// SPDX-License-Identifier: GPL-2.0-only /* * Copyright(c) 2013-2015 Intel Corporation. All rights reserved. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/libnvdimm.h> #include <linux/sched/mm.h> #include <linux/vmalloc.h> #include <linux/uaccess.h> #include <linux/module.h> #include <linux/blkdev.h> #include <linux/fcntl.h> #include <linux/async.h> #include <linux/genhd.h> #include <linux/ndctl.h> #include <linux/sched.h> #include <linux/slab.h> #include <linux/cpu.h> #include <linux/fs.h> #include <linux/io.h> #include <linux/mm.h> #include <linux/nd.h> #include "nd-core.h" #include "nd.h" #include "pfn.h" int nvdimm_major; static int nvdimm_bus_major; struct class *nd_class; static DEFINE_IDA(nd_ida); static int to_nd_device_type(struct device *dev) { if (is_nvdimm(dev)) return ND_DEVICE_DIMM; else if (is_memory(dev)) return ND_DEVICE_REGION_PMEM; else if (is_nd_blk(dev)) return ND_DEVICE_REGION_BLK; else if (is_nd_dax(dev)) return ND_DEVICE_DAX_PMEM; else if (is_nd_region(dev->parent)) return nd_region_to_nstype(to_nd_region(dev->parent)); return 0; } static int nvdimm_bus_uevent(struct device *dev, struct kobj_uevent_env *env) { return add_uevent_var(env, "MODALIAS=" ND_DEVICE_MODALIAS_FMT, to_nd_device_type(dev)); } static struct module *to_bus_provider(struct device *dev) { /* pin bus providers while regions are enabled */ if (is_nd_region(dev)) { struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(dev); return nvdimm_bus->nd_desc->module; } return NULL; } static void nvdimm_bus_probe_start(struct nvdimm_bus *nvdimm_bus) { nvdimm_bus_lock(&nvdimm_bus->dev); nvdimm_bus->probe_active++; nvdimm_bus_unlock(&nvdimm_bus->dev); } static void nvdimm_bus_probe_end(struct nvdimm_bus *nvdimm_bus) { nvdimm_bus_lock(&nvdimm_bus->dev); if (--nvdimm_bus->probe_active == 0) wake_up(&nvdimm_bus->wait); nvdimm_bus_unlock(&nvdimm_bus->dev); } static int nvdimm_bus_probe(struct device *dev) { struct nd_device_driver *nd_drv = to_nd_device_driver(dev->driver); struct module *provider = to_bus_provider(dev); struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(dev); int rc; if (!try_module_get(provider)) return -ENXIO; dev_dbg(&nvdimm_bus->dev, "START: %s.probe(%s)\n", dev->driver->name, dev_name(dev)); nvdimm_bus_probe_start(nvdimm_bus); debug_nvdimm_lock(dev); rc = nd_drv->probe(dev); debug_nvdimm_unlock(dev); if ((rc == 0 || rc == -EOPNOTSUPP) && dev->parent && is_nd_region(dev->parent)) nd_region_advance_seeds(to_nd_region(dev->parent), dev); nvdimm_bus_probe_end(nvdimm_bus); dev_dbg(&nvdimm_bus->dev, "END: %s.probe(%s) = %d\n", dev->driver->name, dev_name(dev), rc); if (rc != 0) module_put(provider); return rc; } static int nvdimm_bus_remove(struct device *dev) { struct nd_device_driver *nd_drv = to_nd_device_driver(dev->driver); struct module *provider = to_bus_provider(dev); struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(dev); int rc = 0; if (nd_drv->remove) { debug_nvdimm_lock(dev); rc = nd_drv->remove(dev); debug_nvdimm_unlock(dev); } dev_dbg(&nvdimm_bus->dev, "%s.remove(%s) = %d\n", dev->driver->name, dev_name(dev), rc); module_put(provider); return rc; } static void nvdimm_bus_shutdown(struct device *dev) { struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(dev); struct nd_device_driver *nd_drv = NULL; if (dev->driver) nd_drv = to_nd_device_driver(dev->driver); if (nd_drv && nd_drv->shutdown) { nd_drv->shutdown(dev); dev_dbg(&nvdimm_bus->dev, "%s.shutdown(%s)\n", dev->driver->name, dev_name(dev)); } } void nd_device_notify(struct device *dev, enum nvdimm_event event) { nd_device_lock(dev); if (dev->driver) { struct nd_device_driver *nd_drv; nd_drv = to_nd_device_driver(dev->driver); if (nd_drv->notify) nd_drv->notify(dev, event); } nd_device_unlock(dev); } EXPORT_SYMBOL(nd_device_notify); void nvdimm_region_notify(struct nd_region *nd_region, enum nvdimm_event event) { struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(&nd_region->dev); if (!nvdimm_bus) return; /* caller is responsible for holding a reference on the device */ nd_device_notify(&nd_region->dev, event); } EXPORT_SYMBOL_GPL(nvdimm_region_notify); struct clear_badblocks_context { resource_size_t phys, cleared; }; static int nvdimm_clear_badblocks_region(struct device *dev, void *data) { struct clear_badblocks_context *ctx = data; struct nd_region *nd_region; resource_size_t ndr_end; sector_t sector; /* make sure device is a region */ if (!is_memory(dev)) return 0; nd_region = to_nd_region(dev); ndr_end = nd_region->ndr_start + nd_region->ndr_size - 1; /* make sure we are in the region */ if (ctx->phys < nd_region->ndr_start || (ctx->phys + ctx->cleared) > ndr_end) return 0; sector = (ctx->phys - nd_region->ndr_start) / 512; badblocks_clear(&nd_region->bb, sector, ctx->cleared / 512); if (nd_region->bb_state) sysfs_notify_dirent(nd_region->bb_state); return 0; } static void nvdimm_clear_badblocks_regions(struct nvdimm_bus *nvdimm_bus, phys_addr_t phys, u64 cleared) { struct clear_badblocks_context ctx = { .phys = phys, .cleared = cleared, }; device_for_each_child(&nvdimm_bus->dev, &ctx, nvdimm_clear_badblocks_region); } static void nvdimm_account_cleared_poison(struct nvdimm_bus *nvdimm_bus, phys_addr_t phys, u64 cleared) { if (cleared > 0) badrange_forget(&nvdimm_bus->badrange, phys, cleared); if (cleared > 0 && cleared / 512) nvdimm_clear_badblocks_regions(nvdimm_bus, phys, cleared); } long nvdimm_clear_poison(struct device *dev, phys_addr_t phys, unsigned int len) { struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(dev); struct nvdimm_bus_descriptor *nd_desc; struct nd_cmd_clear_error clear_err; struct nd_cmd_ars_cap ars_cap; u32 clear_err_unit, mask; unsigned int noio_flag; int cmd_rc, rc; if (!nvdimm_bus) return -ENXIO; nd_desc = nvdimm_bus->nd_desc; /* * if ndctl does not exist, it's PMEM_LEGACY and * we want to just pretend everything is handled. */ if (!nd_desc->ndctl) return len; memset(&ars_cap, 0, sizeof(ars_cap)); ars_cap.address = phys; ars_cap.length = len; noio_flag = memalloc_noio_save(); rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_CAP, &ars_cap, sizeof(ars_cap), &cmd_rc); memalloc_noio_restore(noio_flag); if (rc < 0) return rc; if (cmd_rc < 0) return cmd_rc; clear_err_unit = ars_cap.clear_err_unit; if (!clear_err_unit || !is_power_of_2(clear_err_unit)) return -ENXIO; mask = clear_err_unit - 1; if ((phys | len) & mask) return -ENXIO; memset(&clear_err, 0, sizeof(clear_err)); clear_err.address = phys; clear_err.length = len; noio_flag = memalloc_noio_save(); rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_CLEAR_ERROR, &clear_err, sizeof(clear_err), &cmd_rc); memalloc_noio_restore(noio_flag); if (rc < 0) return rc; if (cmd_rc < 0) return cmd_rc; nvdimm_account_cleared_poison(nvdimm_bus, phys, clear_err.cleared); return clear_err.cleared; } EXPORT_SYMBOL_GPL(nvdimm_clear_poison); static int nvdimm_bus_match(struct device *dev, struct device_driver *drv); static struct bus_type nvdimm_bus_type = { .name = "nd", .uevent = nvdimm_bus_uevent, .match = nvdimm_bus_match, .probe = nvdimm_bus_probe, .remove = nvdimm_bus_remove, .shutdown = nvdimm_bus_shutdown, }; static void nvdimm_bus_release(struct device *dev) { struct nvdimm_bus *nvdimm_bus; nvdimm_bus = container_of(dev, struct nvdimm_bus, dev); ida_simple_remove(&nd_ida, nvdimm_bus->id); kfree(nvdimm_bus); } static const struct device_type nvdimm_bus_dev_type = { .release = nvdimm_bus_release, .groups = nvdimm_bus_attribute_groups, }; bool is_nvdimm_bus(struct device *dev) { return dev->type == &nvdimm_bus_dev_type; } struct nvdimm_bus *walk_to_nvdimm_bus(struct device *nd_dev) { struct device *dev; for (dev = nd_dev; dev; dev = dev->parent) if (is_nvdimm_bus(dev)) break; dev_WARN_ONCE(nd_dev, !dev, "invalid dev, not on nd bus\n"); if (dev) return to_nvdimm_bus(dev); return NULL; } struct nvdimm_bus *to_nvdimm_bus(struct device *dev) { struct nvdimm_bus *nvdimm_bus; nvdimm_bus = container_of(dev, struct nvdimm_bus, dev); WARN_ON(!is_nvdimm_bus(dev)); return nvdimm_bus; } EXPORT_SYMBOL_GPL(to_nvdimm_bus); struct nvdimm_bus *nvdimm_to_bus(struct nvdimm *nvdimm) { return to_nvdimm_bus(nvdimm->dev.parent); } EXPORT_SYMBOL_GPL(nvdimm_to_bus); struct nvdimm_bus *nvdimm_bus_register(struct device *parent, struct nvdimm_bus_descriptor *nd_desc) { struct nvdimm_bus *nvdimm_bus; int rc; nvdimm_bus = kzalloc(sizeof(*nvdimm_bus), GFP_KERNEL); if (!nvdimm_bus) return NULL; INIT_LIST_HEAD(&nvdimm_bus->list); INIT_LIST_HEAD(&nvdimm_bus->mapping_list); init_waitqueue_head(&nvdimm_bus->wait); nvdimm_bus->id = ida_simple_get(&nd_ida, 0, 0, GFP_KERNEL); if (nvdimm_bus->id < 0) { kfree(nvdimm_bus); return NULL; } mutex_init(&nvdimm_bus->reconfig_mutex); badrange_init(&nvdimm_bus->badrange); nvdimm_bus->nd_desc = nd_desc; nvdimm_bus->dev.parent = parent; nvdimm_bus->dev.type = &nvdimm_bus_dev_type; nvdimm_bus->dev.groups = nd_desc->attr_groups; nvdimm_bus->dev.bus = &nvdimm_bus_type; nvdimm_bus->dev.of_node = nd_desc->of_node; dev_set_name(&nvdimm_bus->dev, "ndbus%d", nvdimm_bus->id); rc = device_register(&nvdimm_bus->dev); if (rc) { dev_dbg(&nvdimm_bus->dev, "registration failed: %d\n", rc); goto err; } return nvdimm_bus; err: put_device(&nvdimm_bus->dev); return NULL; } EXPORT_SYMBOL_GPL(nvdimm_bus_register); void nvdimm_bus_unregister(struct nvdimm_bus *nvdimm_bus) { if (!nvdimm_bus) return; device_unregister(&nvdimm_bus->dev); } EXPORT_SYMBOL_GPL(nvdimm_bus_unregister); static int child_unregister(struct device *dev, void *data) { /* * the singular ndctl class device per bus needs to be * "device_destroy"ed, so skip it here * * i.e. remove classless children */ if (dev->class) return 0; if (is_nvdimm(dev)) { struct nvdimm *nvdimm = to_nvdimm(dev); bool dev_put = false; /* We are shutting down. Make state frozen artificially. */ nvdimm_bus_lock(dev); set_bit(NVDIMM_SECURITY_FROZEN, &nvdimm->sec.flags); if (test_and_clear_bit(NDD_WORK_PENDING, &nvdimm->flags)) dev_put = true; nvdimm_bus_unlock(dev); cancel_delayed_work_sync(&nvdimm->dwork); if (dev_put) put_device(dev); } nd_device_unregister(dev, ND_SYNC); return 0; } static void free_badrange_list(struct list_head *badrange_list) { struct badrange_entry *bre, *next; list_for_each_entry_safe(bre, next, badrange_list, list) { list_del(&bre->list); kfree(bre); } list_del_init(badrange_list); } static int nd_bus_remove(struct device *dev) { struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev); mutex_lock(&nvdimm_bus_list_mutex); list_del_init(&nvdimm_bus->list); mutex_unlock(&nvdimm_bus_list_mutex); wait_event(nvdimm_bus->wait, atomic_read(&nvdimm_bus->ioctl_active) == 0); nd_synchronize(); device_for_each_child(&nvdimm_bus->dev, NULL, child_unregister); spin_lock(&nvdimm_bus->badrange.lock); free_badrange_list(&nvdimm_bus->badrange.list); spin_unlock(&nvdimm_bus->badrange.lock); nvdimm_bus_destroy_ndctl(nvdimm_bus); return 0; } static int nd_bus_probe(struct device *dev) { struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev); int rc; rc = nvdimm_bus_create_ndctl(nvdimm_bus); if (rc) return rc; mutex_lock(&nvdimm_bus_list_mutex); list_add_tail(&nvdimm_bus->list, &nvdimm_bus_list); mutex_unlock(&nvdimm_bus_list_mutex); /* enable bus provider attributes to look up their local context */ dev_set_drvdata(dev, nvdimm_bus->nd_desc); return 0; } static struct nd_device_driver nd_bus_driver = { .probe = nd_bus_probe, .remove = nd_bus_remove, .drv = { .name = "nd_bus", .suppress_bind_attrs = true, .bus = &nvdimm_bus_type, .owner = THIS_MODULE, .mod_name = KBUILD_MODNAME, }, }; static int nvdimm_bus_match(struct device *dev, struct device_driver *drv) { struct nd_device_driver *nd_drv = to_nd_device_driver(drv); if (is_nvdimm_bus(dev) && nd_drv == &nd_bus_driver) return true; return !!test_bit(to_nd_device_type(dev), &nd_drv->type); } static ASYNC_DOMAIN_EXCLUSIVE(nd_async_domain); void nd_synchronize(void) { async_synchronize_full_domain(&nd_async_domain); } EXPORT_SYMBOL_GPL(nd_synchronize); static void nd_async_device_register(void *d, async_cookie_t cookie) { struct device *dev = d; if (device_add(dev) != 0) { dev_err(dev, "%s: failed\n", __func__); put_device(dev); } put_device(dev); if (dev->parent) put_device(dev->parent); } static void nd_async_device_unregister(void *d, async_cookie_t cookie) { struct device *dev = d; /* flush bus operations before delete */ nvdimm_bus_lock(dev); nvdimm_bus_unlock(dev); device_unregister(dev); put_device(dev); } void __nd_device_register(struct device *dev) { if (!dev) return; /* * Ensure that region devices always have their NUMA node set as * early as possible. This way we are able to make certain that * any memory associated with the creation and the creation * itself of the region is associated with the correct node. */ if (is_nd_region(dev)) set_dev_node(dev, to_nd_region(dev)->numa_node); dev->bus = &nvdimm_bus_type; if (dev->parent) { get_device(dev->parent); if (dev_to_node(dev) == NUMA_NO_NODE) set_dev_node(dev, dev_to_node(dev->parent)); } get_device(dev); async_schedule_dev_domain(nd_async_device_register, dev, &nd_async_domain); } void nd_device_register(struct device *dev) { device_initialize(dev); __nd_device_register(dev); } EXPORT_SYMBOL(nd_device_register); void nd_device_unregister(struct device *dev, enum nd_async_mode mode) { bool killed; switch (mode) { case ND_ASYNC: /* * In the async case this is being triggered with the * device lock held and the unregistration work needs to * be moved out of line iff this is thread has won the * race to schedule the deletion. */ if (!kill_device(dev)) return; get_device(dev); async_schedule_domain(nd_async_device_unregister, dev, &nd_async_domain); break; case ND_SYNC: /* * In the sync case the device is being unregistered due * to a state change of the parent. Claim the kill state * to synchronize against other unregistration requests, * or otherwise let the async path handle it if the * unregistration was already queued. */ nd_device_lock(dev); killed = kill_device(dev); nd_device_unlock(dev); if (!killed) return; nd_synchronize(); device_unregister(dev); break; } } EXPORT_SYMBOL(nd_device_unregister); /** * __nd_driver_register() - register a region or a namespace driver * @nd_drv: driver to register * @owner: automatically set by nd_driver_register() macro * @mod_name: automatically set by nd_driver_register() macro */ int __nd_driver_register(struct nd_device_driver *nd_drv, struct module *owner, const char *mod_name) { struct device_driver *drv = &nd_drv->drv; if (!nd_drv->type) { pr_debug("driver type bitmask not set (%ps)\n", __builtin_return_address(0)); return -EINVAL; } if (!nd_drv->probe) { pr_debug("%s ->probe() must be specified\n", mod_name); return -EINVAL; } drv->bus = &nvdimm_bus_type; drv->owner = owner; drv->mod_name = mod_name; return driver_register(drv); } EXPORT_SYMBOL(__nd_driver_register); int nvdimm_revalidate_disk(struct gendisk *disk) { struct device *dev = disk_to_dev(disk)->parent; struct nd_region *nd_region = to_nd_region(dev->parent); int disk_ro = get_disk_ro(disk); /* * Upgrade to read-only if the region is read-only preserve as * read-only if the disk is already read-only. */ if (disk_ro || nd_region->ro == disk_ro) return 0; dev_info(dev, "%s read-only, marking %s read-only\n", dev_name(&nd_region->dev), disk->disk_name); set_disk_ro(disk, 1); return 0; } EXPORT_SYMBOL(nvdimm_revalidate_disk); static ssize_t modalias_show(struct device *dev, struct device_attribute *attr, char *buf) { return sprintf(buf, ND_DEVICE_MODALIAS_FMT "\n", to_nd_device_type(dev)); } static DEVICE_ATTR_RO(modalias); static ssize_t devtype_show(struct device *dev, struct device_attribute *attr, char *buf) { return sprintf(buf, "%s\n", dev->type->name); } static DEVICE_ATTR_RO(devtype); static struct attribute *nd_device_attributes[] = { &dev_attr_modalias.attr, &dev_attr_devtype.attr, NULL, }; /* * nd_device_attribute_group - generic attributes for all devices on an nd bus */ const struct attribute_group nd_device_attribute_group = { .attrs = nd_device_attributes, }; static ssize_t numa_node_show(struct device *dev, struct device_attribute *attr, char *buf) { return sprintf(buf, "%d\n", dev_to_node(dev)); } static DEVICE_ATTR_RO(numa_node); static int nvdimm_dev_to_target_node(struct device *dev) { struct device *parent = dev->parent; struct nd_region *nd_region = NULL; if (is_nd_region(dev)) nd_region = to_nd_region(dev); else if (parent && is_nd_region(parent)) nd_region = to_nd_region(parent); if (!nd_region) return NUMA_NO_NODE; return nd_region->target_node; } static ssize_t target_node_show(struct device *dev, struct device_attribute *attr, char *buf) { return sprintf(buf, "%d\n", nvdimm_dev_to_target_node(dev)); } static DEVICE_ATTR_RO(target_node); static struct attribute *nd_numa_attributes[] = { &dev_attr_numa_node.attr, &dev_attr_target_node.attr, NULL, }; static umode_t nd_numa_attr_visible(struct kobject *kobj, struct attribute *a, int n) { struct device *dev = container_of(kobj, typeof(*dev), kobj); if (!IS_ENABLED(CONFIG_NUMA)) return 0; if (a == &dev_attr_target_node.attr && nvdimm_dev_to_target_node(dev) == NUMA_NO_NODE) return 0; return a->mode; } /* * nd_numa_attribute_group - NUMA attributes for all devices on an nd bus */ const struct attribute_group nd_numa_attribute_group = { .attrs = nd_numa_attributes, .is_visible = nd_numa_attr_visible, }; int nvdimm_bus_create_ndctl(struct nvdimm_bus *nvdimm_bus) { dev_t devt = MKDEV(nvdimm_bus_major, nvdimm_bus->id); struct device *dev; dev = device_create(nd_class, &nvdimm_bus->dev, devt, nvdimm_bus, "ndctl%d", nvdimm_bus->id); if (IS_ERR(dev)) dev_dbg(&nvdimm_bus->dev, "failed to register ndctl%d: %ld\n", nvdimm_bus->id, PTR_ERR(dev)); return PTR_ERR_OR_ZERO(dev); } void nvdimm_bus_destroy_ndctl(struct nvdimm_bus *nvdimm_bus) { device_destroy(nd_class, MKDEV(nvdimm_bus_major, nvdimm_bus->id)); } static const struct nd_cmd_desc __nd_cmd_dimm_descs[] = { [ND_CMD_IMPLEMENTED] = { }, [ND_CMD_SMART] = { .out_num = 2, .out_sizes = { 4, 128, }, }, [ND_CMD_SMART_THRESHOLD] = { .out_num = 2, .out_sizes = { 4, 8, }, }, [ND_CMD_DIMM_FLAGS] = { .out_num = 2, .out_sizes = { 4, 4 }, }, [ND_CMD_GET_CONFIG_SIZE] = { .out_num = 3, .out_sizes = { 4, 4, 4, }, }, [ND_CMD_GET_CONFIG_DATA] = { .in_num = 2, .in_sizes = { 4, 4, }, .out_num = 2, .out_sizes = { 4, UINT_MAX, }, }, [ND_CMD_SET_CONFIG_DATA] = { .in_num = 3, .in_sizes = { 4, 4, UINT_MAX, }, .out_num = 1, .out_sizes = { 4, }, }, [ND_CMD_VENDOR] = { .in_num = 3, .in_sizes = { 4, 4, UINT_MAX, }, .out_num = 3, .out_sizes = { 4, 4, UINT_MAX, }, }, [ND_CMD_CALL] = { .in_num = 2, .in_sizes = { sizeof(struct nd_cmd_pkg), UINT_MAX, }, .out_num = 1, .out_sizes = { UINT_MAX, }, }, }; const struct nd_cmd_desc *nd_cmd_dimm_desc(int cmd) { if (cmd < ARRAY_SIZE(__nd_cmd_dimm_descs)) return &__nd_cmd_dimm_descs[cmd]; return NULL; } EXPORT_SYMBOL_GPL(nd_cmd_dimm_desc); static const struct nd_cmd_desc __nd_cmd_bus_descs[] = { [ND_CMD_IMPLEMENTED] = { }, [ND_CMD_ARS_CAP] = { .in_num = 2, .in_sizes = { 8, 8, }, .out_num = 4, .out_sizes = { 4, 4, 4, 4, }, }, [ND_CMD_ARS_START] = { .in_num = 5, .in_sizes = { 8, 8, 2, 1, 5, }, .out_num = 2, .out_sizes = { 4, 4, }, }, [ND_CMD_ARS_STATUS] = { .out_num = 3, .out_sizes = { 4, 4, UINT_MAX, }, }, [ND_CMD_CLEAR_ERROR] = { .in_num = 2, .in_sizes = { 8, 8, }, .out_num = 3, .out_sizes = { 4, 4, 8, }, }, [ND_CMD_CALL] = { .in_num = 2, .in_sizes = { sizeof(struct nd_cmd_pkg), UINT_MAX, }, .out_num = 1, .out_sizes = { UINT_MAX, }, }, }; const struct nd_cmd_desc *nd_cmd_bus_desc(int cmd) { if (cmd < ARRAY_SIZE(__nd_cmd_bus_descs)) return &__nd_cmd_bus_descs[cmd]; return NULL; } EXPORT_SYMBOL_GPL(nd_cmd_bus_desc); u32 nd_cmd_in_size(struct nvdimm *nvdimm, int cmd, const struct nd_cmd_desc *desc, int idx, void *buf) { if (idx >= desc->in_num) return UINT_MAX; if (desc->in_sizes[idx] < UINT_MAX) return desc->in_sizes[idx]; if (nvdimm && cmd == ND_CMD_SET_CONFIG_DATA && idx == 2) { struct nd_cmd_set_config_hdr *hdr = buf; return hdr->in_length; } else if (nvdimm && cmd == ND_CMD_VENDOR && idx == 2) { struct nd_cmd_vendor_hdr *hdr = buf; return hdr->in_length; } else if (cmd == ND_CMD_CALL) { struct nd_cmd_pkg *pkg = buf; return pkg->nd_size_in; } return UINT_MAX; } EXPORT_SYMBOL_GPL(nd_cmd_in_size); u32 nd_cmd_out_size(struct nvdimm *nvdimm, int cmd, const struct nd_cmd_desc *desc, int idx, const u32 *in_field, const u32 *out_field, unsigned long remainder) { if (idx >= desc->out_num) return UINT_MAX; if (desc->out_sizes[idx] < UINT_MAX) return desc->out_sizes[idx]; if (nvdimm && cmd == ND_CMD_GET_CONFIG_DATA && idx == 1) return in_field[1]; else if (nvdimm && cmd == ND_CMD_VENDOR && idx == 2) return out_field[1]; else if (!nvdimm && cmd == ND_CMD_ARS_STATUS && idx == 2) { /* * Per table 9-276 ARS Data in ACPI 6.1, out_field[1] is * "Size of Output Buffer in bytes, including this * field." */ if (out_field[1] < 4) return 0; /* * ACPI 6.1 is ambiguous if 'status' is included in the * output size. If we encounter an output size that * overshoots the remainder by 4 bytes, assume it was * including 'status'. */ if (out_field[1] - 4 == remainder) return remainder; return out_field[1] - 8; } else if (cmd == ND_CMD_CALL) { struct nd_cmd_pkg *pkg = (struct nd_cmd_pkg *) in_field; return pkg->nd_size_out; } return UINT_MAX; } EXPORT_SYMBOL_GPL(nd_cmd_out_size); void wait_nvdimm_bus_probe_idle(struct device *dev) { struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(dev); do { if (nvdimm_bus->probe_active == 0) break; nvdimm_bus_unlock(dev); nd_device_unlock(dev); wait_event(nvdimm_bus->wait, nvdimm_bus->probe_active == 0); nd_device_lock(dev); nvdimm_bus_lock(dev); } while (true); } static int nd_pmem_forget_poison_check(struct device *dev, void *data) { struct nd_cmd_clear_error *clear_err = (struct nd_cmd_clear_error *)data; struct nd_btt *nd_btt = is_nd_btt(dev) ? to_nd_btt(dev) : NULL; struct nd_pfn *nd_pfn = is_nd_pfn(dev) ? to_nd_pfn(dev) : NULL; struct nd_dax *nd_dax = is_nd_dax(dev) ? to_nd_dax(dev) : NULL; struct nd_namespace_common *ndns = NULL; struct nd_namespace_io *nsio; resource_size_t offset = 0, end_trunc = 0, start, end, pstart, pend; if (nd_dax || !dev->driver) return 0; start = clear_err->address; end = clear_err->address + clear_err->cleared - 1; if (nd_btt || nd_pfn || nd_dax) { if (nd_btt) ndns = nd_btt->ndns; else if (nd_pfn) ndns = nd_pfn->ndns; else if (nd_dax) ndns = nd_dax->nd_pfn.ndns; if (!ndns) return 0; } else ndns = to_ndns(dev); nsio = to_nd_namespace_io(&ndns->dev); pstart = nsio->res.start + offset; pend = nsio->res.end - end_trunc; if ((pstart >= start) && (pend <= end)) return -EBUSY; return 0; } static int nd_ns_forget_poison_check(struct device *dev, void *data) { return device_for_each_child(dev, data, nd_pmem_forget_poison_check); } /* set_config requires an idle interleave set */ static int nd_cmd_clear_to_send(struct nvdimm_bus *nvdimm_bus, struct nvdimm *nvdimm, unsigned int cmd, void *data) { struct nvdimm_bus_descriptor *nd_desc = nvdimm_bus->nd_desc; /* ask the bus provider if it would like to block this request */ if (nd_desc->clear_to_send) { int rc = nd_desc->clear_to_send(nd_desc, nvdimm, cmd, data); if (rc) return rc; } /* require clear error to go through the pmem driver */ if (!nvdimm && cmd == ND_CMD_CLEAR_ERROR) return device_for_each_child(&nvdimm_bus->dev, data, nd_ns_forget_poison_check); if (!nvdimm || cmd != ND_CMD_SET_CONFIG_DATA) return 0; /* prevent label manipulation while the kernel owns label updates */ wait_nvdimm_bus_probe_idle(&nvdimm_bus->dev); if (atomic_read(&nvdimm->busy)) return -EBUSY; return 0; } static int __nd_ioctl(struct nvdimm_bus *nvdimm_bus, struct nvdimm *nvdimm, int read_only, unsigned int ioctl_cmd, unsigned long arg) { struct nvdimm_bus_descriptor *nd_desc = nvdimm_bus->nd_desc; const struct nd_cmd_desc *desc = NULL; unsigned int cmd = _IOC_NR(ioctl_cmd); struct device *dev = &nvdimm_bus->dev; void __user *p = (void __user *) arg; char *out_env = NULL, *in_env = NULL; const char *cmd_name, *dimm_name; u32 in_len = 0, out_len = 0; unsigned int func = cmd; unsigned long cmd_mask; struct nd_cmd_pkg pkg; int rc, i, cmd_rc; void *buf = NULL; u64 buf_len = 0; if (nvdimm) { desc = nd_cmd_dimm_desc(cmd); cmd_name = nvdimm_cmd_name(cmd); cmd_mask = nvdimm->cmd_mask; dimm_name = dev_name(&nvdimm->dev); } else { desc = nd_cmd_bus_desc(cmd); cmd_name = nvdimm_bus_cmd_name(cmd); cmd_mask = nd_desc->cmd_mask; dimm_name = "bus"; } /* Validate command family support against bus declared support */ if (cmd == ND_CMD_CALL) { unsigned long *mask; if (copy_from_user(&pkg, p, sizeof(pkg))) return -EFAULT; if (nvdimm) { if (pkg.nd_family > NVDIMM_FAMILY_MAX) return -EINVAL; mask = &nd_desc->dimm_family_mask; } else { if (pkg.nd_family > NVDIMM_BUS_FAMILY_MAX) return -EINVAL; mask = &nd_desc->bus_family_mask; } if (!test_bit(pkg.nd_family, mask)) return -EINVAL; } if (!desc || (desc->out_num + desc->in_num == 0) || cmd > ND_CMD_CALL || !test_bit(cmd, &cmd_mask)) return -ENOTTY; /* fail write commands (when read-only) */ if (read_only) switch (cmd) { case ND_CMD_VENDOR: case ND_CMD_SET_CONFIG_DATA: case ND_CMD_ARS_START: case ND_CMD_CLEAR_ERROR: case ND_CMD_CALL: dev_dbg(dev, "'%s' command while read-only.\n", nvdimm ? nvdimm_cmd_name(cmd) : nvdimm_bus_cmd_name(cmd)); return -EPERM; default: break; } /* process an input envelope */ in_env = kzalloc(ND_CMD_MAX_ENVELOPE, GFP_KERNEL); if (!in_env) return -ENOMEM; for (i = 0; i < desc->in_num; i++) { u32 in_size, copy; in_size = nd_cmd_in_size(nvdimm, cmd, desc, i, in_env); if (in_size == UINT_MAX) { dev_err(dev, "%s:%s unknown input size cmd: %s field: %d\n", __func__, dimm_name, cmd_name, i); rc = -ENXIO; goto out; } if (in_len < ND_CMD_MAX_ENVELOPE) copy = min_t(u32, ND_CMD_MAX_ENVELOPE - in_len, in_size); else copy = 0; if (copy && copy_from_user(&in_env[in_len], p + in_len, copy)) { rc = -EFAULT; goto out; } in_len += in_size; } if (cmd == ND_CMD_CALL) { func = pkg.nd_command; dev_dbg(dev, "%s, idx: %llu, in: %u, out: %u, len %llu\n", dimm_name, pkg.nd_command, in_len, out_len, buf_len); } /* process an output envelope */ out_env = kzalloc(ND_CMD_MAX_ENVELOPE, GFP_KERNEL); if (!out_env) { rc = -ENOMEM; goto out; } for (i = 0; i < desc->out_num; i++) { u32 out_size = nd_cmd_out_size(nvdimm, cmd, desc, i, (u32 *) in_env, (u32 *) out_env, 0); u32 copy; if (out_size == UINT_MAX) { dev_dbg(dev, "%s unknown output size cmd: %s field: %d\n", dimm_name, cmd_name, i); rc = -EFAULT; goto out; } if (out_len < ND_CMD_MAX_ENVELOPE) copy = min_t(u32, ND_CMD_MAX_ENVELOPE - out_len, out_size); else copy = 0; if (copy && copy_from_user(&out_env[out_len], p + in_len + out_len, copy)) { rc = -EFAULT; goto out; } out_len += out_size; } buf_len = (u64) out_len + (u64) in_len; if (buf_len > ND_IOCTL_MAX_BUFLEN) { dev_dbg(dev, "%s cmd: %s buf_len: %llu > %d\n", dimm_name, cmd_name, buf_len, ND_IOCTL_MAX_BUFLEN); rc = -EINVAL; goto out; } buf = vmalloc(buf_len); if (!buf) { rc = -ENOMEM; goto out; } if (copy_from_user(buf, p, buf_len)) { rc = -EFAULT; goto out; } nd_device_lock(dev); nvdimm_bus_lock(dev); rc = nd_cmd_clear_to_send(nvdimm_bus, nvdimm, func, buf); if (rc) goto out_unlock; rc = nd_desc->ndctl(nd_desc, nvdimm, cmd, buf, buf_len, &cmd_rc); if (rc < 0) goto out_unlock; if (!nvdimm && cmd == ND_CMD_CLEAR_ERROR && cmd_rc >= 0) { struct nd_cmd_clear_error *clear_err = buf; nvdimm_account_cleared_poison(nvdimm_bus, clear_err->address, clear_err->cleared); } if (copy_to_user(p, buf, buf_len)) rc = -EFAULT; out_unlock: nvdimm_bus_unlock(dev); nd_device_unlock(dev); out: kfree(in_env); kfree(out_env); vfree(buf); return rc; } enum nd_ioctl_mode { BUS_IOCTL, DIMM_IOCTL, }; static int match_dimm(struct device *dev, void *data) { long id = (long) data; if (is_nvdimm(dev)) { struct nvdimm *nvdimm = to_nvdimm(dev); return nvdimm->id == id; } return 0; } static long nd_ioctl(struct file *file, unsigned int cmd, unsigned long arg, enum nd_ioctl_mode mode) { struct nvdimm_bus *nvdimm_bus, *found = NULL; long id = (long) file->private_data; struct nvdimm *nvdimm = NULL; int rc, ro; ro = ((file->f_flags & O_ACCMODE) == O_RDONLY); mutex_lock(&nvdimm_bus_list_mutex); list_for_each_entry(nvdimm_bus, &nvdimm_bus_list, list) { if (mode == DIMM_IOCTL) { struct device *dev; dev = device_find_child(&nvdimm_bus->dev, file->private_data, match_dimm); if (!dev) continue; nvdimm = to_nvdimm(dev); found = nvdimm_bus; } else if (nvdimm_bus->id == id) { found = nvdimm_bus; } if (found) { atomic_inc(&nvdimm_bus->ioctl_active); break; } } mutex_unlock(&nvdimm_bus_list_mutex); if (!found) return -ENXIO; nvdimm_bus = found; rc = __nd_ioctl(nvdimm_bus, nvdimm, ro, cmd, arg); if (nvdimm) put_device(&nvdimm->dev); if (atomic_dec_and_test(&nvdimm_bus->ioctl_active)) wake_up(&nvdimm_bus->wait); return rc; } static long bus_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { return nd_ioctl(file, cmd, arg, BUS_IOCTL); } static long dimm_ioctl(struct file *file, unsigned int cmd, unsigned long arg) { return nd_ioctl(file, cmd, arg, DIMM_IOCTL); } static int nd_open(struct inode *inode, struct file *file) { long minor = iminor(inode); file->private_data = (void *) minor; return 0; } static const struct file_operations nvdimm_bus_fops = { .owner = THIS_MODULE, .open = nd_open, .unlocked_ioctl = bus_ioctl, .compat_ioctl = compat_ptr_ioctl, .llseek = noop_llseek, }; static const struct file_operations nvdimm_fops = { .owner = THIS_MODULE, .open = nd_open, .unlocked_ioctl = dimm_ioctl, .compat_ioctl = compat_ptr_ioctl, .llseek = noop_llseek, }; int __init nvdimm_bus_init(void) { int rc; rc = bus_register(&nvdimm_bus_type); if (rc) return rc; rc = register_chrdev(0, "ndctl", &nvdimm_bus_fops); if (rc < 0) goto err_bus_chrdev; nvdimm_bus_major = rc; rc = register_chrdev(0, "dimmctl", &nvdimm_fops); if (rc < 0) goto err_dimm_chrdev; nvdimm_major = rc; nd_class = class_create(THIS_MODULE, "nd"); if (IS_ERR(nd_class)) { rc = PTR_ERR(nd_class); goto err_class; } rc = driver_register(&nd_bus_driver.drv); if (rc) goto err_nd_bus; return 0; err_nd_bus: class_destroy(nd_class); err_class: unregister_chrdev(nvdimm_major, "dimmctl"); err_dimm_chrdev: unregister_chrdev(nvdimm_bus_major, "ndctl"); err_bus_chrdev: bus_unregister(&nvdimm_bus_type); return rc; } void nvdimm_bus_exit(void) { driver_unregister(&nd_bus_driver.drv); class_destroy(nd_class); unregister_chrdev(nvdimm_bus_major, "ndctl"); unregister_chrdev(nvdimm_major, "dimmctl"); bus_unregister(&nvdimm_bus_type); ida_destroy(&nd_ida); }