/* SPDX-License-Identifier: GPL-2.0 */ /* * workqueue.h --- work queue handling for Linux. */ #ifndef _LINUX_WORKQUEUE_H #define _LINUX_WORKQUEUE_H #include #include #include #include #include #include #include #include #include /* * The first word is the work queue pointer and the flags rolled into * one */ #define work_data_bits(work) ((unsigned long *)(&(work)->data)) enum work_bits { WORK_STRUCT_PENDING_BIT = 0, /* work item is pending execution */ WORK_STRUCT_INACTIVE_BIT, /* work item is inactive */ WORK_STRUCT_PWQ_BIT, /* data points to pwq */ WORK_STRUCT_LINKED_BIT, /* next work is linked to this one */ #ifdef CONFIG_DEBUG_OBJECTS_WORK WORK_STRUCT_STATIC_BIT, /* static initializer (debugobjects) */ #endif WORK_STRUCT_FLAG_BITS, /* color for workqueue flushing */ WORK_STRUCT_COLOR_SHIFT = WORK_STRUCT_FLAG_BITS, WORK_STRUCT_COLOR_BITS = 4, /* * When WORK_STRUCT_PWQ is set, reserve 8 bits off of pwq pointer w/ * debugobjects turned off. This makes pwqs aligned to 256 bytes (512 * bytes w/ DEBUG_OBJECTS_WORK) and allows 16 workqueue flush colors. * * MSB * [ pwq pointer ] [ flush color ] [ STRUCT flags ] * 4 bits 4 or 5 bits */ WORK_STRUCT_PWQ_SHIFT = WORK_STRUCT_COLOR_SHIFT + WORK_STRUCT_COLOR_BITS, /* * data contains off-queue information when !WORK_STRUCT_PWQ. * * MSB * [ pool ID ] [ disable depth ] [ OFFQ flags ] [ STRUCT flags ] * 16 bits 1 bit 4 or 5 bits */ WORK_OFFQ_FLAG_SHIFT = WORK_STRUCT_FLAG_BITS, WORK_OFFQ_BH_BIT = WORK_OFFQ_FLAG_SHIFT, WORK_OFFQ_FLAG_END, WORK_OFFQ_FLAG_BITS = WORK_OFFQ_FLAG_END - WORK_OFFQ_FLAG_SHIFT, WORK_OFFQ_DISABLE_SHIFT = WORK_OFFQ_FLAG_SHIFT + WORK_OFFQ_FLAG_BITS, WORK_OFFQ_DISABLE_BITS = 16, /* * When a work item is off queue, the high bits encode off-queue flags * and the last pool it was on. Cap pool ID to 31 bits and use the * highest number to indicate that no pool is associated. */ WORK_OFFQ_POOL_SHIFT = WORK_OFFQ_DISABLE_SHIFT + WORK_OFFQ_DISABLE_BITS, WORK_OFFQ_LEFT = BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT, WORK_OFFQ_POOL_BITS = WORK_OFFQ_LEFT <= 31 ? WORK_OFFQ_LEFT : 31, }; enum work_flags { WORK_STRUCT_PENDING = 1 << WORK_STRUCT_PENDING_BIT, WORK_STRUCT_INACTIVE = 1 << WORK_STRUCT_INACTIVE_BIT, WORK_STRUCT_PWQ = 1 << WORK_STRUCT_PWQ_BIT, WORK_STRUCT_LINKED = 1 << WORK_STRUCT_LINKED_BIT, #ifdef CONFIG_DEBUG_OBJECTS_WORK WORK_STRUCT_STATIC = 1 << WORK_STRUCT_STATIC_BIT, #else WORK_STRUCT_STATIC = 0, #endif }; enum wq_misc_consts { WORK_NR_COLORS = (1 << WORK_STRUCT_COLOR_BITS), /* not bound to any CPU, prefer the local CPU */ WORK_CPU_UNBOUND = NR_CPUS, /* bit mask for work_busy() return values */ WORK_BUSY_PENDING = 1 << 0, WORK_BUSY_RUNNING = 1 << 1, /* maximum string length for set_worker_desc() */ WORKER_DESC_LEN = 32, }; /* Convenience constants - of type 'unsigned long', not 'enum'! */ #define WORK_OFFQ_BH (1ul << WORK_OFFQ_BH_BIT) #define WORK_OFFQ_FLAG_MASK (((1ul << WORK_OFFQ_FLAG_BITS) - 1) << WORK_OFFQ_FLAG_SHIFT) #define WORK_OFFQ_DISABLE_MASK (((1ul << WORK_OFFQ_DISABLE_BITS) - 1) << WORK_OFFQ_DISABLE_SHIFT) #define WORK_OFFQ_POOL_NONE ((1ul << WORK_OFFQ_POOL_BITS) - 1) #define WORK_STRUCT_NO_POOL (WORK_OFFQ_POOL_NONE << WORK_OFFQ_POOL_SHIFT) #define WORK_STRUCT_PWQ_MASK (~((1ul << WORK_STRUCT_PWQ_SHIFT) - 1)) #define WORK_DATA_INIT() ATOMIC_LONG_INIT((unsigned long)WORK_STRUCT_NO_POOL) #define WORK_DATA_STATIC_INIT() \ ATOMIC_LONG_INIT((unsigned long)(WORK_STRUCT_NO_POOL | WORK_STRUCT_STATIC)) struct delayed_work { struct work_struct work; struct timer_list timer; /* target workqueue and CPU ->timer uses to queue ->work */ struct workqueue_struct *wq; int cpu; }; struct rcu_work { struct work_struct work; struct rcu_head rcu; /* target workqueue ->rcu uses to queue ->work */ struct workqueue_struct *wq; }; enum wq_affn_scope { WQ_AFFN_DFL, /* use system default */ WQ_AFFN_CPU, /* one pod per CPU */ WQ_AFFN_SMT, /* one pod poer SMT */ WQ_AFFN_CACHE, /* one pod per LLC */ WQ_AFFN_NUMA, /* one pod per NUMA node */ WQ_AFFN_SYSTEM, /* one pod across the whole system */ WQ_AFFN_NR_TYPES, }; /** * struct workqueue_attrs - A struct for workqueue attributes. * * This can be used to change attributes of an unbound workqueue. */ struct workqueue_attrs { /** * @nice: nice level */ int nice; /** * @cpumask: allowed CPUs * * Work items in this workqueue are affine to these CPUs and not allowed * to execute on other CPUs. A pool serving a workqueue must have the * same @cpumask. */ cpumask_var_t cpumask; /** * @__pod_cpumask: internal attribute used to create per-pod pools * * Internal use only. * * Per-pod unbound worker pools are used to improve locality. Always a * subset of ->cpumask. A workqueue can be associated with multiple * worker pools with disjoint @__pod_cpumask's. Whether the enforcement * of a pool's @__pod_cpumask is strict depends on @affn_strict. */ cpumask_var_t __pod_cpumask; /** * @affn_strict: affinity scope is strict * * If clear, workqueue will make a best-effort attempt at starting the * worker inside @__pod_cpumask but the scheduler is free to migrate it * outside. * * If set, workers are only allowed to run inside @__pod_cpumask. */ bool affn_strict; /* * Below fields aren't properties of a worker_pool. They only modify how * :c:func:`apply_workqueue_attrs` select pools and thus don't * participate in pool hash calculations or equality comparisons. * * If @affn_strict is set, @cpumask isn't a property of a worker_pool * either. */ /** * @affn_scope: unbound CPU affinity scope * * CPU pods are used to improve execution locality of unbound work * items. There are multiple pod types, one for each wq_affn_scope, and * every CPU in the system belongs to one pod in every pod type. CPUs * that belong to the same pod share the worker pool. For example, * selecting %WQ_AFFN_NUMA makes the workqueue use a separate worker * pool for each NUMA node. */ enum wq_affn_scope affn_scope; /** * @ordered: work items must be executed one by one in queueing order */ bool ordered; }; static inline struct delayed_work *to_delayed_work(struct work_struct *work) { return container_of(work, struct delayed_work, work); } static inline struct rcu_work *to_rcu_work(struct work_struct *work) { return container_of(work, struct rcu_work, work); } struct execute_work { struct work_struct work; }; #ifdef CONFIG_LOCKDEP /* * NB: because we have to copy the lockdep_map, setting _key * here is required, otherwise it could get initialised to the * copy of the lockdep_map! */ #define __WORK_INIT_LOCKDEP_MAP(n, k) \ .lockdep_map = STATIC_LOCKDEP_MAP_INIT(n, k), #else #define __WORK_INIT_LOCKDEP_MAP(n, k) #endif #define __WORK_INITIALIZER(n, f) { \ .data = WORK_DATA_STATIC_INIT(), \ .entry = { &(n).entry, &(n).entry }, \ .func = (f), \ __WORK_INIT_LOCKDEP_MAP(#n, &(n)) \ } #define __DELAYED_WORK_INITIALIZER(n, f, tflags) { \ .work = __WORK_INITIALIZER((n).work, (f)), \ .timer = __TIMER_INITIALIZER(delayed_work_timer_fn,\ (tflags) | TIMER_IRQSAFE), \ } #define DECLARE_WORK(n, f) \ struct work_struct n = __WORK_INITIALIZER(n, f) #define DECLARE_DELAYED_WORK(n, f) \ struct delayed_work n = __DELAYED_WORK_INITIALIZER(n, f, 0) #define DECLARE_DEFERRABLE_WORK(n, f) \ struct delayed_work n = __DELAYED_WORK_INITIALIZER(n, f, TIMER_DEFERRABLE) #ifdef CONFIG_DEBUG_OBJECTS_WORK extern void __init_work(struct work_struct *work, int onstack); extern void destroy_work_on_stack(struct work_struct *work); extern void destroy_delayed_work_on_stack(struct delayed_work *work); static inline unsigned int work_static(struct work_struct *work) { return *work_data_bits(work) & WORK_STRUCT_STATIC; } #else static inline void __init_work(struct work_struct *work, int onstack) { } static inline void destroy_work_on_stack(struct work_struct *work) { } static inline void destroy_delayed_work_on_stack(struct delayed_work *work) { } static inline unsigned int work_static(struct work_struct *work) { return 0; } #endif /* * initialize all of a work item in one go * * NOTE! No point in using "atomic_long_set()": using a direct * assignment of the work data initializer allows the compiler * to generate better code. */ #ifdef CONFIG_LOCKDEP #define __INIT_WORK_KEY(_work, _func, _onstack, _key) \ do { \ __init_work((_work), _onstack); \ (_work)->data = (atomic_long_t) WORK_DATA_INIT(); \ lockdep_init_map(&(_work)->lockdep_map, "(work_completion)"#_work, (_key), 0); \ INIT_LIST_HEAD(&(_work)->entry); \ (_work)->func = (_func); \ } while (0) #else #define __INIT_WORK_KEY(_work, _func, _onstack, _key) \ do { \ __init_work((_work), _onstack); \ (_work)->data = (atomic_long_t) WORK_DATA_INIT(); \ INIT_LIST_HEAD(&(_work)->entry); \ (_work)->func = (_func); \ } while (0) #endif #define __INIT_WORK(_work, _func, _onstack) \ do { \ static __maybe_unused struct lock_class_key __key; \ \ __INIT_WORK_KEY(_work, _func, _onstack, &__key); \ } while (0) #define INIT_WORK(_work, _func) \ __INIT_WORK((_work), (_func), 0) #define INIT_WORK_ONSTACK(_work, _func) \ __INIT_WORK((_work), (_func), 1) #define INIT_WORK_ONSTACK_KEY(_work, _func, _key) \ __INIT_WORK_KEY((_work), (_func), 1, _key) #define __INIT_DELAYED_WORK(_work, _func, _tflags) \ do { \ INIT_WORK(&(_work)->work, (_func)); \ __init_timer(&(_work)->timer, \ delayed_work_timer_fn, \ (_tflags) | TIMER_IRQSAFE); \ } while (0) #define __INIT_DELAYED_WORK_ONSTACK(_work, _func, _tflags) \ do { \ INIT_WORK_ONSTACK(&(_work)->work, (_func)); \ __init_timer_on_stack(&(_work)->timer, \ delayed_work_timer_fn, \ (_tflags) | TIMER_IRQSAFE); \ } while (0) #define INIT_DELAYED_WORK(_work, _func) \ __INIT_DELAYED_WORK(_work, _func, 0) #define INIT_DELAYED_WORK_ONSTACK(_work, _func) \ __INIT_DELAYED_WORK_ONSTACK(_work, _func, 0) #define INIT_DEFERRABLE_WORK(_work, _func) \ __INIT_DELAYED_WORK(_work, _func, TIMER_DEFERRABLE) #define INIT_DEFERRABLE_WORK_ONSTACK(_work, _func) \ __INIT_DELAYED_WORK_ONSTACK(_work, _func, TIMER_DEFERRABLE) #define INIT_RCU_WORK(_work, _func) \ INIT_WORK(&(_work)->work, (_func)) #define INIT_RCU_WORK_ONSTACK(_work, _func) \ INIT_WORK_ONSTACK(&(_work)->work, (_func)) /** * work_pending - Find out whether a work item is currently pending * @work: The work item in question */ #define work_pending(work) \ test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) /** * delayed_work_pending - Find out whether a delayable work item is currently * pending * @w: The work item in question */ #define delayed_work_pending(w) \ work_pending(&(w)->work) /* * Workqueue flags and constants. For details, please refer to * Documentation/core-api/workqueue.rst. */ enum wq_flags { WQ_BH = 1 << 0, /* execute in bottom half (softirq) context */ WQ_UNBOUND = 1 << 1, /* not bound to any cpu */ WQ_FREEZABLE = 1 << 2, /* freeze during suspend */ WQ_MEM_RECLAIM = 1 << 3, /* may be used for memory reclaim */ WQ_HIGHPRI = 1 << 4, /* high priority */ WQ_CPU_INTENSIVE = 1 << 5, /* cpu intensive workqueue */ WQ_SYSFS = 1 << 6, /* visible in sysfs, see workqueue_sysfs_register() */ /* * Per-cpu workqueues are generally preferred because they tend to * show better performance thanks to cache locality. Per-cpu * workqueues exclude the scheduler from choosing the CPU to * execute the worker threads, which has an unfortunate side effect * of increasing power consumption. * * The scheduler considers a CPU idle if it doesn't have any task * to execute and tries to keep idle cores idle to conserve power; * however, for example, a per-cpu work item scheduled from an * interrupt handler on an idle CPU will force the scheduler to * execute the work item on that CPU breaking the idleness, which in * turn may lead to more scheduling choices which are sub-optimal * in terms of power consumption. * * Workqueues marked with WQ_POWER_EFFICIENT are per-cpu by default * but become unbound if workqueue.power_efficient kernel param is * specified. Per-cpu workqueues which are identified to * contribute significantly to power-consumption are identified and * marked with this flag and enabling the power_efficient mode * leads to noticeable power saving at the cost of small * performance disadvantage. * * http://thread.gmane.org/gmane.linux.kernel/1480396 */ WQ_POWER_EFFICIENT = 1 << 7, __WQ_DESTROYING = 1 << 15, /* internal: workqueue is destroying */ __WQ_DRAINING = 1 << 16, /* internal: workqueue is draining */ __WQ_ORDERED = 1 << 17, /* internal: workqueue is ordered */ __WQ_LEGACY = 1 << 18, /* internal: create*_workqueue() */ /* BH wq only allows the following flags */ __WQ_BH_ALLOWS = WQ_BH | WQ_HIGHPRI, }; enum wq_consts { WQ_MAX_ACTIVE = 512, /* I like 512, better ideas? */ WQ_UNBOUND_MAX_ACTIVE = WQ_MAX_ACTIVE, WQ_DFL_ACTIVE = WQ_MAX_ACTIVE / 2, /* * Per-node default cap on min_active. Unless explicitly set, min_active * is set to min(max_active, WQ_DFL_MIN_ACTIVE). For more details, see * workqueue_struct->min_active definition. */ WQ_DFL_MIN_ACTIVE = 8, }; /* * System-wide workqueues which are always present. * * system_wq is the one used by schedule[_delayed]_work[_on](). * Multi-CPU multi-threaded. There are users which expect relatively * short queue flush time. Don't queue works which can run for too * long. * * system_highpri_wq is similar to system_wq but for work items which * require WQ_HIGHPRI. * * system_long_wq is similar to system_wq but may host long running * works. Queue flushing might take relatively long. * * system_unbound_wq is unbound workqueue. Workers are not bound to * any specific CPU, not concurrency managed, and all queued works are * executed immediately as long as max_active limit is not reached and * resources are available. * * system_freezable_wq is equivalent to system_wq except that it's * freezable. * * *_power_efficient_wq are inclined towards saving power and converted * into WQ_UNBOUND variants if 'wq_power_efficient' is enabled; otherwise, * they are same as their non-power-efficient counterparts - e.g. * system_power_efficient_wq is identical to system_wq if * 'wq_power_efficient' is disabled. See WQ_POWER_EFFICIENT for more info. * * system_bh[_highpri]_wq are convenience interface to softirq. BH work items * are executed in the queueing CPU's BH context in the queueing order. */ extern struct workqueue_struct *system_wq; extern struct workqueue_struct *system_highpri_wq; extern struct workqueue_struct *system_long_wq; extern struct workqueue_struct *system_unbound_wq; extern struct workqueue_struct *system_freezable_wq; extern struct workqueue_struct *system_power_efficient_wq; extern struct workqueue_struct *system_freezable_power_efficient_wq; extern struct workqueue_struct *system_bh_wq; extern struct workqueue_struct *system_bh_highpri_wq; void workqueue_softirq_action(bool highpri); void workqueue_softirq_dead(unsigned int cpu); /** * alloc_workqueue - allocate a workqueue * @fmt: printf format for the name of the workqueue * @flags: WQ_* flags * @max_active: max in-flight work items, 0 for default * @...: args for @fmt * * For a per-cpu workqueue, @max_active limits the number of in-flight work * items for each CPU. e.g. @max_active of 1 indicates that each CPU can be * executing at most one work item for the workqueue. * * For unbound workqueues, @max_active limits the number of in-flight work items * for the whole system. e.g. @max_active of 16 indicates that that there can be * at most 16 work items executing for the workqueue in the whole system. * * As sharing the same active counter for an unbound workqueue across multiple * NUMA nodes can be expensive, @max_active is distributed to each NUMA node * according to the proportion of the number of online CPUs and enforced * independently. * * Depending on online CPU distribution, a node may end up with per-node * max_active which is significantly lower than @max_active, which can lead to * deadlocks if the per-node concurrency limit is lower than the maximum number * of interdependent work items for the workqueue. * * To guarantee forward progress regardless of online CPU distribution, the * concurrency limit on every node is guaranteed to be equal to or greater than * min_active which is set to min(@max_active, %WQ_DFL_MIN_ACTIVE). This means * that the sum of per-node max_active's may be larger than @max_active. * * For detailed information on %WQ_* flags, please refer to * Documentation/core-api/workqueue.rst. * * RETURNS: * Pointer to the allocated workqueue on success, %NULL on failure. */ __printf(1, 4) struct workqueue_struct * alloc_workqueue(const char *fmt, unsigned int flags, int max_active, ...); /** * alloc_ordered_workqueue - allocate an ordered workqueue * @fmt: printf format for the name of the workqueue * @flags: WQ_* flags (only WQ_FREEZABLE and WQ_MEM_RECLAIM are meaningful) * @args: args for @fmt * * Allocate an ordered workqueue. An ordered workqueue executes at * most one work item at any given time in the queued order. They are * implemented as unbound workqueues with @max_active of one. * * RETURNS: * Pointer to the allocated workqueue on success, %NULL on failure. */ #define alloc_ordered_workqueue(fmt, flags, args...) \ alloc_workqueue(fmt, WQ_UNBOUND | __WQ_ORDERED | (flags), 1, ##args) #define create_workqueue(name) \ alloc_workqueue("%s", __WQ_LEGACY | WQ_MEM_RECLAIM, 1, (name)) #define create_freezable_workqueue(name) \ alloc_workqueue("%s", __WQ_LEGACY | WQ_FREEZABLE | WQ_UNBOUND | \ WQ_MEM_RECLAIM, 1, (name)) #define create_singlethread_workqueue(name) \ alloc_ordered_workqueue("%s", __WQ_LEGACY | WQ_MEM_RECLAIM, name) #define from_work(var, callback_work, work_fieldname) \ container_of(callback_work, typeof(*var), work_fieldname) extern void destroy_workqueue(struct workqueue_struct *wq); struct workqueue_attrs *alloc_workqueue_attrs(void); void free_workqueue_attrs(struct workqueue_attrs *attrs); int apply_workqueue_attrs(struct workqueue_struct *wq, const struct workqueue_attrs *attrs); extern int workqueue_unbound_exclude_cpumask(cpumask_var_t cpumask); extern bool queue_work_on(int cpu, struct workqueue_struct *wq, struct work_struct *work); extern bool queue_work_node(int node, struct workqueue_struct *wq, struct work_struct *work); extern bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq, struct delayed_work *work, unsigned long delay); extern bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq, struct delayed_work *dwork, unsigned long delay); extern bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork); extern void __flush_workqueue(struct workqueue_struct *wq); extern void drain_workqueue(struct workqueue_struct *wq); extern int schedule_on_each_cpu(work_func_t func); int execute_in_process_context(work_func_t fn, struct execute_work *); extern bool flush_work(struct work_struct *work); extern bool cancel_work(struct work_struct *work); extern bool cancel_work_sync(struct work_struct *work); extern bool flush_delayed_work(struct delayed_work *dwork); extern bool cancel_delayed_work(struct delayed_work *dwork); extern bool cancel_delayed_work_sync(struct delayed_work *dwork); extern bool disable_work(struct work_struct *work); extern bool disable_work_sync(struct work_struct *work); extern bool enable_work(struct work_struct *work); extern bool disable_delayed_work(struct delayed_work *dwork); extern bool disable_delayed_work_sync(struct delayed_work *dwork); extern bool enable_delayed_work(struct delayed_work *dwork); extern bool flush_rcu_work(struct rcu_work *rwork); extern void workqueue_set_max_active(struct workqueue_struct *wq, int max_active); extern void workqueue_set_min_active(struct workqueue_struct *wq, int min_active); extern struct work_struct *current_work(void); extern bool current_is_workqueue_rescuer(void); extern bool workqueue_congested(int cpu, struct workqueue_struct *wq); extern unsigned int work_busy(struct work_struct *work); extern __printf(1, 2) void set_worker_desc(const char *fmt, ...); extern void print_worker_info(const char *log_lvl, struct task_struct *task); extern void show_all_workqueues(void); extern void show_freezable_workqueues(void); extern void show_one_workqueue(struct workqueue_struct *wq); extern void wq_worker_comm(char *buf, size_t size, struct task_struct *task); /** * queue_work - queue work on a workqueue * @wq: workqueue to use * @work: work to queue * * Returns %false if @work was already on a queue, %true otherwise. * * We queue the work to the CPU on which it was submitted, but if the CPU dies * it can be processed by another CPU. * * Memory-ordering properties: If it returns %true, guarantees that all stores * preceding the call to queue_work() in the program order will be visible from * the CPU which will execute @work by the time such work executes, e.g., * * { x is initially 0 } * * CPU0 CPU1 * * WRITE_ONCE(x, 1); [ @work is being executed ] * r0 = queue_work(wq, work); r1 = READ_ONCE(x); * * Forbids: r0 == true && r1 == 0 */ static inline bool queue_work(struct workqueue_struct *wq, struct work_struct *work) { return queue_work_on(WORK_CPU_UNBOUND, wq, work); } /** * queue_delayed_work - queue work on a workqueue after delay * @wq: workqueue to use * @dwork: delayable work to queue * @delay: number of jiffies to wait before queueing * * Equivalent to queue_delayed_work_on() but tries to use the local CPU. */ static inline bool queue_delayed_work(struct workqueue_struct *wq, struct delayed_work *dwork, unsigned long delay) { return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay); } /** * mod_delayed_work - modify delay of or queue a delayed work * @wq: workqueue to use * @dwork: work to queue * @delay: number of jiffies to wait before queueing * * mod_delayed_work_on() on local CPU. */ static inline bool mod_delayed_work(struct workqueue_struct *wq, struct delayed_work *dwork, unsigned long delay) { return mod_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay); } /** * schedule_work_on - put work task on a specific cpu * @cpu: cpu to put the work task on * @work: job to be done * * This puts a job on a specific cpu */ static inline bool schedule_work_on(int cpu, struct work_struct *work) { return queue_work_on(cpu, system_wq, work); } /** * schedule_work - put work task in global workqueue * @work: job to be done * * Returns %false if @work was already on the kernel-global workqueue and * %true otherwise. * * This puts a job in the kernel-global workqueue if it was not already * queued and leaves it in the same position on the kernel-global * workqueue otherwise. * * Shares the same memory-ordering properties of queue_work(), cf. the * DocBook header of queue_work(). */ static inline bool schedule_work(struct work_struct *work) { return queue_work(system_wq, work); } /** * enable_and_queue_work - Enable and queue a work item on a specific workqueue * @wq: The target workqueue * @work: The work item to be enabled and queued * * This function combines the operations of enable_work() and queue_work(), * providing a convenient way to enable and queue a work item in a single call. * It invokes enable_work() on @work and then queues it if the disable depth * reached 0. Returns %true if the disable depth reached 0 and @work is queued, * and %false otherwise. * * Note that @work is always queued when disable depth reaches zero. If the * desired behavior is queueing only if certain events took place while @work is * disabled, the user should implement the necessary state tracking and perform * explicit conditional queueing after enable_work(). */ static inline bool enable_and_queue_work(struct workqueue_struct *wq, struct work_struct *work) { if (enable_work(work)) { queue_work(wq, work); return true; } return false; } /* * Detect attempt to flush system-wide workqueues at compile time when possible. * Warn attempt to flush system-wide workqueues at runtime. * * See https://lkml.kernel.org/r/49925af7-78a8-a3dd-bce6-cfc02e1a9236@I-love.SAKURA.ne.jp * for reasons and steps for converting system-wide workqueues into local workqueues. */ extern void __warn_flushing_systemwide_wq(void) __compiletime_warning("Please avoid flushing system-wide workqueues."); /* Please stop using this function, for this function will be removed in near future. */ #define flush_scheduled_work() \ ({ \ __warn_flushing_systemwide_wq(); \ __flush_workqueue(system_wq); \ }) #define flush_workqueue(wq) \ ({ \ struct workqueue_struct *_wq = (wq); \ \ if ((__builtin_constant_p(_wq == system_wq) && \ _wq == system_wq) || \ (__builtin_constant_p(_wq == system_highpri_wq) && \ _wq == system_highpri_wq) || \ (__builtin_constant_p(_wq == system_long_wq) && \ _wq == system_long_wq) || \ (__builtin_constant_p(_wq == system_unbound_wq) && \ _wq == system_unbound_wq) || \ (__builtin_constant_p(_wq == system_freezable_wq) && \ _wq == system_freezable_wq) || \ (__builtin_constant_p(_wq == system_power_efficient_wq) && \ _wq == system_power_efficient_wq) || \ (__builtin_constant_p(_wq == system_freezable_power_efficient_wq) && \ _wq == system_freezable_power_efficient_wq)) \ __warn_flushing_systemwide_wq(); \ __flush_workqueue(_wq); \ }) /** * schedule_delayed_work_on - queue work in global workqueue on CPU after delay * @cpu: cpu to use * @dwork: job to be done * @delay: number of jiffies to wait * * After waiting for a given time this puts a job in the kernel-global * workqueue on the specified CPU. */ static inline bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay) { return queue_delayed_work_on(cpu, system_wq, dwork, delay); } /** * schedule_delayed_work - put work task in global workqueue after delay * @dwork: job to be done * @delay: number of jiffies to wait or 0 for immediate execution * * After waiting for a given time this puts a job in the kernel-global * workqueue. */ static inline bool schedule_delayed_work(struct delayed_work *dwork, unsigned long delay) { return queue_delayed_work(system_wq, dwork, delay); } #ifndef CONFIG_SMP static inline long work_on_cpu(int cpu, long (*fn)(void *), void *arg) { return fn(arg); } static inline long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg) { return fn(arg); } #else long work_on_cpu_key(int cpu, long (*fn)(void *), void *arg, struct lock_class_key *key); /* * A new key is defined for each caller to make sure the work * associated with the function doesn't share its locking class. */ #define work_on_cpu(_cpu, _fn, _arg) \ ({ \ static struct lock_class_key __key; \ \ work_on_cpu_key(_cpu, _fn, _arg, &__key); \ }) long work_on_cpu_safe_key(int cpu, long (*fn)(void *), void *arg, struct lock_class_key *key); /* * A new key is defined for each caller to make sure the work * associated with the function doesn't share its locking class. */ #define work_on_cpu_safe(_cpu, _fn, _arg) \ ({ \ static struct lock_class_key __key; \ \ work_on_cpu_safe_key(_cpu, _fn, _arg, &__key); \ }) #endif /* CONFIG_SMP */ #ifdef CONFIG_FREEZER extern void freeze_workqueues_begin(void); extern bool freeze_workqueues_busy(void); extern void thaw_workqueues(void); #endif /* CONFIG_FREEZER */ #ifdef CONFIG_SYSFS int workqueue_sysfs_register(struct workqueue_struct *wq); #else /* CONFIG_SYSFS */ static inline int workqueue_sysfs_register(struct workqueue_struct *wq) { return 0; } #endif /* CONFIG_SYSFS */ #ifdef CONFIG_WQ_WATCHDOG void wq_watchdog_touch(int cpu); #else /* CONFIG_WQ_WATCHDOG */ static inline void wq_watchdog_touch(int cpu) { } #endif /* CONFIG_WQ_WATCHDOG */ #ifdef CONFIG_SMP int workqueue_prepare_cpu(unsigned int cpu); int workqueue_online_cpu(unsigned int cpu); int workqueue_offline_cpu(unsigned int cpu); #endif void __init workqueue_init_early(void); void __init workqueue_init(void); void __init workqueue_init_topology(void); #endif