// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause /* Copyright Fiona Klute */ #include #include "main.h" #include "coex.h" #include "debug.h" #include "mac.h" #include "phy.h" #include "reg.h" #include "rx.h" #include "rtw8703b.h" #include "rtw8703b_tables.h" #include "rtw8723x.h" #define BIT_MASK_TXQ_INIT (BIT(7)) #define WLAN_RL_VAL 0x3030 /* disable BAR */ #define WLAN_BAR_VAL 0x0201ffff #define WLAN_PIFS_VAL 0 #define WLAN_RX_PKT_LIMIT 0x18 #define WLAN_SLOT_TIME 0x09 #define WLAN_SPEC_SIFS 0x100a #define WLAN_MAX_AGG_NR 0x1f #define WLAN_AMPDU_MAX_TIME 0x70 /* unit is 32us */ #define TBTT_PROHIBIT_SETUP_TIME 0x04 #define TBTT_PROHIBIT_HOLD_TIME 0x80 #define TBTT_PROHIBIT_HOLD_TIME_STOP_BCN 0x64 /* raw pkt_stat->drv_info_sz is in unit of 8-bytes */ #define RX_DRV_INFO_SZ_UNIT_8703B 8 #define TRANS_SEQ_END \ 0xFFFF, \ RTW_PWR_CUT_ALL_MSK, \ RTW_PWR_INTF_ALL_MSK, \ 0, \ RTW_PWR_CMD_END, 0, 0 /* rssi in percentage % (dbm = % - 100) */ /* These are used to select simple signal quality levels, might need * tweaking. Same for rf_para tables below. */ static const u8 wl_rssi_step_8703b[] = {60, 50, 44, 30}; static const u8 bt_rssi_step_8703b[] = {30, 30, 30, 30}; static const struct coex_5g_afh_map afh_5g_8703b[] = { {0, 0, 0} }; /* Actually decreasing wifi TX power/RX gain isn't implemented in * rtw8703b, but hopefully adjusting the BT side helps. */ static const struct coex_rf_para rf_para_tx_8703b[] = { {0, 0, false, 7}, /* for normal */ {0, 10, false, 7}, /* for WL-CPT */ {1, 0, true, 4}, {1, 2, true, 4}, {1, 10, true, 4}, {1, 15, true, 4} }; static const struct coex_rf_para rf_para_rx_8703b[] = { {0, 0, false, 7}, /* for normal */ {0, 10, false, 7}, /* for WL-CPT */ {1, 0, true, 5}, {1, 2, true, 5}, {1, 10, true, 5}, {1, 15, true, 5} }; static const u32 rtw8703b_ofdm_swing_table[] = { 0x0b40002d, /* 0, -15.0dB */ 0x0c000030, /* 1, -14.5dB */ 0x0cc00033, /* 2, -14.0dB */ 0x0d800036, /* 3, -13.5dB */ 0x0e400039, /* 4, -13.0dB */ 0x0f00003c, /* 5, -12.5dB */ 0x10000040, /* 6, -12.0dB */ 0x11000044, /* 7, -11.5dB */ 0x12000048, /* 8, -11.0dB */ 0x1300004c, /* 9, -10.5dB */ 0x14400051, /* 10, -10.0dB */ 0x15800056, /* 11, -9.5dB */ 0x16c0005b, /* 12, -9.0dB */ 0x18000060, /* 13, -8.5dB */ 0x19800066, /* 14, -8.0dB */ 0x1b00006c, /* 15, -7.5dB */ 0x1c800072, /* 16, -7.0dB */ 0x1e400079, /* 17, -6.5dB */ 0x20000080, /* 18, -6.0dB */ 0x22000088, /* 19, -5.5dB */ 0x24000090, /* 20, -5.0dB */ 0x26000098, /* 21, -4.5dB */ 0x288000a2, /* 22, -4.0dB */ 0x2ac000ab, /* 23, -3.5dB */ 0x2d4000b5, /* 24, -3.0dB */ 0x300000c0, /* 25, -2.5dB */ 0x32c000cb, /* 26, -2.0dB */ 0x35c000d7, /* 27, -1.5dB */ 0x390000e4, /* 28, -1.0dB */ 0x3c8000f2, /* 29, -0.5dB */ 0x40000100, /* 30, +0dB */ 0x43c0010f, /* 31, +0.5dB */ 0x47c0011f, /* 32, +1.0dB */ 0x4c000130, /* 33, +1.5dB */ 0x50800142, /* 34, +2.0dB */ 0x55400155, /* 35, +2.5dB */ 0x5a400169, /* 36, +3.0dB */ 0x5fc0017f, /* 37, +3.5dB */ 0x65400195, /* 38, +4.0dB */ 0x6b8001ae, /* 39, +4.5dB */ 0x71c001c7, /* 40, +5.0dB */ 0x788001e2, /* 41, +5.5dB */ 0x7f8001fe /* 42, +6.0dB */ }; static const u32 rtw8703b_cck_pwr_regs[] = { 0x0a22, 0x0a23, 0x0a24, 0x0a25, 0x0a26, 0x0a27, 0x0a28, 0x0a29, 0x0a9a, 0x0a9b, 0x0a9c, 0x0a9d, 0x0aa0, 0x0aa1, 0x0aa2, 0x0aa3, }; static const u8 rtw8703b_cck_swing_table[][16] = { {0x44, 0x42, 0x3C, 0x33, 0x28, 0x1C, 0x13, 0x0B, 0x05, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, /*-16dB*/ {0x48, 0x46, 0x3F, 0x36, 0x2A, 0x1E, 0x14, 0x0B, 0x05, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, /*-15.5dB*/ {0x4D, 0x4A, 0x43, 0x39, 0x2C, 0x20, 0x15, 0x0C, 0x06, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, /*-15dB*/ {0x51, 0x4F, 0x47, 0x3C, 0x2F, 0x22, 0x16, 0x0D, 0x06, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, /*-14.5dB*/ {0x56, 0x53, 0x4B, 0x40, 0x32, 0x24, 0x17, 0x0E, 0x06, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, /*-14dB*/ {0x5B, 0x58, 0x50, 0x43, 0x35, 0x26, 0x19, 0x0E, 0x07, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, /*-13.5dB*/ {0x60, 0x5D, 0x54, 0x47, 0x38, 0x28, 0x1A, 0x0F, 0x07, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, /*-13dB*/ {0x66, 0x63, 0x59, 0x4C, 0x3B, 0x2B, 0x1C, 0x10, 0x08, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, /*-12.5dB*/ {0x6C, 0x69, 0x5F, 0x50, 0x3F, 0x2D, 0x1E, 0x11, 0x08, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, /*-12dB*/ {0x73, 0x6F, 0x64, 0x55, 0x42, 0x30, 0x1F, 0x12, 0x08, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, /*-11.5dB*/ {0x79, 0x76, 0x6A, 0x5A, 0x46, 0x33, 0x21, 0x13, 0x09, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, /*-11dB*/ {0x81, 0x7C, 0x71, 0x5F, 0x4A, 0x36, 0x23, 0x14, 0x0A, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, /*-10.5dB*/ {0x88, 0x84, 0x77, 0x65, 0x4F, 0x39, 0x25, 0x15, 0x0A, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, /*-10dB*/ {0x90, 0x8C, 0x7E, 0x6B, 0x54, 0x3C, 0x27, 0x17, 0x0B, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, /*-9.5dB*/ {0x99, 0x94, 0x86, 0x71, 0x58, 0x40, 0x2A, 0x18, 0x0B, 0x04, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, /*-9dB*/ {0xA2, 0x9D, 0x8E, 0x78, 0x5E, 0x43, 0x2C, 0x19, 0x0C, 0x04, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, /*-8.5dB*/ {0xAC, 0xA6, 0x96, 0x7F, 0x63, 0x47, 0x2F, 0x1B, 0x0D, 0x04, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, /*-8dB*/ {0xB6, 0xB0, 0x9F, 0x87, 0x69, 0x4C, 0x32, 0x1D, 0x0D, 0x04, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, /*-7.5dB*/ {0xC1, 0xBA, 0xA8, 0x8F, 0x6F, 0x50, 0x35, 0x1E, 0x0E, 0x04, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, /*-7dB*/ {0xCC, 0xC5, 0xB2, 0x97, 0x76, 0x55, 0x38, 0x20, 0x0F, 0x05, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, /*-6.5dB*/ {0xD8, 0xD1, 0xBD, 0xA0, 0x7D, 0x5A, 0x3B, 0x22, 0x10, 0x05, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00} /*-6dB*/ }; #define RTW_OFDM_SWING_TABLE_SIZE ARRAY_SIZE(rtw8703b_ofdm_swing_table) #define RTW_CCK_SWING_TABLE_SIZE ARRAY_SIZE(rtw8703b_cck_swing_table) static const struct rtw_pwr_seq_cmd trans_pre_enable_8703b[] = { /* set up external crystal (XTAL) */ {REG_PAD_CTRL1 + 2, RTW_PWR_CUT_ALL_MSK, RTW_PWR_INTF_ALL_MSK, RTW_PWR_ADDR_MAC, RTW_PWR_CMD_WRITE, BIT(7), BIT(7)}, /* set CLK_REQ to high active */ {0x0069, RTW_PWR_CUT_ALL_MSK, RTW_PWR_INTF_ALL_MSK, RTW_PWR_ADDR_MAC, RTW_PWR_CMD_WRITE, BIT(5), BIT(5)}, /* unlock ISO/CLK/power control register */ {REG_RSV_CTRL, RTW_PWR_CUT_ALL_MSK, RTW_PWR_INTF_ALL_MSK, RTW_PWR_ADDR_MAC, RTW_PWR_CMD_WRITE, 0xff, 0}, {TRANS_SEQ_END}, }; static const struct rtw_pwr_seq_cmd trans_carddis_to_cardemu_8703b[] = { {0x0005, RTW_PWR_CUT_ALL_MSK, RTW_PWR_INTF_ALL_MSK, RTW_PWR_ADDR_MAC, RTW_PWR_CMD_WRITE, BIT(7), 0}, {TRANS_SEQ_END}, }; static const struct rtw_pwr_seq_cmd trans_cardemu_to_carddis_8703b[] = { {0x0023, RTW_PWR_CUT_ALL_MSK, RTW_PWR_INTF_SDIO_MSK, RTW_PWR_ADDR_MAC, RTW_PWR_CMD_WRITE, BIT(4), BIT(4)}, {0x0007, RTW_PWR_CUT_ALL_MSK, RTW_PWR_INTF_SDIO_MSK | RTW_PWR_INTF_USB_MSK, RTW_PWR_ADDR_MAC, RTW_PWR_CMD_WRITE, 0xFF, 0x20}, {0x0006, RTW_PWR_CUT_ALL_MSK, RTW_PWR_INTF_ALL_MSK, RTW_PWR_ADDR_MAC, RTW_PWR_CMD_WRITE, BIT(0), 0}, {0x0005, RTW_PWR_CUT_ALL_MSK, RTW_PWR_INTF_ALL_MSK, RTW_PWR_ADDR_MAC, RTW_PWR_CMD_WRITE, BIT(7), BIT(7)}, {TRANS_SEQ_END}, }; static const struct rtw_pwr_seq_cmd trans_cardemu_to_act_8703b[] = { {0x0020, RTW_PWR_CUT_ALL_MSK, RTW_PWR_INTF_USB_MSK | RTW_PWR_INTF_SDIO_MSK, RTW_PWR_ADDR_MAC, RTW_PWR_CMD_WRITE, BIT(0), BIT(0)}, {0x0067, RTW_PWR_CUT_ALL_MSK, RTW_PWR_INTF_USB_MSK | RTW_PWR_INTF_SDIO_MSK, RTW_PWR_ADDR_MAC, RTW_PWR_CMD_WRITE, BIT(4), 0}, {0x0001, RTW_PWR_CUT_ALL_MSK, RTW_PWR_INTF_USB_MSK | RTW_PWR_INTF_SDIO_MSK, RTW_PWR_ADDR_MAC, RTW_PWR_CMD_DELAY, 1, RTW_PWR_DELAY_MS}, {0x0000, RTW_PWR_CUT_ALL_MSK, RTW_PWR_INTF_USB_MSK | RTW_PWR_INTF_SDIO_MSK, RTW_PWR_ADDR_MAC, RTW_PWR_CMD_WRITE, BIT(5), 0}, {0x0005, RTW_PWR_CUT_ALL_MSK, RTW_PWR_INTF_ALL_MSK, RTW_PWR_ADDR_MAC, RTW_PWR_CMD_WRITE, (BIT(4) | BIT(3) | BIT(2)), 0}, {0x0075, RTW_PWR_CUT_ALL_MSK, RTW_PWR_INTF_PCI_MSK, RTW_PWR_ADDR_MAC, RTW_PWR_CMD_WRITE, BIT(0), BIT(0)}, {0x0004, RTW_PWR_CUT_ALL_MSK, RTW_PWR_INTF_PCI_MSK, RTW_PWR_ADDR_MAC, RTW_PWR_CMD_WRITE, BIT(3), BIT(3)}, {0x0004, RTW_PWR_CUT_ALL_MSK, RTW_PWR_INTF_PCI_MSK, RTW_PWR_ADDR_MAC, RTW_PWR_CMD_WRITE, BIT(3), 0}, /* wait for power ready */ {0x0006, RTW_PWR_CUT_ALL_MSK, RTW_PWR_INTF_ALL_MSK, RTW_PWR_ADDR_MAC, RTW_PWR_CMD_POLLING, BIT(1), BIT(1)}, {0x0075, RTW_PWR_CUT_ALL_MSK, RTW_PWR_INTF_PCI_MSK, RTW_PWR_ADDR_MAC, RTW_PWR_CMD_WRITE, BIT(0), 0}, {0x0006, RTW_PWR_CUT_ALL_MSK, RTW_PWR_INTF_ALL_MSK, RTW_PWR_ADDR_MAC, RTW_PWR_CMD_WRITE, BIT(0), BIT(0)}, {0x0005, RTW_PWR_CUT_ALL_MSK, RTW_PWR_INTF_ALL_MSK, RTW_PWR_ADDR_MAC, RTW_PWR_CMD_WRITE, BIT(7), 0}, {0x0005, RTW_PWR_CUT_ALL_MSK, RTW_PWR_INTF_ALL_MSK, RTW_PWR_ADDR_MAC, RTW_PWR_CMD_WRITE, (BIT(4) | BIT(3)), 0}, {0x0005, RTW_PWR_CUT_ALL_MSK, RTW_PWR_INTF_ALL_MSK, RTW_PWR_ADDR_MAC, RTW_PWR_CMD_WRITE, BIT(0), BIT(0)}, {0x0005, RTW_PWR_CUT_ALL_MSK, RTW_PWR_INTF_ALL_MSK, RTW_PWR_ADDR_MAC, RTW_PWR_CMD_POLLING, BIT(0), 0}, {0x0010, RTW_PWR_CUT_ALL_MSK, RTW_PWR_INTF_ALL_MSK, RTW_PWR_ADDR_MAC, RTW_PWR_CMD_WRITE, BIT(6), BIT(6)}, {0x0049, RTW_PWR_CUT_ALL_MSK, RTW_PWR_INTF_ALL_MSK, RTW_PWR_ADDR_MAC, RTW_PWR_CMD_WRITE, BIT(1), BIT(1)}, {0x0063, RTW_PWR_CUT_ALL_MSK, RTW_PWR_INTF_ALL_MSK, RTW_PWR_ADDR_MAC, RTW_PWR_CMD_WRITE, BIT(1), BIT(1)}, {0x0062, RTW_PWR_CUT_ALL_MSK, RTW_PWR_INTF_ALL_MSK, RTW_PWR_ADDR_MAC, RTW_PWR_CMD_WRITE, BIT(1), 0}, {0x0058, RTW_PWR_CUT_ALL_MSK, RTW_PWR_INTF_ALL_MSK, RTW_PWR_ADDR_MAC, RTW_PWR_CMD_WRITE, BIT(0), BIT(0)}, {0x005A, RTW_PWR_CUT_ALL_MSK, RTW_PWR_INTF_ALL_MSK, RTW_PWR_ADDR_MAC, RTW_PWR_CMD_WRITE, BIT(1), BIT(1)}, {0x0068, RTW_PWR_CUT_TEST_MSK, RTW_PWR_INTF_ALL_MSK, RTW_PWR_ADDR_MAC, RTW_PWR_CMD_WRITE, BIT(3), BIT(3)}, {0x0069, RTW_PWR_CUT_ALL_MSK, RTW_PWR_INTF_ALL_MSK, RTW_PWR_ADDR_MAC, RTW_PWR_CMD_WRITE, BIT(6), BIT(6)}, {TRANS_SEQ_END}, }; static const struct rtw_pwr_seq_cmd trans_act_to_cardemu_8703b[] = { {0x001f, RTW_PWR_CUT_ALL_MSK, RTW_PWR_INTF_ALL_MSK, RTW_PWR_ADDR_MAC, RTW_PWR_CMD_WRITE, 0xff, 0}, {0x0049, RTW_PWR_CUT_ALL_MSK, RTW_PWR_INTF_ALL_MSK, RTW_PWR_ADDR_MAC, RTW_PWR_CMD_WRITE, BIT(1), 0}, {0x0006, RTW_PWR_CUT_ALL_MSK, RTW_PWR_INTF_ALL_MSK, RTW_PWR_ADDR_MAC, RTW_PWR_CMD_WRITE, BIT(0), BIT(0)}, {0x0005, RTW_PWR_CUT_ALL_MSK, RTW_PWR_INTF_ALL_MSK, RTW_PWR_ADDR_MAC, RTW_PWR_CMD_WRITE, BIT(1), BIT(1)}, {0x0005, RTW_PWR_CUT_ALL_MSK, RTW_PWR_INTF_ALL_MSK, RTW_PWR_ADDR_MAC, RTW_PWR_CMD_POLLING, BIT(1), 0}, {0x0010, RTW_PWR_CUT_ALL_MSK, RTW_PWR_INTF_ALL_MSK, RTW_PWR_ADDR_MAC, RTW_PWR_CMD_WRITE, BIT(6), 0}, {0x0000, RTW_PWR_CUT_ALL_MSK, RTW_PWR_INTF_USB_MSK | RTW_PWR_INTF_SDIO_MSK, RTW_PWR_ADDR_MAC, RTW_PWR_CMD_WRITE, BIT(5), BIT(5)}, {0x0020, RTW_PWR_CUT_ALL_MSK, RTW_PWR_INTF_USB_MSK | RTW_PWR_INTF_SDIO_MSK, RTW_PWR_ADDR_MAC, RTW_PWR_CMD_WRITE, BIT(0), 0}, {TRANS_SEQ_END}, }; static const struct rtw_pwr_seq_cmd trans_act_to_reset_mcu_8703b[] = { {REG_SYS_FUNC_EN + 1, RTW_PWR_CUT_ALL_MSK, RTW_PWR_INTF_SDIO_MSK, RTW_PWR_ADDR_MAC, RTW_PWR_CMD_WRITE, BIT_FEN_CPUEN, 0}, /* reset MCU ready */ {REG_MCUFW_CTRL, RTW_PWR_CUT_ALL_MSK, RTW_PWR_INTF_SDIO_MSK, RTW_PWR_ADDR_MAC, RTW_PWR_CMD_WRITE, 0xff, 0}, /* reset MCU IO wrapper */ {REG_RSV_CTRL + 1, RTW_PWR_CUT_ALL_MSK, RTW_PWR_INTF_SDIO_MSK, RTW_PWR_ADDR_MAC, RTW_PWR_CMD_WRITE, BIT(0), 0}, {REG_RSV_CTRL + 1, RTW_PWR_CUT_ALL_MSK, RTW_PWR_INTF_SDIO_MSK, RTW_PWR_ADDR_MAC, RTW_PWR_CMD_WRITE, BIT(0), 1}, {TRANS_SEQ_END}, }; static const struct rtw_pwr_seq_cmd trans_act_to_lps_8703b[] = { {0x0301, RTW_PWR_CUT_ALL_MSK, RTW_PWR_INTF_ALL_MSK, RTW_PWR_ADDR_MAC, RTW_PWR_CMD_WRITE, 0xff, 0xff}, {0x0522, RTW_PWR_CUT_ALL_MSK, RTW_PWR_INTF_ALL_MSK, RTW_PWR_ADDR_MAC, RTW_PWR_CMD_WRITE, 0xff, 0xff}, {0x05f8, RTW_PWR_CUT_ALL_MSK, RTW_PWR_INTF_ALL_MSK, RTW_PWR_ADDR_MAC, RTW_PWR_CMD_POLLING, 0xff, 0}, {0x05f9, RTW_PWR_CUT_ALL_MSK, RTW_PWR_INTF_ALL_MSK, RTW_PWR_ADDR_MAC, RTW_PWR_CMD_POLLING, 0xff, 0}, {0x05fa, RTW_PWR_CUT_ALL_MSK, RTW_PWR_INTF_ALL_MSK, RTW_PWR_ADDR_MAC, RTW_PWR_CMD_POLLING, 0xff, 0}, {0x05fb, RTW_PWR_CUT_ALL_MSK, RTW_PWR_INTF_ALL_MSK, RTW_PWR_ADDR_MAC, RTW_PWR_CMD_POLLING, 0xff, 0}, {0x0002, RTW_PWR_CUT_ALL_MSK, RTW_PWR_INTF_ALL_MSK, RTW_PWR_ADDR_MAC, RTW_PWR_CMD_WRITE, BIT(0), 0}, {0x0002, RTW_PWR_CUT_ALL_MSK, RTW_PWR_INTF_ALL_MSK, RTW_PWR_ADDR_MAC, RTW_PWR_CMD_DELAY, 0, RTW_PWR_DELAY_US}, {0x0002, RTW_PWR_CUT_ALL_MSK, RTW_PWR_INTF_ALL_MSK, RTW_PWR_ADDR_MAC, RTW_PWR_CMD_WRITE, BIT(1), 0}, {0x0100, RTW_PWR_CUT_ALL_MSK, RTW_PWR_INTF_ALL_MSK, RTW_PWR_ADDR_MAC, RTW_PWR_CMD_WRITE, 0xff, 0x03}, {0x0101, RTW_PWR_CUT_ALL_MSK, RTW_PWR_INTF_ALL_MSK, RTW_PWR_ADDR_MAC, RTW_PWR_CMD_WRITE, BIT(1), 0}, {0x0093, RTW_PWR_CUT_ALL_MSK, RTW_PWR_INTF_SDIO_MSK, RTW_PWR_ADDR_MAC, RTW_PWR_CMD_WRITE, 0xff, 0}, {0x0553, RTW_PWR_CUT_ALL_MSK, RTW_PWR_INTF_ALL_MSK, RTW_PWR_ADDR_MAC, RTW_PWR_CMD_WRITE, BIT(5), BIT(5)}, {TRANS_SEQ_END}, }; static const struct rtw_pwr_seq_cmd *card_enable_flow_8703b[] = { trans_pre_enable_8703b, trans_carddis_to_cardemu_8703b, trans_cardemu_to_act_8703b, NULL }; static const struct rtw_pwr_seq_cmd *card_disable_flow_8703b[] = { trans_act_to_lps_8703b, trans_act_to_reset_mcu_8703b, trans_act_to_cardemu_8703b, trans_cardemu_to_carddis_8703b, NULL }; static const struct rtw_rfe_def rtw8703b_rfe_defs[] = { [0] = { .phy_pg_tbl = &rtw8703b_bb_pg_tbl, .txpwr_lmt_tbl = &rtw8703b_txpwr_lmt_tbl,}, }; static const struct rtw_page_table page_table_8703b[] = { {12, 2, 2, 0, 1}, {12, 2, 2, 0, 1}, {12, 2, 2, 0, 1}, {12, 2, 2, 0, 1}, {12, 2, 2, 0, 1}, }; static const struct rtw_rqpn rqpn_table_8703b[] = { {RTW_DMA_MAPPING_NORMAL, RTW_DMA_MAPPING_NORMAL, RTW_DMA_MAPPING_LOW, RTW_DMA_MAPPING_LOW, RTW_DMA_MAPPING_EXTRA, RTW_DMA_MAPPING_HIGH}, {RTW_DMA_MAPPING_NORMAL, RTW_DMA_MAPPING_NORMAL, RTW_DMA_MAPPING_LOW, RTW_DMA_MAPPING_LOW, RTW_DMA_MAPPING_EXTRA, RTW_DMA_MAPPING_HIGH}, {RTW_DMA_MAPPING_NORMAL, RTW_DMA_MAPPING_NORMAL, RTW_DMA_MAPPING_NORMAL, RTW_DMA_MAPPING_HIGH, RTW_DMA_MAPPING_HIGH, RTW_DMA_MAPPING_HIGH}, {RTW_DMA_MAPPING_NORMAL, RTW_DMA_MAPPING_NORMAL, RTW_DMA_MAPPING_LOW, RTW_DMA_MAPPING_LOW, RTW_DMA_MAPPING_HIGH, RTW_DMA_MAPPING_HIGH}, {RTW_DMA_MAPPING_NORMAL, RTW_DMA_MAPPING_NORMAL, RTW_DMA_MAPPING_LOW, RTW_DMA_MAPPING_LOW, RTW_DMA_MAPPING_EXTRA, RTW_DMA_MAPPING_HIGH}, }; /* Default power index table for RTL8703B, used if EFUSE does not * contain valid data. Replaces EFUSE data from offset 0x10 (start of * txpwr_idx_table). */ static const u8 rtw8703b_txpwr_idx_table[] = { 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x2D, 0x02 }; static void try_mac_from_devicetree(struct rtw_dev *rtwdev) { struct device_node *node = rtwdev->dev->of_node; struct rtw_efuse *efuse = &rtwdev->efuse; int ret; if (node) { ret = of_get_mac_address(node, efuse->addr); if (ret == 0) { rtw_dbg(rtwdev, RTW_DBG_EFUSE, "got wifi mac address from DT: %pM\n", efuse->addr); } } } #define DBG_EFUSE_FIX(rtwdev, name) \ rtw_dbg(rtwdev, RTW_DBG_EFUSE, "Fixed invalid EFUSE value: " \ # name "=0x%x\n", rtwdev->efuse.name) static int rtw8703b_read_efuse(struct rtw_dev *rtwdev, u8 *log_map) { struct rtw_efuse *efuse = &rtwdev->efuse; u8 *pwr = (u8 *)efuse->txpwr_idx_table; bool valid = false; int ret; ret = rtw8723x_read_efuse(rtwdev, log_map); if (ret != 0) return ret; if (!is_valid_ether_addr(efuse->addr)) try_mac_from_devicetree(rtwdev); /* If TX power index table in EFUSE is invalid, fall back to * built-in table. */ for (int i = 0; i < ARRAY_SIZE(rtw8703b_txpwr_idx_table); i++) if (pwr[i] != 0xff) { valid = true; break; } if (!valid) { for (int i = 0; i < ARRAY_SIZE(rtw8703b_txpwr_idx_table); i++) pwr[i] = rtw8703b_txpwr_idx_table[i]; rtw_dbg(rtwdev, RTW_DBG_EFUSE, "Replaced invalid EFUSE TX power index table."); rtw8723x_debug_txpwr_limit(rtwdev, efuse->txpwr_idx_table, 2); } /* Override invalid antenna settings. */ if (efuse->bt_setting == 0xff) { /* shared antenna */ efuse->bt_setting |= BIT(0); /* RF path A */ efuse->bt_setting &= ~BIT(6); DBG_EFUSE_FIX(rtwdev, bt_setting); } /* Override invalid board options: The coex code incorrectly * assumes that if bits 6 & 7 are set the board doesn't * support coex. Regd is also derived from rf_board_option and * should be 0 if there's no valid data. */ if (efuse->rf_board_option == 0xff) { efuse->regd = 0; efuse->rf_board_option &= GENMASK(5, 0); DBG_EFUSE_FIX(rtwdev, rf_board_option); } /* Override invalid crystal cap setting, default comes from * vendor driver. Chip specific. */ if (efuse->crystal_cap == 0xff) { efuse->crystal_cap = 0x20; DBG_EFUSE_FIX(rtwdev, crystal_cap); } return 0; } static void rtw8703b_pwrtrack_init(struct rtw_dev *rtwdev) { struct rtw_dm_info *dm_info = &rtwdev->dm_info; u8 path; /* TODO: The vendor driver selects these using tables in * halrf_powertracking_ce.c, functions are called * get_swing_index and get_cck_swing_index. There the current * fixed values are only the defaults in case no match is * found. */ dm_info->default_ofdm_index = 30; dm_info->default_cck_index = 20; for (path = RF_PATH_A; path < rtwdev->hal.rf_path_num; path++) { ewma_thermal_init(&dm_info->avg_thermal[path]); dm_info->delta_power_index[path] = 0; } dm_info->pwr_trk_triggered = false; dm_info->pwr_trk_init_trigger = true; dm_info->thermal_meter_k = rtwdev->efuse.thermal_meter_k; dm_info->txagc_remnant_cck = 0; dm_info->txagc_remnant_ofdm = 0; } static void rtw8703b_phy_set_param(struct rtw_dev *rtwdev) { u8 xtal_cap = rtwdev->efuse.crystal_cap & 0x3F; /* power on BB/RF domain */ rtw_write16_set(rtwdev, REG_SYS_FUNC_EN, BIT_FEN_EN_25_1 | BIT_FEN_BB_GLB_RST | BIT_FEN_BB_RSTB); rtw_write8_set(rtwdev, REG_RF_CTRL, BIT_RF_EN | BIT_RF_RSTB | BIT_RF_SDM_RSTB); rtw_write_rf(rtwdev, RF_PATH_A, RF_WLINT, RFREG_MASK, 0x0780); rtw_write8(rtwdev, REG_AFE_CTRL1 + 1, 0x80); rtw_phy_load_tables(rtwdev); rtw_write32_clr(rtwdev, REG_RCR, BIT_RCR_ADF); /* 0xff is from vendor driver, rtw8723d uses * BIT_HIQ_NO_LMT_EN_ROOT. Comment in vendor driver: "Packet * in Hi Queue Tx immediately". I wonder if setting all bits * is really necessary. */ rtw_write8_set(rtwdev, REG_HIQ_NO_LMT_EN, 0xff); rtw_write16_set(rtwdev, REG_AFE_CTRL_4, BIT_CK320M_AFE_EN | BIT_EN_SYN); rtw_write32_mask(rtwdev, REG_AFE_CTRL3, BIT_MASK_XTAL, xtal_cap | (xtal_cap << 6)); rtw_write32_set(rtwdev, REG_FPGA0_RFMOD, BIT_CCKEN | BIT_OFDMEN); /* Init EDCA */ rtw_write16(rtwdev, REG_SPEC_SIFS, WLAN_SPEC_SIFS); rtw_write16(rtwdev, REG_MAC_SPEC_SIFS, WLAN_SPEC_SIFS); rtw_write16(rtwdev, REG_SIFS, WLAN_SPEC_SIFS); /* CCK */ rtw_write16(rtwdev, REG_SIFS + 2, WLAN_SPEC_SIFS); /* OFDM */ /* TXOP */ rtw_write32(rtwdev, REG_EDCA_VO_PARAM, 0x002FA226); rtw_write32(rtwdev, REG_EDCA_VI_PARAM, 0x005EA324); rtw_write32(rtwdev, REG_EDCA_BE_PARAM, 0x005EA42B); rtw_write32(rtwdev, REG_EDCA_BK_PARAM, 0x0000A44F); /* Init retry */ rtw_write8(rtwdev, REG_ACKTO, 0x40); /* Set up RX aggregation. sdio.c also sets DMA mode, but not * the burst parameters. */ rtw_write8(rtwdev, REG_RXDMA_MODE, BIT_DMA_MODE | FIELD_PREP_CONST(BIT_MASK_AGG_BURST_NUM, AGG_BURST_NUM) | FIELD_PREP_CONST(BIT_MASK_AGG_BURST_SIZE, AGG_BURST_SIZE)); /* Init beacon parameters */ rtw_write8(rtwdev, REG_BCN_CTRL, BIT_DIS_TSF_UDT | BIT_EN_BCN_FUNCTION | BIT_EN_TXBCN_RPT); rtw_write8(rtwdev, REG_TBTT_PROHIBIT, TBTT_PROHIBIT_SETUP_TIME); rtw_write8(rtwdev, REG_TBTT_PROHIBIT + 1, TBTT_PROHIBIT_HOLD_TIME_STOP_BCN & 0xFF); rtw_write8(rtwdev, REG_TBTT_PROHIBIT + 2, (rtw_read8(rtwdev, REG_TBTT_PROHIBIT + 2) & 0xF0) | (TBTT_PROHIBIT_HOLD_TIME_STOP_BCN >> 8)); /* configure packet burst */ rtw_write8_set(rtwdev, REG_SINGLE_AMPDU_CTRL, BIT_EN_SINGLE_APMDU); rtw_write8(rtwdev, REG_RX_PKT_LIMIT, WLAN_RX_PKT_LIMIT); rtw_write8(rtwdev, REG_MAX_AGGR_NUM, WLAN_MAX_AGG_NR); rtw_write8(rtwdev, REG_PIFS, WLAN_PIFS_VAL); rtw_write8_clr(rtwdev, REG_FWHW_TXQ_CTRL, BIT_MASK_TXQ_INIT); rtw_write8(rtwdev, REG_AMPDU_MAX_TIME, WLAN_AMPDU_MAX_TIME); rtw_write8(rtwdev, REG_SLOT, WLAN_SLOT_TIME); rtw_write16(rtwdev, REG_RETRY_LIMIT, WLAN_RL_VAL); rtw_write32(rtwdev, REG_BAR_MODE_CTRL, WLAN_BAR_VAL); rtw_write16(rtwdev, REG_ATIMWND, 0x2); rtw_phy_init(rtwdev); if (rtw_read32_mask(rtwdev, REG_BB_AMP, BIT_MASK_RX_LNA) != 0) { rtwdev->dm_info.rx_cck_agc_report_type = 1; } else { rtwdev->dm_info.rx_cck_agc_report_type = 0; rtw_warn(rtwdev, "unexpected cck agc report type"); } rtw8723x_lck(rtwdev); rtw_write32_mask(rtwdev, REG_OFDM0_XAAGC1, MASKBYTE0, 0x50); rtw_write32_mask(rtwdev, REG_OFDM0_XAAGC1, MASKBYTE0, 0x20); rtw8703b_pwrtrack_init(rtwdev); } static bool rtw8703b_check_spur_ov_thres(struct rtw_dev *rtwdev, u32 freq, u32 thres) { bool ret = false; rtw_write32(rtwdev, REG_ANALOG_P4, DIS_3WIRE); rtw_write32(rtwdev, REG_PSDFN, freq); rtw_write32(rtwdev, REG_PSDFN, START_PSD | freq); msleep(30); if (rtw_read32(rtwdev, REG_PSDRPT) >= thres) ret = true; rtw_write32(rtwdev, REG_PSDFN, freq); rtw_write32(rtwdev, REG_ANALOG_P4, EN_3WIRE); return ret; } static void rtw8703b_cfg_notch(struct rtw_dev *rtwdev, u8 channel, bool notch) { if (!notch) { rtw_write32_mask(rtwdev, REG_OFDM0_RXDSP, BIT_MASK_RXDSP, 0x1f); rtw_write32_mask(rtwdev, REG_OFDM0_RXDSP, BIT_EN_RXDSP, 0x0); rtw_write32(rtwdev, REG_OFDM1_CSI1, 0x00000000); rtw_write32(rtwdev, REG_OFDM1_CSI2, 0x00000000); rtw_write32(rtwdev, REG_OFDM1_CSI3, 0x00000000); rtw_write32(rtwdev, REG_OFDM1_CSI4, 0x00000000); rtw_write32_mask(rtwdev, REG_OFDM1_CFOTRK, BIT_EN_CFOTRK, 0x0); return; } switch (channel) { case 5: fallthrough; case 13: rtw_write32_mask(rtwdev, REG_OFDM0_RXDSP, BIT_MASK_RXDSP, 0xb); rtw_write32_mask(rtwdev, REG_OFDM0_RXDSP, BIT_EN_RXDSP, 0x1); rtw_write32(rtwdev, REG_OFDM1_CSI1, 0x06000000); rtw_write32(rtwdev, REG_OFDM1_CSI2, 0x00000000); rtw_write32(rtwdev, REG_OFDM1_CSI3, 0x00000000); rtw_write32(rtwdev, REG_OFDM1_CSI4, 0x00000000); rtw_write32_mask(rtwdev, REG_OFDM1_CFOTRK, BIT_EN_CFOTRK, 0x1); break; case 6: rtw_write32_mask(rtwdev, REG_OFDM0_RXDSP, BIT_MASK_RXDSP, 0x4); rtw_write32_mask(rtwdev, REG_OFDM0_RXDSP, BIT_EN_RXDSP, 0x1); rtw_write32(rtwdev, REG_OFDM1_CSI1, 0x00000600); rtw_write32(rtwdev, REG_OFDM1_CSI2, 0x00000000); rtw_write32(rtwdev, REG_OFDM1_CSI3, 0x00000000); rtw_write32(rtwdev, REG_OFDM1_CSI4, 0x00000000); rtw_write32_mask(rtwdev, REG_OFDM1_CFOTRK, BIT_EN_CFOTRK, 0x1); break; case 7: rtw_write32_mask(rtwdev, REG_OFDM0_RXDSP, BIT_MASK_RXDSP, 0x3); rtw_write32_mask(rtwdev, REG_OFDM0_RXDSP, BIT_EN_RXDSP, 0x1); rtw_write32(rtwdev, REG_OFDM1_CSI1, 0x00000000); rtw_write32(rtwdev, REG_OFDM1_CSI2, 0x00000000); rtw_write32(rtwdev, REG_OFDM1_CSI3, 0x00000000); rtw_write32(rtwdev, REG_OFDM1_CSI4, 0x06000000); rtw_write32_mask(rtwdev, REG_OFDM1_CFOTRK, BIT_EN_CFOTRK, 0x1); break; case 8: rtw_write32_mask(rtwdev, REG_OFDM0_RXDSP, BIT_MASK_RXDSP, 0xa); rtw_write32_mask(rtwdev, REG_OFDM0_RXDSP, BIT_EN_RXDSP, 0x1); rtw_write32(rtwdev, REG_OFDM1_CSI1, 0x00000000); rtw_write32(rtwdev, REG_OFDM1_CSI2, 0x00000000); rtw_write32(rtwdev, REG_OFDM1_CSI3, 0x00000000); rtw_write32(rtwdev, REG_OFDM1_CSI4, 0x00000380); rtw_write32_mask(rtwdev, REG_OFDM1_CFOTRK, BIT_EN_CFOTRK, 0x1); break; case 14: rtw_write32_mask(rtwdev, REG_OFDM0_RXDSP, BIT_MASK_RXDSP, 0x5); rtw_write32_mask(rtwdev, REG_OFDM0_RXDSP, BIT_EN_RXDSP, 0x1); rtw_write32(rtwdev, REG_OFDM1_CSI1, 0x00000000); rtw_write32(rtwdev, REG_OFDM1_CSI2, 0x00000000); rtw_write32(rtwdev, REG_OFDM1_CSI3, 0x00000000); rtw_write32(rtwdev, REG_OFDM1_CSI4, 0x00180000); rtw_write32_mask(rtwdev, REG_OFDM1_CFOTRK, BIT_EN_CFOTRK, 0x1); break; default: rtw_warn(rtwdev, "Bug: Notch filter enable called for channel %u!", channel); rtw_write32_mask(rtwdev, REG_OFDM0_RXDSP, BIT_EN_RXDSP, 0x0); rtw_write32_mask(rtwdev, REG_OFDM1_CFOTRK, BIT_EN_CFOTRK, 0x0); break; } } static void rtw8703b_spur_cal(struct rtw_dev *rtwdev, u8 channel) { bool notch; u32 freq; if (channel == 5) { freq = FREQ_CH5; } else if (channel == 6) { freq = FREQ_CH6; } else if (channel == 7) { freq = FREQ_CH7; } else if (channel == 8) { freq = FREQ_CH8; } else if (channel == 13) { freq = FREQ_CH13; } else if (channel == 14) { freq = FREQ_CH14; } else { rtw8703b_cfg_notch(rtwdev, channel, false); return; } notch = rtw8703b_check_spur_ov_thres(rtwdev, freq, SPUR_THRES); rtw8703b_cfg_notch(rtwdev, channel, notch); } static void rtw8703b_set_channel_rf(struct rtw_dev *rtwdev, u8 channel, u8 bw) { u32 rf_cfgch_a; u32 rf_cfgch_b; /* default value for 20M */ u32 rf_rck = 0x00000C08; rf_cfgch_a = rtw_read_rf(rtwdev, RF_PATH_A, RF_CFGCH, RFREG_MASK); rf_cfgch_b = rtw_read_rf(rtwdev, RF_PATH_B, RF_CFGCH, RFREG_MASK); rf_cfgch_a &= ~RFCFGCH_CHANNEL_MASK; rf_cfgch_b &= ~RFCFGCH_CHANNEL_MASK; rf_cfgch_a |= (channel & RFCFGCH_CHANNEL_MASK); rf_cfgch_b |= (channel & RFCFGCH_CHANNEL_MASK); rf_cfgch_a &= ~RFCFGCH_BW_MASK; switch (bw) { case RTW_CHANNEL_WIDTH_20: rf_cfgch_a |= RFCFGCH_BW_20M; break; case RTW_CHANNEL_WIDTH_40: rf_cfgch_a |= RFCFGCH_BW_40M; rf_rck = 0x00000C4C; break; default: break; } rtw_write_rf(rtwdev, RF_PATH_A, RF_CFGCH, RFREG_MASK, rf_cfgch_a); rtw_write_rf(rtwdev, RF_PATH_B, RF_CFGCH, RFREG_MASK, rf_cfgch_b); rtw_write_rf(rtwdev, RF_PATH_A, RF_RCK1, RFREG_MASK, rf_rck); rtw8703b_spur_cal(rtwdev, channel); } #define CCK_DFIR_NR_8703B 2 static const struct rtw_backup_info cck_dfir_cfg[][CCK_DFIR_NR_8703B] = { [0] = { { .len = 4, .reg = REG_CCK_TXSF2, .val = 0x5A7DA0BD }, { .len = 4, .reg = REG_CCK_DBG, .val = 0x0000223B }, }, [1] = { { .len = 4, .reg = REG_CCK_TXSF2, .val = 0x00000000 }, { .len = 4, .reg = REG_CCK_DBG, .val = 0x00000000 }, }, }; static void rtw8703b_set_channel_bb(struct rtw_dev *rtwdev, u8 channel, u8 bw, u8 primary_ch_idx) { const struct rtw_backup_info *cck_dfir; int i; cck_dfir = channel <= 13 ? cck_dfir_cfg[0] : cck_dfir_cfg[1]; for (i = 0; i < CCK_DFIR_NR_8703B; i++, cck_dfir++) rtw_write32(rtwdev, cck_dfir->reg, cck_dfir->val); switch (bw) { case RTW_CHANNEL_WIDTH_20: rtw_write32_mask(rtwdev, REG_FPGA0_RFMOD, BIT_MASK_RFMOD, 0x0); rtw_write32_mask(rtwdev, REG_FPGA1_RFMOD, BIT_MASK_RFMOD, 0x0); rtw_write32_mask(rtwdev, REG_OFDM0_TX_PSD_NOISE, GENMASK(31, 20), 0x0); rtw_write32(rtwdev, REG_BBRX_DFIR, 0x4A880000); rtw_write32(rtwdev, REG_OFDM0_A_TX_AFE, 0x19F60000); break; case RTW_CHANNEL_WIDTH_40: rtw_write32_mask(rtwdev, REG_FPGA0_RFMOD, BIT_MASK_RFMOD, 0x1); rtw_write32_mask(rtwdev, REG_FPGA1_RFMOD, BIT_MASK_RFMOD, 0x1); rtw_write32(rtwdev, REG_BBRX_DFIR, 0x40100000); rtw_write32(rtwdev, REG_OFDM0_A_TX_AFE, 0x51F60000); rtw_write32_mask(rtwdev, REG_CCK0_SYS, BIT_CCK_SIDE_BAND, primary_ch_idx == RTW_SC_20_UPPER ? 1 : 0); rtw_write32_mask(rtwdev, REG_OFDM_FA_RSTD_11N, 0xC00, primary_ch_idx == RTW_SC_20_UPPER ? 2 : 1); rtw_write32_mask(rtwdev, REG_BB_PWR_SAV5_11N, GENMASK(27, 26), primary_ch_idx == RTW_SC_20_UPPER ? 1 : 2); break; default: break; } } static void rtw8703b_set_channel(struct rtw_dev *rtwdev, u8 channel, u8 bw, u8 primary_chan_idx) { rtw8703b_set_channel_rf(rtwdev, channel, bw); rtw_set_channel_mac(rtwdev, channel, bw, primary_chan_idx); rtw8703b_set_channel_bb(rtwdev, channel, bw, primary_chan_idx); } /* Not all indices are valid, based on available data. None of the * known valid values are positive, so use 0x7f as "invalid". */ #define LNA_IDX_INVALID 0x7f static const s8 lna_gain_table[16] = { -2, LNA_IDX_INVALID, LNA_IDX_INVALID, LNA_IDX_INVALID, -6, LNA_IDX_INVALID, LNA_IDX_INVALID, -19, -32, LNA_IDX_INVALID, -36, -42, LNA_IDX_INVALID, LNA_IDX_INVALID, LNA_IDX_INVALID, -48, }; static s8 get_cck_rx_pwr(struct rtw_dev *rtwdev, u8 lna_idx, u8 vga_idx) { s8 lna_gain = 0; if (lna_idx < ARRAY_SIZE(lna_gain_table)) lna_gain = lna_gain_table[lna_idx]; if (lna_gain >= 0) { rtw_warn(rtwdev, "incorrect lna index (%d)\n", lna_idx); return -120; } return lna_gain - 2 * vga_idx; } static void query_phy_status_cck(struct rtw_dev *rtwdev, u8 *phy_raw, struct rtw_rx_pkt_stat *pkt_stat) { struct phy_status_8703b *phy_status = (struct phy_status_8703b *)phy_raw; u8 vga_idx = phy_status->cck_agc_rpt_ofdm_cfosho_a & VGA_BITS; u8 lna_idx = phy_status->cck_agc_rpt_ofdm_cfosho_a & LNA_L_BITS; s8 rx_power; if (rtwdev->dm_info.rx_cck_agc_report_type == 1) lna_idx = FIELD_PREP(BIT_LNA_H_MASK, phy_status->cck_rpt_b_ofdm_cfosho_b & LNA_H_BIT) | FIELD_PREP(BIT_LNA_L_MASK, lna_idx); else lna_idx = FIELD_PREP(BIT_LNA_L_MASK, lna_idx); rx_power = get_cck_rx_pwr(rtwdev, lna_idx, vga_idx); pkt_stat->rx_power[RF_PATH_A] = rx_power; pkt_stat->rssi = rtw_phy_rf_power_2_rssi(pkt_stat->rx_power, 1); rtwdev->dm_info.rssi[RF_PATH_A] = pkt_stat->rssi; pkt_stat->signal_power = rx_power; } static void query_phy_status_ofdm(struct rtw_dev *rtwdev, u8 *phy_raw, struct rtw_rx_pkt_stat *pkt_stat) { struct phy_status_8703b *phy_status = (struct phy_status_8703b *)phy_raw; struct rtw_dm_info *dm_info = &rtwdev->dm_info; s8 val_s8; val_s8 = phy_status->path_agc[RF_PATH_A].gain & 0x3F; pkt_stat->rx_power[RF_PATH_A] = (val_s8 * 2) - 110; pkt_stat->rssi = rtw_phy_rf_power_2_rssi(pkt_stat->rx_power, 1); pkt_stat->rx_snr[RF_PATH_A] = (s8)(phy_status->path_rxsnr[RF_PATH_A] / 2); /* signal power reported by HW */ val_s8 = phy_status->cck_sig_qual_ofdm_pwdb_all >> 1; pkt_stat->signal_power = (val_s8 & 0x7f) - 110; pkt_stat->rx_evm[RF_PATH_A] = phy_status->stream_rxevm[RF_PATH_A]; pkt_stat->cfo_tail[RF_PATH_A] = phy_status->path_cfotail[RF_PATH_A]; dm_info->curr_rx_rate = pkt_stat->rate; dm_info->rssi[RF_PATH_A] = pkt_stat->rssi; dm_info->rx_snr[RF_PATH_A] = pkt_stat->rx_snr[RF_PATH_A] >> 1; /* convert to KHz (used only for debugfs) */ dm_info->cfo_tail[RF_PATH_A] = (pkt_stat->cfo_tail[RF_PATH_A] * 5) >> 1; /* (EVM value as s8 / 2) is dbm, should usually be in -33 to 0 * range. rx_evm_dbm needs the absolute (positive) value. */ val_s8 = (s8)pkt_stat->rx_evm[RF_PATH_A]; val_s8 = clamp_t(s8, -val_s8 >> 1, 0, 64); val_s8 &= 0x3F; /* 64->0: second path of 1SS rate is 64 */ dm_info->rx_evm_dbm[RF_PATH_A] = val_s8; } static void query_phy_status(struct rtw_dev *rtwdev, u8 *phy_status, struct rtw_rx_pkt_stat *pkt_stat) { if (pkt_stat->rate <= DESC_RATE11M) query_phy_status_cck(rtwdev, phy_status, pkt_stat); else query_phy_status_ofdm(rtwdev, phy_status, pkt_stat); } static void rtw8703b_query_rx_desc(struct rtw_dev *rtwdev, u8 *rx_desc, struct rtw_rx_pkt_stat *pkt_stat, struct ieee80211_rx_status *rx_status) { struct ieee80211_hdr *hdr; u32 desc_sz = rtwdev->chip->rx_pkt_desc_sz; u8 *phy_status = NULL; memset(pkt_stat, 0, sizeof(*pkt_stat)); pkt_stat->phy_status = GET_RX_DESC_PHYST(rx_desc); pkt_stat->icv_err = GET_RX_DESC_ICV_ERR(rx_desc); pkt_stat->crc_err = GET_RX_DESC_CRC32(rx_desc); pkt_stat->decrypted = !GET_RX_DESC_SWDEC(rx_desc) && GET_RX_DESC_ENC_TYPE(rx_desc) != RX_DESC_ENC_NONE; pkt_stat->is_c2h = GET_RX_DESC_C2H(rx_desc); pkt_stat->pkt_len = GET_RX_DESC_PKT_LEN(rx_desc); pkt_stat->drv_info_sz = GET_RX_DESC_DRV_INFO_SIZE(rx_desc); pkt_stat->shift = GET_RX_DESC_SHIFT(rx_desc); pkt_stat->rate = GET_RX_DESC_RX_RATE(rx_desc); pkt_stat->cam_id = GET_RX_DESC_MACID(rx_desc); pkt_stat->ppdu_cnt = 0; pkt_stat->tsf_low = GET_RX_DESC_TSFL(rx_desc); pkt_stat->drv_info_sz *= RX_DRV_INFO_SZ_UNIT_8703B; if (pkt_stat->is_c2h) return; hdr = (struct ieee80211_hdr *)(rx_desc + desc_sz + pkt_stat->shift + pkt_stat->drv_info_sz); pkt_stat->bw = GET_RX_DESC_BW(rx_desc); if (pkt_stat->phy_status) { phy_status = rx_desc + desc_sz + pkt_stat->shift; query_phy_status(rtwdev, phy_status, pkt_stat); } rtw_rx_fill_rx_status(rtwdev, pkt_stat, hdr, rx_status, phy_status); /* Rtl8723cs driver checks for size < 14 or size > 8192 and * simply drops the packet. Maybe this should go into * rtw_rx_fill_rx_status()? */ if (pkt_stat->pkt_len == 0) { rx_status->flag |= RX_FLAG_NO_PSDU; rtw_dbg(rtwdev, RTW_DBG_RX, "zero length packet"); } } #define ADDA_ON_VAL_8703B 0x03c00014 static void rtw8703b_iqk_config_mac(struct rtw_dev *rtwdev, const struct rtw8723x_iqk_backup_regs *backup) { rtw_write8(rtwdev, rtw8723x_common.iqk_mac8_regs[0], 0x3F); for (int i = 1; i < RTW8723X_IQK_MAC8_REG_NUM; i++) rtw_write8(rtwdev, rtw8723x_common.iqk_mac8_regs[i], backup->mac8[i] & (~BIT(3))); } #define IQK_LTE_WRITE_VAL_8703B 0x00007700 #define IQK_DELAY_TIME_8703B 4 static void rtw8703b_iqk_one_shot(struct rtw_dev *rtwdev, bool tx) { u32 regval; ktime_t t; s64 dur; int ret; /* enter IQK mode */ rtw_write32_mask(rtwdev, REG_FPGA0_IQK_11N, BIT_MASK_IQK_MOD, EN_IQK); rtw8723x_iqk_config_lte_path_gnt(rtwdev, IQK_LTE_WRITE_VAL_8703B); /* One shot, LOK & IQK */ rtw_write32(rtwdev, REG_IQK_AGC_PTS_11N, 0xf9000000); rtw_write32(rtwdev, REG_IQK_AGC_PTS_11N, 0xf8000000); t = ktime_get(); msleep(IQK_DELAY_TIME_8703B); ret = read_poll_timeout(rtw_read32, regval, regval != 0, 1000, 100000, false, rtwdev, REG_IQK_RDY); dur = ktime_us_delta(ktime_get(), t); if (ret) rtw_warn(rtwdev, "[IQK] %s timed out after %lldus!\n", tx ? "TX" : "RX", dur); else rtw_dbg(rtwdev, RTW_DBG_RFK, "[IQK] %s done after %lldus\n", tx ? "TX" : "RX", dur); } static void rtw8703b_iqk_txrx_path_post(struct rtw_dev *rtwdev, const struct rtw8723x_iqk_backup_regs *backup) { rtw8723x_iqk_restore_lte_path_gnt(rtwdev, backup); rtw_write32(rtwdev, REG_BB_SEL_BTG, backup->bb_sel_btg); /* leave IQK mode */ rtw_write32_mask(rtwdev, REG_FPGA0_IQK_11N, BIT_MASK_IQK_MOD, RST_IQK); rtw_write_rf(rtwdev, RF_PATH_A, RF_LUTDBG, 0x800, 0x0); } static u8 rtw8703b_iqk_check_tx_failed(struct rtw_dev *rtwdev) { s32 tx_x, tx_y; u32 tx_fail; rtw_dbg(rtwdev, RTW_DBG_RFK, "[IQK] 0xeac = 0x%x\n", rtw_read32(rtwdev, REG_IQK_RES_RY)); rtw_dbg(rtwdev, RTW_DBG_RFK, "[IQK] 0xe94 = 0x%x, 0xe9c = 0x%x\n", rtw_read32(rtwdev, REG_IQK_RES_TX), rtw_read32(rtwdev, REG_IQK_RES_TY)); rtw_dbg(rtwdev, RTW_DBG_RFK, "[IQK] 0xe90(before IQK) = 0x%x, 0xe98(after IQK) = 0x%x\n", rtw_read32(rtwdev, REG_IQK_RDY), rtw_read32(rtwdev, 0xe98)); tx_fail = rtw_read32_mask(rtwdev, REG_IQK_RES_RY, BIT_IQK_TX_FAIL); tx_x = rtw_read32_mask(rtwdev, REG_IQK_RES_TX, BIT_MASK_RES_TX); tx_y = rtw_read32_mask(rtwdev, REG_IQK_RES_TY, BIT_MASK_RES_TY); if (!tx_fail && tx_x != IQK_TX_X_ERR && tx_y != IQK_TX_Y_ERR) return IQK_TX_OK; rtw_dbg(rtwdev, RTW_DBG_RFK, "[IQK] A TX IQK failed\n"); return 0; } static u8 rtw8703b_iqk_check_rx_failed(struct rtw_dev *rtwdev) { s32 rx_x, rx_y; u32 rx_fail; rtw_dbg(rtwdev, RTW_DBG_RFK, "[IQK] 0xea4 = 0x%x, 0xeac = 0x%x\n", rtw_read32(rtwdev, REG_IQK_RES_RX), rtw_read32(rtwdev, REG_IQK_RES_RY)); rtw_dbg(rtwdev, RTW_DBG_RFK, "[IQK] 0xea0(before IQK) = 0x%x, 0xea8(after IQK) = 0x%x\n", rtw_read32(rtwdev, 0xea0), rtw_read32(rtwdev, 0xea8)); rx_fail = rtw_read32_mask(rtwdev, REG_IQK_RES_RY, BIT_IQK_RX_FAIL); rx_x = rtw_read32_mask(rtwdev, REG_IQK_RES_RX, BIT_MASK_RES_RX); rx_y = rtw_read32_mask(rtwdev, REG_IQK_RES_RY, BIT_MASK_RES_RY); rx_y = abs(iqkxy_to_s32(rx_y)); if (!rx_fail && rx_x != IQK_RX_X_ERR && rx_y != IQK_RX_Y_ERR && rx_x < IQK_RX_X_UPPER && rx_x > IQK_RX_X_LOWER && rx_y < IQK_RX_Y_LMT) return IQK_RX_OK; rtw_dbg(rtwdev, RTW_DBG_RFK, "[IQK] A RX IQK failed\n"); return 0; } static u8 rtw8703b_iqk_tx_path(struct rtw_dev *rtwdev, const struct rtw8723x_iqk_backup_regs *backup) { u8 status; rtw_dbg(rtwdev, RTW_DBG_RFK, "[IQK] path A TX IQK!\n"); /* IQK setting */ rtw_write32(rtwdev, REG_TXIQK_11N, 0x01007c00); rtw_write32(rtwdev, REG_RXIQK_11N, 0x01004800); rtw_write32(rtwdev, REG_TXIQK_TONE_A_11N, 0x18008c1c); rtw_write32(rtwdev, REG_RXIQK_TONE_A_11N, 0x38008c1c); rtw_write32(rtwdev, REG_TX_IQK_TONE_B, 0x38008c1c); rtw_write32(rtwdev, REG_RX_IQK_TONE_B, 0x38008c1c); rtw_write32(rtwdev, REG_TXIQK_PI_A_11N, 0x8214030f); rtw_write32(rtwdev, REG_RXIQK_PI_A_11N, 0x28110000); rtw_write32(rtwdev, REG_TXIQK_PI_B, 0x82110000); rtw_write32(rtwdev, REG_RXIQK_PI_B, 0x28110000); /* LO calibration setting */ rtw_write32(rtwdev, REG_IQK_AGC_RSP_11N, 0x00462911); /* leave IQK mode */ rtw_write32_mask(rtwdev, REG_FPGA0_IQK_11N, 0xffffff00, 0x000000); /* PA, PAD setting */ rtw_write_rf(rtwdev, RF_PATH_A, RF_LUTDBG, 0x800, 0x1); rtw_write_rf(rtwdev, RF_PATH_A, 0x55, 0x7f, 0x7); rtw_write_rf(rtwdev, RF_PATH_A, 0x7f, RFREG_MASK, 0xd400); rtw8703b_iqk_one_shot(rtwdev, true); status = rtw8703b_iqk_check_tx_failed(rtwdev); rtw8703b_iqk_txrx_path_post(rtwdev, backup); return status; } static u8 rtw8703b_iqk_rx_path(struct rtw_dev *rtwdev, const struct rtw8723x_iqk_backup_regs *backup) { u8 status; u32 tx_x, tx_y; rtw_dbg(rtwdev, RTW_DBG_RFK, "[IQK] path A RX IQK step 1!\n"); rtw_dbg(rtwdev, RTW_DBG_RFK, "[IQK] 0x67 @A RX IQK1 = 0x%x\n", rtw_read32_mask(rtwdev, REG_PAD_CTRL1, MASKBYTE3)); rtw_write32(rtwdev, REG_BB_SEL_BTG, 0x99000000); /* disable IQC mode */ rtw_write32_mask(rtwdev, REG_FPGA0_IQK_11N, BIT_MASK_IQK_MOD, RST_IQK); /* IQK setting */ rtw_write32(rtwdev, REG_TXIQK_11N, 0x01007c00); rtw_write32(rtwdev, REG_RXIQK_11N, 0x01004800); /* path IQK setting */ rtw_write32(rtwdev, REG_TXIQK_TONE_A_11N, 0x18008c1c); rtw_write32(rtwdev, REG_RXIQK_TONE_A_11N, 0x38008c1c); rtw_write32(rtwdev, REG_TX_IQK_TONE_B, 0x38008c1c); rtw_write32(rtwdev, REG_RX_IQK_TONE_B, 0x38008c1c); rtw_write32(rtwdev, REG_TXIQK_PI_A_11N, 0x8216000f); rtw_write32(rtwdev, REG_RXIQK_PI_A_11N, 0x28110000); rtw_write32(rtwdev, REG_TXIQK_PI_B, 0x28110000); rtw_write32(rtwdev, REG_RXIQK_PI_B, 0x28110000); /* LOK setting */ rtw_write32(rtwdev, REG_IQK_AGC_RSP_11N, 0x0046a911); /* RX IQK mode */ rtw_write_rf(rtwdev, RF_PATH_A, RF_LUTWE, 0x80000, 0x1); rtw_write_rf(rtwdev, RF_PATH_A, 0x30, RFREG_MASK, 0x30000); rtw_write_rf(rtwdev, RF_PATH_A, 0x31, RFREG_MASK, 0x00007); rtw_write_rf(rtwdev, RF_PATH_A, 0x32, RFREG_MASK, 0x57db7); rtw8703b_iqk_one_shot(rtwdev, true); /* leave IQK mode */ rtw_write32_mask(rtwdev, REG_FPGA0_IQK_11N, 0xffffff00, 0x000000); status = rtw8703b_iqk_check_tx_failed(rtwdev); if (!status) goto restore; /* second round */ tx_x = rtw_read32_mask(rtwdev, REG_IQK_RES_TX, BIT_MASK_RES_TX); tx_y = rtw_read32_mask(rtwdev, REG_IQK_RES_TY, BIT_MASK_RES_TY); rtw_write32(rtwdev, REG_TXIQK_11N, BIT_SET_TXIQK_11N(tx_x, tx_y)); rtw_dbg(rtwdev, RTW_DBG_RFK, "[IQK] 0xe40 = 0x%x u4tmp = 0x%x\n", rtw_read32(rtwdev, REG_TXIQK_11N), BIT_SET_TXIQK_11N(tx_x, tx_y)); rtw_dbg(rtwdev, RTW_DBG_RFK, "[IQK] path A RX IQK step 2!\n"); rtw_dbg(rtwdev, RTW_DBG_RFK, "[IQK] 0x67 @A RX IQK 2 = 0x%x\n", rtw_read32_mask(rtwdev, REG_PAD_CTRL1, MASKBYTE3)); /* IQK setting */ rtw_write32(rtwdev, REG_RXIQK_11N, 0x01004800); rtw_write32(rtwdev, REG_TXIQK_TONE_A_11N, 0x38008c1c); rtw_write32(rtwdev, REG_RXIQK_TONE_A_11N, 0x18008c1c); rtw_write32(rtwdev, REG_TX_IQK_TONE_B, 0x38008c1c); rtw_write32(rtwdev, REG_RX_IQK_TONE_B, 0x38008c1c); rtw_write32(rtwdev, REG_TXIQK_PI_A_11N, 0x82110000); rtw_write32(rtwdev, REG_RXIQK_PI_A_11N, 0x28160c1f); rtw_write32(rtwdev, REG_TXIQK_PI_B, 0x82110000); rtw_write32(rtwdev, REG_RXIQK_PI_B, 0x28110000); /* LO calibration setting */ rtw_write32(rtwdev, REG_IQK_AGC_RSP_11N, 0x0046a8d1); /* leave IQK mode */ rtw_write32_mask(rtwdev, REG_FPGA0_IQK_11N, 0xffffff00, 0x000000); /* modify RX IQK mode table */ rtw_write_rf(rtwdev, RF_PATH_A, RF_LUTWE, 0x80000, 0x1); /* RF_RCK_OS, RF_TXPA_G1, RF_TXPA_G2 */ rtw_write_rf(rtwdev, RF_PATH_A, 0x30, RFREG_MASK, 0x30000); rtw_write_rf(rtwdev, RF_PATH_A, 0x31, RFREG_MASK, 0x00007); rtw_write_rf(rtwdev, RF_PATH_A, 0x32, RFREG_MASK, 0xf7d77); /* PA, PAD setting */ rtw_write_rf(rtwdev, RF_PATH_A, RF_LUTDBG, 0x800, 0x1); rtw_write_rf(rtwdev, RF_PATH_A, 0x55, 0x7f, 0x5); rtw8703b_iqk_one_shot(rtwdev, false); status |= rtw8703b_iqk_check_rx_failed(rtwdev); restore: rtw8703b_iqk_txrx_path_post(rtwdev, backup); return status; } static void rtw8703b_iqk_one_round(struct rtw_dev *rtwdev, s32 result[][IQK_NR], u8 t, const struct rtw8723x_iqk_backup_regs *backup) { u32 i; u8 a_ok; rtw_dbg(rtwdev, RTW_DBG_RFK, "[IQK] IQ Calibration for 1T1R_S0/S1 for %d times\n", t); rtw8723x_iqk_path_adda_on(rtwdev, ADDA_ON_VAL_8703B); rtw8703b_iqk_config_mac(rtwdev, backup); rtw_write32_mask(rtwdev, REG_CCK_ANT_SEL_11N, 0x0f000000, 0xf); rtw_write32(rtwdev, REG_BB_RX_PATH_11N, 0x03a05600); rtw_write32(rtwdev, REG_TRMUX_11N, 0x000800e4); rtw_write32(rtwdev, REG_BB_PWR_SAV1_11N, 0x25204000); for (i = 0; i < PATH_IQK_RETRY; i++) { a_ok = rtw8703b_iqk_tx_path(rtwdev, backup); if (a_ok == IQK_TX_OK) { rtw_dbg(rtwdev, RTW_DBG_RFK, "[IQK] path A TX IQK success!\n"); result[t][IQK_S1_TX_X] = rtw_read32_mask(rtwdev, REG_IQK_RES_TX, BIT_MASK_RES_TX); result[t][IQK_S1_TX_Y] = rtw_read32_mask(rtwdev, REG_IQK_RES_TY, BIT_MASK_RES_TY); break; } rtw_dbg(rtwdev, RTW_DBG_RFK, "[IQK] path A TX IQK fail!\n"); result[t][IQK_S1_TX_X] = 0x100; result[t][IQK_S1_TX_Y] = 0x0; } for (i = 0; i < PATH_IQK_RETRY; i++) { a_ok = rtw8703b_iqk_rx_path(rtwdev, backup); if (a_ok == (IQK_TX_OK | IQK_RX_OK)) { rtw_dbg(rtwdev, RTW_DBG_RFK, "[IQK] path A RX IQK success!\n"); result[t][IQK_S1_RX_X] = rtw_read32_mask(rtwdev, REG_IQK_RES_RX, BIT_MASK_RES_RX); result[t][IQK_S1_RX_Y] = rtw_read32_mask(rtwdev, REG_IQK_RES_RY, BIT_MASK_RES_RY); break; } rtw_dbg(rtwdev, RTW_DBG_RFK, "[IQK] path A RX IQK fail!\n"); result[t][IQK_S1_RX_X] = 0x100; result[t][IQK_S1_RX_Y] = 0x0; } if (a_ok == 0x0) rtw_dbg(rtwdev, RTW_DBG_RFK, "[IQK] path A IQK fail!\n"); rtw_write32_mask(rtwdev, REG_FPGA0_IQK_11N, BIT_MASK_IQK_MOD, RST_IQK); mdelay(1); } static void rtw8703b_iqk_fill_a_matrix(struct rtw_dev *rtwdev, const s32 result[]) { u32 tmp_rx_iqi = 0x40000100 & GENMASK(31, 16); s32 tx1_a, tx1_a_ext; s32 tx1_c, tx1_c_ext; s32 oldval_1; s32 x, y; if (result[IQK_S1_TX_X] == 0) return; oldval_1 = rtw_read32_mask(rtwdev, REG_OFDM_0_XA_TX_IQ_IMBALANCE, BIT_MASK_TXIQ_ELM_D); x = iqkxy_to_s32(result[IQK_S1_TX_X]); tx1_a = iqk_mult(x, oldval_1, &tx1_a_ext); rtw_write32_mask(rtwdev, REG_OFDM_0_XA_TX_IQ_IMBALANCE, BIT_MASK_TXIQ_ELM_A, tx1_a); rtw_write32_mask(rtwdev, REG_OFDM_0_ECCA_THRESHOLD, BIT_MASK_OFDM0_EXT_A, tx1_a_ext); y = iqkxy_to_s32(result[IQK_S1_TX_Y]); tx1_c = iqk_mult(y, oldval_1, &tx1_c_ext); rtw_write32_mask(rtwdev, REG_TXIQK_MATRIXA_LSB2_11N, MASKH4BITS, BIT_SET_TXIQ_ELM_C1(tx1_c)); rtw_write32_mask(rtwdev, REG_OFDM_0_XA_TX_IQ_IMBALANCE, BIT_MASK_TXIQ_ELM_C, BIT_SET_TXIQ_ELM_C2(tx1_c)); rtw_write32_mask(rtwdev, REG_OFDM_0_ECCA_THRESHOLD, BIT_MASK_OFDM0_EXT_C, tx1_c_ext); rtw_dbg(rtwdev, RTW_DBG_RFK, "[IQK] X = 0x%x, TX1_A = 0x%x, oldval_1 0x%x\n", x, tx1_a, oldval_1); rtw_dbg(rtwdev, RTW_DBG_RFK, "[IQK] Y = 0x%x, TX1_C = 0x%x\n", y, tx1_c); if (result[IQK_S1_RX_X] == 0) return; tmp_rx_iqi |= FIELD_PREP(BIT_MASK_RXIQ_S1_X, result[IQK_S1_RX_X]); tmp_rx_iqi |= FIELD_PREP(BIT_MASK_RXIQ_S1_Y1, result[IQK_S1_RX_X]); rtw_write32(rtwdev, REG_A_RXIQI, tmp_rx_iqi); rtw_write32_mask(rtwdev, REG_RXIQK_MATRIX_LSB_11N, BIT_MASK_RXIQ_S1_Y2, BIT_SET_RXIQ_S1_Y2(result[IQK_S1_RX_Y])); } static void rtw8703b_phy_calibration(struct rtw_dev *rtwdev) { /* For some reason path A is called S1 and B S0 in shared * rtw88 calibration data. */ struct rtw_dm_info *dm_info = &rtwdev->dm_info; struct rtw8723x_iqk_backup_regs backup; u8 final_candidate = IQK_ROUND_INVALID; s32 result[IQK_ROUND_SIZE][IQK_NR]; bool good; u8 i, j; rtw_dbg(rtwdev, RTW_DBG_RFK, "[IQK] Start!\n"); memset(result, 0, sizeof(result)); rtw8723x_iqk_backup_path_ctrl(rtwdev, &backup); rtw8723x_iqk_backup_lte_path_gnt(rtwdev, &backup); rtw8723x_iqk_backup_regs(rtwdev, &backup); for (i = IQK_ROUND_0; i <= IQK_ROUND_2; i++) { rtw8723x_iqk_config_path_ctrl(rtwdev); rtw8723x_iqk_config_lte_path_gnt(rtwdev, IQK_LTE_WRITE_VAL_8703B); rtw8703b_iqk_one_round(rtwdev, result, i, &backup); rtw_dbg(rtwdev, RTW_DBG_RFK, "[IQK] back to BB mode, load original values!\n"); if (i > IQK_ROUND_0) rtw8723x_iqk_restore_regs(rtwdev, &backup); rtw8723x_iqk_restore_lte_path_gnt(rtwdev, &backup); rtw8723x_iqk_restore_path_ctrl(rtwdev, &backup); for (j = IQK_ROUND_0; j < i; j++) { good = rtw8723x_iqk_similarity_cmp(rtwdev, result, j, i); if (good) { final_candidate = j; rtw_dbg(rtwdev, RTW_DBG_RFK, "[IQK] cmp %d:%d final_candidate is %x\n", j, i, final_candidate); goto iqk_done; } } } if (final_candidate == IQK_ROUND_INVALID) { s32 reg_tmp = 0; for (i = 0; i < IQK_NR; i++) reg_tmp += result[IQK_ROUND_HYBRID][i]; if (reg_tmp != 0) { final_candidate = IQK_ROUND_HYBRID; } else { WARN(1, "IQK failed\n"); goto out; } } iqk_done: /* only path A is calibrated in rtl8703b */ rtw8703b_iqk_fill_a_matrix(rtwdev, result[final_candidate]); dm_info->iqk.result.s1_x = result[final_candidate][IQK_S1_TX_X]; dm_info->iqk.result.s1_y = result[final_candidate][IQK_S1_TX_Y]; dm_info->iqk.result.s0_x = result[final_candidate][IQK_S0_TX_X]; dm_info->iqk.result.s0_y = result[final_candidate][IQK_S0_TX_Y]; dm_info->iqk.done = true; out: rtw_write32(rtwdev, REG_BB_SEL_BTG, backup.bb_sel_btg); rtw_dbg(rtwdev, RTW_DBG_RFK, "[IQK] final_candidate is %x\n", final_candidate); for (i = IQK_ROUND_0; i < IQK_ROUND_SIZE; i++) rtw_dbg(rtwdev, RTW_DBG_RFK, "[IQK] Result %u: rege94_s1=%x rege9c_s1=%x regea4_s1=%x regeac_s1=%x rege94_s0=%x rege9c_s0=%x regea4_s0=%x regeac_s0=%x %s\n", i, result[i][0], result[i][1], result[i][2], result[i][3], result[i][4], result[i][5], result[i][6], result[i][7], final_candidate == i ? "(final candidate)" : ""); rtw_dbg(rtwdev, RTW_DBG_RFK, "[IQK] 0xc80 = 0x%x 0xc94 = 0x%x 0xc14 = 0x%x 0xca0 = 0x%x\n", rtw_read32(rtwdev, REG_OFDM_0_XA_TX_IQ_IMBALANCE), rtw_read32(rtwdev, REG_TXIQK_MATRIXA_LSB2_11N), rtw_read32(rtwdev, REG_A_RXIQI), rtw_read32(rtwdev, REG_RXIQK_MATRIX_LSB_11N)); rtw_dbg(rtwdev, RTW_DBG_RFK, "[IQK] 0xcd0 = 0x%x 0xcd4 = 0x%x 0xcd8 = 0x%x\n", rtw_read32(rtwdev, REG_TXIQ_AB_S0), rtw_read32(rtwdev, REG_TXIQ_CD_S0), rtw_read32(rtwdev, REG_RXIQ_AB_S0)); rtw_dbg(rtwdev, RTW_DBG_RFK, "[IQK] Finished.\n"); } static void rtw8703b_set_iqk_matrix_by_result(struct rtw_dev *rtwdev, u32 ofdm_swing, u8 rf_path) { struct rtw_dm_info *dm_info = &rtwdev->dm_info; s32 ele_A, ele_D, ele_C; s32 ele_A_ext, ele_C_ext, ele_D_ext; s32 iqk_result_x; s32 iqk_result_y; s32 value32; switch (rf_path) { default: case RF_PATH_A: iqk_result_x = dm_info->iqk.result.s1_x; iqk_result_y = dm_info->iqk.result.s1_y; break; case RF_PATH_B: iqk_result_x = dm_info->iqk.result.s0_x; iqk_result_y = dm_info->iqk.result.s0_y; break; } /* new element D */ ele_D = OFDM_SWING_D(ofdm_swing); iqk_mult(iqk_result_x, ele_D, &ele_D_ext); /* new element A */ iqk_result_x = iqkxy_to_s32(iqk_result_x); ele_A = iqk_mult(iqk_result_x, ele_D, &ele_A_ext); /* new element C */ iqk_result_y = iqkxy_to_s32(iqk_result_y); ele_C = iqk_mult(iqk_result_y, ele_D, &ele_C_ext); switch (rf_path) { case RF_PATH_A: default: /* write new elements A, C, D, and element B is always 0 */ value32 = BIT_SET_TXIQ_ELM_ACD(ele_A, ele_C, ele_D); rtw_write32(rtwdev, REG_OFDM_0_XA_TX_IQ_IMBALANCE, value32); value32 = BIT_SET_TXIQ_ELM_C1(ele_C); rtw_write32_mask(rtwdev, REG_TXIQK_MATRIXA_LSB2_11N, MASKH4BITS, value32); value32 = rtw_read32(rtwdev, REG_OFDM_0_ECCA_THRESHOLD); value32 &= ~BIT_MASK_OFDM0_EXTS; value32 |= BIT_SET_OFDM0_EXTS(ele_A_ext, ele_C_ext, ele_D_ext); rtw_write32(rtwdev, REG_OFDM_0_ECCA_THRESHOLD, value32); break; case RF_PATH_B: /* write new elements A, C, D, and element B is always 0 */ value32 = BIT_SET_TXIQ_ELM_ACD(ele_A, ele_C, ele_D); rtw_write32(rtwdev, REG_OFDM_0_XB_TX_IQ_IMBALANCE, value32); value32 = BIT_SET_TXIQ_ELM_C1(ele_C); rtw_write32_mask(rtwdev, REG_TXIQK_MATRIXB_LSB2_11N, MASKH4BITS, value32); value32 = rtw_read32(rtwdev, REG_OFDM_0_ECCA_THRESHOLD); value32 &= ~BIT_MASK_OFDM0_EXTS_B; value32 |= BIT_SET_OFDM0_EXTS_B(ele_A_ext, ele_C_ext, ele_D_ext); rtw_write32(rtwdev, REG_OFDM_0_ECCA_THRESHOLD, value32); break; } } static void rtw8703b_set_iqk_matrix(struct rtw_dev *rtwdev, s8 ofdm_index, u8 rf_path) { struct rtw_dm_info *dm_info = &rtwdev->dm_info; s32 value32; u32 ofdm_swing; ofdm_index = clamp_t(s8, ofdm_index, 0, RTW_OFDM_SWING_TABLE_SIZE - 1); ofdm_swing = rtw8703b_ofdm_swing_table[ofdm_index]; if (dm_info->iqk.done) { rtw8703b_set_iqk_matrix_by_result(rtwdev, ofdm_swing, rf_path); return; } switch (rf_path) { case RF_PATH_A: default: rtw_write32(rtwdev, REG_OFDM_0_XA_TX_IQ_IMBALANCE, ofdm_swing); rtw_write32_mask(rtwdev, REG_TXIQK_MATRIXA_LSB2_11N, MASKH4BITS, 0x00); value32 = rtw_read32(rtwdev, REG_OFDM_0_ECCA_THRESHOLD); value32 &= ~BIT_MASK_OFDM0_EXTS; rtw_write32(rtwdev, REG_OFDM_0_ECCA_THRESHOLD, value32); break; case RF_PATH_B: rtw_write32(rtwdev, REG_OFDM_0_XB_TX_IQ_IMBALANCE, ofdm_swing); rtw_write32_mask(rtwdev, REG_TXIQK_MATRIXB_LSB2_11N, MASKH4BITS, 0x00); value32 = rtw_read32(rtwdev, REG_OFDM_0_ECCA_THRESHOLD); value32 &= ~BIT_MASK_OFDM0_EXTS_B; rtw_write32(rtwdev, REG_OFDM_0_ECCA_THRESHOLD, value32); break; } } static void rtw8703b_pwrtrack_set_ofdm_pwr(struct rtw_dev *rtwdev, s8 swing_idx, s8 txagc_idx) { struct rtw_dm_info *dm_info = &rtwdev->dm_info; dm_info->txagc_remnant_ofdm = txagc_idx; /* Only path A is calibrated for rtl8703b */ rtw8703b_set_iqk_matrix(rtwdev, swing_idx, RF_PATH_A); } static void rtw8703b_pwrtrack_set_cck_pwr(struct rtw_dev *rtwdev, s8 swing_idx, s8 txagc_idx) { struct rtw_dm_info *dm_info = &rtwdev->dm_info; dm_info->txagc_remnant_cck = txagc_idx; swing_idx = clamp_t(s8, swing_idx, 0, RTW_CCK_SWING_TABLE_SIZE - 1); BUILD_BUG_ON(ARRAY_SIZE(rtw8703b_cck_pwr_regs) != ARRAY_SIZE(rtw8703b_cck_swing_table[0])); for (int i = 0; i < ARRAY_SIZE(rtw8703b_cck_pwr_regs); i++) rtw_write8(rtwdev, rtw8703b_cck_pwr_regs[i], rtw8703b_cck_swing_table[swing_idx][i]); } static void rtw8703b_pwrtrack_set(struct rtw_dev *rtwdev, u8 path) { struct rtw_dm_info *dm_info = &rtwdev->dm_info; struct rtw_hal *hal = &rtwdev->hal; u8 limit_ofdm; u8 limit_cck = 21; s8 final_ofdm_swing_index; s8 final_cck_swing_index; limit_ofdm = rtw8723x_pwrtrack_get_limit_ofdm(rtwdev); final_ofdm_swing_index = dm_info->default_ofdm_index + dm_info->delta_power_index[path]; final_cck_swing_index = dm_info->default_cck_index + dm_info->delta_power_index[path]; if (final_ofdm_swing_index > limit_ofdm) rtw8703b_pwrtrack_set_ofdm_pwr(rtwdev, limit_ofdm, final_ofdm_swing_index - limit_ofdm); else if (final_ofdm_swing_index < 0) rtw8703b_pwrtrack_set_ofdm_pwr(rtwdev, 0, final_ofdm_swing_index); else rtw8703b_pwrtrack_set_ofdm_pwr(rtwdev, final_ofdm_swing_index, 0); if (final_cck_swing_index > limit_cck) rtw8703b_pwrtrack_set_cck_pwr(rtwdev, limit_cck, final_cck_swing_index - limit_cck); else if (final_cck_swing_index < 0) rtw8703b_pwrtrack_set_cck_pwr(rtwdev, 0, final_cck_swing_index); else rtw8703b_pwrtrack_set_cck_pwr(rtwdev, final_cck_swing_index, 0); rtw_phy_set_tx_power_level(rtwdev, hal->current_channel); } static void rtw8703b_phy_pwrtrack(struct rtw_dev *rtwdev) { struct rtw_dm_info *dm_info = &rtwdev->dm_info; struct rtw_swing_table swing_table; u8 thermal_value, delta, path; bool do_iqk = false; rtw_phy_config_swing_table(rtwdev, &swing_table); if (rtwdev->efuse.thermal_meter[0] == 0xff) return; thermal_value = rtw_read_rf(rtwdev, RF_PATH_A, RF_T_METER, 0xfc00); rtw_phy_pwrtrack_avg(rtwdev, thermal_value, RF_PATH_A); do_iqk = rtw_phy_pwrtrack_need_iqk(rtwdev); if (do_iqk) rtw8723x_lck(rtwdev); if (dm_info->pwr_trk_init_trigger) dm_info->pwr_trk_init_trigger = false; else if (!rtw_phy_pwrtrack_thermal_changed(rtwdev, thermal_value, RF_PATH_A)) goto iqk; delta = rtw_phy_pwrtrack_get_delta(rtwdev, RF_PATH_A); delta = min_t(u8, delta, RTW_PWR_TRK_TBL_SZ - 1); for (path = 0; path < rtwdev->hal.rf_path_num; path++) { s8 delta_cur, delta_last; delta_last = dm_info->delta_power_index[path]; delta_cur = rtw_phy_pwrtrack_get_pwridx(rtwdev, &swing_table, path, RF_PATH_A, delta); if (delta_last == delta_cur) continue; dm_info->delta_power_index[path] = delta_cur; rtw8703b_pwrtrack_set(rtwdev, path); } rtw8723x_pwrtrack_set_xtal(rtwdev, RF_PATH_A, delta); iqk: if (do_iqk) rtw8703b_phy_calibration(rtwdev); } static void rtw8703b_pwr_track(struct rtw_dev *rtwdev) { struct rtw_efuse *efuse = &rtwdev->efuse; struct rtw_dm_info *dm_info = &rtwdev->dm_info; if (efuse->power_track_type != 0) { rtw_warn(rtwdev, "unsupported power track type"); return; } if (!dm_info->pwr_trk_triggered) { rtw_write_rf(rtwdev, RF_PATH_A, RF_T_METER, GENMASK(17, 16), 0x03); dm_info->pwr_trk_triggered = true; return; } rtw8703b_phy_pwrtrack(rtwdev); dm_info->pwr_trk_triggered = false; } static void rtw8703b_coex_set_gnt_fix(struct rtw_dev *rtwdev) { } static void rtw8703b_coex_set_gnt_debug(struct rtw_dev *rtwdev) { } static void rtw8703b_coex_set_rfe_type(struct rtw_dev *rtwdev) { struct rtw_coex *coex = &rtwdev->coex; struct rtw_coex_rfe *coex_rfe = &coex->rfe; coex_rfe->rfe_module_type = rtwdev->efuse.rfe_option; coex_rfe->ant_switch_polarity = 0; coex_rfe->ant_switch_exist = false; coex_rfe->ant_switch_with_bt = false; coex_rfe->ant_switch_diversity = false; coex_rfe->wlg_at_btg = true; /* disable LTE coex on wifi side */ rtw_coex_write_indirect_reg(rtwdev, LTE_COEX_CTRL, BIT_LTE_COEX_EN, 0x0); rtw_coex_write_indirect_reg(rtwdev, LTE_WL_TRX_CTRL, MASKLWORD, 0xffff); rtw_coex_write_indirect_reg(rtwdev, LTE_BT_TRX_CTRL, MASKLWORD, 0xffff); } static void rtw8703b_coex_set_wl_tx_power(struct rtw_dev *rtwdev, u8 wl_pwr) { } static void rtw8703b_coex_set_wl_rx_gain(struct rtw_dev *rtwdev, bool low_gain) { } static const u8 rtw8703b_pwrtrk_2gb_n[] = { 0, 0, 1, 2, 2, 3, 3, 4, 4, 4, 4, 5, 5, 6, 6, 7, 7, 7, 7, 8, 8, 9, 9, 10, 10, 10, 11, 11, 11, 11 }; static const u8 rtw8703b_pwrtrk_2gb_p[] = { 0, 1, 2, 3, 3, 4, 4, 4, 4, 5, 5, 6, 7, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 13, 13, 14, 14, 15, 15 }; static const u8 rtw8703b_pwrtrk_2ga_n[] = { 0, 0, 1, 2, 2, 3, 3, 4, 4, 4, 4, 5, 5, 6, 6, 7, 7, 7, 7, 8, 8, 9, 9, 10, 10, 10, 11, 11, 11, 11 }; static const u8 rtw8703b_pwrtrk_2ga_p[] = { 0, 1, 2, 3, 3, 4, 4, 4, 4, 5, 5, 6, 7, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 13, 13, 14, 14, 15, 15 }; static const u8 rtw8703b_pwrtrk_2g_cck_b_n[] = { 0, 0, 1, 2, 2, 3, 3, 4, 4, 4, 4, 5, 5, 6, 6, 7, 7, 7, 7, 8, 8, 9, 9, 10, 10, 10, 11, 11, 11, 11 }; static const u8 rtw8703b_pwrtrk_2g_cck_b_p[] = { 0, 0, 1, 1, 2, 3, 3, 3, 4, 4, 4, 5, 6, 6, 6, 7, 7, 8, 8, 8, 9, 10, 10, 10, 11, 11, 12, 12, 13, 13 }; static const u8 rtw8703b_pwrtrk_2g_cck_a_n[] = { 0, 0, 1, 2, 2, 3, 3, 4, 4, 4, 4, 5, 5, 6, 6, 7, 7, 7, 7, 8, 8, 9, 9, 10, 10, 10, 11, 11, 11, 11 }; static const u8 rtw8703b_pwrtrk_2g_cck_a_p[] = { 0, 0, 1, 1, 2, 3, 3, 3, 4, 4, 4, 5, 6, 6, 6, 7, 7, 8, 8, 8, 9, 10, 10, 10, 11, 11, 12, 12, 13, 13 }; static const s8 rtw8703b_pwrtrk_xtal_n[] = { 0, 0, 0, -1, -1, -1, -1, -2, -2, -2, -3, -3, -3, -3, -3, -4, -2, -2, -1, -1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1 }; static const s8 rtw8703b_pwrtrk_xtal_p[] = { 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 1, 0, -1, -1, -1, -2, -3, -7, -9, -10, -11, -14, -16, -18, -20, -22, -24, -26, -28, -30 }; static const struct rtw_pwr_track_tbl rtw8703b_rtw_pwr_track_tbl = { .pwrtrk_2gb_n = rtw8703b_pwrtrk_2gb_n, .pwrtrk_2gb_p = rtw8703b_pwrtrk_2gb_p, .pwrtrk_2ga_n = rtw8703b_pwrtrk_2ga_n, .pwrtrk_2ga_p = rtw8703b_pwrtrk_2ga_p, .pwrtrk_2g_cckb_n = rtw8703b_pwrtrk_2g_cck_b_n, .pwrtrk_2g_cckb_p = rtw8703b_pwrtrk_2g_cck_b_p, .pwrtrk_2g_ccka_n = rtw8703b_pwrtrk_2g_cck_a_n, .pwrtrk_2g_ccka_p = rtw8703b_pwrtrk_2g_cck_a_p, .pwrtrk_xtal_n = rtw8703b_pwrtrk_xtal_n, .pwrtrk_xtal_p = rtw8703b_pwrtrk_xtal_p, }; /* Shared-Antenna Coex Table */ static const struct coex_table_para table_sant_8703b[] = { {0xffffffff, 0xffffffff}, /* case-0 */ {0x55555555, 0x55555555}, {0x66555555, 0x66555555}, {0xaaaaaaaa, 0xaaaaaaaa}, {0x5a5a5a5a, 0x5a5a5a5a}, {0xfafafafa, 0xfafafafa}, /* case-5 */ {0x6a5a5555, 0xaaaaaaaa}, {0x6a5a56aa, 0x6a5a56aa}, {0x6a5a5a5a, 0x6a5a5a5a}, {0x66555555, 0x5a5a5a5a}, {0x66555555, 0x6a5a5a5a}, /* case-10 */ {0x66555555, 0x6a5a5aaa}, {0x66555555, 0x5a5a5aaa}, {0x66555555, 0x6aaa5aaa}, {0x66555555, 0xaaaa5aaa}, {0x66555555, 0xaaaaaaaa}, /* case-15 */ {0xffff55ff, 0xfafafafa}, {0xffff55ff, 0x6afa5afa}, {0xaaffffaa, 0xfafafafa}, {0xaa5555aa, 0x5a5a5a5a}, {0xaa5555aa, 0x6a5a5a5a}, /* case-20 */ {0xaa5555aa, 0xaaaaaaaa}, {0xffffffff, 0x5a5a5a5a}, {0xffffffff, 0x5a5a5a5a}, {0xffffffff, 0x55555555}, {0xffffffff, 0x5a5a5aaa}, /* case-25 */ {0x55555555, 0x5a5a5a5a}, {0x55555555, 0xaaaaaaaa}, {0x55555555, 0x6a5a6a5a}, {0x66556655, 0x66556655}, {0x66556aaa, 0x6a5a6aaa}, /* case-30 */ {0xffffffff, 0x5aaa5aaa}, {0x56555555, 0x5a5a5aaa}, }; /* Shared-Antenna TDMA */ static const struct coex_tdma_para tdma_sant_8703b[] = { { {0x00, 0x00, 0x00, 0x00, 0x00} }, /* case-0 */ { {0x61, 0x45, 0x03, 0x11, 0x11} }, /* case-1 */ { {0x61, 0x3a, 0x03, 0x11, 0x11} }, { {0x61, 0x30, 0x03, 0x11, 0x11} }, { {0x61, 0x20, 0x03, 0x11, 0x11} }, { {0x61, 0x10, 0x03, 0x11, 0x11} }, /* case-5 */ { {0x61, 0x45, 0x03, 0x11, 0x10} }, { {0x61, 0x3a, 0x03, 0x11, 0x10} }, { {0x61, 0x30, 0x03, 0x11, 0x10} }, { {0x61, 0x20, 0x03, 0x11, 0x10} }, { {0x61, 0x10, 0x03, 0x11, 0x10} }, /* case-10 */ { {0x61, 0x08, 0x03, 0x11, 0x14} }, { {0x61, 0x08, 0x03, 0x10, 0x14} }, { {0x51, 0x08, 0x03, 0x10, 0x54} }, { {0x51, 0x08, 0x03, 0x10, 0x55} }, { {0x51, 0x08, 0x07, 0x10, 0x54} }, /* case-15 */ { {0x51, 0x45, 0x03, 0x10, 0x50} }, { {0x51, 0x3a, 0x03, 0x10, 0x50} }, { {0x51, 0x30, 0x03, 0x10, 0x50} }, { {0x51, 0x20, 0x03, 0x10, 0x50} }, { {0x51, 0x10, 0x03, 0x10, 0x50} }, /* case-20 */ { {0x51, 0x4a, 0x03, 0x10, 0x50} }, { {0x51, 0x0c, 0x03, 0x10, 0x54} }, { {0x55, 0x08, 0x03, 0x10, 0x54} }, { {0x65, 0x10, 0x03, 0x11, 0x10} }, { {0x51, 0x10, 0x03, 0x10, 0x51} }, /* case-25 */ { {0x51, 0x08, 0x03, 0x10, 0x50} }, { {0x61, 0x08, 0x03, 0x11, 0x11} }, }; static struct rtw_chip_ops rtw8703b_ops = { .mac_init = rtw8723x_mac_init, .dump_fw_crash = NULL, .shutdown = NULL, .read_efuse = rtw8703b_read_efuse, .phy_set_param = rtw8703b_phy_set_param, .set_channel = rtw8703b_set_channel, .query_rx_desc = rtw8703b_query_rx_desc, .read_rf = rtw_phy_read_rf_sipi, .write_rf = rtw_phy_write_rf_reg_sipi, .set_tx_power_index = rtw8723x_set_tx_power_index, .set_antenna = NULL, .cfg_ldo25 = rtw8723x_cfg_ldo25, .efuse_grant = rtw8723x_efuse_grant, .false_alarm_statistics = rtw8723x_false_alarm_statistics, .phy_calibration = rtw8703b_phy_calibration, .dpk_track = NULL, /* 8723d uses REG_CSRATIO to set dm_info.cck_pd_default, which * is used in its cck_pd_set function. According to comments * in the vendor driver code it doesn't exist in this chip * generation, only 0xa0a ("ODM_CCK_PD_THRESH", which is only * *written* to). */ .cck_pd_set = NULL, .pwr_track = rtw8703b_pwr_track, .config_bfee = NULL, .set_gid_table = NULL, .cfg_csi_rate = NULL, .adaptivity_init = NULL, .adaptivity = NULL, .cfo_init = NULL, .cfo_track = NULL, .config_tx_path = NULL, .config_txrx_mode = NULL, .fill_txdesc_checksum = rtw8723x_fill_txdesc_checksum, /* for coex */ .coex_set_init = rtw8723x_coex_cfg_init, .coex_set_ant_switch = NULL, .coex_set_gnt_fix = rtw8703b_coex_set_gnt_fix, .coex_set_gnt_debug = rtw8703b_coex_set_gnt_debug, .coex_set_rfe_type = rtw8703b_coex_set_rfe_type, .coex_set_wl_tx_power = rtw8703b_coex_set_wl_tx_power, .coex_set_wl_rx_gain = rtw8703b_coex_set_wl_rx_gain, }; const struct rtw_chip_info rtw8703b_hw_spec = { .ops = &rtw8703b_ops, .id = RTW_CHIP_TYPE_8703B, .fw_name = "rtw88/rtw8703b_fw.bin", .wlan_cpu = RTW_WCPU_11N, .tx_pkt_desc_sz = 40, .tx_buf_desc_sz = 16, .rx_pkt_desc_sz = 24, .rx_buf_desc_sz = 8, .phy_efuse_size = 256, .log_efuse_size = 512, .ptct_efuse_size = 15, .txff_size = 32768, .rxff_size = 16384, .rsvd_drv_pg_num = 8, .band = RTW_BAND_2G, .page_size = TX_PAGE_SIZE, .csi_buf_pg_num = 0, .dig_min = 0x20, .txgi_factor = 1, .is_pwr_by_rate_dec = true, .rx_ldpc = false, .tx_stbc = false, .max_power_index = 0x3f, .ampdu_density = IEEE80211_HT_MPDU_DENSITY_16, .path_div_supported = false, .ht_supported = true, .vht_supported = false, .lps_deep_mode_supported = 0, .sys_func_en = 0xFD, .pwr_on_seq = card_enable_flow_8703b, .pwr_off_seq = card_disable_flow_8703b, .rqpn_table = rqpn_table_8703b, .prioq_addrs = &rtw8723x_common.prioq_addrs, .page_table = page_table_8703b, /* used only in pci.c, not needed for SDIO devices */ .intf_table = NULL, .dig = rtw8723x_common.dig, .dig_cck = rtw8723x_common.dig_cck, .rf_sipi_addr = {0x840, 0x844}, .rf_sipi_read_addr = rtw8723x_common.rf_sipi_addr, .fix_rf_phy_num = 2, .ltecoex_addr = &rtw8723x_common.ltecoex_addr, .mac_tbl = &rtw8703b_mac_tbl, .agc_tbl = &rtw8703b_agc_tbl, .bb_tbl = &rtw8703b_bb_tbl, .rf_tbl = {&rtw8703b_rf_a_tbl}, .rfe_defs = rtw8703b_rfe_defs, .rfe_defs_size = ARRAY_SIZE(rtw8703b_rfe_defs), .iqk_threshold = 8, .pwr_track_tbl = &rtw8703b_rtw_pwr_track_tbl, /* WOWLAN firmware exists, but not implemented yet */ .wow_fw_name = "rtw88/rtw8703b_wow_fw.bin", .wowlan_stub = NULL, .max_scan_ie_len = IEEE80211_MAX_DATA_LEN, /* Vendor driver has a time-based format, converted from * 20180330 */ .coex_para_ver = 0x0133ed6a, .bt_desired_ver = 0x1c, .scbd_support = true, .new_scbd10_def = true, .ble_hid_profile_support = false, .wl_mimo_ps_support = false, .pstdma_type = COEX_PSTDMA_FORCE_LPSOFF, .bt_rssi_type = COEX_BTRSSI_RATIO, .ant_isolation = 15, .rssi_tolerance = 2, .bt_rssi_step = bt_rssi_step_8703b, .wl_rssi_step = wl_rssi_step_8703b, /* sant -> shared antenna, nsant -> non-shared antenna * Not sure if 8703b versions with non-shard antenna even exist. */ .table_sant_num = ARRAY_SIZE(table_sant_8703b), .table_sant = table_sant_8703b, .table_nsant_num = 0, .table_nsant = NULL, .tdma_sant_num = ARRAY_SIZE(tdma_sant_8703b), .tdma_sant = tdma_sant_8703b, .tdma_nsant_num = 0, .tdma_nsant = NULL, .wl_rf_para_num = ARRAY_SIZE(rf_para_tx_8703b), .wl_rf_para_tx = rf_para_tx_8703b, .wl_rf_para_rx = rf_para_rx_8703b, .bt_afh_span_bw20 = 0x20, .bt_afh_span_bw40 = 0x30, .afh_5g_num = ARRAY_SIZE(afh_5g_8703b), .afh_5g = afh_5g_8703b, /* REG_BTG_SEL doesn't seem to have a counterpart in the * vendor driver. Mathematically it's REG_PAD_CTRL1 + 3. * * It is used in the cardemu_to_act power sequence by though * (by address, 0x0067), comment: "0x67[0] = 0 to disable * BT_GPS_SEL pins" That seems to fit. */ .btg_reg = NULL, /* These registers are used to read (and print) from if * CONFIG_RTW88_DEBUGFS is enabled. */ .coex_info_hw_regs_num = 0, .coex_info_hw_regs = NULL, }; EXPORT_SYMBOL(rtw8703b_hw_spec); MODULE_FIRMWARE("rtw88/rtw8703b_fw.bin"); MODULE_FIRMWARE("rtw88/rtw8703b_wow_fw.bin"); MODULE_AUTHOR("Fiona Klute "); MODULE_DESCRIPTION("Realtek 802.11n wireless 8703b driver"); MODULE_LICENSE("Dual BSD/GPL");