct audit_rule_data. */ static void audit_list_rules(int pid, int seq, struct sk_buff_head *q) { struct sk_buff *skb; struct audit_krule *r; int i; /* This is a blocking read, so use audit_filter_mutex instead of rcu * iterator to sync with list writers. */ for (i=0; i<AUDIT_NR_FILTERS; i++) { list_for_each_entry(r, &audit_rules_list[i], list) { struct audit_rule_data *data; data = audit_krule_to_data(r); if (unlikely(!data)) break; skb = audit_make_reply(pid, seq, AUDIT_LIST_RULES, 0, 1, data, sizeof(*data) + data->buflen); if (skb) skb_queue_tail(q, skb); kfree(data); } } skb = audit_make_reply(pid, seq, AUDIT_LIST_RULES, 1, 1, NULL, 0); if (skb) skb_queue_tail(q, skb); } /* Log rule additions and removals */ static void audit_log_rule_change(uid_t loginuid, u32 sessionid, u32 sid, char *action, struct audit_krule *rule, int res) { struct audit_buffer *ab; if (!audit_enabled) return; ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE); if (!ab) return; audit_log_format(ab, "auid=%u ses=%u", loginuid, sessionid); if (sid) { char *ctx = NULL; u32 len; if (security_secid_to_secctx(sid, &ctx, &len)) audit_log_format(ab, " ssid=%u", sid); else { audit_log_format(ab, " subj=%s", ctx); security_release_secctx(ctx, len); } } audit_log_format(ab, " op="); audit_log_string(ab, action); audit_log_key(ab, rule->filterkey); audit_log_format(ab, " list=%d res=%d", rule->listnr, res); audit_log_end(ab); } /** * audit_receive_filter - apply all rules to the specified message type * @type: audit message type * @pid: target pid for netlink audit messages * @uid: target uid for netlink audit messages * @seq: netlink audit message sequence (serial) number * @data: payload data * @datasz: size of payload data * @loginuid: loginuid of sender * @sessionid: sessionid for netlink audit message * @sid: SE Linux Security ID of sender */ int audit_receive_filter(int type, int pid, int uid, int seq, void *data, size_t datasz, uid_t loginuid, u32 sessionid, u32 sid) { struct task_struct *tsk; struct audit_netlink_list *dest; int err = 0; struct audit_entry *entry; switch (type) { case AUDIT_LIST: case AUDIT_LIST_RULES: /* We can't just spew out the rules here because we might fill * the available socket buffer space and deadlock waiting for * auditctl to read from it... which isn't ever going to * happen if we're actually running in the context of auditctl * trying to _send_ the stuff */ dest = kmalloc(sizeof(struct audit_netlink_list), GFP_KERNEL); if (!dest) return -ENOMEM; dest->pid = pid; skb_queue_head_init(&dest->q); mutex_lock(&audit_filter_mutex); if (type == AUDIT_LIST) audit_list(pid, seq, &dest->q); else audit_list_rules(pid, seq, &dest->q); mutex_unlock(&audit_filter_mutex); tsk = kthread_run(audit_send_list, dest, "audit_send_list"); if (IS_ERR(tsk)) { skb_queue_purge(&dest->q); kfree(dest); err = PTR_ERR(tsk); } break; case AUDIT_ADD: case AUDIT_ADD_RULE: if (type == AUDIT_ADD) entry = audit_rule_to_entry(data); else entry = audit_data_to_entry(data, datasz); if (IS_ERR(entry)) return PTR_ERR(entry); err = audit_add_rule(entry); audit_log_rule_change(loginuid, sessionid, sid, "add rule", &entry->rule, !err); if (err) audit_free_rule(entry); break; case AUDIT_DEL: case AUDIT_DEL_RULE: if (type == AUDIT_DEL) entry = audit_rule_to_entry(data); else entry = audit_data_to_entry(data, datasz); if (IS_ERR(entry)) return PTR_ERR(entry); err = audit_del_rule(entry); audit_log_rule_change(loginuid, sessionid, sid, "remove rule", &entry->rule, !err); audit_free_rule(entry); break; default: return -EINVAL; } return err; } int audit_comparator(u32 left, u32 op, u32 right) { switch (op) { case Audit_equal: return (left == right); case Audit_not_equal: return (left != right); case Audit_lt: return (left < right); case Audit_le: return (left <= right); case Audit_gt: return (left > right); case Audit_ge: return (left >= right); case Audit_bitmask: return (left & right); case Audit_bittest: return ((left & right) == right); default: BUG(); return 0; } } /* Compare given dentry name with last component in given path, * return of 0 indicates a match. */ int audit_compare_dname_path(const char *dname, const char *path, int *dirlen) { int dlen, plen; const char *p; if (!dname || !path) return 1; dlen = strlen(dname); plen = strlen(path); if (plen < dlen) return 1; /* disregard trailing slashes */ p = path + plen - 1; while ((*p == '/') && (p > path)) p--; /* find last path component */ p = p - dlen + 1; if (p < path) return 1; else if (p > path) { if (*--p != '/') return 1; else p++; } /* return length of path's directory component */ if (dirlen) *dirlen = p - path; return strncmp(p, dname, dlen); } static int audit_filter_user_rules(struct netlink_skb_parms *cb, struct audit_krule *rule, enum audit_state *state) { int i; for (i = 0; i < rule->field_count; i++) { struct audit_field *f = &rule->fields[i]; int result = 0; u32 sid; switch (f->type) { case AUDIT_PID: result = audit_comparator(cb->creds.pid, f->op, f->val); break; case AUDIT_UID: result = audit_comparator(cb->creds.uid, f->op, f->val); break; case AUDIT_GID: result = audit_comparator(cb->creds.gid, f->op, f->val); break; case AUDIT_LOGINUID: result = audit_comparator(audit_get_loginuid(current), f->op, f->val); break; case AUDIT_SUBJ_USER: case AUDIT_SUBJ_ROLE: case AUDIT_SUBJ_TYPE: case AUDIT_SUBJ_SEN: case AUDIT_SUBJ_CLR: if (f->lsm_rule) { security_task_getsecid(current, &sid); result = security_audit_rule_match(sid, f->type, f->op, f->lsm_rule, NULL); } break; } if (!result) return 0; } switch (rule->action) { case AUDIT_NEVER: *state = AUDIT_DISABLED; break; case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break; } return 1; } int audit_filter_user(struct netlink_skb_parms *cb) { enum audit_state state = AUDIT_DISABLED; struct audit_entry *e; int ret = 1; rcu_read_lock(); list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_USER], list) { if (audit_filter_user_rules(cb, &e->rule, &state)) { if (state == AUDIT_DISABLED) ret = 0; break; } } rcu_read_unlock(); return ret; /* Audit by default */ } int audit_filter_type(int type) { struct audit_entry *e; int result = 0; rcu_read_lock(); if (list_empty(&audit_filter_list[AUDIT_FILTER_TYPE])) goto unlock_and_return; list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TYPE], list) { int i; for (i = 0; i < e->rule.field_count; i++) { struct audit_field *f = &e->rule.fields[i]; if (f->type == AUDIT_MSGTYPE) { result = audit_comparator(type, f->op, f->val); if (!result) break; } } if (result) goto unlock_and_return; } unlock_and_return: rcu_read_unlock(); return result; } static int update_lsm_rule(struct audit_krule *r) { struct audit_entry *entry = container_of(r, struct audit_entry, rule); struct audit_entry *nentry; int err = 0; if (!security_audit_rule_known(r)) return 0; nentry = audit_dupe_rule(r); if (IS_ERR(nentry)) { /* save the first error encountered for the * return value */ err = PTR_ERR(nentry); audit_panic("error updating LSM filters"); if (r->watch) list_del(&r->rlist); list_del_rcu(&entry->list); list_del(&r->list); } else { if (r->watch || r->tree) list_replace_init(&r->rlist, &nentry->rule.rlist); list_replace_rcu(&entry->list, &nentry->list); list_replace(&r->list, &nentry->rule.list); } call_rcu(&entry->rcu, audit_free_rule_rcu); return err; } /* This function will re-initialize the lsm_rule field of all applicable rules. * It will traverse the filter lists serarching for rules that contain LSM * specific filter fields. When such a rule is found, it is copied, the * LSM field is re-initialized, and the old rule is replaced with the * updated rule. */ int audit_update_lsm_rules(void) { struct audit_krule *r, *n; int i, err = 0; /* audit_filter_mutex synchronizes the writers */ mutex_lock(&audit_filter_mutex); for (i = 0; i < AUDIT_NR_FILTERS; i++) { list_for_each_entry_safe(r, n, &audit_rules_list[i], list) { int res = update_lsm_rule(r); if (!err) err = res; } } mutex_unlock(&audit_filter_mutex); return err; }