/* * fs/dax.c - Direct Access filesystem code * Copyright (c) 2013-2014 Intel Corporation * Author: Matthew Wilcox <matthew.r.wilcox@intel.com> * Author: Ross Zwisler <ross.zwisler@linux.intel.com> * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. */ #include <linux/atomic.h> #include <linux/blkdev.h> #include <linux/buffer_head.h> #include <linux/dax.h> #include <linux/fs.h> #include <linux/genhd.h> #include <linux/highmem.h> #include <linux/memcontrol.h> #include <linux/mm.h> #include <linux/mutex.h> #include <linux/pagevec.h> #include <linux/pmem.h> #include <linux/sched.h> #include <linux/sched/signal.h> #include <linux/uio.h> #include <linux/vmstat.h> #include <linux/pfn_t.h> #include <linux/sizes.h> #include <linux/mmu_notifier.h> #include <linux/iomap.h> #include "internal.h" #define CREATE_TRACE_POINTS #include <trace/events/fs_dax.h> /* We choose 4096 entries - same as per-zone page wait tables */ #define DAX_WAIT_TABLE_BITS 12 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS) static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES]; static int __init init_dax_wait_table(void) { int i; for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++) init_waitqueue_head(wait_table + i); return 0; } fs_initcall(init_dax_wait_table); static long dax_map_atomic(struct block_device *bdev, struct blk_dax_ctl *dax) { struct request_queue *q = bdev->bd_queue; long rc = -EIO; dax->addr = ERR_PTR(-EIO); if (blk_queue_enter(q, true) != 0) return rc; rc = bdev_direct_access(bdev, dax); if (rc < 0) { dax->addr = ERR_PTR(rc); blk_queue_exit(q); return rc; } return rc; } static void dax_unmap_atomic(struct block_device *bdev, const struct blk_dax_ctl *dax) { if (IS_ERR(dax->addr)) return; blk_queue_exit(bdev->bd_queue); } static int dax_is_pmd_entry(void *entry) { return (unsigned long)entry & RADIX_DAX_PMD; } static int dax_is_pte_entry(void *entry) { return !((unsigned long)entry & RADIX_DAX_PMD); } static int dax_is_zero_entry(void *entry) { return (unsigned long)entry & RADIX_DAX_HZP; } static int dax_is_empty_entry(void *entry) { return (unsigned long)entry & RADIX_DAX_EMPTY; } struct page *read_dax_sector(struct block_device *bdev, sector_t n) { struct page *page = alloc_pages(GFP_KERNEL, 0); struct blk_dax_ctl dax = { .size = PAGE_SIZE, .sector = n & ~((((int) PAGE_SIZE) / 512) - 1), }; long rc; if (!page) return ERR_PTR(-ENOMEM); rc = dax_map_atomic(bdev, &dax); if (rc < 0) return ERR_PTR(rc); memcpy_from_pmem(page_address(page), dax.addr, PAGE_SIZE); dax_unmap_atomic(bdev, &dax); return page; } /* * DAX radix tree locking */ struct exceptional_entry_key { struct address_space *mapping; pgoff_t entry_start; }; struct wait_exceptional_entry_queue { wait_queue_t wait; struct exceptional_entry_key key; }; static wait_queue_head_t *dax_entry_waitqueue(struct address_space *mapping, pgoff_t index, void *entry, struct exceptional_entry_key *key) { unsigned long hash; /* * If 'entry' is a PMD, align the 'index' that we use for the wait * queue to the start of that PMD. This ensures that all offsets in * the range covered by the PMD map to the same bit lock. */ if (dax_is_pmd_entry(entry)) index &= ~((1UL << (PMD_SHIFT - PAGE_SHIFT)) - 1); key->mapping = mapping; key->entry_start = index; hash = hash_long((unsigned long)mapping ^ index, DAX_WAIT_TABLE_BITS); return wait_table + hash; } static int wake_exceptional_entry_func(wait_queue_t *wait, unsigned int mode, int sync, void *keyp) { struct exceptional_entry_key *key = keyp; struct wait_exceptional_entry_queue *ewait = container_of(wait, struct wait_exceptional_entry_queue, wait); if (key->mapping != ewait->key.mapping || key->entry_start != ewait->key.entry_start) return 0; return autoremove_wake_function(wait, mode, sync, NULL); } /* * Check whether the given slot is locked. The function must be called with * mapping->tree_lock held */ static inline int slot_locked(struct address_space *mapping, void **slot) { unsigned long entry = (unsigned long) radix_tree_deref_slot_protected(slot, &mapping->tree_lock); return entry & RADIX_DAX_ENTRY_LOCK; } /* * Mark the given slot is locked. The function must be called with * mapping->tree_lock held */ static inline void *lock_slot(struct address_space *mapping, void **slot) { unsigned long entry = (unsigned long) radix_tree_deref_slot_protected(slot, &mapping->tree_lock); entry |= RADIX_DAX_ENTRY_LOCK; radix_tree_replace_slot(&mapping->page_tree, slot, (void *)entry); return (void *)entry; } /* * Mark the given slot is unlocked. The function must be called with * mapping->tree_lock held */ static inline void *unlock_slot(struct address_space *mapping, void **slot) { unsigned long entry = (unsigned long) radix_tree_deref_slot_protected(slot, &mapping->tree_lock); entry &= ~(unsigned long)RADIX_DAX_ENTRY_LOCK; radix_tree_replace_slot(&mapping->page_tree, slot, (void *)entry); return (void *)entry; } /* * Lookup entry in radix tree, wait for it to become unlocked if it is * exceptional entry and return it. The caller must call * put_unlocked_mapping_entry() when he decided not to lock the entry or * put_locked_mapping_entry() when he locked the entry and now wants to * unlock it. * * The function must be called with mapping->tree_lock held. */ static void *get_unlocked_mapping_entry(struct address_space *mapping, pgoff_t index, void ***slotp) { void *entry, **slot; struct wait_exceptional_entry_queue ewait; wait_queue_head_t *wq; init_wait(&ewait.wait); ewait.wait.func = wake_exceptional_entry_func; for (;;) { entry = __radix_tree_lookup(&mapping->page_tree, index, NULL, &slot); if (!entry || !radix_tree_exceptional_entry(entry) || !slot_locked(mapping, slot)) { if (slotp) *slotp = slot; return entry; } wq = dax_entry_waitqueue(mapping, index, entry, &ewait.key); prepare_to_wait_exclusive(wq, &ewait.wait, TASK_UNINTERRUPTIBLE); spin_unlock_irq(&mapping->tree_lock); schedule(); finish_wait(wq, &ewait.wait); spin_lock_irq(&mapping->tree_lock); } } static void dax_unlock_mapping_entry(struct address_space *mapping, pgoff_t index) { void *entry, **slot; spin_lock_irq(&mapping->tree_lock); entry = __radix_tree_lookup(&mapping->page_tree, index, NULL, &slot); if (WARN_ON_ONCE(!entry || !radix_tree_exceptional_entry(entry) || !slot_locked(mapping, slot))) { spin_unlock_irq(&mapping->tree_lock); return; } unlock_slot(mapping, slot); spin_unlock_irq(&mapping->tree_lock); dax_wake_mapping_entry_waiter(mapping, index, entry, false); } static void put_locked_mapping_entry(struct address_space *mapping, pgoff_t index, void *entry) { if (!radix_tree_exceptional_entry(entry)) { unlock_page(entry); put_page(entry); } else { dax_unlock_mapping_entry(mapping, index); } } /* * Called when we are done with radix tree entry we looked up via * get_unlocked_mapping_entry() and which we didn't lock in the end. */ static void put_unlocked_mapping_entry(struct address_space *mapping, pgoff_t index, void *entry) { if (!radix_tree_exceptional_entry(entry)) return; /* We have to wake up next waiter for the radix tree entry lock */ dax_wake_mapping_entry_waiter(mapping, index, entry, false); } /* * Find radix tree entry at given index. If it points to a page, return with * the page locked. If it points to the exceptional entry, return with the * radix tree entry locked. If the radix tree doesn't contain given index, * create empty exceptional entry for the index and return with it locked. * * When requesting an entry with size RADIX_DAX_PMD, grab_mapping_entry() will * either return that locked entry or will return an error. This error will * happen if there are any 4k entries (either zero pages or DAX entries) * within the 2MiB range that we are requesting. * * We always favor 4k entries over 2MiB entries. There isn't a flow where we * evict 4k entries in order to 'upgrade' them to a 2MiB entry. A 2MiB * insertion will fail if it finds any 4k entries already in the tree, and a * 4k insertion will cause an existing 2MiB entry to be unmapped and * downgraded to 4k entries. This happens for both 2MiB huge zero pages as * well as 2MiB empty entries. * * The exception to this downgrade path is for 2MiB DAX PMD entries that have * real storage backing them. We will leave these real 2MiB DAX entries in * the tree, and PTE writes will simply dirty the entire 2MiB DAX entry. * * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For * persistent memory the benefit is doubtful. We can add that later if we can * show it helps. */ static void *grab_mapping_entry(struct address_space *mapping, pgoff_t index, unsigned long size_flag) { bool pmd_downgrade = false; /* splitting 2MiB entry into 4k entries? */ void *entry, **slot; restart: spin_lock_irq(&mapping->tree_lock); entry = get_unlocked_mapping_entry(mapping, index, &slot); if (entry) { if (size_flag & RADIX_DAX_PMD) { if (!radix_tree_exceptional_entry(entry) || dax_is_pte_entry(entry)) { put_unlocked_mapping_entry(mapping, index, entry); entry = ERR_PTR(-EEXIST); goto out_unlock; } } else { /* trying to grab a PTE entry */ if (radix_tree_exceptional_entry(entry) && dax_is_pmd_entry(entry) && (dax_is_zero_entry(entry) || dax_is_empty_entry(entry))) { pmd_downgrade = true; } } } /* No entry for given index? Make sure radix tree is big enough. */ if (!entry || pmd_downgrade) { int err; if (pmd_downgrade) { /* * Make sure 'entry' remains valid while we drop * mapping->tree_lock. */ entry = lock_slot(mapping, slot); } spin_unlock_irq(&mapping->tree_lock); /* * Besides huge zero pages the only other thing that gets * downgraded are empty entries which don't need to be * unmapped. */ if (pmd_downgrade && dax_is_zero_entry(entry)) unmap_mapping_range(mapping, (index << PAGE_SHIFT) & PMD_MASK, PMD_SIZE, 0); err = radix_tree_preload( mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM); if (err) { if (pmd_downgrade) put_locked_mapping_entry(mapping, index, entry); return ERR_PTR(err); } spin_lock_irq(&mapping->tree_lock); if (!entry) { /* * We needed to drop the page_tree lock while calling * radix_tree_preload() and we didn't have an entry to * lock. See if another thread inserted an entry at * our index during this time. */ entry = __radix_tree_lookup(&mapping->page_tree, index, NULL, &slot); if (entry) { radix_tree_preload_end(); spin_unlock_irq(&mapping->tree_lock); goto restart; } } if (pmd_downgrade) { radix_tree_delete(&mapping->page_tree, index); mapping->nrexceptional--; dax_wake_mapping_entry_waiter(mapping, index, entry, true); } entry = dax_radix_locked_entry(0, size_flag | RADIX_DAX_EMPTY); err = __radix_tree_insert(&mapping->page_tree, index, dax_radix_order(entry), entry); radix_tree_preload_end(); if (err) { spin_unlock_irq(&mapping->tree_lock); /* * Our insertion of a DAX entry failed, most likely * because we were inserting a PMD entry and it * collided with a PTE sized entry at a different * index in the PMD range. We haven't inserted * anything into the radix tree and have no waiters to * wake. */ return ERR_PTR(err); } /* Good, we have inserted empty locked entry into the tree. */ mapping->nrexceptional++; spin_unlock_irq(&mapping->tree_lock); return entry; } /* Normal page in radix tree? */ if (!radix_tree_exceptional_entry(entry)) { struct page *page = entry; get_page(page); spin_unlock_irq(&mapping->tree_lock); lock_page(page); /* Page got truncated? Retry... */ if (unlikely(page->mapping != mapping)) { unlock_page(page); put_page(page); goto restart; } return page; } entry = lock_slot(mapping, slot); out_unlock: spin_unlock_irq(&mapping->tree_lock); return entry; } /* * We do not necessarily hold the mapping->tree_lock when we call this * function so it is possible that 'entry' is no longer a valid item in the * radix tree. This is okay because all we really need to do is to find the * correct waitqueue where tasks might be waiting for that old 'entry' and * wake them. */ void dax_wake_mapping_entry_waiter(struct address_space *mapping, pgoff_t index, void *entry, bool wake_all) { struct exceptional_entry_key key; wait_queue_head_t *wq; wq = dax_entry_waitqueue(mapping, index, entry, &key); /* * Checking for locked entry and prepare_to_wait_exclusive() happens * under mapping->tree_lock, ditto for entry handling in our callers. * So at this point all tasks that could have seen our entry locked * must be in the waitqueue and the following check will see them. */ if (waitqueue_active(wq)) __wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key); } static int __dax_invalidate_mapping_entry(struct address_space *mapping, pgoff_t index, bool trunc) { int ret = 0; void *entry; struct radix_tree_root *page_tree = &mapping->page_tree; spin_lock_irq(&mapping->tree_lock); entry = get_unlocked_mapping_entry(mapping, index, NULL); if (!entry || !radix_tree_exceptional_entry(entry)) goto out; if (!trunc && (radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_DIRTY) || radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE))) goto out; radix_tree_delete(page_tree, index); mapping->nrexceptional--; ret = 1; out: put_unlocked_mapping_entry(mapping, index, entry); spin_unlock_irq(&mapping->tree_lock); return ret; } /* * Delete exceptional DAX entry at @index from @mapping. Wait for radix tree * entry to get unlocked before deleting it. */ int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index) { int ret = __dax_invalidate_mapping_entry(mapping, index, true); /* * This gets called from truncate / punch_hole path. As such, the caller * must hold locks protecting against concurrent modifications of the * radix tree (usually fs-private i_mmap_sem for writing). Since the * caller has seen exceptional entry for this index, we better find it * at that index as well... */ WARN_ON_ONCE(!ret); return ret; } /* * Invalidate exceptional DAX entry if easily possible. This handles DAX * entries for invalidate_inode_pages() so we evict the entry only if we can * do so without blocking. */ int dax_invalidate_mapping_entry(struct address_space *mapping, pgoff_t index) { int ret = 0; void *entry, **slot; struct radix_tree_root *page_tree = &mapping->page_tree; spin_lock_irq(&mapping->tree_lock); entry = __radix_tree_lookup(page_tree, index, NULL, &slot); if (!entry || !radix_tree_exceptional_entry(entry) || slot_locked(mapping, slot)) goto out; if (radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_DIRTY) || radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE)) goto out; radix_tree_delete(page_tree, index); mapping->nrexceptional--; ret = 1; out: spin_unlock_irq(&mapping->tree_lock); if (ret) dax_wake_mapping_entry_waiter(mapping, index, entry, true); return ret; } /* * Invalidate exceptional DAX entry if it is clean. */ int dax_invalidate_mapping_entry_sync(struct address_space *mapping, pgoff_t index) { return __dax_invalidate_mapping_entry(mapping, index, false); } /* * The user has performed a load from a hole in the file. Allocating * a new page in the file would cause excessive storage usage for * workloads with sparse files. We allocate a page cache page instead. * We'll kick it out of the page cache if it's ever written to, * otherwise it will simply fall out of the page cache under memory * pressure without ever having been dirtied. */ static int dax_load_hole(struct address_space *mapping, void **entry, struct vm_fault *vmf) { struct page *page; int ret; /* Hole page already exists? Return it... */ if (!radix_tree_exceptional_entry(*entry)) { page = *entry; goto out; } /* This will replace locked radix tree entry with a hole page */ page = find_or_create_page(mapping, vmf->pgoff, vmf->gfp_mask | __GFP_ZERO); if (!page) return VM_FAULT_OOM; out: vmf->page = page; ret = finish_fault(vmf); vmf->page = NULL; *entry = page; if (!ret) { /* Grab reference for PTE that is now referencing the page */ get_page(page); return VM_FAULT_NOPAGE; } return ret; } static int copy_user_dax(struct block_device *bdev, sector_t sector, size_t size, struct page *to, unsigned long vaddr) { struct blk_dax_ctl dax = { .sector = sector, .size = size, }; void *vto; if (dax_map_atomic(bdev, &dax) < 0) return PTR_ERR(dax.addr); vto = kmap_atomic(to); copy_user_page(vto, (void __force *)dax.addr, vaddr, to); kunmap_atomic(vto); dax_unmap_atomic(bdev, &dax); return 0; } /* * By this point grab_mapping_entry() has ensured that we have a locked entry * of the appropriate size so we don't have to worry about downgrading PMDs to * PTEs. If we happen to be trying to insert a PTE and there is a PMD * already in the tree, we will skip the insertion and just dirty the PMD as * appropriate. */ static void *dax_insert_mapping_entry(struct address_space *mapping, struct vm_fault *vmf, void *entry, sector_t sector, unsigned long flags) { struct radix_tree_root *page_tree = &mapping->page_tree; int error = 0; bool hole_fill = false; void *new_entry; pgoff_t index = vmf->pgoff; if (vmf->flags & FAULT_FLAG_WRITE) __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); /* Replacing hole page with block mapping? */ if (!radix_tree_exceptional_entry(entry)) { hole_fill = true; /* * Unmap the page now before we remove it from page cache below. * The page is locked so it cannot be faulted in again. */ unmap_mapping_range(mapping, vmf->pgoff << PAGE_SHIFT, PAGE_SIZE, 0); error = radix_tree_preload(vmf->gfp_mask & ~__GFP_HIGHMEM); if (error) return ERR_PTR(error); } else if (dax_is_zero_entry(entry) && !(flags & RADIX_DAX_HZP)) { /* replacing huge zero page with PMD block mapping */ unmap_mapping_range(mapping, (vmf->pgoff << PAGE_SHIFT) & PMD_MASK, PMD_SIZE, 0); } spin_lock_irq(&mapping->tree_lock); new_entry = dax_radix_locked_entry(sector, flags); if (hole_fill) { __delete_from_page_cache(entry, NULL); /* Drop pagecache reference */ put_page(entry); error = __radix_tree_insert(page_tree, index, dax_radix_order(new_entry), new_entry); if (error) { new_entry = ERR_PTR(error); goto unlock; } mapping->nrexceptional++; } else if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) { /* * Only swap our new entry into the radix tree if the current * entry is a zero page or an empty entry. If a normal PTE or * PMD entry is already in the tree, we leave it alone. This * means that if we are trying to insert a PTE and the * existing entry is a PMD, we will just leave the PMD in the * tree and dirty it if necessary. */ struct radix_tree_node *node; void **slot; void *ret; ret = __radix_tree_lookup(page_tree, index, &node, &slot); WARN_ON_ONCE(ret != entry); __radix_tree_replace(page_tree, node, slot, new_entry, NULL, NULL); } if (vmf->flags & FAULT_FLAG_WRITE) radix_tree_tag_set(page_tree, index, PAGECACHE_TAG_DIRTY); unlock: spin_unlock_irq(&mapping->tree_lock); if (hole_fill) { radix_tree_preload_end(); /* * We don't need hole page anymore, it has been replaced with * locked radix tree entry now. */ if (mapping->a_ops->freepage) mapping->a_ops->freepage(entry); unlock_page(entry); put_page(entry); } return new_entry; } static inline unsigned long pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma) { unsigned long address; address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma); return address; } /* Walk all mappings of a given index of a file and writeprotect them */ static void dax_mapping_entry_mkclean(struct address_space *mapping, pgoff_t index, unsigned long pfn) { struct vm_area_struct *vma; pte_t pte, *ptep = NULL; pmd_t *pmdp = NULL; spinlock_t *ptl; bool changed; i_mmap_lock_read(mapping); vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) { unsigned long address; cond_resched(); if (!(vma->vm_flags & VM_SHARED)) continue; address = pgoff_address(index, vma); changed = false; if (follow_pte_pmd(vma->vm_mm, address, &ptep, &pmdp, &ptl)) continue; if (pmdp) { #ifdef CONFIG_FS_DAX_PMD pmd_t pmd; if (pfn != pmd_pfn(*pmdp)) goto unlock_pmd; if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp)) goto unlock_pmd; flush_cache_page(vma, address, pfn); pmd = pmdp_huge_clear_flush(vma, address, pmdp); pmd = pmd_wrprotect(pmd); pmd = pmd_mkclean(pmd); set_pmd_at(vma->vm_mm, address, pmdp, pmd); changed = true; unlock_pmd: spin_unlock(ptl); #endif } else { if (pfn != pte_pfn(*ptep)) goto unlock_pte; if (!pte_dirty(*ptep) && !pte_write(*ptep)) goto unlock_pte; flush_cache_page(vma, address, pfn); pte = ptep_clear_flush(vma, address, ptep); pte = pte_wrprotect(pte); pte = pte_mkclean(pte); set_pte_at(vma->vm_mm, address, ptep, pte); changed = true; unlock_pte: pte_unmap_unlock(ptep, ptl); } if (changed) mmu_notifier_invalidate_page(vma->vm_mm, address); } i_mmap_unlock_read(mapping); } static int dax_writeback_one(struct block_device *bdev, struct address_space *mapping, pgoff_t index, void *entry) { struct radix_tree_root *page_tree = &mapping->page_tree; struct blk_dax_ctl dax; void *entry2, **slot; int ret = 0; /* * A page got tagged dirty in DAX mapping? Something is seriously * wrong. */ if (WARN_ON(!radix_tree_exceptional_entry(entry))) return -EIO; spin_lock_irq(&mapping->tree_lock); entry2 = get_unlocked_mapping_entry(mapping, index, &slot); /* Entry got punched out / reallocated? */ if (!entry2 || !radix_tree_exceptional_entry(entry2)) goto put_unlocked; /* * Entry got reallocated elsewhere? No need to writeback. We have to * compare sectors as we must not bail out due to difference in lockbit * or entry type. */ if (dax_radix_sector(entry2) != dax_radix_sector(entry)) goto put_unlocked; if (WARN_ON_ONCE(dax_is_empty_entry(entry) || dax_is_zero_entry(entry))) { ret = -EIO; goto put_unlocked; } /* Another fsync thread may have already written back this entry */ if (!radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE)) goto put_unlocked; /* Lock the entry to serialize with page faults */ entry = lock_slot(mapping, slot); /* * We can clear the tag now but we have to be careful so that concurrent * dax_writeback_one() calls for the same index cannot finish before we * actually flush the caches. This is achieved as the calls will look * at the entry only under tree_lock and once they do that they will * see the entry locked and wait for it to unlock. */ radix_tree_tag_clear(page_tree, index, PAGECACHE_TAG_TOWRITE); spin_unlock_irq(&mapping->tree_lock); /* * Even if dax_writeback_mapping_range() was given a wbc->range_start * in the middle of a PMD, the 'index' we are given will be aligned to * the start index of the PMD, as will the sector we pull from * 'entry'. This allows us to flush for PMD_SIZE and not have to * worry about partial PMD writebacks. */ dax.sector = dax_radix_sector(entry); dax.size = PAGE_SIZE << dax_radix_order(entry); /* * We cannot hold tree_lock while calling dax_map_atomic() because it * eventually calls cond_resched(). */ ret = dax_map_atomic(bdev, &dax); if (ret < 0) { put_locked_mapping_entry(mapping, index, entry); return ret; } if (WARN_ON_ONCE(ret < dax.size)) { ret = -EIO; goto unmap; } dax_mapping_entry_mkclean(mapping, index, pfn_t_to_pfn(dax.pfn)); wb_cache_pmem(dax.addr, dax.size); /* * After we have flushed the cache, we can clear the dirty tag. There * cannot be new dirty data in the pfn after the flush has completed as * the pfn mappings are writeprotected and fault waits for mapping * entry lock. */ spin_lock_irq(&mapping->tree_lock); radix_tree_tag_clear(page_tree, index, PAGECACHE_TAG_DIRTY); spin_unlock_irq(&mapping->tree_lock); unmap: dax_unmap_atomic(bdev, &dax); put_locked_mapping_entry(mapping, index, entry); return ret; put_unlocked: put_unlocked_mapping_entry(mapping, index, entry2); spin_unlock_irq(&mapping->tree_lock); return ret; } /* * Flush the mapping to the persistent domain within the byte range of [start, * end]. This is required by data integrity operations to ensure file data is * on persistent storage prior to completion of the operation. */ int dax_writeback_mapping_range(struct address_space *mapping, struct block_device *bdev, struct writeback_control *wbc) { struct inode *inode = mapping->host; pgoff_t start_index, end_index; pgoff_t indices[PAGEVEC_SIZE]; struct pagevec pvec; bool done = false; int i, ret = 0; if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT)) return -EIO; if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL) return 0; start_index = wbc->range_start >> PAGE_SHIFT; end_index = wbc->range_end >> PAGE_SHIFT; tag_pages_for_writeback(mapping, start_index, end_index); pagevec_init(&pvec, 0); while (!done) { pvec.nr = find_get_entries_tag(mapping, start_index, PAGECACHE_TAG_TOWRITE, PAGEVEC_SIZE, pvec.pages, indices); if (pvec.nr == 0) break; for (i = 0; i < pvec.nr; i++) { if (indices[i] > end_index) { done = true; break; } ret = dax_writeback_one(bdev, mapping, indices[i], pvec.pages[i]); if (ret < 0) return ret; } } return 0; } EXPORT_SYMBOL_GPL(dax_writeback_mapping_range); static int dax_insert_mapping(struct address_space *mapping, struct block_device *bdev, sector_t sector, size_t size, void **entryp, struct vm_area_struct *vma, struct vm_fault *vmf) { unsigned long vaddr = vmf->address; struct blk_dax_ctl dax = { .sector = sector, .size = size, }; void *ret; void *entry = *entryp; if (dax_map_atomic(bdev, &dax) < 0) return PTR_ERR(dax.addr); dax_unmap_atomic(bdev, &dax); ret = dax_insert_mapping_entry(mapping, vmf, entry, dax.sector, 0); if (IS_ERR(ret)) return PTR_ERR(ret); *entryp = ret; return vm_insert_mixed(vma, vaddr, dax.pfn); } /** * dax_pfn_mkwrite - handle first write to DAX page * @vmf: The description of the fault */ int dax_pfn_mkwrite(struct vm_fault *vmf) { struct file *file = vmf->vma->vm_file; struct address_space *mapping = file->f_mapping; void *entry, **slot; pgoff_t index = vmf->pgoff; spin_lock_irq(&mapping->tree_lock); entry = get_unlocked_mapping_entry(mapping, index, &slot); if (!entry || !radix_tree_exceptional_entry(entry)) { if (entry) put_unlocked_mapping_entry(mapping, index, entry); spin_unlock_irq(&mapping->tree_lock); return VM_FAULT_NOPAGE; } radix_tree_tag_set(&mapping->page_tree, index, PAGECACHE_TAG_DIRTY); entry = lock_slot(mapping, slot); spin_unlock_irq(&mapping->tree_lock); /* * If we race with somebody updating the PTE and finish_mkwrite_fault() * fails, we don't care. We need to return VM_FAULT_NOPAGE and retry * the fault in either case. */ finish_mkwrite_fault(vmf); put_locked_mapping_entry(mapping, index, entry); return VM_FAULT_NOPAGE; } EXPORT_SYMBOL_GPL(dax_pfn_mkwrite); static bool dax_range_is_aligned(struct block_device *bdev, unsigned int offset, unsigned int length) { unsigned short sector_size = bdev_logical_block_size(bdev); if (!IS_ALIGNED(offset, sector_size)) return false; if (!IS_ALIGNED(length, sector_size)) return false; return true; } int __dax_zero_page_range(struct block_device *bdev, sector_t sector, unsigned int offset, unsigned int length) { struct blk_dax_ctl dax = { .sector = sector, .size = PAGE_SIZE, }; if (dax_range_is_aligned(bdev, offset, length)) { sector_t start_sector = dax.sector + (offset >> 9); return blkdev_issue_zeroout(bdev, start_sector, length >> 9, GFP_NOFS, 0); } else { if (dax_map_atomic(bdev, &dax) < 0) return PTR_ERR(dax.addr); clear_pmem(dax.addr + offset, length); dax_unmap_atomic(bdev, &dax); } return 0; } EXPORT_SYMBOL_GPL(__dax_zero_page_range); static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos) { return iomap->blkno + (((pos & PAGE_MASK) - iomap->offset) >> 9); } static loff_t dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data, struct iomap *iomap) { struct iov_iter *iter = data; loff_t end = pos + length, done = 0; ssize_t ret = 0; if (iov_iter_rw(iter) == READ) { end = min(end, i_size_read(inode)); if (pos >= end) return 0; if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN) return iov_iter_zero(min(length, end - pos), iter); } if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED)) return -EIO; /* * Write can allocate block for an area which has a hole page mapped * into page tables. We have to tear down these mappings so that data * written by write(2) is visible in mmap. */ if ((iomap->flags & IOMAP_F_NEW) && inode->i_mapping->nrpages) { invalidate_inode_pages2_range(inode->i_mapping, pos >> PAGE_SHIFT, (end - 1) >> PAGE_SHIFT); } while (pos < end) { unsigned offset = pos & (PAGE_SIZE - 1); struct blk_dax_ctl dax = { 0 }; ssize_t map_len; if (fatal_signal_pending(current)) { ret = -EINTR; break; } dax.sector = dax_iomap_sector(iomap, pos); dax.size = (length + offset + PAGE_SIZE - 1) & PAGE_MASK; map_len = dax_map_atomic(iomap->bdev, &dax); if (map_len < 0) { ret = map_len; break; } dax.addr += offset; map_len -= offset; if (map_len > end - pos) map_len = end - pos; if (iov_iter_rw(iter) == WRITE) map_len = copy_from_iter_pmem(dax.addr, map_len, iter); else map_len = copy_to_iter(dax.addr, map_len, iter); dax_unmap_atomic(iomap->bdev, &dax); if (map_len <= 0) { ret = map_len ? map_len : -EFAULT; break; } pos += map_len; length -= map_len; done += map_len; } return done ? done : ret; } /** * dax_iomap_rw - Perform I/O to a DAX file * @iocb: The control block for this I/O * @iter: The addresses to do I/O from or to * @ops: iomap ops passed from the file system * * This function performs read and write operations to directly mapped * persistent memory. The callers needs to take care of read/write exclusion * and evicting any page cache pages in the region under I/O. */ ssize_t dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter, const struct iomap_ops *ops) { struct address_space *mapping = iocb->ki_filp->f_mapping; struct inode *inode = mapping->host; loff_t pos = iocb->ki_pos, ret = 0, done = 0; unsigned flags = 0; if (iov_iter_rw(iter) == WRITE) { lockdep_assert_held_exclusive(&inode->i_rwsem); flags |= IOMAP_WRITE; } else { lockdep_assert_held(&inode->i_rwsem); } while (iov_iter_count(iter)) { ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops, iter, dax_iomap_actor); if (ret <= 0) break; pos += ret; done += ret; } iocb->ki_pos += done; return done ? done : ret; } EXPORT_SYMBOL_GPL(dax_iomap_rw); static int dax_fault_return(int error) { if (error == 0) return VM_FAULT_NOPAGE; if (error == -ENOMEM) return VM_FAULT_OOM; return VM_FAULT_SIGBUS; } static int dax_iomap_pte_fault(struct vm_fault *vmf, const struct iomap_ops *ops) { struct address_space *mapping = vmf->vma->vm_file->f_mapping; struct inode *inode = mapping->host; unsigned long vaddr = vmf->address; loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT; sector_t sector; struct iomap iomap = { 0 }; unsigned flags = IOMAP_FAULT; int error, major = 0; int vmf_ret = 0; void *entry; /* * Check whether offset isn't beyond end of file now. Caller is supposed * to hold locks serializing us with truncate / punch hole so this is * a reliable test. */ if (pos >= i_size_read(inode)) return VM_FAULT_SIGBUS; if ((vmf->flags & FAULT_FLAG_WRITE) && !vmf->cow_page) flags |= IOMAP_WRITE; /* * Note that we don't bother to use iomap_apply here: DAX required * the file system block size to be equal the page size, which means * that we never have to deal with more than a single extent here. */ error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap); if (error) return dax_fault_return(error); if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) { vmf_ret = dax_fault_return(-EIO); /* fs corruption? */ goto finish_iomap; } entry = grab_mapping_entry(mapping, vmf->pgoff, 0); if (IS_ERR(entry)) { vmf_ret = dax_fault_return(PTR_ERR(entry)); goto finish_iomap; } sector = dax_iomap_sector(&iomap, pos); if (vmf->cow_page) { switch (iomap.type) { case IOMAP_HOLE: case IOMAP_UNWRITTEN: clear_user_highpage(vmf->cow_page, vaddr); break; case IOMAP_MAPPED: error = copy_user_dax(iomap.bdev, sector, PAGE_SIZE, vmf->cow_page, vaddr); break; default: WARN_ON_ONCE(1); error = -EIO; break; } if (error) goto error_unlock_entry; __SetPageUptodate(vmf->cow_page); vmf_ret = finish_fault(vmf); if (!vmf_ret) vmf_ret = VM_FAULT_DONE_COW; goto unlock_entry; } switch (iomap.type) { case IOMAP_MAPPED: if (iomap.flags & IOMAP_F_NEW) { count_vm_event(PGMAJFAULT); mem_cgroup_count_vm_event(vmf->vma->vm_mm, PGMAJFAULT); major = VM_FAULT_MAJOR; } error = dax_insert_mapping(mapping, iomap.bdev, sector, PAGE_SIZE, &entry, vmf->vma, vmf); /* -EBUSY is fine, somebody else faulted on the same PTE */ if (error == -EBUSY) error = 0; break; case IOMAP_UNWRITTEN: case IOMAP_HOLE: if (!(vmf->flags & FAULT_FLAG_WRITE)) { vmf_ret = dax_load_hole(mapping, &entry, vmf); goto unlock_entry; } /*FALLTHRU*/ default: WARN_ON_ONCE(1); error = -EIO; break; } error_unlock_entry: vmf_ret = dax_fault_return(error) | major; unlock_entry: put_locked_mapping_entry(mapping, vmf->pgoff, entry); finish_iomap: if (ops->iomap_end) { int copied = PAGE_SIZE; if (vmf_ret & VM_FAULT_ERROR) copied = 0; /* * The fault is done by now and there's no way back (other * thread may be already happily using PTE we have installed). * Just ignore error from ->iomap_end since we cannot do much * with it. */ ops->iomap_end(inode, pos, PAGE_SIZE, copied, flags, &iomap); } return vmf_ret; } #ifdef CONFIG_FS_DAX_PMD /* * The 'colour' (ie low bits) within a PMD of a page offset. This comes up * more often than one might expect in the below functions. */ #define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1) static int dax_pmd_insert_mapping(struct vm_fault *vmf, struct iomap *iomap, loff_t pos, void **entryp) { struct address_space *mapping = vmf->vma->vm_file->f_mapping; struct block_device *bdev = iomap->bdev; struct inode *inode = mapping->host; struct blk_dax_ctl dax = { .sector = dax_iomap_sector(iomap, pos), .size = PMD_SIZE, }; long length = dax_map_atomic(bdev, &dax); void *ret = NULL; if (length < 0) /* dax_map_atomic() failed */ goto fallback; if (length < PMD_SIZE) goto unmap_fallback; if (pfn_t_to_pfn(dax.pfn) & PG_PMD_COLOUR) goto unmap_fallback; if (!pfn_t_devmap(dax.pfn)) goto unmap_fallback; dax_unmap_atomic(bdev, &dax); ret = dax_insert_mapping_entry(mapping, vmf, *entryp, dax.sector, RADIX_DAX_PMD); if (IS_ERR(ret)) goto fallback; *entryp = ret; trace_dax_pmd_insert_mapping(inode, vmf, length, dax.pfn, ret); return vmf_insert_pfn_pmd(vmf->vma, vmf->address, vmf->pmd, dax.pfn, vmf->flags & FAULT_FLAG_WRITE); unmap_fallback: dax_unmap_atomic(bdev, &dax); fallback: trace_dax_pmd_insert_mapping_fallback(inode, vmf, length, dax.pfn, ret); return VM_FAULT_FALLBACK; } static int dax_pmd_load_hole(struct vm_fault *vmf, struct iomap *iomap, void **entryp) { struct address_space *mapping = vmf->vma->vm_file->f_mapping; unsigned long pmd_addr = vmf->address & PMD_MASK; struct inode *inode = mapping->host; struct page *zero_page; void *ret = NULL; spinlock_t *ptl; pmd_t pmd_entry; zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm); if (unlikely(!zero_page)) goto fallback; ret = dax_insert_mapping_entry(mapping, vmf, *entryp, 0, RADIX_DAX_PMD | RADIX_DAX_HZP); if (IS_ERR(ret)) goto fallback; *entryp = ret; ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd); if (!pmd_none(*(vmf->pmd))) { spin_unlock(ptl); goto fallback; } pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot); pmd_entry = pmd_mkhuge(pmd_entry); set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry); spin_unlock(ptl); trace_dax_pmd_load_hole(inode, vmf, zero_page, ret); return VM_FAULT_NOPAGE; fallback: trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, ret); return VM_FAULT_FALLBACK; } static int dax_iomap_pmd_fault(struct vm_fault *vmf, const struct iomap_ops *ops) { struct vm_area_struct *vma = vmf->vma; struct address_space *mapping = vma->vm_file->f_mapping; unsigned long pmd_addr = vmf->address & PMD_MASK; bool write = vmf->flags & FAULT_FLAG_WRITE; unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT; struct inode *inode = mapping->host; int result = VM_FAULT_FALLBACK; struct iomap iomap = { 0 }; pgoff_t max_pgoff, pgoff; void *entry; loff_t pos; int error; /* * Check whether offset isn't beyond end of file now. Caller is * supposed to hold locks serializing us with truncate / punch hole so * this is a reliable test. */ pgoff = linear_page_index(vma, pmd_addr); max_pgoff = (i_size_read(inode) - 1) >> PAGE_SHIFT; trace_dax_pmd_fault(inode, vmf, max_pgoff, 0); /* Fall back to PTEs if we're going to COW */ if (write && !(vma->vm_flags & VM_SHARED)) goto fallback; /* If the PMD would extend outside the VMA */ if (pmd_addr < vma->vm_start) goto fallback; if ((pmd_addr + PMD_SIZE) > vma->vm_end) goto fallback; if (pgoff > max_pgoff) { result = VM_FAULT_SIGBUS; goto out; } /* If the PMD would extend beyond the file size */ if ((pgoff | PG_PMD_COLOUR) > max_pgoff) goto fallback; /* * Note that we don't use iomap_apply here. We aren't doing I/O, only * setting up a mapping, so really we're using iomap_begin() as a way * to look up our filesystem block. */ pos = (loff_t)pgoff << PAGE_SHIFT; error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap); if (error) goto fallback; if (iomap.offset + iomap.length < pos + PMD_SIZE) goto finish_iomap; /* * grab_mapping_entry() will make sure we get a 2M empty entry, a DAX * PMD or a HZP entry. If it can't (because a 4k page is already in * the tree, for instance), it will return -EEXIST and we just fall * back to 4k entries. */ entry = grab_mapping_entry(mapping, pgoff, RADIX_DAX_PMD); if (IS_ERR(entry)) goto finish_iomap; switch (iomap.type) { case IOMAP_MAPPED: result = dax_pmd_insert_mapping(vmf, &iomap, pos, &entry); break; case IOMAP_UNWRITTEN: case IOMAP_HOLE: if (WARN_ON_ONCE(write)) goto unlock_entry; result = dax_pmd_load_hole(vmf, &iomap, &entry); break; default: WARN_ON_ONCE(1); break; } unlock_entry: put_locked_mapping_entry(mapping, pgoff, entry); finish_iomap: if (ops->iomap_end) { int copied = PMD_SIZE; if (result == VM_FAULT_FALLBACK) copied = 0; /* * The fault is done by now and there's no way back (other * thread may be already happily using PMD we have installed). * Just ignore error from ->iomap_end since we cannot do much * with it. */ ops->iomap_end(inode, pos, PMD_SIZE, copied, iomap_flags, &iomap); } fallback: if (result == VM_FAULT_FALLBACK) { split_huge_pmd(vma, vmf->pmd, vmf->address); count_vm_event(THP_FAULT_FALLBACK); } out: trace_dax_pmd_fault_done(inode, vmf, max_pgoff, result); return result; } #else static int dax_iomap_pmd_fault(struct vm_fault *vmf, const struct iomap_ops *ops) { return VM_FAULT_FALLBACK; } #endif /* CONFIG_FS_DAX_PMD */ /** * dax_iomap_fault - handle a page fault on a DAX file * @vmf: The description of the fault * @ops: iomap ops passed from the file system * * When a page fault occurs, filesystems may call this helper in * their fault handler for DAX files. dax_iomap_fault() assumes the caller * has done all the necessary locking for page fault to proceed * successfully. */ int dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size, const struct iomap_ops *ops) { switch (pe_size) { case PE_SIZE_PTE: return dax_iomap_pte_fault(vmf, ops); case PE_SIZE_PMD: return dax_iomap_pmd_fault(vmf, ops); default: return VM_FAULT_FALLBACK; } } EXPORT_SYMBOL_GPL(dax_iomap_fault);