/* * linux/fs/ext4/page-io.c * * This contains the new page_io functions for ext4 * * Written by Theodore Ts'o, 2010. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ext4_jbd2.h" #include "xattr.h" #include "acl.h" static struct kmem_cache *io_end_cachep; int __init ext4_init_pageio(void) { io_end_cachep = KMEM_CACHE(ext4_io_end, SLAB_RECLAIM_ACCOUNT); if (io_end_cachep == NULL) return -ENOMEM; return 0; } void ext4_exit_pageio(void) { kmem_cache_destroy(io_end_cachep); } /* * This function is called by ext4_evict_inode() to make sure there is * no more pending I/O completion work left to do. */ void ext4_ioend_shutdown(struct inode *inode) { wait_queue_head_t *wq = ext4_ioend_wq(inode); wait_event(*wq, (atomic_read(&EXT4_I(inode)->i_ioend_count) == 0)); /* * We need to make sure the work structure is finished being * used before we let the inode get destroyed. */ if (work_pending(&EXT4_I(inode)->i_unwritten_work)) cancel_work_sync(&EXT4_I(inode)->i_unwritten_work); } static void ext4_release_io_end(ext4_io_end_t *io_end) { BUG_ON(!list_empty(&io_end->list)); BUG_ON(io_end->flag & EXT4_IO_END_UNWRITTEN); WARN_ON(io_end->handle); if (atomic_dec_and_test(&EXT4_I(io_end->inode)->i_ioend_count)) wake_up_all(ext4_ioend_wq(io_end->inode)); if (io_end->flag & EXT4_IO_END_DIRECT) inode_dio_done(io_end->inode); if (io_end->iocb) aio_complete(io_end->iocb, io_end->result, 0); kmem_cache_free(io_end_cachep, io_end); } static void ext4_clear_io_unwritten_flag(ext4_io_end_t *io_end) { struct inode *inode = io_end->inode; io_end->flag &= ~EXT4_IO_END_UNWRITTEN; /* Wake up anyone waiting on unwritten extent conversion */ if (atomic_dec_and_test(&EXT4_I(inode)->i_unwritten)) wake_up_all(ext4_ioend_wq(inode)); } /* check a range of space and convert unwritten extents to written. */ static int ext4_end_io(ext4_io_end_t *io) { struct inode *inode = io->inode; loff_t offset = io->offset; ssize_t size = io->size; handle_t *handle = io->handle; int ret = 0; ext4_debug("ext4_end_io_nolock: io 0x%p from inode %lu,list->next 0x%p," "list->prev 0x%p\n", io, inode->i_ino, io->list.next, io->list.prev); io->handle = NULL; /* Following call will use up the handle */ ret = ext4_convert_unwritten_extents(handle, inode, offset, size); if (ret < 0) { ext4_msg(inode->i_sb, KERN_EMERG, "failed to convert unwritten extents to written " "extents -- potential data loss! " "(inode %lu, offset %llu, size %zd, error %d)", inode->i_ino, offset, size, ret); } ext4_clear_io_unwritten_flag(io); ext4_release_io_end(io); return ret; } static void dump_completed_IO(struct inode *inode) { #ifdef EXT4FS_DEBUG struct list_head *cur, *before, *after; ext4_io_end_t *io, *io0, *io1; if (list_empty(&EXT4_I(inode)->i_completed_io_list)) { ext4_debug("inode %lu completed_io list is empty\n", inode->i_ino); return; } ext4_debug("Dump inode %lu completed_io list\n", inode->i_ino); list_for_each_entry(io, &EXT4_I(inode)->i_completed_io_list, list) { cur = &io->list; before = cur->prev; io0 = container_of(before, ext4_io_end_t, list); after = cur->next; io1 = container_of(after, ext4_io_end_t, list); ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n", io, inode->i_ino, io0, io1); } #endif } /* Add the io_end to per-inode completed end_io list. */ static void ext4_add_complete_io(ext4_io_end_t *io_end) { struct ext4_inode_info *ei = EXT4_I(io_end->inode); struct workqueue_struct *wq; unsigned long flags; BUG_ON(!(io_end->flag & EXT4_IO_END_UNWRITTEN)); wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq; spin_lock_irqsave(&ei->i_completed_io_lock, flags); if (list_empty(&ei->i_completed_io_list)) queue_work(wq, &ei->i_unwritten_work); list_add_tail(&io_end->list, &ei->i_completed_io_list); spin_unlock_irqrestore(&ei->i_completed_io_lock, flags); } static int ext4_do_flush_completed_IO(struct inode *inode) { ext4_io_end_t *io; struct list_head unwritten; unsigned long flags; struct ext4_inode_info *ei = EXT4_I(inode); int err, ret = 0; spin_lock_irqsave(&ei->i_completed_io_lock, flags); dump_completed_IO(inode); list_replace_init(&ei->i_completed_io_list, &unwritten); spin_unlock_irqrestore(&ei->i_completed_io_lock, flags); while (!list_empty(&unwritten)) { io = list_entry(unwritten.next, ext4_io_end_t, list); BUG_ON(!(io->flag & EXT4_IO_END_UNWRITTEN)); list_del_init(&io->list); err = ext4_end_io(io); if (unlikely(!ret && err)) ret = err; } return ret; } /* * work on completed aio dio IO, to convert unwritten extents to extents */ void ext4_end_io_work(struct work_struct *work) { struct ext4_inode_info *ei = container_of(work, struct ext4_inode_info, i_unwritten_work); ext4_do_flush_completed_IO(&ei->vfs_inode); } int ext4_flush_unwritten_io(struct inode *inode) { int ret; WARN_ON_ONCE(!mutex_is_locked(&inode->i_mutex) && !(inode->i_state & I_FREEING)); ret = ext4_do_flush_completed_IO(inode); ext4_unwritten_wait(inode); return ret; } ext4_io_end_t *ext4_init_io_end(struct inode *inode, gfp_t flags) { ext4_io_end_t *io = kmem_cache_zalloc(io_end_cachep, flags); if (io) { atomic_inc(&EXT4_I(inode)->i_ioend_count); io->inode = inode; INIT_LIST_HEAD(&io->list); atomic_set(&io->count, 1); } return io; } void ext4_put_io_end_defer(ext4_io_end_t *io_end) { if (atomic_dec_and_test(&io_end->count)) { if (!(io_end->flag & EXT4_IO_END_UNWRITTEN) || !io_end->size) { ext4_release_io_end(io_end); return; } ext4_add_complete_io(io_end); } } int ext4_put_io_end(ext4_io_end_t *io_end) { int err = 0; if (atomic_dec_and_test(&io_end->count)) { if (io_end->flag & EXT4_IO_END_UNWRITTEN) { err = ext4_convert_unwritten_extents(io_end->handle, io_end->inode, io_end->offset, io_end->size); io_end->handle = NULL; ext4_clear_io_unwritten_flag(io_end); } ext4_release_io_end(io_end); } return err; } ext4_io_end_t *ext4_get_io_end(ext4_io_end_t *io_end) { atomic_inc(&io_end->count); return io_end; } /* * Print an buffer I/O error compatible with the fs/buffer.c. This * provides compatibility with dmesg scrapers that look for a specific * buffer I/O error message. We really need a unified error reporting * structure to userspace ala Digital Unix's uerf system, but it's * probably not going to happen in my lifetime, due to LKML politics... */ static void buffer_io_error(struct buffer_head *bh) { char b[BDEVNAME_SIZE]; printk(KERN_ERR "Buffer I/O error on device %s, logical block %llu\n", bdevname(bh->b_bdev, b), (unsigned long long)bh->b_blocknr); } static void ext4_end_bio(struct bio *bio, int error) { ext4_io_end_t *io_end = bio->bi_private; struct inode *inode; int i; int blocksize; sector_t bi_sector = bio->bi_sector; BUG_ON(!io_end); inode = io_end->inode; blocksize = 1 << inode->i_blkbits; bio->bi_private = NULL; bio->bi_end_io = NULL; if (test_bit(BIO_UPTODATE, &bio->bi_flags)) error = 0; for (i = 0; i < bio->bi_vcnt; i++) { struct bio_vec *bvec = &bio->bi_io_vec[i]; struct page *page = bvec->bv_page; struct buffer_head *bh, *head; unsigned bio_start = bvec->bv_offset; unsigned bio_end = bio_start + bvec->bv_len; unsigned under_io = 0; unsigned long flags; if (!page) continue; if (error) { SetPageError(page); set_bit(AS_EIO, &page->mapping->flags); } bh = head = page_buffers(page); /* * We check all buffers in the page under BH_Uptodate_Lock * to avoid races with other end io clearing async_write flags */ local_irq_save(flags); bit_spin_lock(BH_Uptodate_Lock, &head->b_state); do { if (bh_offset(bh) < bio_start || bh_offset(bh) + blocksize > bio_end) { if (buffer_async_write(bh)) under_io++; continue; } clear_buffer_async_write(bh); if (error) buffer_io_error(bh); } while ((bh = bh->b_this_page) != head); bit_spin_unlock(BH_Uptodate_Lock, &head->b_state); local_irq_restore(flags); if (!under_io) end_page_writeback(page); } bio_put(bio); if (error) { io_end->flag |= EXT4_IO_END_ERROR; ext4_warning(inode->i_sb, "I/O error writing to inode %lu " "(offset %llu size %ld starting block %llu)", inode->i_ino, (unsigned long long) io_end->offset, (long) io_end->size, (unsigned long long) bi_sector >> (inode->i_blkbits - 9)); } ext4_put_io_end_defer(io_end); } void ext4_io_submit(struct ext4_io_submit *io) { struct bio *bio = io->io_bio; if (bio) { bio_get(io->io_bio); submit_bio(io->io_op, io->io_bio); BUG_ON(bio_flagged(io->io_bio, BIO_EOPNOTSUPP)); bio_put(io->io_bio); } io->io_bio = NULL; } void ext4_io_submit_init(struct ext4_io_submit *io, struct writeback_control *wbc) { io->io_op = (wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE); io->io_bio = NULL; io->io_end = NULL; } static int io_submit_init_bio(struct ext4_io_submit *io, struct buffer_head *bh) { int nvecs = bio_get_nr_vecs(bh->b_bdev); struct bio *bio; bio = bio_alloc(GFP_NOIO, min(nvecs, BIO_MAX_PAGES)); bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9); bio->bi_bdev = bh->b_bdev; bio->bi_end_io = ext4_end_bio; bio->bi_private = ext4_get_io_end(io->io_end); io->io_bio = bio; io->io_next_block = bh->b_blocknr; return 0; } static int io_submit_add_bh(struct ext4_io_submit *io, struct inode *inode, struct buffer_head *bh) { int ret; if (io->io_bio && bh->b_blocknr != io->io_next_block) { submit_and_retry: ext4_io_submit(io); } if (io->io_bio == NULL) { ret = io_submit_init_bio(io, bh); if (ret) return ret; } ret = bio_add_page(io->io_bio, bh->b_page, bh->b_size, bh_offset(bh)); if (ret != bh->b_size) goto submit_and_retry; io->io_next_block++; return 0; } int ext4_bio_write_page(struct ext4_io_submit *io, struct page *page, int len, struct writeback_control *wbc) { struct inode *inode = page->mapping->host; unsigned block_start, blocksize; struct buffer_head *bh, *head; int ret = 0; int nr_submitted = 0; blocksize = 1 << inode->i_blkbits; BUG_ON(!PageLocked(page)); BUG_ON(PageWriteback(page)); set_page_writeback(page); ClearPageError(page); /* * In the first loop we prepare and mark buffers to submit. We have to * mark all buffers in the page before submitting so that * end_page_writeback() cannot be called from ext4_bio_end_io() when IO * on the first buffer finishes and we are still working on submitting * the second buffer. */ bh = head = page_buffers(page); do { block_start = bh_offset(bh); if (block_start >= len) { /* * Comments copied from block_write_full_page_endio: * * The page straddles i_size. It must be zeroed out on * each and every writepage invocation because it may * be mmapped. "A file is mapped in multiples of the * page size. For a file that is not a multiple of * the page size, the remaining memory is zeroed when * mapped, and writes to that region are not written * out to the file." */ zero_user_segment(page, block_start, block_start + blocksize); clear_buffer_dirty(bh); set_buffer_uptodate(bh); continue; } if (!buffer_dirty(bh) || buffer_delay(bh) || !buffer_mapped(bh) || buffer_unwritten(bh)) { /* A hole? We can safely clear the dirty bit */ if (!buffer_mapped(bh)) clear_buffer_dirty(bh); if (io->io_bio) ext4_io_submit(io); continue; } if (buffer_new(bh)) { clear_buffer_new(bh); unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr); } set_buffer_async_write(bh); } while ((bh = bh->b_this_page) != head); /* Now submit buffers to write */ bh = head = page_buffers(page); do { if (!buffer_async_write(bh)) continue; ret = io_submit_add_bh(io, inode, bh); if (ret) { /* * We only get here on ENOMEM. Not much else * we can do but mark the page as dirty, and * better luck next time. */ redirty_page_for_writepage(wbc, page); break; } nr_submitted++; clear_buffer_dirty(bh); } while ((bh = bh->b_this_page) != head); /* Error stopped previous loop? Clean up buffers... */ if (ret) { do { clear_buffer_async_write(bh); bh = bh->b_this_page; } while (bh != head); } unlock_page(page); /* Nothing submitted - we have to end page writeback */ if (!nr_submitted) end_page_writeback(page); return ret; }