// SPDX-License-Identifier: GPL-2.0-only /* Copyright (c) 2020 Facebook */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define PCI_VENDOR_ID_FACEBOOK 0x1d9b #define PCI_DEVICE_ID_FACEBOOK_TIMECARD 0x0400 #define PCI_VENDOR_ID_CELESTICA 0x18d4 #define PCI_DEVICE_ID_CELESTICA_TIMECARD 0x1008 #define PCI_VENDOR_ID_OROLIA 0x1ad7 #define PCI_DEVICE_ID_OROLIA_ARTCARD 0xa000 static struct class timecard_class = { .name = "timecard", }; struct ocp_reg { u32 ctrl; u32 status; u32 select; u32 version; u32 time_ns; u32 time_sec; u32 __pad0[2]; u32 adjust_ns; u32 adjust_sec; u32 __pad1[2]; u32 offset_ns; u32 offset_window_ns; u32 __pad2[2]; u32 drift_ns; u32 drift_window_ns; u32 __pad3[6]; u32 servo_offset_p; u32 servo_offset_i; u32 servo_drift_p; u32 servo_drift_i; u32 status_offset; u32 status_drift; }; #define OCP_CTRL_ENABLE BIT(0) #define OCP_CTRL_ADJUST_TIME BIT(1) #define OCP_CTRL_ADJUST_OFFSET BIT(2) #define OCP_CTRL_ADJUST_DRIFT BIT(3) #define OCP_CTRL_ADJUST_SERVO BIT(8) #define OCP_CTRL_READ_TIME_REQ BIT(30) #define OCP_CTRL_READ_TIME_DONE BIT(31) #define OCP_STATUS_IN_SYNC BIT(0) #define OCP_STATUS_IN_HOLDOVER BIT(1) #define OCP_SELECT_CLK_NONE 0 #define OCP_SELECT_CLK_REG 0xfe struct tod_reg { u32 ctrl; u32 status; u32 uart_polarity; u32 version; u32 adj_sec; u32 __pad0[3]; u32 uart_baud; u32 __pad1[3]; u32 utc_status; u32 leap; }; #define TOD_CTRL_PROTOCOL BIT(28) #define TOD_CTRL_DISABLE_FMT_A BIT(17) #define TOD_CTRL_DISABLE_FMT_B BIT(16) #define TOD_CTRL_ENABLE BIT(0) #define TOD_CTRL_GNSS_MASK GENMASK(3, 0) #define TOD_CTRL_GNSS_SHIFT 24 #define TOD_STATUS_UTC_MASK GENMASK(7, 0) #define TOD_STATUS_UTC_VALID BIT(8) #define TOD_STATUS_LEAP_ANNOUNCE BIT(12) #define TOD_STATUS_LEAP_VALID BIT(16) struct ts_reg { u32 enable; u32 error; u32 polarity; u32 version; u32 __pad0[4]; u32 cable_delay; u32 __pad1[3]; u32 intr; u32 intr_mask; u32 event_count; u32 __pad2[1]; u32 ts_count; u32 time_ns; u32 time_sec; u32 data_width; u32 data; }; struct pps_reg { u32 ctrl; u32 status; u32 __pad0[6]; u32 cable_delay; }; #define PPS_STATUS_FILTER_ERR BIT(0) #define PPS_STATUS_SUPERV_ERR BIT(1) struct img_reg { u32 version; }; struct gpio_reg { u32 gpio1; u32 __pad0; u32 gpio2; u32 __pad1; }; struct irig_master_reg { u32 ctrl; u32 status; u32 __pad0; u32 version; u32 adj_sec; u32 mode_ctrl; }; #define IRIG_M_CTRL_ENABLE BIT(0) struct irig_slave_reg { u32 ctrl; u32 status; u32 __pad0; u32 version; u32 adj_sec; u32 mode_ctrl; }; #define IRIG_S_CTRL_ENABLE BIT(0) struct dcf_master_reg { u32 ctrl; u32 status; u32 __pad0; u32 version; u32 adj_sec; }; #define DCF_M_CTRL_ENABLE BIT(0) struct dcf_slave_reg { u32 ctrl; u32 status; u32 __pad0; u32 version; u32 adj_sec; }; #define DCF_S_CTRL_ENABLE BIT(0) struct signal_reg { u32 enable; u32 status; u32 polarity; u32 version; u32 __pad0[4]; u32 cable_delay; u32 __pad1[3]; u32 intr; u32 intr_mask; u32 __pad2[2]; u32 start_ns; u32 start_sec; u32 pulse_ns; u32 pulse_sec; u32 period_ns; u32 period_sec; u32 repeat_count; }; struct frequency_reg { u32 ctrl; u32 status; }; struct board_config_reg { u32 mro50_serial_activate; }; #define FREQ_STATUS_VALID BIT(31) #define FREQ_STATUS_ERROR BIT(30) #define FREQ_STATUS_OVERRUN BIT(29) #define FREQ_STATUS_MASK GENMASK(23, 0) struct ptp_ocp_flash_info { const char *name; int pci_offset; int data_size; void *data; }; struct ptp_ocp_firmware_header { char magic[4]; __be16 pci_vendor_id; __be16 pci_device_id; __be32 image_size; __be16 hw_revision; __be16 crc; }; #define OCP_FIRMWARE_MAGIC_HEADER "OCPC" struct ptp_ocp_i2c_info { const char *name; unsigned long fixed_rate; size_t data_size; void *data; }; struct ptp_ocp_ext_info { int index; irqreturn_t (*irq_fcn)(int irq, void *priv); int (*enable)(void *priv, u32 req, bool enable); }; struct ptp_ocp_ext_src { void __iomem *mem; struct ptp_ocp *bp; struct ptp_ocp_ext_info *info; int irq_vec; }; enum ptp_ocp_sma_mode { SMA_MODE_IN, SMA_MODE_OUT, }; static struct dpll_pin_frequency ptp_ocp_sma_freq[] = { DPLL_PIN_FREQUENCY_1PPS, DPLL_PIN_FREQUENCY_10MHZ, DPLL_PIN_FREQUENCY_IRIG_B, DPLL_PIN_FREQUENCY_DCF77, }; struct ptp_ocp_sma_connector { enum ptp_ocp_sma_mode mode; bool fixed_fcn; bool fixed_dir; bool disabled; u8 default_fcn; struct dpll_pin *dpll_pin; struct dpll_pin_properties dpll_prop; }; struct ocp_attr_group { u64 cap; const struct attribute_group *group; }; #define OCP_CAP_BASIC BIT(0) #define OCP_CAP_SIGNAL BIT(1) #define OCP_CAP_FREQ BIT(2) struct ptp_ocp_signal { ktime_t period; ktime_t pulse; ktime_t phase; ktime_t start; int duty; bool polarity; bool running; }; struct ptp_ocp_serial_port { int line; int baud; }; #define OCP_BOARD_ID_LEN 13 #define OCP_SERIAL_LEN 6 #define OCP_SMA_NUM 4 struct ptp_ocp { struct pci_dev *pdev; struct device dev; spinlock_t lock; struct ocp_reg __iomem *reg; struct tod_reg __iomem *tod; struct pps_reg __iomem *pps_to_ext; struct pps_reg __iomem *pps_to_clk; struct board_config_reg __iomem *board_config; struct gpio_reg __iomem *pps_select; struct gpio_reg __iomem *sma_map1; struct gpio_reg __iomem *sma_map2; struct irig_master_reg __iomem *irig_out; struct irig_slave_reg __iomem *irig_in; struct dcf_master_reg __iomem *dcf_out; struct dcf_slave_reg __iomem *dcf_in; struct tod_reg __iomem *nmea_out; struct frequency_reg __iomem *freq_in[4]; struct ptp_ocp_ext_src *signal_out[4]; struct ptp_ocp_ext_src *pps; struct ptp_ocp_ext_src *ts0; struct ptp_ocp_ext_src *ts1; struct ptp_ocp_ext_src *ts2; struct ptp_ocp_ext_src *ts3; struct ptp_ocp_ext_src *ts4; struct ocp_art_gpio_reg __iomem *art_sma; struct img_reg __iomem *image; struct ptp_clock *ptp; struct ptp_clock_info ptp_info; struct platform_device *i2c_ctrl; struct platform_device *spi_flash; struct clk_hw *i2c_clk; struct timer_list watchdog; const struct attribute_group **attr_group; const struct ptp_ocp_eeprom_map *eeprom_map; struct dentry *debug_root; bool sync; time64_t gnss_lost; struct delayed_work sync_work; int id; int n_irqs; struct ptp_ocp_serial_port gnss_port; struct ptp_ocp_serial_port gnss2_port; struct ptp_ocp_serial_port mac_port; /* miniature atomic clock */ struct ptp_ocp_serial_port nmea_port; bool fw_loader; u8 fw_tag; u16 fw_version; u8 board_id[OCP_BOARD_ID_LEN]; u8 serial[OCP_SERIAL_LEN]; bool has_eeprom_data; u32 pps_req_map; int flash_start; u32 utc_tai_offset; u32 ts_window_adjust; u64 fw_cap; struct ptp_ocp_signal signal[4]; struct ptp_ocp_sma_connector sma[OCP_SMA_NUM]; const struct ocp_sma_op *sma_op; struct dpll_device *dpll; }; #define OCP_REQ_TIMESTAMP BIT(0) #define OCP_REQ_PPS BIT(1) struct ocp_resource { unsigned long offset; int size; int irq_vec; int (*setup)(struct ptp_ocp *bp, struct ocp_resource *r); void *extra; unsigned long bp_offset; const char * const name; }; static int ptp_ocp_register_mem(struct ptp_ocp *bp, struct ocp_resource *r); static int ptp_ocp_register_i2c(struct ptp_ocp *bp, struct ocp_resource *r); static int ptp_ocp_register_spi(struct ptp_ocp *bp, struct ocp_resource *r); static int ptp_ocp_register_serial(struct ptp_ocp *bp, struct ocp_resource *r); static int ptp_ocp_register_ext(struct ptp_ocp *bp, struct ocp_resource *r); static int ptp_ocp_fb_board_init(struct ptp_ocp *bp, struct ocp_resource *r); static irqreturn_t ptp_ocp_ts_irq(int irq, void *priv); static irqreturn_t ptp_ocp_signal_irq(int irq, void *priv); static int ptp_ocp_ts_enable(void *priv, u32 req, bool enable); static int ptp_ocp_signal_from_perout(struct ptp_ocp *bp, int gen, struct ptp_perout_request *req); static int ptp_ocp_signal_enable(void *priv, u32 req, bool enable); static int ptp_ocp_sma_store(struct ptp_ocp *bp, const char *buf, int sma_nr); static int ptp_ocp_art_board_init(struct ptp_ocp *bp, struct ocp_resource *r); static const struct ocp_attr_group fb_timecard_groups[]; static const struct ocp_attr_group art_timecard_groups[]; struct ptp_ocp_eeprom_map { u16 off; u16 len; u32 bp_offset; const void * const tag; }; #define EEPROM_ENTRY(addr, member) \ .off = addr, \ .len = sizeof_field(struct ptp_ocp, member), \ .bp_offset = offsetof(struct ptp_ocp, member) #define BP_MAP_ENTRY_ADDR(bp, map) ({ \ (void *)((uintptr_t)(bp) + (map)->bp_offset); \ }) static struct ptp_ocp_eeprom_map fb_eeprom_map[] = { { EEPROM_ENTRY(0x43, board_id) }, { EEPROM_ENTRY(0x00, serial), .tag = "mac" }, { } }; static struct ptp_ocp_eeprom_map art_eeprom_map[] = { { EEPROM_ENTRY(0x200 + 0x43, board_id) }, { EEPROM_ENTRY(0x200 + 0x63, serial) }, { } }; #define bp_assign_entry(bp, res, val) ({ \ uintptr_t addr = (uintptr_t)(bp) + (res)->bp_offset; \ *(typeof(val) *)addr = val; \ }) #define OCP_RES_LOCATION(member) \ .name = #member, .bp_offset = offsetof(struct ptp_ocp, member) #define OCP_MEM_RESOURCE(member) \ OCP_RES_LOCATION(member), .setup = ptp_ocp_register_mem #define OCP_SERIAL_RESOURCE(member) \ OCP_RES_LOCATION(member), .setup = ptp_ocp_register_serial #define OCP_I2C_RESOURCE(member) \ OCP_RES_LOCATION(member), .setup = ptp_ocp_register_i2c #define OCP_SPI_RESOURCE(member) \ OCP_RES_LOCATION(member), .setup = ptp_ocp_register_spi #define OCP_EXT_RESOURCE(member) \ OCP_RES_LOCATION(member), .setup = ptp_ocp_register_ext /* This is the MSI vector mapping used. * 0: PPS (TS5) * 1: TS0 * 2: TS1 * 3: GNSS1 * 4: GNSS2 * 5: MAC * 6: TS2 * 7: I2C controller * 8: HWICAP (notused) * 9: SPI Flash * 10: NMEA * 11: Signal Generator 1 * 12: Signal Generator 2 * 13: Signal Generator 3 * 14: Signal Generator 4 * 15: TS3 * 16: TS4 -- * 8: Orolia TS1 * 10: Orolia TS2 * 11: Orolia TS0 (GNSS) * 12: Orolia PPS * 14: Orolia TS3 * 15: Orolia TS4 */ static struct ocp_resource ocp_fb_resource[] = { { OCP_MEM_RESOURCE(reg), .offset = 0x01000000, .size = 0x10000, }, { OCP_EXT_RESOURCE(ts0), .offset = 0x01010000, .size = 0x10000, .irq_vec = 1, .extra = &(struct ptp_ocp_ext_info) { .index = 0, .irq_fcn = ptp_ocp_ts_irq, .enable = ptp_ocp_ts_enable, }, }, { OCP_EXT_RESOURCE(ts1), .offset = 0x01020000, .size = 0x10000, .irq_vec = 2, .extra = &(struct ptp_ocp_ext_info) { .index = 1, .irq_fcn = ptp_ocp_ts_irq, .enable = ptp_ocp_ts_enable, }, }, { OCP_EXT_RESOURCE(ts2), .offset = 0x01060000, .size = 0x10000, .irq_vec = 6, .extra = &(struct ptp_ocp_ext_info) { .index = 2, .irq_fcn = ptp_ocp_ts_irq, .enable = ptp_ocp_ts_enable, }, }, { OCP_EXT_RESOURCE(ts3), .offset = 0x01110000, .size = 0x10000, .irq_vec = 15, .extra = &(struct ptp_ocp_ext_info) { .index = 3, .irq_fcn = ptp_ocp_ts_irq, .enable = ptp_ocp_ts_enable, }, }, { OCP_EXT_RESOURCE(ts4), .offset = 0x01120000, .size = 0x10000, .irq_vec = 16, .extra = &(struct ptp_ocp_ext_info) { .index = 4, .irq_fcn = ptp_ocp_ts_irq, .enable = ptp_ocp_ts_enable, }, }, /* Timestamp for PHC and/or PPS generator */ { OCP_EXT_RESOURCE(pps), .offset = 0x010C0000, .size = 0x10000, .irq_vec = 0, .extra = &(struct ptp_ocp_ext_info) { .index = 5, .irq_fcn = ptp_ocp_ts_irq, .enable = ptp_ocp_ts_enable, }, }, { OCP_EXT_RESOURCE(signal_out[0]), .offset = 0x010D0000, .size = 0x10000, .irq_vec = 11, .extra = &(struct ptp_ocp_ext_info) { .index = 1, .irq_fcn = ptp_ocp_signal_irq, .enable = ptp_ocp_signal_enable, }, }, { OCP_EXT_RESOURCE(signal_out[1]), .offset = 0x010E0000, .size = 0x10000, .irq_vec = 12, .extra = &(struct ptp_ocp_ext_info) { .index = 2, .irq_fcn = ptp_ocp_signal_irq, .enable = ptp_ocp_signal_enable, }, }, { OCP_EXT_RESOURCE(signal_out[2]), .offset = 0x010F0000, .size = 0x10000, .irq_vec = 13, .extra = &(struct ptp_ocp_ext_info) { .index = 3, .irq_fcn = ptp_ocp_signal_irq, .enable = ptp_ocp_signal_enable, }, }, { OCP_EXT_RESOURCE(signal_out[3]), .offset = 0x01100000, .size = 0x10000, .irq_vec = 14, .extra = &(struct ptp_ocp_ext_info) { .index = 4, .irq_fcn = ptp_ocp_signal_irq, .enable = ptp_ocp_signal_enable, }, }, { OCP_MEM_RESOURCE(pps_to_ext), .offset = 0x01030000, .size = 0x10000, }, { OCP_MEM_RESOURCE(pps_to_clk), .offset = 0x01040000, .size = 0x10000, }, { OCP_MEM_RESOURCE(tod), .offset = 0x01050000, .size = 0x10000, }, { OCP_MEM_RESOURCE(irig_in), .offset = 0x01070000, .size = 0x10000, }, { OCP_MEM_RESOURCE(irig_out), .offset = 0x01080000, .size = 0x10000, }, { OCP_MEM_RESOURCE(dcf_in), .offset = 0x01090000, .size = 0x10000, }, { OCP_MEM_RESOURCE(dcf_out), .offset = 0x010A0000, .size = 0x10000, }, { OCP_MEM_RESOURCE(nmea_out), .offset = 0x010B0000, .size = 0x10000, }, { OCP_MEM_RESOURCE(image), .offset = 0x00020000, .size = 0x1000, }, { OCP_MEM_RESOURCE(pps_select), .offset = 0x00130000, .size = 0x1000, }, { OCP_MEM_RESOURCE(sma_map1), .offset = 0x00140000, .size = 0x1000, }, { OCP_MEM_RESOURCE(sma_map2), .offset = 0x00220000, .size = 0x1000, }, { OCP_I2C_RESOURCE(i2c_ctrl), .offset = 0x00150000, .size = 0x10000, .irq_vec = 7, .extra = &(struct ptp_ocp_i2c_info) { .name = "xiic-i2c", .fixed_rate = 50000000, .data_size = sizeof(struct xiic_i2c_platform_data), .data = &(struct xiic_i2c_platform_data) { .num_devices = 2, .devices = (struct i2c_board_info[]) { { I2C_BOARD_INFO("24c02", 0x50) }, { I2C_BOARD_INFO("24mac402", 0x58), .platform_data = "mac" }, }, }, }, }, { OCP_SERIAL_RESOURCE(gnss_port), .offset = 0x00160000 + 0x1000, .irq_vec = 3, .extra = &(struct ptp_ocp_serial_port) { .baud = 115200, }, }, { OCP_SERIAL_RESOURCE(gnss2_port), .offset = 0x00170000 + 0x1000, .irq_vec = 4, .extra = &(struct ptp_ocp_serial_port) { .baud = 115200, }, }, { OCP_SERIAL_RESOURCE(mac_port), .offset = 0x00180000 + 0x1000, .irq_vec = 5, .extra = &(struct ptp_ocp_serial_port) { .baud = 57600, }, }, { OCP_SERIAL_RESOURCE(nmea_port), .offset = 0x00190000 + 0x1000, .irq_vec = 10, }, { OCP_SPI_RESOURCE(spi_flash), .offset = 0x00310000, .size = 0x10000, .irq_vec = 9, .extra = &(struct ptp_ocp_flash_info) { .name = "xilinx_spi", .pci_offset = 0, .data_size = sizeof(struct xspi_platform_data), .data = &(struct xspi_platform_data) { .num_chipselect = 1, .bits_per_word = 8, .num_devices = 1, .force_irq = true, .devices = &(struct spi_board_info) { .modalias = "spi-nor", }, }, }, }, { OCP_MEM_RESOURCE(freq_in[0]), .offset = 0x01200000, .size = 0x10000, }, { OCP_MEM_RESOURCE(freq_in[1]), .offset = 0x01210000, .size = 0x10000, }, { OCP_MEM_RESOURCE(freq_in[2]), .offset = 0x01220000, .size = 0x10000, }, { OCP_MEM_RESOURCE(freq_in[3]), .offset = 0x01230000, .size = 0x10000, }, { .setup = ptp_ocp_fb_board_init, }, { } }; #define OCP_ART_CONFIG_SIZE 144 #define OCP_ART_TEMP_TABLE_SIZE 368 struct ocp_art_gpio_reg { struct { u32 gpio; u32 __pad[3]; } map[4]; }; static struct ocp_resource ocp_art_resource[] = { { OCP_MEM_RESOURCE(reg), .offset = 0x01000000, .size = 0x10000, }, { OCP_SERIAL_RESOURCE(gnss_port), .offset = 0x00160000 + 0x1000, .irq_vec = 3, .extra = &(struct ptp_ocp_serial_port) { .baud = 115200, }, }, { OCP_MEM_RESOURCE(art_sma), .offset = 0x003C0000, .size = 0x1000, }, /* Timestamp associated with GNSS1 receiver PPS */ { OCP_EXT_RESOURCE(ts0), .offset = 0x360000, .size = 0x20, .irq_vec = 12, .extra = &(struct ptp_ocp_ext_info) { .index = 0, .irq_fcn = ptp_ocp_ts_irq, .enable = ptp_ocp_ts_enable, }, }, { OCP_EXT_RESOURCE(ts1), .offset = 0x380000, .size = 0x20, .irq_vec = 8, .extra = &(struct ptp_ocp_ext_info) { .index = 1, .irq_fcn = ptp_ocp_ts_irq, .enable = ptp_ocp_ts_enable, }, }, { OCP_EXT_RESOURCE(ts2), .offset = 0x390000, .size = 0x20, .irq_vec = 10, .extra = &(struct ptp_ocp_ext_info) { .index = 2, .irq_fcn = ptp_ocp_ts_irq, .enable = ptp_ocp_ts_enable, }, }, { OCP_EXT_RESOURCE(ts3), .offset = 0x3A0000, .size = 0x20, .irq_vec = 14, .extra = &(struct ptp_ocp_ext_info) { .index = 3, .irq_fcn = ptp_ocp_ts_irq, .enable = ptp_ocp_ts_enable, }, }, { OCP_EXT_RESOURCE(ts4), .offset = 0x3B0000, .size = 0x20, .irq_vec = 15, .extra = &(struct ptp_ocp_ext_info) { .index = 4, .irq_fcn = ptp_ocp_ts_irq, .enable = ptp_ocp_ts_enable, }, }, /* Timestamp associated with Internal PPS of the card */ { OCP_EXT_RESOURCE(pps), .offset = 0x00330000, .size = 0x20, .irq_vec = 11, .extra = &(struct ptp_ocp_ext_info) { .index = 5, .irq_fcn = ptp_ocp_ts_irq, .enable = ptp_ocp_ts_enable, }, }, { OCP_SPI_RESOURCE(spi_flash), .offset = 0x00310000, .size = 0x10000, .irq_vec = 9, .extra = &(struct ptp_ocp_flash_info) { .name = "spi_altera", .pci_offset = 0, .data_size = sizeof(struct altera_spi_platform_data), .data = &(struct altera_spi_platform_data) { .num_chipselect = 1, .num_devices = 1, .devices = &(struct spi_board_info) { .modalias = "spi-nor", }, }, }, }, { OCP_I2C_RESOURCE(i2c_ctrl), .offset = 0x350000, .size = 0x100, .irq_vec = 4, .extra = &(struct ptp_ocp_i2c_info) { .name = "ocores-i2c", .fixed_rate = 400000, .data_size = sizeof(struct ocores_i2c_platform_data), .data = &(struct ocores_i2c_platform_data) { .clock_khz = 125000, .bus_khz = 400, .num_devices = 1, .devices = &(struct i2c_board_info) { I2C_BOARD_INFO("24c08", 0x50), }, }, }, }, { OCP_SERIAL_RESOURCE(mac_port), .offset = 0x00190000, .irq_vec = 7, .extra = &(struct ptp_ocp_serial_port) { .baud = 9600, }, }, { OCP_MEM_RESOURCE(board_config), .offset = 0x210000, .size = 0x1000, }, { .setup = ptp_ocp_art_board_init, }, { } }; static const struct pci_device_id ptp_ocp_pcidev_id[] = { { PCI_DEVICE_DATA(FACEBOOK, TIMECARD, &ocp_fb_resource) }, { PCI_DEVICE_DATA(CELESTICA, TIMECARD, &ocp_fb_resource) }, { PCI_DEVICE_DATA(OROLIA, ARTCARD, &ocp_art_resource) }, { } }; MODULE_DEVICE_TABLE(pci, ptp_ocp_pcidev_id); static DEFINE_MUTEX(ptp_ocp_lock); static DEFINE_IDR(ptp_ocp_idr); struct ocp_selector { const char *name; int value; u64 frequency; }; static const struct ocp_selector ptp_ocp_clock[] = { { .name = "NONE", .value = 0 }, { .name = "TOD", .value = 1 }, { .name = "IRIG", .value = 2 }, { .name = "PPS", .value = 3 }, { .name = "PTP", .value = 4 }, { .name = "RTC", .value = 5 }, { .name = "DCF", .value = 6 }, { .name = "REGS", .value = 0xfe }, { .name = "EXT", .value = 0xff }, { } }; #define SMA_DISABLE BIT(16) #define SMA_ENABLE BIT(15) #define SMA_SELECT_MASK GENMASK(14, 0) static const struct ocp_selector ptp_ocp_sma_in[] = { { .name = "10Mhz", .value = 0x0000, .frequency = 10000000 }, { .name = "PPS1", .value = 0x0001, .frequency = 1 }, { .name = "PPS2", .value = 0x0002, .frequency = 1 }, { .name = "TS1", .value = 0x0004, .frequency = 0 }, { .name = "TS2", .value = 0x0008, .frequency = 0 }, { .name = "IRIG", .value = 0x0010, .frequency = 10000 }, { .name = "DCF", .value = 0x0020, .frequency = 77500 }, { .name = "TS3", .value = 0x0040, .frequency = 0 }, { .name = "TS4", .value = 0x0080, .frequency = 0 }, { .name = "FREQ1", .value = 0x0100, .frequency = 0 }, { .name = "FREQ2", .value = 0x0200, .frequency = 0 }, { .name = "FREQ3", .value = 0x0400, .frequency = 0 }, { .name = "FREQ4", .value = 0x0800, .frequency = 0 }, { .name = "None", .value = SMA_DISABLE, .frequency = 0 }, { } }; static const struct ocp_selector ptp_ocp_sma_out[] = { { .name = "10Mhz", .value = 0x0000, .frequency = 10000000 }, { .name = "PHC", .value = 0x0001, .frequency = 1 }, { .name = "MAC", .value = 0x0002, .frequency = 1 }, { .name = "GNSS1", .value = 0x0004, .frequency = 1 }, { .name = "GNSS2", .value = 0x0008, .frequency = 1 }, { .name = "IRIG", .value = 0x0010, .frequency = 10000 }, { .name = "DCF", .value = 0x0020, .frequency = 77000 }, { .name = "GEN1", .value = 0x0040 }, { .name = "GEN2", .value = 0x0080 }, { .name = "GEN3", .value = 0x0100 }, { .name = "GEN4", .value = 0x0200 }, { .name = "GND", .value = 0x2000 }, { .name = "VCC", .value = 0x4000 }, { } }; static const struct ocp_selector ptp_ocp_art_sma_in[] = { { .name = "PPS1", .value = 0x0001, .frequency = 1 }, { .name = "10Mhz", .value = 0x0008, .frequency = 1000000 }, { } }; static const struct ocp_selector ptp_ocp_art_sma_out[] = { { .name = "PHC", .value = 0x0002, .frequency = 1 }, { .name = "GNSS", .value = 0x0004, .frequency = 1 }, { .name = "10Mhz", .value = 0x0010, .frequency = 10000000 }, { } }; struct ocp_sma_op { const struct ocp_selector *tbl[2]; void (*init)(struct ptp_ocp *bp); u32 (*get)(struct ptp_ocp *bp, int sma_nr); int (*set_inputs)(struct ptp_ocp *bp, int sma_nr, u32 val); int (*set_output)(struct ptp_ocp *bp, int sma_nr, u32 val); }; static void ptp_ocp_sma_init(struct ptp_ocp *bp) { return bp->sma_op->init(bp); } static u32 ptp_ocp_sma_get(struct ptp_ocp *bp, int sma_nr) { return bp->sma_op->get(bp, sma_nr); } static int ptp_ocp_sma_set_inputs(struct ptp_ocp *bp, int sma_nr, u32 val) { return bp->sma_op->set_inputs(bp, sma_nr, val); } static int ptp_ocp_sma_set_output(struct ptp_ocp *bp, int sma_nr, u32 val) { return bp->sma_op->set_output(bp, sma_nr, val); } static const char * ptp_ocp_select_name_from_val(const struct ocp_selector *tbl, int val) { int i; for (i = 0; tbl[i].name; i++) if (tbl[i].value == val) return tbl[i].name; return NULL; } static int ptp_ocp_select_val_from_name(const struct ocp_selector *tbl, const char *name) { const char *select; int i; for (i = 0; tbl[i].name; i++) { select = tbl[i].name; if (!strncasecmp(name, select, strlen(select))) return tbl[i].value; } return -EINVAL; } static ssize_t ptp_ocp_select_table_show(const struct ocp_selector *tbl, char *buf) { ssize_t count; int i; count = 0; for (i = 0; tbl[i].name; i++) count += sysfs_emit_at(buf, count, "%s ", tbl[i].name); if (count) count--; count += sysfs_emit_at(buf, count, "\n"); return count; } static int __ptp_ocp_gettime_locked(struct ptp_ocp *bp, struct timespec64 *ts, struct ptp_system_timestamp *sts) { u32 ctrl, time_sec, time_ns; int i; ptp_read_system_prets(sts); ctrl = OCP_CTRL_READ_TIME_REQ | OCP_CTRL_ENABLE; iowrite32(ctrl, &bp->reg->ctrl); for (i = 0; i < 100; i++) { ctrl = ioread32(&bp->reg->ctrl); if (ctrl & OCP_CTRL_READ_TIME_DONE) break; } ptp_read_system_postts(sts); if (sts && bp->ts_window_adjust) { s64 ns = timespec64_to_ns(&sts->post_ts); sts->post_ts = ns_to_timespec64(ns - bp->ts_window_adjust); } time_ns = ioread32(&bp->reg->time_ns); time_sec = ioread32(&bp->reg->time_sec); ts->tv_sec = time_sec; ts->tv_nsec = time_ns; return ctrl & OCP_CTRL_READ_TIME_DONE ? 0 : -ETIMEDOUT; } static int ptp_ocp_gettimex(struct ptp_clock_info *ptp_info, struct timespec64 *ts, struct ptp_system_timestamp *sts) { struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info); unsigned long flags; int err; spin_lock_irqsave(&bp->lock, flags); err = __ptp_ocp_gettime_locked(bp, ts, sts); spin_unlock_irqrestore(&bp->lock, flags); return err; } static void __ptp_ocp_settime_locked(struct ptp_ocp *bp, const struct timespec64 *ts) { u32 ctrl, time_sec, time_ns; u32 select; time_ns = ts->tv_nsec; time_sec = ts->tv_sec; select = ioread32(&bp->reg->select); iowrite32(OCP_SELECT_CLK_REG, &bp->reg->select); iowrite32(time_ns, &bp->reg->adjust_ns); iowrite32(time_sec, &bp->reg->adjust_sec); ctrl = OCP_CTRL_ADJUST_TIME | OCP_CTRL_ENABLE; iowrite32(ctrl, &bp->reg->ctrl); /* restore clock selection */ iowrite32(select >> 16, &bp->reg->select); } static int ptp_ocp_settime(struct ptp_clock_info *ptp_info, const struct timespec64 *ts) { struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info); unsigned long flags; spin_lock_irqsave(&bp->lock, flags); __ptp_ocp_settime_locked(bp, ts); spin_unlock_irqrestore(&bp->lock, flags); return 0; } static void __ptp_ocp_adjtime_locked(struct ptp_ocp *bp, u32 adj_val) { u32 select, ctrl; select = ioread32(&bp->reg->select); iowrite32(OCP_SELECT_CLK_REG, &bp->reg->select); iowrite32(adj_val, &bp->reg->offset_ns); iowrite32(NSEC_PER_SEC, &bp->reg->offset_window_ns); ctrl = OCP_CTRL_ADJUST_OFFSET | OCP_CTRL_ENABLE; iowrite32(ctrl, &bp->reg->ctrl); /* restore clock selection */ iowrite32(select >> 16, &bp->reg->select); } static void ptp_ocp_adjtime_coarse(struct ptp_ocp *bp, s64 delta_ns) { struct timespec64 ts; unsigned long flags; int err; spin_lock_irqsave(&bp->lock, flags); err = __ptp_ocp_gettime_locked(bp, &ts, NULL); if (likely(!err)) { set_normalized_timespec64(&ts, ts.tv_sec, ts.tv_nsec + delta_ns); __ptp_ocp_settime_locked(bp, &ts); } spin_unlock_irqrestore(&bp->lock, flags); } static int ptp_ocp_adjtime(struct ptp_clock_info *ptp_info, s64 delta_ns) { struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info); unsigned long flags; u32 adj_ns, sign; if (delta_ns > NSEC_PER_SEC || -delta_ns > NSEC_PER_SEC) { ptp_ocp_adjtime_coarse(bp, delta_ns); return 0; } sign = delta_ns < 0 ? BIT(31) : 0; adj_ns = sign ? -delta_ns : delta_ns; spin_lock_irqsave(&bp->lock, flags); __ptp_ocp_adjtime_locked(bp, sign | adj_ns); spin_unlock_irqrestore(&bp->lock, flags); return 0; } static int ptp_ocp_null_adjfine(struct ptp_clock_info *ptp_info, long scaled_ppm) { if (scaled_ppm == 0) return 0; return -EOPNOTSUPP; } static s32 ptp_ocp_null_getmaxphase(struct ptp_clock_info *ptp_info) { return 0; } static int ptp_ocp_null_adjphase(struct ptp_clock_info *ptp_info, s32 phase_ns) { return -EOPNOTSUPP; } static int ptp_ocp_enable(struct ptp_clock_info *ptp_info, struct ptp_clock_request *rq, int on) { struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info); struct ptp_ocp_ext_src *ext = NULL; u32 req; int err; switch (rq->type) { case PTP_CLK_REQ_EXTTS: req = OCP_REQ_TIMESTAMP; switch (rq->extts.index) { case 0: ext = bp->ts0; break; case 1: ext = bp->ts1; break; case 2: ext = bp->ts2; break; case 3: ext = bp->ts3; break; case 4: ext = bp->ts4; break; case 5: ext = bp->pps; break; } break; case PTP_CLK_REQ_PPS: req = OCP_REQ_PPS; ext = bp->pps; break; case PTP_CLK_REQ_PEROUT: switch (rq->perout.index) { case 0: /* This is a request for 1PPS on an output SMA. * Allow, but assume manual configuration. */ if (on && (rq->perout.period.sec != 1 || rq->perout.period.nsec != 0)) return -EINVAL; return 0; case 1: case 2: case 3: case 4: req = rq->perout.index - 1; ext = bp->signal_out[req]; err = ptp_ocp_signal_from_perout(bp, req, &rq->perout); if (err) return err; break; } break; default: return -EOPNOTSUPP; } err = -ENXIO; if (ext) err = ext->info->enable(ext, req, on); return err; } static int ptp_ocp_verify(struct ptp_clock_info *ptp_info, unsigned pin, enum ptp_pin_function func, unsigned chan) { struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info); char buf[16]; switch (func) { case PTP_PF_NONE: snprintf(buf, sizeof(buf), "IN: None"); break; case PTP_PF_EXTTS: /* Allow timestamps, but require sysfs configuration. */ return 0; case PTP_PF_PEROUT: /* channel 0 is 1PPS from PHC. * channels 1..4 are the frequency generators. */ if (chan) snprintf(buf, sizeof(buf), "OUT: GEN%d", chan); else snprintf(buf, sizeof(buf), "OUT: PHC"); break; default: return -EOPNOTSUPP; } return ptp_ocp_sma_store(bp, buf, pin + 1); } static const struct ptp_clock_info ptp_ocp_clock_info = { .owner = THIS_MODULE, .name = KBUILD_MODNAME, .max_adj = 100000000, .gettimex64 = ptp_ocp_gettimex, .settime64 = ptp_ocp_settime, .adjtime = ptp_ocp_adjtime, .adjfine = ptp_ocp_null_adjfine, .adjphase = ptp_ocp_null_adjphase, .getmaxphase = ptp_ocp_null_getmaxphase, .enable = ptp_ocp_enable, .verify = ptp_ocp_verify, .pps = true, .n_ext_ts = 6, .n_per_out = 5, }; static void __ptp_ocp_clear_drift_locked(struct ptp_ocp *bp) { u32 ctrl, select; select = ioread32(&bp->reg->select); iowrite32(OCP_SELECT_CLK_REG, &bp->reg->select); iowrite32(0, &bp->reg->drift_ns); ctrl = OCP_CTRL_ADJUST_DRIFT | OCP_CTRL_ENABLE; iowrite32(ctrl, &bp->reg->ctrl); /* restore clock selection */ iowrite32(select >> 16, &bp->reg->select); } static void ptp_ocp_utc_distribute(struct ptp_ocp *bp, u32 val) { unsigned long flags; spin_lock_irqsave(&bp->lock, flags); bp->utc_tai_offset = val; if (bp->irig_out) iowrite32(val, &bp->irig_out->adj_sec); if (bp->dcf_out) iowrite32(val, &bp->dcf_out->adj_sec); if (bp->nmea_out) iowrite32(val, &bp->nmea_out->adj_sec); spin_unlock_irqrestore(&bp->lock, flags); } static void ptp_ocp_watchdog(struct timer_list *t) { struct ptp_ocp *bp = from_timer(bp, t, watchdog); unsigned long flags; u32 status, utc_offset; status = ioread32(&bp->pps_to_clk->status); if (status & PPS_STATUS_SUPERV_ERR) { iowrite32(status, &bp->pps_to_clk->status); if (!bp->gnss_lost) { spin_lock_irqsave(&bp->lock, flags); __ptp_ocp_clear_drift_locked(bp); spin_unlock_irqrestore(&bp->lock, flags); bp->gnss_lost = ktime_get_real_seconds(); } } else if (bp->gnss_lost) { bp->gnss_lost = 0; } /* if GNSS provides correct data we can rely on * it to get leap second information */ if (bp->tod) { status = ioread32(&bp->tod->utc_status); utc_offset = status & TOD_STATUS_UTC_MASK; if (status & TOD_STATUS_UTC_VALID && utc_offset != bp->utc_tai_offset) ptp_ocp_utc_distribute(bp, utc_offset); } mod_timer(&bp->watchdog, jiffies + HZ); } static void ptp_ocp_estimate_pci_timing(struct ptp_ocp *bp) { ktime_t start, end; ktime_t delay; u32 ctrl; ctrl = ioread32(&bp->reg->ctrl); ctrl = OCP_CTRL_READ_TIME_REQ | OCP_CTRL_ENABLE; iowrite32(ctrl, &bp->reg->ctrl); start = ktime_get_ns(); ctrl = ioread32(&bp->reg->ctrl); end = ktime_get_ns(); delay = end - start; bp->ts_window_adjust = (delay >> 5) * 3; } static int ptp_ocp_init_clock(struct ptp_ocp *bp) { struct timespec64 ts; u32 ctrl; ctrl = OCP_CTRL_ENABLE; iowrite32(ctrl, &bp->reg->ctrl); /* NO DRIFT Correction */ /* offset_p:i 1/8, offset_i: 1/16, drift_p: 0, drift_i: 0 */ iowrite32(0x2000, &bp->reg->servo_offset_p); iowrite32(0x1000, &bp->reg->servo_offset_i); iowrite32(0, &bp->reg->servo_drift_p); iowrite32(0, &bp->reg->servo_drift_i); /* latch servo values */ ctrl |= OCP_CTRL_ADJUST_SERVO; iowrite32(ctrl, &bp->reg->ctrl); if ((ioread32(&bp->reg->ctrl) & OCP_CTRL_ENABLE) == 0) { dev_err(&bp->pdev->dev, "clock not enabled\n"); return -ENODEV; } ptp_ocp_estimate_pci_timing(bp); bp->sync = ioread32(&bp->reg->status) & OCP_STATUS_IN_SYNC; if (!bp->sync) { ktime_get_clocktai_ts64(&ts); ptp_ocp_settime(&bp->ptp_info, &ts); } /* If there is a clock supervisor, then enable the watchdog */ if (bp->pps_to_clk) { timer_setup(&bp->watchdog, ptp_ocp_watchdog, 0); mod_timer(&bp->watchdog, jiffies + HZ); } return 0; } static void ptp_ocp_tod_init(struct ptp_ocp *bp) { u32 ctrl, reg; ctrl = ioread32(&bp->tod->ctrl); ctrl |= TOD_CTRL_PROTOCOL | TOD_CTRL_ENABLE; ctrl &= ~(TOD_CTRL_DISABLE_FMT_A | TOD_CTRL_DISABLE_FMT_B); iowrite32(ctrl, &bp->tod->ctrl); reg = ioread32(&bp->tod->utc_status); if (reg & TOD_STATUS_UTC_VALID) ptp_ocp_utc_distribute(bp, reg & TOD_STATUS_UTC_MASK); } static const char * ptp_ocp_tod_proto_name(const int idx) { static const char * const proto_name[] = { "NMEA", "NMEA_ZDA", "NMEA_RMC", "NMEA_none", "UBX", "UBX_UTC", "UBX_LS", "UBX_none" }; return proto_name[idx]; } static const char * ptp_ocp_tod_gnss_name(int idx) { static const char * const gnss_name[] = { "ALL", "COMBINED", "GPS", "GLONASS", "GALILEO", "BEIDOU", "Unknown" }; if (idx >= ARRAY_SIZE(gnss_name)) idx = ARRAY_SIZE(gnss_name) - 1; return gnss_name[idx]; } struct ptp_ocp_nvmem_match_info { struct ptp_ocp *bp; const void * const tag; }; static int ptp_ocp_nvmem_match(struct device *dev, const void *data) { const struct ptp_ocp_nvmem_match_info *info = data; dev = dev->parent; if (!i2c_verify_client(dev) || info->tag != dev->platform_data) return 0; while ((dev = dev->parent)) if (dev->driver && !strcmp(dev->driver->name, KBUILD_MODNAME)) return info->bp == dev_get_drvdata(dev); return 0; } static inline struct nvmem_device * ptp_ocp_nvmem_device_get(struct ptp_ocp *bp, const void * const tag) { struct ptp_ocp_nvmem_match_info info = { .bp = bp, .tag = tag }; return nvmem_device_find(&info, ptp_ocp_nvmem_match); } static inline void ptp_ocp_nvmem_device_put(struct nvmem_device **nvmemp) { if (!IS_ERR_OR_NULL(*nvmemp)) nvmem_device_put(*nvmemp); *nvmemp = NULL; } static void ptp_ocp_read_eeprom(struct ptp_ocp *bp) { const struct ptp_ocp_eeprom_map *map; struct nvmem_device *nvmem; const void *tag; int ret; if (!bp->i2c_ctrl) return; tag = NULL; nvmem = NULL; for (map = bp->eeprom_map; map->len; map++) { if (map->tag != tag) { tag = map->tag; ptp_ocp_nvmem_device_put(&nvmem); } if (!nvmem) { nvmem = ptp_ocp_nvmem_device_get(bp, tag); if (IS_ERR(nvmem)) { ret = PTR_ERR(nvmem); goto fail; } } ret = nvmem_device_read(nvmem, map->off, map->len, BP_MAP_ENTRY_ADDR(bp, map)); if (ret != map->len) goto fail; } bp->has_eeprom_data = true; out: ptp_ocp_nvmem_device_put(&nvmem); return; fail: dev_err(&bp->pdev->dev, "could not read eeprom: %d\n", ret); goto out; } static struct device * ptp_ocp_find_flash(struct ptp_ocp *bp) { struct device *dev, *last; last = NULL; dev = &bp->spi_flash->dev; while ((dev = device_find_any_child(dev))) { if (!strcmp("mtd", dev_bus_name(dev))) break; put_device(last); last = dev; } put_device(last); return dev; } static int ptp_ocp_devlink_fw_image(struct devlink *devlink, const struct firmware *fw, const u8 **data, size_t *size) { struct ptp_ocp *bp = devlink_priv(devlink); const struct ptp_ocp_firmware_header *hdr; size_t offset, length; u16 crc; hdr = (const struct ptp_ocp_firmware_header *)fw->data; if (memcmp(hdr->magic, OCP_FIRMWARE_MAGIC_HEADER, 4)) { devlink_flash_update_status_notify(devlink, "No firmware header found, cancel firmware upgrade", NULL, 0, 0); return -EINVAL; } if (be16_to_cpu(hdr->pci_vendor_id) != bp->pdev->vendor || be16_to_cpu(hdr->pci_device_id) != bp->pdev->device) { devlink_flash_update_status_notify(devlink, "Firmware image compatibility check failed", NULL, 0, 0); return -EINVAL; } offset = sizeof(*hdr); length = be32_to_cpu(hdr->image_size); if (length != (fw->size - offset)) { devlink_flash_update_status_notify(devlink, "Firmware image size check failed", NULL, 0, 0); return -EINVAL; } crc = crc16(0xffff, &fw->data[offset], length); if (be16_to_cpu(hdr->crc) != crc) { devlink_flash_update_status_notify(devlink, "Firmware image CRC check failed", NULL, 0, 0); return -EINVAL; } *data = &fw->data[offset]; *size = length; return 0; } static int ptp_ocp_devlink_flash(struct devlink *devlink, struct device *dev, const struct firmware *fw) { struct mtd_info *mtd = dev_get_drvdata(dev); struct ptp_ocp *bp = devlink_priv(devlink); size_t off, len, size, resid, wrote; struct erase_info erase; size_t base, blksz; const u8 *data; int err; err = ptp_ocp_devlink_fw_image(devlink, fw, &data, &size); if (err) goto out; off = 0; base = bp->flash_start; blksz = 4096; resid = size; while (resid) { devlink_flash_update_status_notify(devlink, "Flashing", NULL, off, size); len = min_t(size_t, resid, blksz); erase.addr = base + off; erase.len = blksz; err = mtd_erase(mtd, &erase); if (err) goto out; err = mtd_write(mtd, base + off, len, &wrote, data + off); if (err) goto out; off += blksz; resid -= len; } out: return err; } static int ptp_ocp_devlink_flash_update(struct devlink *devlink, struct devlink_flash_update_params *params, struct netlink_ext_ack *extack) { struct ptp_ocp *bp = devlink_priv(devlink); struct device *dev; const char *msg; int err; dev = ptp_ocp_find_flash(bp); if (!dev) { dev_err(&bp->pdev->dev, "Can't find Flash SPI adapter\n"); return -ENODEV; } devlink_flash_update_status_notify(devlink, "Preparing to flash", NULL, 0, 0); err = ptp_ocp_devlink_flash(devlink, dev, params->fw); msg = err ? "Flash error" : "Flash complete"; devlink_flash_update_status_notify(devlink, msg, NULL, 0, 0); put_device(dev); return err; } static int ptp_ocp_devlink_info_get(struct devlink *devlink, struct devlink_info_req *req, struct netlink_ext_ack *extack) { struct ptp_ocp *bp = devlink_priv(devlink); const char *fw_image; char buf[32]; int err; fw_image = bp->fw_loader ? "loader" : "fw"; sprintf(buf, "%d.%d", bp->fw_tag, bp->fw_version); err = devlink_info_version_running_put(req, fw_image, buf); if (err) return err; if (!bp->has_eeprom_data) { ptp_ocp_read_eeprom(bp); if (!bp->has_eeprom_data) return 0; } sprintf(buf, "%pM", bp->serial); err = devlink_info_serial_number_put(req, buf); if (err) return err; err = devlink_info_version_fixed_put(req, DEVLINK_INFO_VERSION_GENERIC_BOARD_ID, bp->board_id); if (err) return err; return 0; } static const struct devlink_ops ptp_ocp_devlink_ops = { .flash_update = ptp_ocp_devlink_flash_update, .info_get = ptp_ocp_devlink_info_get, }; static void __iomem * __ptp_ocp_get_mem(struct ptp_ocp *bp, resource_size_t start, int size) { struct resource res = DEFINE_RES_MEM_NAMED(start, size, "ptp_ocp"); return devm_ioremap_resource(&bp->pdev->dev, &res); } static void __iomem * ptp_ocp_get_mem(struct ptp_ocp *bp, struct ocp_resource *r) { resource_size_t start; start = pci_resource_start(bp->pdev, 0) + r->offset; return __ptp_ocp_get_mem(bp, start, r->size); } static int ptp_ocp_register_spi(struct ptp_ocp *bp, struct ocp_resource *r) { struct ptp_ocp_flash_info *info; struct pci_dev *pdev = bp->pdev; struct platform_device *p; struct resource res[2]; resource_size_t start; int id; start = pci_resource_start(pdev, 0) + r->offset; res[0] = DEFINE_RES_MEM(start, r->size); res[1] = DEFINE_RES_IRQ(pci_irq_vector(pdev, r->irq_vec)); info = r->extra; id = pci_dev_id(pdev) << 1; id += info->pci_offset; p = platform_device_register_resndata(&pdev->dev, info->name, id, res, ARRAY_SIZE(res), info->data, info->data_size); if (IS_ERR(p)) return PTR_ERR(p); bp_assign_entry(bp, r, p); return 0; } static struct platform_device * ptp_ocp_i2c_bus(struct pci_dev *pdev, struct ocp_resource *r, int id) { struct ptp_ocp_i2c_info *info; struct resource res[2]; resource_size_t start; info = r->extra; start = pci_resource_start(pdev, 0) + r->offset; res[0] = DEFINE_RES_MEM(start, r->size); res[1] = DEFINE_RES_IRQ(pci_irq_vector(pdev, r->irq_vec)); return platform_device_register_resndata(&pdev->dev, info->name, id, res, ARRAY_SIZE(res), info->data, info->data_size); } static int ptp_ocp_register_i2c(struct ptp_ocp *bp, struct ocp_resource *r) { struct pci_dev *pdev = bp->pdev; struct ptp_ocp_i2c_info *info; struct platform_device *p; struct clk_hw *clk; char buf[32]; int id; info = r->extra; id = pci_dev_id(bp->pdev); sprintf(buf, "AXI.%d", id); clk = clk_hw_register_fixed_rate(&pdev->dev, buf, NULL, 0, info->fixed_rate); if (IS_ERR(clk)) return PTR_ERR(clk); bp->i2c_clk = clk; sprintf(buf, "%s.%d", info->name, id); devm_clk_hw_register_clkdev(&pdev->dev, clk, NULL, buf); p = ptp_ocp_i2c_bus(bp->pdev, r, id); if (IS_ERR(p)) return PTR_ERR(p); bp_assign_entry(bp, r, p); return 0; } /* The expectation is that this is triggered only on error. */ static irqreturn_t ptp_ocp_signal_irq(int irq, void *priv) { struct ptp_ocp_ext_src *ext = priv; struct signal_reg __iomem *reg = ext->mem; struct ptp_ocp *bp = ext->bp; u32 enable, status; int gen; gen = ext->info->index - 1; enable = ioread32(®->enable); status = ioread32(®->status); /* disable generator on error */ if (status || !enable) { iowrite32(0, ®->intr_mask); iowrite32(0, ®->enable); bp->signal[gen].running = false; } iowrite32(0, ®->intr); /* ack interrupt */ return IRQ_HANDLED; } static int ptp_ocp_signal_set(struct ptp_ocp *bp, int gen, struct ptp_ocp_signal *s) { struct ptp_system_timestamp sts; struct timespec64 ts; ktime_t start_ns; int err; if (!s->period) return 0; if (!s->pulse) s->pulse = ktime_divns(s->period * s->duty, 100); err = ptp_ocp_gettimex(&bp->ptp_info, &ts, &sts); if (err) return err; start_ns = ktime_set(ts.tv_sec, ts.tv_nsec) + NSEC_PER_MSEC; if (!s->start) { /* roundup() does not work on 32-bit systems */ s->start = DIV64_U64_ROUND_UP(start_ns, s->period); s->start = ktime_add(s->start, s->phase); } if (s->duty < 1 || s->duty > 99) return -EINVAL; if (s->pulse < 1 || s->pulse > s->period) return -EINVAL; if (s->start < start_ns) return -EINVAL; bp->signal[gen] = *s; return 0; } static int ptp_ocp_signal_from_perout(struct ptp_ocp *bp, int gen, struct ptp_perout_request *req) { struct ptp_ocp_signal s = { }; s.polarity = bp->signal[gen].polarity; s.period = ktime_set(req->period.sec, req->period.nsec); if (!s.period) return 0; if (req->flags & PTP_PEROUT_DUTY_CYCLE) { s.pulse = ktime_set(req->on.sec, req->on.nsec); s.duty = ktime_divns(s.pulse * 100, s.period); } if (req->flags & PTP_PEROUT_PHASE) s.phase = ktime_set(req->phase.sec, req->phase.nsec); else s.start = ktime_set(req->start.sec, req->start.nsec); return ptp_ocp_signal_set(bp, gen, &s); } static int ptp_ocp_signal_enable(void *priv, u32 req, bool enable) { struct ptp_ocp_ext_src *ext = priv; struct signal_reg __iomem *reg = ext->mem; struct ptp_ocp *bp = ext->bp; struct timespec64 ts; int gen; gen = ext->info->index - 1; iowrite32(0, ®->intr_mask); iowrite32(0, ®->enable); bp->signal[gen].running = false; if (!enable) return 0; ts = ktime_to_timespec64(bp->signal[gen].start); iowrite32(ts.tv_sec, ®->start_sec); iowrite32(ts.tv_nsec, ®->start_ns); ts = ktime_to_timespec64(bp->signal[gen].period); iowrite32(ts.tv_sec, ®->period_sec); iowrite32(ts.tv_nsec, ®->period_ns); ts = ktime_to_timespec64(bp->signal[gen].pulse); iowrite32(ts.tv_sec, ®->pulse_sec); iowrite32(ts.tv_nsec, ®->pulse_ns); iowrite32(bp->signal[gen].polarity, ®->polarity); iowrite32(0, ®->repeat_count); iowrite32(0, ®->intr); /* clear interrupt state */ iowrite32(1, ®->intr_mask); /* enable interrupt */ iowrite32(3, ®->enable); /* valid & enable */ bp->signal[gen].running = true; return 0; } static irqreturn_t ptp_ocp_ts_irq(int irq, void *priv) { struct ptp_ocp_ext_src *ext = priv; struct ts_reg __iomem *reg = ext->mem; struct ptp_clock_event ev; u32 sec, nsec; if (ext == ext->bp->pps) { if (ext->bp->pps_req_map & OCP_REQ_PPS) { ev.type = PTP_CLOCK_PPS; ptp_clock_event(ext->bp->ptp, &ev); } if ((ext->bp->pps_req_map & ~OCP_REQ_PPS) == 0) goto out; } /* XXX should fix API - this converts s/ns -> ts -> s/ns */ sec = ioread32(®->time_sec); nsec = ioread32(®->time_ns); ev.type = PTP_CLOCK_EXTTS; ev.index = ext->info->index; ev.timestamp = sec * NSEC_PER_SEC + nsec; ptp_clock_event(ext->bp->ptp, &ev); out: iowrite32(1, ®->intr); /* write 1 to ack */ return IRQ_HANDLED; } static int ptp_ocp_ts_enable(void *priv, u32 req, bool enable) { struct ptp_ocp_ext_src *ext = priv; struct ts_reg __iomem *reg = ext->mem; struct ptp_ocp *bp = ext->bp; if (ext == bp->pps) { u32 old_map = bp->pps_req_map; if (enable) bp->pps_req_map |= req; else bp->pps_req_map &= ~req; /* if no state change, just return */ if ((!!old_map ^ !!bp->pps_req_map) == 0) return 0; } if (enable) { iowrite32(1, ®->enable); iowrite32(1, ®->intr_mask); iowrite32(1, ®->intr); } else { iowrite32(0, ®->intr_mask); iowrite32(0, ®->enable); } return 0; } static void ptp_ocp_unregister_ext(struct ptp_ocp_ext_src *ext) { ext->info->enable(ext, ~0, false); pci_free_irq(ext->bp->pdev, ext->irq_vec, ext); kfree(ext); } static int ptp_ocp_register_ext(struct ptp_ocp *bp, struct ocp_resource *r) { struct pci_dev *pdev = bp->pdev; struct ptp_ocp_ext_src *ext; int err; ext = kzalloc(sizeof(*ext), GFP_KERNEL); if (!ext) return -ENOMEM; ext->mem = ptp_ocp_get_mem(bp, r); if (IS_ERR(ext->mem)) { err = PTR_ERR(ext->mem); goto out; } ext->bp = bp; ext->info = r->extra; ext->irq_vec = r->irq_vec; err = pci_request_irq(pdev, r->irq_vec, ext->info->irq_fcn, NULL, ext, "ocp%d.%s", bp->id, r->name); if (err) { dev_err(&pdev->dev, "Could not get irq %d\n", r->irq_vec); goto out; } bp_assign_entry(bp, r, ext); return 0; out: kfree(ext); return err; } static int ptp_ocp_serial_line(struct ptp_ocp *bp, struct ocp_resource *r) { struct pci_dev *pdev = bp->pdev; struct uart_8250_port uart; /* Setting UPF_IOREMAP and leaving port.membase unspecified lets * the serial port device claim and release the pci resource. */ memset(&uart, 0, sizeof(uart)); uart.port.dev = &pdev->dev; uart.port.iotype = UPIO_MEM; uart.port.regshift = 2; uart.port.mapbase = pci_resource_start(pdev, 0) + r->offset; uart.port.irq = pci_irq_vector(pdev, r->irq_vec); uart.port.uartclk = 50000000; uart.port.flags = UPF_FIXED_TYPE | UPF_IOREMAP | UPF_NO_THRE_TEST; uart.port.type = PORT_16550A; return serial8250_register_8250_port(&uart); } static int ptp_ocp_register_serial(struct ptp_ocp *bp, struct ocp_resource *r) { struct ptp_ocp_serial_port *p = (struct ptp_ocp_serial_port *)r->extra; struct ptp_ocp_serial_port port = {}; port.line = ptp_ocp_serial_line(bp, r); if (port.line < 0) return port.line; if (p) port.baud = p->baud; bp_assign_entry(bp, r, port); return 0; } static int ptp_ocp_register_mem(struct ptp_ocp *bp, struct ocp_resource *r) { void __iomem *mem; mem = ptp_ocp_get_mem(bp, r); if (IS_ERR(mem)) return PTR_ERR(mem); bp_assign_entry(bp, r, mem); return 0; } static void ptp_ocp_nmea_out_init(struct ptp_ocp *bp) { if (!bp->nmea_out) return; iowrite32(0, &bp->nmea_out->ctrl); /* disable */ iowrite32(7, &bp->nmea_out->uart_baud); /* 115200 */ iowrite32(1, &bp->nmea_out->ctrl); /* enable */ } static void _ptp_ocp_signal_init(struct ptp_ocp_signal *s, struct signal_reg __iomem *reg) { u32 val; iowrite32(0, ®->enable); /* disable */ val = ioread32(®->polarity); s->polarity = val ? true : false; s->duty = 50; } static void ptp_ocp_signal_init(struct ptp_ocp *bp) { int i; for (i = 0; i < 4; i++) if (bp->signal_out[i]) _ptp_ocp_signal_init(&bp->signal[i], bp->signal_out[i]->mem); } static void ptp_ocp_attr_group_del(struct ptp_ocp *bp) { sysfs_remove_groups(&bp->dev.kobj, bp->attr_group); kfree(bp->attr_group); } static int ptp_ocp_attr_group_add(struct ptp_ocp *bp, const struct ocp_attr_group *attr_tbl) { int count, i; int err; count = 0; for (i = 0; attr_tbl[i].cap; i++) if (attr_tbl[i].cap & bp->fw_cap) count++; bp->attr_group = kcalloc(count + 1, sizeof(struct attribute_group *), GFP_KERNEL); if (!bp->attr_group) return -ENOMEM; count = 0; for (i = 0; attr_tbl[i].cap; i++) if (attr_tbl[i].cap & bp->fw_cap) bp->attr_group[count++] = attr_tbl[i].group; err = sysfs_create_groups(&bp->dev.kobj, bp->attr_group); if (err) bp->attr_group[0] = NULL; return err; } static void ptp_ocp_enable_fpga(u32 __iomem *reg, u32 bit, bool enable) { u32 ctrl; bool on; ctrl = ioread32(reg); on = ctrl & bit; if (on ^ enable) { ctrl &= ~bit; ctrl |= enable ? bit : 0; iowrite32(ctrl, reg); } } static void ptp_ocp_irig_out(struct ptp_ocp *bp, bool enable) { return ptp_ocp_enable_fpga(&bp->irig_out->ctrl, IRIG_M_CTRL_ENABLE, enable); } static void ptp_ocp_irig_in(struct ptp_ocp *bp, bool enable) { return ptp_ocp_enable_fpga(&bp->irig_in->ctrl, IRIG_S_CTRL_ENABLE, enable); } static void ptp_ocp_dcf_out(struct ptp_ocp *bp, bool enable) { return ptp_ocp_enable_fpga(&bp->dcf_out->ctrl, DCF_M_CTRL_ENABLE, enable); } static void ptp_ocp_dcf_in(struct ptp_ocp *bp, bool enable) { return ptp_ocp_enable_fpga(&bp->dcf_in->ctrl, DCF_S_CTRL_ENABLE, enable); } static void __handle_signal_outputs(struct ptp_ocp *bp, u32 val) { ptp_ocp_irig_out(bp, val & 0x00100010); ptp_ocp_dcf_out(bp, val & 0x00200020); } static void __handle_signal_inputs(struct ptp_ocp *bp, u32 val) { ptp_ocp_irig_in(bp, val & 0x00100010); ptp_ocp_dcf_in(bp, val & 0x00200020); } static u32 ptp_ocp_sma_fb_get(struct ptp_ocp *bp, int sma_nr) { u32 __iomem *gpio; u32 shift; if (bp->sma[sma_nr - 1].fixed_fcn) return (sma_nr - 1) & 1; if (bp->sma[sma_nr - 1].mode == SMA_MODE_IN) gpio = sma_nr > 2 ? &bp->sma_map2->gpio1 : &bp->sma_map1->gpio1; else gpio = sma_nr > 2 ? &bp->sma_map1->gpio2 : &bp->sma_map2->gpio2; shift = sma_nr & 1 ? 0 : 16; return (ioread32(gpio) >> shift) & 0xffff; } static int ptp_ocp_sma_fb_set_output(struct ptp_ocp *bp, int sma_nr, u32 val) { u32 reg, mask, shift; unsigned long flags; u32 __iomem *gpio; gpio = sma_nr > 2 ? &bp->sma_map1->gpio2 : &bp->sma_map2->gpio2; shift = sma_nr & 1 ? 0 : 16; mask = 0xffff << (16 - shift); spin_lock_irqsave(&bp->lock, flags); reg = ioread32(gpio); reg = (reg & mask) | (val << shift); __handle_signal_outputs(bp, reg); iowrite32(reg, gpio); spin_unlock_irqrestore(&bp->lock, flags); return 0; } static int ptp_ocp_sma_fb_set_inputs(struct ptp_ocp *bp, int sma_nr, u32 val) { u32 reg, mask, shift; unsigned long flags; u32 __iomem *gpio; gpio = sma_nr > 2 ? &bp->sma_map2->gpio1 : &bp->sma_map1->gpio1; shift = sma_nr & 1 ? 0 : 16; mask = 0xffff << (16 - shift); spin_lock_irqsave(&bp->lock, flags); reg = ioread32(gpio); reg = (reg & mask) | (val << shift); __handle_signal_inputs(bp, reg); iowrite32(reg, gpio); spin_unlock_irqrestore(&bp->lock, flags); return 0; } static void ptp_ocp_sma_fb_init(struct ptp_ocp *bp) { struct dpll_pin_properties prop = { .board_label = NULL, .type = DPLL_PIN_TYPE_EXT, .capabilities = DPLL_PIN_CAPABILITIES_DIRECTION_CAN_CHANGE, .freq_supported_num = ARRAY_SIZE(ptp_ocp_sma_freq), .freq_supported = ptp_ocp_sma_freq, }; u32 reg; int i; /* defaults */ for (i = 0; i < OCP_SMA_NUM; i++) { bp->sma[i].default_fcn = i & 1; bp->sma[i].dpll_prop = prop; bp->sma[i].dpll_prop.board_label = bp->ptp_info.pin_config[i].name; } bp->sma[0].mode = SMA_MODE_IN; bp->sma[1].mode = SMA_MODE_IN; bp->sma[2].mode = SMA_MODE_OUT; bp->sma[3].mode = SMA_MODE_OUT; /* If no SMA1 map, the pin functions and directions are fixed. */ if (!bp->sma_map1) { for (i = 0; i < OCP_SMA_NUM; i++) { bp->sma[i].fixed_fcn = true; bp->sma[i].fixed_dir = true; bp->sma[1].dpll_prop.capabilities &= ~DPLL_PIN_CAPABILITIES_DIRECTION_CAN_CHANGE; } return; } /* If SMA2 GPIO output map is all 1, it is not present. * This indicates the firmware has fixed direction SMA pins. */ reg = ioread32(&bp->sma_map2->gpio2); if (reg == 0xffffffff) { for (i = 0; i < OCP_SMA_NUM; i++) bp->sma[i].fixed_dir = true; } else { reg = ioread32(&bp->sma_map1->gpio1); bp->sma[0].mode = reg & BIT(15) ? SMA_MODE_IN : SMA_MODE_OUT; bp->sma[1].mode = reg & BIT(31) ? SMA_MODE_IN : SMA_MODE_OUT; reg = ioread32(&bp->sma_map1->gpio2); bp->sma[2].mode = reg & BIT(15) ? SMA_MODE_OUT : SMA_MODE_IN; bp->sma[3].mode = reg & BIT(31) ? SMA_MODE_OUT : SMA_MODE_IN; } } static const struct ocp_sma_op ocp_fb_sma_op = { .tbl = { ptp_ocp_sma_in, ptp_ocp_sma_out }, .init = ptp_ocp_sma_fb_init, .get = ptp_ocp_sma_fb_get, .set_inputs = ptp_ocp_sma_fb_set_inputs, .set_output = ptp_ocp_sma_fb_set_output, }; static int ptp_ocp_set_pins(struct ptp_ocp *bp) { struct ptp_pin_desc *config; int i; config = kcalloc(4, sizeof(*config), GFP_KERNEL); if (!config) return -ENOMEM; for (i = 0; i < 4; i++) { sprintf(config[i].name, "sma%d", i + 1); config[i].index = i; } bp->ptp_info.n_pins = 4; bp->ptp_info.pin_config = config; return 0; } static void ptp_ocp_fb_set_version(struct ptp_ocp *bp) { u64 cap = OCP_CAP_BASIC; u32 version; version = ioread32(&bp->image->version); /* if lower 16 bits are empty, this is the fw loader. */ if ((version & 0xffff) == 0) { version = version >> 16; bp->fw_loader = true; } bp->fw_tag = version >> 15; bp->fw_version = version & 0x7fff; if (bp->fw_tag) { /* FPGA firmware */ if (version >= 5) cap |= OCP_CAP_SIGNAL | OCP_CAP_FREQ; } else { /* SOM firmware */ if (version >= 19) cap |= OCP_CAP_SIGNAL; if (version >= 20) cap |= OCP_CAP_FREQ; } bp->fw_cap = cap; } /* FB specific board initializers; last "resource" registered. */ static int ptp_ocp_fb_board_init(struct ptp_ocp *bp, struct ocp_resource *r) { int err; bp->flash_start = 1024 * 4096; bp->eeprom_map = fb_eeprom_map; bp->fw_version = ioread32(&bp->image->version); bp->sma_op = &ocp_fb_sma_op; ptp_ocp_fb_set_version(bp); ptp_ocp_tod_init(bp); ptp_ocp_nmea_out_init(bp); ptp_ocp_signal_init(bp); err = ptp_ocp_attr_group_add(bp, fb_timecard_groups); if (err) return err; err = ptp_ocp_set_pins(bp); if (err) return err; ptp_ocp_sma_init(bp); return ptp_ocp_init_clock(bp); } static bool ptp_ocp_allow_irq(struct ptp_ocp *bp, struct ocp_resource *r) { bool allow = !r->irq_vec || r->irq_vec < bp->n_irqs; if (!allow) dev_err(&bp->pdev->dev, "irq %d out of range, skipping %s\n", r->irq_vec, r->name); return allow; } static int ptp_ocp_register_resources(struct ptp_ocp *bp, kernel_ulong_t driver_data) { struct ocp_resource *r, *table; int err = 0; table = (struct ocp_resource *)driver_data; for (r = table; r->setup; r++) { if (!ptp_ocp_allow_irq(bp, r)) continue; err = r->setup(bp, r); if (err) { dev_err(&bp->pdev->dev, "Could not register %s: err %d\n", r->name, err); break; } } return err; } static void ptp_ocp_art_sma_init(struct ptp_ocp *bp) { struct dpll_pin_properties prop = { .board_label = NULL, .type = DPLL_PIN_TYPE_EXT, .capabilities = 0, .freq_supported_num = ARRAY_SIZE(ptp_ocp_sma_freq), .freq_supported = ptp_ocp_sma_freq, }; u32 reg; int i; /* defaults */ bp->sma[0].mode = SMA_MODE_IN; bp->sma[1].mode = SMA_MODE_IN; bp->sma[2].mode = SMA_MODE_OUT; bp->sma[3].mode = SMA_MODE_OUT; bp->sma[0].default_fcn = 0x08; /* IN: 10Mhz */ bp->sma[1].default_fcn = 0x01; /* IN: PPS1 */ bp->sma[2].default_fcn = 0x10; /* OUT: 10Mhz */ bp->sma[3].default_fcn = 0x02; /* OUT: PHC */ for (i = 0; i < OCP_SMA_NUM; i++) { /* If no SMA map, the pin functions and directions are fixed. */ bp->sma[i].dpll_prop = prop; bp->sma[i].dpll_prop.board_label = bp->ptp_info.pin_config[i].name; if (!bp->art_sma) { bp->sma[i].fixed_fcn = true; bp->sma[i].fixed_dir = true; continue; } reg = ioread32(&bp->art_sma->map[i].gpio); switch (reg & 0xff) { case 0: bp->sma[i].fixed_fcn = true; bp->sma[i].fixed_dir = true; break; case 1: case 8: bp->sma[i].mode = SMA_MODE_IN; bp->sma[i].dpll_prop.capabilities = DPLL_PIN_CAPABILITIES_DIRECTION_CAN_CHANGE; break; default: bp->sma[i].mode = SMA_MODE_OUT; bp->sma[i].dpll_prop.capabilities = DPLL_PIN_CAPABILITIES_DIRECTION_CAN_CHANGE; break; } } } static u32 ptp_ocp_art_sma_get(struct ptp_ocp *bp, int sma_nr) { if (bp->sma[sma_nr - 1].fixed_fcn) return bp->sma[sma_nr - 1].default_fcn; return ioread32(&bp->art_sma->map[sma_nr - 1].gpio) & 0xff; } /* note: store 0 is considered invalid. */ static int ptp_ocp_art_sma_set(struct ptp_ocp *bp, int sma_nr, u32 val) { unsigned long flags; u32 __iomem *gpio; int err = 0; u32 reg; val &= SMA_SELECT_MASK; if (hweight32(val) > 1) return -EINVAL; gpio = &bp->art_sma->map[sma_nr - 1].gpio; spin_lock_irqsave(&bp->lock, flags); reg = ioread32(gpio); if (((reg >> 16) & val) == 0) { err = -EOPNOTSUPP; } else { reg = (reg & 0xff00) | (val & 0xff); iowrite32(reg, gpio); } spin_unlock_irqrestore(&bp->lock, flags); return err; } static const struct ocp_sma_op ocp_art_sma_op = { .tbl = { ptp_ocp_art_sma_in, ptp_ocp_art_sma_out }, .init = ptp_ocp_art_sma_init, .get = ptp_ocp_art_sma_get, .set_inputs = ptp_ocp_art_sma_set, .set_output = ptp_ocp_art_sma_set, }; /* ART specific board initializers; last "resource" registered. */ static int ptp_ocp_art_board_init(struct ptp_ocp *bp, struct ocp_resource *r) { int err; bp->flash_start = 0x1000000; bp->eeprom_map = art_eeprom_map; bp->fw_cap = OCP_CAP_BASIC; bp->fw_version = ioread32(&bp->reg->version); bp->fw_tag = 2; bp->sma_op = &ocp_art_sma_op; /* Enable MAC serial port during initialisation */ iowrite32(1, &bp->board_config->mro50_serial_activate); err = ptp_ocp_set_pins(bp); if (err) return err; ptp_ocp_sma_init(bp); err = ptp_ocp_attr_group_add(bp, art_timecard_groups); if (err) return err; return ptp_ocp_init_clock(bp); } static ssize_t ptp_ocp_show_output(const struct ocp_selector *tbl, u32 val, char *buf, int def_val) { const char *name; ssize_t count; count = sysfs_emit(buf, "OUT: "); name = ptp_ocp_select_name_from_val(tbl, val); if (!name) name = ptp_ocp_select_name_from_val(tbl, def_val); count += sysfs_emit_at(buf, count, "%s\n", name); return count; } static ssize_t ptp_ocp_show_inputs(const struct ocp_selector *tbl, u32 val, char *buf, int def_val) { const char *name; ssize_t count; int i; count = sysfs_emit(buf, "IN: "); for (i = 0; tbl[i].name; i++) { if (val & tbl[i].value) { name = tbl[i].name; count += sysfs_emit_at(buf, count, "%s ", name); } } if (!val && def_val >= 0) { name = ptp_ocp_select_name_from_val(tbl, def_val); count += sysfs_emit_at(buf, count, "%s ", name); } if (count) count--; count += sysfs_emit_at(buf, count, "\n"); return count; } static int sma_parse_inputs(const struct ocp_selector * const tbl[], const char *buf, enum ptp_ocp_sma_mode *mode) { int idx, count, dir; char **argv; int ret; argv = argv_split(GFP_KERNEL, buf, &count); if (!argv) return -ENOMEM; ret = -EINVAL; if (!count) goto out; idx = 0; dir = *mode == SMA_MODE_IN ? 0 : 1; if (!strcasecmp("IN:", argv[0])) { dir = 0; idx++; } if (!strcasecmp("OUT:", argv[0])) { dir = 1; idx++; } *mode = dir == 0 ? SMA_MODE_IN : SMA_MODE_OUT; ret = 0; for (; idx < count; idx++) ret |= ptp_ocp_select_val_from_name(tbl[dir], argv[idx]); if (ret < 0) ret = -EINVAL; out: argv_free(argv); return ret; } static ssize_t ptp_ocp_sma_show(struct ptp_ocp *bp, int sma_nr, char *buf, int default_in_val, int default_out_val) { struct ptp_ocp_sma_connector *sma = &bp->sma[sma_nr - 1]; const struct ocp_selector * const *tbl; u32 val; tbl = bp->sma_op->tbl; val = ptp_ocp_sma_get(bp, sma_nr) & SMA_SELECT_MASK; if (sma->mode == SMA_MODE_IN) { if (sma->disabled) val = SMA_DISABLE; return ptp_ocp_show_inputs(tbl[0], val, buf, default_in_val); } return ptp_ocp_show_output(tbl[1], val, buf, default_out_val); } static ssize_t sma1_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ptp_ocp *bp = dev_get_drvdata(dev); return ptp_ocp_sma_show(bp, 1, buf, 0, 1); } static ssize_t sma2_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ptp_ocp *bp = dev_get_drvdata(dev); return ptp_ocp_sma_show(bp, 2, buf, -1, 1); } static ssize_t sma3_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ptp_ocp *bp = dev_get_drvdata(dev); return ptp_ocp_sma_show(bp, 3, buf, -1, 0); } static ssize_t sma4_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ptp_ocp *bp = dev_get_drvdata(dev); return ptp_ocp_sma_show(bp, 4, buf, -1, 1); } static int ptp_ocp_sma_store_val(struct ptp_ocp *bp, int val, enum ptp_ocp_sma_mode mode, int sma_nr) { struct ptp_ocp_sma_connector *sma = &bp->sma[sma_nr - 1]; if (sma->fixed_dir && (mode != sma->mode || val & SMA_DISABLE)) return -EOPNOTSUPP; if (sma->fixed_fcn) { if (val != sma->default_fcn) return -EOPNOTSUPP; return 0; } sma->disabled = !!(val & SMA_DISABLE); if (mode != sma->mode) { if (mode == SMA_MODE_IN) ptp_ocp_sma_set_output(bp, sma_nr, 0); else ptp_ocp_sma_set_inputs(bp, sma_nr, 0); sma->mode = mode; } if (!sma->fixed_dir) val |= SMA_ENABLE; /* add enable bit */ if (sma->disabled) val = 0; if (mode == SMA_MODE_IN) val = ptp_ocp_sma_set_inputs(bp, sma_nr, val); else val = ptp_ocp_sma_set_output(bp, sma_nr, val); return val; } static int ptp_ocp_sma_store(struct ptp_ocp *bp, const char *buf, int sma_nr) { struct ptp_ocp_sma_connector *sma = &bp->sma[sma_nr - 1]; enum ptp_ocp_sma_mode mode; int val; mode = sma->mode; val = sma_parse_inputs(bp->sma_op->tbl, buf, &mode); if (val < 0) return val; return ptp_ocp_sma_store_val(bp, val, mode, sma_nr); } static ssize_t sma1_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct ptp_ocp *bp = dev_get_drvdata(dev); int err; err = ptp_ocp_sma_store(bp, buf, 1); return err ? err : count; } static ssize_t sma2_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct ptp_ocp *bp = dev_get_drvdata(dev); int err; err = ptp_ocp_sma_store(bp, buf, 2); return err ? err : count; } static ssize_t sma3_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct ptp_ocp *bp = dev_get_drvdata(dev); int err; err = ptp_ocp_sma_store(bp, buf, 3); return err ? err : count; } static ssize_t sma4_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct ptp_ocp *bp = dev_get_drvdata(dev); int err; err = ptp_ocp_sma_store(bp, buf, 4); return err ? err : count; } static DEVICE_ATTR_RW(sma1); static DEVICE_ATTR_RW(sma2); static DEVICE_ATTR_RW(sma3); static DEVICE_ATTR_RW(sma4); static ssize_t available_sma_inputs_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ptp_ocp *bp = dev_get_drvdata(dev); return ptp_ocp_select_table_show(bp->sma_op->tbl[0], buf); } static DEVICE_ATTR_RO(available_sma_inputs); static ssize_t available_sma_outputs_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ptp_ocp *bp = dev_get_drvdata(dev); return ptp_ocp_select_table_show(bp->sma_op->tbl[1], buf); } static DEVICE_ATTR_RO(available_sma_outputs); #define EXT_ATTR_RO(_group, _name, _val) \ struct dev_ext_attribute dev_attr_##_group##_val##_##_name = \ { __ATTR_RO(_name), (void *)_val } #define EXT_ATTR_RW(_group, _name, _val) \ struct dev_ext_attribute dev_attr_##_group##_val##_##_name = \ { __ATTR_RW(_name), (void *)_val } #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr) /* period [duty [phase [polarity]]] */ static ssize_t signal_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct dev_ext_attribute *ea = to_ext_attr(attr); struct ptp_ocp *bp = dev_get_drvdata(dev); struct ptp_ocp_signal s = { }; int gen = (uintptr_t)ea->var; int argc, err; char **argv; argv = argv_split(GFP_KERNEL, buf, &argc); if (!argv) return -ENOMEM; err = -EINVAL; s.duty = bp->signal[gen].duty; s.phase = bp->signal[gen].phase; s.period = bp->signal[gen].period; s.polarity = bp->signal[gen].polarity; switch (argc) { case 4: argc--; err = kstrtobool(argv[argc], &s.polarity); if (err) goto out; fallthrough; case 3: argc--; err = kstrtou64(argv[argc], 0, &s.phase); if (err) goto out; fallthrough; case 2: argc--; err = kstrtoint(argv[argc], 0, &s.duty); if (err) goto out; fallthrough; case 1: argc--; err = kstrtou64(argv[argc], 0, &s.period); if (err) goto out; break; default: goto out; } err = ptp_ocp_signal_set(bp, gen, &s); if (err) goto out; err = ptp_ocp_signal_enable(bp->signal_out[gen], gen, s.period != 0); out: argv_free(argv); return err ? err : count; } static ssize_t signal_show(struct device *dev, struct device_attribute *attr, char *buf) { struct dev_ext_attribute *ea = to_ext_attr(attr); struct ptp_ocp *bp = dev_get_drvdata(dev); struct ptp_ocp_signal *signal; struct timespec64 ts; ssize_t count; int i; i = (uintptr_t)ea->var; signal = &bp->signal[i]; count = sysfs_emit(buf, "%llu %d %llu %d", signal->period, signal->duty, signal->phase, signal->polarity); ts = ktime_to_timespec64(signal->start); count += sysfs_emit_at(buf, count, " %ptT TAI\n", &ts); return count; } static EXT_ATTR_RW(signal, signal, 0); static EXT_ATTR_RW(signal, signal, 1); static EXT_ATTR_RW(signal, signal, 2); static EXT_ATTR_RW(signal, signal, 3); static ssize_t duty_show(struct device *dev, struct device_attribute *attr, char *buf) { struct dev_ext_attribute *ea = to_ext_attr(attr); struct ptp_ocp *bp = dev_get_drvdata(dev); int i = (uintptr_t)ea->var; return sysfs_emit(buf, "%d\n", bp->signal[i].duty); } static EXT_ATTR_RO(signal, duty, 0); static EXT_ATTR_RO(signal, duty, 1); static EXT_ATTR_RO(signal, duty, 2); static EXT_ATTR_RO(signal, duty, 3); static ssize_t period_show(struct device *dev, struct device_attribute *attr, char *buf) { struct dev_ext_attribute *ea = to_ext_attr(attr); struct ptp_ocp *bp = dev_get_drvdata(dev); int i = (uintptr_t)ea->var; return sysfs_emit(buf, "%llu\n", bp->signal[i].period); } static EXT_ATTR_RO(signal, period, 0); static EXT_ATTR_RO(signal, period, 1); static EXT_ATTR_RO(signal, period, 2); static EXT_ATTR_RO(signal, period, 3); static ssize_t phase_show(struct device *dev, struct device_attribute *attr, char *buf) { struct dev_ext_attribute *ea = to_ext_attr(attr); struct ptp_ocp *bp = dev_get_drvdata(dev); int i = (uintptr_t)ea->var; return sysfs_emit(buf, "%llu\n", bp->signal[i].phase); } static EXT_ATTR_RO(signal, phase, 0); static EXT_ATTR_RO(signal, phase, 1); static EXT_ATTR_RO(signal, phase, 2); static EXT_ATTR_RO(signal, phase, 3); static ssize_t polarity_show(struct device *dev, struct device_attribute *attr, char *buf) { struct dev_ext_attribute *ea = to_ext_attr(attr); struct ptp_ocp *bp = dev_get_drvdata(dev); int i = (uintptr_t)ea->var; return sysfs_emit(buf, "%d\n", bp->signal[i].polarity); } static EXT_ATTR_RO(signal, polarity, 0); static EXT_ATTR_RO(signal, polarity, 1); static EXT_ATTR_RO(signal, polarity, 2); static EXT_ATTR_RO(signal, polarity, 3); static ssize_t running_show(struct device *dev, struct device_attribute *attr, char *buf) { struct dev_ext_attribute *ea = to_ext_attr(attr); struct ptp_ocp *bp = dev_get_drvdata(dev); int i = (uintptr_t)ea->var; return sysfs_emit(buf, "%d\n", bp->signal[i].running); } static EXT_ATTR_RO(signal, running, 0); static EXT_ATTR_RO(signal, running, 1); static EXT_ATTR_RO(signal, running, 2); static EXT_ATTR_RO(signal, running, 3); static ssize_t start_show(struct device *dev, struct device_attribute *attr, char *buf) { struct dev_ext_attribute *ea = to_ext_attr(attr); struct ptp_ocp *bp = dev_get_drvdata(dev); int i = (uintptr_t)ea->var; struct timespec64 ts; ts = ktime_to_timespec64(bp->signal[i].start); return sysfs_emit(buf, "%llu.%lu\n", ts.tv_sec, ts.tv_nsec); } static EXT_ATTR_RO(signal, start, 0); static EXT_ATTR_RO(signal, start, 1); static EXT_ATTR_RO(signal, start, 2); static EXT_ATTR_RO(signal, start, 3); static ssize_t seconds_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct dev_ext_attribute *ea = to_ext_attr(attr); struct ptp_ocp *bp = dev_get_drvdata(dev); int idx = (uintptr_t)ea->var; u32 val; int err; err = kstrtou32(buf, 0, &val); if (err) return err; if (val > 0xff) return -EINVAL; if (val) val = (val << 8) | 0x1; iowrite32(val, &bp->freq_in[idx]->ctrl); return count; } static ssize_t seconds_show(struct device *dev, struct device_attribute *attr, char *buf) { struct dev_ext_attribute *ea = to_ext_attr(attr); struct ptp_ocp *bp = dev_get_drvdata(dev); int idx = (uintptr_t)ea->var; u32 val; val = ioread32(&bp->freq_in[idx]->ctrl); if (val & 1) val = (val >> 8) & 0xff; else val = 0; return sysfs_emit(buf, "%u\n", val); } static EXT_ATTR_RW(freq, seconds, 0); static EXT_ATTR_RW(freq, seconds, 1); static EXT_ATTR_RW(freq, seconds, 2); static EXT_ATTR_RW(freq, seconds, 3); static ssize_t frequency_show(struct device *dev, struct device_attribute *attr, char *buf) { struct dev_ext_attribute *ea = to_ext_attr(attr); struct ptp_ocp *bp = dev_get_drvdata(dev); int idx = (uintptr_t)ea->var; u32 val; val = ioread32(&bp->freq_in[idx]->status); if (val & FREQ_STATUS_ERROR) return sysfs_emit(buf, "error\n"); if (val & FREQ_STATUS_OVERRUN) return sysfs_emit(buf, "overrun\n"); if (val & FREQ_STATUS_VALID) return sysfs_emit(buf, "%lu\n", val & FREQ_STATUS_MASK); return 0; } static EXT_ATTR_RO(freq, frequency, 0); static EXT_ATTR_RO(freq, frequency, 1); static EXT_ATTR_RO(freq, frequency, 2); static EXT_ATTR_RO(freq, frequency, 3); static ssize_t serialnum_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ptp_ocp *bp = dev_get_drvdata(dev); if (!bp->has_eeprom_data) ptp_ocp_read_eeprom(bp); return sysfs_emit(buf, "%pM\n", bp->serial); } static DEVICE_ATTR_RO(serialnum); static ssize_t gnss_sync_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ptp_ocp *bp = dev_get_drvdata(dev); ssize_t ret; if (bp->gnss_lost) ret = sysfs_emit(buf, "LOST @ %ptT\n", &bp->gnss_lost); else ret = sysfs_emit(buf, "SYNC\n"); return ret; } static DEVICE_ATTR_RO(gnss_sync); static ssize_t utc_tai_offset_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ptp_ocp *bp = dev_get_drvdata(dev); return sysfs_emit(buf, "%d\n", bp->utc_tai_offset); } static ssize_t utc_tai_offset_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct ptp_ocp *bp = dev_get_drvdata(dev); int err; u32 val; err = kstrtou32(buf, 0, &val); if (err) return err; ptp_ocp_utc_distribute(bp, val); return count; } static DEVICE_ATTR_RW(utc_tai_offset); static ssize_t ts_window_adjust_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ptp_ocp *bp = dev_get_drvdata(dev); return sysfs_emit(buf, "%d\n", bp->ts_window_adjust); } static ssize_t ts_window_adjust_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct ptp_ocp *bp = dev_get_drvdata(dev); int err; u32 val; err = kstrtou32(buf, 0, &val); if (err) return err; bp->ts_window_adjust = val; return count; } static DEVICE_ATTR_RW(ts_window_adjust); static ssize_t irig_b_mode_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ptp_ocp *bp = dev_get_drvdata(dev); u32 val; val = ioread32(&bp->irig_out->ctrl); val = (val >> 16) & 0x07; return sysfs_emit(buf, "%d\n", val); } static ssize_t irig_b_mode_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct ptp_ocp *bp = dev_get_drvdata(dev); unsigned long flags; int err; u32 reg; u8 val; err = kstrtou8(buf, 0, &val); if (err) return err; if (val > 7) return -EINVAL; reg = ((val & 0x7) << 16); spin_lock_irqsave(&bp->lock, flags); iowrite32(0, &bp->irig_out->ctrl); /* disable */ iowrite32(reg, &bp->irig_out->ctrl); /* change mode */ iowrite32(reg | IRIG_M_CTRL_ENABLE, &bp->irig_out->ctrl); spin_unlock_irqrestore(&bp->lock, flags); return count; } static DEVICE_ATTR_RW(irig_b_mode); static ssize_t clock_source_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ptp_ocp *bp = dev_get_drvdata(dev); const char *p; u32 select; select = ioread32(&bp->reg->select); p = ptp_ocp_select_name_from_val(ptp_ocp_clock, select >> 16); return sysfs_emit(buf, "%s\n", p); } static ssize_t clock_source_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct ptp_ocp *bp = dev_get_drvdata(dev); unsigned long flags; int val; val = ptp_ocp_select_val_from_name(ptp_ocp_clock, buf); if (val < 0) return val; spin_lock_irqsave(&bp->lock, flags); iowrite32(val, &bp->reg->select); spin_unlock_irqrestore(&bp->lock, flags); return count; } static DEVICE_ATTR_RW(clock_source); static ssize_t available_clock_sources_show(struct device *dev, struct device_attribute *attr, char *buf) { return ptp_ocp_select_table_show(ptp_ocp_clock, buf); } static DEVICE_ATTR_RO(available_clock_sources); static ssize_t clock_status_drift_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ptp_ocp *bp = dev_get_drvdata(dev); u32 val; int res; val = ioread32(&bp->reg->status_drift); res = (val & ~INT_MAX) ? -1 : 1; res *= (val & INT_MAX); return sysfs_emit(buf, "%d\n", res); } static DEVICE_ATTR_RO(clock_status_drift); static ssize_t clock_status_offset_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ptp_ocp *bp = dev_get_drvdata(dev); u32 val; int res; val = ioread32(&bp->reg->status_offset); res = (val & ~INT_MAX) ? -1 : 1; res *= (val & INT_MAX); return sysfs_emit(buf, "%d\n", res); } static DEVICE_ATTR_RO(clock_status_offset); static ssize_t tod_correction_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ptp_ocp *bp = dev_get_drvdata(dev); u32 val; int res; val = ioread32(&bp->tod->adj_sec); res = (val & ~INT_MAX) ? -1 : 1; res *= (val & INT_MAX); return sysfs_emit(buf, "%d\n", res); } static ssize_t tod_correction_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct ptp_ocp *bp = dev_get_drvdata(dev); unsigned long flags; int err, res; u32 val = 0; err = kstrtos32(buf, 0, &res); if (err) return err; if (res < 0) { res *= -1; val |= BIT(31); } val |= res; spin_lock_irqsave(&bp->lock, flags); iowrite32(val, &bp->tod->adj_sec); spin_unlock_irqrestore(&bp->lock, flags); return count; } static DEVICE_ATTR_RW(tod_correction); #define _DEVICE_SIGNAL_GROUP_ATTRS(_nr) \ static struct attribute *fb_timecard_signal##_nr##_attrs[] = { \ &dev_attr_signal##_nr##_signal.attr.attr, \ &dev_attr_signal##_nr##_duty.attr.attr, \ &dev_attr_signal##_nr##_phase.attr.attr, \ &dev_attr_signal##_nr##_period.attr.attr, \ &dev_attr_signal##_nr##_polarity.attr.attr, \ &dev_attr_signal##_nr##_running.attr.attr, \ &dev_attr_signal##_nr##_start.attr.attr, \ NULL, \ } #define DEVICE_SIGNAL_GROUP(_name, _nr) \ _DEVICE_SIGNAL_GROUP_ATTRS(_nr); \ static const struct attribute_group \ fb_timecard_signal##_nr##_group = { \ .name = #_name, \ .attrs = fb_timecard_signal##_nr##_attrs, \ } DEVICE_SIGNAL_GROUP(gen1, 0); DEVICE_SIGNAL_GROUP(gen2, 1); DEVICE_SIGNAL_GROUP(gen3, 2); DEVICE_SIGNAL_GROUP(gen4, 3); #define _DEVICE_FREQ_GROUP_ATTRS(_nr) \ static struct attribute *fb_timecard_freq##_nr##_attrs[] = { \ &dev_attr_freq##_nr##_seconds.attr.attr, \ &dev_attr_freq##_nr##_frequency.attr.attr, \ NULL, \ } #define DEVICE_FREQ_GROUP(_name, _nr) \ _DEVICE_FREQ_GROUP_ATTRS(_nr); \ static const struct attribute_group \ fb_timecard_freq##_nr##_group = { \ .name = #_name, \ .attrs = fb_timecard_freq##_nr##_attrs, \ } DEVICE_FREQ_GROUP(freq1, 0); DEVICE_FREQ_GROUP(freq2, 1); DEVICE_FREQ_GROUP(freq3, 2); DEVICE_FREQ_GROUP(freq4, 3); static ssize_t disciplining_config_read(struct file *filp, struct kobject *kobj, struct bin_attribute *bin_attr, char *buf, loff_t off, size_t count) { struct ptp_ocp *bp = dev_get_drvdata(kobj_to_dev(kobj)); size_t size = OCP_ART_CONFIG_SIZE; struct nvmem_device *nvmem; ssize_t err; nvmem = ptp_ocp_nvmem_device_get(bp, NULL); if (IS_ERR(nvmem)) return PTR_ERR(nvmem); if (off > size) { err = 0; goto out; } if (off + count > size) count = size - off; // the configuration is in the very beginning of the EEPROM err = nvmem_device_read(nvmem, off, count, buf); if (err != count) { err = -EFAULT; goto out; } out: ptp_ocp_nvmem_device_put(&nvmem); return err; } static ssize_t disciplining_config_write(struct file *filp, struct kobject *kobj, struct bin_attribute *bin_attr, char *buf, loff_t off, size_t count) { struct ptp_ocp *bp = dev_get_drvdata(kobj_to_dev(kobj)); struct nvmem_device *nvmem; ssize_t err; /* Allow write of the whole area only */ if (off || count != OCP_ART_CONFIG_SIZE) return -EFAULT; nvmem = ptp_ocp_nvmem_device_get(bp, NULL); if (IS_ERR(nvmem)) return PTR_ERR(nvmem); err = nvmem_device_write(nvmem, 0x00, count, buf); if (err != count) err = -EFAULT; ptp_ocp_nvmem_device_put(&nvmem); return err; } static BIN_ATTR_RW(disciplining_config, OCP_ART_CONFIG_SIZE); static ssize_t temperature_table_read(struct file *filp, struct kobject *kobj, struct bin_attribute *bin_attr, char *buf, loff_t off, size_t count) { struct ptp_ocp *bp = dev_get_drvdata(kobj_to_dev(kobj)); size_t size = OCP_ART_TEMP_TABLE_SIZE; struct nvmem_device *nvmem; ssize_t err; nvmem = ptp_ocp_nvmem_device_get(bp, NULL); if (IS_ERR(nvmem)) return PTR_ERR(nvmem); if (off > size) { err = 0; goto out; } if (off + count > size) count = size - off; // the configuration is in the very beginning of the EEPROM err = nvmem_device_read(nvmem, 0x90 + off, count, buf); if (err != count) { err = -EFAULT; goto out; } out: ptp_ocp_nvmem_device_put(&nvmem); return err; } static ssize_t temperature_table_write(struct file *filp, struct kobject *kobj, struct bin_attribute *bin_attr, char *buf, loff_t off, size_t count) { struct ptp_ocp *bp = dev_get_drvdata(kobj_to_dev(kobj)); struct nvmem_device *nvmem; ssize_t err; /* Allow write of the whole area only */ if (off || count != OCP_ART_TEMP_TABLE_SIZE) return -EFAULT; nvmem = ptp_ocp_nvmem_device_get(bp, NULL); if (IS_ERR(nvmem)) return PTR_ERR(nvmem); err = nvmem_device_write(nvmem, 0x90, count, buf); if (err != count) err = -EFAULT; ptp_ocp_nvmem_device_put(&nvmem); return err; } static BIN_ATTR_RW(temperature_table, OCP_ART_TEMP_TABLE_SIZE); static struct attribute *fb_timecard_attrs[] = { &dev_attr_serialnum.attr, &dev_attr_gnss_sync.attr, &dev_attr_clock_source.attr, &dev_attr_available_clock_sources.attr, &dev_attr_sma1.attr, &dev_attr_sma2.attr, &dev_attr_sma3.attr, &dev_attr_sma4.attr, &dev_attr_available_sma_inputs.attr, &dev_attr_available_sma_outputs.attr, &dev_attr_clock_status_drift.attr, &dev_attr_clock_status_offset.attr, &dev_attr_irig_b_mode.attr, &dev_attr_utc_tai_offset.attr, &dev_attr_ts_window_adjust.attr, &dev_attr_tod_correction.attr, NULL, }; static const struct attribute_group fb_timecard_group = { .attrs = fb_timecard_attrs, }; static const struct ocp_attr_group fb_timecard_groups[] = { { .cap = OCP_CAP_BASIC, .group = &fb_timecard_group }, { .cap = OCP_CAP_SIGNAL, .group = &fb_timecard_signal0_group }, { .cap = OCP_CAP_SIGNAL, .group = &fb_timecard_signal1_group }, { .cap = OCP_CAP_SIGNAL, .group = &fb_timecard_signal2_group }, { .cap = OCP_CAP_SIGNAL, .group = &fb_timecard_signal3_group }, { .cap = OCP_CAP_FREQ, .group = &fb_timecard_freq0_group }, { .cap = OCP_CAP_FREQ, .group = &fb_timecard_freq1_group }, { .cap = OCP_CAP_FREQ, .group = &fb_timecard_freq2_group }, { .cap = OCP_CAP_FREQ, .group = &fb_timecard_freq3_group }, { }, }; static struct attribute *art_timecard_attrs[] = { &dev_attr_serialnum.attr, &dev_attr_clock_source.attr, &dev_attr_available_clock_sources.attr, &dev_attr_utc_tai_offset.attr, &dev_attr_ts_window_adjust.attr, &dev_attr_sma1.attr, &dev_attr_sma2.attr, &dev_attr_sma3.attr, &dev_attr_sma4.attr, &dev_attr_available_sma_inputs.attr, &dev_attr_available_sma_outputs.attr, NULL, }; static struct bin_attribute *bin_art_timecard_attrs[] = { &bin_attr_disciplining_config, &bin_attr_temperature_table, NULL, }; static const struct attribute_group art_timecard_group = { .attrs = art_timecard_attrs, .bin_attrs = bin_art_timecard_attrs, }; static const struct ocp_attr_group art_timecard_groups[] = { { .cap = OCP_CAP_BASIC, .group = &art_timecard_group }, { }, }; static void gpio_input_map(char *buf, struct ptp_ocp *bp, u16 map[][2], u16 bit, const char *def) { int i; for (i = 0; i < 4; i++) { if (bp->sma[i].mode != SMA_MODE_IN) continue; if (map[i][0] & (1 << bit)) { sprintf(buf, "sma%d", i + 1); return; } } if (!def) def = "----"; strcpy(buf, def); } static void gpio_output_map(char *buf, struct ptp_ocp *bp, u16 map[][2], u16 bit) { char *ans = buf; int i; strcpy(ans, "----"); for (i = 0; i < 4; i++) { if (bp->sma[i].mode != SMA_MODE_OUT) continue; if (map[i][1] & (1 << bit)) ans += sprintf(ans, "sma%d ", i + 1); } } static void _signal_summary_show(struct seq_file *s, struct ptp_ocp *bp, int nr) { struct signal_reg __iomem *reg = bp->signal_out[nr]->mem; struct ptp_ocp_signal *signal = &bp->signal[nr]; char label[8]; bool on; u32 val; if (!signal) return; on = signal->running; sprintf(label, "GEN%d", nr + 1); seq_printf(s, "%7s: %s, period:%llu duty:%d%% phase:%llu pol:%d", label, on ? " ON" : "OFF", signal->period, signal->duty, signal->phase, signal->polarity); val = ioread32(®->enable); seq_printf(s, " [%x", val); val = ioread32(®->status); seq_printf(s, " %x]", val); seq_printf(s, " start:%llu\n", signal->start); } static void _frequency_summary_show(struct seq_file *s, int nr, struct frequency_reg __iomem *reg) { char label[8]; bool on; u32 val; if (!reg) return; sprintf(label, "FREQ%d", nr + 1); val = ioread32(®->ctrl); on = val & 1; val = (val >> 8) & 0xff; seq_printf(s, "%7s: %s, sec:%u", label, on ? " ON" : "OFF", val); val = ioread32(®->status); if (val & FREQ_STATUS_ERROR) seq_printf(s, ", error"); if (val & FREQ_STATUS_OVERRUN) seq_printf(s, ", overrun"); if (val & FREQ_STATUS_VALID) seq_printf(s, ", freq %lu Hz", val & FREQ_STATUS_MASK); seq_printf(s, " reg:%x\n", val); } static int ptp_ocp_summary_show(struct seq_file *s, void *data) { struct device *dev = s->private; struct ptp_system_timestamp sts; struct ts_reg __iomem *ts_reg; char *buf, *src, *mac_src; struct timespec64 ts; struct ptp_ocp *bp; u16 sma_val[4][2]; u32 ctrl, val; bool on, map; int i; buf = (char *)__get_free_page(GFP_KERNEL); if (!buf) return -ENOMEM; bp = dev_get_drvdata(dev); seq_printf(s, "%7s: /dev/ptp%d\n", "PTP", ptp_clock_index(bp->ptp)); if (bp->gnss_port.line != -1) seq_printf(s, "%7s: /dev/ttyS%d\n", "GNSS1", bp->gnss_port.line); if (bp->gnss2_port.line != -1) seq_printf(s, "%7s: /dev/ttyS%d\n", "GNSS2", bp->gnss2_port.line); if (bp->mac_port.line != -1) seq_printf(s, "%7s: /dev/ttyS%d\n", "MAC", bp->mac_port.line); if (bp->nmea_port.line != -1) seq_printf(s, "%7s: /dev/ttyS%d\n", "NMEA", bp->nmea_port.line); memset(sma_val, 0xff, sizeof(sma_val)); if (bp->sma_map1) { u32 reg; reg = ioread32(&bp->sma_map1->gpio1); sma_val[0][0] = reg & 0xffff; sma_val[1][0] = reg >> 16; reg = ioread32(&bp->sma_map1->gpio2); sma_val[2][1] = reg & 0xffff; sma_val[3][1] = reg >> 16; reg = ioread32(&bp->sma_map2->gpio1); sma_val[2][0] = reg & 0xffff; sma_val[3][0] = reg >> 16; reg = ioread32(&bp->sma_map2->gpio2); sma_val[0][1] = reg & 0xffff; sma_val[1][1] = reg >> 16; } sma1_show(dev, NULL, buf); seq_printf(s, " sma1: %04x,%04x %s", sma_val[0][0], sma_val[0][1], buf); sma2_show(dev, NULL, buf); seq_printf(s, " sma2: %04x,%04x %s", sma_val[1][0], sma_val[1][1], buf); sma3_show(dev, NULL, buf); seq_printf(s, " sma3: %04x,%04x %s", sma_val[2][0], sma_val[2][1], buf); sma4_show(dev, NULL, buf); seq_printf(s, " sma4: %04x,%04x %s", sma_val[3][0], sma_val[3][1], buf); if (bp->ts0) { ts_reg = bp->ts0->mem; on = ioread32(&ts_reg->enable); src = "GNSS1"; seq_printf(s, "%7s: %s, src: %s\n", "TS0", on ? " ON" : "OFF", src); } if (bp->ts1) { ts_reg = bp->ts1->mem; on = ioread32(&ts_reg->enable); gpio_input_map(buf, bp, sma_val, 2, NULL); seq_printf(s, "%7s: %s, src: %s\n", "TS1", on ? " ON" : "OFF", buf); } if (bp->ts2) { ts_reg = bp->ts2->mem; on = ioread32(&ts_reg->enable); gpio_input_map(buf, bp, sma_val, 3, NULL); seq_printf(s, "%7s: %s, src: %s\n", "TS2", on ? " ON" : "OFF", buf); } if (bp->ts3) { ts_reg = bp->ts3->mem; on = ioread32(&ts_reg->enable); gpio_input_map(buf, bp, sma_val, 6, NULL); seq_printf(s, "%7s: %s, src: %s\n", "TS3", on ? " ON" : "OFF", buf); } if (bp->ts4) { ts_reg = bp->ts4->mem; on = ioread32(&ts_reg->enable); gpio_input_map(buf, bp, sma_val, 7, NULL); seq_printf(s, "%7s: %s, src: %s\n", "TS4", on ? " ON" : "OFF", buf); } if (bp->pps) { ts_reg = bp->pps->mem; src = "PHC"; on = ioread32(&ts_reg->enable); map = !!(bp->pps_req_map & OCP_REQ_TIMESTAMP); seq_printf(s, "%7s: %s, src: %s\n", "TS5", on && map ? " ON" : "OFF", src); map = !!(bp->pps_req_map & OCP_REQ_PPS); seq_printf(s, "%7s: %s, src: %s\n", "PPS", on && map ? " ON" : "OFF", src); } if (bp->fw_cap & OCP_CAP_SIGNAL) for (i = 0; i < 4; i++) _signal_summary_show(s, bp, i); if (bp->fw_cap & OCP_CAP_FREQ) for (i = 0; i < 4; i++) _frequency_summary_show(s, i, bp->freq_in[i]); if (bp->irig_out) { ctrl = ioread32(&bp->irig_out->ctrl); on = ctrl & IRIG_M_CTRL_ENABLE; val = ioread32(&bp->irig_out->status); gpio_output_map(buf, bp, sma_val, 4); seq_printf(s, "%7s: %s, error: %d, mode %d, out: %s\n", "IRIG", on ? " ON" : "OFF", val, (ctrl >> 16), buf); } if (bp->irig_in) { on = ioread32(&bp->irig_in->ctrl) & IRIG_S_CTRL_ENABLE; val = ioread32(&bp->irig_in->status); gpio_input_map(buf, bp, sma_val, 4, NULL); seq_printf(s, "%7s: %s, error: %d, src: %s\n", "IRIG in", on ? " ON" : "OFF", val, buf); } if (bp->dcf_out) { on = ioread32(&bp->dcf_out->ctrl) & DCF_M_CTRL_ENABLE; val = ioread32(&bp->dcf_out->status); gpio_output_map(buf, bp, sma_val, 5); seq_printf(s, "%7s: %s, error: %d, out: %s\n", "DCF", on ? " ON" : "OFF", val, buf); } if (bp->dcf_in) { on = ioread32(&bp->dcf_in->ctrl) & DCF_S_CTRL_ENABLE; val = ioread32(&bp->dcf_in->status); gpio_input_map(buf, bp, sma_val, 5, NULL); seq_printf(s, "%7s: %s, error: %d, src: %s\n", "DCF in", on ? " ON" : "OFF", val, buf); } if (bp->nmea_out) { on = ioread32(&bp->nmea_out->ctrl) & 1; val = ioread32(&bp->nmea_out->status); seq_printf(s, "%7s: %s, error: %d\n", "NMEA", on ? " ON" : "OFF", val); } /* compute src for PPS1, used below. */ if (bp->pps_select) { val = ioread32(&bp->pps_select->gpio1); src = &buf[80]; mac_src = "GNSS1"; if (val & 0x01) { gpio_input_map(src, bp, sma_val, 0, NULL); mac_src = src; } else if (val & 0x02) { src = "MAC"; } else if (val & 0x04) { src = "GNSS1"; } else { src = "----"; mac_src = src; } } else { src = "?"; mac_src = src; } seq_printf(s, "MAC PPS1 src: %s\n", mac_src); gpio_input_map(buf, bp, sma_val, 1, "GNSS2"); seq_printf(s, "MAC PPS2 src: %s\n", buf); /* assumes automatic switchover/selection */ val = ioread32(&bp->reg->select); switch (val >> 16) { case 0: sprintf(buf, "----"); break; case 2: sprintf(buf, "IRIG"); break; case 3: sprintf(buf, "%s via PPS1", src); break; case 6: sprintf(buf, "DCF"); break; default: strcpy(buf, "unknown"); break; } seq_printf(s, "%7s: %s, state: %s\n", "PHC src", buf, bp->sync ? "sync" : "unsynced"); if (!ptp_ocp_gettimex(&bp->ptp_info, &ts, &sts)) { struct timespec64 sys_ts; s64 pre_ns, post_ns, ns; pre_ns = timespec64_to_ns(&sts.pre_ts); post_ns = timespec64_to_ns(&sts.post_ts); ns = (pre_ns + post_ns) / 2; ns += (s64)bp->utc_tai_offset * NSEC_PER_SEC; sys_ts = ns_to_timespec64(ns); seq_printf(s, "%7s: %lld.%ld == %ptT TAI\n", "PHC", ts.tv_sec, ts.tv_nsec, &ts); seq_printf(s, "%7s: %lld.%ld == %ptT UTC offset %d\n", "SYS", sys_ts.tv_sec, sys_ts.tv_nsec, &sys_ts, bp->utc_tai_offset); seq_printf(s, "%7s: PHC:SYS offset: %lld window: %lld\n", "", timespec64_to_ns(&ts) - ns, post_ns - pre_ns); } free_page((unsigned long)buf); return 0; } DEFINE_SHOW_ATTRIBUTE(ptp_ocp_summary); static int ptp_ocp_tod_status_show(struct seq_file *s, void *data) { struct device *dev = s->private; struct ptp_ocp *bp; u32 val; int idx; bp = dev_get_drvdata(dev); val = ioread32(&bp->tod->ctrl); if (!(val & TOD_CTRL_ENABLE)) { seq_printf(s, "TOD Slave disabled\n"); return 0; } seq_printf(s, "TOD Slave enabled, Control Register 0x%08X\n", val); idx = val & TOD_CTRL_PROTOCOL ? 4 : 0; idx += (val >> 16) & 3; seq_printf(s, "Protocol %s\n", ptp_ocp_tod_proto_name(idx)); idx = (val >> TOD_CTRL_GNSS_SHIFT) & TOD_CTRL_GNSS_MASK; seq_printf(s, "GNSS %s\n", ptp_ocp_tod_gnss_name(idx)); val = ioread32(&bp->tod->version); seq_printf(s, "TOD Version %d.%d.%d\n", val >> 24, (val >> 16) & 0xff, val & 0xffff); val = ioread32(&bp->tod->status); seq_printf(s, "Status register: 0x%08X\n", val); val = ioread32(&bp->tod->adj_sec); idx = (val & ~INT_MAX) ? -1 : 1; idx *= (val & INT_MAX); seq_printf(s, "Correction seconds: %d\n", idx); val = ioread32(&bp->tod->utc_status); seq_printf(s, "UTC status register: 0x%08X\n", val); seq_printf(s, "UTC offset: %ld valid:%d\n", val & TOD_STATUS_UTC_MASK, val & TOD_STATUS_UTC_VALID ? 1 : 0); seq_printf(s, "Leap second info valid:%d, Leap second announce %d\n", val & TOD_STATUS_LEAP_VALID ? 1 : 0, val & TOD_STATUS_LEAP_ANNOUNCE ? 1 : 0); val = ioread32(&bp->tod->leap); seq_printf(s, "Time to next leap second (in sec): %d\n", (s32) val); return 0; } DEFINE_SHOW_ATTRIBUTE(ptp_ocp_tod_status); static struct dentry *ptp_ocp_debugfs_root; static void ptp_ocp_debugfs_add_device(struct ptp_ocp *bp) { struct dentry *d; d = debugfs_create_dir(dev_name(&bp->dev), ptp_ocp_debugfs_root); bp->debug_root = d; debugfs_create_file("summary", 0444, bp->debug_root, &bp->dev, &ptp_ocp_summary_fops); if (bp->tod) debugfs_create_file("tod_status", 0444, bp->debug_root, &bp->dev, &ptp_ocp_tod_status_fops); } static void ptp_ocp_debugfs_remove_device(struct ptp_ocp *bp) { debugfs_remove_recursive(bp->debug_root); } static void ptp_ocp_debugfs_init(void) { ptp_ocp_debugfs_root = debugfs_create_dir("timecard", NULL); } static void ptp_ocp_debugfs_fini(void) { debugfs_remove_recursive(ptp_ocp_debugfs_root); } static void ptp_ocp_dev_release(struct device *dev) { struct ptp_ocp *bp = dev_get_drvdata(dev); mutex_lock(&ptp_ocp_lock); idr_remove(&ptp_ocp_idr, bp->id); mutex_unlock(&ptp_ocp_lock); } static int ptp_ocp_device_init(struct ptp_ocp *bp, struct pci_dev *pdev) { int err; mutex_lock(&ptp_ocp_lock); err = idr_alloc(&ptp_ocp_idr, bp, 0, 0, GFP_KERNEL); mutex_unlock(&ptp_ocp_lock); if (err < 0) { dev_err(&pdev->dev, "idr_alloc failed: %d\n", err); return err; } bp->id = err; bp->ptp_info = ptp_ocp_clock_info; spin_lock_init(&bp->lock); bp->gnss_port.line = -1; bp->gnss2_port.line = -1; bp->mac_port.line = -1; bp->nmea_port.line = -1; bp->pdev = pdev; device_initialize(&bp->dev); dev_set_name(&bp->dev, "ocp%d", bp->id); bp->dev.class = &timecard_class; bp->dev.parent = &pdev->dev; bp->dev.release = ptp_ocp_dev_release; dev_set_drvdata(&bp->dev, bp); err = device_add(&bp->dev); if (err) { dev_err(&bp->dev, "device add failed: %d\n", err); goto out; } pci_set_drvdata(pdev, bp); return 0; out: put_device(&bp->dev); return err; } static void ptp_ocp_symlink(struct ptp_ocp *bp, struct device *child, const char *link) { struct device *dev = &bp->dev; if (sysfs_create_link(&dev->kobj, &child->kobj, link)) dev_err(dev, "%s symlink failed\n", link); } static void ptp_ocp_link_child(struct ptp_ocp *bp, const char *name, const char *link) { struct device *dev, *child; dev = &bp->pdev->dev; child = device_find_child_by_name(dev, name); if (!child) { dev_err(dev, "Could not find device %s\n", name); return; } ptp_ocp_symlink(bp, child, link); put_device(child); } static int ptp_ocp_complete(struct ptp_ocp *bp) { struct pps_device *pps; char buf[32]; if (bp->gnss_port.line != -1) { sprintf(buf, "ttyS%d", bp->gnss_port.line); ptp_ocp_link_child(bp, buf, "ttyGNSS"); } if (bp->gnss2_port.line != -1) { sprintf(buf, "ttyS%d", bp->gnss2_port.line); ptp_ocp_link_child(bp, buf, "ttyGNSS2"); } if (bp->mac_port.line != -1) { sprintf(buf, "ttyS%d", bp->mac_port.line); ptp_ocp_link_child(bp, buf, "ttyMAC"); } if (bp->nmea_port.line != -1) { sprintf(buf, "ttyS%d", bp->nmea_port.line); ptp_ocp_link_child(bp, buf, "ttyNMEA"); } sprintf(buf, "ptp%d", ptp_clock_index(bp->ptp)); ptp_ocp_link_child(bp, buf, "ptp"); pps = pps_lookup_dev(bp->ptp); if (pps) ptp_ocp_symlink(bp, pps->dev, "pps"); ptp_ocp_debugfs_add_device(bp); return 0; } static void ptp_ocp_phc_info(struct ptp_ocp *bp) { struct timespec64 ts; u32 version, select; version = ioread32(&bp->reg->version); select = ioread32(&bp->reg->select); dev_info(&bp->pdev->dev, "Version %d.%d.%d, clock %s, device ptp%d\n", version >> 24, (version >> 16) & 0xff, version & 0xffff, ptp_ocp_select_name_from_val(ptp_ocp_clock, select >> 16), ptp_clock_index(bp->ptp)); if (!ptp_ocp_gettimex(&bp->ptp_info, &ts, NULL)) dev_info(&bp->pdev->dev, "Time: %lld.%ld, %s\n", ts.tv_sec, ts.tv_nsec, bp->sync ? "in-sync" : "UNSYNCED"); } static void ptp_ocp_serial_info(struct device *dev, const char *name, int port, int baud) { if (port != -1) dev_info(dev, "%5s: /dev/ttyS%-2d @ %6d\n", name, port, baud); } static void ptp_ocp_info(struct ptp_ocp *bp) { static int nmea_baud[] = { 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200, 230400, 460800, 921600, 1000000, 2000000 }; struct device *dev = &bp->pdev->dev; u32 reg; ptp_ocp_phc_info(bp); ptp_ocp_serial_info(dev, "GNSS", bp->gnss_port.line, bp->gnss_port.baud); ptp_ocp_serial_info(dev, "GNSS2", bp->gnss2_port.line, bp->gnss2_port.baud); ptp_ocp_serial_info(dev, "MAC", bp->mac_port.line, bp->mac_port.baud); if (bp->nmea_out && bp->nmea_port.line != -1) { bp->nmea_port.baud = -1; reg = ioread32(&bp->nmea_out->uart_baud); if (reg < ARRAY_SIZE(nmea_baud)) bp->nmea_port.baud = nmea_baud[reg]; ptp_ocp_serial_info(dev, "NMEA", bp->nmea_port.line, bp->nmea_port.baud); } } static void ptp_ocp_detach_sysfs(struct ptp_ocp *bp) { struct device *dev = &bp->dev; sysfs_remove_link(&dev->kobj, "ttyGNSS"); sysfs_remove_link(&dev->kobj, "ttyGNSS2"); sysfs_remove_link(&dev->kobj, "ttyMAC"); sysfs_remove_link(&dev->kobj, "ptp"); sysfs_remove_link(&dev->kobj, "pps"); } static void ptp_ocp_detach(struct ptp_ocp *bp) { int i; ptp_ocp_debugfs_remove_device(bp); ptp_ocp_detach_sysfs(bp); ptp_ocp_attr_group_del(bp); if (timer_pending(&bp->watchdog)) del_timer_sync(&bp->watchdog); if (bp->ts0) ptp_ocp_unregister_ext(bp->ts0); if (bp->ts1) ptp_ocp_unregister_ext(bp->ts1); if (bp->ts2) ptp_ocp_unregister_ext(bp->ts2); if (bp->ts3) ptp_ocp_unregister_ext(bp->ts3); if (bp->ts4) ptp_ocp_unregister_ext(bp->ts4); if (bp->pps) ptp_ocp_unregister_ext(bp->pps); for (i = 0; i < 4; i++) if (bp->signal_out[i]) ptp_ocp_unregister_ext(bp->signal_out[i]); if (bp->gnss_port.line != -1) serial8250_unregister_port(bp->gnss_port.line); if (bp->gnss2_port.line != -1) serial8250_unregister_port(bp->gnss2_port.line); if (bp->mac_port.line != -1) serial8250_unregister_port(bp->mac_port.line); if (bp->nmea_port.line != -1) serial8250_unregister_port(bp->nmea_port.line); platform_device_unregister(bp->spi_flash); platform_device_unregister(bp->i2c_ctrl); if (bp->i2c_clk) clk_hw_unregister_fixed_rate(bp->i2c_clk); if (bp->n_irqs) pci_free_irq_vectors(bp->pdev); if (bp->ptp) ptp_clock_unregister(bp->ptp); kfree(bp->ptp_info.pin_config); device_unregister(&bp->dev); } static int ptp_ocp_dpll_lock_status_get(const struct dpll_device *dpll, void *priv, enum dpll_lock_status *status, struct netlink_ext_ack *extack) { struct ptp_ocp *bp = priv; *status = bp->sync ? DPLL_LOCK_STATUS_LOCKED : DPLL_LOCK_STATUS_UNLOCKED; return 0; } static int ptp_ocp_dpll_state_get(const struct dpll_pin *pin, void *pin_priv, const struct dpll_device *dpll, void *priv, enum dpll_pin_state *state, struct netlink_ext_ack *extack) { struct ptp_ocp *bp = priv; int idx; if (bp->pps_select) { idx = ioread32(&bp->pps_select->gpio1); *state = (&bp->sma[idx] == pin_priv) ? DPLL_PIN_STATE_CONNECTED : DPLL_PIN_STATE_SELECTABLE; return 0; } NL_SET_ERR_MSG(extack, "pin selection is not supported on current HW"); return -EINVAL; } static int ptp_ocp_dpll_mode_get(const struct dpll_device *dpll, void *priv, enum dpll_mode *mode, struct netlink_ext_ack *extack) { *mode = DPLL_MODE_AUTOMATIC; return 0; } static int ptp_ocp_dpll_direction_get(const struct dpll_pin *pin, void *pin_priv, const struct dpll_device *dpll, void *priv, enum dpll_pin_direction *direction, struct netlink_ext_ack *extack) { struct ptp_ocp_sma_connector *sma = pin_priv; *direction = sma->mode == SMA_MODE_IN ? DPLL_PIN_DIRECTION_INPUT : DPLL_PIN_DIRECTION_OUTPUT; return 0; } static int ptp_ocp_dpll_direction_set(const struct dpll_pin *pin, void *pin_priv, const struct dpll_device *dpll, void *dpll_priv, enum dpll_pin_direction direction, struct netlink_ext_ack *extack) { struct ptp_ocp_sma_connector *sma = pin_priv; struct ptp_ocp *bp = dpll_priv; enum ptp_ocp_sma_mode mode; int sma_nr = (sma - bp->sma); if (sma->fixed_dir) return -EOPNOTSUPP; mode = direction == DPLL_PIN_DIRECTION_INPUT ? SMA_MODE_IN : SMA_MODE_OUT; return ptp_ocp_sma_store_val(bp, 0, mode, sma_nr); } static int ptp_ocp_dpll_frequency_set(const struct dpll_pin *pin, void *pin_priv, const struct dpll_device *dpll, void *dpll_priv, u64 frequency, struct netlink_ext_ack *extack) { struct ptp_ocp_sma_connector *sma = pin_priv; struct ptp_ocp *bp = dpll_priv; const struct ocp_selector *tbl; int sma_nr = (sma - bp->sma); int i; if (sma->fixed_fcn) return -EOPNOTSUPP; tbl = bp->sma_op->tbl[sma->mode]; for (i = 0; tbl[i].name; i++) if (tbl[i].frequency == frequency) return ptp_ocp_sma_store_val(bp, i, sma->mode, sma_nr); return -EINVAL; } static int ptp_ocp_dpll_frequency_get(const struct dpll_pin *pin, void *pin_priv, const struct dpll_device *dpll, void *dpll_priv, u64 *frequency, struct netlink_ext_ack *extack) { struct ptp_ocp_sma_connector *sma = pin_priv; struct ptp_ocp *bp = dpll_priv; const struct ocp_selector *tbl; int sma_nr = (sma - bp->sma); u32 val; int i; val = bp->sma_op->get(bp, sma_nr); tbl = bp->sma_op->tbl[sma->mode]; for (i = 0; tbl[i].name; i++) if (val == tbl[i].value) { *frequency = tbl[i].frequency; return 0; } return -EINVAL; } static const struct dpll_device_ops dpll_ops = { .lock_status_get = ptp_ocp_dpll_lock_status_get, .mode_get = ptp_ocp_dpll_mode_get, }; static const struct dpll_pin_ops dpll_pins_ops = { .frequency_get = ptp_ocp_dpll_frequency_get, .frequency_set = ptp_ocp_dpll_frequency_set, .direction_get = ptp_ocp_dpll_direction_get, .direction_set = ptp_ocp_dpll_direction_set, .state_on_dpll_get = ptp_ocp_dpll_state_get, }; static void ptp_ocp_sync_work(struct work_struct *work) { struct ptp_ocp *bp; bool sync; bp = container_of(work, struct ptp_ocp, sync_work.work); sync = !!(ioread32(&bp->reg->status) & OCP_STATUS_IN_SYNC); if (bp->sync != sync) dpll_device_change_ntf(bp->dpll); bp->sync = sync; queue_delayed_work(system_power_efficient_wq, &bp->sync_work, HZ); } static int ptp_ocp_probe(struct pci_dev *pdev, const struct pci_device_id *id) { struct devlink *devlink; struct ptp_ocp *bp; int err, i; u64 clkid; devlink = devlink_alloc(&ptp_ocp_devlink_ops, sizeof(*bp), &pdev->dev); if (!devlink) { dev_err(&pdev->dev, "devlink_alloc failed\n"); return -ENOMEM; } err = pci_enable_device(pdev); if (err) { dev_err(&pdev->dev, "pci_enable_device\n"); goto out_free; } bp = devlink_priv(devlink); err = ptp_ocp_device_init(bp, pdev); if (err) goto out_disable; INIT_DELAYED_WORK(&bp->sync_work, ptp_ocp_sync_work); /* compat mode. * Older FPGA firmware only returns 2 irq's. * allow this - if not all of the IRQ's are returned, skip the * extra devices and just register the clock. */ err = pci_alloc_irq_vectors(pdev, 1, 17, PCI_IRQ_MSI | PCI_IRQ_MSIX); if (err < 0) { dev_err(&pdev->dev, "alloc_irq_vectors err: %d\n", err); goto out; } bp->n_irqs = err; pci_set_master(pdev); err = ptp_ocp_register_resources(bp, id->driver_data); if (err) goto out; bp->ptp = ptp_clock_register(&bp->ptp_info, &pdev->dev); if (IS_ERR(bp->ptp)) { err = PTR_ERR(bp->ptp); dev_err(&pdev->dev, "ptp_clock_register: %d\n", err); bp->ptp = NULL; goto out; } err = ptp_ocp_complete(bp); if (err) goto out; ptp_ocp_info(bp); devlink_register(devlink); clkid = pci_get_dsn(pdev); bp->dpll = dpll_device_get(clkid, 0, THIS_MODULE); if (IS_ERR(bp->dpll)) { err = PTR_ERR(bp->dpll); dev_err(&pdev->dev, "dpll_device_alloc failed\n"); goto out; } err = dpll_device_register(bp->dpll, DPLL_TYPE_PPS, &dpll_ops, bp); if (err) goto out; for (i = 0; i < OCP_SMA_NUM; i++) { bp->sma[i].dpll_pin = dpll_pin_get(clkid, i, THIS_MODULE, &bp->sma[i].dpll_prop); if (IS_ERR(bp->sma[i].dpll_pin)) { err = PTR_ERR(bp->sma[i].dpll_pin); goto out_dpll; } err = dpll_pin_register(bp->dpll, bp->sma[i].dpll_pin, &dpll_pins_ops, &bp->sma[i]); if (err) { dpll_pin_put(bp->sma[i].dpll_pin); goto out_dpll; } } queue_delayed_work(system_power_efficient_wq, &bp->sync_work, HZ); return 0; out_dpll: while (i) { --i; dpll_pin_unregister(bp->dpll, bp->sma[i].dpll_pin, &dpll_pins_ops, &bp->sma[i]); dpll_pin_put(bp->sma[i].dpll_pin); } dpll_device_put(bp->dpll); out: ptp_ocp_detach(bp); out_disable: pci_disable_device(pdev); out_free: devlink_free(devlink); return err; } static void ptp_ocp_remove(struct pci_dev *pdev) { struct ptp_ocp *bp = pci_get_drvdata(pdev); struct devlink *devlink = priv_to_devlink(bp); int i; cancel_delayed_work_sync(&bp->sync_work); for (i = 0; i < OCP_SMA_NUM; i++) { if (bp->sma[i].dpll_pin) { dpll_pin_unregister(bp->dpll, bp->sma[i].dpll_pin, &dpll_pins_ops, bp); dpll_pin_put(bp->sma[i].dpll_pin); } } dpll_device_unregister(bp->dpll, &dpll_ops, bp); dpll_device_put(bp->dpll); devlink_unregister(devlink); ptp_ocp_detach(bp); pci_disable_device(pdev); devlink_free(devlink); } static struct pci_driver ptp_ocp_driver = { .name = KBUILD_MODNAME, .id_table = ptp_ocp_pcidev_id, .probe = ptp_ocp_probe, .remove = ptp_ocp_remove, }; static int ptp_ocp_i2c_notifier_call(struct notifier_block *nb, unsigned long action, void *data) { struct device *dev, *child = data; struct ptp_ocp *bp; bool add; switch (action) { case BUS_NOTIFY_ADD_DEVICE: case BUS_NOTIFY_DEL_DEVICE: add = action == BUS_NOTIFY_ADD_DEVICE; break; default: return 0; } if (!i2c_verify_adapter(child)) return 0; dev = child; while ((dev = dev->parent)) if (dev->driver && !strcmp(dev->driver->name, KBUILD_MODNAME)) goto found; return 0; found: bp = dev_get_drvdata(dev); if (add) ptp_ocp_symlink(bp, child, "i2c"); else sysfs_remove_link(&bp->dev.kobj, "i2c"); return 0; } static struct notifier_block ptp_ocp_i2c_notifier = { .notifier_call = ptp_ocp_i2c_notifier_call, }; static int __init ptp_ocp_init(void) { const char *what; int err; ptp_ocp_debugfs_init(); what = "timecard class"; err = class_register(&timecard_class); if (err) goto out; what = "i2c notifier"; err = bus_register_notifier(&i2c_bus_type, &ptp_ocp_i2c_notifier); if (err) goto out_notifier; what = "ptp_ocp driver"; err = pci_register_driver(&ptp_ocp_driver); if (err) goto out_register; return 0; out_register: bus_unregister_notifier(&i2c_bus_type, &ptp_ocp_i2c_notifier); out_notifier: class_unregister(&timecard_class); out: ptp_ocp_debugfs_fini(); pr_err(KBUILD_MODNAME ": failed to register %s: %d\n", what, err); return err; } static void __exit ptp_ocp_fini(void) { bus_unregister_notifier(&i2c_bus_type, &ptp_ocp_i2c_notifier); pci_unregister_driver(&ptp_ocp_driver); class_unregister(&timecard_class); ptp_ocp_debugfs_fini(); } module_init(ptp_ocp_init); module_exit(ptp_ocp_fini); MODULE_DESCRIPTION("OpenCompute TimeCard driver"); MODULE_LICENSE("GPL v2");