/* * Marvell 88SE94xx hardware specific * * Copyright 2007 Red Hat, Inc. * Copyright 2008 Marvell. * Copyright 2009-2011 Marvell. * * This file is licensed under GPLv2. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; version 2 of the * License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 * USA */ #include "mv_sas.h" #include "mv_94xx.h" #include "mv_chips.h" static void mvs_94xx_detect_porttype(struct mvs_info *mvi, int i) { u32 reg; struct mvs_phy *phy = &mvi->phy[i]; u32 phy_status; mvs_write_port_vsr_addr(mvi, i, VSR_PHY_MODE3); reg = mvs_read_port_vsr_data(mvi, i); phy_status = ((reg & 0x3f0000) >> 16) & 0xff; phy->phy_type &= ~(PORT_TYPE_SAS | PORT_TYPE_SATA); switch (phy_status) { case 0x10: phy->phy_type |= PORT_TYPE_SAS; break; case 0x1d: default: phy->phy_type |= PORT_TYPE_SATA; break; } } void set_phy_tuning(struct mvs_info *mvi, int phy_id, struct phy_tuning phy_tuning) { u32 tmp, setting_0 = 0, setting_1 = 0; u8 i; /* Remap information for B0 chip: * * R0Ch -> R118h[15:0] (Adapted DFE F3 - F5 coefficient) * R0Dh -> R118h[31:16] (Generation 1 Setting 0) * R0Eh -> R11Ch[15:0] (Generation 1 Setting 1) * R0Fh -> R11Ch[31:16] (Generation 2 Setting 0) * R10h -> R120h[15:0] (Generation 2 Setting 1) * R11h -> R120h[31:16] (Generation 3 Setting 0) * R12h -> R124h[15:0] (Generation 3 Setting 1) * R13h -> R124h[31:16] (Generation 4 Setting 0 (Reserved)) */ /* A0 has a different set of registers */ if (mvi->pdev->revision == VANIR_A0_REV) return; for (i = 0; i < 3; i++) { /* loop 3 times, set Gen 1, Gen 2, Gen 3 */ switch (i) { case 0: setting_0 = GENERATION_1_SETTING; setting_1 = GENERATION_1_2_SETTING; break; case 1: setting_0 = GENERATION_1_2_SETTING; setting_1 = GENERATION_2_3_SETTING; break; case 2: setting_0 = GENERATION_2_3_SETTING; setting_1 = GENERATION_3_4_SETTING; break; } /* Set: * * Transmitter Emphasis Enable * Transmitter Emphasis Amplitude * Transmitter Amplitude */ mvs_write_port_vsr_addr(mvi, phy_id, setting_0); tmp = mvs_read_port_vsr_data(mvi, phy_id); tmp &= ~(0xFBE << 16); tmp |= (((phy_tuning.trans_emp_en << 11) | (phy_tuning.trans_emp_amp << 7) | (phy_tuning.trans_amp << 1)) << 16); mvs_write_port_vsr_data(mvi, phy_id, tmp); /* Set Transmitter Amplitude Adjust */ mvs_write_port_vsr_addr(mvi, phy_id, setting_1); tmp = mvs_read_port_vsr_data(mvi, phy_id); tmp &= ~(0xC000); tmp |= (phy_tuning.trans_amp_adj << 14); mvs_write_port_vsr_data(mvi, phy_id, tmp); } } void set_phy_ffe_tuning(struct mvs_info *mvi, int phy_id, struct ffe_control ffe) { u32 tmp; /* Don't run this if A0/B0 */ if ((mvi->pdev->revision == VANIR_A0_REV) || (mvi->pdev->revision == VANIR_B0_REV)) return; /* FFE Resistor and Capacitor */ /* R10Ch DFE Resolution Control/Squelch and FFE Setting * * FFE_FORCE [7] * FFE_RES_SEL [6:4] * FFE_CAP_SEL [3:0] */ mvs_write_port_vsr_addr(mvi, phy_id, VSR_PHY_FFE_CONTROL); tmp = mvs_read_port_vsr_data(mvi, phy_id); tmp &= ~0xFF; /* Read from HBA_Info_Page */ tmp |= ((0x1 << 7) | (ffe.ffe_rss_sel << 4) | (ffe.ffe_cap_sel << 0)); mvs_write_port_vsr_data(mvi, phy_id, tmp); /* R064h PHY Mode Register 1 * * DFE_DIS 18 */ mvs_write_port_vsr_addr(mvi, phy_id, VSR_REF_CLOCK_CRTL); tmp = mvs_read_port_vsr_data(mvi, phy_id); tmp &= ~0x40001; /* Hard coding */ /* No defines in HBA_Info_Page */ tmp |= (0 << 18); mvs_write_port_vsr_data(mvi, phy_id, tmp); /* R110h DFE F0-F1 Coefficient Control/DFE Update Control * * DFE_UPDATE_EN [11:6] * DFE_FX_FORCE [5:0] */ mvs_write_port_vsr_addr(mvi, phy_id, VSR_PHY_DFE_UPDATE_CRTL); tmp = mvs_read_port_vsr_data(mvi, phy_id); tmp &= ~0xFFF; /* Hard coding */ /* No defines in HBA_Info_Page */ tmp |= ((0x3F << 6) | (0x0 << 0)); mvs_write_port_vsr_data(mvi, phy_id, tmp); /* R1A0h Interface and Digital Reference Clock Control/Reserved_50h * * FFE_TRAIN_EN 3 */ mvs_write_port_vsr_addr(mvi, phy_id, VSR_REF_CLOCK_CRTL); tmp = mvs_read_port_vsr_data(mvi, phy_id); tmp &= ~0x8; /* Hard coding */ /* No defines in HBA_Info_Page */ tmp |= (0 << 3); mvs_write_port_vsr_data(mvi, phy_id, tmp); } /*Notice: this function must be called when phy is disabled*/ void set_phy_rate(struct mvs_info *mvi, int phy_id, u8 rate) { union reg_phy_cfg phy_cfg, phy_cfg_tmp; mvs_write_port_vsr_addr(mvi, phy_id, VSR_PHY_MODE2); phy_cfg_tmp.v = mvs_read_port_vsr_data(mvi, phy_id); phy_cfg.v = 0; phy_cfg.u.disable_phy = phy_cfg_tmp.u.disable_phy; phy_cfg.u.sas_support = 1; phy_cfg.u.sata_support = 1; phy_cfg.u.sata_host_mode = 1; switch (rate) { case 0x0: /* support 1.5 Gbps */ phy_cfg.u.speed_support = 1; phy_cfg.u.snw_3_support = 0; phy_cfg.u.tx_lnk_parity = 1; phy_cfg.u.tx_spt_phs_lnk_rate = 0x30; break; case 0x1: /* support 1.5, 3.0 Gbps */ phy_cfg.u.speed_support = 3; phy_cfg.u.tx_spt_phs_lnk_rate = 0x3c; phy_cfg.u.tx_lgcl_lnk_rate = 0x08; break; case 0x2: default: /* support 1.5, 3.0, 6.0 Gbps */ phy_cfg.u.speed_support = 7; phy_cfg.u.snw_3_support = 1; phy_cfg.u.tx_lnk_parity = 1; phy_cfg.u.tx_spt_phs_lnk_rate = 0x3f; phy_cfg.u.tx_lgcl_lnk_rate = 0x09; break; } mvs_write_port_vsr_data(mvi, phy_id, phy_cfg.v); } static void __devinit mvs_94xx_config_reg_from_hba(struct mvs_info *mvi, int phy_id) { u32 temp; temp = (u32)(*(u32 *)&mvi->hba_info_param.phy_tuning[phy_id]); if (temp == 0xFFFFFFFFL) { mvi->hba_info_param.phy_tuning[phy_id].trans_emp_amp = 0x6; mvi->hba_info_param.phy_tuning[phy_id].trans_amp = 0x1A; mvi->hba_info_param.phy_tuning[phy_id].trans_amp_adj = 0x3; } temp = (u8)(*(u8 *)&mvi->hba_info_param.ffe_ctl[phy_id]); if (temp == 0xFFL) { switch (mvi->pdev->revision) { case VANIR_A0_REV: case VANIR_B0_REV: mvi->hba_info_param.ffe_ctl[phy_id].ffe_rss_sel = 0x7; mvi->hba_info_param.ffe_ctl[phy_id].ffe_cap_sel = 0x7; break; case VANIR_C0_REV: case VANIR_C1_REV: case VANIR_C2_REV: default: mvi->hba_info_param.ffe_ctl[phy_id].ffe_rss_sel = 0x7; mvi->hba_info_param.ffe_ctl[phy_id].ffe_cap_sel = 0xC; break; } } temp = (u8)(*(u8 *)&mvi->hba_info_param.phy_rate[phy_id]); if (temp == 0xFFL) /*set default phy_rate = 6Gbps*/ mvi->hba_info_param.phy_rate[phy_id] = 0x2; set_phy_tuning(mvi, phy_id, mvi->hba_info_param.phy_tuning[phy_id]); set_phy_ffe_tuning(mvi, phy_id, mvi->hba_info_param.ffe_ctl[phy_id]); set_phy_rate(mvi, phy_id, mvi->hba_info_param.phy_rate[phy_id]); } static void __devinit mvs_94xx_enable_xmt(struct mvs_info *mvi, int phy_id) { void __iomem *regs = mvi->regs; u32 tmp; tmp = mr32(MVS_PCS); tmp |= 1 << (phy_id + PCS_EN_PORT_XMT_SHIFT2); mw32(MVS_PCS, tmp); } static void mvs_94xx_phy_reset(struct mvs_info *mvi, u32 phy_id, int hard) { u32 tmp; u32 delay = 5000; if (hard == MVS_PHY_TUNE) { mvs_write_port_cfg_addr(mvi, phy_id, PHYR_SATA_CTL); tmp = mvs_read_port_cfg_data(mvi, phy_id); mvs_write_port_cfg_data(mvi, phy_id, tmp|0x20000000); mvs_write_port_cfg_data(mvi, phy_id, tmp|0x100000); return; } tmp = mvs_read_port_irq_stat(mvi, phy_id); tmp &= ~PHYEV_RDY_CH; mvs_write_port_irq_stat(mvi, phy_id, tmp); if (hard) { tmp = mvs_read_phy_ctl(mvi, phy_id); tmp |= PHY_RST_HARD; mvs_write_phy_ctl(mvi, phy_id, tmp); do { tmp = mvs_read_phy_ctl(mvi, phy_id); udelay(10); delay--; } while ((tmp & PHY_RST_HARD) && delay); if (!delay) mv_dprintk("phy hard reset failed.\n"); } else { tmp = mvs_read_phy_ctl(mvi, phy_id); tmp |= PHY_RST; mvs_write_phy_ctl(mvi, phy_id, tmp); } } static void mvs_94xx_phy_disable(struct mvs_info *mvi, u32 phy_id) { u32 tmp; mvs_write_port_vsr_addr(mvi, phy_id, VSR_PHY_MODE2); tmp = mvs_read_port_vsr_data(mvi, phy_id); mvs_write_port_vsr_data(mvi, phy_id, tmp | 0x00800000); } static void mvs_94xx_phy_enable(struct mvs_info *mvi, u32 phy_id) { u32 tmp; u8 revision = 0; revision = mvi->pdev->revision; if (revision == VANIR_A0_REV) { mvs_write_port_vsr_addr(mvi, phy_id, CMD_HOST_RD_DATA); mvs_write_port_vsr_data(mvi, phy_id, 0x8300ffc1); } if (revision == VANIR_B0_REV) { mvs_write_port_vsr_addr(mvi, phy_id, CMD_APP_MEM_CTL); mvs_write_port_vsr_data(mvi, phy_id, 0x08001006); mvs_write_port_vsr_addr(mvi, phy_id, CMD_HOST_RD_DATA); mvs_write_port_vsr_data(mvi, phy_id, 0x0000705f); } mvs_write_port_vsr_addr(mvi, phy_id, VSR_PHY_MODE2); tmp = mvs_read_port_vsr_data(mvi, phy_id); tmp |= bit(0); mvs_write_port_vsr_data(mvi, phy_id, tmp & 0xfd7fffff); } static int __devinit mvs_94xx_init(struct mvs_info *mvi) { void __iomem *regs = mvi->regs; int i; u32 tmp, cctl; u8 revision; revision = mvi->pdev->revision; mvs_show_pcie_usage(mvi); if (mvi->flags & MVF_FLAG_SOC) { tmp = mr32(MVS_PHY_CTL); tmp &= ~PCTL_PWR_OFF; tmp |= PCTL_PHY_DSBL; mw32(MVS_PHY_CTL, tmp); } /* Init Chip */ /* make sure RST is set; HBA_RST /should/ have done that for us */ cctl = mr32(MVS_CTL) & 0xFFFF; if (cctl & CCTL_RST) cctl &= ~CCTL_RST; else mw32_f(MVS_CTL, cctl | CCTL_RST); if (mvi->flags & MVF_FLAG_SOC) { tmp = mr32(MVS_PHY_CTL); tmp &= ~PCTL_PWR_OFF; tmp |= PCTL_COM_ON; tmp &= ~PCTL_PHY_DSBL; tmp |= PCTL_LINK_RST; mw32(MVS_PHY_CTL, tmp); msleep(100); tmp &= ~PCTL_LINK_RST; mw32(MVS_PHY_CTL, tmp); msleep(100); } /* disable Multiplexing, enable phy implemented */ mw32(MVS_PORTS_IMP, 0xFF); if (revision == VANIR_A0_REV) { mw32(MVS_PA_VSR_ADDR, CMD_CMWK_OOB_DET); mw32(MVS_PA_VSR_PORT, 0x00018080); } mw32(MVS_PA_VSR_ADDR, VSR_PHY_MODE2); if (revision == VANIR_A0_REV || revision == VANIR_B0_REV) /* set 6G/3G/1.5G, multiplexing, without SSC */ mw32(MVS_PA_VSR_PORT, 0x0084d4fe); else /* set 6G/3G/1.5G, multiplexing, with and without SSC */ mw32(MVS_PA_VSR_PORT, 0x0084fffe); if (revision == VANIR_B0_REV) { mw32(MVS_PA_VSR_ADDR, CMD_APP_MEM_CTL); mw32(MVS_PA_VSR_PORT, 0x08001006); mw32(MVS_PA_VSR_ADDR, CMD_HOST_RD_DATA); mw32(MVS_PA_VSR_PORT, 0x0000705f); } /* reset control */ mw32(MVS_PCS, 0); /* MVS_PCS */ mw32(MVS_STP_REG_SET_0, 0); mw32(MVS_STP_REG_SET_1, 0); /* init phys */ mvs_phy_hacks(mvi); /* set LED blink when IO*/ mw32(MVS_PA_VSR_ADDR, VSR_PHY_ACT_LED); tmp = mr32(MVS_PA_VSR_PORT); tmp &= 0xFFFF00FF; tmp |= 0x00003300; mw32(MVS_PA_VSR_PORT, tmp); mw32(MVS_CMD_LIST_LO, mvi->slot_dma); mw32(MVS_CMD_LIST_HI, (mvi->slot_dma >> 16) >> 16); mw32(MVS_RX_FIS_LO, mvi->rx_fis_dma); mw32(MVS_RX_FIS_HI, (mvi->rx_fis_dma >> 16) >> 16); mw32(MVS_TX_CFG, MVS_CHIP_SLOT_SZ); mw32(MVS_TX_LO, mvi->tx_dma); mw32(MVS_TX_HI, (mvi->tx_dma >> 16) >> 16); mw32(MVS_RX_CFG, MVS_RX_RING_SZ); mw32(MVS_RX_LO, mvi->rx_dma); mw32(MVS_RX_HI, (mvi->rx_dma >> 16) >> 16); for (i = 0; i < mvi->chip->n_phy; i++) { mvs_94xx_phy_disable(mvi, i); /* set phy local SAS address */ mvs_set_sas_addr(mvi, i, CONFIG_ID_FRAME3, CONFIG_ID_FRAME4, cpu_to_le64(mvi->phy[i].dev_sas_addr)); mvs_94xx_enable_xmt(mvi, i); mvs_94xx_config_reg_from_hba(mvi, i); mvs_94xx_phy_enable(mvi, i); mvs_94xx_phy_reset(mvi, i, PHY_RST_HARD); msleep(500); mvs_94xx_detect_porttype(mvi, i); } if (mvi->flags & MVF_FLAG_SOC) { /* set select registers */ writel(0x0E008000, regs + 0x000); writel(0x59000008, regs + 0x004); writel(0x20, regs + 0x008); writel(0x20, regs + 0x00c); writel(0x20, regs + 0x010); writel(0x20, regs + 0x014); writel(0x20, regs + 0x018); writel(0x20, regs + 0x01c); } for (i = 0; i < mvi->chip->n_phy; i++) { /* clear phy int status */ tmp = mvs_read_port_irq_stat(mvi, i); tmp &= ~PHYEV_SIG_FIS; mvs_write_port_irq_stat(mvi, i, tmp); /* set phy int mask */ tmp = PHYEV_RDY_CH | PHYEV_BROAD_CH | PHYEV_ID_DONE | PHYEV_DCDR_ERR | PHYEV_CRC_ERR ; mvs_write_port_irq_mask(mvi, i, tmp); msleep(100); mvs_update_phyinfo(mvi, i, 1); } /* little endian for open address and command table, etc. */ cctl = mr32(MVS_CTL); cctl |= CCTL_ENDIAN_CMD; cctl &= ~CCTL_ENDIAN_OPEN; cctl |= CCTL_ENDIAN_RSP; mw32_f(MVS_CTL, cctl); /* reset CMD queue */ tmp = mr32(MVS_PCS); tmp |= PCS_CMD_RST; tmp &= ~PCS_SELF_CLEAR; mw32(MVS_PCS, tmp); /* * the max count is 0x1ff, while our max slot is 0x200, * it will make count 0. */ tmp = 0; if (MVS_CHIP_SLOT_SZ > 0x1ff) mw32(MVS_INT_COAL, 0x1ff | COAL_EN); else mw32(MVS_INT_COAL, MVS_CHIP_SLOT_SZ | COAL_EN); /* default interrupt coalescing time is 128us */ tmp = 0x10000 | interrupt_coalescing; mw32(MVS_INT_COAL_TMOUT, tmp); /* ladies and gentlemen, start your engines */ mw32(MVS_TX_CFG, 0); mw32(MVS_TX_CFG, MVS_CHIP_SLOT_SZ | TX_EN); mw32(MVS_RX_CFG, MVS_RX_RING_SZ | RX_EN); /* enable CMD/CMPL_Q/RESP mode */ mw32(MVS_PCS, PCS_SATA_RETRY_2 | PCS_FIS_RX_EN | PCS_CMD_EN | PCS_CMD_STOP_ERR); /* enable completion queue interrupt */ tmp = (CINT_PORT_MASK | CINT_DONE | CINT_MEM | CINT_SRS | CINT_CI_STOP | CINT_DMA_PCIE | CINT_NON_SPEC_NCQ_ERROR); tmp |= CINT_PHY_MASK; mw32(MVS_INT_MASK, tmp); /* Enable SRS interrupt */ mw32(MVS_INT_MASK_SRS_0, 0xFFFF); return 0; } static int mvs_94xx_ioremap(struct mvs_info *mvi) { if (!mvs_ioremap(mvi, 2, -1)) { mvi->regs_ex = mvi->regs + 0x10200; mvi->regs += 0x20000; if (mvi->id == 1) mvi->regs += 0x4000; return 0; } return -1; } static void mvs_94xx_iounmap(struct mvs_info *mvi) { if (mvi->regs) { mvi->regs -= 0x20000; if (mvi->id == 1) mvi->regs -= 0x4000; mvs_iounmap(mvi->regs); } } static void mvs_94xx_interrupt_enable(struct mvs_info *mvi) { void __iomem *regs = mvi->regs_ex; u32 tmp; tmp = mr32(MVS_GBL_CTL); tmp |= (IRQ_SAS_A | IRQ_SAS_B); mw32(MVS_GBL_INT_STAT, tmp); writel(tmp, regs + 0x0C); writel(tmp, regs + 0x10); writel(tmp, regs + 0x14); writel(tmp, regs + 0x18); mw32(MVS_GBL_CTL, tmp); } static void mvs_94xx_interrupt_disable(struct mvs_info *mvi) { void __iomem *regs = mvi->regs_ex; u32 tmp; tmp = mr32(MVS_GBL_CTL); tmp &= ~(IRQ_SAS_A | IRQ_SAS_B); mw32(MVS_GBL_INT_STAT, tmp); writel(tmp, regs + 0x0C); writel(tmp, regs + 0x10); writel(tmp, regs + 0x14); writel(tmp, regs + 0x18); mw32(MVS_GBL_CTL, tmp); } static u32 mvs_94xx_isr_status(struct mvs_info *mvi, int irq) { void __iomem *regs = mvi->regs_ex; u32 stat = 0; if (!(mvi->flags & MVF_FLAG_SOC)) { stat = mr32(MVS_GBL_INT_STAT); if (!(stat & (IRQ_SAS_A | IRQ_SAS_B))) return 0; } return stat; } static irqreturn_t mvs_94xx_isr(struct mvs_info *mvi, int irq, u32 stat) { void __iomem *regs = mvi->regs; if (((stat & IRQ_SAS_A) && mvi->id == 0) || ((stat & IRQ_SAS_B) && mvi->id == 1)) { mw32_f(MVS_INT_STAT, CINT_DONE); #ifndef MVS_USE_TASKLET spin_lock(&mvi->lock); #endif mvs_int_full(mvi); #ifndef MVS_USE_TASKLET spin_unlock(&mvi->lock); #endif } return IRQ_HANDLED; } static void mvs_94xx_command_active(struct mvs_info *mvi, u32 slot_idx) { u32 tmp; tmp = mvs_cr32(mvi, MVS_COMMAND_ACTIVE+(slot_idx >> 3)); if (tmp && 1 << (slot_idx % 32)) { mv_printk("command active %08X, slot [%x].\n", tmp, slot_idx); mvs_cw32(mvi, MVS_COMMAND_ACTIVE + (slot_idx >> 3), 1 << (slot_idx % 32)); do { tmp = mvs_cr32(mvi, MVS_COMMAND_ACTIVE + (slot_idx >> 3)); } while (tmp & 1 << (slot_idx % 32)); } } void mvs_94xx_clear_srs_irq(struct mvs_info *mvi, u8 reg_set, u8 clear_all) { void __iomem *regs = mvi->regs; u32 tmp; if (clear_all) { tmp = mr32(MVS_INT_STAT_SRS_0); if (tmp) { mv_dprintk("check SRS 0 %08X.\n", tmp); mw32(MVS_INT_STAT_SRS_0, tmp); } tmp = mr32(MVS_INT_STAT_SRS_1); if (tmp) { mv_dprintk("check SRS 1 %08X.\n", tmp); mw32(MVS_INT_STAT_SRS_1, tmp); } } else { if (reg_set > 31) tmp = mr32(MVS_INT_STAT_SRS_1); else tmp = mr32(MVS_INT_STAT_SRS_0); if (tmp & (1 << (reg_set % 32))) { mv_dprintk("register set 0x%x was stopped.\n", reg_set); if (reg_set > 31) mw32(MVS_INT_STAT_SRS_1, 1 << (reg_set % 32)); else mw32(MVS_INT_STAT_SRS_0, 1 << (reg_set % 32)); } } } static void mvs_94xx_issue_stop(struct mvs_info *mvi, enum mvs_port_type type, u32 tfs) { void __iomem *regs = mvi->regs; u32 tmp; mvs_94xx_clear_srs_irq(mvi, 0, 1); tmp = mr32(MVS_INT_STAT); mw32(MVS_INT_STAT, tmp | CINT_CI_STOP); tmp = mr32(MVS_PCS) | 0xFF00; mw32(MVS_PCS, tmp); } static void mvs_94xx_non_spec_ncq_error(struct mvs_info *mvi) { void __iomem *regs = mvi->regs; u32 err_0, err_1; u8 i; struct mvs_device *device; err_0 = mr32(MVS_NON_NCQ_ERR_0); err_1 = mr32(MVS_NON_NCQ_ERR_1); mv_dprintk("non specific ncq error err_0:%x,err_1:%x.\n", err_0, err_1); for (i = 0; i < 32; i++) { if (err_0 & bit(i)) { device = mvs_find_dev_by_reg_set(mvi, i); if (device) mvs_release_task(mvi, device->sas_device); } if (err_1 & bit(i)) { device = mvs_find_dev_by_reg_set(mvi, i+32); if (device) mvs_release_task(mvi, device->sas_device); } } mw32(MVS_NON_NCQ_ERR_0, err_0); mw32(MVS_NON_NCQ_ERR_1, err_1); } static void mvs_94xx_free_reg_set(struct mvs_info *mvi, u8 *tfs) { void __iomem *regs = mvi->regs; u8 reg_set = *tfs; if (*tfs == MVS_ID_NOT_MAPPED) return; mvi->sata_reg_set &= ~bit(reg_set); if (reg_set < 32) w_reg_set_enable(reg_set, (u32)mvi->sata_reg_set); else w_reg_set_enable(reg_set, (u32)(mvi->sata_reg_set >> 32)); *tfs = MVS_ID_NOT_MAPPED; return; } static u8 mvs_94xx_assign_reg_set(struct mvs_info *mvi, u8 *tfs) { int i; void __iomem *regs = mvi->regs; if (*tfs != MVS_ID_NOT_MAPPED) return 0; i = mv_ffc64(mvi->sata_reg_set); if (i >= 32) { mvi->sata_reg_set |= bit(i); w_reg_set_enable(i, (u32)(mvi->sata_reg_set >> 32)); *tfs = i; return 0; } else if (i >= 0) { mvi->sata_reg_set |= bit(i); w_reg_set_enable(i, (u32)mvi->sata_reg_set); *tfs = i; return 0; } return MVS_ID_NOT_MAPPED; } static void mvs_94xx_make_prd(struct scatterlist *scatter, int nr, void *prd) { int i; struct scatterlist *sg; struct mvs_prd *buf_prd = prd; struct mvs_prd_imt im_len; *(u32 *)&im_len = 0; for_each_sg(scatter, sg, nr, i) { buf_prd->addr = cpu_to_le64(sg_dma_address(sg)); im_len.len = sg_dma_len(sg); buf_prd->im_len = cpu_to_le32(*(u32 *)&im_len); buf_prd++; } } static int mvs_94xx_oob_done(struct mvs_info *mvi, int i) { u32 phy_st; phy_st = mvs_read_phy_ctl(mvi, i); if (phy_st & PHY_READY_MASK) return 1; return 0; } static void mvs_94xx_get_dev_identify_frame(struct mvs_info *mvi, int port_id, struct sas_identify_frame *id) { int i; u32 id_frame[7]; for (i = 0; i < 7; i++) { mvs_write_port_cfg_addr(mvi, port_id, CONFIG_ID_FRAME0 + i * 4); id_frame[i] = cpu_to_le32(mvs_read_port_cfg_data(mvi, port_id)); } memcpy(id, id_frame, 28); } static void mvs_94xx_get_att_identify_frame(struct mvs_info *mvi, int port_id, struct sas_identify_frame *id) { int i; u32 id_frame[7]; for (i = 0; i < 7; i++) { mvs_write_port_cfg_addr(mvi, port_id, CONFIG_ATT_ID_FRAME0 + i * 4); id_frame[i] = cpu_to_le32(mvs_read_port_cfg_data(mvi, port_id)); mv_dprintk("94xx phy %d atta frame %d %x.\n", port_id + mvi->id * mvi->chip->n_phy, i, id_frame[i]); } memcpy(id, id_frame, 28); } static u32 mvs_94xx_make_dev_info(struct sas_identify_frame *id) { u32 att_dev_info = 0; att_dev_info |= id->dev_type; if (id->stp_iport) att_dev_info |= PORT_DEV_STP_INIT; if (id->smp_iport) att_dev_info |= PORT_DEV_SMP_INIT; if (id->ssp_iport) att_dev_info |= PORT_DEV_SSP_INIT; if (id->stp_tport) att_dev_info |= PORT_DEV_STP_TRGT; if (id->smp_tport) att_dev_info |= PORT_DEV_SMP_TRGT; if (id->ssp_tport) att_dev_info |= PORT_DEV_SSP_TRGT; att_dev_info |= (u32)id->phy_id<<24; return att_dev_info; } static u32 mvs_94xx_make_att_info(struct sas_identify_frame *id) { return mvs_94xx_make_dev_info(id); } static void mvs_94xx_fix_phy_info(struct mvs_info *mvi, int i, struct sas_identify_frame *id) { struct mvs_phy *phy = &mvi->phy[i]; struct asd_sas_phy *sas_phy = &phy->sas_phy; mv_dprintk("get all reg link rate is 0x%x\n", phy->phy_status); sas_phy->linkrate = (phy->phy_status & PHY_NEG_SPP_PHYS_LINK_RATE_MASK) >> PHY_NEG_SPP_PHYS_LINK_RATE_MASK_OFFSET; sas_phy->linkrate += 0x8; mv_dprintk("get link rate is %d\n", sas_phy->linkrate); phy->minimum_linkrate = SAS_LINK_RATE_1_5_GBPS; phy->maximum_linkrate = SAS_LINK_RATE_6_0_GBPS; mvs_94xx_get_dev_identify_frame(mvi, i, id); phy->dev_info = mvs_94xx_make_dev_info(id); if (phy->phy_type & PORT_TYPE_SAS) { mvs_94xx_get_att_identify_frame(mvi, i, id); phy->att_dev_info = mvs_94xx_make_att_info(id); phy->att_dev_sas_addr = *(u64 *)id->sas_addr; } else { phy->att_dev_info = PORT_DEV_STP_TRGT | 1; } } void mvs_94xx_phy_set_link_rate(struct mvs_info *mvi, u32 phy_id, struct sas_phy_linkrates *rates) { u32 lrmax = 0; u32 tmp; tmp = mvs_read_phy_ctl(mvi, phy_id); lrmax = (rates->maximum_linkrate - SAS_LINK_RATE_1_5_GBPS) << 12; if (lrmax) { tmp &= ~(0x3 << 12); tmp |= lrmax; } mvs_write_phy_ctl(mvi, phy_id, tmp); mvs_94xx_phy_reset(mvi, phy_id, PHY_RST_HARD); } static void mvs_94xx_clear_active_cmds(struct mvs_info *mvi) { u32 tmp; void __iomem *regs = mvi->regs; tmp = mr32(MVS_STP_REG_SET_0); mw32(MVS_STP_REG_SET_0, 0); mw32(MVS_STP_REG_SET_0, tmp); tmp = mr32(MVS_STP_REG_SET_1); mw32(MVS_STP_REG_SET_1, 0); mw32(MVS_STP_REG_SET_1, tmp); } u32 mvs_94xx_spi_read_data(struct mvs_info *mvi) { void __iomem *regs = mvi->regs_ex - 0x10200; return mr32(SPI_RD_DATA_REG_94XX); } void mvs_94xx_spi_write_data(struct mvs_info *mvi, u32 data) { void __iomem *regs = mvi->regs_ex - 0x10200; mw32(SPI_RD_DATA_REG_94XX, data); } int mvs_94xx_spi_buildcmd(struct mvs_info *mvi, u32 *dwCmd, u8 cmd, u8 read, u8 length, u32 addr ) { void __iomem *regs = mvi->regs_ex - 0x10200; u32 dwTmp; dwTmp = ((u32)cmd << 8) | ((u32)length << 4); if (read) dwTmp |= SPI_CTRL_READ_94XX; if (addr != MV_MAX_U32) { mw32(SPI_ADDR_REG_94XX, (addr & 0x0003FFFFL)); dwTmp |= SPI_ADDR_VLD_94XX; } *dwCmd = dwTmp; return 0; } int mvs_94xx_spi_issuecmd(struct mvs_info *mvi, u32 cmd) { void __iomem *regs = mvi->regs_ex - 0x10200; mw32(SPI_CTRL_REG_94XX, cmd | SPI_CTRL_SpiStart_94XX); return 0; } int mvs_94xx_spi_waitdataready(struct mvs_info *mvi, u32 timeout) { void __iomem *regs = mvi->regs_ex - 0x10200; u32 i, dwTmp; for (i = 0; i < timeout; i++) { dwTmp = mr32(SPI_CTRL_REG_94XX); if (!(dwTmp & SPI_CTRL_SpiStart_94XX)) return 0; msleep(10); } return -1; } void mvs_94xx_fix_dma(struct mvs_info *mvi, u32 phy_mask, int buf_len, int from, void *prd) { int i; struct mvs_prd *buf_prd = prd; dma_addr_t buf_dma; struct mvs_prd_imt im_len; *(u32 *)&im_len = 0; buf_prd += from; #define PRD_CHAINED_ENTRY 0x01 if ((mvi->pdev->revision == VANIR_A0_REV) || (mvi->pdev->revision == VANIR_B0_REV)) buf_dma = (phy_mask <= 0x08) ? mvi->bulk_buffer_dma : mvi->bulk_buffer_dma1; else return; for (i = from; i < MAX_SG_ENTRY; i++, ++buf_prd) { if (i == MAX_SG_ENTRY - 1) { buf_prd->addr = cpu_to_le64(virt_to_phys(buf_prd - 1)); im_len.len = 2; im_len.misc_ctl = PRD_CHAINED_ENTRY; } else { buf_prd->addr = cpu_to_le64(buf_dma); im_len.len = buf_len; } buf_prd->im_len = cpu_to_le32(*(u32 *)&im_len); } } static void mvs_94xx_tune_interrupt(struct mvs_info *mvi, u32 time) { void __iomem *regs = mvi->regs; u32 tmp = 0; /* * the max count is 0x1ff, while our max slot is 0x200, * it will make count 0. */ if (time == 0) { mw32(MVS_INT_COAL, 0); mw32(MVS_INT_COAL_TMOUT, 0x10000); } else { if (MVS_CHIP_SLOT_SZ > 0x1ff) mw32(MVS_INT_COAL, 0x1ff|COAL_EN); else mw32(MVS_INT_COAL, MVS_CHIP_SLOT_SZ|COAL_EN); tmp = 0x10000 | time; mw32(MVS_INT_COAL_TMOUT, tmp); } } const struct mvs_dispatch mvs_94xx_dispatch = { "mv94xx", mvs_94xx_init, NULL, mvs_94xx_ioremap, mvs_94xx_iounmap, mvs_94xx_isr, mvs_94xx_isr_status, mvs_94xx_interrupt_enable, mvs_94xx_interrupt_disable, mvs_read_phy_ctl, mvs_write_phy_ctl, mvs_read_port_cfg_data, mvs_write_port_cfg_data, mvs_write_port_cfg_addr, mvs_read_port_vsr_data, mvs_write_port_vsr_data, mvs_write_port_vsr_addr, mvs_read_port_irq_stat, mvs_write_port_irq_stat, mvs_read_port_irq_mask, mvs_write_port_irq_mask, mvs_94xx_command_active, mvs_94xx_clear_srs_irq, mvs_94xx_issue_stop, mvs_start_delivery, mvs_rx_update, mvs_int_full, mvs_94xx_assign_reg_set, mvs_94xx_free_reg_set, mvs_get_prd_size, mvs_get_prd_count, mvs_94xx_make_prd, mvs_94xx_detect_porttype, mvs_94xx_oob_done, mvs_94xx_fix_phy_info, NULL, mvs_94xx_phy_set_link_rate, mvs_hw_max_link_rate, mvs_94xx_phy_disable, mvs_94xx_phy_enable, mvs_94xx_phy_reset, NULL, mvs_94xx_clear_active_cmds, mvs_94xx_spi_read_data, mvs_94xx_spi_write_data, mvs_94xx_spi_buildcmd, mvs_94xx_spi_issuecmd, mvs_94xx_spi_waitdataready, mvs_94xx_fix_dma, mvs_94xx_tune_interrupt, mvs_94xx_non_spec_ncq_error, };