/* SPDX-License-Identifier: GPL-2.0 */ /* * Portions Copyright (C) 1992 Drew Eckhardt */ #ifndef _LINUX_BLKDEV_H #define _LINUX_BLKDEV_H #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include struct module; struct request_queue; struct elevator_queue; struct blk_trace; struct request; struct sg_io_hdr; struct blkcg_gq; struct blk_flush_queue; struct kiocb; struct pr_ops; struct rq_qos; struct blk_queue_stats; struct blk_stat_callback; struct blk_crypto_profile; extern const struct device_type disk_type; extern const struct device_type part_type; extern const struct class block_class; /* * Maximum number of blkcg policies allowed to be registered concurrently. * Defined here to simplify include dependency. */ #define BLKCG_MAX_POLS 6 #define DISK_MAX_PARTS 256 #define DISK_NAME_LEN 32 #define PARTITION_META_INFO_VOLNAMELTH 64 /* * Enough for the string representation of any kind of UUID plus NULL. * EFI UUID is 36 characters. MSDOS UUID is 11 characters. */ #define PARTITION_META_INFO_UUIDLTH (UUID_STRING_LEN + 1) struct partition_meta_info { char uuid[PARTITION_META_INFO_UUIDLTH]; u8 volname[PARTITION_META_INFO_VOLNAMELTH]; }; /** * DOC: genhd capability flags * * ``GENHD_FL_REMOVABLE``: indicates that the block device gives access to * removable media. When set, the device remains present even when media is not * inserted. Shall not be set for devices which are removed entirely when the * media is removed. * * ``GENHD_FL_HIDDEN``: the block device is hidden; it doesn't produce events, * doesn't appear in sysfs, and can't be opened from userspace or using * blkdev_get*. Used for the underlying components of multipath devices. * * ``GENHD_FL_NO_PART``: partition support is disabled. The kernel will not * scan for partitions from add_disk, and users can't add partitions manually. * */ enum { GENHD_FL_REMOVABLE = 1 << 0, GENHD_FL_HIDDEN = 1 << 1, GENHD_FL_NO_PART = 1 << 2, }; enum { DISK_EVENT_MEDIA_CHANGE = 1 << 0, /* media changed */ DISK_EVENT_EJECT_REQUEST = 1 << 1, /* eject requested */ }; enum { /* Poll even if events_poll_msecs is unset */ DISK_EVENT_FLAG_POLL = 1 << 0, /* Forward events to udev */ DISK_EVENT_FLAG_UEVENT = 1 << 1, /* Block event polling when open for exclusive write */ DISK_EVENT_FLAG_BLOCK_ON_EXCL_WRITE = 1 << 2, }; struct disk_events; struct badblocks; enum blk_integrity_checksum { BLK_INTEGRITY_CSUM_NONE = 0, BLK_INTEGRITY_CSUM_IP = 1, BLK_INTEGRITY_CSUM_CRC = 2, BLK_INTEGRITY_CSUM_CRC64 = 3, } __packed ; struct blk_integrity { unsigned char flags; enum blk_integrity_checksum csum_type; unsigned char tuple_size; unsigned char pi_offset; unsigned char interval_exp; unsigned char tag_size; }; typedef unsigned int __bitwise blk_mode_t; /* open for reading */ #define BLK_OPEN_READ ((__force blk_mode_t)(1 << 0)) /* open for writing */ #define BLK_OPEN_WRITE ((__force blk_mode_t)(1 << 1)) /* open exclusively (vs other exclusive openers */ #define BLK_OPEN_EXCL ((__force blk_mode_t)(1 << 2)) /* opened with O_NDELAY */ #define BLK_OPEN_NDELAY ((__force blk_mode_t)(1 << 3)) /* open for "writes" only for ioctls (specialy hack for floppy.c) */ #define BLK_OPEN_WRITE_IOCTL ((__force blk_mode_t)(1 << 4)) /* open is exclusive wrt all other BLK_OPEN_WRITE opens to the device */ #define BLK_OPEN_RESTRICT_WRITES ((__force blk_mode_t)(1 << 5)) /* return partition scanning errors */ #define BLK_OPEN_STRICT_SCAN ((__force blk_mode_t)(1 << 6)) struct gendisk { /* * major/first_minor/minors should not be set by any new driver, the * block core will take care of allocating them automatically. */ int major; int first_minor; int minors; char disk_name[DISK_NAME_LEN]; /* name of major driver */ unsigned short events; /* supported events */ unsigned short event_flags; /* flags related to event processing */ struct xarray part_tbl; struct block_device *part0; const struct block_device_operations *fops; struct request_queue *queue; void *private_data; struct bio_set bio_split; int flags; unsigned long state; #define GD_NEED_PART_SCAN 0 #define GD_READ_ONLY 1 #define GD_DEAD 2 #define GD_NATIVE_CAPACITY 3 #define GD_ADDED 4 #define GD_SUPPRESS_PART_SCAN 5 #define GD_OWNS_QUEUE 6 struct mutex open_mutex; /* open/close mutex */ unsigned open_partitions; /* number of open partitions */ struct backing_dev_info *bdi; struct kobject queue_kobj; /* the queue/ directory */ struct kobject *slave_dir; #ifdef CONFIG_BLOCK_HOLDER_DEPRECATED struct list_head slave_bdevs; #endif struct timer_rand_state *random; atomic_t sync_io; /* RAID */ struct disk_events *ev; #ifdef CONFIG_BLK_DEV_ZONED /* * Zoned block device information. Reads of this information must be * protected with blk_queue_enter() / blk_queue_exit(). Modifying this * information is only allowed while no requests are being processed. * See also blk_mq_freeze_queue() and blk_mq_unfreeze_queue(). */ unsigned int nr_zones; unsigned int zone_capacity; unsigned int last_zone_capacity; unsigned long *conv_zones_bitmap; unsigned int zone_wplugs_hash_bits; spinlock_t zone_wplugs_lock; struct mempool_s *zone_wplugs_pool; struct hlist_head *zone_wplugs_hash; struct list_head zone_wplugs_err_list; struct work_struct zone_wplugs_work; struct workqueue_struct *zone_wplugs_wq; #endif /* CONFIG_BLK_DEV_ZONED */ #if IS_ENABLED(CONFIG_CDROM) struct cdrom_device_info *cdi; #endif int node_id; struct badblocks *bb; struct lockdep_map lockdep_map; u64 diskseq; blk_mode_t open_mode; /* * Independent sector access ranges. This is always NULL for * devices that do not have multiple independent access ranges. */ struct blk_independent_access_ranges *ia_ranges; }; /** * disk_openers - returns how many openers are there for a disk * @disk: disk to check * * This returns the number of openers for a disk. Note that this value is only * stable if disk->open_mutex is held. * * Note: Due to a quirk in the block layer open code, each open partition is * only counted once even if there are multiple openers. */ static inline unsigned int disk_openers(struct gendisk *disk) { return atomic_read(&disk->part0->bd_openers); } /** * disk_has_partscan - return %true if partition scanning is enabled on a disk * @disk: disk to check * * Returns %true if partitions scanning is enabled for @disk, or %false if * partition scanning is disabled either permanently or temporarily. */ static inline bool disk_has_partscan(struct gendisk *disk) { return !(disk->flags & (GENHD_FL_NO_PART | GENHD_FL_HIDDEN)) && !test_bit(GD_SUPPRESS_PART_SCAN, &disk->state); } /* * The gendisk is refcounted by the part0 block_device, and the bd_device * therein is also used for device model presentation in sysfs. */ #define dev_to_disk(device) \ (dev_to_bdev(device)->bd_disk) #define disk_to_dev(disk) \ (&((disk)->part0->bd_device)) #if IS_REACHABLE(CONFIG_CDROM) #define disk_to_cdi(disk) ((disk)->cdi) #else #define disk_to_cdi(disk) NULL #endif static inline dev_t disk_devt(struct gendisk *disk) { return MKDEV(disk->major, disk->first_minor); } /* blk_validate_limits() validates bsize, so drivers don't usually need to */ static inline int blk_validate_block_size(unsigned long bsize) { if (bsize < 512 || bsize > PAGE_SIZE || !is_power_of_2(bsize)) return -EINVAL; return 0; } static inline bool blk_op_is_passthrough(blk_opf_t op) { op &= REQ_OP_MASK; return op == REQ_OP_DRV_IN || op == REQ_OP_DRV_OUT; } /* flags set by the driver in queue_limits.features */ typedef unsigned int __bitwise blk_features_t; /* supports a volatile write cache */ #define BLK_FEAT_WRITE_CACHE ((__force blk_features_t)(1u << 0)) /* supports passing on the FUA bit */ #define BLK_FEAT_FUA ((__force blk_features_t)(1u << 1)) /* rotational device (hard drive or floppy) */ #define BLK_FEAT_ROTATIONAL ((__force blk_features_t)(1u << 2)) /* contributes to the random number pool */ #define BLK_FEAT_ADD_RANDOM ((__force blk_features_t)(1u << 3)) /* do disk/partitions IO accounting */ #define BLK_FEAT_IO_STAT ((__force blk_features_t)(1u << 4)) /* don't modify data until writeback is done */ #define BLK_FEAT_STABLE_WRITES ((__force blk_features_t)(1u << 5)) /* always completes in submit context */ #define BLK_FEAT_SYNCHRONOUS ((__force blk_features_t)(1u << 6)) /* supports REQ_NOWAIT */ #define BLK_FEAT_NOWAIT ((__force blk_features_t)(1u << 7)) /* supports DAX */ #define BLK_FEAT_DAX ((__force blk_features_t)(1u << 8)) /* supports I/O polling */ #define BLK_FEAT_POLL ((__force blk_features_t)(1u << 9)) /* is a zoned device */ #define BLK_FEAT_ZONED ((__force blk_features_t)(1u << 10)) /* supports PCI(e) p2p requests */ #define BLK_FEAT_PCI_P2PDMA ((__force blk_features_t)(1u << 12)) /* skip this queue in blk_mq_(un)quiesce_tagset */ #define BLK_FEAT_SKIP_TAGSET_QUIESCE ((__force blk_features_t)(1u << 13)) /* bounce all highmem pages */ #define BLK_FEAT_BOUNCE_HIGH ((__force blk_features_t)(1u << 14)) /* undocumented magic for bcache */ #define BLK_FEAT_RAID_PARTIAL_STRIPES_EXPENSIVE \ ((__force blk_features_t)(1u << 15)) /* * Flags automatically inherited when stacking limits. */ #define BLK_FEAT_INHERIT_MASK \ (BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA | BLK_FEAT_ROTATIONAL | \ BLK_FEAT_STABLE_WRITES | BLK_FEAT_ZONED | BLK_FEAT_BOUNCE_HIGH | \ BLK_FEAT_RAID_PARTIAL_STRIPES_EXPENSIVE) /* internal flags in queue_limits.flags */ typedef unsigned int __bitwise blk_flags_t; /* do not send FLUSH/FUA commands despite advertising a write cache */ #define BLK_FLAG_WRITE_CACHE_DISABLED ((__force blk_flags_t)(1u << 0)) /* I/O topology is misaligned */ #define BLK_FLAG_MISALIGNED ((__force blk_flags_t)(1u << 1)) struct queue_limits { blk_features_t features; blk_flags_t flags; unsigned long seg_boundary_mask; unsigned long virt_boundary_mask; unsigned int max_hw_sectors; unsigned int max_dev_sectors; unsigned int chunk_sectors; unsigned int max_sectors; unsigned int max_user_sectors; unsigned int max_segment_size; unsigned int physical_block_size; unsigned int logical_block_size; unsigned int alignment_offset; unsigned int io_min; unsigned int io_opt; unsigned int max_discard_sectors; unsigned int max_hw_discard_sectors; unsigned int max_user_discard_sectors; unsigned int max_secure_erase_sectors; unsigned int max_write_zeroes_sectors; unsigned int max_zone_append_sectors; unsigned int discard_granularity; unsigned int discard_alignment; unsigned int zone_write_granularity; /* atomic write limits */ unsigned int atomic_write_hw_max; unsigned int atomic_write_max_sectors; unsigned int atomic_write_hw_boundary; unsigned int atomic_write_boundary_sectors; unsigned int atomic_write_hw_unit_min; unsigned int atomic_write_unit_min; unsigned int atomic_write_hw_unit_max; unsigned int atomic_write_unit_max; unsigned short max_segments; unsigned short max_integrity_segments; unsigned short max_discard_segments; unsigned int max_open_zones; unsigned int max_active_zones; /* * Drivers that set dma_alignment to less than 511 must be prepared to * handle individual bvec's that are not a multiple of a SECTOR_SIZE * due to possible offsets. */ unsigned int dma_alignment; unsigned int dma_pad_mask; struct blk_integrity integrity; }; typedef int (*report_zones_cb)(struct blk_zone *zone, unsigned int idx, void *data); #define BLK_ALL_ZONES ((unsigned int)-1) int blkdev_report_zones(struct block_device *bdev, sector_t sector, unsigned int nr_zones, report_zones_cb cb, void *data); int blkdev_zone_mgmt(struct block_device *bdev, enum req_op op, sector_t sectors, sector_t nr_sectors); int blk_revalidate_disk_zones(struct gendisk *disk); /* * Independent access ranges: struct blk_independent_access_range describes * a range of contiguous sectors that can be accessed using device command * execution resources that are independent from the resources used for * other access ranges. This is typically found with single-LUN multi-actuator * HDDs where each access range is served by a different set of heads. * The set of independent ranges supported by the device is defined using * struct blk_independent_access_ranges. The independent ranges must not overlap * and must include all sectors within the disk capacity (no sector holes * allowed). * For a device with multiple ranges, requests targeting sectors in different * ranges can be executed in parallel. A request can straddle an access range * boundary. */ struct blk_independent_access_range { struct kobject kobj; sector_t sector; sector_t nr_sectors; }; struct blk_independent_access_ranges { struct kobject kobj; bool sysfs_registered; unsigned int nr_ia_ranges; struct blk_independent_access_range ia_range[]; }; struct request_queue { /* * The queue owner gets to use this for whatever they like. * ll_rw_blk doesn't touch it. */ void *queuedata; struct elevator_queue *elevator; const struct blk_mq_ops *mq_ops; /* sw queues */ struct blk_mq_ctx __percpu *queue_ctx; /* * various queue flags, see QUEUE_* below */ unsigned long queue_flags; unsigned int rq_timeout; unsigned int queue_depth; refcount_t refs; /* hw dispatch queues */ unsigned int nr_hw_queues; struct xarray hctx_table; struct percpu_ref q_usage_counter; struct request *last_merge; spinlock_t queue_lock; int quiesce_depth; struct gendisk *disk; /* * mq queue kobject */ struct kobject *mq_kobj; struct queue_limits limits; #ifdef CONFIG_PM struct device *dev; enum rpm_status rpm_status; #endif /* * Number of contexts that have called blk_set_pm_only(). If this * counter is above zero then only RQF_PM requests are processed. */ atomic_t pm_only; struct blk_queue_stats *stats; struct rq_qos *rq_qos; struct mutex rq_qos_mutex; /* * ida allocated id for this queue. Used to index queues from * ioctx. */ int id; /* * queue settings */ unsigned long nr_requests; /* Max # of requests */ #ifdef CONFIG_BLK_INLINE_ENCRYPTION struct blk_crypto_profile *crypto_profile; struct kobject *crypto_kobject; #endif struct timer_list timeout; struct work_struct timeout_work; atomic_t nr_active_requests_shared_tags; struct blk_mq_tags *sched_shared_tags; struct list_head icq_list; #ifdef CONFIG_BLK_CGROUP DECLARE_BITMAP (blkcg_pols, BLKCG_MAX_POLS); struct blkcg_gq *root_blkg; struct list_head blkg_list; struct mutex blkcg_mutex; #endif int node; spinlock_t requeue_lock; struct list_head requeue_list; struct delayed_work requeue_work; #ifdef CONFIG_BLK_DEV_IO_TRACE struct blk_trace __rcu *blk_trace; #endif /* * for flush operations */ struct blk_flush_queue *fq; struct list_head flush_list; struct mutex sysfs_lock; struct mutex sysfs_dir_lock; struct mutex limits_lock; /* * for reusing dead hctx instance in case of updating * nr_hw_queues */ struct list_head unused_hctx_list; spinlock_t unused_hctx_lock; int mq_freeze_depth; #ifdef CONFIG_BLK_DEV_THROTTLING /* Throttle data */ struct throtl_data *td; #endif struct rcu_head rcu_head; wait_queue_head_t mq_freeze_wq; /* * Protect concurrent access to q_usage_counter by * percpu_ref_kill() and percpu_ref_reinit(). */ struct mutex mq_freeze_lock; struct blk_mq_tag_set *tag_set; struct list_head tag_set_list; struct dentry *debugfs_dir; struct dentry *sched_debugfs_dir; struct dentry *rqos_debugfs_dir; /* * Serializes all debugfs metadata operations using the above dentries. */ struct mutex debugfs_mutex; bool mq_sysfs_init_done; }; /* Keep blk_queue_flag_name[] in sync with the definitions below */ #define QUEUE_FLAG_STOPPED 0 /* queue is stopped */ #define QUEUE_FLAG_DYING 1 /* queue being torn down */ #define QUEUE_FLAG_NOMERGES 3 /* disable merge attempts */ #define QUEUE_FLAG_SAME_COMP 4 /* complete on same CPU-group */ #define QUEUE_FLAG_FAIL_IO 5 /* fake timeout */ #define QUEUE_FLAG_NOXMERGES 9 /* No extended merges */ #define QUEUE_FLAG_SAME_FORCE 12 /* force complete on same CPU */ #define QUEUE_FLAG_INIT_DONE 14 /* queue is initialized */ #define QUEUE_FLAG_STATS 20 /* track IO start and completion times */ #define QUEUE_FLAG_REGISTERED 22 /* queue has been registered to a disk */ #define QUEUE_FLAG_QUIESCED 24 /* queue has been quiesced */ #define QUEUE_FLAG_RQ_ALLOC_TIME 27 /* record rq->alloc_time_ns */ #define QUEUE_FLAG_HCTX_ACTIVE 28 /* at least one blk-mq hctx is active */ #define QUEUE_FLAG_SQ_SCHED 30 /* single queue style io dispatch */ #define QUEUE_FLAG_MQ_DEFAULT (1UL << QUEUE_FLAG_SAME_COMP) void blk_queue_flag_set(unsigned int flag, struct request_queue *q); void blk_queue_flag_clear(unsigned int flag, struct request_queue *q); #define blk_queue_stopped(q) test_bit(QUEUE_FLAG_STOPPED, &(q)->queue_flags) #define blk_queue_dying(q) test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags) #define blk_queue_init_done(q) test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags) #define blk_queue_nomerges(q) test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags) #define blk_queue_noxmerges(q) \ test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags) #define blk_queue_nonrot(q) (!((q)->limits.features & BLK_FEAT_ROTATIONAL)) #define blk_queue_io_stat(q) ((q)->limits.features & BLK_FEAT_IO_STAT) #define blk_queue_dax(q) ((q)->limits.features & BLK_FEAT_DAX) #define blk_queue_pci_p2pdma(q) ((q)->limits.features & BLK_FEAT_PCI_P2PDMA) #ifdef CONFIG_BLK_RQ_ALLOC_TIME #define blk_queue_rq_alloc_time(q) \ test_bit(QUEUE_FLAG_RQ_ALLOC_TIME, &(q)->queue_flags) #else #define blk_queue_rq_alloc_time(q) false #endif #define blk_noretry_request(rq) \ ((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \ REQ_FAILFAST_DRIVER)) #define blk_queue_quiesced(q) test_bit(QUEUE_FLAG_QUIESCED, &(q)->queue_flags) #define blk_queue_pm_only(q) atomic_read(&(q)->pm_only) #define blk_queue_registered(q) test_bit(QUEUE_FLAG_REGISTERED, &(q)->queue_flags) #define blk_queue_sq_sched(q) test_bit(QUEUE_FLAG_SQ_SCHED, &(q)->queue_flags) #define blk_queue_skip_tagset_quiesce(q) \ ((q)->limits.features & BLK_FEAT_SKIP_TAGSET_QUIESCE) extern void blk_set_pm_only(struct request_queue *q); extern void blk_clear_pm_only(struct request_queue *q); #define list_entry_rq(ptr) list_entry((ptr), struct request, queuelist) #define dma_map_bvec(dev, bv, dir, attrs) \ dma_map_page_attrs(dev, (bv)->bv_page, (bv)->bv_offset, (bv)->bv_len, \ (dir), (attrs)) static inline bool queue_is_mq(struct request_queue *q) { return q->mq_ops; } #ifdef CONFIG_PM static inline enum rpm_status queue_rpm_status(struct request_queue *q) { return q->rpm_status; } #else static inline enum rpm_status queue_rpm_status(struct request_queue *q) { return RPM_ACTIVE; } #endif static inline bool blk_queue_is_zoned(struct request_queue *q) { return IS_ENABLED(CONFIG_BLK_DEV_ZONED) && (q->limits.features & BLK_FEAT_ZONED); } #ifdef CONFIG_BLK_DEV_ZONED static inline unsigned int disk_nr_zones(struct gendisk *disk) { return disk->nr_zones; } bool blk_zone_plug_bio(struct bio *bio, unsigned int nr_segs); #else /* CONFIG_BLK_DEV_ZONED */ static inline unsigned int disk_nr_zones(struct gendisk *disk) { return 0; } static inline bool blk_zone_plug_bio(struct bio *bio, unsigned int nr_segs) { return false; } #endif /* CONFIG_BLK_DEV_ZONED */ static inline unsigned int disk_zone_no(struct gendisk *disk, sector_t sector) { if (!blk_queue_is_zoned(disk->queue)) return 0; return sector >> ilog2(disk->queue->limits.chunk_sectors); } static inline unsigned int bdev_nr_zones(struct block_device *bdev) { return disk_nr_zones(bdev->bd_disk); } static inline unsigned int bdev_max_open_zones(struct block_device *bdev) { return bdev->bd_disk->queue->limits.max_open_zones; } static inline unsigned int bdev_max_active_zones(struct block_device *bdev) { return bdev->bd_disk->queue->limits.max_active_zones; } static inline unsigned int blk_queue_depth(struct request_queue *q) { if (q->queue_depth) return q->queue_depth; return q->nr_requests; } /* * default timeout for SG_IO if none specified */ #define BLK_DEFAULT_SG_TIMEOUT (60 * HZ) #define BLK_MIN_SG_TIMEOUT (7 * HZ) /* This should not be used directly - use rq_for_each_segment */ #define for_each_bio(_bio) \ for (; _bio; _bio = _bio->bi_next) int __must_check device_add_disk(struct device *parent, struct gendisk *disk, const struct attribute_group **groups); static inline int __must_check add_disk(struct gendisk *disk) { return device_add_disk(NULL, disk, NULL); } void del_gendisk(struct gendisk *gp); void invalidate_disk(struct gendisk *disk); void set_disk_ro(struct gendisk *disk, bool read_only); void disk_uevent(struct gendisk *disk, enum kobject_action action); static inline u8 bdev_partno(const struct block_device *bdev) { return atomic_read(&bdev->__bd_flags) & BD_PARTNO; } static inline bool bdev_test_flag(const struct block_device *bdev, unsigned flag) { return atomic_read(&bdev->__bd_flags) & flag; } static inline void bdev_set_flag(struct block_device *bdev, unsigned flag) { atomic_or(flag, &bdev->__bd_flags); } static inline void bdev_clear_flag(struct block_device *bdev, unsigned flag) { atomic_andnot(flag, &bdev->__bd_flags); } static inline int get_disk_ro(struct gendisk *disk) { return bdev_test_flag(disk->part0, BD_READ_ONLY) || test_bit(GD_READ_ONLY, &disk->state); } static inline int bdev_read_only(struct block_device *bdev) { return bdev_test_flag(bdev, BD_READ_ONLY) || get_disk_ro(bdev->bd_disk); } bool set_capacity_and_notify(struct gendisk *disk, sector_t size); void disk_force_media_change(struct gendisk *disk); void bdev_mark_dead(struct block_device *bdev, bool surprise); void add_disk_randomness(struct gendisk *disk) __latent_entropy; void rand_initialize_disk(struct gendisk *disk); static inline sector_t get_start_sect(struct block_device *bdev) { return bdev->bd_start_sect; } static inline sector_t bdev_nr_sectors(struct block_device *bdev) { return bdev->bd_nr_sectors; } static inline loff_t bdev_nr_bytes(struct block_device *bdev) { return (loff_t)bdev_nr_sectors(bdev) << SECTOR_SHIFT; } static inline sector_t get_capacity(struct gendisk *disk) { return bdev_nr_sectors(disk->part0); } static inline u64 sb_bdev_nr_blocks(struct super_block *sb) { return bdev_nr_sectors(sb->s_bdev) >> (sb->s_blocksize_bits - SECTOR_SHIFT); } int bdev_disk_changed(struct gendisk *disk, bool invalidate); void put_disk(struct gendisk *disk); struct gendisk *__blk_alloc_disk(struct queue_limits *lim, int node, struct lock_class_key *lkclass); /** * blk_alloc_disk - allocate a gendisk structure * @lim: queue limits to be used for this disk. * @node_id: numa node to allocate on * * Allocate and pre-initialize a gendisk structure for use with BIO based * drivers. * * Returns an ERR_PTR on error, else the allocated disk. * * Context: can sleep */ #define blk_alloc_disk(lim, node_id) \ ({ \ static struct lock_class_key __key; \ \ __blk_alloc_disk(lim, node_id, &__key); \ }) int __register_blkdev(unsigned int major, const char *name, void (*probe)(dev_t devt)); #define register_blkdev(major, name) \ __register_blkdev(major, name, NULL) void unregister_blkdev(unsigned int major, const char *name); bool disk_check_media_change(struct gendisk *disk); void set_capacity(struct gendisk *disk, sector_t size); #ifdef CONFIG_BLOCK_HOLDER_DEPRECATED int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk); void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk); #else static inline int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk) { return 0; } static inline void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk) { } #endif /* CONFIG_BLOCK_HOLDER_DEPRECATED */ dev_t part_devt(struct gendisk *disk, u8 partno); void inc_diskseq(struct gendisk *disk); void blk_request_module(dev_t devt); extern int blk_register_queue(struct gendisk *disk); extern void blk_unregister_queue(struct gendisk *disk); void submit_bio_noacct(struct bio *bio); struct bio *bio_split_to_limits(struct bio *bio); extern int blk_lld_busy(struct request_queue *q); extern int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags); extern void blk_queue_exit(struct request_queue *q); extern void blk_sync_queue(struct request_queue *q); /* Helper to convert REQ_OP_XXX to its string format XXX */ extern const char *blk_op_str(enum req_op op); int blk_status_to_errno(blk_status_t status); blk_status_t errno_to_blk_status(int errno); const char *blk_status_to_str(blk_status_t status); /* only poll the hardware once, don't continue until a completion was found */ #define BLK_POLL_ONESHOT (1 << 0) int bio_poll(struct bio *bio, struct io_comp_batch *iob, unsigned int flags); int iocb_bio_iopoll(struct kiocb *kiocb, struct io_comp_batch *iob, unsigned int flags); static inline struct request_queue *bdev_get_queue(struct block_device *bdev) { return bdev->bd_queue; /* this is never NULL */ } /* Helper to convert BLK_ZONE_ZONE_XXX to its string format XXX */ const char *blk_zone_cond_str(enum blk_zone_cond zone_cond); static inline unsigned int bio_zone_no(struct bio *bio) { return disk_zone_no(bio->bi_bdev->bd_disk, bio->bi_iter.bi_sector); } static inline bool bio_straddles_zones(struct bio *bio) { return bio_sectors(bio) && bio_zone_no(bio) != disk_zone_no(bio->bi_bdev->bd_disk, bio_end_sector(bio) - 1); } /* * Return how much within the boundary is left to be used for I/O at a given * offset. */ static inline unsigned int blk_boundary_sectors_left(sector_t offset, unsigned int boundary_sectors) { if (unlikely(!is_power_of_2(boundary_sectors))) return boundary_sectors - sector_div(offset, boundary_sectors); return boundary_sectors - (offset & (boundary_sectors - 1)); } /** * queue_limits_start_update - start an atomic update of queue limits * @q: queue to update * * This functions starts an atomic update of the queue limits. It takes a lock * to prevent other updates and returns a snapshot of the current limits that * the caller can modify. The caller must call queue_limits_commit_update() * to finish the update. * * Context: process context. The caller must have frozen the queue or ensured * that there is outstanding I/O by other means. */ static inline struct queue_limits queue_limits_start_update(struct request_queue *q) { mutex_lock(&q->limits_lock); return q->limits; } int queue_limits_commit_update(struct request_queue *q, struct queue_limits *lim); int queue_limits_set(struct request_queue *q, struct queue_limits *lim); /** * queue_limits_cancel_update - cancel an atomic update of queue limits * @q: queue to update * * This functions cancels an atomic update of the queue limits started by * queue_limits_start_update() and should be used when an error occurs after * starting update. */ static inline void queue_limits_cancel_update(struct request_queue *q) { mutex_unlock(&q->limits_lock); } /* * These helpers are for drivers that have sloppy feature negotiation and might * have to disable DISCARD, WRITE_ZEROES or SECURE_DISCARD from the I/O * completion handler when the device returned an indicator that the respective * feature is not actually supported. They are racy and the driver needs to * cope with that. Try to avoid this scheme if you can. */ static inline void blk_queue_disable_discard(struct request_queue *q) { q->limits.max_discard_sectors = 0; } static inline void blk_queue_disable_secure_erase(struct request_queue *q) { q->limits.max_secure_erase_sectors = 0; } static inline void blk_queue_disable_write_zeroes(struct request_queue *q) { q->limits.max_write_zeroes_sectors = 0; } /* * Access functions for manipulating queue properties */ extern void blk_limits_io_min(struct queue_limits *limits, unsigned int min); extern void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt); extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth); extern void blk_set_stacking_limits(struct queue_limits *lim); extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b, sector_t offset); void queue_limits_stack_bdev(struct queue_limits *t, struct block_device *bdev, sector_t offset, const char *pfx); extern void blk_queue_rq_timeout(struct request_queue *, unsigned int); struct blk_independent_access_ranges * disk_alloc_independent_access_ranges(struct gendisk *disk, int nr_ia_ranges); void disk_set_independent_access_ranges(struct gendisk *disk, struct blk_independent_access_ranges *iars); bool __must_check blk_get_queue(struct request_queue *); extern void blk_put_queue(struct request_queue *); void blk_mark_disk_dead(struct gendisk *disk); #ifdef CONFIG_BLOCK /* * blk_plug permits building a queue of related requests by holding the I/O * fragments for a short period. This allows merging of sequential requests * into single larger request. As the requests are moved from a per-task list to * the device's request_queue in a batch, this results in improved scalability * as the lock contention for request_queue lock is reduced. * * It is ok not to disable preemption when adding the request to the plug list * or when attempting a merge. For details, please see schedule() where * blk_flush_plug() is called. */ struct blk_plug { struct request *mq_list; /* blk-mq requests */ /* if ios_left is > 1, we can batch tag/rq allocations */ struct request *cached_rq; u64 cur_ktime; unsigned short nr_ios; unsigned short rq_count; bool multiple_queues; bool has_elevator; struct list_head cb_list; /* md requires an unplug callback */ }; struct blk_plug_cb; typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool); struct blk_plug_cb { struct list_head list; blk_plug_cb_fn callback; void *data; }; extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data, int size); extern void blk_start_plug(struct blk_plug *); extern void blk_start_plug_nr_ios(struct blk_plug *, unsigned short); extern void blk_finish_plug(struct blk_plug *); void __blk_flush_plug(struct blk_plug *plug, bool from_schedule); static inline void blk_flush_plug(struct blk_plug *plug, bool async) { if (plug) __blk_flush_plug(plug, async); } /* * tsk == current here */ static inline void blk_plug_invalidate_ts(struct task_struct *tsk) { struct blk_plug *plug = tsk->plug; if (plug) plug->cur_ktime = 0; current->flags &= ~PF_BLOCK_TS; } int blkdev_issue_flush(struct block_device *bdev); long nr_blockdev_pages(void); #else /* CONFIG_BLOCK */ struct blk_plug { }; static inline void blk_start_plug_nr_ios(struct blk_plug *plug, unsigned short nr_ios) { } static inline void blk_start_plug(struct blk_plug *plug) { } static inline void blk_finish_plug(struct blk_plug *plug) { } static inline void blk_flush_plug(struct blk_plug *plug, bool async) { } static inline void blk_plug_invalidate_ts(struct task_struct *tsk) { } static inline int blkdev_issue_flush(struct block_device *bdev) { return 0; } static inline long nr_blockdev_pages(void) { return 0; } #endif /* CONFIG_BLOCK */ extern void blk_io_schedule(void); int blkdev_issue_discard(struct block_device *bdev, sector_t sector, sector_t nr_sects, gfp_t gfp_mask); int __blkdev_issue_discard(struct block_device *bdev, sector_t sector, sector_t nr_sects, gfp_t gfp_mask, struct bio **biop); int blkdev_issue_secure_erase(struct block_device *bdev, sector_t sector, sector_t nr_sects, gfp_t gfp); #define BLKDEV_ZERO_NOUNMAP (1 << 0) /* do not free blocks */ #define BLKDEV_ZERO_NOFALLBACK (1 << 1) /* don't write explicit zeroes */ #define BLKDEV_ZERO_KILLABLE (1 << 2) /* interruptible by fatal signals */ extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector, sector_t nr_sects, gfp_t gfp_mask, struct bio **biop, unsigned flags); extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector, sector_t nr_sects, gfp_t gfp_mask, unsigned flags); static inline int sb_issue_discard(struct super_block *sb, sector_t block, sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags) { return blkdev_issue_discard(sb->s_bdev, block << (sb->s_blocksize_bits - SECTOR_SHIFT), nr_blocks << (sb->s_blocksize_bits - SECTOR_SHIFT), gfp_mask); } static inline int sb_issue_zeroout(struct super_block *sb, sector_t block, sector_t nr_blocks, gfp_t gfp_mask) { return blkdev_issue_zeroout(sb->s_bdev, block << (sb->s_blocksize_bits - SECTOR_SHIFT), nr_blocks << (sb->s_blocksize_bits - SECTOR_SHIFT), gfp_mask, 0); } static inline bool bdev_is_partition(struct block_device *bdev) { return bdev_partno(bdev) != 0; } enum blk_default_limits { BLK_MAX_SEGMENTS = 128, BLK_SAFE_MAX_SECTORS = 255, BLK_MAX_SEGMENT_SIZE = 65536, BLK_SEG_BOUNDARY_MASK = 0xFFFFFFFFUL, }; /* * Default upper limit for the software max_sectors limit used for * regular file system I/O. This can be increased through sysfs. * * Not to be confused with the max_hw_sector limit that is entirely * controlled by the driver, usually based on hardware limits. */ #define BLK_DEF_MAX_SECTORS_CAP 2560u static inline unsigned long queue_segment_boundary(const struct request_queue *q) { return q->limits.seg_boundary_mask; } static inline unsigned long queue_virt_boundary(const struct request_queue *q) { return q->limits.virt_boundary_mask; } static inline unsigned int queue_max_sectors(const struct request_queue *q) { return q->limits.max_sectors; } static inline unsigned int queue_max_bytes(struct request_queue *q) { return min_t(unsigned int, queue_max_sectors(q), INT_MAX >> 9) << 9; } static inline unsigned int queue_max_hw_sectors(const struct request_queue *q) { return q->limits.max_hw_sectors; } static inline unsigned short queue_max_segments(const struct request_queue *q) { return q->limits.max_segments; } static inline unsigned short queue_max_discard_segments(const struct request_queue *q) { return q->limits.max_discard_segments; } static inline unsigned int queue_max_segment_size(const struct request_queue *q) { return q->limits.max_segment_size; } static inline unsigned int queue_limits_max_zone_append_sectors(struct queue_limits *l) { unsigned int max_sectors = min(l->chunk_sectors, l->max_hw_sectors); return min_not_zero(l->max_zone_append_sectors, max_sectors); } static inline unsigned int queue_max_zone_append_sectors(struct request_queue *q) { if (!blk_queue_is_zoned(q)) return 0; return queue_limits_max_zone_append_sectors(&q->limits); } static inline bool queue_emulates_zone_append(struct request_queue *q) { return blk_queue_is_zoned(q) && !q->limits.max_zone_append_sectors; } static inline bool bdev_emulates_zone_append(struct block_device *bdev) { return queue_emulates_zone_append(bdev_get_queue(bdev)); } static inline unsigned int bdev_max_zone_append_sectors(struct block_device *bdev) { return queue_max_zone_append_sectors(bdev_get_queue(bdev)); } static inline unsigned int bdev_max_segments(struct block_device *bdev) { return queue_max_segments(bdev_get_queue(bdev)); } static inline unsigned queue_logical_block_size(const struct request_queue *q) { return q->limits.logical_block_size; } static inline unsigned int bdev_logical_block_size(struct block_device *bdev) { return queue_logical_block_size(bdev_get_queue(bdev)); } static inline unsigned int queue_physical_block_size(const struct request_queue *q) { return q->limits.physical_block_size; } static inline unsigned int bdev_physical_block_size(struct block_device *bdev) { return queue_physical_block_size(bdev_get_queue(bdev)); } static inline unsigned int queue_io_min(const struct request_queue *q) { return q->limits.io_min; } static inline int bdev_io_min(struct block_device *bdev) { return queue_io_min(bdev_get_queue(bdev)); } static inline unsigned int queue_io_opt(const struct request_queue *q) { return q->limits.io_opt; } static inline int bdev_io_opt(struct block_device *bdev) { return queue_io_opt(bdev_get_queue(bdev)); } static inline unsigned int queue_zone_write_granularity(const struct request_queue *q) { return q->limits.zone_write_granularity; } static inline unsigned int bdev_zone_write_granularity(struct block_device *bdev) { return queue_zone_write_granularity(bdev_get_queue(bdev)); } int bdev_alignment_offset(struct block_device *bdev); unsigned int bdev_discard_alignment(struct block_device *bdev); static inline unsigned int bdev_max_discard_sectors(struct block_device *bdev) { return bdev_get_queue(bdev)->limits.max_discard_sectors; } static inline unsigned int bdev_discard_granularity(struct block_device *bdev) { return bdev_get_queue(bdev)->limits.discard_granularity; } static inline unsigned int bdev_max_secure_erase_sectors(struct block_device *bdev) { return bdev_get_queue(bdev)->limits.max_secure_erase_sectors; } static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev) { struct request_queue *q = bdev_get_queue(bdev); if (q) return q->limits.max_write_zeroes_sectors; return 0; } static inline bool bdev_nonrot(struct block_device *bdev) { return blk_queue_nonrot(bdev_get_queue(bdev)); } static inline bool bdev_synchronous(struct block_device *bdev) { return bdev->bd_disk->queue->limits.features & BLK_FEAT_SYNCHRONOUS; } static inline bool bdev_stable_writes(struct block_device *bdev) { struct request_queue *q = bdev_get_queue(bdev); if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) && q->limits.integrity.csum_type != BLK_INTEGRITY_CSUM_NONE) return true; return q->limits.features & BLK_FEAT_STABLE_WRITES; } static inline bool blk_queue_write_cache(struct request_queue *q) { return (q->limits.features & BLK_FEAT_WRITE_CACHE) && !(q->limits.flags & BLK_FLAG_WRITE_CACHE_DISABLED); } static inline bool bdev_write_cache(struct block_device *bdev) { return blk_queue_write_cache(bdev_get_queue(bdev)); } static inline bool bdev_fua(struct block_device *bdev) { return bdev_get_queue(bdev)->limits.features & BLK_FEAT_FUA; } static inline bool bdev_nowait(struct block_device *bdev) { return bdev->bd_disk->queue->limits.features & BLK_FEAT_NOWAIT; } static inline bool bdev_is_zoned(struct block_device *bdev) { return blk_queue_is_zoned(bdev_get_queue(bdev)); } static inline unsigned int bdev_zone_no(struct block_device *bdev, sector_t sec) { return disk_zone_no(bdev->bd_disk, sec); } static inline sector_t bdev_zone_sectors(struct block_device *bdev) { struct request_queue *q = bdev_get_queue(bdev); if (!blk_queue_is_zoned(q)) return 0; return q->limits.chunk_sectors; } static inline sector_t bdev_offset_from_zone_start(struct block_device *bdev, sector_t sector) { return sector & (bdev_zone_sectors(bdev) - 1); } static inline sector_t bio_offset_from_zone_start(struct bio *bio) { return bdev_offset_from_zone_start(bio->bi_bdev, bio->bi_iter.bi_sector); } static inline bool bdev_is_zone_start(struct block_device *bdev, sector_t sector) { return bdev_offset_from_zone_start(bdev, sector) == 0; } static inline int queue_dma_alignment(const struct request_queue *q) { return q->limits.dma_alignment; } static inline unsigned int queue_atomic_write_unit_max_bytes(const struct request_queue *q) { return q->limits.atomic_write_unit_max; } static inline unsigned int queue_atomic_write_unit_min_bytes(const struct request_queue *q) { return q->limits.atomic_write_unit_min; } static inline unsigned int queue_atomic_write_boundary_bytes(const struct request_queue *q) { return q->limits.atomic_write_boundary_sectors << SECTOR_SHIFT; } static inline unsigned int queue_atomic_write_max_bytes(const struct request_queue *q) { return q->limits.atomic_write_max_sectors << SECTOR_SHIFT; } static inline unsigned int bdev_dma_alignment(struct block_device *bdev) { return queue_dma_alignment(bdev_get_queue(bdev)); } static inline bool bdev_iter_is_aligned(struct block_device *bdev, struct iov_iter *iter) { return iov_iter_is_aligned(iter, bdev_dma_alignment(bdev), bdev_logical_block_size(bdev) - 1); } static inline int blk_lim_dma_alignment_and_pad(struct queue_limits *lim) { return lim->dma_alignment | lim->dma_pad_mask; } static inline int blk_rq_aligned(struct request_queue *q, unsigned long addr, unsigned int len) { unsigned int alignment = blk_lim_dma_alignment_and_pad(&q->limits); return !(addr & alignment) && !(len & alignment); } /* assumes size > 256 */ static inline unsigned int blksize_bits(unsigned int size) { return order_base_2(size >> SECTOR_SHIFT) + SECTOR_SHIFT; } int kblockd_schedule_work(struct work_struct *work); int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay); #define MODULE_ALIAS_BLOCKDEV(major,minor) \ MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor)) #define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \ MODULE_ALIAS("block-major-" __stringify(major) "-*") #ifdef CONFIG_BLK_INLINE_ENCRYPTION bool blk_crypto_register(struct blk_crypto_profile *profile, struct request_queue *q); #else /* CONFIG_BLK_INLINE_ENCRYPTION */ static inline bool blk_crypto_register(struct blk_crypto_profile *profile, struct request_queue *q) { return true; } #endif /* CONFIG_BLK_INLINE_ENCRYPTION */ enum blk_unique_id { /* these match the Designator Types specified in SPC */ BLK_UID_T10 = 1, BLK_UID_EUI64 = 2, BLK_UID_NAA = 3, }; struct block_device_operations { void (*submit_bio)(struct bio *bio); int (*poll_bio)(struct bio *bio, struct io_comp_batch *iob, unsigned int flags); int (*open)(struct gendisk *disk, blk_mode_t mode); void (*release)(struct gendisk *disk); int (*ioctl)(struct block_device *bdev, blk_mode_t mode, unsigned cmd, unsigned long arg); int (*compat_ioctl)(struct block_device *bdev, blk_mode_t mode, unsigned cmd, unsigned long arg); unsigned int (*check_events) (struct gendisk *disk, unsigned int clearing); void (*unlock_native_capacity) (struct gendisk *); int (*getgeo)(struct block_device *, struct hd_geometry *); int (*set_read_only)(struct block_device *bdev, bool ro); void (*free_disk)(struct gendisk *disk); /* this callback is with swap_lock and sometimes page table lock held */ void (*swap_slot_free_notify) (struct block_device *, unsigned long); int (*report_zones)(struct gendisk *, sector_t sector, unsigned int nr_zones, report_zones_cb cb, void *data); char *(*devnode)(struct gendisk *disk, umode_t *mode); /* returns the length of the identifier or a negative errno: */ int (*get_unique_id)(struct gendisk *disk, u8 id[16], enum blk_unique_id id_type); struct module *owner; const struct pr_ops *pr_ops; /* * Special callback for probing GPT entry at a given sector. * Needed by Android devices, used by GPT scanner and MMC blk * driver. */ int (*alternative_gpt_sector)(struct gendisk *disk, sector_t *sector); }; #ifdef CONFIG_COMPAT extern int blkdev_compat_ptr_ioctl(struct block_device *, blk_mode_t, unsigned int, unsigned long); #else #define blkdev_compat_ptr_ioctl NULL #endif static inline void blk_wake_io_task(struct task_struct *waiter) { /* * If we're polling, the task itself is doing the completions. For * that case, we don't need to signal a wakeup, it's enough to just * mark us as RUNNING. */ if (waiter == current) __set_current_state(TASK_RUNNING); else wake_up_process(waiter); } unsigned long bdev_start_io_acct(struct block_device *bdev, enum req_op op, unsigned long start_time); void bdev_end_io_acct(struct block_device *bdev, enum req_op op, unsigned int sectors, unsigned long start_time); unsigned long bio_start_io_acct(struct bio *bio); void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time, struct block_device *orig_bdev); /** * bio_end_io_acct - end I/O accounting for bio based drivers * @bio: bio to end account for * @start_time: start time returned by bio_start_io_acct() */ static inline void bio_end_io_acct(struct bio *bio, unsigned long start_time) { return bio_end_io_acct_remapped(bio, start_time, bio->bi_bdev); } int bdev_read_only(struct block_device *bdev); int set_blocksize(struct file *file, int size); int lookup_bdev(const char *pathname, dev_t *dev); void blkdev_show(struct seq_file *seqf, off_t offset); #define BDEVNAME_SIZE 32 /* Largest string for a blockdev identifier */ #define BDEVT_SIZE 10 /* Largest string for MAJ:MIN for blkdev */ #ifdef CONFIG_BLOCK #define BLKDEV_MAJOR_MAX 512 #else #define BLKDEV_MAJOR_MAX 0 #endif struct blk_holder_ops { void (*mark_dead)(struct block_device *bdev, bool surprise); /* * Sync the file system mounted on the block device. */ void (*sync)(struct block_device *bdev); /* * Freeze the file system mounted on the block device. */ int (*freeze)(struct block_device *bdev); /* * Thaw the file system mounted on the block device. */ int (*thaw)(struct block_device *bdev); }; /* * For filesystems using @fs_holder_ops, the @holder argument passed to * helpers used to open and claim block devices via * bd_prepare_to_claim() must point to a superblock. */ extern const struct blk_holder_ops fs_holder_ops; /* * Return the correct open flags for blkdev_get_by_* for super block flags * as stored in sb->s_flags. */ #define sb_open_mode(flags) \ (BLK_OPEN_READ | BLK_OPEN_RESTRICT_WRITES | \ (((flags) & SB_RDONLY) ? 0 : BLK_OPEN_WRITE)) struct file *bdev_file_open_by_dev(dev_t dev, blk_mode_t mode, void *holder, const struct blk_holder_ops *hops); struct file *bdev_file_open_by_path(const char *path, blk_mode_t mode, void *holder, const struct blk_holder_ops *hops); int bd_prepare_to_claim(struct block_device *bdev, void *holder, const struct blk_holder_ops *hops); void bd_abort_claiming(struct block_device *bdev, void *holder); /* just for blk-cgroup, don't use elsewhere */ struct block_device *blkdev_get_no_open(dev_t dev); void blkdev_put_no_open(struct block_device *bdev); struct block_device *I_BDEV(struct inode *inode); struct block_device *file_bdev(struct file *bdev_file); bool disk_live(struct gendisk *disk); unsigned int block_size(struct block_device *bdev); #ifdef CONFIG_BLOCK void invalidate_bdev(struct block_device *bdev); int sync_blockdev(struct block_device *bdev); int sync_blockdev_range(struct block_device *bdev, loff_t lstart, loff_t lend); int sync_blockdev_nowait(struct block_device *bdev); void sync_bdevs(bool wait); void bdev_statx(struct path *, struct kstat *, u32); void printk_all_partitions(void); int __init early_lookup_bdev(const char *pathname, dev_t *dev); #else static inline void invalidate_bdev(struct block_device *bdev) { } static inline int sync_blockdev(struct block_device *bdev) { return 0; } static inline int sync_blockdev_nowait(struct block_device *bdev) { return 0; } static inline void sync_bdevs(bool wait) { } static inline void bdev_statx(struct path *path, struct kstat *stat, u32 request_mask) { } static inline void printk_all_partitions(void) { } static inline int early_lookup_bdev(const char *pathname, dev_t *dev) { return -EINVAL; } #endif /* CONFIG_BLOCK */ int bdev_freeze(struct block_device *bdev); int bdev_thaw(struct block_device *bdev); void bdev_fput(struct file *bdev_file); struct io_comp_batch { struct request *req_list; bool need_ts; void (*complete)(struct io_comp_batch *); }; static inline bool bdev_can_atomic_write(struct block_device *bdev) { struct request_queue *bd_queue = bdev->bd_queue; struct queue_limits *limits = &bd_queue->limits; if (!limits->atomic_write_unit_min) return false; if (bdev_is_partition(bdev)) { sector_t bd_start_sect = bdev->bd_start_sect; unsigned int alignment = max(limits->atomic_write_unit_min, limits->atomic_write_hw_boundary); if (!IS_ALIGNED(bd_start_sect, alignment >> SECTOR_SHIFT)) return false; } return true; } #define DEFINE_IO_COMP_BATCH(name) struct io_comp_batch name = { } #endif /* _LINUX_BLKDEV_H */