/* SPDX-License-Identifier: GPL-2.0 */ #ifndef BLK_MQ_H #define BLK_MQ_H #include #include #include #include struct blk_mq_tags; struct blk_flush_queue; /** * struct blk_mq_hw_ctx - State for a hardware queue facing the hardware * block device */ struct blk_mq_hw_ctx { struct { /** @lock: Protects the dispatch list. */ spinlock_t lock; /** * @dispatch: Used for requests that are ready to be * dispatched to the hardware but for some reason (e.g. lack of * resources) could not be sent to the hardware. As soon as the * driver can send new requests, requests at this list will * be sent first for a fairer dispatch. */ struct list_head dispatch; /** * @state: BLK_MQ_S_* flags. Defines the state of the hw * queue (active, scheduled to restart, stopped). */ unsigned long state; } ____cacheline_aligned_in_smp; /** * @run_work: Used for scheduling a hardware queue run at a later time. */ struct delayed_work run_work; /** @cpumask: Map of available CPUs where this hctx can run. */ cpumask_var_t cpumask; /** * @next_cpu: Used by blk_mq_hctx_next_cpu() for round-robin CPU * selection from @cpumask. */ int next_cpu; /** * @next_cpu_batch: Counter of how many works left in the batch before * changing to the next CPU. */ int next_cpu_batch; /** @flags: BLK_MQ_F_* flags. Defines the behaviour of the queue. */ unsigned long flags; /** * @sched_data: Pointer owned by the IO scheduler attached to a request * queue. It's up to the IO scheduler how to use this pointer. */ void *sched_data; /** * @queue: Pointer to the request queue that owns this hardware context. */ struct request_queue *queue; /** @fq: Queue of requests that need to perform a flush operation. */ struct blk_flush_queue *fq; /** * @driver_data: Pointer to data owned by the block driver that created * this hctx */ void *driver_data; /** * @ctx_map: Bitmap for each software queue. If bit is on, there is a * pending request in that software queue. */ struct sbitmap ctx_map; /** * @dispatch_from: Software queue to be used when no scheduler was * selected. */ struct blk_mq_ctx *dispatch_from; /** * @dispatch_busy: Number used by blk_mq_update_dispatch_busy() to * decide if the hw_queue is busy using Exponential Weighted Moving * Average algorithm. */ unsigned int dispatch_busy; /** @type: HCTX_TYPE_* flags. Type of hardware queue. */ unsigned short type; /** @nr_ctx: Number of software queues. */ unsigned short nr_ctx; /** @ctxs: Array of software queues. */ struct blk_mq_ctx **ctxs; /** @dispatch_wait_lock: Lock for dispatch_wait queue. */ spinlock_t dispatch_wait_lock; /** * @dispatch_wait: Waitqueue to put requests when there is no tag * available at the moment, to wait for another try in the future. */ wait_queue_entry_t dispatch_wait; /** * @wait_index: Index of next available dispatch_wait queue to insert * requests. */ atomic_t wait_index; /** * @tags: Tags owned by the block driver. A tag at this set is only * assigned when a request is dispatched from a hardware queue. */ struct blk_mq_tags *tags; /** * @sched_tags: Tags owned by I/O scheduler. If there is an I/O * scheduler associated with a request queue, a tag is assigned when * that request is allocated. Else, this member is not used. */ struct blk_mq_tags *sched_tags; /** @queued: Number of queued requests. */ unsigned long queued; /** @run: Number of dispatched requests. */ unsigned long run; #define BLK_MQ_MAX_DISPATCH_ORDER 7 /** @dispatched: Number of dispatch requests by queue. */ unsigned long dispatched[BLK_MQ_MAX_DISPATCH_ORDER]; /** @numa_node: NUMA node the storage adapter has been connected to. */ unsigned int numa_node; /** @queue_num: Index of this hardware queue. */ unsigned int queue_num; /** * @nr_active: Number of active requests. Only used when a tag set is * shared across request queues. */ atomic_t nr_active; /** * @elevator_queued: Number of queued requests on hctx. */ atomic_t elevator_queued; /** @cpuhp_online: List to store request if CPU is going to die */ struct hlist_node cpuhp_online; /** @cpuhp_dead: List to store request if some CPU die. */ struct hlist_node cpuhp_dead; /** @kobj: Kernel object for sysfs. */ struct kobject kobj; /** @poll_considered: Count times blk_poll() was called. */ unsigned long poll_considered; /** @poll_invoked: Count how many requests blk_poll() polled. */ unsigned long poll_invoked; /** @poll_success: Count how many polled requests were completed. */ unsigned long poll_success; #ifdef CONFIG_BLK_DEBUG_FS /** * @debugfs_dir: debugfs directory for this hardware queue. Named * as cpu. */ struct dentry *debugfs_dir; /** @sched_debugfs_dir: debugfs directory for the scheduler. */ struct dentry *sched_debugfs_dir; #endif /** * @hctx_list: if this hctx is not in use, this is an entry in * q->unused_hctx_list. */ struct list_head hctx_list; /** * @srcu: Sleepable RCU. Use as lock when type of the hardware queue is * blocking (BLK_MQ_F_BLOCKING). Must be the last member - see also * blk_mq_hw_ctx_size(). */ struct srcu_struct srcu[]; }; /** * struct blk_mq_queue_map - Map software queues to hardware queues * @mq_map: CPU ID to hardware queue index map. This is an array * with nr_cpu_ids elements. Each element has a value in the range * [@queue_offset, @queue_offset + @nr_queues). * @nr_queues: Number of hardware queues to map CPU IDs onto. * @queue_offset: First hardware queue to map onto. Used by the PCIe NVMe * driver to map each hardware queue type (enum hctx_type) onto a distinct * set of hardware queues. */ struct blk_mq_queue_map { unsigned int *mq_map; unsigned int nr_queues; unsigned int queue_offset; }; /** * enum hctx_type - Type of hardware queue * @HCTX_TYPE_DEFAULT: All I/O not otherwise accounted for. * @HCTX_TYPE_READ: Just for READ I/O. * @HCTX_TYPE_POLL: Polled I/O of any kind. * @HCTX_MAX_TYPES: Number of types of hctx. */ enum hctx_type { HCTX_TYPE_DEFAULT, HCTX_TYPE_READ, HCTX_TYPE_POLL, HCTX_MAX_TYPES, }; /** * struct blk_mq_tag_set - tag set that can be shared between request queues * @map: One or more ctx -> hctx mappings. One map exists for each * hardware queue type (enum hctx_type) that the driver wishes * to support. There are no restrictions on maps being of the * same size, and it's perfectly legal to share maps between * types. * @nr_maps: Number of elements in the @map array. A number in the range * [1, HCTX_MAX_TYPES]. * @ops: Pointers to functions that implement block driver behavior. * @nr_hw_queues: Number of hardware queues supported by the block driver that * owns this data structure. * @queue_depth: Number of tags per hardware queue, reserved tags included. * @reserved_tags: Number of tags to set aside for BLK_MQ_REQ_RESERVED tag * allocations. * @cmd_size: Number of additional bytes to allocate per request. The block * driver owns these additional bytes. * @numa_node: NUMA node the storage adapter has been connected to. * @timeout: Request processing timeout in jiffies. * @flags: Zero or more BLK_MQ_F_* flags. * @driver_data: Pointer to data owned by the block driver that created this * tag set. * @active_queues_shared_sbitmap: * number of active request queues per tag set. * @__bitmap_tags: A shared tags sbitmap, used over all hctx's * @__breserved_tags: * A shared reserved tags sbitmap, used over all hctx's * @tags: Tag sets. One tag set per hardware queue. Has @nr_hw_queues * elements. * @tag_list_lock: Serializes tag_list accesses. * @tag_list: List of the request queues that use this tag set. See also * request_queue.tag_set_list. */ struct blk_mq_tag_set { struct blk_mq_queue_map map[HCTX_MAX_TYPES]; unsigned int nr_maps; const struct blk_mq_ops *ops; unsigned int nr_hw_queues; unsigned int queue_depth; unsigned int reserved_tags; unsigned int cmd_size; int numa_node; unsigned int timeout; unsigned int flags; void *driver_data; atomic_t active_queues_shared_sbitmap; struct sbitmap_queue __bitmap_tags; struct sbitmap_queue __breserved_tags; struct blk_mq_tags **tags; struct mutex tag_list_lock; struct list_head tag_list; }; /** * struct blk_mq_queue_data - Data about a request inserted in a queue * * @rq: Request pointer. * @last: If it is the last request in the queue. */ struct blk_mq_queue_data { struct request *rq; bool last; }; typedef bool (busy_iter_fn)(struct blk_mq_hw_ctx *, struct request *, void *, bool); typedef bool (busy_tag_iter_fn)(struct request *, void *, bool); /** * struct blk_mq_ops - Callback functions that implements block driver * behaviour. */ struct blk_mq_ops { /** * @queue_rq: Queue a new request from block IO. */ blk_status_t (*queue_rq)(struct blk_mq_hw_ctx *, const struct blk_mq_queue_data *); /** * @commit_rqs: If a driver uses bd->last to judge when to submit * requests to hardware, it must define this function. In case of errors * that make us stop issuing further requests, this hook serves the * purpose of kicking the hardware (which the last request otherwise * would have done). */ void (*commit_rqs)(struct blk_mq_hw_ctx *); /** * @get_budget: Reserve budget before queue request, once .queue_rq is * run, it is driver's responsibility to release the * reserved budget. Also we have to handle failure case * of .get_budget for avoiding I/O deadlock. */ bool (*get_budget)(struct request_queue *); /** * @put_budget: Release the reserved budget. */ void (*put_budget)(struct request_queue *); /** * @timeout: Called on request timeout. */ enum blk_eh_timer_return (*timeout)(struct request *, bool); /** * @poll: Called to poll for completion of a specific tag. */ int (*poll)(struct blk_mq_hw_ctx *); /** * @complete: Mark the request as complete. */ void (*complete)(struct request *); /** * @init_hctx: Called when the block layer side of a hardware queue has * been set up, allowing the driver to allocate/init matching * structures. */ int (*init_hctx)(struct blk_mq_hw_ctx *, void *, unsigned int); /** * @exit_hctx: Ditto for exit/teardown. */ void (*exit_hctx)(struct blk_mq_hw_ctx *, unsigned int); /** * @init_request: Called for every command allocated by the block layer * to allow the driver to set up driver specific data. * * Tag greater than or equal to queue_depth is for setting up * flush request. */ int (*init_request)(struct blk_mq_tag_set *set, struct request *, unsigned int, unsigned int); /** * @exit_request: Ditto for exit/teardown. */ void (*exit_request)(struct blk_mq_tag_set *set, struct request *, unsigned int); /** * @initialize_rq_fn: Called from inside blk_get_request(). */ void (*initialize_rq_fn)(struct request *rq); /** * @cleanup_rq: Called before freeing one request which isn't completed * yet, and usually for freeing the driver private data. */ void (*cleanup_rq)(struct request *); /** * @busy: If set, returns whether or not this queue currently is busy. */ bool (*busy)(struct request_queue *); /** * @map_queues: This allows drivers specify their own queue mapping by * overriding the setup-time function that builds the mq_map. */ int (*map_queues)(struct blk_mq_tag_set *set); #ifdef CONFIG_BLK_DEBUG_FS /** * @show_rq: Used by the debugfs implementation to show driver-specific * information about a request. */ void (*show_rq)(struct seq_file *m, struct request *rq); #endif }; enum { BLK_MQ_F_SHOULD_MERGE = 1 << 0, BLK_MQ_F_TAG_QUEUE_SHARED = 1 << 1, /* * Set when this device requires underlying blk-mq device for * completing IO: */ BLK_MQ_F_STACKING = 1 << 2, BLK_MQ_F_TAG_HCTX_SHARED = 1 << 3, BLK_MQ_F_BLOCKING = 1 << 5, BLK_MQ_F_NO_SCHED = 1 << 6, BLK_MQ_F_ALLOC_POLICY_START_BIT = 8, BLK_MQ_F_ALLOC_POLICY_BITS = 1, BLK_MQ_S_STOPPED = 0, BLK_MQ_S_TAG_ACTIVE = 1, BLK_MQ_S_SCHED_RESTART = 2, /* hw queue is inactive after all its CPUs become offline */ BLK_MQ_S_INACTIVE = 3, BLK_MQ_MAX_DEPTH = 10240, BLK_MQ_CPU_WORK_BATCH = 8, }; #define BLK_MQ_FLAG_TO_ALLOC_POLICY(flags) \ ((flags >> BLK_MQ_F_ALLOC_POLICY_START_BIT) & \ ((1 << BLK_MQ_F_ALLOC_POLICY_BITS) - 1)) #define BLK_ALLOC_POLICY_TO_MQ_FLAG(policy) \ ((policy & ((1 << BLK_MQ_F_ALLOC_POLICY_BITS) - 1)) \ << BLK_MQ_F_ALLOC_POLICY_START_BIT) struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *); struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set, void *queuedata); struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set, struct request_queue *q, bool elevator_init); struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set, const struct blk_mq_ops *ops, unsigned int queue_depth, unsigned int set_flags); void blk_mq_unregister_dev(struct device *, struct request_queue *); int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set); void blk_mq_free_tag_set(struct blk_mq_tag_set *set); void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule); void blk_mq_free_request(struct request *rq); bool blk_mq_queue_inflight(struct request_queue *q); enum { /* return when out of requests */ BLK_MQ_REQ_NOWAIT = (__force blk_mq_req_flags_t)(1 << 0), /* allocate from reserved pool */ BLK_MQ_REQ_RESERVED = (__force blk_mq_req_flags_t)(1 << 1), /* set RQF_PREEMPT */ BLK_MQ_REQ_PREEMPT = (__force blk_mq_req_flags_t)(1 << 3), }; struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op, blk_mq_req_flags_t flags); struct request *blk_mq_alloc_request_hctx(struct request_queue *q, unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx); struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag); enum { BLK_MQ_UNIQUE_TAG_BITS = 16, BLK_MQ_UNIQUE_TAG_MASK = (1 << BLK_MQ_UNIQUE_TAG_BITS) - 1, }; u32 blk_mq_unique_tag(struct request *rq); static inline u16 blk_mq_unique_tag_to_hwq(u32 unique_tag) { return unique_tag >> BLK_MQ_UNIQUE_TAG_BITS; } static inline u16 blk_mq_unique_tag_to_tag(u32 unique_tag) { return unique_tag & BLK_MQ_UNIQUE_TAG_MASK; } /** * blk_mq_rq_state() - read the current MQ_RQ_* state of a request * @rq: target request. */ static inline enum mq_rq_state blk_mq_rq_state(struct request *rq) { return READ_ONCE(rq->state); } static inline int blk_mq_request_started(struct request *rq) { return blk_mq_rq_state(rq) != MQ_RQ_IDLE; } static inline int blk_mq_request_completed(struct request *rq) { return blk_mq_rq_state(rq) == MQ_RQ_COMPLETE; } void blk_mq_start_request(struct request *rq); void blk_mq_end_request(struct request *rq, blk_status_t error); void __blk_mq_end_request(struct request *rq, blk_status_t error); void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list); void blk_mq_kick_requeue_list(struct request_queue *q); void blk_mq_delay_kick_requeue_list(struct request_queue *q, unsigned long msecs); void blk_mq_complete_request(struct request *rq); bool blk_mq_complete_request_remote(struct request *rq); bool blk_mq_queue_stopped(struct request_queue *q); void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx); void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx); void blk_mq_stop_hw_queues(struct request_queue *q); void blk_mq_start_hw_queues(struct request_queue *q); void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async); void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async); void blk_mq_quiesce_queue(struct request_queue *q); void blk_mq_unquiesce_queue(struct request_queue *q); void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs); void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async); void blk_mq_run_hw_queues(struct request_queue *q, bool async); void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs); void blk_mq_tagset_busy_iter(struct blk_mq_tag_set *tagset, busy_tag_iter_fn *fn, void *priv); void blk_mq_tagset_wait_completed_request(struct blk_mq_tag_set *tagset); void blk_mq_freeze_queue(struct request_queue *q); void blk_mq_unfreeze_queue(struct request_queue *q); void blk_freeze_queue_start(struct request_queue *q); void blk_mq_freeze_queue_wait(struct request_queue *q); int blk_mq_freeze_queue_wait_timeout(struct request_queue *q, unsigned long timeout); int blk_mq_map_queues(struct blk_mq_queue_map *qmap); void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues); void blk_mq_quiesce_queue_nowait(struct request_queue *q); unsigned int blk_mq_rq_cpu(struct request *rq); bool __blk_should_fake_timeout(struct request_queue *q); static inline bool blk_should_fake_timeout(struct request_queue *q) { if (IS_ENABLED(CONFIG_FAIL_IO_TIMEOUT) && test_bit(QUEUE_FLAG_FAIL_IO, &q->queue_flags)) return __blk_should_fake_timeout(q); return false; } /** * blk_mq_rq_from_pdu - cast a PDU to a request * @pdu: the PDU (Protocol Data Unit) to be casted * * Return: request * * Driver command data is immediately after the request. So subtract request * size to get back to the original request. */ static inline struct request *blk_mq_rq_from_pdu(void *pdu) { return pdu - sizeof(struct request); } /** * blk_mq_rq_to_pdu - cast a request to a PDU * @rq: the request to be casted * * Return: pointer to the PDU * * Driver command data is immediately after the request. So add request to get * the PDU. */ static inline void *blk_mq_rq_to_pdu(struct request *rq) { return rq + 1; } #define queue_for_each_hw_ctx(q, hctx, i) \ for ((i) = 0; (i) < (q)->nr_hw_queues && \ ({ hctx = (q)->queue_hw_ctx[i]; 1; }); (i)++) #define hctx_for_each_ctx(hctx, ctx, i) \ for ((i) = 0; (i) < (hctx)->nr_ctx && \ ({ ctx = (hctx)->ctxs[(i)]; 1; }); (i)++) static inline blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq) { if (rq->tag != -1) return rq->tag | (hctx->queue_num << BLK_QC_T_SHIFT); return rq->internal_tag | (hctx->queue_num << BLK_QC_T_SHIFT) | BLK_QC_T_INTERNAL; } static inline void blk_mq_cleanup_rq(struct request *rq) { if (rq->q->mq_ops->cleanup_rq) rq->q->mq_ops->cleanup_rq(rq); } blk_qc_t blk_mq_submit_bio(struct bio *bio); void blk_mq_hctx_set_fq_lock_class(struct blk_mq_hw_ctx *hctx, struct lock_class_key *key); #endif