/* SPDX-License-Identifier: GPL-2.0-only */ /* * IEEE 802.11 defines * * Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen * * Copyright (c) 2002-2003, Jouni Malinen * Copyright (c) 2005, Devicescape Software, Inc. * Copyright (c) 2006, Michael Wu * Copyright (c) 2013 - 2014 Intel Mobile Communications GmbH * Copyright (c) 2016 - 2017 Intel Deutschland GmbH * Copyright (c) 2018 - 2023 Intel Corporation */ #ifndef LINUX_IEEE80211_H #define LINUX_IEEE80211_H #include #include #include #include #include #include /* * DS bit usage * * TA = transmitter address * RA = receiver address * DA = destination address * SA = source address * * ToDS FromDS A1(RA) A2(TA) A3 A4 Use * ----------------------------------------------------------------- * 0 0 DA SA BSSID - IBSS/DLS * 0 1 DA BSSID SA - AP -> STA * 1 0 BSSID SA DA - AP <- STA * 1 1 RA TA DA SA unspecified (WDS) */ #define FCS_LEN 4 #define IEEE80211_FCTL_VERS 0x0003 #define IEEE80211_FCTL_FTYPE 0x000c #define IEEE80211_FCTL_STYPE 0x00f0 #define IEEE80211_FCTL_TODS 0x0100 #define IEEE80211_FCTL_FROMDS 0x0200 #define IEEE80211_FCTL_MOREFRAGS 0x0400 #define IEEE80211_FCTL_RETRY 0x0800 #define IEEE80211_FCTL_PM 0x1000 #define IEEE80211_FCTL_MOREDATA 0x2000 #define IEEE80211_FCTL_PROTECTED 0x4000 #define IEEE80211_FCTL_ORDER 0x8000 #define IEEE80211_FCTL_CTL_EXT 0x0f00 #define IEEE80211_SCTL_FRAG 0x000F #define IEEE80211_SCTL_SEQ 0xFFF0 #define IEEE80211_FTYPE_MGMT 0x0000 #define IEEE80211_FTYPE_CTL 0x0004 #define IEEE80211_FTYPE_DATA 0x0008 #define IEEE80211_FTYPE_EXT 0x000c /* management */ #define IEEE80211_STYPE_ASSOC_REQ 0x0000 #define IEEE80211_STYPE_ASSOC_RESP 0x0010 #define IEEE80211_STYPE_REASSOC_REQ 0x0020 #define IEEE80211_STYPE_REASSOC_RESP 0x0030 #define IEEE80211_STYPE_PROBE_REQ 0x0040 #define IEEE80211_STYPE_PROBE_RESP 0x0050 #define IEEE80211_STYPE_BEACON 0x0080 #define IEEE80211_STYPE_ATIM 0x0090 #define IEEE80211_STYPE_DISASSOC 0x00A0 #define IEEE80211_STYPE_AUTH 0x00B0 #define IEEE80211_STYPE_DEAUTH 0x00C0 #define IEEE80211_STYPE_ACTION 0x00D0 /* control */ #define IEEE80211_STYPE_TRIGGER 0x0020 #define IEEE80211_STYPE_CTL_EXT 0x0060 #define IEEE80211_STYPE_BACK_REQ 0x0080 #define IEEE80211_STYPE_BACK 0x0090 #define IEEE80211_STYPE_PSPOLL 0x00A0 #define IEEE80211_STYPE_RTS 0x00B0 #define IEEE80211_STYPE_CTS 0x00C0 #define IEEE80211_STYPE_ACK 0x00D0 #define IEEE80211_STYPE_CFEND 0x00E0 #define IEEE80211_STYPE_CFENDACK 0x00F0 /* data */ #define IEEE80211_STYPE_DATA 0x0000 #define IEEE80211_STYPE_DATA_CFACK 0x0010 #define IEEE80211_STYPE_DATA_CFPOLL 0x0020 #define IEEE80211_STYPE_DATA_CFACKPOLL 0x0030 #define IEEE80211_STYPE_NULLFUNC 0x0040 #define IEEE80211_STYPE_CFACK 0x0050 #define IEEE80211_STYPE_CFPOLL 0x0060 #define IEEE80211_STYPE_CFACKPOLL 0x0070 #define IEEE80211_STYPE_QOS_DATA 0x0080 #define IEEE80211_STYPE_QOS_DATA_CFACK 0x0090 #define IEEE80211_STYPE_QOS_DATA_CFPOLL 0x00A0 #define IEEE80211_STYPE_QOS_DATA_CFACKPOLL 0x00B0 #define IEEE80211_STYPE_QOS_NULLFUNC 0x00C0 #define IEEE80211_STYPE_QOS_CFACK 0x00D0 #define IEEE80211_STYPE_QOS_CFPOLL 0x00E0 #define IEEE80211_STYPE_QOS_CFACKPOLL 0x00F0 /* extension, added by 802.11ad */ #define IEEE80211_STYPE_DMG_BEACON 0x0000 #define IEEE80211_STYPE_S1G_BEACON 0x0010 /* bits unique to S1G beacon */ #define IEEE80211_S1G_BCN_NEXT_TBTT 0x100 /* see 802.11ah-2016 9.9 NDP CMAC frames */ #define IEEE80211_S1G_1MHZ_NDP_BITS 25 #define IEEE80211_S1G_1MHZ_NDP_BYTES 4 #define IEEE80211_S1G_2MHZ_NDP_BITS 37 #define IEEE80211_S1G_2MHZ_NDP_BYTES 5 #define IEEE80211_NDP_FTYPE_CTS 0 #define IEEE80211_NDP_FTYPE_CF_END 0 #define IEEE80211_NDP_FTYPE_PS_POLL 1 #define IEEE80211_NDP_FTYPE_ACK 2 #define IEEE80211_NDP_FTYPE_PS_POLL_ACK 3 #define IEEE80211_NDP_FTYPE_BA 4 #define IEEE80211_NDP_FTYPE_BF_REPORT_POLL 5 #define IEEE80211_NDP_FTYPE_PAGING 6 #define IEEE80211_NDP_FTYPE_PREQ 7 #define SM64(f, v) ((((u64)v) << f##_S) & f) /* NDP CMAC frame fields */ #define IEEE80211_NDP_FTYPE 0x0000000000000007 #define IEEE80211_NDP_FTYPE_S 0x0000000000000000 /* 1M Probe Request 11ah 9.9.3.1.1 */ #define IEEE80211_NDP_1M_PREQ_ANO 0x0000000000000008 #define IEEE80211_NDP_1M_PREQ_ANO_S 3 #define IEEE80211_NDP_1M_PREQ_CSSID 0x00000000000FFFF0 #define IEEE80211_NDP_1M_PREQ_CSSID_S 4 #define IEEE80211_NDP_1M_PREQ_RTYPE 0x0000000000100000 #define IEEE80211_NDP_1M_PREQ_RTYPE_S 20 #define IEEE80211_NDP_1M_PREQ_RSV 0x0000000001E00000 #define IEEE80211_NDP_1M_PREQ_RSV 0x0000000001E00000 /* 2M Probe Request 11ah 9.9.3.1.2 */ #define IEEE80211_NDP_2M_PREQ_ANO 0x0000000000000008 #define IEEE80211_NDP_2M_PREQ_ANO_S 3 #define IEEE80211_NDP_2M_PREQ_CSSID 0x0000000FFFFFFFF0 #define IEEE80211_NDP_2M_PREQ_CSSID_S 4 #define IEEE80211_NDP_2M_PREQ_RTYPE 0x0000001000000000 #define IEEE80211_NDP_2M_PREQ_RTYPE_S 36 #define IEEE80211_ANO_NETTYPE_WILD 15 /* bits unique to S1G beacon */ #define IEEE80211_S1G_BCN_NEXT_TBTT 0x100 /* control extension - for IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CTL_EXT */ #define IEEE80211_CTL_EXT_POLL 0x2000 #define IEEE80211_CTL_EXT_SPR 0x3000 #define IEEE80211_CTL_EXT_GRANT 0x4000 #define IEEE80211_CTL_EXT_DMG_CTS 0x5000 #define IEEE80211_CTL_EXT_DMG_DTS 0x6000 #define IEEE80211_CTL_EXT_SSW 0x8000 #define IEEE80211_CTL_EXT_SSW_FBACK 0x9000 #define IEEE80211_CTL_EXT_SSW_ACK 0xa000 #define IEEE80211_SN_MASK ((IEEE80211_SCTL_SEQ) >> 4) #define IEEE80211_MAX_SN IEEE80211_SN_MASK #define IEEE80211_SN_MODULO (IEEE80211_MAX_SN + 1) /* PV1 Layout IEEE 802.11-2020 9.8.3.1 */ #define IEEE80211_PV1_FCTL_VERS 0x0003 #define IEEE80211_PV1_FCTL_FTYPE 0x001c #define IEEE80211_PV1_FCTL_STYPE 0x00e0 #define IEEE80211_PV1_FCTL_FROMDS 0x0100 #define IEEE80211_PV1_FCTL_MOREFRAGS 0x0200 #define IEEE80211_PV1_FCTL_PM 0x0400 #define IEEE80211_PV1_FCTL_MOREDATA 0x0800 #define IEEE80211_PV1_FCTL_PROTECTED 0x1000 #define IEEE80211_PV1_FCTL_END_SP 0x2000 #define IEEE80211_PV1_FCTL_RELAYED 0x4000 #define IEEE80211_PV1_FCTL_ACK_POLICY 0x8000 #define IEEE80211_PV1_FCTL_CTL_EXT 0x0f00 static inline bool ieee80211_sn_less(u16 sn1, u16 sn2) { return ((sn1 - sn2) & IEEE80211_SN_MASK) > (IEEE80211_SN_MODULO >> 1); } static inline u16 ieee80211_sn_add(u16 sn1, u16 sn2) { return (sn1 + sn2) & IEEE80211_SN_MASK; } static inline u16 ieee80211_sn_inc(u16 sn) { return ieee80211_sn_add(sn, 1); } static inline u16 ieee80211_sn_sub(u16 sn1, u16 sn2) { return (sn1 - sn2) & IEEE80211_SN_MASK; } #define IEEE80211_SEQ_TO_SN(seq) (((seq) & IEEE80211_SCTL_SEQ) >> 4) #define IEEE80211_SN_TO_SEQ(ssn) (((ssn) << 4) & IEEE80211_SCTL_SEQ) /* miscellaneous IEEE 802.11 constants */ #define IEEE80211_MAX_FRAG_THRESHOLD 2352 #define IEEE80211_MAX_RTS_THRESHOLD 2353 #define IEEE80211_MAX_AID 2007 #define IEEE80211_MAX_AID_S1G 8191 #define IEEE80211_MAX_TIM_LEN 251 #define IEEE80211_MAX_MESH_PEERINGS 63 /* Maximum size for the MA-UNITDATA primitive, 802.11 standard section 6.2.1.1.2. 802.11e clarifies the figure in section 7.1.2. The frame body is up to 2304 octets long (maximum MSDU size) plus any crypt overhead. */ #define IEEE80211_MAX_DATA_LEN 2304 /* 802.11ad extends maximum MSDU size for DMG (freq > 40Ghz) networks * to 7920 bytes, see 8.2.3 General frame format */ #define IEEE80211_MAX_DATA_LEN_DMG 7920 /* 30 byte 4 addr hdr, 2 byte QoS, 2304 byte MSDU, 12 byte crypt, 4 byte FCS */ #define IEEE80211_MAX_FRAME_LEN 2352 /* Maximal size of an A-MSDU that can be transported in a HT BA session */ #define IEEE80211_MAX_MPDU_LEN_HT_BA 4095 /* Maximal size of an A-MSDU */ #define IEEE80211_MAX_MPDU_LEN_HT_3839 3839 #define IEEE80211_MAX_MPDU_LEN_HT_7935 7935 #define IEEE80211_MAX_MPDU_LEN_VHT_3895 3895 #define IEEE80211_MAX_MPDU_LEN_VHT_7991 7991 #define IEEE80211_MAX_MPDU_LEN_VHT_11454 11454 #define IEEE80211_MAX_SSID_LEN 32 #define IEEE80211_MAX_MESH_ID_LEN 32 #define IEEE80211_FIRST_TSPEC_TSID 8 #define IEEE80211_NUM_TIDS 16 /* number of user priorities 802.11 uses */ #define IEEE80211_NUM_UPS 8 /* number of ACs */ #define IEEE80211_NUM_ACS 4 #define IEEE80211_QOS_CTL_LEN 2 /* 1d tag mask */ #define IEEE80211_QOS_CTL_TAG1D_MASK 0x0007 /* TID mask */ #define IEEE80211_QOS_CTL_TID_MASK 0x000f /* EOSP */ #define IEEE80211_QOS_CTL_EOSP 0x0010 /* ACK policy */ #define IEEE80211_QOS_CTL_ACK_POLICY_NORMAL 0x0000 #define IEEE80211_QOS_CTL_ACK_POLICY_NOACK 0x0020 #define IEEE80211_QOS_CTL_ACK_POLICY_NO_EXPL 0x0040 #define IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK 0x0060 #define IEEE80211_QOS_CTL_ACK_POLICY_MASK 0x0060 /* A-MSDU 802.11n */ #define IEEE80211_QOS_CTL_A_MSDU_PRESENT 0x0080 /* Mesh Control 802.11s */ #define IEEE80211_QOS_CTL_MESH_CONTROL_PRESENT 0x0100 /* Mesh Power Save Level */ #define IEEE80211_QOS_CTL_MESH_PS_LEVEL 0x0200 /* Mesh Receiver Service Period Initiated */ #define IEEE80211_QOS_CTL_RSPI 0x0400 /* U-APSD queue for WMM IEs sent by AP */ #define IEEE80211_WMM_IE_AP_QOSINFO_UAPSD (1<<7) #define IEEE80211_WMM_IE_AP_QOSINFO_PARAM_SET_CNT_MASK 0x0f /* U-APSD queues for WMM IEs sent by STA */ #define IEEE80211_WMM_IE_STA_QOSINFO_AC_VO (1<<0) #define IEEE80211_WMM_IE_STA_QOSINFO_AC_VI (1<<1) #define IEEE80211_WMM_IE_STA_QOSINFO_AC_BK (1<<2) #define IEEE80211_WMM_IE_STA_QOSINFO_AC_BE (1<<3) #define IEEE80211_WMM_IE_STA_QOSINFO_AC_MASK 0x0f /* U-APSD max SP length for WMM IEs sent by STA */ #define IEEE80211_WMM_IE_STA_QOSINFO_SP_ALL 0x00 #define IEEE80211_WMM_IE_STA_QOSINFO_SP_2 0x01 #define IEEE80211_WMM_IE_STA_QOSINFO_SP_4 0x02 #define IEEE80211_WMM_IE_STA_QOSINFO_SP_6 0x03 #define IEEE80211_WMM_IE_STA_QOSINFO_SP_MASK 0x03 #define IEEE80211_WMM_IE_STA_QOSINFO_SP_SHIFT 5 #define IEEE80211_HT_CTL_LEN 4 /* trigger type within common_info of trigger frame */ #define IEEE80211_TRIGGER_TYPE_MASK 0xf #define IEEE80211_TRIGGER_TYPE_BASIC 0x0 #define IEEE80211_TRIGGER_TYPE_BFRP 0x1 #define IEEE80211_TRIGGER_TYPE_MU_BAR 0x2 #define IEEE80211_TRIGGER_TYPE_MU_RTS 0x3 #define IEEE80211_TRIGGER_TYPE_BSRP 0x4 #define IEEE80211_TRIGGER_TYPE_GCR_MU_BAR 0x5 #define IEEE80211_TRIGGER_TYPE_BQRP 0x6 #define IEEE80211_TRIGGER_TYPE_NFRP 0x7 /* UL-bandwidth within common_info of trigger frame */ #define IEEE80211_TRIGGER_ULBW_MASK 0xc0000 #define IEEE80211_TRIGGER_ULBW_20MHZ 0x0 #define IEEE80211_TRIGGER_ULBW_40MHZ 0x1 #define IEEE80211_TRIGGER_ULBW_80MHZ 0x2 #define IEEE80211_TRIGGER_ULBW_160_80P80MHZ 0x3 struct ieee80211_hdr { __le16 frame_control; __le16 duration_id; struct_group(addrs, u8 addr1[ETH_ALEN]; u8 addr2[ETH_ALEN]; u8 addr3[ETH_ALEN]; ); __le16 seq_ctrl; u8 addr4[ETH_ALEN]; } __packed __aligned(2); struct ieee80211_hdr_3addr { __le16 frame_control; __le16 duration_id; u8 addr1[ETH_ALEN]; u8 addr2[ETH_ALEN]; u8 addr3[ETH_ALEN]; __le16 seq_ctrl; } __packed __aligned(2); struct ieee80211_qos_hdr { __le16 frame_control; __le16 duration_id; u8 addr1[ETH_ALEN]; u8 addr2[ETH_ALEN]; u8 addr3[ETH_ALEN]; __le16 seq_ctrl; __le16 qos_ctrl; } __packed __aligned(2); struct ieee80211_qos_hdr_4addr { __le16 frame_control; __le16 duration_id; u8 addr1[ETH_ALEN]; u8 addr2[ETH_ALEN]; u8 addr3[ETH_ALEN]; __le16 seq_ctrl; u8 addr4[ETH_ALEN]; __le16 qos_ctrl; } __packed __aligned(2); struct ieee80211_trigger { __le16 frame_control; __le16 duration; u8 ra[ETH_ALEN]; u8 ta[ETH_ALEN]; __le64 common_info; u8 variable[]; } __packed __aligned(2); /** * ieee80211_has_tods - check if IEEE80211_FCTL_TODS is set * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_has_tods(__le16 fc) { return (fc & cpu_to_le16(IEEE80211_FCTL_TODS)) != 0; } /** * ieee80211_has_fromds - check if IEEE80211_FCTL_FROMDS is set * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_has_fromds(__le16 fc) { return (fc & cpu_to_le16(IEEE80211_FCTL_FROMDS)) != 0; } /** * ieee80211_has_a4 - check if IEEE80211_FCTL_TODS and IEEE80211_FCTL_FROMDS are set * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_has_a4(__le16 fc) { __le16 tmp = cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS); return (fc & tmp) == tmp; } /** * ieee80211_has_morefrags - check if IEEE80211_FCTL_MOREFRAGS is set * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_has_morefrags(__le16 fc) { return (fc & cpu_to_le16(IEEE80211_FCTL_MOREFRAGS)) != 0; } /** * ieee80211_has_retry - check if IEEE80211_FCTL_RETRY is set * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_has_retry(__le16 fc) { return (fc & cpu_to_le16(IEEE80211_FCTL_RETRY)) != 0; } /** * ieee80211_has_pm - check if IEEE80211_FCTL_PM is set * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_has_pm(__le16 fc) { return (fc & cpu_to_le16(IEEE80211_FCTL_PM)) != 0; } /** * ieee80211_has_moredata - check if IEEE80211_FCTL_MOREDATA is set * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_has_moredata(__le16 fc) { return (fc & cpu_to_le16(IEEE80211_FCTL_MOREDATA)) != 0; } /** * ieee80211_has_protected - check if IEEE80211_FCTL_PROTECTED is set * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_has_protected(__le16 fc) { return (fc & cpu_to_le16(IEEE80211_FCTL_PROTECTED)) != 0; } /** * ieee80211_has_order - check if IEEE80211_FCTL_ORDER is set * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_has_order(__le16 fc) { return (fc & cpu_to_le16(IEEE80211_FCTL_ORDER)) != 0; } /** * ieee80211_is_mgmt - check if type is IEEE80211_FTYPE_MGMT * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_is_mgmt(__le16 fc) { return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE)) == cpu_to_le16(IEEE80211_FTYPE_MGMT); } /** * ieee80211_is_ctl - check if type is IEEE80211_FTYPE_CTL * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_is_ctl(__le16 fc) { return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE)) == cpu_to_le16(IEEE80211_FTYPE_CTL); } /** * ieee80211_is_data - check if type is IEEE80211_FTYPE_DATA * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_is_data(__le16 fc) { return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE)) == cpu_to_le16(IEEE80211_FTYPE_DATA); } /** * ieee80211_is_ext - check if type is IEEE80211_FTYPE_EXT * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_is_ext(__le16 fc) { return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE)) == cpu_to_le16(IEEE80211_FTYPE_EXT); } /** * ieee80211_is_data_qos - check if type is IEEE80211_FTYPE_DATA and IEEE80211_STYPE_QOS_DATA is set * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_is_data_qos(__le16 fc) { /* * mask with QOS_DATA rather than IEEE80211_FCTL_STYPE as we just need * to check the one bit */ return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_STYPE_QOS_DATA)) == cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_QOS_DATA); } /** * ieee80211_is_data_present - check if type is IEEE80211_FTYPE_DATA and has data * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_is_data_present(__le16 fc) { /* * mask with 0x40 and test that that bit is clear to only return true * for the data-containing substypes. */ return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | 0x40)) == cpu_to_le16(IEEE80211_FTYPE_DATA); } /** * ieee80211_is_assoc_req - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_ASSOC_REQ * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_is_assoc_req(__le16 fc) { return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ASSOC_REQ); } /** * ieee80211_is_assoc_resp - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_ASSOC_RESP * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_is_assoc_resp(__le16 fc) { return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ASSOC_RESP); } /** * ieee80211_is_reassoc_req - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_REASSOC_REQ * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_is_reassoc_req(__le16 fc) { return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_REASSOC_REQ); } /** * ieee80211_is_reassoc_resp - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_REASSOC_RESP * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_is_reassoc_resp(__le16 fc) { return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_REASSOC_RESP); } /** * ieee80211_is_probe_req - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_PROBE_REQ * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_is_probe_req(__le16 fc) { return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_PROBE_REQ); } /** * ieee80211_is_probe_resp - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_PROBE_RESP * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_is_probe_resp(__le16 fc) { return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_PROBE_RESP); } /** * ieee80211_is_beacon - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_BEACON * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_is_beacon(__le16 fc) { return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_BEACON); } /** * ieee80211_is_s1g_beacon - check if IEEE80211_FTYPE_EXT && * IEEE80211_STYPE_S1G_BEACON * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_is_s1g_beacon(__le16 fc) { return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == cpu_to_le16(IEEE80211_FTYPE_EXT | IEEE80211_STYPE_S1G_BEACON); } /** * ieee80211_next_tbtt_present - check if IEEE80211_FTYPE_EXT && * IEEE80211_STYPE_S1G_BEACON && IEEE80211_S1G_BCN_NEXT_TBTT * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_next_tbtt_present(__le16 fc) { return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == cpu_to_le16(IEEE80211_FTYPE_EXT | IEEE80211_STYPE_S1G_BEACON) && fc & cpu_to_le16(IEEE80211_S1G_BCN_NEXT_TBTT); } /** * ieee80211_is_s1g_short_beacon - check if next tbtt present bit is set. Only * true for S1G beacons when they're short. * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_is_s1g_short_beacon(__le16 fc) { return ieee80211_is_s1g_beacon(fc) && ieee80211_next_tbtt_present(fc); } /** * ieee80211_is_atim - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_ATIM * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_is_atim(__le16 fc) { return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ATIM); } /** * ieee80211_is_disassoc - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_DISASSOC * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_is_disassoc(__le16 fc) { return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_DISASSOC); } /** * ieee80211_is_auth - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_AUTH * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_is_auth(__le16 fc) { return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_AUTH); } /** * ieee80211_is_deauth - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_DEAUTH * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_is_deauth(__le16 fc) { return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_DEAUTH); } /** * ieee80211_is_action - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_ACTION * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_is_action(__le16 fc) { return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ACTION); } /** * ieee80211_is_back_req - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_BACK_REQ * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_is_back_req(__le16 fc) { return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_BACK_REQ); } /** * ieee80211_is_back - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_BACK * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_is_back(__le16 fc) { return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_BACK); } /** * ieee80211_is_pspoll - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_PSPOLL * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_is_pspoll(__le16 fc) { return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_PSPOLL); } /** * ieee80211_is_rts - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_RTS * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_is_rts(__le16 fc) { return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_RTS); } /** * ieee80211_is_cts - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_CTS * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_is_cts(__le16 fc) { return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CTS); } /** * ieee80211_is_ack - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_ACK * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_is_ack(__le16 fc) { return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_ACK); } /** * ieee80211_is_cfend - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_CFEND * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_is_cfend(__le16 fc) { return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CFEND); } /** * ieee80211_is_cfendack - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_CFENDACK * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_is_cfendack(__le16 fc) { return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CFENDACK); } /** * ieee80211_is_nullfunc - check if frame is a regular (non-QoS) nullfunc frame * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_is_nullfunc(__le16 fc) { return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_NULLFUNC); } /** * ieee80211_is_qos_nullfunc - check if frame is a QoS nullfunc frame * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_is_qos_nullfunc(__le16 fc) { return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_QOS_NULLFUNC); } /** * ieee80211_is_trigger - check if frame is trigger frame * @fc: frame control field in little-endian byteorder */ static inline bool ieee80211_is_trigger(__le16 fc) { return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) == cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_TRIGGER); } /** * ieee80211_is_any_nullfunc - check if frame is regular or QoS nullfunc frame * @fc: frame control bytes in little-endian byteorder */ static inline bool ieee80211_is_any_nullfunc(__le16 fc) { return (ieee80211_is_nullfunc(fc) || ieee80211_is_qos_nullfunc(fc)); } /** * ieee80211_is_first_frag - check if IEEE80211_SCTL_FRAG is not set * @seq_ctrl: frame sequence control bytes in little-endian byteorder */ static inline bool ieee80211_is_first_frag(__le16 seq_ctrl) { return (seq_ctrl & cpu_to_le16(IEEE80211_SCTL_FRAG)) == 0; } /** * ieee80211_is_frag - check if a frame is a fragment * @hdr: 802.11 header of the frame */ static inline bool ieee80211_is_frag(struct ieee80211_hdr *hdr) { return ieee80211_has_morefrags(hdr->frame_control) || hdr->seq_ctrl & cpu_to_le16(IEEE80211_SCTL_FRAG); } struct ieee80211s_hdr { u8 flags; u8 ttl; __le32 seqnum; u8 eaddr1[ETH_ALEN]; u8 eaddr2[ETH_ALEN]; } __packed __aligned(2); /* Mesh flags */ #define MESH_FLAGS_AE_A4 0x1 #define MESH_FLAGS_AE_A5_A6 0x2 #define MESH_FLAGS_AE 0x3 #define MESH_FLAGS_PS_DEEP 0x4 /** * enum ieee80211_preq_flags - mesh PREQ element flags * * @IEEE80211_PREQ_PROACTIVE_PREP_FLAG: proactive PREP subfield */ enum ieee80211_preq_flags { IEEE80211_PREQ_PROACTIVE_PREP_FLAG = 1<<2, }; /** * enum ieee80211_preq_target_flags - mesh PREQ element per target flags * * @IEEE80211_PREQ_TO_FLAG: target only subfield * @IEEE80211_PREQ_USN_FLAG: unknown target HWMP sequence number subfield */ enum ieee80211_preq_target_flags { IEEE80211_PREQ_TO_FLAG = 1<<0, IEEE80211_PREQ_USN_FLAG = 1<<2, }; /** * struct ieee80211_quiet_ie - Quiet element * @count: Quiet Count * @period: Quiet Period * @duration: Quiet Duration * @offset: Quiet Offset * * This structure represents the payload of the "Quiet element" as * described in IEEE Std 802.11-2020 section 9.4.2.22. */ struct ieee80211_quiet_ie { u8 count; u8 period; __le16 duration; __le16 offset; } __packed; /** * struct ieee80211_msrment_ie - Measurement element * @token: Measurement Token * @mode: Measurement Report Mode * @type: Measurement Type * @request: Measurement Request or Measurement Report * * This structure represents the payload of both the "Measurement * Request element" and the "Measurement Report element" as described * in IEEE Std 802.11-2020 sections 9.4.2.20 and 9.4.2.21. */ struct ieee80211_msrment_ie { u8 token; u8 mode; u8 type; u8 request[]; } __packed; /** * struct ieee80211_channel_sw_ie - Channel Switch Announcement element * @mode: Channel Switch Mode * @new_ch_num: New Channel Number * @count: Channel Switch Count * * This structure represents the payload of the "Channel Switch * Announcement element" as described in IEEE Std 802.11-2020 section * 9.4.2.18. */ struct ieee80211_channel_sw_ie { u8 mode; u8 new_ch_num; u8 count; } __packed; /** * struct ieee80211_ext_chansw_ie - Extended Channel Switch Announcement element * @mode: Channel Switch Mode * @new_operating_class: New Operating Class * @new_ch_num: New Channel Number * @count: Channel Switch Count * * This structure represents the "Extended Channel Switch Announcement * element" as described in IEEE Std 802.11-2020 section 9.4.2.52. */ struct ieee80211_ext_chansw_ie { u8 mode; u8 new_operating_class; u8 new_ch_num; u8 count; } __packed; /** * struct ieee80211_sec_chan_offs_ie - secondary channel offset IE * @sec_chan_offs: secondary channel offset, uses IEEE80211_HT_PARAM_CHA_SEC_* * values here * This structure represents the "Secondary Channel Offset element" */ struct ieee80211_sec_chan_offs_ie { u8 sec_chan_offs; } __packed; /** * struct ieee80211_mesh_chansw_params_ie - mesh channel switch parameters IE * @mesh_ttl: Time To Live * @mesh_flags: Flags * @mesh_reason: Reason Code * @mesh_pre_value: Precedence Value * * This structure represents the payload of the "Mesh Channel Switch * Parameters element" as described in IEEE Std 802.11-2020 section * 9.4.2.102. */ struct ieee80211_mesh_chansw_params_ie { u8 mesh_ttl; u8 mesh_flags; __le16 mesh_reason; __le16 mesh_pre_value; } __packed; /** * struct ieee80211_wide_bw_chansw_ie - wide bandwidth channel switch IE * @new_channel_width: New Channel Width * @new_center_freq_seg0: New Channel Center Frequency Segment 0 * @new_center_freq_seg1: New Channel Center Frequency Segment 1 * * This structure represents the payload of the "Wide Bandwidth * Channel Switch element" as described in IEEE Std 802.11-2020 * section 9.4.2.160. */ struct ieee80211_wide_bw_chansw_ie { u8 new_channel_width; u8 new_center_freq_seg0, new_center_freq_seg1; } __packed; /** * struct ieee80211_tim_ie - Traffic Indication Map information element * @dtim_count: DTIM Count * @dtim_period: DTIM Period * @bitmap_ctrl: Bitmap Control * @required_octet: "Syntatic sugar" to force the struct size to the * minimum valid size when carried in a non-S1G PPDU * @virtual_map: Partial Virtual Bitmap * * This structure represents the payload of the "TIM element" as * described in IEEE Std 802.11-2020 section 9.4.2.5. Note that this * definition is only applicable when the element is carried in a * non-S1G PPDU. When the TIM is carried in an S1G PPDU, the Bitmap * Control and Partial Virtual Bitmap may not be present. */ struct ieee80211_tim_ie { u8 dtim_count; u8 dtim_period; u8 bitmap_ctrl; union { u8 required_octet; DECLARE_FLEX_ARRAY(u8, virtual_map); }; } __packed; /** * struct ieee80211_meshconf_ie - Mesh Configuration element * @meshconf_psel: Active Path Selection Protocol Identifier * @meshconf_pmetric: Active Path Selection Metric Identifier * @meshconf_congest: Congestion Control Mode Identifier * @meshconf_synch: Synchronization Method Identifier * @meshconf_auth: Authentication Protocol Identifier * @meshconf_form: Mesh Formation Info * @meshconf_cap: Mesh Capability (see &enum mesh_config_capab_flags) * * This structure represents the payload of the "Mesh Configuration * element" as described in IEEE Std 802.11-2020 section 9.4.2.97. */ struct ieee80211_meshconf_ie { u8 meshconf_psel; u8 meshconf_pmetric; u8 meshconf_congest; u8 meshconf_synch; u8 meshconf_auth; u8 meshconf_form; u8 meshconf_cap; } __packed; /** * enum mesh_config_capab_flags - Mesh Configuration IE capability field flags * * @IEEE80211_MESHCONF_CAPAB_ACCEPT_PLINKS: STA is willing to establish * additional mesh peerings with other mesh STAs * @IEEE80211_MESHCONF_CAPAB_FORWARDING: the STA forwards MSDUs * @IEEE80211_MESHCONF_CAPAB_TBTT_ADJUSTING: TBTT adjustment procedure * is ongoing * @IEEE80211_MESHCONF_CAPAB_POWER_SAVE_LEVEL: STA is in deep sleep mode or has * neighbors in deep sleep mode * * Enumerates the "Mesh Capability" as described in IEEE Std * 802.11-2020 section 9.4.2.97.7. */ enum mesh_config_capab_flags { IEEE80211_MESHCONF_CAPAB_ACCEPT_PLINKS = 0x01, IEEE80211_MESHCONF_CAPAB_FORWARDING = 0x08, IEEE80211_MESHCONF_CAPAB_TBTT_ADJUSTING = 0x20, IEEE80211_MESHCONF_CAPAB_POWER_SAVE_LEVEL = 0x40, }; #define IEEE80211_MESHCONF_FORM_CONNECTED_TO_GATE 0x1 /* * mesh channel switch parameters element's flag indicator * */ #define WLAN_EID_CHAN_SWITCH_PARAM_TX_RESTRICT BIT(0) #define WLAN_EID_CHAN_SWITCH_PARAM_INITIATOR BIT(1) #define WLAN_EID_CHAN_SWITCH_PARAM_REASON BIT(2) /** * struct ieee80211_rann_ie - RANN (root announcement) element * @rann_flags: Flags * @rann_hopcount: Hop Count * @rann_ttl: Element TTL * @rann_addr: Root Mesh STA Address * @rann_seq: HWMP Sequence Number * @rann_interval: Interval * @rann_metric: Metric * * This structure represents the payload of the "RANN element" as * described in IEEE Std 802.11-2020 section 9.4.2.111. */ struct ieee80211_rann_ie { u8 rann_flags; u8 rann_hopcount; u8 rann_ttl; u8 rann_addr[ETH_ALEN]; __le32 rann_seq; __le32 rann_interval; __le32 rann_metric; } __packed; enum ieee80211_rann_flags { RANN_FLAG_IS_GATE = 1 << 0, }; enum ieee80211_ht_chanwidth_values { IEEE80211_HT_CHANWIDTH_20MHZ = 0, IEEE80211_HT_CHANWIDTH_ANY = 1, }; /** * enum ieee80211_vht_opmode_bits - VHT operating mode field bits * @IEEE80211_OPMODE_NOTIF_CHANWIDTH_MASK: channel width mask * @IEEE80211_OPMODE_NOTIF_CHANWIDTH_20MHZ: 20 MHz channel width * @IEEE80211_OPMODE_NOTIF_CHANWIDTH_40MHZ: 40 MHz channel width * @IEEE80211_OPMODE_NOTIF_CHANWIDTH_80MHZ: 80 MHz channel width * @IEEE80211_OPMODE_NOTIF_CHANWIDTH_160MHZ: 160 MHz or 80+80 MHz channel width * @IEEE80211_OPMODE_NOTIF_BW_160_80P80: 160 / 80+80 MHz indicator flag * @IEEE80211_OPMODE_NOTIF_RX_NSS_MASK: number of spatial streams mask * (the NSS value is the value of this field + 1) * @IEEE80211_OPMODE_NOTIF_RX_NSS_SHIFT: number of spatial streams shift * @IEEE80211_OPMODE_NOTIF_RX_NSS_TYPE_BF: indicates streams in SU-MIMO PPDU * using a beamforming steering matrix */ enum ieee80211_vht_opmode_bits { IEEE80211_OPMODE_NOTIF_CHANWIDTH_MASK = 0x03, IEEE80211_OPMODE_NOTIF_CHANWIDTH_20MHZ = 0, IEEE80211_OPMODE_NOTIF_CHANWIDTH_40MHZ = 1, IEEE80211_OPMODE_NOTIF_CHANWIDTH_80MHZ = 2, IEEE80211_OPMODE_NOTIF_CHANWIDTH_160MHZ = 3, IEEE80211_OPMODE_NOTIF_BW_160_80P80 = 0x04, IEEE80211_OPMODE_NOTIF_RX_NSS_MASK = 0x70, IEEE80211_OPMODE_NOTIF_RX_NSS_SHIFT = 4, IEEE80211_OPMODE_NOTIF_RX_NSS_TYPE_BF = 0x80, }; /** * enum ieee80211_s1g_chanwidth * These are defined in IEEE802.11-2016ah Table 10-20 * as BSS Channel Width * * @IEEE80211_S1G_CHANWIDTH_1MHZ: 1MHz operating channel * @IEEE80211_S1G_CHANWIDTH_2MHZ: 2MHz operating channel * @IEEE80211_S1G_CHANWIDTH_4MHZ: 4MHz operating channel * @IEEE80211_S1G_CHANWIDTH_8MHZ: 8MHz operating channel * @IEEE80211_S1G_CHANWIDTH_16MHZ: 16MHz operating channel */ enum ieee80211_s1g_chanwidth { IEEE80211_S1G_CHANWIDTH_1MHZ = 0, IEEE80211_S1G_CHANWIDTH_2MHZ = 1, IEEE80211_S1G_CHANWIDTH_4MHZ = 3, IEEE80211_S1G_CHANWIDTH_8MHZ = 7, IEEE80211_S1G_CHANWIDTH_16MHZ = 15, }; #define WLAN_SA_QUERY_TR_ID_LEN 2 #define WLAN_MEMBERSHIP_LEN 8 #define WLAN_USER_POSITION_LEN 16 /** * struct ieee80211_tpc_report_ie - TPC Report element * @tx_power: Transmit Power * @link_margin: Link Margin * * This structure represents the payload of the "TPC Report element" as * described in IEEE Std 802.11-2020 section 9.4.2.16. */ struct ieee80211_tpc_report_ie { u8 tx_power; u8 link_margin; } __packed; #define IEEE80211_ADDBA_EXT_FRAG_LEVEL_MASK GENMASK(2, 1) #define IEEE80211_ADDBA_EXT_FRAG_LEVEL_SHIFT 1 #define IEEE80211_ADDBA_EXT_NO_FRAG BIT(0) #define IEEE80211_ADDBA_EXT_BUF_SIZE_MASK GENMASK(7, 5) #define IEEE80211_ADDBA_EXT_BUF_SIZE_SHIFT 10 struct ieee80211_addba_ext_ie { u8 data; } __packed; /** * struct ieee80211_s1g_bcn_compat_ie - S1G Beacon Compatibility element * @compat_info: Compatibility Information * @beacon_int: Beacon Interval * @tsf_completion: TSF Completion * * This structure represents the payload of the "S1G Beacon * Compatibility element" as described in IEEE Std 802.11-2020 section * 9.4.2.196. */ struct ieee80211_s1g_bcn_compat_ie { __le16 compat_info; __le16 beacon_int; __le32 tsf_completion; } __packed; /** * struct ieee80211_s1g_oper_ie - S1G Operation element * @ch_width: S1G Operation Information Channel Width * @oper_class: S1G Operation Information Operating Class * @primary_ch: S1G Operation Information Primary Channel Number * @oper_ch: S1G Operation Information Channel Center Frequency * @basic_mcs_nss: Basic S1G-MCS and NSS Set * * This structure represents the payload of the "S1G Operation * element" as described in IEEE Std 802.11-2020 section 9.4.2.212. */ struct ieee80211_s1g_oper_ie { u8 ch_width; u8 oper_class; u8 primary_ch; u8 oper_ch; __le16 basic_mcs_nss; } __packed; /** * struct ieee80211_aid_response_ie - AID Response element * @aid: AID/Group AID * @switch_count: AID Switch Count * @response_int: AID Response Interval * * This structure represents the payload of the "AID Response element" * as described in IEEE Std 802.11-2020 section 9.4.2.194. */ struct ieee80211_aid_response_ie { __le16 aid; u8 switch_count; __le16 response_int; } __packed; struct ieee80211_s1g_cap { u8 capab_info[10]; u8 supp_mcs_nss[5]; } __packed; struct ieee80211_ext { __le16 frame_control; __le16 duration; union { struct { u8 sa[ETH_ALEN]; __le32 timestamp; u8 change_seq; u8 variable[0]; } __packed s1g_beacon; struct { u8 sa[ETH_ALEN]; __le32 timestamp; u8 change_seq; u8 next_tbtt[3]; u8 variable[0]; } __packed s1g_short_beacon; } u; } __packed __aligned(2); #define IEEE80211_TWT_CONTROL_NDP BIT(0) #define IEEE80211_TWT_CONTROL_RESP_MODE BIT(1) #define IEEE80211_TWT_CONTROL_NEG_TYPE_BROADCAST BIT(3) #define IEEE80211_TWT_CONTROL_RX_DISABLED BIT(4) #define IEEE80211_TWT_CONTROL_WAKE_DUR_UNIT BIT(5) #define IEEE80211_TWT_REQTYPE_REQUEST BIT(0) #define IEEE80211_TWT_REQTYPE_SETUP_CMD GENMASK(3, 1) #define IEEE80211_TWT_REQTYPE_TRIGGER BIT(4) #define IEEE80211_TWT_REQTYPE_IMPLICIT BIT(5) #define IEEE80211_TWT_REQTYPE_FLOWTYPE BIT(6) #define IEEE80211_TWT_REQTYPE_FLOWID GENMASK(9, 7) #define IEEE80211_TWT_REQTYPE_WAKE_INT_EXP GENMASK(14, 10) #define IEEE80211_TWT_REQTYPE_PROTECTION BIT(15) enum ieee80211_twt_setup_cmd { TWT_SETUP_CMD_REQUEST, TWT_SETUP_CMD_SUGGEST, TWT_SETUP_CMD_DEMAND, TWT_SETUP_CMD_GROUPING, TWT_SETUP_CMD_ACCEPT, TWT_SETUP_CMD_ALTERNATE, TWT_SETUP_CMD_DICTATE, TWT_SETUP_CMD_REJECT, }; struct ieee80211_twt_params { __le16 req_type; __le64 twt; u8 min_twt_dur; __le16 mantissa; u8 channel; } __packed; struct ieee80211_twt_setup { u8 dialog_token; u8 element_id; u8 length; u8 control; u8 params[]; } __packed; #define IEEE80211_TTLM_MAX_CNT 2 #define IEEE80211_TTLM_CONTROL_DIRECTION 0x03 #define IEEE80211_TTLM_CONTROL_DEF_LINK_MAP 0x04 #define IEEE80211_TTLM_CONTROL_SWITCH_TIME_PRESENT 0x08 #define IEEE80211_TTLM_CONTROL_EXPECTED_DUR_PRESENT 0x10 #define IEEE80211_TTLM_CONTROL_LINK_MAP_SIZE 0x20 #define IEEE80211_TTLM_DIRECTION_DOWN 0 #define IEEE80211_TTLM_DIRECTION_UP 1 #define IEEE80211_TTLM_DIRECTION_BOTH 2 /** * struct ieee80211_ttlm_elem - TID-To-Link Mapping element * * Defined in section 9.4.2.314 in P802.11be_D4 * * @control: the first part of control field * @optional: the second part of control field */ struct ieee80211_ttlm_elem { u8 control; u8 optional[]; } __packed; struct ieee80211_mgmt { __le16 frame_control; __le16 duration; u8 da[ETH_ALEN]; u8 sa[ETH_ALEN]; u8 bssid[ETH_ALEN]; __le16 seq_ctrl; union { struct { __le16 auth_alg; __le16 auth_transaction; __le16 status_code; /* possibly followed by Challenge text */ u8 variable[]; } __packed auth; struct { __le16 reason_code; } __packed deauth; struct { __le16 capab_info; __le16 listen_interval; /* followed by SSID and Supported rates */ u8 variable[]; } __packed assoc_req; struct { __le16 capab_info; __le16 status_code; __le16 aid; /* followed by Supported rates */ u8 variable[]; } __packed assoc_resp, reassoc_resp; struct { __le16 capab_info; __le16 status_code; u8 variable[]; } __packed s1g_assoc_resp, s1g_reassoc_resp; struct { __le16 capab_info; __le16 listen_interval; u8 current_ap[ETH_ALEN]; /* followed by SSID and Supported rates */ u8 variable[]; } __packed reassoc_req; struct { __le16 reason_code; } __packed disassoc; struct { __le64 timestamp; __le16 beacon_int; __le16 capab_info; /* followed by some of SSID, Supported rates, * FH Params, DS Params, CF Params, IBSS Params, TIM */ u8 variable[]; } __packed beacon; struct { /* only variable items: SSID, Supported rates */ DECLARE_FLEX_ARRAY(u8, variable); } __packed probe_req; struct { __le64 timestamp; __le16 beacon_int; __le16 capab_info; /* followed by some of SSID, Supported rates, * FH Params, DS Params, CF Params, IBSS Params */ u8 variable[]; } __packed probe_resp; struct { u8 category; union { struct { u8 action_code; u8 dialog_token; u8 status_code; u8 variable[]; } __packed wme_action; struct{ u8 action_code; u8 variable[]; } __packed chan_switch; struct{ u8 action_code; struct ieee80211_ext_chansw_ie data; u8 variable[]; } __packed ext_chan_switch; struct{ u8 action_code; u8 dialog_token; u8 element_id; u8 length; struct ieee80211_msrment_ie msr_elem; } __packed measurement; struct{ u8 action_code; u8 dialog_token; __le16 capab; __le16 timeout; __le16 start_seq_num; /* followed by BA Extension */ u8 variable[]; } __packed addba_req; struct{ u8 action_code; u8 dialog_token; __le16 status; __le16 capab; __le16 timeout; } __packed addba_resp; struct{ u8 action_code; __le16 params; __le16 reason_code; } __packed delba; struct { u8 action_code; u8 variable[]; } __packed self_prot; struct{ u8 action_code; u8 variable[]; } __packed mesh_action; struct { u8 action; u8 trans_id[WLAN_SA_QUERY_TR_ID_LEN]; } __packed sa_query; struct { u8 action; u8 smps_control; } __packed ht_smps; struct { u8 action_code; u8 chanwidth; } __packed ht_notify_cw; struct { u8 action_code; u8 dialog_token; __le16 capability; u8 variable[0]; } __packed tdls_discover_resp; struct { u8 action_code; u8 operating_mode; } __packed vht_opmode_notif; struct { u8 action_code; u8 membership[WLAN_MEMBERSHIP_LEN]; u8 position[WLAN_USER_POSITION_LEN]; } __packed vht_group_notif; struct { u8 action_code; u8 dialog_token; u8 tpc_elem_id; u8 tpc_elem_length; struct ieee80211_tpc_report_ie tpc; } __packed tpc_report; struct { u8 action_code; u8 dialog_token; u8 follow_up; u8 tod[6]; u8 toa[6]; __le16 tod_error; __le16 toa_error; u8 variable[]; } __packed ftm; struct { u8 action_code; u8 variable[]; } __packed s1g; struct { u8 action_code; u8 dialog_token; u8 follow_up; u32 tod; u32 toa; u8 max_tod_error; u8 max_toa_error; } __packed wnm_timing_msr; } u; } __packed action; DECLARE_FLEX_ARRAY(u8, body); /* Generic frame body */ } u; } __packed __aligned(2); /* Supported rates membership selectors */ #define BSS_MEMBERSHIP_SELECTOR_HT_PHY 127 #define BSS_MEMBERSHIP_SELECTOR_VHT_PHY 126 #define BSS_MEMBERSHIP_SELECTOR_GLK 125 #define BSS_MEMBERSHIP_SELECTOR_EPS 124 #define BSS_MEMBERSHIP_SELECTOR_SAE_H2E 123 #define BSS_MEMBERSHIP_SELECTOR_HE_PHY 122 #define BSS_MEMBERSHIP_SELECTOR_EHT_PHY 121 /* mgmt header + 1 byte category code */ #define IEEE80211_MIN_ACTION_SIZE offsetof(struct ieee80211_mgmt, u.action.u) /* Management MIC information element (IEEE 802.11w) */ struct ieee80211_mmie { u8 element_id; u8 length; __le16 key_id; u8 sequence_number[6]; u8 mic[8]; } __packed; /* Management MIC information element (IEEE 802.11w) for GMAC and CMAC-256 */ struct ieee80211_mmie_16 { u8 element_id; u8 length; __le16 key_id; u8 sequence_number[6]; u8 mic[16]; } __packed; struct ieee80211_vendor_ie { u8 element_id; u8 len; u8 oui[3]; u8 oui_type; } __packed; struct ieee80211_wmm_ac_param { u8 aci_aifsn; /* AIFSN, ACM, ACI */ u8 cw; /* ECWmin, ECWmax (CW = 2^ECW - 1) */ __le16 txop_limit; } __packed; struct ieee80211_wmm_param_ie { u8 element_id; /* Element ID: 221 (0xdd); */ u8 len; /* Length: 24 */ /* required fields for WMM version 1 */ u8 oui[3]; /* 00:50:f2 */ u8 oui_type; /* 2 */ u8 oui_subtype; /* 1 */ u8 version; /* 1 for WMM version 1.0 */ u8 qos_info; /* AP/STA specific QoS info */ u8 reserved; /* 0 */ /* AC_BE, AC_BK, AC_VI, AC_VO */ struct ieee80211_wmm_ac_param ac[4]; } __packed; /* Control frames */ struct ieee80211_rts { __le16 frame_control; __le16 duration; u8 ra[ETH_ALEN]; u8 ta[ETH_ALEN]; } __packed __aligned(2); struct ieee80211_cts { __le16 frame_control; __le16 duration; u8 ra[ETH_ALEN]; } __packed __aligned(2); struct ieee80211_pspoll { __le16 frame_control; __le16 aid; u8 bssid[ETH_ALEN]; u8 ta[ETH_ALEN]; } __packed __aligned(2); /* TDLS */ /* Channel switch timing */ struct ieee80211_ch_switch_timing { __le16 switch_time; __le16 switch_timeout; } __packed; /* Link-id information element */ struct ieee80211_tdls_lnkie { u8 ie_type; /* Link Identifier IE */ u8 ie_len; u8 bssid[ETH_ALEN]; u8 init_sta[ETH_ALEN]; u8 resp_sta[ETH_ALEN]; } __packed; struct ieee80211_tdls_data { u8 da[ETH_ALEN]; u8 sa[ETH_ALEN]; __be16 ether_type; u8 payload_type; u8 category; u8 action_code; union { struct { u8 dialog_token; __le16 capability; u8 variable[0]; } __packed setup_req; struct { __le16 status_code; u8 dialog_token; __le16 capability; u8 variable[0]; } __packed setup_resp; struct { __le16 status_code; u8 dialog_token; u8 variable[0]; } __packed setup_cfm; struct { __le16 reason_code; u8 variable[0]; } __packed teardown; struct { u8 dialog_token; u8 variable[0]; } __packed discover_req; struct { u8 target_channel; u8 oper_class; u8 variable[0]; } __packed chan_switch_req; struct { __le16 status_code; u8 variable[0]; } __packed chan_switch_resp; } u; } __packed; /* * Peer-to-Peer IE attribute related definitions. */ /* * enum ieee80211_p2p_attr_id - identifies type of peer-to-peer attribute. */ enum ieee80211_p2p_attr_id { IEEE80211_P2P_ATTR_STATUS = 0, IEEE80211_P2P_ATTR_MINOR_REASON, IEEE80211_P2P_ATTR_CAPABILITY, IEEE80211_P2P_ATTR_DEVICE_ID, IEEE80211_P2P_ATTR_GO_INTENT, IEEE80211_P2P_ATTR_GO_CONFIG_TIMEOUT, IEEE80211_P2P_ATTR_LISTEN_CHANNEL, IEEE80211_P2P_ATTR_GROUP_BSSID, IEEE80211_P2P_ATTR_EXT_LISTEN_TIMING, IEEE80211_P2P_ATTR_INTENDED_IFACE_ADDR, IEEE80211_P2P_ATTR_MANAGABILITY, IEEE80211_P2P_ATTR_CHANNEL_LIST, IEEE80211_P2P_ATTR_ABSENCE_NOTICE, IEEE80211_P2P_ATTR_DEVICE_INFO, IEEE80211_P2P_ATTR_GROUP_INFO, IEEE80211_P2P_ATTR_GROUP_ID, IEEE80211_P2P_ATTR_INTERFACE, IEEE80211_P2P_ATTR_OPER_CHANNEL, IEEE80211_P2P_ATTR_INVITE_FLAGS, /* 19 - 220: Reserved */ IEEE80211_P2P_ATTR_VENDOR_SPECIFIC = 221, IEEE80211_P2P_ATTR_MAX }; /* Notice of Absence attribute - described in P2P spec 4.1.14 */ /* Typical max value used here */ #define IEEE80211_P2P_NOA_DESC_MAX 4 struct ieee80211_p2p_noa_desc { u8 count; __le32 duration; __le32 interval; __le32 start_time; } __packed; struct ieee80211_p2p_noa_attr { u8 index; u8 oppps_ctwindow; struct ieee80211_p2p_noa_desc desc[IEEE80211_P2P_NOA_DESC_MAX]; } __packed; #define IEEE80211_P2P_OPPPS_ENABLE_BIT BIT(7) #define IEEE80211_P2P_OPPPS_CTWINDOW_MASK 0x7F /** * struct ieee80211_bar - Block Ack Request frame format * @frame_control: Frame Control * @duration: Duration * @ra: RA * @ta: TA * @control: BAR Control * @start_seq_num: Starting Sequence Number (see Figure 9-37) * * This structure represents the "BlockAckReq frame format" * as described in IEEE Std 802.11-2020 section 9.3.1.7. */ struct ieee80211_bar { __le16 frame_control; __le16 duration; __u8 ra[ETH_ALEN]; __u8 ta[ETH_ALEN]; __le16 control; __le16 start_seq_num; } __packed; /* 802.11 BAR control masks */ #define IEEE80211_BAR_CTRL_ACK_POLICY_NORMAL 0x0000 #define IEEE80211_BAR_CTRL_MULTI_TID 0x0002 #define IEEE80211_BAR_CTRL_CBMTID_COMPRESSED_BA 0x0004 #define IEEE80211_BAR_CTRL_TID_INFO_MASK 0xf000 #define IEEE80211_BAR_CTRL_TID_INFO_SHIFT 12 #define IEEE80211_HT_MCS_MASK_LEN 10 /** * struct ieee80211_mcs_info - Supported MCS Set field * @rx_mask: RX mask * @rx_highest: highest supported RX rate. If set represents * the highest supported RX data rate in units of 1 Mbps. * If this field is 0 this value should not be used to * consider the highest RX data rate supported. * @tx_params: TX parameters * @reserved: Reserved bits * * This structure represents the "Supported MCS Set field" as * described in IEEE Std 802.11-2020 section 9.4.2.55.4. */ struct ieee80211_mcs_info { u8 rx_mask[IEEE80211_HT_MCS_MASK_LEN]; __le16 rx_highest; u8 tx_params; u8 reserved[3]; } __packed; /* 802.11n HT capability MSC set */ #define IEEE80211_HT_MCS_RX_HIGHEST_MASK 0x3ff #define IEEE80211_HT_MCS_TX_DEFINED 0x01 #define IEEE80211_HT_MCS_TX_RX_DIFF 0x02 /* value 0 == 1 stream etc */ #define IEEE80211_HT_MCS_TX_MAX_STREAMS_MASK 0x0C #define IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT 2 #define IEEE80211_HT_MCS_TX_MAX_STREAMS 4 #define IEEE80211_HT_MCS_TX_UNEQUAL_MODULATION 0x10 #define IEEE80211_HT_MCS_CHAINS(mcs) ((mcs) == 32 ? 1 : (1 + ((mcs) >> 3))) /* * 802.11n D5.0 20.3.5 / 20.6 says: * - indices 0 to 7 and 32 are single spatial stream * - 8 to 31 are multiple spatial streams using equal modulation * [8..15 for two streams, 16..23 for three and 24..31 for four] * - remainder are multiple spatial streams using unequal modulation */ #define IEEE80211_HT_MCS_UNEQUAL_MODULATION_START 33 #define IEEE80211_HT_MCS_UNEQUAL_MODULATION_START_BYTE \ (IEEE80211_HT_MCS_UNEQUAL_MODULATION_START / 8) /** * struct ieee80211_ht_cap - HT capabilities element * @cap_info: HT Capability Information * @ampdu_params_info: A-MPDU Parameters * @mcs: Supported MCS Set * @extended_ht_cap_info: HT Extended Capabilities * @tx_BF_cap_info: Transmit Beamforming Capabilities * @antenna_selection_info: ASEL Capability * * This structure represents the payload of the "HT Capabilities * element" as described in IEEE Std 802.11-2020 section 9.4.2.55. */ struct ieee80211_ht_cap { __le16 cap_info; u8 ampdu_params_info; /* 16 bytes MCS information */ struct ieee80211_mcs_info mcs; __le16 extended_ht_cap_info; __le32 tx_BF_cap_info; u8 antenna_selection_info; } __packed; /* 802.11n HT capabilities masks (for cap_info) */ #define IEEE80211_HT_CAP_LDPC_CODING 0x0001 #define IEEE80211_HT_CAP_SUP_WIDTH_20_40 0x0002 #define IEEE80211_HT_CAP_SM_PS 0x000C #define IEEE80211_HT_CAP_SM_PS_SHIFT 2 #define IEEE80211_HT_CAP_GRN_FLD 0x0010 #define IEEE80211_HT_CAP_SGI_20 0x0020 #define IEEE80211_HT_CAP_SGI_40 0x0040 #define IEEE80211_HT_CAP_TX_STBC 0x0080 #define IEEE80211_HT_CAP_RX_STBC 0x0300 #define IEEE80211_HT_CAP_RX_STBC_SHIFT 8 #define IEEE80211_HT_CAP_DELAY_BA 0x0400 #define IEEE80211_HT_CAP_MAX_AMSDU 0x0800 #define IEEE80211_HT_CAP_DSSSCCK40 0x1000 #define IEEE80211_HT_CAP_RESERVED 0x2000 #define IEEE80211_HT_CAP_40MHZ_INTOLERANT 0x4000 #define IEEE80211_HT_CAP_LSIG_TXOP_PROT 0x8000 /* 802.11n HT extended capabilities masks (for extended_ht_cap_info) */ #define IEEE80211_HT_EXT_CAP_PCO 0x0001 #define IEEE80211_HT_EXT_CAP_PCO_TIME 0x0006 #define IEEE80211_HT_EXT_CAP_PCO_TIME_SHIFT 1 #define IEEE80211_HT_EXT_CAP_MCS_FB 0x0300 #define IEEE80211_HT_EXT_CAP_MCS_FB_SHIFT 8 #define IEEE80211_HT_EXT_CAP_HTC_SUP 0x0400 #define IEEE80211_HT_EXT_CAP_RD_RESPONDER 0x0800 /* 802.11n HT capability AMPDU settings (for ampdu_params_info) */ #define IEEE80211_HT_AMPDU_PARM_FACTOR 0x03 #define IEEE80211_HT_AMPDU_PARM_DENSITY 0x1C #define IEEE80211_HT_AMPDU_PARM_DENSITY_SHIFT 2 /* * Maximum length of AMPDU that the STA can receive in high-throughput (HT). * Length = 2 ^ (13 + max_ampdu_length_exp) - 1 (octets) */ enum ieee80211_max_ampdu_length_exp { IEEE80211_HT_MAX_AMPDU_8K = 0, IEEE80211_HT_MAX_AMPDU_16K = 1, IEEE80211_HT_MAX_AMPDU_32K = 2, IEEE80211_HT_MAX_AMPDU_64K = 3 }; /* * Maximum length of AMPDU that the STA can receive in VHT. * Length = 2 ^ (13 + max_ampdu_length_exp) - 1 (octets) */ enum ieee80211_vht_max_ampdu_length_exp { IEEE80211_VHT_MAX_AMPDU_8K = 0, IEEE80211_VHT_MAX_AMPDU_16K = 1, IEEE80211_VHT_MAX_AMPDU_32K = 2, IEEE80211_VHT_MAX_AMPDU_64K = 3, IEEE80211_VHT_MAX_AMPDU_128K = 4, IEEE80211_VHT_MAX_AMPDU_256K = 5, IEEE80211_VHT_MAX_AMPDU_512K = 6, IEEE80211_VHT_MAX_AMPDU_1024K = 7 }; #define IEEE80211_HT_MAX_AMPDU_FACTOR 13 /* Minimum MPDU start spacing */ enum ieee80211_min_mpdu_spacing { IEEE80211_HT_MPDU_DENSITY_NONE = 0, /* No restriction */ IEEE80211_HT_MPDU_DENSITY_0_25 = 1, /* 1/4 usec */ IEEE80211_HT_MPDU_DENSITY_0_5 = 2, /* 1/2 usec */ IEEE80211_HT_MPDU_DENSITY_1 = 3, /* 1 usec */ IEEE80211_HT_MPDU_DENSITY_2 = 4, /* 2 usec */ IEEE80211_HT_MPDU_DENSITY_4 = 5, /* 4 usec */ IEEE80211_HT_MPDU_DENSITY_8 = 6, /* 8 usec */ IEEE80211_HT_MPDU_DENSITY_16 = 7 /* 16 usec */ }; /** * struct ieee80211_ht_operation - HT operation IE * @primary_chan: Primary Channel * @ht_param: HT Operation Information parameters * @operation_mode: HT Operation Information operation mode * @stbc_param: HT Operation Information STBC params * @basic_set: Basic HT-MCS Set * * This structure represents the payload of the "HT Operation * element" as described in IEEE Std 802.11-2020 section 9.4.2.56. */ struct ieee80211_ht_operation { u8 primary_chan; u8 ht_param; __le16 operation_mode; __le16 stbc_param; u8 basic_set[16]; } __packed; /* for ht_param */ #define IEEE80211_HT_PARAM_CHA_SEC_OFFSET 0x03 #define IEEE80211_HT_PARAM_CHA_SEC_NONE 0x00 #define IEEE80211_HT_PARAM_CHA_SEC_ABOVE 0x01 #define IEEE80211_HT_PARAM_CHA_SEC_BELOW 0x03 #define IEEE80211_HT_PARAM_CHAN_WIDTH_ANY 0x04 #define IEEE80211_HT_PARAM_RIFS_MODE 0x08 /* for operation_mode */ #define IEEE80211_HT_OP_MODE_PROTECTION 0x0003 #define IEEE80211_HT_OP_MODE_PROTECTION_NONE 0 #define IEEE80211_HT_OP_MODE_PROTECTION_NONMEMBER 1 #define IEEE80211_HT_OP_MODE_PROTECTION_20MHZ 2 #define IEEE80211_HT_OP_MODE_PROTECTION_NONHT_MIXED 3 #define IEEE80211_HT_OP_MODE_NON_GF_STA_PRSNT 0x0004 #define IEEE80211_HT_OP_MODE_NON_HT_STA_PRSNT 0x0010 #define IEEE80211_HT_OP_MODE_CCFS2_SHIFT 5 #define IEEE80211_HT_OP_MODE_CCFS2_MASK 0x1fe0 /* for stbc_param */ #define IEEE80211_HT_STBC_PARAM_DUAL_BEACON 0x0040 #define IEEE80211_HT_STBC_PARAM_DUAL_CTS_PROT 0x0080 #define IEEE80211_HT_STBC_PARAM_STBC_BEACON 0x0100 #define IEEE80211_HT_STBC_PARAM_LSIG_TXOP_FULLPROT 0x0200 #define IEEE80211_HT_STBC_PARAM_PCO_ACTIVE 0x0400 #define IEEE80211_HT_STBC_PARAM_PCO_PHASE 0x0800 /* block-ack parameters */ #define IEEE80211_ADDBA_PARAM_AMSDU_MASK 0x0001 #define IEEE80211_ADDBA_PARAM_POLICY_MASK 0x0002 #define IEEE80211_ADDBA_PARAM_TID_MASK 0x003C #define IEEE80211_ADDBA_PARAM_BUF_SIZE_MASK 0xFFC0 #define IEEE80211_DELBA_PARAM_TID_MASK 0xF000 #define IEEE80211_DELBA_PARAM_INITIATOR_MASK 0x0800 /* * A-MPDU buffer sizes * According to HT size varies from 8 to 64 frames * HE adds the ability to have up to 256 frames. * EHT adds the ability to have up to 1K frames. */ #define IEEE80211_MIN_AMPDU_BUF 0x8 #define IEEE80211_MAX_AMPDU_BUF_HT 0x40 #define IEEE80211_MAX_AMPDU_BUF_HE 0x100 #define IEEE80211_MAX_AMPDU_BUF_EHT 0x400 /* Spatial Multiplexing Power Save Modes (for capability) */ #define WLAN_HT_CAP_SM_PS_STATIC 0 #define WLAN_HT_CAP_SM_PS_DYNAMIC 1 #define WLAN_HT_CAP_SM_PS_INVALID 2 #define WLAN_HT_CAP_SM_PS_DISABLED 3 /* for SM power control field lower two bits */ #define WLAN_HT_SMPS_CONTROL_DISABLED 0 #define WLAN_HT_SMPS_CONTROL_STATIC 1 #define WLAN_HT_SMPS_CONTROL_DYNAMIC 3 /** * struct ieee80211_vht_mcs_info - VHT MCS information * @rx_mcs_map: RX MCS map 2 bits for each stream, total 8 streams * @rx_highest: Indicates highest long GI VHT PPDU data rate * STA can receive. Rate expressed in units of 1 Mbps. * If this field is 0 this value should not be used to * consider the highest RX data rate supported. * The top 3 bits of this field indicate the Maximum NSTS,total * (a beamformee capability.) * @tx_mcs_map: TX MCS map 2 bits for each stream, total 8 streams * @tx_highest: Indicates highest long GI VHT PPDU data rate * STA can transmit. Rate expressed in units of 1 Mbps. * If this field is 0 this value should not be used to * consider the highest TX data rate supported. * The top 2 bits of this field are reserved, the * 3rd bit from the top indiciates VHT Extended NSS BW * Capability. */ struct ieee80211_vht_mcs_info { __le16 rx_mcs_map; __le16 rx_highest; __le16 tx_mcs_map; __le16 tx_highest; } __packed; /* for rx_highest */ #define IEEE80211_VHT_MAX_NSTS_TOTAL_SHIFT 13 #define IEEE80211_VHT_MAX_NSTS_TOTAL_MASK (7 << IEEE80211_VHT_MAX_NSTS_TOTAL_SHIFT) /* for tx_highest */ #define IEEE80211_VHT_EXT_NSS_BW_CAPABLE (1 << 13) /** * enum ieee80211_vht_mcs_support - VHT MCS support definitions * @IEEE80211_VHT_MCS_SUPPORT_0_7: MCSes 0-7 are supported for the * number of streams * @IEEE80211_VHT_MCS_SUPPORT_0_8: MCSes 0-8 are supported * @IEEE80211_VHT_MCS_SUPPORT_0_9: MCSes 0-9 are supported * @IEEE80211_VHT_MCS_NOT_SUPPORTED: This number of streams isn't supported * * These definitions are used in each 2-bit subfield of the @rx_mcs_map * and @tx_mcs_map fields of &struct ieee80211_vht_mcs_info, which are * both split into 8 subfields by number of streams. These values indicate * which MCSes are supported for the number of streams the value appears * for. */ enum ieee80211_vht_mcs_support { IEEE80211_VHT_MCS_SUPPORT_0_7 = 0, IEEE80211_VHT_MCS_SUPPORT_0_8 = 1, IEEE80211_VHT_MCS_SUPPORT_0_9 = 2, IEEE80211_VHT_MCS_NOT_SUPPORTED = 3, }; /** * struct ieee80211_vht_cap - VHT capabilities * * This structure is the "VHT capabilities element" as * described in 802.11ac D3.0 8.4.2.160 * @vht_cap_info: VHT capability info * @supp_mcs: VHT MCS supported rates */ struct ieee80211_vht_cap { __le32 vht_cap_info; struct ieee80211_vht_mcs_info supp_mcs; } __packed; /** * enum ieee80211_vht_chanwidth - VHT channel width * @IEEE80211_VHT_CHANWIDTH_USE_HT: use the HT operation IE to * determine the channel width (20 or 40 MHz) * @IEEE80211_VHT_CHANWIDTH_80MHZ: 80 MHz bandwidth * @IEEE80211_VHT_CHANWIDTH_160MHZ: 160 MHz bandwidth * @IEEE80211_VHT_CHANWIDTH_80P80MHZ: 80+80 MHz bandwidth */ enum ieee80211_vht_chanwidth { IEEE80211_VHT_CHANWIDTH_USE_HT = 0, IEEE80211_VHT_CHANWIDTH_80MHZ = 1, IEEE80211_VHT_CHANWIDTH_160MHZ = 2, IEEE80211_VHT_CHANWIDTH_80P80MHZ = 3, }; /** * struct ieee80211_vht_operation - VHT operation IE * * This structure is the "VHT operation element" as * described in 802.11ac D3.0 8.4.2.161 * @chan_width: Operating channel width * @center_freq_seg0_idx: center freq segment 0 index * @center_freq_seg1_idx: center freq segment 1 index * @basic_mcs_set: VHT Basic MCS rate set */ struct ieee80211_vht_operation { u8 chan_width; u8 center_freq_seg0_idx; u8 center_freq_seg1_idx; __le16 basic_mcs_set; } __packed; /** * struct ieee80211_he_cap_elem - HE capabilities element * @mac_cap_info: HE MAC Capabilities Information * @phy_cap_info: HE PHY Capabilities Information * * This structure represents the fixed fields of the payload of the * "HE capabilities element" as described in IEEE Std 802.11ax-2021 * sections 9.4.2.248.2 and 9.4.2.248.3. */ struct ieee80211_he_cap_elem { u8 mac_cap_info[6]; u8 phy_cap_info[11]; } __packed; #define IEEE80211_TX_RX_MCS_NSS_DESC_MAX_LEN 5 /** * enum ieee80211_he_mcs_support - HE MCS support definitions * @IEEE80211_HE_MCS_SUPPORT_0_7: MCSes 0-7 are supported for the * number of streams * @IEEE80211_HE_MCS_SUPPORT_0_9: MCSes 0-9 are supported * @IEEE80211_HE_MCS_SUPPORT_0_11: MCSes 0-11 are supported * @IEEE80211_HE_MCS_NOT_SUPPORTED: This number of streams isn't supported * * These definitions are used in each 2-bit subfield of the rx_mcs_* * and tx_mcs_* fields of &struct ieee80211_he_mcs_nss_supp, which are * both split into 8 subfields by number of streams. These values indicate * which MCSes are supported for the number of streams the value appears * for. */ enum ieee80211_he_mcs_support { IEEE80211_HE_MCS_SUPPORT_0_7 = 0, IEEE80211_HE_MCS_SUPPORT_0_9 = 1, IEEE80211_HE_MCS_SUPPORT_0_11 = 2, IEEE80211_HE_MCS_NOT_SUPPORTED = 3, }; /** * struct ieee80211_he_mcs_nss_supp - HE Tx/Rx HE MCS NSS Support Field * * This structure holds the data required for the Tx/Rx HE MCS NSS Support Field * described in P802.11ax_D2.0 section 9.4.2.237.4 * * @rx_mcs_80: Rx MCS map 2 bits for each stream, total 8 streams, for channel * widths less than 80MHz. * @tx_mcs_80: Tx MCS map 2 bits for each stream, total 8 streams, for channel * widths less than 80MHz. * @rx_mcs_160: Rx MCS map 2 bits for each stream, total 8 streams, for channel * width 160MHz. * @tx_mcs_160: Tx MCS map 2 bits for each stream, total 8 streams, for channel * width 160MHz. * @rx_mcs_80p80: Rx MCS map 2 bits for each stream, total 8 streams, for * channel width 80p80MHz. * @tx_mcs_80p80: Tx MCS map 2 bits for each stream, total 8 streams, for * channel width 80p80MHz. */ struct ieee80211_he_mcs_nss_supp { __le16 rx_mcs_80; __le16 tx_mcs_80; __le16 rx_mcs_160; __le16 tx_mcs_160; __le16 rx_mcs_80p80; __le16 tx_mcs_80p80; } __packed; /** * struct ieee80211_he_operation - HE Operation element * @he_oper_params: HE Operation Parameters + BSS Color Information * @he_mcs_nss_set: Basic HE-MCS And NSS Set * @optional: Optional fields VHT Operation Information, Max Co-Hosted * BSSID Indicator, and 6 GHz Operation Information * * This structure represents the payload of the "HE Operation * element" as described in IEEE Std 802.11ax-2021 section 9.4.2.249. */ struct ieee80211_he_operation { __le32 he_oper_params; __le16 he_mcs_nss_set; u8 optional[]; } __packed; /** * struct ieee80211_he_spr - Spatial Reuse Parameter Set element * @he_sr_control: SR Control * @optional: Optional fields Non-SRG OBSS PD Max Offset, SRG OBSS PD * Min Offset, SRG OBSS PD Max Offset, SRG BSS Color * Bitmap, and SRG Partial BSSID Bitmap * * This structure represents the payload of the "Spatial Reuse * Parameter Set element" as described in IEEE Std 802.11ax-2021 * section 9.4.2.252. */ struct ieee80211_he_spr { u8 he_sr_control; u8 optional[]; } __packed; /** * struct ieee80211_he_mu_edca_param_ac_rec - MU AC Parameter Record field * @aifsn: ACI/AIFSN * @ecw_min_max: ECWmin/ECWmax * @mu_edca_timer: MU EDCA Timer * * This structure represents the "MU AC Parameter Record" as described * in IEEE Std 802.11ax-2021 section 9.4.2.251, Figure 9-788p. */ struct ieee80211_he_mu_edca_param_ac_rec { u8 aifsn; u8 ecw_min_max; u8 mu_edca_timer; } __packed; /** * struct ieee80211_mu_edca_param_set - MU EDCA Parameter Set element * @mu_qos_info: QoS Info * @ac_be: MU AC_BE Parameter Record * @ac_bk: MU AC_BK Parameter Record * @ac_vi: MU AC_VI Parameter Record * @ac_vo: MU AC_VO Parameter Record * * This structure represents the payload of the "MU EDCA Parameter Set * element" as described in IEEE Std 802.11ax-2021 section 9.4.2.251. */ struct ieee80211_mu_edca_param_set { u8 mu_qos_info; struct ieee80211_he_mu_edca_param_ac_rec ac_be; struct ieee80211_he_mu_edca_param_ac_rec ac_bk; struct ieee80211_he_mu_edca_param_ac_rec ac_vi; struct ieee80211_he_mu_edca_param_ac_rec ac_vo; } __packed; #define IEEE80211_EHT_MCS_NSS_RX 0x0f #define IEEE80211_EHT_MCS_NSS_TX 0xf0 /** * struct ieee80211_eht_mcs_nss_supp_20mhz_only - EHT 20MHz only station max * supported NSS for per MCS. * * For each field below, bits 0 - 3 indicate the maximal number of spatial * streams for Rx, and bits 4 - 7 indicate the maximal number of spatial streams * for Tx. * * @rx_tx_mcs7_max_nss: indicates the maximum number of spatial streams * supported for reception and the maximum number of spatial streams * supported for transmission for MCS 0 - 7. * @rx_tx_mcs9_max_nss: indicates the maximum number of spatial streams * supported for reception and the maximum number of spatial streams * supported for transmission for MCS 8 - 9. * @rx_tx_mcs11_max_nss: indicates the maximum number of spatial streams * supported for reception and the maximum number of spatial streams * supported for transmission for MCS 10 - 11. * @rx_tx_mcs13_max_nss: indicates the maximum number of spatial streams * supported for reception and the maximum number of spatial streams * supported for transmission for MCS 12 - 13. * @rx_tx_max_nss: array of the previous fields for easier loop access */ struct ieee80211_eht_mcs_nss_supp_20mhz_only { union { struct { u8 rx_tx_mcs7_max_nss; u8 rx_tx_mcs9_max_nss; u8 rx_tx_mcs11_max_nss; u8 rx_tx_mcs13_max_nss; }; u8 rx_tx_max_nss[4]; }; }; /** * struct ieee80211_eht_mcs_nss_supp_bw - EHT max supported NSS per MCS (except * 20MHz only stations). * * For each field below, bits 0 - 3 indicate the maximal number of spatial * streams for Rx, and bits 4 - 7 indicate the maximal number of spatial streams * for Tx. * * @rx_tx_mcs9_max_nss: indicates the maximum number of spatial streams * supported for reception and the maximum number of spatial streams * supported for transmission for MCS 0 - 9. * @rx_tx_mcs11_max_nss: indicates the maximum number of spatial streams * supported for reception and the maximum number of spatial streams * supported for transmission for MCS 10 - 11. * @rx_tx_mcs13_max_nss: indicates the maximum number of spatial streams * supported for reception and the maximum number of spatial streams * supported for transmission for MCS 12 - 13. * @rx_tx_max_nss: array of the previous fields for easier loop access */ struct ieee80211_eht_mcs_nss_supp_bw { union { struct { u8 rx_tx_mcs9_max_nss; u8 rx_tx_mcs11_max_nss; u8 rx_tx_mcs13_max_nss; }; u8 rx_tx_max_nss[3]; }; }; /** * struct ieee80211_eht_cap_elem_fixed - EHT capabilities fixed data * * This structure is the "EHT Capabilities element" fixed fields as * described in P802.11be_D2.0 section 9.4.2.313. * * @mac_cap_info: MAC capabilities, see IEEE80211_EHT_MAC_CAP* * @phy_cap_info: PHY capabilities, see IEEE80211_EHT_PHY_CAP* */ struct ieee80211_eht_cap_elem_fixed { u8 mac_cap_info[2]; u8 phy_cap_info[9]; } __packed; /** * struct ieee80211_eht_cap_elem - EHT capabilities element * @fixed: fixed parts, see &ieee80211_eht_cap_elem_fixed * @optional: optional parts */ struct ieee80211_eht_cap_elem { struct ieee80211_eht_cap_elem_fixed fixed; /* * Followed by: * Supported EHT-MCS And NSS Set field: 4, 3, 6 or 9 octets. * EHT PPE Thresholds field: variable length. */ u8 optional[]; } __packed; #define IEEE80211_EHT_OPER_INFO_PRESENT 0x01 #define IEEE80211_EHT_OPER_DISABLED_SUBCHANNEL_BITMAP_PRESENT 0x02 #define IEEE80211_EHT_OPER_EHT_DEF_PE_DURATION 0x04 #define IEEE80211_EHT_OPER_GROUP_ADDRESSED_BU_IND_LIMIT 0x08 #define IEEE80211_EHT_OPER_GROUP_ADDRESSED_BU_IND_EXP_MASK 0x30 /** * struct ieee80211_eht_operation - eht operation element * * This structure is the "EHT Operation Element" fields as * described in P802.11be_D2.0 section 9.4.2.311 * * @params: EHT operation element parameters. See &IEEE80211_EHT_OPER_* * @basic_mcs_nss: indicates the EHT-MCSs for each number of spatial streams in * EHT PPDUs that are supported by all EHT STAs in the BSS in transmit and * receive. * @optional: optional parts */ struct ieee80211_eht_operation { u8 params; struct ieee80211_eht_mcs_nss_supp_20mhz_only basic_mcs_nss; u8 optional[]; } __packed; /** * struct ieee80211_eht_operation_info - eht operation information * * @control: EHT operation information control. * @ccfs0: defines a channel center frequency for a 20, 40, 80, 160, or 320 MHz * EHT BSS. * @ccfs1: defines a channel center frequency for a 160 or 320 MHz EHT BSS. * @optional: optional parts */ struct ieee80211_eht_operation_info { u8 control; u8 ccfs0; u8 ccfs1; u8 optional[]; } __packed; /* 802.11ac VHT Capabilities */ #define IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895 0x00000000 #define IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991 0x00000001 #define IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454 0x00000002 #define IEEE80211_VHT_CAP_MAX_MPDU_MASK 0x00000003 #define IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ 0x00000004 #define IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ 0x00000008 #define IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK 0x0000000C #define IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_SHIFT 2 #define IEEE80211_VHT_CAP_RXLDPC 0x00000010 #define IEEE80211_VHT_CAP_SHORT_GI_80 0x00000020 #define IEEE80211_VHT_CAP_SHORT_GI_160 0x00000040 #define IEEE80211_VHT_CAP_TXSTBC 0x00000080 #define IEEE80211_VHT_CAP_RXSTBC_1 0x00000100 #define IEEE80211_VHT_CAP_RXSTBC_2 0x00000200 #define IEEE80211_VHT_CAP_RXSTBC_3 0x00000300 #define IEEE80211_VHT_CAP_RXSTBC_4 0x00000400 #define IEEE80211_VHT_CAP_RXSTBC_MASK 0x00000700 #define IEEE80211_VHT_CAP_RXSTBC_SHIFT 8 #define IEEE80211_VHT_CAP_SU_BEAMFORMER_CAPABLE 0x00000800 #define IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE 0x00001000 #define IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT 13 #define IEEE80211_VHT_CAP_BEAMFORMEE_STS_MASK \ (7 << IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT) #define IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_SHIFT 16 #define IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_MASK \ (7 << IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_SHIFT) #define IEEE80211_VHT_CAP_MU_BEAMFORMER_CAPABLE 0x00080000 #define IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE 0x00100000 #define IEEE80211_VHT_CAP_VHT_TXOP_PS 0x00200000 #define IEEE80211_VHT_CAP_HTC_VHT 0x00400000 #define IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT 23 #define IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK \ (7 << IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT) #define IEEE80211_VHT_CAP_VHT_LINK_ADAPTATION_VHT_UNSOL_MFB 0x08000000 #define IEEE80211_VHT_CAP_VHT_LINK_ADAPTATION_VHT_MRQ_MFB 0x0c000000 #define IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN 0x10000000 #define IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN 0x20000000 #define IEEE80211_VHT_CAP_EXT_NSS_BW_SHIFT 30 #define IEEE80211_VHT_CAP_EXT_NSS_BW_MASK 0xc0000000 /** * ieee80211_get_vht_max_nss - return max NSS for a given bandwidth/MCS * @cap: VHT capabilities of the peer * @bw: bandwidth to use * @mcs: MCS index to use * @ext_nss_bw_capable: indicates whether or not the local transmitter * (rate scaling algorithm) can deal with the new logic * (dot11VHTExtendedNSSBWCapable) * @max_vht_nss: current maximum NSS as advertised by the STA in * operating mode notification, can be 0 in which case the * capability data will be used to derive this (from MCS support) * * Due to the VHT Extended NSS Bandwidth Support, the maximum NSS can * vary for a given BW/MCS. This function parses the data. * * Note: This function is exported by cfg80211. */ int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap, enum ieee80211_vht_chanwidth bw, int mcs, bool ext_nss_bw_capable, unsigned int max_vht_nss); /** * enum ieee80211_ap_reg_power - regulatory power for a Access Point * * @IEEE80211_REG_UNSET_AP: Access Point has no regulatory power mode * @IEEE80211_REG_LPI_AP: Indoor Access Point * @IEEE80211_REG_SP_AP: Standard power Access Point * @IEEE80211_REG_VLP_AP: Very low power Access Point * @IEEE80211_REG_AP_POWER_AFTER_LAST: internal * @IEEE80211_REG_AP_POWER_MAX: maximum value */ enum ieee80211_ap_reg_power { IEEE80211_REG_UNSET_AP, IEEE80211_REG_LPI_AP, IEEE80211_REG_SP_AP, IEEE80211_REG_VLP_AP, IEEE80211_REG_AP_POWER_AFTER_LAST, IEEE80211_REG_AP_POWER_MAX = IEEE80211_REG_AP_POWER_AFTER_LAST - 1, }; /** * enum ieee80211_client_reg_power - regulatory power for a client * * @IEEE80211_REG_UNSET_CLIENT: Client has no regulatory power mode * @IEEE80211_REG_DEFAULT_CLIENT: Default Client * @IEEE80211_REG_SUBORDINATE_CLIENT: Subordinate Client * @IEEE80211_REG_CLIENT_POWER_AFTER_LAST: internal * @IEEE80211_REG_CLIENT_POWER_MAX: maximum value */ enum ieee80211_client_reg_power { IEEE80211_REG_UNSET_CLIENT, IEEE80211_REG_DEFAULT_CLIENT, IEEE80211_REG_SUBORDINATE_CLIENT, IEEE80211_REG_CLIENT_POWER_AFTER_LAST, IEEE80211_REG_CLIENT_POWER_MAX = IEEE80211_REG_CLIENT_POWER_AFTER_LAST - 1, }; /* 802.11ax HE MAC capabilities */ #define IEEE80211_HE_MAC_CAP0_HTC_HE 0x01 #define IEEE80211_HE_MAC_CAP0_TWT_REQ 0x02 #define IEEE80211_HE_MAC_CAP0_TWT_RES 0x04 #define IEEE80211_HE_MAC_CAP0_DYNAMIC_FRAG_NOT_SUPP 0x00 #define IEEE80211_HE_MAC_CAP0_DYNAMIC_FRAG_LEVEL_1 0x08 #define IEEE80211_HE_MAC_CAP0_DYNAMIC_FRAG_LEVEL_2 0x10 #define IEEE80211_HE_MAC_CAP0_DYNAMIC_FRAG_LEVEL_3 0x18 #define IEEE80211_HE_MAC_CAP0_DYNAMIC_FRAG_MASK 0x18 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_1 0x00 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_2 0x20 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_4 0x40 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_8 0x60 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_16 0x80 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_32 0xa0 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_64 0xc0 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_UNLIMITED 0xe0 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_MASK 0xe0 #define IEEE80211_HE_MAC_CAP1_MIN_FRAG_SIZE_UNLIMITED 0x00 #define IEEE80211_HE_MAC_CAP1_MIN_FRAG_SIZE_128 0x01 #define IEEE80211_HE_MAC_CAP1_MIN_FRAG_SIZE_256 0x02 #define IEEE80211_HE_MAC_CAP1_MIN_FRAG_SIZE_512 0x03 #define IEEE80211_HE_MAC_CAP1_MIN_FRAG_SIZE_MASK 0x03 #define IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_0US 0x00 #define IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_8US 0x04 #define IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US 0x08 #define IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_MASK 0x0c #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_1 0x00 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_2 0x10 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_3 0x20 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_4 0x30 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_5 0x40 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_6 0x50 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_7 0x60 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8 0x70 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_MASK 0x70 /* Link adaptation is split between byte HE_MAC_CAP1 and * HE_MAC_CAP2. It should be set only if IEEE80211_HE_MAC_CAP0_HTC_HE * in which case the following values apply: * 0 = No feedback. * 1 = reserved. * 2 = Unsolicited feedback. * 3 = both */ #define IEEE80211_HE_MAC_CAP1_LINK_ADAPTATION 0x80 #define IEEE80211_HE_MAC_CAP2_LINK_ADAPTATION 0x01 #define IEEE80211_HE_MAC_CAP2_ALL_ACK 0x02 #define IEEE80211_HE_MAC_CAP2_TRS 0x04 #define IEEE80211_HE_MAC_CAP2_BSR 0x08 #define IEEE80211_HE_MAC_CAP2_BCAST_TWT 0x10 #define IEEE80211_HE_MAC_CAP2_32BIT_BA_BITMAP 0x20 #define IEEE80211_HE_MAC_CAP2_MU_CASCADING 0x40 #define IEEE80211_HE_MAC_CAP2_ACK_EN 0x80 #define IEEE80211_HE_MAC_CAP3_OMI_CONTROL 0x02 #define IEEE80211_HE_MAC_CAP3_OFDMA_RA 0x04 /* The maximum length of an A-MDPU is defined by the combination of the Maximum * A-MDPU Length Exponent field in the HT capabilities, VHT capabilities and the * same field in the HE capabilities. */ #define IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_0 0x00 #define IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_1 0x08 #define IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_2 0x10 #define IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_3 0x18 #define IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_MASK 0x18 #define IEEE80211_HE_MAC_CAP3_AMSDU_FRAG 0x20 #define IEEE80211_HE_MAC_CAP3_FLEX_TWT_SCHED 0x40 #define IEEE80211_HE_MAC_CAP3_RX_CTRL_FRAME_TO_MULTIBSS 0x80 #define IEEE80211_HE_MAC_CAP4_BSRP_BQRP_A_MPDU_AGG 0x01 #define IEEE80211_HE_MAC_CAP4_QTP 0x02 #define IEEE80211_HE_MAC_CAP4_BQR 0x04 #define IEEE80211_HE_MAC_CAP4_PSR_RESP 0x08 #define IEEE80211_HE_MAC_CAP4_NDP_FB_REP 0x10 #define IEEE80211_HE_MAC_CAP4_OPS 0x20 #define IEEE80211_HE_MAC_CAP4_AMSDU_IN_AMPDU 0x40 /* Multi TID agg TX is split between byte #4 and #5 * The value is a combination of B39,B40,B41 */ #define IEEE80211_HE_MAC_CAP4_MULTI_TID_AGG_TX_QOS_B39 0x80 #define IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B40 0x01 #define IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B41 0x02 #define IEEE80211_HE_MAC_CAP5_SUBCHAN_SELECTIVE_TRANSMISSION 0x04 #define IEEE80211_HE_MAC_CAP5_UL_2x996_TONE_RU 0x08 #define IEEE80211_HE_MAC_CAP5_OM_CTRL_UL_MU_DATA_DIS_RX 0x10 #define IEEE80211_HE_MAC_CAP5_HE_DYNAMIC_SM_PS 0x20 #define IEEE80211_HE_MAC_CAP5_PUNCTURED_SOUNDING 0x40 #define IEEE80211_HE_MAC_CAP5_HT_VHT_TRIG_FRAME_RX 0x80 #define IEEE80211_HE_VHT_MAX_AMPDU_FACTOR 20 #define IEEE80211_HE_HT_MAX_AMPDU_FACTOR 16 #define IEEE80211_HE_6GHZ_MAX_AMPDU_FACTOR 13 /* 802.11ax HE PHY capabilities */ #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G 0x02 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G 0x04 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G 0x08 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G 0x10 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_MASK_ALL 0x1e #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_RU_MAPPING_IN_2G 0x20 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_RU_MAPPING_IN_5G 0x40 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_MASK 0xfe #define IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_80MHZ_ONLY_SECOND_20MHZ 0x01 #define IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_80MHZ_ONLY_SECOND_40MHZ 0x02 #define IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_160MHZ_ONLY_SECOND_20MHZ 0x04 #define IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_160MHZ_ONLY_SECOND_40MHZ 0x08 #define IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_MASK 0x0f #define IEEE80211_HE_PHY_CAP1_DEVICE_CLASS_A 0x10 #define IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD 0x20 #define IEEE80211_HE_PHY_CAP1_HE_LTF_AND_GI_FOR_HE_PPDUS_0_8US 0x40 /* Midamble RX/TX Max NSTS is split between byte #2 and byte #3 */ #define IEEE80211_HE_PHY_CAP1_MIDAMBLE_RX_TX_MAX_NSTS 0x80 #define IEEE80211_HE_PHY_CAP2_MIDAMBLE_RX_TX_MAX_NSTS 0x01 #define IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US 0x02 #define IEEE80211_HE_PHY_CAP2_STBC_TX_UNDER_80MHZ 0x04 #define IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ 0x08 #define IEEE80211_HE_PHY_CAP2_DOPPLER_TX 0x10 #define IEEE80211_HE_PHY_CAP2_DOPPLER_RX 0x20 /* Note that the meaning of UL MU below is different between an AP and a non-AP * sta, where in the AP case it indicates support for Rx and in the non-AP sta * case it indicates support for Tx. */ #define IEEE80211_HE_PHY_CAP2_UL_MU_FULL_MU_MIMO 0x40 #define IEEE80211_HE_PHY_CAP2_UL_MU_PARTIAL_MU_MIMO 0x80 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_NO_DCM 0x00 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_BPSK 0x01 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_QPSK 0x02 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_16_QAM 0x03 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_MASK 0x03 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 0x00 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_2 0x04 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_NO_DCM 0x00 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_BPSK 0x08 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_QPSK 0x10 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_16_QAM 0x18 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_MASK 0x18 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1 0x00 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_2 0x20 #define IEEE80211_HE_PHY_CAP3_RX_PARTIAL_BW_SU_IN_20MHZ_MU 0x40 #define IEEE80211_HE_PHY_CAP3_SU_BEAMFORMER 0x80 #define IEEE80211_HE_PHY_CAP4_SU_BEAMFORMEE 0x01 #define IEEE80211_HE_PHY_CAP4_MU_BEAMFORMER 0x02 /* Minimal allowed value of Max STS under 80MHz is 3 */ #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_4 0x0c #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_5 0x10 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_6 0x14 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_7 0x18 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_8 0x1c #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_MASK 0x1c /* Minimal allowed value of Max STS above 80MHz is 3 */ #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_4 0x60 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_5 0x80 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_6 0xa0 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_7 0xc0 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_8 0xe0 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_MASK 0xe0 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_1 0x00 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_2 0x01 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_3 0x02 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_4 0x03 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_5 0x04 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_6 0x05 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_7 0x06 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_8 0x07 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_MASK 0x07 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_1 0x00 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_2 0x08 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_3 0x10 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_4 0x18 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_5 0x20 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_6 0x28 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_7 0x30 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_8 0x38 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_MASK 0x38 #define IEEE80211_HE_PHY_CAP5_NG16_SU_FEEDBACK 0x40 #define IEEE80211_HE_PHY_CAP5_NG16_MU_FEEDBACK 0x80 #define IEEE80211_HE_PHY_CAP6_CODEBOOK_SIZE_42_SU 0x01 #define IEEE80211_HE_PHY_CAP6_CODEBOOK_SIZE_75_MU 0x02 #define IEEE80211_HE_PHY_CAP6_TRIG_SU_BEAMFORMING_FB 0x04 #define IEEE80211_HE_PHY_CAP6_TRIG_MU_BEAMFORMING_PARTIAL_BW_FB 0x08 #define IEEE80211_HE_PHY_CAP6_TRIG_CQI_FB 0x10 #define IEEE80211_HE_PHY_CAP6_PARTIAL_BW_EXT_RANGE 0x20 #define IEEE80211_HE_PHY_CAP6_PARTIAL_BANDWIDTH_DL_MUMIMO 0x40 #define IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT 0x80 #define IEEE80211_HE_PHY_CAP7_PSR_BASED_SR 0x01 #define IEEE80211_HE_PHY_CAP7_POWER_BOOST_FACTOR_SUPP 0x02 #define IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI 0x04 #define IEEE80211_HE_PHY_CAP7_MAX_NC_1 0x08 #define IEEE80211_HE_PHY_CAP7_MAX_NC_2 0x10 #define IEEE80211_HE_PHY_CAP7_MAX_NC_3 0x18 #define IEEE80211_HE_PHY_CAP7_MAX_NC_4 0x20 #define IEEE80211_HE_PHY_CAP7_MAX_NC_5 0x28 #define IEEE80211_HE_PHY_CAP7_MAX_NC_6 0x30 #define IEEE80211_HE_PHY_CAP7_MAX_NC_7 0x38 #define IEEE80211_HE_PHY_CAP7_MAX_NC_MASK 0x38 #define IEEE80211_HE_PHY_CAP7_STBC_TX_ABOVE_80MHZ 0x40 #define IEEE80211_HE_PHY_CAP7_STBC_RX_ABOVE_80MHZ 0x80 #define IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI 0x01 #define IEEE80211_HE_PHY_CAP8_20MHZ_IN_40MHZ_HE_PPDU_IN_2G 0x02 #define IEEE80211_HE_PHY_CAP8_20MHZ_IN_160MHZ_HE_PPDU 0x04 #define IEEE80211_HE_PHY_CAP8_80MHZ_IN_160MHZ_HE_PPDU 0x08 #define IEEE80211_HE_PHY_CAP8_HE_ER_SU_1XLTF_AND_08_US_GI 0x10 #define IEEE80211_HE_PHY_CAP8_MIDAMBLE_RX_TX_2X_AND_1XLTF 0x20 #define IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_242 0x00 #define IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_484 0x40 #define IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_996 0x80 #define IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_2x996 0xc0 #define IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_MASK 0xc0 #define IEEE80211_HE_PHY_CAP9_LONGER_THAN_16_SIGB_OFDM_SYM 0x01 #define IEEE80211_HE_PHY_CAP9_NON_TRIGGERED_CQI_FEEDBACK 0x02 #define IEEE80211_HE_PHY_CAP9_TX_1024_QAM_LESS_THAN_242_TONE_RU 0x04 #define IEEE80211_HE_PHY_CAP9_RX_1024_QAM_LESS_THAN_242_TONE_RU 0x08 #define IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_COMP_SIGB 0x10 #define IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_NON_COMP_SIGB 0x20 #define IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_0US 0x0 #define IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_8US 0x1 #define IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_16US 0x2 #define IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_RESERVED 0x3 #define IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_POS 6 #define IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_MASK 0xc0 #define IEEE80211_HE_PHY_CAP10_HE_MU_M1RU_MAX_LTF 0x01 /* 802.11ax HE TX/RX MCS NSS Support */ #define IEEE80211_TX_RX_MCS_NSS_SUPP_HIGHEST_MCS_POS (3) #define IEEE80211_TX_RX_MCS_NSS_SUPP_TX_BITMAP_POS (6) #define IEEE80211_TX_RX_MCS_NSS_SUPP_RX_BITMAP_POS (11) #define IEEE80211_TX_RX_MCS_NSS_SUPP_TX_BITMAP_MASK 0x07c0 #define IEEE80211_TX_RX_MCS_NSS_SUPP_RX_BITMAP_MASK 0xf800 /* TX/RX HE MCS Support field Highest MCS subfield encoding */ enum ieee80211_he_highest_mcs_supported_subfield_enc { HIGHEST_MCS_SUPPORTED_MCS7 = 0, HIGHEST_MCS_SUPPORTED_MCS8, HIGHEST_MCS_SUPPORTED_MCS9, HIGHEST_MCS_SUPPORTED_MCS10, HIGHEST_MCS_SUPPORTED_MCS11, }; /* Calculate 802.11ax HE capabilities IE Tx/Rx HE MCS NSS Support Field size */ static inline u8 ieee80211_he_mcs_nss_size(const struct ieee80211_he_cap_elem *he_cap) { u8 count = 4; if (he_cap->phy_cap_info[0] & IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G) count += 4; if (he_cap->phy_cap_info[0] & IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G) count += 4; return count; } /* 802.11ax HE PPE Thresholds */ #define IEEE80211_PPE_THRES_NSS_SUPPORT_2NSS (1) #define IEEE80211_PPE_THRES_NSS_POS (0) #define IEEE80211_PPE_THRES_NSS_MASK (7) #define IEEE80211_PPE_THRES_RU_INDEX_BITMASK_2x966_AND_966_RU \ (BIT(5) | BIT(6)) #define IEEE80211_PPE_THRES_RU_INDEX_BITMASK_MASK 0x78 #define IEEE80211_PPE_THRES_RU_INDEX_BITMASK_POS (3) #define IEEE80211_PPE_THRES_INFO_PPET_SIZE (3) #define IEEE80211_HE_PPE_THRES_INFO_HEADER_SIZE (7) /* * Calculate 802.11ax HE capabilities IE PPE field size * Input: Header byte of ppe_thres (first byte), and HE capa IE's PHY cap u8* */ static inline u8 ieee80211_he_ppe_size(u8 ppe_thres_hdr, const u8 *phy_cap_info) { u8 n; if ((phy_cap_info[6] & IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT) == 0) return 0; n = hweight8(ppe_thres_hdr & IEEE80211_PPE_THRES_RU_INDEX_BITMASK_MASK); n *= (1 + ((ppe_thres_hdr & IEEE80211_PPE_THRES_NSS_MASK) >> IEEE80211_PPE_THRES_NSS_POS)); /* * Each pair is 6 bits, and we need to add the 7 "header" bits to the * total size. */ n = (n * IEEE80211_PPE_THRES_INFO_PPET_SIZE * 2) + 7; n = DIV_ROUND_UP(n, 8); return n; } static inline bool ieee80211_he_capa_size_ok(const u8 *data, u8 len) { const struct ieee80211_he_cap_elem *he_cap_ie_elem = (const void *)data; u8 needed = sizeof(*he_cap_ie_elem); if (len < needed) return false; needed += ieee80211_he_mcs_nss_size(he_cap_ie_elem); if (len < needed) return false; if (he_cap_ie_elem->phy_cap_info[6] & IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT) { if (len < needed + 1) return false; needed += ieee80211_he_ppe_size(data[needed], he_cap_ie_elem->phy_cap_info); } return len >= needed; } /* HE Operation defines */ #define IEEE80211_HE_OPERATION_DFLT_PE_DURATION_MASK 0x00000007 #define IEEE80211_HE_OPERATION_TWT_REQUIRED 0x00000008 #define IEEE80211_HE_OPERATION_RTS_THRESHOLD_MASK 0x00003ff0 #define IEEE80211_HE_OPERATION_RTS_THRESHOLD_OFFSET 4 #define IEEE80211_HE_OPERATION_VHT_OPER_INFO 0x00004000 #define IEEE80211_HE_OPERATION_CO_HOSTED_BSS 0x00008000 #define IEEE80211_HE_OPERATION_ER_SU_DISABLE 0x00010000 #define IEEE80211_HE_OPERATION_6GHZ_OP_INFO 0x00020000 #define IEEE80211_HE_OPERATION_BSS_COLOR_MASK 0x3f000000 #define IEEE80211_HE_OPERATION_BSS_COLOR_OFFSET 24 #define IEEE80211_HE_OPERATION_PARTIAL_BSS_COLOR 0x40000000 #define IEEE80211_HE_OPERATION_BSS_COLOR_DISABLED 0x80000000 #define IEEE80211_6GHZ_CTRL_REG_LPI_AP 0 #define IEEE80211_6GHZ_CTRL_REG_SP_AP 1 #define IEEE80211_6GHZ_CTRL_REG_VLP_AP 2 /** * struct ieee80211_he_6ghz_oper - HE 6 GHz operation Information field * @primary: primary channel * @control: control flags * @ccfs0: channel center frequency segment 0 * @ccfs1: channel center frequency segment 1 * @minrate: minimum rate (in 1 Mbps units) */ struct ieee80211_he_6ghz_oper { u8 primary; #define IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH 0x3 #define IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_20MHZ 0 #define IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_40MHZ 1 #define IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_80MHZ 2 #define IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ 3 #define IEEE80211_HE_6GHZ_OPER_CTRL_DUP_BEACON 0x4 #define IEEE80211_HE_6GHZ_OPER_CTRL_REG_INFO 0x38 u8 control; u8 ccfs0; u8 ccfs1; u8 minrate; } __packed; /* * In "9.4.2.161 Transmit Power Envelope element" of "IEEE Std 802.11ax-2021", * it show four types in "Table 9-275a-Maximum Transmit Power Interpretation * subfield encoding", and two category for each type in "Table E-12-Regulatory * Info subfield encoding in the United States". * So it it totally max 8 Transmit Power Envelope element. */ #define IEEE80211_TPE_MAX_IE_COUNT 8 /* * In "Table 9-277—Meaning of Maximum Transmit Power Count subfield" * of "IEEE Std 802.11ax™‐2021", the max power level is 8. */ #define IEEE80211_MAX_NUM_PWR_LEVEL 8 #define IEEE80211_TPE_MAX_POWER_COUNT 8 /* transmit power interpretation type of transmit power envelope element */ enum ieee80211_tx_power_intrpt_type { IEEE80211_TPE_LOCAL_EIRP, IEEE80211_TPE_LOCAL_EIRP_PSD, IEEE80211_TPE_REG_CLIENT_EIRP, IEEE80211_TPE_REG_CLIENT_EIRP_PSD, }; /** * struct ieee80211_tx_pwr_env - Transmit Power Envelope * @tx_power_info: Transmit Power Information field * @tx_power: Maximum Transmit Power field * * This structure represents the payload of the "Transmit Power * Envelope element" as described in IEEE Std 802.11ax-2021 section * 9.4.2.161 */ struct ieee80211_tx_pwr_env { u8 tx_power_info; s8 tx_power[IEEE80211_TPE_MAX_POWER_COUNT]; } __packed; #define IEEE80211_TX_PWR_ENV_INFO_COUNT 0x7 #define IEEE80211_TX_PWR_ENV_INFO_INTERPRET 0x38 #define IEEE80211_TX_PWR_ENV_INFO_CATEGORY 0xC0 /* * ieee80211_he_oper_size - calculate 802.11ax HE Operations IE size * @he_oper_ie: byte data of the He Operations IE, stating from the byte * after the ext ID byte. It is assumed that he_oper_ie has at least * sizeof(struct ieee80211_he_operation) bytes, the caller must have * validated this. * @return the actual size of the IE data (not including header), or 0 on error */ static inline u8 ieee80211_he_oper_size(const u8 *he_oper_ie) { const struct ieee80211_he_operation *he_oper = (const void *)he_oper_ie; u8 oper_len = sizeof(struct ieee80211_he_operation); u32 he_oper_params; /* Make sure the input is not NULL */ if (!he_oper_ie) return 0; /* Calc required length */ he_oper_params = le32_to_cpu(he_oper->he_oper_params); if (he_oper_params & IEEE80211_HE_OPERATION_VHT_OPER_INFO) oper_len += 3; if (he_oper_params & IEEE80211_HE_OPERATION_CO_HOSTED_BSS) oper_len++; if (he_oper_params & IEEE80211_HE_OPERATION_6GHZ_OP_INFO) oper_len += sizeof(struct ieee80211_he_6ghz_oper); /* Add the first byte (extension ID) to the total length */ oper_len++; return oper_len; } /** * ieee80211_he_6ghz_oper - obtain 6 GHz operation field * @he_oper: HE operation element (must be pre-validated for size) * but may be %NULL * * Return: a pointer to the 6 GHz operation field, or %NULL */ static inline const struct ieee80211_he_6ghz_oper * ieee80211_he_6ghz_oper(const struct ieee80211_he_operation *he_oper) { const u8 *ret; u32 he_oper_params; if (!he_oper) return NULL; ret = (const void *)&he_oper->optional; he_oper_params = le32_to_cpu(he_oper->he_oper_params); if (!(he_oper_params & IEEE80211_HE_OPERATION_6GHZ_OP_INFO)) return NULL; if (he_oper_params & IEEE80211_HE_OPERATION_VHT_OPER_INFO) ret += 3; if (he_oper_params & IEEE80211_HE_OPERATION_CO_HOSTED_BSS) ret++; return (const void *)ret; } /* HE Spatial Reuse defines */ #define IEEE80211_HE_SPR_PSR_DISALLOWED BIT(0) #define IEEE80211_HE_SPR_NON_SRG_OBSS_PD_SR_DISALLOWED BIT(1) #define IEEE80211_HE_SPR_NON_SRG_OFFSET_PRESENT BIT(2) #define IEEE80211_HE_SPR_SRG_INFORMATION_PRESENT BIT(3) #define IEEE80211_HE_SPR_HESIGA_SR_VAL15_ALLOWED BIT(4) /* * ieee80211_he_spr_size - calculate 802.11ax HE Spatial Reuse IE size * @he_spr_ie: byte data of the He Spatial Reuse IE, stating from the byte * after the ext ID byte. It is assumed that he_spr_ie has at least * sizeof(struct ieee80211_he_spr) bytes, the caller must have validated * this * @return the actual size of the IE data (not including header), or 0 on error */ static inline u8 ieee80211_he_spr_size(const u8 *he_spr_ie) { const struct ieee80211_he_spr *he_spr = (const void *)he_spr_ie; u8 spr_len = sizeof(struct ieee80211_he_spr); u8 he_spr_params; /* Make sure the input is not NULL */ if (!he_spr_ie) return 0; /* Calc required length */ he_spr_params = he_spr->he_sr_control; if (he_spr_params & IEEE80211_HE_SPR_NON_SRG_OFFSET_PRESENT) spr_len++; if (he_spr_params & IEEE80211_HE_SPR_SRG_INFORMATION_PRESENT) spr_len += 18; /* Add the first byte (extension ID) to the total length */ spr_len++; return spr_len; } /* S1G Capabilities Information field */ #define IEEE80211_S1G_CAPABILITY_LEN 15 #define S1G_CAP0_S1G_LONG BIT(0) #define S1G_CAP0_SGI_1MHZ BIT(1) #define S1G_CAP0_SGI_2MHZ BIT(2) #define S1G_CAP0_SGI_4MHZ BIT(3) #define S1G_CAP0_SGI_8MHZ BIT(4) #define S1G_CAP0_SGI_16MHZ BIT(5) #define S1G_CAP0_SUPP_CH_WIDTH GENMASK(7, 6) #define S1G_SUPP_CH_WIDTH_2 0 #define S1G_SUPP_CH_WIDTH_4 1 #define S1G_SUPP_CH_WIDTH_8 2 #define S1G_SUPP_CH_WIDTH_16 3 #define S1G_SUPP_CH_WIDTH_MAX(cap) ((1 << FIELD_GET(S1G_CAP0_SUPP_CH_WIDTH, \ cap[0])) << 1) #define S1G_CAP1_RX_LDPC BIT(0) #define S1G_CAP1_TX_STBC BIT(1) #define S1G_CAP1_RX_STBC BIT(2) #define S1G_CAP1_SU_BFER BIT(3) #define S1G_CAP1_SU_BFEE BIT(4) #define S1G_CAP1_BFEE_STS GENMASK(7, 5) #define S1G_CAP2_SOUNDING_DIMENSIONS GENMASK(2, 0) #define S1G_CAP2_MU_BFER BIT(3) #define S1G_CAP2_MU_BFEE BIT(4) #define S1G_CAP2_PLUS_HTC_VHT BIT(5) #define S1G_CAP2_TRAVELING_PILOT GENMASK(7, 6) #define S1G_CAP3_RD_RESPONDER BIT(0) #define S1G_CAP3_HT_DELAYED_BA BIT(1) #define S1G_CAP3_MAX_MPDU_LEN BIT(2) #define S1G_CAP3_MAX_AMPDU_LEN_EXP GENMASK(4, 3) #define S1G_CAP3_MIN_MPDU_START GENMASK(7, 5) #define S1G_CAP4_UPLINK_SYNC BIT(0) #define S1G_CAP4_DYNAMIC_AID BIT(1) #define S1G_CAP4_BAT BIT(2) #define S1G_CAP4_TIME_ADE BIT(3) #define S1G_CAP4_NON_TIM BIT(4) #define S1G_CAP4_GROUP_AID BIT(5) #define S1G_CAP4_STA_TYPE GENMASK(7, 6) #define S1G_CAP5_CENT_AUTH_CONTROL BIT(0) #define S1G_CAP5_DIST_AUTH_CONTROL BIT(1) #define S1G_CAP5_AMSDU BIT(2) #define S1G_CAP5_AMPDU BIT(3) #define S1G_CAP5_ASYMMETRIC_BA BIT(4) #define S1G_CAP5_FLOW_CONTROL BIT(5) #define S1G_CAP5_SECTORIZED_BEAM GENMASK(7, 6) #define S1G_CAP6_OBSS_MITIGATION BIT(0) #define S1G_CAP6_FRAGMENT_BA BIT(1) #define S1G_CAP6_NDP_PS_POLL BIT(2) #define S1G_CAP6_RAW_OPERATION BIT(3) #define S1G_CAP6_PAGE_SLICING BIT(4) #define S1G_CAP6_TXOP_SHARING_IMP_ACK BIT(5) #define S1G_CAP6_VHT_LINK_ADAPT GENMASK(7, 6) #define S1G_CAP7_TACK_AS_PS_POLL BIT(0) #define S1G_CAP7_DUP_1MHZ BIT(1) #define S1G_CAP7_MCS_NEGOTIATION BIT(2) #define S1G_CAP7_1MHZ_CTL_RESPONSE_PREAMBLE BIT(3) #define S1G_CAP7_NDP_BFING_REPORT_POLL BIT(4) #define S1G_CAP7_UNSOLICITED_DYN_AID BIT(5) #define S1G_CAP7_SECTOR_TRAINING_OPERATION BIT(6) #define S1G_CAP7_TEMP_PS_MODE_SWITCH BIT(7) #define S1G_CAP8_TWT_GROUPING BIT(0) #define S1G_CAP8_BDT BIT(1) #define S1G_CAP8_COLOR GENMASK(4, 2) #define S1G_CAP8_TWT_REQUEST BIT(5) #define S1G_CAP8_TWT_RESPOND BIT(6) #define S1G_CAP8_PV1_FRAME BIT(7) #define S1G_CAP9_LINK_ADAPT_PER_CONTROL_RESPONSE BIT(0) #define S1G_OPER_CH_WIDTH_PRIMARY_1MHZ BIT(0) #define S1G_OPER_CH_WIDTH_OPER GENMASK(4, 1) /* EHT MAC capabilities as defined in P802.11be_D2.0 section 9.4.2.313.2 */ #define IEEE80211_EHT_MAC_CAP0_EPCS_PRIO_ACCESS 0x01 #define IEEE80211_EHT_MAC_CAP0_OM_CONTROL 0x02 #define IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE1 0x04 #define IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE2 0x08 #define IEEE80211_EHT_MAC_CAP0_RESTRICTED_TWT 0x10 #define IEEE80211_EHT_MAC_CAP0_SCS_TRAFFIC_DESC 0x20 #define IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_MASK 0xc0 #define IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_3895 0 #define IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_7991 1 #define IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_11454 2 #define IEEE80211_EHT_MAC_CAP1_MAX_AMPDU_LEN_MASK 0x01 /* EHT PHY capabilities as defined in P802.11be_D2.0 section 9.4.2.313.3 */ #define IEEE80211_EHT_PHY_CAP0_320MHZ_IN_6GHZ 0x02 #define IEEE80211_EHT_PHY_CAP0_242_TONE_RU_GT20MHZ 0x04 #define IEEE80211_EHT_PHY_CAP0_NDP_4_EHT_LFT_32_GI 0x08 #define IEEE80211_EHT_PHY_CAP0_PARTIAL_BW_UL_MU_MIMO 0x10 #define IEEE80211_EHT_PHY_CAP0_SU_BEAMFORMER 0x20 #define IEEE80211_EHT_PHY_CAP0_SU_BEAMFORMEE 0x40 /* EHT beamformee number of spatial streams <= 80MHz is split */ #define IEEE80211_EHT_PHY_CAP0_BEAMFORMEE_SS_80MHZ_MASK 0x80 #define IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_80MHZ_MASK 0x03 #define IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_160MHZ_MASK 0x1c #define IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_320MHZ_MASK 0xe0 #define IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_80MHZ_MASK 0x07 #define IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_160MHZ_MASK 0x38 /* EHT number of sounding dimensions for 320MHz is split */ #define IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_320MHZ_MASK 0xc0 #define IEEE80211_EHT_PHY_CAP3_SOUNDING_DIM_320MHZ_MASK 0x01 #define IEEE80211_EHT_PHY_CAP3_NG_16_SU_FEEDBACK 0x02 #define IEEE80211_EHT_PHY_CAP3_NG_16_MU_FEEDBACK 0x04 #define IEEE80211_EHT_PHY_CAP3_CODEBOOK_4_2_SU_FDBK 0x08 #define IEEE80211_EHT_PHY_CAP3_CODEBOOK_7_5_MU_FDBK 0x10 #define IEEE80211_EHT_PHY_CAP3_TRIG_SU_BF_FDBK 0x20 #define IEEE80211_EHT_PHY_CAP3_TRIG_MU_BF_PART_BW_FDBK 0x40 #define IEEE80211_EHT_PHY_CAP3_TRIG_CQI_FDBK 0x80 #define IEEE80211_EHT_PHY_CAP4_PART_BW_DL_MU_MIMO 0x01 #define IEEE80211_EHT_PHY_CAP4_PSR_SR_SUPP 0x02 #define IEEE80211_EHT_PHY_CAP4_POWER_BOOST_FACT_SUPP 0x04 #define IEEE80211_EHT_PHY_CAP4_EHT_MU_PPDU_4_EHT_LTF_08_GI 0x08 #define IEEE80211_EHT_PHY_CAP4_MAX_NC_MASK 0xf0 #define IEEE80211_EHT_PHY_CAP5_NON_TRIG_CQI_FEEDBACK 0x01 #define IEEE80211_EHT_PHY_CAP5_TX_LESS_242_TONE_RU_SUPP 0x02 #define IEEE80211_EHT_PHY_CAP5_RX_LESS_242_TONE_RU_SUPP 0x04 #define IEEE80211_EHT_PHY_CAP5_PPE_THRESHOLD_PRESENT 0x08 #define IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_MASK 0x30 #define IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_0US 0 #define IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_8US 1 #define IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_16US 2 #define IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_20US 3 /* Maximum number of supported EHT LTF is split */ #define IEEE80211_EHT_PHY_CAP5_MAX_NUM_SUPP_EHT_LTF_MASK 0xc0 #define IEEE80211_EHT_PHY_CAP5_SUPP_EXTRA_EHT_LTF 0x40 #define IEEE80211_EHT_PHY_CAP6_MAX_NUM_SUPP_EHT_LTF_MASK 0x07 #define IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_MASK 0x78 #define IEEE80211_EHT_PHY_CAP6_EHT_DUP_6GHZ_SUPP 0x80 #define IEEE80211_EHT_PHY_CAP7_20MHZ_STA_RX_NDP_WIDER_BW 0x01 #define IEEE80211_EHT_PHY_CAP7_NON_OFDMA_UL_MU_MIMO_80MHZ 0x02 #define IEEE80211_EHT_PHY_CAP7_NON_OFDMA_UL_MU_MIMO_160MHZ 0x04 #define IEEE80211_EHT_PHY_CAP7_NON_OFDMA_UL_MU_MIMO_320MHZ 0x08 #define IEEE80211_EHT_PHY_CAP7_MU_BEAMFORMER_80MHZ 0x10 #define IEEE80211_EHT_PHY_CAP7_MU_BEAMFORMER_160MHZ 0x20 #define IEEE80211_EHT_PHY_CAP7_MU_BEAMFORMER_320MHZ 0x40 #define IEEE80211_EHT_PHY_CAP7_TB_SOUNDING_FDBK_RATE_LIMIT 0x80 #define IEEE80211_EHT_PHY_CAP8_RX_1024QAM_WIDER_BW_DL_OFDMA 0x01 #define IEEE80211_EHT_PHY_CAP8_RX_4096QAM_WIDER_BW_DL_OFDMA 0x02 /* * EHT operation channel width as defined in P802.11be_D2.0 section 9.4.2.311 */ #define IEEE80211_EHT_OPER_CHAN_WIDTH 0x7 #define IEEE80211_EHT_OPER_CHAN_WIDTH_20MHZ 0 #define IEEE80211_EHT_OPER_CHAN_WIDTH_40MHZ 1 #define IEEE80211_EHT_OPER_CHAN_WIDTH_80MHZ 2 #define IEEE80211_EHT_OPER_CHAN_WIDTH_160MHZ 3 #define IEEE80211_EHT_OPER_CHAN_WIDTH_320MHZ 4 /* Calculate 802.11be EHT capabilities IE Tx/Rx EHT MCS NSS Support Field size */ static inline u8 ieee80211_eht_mcs_nss_size(const struct ieee80211_he_cap_elem *he_cap, const struct ieee80211_eht_cap_elem_fixed *eht_cap, bool from_ap) { u8 count = 0; /* on 2.4 GHz, if it supports 40 MHz, the result is 3 */ if (he_cap->phy_cap_info[0] & IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G) return 3; /* on 2.4 GHz, these three bits are reserved, so should be 0 */ if (he_cap->phy_cap_info[0] & IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G) count += 3; if (he_cap->phy_cap_info[0] & IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G) count += 3; if (eht_cap->phy_cap_info[0] & IEEE80211_EHT_PHY_CAP0_320MHZ_IN_6GHZ) count += 3; if (count) return count; return from_ap ? 3 : 4; } /* 802.11be EHT PPE Thresholds */ #define IEEE80211_EHT_PPE_THRES_NSS_POS 0 #define IEEE80211_EHT_PPE_THRES_NSS_MASK 0xf #define IEEE80211_EHT_PPE_THRES_RU_INDEX_BITMASK_MASK 0x1f0 #define IEEE80211_EHT_PPE_THRES_INFO_PPET_SIZE 3 #define IEEE80211_EHT_PPE_THRES_INFO_HEADER_SIZE 9 /* * Calculate 802.11be EHT capabilities IE EHT field size */ static inline u8 ieee80211_eht_ppe_size(u16 ppe_thres_hdr, const u8 *phy_cap_info) { u32 n; if (!(phy_cap_info[5] & IEEE80211_EHT_PHY_CAP5_PPE_THRESHOLD_PRESENT)) return 0; n = hweight16(ppe_thres_hdr & IEEE80211_EHT_PPE_THRES_RU_INDEX_BITMASK_MASK); n *= 1 + u16_get_bits(ppe_thres_hdr, IEEE80211_EHT_PPE_THRES_NSS_MASK); /* * Each pair is 6 bits, and we need to add the 9 "header" bits to the * total size. */ n = n * IEEE80211_EHT_PPE_THRES_INFO_PPET_SIZE * 2 + IEEE80211_EHT_PPE_THRES_INFO_HEADER_SIZE; return DIV_ROUND_UP(n, 8); } static inline bool ieee80211_eht_capa_size_ok(const u8 *he_capa, const u8 *data, u8 len, bool from_ap) { const struct ieee80211_eht_cap_elem_fixed *elem = (const void *)data; u8 needed = sizeof(struct ieee80211_eht_cap_elem_fixed); if (len < needed || !he_capa) return false; needed += ieee80211_eht_mcs_nss_size((const void *)he_capa, (const void *)data, from_ap); if (len < needed) return false; if (elem->phy_cap_info[5] & IEEE80211_EHT_PHY_CAP5_PPE_THRESHOLD_PRESENT) { u16 ppe_thres_hdr; if (len < needed + sizeof(ppe_thres_hdr)) return false; ppe_thres_hdr = get_unaligned_le16(data + needed); needed += ieee80211_eht_ppe_size(ppe_thres_hdr, elem->phy_cap_info); } return len >= needed; } static inline bool ieee80211_eht_oper_size_ok(const u8 *data, u8 len) { const struct ieee80211_eht_operation *elem = (const void *)data; u8 needed = sizeof(*elem); if (len < needed) return false; if (elem->params & IEEE80211_EHT_OPER_INFO_PRESENT) { needed += 3; if (elem->params & IEEE80211_EHT_OPER_DISABLED_SUBCHANNEL_BITMAP_PRESENT) needed += 2; } return len >= needed; } #define IEEE80211_BW_IND_DIS_SUBCH_PRESENT BIT(1) struct ieee80211_bandwidth_indication { u8 params; struct ieee80211_eht_operation_info info; } __packed; static inline bool ieee80211_bandwidth_indication_size_ok(const u8 *data, u8 len) { const struct ieee80211_bandwidth_indication *bwi = (const void *)data; if (len < sizeof(*bwi)) return false; if (bwi->params & IEEE80211_BW_IND_DIS_SUBCH_PRESENT && len < sizeof(*bwi) + 2) return false; return true; } #define LISTEN_INT_USF GENMASK(15, 14) #define LISTEN_INT_UI GENMASK(13, 0) #define IEEE80211_MAX_USF FIELD_MAX(LISTEN_INT_USF) #define IEEE80211_MAX_UI FIELD_MAX(LISTEN_INT_UI) /* Authentication algorithms */ #define WLAN_AUTH_OPEN 0 #define WLAN_AUTH_SHARED_KEY 1 #define WLAN_AUTH_FT 2 #define WLAN_AUTH_SAE 3 #define WLAN_AUTH_FILS_SK 4 #define WLAN_AUTH_FILS_SK_PFS 5 #define WLAN_AUTH_FILS_PK 6 #define WLAN_AUTH_LEAP 128 #define WLAN_AUTH_CHALLENGE_LEN 128 #define WLAN_CAPABILITY_ESS (1<<0) #define WLAN_CAPABILITY_IBSS (1<<1) /* * A mesh STA sets the ESS and IBSS capability bits to zero. * however, this holds true for p2p probe responses (in the p2p_find * phase) as well. */ #define WLAN_CAPABILITY_IS_STA_BSS(cap) \ (!((cap) & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS))) #define WLAN_CAPABILITY_CF_POLLABLE (1<<2) #define WLAN_CAPABILITY_CF_POLL_REQUEST (1<<3) #define WLAN_CAPABILITY_PRIVACY (1<<4) #define WLAN_CAPABILITY_SHORT_PREAMBLE (1<<5) #define WLAN_CAPABILITY_PBCC (1<<6) #define WLAN_CAPABILITY_CHANNEL_AGILITY (1<<7) /* 802.11h */ #define WLAN_CAPABILITY_SPECTRUM_MGMT (1<<8) #define WLAN_CAPABILITY_QOS (1<<9) #define WLAN_CAPABILITY_SHORT_SLOT_TIME (1<<10) #define WLAN_CAPABILITY_APSD (1<<11) #define WLAN_CAPABILITY_RADIO_MEASURE (1<<12) #define WLAN_CAPABILITY_DSSS_OFDM (1<<13) #define WLAN_CAPABILITY_DEL_BACK (1<<14) #define WLAN_CAPABILITY_IMM_BACK (1<<15) /* DMG (60gHz) 802.11ad */ /* type - bits 0..1 */ #define WLAN_CAPABILITY_DMG_TYPE_MASK (3<<0) #define WLAN_CAPABILITY_DMG_TYPE_IBSS (1<<0) /* Tx by: STA */ #define WLAN_CAPABILITY_DMG_TYPE_PBSS (2<<0) /* Tx by: PCP */ #define WLAN_CAPABILITY_DMG_TYPE_AP (3<<0) /* Tx by: AP */ #define WLAN_CAPABILITY_DMG_CBAP_ONLY (1<<2) #define WLAN_CAPABILITY_DMG_CBAP_SOURCE (1<<3) #define WLAN_CAPABILITY_DMG_PRIVACY (1<<4) #define WLAN_CAPABILITY_DMG_ECPAC (1<<5) #define WLAN_CAPABILITY_DMG_SPECTRUM_MGMT (1<<8) #define WLAN_CAPABILITY_DMG_RADIO_MEASURE (1<<12) /* measurement */ #define IEEE80211_SPCT_MSR_RPRT_MODE_LATE (1<<0) #define IEEE80211_SPCT_MSR_RPRT_MODE_INCAPABLE (1<<1) #define IEEE80211_SPCT_MSR_RPRT_MODE_REFUSED (1<<2) #define IEEE80211_SPCT_MSR_RPRT_TYPE_BASIC 0 #define IEEE80211_SPCT_MSR_RPRT_TYPE_CCA 1 #define IEEE80211_SPCT_MSR_RPRT_TYPE_RPI 2 #define IEEE80211_SPCT_MSR_RPRT_TYPE_LCI 8 #define IEEE80211_SPCT_MSR_RPRT_TYPE_CIVIC 11 /* 802.11g ERP information element */ #define WLAN_ERP_NON_ERP_PRESENT (1<<0) #define WLAN_ERP_USE_PROTECTION (1<<1) #define WLAN_ERP_BARKER_PREAMBLE (1<<2) /* WLAN_ERP_BARKER_PREAMBLE values */ enum { WLAN_ERP_PREAMBLE_SHORT = 0, WLAN_ERP_PREAMBLE_LONG = 1, }; /* Band ID, 802.11ad #8.4.1.45 */ enum { IEEE80211_BANDID_TV_WS = 0, /* TV white spaces */ IEEE80211_BANDID_SUB1 = 1, /* Sub-1 GHz (excluding TV white spaces) */ IEEE80211_BANDID_2G = 2, /* 2.4 GHz */ IEEE80211_BANDID_3G = 3, /* 3.6 GHz */ IEEE80211_BANDID_5G = 4, /* 4.9 and 5 GHz */ IEEE80211_BANDID_60G = 5, /* 60 GHz */ }; /* Status codes */ enum ieee80211_statuscode { WLAN_STATUS_SUCCESS = 0, WLAN_STATUS_UNSPECIFIED_FAILURE = 1, WLAN_STATUS_CAPS_UNSUPPORTED = 10, WLAN_STATUS_REASSOC_NO_ASSOC = 11, WLAN_STATUS_ASSOC_DENIED_UNSPEC = 12, WLAN_STATUS_NOT_SUPPORTED_AUTH_ALG = 13, WLAN_STATUS_UNKNOWN_AUTH_TRANSACTION = 14, WLAN_STATUS_CHALLENGE_FAIL = 15, WLAN_STATUS_AUTH_TIMEOUT = 16, WLAN_STATUS_AP_UNABLE_TO_HANDLE_NEW_STA = 17, WLAN_STATUS_ASSOC_DENIED_RATES = 18, /* 802.11b */ WLAN_STATUS_ASSOC_DENIED_NOSHORTPREAMBLE = 19, WLAN_STATUS_ASSOC_DENIED_NOPBCC = 20, WLAN_STATUS_ASSOC_DENIED_NOAGILITY = 21, /* 802.11h */ WLAN_STATUS_ASSOC_DENIED_NOSPECTRUM = 22, WLAN_STATUS_ASSOC_REJECTED_BAD_POWER = 23, WLAN_STATUS_ASSOC_REJECTED_BAD_SUPP_CHAN = 24, /* 802.11g */ WLAN_STATUS_ASSOC_DENIED_NOSHORTTIME = 25, WLAN_STATUS_ASSOC_DENIED_NODSSSOFDM = 26, /* 802.11w */ WLAN_STATUS_ASSOC_REJECTED_TEMPORARILY = 30, WLAN_STATUS_ROBUST_MGMT_FRAME_POLICY_VIOLATION = 31, /* 802.11i */ WLAN_STATUS_INVALID_IE = 40, WLAN_STATUS_INVALID_GROUP_CIPHER = 41, WLAN_STATUS_INVALID_PAIRWISE_CIPHER = 42, WLAN_STATUS_INVALID_AKMP = 43, WLAN_STATUS_UNSUPP_RSN_VERSION = 44, WLAN_STATUS_INVALID_RSN_IE_CAP = 45, WLAN_STATUS_CIPHER_SUITE_REJECTED = 46, /* 802.11e */ WLAN_STATUS_UNSPECIFIED_QOS = 32, WLAN_STATUS_ASSOC_DENIED_NOBANDWIDTH = 33, WLAN_STATUS_ASSOC_DENIED_LOWACK = 34, WLAN_STATUS_ASSOC_DENIED_UNSUPP_QOS = 35, WLAN_STATUS_REQUEST_DECLINED = 37, WLAN_STATUS_INVALID_QOS_PARAM = 38, WLAN_STATUS_CHANGE_TSPEC = 39, WLAN_STATUS_WAIT_TS_DELAY = 47, WLAN_STATUS_NO_DIRECT_LINK = 48, WLAN_STATUS_STA_NOT_PRESENT = 49, WLAN_STATUS_STA_NOT_QSTA = 50, /* 802.11s */ WLAN_STATUS_ANTI_CLOG_REQUIRED = 76, WLAN_STATUS_FCG_NOT_SUPP = 78, WLAN_STATUS_STA_NO_TBTT = 78, /* 802.11ad */ WLAN_STATUS_REJECTED_WITH_SUGGESTED_CHANGES = 39, WLAN_STATUS_REJECTED_FOR_DELAY_PERIOD = 47, WLAN_STATUS_REJECT_WITH_SCHEDULE = 83, WLAN_STATUS_PENDING_ADMITTING_FST_SESSION = 86, WLAN_STATUS_PERFORMING_FST_NOW = 87, WLAN_STATUS_PENDING_GAP_IN_BA_WINDOW = 88, WLAN_STATUS_REJECT_U_PID_SETTING = 89, WLAN_STATUS_REJECT_DSE_BAND = 96, WLAN_STATUS_DENIED_WITH_SUGGESTED_BAND_AND_CHANNEL = 99, WLAN_STATUS_DENIED_DUE_TO_SPECTRUM_MANAGEMENT = 103, /* 802.11ai */ WLAN_STATUS_FILS_AUTHENTICATION_FAILURE = 108, WLAN_STATUS_UNKNOWN_AUTHENTICATION_SERVER = 109, WLAN_STATUS_SAE_HASH_TO_ELEMENT = 126, WLAN_STATUS_SAE_PK = 127, }; /* Reason codes */ enum ieee80211_reasoncode { WLAN_REASON_UNSPECIFIED = 1, WLAN_REASON_PREV_AUTH_NOT_VALID = 2, WLAN_REASON_DEAUTH_LEAVING = 3, WLAN_REASON_DISASSOC_DUE_TO_INACTIVITY = 4, WLAN_REASON_DISASSOC_AP_BUSY = 5, WLAN_REASON_CLASS2_FRAME_FROM_NONAUTH_STA = 6, WLAN_REASON_CLASS3_FRAME_FROM_NONASSOC_STA = 7, WLAN_REASON_DISASSOC_STA_HAS_LEFT = 8, WLAN_REASON_STA_REQ_ASSOC_WITHOUT_AUTH = 9, /* 802.11h */ WLAN_REASON_DISASSOC_BAD_POWER = 10, WLAN_REASON_DISASSOC_BAD_SUPP_CHAN = 11, /* 802.11i */ WLAN_REASON_INVALID_IE = 13, WLAN_REASON_MIC_FAILURE = 14, WLAN_REASON_4WAY_HANDSHAKE_TIMEOUT = 15, WLAN_REASON_GROUP_KEY_HANDSHAKE_TIMEOUT = 16, WLAN_REASON_IE_DIFFERENT = 17, WLAN_REASON_INVALID_GROUP_CIPHER = 18, WLAN_REASON_INVALID_PAIRWISE_CIPHER = 19, WLAN_REASON_INVALID_AKMP = 20, WLAN_REASON_UNSUPP_RSN_VERSION = 21, WLAN_REASON_INVALID_RSN_IE_CAP = 22, WLAN_REASON_IEEE8021X_FAILED = 23, WLAN_REASON_CIPHER_SUITE_REJECTED = 24, /* TDLS (802.11z) */ WLAN_REASON_TDLS_TEARDOWN_UNREACHABLE = 25, WLAN_REASON_TDLS_TEARDOWN_UNSPECIFIED = 26, /* 802.11e */ WLAN_REASON_DISASSOC_UNSPECIFIED_QOS = 32, WLAN_REASON_DISASSOC_QAP_NO_BANDWIDTH = 33, WLAN_REASON_DISASSOC_LOW_ACK = 34, WLAN_REASON_DISASSOC_QAP_EXCEED_TXOP = 35, WLAN_REASON_QSTA_LEAVE_QBSS = 36, WLAN_REASON_QSTA_NOT_USE = 37, WLAN_REASON_QSTA_REQUIRE_SETUP = 38, WLAN_REASON_QSTA_TIMEOUT = 39, WLAN_REASON_QSTA_CIPHER_NOT_SUPP = 45, /* 802.11s */ WLAN_REASON_MESH_PEER_CANCELED = 52, WLAN_REASON_MESH_MAX_PEERS = 53, WLAN_REASON_MESH_CONFIG = 54, WLAN_REASON_MESH_CLOSE = 55, WLAN_REASON_MESH_MAX_RETRIES = 56, WLAN_REASON_MESH_CONFIRM_TIMEOUT = 57, WLAN_REASON_MESH_INVALID_GTK = 58, WLAN_REASON_MESH_INCONSISTENT_PARAM = 59, WLAN_REASON_MESH_INVALID_SECURITY = 60, WLAN_REASON_MESH_PATH_ERROR = 61, WLAN_REASON_MESH_PATH_NOFORWARD = 62, WLAN_REASON_MESH_PATH_DEST_UNREACHABLE = 63, WLAN_REASON_MAC_EXISTS_IN_MBSS = 64, WLAN_REASON_MESH_CHAN_REGULATORY = 65, WLAN_REASON_MESH_CHAN = 66, }; /* Information Element IDs */ enum ieee80211_eid { WLAN_EID_SSID = 0, WLAN_EID_SUPP_RATES = 1, WLAN_EID_FH_PARAMS = 2, /* reserved now */ WLAN_EID_DS_PARAMS = 3, WLAN_EID_CF_PARAMS = 4, WLAN_EID_TIM = 5, WLAN_EID_IBSS_PARAMS = 6, WLAN_EID_COUNTRY = 7, /* 8, 9 reserved */ WLAN_EID_REQUEST = 10, WLAN_EID_QBSS_LOAD = 11, WLAN_EID_EDCA_PARAM_SET = 12, WLAN_EID_TSPEC = 13, WLAN_EID_TCLAS = 14, WLAN_EID_SCHEDULE = 15, WLAN_EID_CHALLENGE = 16, /* 17-31 reserved for challenge text extension */ WLAN_EID_PWR_CONSTRAINT = 32, WLAN_EID_PWR_CAPABILITY = 33, WLAN_EID_TPC_REQUEST = 34, WLAN_EID_TPC_REPORT = 35, WLAN_EID_SUPPORTED_CHANNELS = 36, WLAN_EID_CHANNEL_SWITCH = 37, WLAN_EID_MEASURE_REQUEST = 38, WLAN_EID_MEASURE_REPORT = 39, WLAN_EID_QUIET = 40, WLAN_EID_IBSS_DFS = 41, WLAN_EID_ERP_INFO = 42, WLAN_EID_TS_DELAY = 43, WLAN_EID_TCLAS_PROCESSING = 44, WLAN_EID_HT_CAPABILITY = 45, WLAN_EID_QOS_CAPA = 46, /* 47 reserved for Broadcom */ WLAN_EID_RSN = 48, WLAN_EID_802_15_COEX = 49, WLAN_EID_EXT_SUPP_RATES = 50, WLAN_EID_AP_CHAN_REPORT = 51, WLAN_EID_NEIGHBOR_REPORT = 52, WLAN_EID_RCPI = 53, WLAN_EID_MOBILITY_DOMAIN = 54, WLAN_EID_FAST_BSS_TRANSITION = 55, WLAN_EID_TIMEOUT_INTERVAL = 56, WLAN_EID_RIC_DATA = 57, WLAN_EID_DSE_REGISTERED_LOCATION = 58, WLAN_EID_SUPPORTED_REGULATORY_CLASSES = 59, WLAN_EID_EXT_CHANSWITCH_ANN = 60, WLAN_EID_HT_OPERATION = 61, WLAN_EID_SECONDARY_CHANNEL_OFFSET = 62, WLAN_EID_BSS_AVG_ACCESS_DELAY = 63, WLAN_EID_ANTENNA_INFO = 64, WLAN_EID_RSNI = 65, WLAN_EID_MEASUREMENT_PILOT_TX_INFO = 66, WLAN_EID_BSS_AVAILABLE_CAPACITY = 67, WLAN_EID_BSS_AC_ACCESS_DELAY = 68, WLAN_EID_TIME_ADVERTISEMENT = 69, WLAN_EID_RRM_ENABLED_CAPABILITIES = 70, WLAN_EID_MULTIPLE_BSSID = 71, WLAN_EID_BSS_COEX_2040 = 72, WLAN_EID_BSS_INTOLERANT_CHL_REPORT = 73, WLAN_EID_OVERLAP_BSS_SCAN_PARAM = 74, WLAN_EID_RIC_DESCRIPTOR = 75, WLAN_EID_MMIE = 76, WLAN_EID_ASSOC_COMEBACK_TIME = 77, WLAN_EID_EVENT_REQUEST = 78, WLAN_EID_EVENT_REPORT = 79, WLAN_EID_DIAGNOSTIC_REQUEST = 80, WLAN_EID_DIAGNOSTIC_REPORT = 81, WLAN_EID_LOCATION_PARAMS = 82, WLAN_EID_NON_TX_BSSID_CAP = 83, WLAN_EID_SSID_LIST = 84, WLAN_EID_MULTI_BSSID_IDX = 85, WLAN_EID_FMS_DESCRIPTOR = 86, WLAN_EID_FMS_REQUEST = 87, WLAN_EID_FMS_RESPONSE = 88, WLAN_EID_QOS_TRAFFIC_CAPA = 89, WLAN_EID_BSS_MAX_IDLE_PERIOD = 90, WLAN_EID_TSF_REQUEST = 91, WLAN_EID_TSF_RESPOSNE = 92, WLAN_EID_WNM_SLEEP_MODE = 93, WLAN_EID_TIM_BCAST_REQ = 94, WLAN_EID_TIM_BCAST_RESP = 95, WLAN_EID_COLL_IF_REPORT = 96, WLAN_EID_CHANNEL_USAGE = 97, WLAN_EID_TIME_ZONE = 98, WLAN_EID_DMS_REQUEST = 99, WLAN_EID_DMS_RESPONSE = 100, WLAN_EID_LINK_ID = 101, WLAN_EID_WAKEUP_SCHEDUL = 102, /* 103 reserved */ WLAN_EID_CHAN_SWITCH_TIMING = 104, WLAN_EID_PTI_CONTROL = 105, WLAN_EID_PU_BUFFER_STATUS = 106, WLAN_EID_INTERWORKING = 107, WLAN_EID_ADVERTISEMENT_PROTOCOL = 108, WLAN_EID_EXPEDITED_BW_REQ = 109, WLAN_EID_QOS_MAP_SET = 110, WLAN_EID_ROAMING_CONSORTIUM = 111, WLAN_EID_EMERGENCY_ALERT = 112, WLAN_EID_MESH_CONFIG = 113, WLAN_EID_MESH_ID = 114, WLAN_EID_LINK_METRIC_REPORT = 115, WLAN_EID_CONGESTION_NOTIFICATION = 116, WLAN_EID_PEER_MGMT = 117, WLAN_EID_CHAN_SWITCH_PARAM = 118, WLAN_EID_MESH_AWAKE_WINDOW = 119, WLAN_EID_BEACON_TIMING = 120, WLAN_EID_MCCAOP_SETUP_REQ = 121, WLAN_EID_MCCAOP_SETUP_RESP = 122, WLAN_EID_MCCAOP_ADVERT = 123, WLAN_EID_MCCAOP_TEARDOWN = 124, WLAN_EID_GANN = 125, WLAN_EID_RANN = 126, WLAN_EID_EXT_CAPABILITY = 127, /* 128, 129 reserved for Agere */ WLAN_EID_PREQ = 130, WLAN_EID_PREP = 131, WLAN_EID_PERR = 132, /* 133-136 reserved for Cisco */ WLAN_EID_PXU = 137, WLAN_EID_PXUC = 138, WLAN_EID_AUTH_MESH_PEER_EXCH = 139, WLAN_EID_MIC = 140, WLAN_EID_DESTINATION_URI = 141, WLAN_EID_UAPSD_COEX = 142, WLAN_EID_WAKEUP_SCHEDULE = 143, WLAN_EID_EXT_SCHEDULE = 144, WLAN_EID_STA_AVAILABILITY = 145, WLAN_EID_DMG_TSPEC = 146, WLAN_EID_DMG_AT = 147, WLAN_EID_DMG_CAP = 148, /* 149 reserved for Cisco */ WLAN_EID_CISCO_VENDOR_SPECIFIC = 150, WLAN_EID_DMG_OPERATION = 151, WLAN_EID_DMG_BSS_PARAM_CHANGE = 152, WLAN_EID_DMG_BEAM_REFINEMENT = 153, WLAN_EID_CHANNEL_MEASURE_FEEDBACK = 154, /* 155-156 reserved for Cisco */ WLAN_EID_AWAKE_WINDOW = 157, WLAN_EID_MULTI_BAND = 158, WLAN_EID_ADDBA_EXT = 159, WLAN_EID_NEXT_PCP_LIST = 160, WLAN_EID_PCP_HANDOVER = 161, WLAN_EID_DMG_LINK_MARGIN = 162, WLAN_EID_SWITCHING_STREAM = 163, WLAN_EID_SESSION_TRANSITION = 164, WLAN_EID_DYN_TONE_PAIRING_REPORT = 165, WLAN_EID_CLUSTER_REPORT = 166, WLAN_EID_RELAY_CAP = 167, WLAN_EID_RELAY_XFER_PARAM_SET = 168, WLAN_EID_BEAM_LINK_MAINT = 169, WLAN_EID_MULTIPLE_MAC_ADDR = 170, WLAN_EID_U_PID = 171, WLAN_EID_DMG_LINK_ADAPT_ACK = 172, /* 173 reserved for Symbol */ WLAN_EID_MCCAOP_ADV_OVERVIEW = 174, WLAN_EID_QUIET_PERIOD_REQ = 175, /* 176 reserved for Symbol */ WLAN_EID_QUIET_PERIOD_RESP = 177, /* 178-179 reserved for Symbol */ /* 180 reserved for ISO/IEC 20011 */ WLAN_EID_EPAC_POLICY = 182, WLAN_EID_CLISTER_TIME_OFF = 183, WLAN_EID_INTER_AC_PRIO = 184, WLAN_EID_SCS_DESCRIPTOR = 185, WLAN_EID_QLOAD_REPORT = 186, WLAN_EID_HCCA_TXOP_UPDATE_COUNT = 187, WLAN_EID_HL_STREAM_ID = 188, WLAN_EID_GCR_GROUP_ADDR = 189, WLAN_EID_ANTENNA_SECTOR_ID_PATTERN = 190, WLAN_EID_VHT_CAPABILITY = 191, WLAN_EID_VHT_OPERATION = 192, WLAN_EID_EXTENDED_BSS_LOAD = 193, WLAN_EID_WIDE_BW_CHANNEL_SWITCH = 194, WLAN_EID_TX_POWER_ENVELOPE = 195, WLAN_EID_CHANNEL_SWITCH_WRAPPER = 196, WLAN_EID_AID = 197, WLAN_EID_QUIET_CHANNEL = 198, WLAN_EID_OPMODE_NOTIF = 199, WLAN_EID_REDUCED_NEIGHBOR_REPORT = 201, WLAN_EID_AID_REQUEST = 210, WLAN_EID_AID_RESPONSE = 211, WLAN_EID_S1G_BCN_COMPAT = 213, WLAN_EID_S1G_SHORT_BCN_INTERVAL = 214, WLAN_EID_S1G_TWT = 216, WLAN_EID_S1G_CAPABILITIES = 217, WLAN_EID_VENDOR_SPECIFIC = 221, WLAN_EID_QOS_PARAMETER = 222, WLAN_EID_S1G_OPERATION = 232, WLAN_EID_CAG_NUMBER = 237, WLAN_EID_AP_CSN = 239, WLAN_EID_FILS_INDICATION = 240, WLAN_EID_DILS = 241, WLAN_EID_FRAGMENT = 242, WLAN_EID_RSNX = 244, WLAN_EID_EXTENSION = 255 }; /* Element ID Extensions for Element ID 255 */ enum ieee80211_eid_ext { WLAN_EID_EXT_ASSOC_DELAY_INFO = 1, WLAN_EID_EXT_FILS_REQ_PARAMS = 2, WLAN_EID_EXT_FILS_KEY_CONFIRM = 3, WLAN_EID_EXT_FILS_SESSION = 4, WLAN_EID_EXT_FILS_HLP_CONTAINER = 5, WLAN_EID_EXT_FILS_IP_ADDR_ASSIGN = 6, WLAN_EID_EXT_KEY_DELIVERY = 7, WLAN_EID_EXT_FILS_WRAPPED_DATA = 8, WLAN_EID_EXT_FILS_PUBLIC_KEY = 12, WLAN_EID_EXT_FILS_NONCE = 13, WLAN_EID_EXT_FUTURE_CHAN_GUIDANCE = 14, WLAN_EID_EXT_HE_CAPABILITY = 35, WLAN_EID_EXT_HE_OPERATION = 36, WLAN_EID_EXT_UORA = 37, WLAN_EID_EXT_HE_MU_EDCA = 38, WLAN_EID_EXT_HE_SPR = 39, WLAN_EID_EXT_NDP_FEEDBACK_REPORT_PARAMSET = 41, WLAN_EID_EXT_BSS_COLOR_CHG_ANN = 42, WLAN_EID_EXT_QUIET_TIME_PERIOD_SETUP = 43, WLAN_EID_EXT_ESS_REPORT = 45, WLAN_EID_EXT_OPS = 46, WLAN_EID_EXT_HE_BSS_LOAD = 47, WLAN_EID_EXT_MAX_CHANNEL_SWITCH_TIME = 52, WLAN_EID_EXT_MULTIPLE_BSSID_CONFIGURATION = 55, WLAN_EID_EXT_NON_INHERITANCE = 56, WLAN_EID_EXT_KNOWN_BSSID = 57, WLAN_EID_EXT_SHORT_SSID_LIST = 58, WLAN_EID_EXT_HE_6GHZ_CAPA = 59, WLAN_EID_EXT_UL_MU_POWER_CAPA = 60, WLAN_EID_EXT_EHT_OPERATION = 106, WLAN_EID_EXT_EHT_MULTI_LINK = 107, WLAN_EID_EXT_EHT_CAPABILITY = 108, WLAN_EID_EXT_TID_TO_LINK_MAPPING = 109, WLAN_EID_EXT_BANDWIDTH_INDICATION = 135, }; /* Action category code */ enum ieee80211_category { WLAN_CATEGORY_SPECTRUM_MGMT = 0, WLAN_CATEGORY_QOS = 1, WLAN_CATEGORY_DLS = 2, WLAN_CATEGORY_BACK = 3, WLAN_CATEGORY_PUBLIC = 4, WLAN_CATEGORY_RADIO_MEASUREMENT = 5, WLAN_CATEGORY_FAST_BBS_TRANSITION = 6, WLAN_CATEGORY_HT = 7, WLAN_CATEGORY_SA_QUERY = 8, WLAN_CATEGORY_PROTECTED_DUAL_OF_ACTION = 9, WLAN_CATEGORY_WNM = 10, WLAN_CATEGORY_WNM_UNPROTECTED = 11, WLAN_CATEGORY_TDLS = 12, WLAN_CATEGORY_MESH_ACTION = 13, WLAN_CATEGORY_MULTIHOP_ACTION = 14, WLAN_CATEGORY_SELF_PROTECTED = 15, WLAN_CATEGORY_DMG = 16, WLAN_CATEGORY_WMM = 17, WLAN_CATEGORY_FST = 18, WLAN_CATEGORY_UNPROT_DMG = 20, WLAN_CATEGORY_VHT = 21, WLAN_CATEGORY_S1G = 22, WLAN_CATEGORY_VENDOR_SPECIFIC_PROTECTED = 126, WLAN_CATEGORY_VENDOR_SPECIFIC = 127, }; /* SPECTRUM_MGMT action code */ enum ieee80211_spectrum_mgmt_actioncode { WLAN_ACTION_SPCT_MSR_REQ = 0, WLAN_ACTION_SPCT_MSR_RPRT = 1, WLAN_ACTION_SPCT_TPC_REQ = 2, WLAN_ACTION_SPCT_TPC_RPRT = 3, WLAN_ACTION_SPCT_CHL_SWITCH = 4, }; /* HT action codes */ enum ieee80211_ht_actioncode { WLAN_HT_ACTION_NOTIFY_CHANWIDTH = 0, WLAN_HT_ACTION_SMPS = 1, WLAN_HT_ACTION_PSMP = 2, WLAN_HT_ACTION_PCO_PHASE = 3, WLAN_HT_ACTION_CSI = 4, WLAN_HT_ACTION_NONCOMPRESSED_BF = 5, WLAN_HT_ACTION_COMPRESSED_BF = 6, WLAN_HT_ACTION_ASEL_IDX_FEEDBACK = 7, }; /* VHT action codes */ enum ieee80211_vht_actioncode { WLAN_VHT_ACTION_COMPRESSED_BF = 0, WLAN_VHT_ACTION_GROUPID_MGMT = 1, WLAN_VHT_ACTION_OPMODE_NOTIF = 2, }; /* Self Protected Action codes */ enum ieee80211_self_protected_actioncode { WLAN_SP_RESERVED = 0, WLAN_SP_MESH_PEERING_OPEN = 1, WLAN_SP_MESH_PEERING_CONFIRM = 2, WLAN_SP_MESH_PEERING_CLOSE = 3, WLAN_SP_MGK_INFORM = 4, WLAN_SP_MGK_ACK = 5, }; /* Mesh action codes */ enum ieee80211_mesh_actioncode { WLAN_MESH_ACTION_LINK_METRIC_REPORT, WLAN_MESH_ACTION_HWMP_PATH_SELECTION, WLAN_MESH_ACTION_GATE_ANNOUNCEMENT, WLAN_MESH_ACTION_CONGESTION_CONTROL_NOTIFICATION, WLAN_MESH_ACTION_MCCA_SETUP_REQUEST, WLAN_MESH_ACTION_MCCA_SETUP_REPLY, WLAN_MESH_ACTION_MCCA_ADVERTISEMENT_REQUEST, WLAN_MESH_ACTION_MCCA_ADVERTISEMENT, WLAN_MESH_ACTION_MCCA_TEARDOWN, WLAN_MESH_ACTION_TBTT_ADJUSTMENT_REQUEST, WLAN_MESH_ACTION_TBTT_ADJUSTMENT_RESPONSE, }; /* Unprotected WNM action codes */ enum ieee80211_unprotected_wnm_actioncode { WLAN_UNPROTECTED_WNM_ACTION_TIM = 0, WLAN_UNPROTECTED_WNM_ACTION_TIMING_MEASUREMENT_RESPONSE = 1, }; /* Security key length */ enum ieee80211_key_len { WLAN_KEY_LEN_WEP40 = 5, WLAN_KEY_LEN_WEP104 = 13, WLAN_KEY_LEN_CCMP = 16, WLAN_KEY_LEN_CCMP_256 = 32, WLAN_KEY_LEN_TKIP = 32, WLAN_KEY_LEN_AES_CMAC = 16, WLAN_KEY_LEN_SMS4 = 32, WLAN_KEY_LEN_GCMP = 16, WLAN_KEY_LEN_GCMP_256 = 32, WLAN_KEY_LEN_BIP_CMAC_256 = 32, WLAN_KEY_LEN_BIP_GMAC_128 = 16, WLAN_KEY_LEN_BIP_GMAC_256 = 32, }; enum ieee80211_s1g_actioncode { WLAN_S1G_AID_SWITCH_REQUEST, WLAN_S1G_AID_SWITCH_RESPONSE, WLAN_S1G_SYNC_CONTROL, WLAN_S1G_STA_INFO_ANNOUNCE, WLAN_S1G_EDCA_PARAM_SET, WLAN_S1G_EL_OPERATION, WLAN_S1G_TWT_SETUP, WLAN_S1G_TWT_TEARDOWN, WLAN_S1G_SECT_GROUP_ID_LIST, WLAN_S1G_SECT_ID_FEEDBACK, WLAN_S1G_TWT_INFORMATION = 11, }; #define IEEE80211_WEP_IV_LEN 4 #define IEEE80211_WEP_ICV_LEN 4 #define IEEE80211_CCMP_HDR_LEN 8 #define IEEE80211_CCMP_MIC_LEN 8 #define IEEE80211_CCMP_PN_LEN 6 #define IEEE80211_CCMP_256_HDR_LEN 8 #define IEEE80211_CCMP_256_MIC_LEN 16 #define IEEE80211_CCMP_256_PN_LEN 6 #define IEEE80211_TKIP_IV_LEN 8 #define IEEE80211_TKIP_ICV_LEN 4 #define IEEE80211_CMAC_PN_LEN 6 #define IEEE80211_GMAC_PN_LEN 6 #define IEEE80211_GCMP_HDR_LEN 8 #define IEEE80211_GCMP_MIC_LEN 16 #define IEEE80211_GCMP_PN_LEN 6 #define FILS_NONCE_LEN 16 #define FILS_MAX_KEK_LEN 64 #define FILS_ERP_MAX_USERNAME_LEN 16 #define FILS_ERP_MAX_REALM_LEN 253 #define FILS_ERP_MAX_RRK_LEN 64 #define PMK_MAX_LEN 64 #define SAE_PASSWORD_MAX_LEN 128 /* Public action codes (IEEE Std 802.11-2016, 9.6.8.1, Table 9-307) */ enum ieee80211_pub_actioncode { WLAN_PUB_ACTION_20_40_BSS_COEX = 0, WLAN_PUB_ACTION_DSE_ENABLEMENT = 1, WLAN_PUB_ACTION_DSE_DEENABLEMENT = 2, WLAN_PUB_ACTION_DSE_REG_LOC_ANN = 3, WLAN_PUB_ACTION_EXT_CHANSW_ANN = 4, WLAN_PUB_ACTION_DSE_MSMT_REQ = 5, WLAN_PUB_ACTION_DSE_MSMT_RESP = 6, WLAN_PUB_ACTION_MSMT_PILOT = 7, WLAN_PUB_ACTION_DSE_PC = 8, WLAN_PUB_ACTION_VENDOR_SPECIFIC = 9, WLAN_PUB_ACTION_GAS_INITIAL_REQ = 10, WLAN_PUB_ACTION_GAS_INITIAL_RESP = 11, WLAN_PUB_ACTION_GAS_COMEBACK_REQ = 12, WLAN_PUB_ACTION_GAS_COMEBACK_RESP = 13, WLAN_PUB_ACTION_TDLS_DISCOVER_RES = 14, WLAN_PUB_ACTION_LOC_TRACK_NOTI = 15, WLAN_PUB_ACTION_QAB_REQUEST_FRAME = 16, WLAN_PUB_ACTION_QAB_RESPONSE_FRAME = 17, WLAN_PUB_ACTION_QMF_POLICY = 18, WLAN_PUB_ACTION_QMF_POLICY_CHANGE = 19, WLAN_PUB_ACTION_QLOAD_REQUEST = 20, WLAN_PUB_ACTION_QLOAD_REPORT = 21, WLAN_PUB_ACTION_HCCA_TXOP_ADVERT = 22, WLAN_PUB_ACTION_HCCA_TXOP_RESPONSE = 23, WLAN_PUB_ACTION_PUBLIC_KEY = 24, WLAN_PUB_ACTION_CHANNEL_AVAIL_QUERY = 25, WLAN_PUB_ACTION_CHANNEL_SCHEDULE_MGMT = 26, WLAN_PUB_ACTION_CONTACT_VERI_SIGNAL = 27, WLAN_PUB_ACTION_GDD_ENABLEMENT_REQ = 28, WLAN_PUB_ACTION_GDD_ENABLEMENT_RESP = 29, WLAN_PUB_ACTION_NETWORK_CHANNEL_CONTROL = 30, WLAN_PUB_ACTION_WHITE_SPACE_MAP_ANN = 31, WLAN_PUB_ACTION_FTM_REQUEST = 32, WLAN_PUB_ACTION_FTM_RESPONSE = 33, WLAN_PUB_ACTION_FILS_DISCOVERY = 34, }; /* TDLS action codes */ enum ieee80211_tdls_actioncode { WLAN_TDLS_SETUP_REQUEST = 0, WLAN_TDLS_SETUP_RESPONSE = 1, WLAN_TDLS_SETUP_CONFIRM = 2, WLAN_TDLS_TEARDOWN = 3, WLAN_TDLS_PEER_TRAFFIC_INDICATION = 4, WLAN_TDLS_CHANNEL_SWITCH_REQUEST = 5, WLAN_TDLS_CHANNEL_SWITCH_RESPONSE = 6, WLAN_TDLS_PEER_PSM_REQUEST = 7, WLAN_TDLS_PEER_PSM_RESPONSE = 8, WLAN_TDLS_PEER_TRAFFIC_RESPONSE = 9, WLAN_TDLS_DISCOVERY_REQUEST = 10, }; /* Extended Channel Switching capability to be set in the 1st byte of * the @WLAN_EID_EXT_CAPABILITY information element */ #define WLAN_EXT_CAPA1_EXT_CHANNEL_SWITCHING BIT(2) /* Multiple BSSID capability is set in the 6th bit of 3rd byte of the * @WLAN_EID_EXT_CAPABILITY information element */ #define WLAN_EXT_CAPA3_MULTI_BSSID_SUPPORT BIT(6) /* Timing Measurement protocol for time sync is set in the 7th bit of 3rd byte * of the @WLAN_EID_EXT_CAPABILITY information element */ #define WLAN_EXT_CAPA3_TIMING_MEASUREMENT_SUPPORT BIT(7) /* TDLS capabilities in the 4th byte of @WLAN_EID_EXT_CAPABILITY */ #define WLAN_EXT_CAPA4_TDLS_BUFFER_STA BIT(4) #define WLAN_EXT_CAPA4_TDLS_PEER_PSM BIT(5) #define WLAN_EXT_CAPA4_TDLS_CHAN_SWITCH BIT(6) /* Interworking capabilities are set in 7th bit of 4th byte of the * @WLAN_EID_EXT_CAPABILITY information element */ #define WLAN_EXT_CAPA4_INTERWORKING_ENABLED BIT(7) /* * TDLS capabililites to be enabled in the 5th byte of the * @WLAN_EID_EXT_CAPABILITY information element */ #define WLAN_EXT_CAPA5_TDLS_ENABLED BIT(5) #define WLAN_EXT_CAPA5_TDLS_PROHIBITED BIT(6) #define WLAN_EXT_CAPA5_TDLS_CH_SW_PROHIBITED BIT(7) #define WLAN_EXT_CAPA8_TDLS_WIDE_BW_ENABLED BIT(5) #define WLAN_EXT_CAPA8_OPMODE_NOTIF BIT(6) /* Defines the maximal number of MSDUs in an A-MSDU. */ #define WLAN_EXT_CAPA8_MAX_MSDU_IN_AMSDU_LSB BIT(7) #define WLAN_EXT_CAPA9_MAX_MSDU_IN_AMSDU_MSB BIT(0) /* * Fine Timing Measurement Initiator - bit 71 of @WLAN_EID_EXT_CAPABILITY * information element */ #define WLAN_EXT_CAPA9_FTM_INITIATOR BIT(7) /* Defines support for TWT Requester and TWT Responder */ #define WLAN_EXT_CAPA10_TWT_REQUESTER_SUPPORT BIT(5) #define WLAN_EXT_CAPA10_TWT_RESPONDER_SUPPORT BIT(6) /* * When set, indicates that the AP is able to tolerate 26-tone RU UL * OFDMA transmissions using HE TB PPDU from OBSS (not falsely classify the * 26-tone RU UL OFDMA transmissions as radar pulses). */ #define WLAN_EXT_CAPA10_OBSS_NARROW_BW_RU_TOLERANCE_SUPPORT BIT(7) /* Defines support for enhanced multi-bssid advertisement*/ #define WLAN_EXT_CAPA11_EMA_SUPPORT BIT(3) /* TDLS specific payload type in the LLC/SNAP header */ #define WLAN_TDLS_SNAP_RFTYPE 0x2 /* BSS Coex IE information field bits */ #define WLAN_BSS_COEX_INFORMATION_REQUEST BIT(0) /** * enum ieee80211_mesh_sync_method - mesh synchronization method identifier * * @IEEE80211_SYNC_METHOD_NEIGHBOR_OFFSET: the default synchronization method * @IEEE80211_SYNC_METHOD_VENDOR: a vendor specific synchronization method * that will be specified in a vendor specific information element */ enum ieee80211_mesh_sync_method { IEEE80211_SYNC_METHOD_NEIGHBOR_OFFSET = 1, IEEE80211_SYNC_METHOD_VENDOR = 255, }; /** * enum ieee80211_mesh_path_protocol - mesh path selection protocol identifier * * @IEEE80211_PATH_PROTOCOL_HWMP: the default path selection protocol * @IEEE80211_PATH_PROTOCOL_VENDOR: a vendor specific protocol that will * be specified in a vendor specific information element */ enum ieee80211_mesh_path_protocol { IEEE80211_PATH_PROTOCOL_HWMP = 1, IEEE80211_PATH_PROTOCOL_VENDOR = 255, }; /** * enum ieee80211_mesh_path_metric - mesh path selection metric identifier * * @IEEE80211_PATH_METRIC_AIRTIME: the default path selection metric * @IEEE80211_PATH_METRIC_VENDOR: a vendor specific metric that will be * specified in a vendor specific information element */ enum ieee80211_mesh_path_metric { IEEE80211_PATH_METRIC_AIRTIME = 1, IEEE80211_PATH_METRIC_VENDOR = 255, }; /** * enum ieee80211_root_mode_identifier - root mesh STA mode identifier * * These attribute are used by dot11MeshHWMPRootMode to set root mesh STA mode * * @IEEE80211_ROOTMODE_NO_ROOT: the mesh STA is not a root mesh STA (default) * @IEEE80211_ROOTMODE_ROOT: the mesh STA is a root mesh STA if greater than * this value * @IEEE80211_PROACTIVE_PREQ_NO_PREP: the mesh STA is a root mesh STA supports * the proactive PREQ with proactive PREP subfield set to 0 * @IEEE80211_PROACTIVE_PREQ_WITH_PREP: the mesh STA is a root mesh STA * supports the proactive PREQ with proactive PREP subfield set to 1 * @IEEE80211_PROACTIVE_RANN: the mesh STA is a root mesh STA supports * the proactive RANN */ enum ieee80211_root_mode_identifier { IEEE80211_ROOTMODE_NO_ROOT = 0, IEEE80211_ROOTMODE_ROOT = 1, IEEE80211_PROACTIVE_PREQ_NO_PREP = 2, IEEE80211_PROACTIVE_PREQ_WITH_PREP = 3, IEEE80211_PROACTIVE_RANN = 4, }; /* * IEEE 802.11-2007 7.3.2.9 Country information element * * Minimum length is 8 octets, ie len must be evenly * divisible by 2 */ /* Although the spec says 8 I'm seeing 6 in practice */ #define IEEE80211_COUNTRY_IE_MIN_LEN 6 /* The Country String field of the element shall be 3 octets in length */ #define IEEE80211_COUNTRY_STRING_LEN 3 /* * For regulatory extension stuff see IEEE 802.11-2007 * Annex I (page 1141) and Annex J (page 1147). Also * review 7.3.2.9. * * When dot11RegulatoryClassesRequired is true and the * first_channel/reg_extension_id is >= 201 then the IE * compromises of the 'ext' struct represented below: * * - Regulatory extension ID - when generating IE this just needs * to be monotonically increasing for each triplet passed in * the IE * - Regulatory class - index into set of rules * - Coverage class - index into air propagation time (Table 7-27), * in microseconds, you can compute the air propagation time from * the index by multiplying by 3, so index 10 yields a propagation * of 10 us. Valid values are 0-31, values 32-255 are not defined * yet. A value of 0 inicates air propagation of <= 1 us. * * See also Table I.2 for Emission limit sets and table * I.3 for Behavior limit sets. Table J.1 indicates how to map * a reg_class to an emission limit set and behavior limit set. */ #define IEEE80211_COUNTRY_EXTENSION_ID 201 /* * Channels numbers in the IE must be monotonically increasing * if dot11RegulatoryClassesRequired is not true. * * If dot11RegulatoryClassesRequired is true consecutive * subband triplets following a regulatory triplet shall * have monotonically increasing first_channel number fields. * * Channel numbers shall not overlap. * * Note that max_power is signed. */ struct ieee80211_country_ie_triplet { union { struct { u8 first_channel; u8 num_channels; s8 max_power; } __packed chans; struct { u8 reg_extension_id; u8 reg_class; u8 coverage_class; } __packed ext; }; } __packed; enum ieee80211_timeout_interval_type { WLAN_TIMEOUT_REASSOC_DEADLINE = 1 /* 802.11r */, WLAN_TIMEOUT_KEY_LIFETIME = 2 /* 802.11r */, WLAN_TIMEOUT_ASSOC_COMEBACK = 3 /* 802.11w */, }; /** * struct ieee80211_timeout_interval_ie - Timeout Interval element * @type: type, see &enum ieee80211_timeout_interval_type * @value: timeout interval value */ struct ieee80211_timeout_interval_ie { u8 type; __le32 value; } __packed; /** * enum ieee80211_idle_options - BSS idle options * @WLAN_IDLE_OPTIONS_PROTECTED_KEEP_ALIVE: the station should send an RSN * protected frame to the AP to reset the idle timer at the AP for * the station. */ enum ieee80211_idle_options { WLAN_IDLE_OPTIONS_PROTECTED_KEEP_ALIVE = BIT(0), }; /** * struct ieee80211_bss_max_idle_period_ie * * This structure refers to "BSS Max idle period element" * * @max_idle_period: indicates the time period during which a station can * refrain from transmitting frames to its associated AP without being * disassociated. In units of 1000 TUs. * @idle_options: indicates the options associated with the BSS idle capability * as specified in &enum ieee80211_idle_options. */ struct ieee80211_bss_max_idle_period_ie { __le16 max_idle_period; u8 idle_options; } __packed; /* BACK action code */ enum ieee80211_back_actioncode { WLAN_ACTION_ADDBA_REQ = 0, WLAN_ACTION_ADDBA_RESP = 1, WLAN_ACTION_DELBA = 2, }; /* BACK (block-ack) parties */ enum ieee80211_back_parties { WLAN_BACK_RECIPIENT = 0, WLAN_BACK_INITIATOR = 1, }; /* SA Query action */ enum ieee80211_sa_query_action { WLAN_ACTION_SA_QUERY_REQUEST = 0, WLAN_ACTION_SA_QUERY_RESPONSE = 1, }; /** * struct ieee80211_bssid_index * * This structure refers to "Multiple BSSID-index element" * * @bssid_index: BSSID index * @dtim_period: optional, overrides transmitted BSS dtim period * @dtim_count: optional, overrides transmitted BSS dtim count */ struct ieee80211_bssid_index { u8 bssid_index; u8 dtim_period; u8 dtim_count; }; /** * struct ieee80211_multiple_bssid_configuration * * This structure refers to "Multiple BSSID Configuration element" * * @bssid_count: total number of active BSSIDs in the set * @profile_periodicity: the least number of beacon frames need to be received * in order to discover all the nontransmitted BSSIDs in the set. */ struct ieee80211_multiple_bssid_configuration { u8 bssid_count; u8 profile_periodicity; }; #define SUITE(oui, id) (((oui) << 8) | (id)) /* cipher suite selectors */ #define WLAN_CIPHER_SUITE_USE_GROUP SUITE(0x000FAC, 0) #define WLAN_CIPHER_SUITE_WEP40 SUITE(0x000FAC, 1) #define WLAN_CIPHER_SUITE_TKIP SUITE(0x000FAC, 2) /* reserved: SUITE(0x000FAC, 3) */ #define WLAN_CIPHER_SUITE_CCMP SUITE(0x000FAC, 4) #define WLAN_CIPHER_SUITE_WEP104 SUITE(0x000FAC, 5) #define WLAN_CIPHER_SUITE_AES_CMAC SUITE(0x000FAC, 6) #define WLAN_CIPHER_SUITE_GCMP SUITE(0x000FAC, 8) #define WLAN_CIPHER_SUITE_GCMP_256 SUITE(0x000FAC, 9) #define WLAN_CIPHER_SUITE_CCMP_256 SUITE(0x000FAC, 10) #define WLAN_CIPHER_SUITE_BIP_GMAC_128 SUITE(0x000FAC, 11) #define WLAN_CIPHER_SUITE_BIP_GMAC_256 SUITE(0x000FAC, 12) #define WLAN_CIPHER_SUITE_BIP_CMAC_256 SUITE(0x000FAC, 13) #define WLAN_CIPHER_SUITE_SMS4 SUITE(0x001472, 1) /* AKM suite selectors */ #define WLAN_AKM_SUITE_8021X SUITE(0x000FAC, 1) #define WLAN_AKM_SUITE_PSK SUITE(0x000FAC, 2) #define WLAN_AKM_SUITE_FT_8021X SUITE(0x000FAC, 3) #define WLAN_AKM_SUITE_FT_PSK SUITE(0x000FAC, 4) #define WLAN_AKM_SUITE_8021X_SHA256 SUITE(0x000FAC, 5) #define WLAN_AKM_SUITE_PSK_SHA256 SUITE(0x000FAC, 6) #define WLAN_AKM_SUITE_TDLS SUITE(0x000FAC, 7) #define WLAN_AKM_SUITE_SAE SUITE(0x000FAC, 8) #define WLAN_AKM_SUITE_FT_OVER_SAE SUITE(0x000FAC, 9) #define WLAN_AKM_SUITE_AP_PEER_KEY SUITE(0x000FAC, 10) #define WLAN_AKM_SUITE_8021X_SUITE_B SUITE(0x000FAC, 11) #define WLAN_AKM_SUITE_8021X_SUITE_B_192 SUITE(0x000FAC, 12) #define WLAN_AKM_SUITE_FT_8021X_SHA384 SUITE(0x000FAC, 13) #define WLAN_AKM_SUITE_FILS_SHA256 SUITE(0x000FAC, 14) #define WLAN_AKM_SUITE_FILS_SHA384 SUITE(0x000FAC, 15) #define WLAN_AKM_SUITE_FT_FILS_SHA256 SUITE(0x000FAC, 16) #define WLAN_AKM_SUITE_FT_FILS_SHA384 SUITE(0x000FAC, 17) #define WLAN_AKM_SUITE_OWE SUITE(0x000FAC, 18) #define WLAN_AKM_SUITE_FT_PSK_SHA384 SUITE(0x000FAC, 19) #define WLAN_AKM_SUITE_PSK_SHA384 SUITE(0x000FAC, 20) #define WLAN_AKM_SUITE_WFA_DPP SUITE(WLAN_OUI_WFA, 2) #define WLAN_MAX_KEY_LEN 32 #define WLAN_PMK_NAME_LEN 16 #define WLAN_PMKID_LEN 16 #define WLAN_PMK_LEN_EAP_LEAP 16 #define WLAN_PMK_LEN 32 #define WLAN_PMK_LEN_SUITE_B_192 48 #define WLAN_OUI_WFA 0x506f9a #define WLAN_OUI_TYPE_WFA_P2P 9 #define WLAN_OUI_TYPE_WFA_DPP 0x1A #define WLAN_OUI_MICROSOFT 0x0050f2 #define WLAN_OUI_TYPE_MICROSOFT_WPA 1 #define WLAN_OUI_TYPE_MICROSOFT_WMM 2 #define WLAN_OUI_TYPE_MICROSOFT_WPS 4 #define WLAN_OUI_TYPE_MICROSOFT_TPC 8 /* * WMM/802.11e Tspec Element */ #define IEEE80211_WMM_IE_TSPEC_TID_MASK 0x0F #define IEEE80211_WMM_IE_TSPEC_TID_SHIFT 1 enum ieee80211_tspec_status_code { IEEE80211_TSPEC_STATUS_ADMISS_ACCEPTED = 0, IEEE80211_TSPEC_STATUS_ADDTS_INVAL_PARAMS = 0x1, }; struct ieee80211_tspec_ie { u8 element_id; u8 len; u8 oui[3]; u8 oui_type; u8 oui_subtype; u8 version; __le16 tsinfo; u8 tsinfo_resvd; __le16 nominal_msdu; __le16 max_msdu; __le32 min_service_int; __le32 max_service_int; __le32 inactivity_int; __le32 suspension_int; __le32 service_start_time; __le32 min_data_rate; __le32 mean_data_rate; __le32 peak_data_rate; __le32 max_burst_size; __le32 delay_bound; __le32 min_phy_rate; __le16 sba; __le16 medium_time; } __packed; struct ieee80211_he_6ghz_capa { /* uses IEEE80211_HE_6GHZ_CAP_* below */ __le16 capa; } __packed; /* HE 6 GHz band capabilities */ /* uses enum ieee80211_min_mpdu_spacing values */ #define IEEE80211_HE_6GHZ_CAP_MIN_MPDU_START 0x0007 /* uses enum ieee80211_vht_max_ampdu_length_exp values */ #define IEEE80211_HE_6GHZ_CAP_MAX_AMPDU_LEN_EXP 0x0038 /* uses IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_* values */ #define IEEE80211_HE_6GHZ_CAP_MAX_MPDU_LEN 0x00c0 /* WLAN_HT_CAP_SM_PS_* values */ #define IEEE80211_HE_6GHZ_CAP_SM_PS 0x0600 #define IEEE80211_HE_6GHZ_CAP_RD_RESPONDER 0x0800 #define IEEE80211_HE_6GHZ_CAP_RX_ANTPAT_CONS 0x1000 #define IEEE80211_HE_6GHZ_CAP_TX_ANTPAT_CONS 0x2000 /** * ieee80211_get_qos_ctl - get pointer to qos control bytes * @hdr: the frame * * The qos ctrl bytes come after the frame_control, duration, seq_num * and 3 or 4 addresses of length ETH_ALEN. Checks frame_control to choose * between struct ieee80211_qos_hdr_4addr and struct ieee80211_qos_hdr. */ static inline u8 *ieee80211_get_qos_ctl(struct ieee80211_hdr *hdr) { union { struct ieee80211_qos_hdr addr3; struct ieee80211_qos_hdr_4addr addr4; } *qos; qos = (void *)hdr; if (ieee80211_has_a4(qos->addr3.frame_control)) return (u8 *)&qos->addr4.qos_ctrl; else return (u8 *)&qos->addr3.qos_ctrl; } /** * ieee80211_get_tid - get qos TID * @hdr: the frame */ static inline u8 ieee80211_get_tid(struct ieee80211_hdr *hdr) { u8 *qc = ieee80211_get_qos_ctl(hdr); return qc[0] & IEEE80211_QOS_CTL_TID_MASK; } /** * ieee80211_get_SA - get pointer to SA * @hdr: the frame * * Given an 802.11 frame, this function returns the offset * to the source address (SA). It does not verify that the * header is long enough to contain the address, and the * header must be long enough to contain the frame control * field. */ static inline u8 *ieee80211_get_SA(struct ieee80211_hdr *hdr) { if (ieee80211_has_a4(hdr->frame_control)) return hdr->addr4; if (ieee80211_has_fromds(hdr->frame_control)) return hdr->addr3; return hdr->addr2; } /** * ieee80211_get_DA - get pointer to DA * @hdr: the frame * * Given an 802.11 frame, this function returns the offset * to the destination address (DA). It does not verify that * the header is long enough to contain the address, and the * header must be long enough to contain the frame control * field. */ static inline u8 *ieee80211_get_DA(struct ieee80211_hdr *hdr) { if (ieee80211_has_tods(hdr->frame_control)) return hdr->addr3; else return hdr->addr1; } /** * ieee80211_is_bufferable_mmpdu - check if frame is bufferable MMPDU * @skb: the skb to check, starting with the 802.11 header */ static inline bool ieee80211_is_bufferable_mmpdu(struct sk_buff *skb) { struct ieee80211_mgmt *mgmt = (void *)skb->data; __le16 fc = mgmt->frame_control; /* * IEEE 802.11 REVme D2.0 definition of bufferable MMPDU; * note that this ignores the IBSS special case. */ if (!ieee80211_is_mgmt(fc)) return false; if (ieee80211_is_disassoc(fc) || ieee80211_is_deauth(fc)) return true; if (!ieee80211_is_action(fc)) return false; if (skb->len < offsetofend(typeof(*mgmt), u.action.u.ftm.action_code)) return true; /* action frame - additionally check for non-bufferable FTM */ if (mgmt->u.action.category != WLAN_CATEGORY_PUBLIC && mgmt->u.action.category != WLAN_CATEGORY_PROTECTED_DUAL_OF_ACTION) return true; if (mgmt->u.action.u.ftm.action_code == WLAN_PUB_ACTION_FTM_REQUEST || mgmt->u.action.u.ftm.action_code == WLAN_PUB_ACTION_FTM_RESPONSE) return false; return true; } /** * _ieee80211_is_robust_mgmt_frame - check if frame is a robust management frame * @hdr: the frame (buffer must include at least the first octet of payload) */ static inline bool _ieee80211_is_robust_mgmt_frame(struct ieee80211_hdr *hdr) { if (ieee80211_is_disassoc(hdr->frame_control) || ieee80211_is_deauth(hdr->frame_control)) return true; if (ieee80211_is_action(hdr->frame_control)) { u8 *category; /* * Action frames, excluding Public Action frames, are Robust * Management Frames. However, if we are looking at a Protected * frame, skip the check since the data may be encrypted and * the frame has already been found to be a Robust Management * Frame (by the other end). */ if (ieee80211_has_protected(hdr->frame_control)) return true; category = ((u8 *) hdr) + 24; return *category != WLAN_CATEGORY_PUBLIC && *category != WLAN_CATEGORY_HT && *category != WLAN_CATEGORY_WNM_UNPROTECTED && *category != WLAN_CATEGORY_SELF_PROTECTED && *category != WLAN_CATEGORY_UNPROT_DMG && *category != WLAN_CATEGORY_VHT && *category != WLAN_CATEGORY_S1G && *category != WLAN_CATEGORY_VENDOR_SPECIFIC; } return false; } /** * ieee80211_is_robust_mgmt_frame - check if skb contains a robust mgmt frame * @skb: the skb containing the frame, length will be checked */ static inline bool ieee80211_is_robust_mgmt_frame(struct sk_buff *skb) { if (skb->len < IEEE80211_MIN_ACTION_SIZE) return false; return _ieee80211_is_robust_mgmt_frame((void *)skb->data); } /** * ieee80211_is_public_action - check if frame is a public action frame * @hdr: the frame * @len: length of the frame */ static inline bool ieee80211_is_public_action(struct ieee80211_hdr *hdr, size_t len) { struct ieee80211_mgmt *mgmt = (void *)hdr; if (len < IEEE80211_MIN_ACTION_SIZE) return false; if (!ieee80211_is_action(hdr->frame_control)) return false; return mgmt->u.action.category == WLAN_CATEGORY_PUBLIC; } /** * ieee80211_is_protected_dual_of_public_action - check if skb contains a * protected dual of public action management frame * @skb: the skb containing the frame, length will be checked * * Return: true if the skb contains a protected dual of public action * management frame, false otherwise. */ static inline bool ieee80211_is_protected_dual_of_public_action(struct sk_buff *skb) { u8 action; if (!ieee80211_is_public_action((void *)skb->data, skb->len) || skb->len < IEEE80211_MIN_ACTION_SIZE + 1) return false; action = *(u8 *)(skb->data + IEEE80211_MIN_ACTION_SIZE); return action != WLAN_PUB_ACTION_20_40_BSS_COEX && action != WLAN_PUB_ACTION_DSE_REG_LOC_ANN && action != WLAN_PUB_ACTION_MSMT_PILOT && action != WLAN_PUB_ACTION_TDLS_DISCOVER_RES && action != WLAN_PUB_ACTION_LOC_TRACK_NOTI && action != WLAN_PUB_ACTION_FTM_REQUEST && action != WLAN_PUB_ACTION_FTM_RESPONSE && action != WLAN_PUB_ACTION_FILS_DISCOVERY && action != WLAN_PUB_ACTION_VENDOR_SPECIFIC; } /** * _ieee80211_is_group_privacy_action - check if frame is a group addressed * privacy action frame * @hdr: the frame */ static inline bool _ieee80211_is_group_privacy_action(struct ieee80211_hdr *hdr) { struct ieee80211_mgmt *mgmt = (void *)hdr; if (!ieee80211_is_action(hdr->frame_control) || !is_multicast_ether_addr(hdr->addr1)) return false; return mgmt->u.action.category == WLAN_CATEGORY_MESH_ACTION || mgmt->u.action.category == WLAN_CATEGORY_MULTIHOP_ACTION; } /** * ieee80211_is_group_privacy_action - check if frame is a group addressed * privacy action frame * @skb: the skb containing the frame, length will be checked */ static inline bool ieee80211_is_group_privacy_action(struct sk_buff *skb) { if (skb->len < IEEE80211_MIN_ACTION_SIZE) return false; return _ieee80211_is_group_privacy_action((void *)skb->data); } /** * ieee80211_tu_to_usec - convert time units (TU) to microseconds * @tu: the TUs */ static inline unsigned long ieee80211_tu_to_usec(unsigned long tu) { return 1024 * tu; } /** * ieee80211_check_tim - check if AID bit is set in TIM * @tim: the TIM IE * @tim_len: length of the TIM IE * @aid: the AID to look for */ static inline bool ieee80211_check_tim(const struct ieee80211_tim_ie *tim, u8 tim_len, u16 aid) { u8 mask; u8 index, indexn1, indexn2; if (unlikely(!tim || tim_len < sizeof(*tim))) return false; aid &= 0x3fff; index = aid / 8; mask = 1 << (aid & 7); indexn1 = tim->bitmap_ctrl & 0xfe; indexn2 = tim_len + indexn1 - 4; if (index < indexn1 || index > indexn2) return false; index -= indexn1; return !!(tim->virtual_map[index] & mask); } /** * ieee80211_get_tdls_action - get tdls packet action (or -1, if not tdls packet) * @skb: the skb containing the frame, length will not be checked * * This function assumes the frame is a data frame, and that the network header * is in the correct place. */ static inline int ieee80211_get_tdls_action(struct sk_buff *skb) { if (!skb_is_nonlinear(skb) && skb->len > (skb_network_offset(skb) + 2)) { /* Point to where the indication of TDLS should start */ const u8 *tdls_data = skb_network_header(skb) - 2; if (get_unaligned_be16(tdls_data) == ETH_P_TDLS && tdls_data[2] == WLAN_TDLS_SNAP_RFTYPE && tdls_data[3] == WLAN_CATEGORY_TDLS) return tdls_data[4]; } return -1; } /* convert time units */ #define TU_TO_JIFFIES(x) (usecs_to_jiffies((x) * 1024)) #define TU_TO_EXP_TIME(x) (jiffies + TU_TO_JIFFIES(x)) /* convert frequencies */ #define MHZ_TO_KHZ(freq) ((freq) * 1000) #define KHZ_TO_MHZ(freq) ((freq) / 1000) #define PR_KHZ(f) KHZ_TO_MHZ(f), f % 1000 #define KHZ_F "%d.%03d" /* convert powers */ #define DBI_TO_MBI(gain) ((gain) * 100) #define MBI_TO_DBI(gain) ((gain) / 100) #define DBM_TO_MBM(gain) ((gain) * 100) #define MBM_TO_DBM(gain) ((gain) / 100) /** * ieee80211_action_contains_tpc - checks if the frame contains TPC element * @skb: the skb containing the frame, length will be checked * * This function checks if it's either TPC report action frame or Link * Measurement report action frame as defined in IEEE Std. 802.11-2012 8.5.2.5 * and 8.5.7.5 accordingly. */ static inline bool ieee80211_action_contains_tpc(struct sk_buff *skb) { struct ieee80211_mgmt *mgmt = (void *)skb->data; if (!ieee80211_is_action(mgmt->frame_control)) return false; if (skb->len < IEEE80211_MIN_ACTION_SIZE + sizeof(mgmt->u.action.u.tpc_report)) return false; /* * TPC report - check that: * category = 0 (Spectrum Management) or 5 (Radio Measurement) * spectrum management action = 3 (TPC/Link Measurement report) * TPC report EID = 35 * TPC report element length = 2 * * The spectrum management's tpc_report struct is used here both for * parsing tpc_report and radio measurement's link measurement report * frame, since the relevant part is identical in both frames. */ if (mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT && mgmt->u.action.category != WLAN_CATEGORY_RADIO_MEASUREMENT) return false; /* both spectrum mgmt and link measurement have same action code */ if (mgmt->u.action.u.tpc_report.action_code != WLAN_ACTION_SPCT_TPC_RPRT) return false; if (mgmt->u.action.u.tpc_report.tpc_elem_id != WLAN_EID_TPC_REPORT || mgmt->u.action.u.tpc_report.tpc_elem_length != sizeof(struct ieee80211_tpc_report_ie)) return false; return true; } static inline bool ieee80211_is_timing_measurement(struct sk_buff *skb) { struct ieee80211_mgmt *mgmt = (void *)skb->data; if (skb->len < IEEE80211_MIN_ACTION_SIZE) return false; if (!ieee80211_is_action(mgmt->frame_control)) return false; if (mgmt->u.action.category == WLAN_CATEGORY_WNM_UNPROTECTED && mgmt->u.action.u.wnm_timing_msr.action_code == WLAN_UNPROTECTED_WNM_ACTION_TIMING_MEASUREMENT_RESPONSE && skb->len >= offsetofend(typeof(*mgmt), u.action.u.wnm_timing_msr)) return true; return false; } static inline bool ieee80211_is_ftm(struct sk_buff *skb) { struct ieee80211_mgmt *mgmt = (void *)skb->data; if (!ieee80211_is_public_action((void *)mgmt, skb->len)) return false; if (mgmt->u.action.u.ftm.action_code == WLAN_PUB_ACTION_FTM_RESPONSE && skb->len >= offsetofend(typeof(*mgmt), u.action.u.ftm)) return true; return false; } struct element { u8 id; u8 datalen; u8 data[]; } __packed; /* element iteration helpers */ #define for_each_element(_elem, _data, _datalen) \ for (_elem = (const struct element *)(_data); \ (const u8 *)(_data) + (_datalen) - (const u8 *)_elem >= \ (int)sizeof(*_elem) && \ (const u8 *)(_data) + (_datalen) - (const u8 *)_elem >= \ (int)sizeof(*_elem) + _elem->datalen; \ _elem = (const struct element *)(_elem->data + _elem->datalen)) #define for_each_element_id(element, _id, data, datalen) \ for_each_element(element, data, datalen) \ if (element->id == (_id)) #define for_each_element_extid(element, extid, _data, _datalen) \ for_each_element(element, _data, _datalen) \ if (element->id == WLAN_EID_EXTENSION && \ element->datalen > 0 && \ element->data[0] == (extid)) #define for_each_subelement(sub, element) \ for_each_element(sub, (element)->data, (element)->datalen) #define for_each_subelement_id(sub, id, element) \ for_each_element_id(sub, id, (element)->data, (element)->datalen) #define for_each_subelement_extid(sub, extid, element) \ for_each_element_extid(sub, extid, (element)->data, (element)->datalen) /** * for_each_element_completed - determine if element parsing consumed all data * @element: element pointer after for_each_element() or friends * @data: same data pointer as passed to for_each_element() or friends * @datalen: same data length as passed to for_each_element() or friends * * This function returns %true if all the data was parsed or considered * while walking the elements. Only use this if your for_each_element() * loop cannot be broken out of, otherwise it always returns %false. * * If some data was malformed, this returns %false since the last parsed * element will not fill the whole remaining data. */ static inline bool for_each_element_completed(const struct element *element, const void *data, size_t datalen) { return (const u8 *)element == (const u8 *)data + datalen; } /* * RSNX Capabilities: * bits 0-3: Field length (n-1) */ #define WLAN_RSNX_CAPA_PROTECTED_TWT BIT(4) #define WLAN_RSNX_CAPA_SAE_H2E BIT(5) /* * reduced neighbor report, based on Draft P802.11ax_D6.1, * section 9.4.2.170 and accepted contributions. */ #define IEEE80211_AP_INFO_TBTT_HDR_TYPE 0x03 #define IEEE80211_AP_INFO_TBTT_HDR_FILTERED 0x04 #define IEEE80211_AP_INFO_TBTT_HDR_COLOC 0x08 #define IEEE80211_AP_INFO_TBTT_HDR_COUNT 0xF0 #define IEEE80211_TBTT_INFO_TYPE_TBTT 0 #define IEEE80211_TBTT_INFO_TYPE_MLD 1 #define IEEE80211_RNR_TBTT_PARAMS_OCT_RECOMMENDED 0x01 #define IEEE80211_RNR_TBTT_PARAMS_SAME_SSID 0x02 #define IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID 0x04 #define IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID 0x08 #define IEEE80211_RNR_TBTT_PARAMS_COLOC_ESS 0x10 #define IEEE80211_RNR_TBTT_PARAMS_PROBE_ACTIVE 0x20 #define IEEE80211_RNR_TBTT_PARAMS_COLOC_AP 0x40 #define IEEE80211_RNR_TBTT_PARAMS_PSD_NO_LIMIT 127 #define IEEE80211_RNR_TBTT_PARAMS_PSD_RESERVED -128 struct ieee80211_neighbor_ap_info { u8 tbtt_info_hdr; u8 tbtt_info_len; u8 op_class; u8 channel; } __packed; enum ieee80211_range_params_max_total_ltf { IEEE80211_RANGE_PARAMS_MAX_TOTAL_LTF_4 = 0, IEEE80211_RANGE_PARAMS_MAX_TOTAL_LTF_8, IEEE80211_RANGE_PARAMS_MAX_TOTAL_LTF_16, IEEE80211_RANGE_PARAMS_MAX_TOTAL_LTF_UNSPECIFIED, }; /* * reduced neighbor report, based on Draft P802.11be_D3.0, * section 9.4.2.170.2. */ struct ieee80211_rnr_mld_params { u8 mld_id; __le16 params; } __packed; #define IEEE80211_RNR_MLD_PARAMS_LINK_ID 0x000F #define IEEE80211_RNR_MLD_PARAMS_BSS_CHANGE_COUNT 0x0FF0 #define IEEE80211_RNR_MLD_PARAMS_UPDATES_INCLUDED 0x1000 #define IEEE80211_RNR_MLD_PARAMS_DISABLED_LINK 0x2000 /* Format of the TBTT information element if it has 7, 8 or 9 bytes */ struct ieee80211_tbtt_info_7_8_9 { u8 tbtt_offset; u8 bssid[ETH_ALEN]; /* The following element is optional, structure may not grow */ u8 bss_params; s8 psd_20; } __packed; /* Format of the TBTT information element if it has >= 11 bytes */ struct ieee80211_tbtt_info_ge_11 { u8 tbtt_offset; u8 bssid[ETH_ALEN]; __le32 short_ssid; /* The following elements are optional, structure may grow */ u8 bss_params; s8 psd_20; struct ieee80211_rnr_mld_params mld_params; } __packed; /* multi-link device */ #define IEEE80211_MLD_MAX_NUM_LINKS 15 #define IEEE80211_ML_CONTROL_TYPE 0x0007 #define IEEE80211_ML_CONTROL_TYPE_BASIC 0 #define IEEE80211_ML_CONTROL_TYPE_PREQ 1 #define IEEE80211_ML_CONTROL_TYPE_RECONF 2 #define IEEE80211_ML_CONTROL_TYPE_TDLS 3 #define IEEE80211_ML_CONTROL_TYPE_PRIO_ACCESS 4 #define IEEE80211_ML_CONTROL_PRESENCE_MASK 0xfff0 struct ieee80211_multi_link_elem { __le16 control; u8 variable[]; } __packed; #define IEEE80211_MLC_BASIC_PRES_LINK_ID 0x0010 #define IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT 0x0020 #define IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY 0x0040 #define IEEE80211_MLC_BASIC_PRES_EML_CAPA 0x0080 #define IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP 0x0100 #define IEEE80211_MLC_BASIC_PRES_MLD_ID 0x0200 #define IEEE80211_MED_SYNC_DELAY_DURATION 0x00ff #define IEEE80211_MED_SYNC_DELAY_SYNC_OFDM_ED_THRESH 0x0f00 #define IEEE80211_MED_SYNC_DELAY_SYNC_MAX_NUM_TXOPS 0xf000 /* * Described in P802.11be_D3.0 * dot11MSDTimerDuration should default to 5484 (i.e. 171.375) * dot11MSDOFDMEDthreshold defaults to -72 (i.e. 0) * dot11MSDTXOPMAX defaults to 1 */ #define IEEE80211_MED_SYNC_DELAY_DEFAULT 0x10ac #define IEEE80211_EML_CAP_EMLSR_SUPP 0x0001 #define IEEE80211_EML_CAP_EMLSR_PADDING_DELAY 0x000e #define IEEE80211_EML_CAP_EMLSR_PADDING_DELAY_0US 0 #define IEEE80211_EML_CAP_EMLSR_PADDING_DELAY_32US 1 #define IEEE80211_EML_CAP_EMLSR_PADDING_DELAY_64US 2 #define IEEE80211_EML_CAP_EMLSR_PADDING_DELAY_128US 3 #define IEEE80211_EML_CAP_EMLSR_PADDING_DELAY_256US 4 #define IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY 0x0070 #define IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY_0US 0 #define IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY_16US 1 #define IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY_32US 2 #define IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY_64US 3 #define IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY_128US 4 #define IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY_256US 5 #define IEEE80211_EML_CAP_EMLMR_SUPPORT 0x0080 #define IEEE80211_EML_CAP_EMLMR_DELAY 0x0700 #define IEEE80211_EML_CAP_EMLMR_DELAY_0US 0 #define IEEE80211_EML_CAP_EMLMR_DELAY_32US 1 #define IEEE80211_EML_CAP_EMLMR_DELAY_64US 2 #define IEEE80211_EML_CAP_EMLMR_DELAY_128US 3 #define IEEE80211_EML_CAP_EMLMR_DELAY_256US 4 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT 0x7800 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_0 0 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_128US 1 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_256US 2 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_512US 3 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_1TU 4 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_2TU 5 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_4TU 6 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_8TU 7 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_16TU 8 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_32TU 9 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_64TU 10 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT_128TU 11 #define IEEE80211_MLD_CAP_OP_MAX_SIMUL_LINKS 0x000f #define IEEE80211_MLD_CAP_OP_SRS_SUPPORT 0x0010 #define IEEE80211_MLD_CAP_OP_TID_TO_LINK_MAP_NEG_SUPP 0x0060 #define IEEE80211_MLD_CAP_OP_FREQ_SEP_TYPE_IND 0x0f80 #define IEEE80211_MLD_CAP_OP_AAR_SUPPORT 0x1000 struct ieee80211_mle_basic_common_info { u8 len; u8 mld_mac_addr[ETH_ALEN]; u8 variable[]; } __packed; #define IEEE80211_MLC_PREQ_PRES_MLD_ID 0x0010 struct ieee80211_mle_preq_common_info { u8 len; u8 variable[]; } __packed; #define IEEE80211_MLC_RECONF_PRES_MLD_MAC_ADDR 0x0010 /* no fixed fields in RECONF */ struct ieee80211_mle_tdls_common_info { u8 len; u8 ap_mld_mac_addr[ETH_ALEN]; } __packed; #define IEEE80211_MLC_PRIO_ACCESS_PRES_AP_MLD_MAC_ADDR 0x0010 /* no fixed fields in PRIO_ACCESS */ /** * ieee80211_mle_common_size - check multi-link element common size * @data: multi-link element, must already be checked for size using * ieee80211_mle_size_ok() */ static inline u8 ieee80211_mle_common_size(const u8 *data) { const struct ieee80211_multi_link_elem *mle = (const void *)data; u16 control = le16_to_cpu(mle->control); u8 common = 0; switch (u16_get_bits(control, IEEE80211_ML_CONTROL_TYPE)) { case IEEE80211_ML_CONTROL_TYPE_BASIC: case IEEE80211_ML_CONTROL_TYPE_PREQ: case IEEE80211_ML_CONTROL_TYPE_TDLS: case IEEE80211_ML_CONTROL_TYPE_RECONF: /* * The length is the first octet pointed by mle->variable so no * need to add anything */ break; case IEEE80211_ML_CONTROL_TYPE_PRIO_ACCESS: if (control & IEEE80211_MLC_PRIO_ACCESS_PRES_AP_MLD_MAC_ADDR) common += ETH_ALEN; return common; default: WARN_ON(1); return 0; } return sizeof(*mle) + common + mle->variable[0]; } /** * ieee80211_mle_get_bss_param_ch_cnt - returns the BSS parameter change count * @mle: the basic multi link element * * The element is assumed to be of the correct type (BASIC) and big enough, * this must be checked using ieee80211_mle_type_ok(). * * If the BSS parameter change count value can't be found (the presence bit * for it is clear), 0 will be returned. */ static inline u8 ieee80211_mle_get_bss_param_ch_cnt(const struct ieee80211_multi_link_elem *mle) { u16 control = le16_to_cpu(mle->control); const u8 *common = mle->variable; /* common points now at the beginning of ieee80211_mle_basic_common_info */ common += sizeof(struct ieee80211_mle_basic_common_info); if (!(control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT)) return 0; if (control & IEEE80211_MLC_BASIC_PRES_LINK_ID) common += 1; return *common; } /** * ieee80211_mle_get_eml_med_sync_delay - returns the medium sync delay * @data: pointer to the multi link EHT IE * * The element is assumed to be of the correct type (BASIC) and big enough, * this must be checked using ieee80211_mle_type_ok(). * * If the medium synchronization is not present, then the default value is * returned. */ static inline u16 ieee80211_mle_get_eml_med_sync_delay(const u8 *data) { const struct ieee80211_multi_link_elem *mle = (const void *)data; u16 control = le16_to_cpu(mle->control); const u8 *common = mle->variable; /* common points now at the beginning of ieee80211_mle_basic_common_info */ common += sizeof(struct ieee80211_mle_basic_common_info); if (!(control & IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY)) return IEEE80211_MED_SYNC_DELAY_DEFAULT; if (control & IEEE80211_MLC_BASIC_PRES_LINK_ID) common += 1; if (control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT) common += 1; return get_unaligned_le16(common); } /** * ieee80211_mle_get_eml_cap - returns the EML capability * @data: pointer to the multi link EHT IE * * The element is assumed to be of the correct type (BASIC) and big enough, * this must be checked using ieee80211_mle_type_ok(). * * If the EML capability is not present, 0 will be returned. */ static inline u16 ieee80211_mle_get_eml_cap(const u8 *data) { const struct ieee80211_multi_link_elem *mle = (const void *)data; u16 control = le16_to_cpu(mle->control); const u8 *common = mle->variable; /* common points now at the beginning of ieee80211_mle_basic_common_info */ common += sizeof(struct ieee80211_mle_basic_common_info); if (!(control & IEEE80211_MLC_BASIC_PRES_EML_CAPA)) return 0; if (control & IEEE80211_MLC_BASIC_PRES_LINK_ID) common += 1; if (control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT) common += 1; if (control & IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY) common += 2; return get_unaligned_le16(common); } /** * ieee80211_mle_size_ok - validate multi-link element size * @data: pointer to the element data * @len: length of the containing element */ static inline bool ieee80211_mle_size_ok(const u8 *data, size_t len) { const struct ieee80211_multi_link_elem *mle = (const void *)data; u8 fixed = sizeof(*mle); u8 common = 0; bool check_common_len = false; u16 control; if (len < fixed) return false; control = le16_to_cpu(mle->control); switch (u16_get_bits(control, IEEE80211_ML_CONTROL_TYPE)) { case IEEE80211_ML_CONTROL_TYPE_BASIC: common += sizeof(struct ieee80211_mle_basic_common_info); check_common_len = true; if (control & IEEE80211_MLC_BASIC_PRES_LINK_ID) common += 1; if (control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT) common += 1; if (control & IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY) common += 2; if (control & IEEE80211_MLC_BASIC_PRES_EML_CAPA) common += 2; if (control & IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP) common += 2; if (control & IEEE80211_MLC_BASIC_PRES_MLD_ID) common += 1; break; case IEEE80211_ML_CONTROL_TYPE_PREQ: common += sizeof(struct ieee80211_mle_preq_common_info); if (control & IEEE80211_MLC_PREQ_PRES_MLD_ID) common += 1; check_common_len = true; break; case IEEE80211_ML_CONTROL_TYPE_RECONF: if (control & IEEE80211_MLC_RECONF_PRES_MLD_MAC_ADDR) common += ETH_ALEN; break; case IEEE80211_ML_CONTROL_TYPE_TDLS: common += sizeof(struct ieee80211_mle_tdls_common_info); check_common_len = true; break; case IEEE80211_ML_CONTROL_TYPE_PRIO_ACCESS: if (control & IEEE80211_MLC_PRIO_ACCESS_PRES_AP_MLD_MAC_ADDR) common += ETH_ALEN; break; default: /* we don't know this type */ return true; } if (len < fixed + common) return false; if (!check_common_len) return true; /* if present, common length is the first octet there */ return mle->variable[0] >= common; } /** * ieee80211_mle_type_ok - validate multi-link element type and size * @data: pointer to the element data * @type: expected type of the element * @len: length of the containing element */ static inline bool ieee80211_mle_type_ok(const u8 *data, u8 type, size_t len) { const struct ieee80211_multi_link_elem *mle = (const void *)data; u16 control; if (!ieee80211_mle_size_ok(data, len)) return false; control = le16_to_cpu(mle->control); if (u16_get_bits(control, IEEE80211_ML_CONTROL_TYPE) == type) return true; return false; } enum ieee80211_mle_subelems { IEEE80211_MLE_SUBELEM_PER_STA_PROFILE = 0, IEEE80211_MLE_SUBELEM_FRAGMENT = 254, }; #define IEEE80211_MLE_STA_CONTROL_LINK_ID 0x000f #define IEEE80211_MLE_STA_CONTROL_COMPLETE_PROFILE 0x0010 #define IEEE80211_MLE_STA_CONTROL_STA_MAC_ADDR_PRESENT 0x0020 #define IEEE80211_MLE_STA_CONTROL_BEACON_INT_PRESENT 0x0040 #define IEEE80211_MLE_STA_CONTROL_TSF_OFFS_PRESENT 0x0080 #define IEEE80211_MLE_STA_CONTROL_DTIM_INFO_PRESENT 0x0100 #define IEEE80211_MLE_STA_CONTROL_NSTR_LINK_PAIR_PRESENT 0x0200 #define IEEE80211_MLE_STA_CONTROL_NSTR_BITMAP_SIZE 0x0400 #define IEEE80211_MLE_STA_CONTROL_BSS_PARAM_CHANGE_CNT_PRESENT 0x0800 struct ieee80211_mle_per_sta_profile { __le16 control; u8 sta_info_len; u8 variable[]; } __packed; /** * ieee80211_mle_basic_sta_prof_size_ok - validate basic multi-link element sta * profile size * @data: pointer to the sub element data * @len: length of the containing sub element */ static inline bool ieee80211_mle_basic_sta_prof_size_ok(const u8 *data, size_t len) { const struct ieee80211_mle_per_sta_profile *prof = (const void *)data; u16 control; u8 fixed = sizeof(*prof); u8 info_len = 1; if (len < fixed) return false; control = le16_to_cpu(prof->control); if (control & IEEE80211_MLE_STA_CONTROL_STA_MAC_ADDR_PRESENT) info_len += 6; if (control & IEEE80211_MLE_STA_CONTROL_BEACON_INT_PRESENT) info_len += 2; if (control & IEEE80211_MLE_STA_CONTROL_TSF_OFFS_PRESENT) info_len += 8; if (control & IEEE80211_MLE_STA_CONTROL_DTIM_INFO_PRESENT) info_len += 2; if (control & IEEE80211_MLE_STA_CONTROL_COMPLETE_PROFILE && control & IEEE80211_MLE_STA_CONTROL_NSTR_LINK_PAIR_PRESENT) { if (control & IEEE80211_MLE_STA_CONTROL_NSTR_BITMAP_SIZE) info_len += 2; else info_len += 1; } if (control & IEEE80211_MLE_STA_CONTROL_BSS_PARAM_CHANGE_CNT_PRESENT) info_len += 1; return prof->sta_info_len >= info_len && fixed + prof->sta_info_len <= len; } /** * ieee80211_mle_basic_sta_prof_bss_param_ch_cnt - get per-STA profile BSS * parameter change count * @prof: the per-STA profile, having been checked with * ieee80211_mle_basic_sta_prof_size_ok() for the correct length * * Return: The BSS parameter change count value if present, 0 otherwise. */ static inline u8 ieee80211_mle_basic_sta_prof_bss_param_ch_cnt(const struct ieee80211_mle_per_sta_profile *prof) { u16 control = le16_to_cpu(prof->control); const u8 *pos = prof->variable; if (!(control & IEEE80211_MLE_STA_CONTROL_BSS_PARAM_CHANGE_CNT_PRESENT)) return 0; if (control & IEEE80211_MLE_STA_CONTROL_STA_MAC_ADDR_PRESENT) pos += 6; if (control & IEEE80211_MLE_STA_CONTROL_BEACON_INT_PRESENT) pos += 2; if (control & IEEE80211_MLE_STA_CONTROL_TSF_OFFS_PRESENT) pos += 8; if (control & IEEE80211_MLE_STA_CONTROL_DTIM_INFO_PRESENT) pos += 2; if (control & IEEE80211_MLE_STA_CONTROL_COMPLETE_PROFILE && control & IEEE80211_MLE_STA_CONTROL_NSTR_LINK_PAIR_PRESENT) { if (control & IEEE80211_MLE_STA_CONTROL_NSTR_BITMAP_SIZE) pos += 2; else pos += 1; } return *pos; } #define IEEE80211_MLE_STA_RECONF_CONTROL_LINK_ID 0x000f #define IEEE80211_MLE_STA_RECONF_CONTROL_COMPLETE_PROFILE 0x0010 #define IEEE80211_MLE_STA_RECONF_CONTROL_STA_MAC_ADDR_PRESENT 0x0020 #define IEEE80211_MLE_STA_RECONF_CONTROL_AP_REM_TIMER_PRESENT 0x0040 #define IEEE80211_MLE_STA_RECONF_CONTROL_OPERATION_UPDATE_TYPE 0x0780 #define IEEE80211_MLE_STA_RECONF_CONTROL_OPERATION_PARAMS_PRESENT 0x0800 /** * ieee80211_mle_reconf_sta_prof_size_ok - validate reconfiguration multi-link * element sta profile size. * @data: pointer to the sub element data * @len: length of the containing sub element */ static inline bool ieee80211_mle_reconf_sta_prof_size_ok(const u8 *data, size_t len) { const struct ieee80211_mle_per_sta_profile *prof = (const void *)data; u16 control; u8 fixed = sizeof(*prof); u8 info_len = 1; if (len < fixed) return false; control = le16_to_cpu(prof->control); if (control & IEEE80211_MLE_STA_RECONF_CONTROL_STA_MAC_ADDR_PRESENT) info_len += ETH_ALEN; if (control & IEEE80211_MLE_STA_RECONF_CONTROL_AP_REM_TIMER_PRESENT) info_len += 2; if (control & IEEE80211_MLE_STA_RECONF_CONTROL_OPERATION_PARAMS_PRESENT) info_len += 2; return prof->sta_info_len >= info_len && fixed + prof->sta_info_len - 1 <= len; } static inline bool ieee80211_tid_to_link_map_size_ok(const u8 *data, size_t len) { const struct ieee80211_ttlm_elem *t2l = (const void *)data; u8 control, fixed = sizeof(*t2l), elem_len = 0; if (len < fixed) return false; control = t2l->control; if (control & IEEE80211_TTLM_CONTROL_SWITCH_TIME_PRESENT) elem_len += 2; if (control & IEEE80211_TTLM_CONTROL_EXPECTED_DUR_PRESENT) elem_len += 3; if (!(control & IEEE80211_TTLM_CONTROL_DEF_LINK_MAP)) { u8 bm_size; elem_len += 1; if (len < fixed + elem_len) return false; if (control & IEEE80211_TTLM_CONTROL_LINK_MAP_SIZE) bm_size = 1; else bm_size = 2; elem_len += hweight8(t2l->optional[0]) * bm_size; } return len >= fixed + elem_len; } #define for_each_mle_subelement(_elem, _data, _len) \ if (ieee80211_mle_size_ok(_data, _len)) \ for_each_element(_elem, \ _data + ieee80211_mle_common_size(_data),\ _len - ieee80211_mle_common_size(_data)) #endif /* LINUX_IEEE80211_H */