/* * Disk Array driver for HP Smart Array SAS controllers * Copyright 2000, 2009 Hewlett-Packard Development Company, L.P. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or * NON INFRINGEMENT. See the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. * * Questions/Comments/Bugfixes to iss_storagedev@hp.com * */ #ifndef HPSA_H #define HPSA_H #include <scsi/scsicam.h> #define IO_OK 0 #define IO_ERROR 1 struct ctlr_info; struct access_method { void (*submit_command)(struct ctlr_info *h, struct CommandList *c); void (*set_intr_mask)(struct ctlr_info *h, unsigned long val); unsigned long (*fifo_full)(struct ctlr_info *h); bool (*intr_pending)(struct ctlr_info *h); unsigned long (*command_completed)(struct ctlr_info *h, u8 q); }; struct hpsa_scsi_dev_t { int devtype; int bus, target, lun; /* as presented to the OS */ unsigned char scsi3addr[8]; /* as presented to the HW */ #define RAID_CTLR_LUNID "\0\0\0\0\0\0\0\0" unsigned char device_id[16]; /* from inquiry pg. 0x83 */ unsigned char vendor[8]; /* bytes 8-15 of inquiry data */ unsigned char model[16]; /* bytes 16-31 of inquiry data */ unsigned char raid_level; /* from inquiry page 0xC1 */ }; struct reply_pool { u64 *head; size_t size; u8 wraparound; u32 current_entry; }; struct ctlr_info { int ctlr; char devname[8]; char *product_name; struct pci_dev *pdev; u32 board_id; void __iomem *vaddr; unsigned long paddr; int nr_cmds; /* Number of commands allowed on this controller */ struct CfgTable __iomem *cfgtable; int interrupts_enabled; int major; int max_commands; int commands_outstanding; int max_outstanding; /* Debug */ int usage_count; /* number of opens all all minor devices */ # define PERF_MODE_INT 0 # define DOORBELL_INT 1 # define SIMPLE_MODE_INT 2 # define MEMQ_MODE_INT 3 unsigned int intr[MAX_REPLY_QUEUES]; unsigned int msix_vector; unsigned int msi_vector; int intr_mode; /* either PERF_MODE_INT or SIMPLE_MODE_INT */ struct access_method access; /* queue and queue Info */ struct list_head reqQ; struct list_head cmpQ; unsigned int Qdepth; unsigned int maxSG; spinlock_t lock; int maxsgentries; u8 max_cmd_sg_entries; int chainsize; struct SGDescriptor **cmd_sg_list; /* pointers to command and error info pool */ struct CommandList *cmd_pool; dma_addr_t cmd_pool_dhandle; struct ErrorInfo *errinfo_pool; dma_addr_t errinfo_pool_dhandle; unsigned long *cmd_pool_bits; int nr_allocs; int nr_frees; int scan_finished; spinlock_t scan_lock; wait_queue_head_t scan_wait_queue; struct Scsi_Host *scsi_host; spinlock_t devlock; /* to protect hba[ctlr]->dev[]; */ int ndevices; /* number of used elements in .dev[] array. */ struct hpsa_scsi_dev_t *dev[HPSA_MAX_DEVICES]; /* * Performant mode tables. */ u32 trans_support; u32 trans_offset; struct TransTable_struct *transtable; unsigned long transMethod; /* * Performant mode completion buffers */ u64 *reply_pool; size_t reply_pool_size; struct reply_pool reply_queue[MAX_REPLY_QUEUES]; u8 nreply_queues; dma_addr_t reply_pool_dhandle; u32 *blockFetchTable; unsigned char *hba_inquiry_data; u64 last_intr_timestamp; u32 last_heartbeat; u64 last_heartbeat_timestamp; u32 heartbeat_sample_interval; atomic_t firmware_flash_in_progress; u32 lockup_detected; struct list_head lockup_list; /* Address of h->q[x] is passed to intr handler to know which queue */ u8 q[MAX_REPLY_QUEUES]; u32 TMFSupportFlags; /* cache what task mgmt funcs are supported. */ #define HPSATMF_BITS_SUPPORTED (1 << 0) #define HPSATMF_PHYS_LUN_RESET (1 << 1) #define HPSATMF_PHYS_NEX_RESET (1 << 2) #define HPSATMF_PHYS_TASK_ABORT (1 << 3) #define HPSATMF_PHYS_TSET_ABORT (1 << 4) #define HPSATMF_PHYS_CLEAR_ACA (1 << 5) #define HPSATMF_PHYS_CLEAR_TSET (1 << 6) #define HPSATMF_PHYS_QRY_TASK (1 << 7) #define HPSATMF_PHYS_QRY_TSET (1 << 8) #define HPSATMF_PHYS_QRY_ASYNC (1 << 9) #define HPSATMF_MASK_SUPPORTED (1 << 16) #define HPSATMF_LOG_LUN_RESET (1 << 17) #define HPSATMF_LOG_NEX_RESET (1 << 18) #define HPSATMF_LOG_TASK_ABORT (1 << 19) #define HPSATMF_LOG_TSET_ABORT (1 << 20) #define HPSATMF_LOG_CLEAR_ACA (1 << 21) #define HPSATMF_LOG_CLEAR_TSET (1 << 22) #define HPSATMF_LOG_QRY_TASK (1 << 23) #define HPSATMF_LOG_QRY_TSET (1 << 24) #define HPSATMF_LOG_QRY_ASYNC (1 << 25) }; #define HPSA_ABORT_MSG 0 #define HPSA_DEVICE_RESET_MSG 1 #define HPSA_RESET_TYPE_CONTROLLER 0x00 #define HPSA_RESET_TYPE_BUS 0x01 #define HPSA_RESET_TYPE_TARGET 0x03 #define HPSA_RESET_TYPE_LUN 0x04 #define HPSA_MSG_SEND_RETRY_LIMIT 10 #define HPSA_MSG_SEND_RETRY_INTERVAL_MSECS (10000) /* Maximum time in seconds driver will wait for command completions * when polling before giving up. */ #define HPSA_MAX_POLL_TIME_SECS (20) /* During SCSI error recovery, HPSA_TUR_RETRY_LIMIT defines * how many times to retry TEST UNIT READY on a device * while waiting for it to become ready before giving up. * HPSA_MAX_WAIT_INTERVAL_SECS is the max wait interval * between sending TURs while waiting for a device * to become ready. */ #define HPSA_TUR_RETRY_LIMIT (20) #define HPSA_MAX_WAIT_INTERVAL_SECS (30) /* HPSA_BOARD_READY_WAIT_SECS is how long to wait for a board * to become ready, in seconds, before giving up on it. * HPSA_BOARD_READY_POLL_INTERVAL_MSECS * is how long to wait * between polling the board to see if it is ready, in * milliseconds. HPSA_BOARD_READY_POLL_INTERVAL and * HPSA_BOARD_READY_ITERATIONS are derived from those. */ #define HPSA_BOARD_READY_WAIT_SECS (120) #define HPSA_BOARD_NOT_READY_WAIT_SECS (100) #define HPSA_BOARD_READY_POLL_INTERVAL_MSECS (100) #define HPSA_BOARD_READY_POLL_INTERVAL \ ((HPSA_BOARD_READY_POLL_INTERVAL_MSECS * HZ) / 1000) #define HPSA_BOARD_READY_ITERATIONS \ ((HPSA_BOARD_READY_WAIT_SECS * 1000) / \ HPSA_BOARD_READY_POLL_INTERVAL_MSECS) #define HPSA_BOARD_NOT_READY_ITERATIONS \ ((HPSA_BOARD_NOT_READY_WAIT_SECS * 1000) / \ HPSA_BOARD_READY_POLL_INTERVAL_MSECS) #define HPSA_POST_RESET_PAUSE_MSECS (3000) #define HPSA_POST_RESET_NOOP_RETRIES (12) /* Defining the diffent access_menthods */ /* * Memory mapped FIFO interface (SMART 53xx cards) */ #define SA5_DOORBELL 0x20 #define SA5_REQUEST_PORT_OFFSET 0x40 #define SA5_REPLY_INTR_MASK_OFFSET 0x34 #define SA5_REPLY_PORT_OFFSET 0x44 #define SA5_INTR_STATUS 0x30 #define SA5_SCRATCHPAD_OFFSET 0xB0 #define SA5_CTCFG_OFFSET 0xB4 #define SA5_CTMEM_OFFSET 0xB8 #define SA5_INTR_OFF 0x08 #define SA5B_INTR_OFF 0x04 #define SA5_INTR_PENDING 0x08 #define SA5B_INTR_PENDING 0x04 #define FIFO_EMPTY 0xffffffff #define HPSA_FIRMWARE_READY 0xffff0000 /* value in scratchpad register */ #define HPSA_ERROR_BIT 0x02 /* Performant mode flags */ #define SA5_PERF_INTR_PENDING 0x04 #define SA5_PERF_INTR_OFF 0x05 #define SA5_OUTDB_STATUS_PERF_BIT 0x01 #define SA5_OUTDB_CLEAR_PERF_BIT 0x01 #define SA5_OUTDB_CLEAR 0xA0 #define SA5_OUTDB_CLEAR_PERF_BIT 0x01 #define SA5_OUTDB_STATUS 0x9C #define HPSA_INTR_ON 1 #define HPSA_INTR_OFF 0 /* Send the command to the hardware */ static void SA5_submit_command(struct ctlr_info *h, struct CommandList *c) { dev_dbg(&h->pdev->dev, "Sending %x, tag = %x\n", c->busaddr, c->Header.Tag.lower); writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET); (void) readl(h->vaddr + SA5_SCRATCHPAD_OFFSET); } /* * This card is the opposite of the other cards. * 0 turns interrupts on... * 0x08 turns them off... */ static void SA5_intr_mask(struct ctlr_info *h, unsigned long val) { if (val) { /* Turn interrupts on */ h->interrupts_enabled = 1; writel(0, h->vaddr + SA5_REPLY_INTR_MASK_OFFSET); (void) readl(h->vaddr + SA5_REPLY_INTR_MASK_OFFSET); } else { /* Turn them off */ h->interrupts_enabled = 0; writel(SA5_INTR_OFF, h->vaddr + SA5_REPLY_INTR_MASK_OFFSET); (void) readl(h->vaddr + SA5_REPLY_INTR_MASK_OFFSET); } } static void SA5_performant_intr_mask(struct ctlr_info *h, unsigned long val) { if (val) { /* turn on interrupts */ h->interrupts_enabled = 1; writel(0, h->vaddr + SA5_REPLY_INTR_MASK_OFFSET); (void) readl(h->vaddr + SA5_REPLY_INTR_MASK_OFFSET); } else { h->interrupts_enabled = 0; writel(SA5_PERF_INTR_OFF, h->vaddr + SA5_REPLY_INTR_MASK_OFFSET); (void) readl(h->vaddr + SA5_REPLY_INTR_MASK_OFFSET); } } static unsigned long SA5_performant_completed(struct ctlr_info *h, u8 q) { struct reply_pool *rq = &h->reply_queue[q]; unsigned long flags, register_value = FIFO_EMPTY; /* msi auto clears the interrupt pending bit. */ if (!(h->msi_vector || h->msix_vector)) { /* flush the controller write of the reply queue by reading * outbound doorbell status register. */ register_value = readl(h->vaddr + SA5_OUTDB_STATUS); writel(SA5_OUTDB_CLEAR_PERF_BIT, h->vaddr + SA5_OUTDB_CLEAR); /* Do a read in order to flush the write to the controller * (as per spec.) */ register_value = readl(h->vaddr + SA5_OUTDB_STATUS); } if ((rq->head[rq->current_entry] & 1) == rq->wraparound) { register_value = rq->head[rq->current_entry]; rq->current_entry++; spin_lock_irqsave(&h->lock, flags); h->commands_outstanding--; spin_unlock_irqrestore(&h->lock, flags); } else { register_value = FIFO_EMPTY; } /* Check for wraparound */ if (rq->current_entry == h->max_commands) { rq->current_entry = 0; rq->wraparound ^= 1; } return register_value; } /* * Returns true if fifo is full. * */ static unsigned long SA5_fifo_full(struct ctlr_info *h) { if (h->commands_outstanding >= h->max_commands) return 1; else return 0; } /* * returns value read from hardware. * returns FIFO_EMPTY if there is nothing to read */ static unsigned long SA5_completed(struct ctlr_info *h, __attribute__((unused)) u8 q) { unsigned long register_value = readl(h->vaddr + SA5_REPLY_PORT_OFFSET); unsigned long flags; if (register_value != FIFO_EMPTY) { spin_lock_irqsave(&h->lock, flags); h->commands_outstanding--; spin_unlock_irqrestore(&h->lock, flags); } #ifdef HPSA_DEBUG if (register_value != FIFO_EMPTY) dev_dbg(&h->pdev->dev, "Read %lx back from board\n", register_value); else dev_dbg(&h->pdev->dev, "FIFO Empty read\n"); #endif return register_value; } /* * Returns true if an interrupt is pending.. */ static bool SA5_intr_pending(struct ctlr_info *h) { unsigned long register_value = readl(h->vaddr + SA5_INTR_STATUS); dev_dbg(&h->pdev->dev, "intr_pending %lx\n", register_value); return register_value & SA5_INTR_PENDING; } static bool SA5_performant_intr_pending(struct ctlr_info *h) { unsigned long register_value = readl(h->vaddr + SA5_INTR_STATUS); if (!register_value) return false; if (h->msi_vector || h->msix_vector) return true; /* Read outbound doorbell to flush */ register_value = readl(h->vaddr + SA5_OUTDB_STATUS); return register_value & SA5_OUTDB_STATUS_PERF_BIT; } static struct access_method SA5_access = { SA5_submit_command, SA5_intr_mask, SA5_fifo_full, SA5_intr_pending, SA5_completed, }; static struct access_method SA5_performant_access = { SA5_submit_command, SA5_performant_intr_mask, SA5_fifo_full, SA5_performant_intr_pending, SA5_performant_completed, }; struct board_type { u32 board_id; char *product_name; struct access_method *access; }; #endif /* HPSA_H */