// SPDX-License-Identifier: GPL-2.0 /* * Driver for Marvell PPv2 network controller for Armada 375 SoC. * * Copyright (C) 2014 Marvell * * Marcin Wojtas */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "mvpp2.h" #include "mvpp2_prs.h" #include "mvpp2_cls.h" enum mvpp2_bm_pool_log_num { MVPP2_BM_SHORT, MVPP2_BM_LONG, MVPP2_BM_JUMBO, MVPP2_BM_POOLS_NUM }; static struct { int pkt_size; int buf_num; } mvpp2_pools[MVPP2_BM_POOLS_NUM]; /* The prototype is added here to be used in start_dev when using ACPI. This * will be removed once phylink is used for all modes (dt+ACPI). */ static void mvpp2_acpi_start(struct mvpp2_port *port); /* Queue modes */ #define MVPP2_QDIST_SINGLE_MODE 0 #define MVPP2_QDIST_MULTI_MODE 1 static int queue_mode = MVPP2_QDIST_MULTI_MODE; module_param(queue_mode, int, 0444); MODULE_PARM_DESC(queue_mode, "Set queue_mode (single=0, multi=1)"); /* Utility/helper methods */ void mvpp2_write(struct mvpp2 *priv, u32 offset, u32 data) { writel(data, priv->swth_base[0] + offset); } u32 mvpp2_read(struct mvpp2 *priv, u32 offset) { return readl(priv->swth_base[0] + offset); } static u32 mvpp2_read_relaxed(struct mvpp2 *priv, u32 offset) { return readl_relaxed(priv->swth_base[0] + offset); } static inline u32 mvpp2_cpu_to_thread(struct mvpp2 *priv, int cpu) { return cpu % priv->nthreads; } static void mvpp2_cm3_write(struct mvpp2 *priv, u32 offset, u32 data) { writel(data, priv->cm3_base + offset); } static u32 mvpp2_cm3_read(struct mvpp2 *priv, u32 offset) { return readl(priv->cm3_base + offset); } static struct page_pool * mvpp2_create_page_pool(struct device *dev, int num, int len, enum dma_data_direction dma_dir) { struct page_pool_params pp_params = { /* internal DMA mapping in page_pool */ .flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV, .pool_size = num, .nid = NUMA_NO_NODE, .dev = dev, .dma_dir = dma_dir, .offset = MVPP2_SKB_HEADROOM, .max_len = len, }; return page_pool_create(&pp_params); } /* These accessors should be used to access: * * - per-thread registers, where each thread has its own copy of the * register. * * MVPP2_BM_VIRT_ALLOC_REG * MVPP2_BM_ADDR_HIGH_ALLOC * MVPP22_BM_ADDR_HIGH_RLS_REG * MVPP2_BM_VIRT_RLS_REG * MVPP2_ISR_RX_TX_CAUSE_REG * MVPP2_ISR_RX_TX_MASK_REG * MVPP2_TXQ_NUM_REG * MVPP2_AGGR_TXQ_UPDATE_REG * MVPP2_TXQ_RSVD_REQ_REG * MVPP2_TXQ_RSVD_RSLT_REG * MVPP2_TXQ_SENT_REG * MVPP2_RXQ_NUM_REG * * - global registers that must be accessed through a specific thread * window, because they are related to an access to a per-thread * register * * MVPP2_BM_PHY_ALLOC_REG (related to MVPP2_BM_VIRT_ALLOC_REG) * MVPP2_BM_PHY_RLS_REG (related to MVPP2_BM_VIRT_RLS_REG) * MVPP2_RXQ_THRESH_REG (related to MVPP2_RXQ_NUM_REG) * MVPP2_RXQ_DESC_ADDR_REG (related to MVPP2_RXQ_NUM_REG) * MVPP2_RXQ_DESC_SIZE_REG (related to MVPP2_RXQ_NUM_REG) * MVPP2_RXQ_INDEX_REG (related to MVPP2_RXQ_NUM_REG) * MVPP2_TXQ_PENDING_REG (related to MVPP2_TXQ_NUM_REG) * MVPP2_TXQ_DESC_ADDR_REG (related to MVPP2_TXQ_NUM_REG) * MVPP2_TXQ_DESC_SIZE_REG (related to MVPP2_TXQ_NUM_REG) * MVPP2_TXQ_INDEX_REG (related to MVPP2_TXQ_NUM_REG) * MVPP2_TXQ_PENDING_REG (related to MVPP2_TXQ_NUM_REG) * MVPP2_TXQ_PREF_BUF_REG (related to MVPP2_TXQ_NUM_REG) * MVPP2_TXQ_PREF_BUF_REG (related to MVPP2_TXQ_NUM_REG) */ static void mvpp2_thread_write(struct mvpp2 *priv, unsigned int thread, u32 offset, u32 data) { writel(data, priv->swth_base[thread] + offset); } static u32 mvpp2_thread_read(struct mvpp2 *priv, unsigned int thread, u32 offset) { return readl(priv->swth_base[thread] + offset); } static void mvpp2_thread_write_relaxed(struct mvpp2 *priv, unsigned int thread, u32 offset, u32 data) { writel_relaxed(data, priv->swth_base[thread] + offset); } static u32 mvpp2_thread_read_relaxed(struct mvpp2 *priv, unsigned int thread, u32 offset) { return readl_relaxed(priv->swth_base[thread] + offset); } static dma_addr_t mvpp2_txdesc_dma_addr_get(struct mvpp2_port *port, struct mvpp2_tx_desc *tx_desc) { if (port->priv->hw_version == MVPP21) return le32_to_cpu(tx_desc->pp21.buf_dma_addr); else return le64_to_cpu(tx_desc->pp22.buf_dma_addr_ptp) & MVPP2_DESC_DMA_MASK; } static void mvpp2_txdesc_dma_addr_set(struct mvpp2_port *port, struct mvpp2_tx_desc *tx_desc, dma_addr_t dma_addr) { dma_addr_t addr, offset; addr = dma_addr & ~MVPP2_TX_DESC_ALIGN; offset = dma_addr & MVPP2_TX_DESC_ALIGN; if (port->priv->hw_version == MVPP21) { tx_desc->pp21.buf_dma_addr = cpu_to_le32(addr); tx_desc->pp21.packet_offset = offset; } else { __le64 val = cpu_to_le64(addr); tx_desc->pp22.buf_dma_addr_ptp &= ~cpu_to_le64(MVPP2_DESC_DMA_MASK); tx_desc->pp22.buf_dma_addr_ptp |= val; tx_desc->pp22.packet_offset = offset; } } static size_t mvpp2_txdesc_size_get(struct mvpp2_port *port, struct mvpp2_tx_desc *tx_desc) { if (port->priv->hw_version == MVPP21) return le16_to_cpu(tx_desc->pp21.data_size); else return le16_to_cpu(tx_desc->pp22.data_size); } static void mvpp2_txdesc_size_set(struct mvpp2_port *port, struct mvpp2_tx_desc *tx_desc, size_t size) { if (port->priv->hw_version == MVPP21) tx_desc->pp21.data_size = cpu_to_le16(size); else tx_desc->pp22.data_size = cpu_to_le16(size); } static void mvpp2_txdesc_txq_set(struct mvpp2_port *port, struct mvpp2_tx_desc *tx_desc, unsigned int txq) { if (port->priv->hw_version == MVPP21) tx_desc->pp21.phys_txq = txq; else tx_desc->pp22.phys_txq = txq; } static void mvpp2_txdesc_cmd_set(struct mvpp2_port *port, struct mvpp2_tx_desc *tx_desc, unsigned int command) { if (port->priv->hw_version == MVPP21) tx_desc->pp21.command = cpu_to_le32(command); else tx_desc->pp22.command = cpu_to_le32(command); } static unsigned int mvpp2_txdesc_offset_get(struct mvpp2_port *port, struct mvpp2_tx_desc *tx_desc) { if (port->priv->hw_version == MVPP21) return tx_desc->pp21.packet_offset; else return tx_desc->pp22.packet_offset; } static dma_addr_t mvpp2_rxdesc_dma_addr_get(struct mvpp2_port *port, struct mvpp2_rx_desc *rx_desc) { if (port->priv->hw_version == MVPP21) return le32_to_cpu(rx_desc->pp21.buf_dma_addr); else return le64_to_cpu(rx_desc->pp22.buf_dma_addr_key_hash) & MVPP2_DESC_DMA_MASK; } static unsigned long mvpp2_rxdesc_cookie_get(struct mvpp2_port *port, struct mvpp2_rx_desc *rx_desc) { if (port->priv->hw_version == MVPP21) return le32_to_cpu(rx_desc->pp21.buf_cookie); else return le64_to_cpu(rx_desc->pp22.buf_cookie_misc) & MVPP2_DESC_DMA_MASK; } static size_t mvpp2_rxdesc_size_get(struct mvpp2_port *port, struct mvpp2_rx_desc *rx_desc) { if (port->priv->hw_version == MVPP21) return le16_to_cpu(rx_desc->pp21.data_size); else return le16_to_cpu(rx_desc->pp22.data_size); } static u32 mvpp2_rxdesc_status_get(struct mvpp2_port *port, struct mvpp2_rx_desc *rx_desc) { if (port->priv->hw_version == MVPP21) return le32_to_cpu(rx_desc->pp21.status); else return le32_to_cpu(rx_desc->pp22.status); } static void mvpp2_txq_inc_get(struct mvpp2_txq_pcpu *txq_pcpu) { txq_pcpu->txq_get_index++; if (txq_pcpu->txq_get_index == txq_pcpu->size) txq_pcpu->txq_get_index = 0; } static void mvpp2_txq_inc_put(struct mvpp2_port *port, struct mvpp2_txq_pcpu *txq_pcpu, void *data, struct mvpp2_tx_desc *tx_desc, enum mvpp2_tx_buf_type buf_type) { struct mvpp2_txq_pcpu_buf *tx_buf = txq_pcpu->buffs + txq_pcpu->txq_put_index; tx_buf->type = buf_type; if (buf_type == MVPP2_TYPE_SKB) tx_buf->skb = data; else tx_buf->xdpf = data; tx_buf->size = mvpp2_txdesc_size_get(port, tx_desc); tx_buf->dma = mvpp2_txdesc_dma_addr_get(port, tx_desc) + mvpp2_txdesc_offset_get(port, tx_desc); txq_pcpu->txq_put_index++; if (txq_pcpu->txq_put_index == txq_pcpu->size) txq_pcpu->txq_put_index = 0; } /* Get number of maximum RXQ */ static int mvpp2_get_nrxqs(struct mvpp2 *priv) { unsigned int nrxqs; if (priv->hw_version >= MVPP22 && queue_mode == MVPP2_QDIST_SINGLE_MODE) return 1; /* According to the PPv2.2 datasheet and our experiments on * PPv2.1, RX queues have an allocation granularity of 4 (when * more than a single one on PPv2.2). * Round up to nearest multiple of 4. */ nrxqs = (num_possible_cpus() + 3) & ~0x3; if (nrxqs > MVPP2_PORT_MAX_RXQ) nrxqs = MVPP2_PORT_MAX_RXQ; return nrxqs; } /* Get number of physical egress port */ static inline int mvpp2_egress_port(struct mvpp2_port *port) { return MVPP2_MAX_TCONT + port->id; } /* Get number of physical TXQ */ static inline int mvpp2_txq_phys(int port, int txq) { return (MVPP2_MAX_TCONT + port) * MVPP2_MAX_TXQ + txq; } /* Returns a struct page if page_pool is set, otherwise a buffer */ static void *mvpp2_frag_alloc(const struct mvpp2_bm_pool *pool, struct page_pool *page_pool) { if (page_pool) return page_pool_dev_alloc_pages(page_pool); if (likely(pool->frag_size <= PAGE_SIZE)) return netdev_alloc_frag(pool->frag_size); return kmalloc(pool->frag_size, GFP_ATOMIC); } static void mvpp2_frag_free(const struct mvpp2_bm_pool *pool, struct page_pool *page_pool, void *data) { if (page_pool) page_pool_put_full_page(page_pool, virt_to_head_page(data), false); else if (likely(pool->frag_size <= PAGE_SIZE)) skb_free_frag(data); else kfree(data); } /* Buffer Manager configuration routines */ /* Create pool */ static int mvpp2_bm_pool_create(struct device *dev, struct mvpp2 *priv, struct mvpp2_bm_pool *bm_pool, int size) { u32 val; /* Number of buffer pointers must be a multiple of 16, as per * hardware constraints */ if (!IS_ALIGNED(size, 16)) return -EINVAL; /* PPv2.1 needs 8 bytes per buffer pointer, PPv2.2 and PPv2.3 needs 16 * bytes per buffer pointer */ if (priv->hw_version == MVPP21) bm_pool->size_bytes = 2 * sizeof(u32) * size; else bm_pool->size_bytes = 2 * sizeof(u64) * size; bm_pool->virt_addr = dma_alloc_coherent(dev, bm_pool->size_bytes, &bm_pool->dma_addr, GFP_KERNEL); if (!bm_pool->virt_addr) return -ENOMEM; if (!IS_ALIGNED((unsigned long)bm_pool->virt_addr, MVPP2_BM_POOL_PTR_ALIGN)) { dma_free_coherent(dev, bm_pool->size_bytes, bm_pool->virt_addr, bm_pool->dma_addr); dev_err(dev, "BM pool %d is not %d bytes aligned\n", bm_pool->id, MVPP2_BM_POOL_PTR_ALIGN); return -ENOMEM; } mvpp2_write(priv, MVPP2_BM_POOL_BASE_REG(bm_pool->id), lower_32_bits(bm_pool->dma_addr)); mvpp2_write(priv, MVPP2_BM_POOL_SIZE_REG(bm_pool->id), size); val = mvpp2_read(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id)); val |= MVPP2_BM_START_MASK; val &= ~MVPP2_BM_LOW_THRESH_MASK; val &= ~MVPP2_BM_HIGH_THRESH_MASK; /* Set 8 Pools BPPI threshold for MVPP23 */ if (priv->hw_version == MVPP23) { val |= MVPP2_BM_LOW_THRESH_VALUE(MVPP23_BM_BPPI_LOW_THRESH); val |= MVPP2_BM_HIGH_THRESH_VALUE(MVPP23_BM_BPPI_HIGH_THRESH); } else { val |= MVPP2_BM_LOW_THRESH_VALUE(MVPP2_BM_BPPI_LOW_THRESH); val |= MVPP2_BM_HIGH_THRESH_VALUE(MVPP2_BM_BPPI_HIGH_THRESH); } mvpp2_write(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id), val); bm_pool->size = size; bm_pool->pkt_size = 0; bm_pool->buf_num = 0; return 0; } /* Set pool buffer size */ static void mvpp2_bm_pool_bufsize_set(struct mvpp2 *priv, struct mvpp2_bm_pool *bm_pool, int buf_size) { u32 val; bm_pool->buf_size = buf_size; val = ALIGN(buf_size, 1 << MVPP2_POOL_BUF_SIZE_OFFSET); mvpp2_write(priv, MVPP2_POOL_BUF_SIZE_REG(bm_pool->id), val); } static void mvpp2_bm_bufs_get_addrs(struct device *dev, struct mvpp2 *priv, struct mvpp2_bm_pool *bm_pool, dma_addr_t *dma_addr, phys_addr_t *phys_addr) { unsigned int thread = mvpp2_cpu_to_thread(priv, get_cpu()); *dma_addr = mvpp2_thread_read(priv, thread, MVPP2_BM_PHY_ALLOC_REG(bm_pool->id)); *phys_addr = mvpp2_thread_read(priv, thread, MVPP2_BM_VIRT_ALLOC_REG); if (priv->hw_version >= MVPP22) { u32 val; u32 dma_addr_highbits, phys_addr_highbits; val = mvpp2_thread_read(priv, thread, MVPP22_BM_ADDR_HIGH_ALLOC); dma_addr_highbits = (val & MVPP22_BM_ADDR_HIGH_PHYS_MASK); phys_addr_highbits = (val & MVPP22_BM_ADDR_HIGH_VIRT_MASK) >> MVPP22_BM_ADDR_HIGH_VIRT_SHIFT; if (sizeof(dma_addr_t) == 8) *dma_addr |= (u64)dma_addr_highbits << 32; if (sizeof(phys_addr_t) == 8) *phys_addr |= (u64)phys_addr_highbits << 32; } put_cpu(); } /* Free all buffers from the pool */ static void mvpp2_bm_bufs_free(struct device *dev, struct mvpp2 *priv, struct mvpp2_bm_pool *bm_pool, int buf_num) { struct page_pool *pp = NULL; int i; if (buf_num > bm_pool->buf_num) { WARN(1, "Pool does not have so many bufs pool(%d) bufs(%d)\n", bm_pool->id, buf_num); buf_num = bm_pool->buf_num; } if (priv->percpu_pools) pp = priv->page_pool[bm_pool->id]; for (i = 0; i < buf_num; i++) { dma_addr_t buf_dma_addr; phys_addr_t buf_phys_addr; void *data; mvpp2_bm_bufs_get_addrs(dev, priv, bm_pool, &buf_dma_addr, &buf_phys_addr); if (!pp) dma_unmap_single(dev, buf_dma_addr, bm_pool->buf_size, DMA_FROM_DEVICE); data = (void *)phys_to_virt(buf_phys_addr); if (!data) break; mvpp2_frag_free(bm_pool, pp, data); } /* Update BM driver with number of buffers removed from pool */ bm_pool->buf_num -= i; } /* Check number of buffers in BM pool */ static int mvpp2_check_hw_buf_num(struct mvpp2 *priv, struct mvpp2_bm_pool *bm_pool) { int buf_num = 0; buf_num += mvpp2_read(priv, MVPP2_BM_POOL_PTRS_NUM_REG(bm_pool->id)) & MVPP22_BM_POOL_PTRS_NUM_MASK; buf_num += mvpp2_read(priv, MVPP2_BM_BPPI_PTRS_NUM_REG(bm_pool->id)) & MVPP2_BM_BPPI_PTR_NUM_MASK; /* HW has one buffer ready which is not reflected in the counters */ if (buf_num) buf_num += 1; return buf_num; } /* Cleanup pool */ static int mvpp2_bm_pool_destroy(struct device *dev, struct mvpp2 *priv, struct mvpp2_bm_pool *bm_pool) { int buf_num; u32 val; buf_num = mvpp2_check_hw_buf_num(priv, bm_pool); mvpp2_bm_bufs_free(dev, priv, bm_pool, buf_num); /* Check buffer counters after free */ buf_num = mvpp2_check_hw_buf_num(priv, bm_pool); if (buf_num) { WARN(1, "cannot free all buffers in pool %d, buf_num left %d\n", bm_pool->id, bm_pool->buf_num); return 0; } val = mvpp2_read(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id)); val |= MVPP2_BM_STOP_MASK; mvpp2_write(priv, MVPP2_BM_POOL_CTRL_REG(bm_pool->id), val); if (priv->percpu_pools) { page_pool_destroy(priv->page_pool[bm_pool->id]); priv->page_pool[bm_pool->id] = NULL; } dma_free_coherent(dev, bm_pool->size_bytes, bm_pool->virt_addr, bm_pool->dma_addr); return 0; } static int mvpp2_bm_pools_init(struct device *dev, struct mvpp2 *priv) { int i, err, size, poolnum = MVPP2_BM_POOLS_NUM; struct mvpp2_bm_pool *bm_pool; if (priv->percpu_pools) poolnum = mvpp2_get_nrxqs(priv) * 2; /* Create all pools with maximum size */ size = MVPP2_BM_POOL_SIZE_MAX; for (i = 0; i < poolnum; i++) { bm_pool = &priv->bm_pools[i]; bm_pool->id = i; err = mvpp2_bm_pool_create(dev, priv, bm_pool, size); if (err) goto err_unroll_pools; mvpp2_bm_pool_bufsize_set(priv, bm_pool, 0); } return 0; err_unroll_pools: dev_err(dev, "failed to create BM pool %d, size %d\n", i, size); for (i = i - 1; i >= 0; i--) mvpp2_bm_pool_destroy(dev, priv, &priv->bm_pools[i]); return err; } /* Routine enable PPv23 8 pool mode */ static void mvpp23_bm_set_8pool_mode(struct mvpp2 *priv) { int val; val = mvpp2_read(priv, MVPP22_BM_POOL_BASE_ADDR_HIGH_REG); val |= MVPP23_BM_8POOL_MODE; mvpp2_write(priv, MVPP22_BM_POOL_BASE_ADDR_HIGH_REG, val); } /* Cleanup pool before actual initialization in the OS */ static void mvpp2_bm_pool_cleanup(struct mvpp2 *priv, int pool_id) { unsigned int thread = mvpp2_cpu_to_thread(priv, get_cpu()); u32 val; int i; /* Drain the BM from all possible residues left by firmware */ for (i = 0; i < MVPP2_BM_POOL_SIZE_MAX; i++) mvpp2_thread_read(priv, thread, MVPP2_BM_PHY_ALLOC_REG(pool_id)); put_cpu(); /* Stop the BM pool */ val = mvpp2_read(priv, MVPP2_BM_POOL_CTRL_REG(pool_id)); val |= MVPP2_BM_STOP_MASK; mvpp2_write(priv, MVPP2_BM_POOL_CTRL_REG(pool_id), val); } static int mvpp2_bm_init(struct device *dev, struct mvpp2 *priv) { enum dma_data_direction dma_dir = DMA_FROM_DEVICE; int i, err, poolnum = MVPP2_BM_POOLS_NUM; struct mvpp2_port *port; if (priv->percpu_pools) poolnum = mvpp2_get_nrxqs(priv) * 2; /* Clean up the pool state in case it contains stale state */ for (i = 0; i < poolnum; i++) mvpp2_bm_pool_cleanup(priv, i); if (priv->percpu_pools) { for (i = 0; i < priv->port_count; i++) { port = priv->port_list[i]; if (port->xdp_prog) { dma_dir = DMA_BIDIRECTIONAL; break; } } for (i = 0; i < poolnum; i++) { /* the pool in use */ int pn = i / (poolnum / 2); priv->page_pool[i] = mvpp2_create_page_pool(dev, mvpp2_pools[pn].buf_num, mvpp2_pools[pn].pkt_size, dma_dir); if (IS_ERR(priv->page_pool[i])) { int j; for (j = 0; j < i; j++) { page_pool_destroy(priv->page_pool[j]); priv->page_pool[j] = NULL; } return PTR_ERR(priv->page_pool[i]); } } } dev_info(dev, "using %d %s buffers\n", poolnum, priv->percpu_pools ? "per-cpu" : "shared"); for (i = 0; i < poolnum; i++) { /* Mask BM all interrupts */ mvpp2_write(priv, MVPP2_BM_INTR_MASK_REG(i), 0); /* Clear BM cause register */ mvpp2_write(priv, MVPP2_BM_INTR_CAUSE_REG(i), 0); } /* Allocate and initialize BM pools */ priv->bm_pools = devm_kcalloc(dev, poolnum, sizeof(*priv->bm_pools), GFP_KERNEL); if (!priv->bm_pools) return -ENOMEM; if (priv->hw_version == MVPP23) mvpp23_bm_set_8pool_mode(priv); err = mvpp2_bm_pools_init(dev, priv); if (err < 0) return err; return 0; } static void mvpp2_setup_bm_pool(void) { /* Short pool */ mvpp2_pools[MVPP2_BM_SHORT].buf_num = MVPP2_BM_SHORT_BUF_NUM; mvpp2_pools[MVPP2_BM_SHORT].pkt_size = MVPP2_BM_SHORT_PKT_SIZE; /* Long pool */ mvpp2_pools[MVPP2_BM_LONG].buf_num = MVPP2_BM_LONG_BUF_NUM; mvpp2_pools[MVPP2_BM_LONG].pkt_size = MVPP2_BM_LONG_PKT_SIZE; /* Jumbo pool */ mvpp2_pools[MVPP2_BM_JUMBO].buf_num = MVPP2_BM_JUMBO_BUF_NUM; mvpp2_pools[MVPP2_BM_JUMBO].pkt_size = MVPP2_BM_JUMBO_PKT_SIZE; } /* Attach long pool to rxq */ static void mvpp2_rxq_long_pool_set(struct mvpp2_port *port, int lrxq, int long_pool) { u32 val, mask; int prxq; /* Get queue physical ID */ prxq = port->rxqs[lrxq]->id; if (port->priv->hw_version == MVPP21) mask = MVPP21_RXQ_POOL_LONG_MASK; else mask = MVPP22_RXQ_POOL_LONG_MASK; val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(prxq)); val &= ~mask; val |= (long_pool << MVPP2_RXQ_POOL_LONG_OFFS) & mask; mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(prxq), val); } /* Attach short pool to rxq */ static void mvpp2_rxq_short_pool_set(struct mvpp2_port *port, int lrxq, int short_pool) { u32 val, mask; int prxq; /* Get queue physical ID */ prxq = port->rxqs[lrxq]->id; if (port->priv->hw_version == MVPP21) mask = MVPP21_RXQ_POOL_SHORT_MASK; else mask = MVPP22_RXQ_POOL_SHORT_MASK; val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(prxq)); val &= ~mask; val |= (short_pool << MVPP2_RXQ_POOL_SHORT_OFFS) & mask; mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(prxq), val); } static void *mvpp2_buf_alloc(struct mvpp2_port *port, struct mvpp2_bm_pool *bm_pool, struct page_pool *page_pool, dma_addr_t *buf_dma_addr, phys_addr_t *buf_phys_addr, gfp_t gfp_mask) { dma_addr_t dma_addr; struct page *page; void *data; data = mvpp2_frag_alloc(bm_pool, page_pool); if (!data) return NULL; if (page_pool) { page = (struct page *)data; dma_addr = page_pool_get_dma_addr(page); data = page_to_virt(page); } else { dma_addr = dma_map_single(port->dev->dev.parent, data, MVPP2_RX_BUF_SIZE(bm_pool->pkt_size), DMA_FROM_DEVICE); if (unlikely(dma_mapping_error(port->dev->dev.parent, dma_addr))) { mvpp2_frag_free(bm_pool, NULL, data); return NULL; } } *buf_dma_addr = dma_addr; *buf_phys_addr = virt_to_phys(data); return data; } /* Routine enable flow control for RXQs condition */ static void mvpp2_rxq_enable_fc(struct mvpp2_port *port) { int val, cm3_state, host_id, q; int fq = port->first_rxq; unsigned long flags; spin_lock_irqsave(&port->priv->mss_spinlock, flags); /* Remove Flow control enable bit to prevent race between FW and Kernel * If Flow control was enabled, it would be re-enabled. */ val = mvpp2_cm3_read(port->priv, MSS_FC_COM_REG); cm3_state = (val & FLOW_CONTROL_ENABLE_BIT); val &= ~FLOW_CONTROL_ENABLE_BIT; mvpp2_cm3_write(port->priv, MSS_FC_COM_REG, val); /* Set same Flow control for all RXQs */ for (q = 0; q < port->nrxqs; q++) { /* Set stop and start Flow control RXQ thresholds */ val = MSS_THRESHOLD_START; val |= (MSS_THRESHOLD_STOP << MSS_RXQ_TRESH_STOP_OFFS); mvpp2_cm3_write(port->priv, MSS_RXQ_TRESH_REG(q, fq), val); val = mvpp2_cm3_read(port->priv, MSS_RXQ_ASS_REG(q, fq)); /* Set RXQ port ID */ val &= ~(MSS_RXQ_ASS_PORTID_MASK << MSS_RXQ_ASS_Q_BASE(q, fq)); val |= (port->id << MSS_RXQ_ASS_Q_BASE(q, fq)); val &= ~(MSS_RXQ_ASS_HOSTID_MASK << (MSS_RXQ_ASS_Q_BASE(q, fq) + MSS_RXQ_ASS_HOSTID_OFFS)); /* Calculate RXQ host ID: * In Single queue mode: Host ID equal to Host ID used for * shared RX interrupt * In Multi queue mode: Host ID equal to number of * RXQ ID / number of CoS queues * In Single resource mode: Host ID always equal to 0 */ if (queue_mode == MVPP2_QDIST_SINGLE_MODE) host_id = port->nqvecs; else if (queue_mode == MVPP2_QDIST_MULTI_MODE) host_id = q; else host_id = 0; /* Set RXQ host ID */ val |= (host_id << (MSS_RXQ_ASS_Q_BASE(q, fq) + MSS_RXQ_ASS_HOSTID_OFFS)); mvpp2_cm3_write(port->priv, MSS_RXQ_ASS_REG(q, fq), val); } /* Notify Firmware that Flow control config space ready for update */ val = mvpp2_cm3_read(port->priv, MSS_FC_COM_REG); val |= FLOW_CONTROL_UPDATE_COMMAND_BIT; val |= cm3_state; mvpp2_cm3_write(port->priv, MSS_FC_COM_REG, val); spin_unlock_irqrestore(&port->priv->mss_spinlock, flags); } /* Routine disable flow control for RXQs condition */ static void mvpp2_rxq_disable_fc(struct mvpp2_port *port) { int val, cm3_state, q; unsigned long flags; int fq = port->first_rxq; spin_lock_irqsave(&port->priv->mss_spinlock, flags); /* Remove Flow control enable bit to prevent race between FW and Kernel * If Flow control was enabled, it would be re-enabled. */ val = mvpp2_cm3_read(port->priv, MSS_FC_COM_REG); cm3_state = (val & FLOW_CONTROL_ENABLE_BIT); val &= ~FLOW_CONTROL_ENABLE_BIT; mvpp2_cm3_write(port->priv, MSS_FC_COM_REG, val); /* Disable Flow control for all RXQs */ for (q = 0; q < port->nrxqs; q++) { /* Set threshold 0 to disable Flow control */ val = 0; val |= (0 << MSS_RXQ_TRESH_STOP_OFFS); mvpp2_cm3_write(port->priv, MSS_RXQ_TRESH_REG(q, fq), val); val = mvpp2_cm3_read(port->priv, MSS_RXQ_ASS_REG(q, fq)); val &= ~(MSS_RXQ_ASS_PORTID_MASK << MSS_RXQ_ASS_Q_BASE(q, fq)); val &= ~(MSS_RXQ_ASS_HOSTID_MASK << (MSS_RXQ_ASS_Q_BASE(q, fq) + MSS_RXQ_ASS_HOSTID_OFFS)); mvpp2_cm3_write(port->priv, MSS_RXQ_ASS_REG(q, fq), val); } /* Notify Firmware that Flow control config space ready for update */ val = mvpp2_cm3_read(port->priv, MSS_FC_COM_REG); val |= FLOW_CONTROL_UPDATE_COMMAND_BIT; val |= cm3_state; mvpp2_cm3_write(port->priv, MSS_FC_COM_REG, val); spin_unlock_irqrestore(&port->priv->mss_spinlock, flags); } /* Routine disable/enable flow control for BM pool condition */ static void mvpp2_bm_pool_update_fc(struct mvpp2_port *port, struct mvpp2_bm_pool *pool, bool en) { int val, cm3_state; unsigned long flags; spin_lock_irqsave(&port->priv->mss_spinlock, flags); /* Remove Flow control enable bit to prevent race between FW and Kernel * If Flow control were enabled, it would be re-enabled. */ val = mvpp2_cm3_read(port->priv, MSS_FC_COM_REG); cm3_state = (val & FLOW_CONTROL_ENABLE_BIT); val &= ~FLOW_CONTROL_ENABLE_BIT; mvpp2_cm3_write(port->priv, MSS_FC_COM_REG, val); /* Check if BM pool should be enabled/disable */ if (en) { /* Set BM pool start and stop thresholds per port */ val = mvpp2_cm3_read(port->priv, MSS_BUF_POOL_REG(pool->id)); val |= MSS_BUF_POOL_PORT_OFFS(port->id); val &= ~MSS_BUF_POOL_START_MASK; val |= (MSS_THRESHOLD_START << MSS_BUF_POOL_START_OFFS); val &= ~MSS_BUF_POOL_STOP_MASK; val |= MSS_THRESHOLD_STOP; mvpp2_cm3_write(port->priv, MSS_BUF_POOL_REG(pool->id), val); } else { /* Remove BM pool from the port */ val = mvpp2_cm3_read(port->priv, MSS_BUF_POOL_REG(pool->id)); val &= ~MSS_BUF_POOL_PORT_OFFS(port->id); /* Zero BM pool start and stop thresholds to disable pool * flow control if pool empty (not used by any port) */ if (!pool->buf_num) { val &= ~MSS_BUF_POOL_START_MASK; val &= ~MSS_BUF_POOL_STOP_MASK; } mvpp2_cm3_write(port->priv, MSS_BUF_POOL_REG(pool->id), val); } /* Notify Firmware that Flow control config space ready for update */ val = mvpp2_cm3_read(port->priv, MSS_FC_COM_REG); val |= FLOW_CONTROL_UPDATE_COMMAND_BIT; val |= cm3_state; mvpp2_cm3_write(port->priv, MSS_FC_COM_REG, val); spin_unlock_irqrestore(&port->priv->mss_spinlock, flags); } /* disable/enable flow control for BM pool on all ports */ static void mvpp2_bm_pool_update_priv_fc(struct mvpp2 *priv, bool en) { struct mvpp2_port *port; int i; for (i = 0; i < priv->port_count; i++) { port = priv->port_list[i]; if (port->priv->percpu_pools) { for (i = 0; i < port->nrxqs; i++) mvpp2_bm_pool_update_fc(port, &port->priv->bm_pools[i], port->tx_fc & en); } else { mvpp2_bm_pool_update_fc(port, port->pool_long, port->tx_fc & en); mvpp2_bm_pool_update_fc(port, port->pool_short, port->tx_fc & en); } } } static int mvpp2_enable_global_fc(struct mvpp2 *priv) { int val, timeout = 0; /* Enable global flow control. In this stage global * flow control enabled, but still disabled per port. */ val = mvpp2_cm3_read(priv, MSS_FC_COM_REG); val |= FLOW_CONTROL_ENABLE_BIT; mvpp2_cm3_write(priv, MSS_FC_COM_REG, val); /* Check if Firmware running and disable FC if not*/ val |= FLOW_CONTROL_UPDATE_COMMAND_BIT; mvpp2_cm3_write(priv, MSS_FC_COM_REG, val); while (timeout < MSS_FC_MAX_TIMEOUT) { val = mvpp2_cm3_read(priv, MSS_FC_COM_REG); if (!(val & FLOW_CONTROL_UPDATE_COMMAND_BIT)) return 0; usleep_range(10, 20); timeout++; } priv->global_tx_fc = false; return -EOPNOTSUPP; } /* Release buffer to BM */ static inline void mvpp2_bm_pool_put(struct mvpp2_port *port, int pool, dma_addr_t buf_dma_addr, phys_addr_t buf_phys_addr) { unsigned int thread = mvpp2_cpu_to_thread(port->priv, get_cpu()); unsigned long flags = 0; if (test_bit(thread, &port->priv->lock_map)) spin_lock_irqsave(&port->bm_lock[thread], flags); if (port->priv->hw_version >= MVPP22) { u32 val = 0; if (sizeof(dma_addr_t) == 8) val |= upper_32_bits(buf_dma_addr) & MVPP22_BM_ADDR_HIGH_PHYS_RLS_MASK; if (sizeof(phys_addr_t) == 8) val |= (upper_32_bits(buf_phys_addr) << MVPP22_BM_ADDR_HIGH_VIRT_RLS_SHIFT) & MVPP22_BM_ADDR_HIGH_VIRT_RLS_MASK; mvpp2_thread_write_relaxed(port->priv, thread, MVPP22_BM_ADDR_HIGH_RLS_REG, val); } /* MVPP2_BM_VIRT_RLS_REG is not interpreted by HW, and simply * returned in the "cookie" field of the RX * descriptor. Instead of storing the virtual address, we * store the physical address */ mvpp2_thread_write_relaxed(port->priv, thread, MVPP2_BM_VIRT_RLS_REG, buf_phys_addr); mvpp2_thread_write_relaxed(port->priv, thread, MVPP2_BM_PHY_RLS_REG(pool), buf_dma_addr); if (test_bit(thread, &port->priv->lock_map)) spin_unlock_irqrestore(&port->bm_lock[thread], flags); put_cpu(); } /* Allocate buffers for the pool */ static int mvpp2_bm_bufs_add(struct mvpp2_port *port, struct mvpp2_bm_pool *bm_pool, int buf_num) { int i, buf_size, total_size; dma_addr_t dma_addr; phys_addr_t phys_addr; struct page_pool *pp = NULL; void *buf; if (port->priv->percpu_pools && bm_pool->pkt_size > MVPP2_BM_LONG_PKT_SIZE) { netdev_err(port->dev, "attempted to use jumbo frames with per-cpu pools"); return 0; } buf_size = MVPP2_RX_BUF_SIZE(bm_pool->pkt_size); total_size = MVPP2_RX_TOTAL_SIZE(buf_size); if (buf_num < 0 || (buf_num + bm_pool->buf_num > bm_pool->size)) { netdev_err(port->dev, "cannot allocate %d buffers for pool %d\n", buf_num, bm_pool->id); return 0; } if (port->priv->percpu_pools) pp = port->priv->page_pool[bm_pool->id]; for (i = 0; i < buf_num; i++) { buf = mvpp2_buf_alloc(port, bm_pool, pp, &dma_addr, &phys_addr, GFP_KERNEL); if (!buf) break; mvpp2_bm_pool_put(port, bm_pool->id, dma_addr, phys_addr); } /* Update BM driver with number of buffers added to pool */ bm_pool->buf_num += i; netdev_dbg(port->dev, "pool %d: pkt_size=%4d, buf_size=%4d, total_size=%4d\n", bm_pool->id, bm_pool->pkt_size, buf_size, total_size); netdev_dbg(port->dev, "pool %d: %d of %d buffers added\n", bm_pool->id, i, buf_num); return i; } /* Notify the driver that BM pool is being used as specific type and return the * pool pointer on success */ static struct mvpp2_bm_pool * mvpp2_bm_pool_use(struct mvpp2_port *port, unsigned pool, int pkt_size) { struct mvpp2_bm_pool *new_pool = &port->priv->bm_pools[pool]; int num; if ((port->priv->percpu_pools && pool > mvpp2_get_nrxqs(port->priv) * 2) || (!port->priv->percpu_pools && pool >= MVPP2_BM_POOLS_NUM)) { netdev_err(port->dev, "Invalid pool %d\n", pool); return NULL; } /* Allocate buffers in case BM pool is used as long pool, but packet * size doesn't match MTU or BM pool hasn't being used yet */ if (new_pool->pkt_size == 0) { int pkts_num; /* Set default buffer number or free all the buffers in case * the pool is not empty */ pkts_num = new_pool->buf_num; if (pkts_num == 0) { if (port->priv->percpu_pools) { if (pool < port->nrxqs) pkts_num = mvpp2_pools[MVPP2_BM_SHORT].buf_num; else pkts_num = mvpp2_pools[MVPP2_BM_LONG].buf_num; } else { pkts_num = mvpp2_pools[pool].buf_num; } } else { mvpp2_bm_bufs_free(port->dev->dev.parent, port->priv, new_pool, pkts_num); } new_pool->pkt_size = pkt_size; new_pool->frag_size = SKB_DATA_ALIGN(MVPP2_RX_BUF_SIZE(pkt_size)) + MVPP2_SKB_SHINFO_SIZE; /* Allocate buffers for this pool */ num = mvpp2_bm_bufs_add(port, new_pool, pkts_num); if (num != pkts_num) { WARN(1, "pool %d: %d of %d allocated\n", new_pool->id, num, pkts_num); return NULL; } } mvpp2_bm_pool_bufsize_set(port->priv, new_pool, MVPP2_RX_BUF_SIZE(new_pool->pkt_size)); return new_pool; } static struct mvpp2_bm_pool * mvpp2_bm_pool_use_percpu(struct mvpp2_port *port, int type, unsigned int pool, int pkt_size) { struct mvpp2_bm_pool *new_pool = &port->priv->bm_pools[pool]; int num; if (pool > port->nrxqs * 2) { netdev_err(port->dev, "Invalid pool %d\n", pool); return NULL; } /* Allocate buffers in case BM pool is used as long pool, but packet * size doesn't match MTU or BM pool hasn't being used yet */ if (new_pool->pkt_size == 0) { int pkts_num; /* Set default buffer number or free all the buffers in case * the pool is not empty */ pkts_num = new_pool->buf_num; if (pkts_num == 0) pkts_num = mvpp2_pools[type].buf_num; else mvpp2_bm_bufs_free(port->dev->dev.parent, port->priv, new_pool, pkts_num); new_pool->pkt_size = pkt_size; new_pool->frag_size = SKB_DATA_ALIGN(MVPP2_RX_BUF_SIZE(pkt_size)) + MVPP2_SKB_SHINFO_SIZE; /* Allocate buffers for this pool */ num = mvpp2_bm_bufs_add(port, new_pool, pkts_num); if (num != pkts_num) { WARN(1, "pool %d: %d of %d allocated\n", new_pool->id, num, pkts_num); return NULL; } } mvpp2_bm_pool_bufsize_set(port->priv, new_pool, MVPP2_RX_BUF_SIZE(new_pool->pkt_size)); return new_pool; } /* Initialize pools for swf, shared buffers variant */ static int mvpp2_swf_bm_pool_init_shared(struct mvpp2_port *port) { enum mvpp2_bm_pool_log_num long_log_pool, short_log_pool; int rxq; /* If port pkt_size is higher than 1518B: * HW Long pool - SW Jumbo pool, HW Short pool - SW Long pool * else: HW Long pool - SW Long pool, HW Short pool - SW Short pool */ if (port->pkt_size > MVPP2_BM_LONG_PKT_SIZE) { long_log_pool = MVPP2_BM_JUMBO; short_log_pool = MVPP2_BM_LONG; } else { long_log_pool = MVPP2_BM_LONG; short_log_pool = MVPP2_BM_SHORT; } if (!port->pool_long) { port->pool_long = mvpp2_bm_pool_use(port, long_log_pool, mvpp2_pools[long_log_pool].pkt_size); if (!port->pool_long) return -ENOMEM; port->pool_long->port_map |= BIT(port->id); for (rxq = 0; rxq < port->nrxqs; rxq++) mvpp2_rxq_long_pool_set(port, rxq, port->pool_long->id); } if (!port->pool_short) { port->pool_short = mvpp2_bm_pool_use(port, short_log_pool, mvpp2_pools[short_log_pool].pkt_size); if (!port->pool_short) return -ENOMEM; port->pool_short->port_map |= BIT(port->id); for (rxq = 0; rxq < port->nrxqs; rxq++) mvpp2_rxq_short_pool_set(port, rxq, port->pool_short->id); } return 0; } /* Initialize pools for swf, percpu buffers variant */ static int mvpp2_swf_bm_pool_init_percpu(struct mvpp2_port *port) { struct mvpp2_bm_pool *bm_pool; int i; for (i = 0; i < port->nrxqs; i++) { bm_pool = mvpp2_bm_pool_use_percpu(port, MVPP2_BM_SHORT, i, mvpp2_pools[MVPP2_BM_SHORT].pkt_size); if (!bm_pool) return -ENOMEM; bm_pool->port_map |= BIT(port->id); mvpp2_rxq_short_pool_set(port, i, bm_pool->id); } for (i = 0; i < port->nrxqs; i++) { bm_pool = mvpp2_bm_pool_use_percpu(port, MVPP2_BM_LONG, i + port->nrxqs, mvpp2_pools[MVPP2_BM_LONG].pkt_size); if (!bm_pool) return -ENOMEM; bm_pool->port_map |= BIT(port->id); mvpp2_rxq_long_pool_set(port, i, bm_pool->id); } port->pool_long = NULL; port->pool_short = NULL; return 0; } static int mvpp2_swf_bm_pool_init(struct mvpp2_port *port) { if (port->priv->percpu_pools) return mvpp2_swf_bm_pool_init_percpu(port); else return mvpp2_swf_bm_pool_init_shared(port); } static void mvpp2_set_hw_csum(struct mvpp2_port *port, enum mvpp2_bm_pool_log_num new_long_pool) { const netdev_features_t csums = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM; /* Update L4 checksum when jumbo enable/disable on port. * Only port 0 supports hardware checksum offload due to * the Tx FIFO size limitation. * Also, don't set NETIF_F_HW_CSUM because L3_offset in TX descriptor * has 7 bits, so the maximum L3 offset is 128. */ if (new_long_pool == MVPP2_BM_JUMBO && port->id != 0) { port->dev->features &= ~csums; port->dev->hw_features &= ~csums; } else { port->dev->features |= csums; port->dev->hw_features |= csums; } } static int mvpp2_bm_update_mtu(struct net_device *dev, int mtu) { struct mvpp2_port *port = netdev_priv(dev); enum mvpp2_bm_pool_log_num new_long_pool; int pkt_size = MVPP2_RX_PKT_SIZE(mtu); if (port->priv->percpu_pools) goto out_set; /* If port MTU is higher than 1518B: * HW Long pool - SW Jumbo pool, HW Short pool - SW Long pool * else: HW Long pool - SW Long pool, HW Short pool - SW Short pool */ if (pkt_size > MVPP2_BM_LONG_PKT_SIZE) new_long_pool = MVPP2_BM_JUMBO; else new_long_pool = MVPP2_BM_LONG; if (new_long_pool != port->pool_long->id) { if (port->tx_fc) { if (pkt_size > MVPP2_BM_LONG_PKT_SIZE) mvpp2_bm_pool_update_fc(port, port->pool_short, false); else mvpp2_bm_pool_update_fc(port, port->pool_long, false); } /* Remove port from old short & long pool */ port->pool_long = mvpp2_bm_pool_use(port, port->pool_long->id, port->pool_long->pkt_size); port->pool_long->port_map &= ~BIT(port->id); port->pool_long = NULL; port->pool_short = mvpp2_bm_pool_use(port, port->pool_short->id, port->pool_short->pkt_size); port->pool_short->port_map &= ~BIT(port->id); port->pool_short = NULL; port->pkt_size = pkt_size; /* Add port to new short & long pool */ mvpp2_swf_bm_pool_init(port); mvpp2_set_hw_csum(port, new_long_pool); if (port->tx_fc) { if (pkt_size > MVPP2_BM_LONG_PKT_SIZE) mvpp2_bm_pool_update_fc(port, port->pool_long, true); else mvpp2_bm_pool_update_fc(port, port->pool_short, true); } /* Update L4 checksum when jumbo enable/disable on port */ if (new_long_pool == MVPP2_BM_JUMBO && port->id != 0) { dev->features &= ~(NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM); dev->hw_features &= ~(NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM); } else { dev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM; dev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM; } } out_set: WRITE_ONCE(dev->mtu, mtu); dev->wanted_features = dev->features; netdev_update_features(dev); return 0; } static inline void mvpp2_interrupts_enable(struct mvpp2_port *port) { int i, sw_thread_mask = 0; for (i = 0; i < port->nqvecs; i++) sw_thread_mask |= port->qvecs[i].sw_thread_mask; mvpp2_write(port->priv, MVPP2_ISR_ENABLE_REG(port->id), MVPP2_ISR_ENABLE_INTERRUPT(sw_thread_mask)); } static inline void mvpp2_interrupts_disable(struct mvpp2_port *port) { int i, sw_thread_mask = 0; for (i = 0; i < port->nqvecs; i++) sw_thread_mask |= port->qvecs[i].sw_thread_mask; mvpp2_write(port->priv, MVPP2_ISR_ENABLE_REG(port->id), MVPP2_ISR_DISABLE_INTERRUPT(sw_thread_mask)); } static inline void mvpp2_qvec_interrupt_enable(struct mvpp2_queue_vector *qvec) { struct mvpp2_port *port = qvec->port; mvpp2_write(port->priv, MVPP2_ISR_ENABLE_REG(port->id), MVPP2_ISR_ENABLE_INTERRUPT(qvec->sw_thread_mask)); } static inline void mvpp2_qvec_interrupt_disable(struct mvpp2_queue_vector *qvec) { struct mvpp2_port *port = qvec->port; mvpp2_write(port->priv, MVPP2_ISR_ENABLE_REG(port->id), MVPP2_ISR_DISABLE_INTERRUPT(qvec->sw_thread_mask)); } /* Mask the current thread's Rx/Tx interrupts * Called by on_each_cpu(), guaranteed to run with migration disabled, * using smp_processor_id() is OK. */ static void mvpp2_interrupts_mask(void *arg) { struct mvpp2_port *port = arg; int cpu = smp_processor_id(); u32 thread; /* If the thread isn't used, don't do anything */ if (cpu > port->priv->nthreads) return; thread = mvpp2_cpu_to_thread(port->priv, cpu); mvpp2_thread_write(port->priv, thread, MVPP2_ISR_RX_TX_MASK_REG(port->id), 0); mvpp2_thread_write(port->priv, thread, MVPP2_ISR_RX_ERR_CAUSE_REG(port->id), 0); } /* Unmask the current thread's Rx/Tx interrupts. * Called by on_each_cpu(), guaranteed to run with migration disabled, * using smp_processor_id() is OK. */ static void mvpp2_interrupts_unmask(void *arg) { struct mvpp2_port *port = arg; int cpu = smp_processor_id(); u32 val, thread; /* If the thread isn't used, don't do anything */ if (cpu >= port->priv->nthreads) return; thread = mvpp2_cpu_to_thread(port->priv, cpu); val = MVPP2_CAUSE_MISC_SUM_MASK | MVPP2_CAUSE_RXQ_OCCUP_DESC_ALL_MASK(port->priv->hw_version); if (port->has_tx_irqs) val |= MVPP2_CAUSE_TXQ_OCCUP_DESC_ALL_MASK; mvpp2_thread_write(port->priv, thread, MVPP2_ISR_RX_TX_MASK_REG(port->id), val); mvpp2_thread_write(port->priv, thread, MVPP2_ISR_RX_ERR_CAUSE_REG(port->id), MVPP2_ISR_RX_ERR_CAUSE_NONOCC_MASK); } static void mvpp2_shared_interrupt_mask_unmask(struct mvpp2_port *port, bool mask) { u32 val; int i; if (port->priv->hw_version == MVPP21) return; if (mask) val = 0; else val = MVPP2_CAUSE_RXQ_OCCUP_DESC_ALL_MASK(MVPP22); for (i = 0; i < port->nqvecs; i++) { struct mvpp2_queue_vector *v = port->qvecs + i; if (v->type != MVPP2_QUEUE_VECTOR_SHARED) continue; mvpp2_thread_write(port->priv, v->sw_thread_id, MVPP2_ISR_RX_TX_MASK_REG(port->id), val); mvpp2_thread_write(port->priv, v->sw_thread_id, MVPP2_ISR_RX_ERR_CAUSE_REG(port->id), MVPP2_ISR_RX_ERR_CAUSE_NONOCC_MASK); } } /* Only GOP port 0 has an XLG MAC */ static bool mvpp2_port_supports_xlg(struct mvpp2_port *port) { return port->gop_id == 0; } static bool mvpp2_port_supports_rgmii(struct mvpp2_port *port) { return !(port->priv->hw_version >= MVPP22 && port->gop_id == 0); } /* Port configuration routines */ static bool mvpp2_is_xlg(phy_interface_t interface) { return interface == PHY_INTERFACE_MODE_10GBASER || interface == PHY_INTERFACE_MODE_5GBASER || interface == PHY_INTERFACE_MODE_XAUI; } static void mvpp2_modify(void __iomem *ptr, u32 mask, u32 set) { u32 old, val; old = val = readl(ptr); val &= ~mask; val |= set; if (old != val) writel(val, ptr); } static void mvpp22_gop_init_rgmii(struct mvpp2_port *port) { struct mvpp2 *priv = port->priv; u32 val; regmap_read(priv->sysctrl_base, GENCONF_PORT_CTRL0, &val); val |= GENCONF_PORT_CTRL0_BUS_WIDTH_SELECT; regmap_write(priv->sysctrl_base, GENCONF_PORT_CTRL0, val); regmap_read(priv->sysctrl_base, GENCONF_CTRL0, &val); if (port->gop_id == 2) { val |= GENCONF_CTRL0_PORT2_RGMII; } else if (port->gop_id == 3) { val |= GENCONF_CTRL0_PORT3_RGMII_MII; /* According to the specification, GENCONF_CTRL0_PORT3_RGMII * should be set to 1 for RGMII and 0 for MII. However, tests * show that it is the other way around. This is also what * U-Boot does for mvpp2, so it is assumed to be correct. */ if (port->phy_interface == PHY_INTERFACE_MODE_MII) val |= GENCONF_CTRL0_PORT3_RGMII; else val &= ~GENCONF_CTRL0_PORT3_RGMII; } regmap_write(priv->sysctrl_base, GENCONF_CTRL0, val); } static void mvpp22_gop_init_sgmii(struct mvpp2_port *port) { struct mvpp2 *priv = port->priv; u32 val; regmap_read(priv->sysctrl_base, GENCONF_PORT_CTRL0, &val); val |= GENCONF_PORT_CTRL0_BUS_WIDTH_SELECT | GENCONF_PORT_CTRL0_RX_DATA_SAMPLE; regmap_write(priv->sysctrl_base, GENCONF_PORT_CTRL0, val); if (port->gop_id > 1) { regmap_read(priv->sysctrl_base, GENCONF_CTRL0, &val); if (port->gop_id == 2) val &= ~GENCONF_CTRL0_PORT2_RGMII; else if (port->gop_id == 3) val &= ~GENCONF_CTRL0_PORT3_RGMII_MII; regmap_write(priv->sysctrl_base, GENCONF_CTRL0, val); } } static void mvpp22_gop_init_10gkr(struct mvpp2_port *port) { struct mvpp2 *priv = port->priv; void __iomem *mpcs = priv->iface_base + MVPP22_MPCS_BASE(port->gop_id); void __iomem *xpcs = priv->iface_base + MVPP22_XPCS_BASE(port->gop_id); u32 val; val = readl(xpcs + MVPP22_XPCS_CFG0); val &= ~(MVPP22_XPCS_CFG0_PCS_MODE(0x3) | MVPP22_XPCS_CFG0_ACTIVE_LANE(0x3)); val |= MVPP22_XPCS_CFG0_ACTIVE_LANE(2); writel(val, xpcs + MVPP22_XPCS_CFG0); val = readl(mpcs + MVPP22_MPCS_CTRL); val &= ~MVPP22_MPCS_CTRL_FWD_ERR_CONN; writel(val, mpcs + MVPP22_MPCS_CTRL); val = readl(mpcs + MVPP22_MPCS_CLK_RESET); val &= ~MVPP22_MPCS_CLK_RESET_DIV_RATIO(0x7); val |= MVPP22_MPCS_CLK_RESET_DIV_RATIO(1); writel(val, mpcs + MVPP22_MPCS_CLK_RESET); } static void mvpp22_gop_fca_enable_periodic(struct mvpp2_port *port, bool en) { struct mvpp2 *priv = port->priv; void __iomem *fca = priv->iface_base + MVPP22_FCA_BASE(port->gop_id); u32 val; val = readl(fca + MVPP22_FCA_CONTROL_REG); val &= ~MVPP22_FCA_ENABLE_PERIODIC; if (en) val |= MVPP22_FCA_ENABLE_PERIODIC; writel(val, fca + MVPP22_FCA_CONTROL_REG); } static void mvpp22_gop_fca_set_timer(struct mvpp2_port *port, u32 timer) { struct mvpp2 *priv = port->priv; void __iomem *fca = priv->iface_base + MVPP22_FCA_BASE(port->gop_id); u32 lsb, msb; lsb = timer & MVPP22_FCA_REG_MASK; msb = timer >> MVPP22_FCA_REG_SIZE; writel(lsb, fca + MVPP22_PERIODIC_COUNTER_LSB_REG); writel(msb, fca + MVPP22_PERIODIC_COUNTER_MSB_REG); } /* Set Flow Control timer x100 faster than pause quanta to ensure that link * partner won't send traffic if port is in XOFF mode. */ static void mvpp22_gop_fca_set_periodic_timer(struct mvpp2_port *port) { u32 timer; timer = (port->priv->tclk / (USEC_PER_SEC * FC_CLK_DIVIDER)) * FC_QUANTA; mvpp22_gop_fca_enable_periodic(port, false); mvpp22_gop_fca_set_timer(port, timer); mvpp22_gop_fca_enable_periodic(port, true); } static int mvpp22_gop_init(struct mvpp2_port *port, phy_interface_t interface) { struct mvpp2 *priv = port->priv; u32 val; if (!priv->sysctrl_base) return 0; switch (interface) { case PHY_INTERFACE_MODE_MII: case PHY_INTERFACE_MODE_RGMII: case PHY_INTERFACE_MODE_RGMII_ID: case PHY_INTERFACE_MODE_RGMII_RXID: case PHY_INTERFACE_MODE_RGMII_TXID: if (!mvpp2_port_supports_rgmii(port)) goto invalid_conf; mvpp22_gop_init_rgmii(port); break; case PHY_INTERFACE_MODE_SGMII: case PHY_INTERFACE_MODE_1000BASEX: case PHY_INTERFACE_MODE_2500BASEX: mvpp22_gop_init_sgmii(port); break; case PHY_INTERFACE_MODE_5GBASER: case PHY_INTERFACE_MODE_10GBASER: if (!mvpp2_port_supports_xlg(port)) goto invalid_conf; mvpp22_gop_init_10gkr(port); break; default: goto unsupported_conf; } regmap_read(priv->sysctrl_base, GENCONF_PORT_CTRL1, &val); val |= GENCONF_PORT_CTRL1_RESET(port->gop_id) | GENCONF_PORT_CTRL1_EN(port->gop_id); regmap_write(priv->sysctrl_base, GENCONF_PORT_CTRL1, val); regmap_read(priv->sysctrl_base, GENCONF_PORT_CTRL0, &val); val |= GENCONF_PORT_CTRL0_CLK_DIV_PHASE_CLR; regmap_write(priv->sysctrl_base, GENCONF_PORT_CTRL0, val); regmap_read(priv->sysctrl_base, GENCONF_SOFT_RESET1, &val); val |= GENCONF_SOFT_RESET1_GOP; regmap_write(priv->sysctrl_base, GENCONF_SOFT_RESET1, val); mvpp22_gop_fca_set_periodic_timer(port); unsupported_conf: return 0; invalid_conf: netdev_err(port->dev, "Invalid port configuration\n"); return -EINVAL; } static void mvpp22_gop_unmask_irq(struct mvpp2_port *port) { u32 val; if (phy_interface_mode_is_rgmii(port->phy_interface) || phy_interface_mode_is_8023z(port->phy_interface) || port->phy_interface == PHY_INTERFACE_MODE_SGMII) { /* Enable the GMAC link status irq for this port */ val = readl(port->base + MVPP22_GMAC_INT_SUM_MASK); val |= MVPP22_GMAC_INT_SUM_MASK_LINK_STAT; writel(val, port->base + MVPP22_GMAC_INT_SUM_MASK); } if (mvpp2_port_supports_xlg(port)) { /* Enable the XLG/GIG irqs for this port */ val = readl(port->base + MVPP22_XLG_EXT_INT_MASK); if (mvpp2_is_xlg(port->phy_interface)) val |= MVPP22_XLG_EXT_INT_MASK_XLG; else val |= MVPP22_XLG_EXT_INT_MASK_GIG; writel(val, port->base + MVPP22_XLG_EXT_INT_MASK); } } static void mvpp22_gop_mask_irq(struct mvpp2_port *port) { u32 val; if (mvpp2_port_supports_xlg(port)) { val = readl(port->base + MVPP22_XLG_EXT_INT_MASK); val &= ~(MVPP22_XLG_EXT_INT_MASK_XLG | MVPP22_XLG_EXT_INT_MASK_GIG); writel(val, port->base + MVPP22_XLG_EXT_INT_MASK); } if (phy_interface_mode_is_rgmii(port->phy_interface) || phy_interface_mode_is_8023z(port->phy_interface) || port->phy_interface == PHY_INTERFACE_MODE_SGMII) { val = readl(port->base + MVPP22_GMAC_INT_SUM_MASK); val &= ~MVPP22_GMAC_INT_SUM_MASK_LINK_STAT; writel(val, port->base + MVPP22_GMAC_INT_SUM_MASK); } } static void mvpp22_gop_setup_irq(struct mvpp2_port *port) { u32 val; mvpp2_modify(port->base + MVPP22_GMAC_INT_SUM_MASK, MVPP22_GMAC_INT_SUM_MASK_PTP, MVPP22_GMAC_INT_SUM_MASK_PTP); if (port->phylink || phy_interface_mode_is_rgmii(port->phy_interface) || phy_interface_mode_is_8023z(port->phy_interface) || port->phy_interface == PHY_INTERFACE_MODE_SGMII) { val = readl(port->base + MVPP22_GMAC_INT_MASK); val |= MVPP22_GMAC_INT_MASK_LINK_STAT; writel(val, port->base + MVPP22_GMAC_INT_MASK); } if (mvpp2_port_supports_xlg(port)) { val = readl(port->base + MVPP22_XLG_INT_MASK); val |= MVPP22_XLG_INT_MASK_LINK; writel(val, port->base + MVPP22_XLG_INT_MASK); mvpp2_modify(port->base + MVPP22_XLG_EXT_INT_MASK, MVPP22_XLG_EXT_INT_MASK_PTP, MVPP22_XLG_EXT_INT_MASK_PTP); } mvpp22_gop_unmask_irq(port); } /* Sets the PHY mode of the COMPHY (which configures the serdes lanes). * * The PHY mode used by the PPv2 driver comes from the network subsystem, while * the one given to the COMPHY comes from the generic PHY subsystem. Hence they * differ. * * The COMPHY configures the serdes lanes regardless of the actual use of the * lanes by the physical layer. This is why configurations like * "PPv2 (2500BaseX) - COMPHY (2500SGMII)" are valid. */ static int mvpp22_comphy_init(struct mvpp2_port *port, phy_interface_t interface) { int ret; if (!port->comphy) return 0; ret = phy_set_mode_ext(port->comphy, PHY_MODE_ETHERNET, interface); if (ret) return ret; return phy_power_on(port->comphy); } static void mvpp2_port_enable(struct mvpp2_port *port) { u32 val; if (mvpp2_port_supports_xlg(port) && mvpp2_is_xlg(port->phy_interface)) { val = readl(port->base + MVPP22_XLG_CTRL0_REG); val |= MVPP22_XLG_CTRL0_PORT_EN; val &= ~MVPP22_XLG_CTRL0_MIB_CNT_DIS; writel(val, port->base + MVPP22_XLG_CTRL0_REG); } else { val = readl(port->base + MVPP2_GMAC_CTRL_0_REG); val |= MVPP2_GMAC_PORT_EN_MASK; val |= MVPP2_GMAC_MIB_CNTR_EN_MASK; writel(val, port->base + MVPP2_GMAC_CTRL_0_REG); } } static void mvpp2_port_disable(struct mvpp2_port *port) { u32 val; if (mvpp2_port_supports_xlg(port) && mvpp2_is_xlg(port->phy_interface)) { val = readl(port->base + MVPP22_XLG_CTRL0_REG); val &= ~MVPP22_XLG_CTRL0_PORT_EN; writel(val, port->base + MVPP22_XLG_CTRL0_REG); } val = readl(port->base + MVPP2_GMAC_CTRL_0_REG); val &= ~(MVPP2_GMAC_PORT_EN_MASK); writel(val, port->base + MVPP2_GMAC_CTRL_0_REG); } /* Set IEEE 802.3x Flow Control Xon Packet Transmission Mode */ static void mvpp2_port_periodic_xon_disable(struct mvpp2_port *port) { u32 val; val = readl(port->base + MVPP2_GMAC_CTRL_1_REG) & ~MVPP2_GMAC_PERIODIC_XON_EN_MASK; writel(val, port->base + MVPP2_GMAC_CTRL_1_REG); } /* Configure loopback port */ static void mvpp2_port_loopback_set(struct mvpp2_port *port, const struct phylink_link_state *state) { u32 val; val = readl(port->base + MVPP2_GMAC_CTRL_1_REG); if (state->speed == 1000) val |= MVPP2_GMAC_GMII_LB_EN_MASK; else val &= ~MVPP2_GMAC_GMII_LB_EN_MASK; if (phy_interface_mode_is_8023z(state->interface) || state->interface == PHY_INTERFACE_MODE_SGMII) val |= MVPP2_GMAC_PCS_LB_EN_MASK; else val &= ~MVPP2_GMAC_PCS_LB_EN_MASK; writel(val, port->base + MVPP2_GMAC_CTRL_1_REG); } enum { ETHTOOL_XDP_REDIRECT, ETHTOOL_XDP_PASS, ETHTOOL_XDP_DROP, ETHTOOL_XDP_TX, ETHTOOL_XDP_TX_ERR, ETHTOOL_XDP_XMIT, ETHTOOL_XDP_XMIT_ERR, }; struct mvpp2_ethtool_counter { unsigned int offset; const char string[ETH_GSTRING_LEN]; bool reg_is_64b; }; static u64 mvpp2_read_count(struct mvpp2_port *port, const struct mvpp2_ethtool_counter *counter) { u64 val; val = readl(port->stats_base + counter->offset); if (counter->reg_is_64b) val += (u64)readl(port->stats_base + counter->offset + 4) << 32; return val; } /* Some counters are accessed indirectly by first writing an index to * MVPP2_CTRS_IDX. The index can represent various resources depending on the * register we access, it can be a hit counter for some classification tables, * a counter specific to a rxq, a txq or a buffer pool. */ static u32 mvpp2_read_index(struct mvpp2 *priv, u32 index, u32 reg) { mvpp2_write(priv, MVPP2_CTRS_IDX, index); return mvpp2_read(priv, reg); } /* Due to the fact that software statistics and hardware statistics are, by * design, incremented at different moments in the chain of packet processing, * it is very likely that incoming packets could have been dropped after being * counted by hardware but before reaching software statistics (most probably * multicast packets), and in the opposite way, during transmission, FCS bytes * are added in between as well as TSO skb will be split and header bytes added. * Hence, statistics gathered from userspace with ifconfig (software) and * ethtool (hardware) cannot be compared. */ static const struct mvpp2_ethtool_counter mvpp2_ethtool_mib_regs[] = { { MVPP2_MIB_GOOD_OCTETS_RCVD, "good_octets_received", true }, { MVPP2_MIB_BAD_OCTETS_RCVD, "bad_octets_received" }, { MVPP2_MIB_CRC_ERRORS_SENT, "crc_errors_sent" }, { MVPP2_MIB_UNICAST_FRAMES_RCVD, "unicast_frames_received" }, { MVPP2_MIB_BROADCAST_FRAMES_RCVD, "broadcast_frames_received" }, { MVPP2_MIB_MULTICAST_FRAMES_RCVD, "multicast_frames_received" }, { MVPP2_MIB_FRAMES_64_OCTETS, "frames_64_octets" }, { MVPP2_MIB_FRAMES_65_TO_127_OCTETS, "frames_65_to_127_octet" }, { MVPP2_MIB_FRAMES_128_TO_255_OCTETS, "frames_128_to_255_octet" }, { MVPP2_MIB_FRAMES_256_TO_511_OCTETS, "frames_256_to_511_octet" }, { MVPP2_MIB_FRAMES_512_TO_1023_OCTETS, "frames_512_to_1023_octet" }, { MVPP2_MIB_FRAMES_1024_TO_MAX_OCTETS, "frames_1024_to_max_octet" }, { MVPP2_MIB_GOOD_OCTETS_SENT, "good_octets_sent", true }, { MVPP2_MIB_UNICAST_FRAMES_SENT, "unicast_frames_sent" }, { MVPP2_MIB_MULTICAST_FRAMES_SENT, "multicast_frames_sent" }, { MVPP2_MIB_BROADCAST_FRAMES_SENT, "broadcast_frames_sent" }, { MVPP2_MIB_FC_SENT, "fc_sent" }, { MVPP2_MIB_FC_RCVD, "fc_received" }, { MVPP2_MIB_RX_FIFO_OVERRUN, "rx_fifo_overrun" }, { MVPP2_MIB_UNDERSIZE_RCVD, "undersize_received" }, { MVPP2_MIB_FRAGMENTS_RCVD, "fragments_received" }, { MVPP2_MIB_OVERSIZE_RCVD, "oversize_received" }, { MVPP2_MIB_JABBER_RCVD, "jabber_received" }, { MVPP2_MIB_MAC_RCV_ERROR, "mac_receive_error" }, { MVPP2_MIB_BAD_CRC_EVENT, "bad_crc_event" }, { MVPP2_MIB_COLLISION, "collision" }, { MVPP2_MIB_LATE_COLLISION, "late_collision" }, }; static const struct mvpp2_ethtool_counter mvpp2_ethtool_port_regs[] = { { MVPP2_OVERRUN_ETH_DROP, "rx_fifo_or_parser_overrun_drops" }, { MVPP2_CLS_ETH_DROP, "rx_classifier_drops" }, }; static const struct mvpp2_ethtool_counter mvpp2_ethtool_txq_regs[] = { { MVPP2_TX_DESC_ENQ_CTR, "txq_%d_desc_enqueue" }, { MVPP2_TX_DESC_ENQ_TO_DDR_CTR, "txq_%d_desc_enqueue_to_ddr" }, { MVPP2_TX_BUFF_ENQ_TO_DDR_CTR, "txq_%d_buff_euqueue_to_ddr" }, { MVPP2_TX_DESC_ENQ_HW_FWD_CTR, "txq_%d_desc_hardware_forwarded" }, { MVPP2_TX_PKTS_DEQ_CTR, "txq_%d_packets_dequeued" }, { MVPP2_TX_PKTS_FULL_QUEUE_DROP_CTR, "txq_%d_queue_full_drops" }, { MVPP2_TX_PKTS_EARLY_DROP_CTR, "txq_%d_packets_early_drops" }, { MVPP2_TX_PKTS_BM_DROP_CTR, "txq_%d_packets_bm_drops" }, { MVPP2_TX_PKTS_BM_MC_DROP_CTR, "txq_%d_packets_rep_bm_drops" }, }; static const struct mvpp2_ethtool_counter mvpp2_ethtool_rxq_regs[] = { { MVPP2_RX_DESC_ENQ_CTR, "rxq_%d_desc_enqueue" }, { MVPP2_RX_PKTS_FULL_QUEUE_DROP_CTR, "rxq_%d_queue_full_drops" }, { MVPP2_RX_PKTS_EARLY_DROP_CTR, "rxq_%d_packets_early_drops" }, { MVPP2_RX_PKTS_BM_DROP_CTR, "rxq_%d_packets_bm_drops" }, }; static const struct mvpp2_ethtool_counter mvpp2_ethtool_xdp[] = { { ETHTOOL_XDP_REDIRECT, "rx_xdp_redirect", }, { ETHTOOL_XDP_PASS, "rx_xdp_pass", }, { ETHTOOL_XDP_DROP, "rx_xdp_drop", }, { ETHTOOL_XDP_TX, "rx_xdp_tx", }, { ETHTOOL_XDP_TX_ERR, "rx_xdp_tx_errors", }, { ETHTOOL_XDP_XMIT, "tx_xdp_xmit", }, { ETHTOOL_XDP_XMIT_ERR, "tx_xdp_xmit_errors", }, }; #define MVPP2_N_ETHTOOL_STATS(ntxqs, nrxqs) (ARRAY_SIZE(mvpp2_ethtool_mib_regs) + \ ARRAY_SIZE(mvpp2_ethtool_port_regs) + \ (ARRAY_SIZE(mvpp2_ethtool_txq_regs) * (ntxqs)) + \ (ARRAY_SIZE(mvpp2_ethtool_rxq_regs) * (nrxqs)) + \ ARRAY_SIZE(mvpp2_ethtool_xdp)) static void mvpp2_ethtool_get_strings(struct net_device *netdev, u32 sset, u8 *data) { struct mvpp2_port *port = netdev_priv(netdev); int i, q; if (sset != ETH_SS_STATS) return; for (i = 0; i < ARRAY_SIZE(mvpp2_ethtool_mib_regs); i++) { strscpy(data, mvpp2_ethtool_mib_regs[i].string, ETH_GSTRING_LEN); data += ETH_GSTRING_LEN; } for (i = 0; i < ARRAY_SIZE(mvpp2_ethtool_port_regs); i++) { strscpy(data, mvpp2_ethtool_port_regs[i].string, ETH_GSTRING_LEN); data += ETH_GSTRING_LEN; } for (q = 0; q < port->ntxqs; q++) { for (i = 0; i < ARRAY_SIZE(mvpp2_ethtool_txq_regs); i++) { snprintf(data, ETH_GSTRING_LEN, mvpp2_ethtool_txq_regs[i].string, q); data += ETH_GSTRING_LEN; } } for (q = 0; q < port->nrxqs; q++) { for (i = 0; i < ARRAY_SIZE(mvpp2_ethtool_rxq_regs); i++) { snprintf(data, ETH_GSTRING_LEN, mvpp2_ethtool_rxq_regs[i].string, q); data += ETH_GSTRING_LEN; } } for (i = 0; i < ARRAY_SIZE(mvpp2_ethtool_xdp); i++) { strscpy(data, mvpp2_ethtool_xdp[i].string, ETH_GSTRING_LEN); data += ETH_GSTRING_LEN; } } static void mvpp2_get_xdp_stats(struct mvpp2_port *port, struct mvpp2_pcpu_stats *xdp_stats) { unsigned int start; unsigned int cpu; /* Gather XDP Statistics */ for_each_possible_cpu(cpu) { struct mvpp2_pcpu_stats *cpu_stats; u64 xdp_redirect; u64 xdp_pass; u64 xdp_drop; u64 xdp_xmit; u64 xdp_xmit_err; u64 xdp_tx; u64 xdp_tx_err; cpu_stats = per_cpu_ptr(port->stats, cpu); do { start = u64_stats_fetch_begin(&cpu_stats->syncp); xdp_redirect = cpu_stats->xdp_redirect; xdp_pass = cpu_stats->xdp_pass; xdp_drop = cpu_stats->xdp_drop; xdp_xmit = cpu_stats->xdp_xmit; xdp_xmit_err = cpu_stats->xdp_xmit_err; xdp_tx = cpu_stats->xdp_tx; xdp_tx_err = cpu_stats->xdp_tx_err; } while (u64_stats_fetch_retry(&cpu_stats->syncp, start)); xdp_stats->xdp_redirect += xdp_redirect; xdp_stats->xdp_pass += xdp_pass; xdp_stats->xdp_drop += xdp_drop; xdp_stats->xdp_xmit += xdp_xmit; xdp_stats->xdp_xmit_err += xdp_xmit_err; xdp_stats->xdp_tx += xdp_tx; xdp_stats->xdp_tx_err += xdp_tx_err; } } static void mvpp2_read_stats(struct mvpp2_port *port) { struct mvpp2_pcpu_stats xdp_stats = {}; const struct mvpp2_ethtool_counter *s; u64 *pstats; int i, q; pstats = port->ethtool_stats; for (i = 0; i < ARRAY_SIZE(mvpp2_ethtool_mib_regs); i++) *pstats++ += mvpp2_read_count(port, &mvpp2_ethtool_mib_regs[i]); for (i = 0; i < ARRAY_SIZE(mvpp2_ethtool_port_regs); i++) *pstats++ += mvpp2_read(port->priv, mvpp2_ethtool_port_regs[i].offset + 4 * port->id); for (q = 0; q < port->ntxqs; q++) for (i = 0; i < ARRAY_SIZE(mvpp2_ethtool_txq_regs); i++) *pstats++ += mvpp2_read_index(port->priv, MVPP22_CTRS_TX_CTR(port->id, q), mvpp2_ethtool_txq_regs[i].offset); /* Rxqs are numbered from 0 from the user standpoint, but not from the * driver's. We need to add the port->first_rxq offset. */ for (q = 0; q < port->nrxqs; q++) for (i = 0; i < ARRAY_SIZE(mvpp2_ethtool_rxq_regs); i++) *pstats++ += mvpp2_read_index(port->priv, port->first_rxq + q, mvpp2_ethtool_rxq_regs[i].offset); /* Gather XDP Statistics */ mvpp2_get_xdp_stats(port, &xdp_stats); for (i = 0, s = mvpp2_ethtool_xdp; s < mvpp2_ethtool_xdp + ARRAY_SIZE(mvpp2_ethtool_xdp); s++, i++) { switch (s->offset) { case ETHTOOL_XDP_REDIRECT: *pstats++ = xdp_stats.xdp_redirect; break; case ETHTOOL_XDP_PASS: *pstats++ = xdp_stats.xdp_pass; break; case ETHTOOL_XDP_DROP: *pstats++ = xdp_stats.xdp_drop; break; case ETHTOOL_XDP_TX: *pstats++ = xdp_stats.xdp_tx; break; case ETHTOOL_XDP_TX_ERR: *pstats++ = xdp_stats.xdp_tx_err; break; case ETHTOOL_XDP_XMIT: *pstats++ = xdp_stats.xdp_xmit; break; case ETHTOOL_XDP_XMIT_ERR: *pstats++ = xdp_stats.xdp_xmit_err; break; } } } static void mvpp2_gather_hw_statistics(struct work_struct *work) { struct delayed_work *del_work = to_delayed_work(work); struct mvpp2_port *port = container_of(del_work, struct mvpp2_port, stats_work); mutex_lock(&port->gather_stats_lock); mvpp2_read_stats(port); /* No need to read again the counters right after this function if it * was called asynchronously by the user (ie. use of ethtool). */ cancel_delayed_work(&port->stats_work); queue_delayed_work(port->priv->stats_queue, &port->stats_work, MVPP2_MIB_COUNTERS_STATS_DELAY); mutex_unlock(&port->gather_stats_lock); } static void mvpp2_ethtool_get_stats(struct net_device *dev, struct ethtool_stats *stats, u64 *data) { struct mvpp2_port *port = netdev_priv(dev); /* Update statistics for the given port, then take the lock to avoid * concurrent accesses on the ethtool_stats structure during its copy. */ mvpp2_gather_hw_statistics(&port->stats_work.work); mutex_lock(&port->gather_stats_lock); memcpy(data, port->ethtool_stats, sizeof(u64) * MVPP2_N_ETHTOOL_STATS(port->ntxqs, port->nrxqs)); mutex_unlock(&port->gather_stats_lock); } static int mvpp2_ethtool_get_sset_count(struct net_device *dev, int sset) { struct mvpp2_port *port = netdev_priv(dev); if (sset == ETH_SS_STATS) return MVPP2_N_ETHTOOL_STATS(port->ntxqs, port->nrxqs); return -EOPNOTSUPP; } static void mvpp2_mac_reset_assert(struct mvpp2_port *port) { u32 val; val = readl(port->base + MVPP2_GMAC_CTRL_2_REG) | MVPP2_GMAC_PORT_RESET_MASK; writel(val, port->base + MVPP2_GMAC_CTRL_2_REG); if (port->priv->hw_version >= MVPP22 && port->gop_id == 0) { val = readl(port->base + MVPP22_XLG_CTRL0_REG) & ~MVPP22_XLG_CTRL0_MAC_RESET_DIS; writel(val, port->base + MVPP22_XLG_CTRL0_REG); } } static void mvpp22_pcs_reset_assert(struct mvpp2_port *port) { struct mvpp2 *priv = port->priv; void __iomem *mpcs, *xpcs; u32 val; if (port->priv->hw_version == MVPP21 || port->gop_id != 0) return; mpcs = priv->iface_base + MVPP22_MPCS_BASE(port->gop_id); xpcs = priv->iface_base + MVPP22_XPCS_BASE(port->gop_id); val = readl(mpcs + MVPP22_MPCS_CLK_RESET); val &= ~(MAC_CLK_RESET_MAC | MAC_CLK_RESET_SD_RX | MAC_CLK_RESET_SD_TX); val |= MVPP22_MPCS_CLK_RESET_DIV_SET; writel(val, mpcs + MVPP22_MPCS_CLK_RESET); val = readl(xpcs + MVPP22_XPCS_CFG0); writel(val & ~MVPP22_XPCS_CFG0_RESET_DIS, xpcs + MVPP22_XPCS_CFG0); } static void mvpp22_pcs_reset_deassert(struct mvpp2_port *port, phy_interface_t interface) { struct mvpp2 *priv = port->priv; void __iomem *mpcs, *xpcs; u32 val; if (port->priv->hw_version == MVPP21 || port->gop_id != 0) return; mpcs = priv->iface_base + MVPP22_MPCS_BASE(port->gop_id); xpcs = priv->iface_base + MVPP22_XPCS_BASE(port->gop_id); switch (interface) { case PHY_INTERFACE_MODE_5GBASER: case PHY_INTERFACE_MODE_10GBASER: val = readl(mpcs + MVPP22_MPCS_CLK_RESET); val |= MAC_CLK_RESET_MAC | MAC_CLK_RESET_SD_RX | MAC_CLK_RESET_SD_TX; val &= ~MVPP22_MPCS_CLK_RESET_DIV_SET; writel(val, mpcs + MVPP22_MPCS_CLK_RESET); break; case PHY_INTERFACE_MODE_XAUI: case PHY_INTERFACE_MODE_RXAUI: val = readl(xpcs + MVPP22_XPCS_CFG0); writel(val | MVPP22_XPCS_CFG0_RESET_DIS, xpcs + MVPP22_XPCS_CFG0); break; default: break; } } /* Change maximum receive size of the port */ static inline void mvpp2_gmac_max_rx_size_set(struct mvpp2_port *port) { u32 val; val = readl(port->base + MVPP2_GMAC_CTRL_0_REG); val &= ~MVPP2_GMAC_MAX_RX_SIZE_MASK; val |= (((port->pkt_size - MVPP2_MH_SIZE) / 2) << MVPP2_GMAC_MAX_RX_SIZE_OFFS); writel(val, port->base + MVPP2_GMAC_CTRL_0_REG); } /* Change maximum receive size of the port */ static inline void mvpp2_xlg_max_rx_size_set(struct mvpp2_port *port) { u32 val; val = readl(port->base + MVPP22_XLG_CTRL1_REG); val &= ~MVPP22_XLG_CTRL1_FRAMESIZELIMIT_MASK; val |= ((port->pkt_size - MVPP2_MH_SIZE) / 2) << MVPP22_XLG_CTRL1_FRAMESIZELIMIT_OFFS; writel(val, port->base + MVPP22_XLG_CTRL1_REG); } /* Set defaults to the MVPP2 port */ static void mvpp2_defaults_set(struct mvpp2_port *port) { int tx_port_num, val, queue, lrxq; if (port->priv->hw_version == MVPP21) { /* Update TX FIFO MIN Threshold */ val = readl(port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG); val &= ~MVPP2_GMAC_TX_FIFO_MIN_TH_ALL_MASK; /* Min. TX threshold must be less than minimal packet length */ val |= MVPP2_GMAC_TX_FIFO_MIN_TH_MASK(64 - 4 - 2); writel(val, port->base + MVPP2_GMAC_PORT_FIFO_CFG_1_REG); } /* Disable Legacy WRR, Disable EJP, Release from reset */ tx_port_num = mvpp2_egress_port(port); mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num); mvpp2_write(port->priv, MVPP2_TXP_SCHED_CMD_1_REG, 0); /* Set TXQ scheduling to Round-Robin */ mvpp2_write(port->priv, MVPP2_TXP_SCHED_FIXED_PRIO_REG, 0); /* Close bandwidth for all queues */ for (queue = 0; queue < MVPP2_MAX_TXQ; queue++) mvpp2_write(port->priv, MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(queue), 0); /* Set refill period to 1 usec, refill tokens * and bucket size to maximum */ mvpp2_write(port->priv, MVPP2_TXP_SCHED_PERIOD_REG, port->priv->tclk / USEC_PER_SEC); val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_REFILL_REG); val &= ~MVPP2_TXP_REFILL_PERIOD_ALL_MASK; val |= MVPP2_TXP_REFILL_PERIOD_MASK(1); val |= MVPP2_TXP_REFILL_TOKENS_ALL_MASK; mvpp2_write(port->priv, MVPP2_TXP_SCHED_REFILL_REG, val); val = MVPP2_TXP_TOKEN_SIZE_MAX; mvpp2_write(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG, val); /* Set MaximumLowLatencyPacketSize value to 256 */ mvpp2_write(port->priv, MVPP2_RX_CTRL_REG(port->id), MVPP2_RX_USE_PSEUDO_FOR_CSUM_MASK | MVPP2_RX_LOW_LATENCY_PKT_SIZE(256)); /* Enable Rx cache snoop */ for (lrxq = 0; lrxq < port->nrxqs; lrxq++) { queue = port->rxqs[lrxq]->id; val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue)); val |= MVPP2_SNOOP_PKT_SIZE_MASK | MVPP2_SNOOP_BUF_HDR_MASK; mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val); } /* At default, mask all interrupts to all present cpus */ mvpp2_interrupts_disable(port); } /* Enable/disable receiving packets */ static void mvpp2_ingress_enable(struct mvpp2_port *port) { u32 val; int lrxq, queue; for (lrxq = 0; lrxq < port->nrxqs; lrxq++) { queue = port->rxqs[lrxq]->id; val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue)); val &= ~MVPP2_RXQ_DISABLE_MASK; mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val); } } static void mvpp2_ingress_disable(struct mvpp2_port *port) { u32 val; int lrxq, queue; for (lrxq = 0; lrxq < port->nrxqs; lrxq++) { queue = port->rxqs[lrxq]->id; val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(queue)); val |= MVPP2_RXQ_DISABLE_MASK; mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(queue), val); } } /* Enable transmit via physical egress queue * - HW starts take descriptors from DRAM */ static void mvpp2_egress_enable(struct mvpp2_port *port) { u32 qmap; int queue; int tx_port_num = mvpp2_egress_port(port); /* Enable all initialized TXs. */ qmap = 0; for (queue = 0; queue < port->ntxqs; queue++) { struct mvpp2_tx_queue *txq = port->txqs[queue]; if (txq->descs) qmap |= (1 << queue); } mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num); mvpp2_write(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG, qmap); } /* Disable transmit via physical egress queue * - HW doesn't take descriptors from DRAM */ static void mvpp2_egress_disable(struct mvpp2_port *port) { u32 reg_data; int delay; int tx_port_num = mvpp2_egress_port(port); /* Issue stop command for active channels only */ mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num); reg_data = (mvpp2_read(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG)) & MVPP2_TXP_SCHED_ENQ_MASK; if (reg_data != 0) mvpp2_write(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG, (reg_data << MVPP2_TXP_SCHED_DISQ_OFFSET)); /* Wait for all Tx activity to terminate. */ delay = 0; do { if (delay >= MVPP2_TX_DISABLE_TIMEOUT_MSEC) { netdev_warn(port->dev, "Tx stop timed out, status=0x%08x\n", reg_data); break; } mdelay(1); delay++; /* Check port TX Command register that all * Tx queues are stopped */ reg_data = mvpp2_read(port->priv, MVPP2_TXP_SCHED_Q_CMD_REG); } while (reg_data & MVPP2_TXP_SCHED_ENQ_MASK); } /* Rx descriptors helper methods */ /* Get number of Rx descriptors occupied by received packets */ static inline int mvpp2_rxq_received(struct mvpp2_port *port, int rxq_id) { u32 val = mvpp2_read(port->priv, MVPP2_RXQ_STATUS_REG(rxq_id)); return val & MVPP2_RXQ_OCCUPIED_MASK; } /* Update Rx queue status with the number of occupied and available * Rx descriptor slots. */ static inline void mvpp2_rxq_status_update(struct mvpp2_port *port, int rxq_id, int used_count, int free_count) { /* Decrement the number of used descriptors and increment count * increment the number of free descriptors. */ u32 val = used_count | (free_count << MVPP2_RXQ_NUM_NEW_OFFSET); mvpp2_write(port->priv, MVPP2_RXQ_STATUS_UPDATE_REG(rxq_id), val); } /* Get pointer to next RX descriptor to be processed by SW */ static inline struct mvpp2_rx_desc * mvpp2_rxq_next_desc_get(struct mvpp2_rx_queue *rxq) { int rx_desc = rxq->next_desc_to_proc; rxq->next_desc_to_proc = MVPP2_QUEUE_NEXT_DESC(rxq, rx_desc); prefetch(rxq->descs + rxq->next_desc_to_proc); return rxq->descs + rx_desc; } /* Set rx queue offset */ static void mvpp2_rxq_offset_set(struct mvpp2_port *port, int prxq, int offset) { u32 val; /* Convert offset from bytes to units of 32 bytes */ offset = offset >> 5; val = mvpp2_read(port->priv, MVPP2_RXQ_CONFIG_REG(prxq)); val &= ~MVPP2_RXQ_PACKET_OFFSET_MASK; /* Offset is in */ val |= ((offset << MVPP2_RXQ_PACKET_OFFSET_OFFS) & MVPP2_RXQ_PACKET_OFFSET_MASK); mvpp2_write(port->priv, MVPP2_RXQ_CONFIG_REG(prxq), val); } /* Tx descriptors helper methods */ /* Get pointer to next Tx descriptor to be processed (send) by HW */ static struct mvpp2_tx_desc * mvpp2_txq_next_desc_get(struct mvpp2_tx_queue *txq) { int tx_desc = txq->next_desc_to_proc; txq->next_desc_to_proc = MVPP2_QUEUE_NEXT_DESC(txq, tx_desc); return txq->descs + tx_desc; } /* Update HW with number of aggregated Tx descriptors to be sent * * Called only from mvpp2_tx(), so migration is disabled, using * smp_processor_id() is OK. */ static void mvpp2_aggr_txq_pend_desc_add(struct mvpp2_port *port, int pending) { /* aggregated access - relevant TXQ number is written in TX desc */ mvpp2_thread_write(port->priv, mvpp2_cpu_to_thread(port->priv, smp_processor_id()), MVPP2_AGGR_TXQ_UPDATE_REG, pending); } /* Check if there are enough free descriptors in aggregated txq. * If not, update the number of occupied descriptors and repeat the check. * * Called only from mvpp2_tx(), so migration is disabled, using * smp_processor_id() is OK. */ static int mvpp2_aggr_desc_num_check(struct mvpp2_port *port, struct mvpp2_tx_queue *aggr_txq, int num) { if ((aggr_txq->count + num) > MVPP2_AGGR_TXQ_SIZE) { /* Update number of occupied aggregated Tx descriptors */ unsigned int thread = mvpp2_cpu_to_thread(port->priv, smp_processor_id()); u32 val = mvpp2_read_relaxed(port->priv, MVPP2_AGGR_TXQ_STATUS_REG(thread)); aggr_txq->count = val & MVPP2_AGGR_TXQ_PENDING_MASK; if ((aggr_txq->count + num) > MVPP2_AGGR_TXQ_SIZE) return -ENOMEM; } return 0; } /* Reserved Tx descriptors allocation request * * Called only from mvpp2_txq_reserved_desc_num_proc(), itself called * only by mvpp2_tx(), so migration is disabled, using * smp_processor_id() is OK. */ static int mvpp2_txq_alloc_reserved_desc(struct mvpp2_port *port, struct mvpp2_tx_queue *txq, int num) { unsigned int thread = mvpp2_cpu_to_thread(port->priv, smp_processor_id()); struct mvpp2 *priv = port->priv; u32 val; val = (txq->id << MVPP2_TXQ_RSVD_REQ_Q_OFFSET) | num; mvpp2_thread_write_relaxed(priv, thread, MVPP2_TXQ_RSVD_REQ_REG, val); val = mvpp2_thread_read_relaxed(priv, thread, MVPP2_TXQ_RSVD_RSLT_REG); return val & MVPP2_TXQ_RSVD_RSLT_MASK; } /* Check if there are enough reserved descriptors for transmission. * If not, request chunk of reserved descriptors and check again. */ static int mvpp2_txq_reserved_desc_num_proc(struct mvpp2_port *port, struct mvpp2_tx_queue *txq, struct mvpp2_txq_pcpu *txq_pcpu, int num) { int req, desc_count; unsigned int thread; if (txq_pcpu->reserved_num >= num) return 0; /* Not enough descriptors reserved! Update the reserved descriptor * count and check again. */ desc_count = 0; /* Compute total of used descriptors */ for (thread = 0; thread < port->priv->nthreads; thread++) { struct mvpp2_txq_pcpu *txq_pcpu_aux; txq_pcpu_aux = per_cpu_ptr(txq->pcpu, thread); desc_count += txq_pcpu_aux->count; desc_count += txq_pcpu_aux->reserved_num; } req = max(MVPP2_CPU_DESC_CHUNK, num - txq_pcpu->reserved_num); desc_count += req; if (desc_count > (txq->size - (MVPP2_MAX_THREADS * MVPP2_CPU_DESC_CHUNK))) return -ENOMEM; txq_pcpu->reserved_num += mvpp2_txq_alloc_reserved_desc(port, txq, req); /* OK, the descriptor could have been updated: check again. */ if (txq_pcpu->reserved_num < num) return -ENOMEM; return 0; } /* Release the last allocated Tx descriptor. Useful to handle DMA * mapping failures in the Tx path. */ static void mvpp2_txq_desc_put(struct mvpp2_tx_queue *txq) { if (txq->next_desc_to_proc == 0) txq->next_desc_to_proc = txq->last_desc - 1; else txq->next_desc_to_proc--; } /* Set Tx descriptors fields relevant for CSUM calculation */ static u32 mvpp2_txq_desc_csum(int l3_offs, __be16 l3_proto, int ip_hdr_len, int l4_proto) { u32 command; /* fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk, * G_L4_chk, L4_type required only for checksum calculation */ command = (l3_offs << MVPP2_TXD_L3_OFF_SHIFT); command |= (ip_hdr_len << MVPP2_TXD_IP_HLEN_SHIFT); command |= MVPP2_TXD_IP_CSUM_DISABLE; if (l3_proto == htons(ETH_P_IP)) { command &= ~MVPP2_TXD_IP_CSUM_DISABLE; /* enable IPv4 csum */ command &= ~MVPP2_TXD_L3_IP6; /* enable IPv4 */ } else { command |= MVPP2_TXD_L3_IP6; /* enable IPv6 */ } if (l4_proto == IPPROTO_TCP) { command &= ~MVPP2_TXD_L4_UDP; /* enable TCP */ command &= ~MVPP2_TXD_L4_CSUM_FRAG; /* generate L4 csum */ } else if (l4_proto == IPPROTO_UDP) { command |= MVPP2_TXD_L4_UDP; /* enable UDP */ command &= ~MVPP2_TXD_L4_CSUM_FRAG; /* generate L4 csum */ } else { command |= MVPP2_TXD_L4_CSUM_NOT; } return command; } /* Get number of sent descriptors and decrement counter. * The number of sent descriptors is returned. * Per-thread access * * Called only from mvpp2_txq_done(), called from mvpp2_tx() * (migration disabled) and from the TX completion tasklet (migration * disabled) so using smp_processor_id() is OK. */ static inline int mvpp2_txq_sent_desc_proc(struct mvpp2_port *port, struct mvpp2_tx_queue *txq) { u32 val; /* Reading status reg resets transmitted descriptor counter */ val = mvpp2_thread_read_relaxed(port->priv, mvpp2_cpu_to_thread(port->priv, smp_processor_id()), MVPP2_TXQ_SENT_REG(txq->id)); return (val & MVPP2_TRANSMITTED_COUNT_MASK) >> MVPP2_TRANSMITTED_COUNT_OFFSET; } /* Called through on_each_cpu(), so runs on all CPUs, with migration * disabled, therefore using smp_processor_id() is OK. */ static void mvpp2_txq_sent_counter_clear(void *arg) { struct mvpp2_port *port = arg; int queue; /* If the thread isn't used, don't do anything */ if (smp_processor_id() >= port->priv->nthreads) return; for (queue = 0; queue < port->ntxqs; queue++) { int id = port->txqs[queue]->id; mvpp2_thread_read(port->priv, mvpp2_cpu_to_thread(port->priv, smp_processor_id()), MVPP2_TXQ_SENT_REG(id)); } } /* Set max sizes for Tx queues */ static void mvpp2_txp_max_tx_size_set(struct mvpp2_port *port) { u32 val, size, mtu; int txq, tx_port_num; mtu = port->pkt_size * 8; if (mtu > MVPP2_TXP_MTU_MAX) mtu = MVPP2_TXP_MTU_MAX; /* WA for wrong Token bucket update: Set MTU value = 3*real MTU value */ mtu = 3 * mtu; /* Indirect access to registers */ tx_port_num = mvpp2_egress_port(port); mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num); /* Set MTU */ val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_MTU_REG); val &= ~MVPP2_TXP_MTU_MAX; val |= mtu; mvpp2_write(port->priv, MVPP2_TXP_SCHED_MTU_REG, val); /* TXP token size and all TXQs token size must be larger that MTU */ val = mvpp2_read(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG); size = val & MVPP2_TXP_TOKEN_SIZE_MAX; if (size < mtu) { size = mtu; val &= ~MVPP2_TXP_TOKEN_SIZE_MAX; val |= size; mvpp2_write(port->priv, MVPP2_TXP_SCHED_TOKEN_SIZE_REG, val); } for (txq = 0; txq < port->ntxqs; txq++) { val = mvpp2_read(port->priv, MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq)); size = val & MVPP2_TXQ_TOKEN_SIZE_MAX; if (size < mtu) { size = mtu; val &= ~MVPP2_TXQ_TOKEN_SIZE_MAX; val |= size; mvpp2_write(port->priv, MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq), val); } } } /* Set the number of non-occupied descriptors threshold */ static void mvpp2_set_rxq_free_tresh(struct mvpp2_port *port, struct mvpp2_rx_queue *rxq) { u32 val; mvpp2_write(port->priv, MVPP2_RXQ_NUM_REG, rxq->id); val = mvpp2_read(port->priv, MVPP2_RXQ_THRESH_REG); val &= ~MVPP2_RXQ_NON_OCCUPIED_MASK; val |= MSS_THRESHOLD_STOP << MVPP2_RXQ_NON_OCCUPIED_OFFSET; mvpp2_write(port->priv, MVPP2_RXQ_THRESH_REG, val); } /* Set the number of packets that will be received before Rx interrupt * will be generated by HW. */ static void mvpp2_rx_pkts_coal_set(struct mvpp2_port *port, struct mvpp2_rx_queue *rxq) { unsigned int thread = mvpp2_cpu_to_thread(port->priv, get_cpu()); if (rxq->pkts_coal > MVPP2_OCCUPIED_THRESH_MASK) rxq->pkts_coal = MVPP2_OCCUPIED_THRESH_MASK; mvpp2_thread_write(port->priv, thread, MVPP2_RXQ_NUM_REG, rxq->id); mvpp2_thread_write(port->priv, thread, MVPP2_RXQ_THRESH_REG, rxq->pkts_coal); put_cpu(); } /* For some reason in the LSP this is done on each CPU. Why ? */ static void mvpp2_tx_pkts_coal_set(struct mvpp2_port *port, struct mvpp2_tx_queue *txq) { unsigned int thread; u32 val; if (txq->done_pkts_coal > MVPP2_TXQ_THRESH_MASK) txq->done_pkts_coal = MVPP2_TXQ_THRESH_MASK; val = (txq->done_pkts_coal << MVPP2_TXQ_THRESH_OFFSET); /* PKT-coalescing registers are per-queue + per-thread */ for (thread = 0; thread < MVPP2_MAX_THREADS; thread++) { mvpp2_thread_write(port->priv, thread, MVPP2_TXQ_NUM_REG, txq->id); mvpp2_thread_write(port->priv, thread, MVPP2_TXQ_THRESH_REG, val); } } static u32 mvpp2_usec_to_cycles(u32 usec, unsigned long clk_hz) { u64 tmp = (u64)clk_hz * usec; do_div(tmp, USEC_PER_SEC); return tmp > U32_MAX ? U32_MAX : tmp; } static u32 mvpp2_cycles_to_usec(u32 cycles, unsigned long clk_hz) { u64 tmp = (u64)cycles * USEC_PER_SEC; do_div(tmp, clk_hz); return tmp > U32_MAX ? U32_MAX : tmp; } /* Set the time delay in usec before Rx interrupt */ static void mvpp2_rx_time_coal_set(struct mvpp2_port *port, struct mvpp2_rx_queue *rxq) { unsigned long freq = port->priv->tclk; u32 val = mvpp2_usec_to_cycles(rxq->time_coal, freq); if (val > MVPP2_MAX_ISR_RX_THRESHOLD) { rxq->time_coal = mvpp2_cycles_to_usec(MVPP2_MAX_ISR_RX_THRESHOLD, freq); /* re-evaluate to get actual register value */ val = mvpp2_usec_to_cycles(rxq->time_coal, freq); } mvpp2_write(port->priv, MVPP2_ISR_RX_THRESHOLD_REG(rxq->id), val); } static void mvpp2_tx_time_coal_set(struct mvpp2_port *port) { unsigned long freq = port->priv->tclk; u32 val = mvpp2_usec_to_cycles(port->tx_time_coal, freq); if (val > MVPP2_MAX_ISR_TX_THRESHOLD) { port->tx_time_coal = mvpp2_cycles_to_usec(MVPP2_MAX_ISR_TX_THRESHOLD, freq); /* re-evaluate to get actual register value */ val = mvpp2_usec_to_cycles(port->tx_time_coal, freq); } mvpp2_write(port->priv, MVPP2_ISR_TX_THRESHOLD_REG(port->id), val); } /* Free Tx queue skbuffs */ static void mvpp2_txq_bufs_free(struct mvpp2_port *port, struct mvpp2_tx_queue *txq, struct mvpp2_txq_pcpu *txq_pcpu, int num) { struct xdp_frame_bulk bq; int i; xdp_frame_bulk_init(&bq); rcu_read_lock(); /* need for xdp_return_frame_bulk */ for (i = 0; i < num; i++) { struct mvpp2_txq_pcpu_buf *tx_buf = txq_pcpu->buffs + txq_pcpu->txq_get_index; if (!IS_TSO_HEADER(txq_pcpu, tx_buf->dma) && tx_buf->type != MVPP2_TYPE_XDP_TX) dma_unmap_single(port->dev->dev.parent, tx_buf->dma, tx_buf->size, DMA_TO_DEVICE); if (tx_buf->type == MVPP2_TYPE_SKB && tx_buf->skb) dev_kfree_skb_any(tx_buf->skb); else if (tx_buf->type == MVPP2_TYPE_XDP_TX || tx_buf->type == MVPP2_TYPE_XDP_NDO) xdp_return_frame_bulk(tx_buf->xdpf, &bq); mvpp2_txq_inc_get(txq_pcpu); } xdp_flush_frame_bulk(&bq); rcu_read_unlock(); } static inline struct mvpp2_rx_queue *mvpp2_get_rx_queue(struct mvpp2_port *port, u32 cause) { int queue = fls(cause) - 1; return port->rxqs[queue]; } static inline struct mvpp2_tx_queue *mvpp2_get_tx_queue(struct mvpp2_port *port, u32 cause) { int queue = fls(cause) - 1; return port->txqs[queue]; } /* Handle end of transmission */ static void mvpp2_txq_done(struct mvpp2_port *port, struct mvpp2_tx_queue *txq, struct mvpp2_txq_pcpu *txq_pcpu) { struct netdev_queue *nq = netdev_get_tx_queue(port->dev, txq->log_id); int tx_done; if (txq_pcpu->thread != mvpp2_cpu_to_thread(port->priv, smp_processor_id())) netdev_err(port->dev, "wrong cpu on the end of Tx processing\n"); tx_done = mvpp2_txq_sent_desc_proc(port, txq); if (!tx_done) return; mvpp2_txq_bufs_free(port, txq, txq_pcpu, tx_done); txq_pcpu->count -= tx_done; if (netif_tx_queue_stopped(nq)) if (txq_pcpu->count <= txq_pcpu->wake_threshold) netif_tx_wake_queue(nq); } static unsigned int mvpp2_tx_done(struct mvpp2_port *port, u32 cause, unsigned int thread) { struct mvpp2_tx_queue *txq; struct mvpp2_txq_pcpu *txq_pcpu; unsigned int tx_todo = 0; while (cause) { txq = mvpp2_get_tx_queue(port, cause); if (!txq) break; txq_pcpu = per_cpu_ptr(txq->pcpu, thread); if (txq_pcpu->count) { mvpp2_txq_done(port, txq, txq_pcpu); tx_todo += txq_pcpu->count; } cause &= ~(1 << txq->log_id); } return tx_todo; } /* Rx/Tx queue initialization/cleanup methods */ /* Allocate and initialize descriptors for aggr TXQ */ static int mvpp2_aggr_txq_init(struct platform_device *pdev, struct mvpp2_tx_queue *aggr_txq, unsigned int thread, struct mvpp2 *priv) { u32 txq_dma; /* Allocate memory for TX descriptors */ aggr_txq->descs = dma_alloc_coherent(&pdev->dev, MVPP2_AGGR_TXQ_SIZE * MVPP2_DESC_ALIGNED_SIZE, &aggr_txq->descs_dma, GFP_KERNEL); if (!aggr_txq->descs) return -ENOMEM; aggr_txq->last_desc = MVPP2_AGGR_TXQ_SIZE - 1; /* Aggr TXQ no reset WA */ aggr_txq->next_desc_to_proc = mvpp2_read(priv, MVPP2_AGGR_TXQ_INDEX_REG(thread)); /* Set Tx descriptors queue starting address indirect * access */ if (priv->hw_version == MVPP21) txq_dma = aggr_txq->descs_dma; else txq_dma = aggr_txq->descs_dma >> MVPP22_AGGR_TXQ_DESC_ADDR_OFFS; mvpp2_write(priv, MVPP2_AGGR_TXQ_DESC_ADDR_REG(thread), txq_dma); mvpp2_write(priv, MVPP2_AGGR_TXQ_DESC_SIZE_REG(thread), MVPP2_AGGR_TXQ_SIZE); return 0; } /* Create a specified Rx queue */ static int mvpp2_rxq_init(struct mvpp2_port *port, struct mvpp2_rx_queue *rxq) { struct mvpp2 *priv = port->priv; unsigned int thread; u32 rxq_dma; int err; rxq->size = port->rx_ring_size; /* Allocate memory for RX descriptors */ rxq->descs = dma_alloc_coherent(port->dev->dev.parent, rxq->size * MVPP2_DESC_ALIGNED_SIZE, &rxq->descs_dma, GFP_KERNEL); if (!rxq->descs) return -ENOMEM; rxq->last_desc = rxq->size - 1; /* Zero occupied and non-occupied counters - direct access */ mvpp2_write(port->priv, MVPP2_RXQ_STATUS_REG(rxq->id), 0); /* Set Rx descriptors queue starting address - indirect access */ thread = mvpp2_cpu_to_thread(port->priv, get_cpu()); mvpp2_thread_write(port->priv, thread, MVPP2_RXQ_NUM_REG, rxq->id); if (port->priv->hw_version == MVPP21) rxq_dma = rxq->descs_dma; else rxq_dma = rxq->descs_dma >> MVPP22_DESC_ADDR_OFFS; mvpp2_thread_write(port->priv, thread, MVPP2_RXQ_DESC_ADDR_REG, rxq_dma); mvpp2_thread_write(port->priv, thread, MVPP2_RXQ_DESC_SIZE_REG, rxq->size); mvpp2_thread_write(port->priv, thread, MVPP2_RXQ_INDEX_REG, 0); put_cpu(); /* Set Offset */ mvpp2_rxq_offset_set(port, rxq->id, MVPP2_SKB_HEADROOM); /* Set coalescing pkts and time */ mvpp2_rx_pkts_coal_set(port, rxq); mvpp2_rx_time_coal_set(port, rxq); /* Set the number of non occupied descriptors threshold */ mvpp2_set_rxq_free_tresh(port, rxq); /* Add number of descriptors ready for receiving packets */ mvpp2_rxq_status_update(port, rxq->id, 0, rxq->size); if (priv->percpu_pools) { err = xdp_rxq_info_reg(&rxq->xdp_rxq_short, port->dev, rxq->logic_rxq, 0); if (err < 0) goto err_free_dma; err = xdp_rxq_info_reg(&rxq->xdp_rxq_long, port->dev, rxq->logic_rxq, 0); if (err < 0) goto err_unregister_rxq_short; /* Every RXQ has a pool for short and another for long packets */ err = xdp_rxq_info_reg_mem_model(&rxq->xdp_rxq_short, MEM_TYPE_PAGE_POOL, priv->page_pool[rxq->logic_rxq]); if (err < 0) goto err_unregister_rxq_long; err = xdp_rxq_info_reg_mem_model(&rxq->xdp_rxq_long, MEM_TYPE_PAGE_POOL, priv->page_pool[rxq->logic_rxq + port->nrxqs]); if (err < 0) goto err_unregister_mem_rxq_short; } return 0; err_unregister_mem_rxq_short: xdp_rxq_info_unreg_mem_model(&rxq->xdp_rxq_short); err_unregister_rxq_long: xdp_rxq_info_unreg(&rxq->xdp_rxq_long); err_unregister_rxq_short: xdp_rxq_info_unreg(&rxq->xdp_rxq_short); err_free_dma: dma_free_coherent(port->dev->dev.parent, rxq->size * MVPP2_DESC_ALIGNED_SIZE, rxq->descs, rxq->descs_dma); return err; } /* Push packets received by the RXQ to BM pool */ static void mvpp2_rxq_drop_pkts(struct mvpp2_port *port, struct mvpp2_rx_queue *rxq) { int rx_received, i; rx_received = mvpp2_rxq_received(port, rxq->id); if (!rx_received) return; for (i = 0; i < rx_received; i++) { struct mvpp2_rx_desc *rx_desc = mvpp2_rxq_next_desc_get(rxq); u32 status = mvpp2_rxdesc_status_get(port, rx_desc); int pool; pool = (status & MVPP2_RXD_BM_POOL_ID_MASK) >> MVPP2_RXD_BM_POOL_ID_OFFS; mvpp2_bm_pool_put(port, pool, mvpp2_rxdesc_dma_addr_get(port, rx_desc), mvpp2_rxdesc_cookie_get(port, rx_desc)); } mvpp2_rxq_status_update(port, rxq->id, rx_received, rx_received); } /* Cleanup Rx queue */ static void mvpp2_rxq_deinit(struct mvpp2_port *port, struct mvpp2_rx_queue *rxq) { unsigned int thread; if (xdp_rxq_info_is_reg(&rxq->xdp_rxq_short)) xdp_rxq_info_unreg(&rxq->xdp_rxq_short); if (xdp_rxq_info_is_reg(&rxq->xdp_rxq_long)) xdp_rxq_info_unreg(&rxq->xdp_rxq_long); mvpp2_rxq_drop_pkts(port, rxq); if (rxq->descs) dma_free_coherent(port->dev->dev.parent, rxq->size * MVPP2_DESC_ALIGNED_SIZE, rxq->descs, rxq->descs_dma); rxq->descs = NULL; rxq->last_desc = 0; rxq->next_desc_to_proc = 0; rxq->descs_dma = 0; /* Clear Rx descriptors queue starting address and size; * free descriptor number */ mvpp2_write(port->priv, MVPP2_RXQ_STATUS_REG(rxq->id), 0); thread = mvpp2_cpu_to_thread(port->priv, get_cpu()); mvpp2_thread_write(port->priv, thread, MVPP2_RXQ_NUM_REG, rxq->id); mvpp2_thread_write(port->priv, thread, MVPP2_RXQ_DESC_ADDR_REG, 0); mvpp2_thread_write(port->priv, thread, MVPP2_RXQ_DESC_SIZE_REG, 0); put_cpu(); } /* Create and initialize a Tx queue */ static int mvpp2_txq_init(struct mvpp2_port *port, struct mvpp2_tx_queue *txq) { u32 val; unsigned int thread; int desc, desc_per_txq, tx_port_num; struct mvpp2_txq_pcpu *txq_pcpu; txq->size = port->tx_ring_size; /* Allocate memory for Tx descriptors */ txq->descs = dma_alloc_coherent(port->dev->dev.parent, txq->size * MVPP2_DESC_ALIGNED_SIZE, &txq->descs_dma, GFP_KERNEL); if (!txq->descs) return -ENOMEM; txq->last_desc = txq->size - 1; /* Set Tx descriptors queue starting address - indirect access */ thread = mvpp2_cpu_to_thread(port->priv, get_cpu()); mvpp2_thread_write(port->priv, thread, MVPP2_TXQ_NUM_REG, txq->id); mvpp2_thread_write(port->priv, thread, MVPP2_TXQ_DESC_ADDR_REG, txq->descs_dma); mvpp2_thread_write(port->priv, thread, MVPP2_TXQ_DESC_SIZE_REG, txq->size & MVPP2_TXQ_DESC_SIZE_MASK); mvpp2_thread_write(port->priv, thread, MVPP2_TXQ_INDEX_REG, 0); mvpp2_thread_write(port->priv, thread, MVPP2_TXQ_RSVD_CLR_REG, txq->id << MVPP2_TXQ_RSVD_CLR_OFFSET); val = mvpp2_thread_read(port->priv, thread, MVPP2_TXQ_PENDING_REG); val &= ~MVPP2_TXQ_PENDING_MASK; mvpp2_thread_write(port->priv, thread, MVPP2_TXQ_PENDING_REG, val); /* Calculate base address in prefetch buffer. We reserve 16 descriptors * for each existing TXQ. * TCONTS for PON port must be continuous from 0 to MVPP2_MAX_TCONT * GBE ports assumed to be continuous from 0 to MVPP2_MAX_PORTS */ desc_per_txq = 16; desc = (port->id * MVPP2_MAX_TXQ * desc_per_txq) + (txq->log_id * desc_per_txq); mvpp2_thread_write(port->priv, thread, MVPP2_TXQ_PREF_BUF_REG, MVPP2_PREF_BUF_PTR(desc) | MVPP2_PREF_BUF_SIZE_16 | MVPP2_PREF_BUF_THRESH(desc_per_txq / 2)); put_cpu(); /* WRR / EJP configuration - indirect access */ tx_port_num = mvpp2_egress_port(port); mvpp2_write(port->priv, MVPP2_TXP_SCHED_PORT_INDEX_REG, tx_port_num); val = mvpp2_read(port->priv, MVPP2_TXQ_SCHED_REFILL_REG(txq->log_id)); val &= ~MVPP2_TXQ_REFILL_PERIOD_ALL_MASK; val |= MVPP2_TXQ_REFILL_PERIOD_MASK(1); val |= MVPP2_TXQ_REFILL_TOKENS_ALL_MASK; mvpp2_write(port->priv, MVPP2_TXQ_SCHED_REFILL_REG(txq->log_id), val); val = MVPP2_TXQ_TOKEN_SIZE_MAX; mvpp2_write(port->priv, MVPP2_TXQ_SCHED_TOKEN_SIZE_REG(txq->log_id), val); for (thread = 0; thread < port->priv->nthreads; thread++) { txq_pcpu = per_cpu_ptr(txq->pcpu, thread); txq_pcpu->size = txq->size; txq_pcpu->buffs = kmalloc_array(txq_pcpu->size, sizeof(*txq_pcpu->buffs), GFP_KERNEL); if (!txq_pcpu->buffs) return -ENOMEM; txq_pcpu->count = 0; txq_pcpu->reserved_num = 0; txq_pcpu->txq_put_index = 0; txq_pcpu->txq_get_index = 0; txq_pcpu->tso_headers = NULL; txq_pcpu->stop_threshold = txq->size - MVPP2_MAX_SKB_DESCS; txq_pcpu->wake_threshold = txq_pcpu->stop_threshold / 2; txq_pcpu->tso_headers = dma_alloc_coherent(port->dev->dev.parent, txq_pcpu->size * TSO_HEADER_SIZE, &txq_pcpu->tso_headers_dma, GFP_KERNEL); if (!txq_pcpu->tso_headers) return -ENOMEM; } return 0; } /* Free allocated TXQ resources */ static void mvpp2_txq_deinit(struct mvpp2_port *port, struct mvpp2_tx_queue *txq) { struct mvpp2_txq_pcpu *txq_pcpu; unsigned int thread; for (thread = 0; thread < port->priv->nthreads; thread++) { txq_pcpu = per_cpu_ptr(txq->pcpu, thread); kfree(txq_pcpu->buffs); if (txq_pcpu->tso_headers) dma_free_coherent(port->dev->dev.parent, txq_pcpu->size * TSO_HEADER_SIZE, txq_pcpu->tso_headers, txq_pcpu->tso_headers_dma); txq_pcpu->tso_headers = NULL; } if (txq->descs) dma_free_coherent(port->dev->dev.parent, txq->size * MVPP2_DESC_ALIGNED_SIZE, txq->descs, txq->descs_dma); txq->descs = NULL; txq->last_desc = 0; txq->next_desc_to_proc = 0; txq->descs_dma = 0; /* Set minimum bandwidth for disabled TXQs */ mvpp2_write(port->priv, MVPP2_TXQ_SCHED_TOKEN_CNTR_REG(txq->log_id), 0); /* Set Tx descriptors queue starting address and size */ thread = mvpp2_cpu_to_thread(port->priv, get_cpu()); mvpp2_thread_write(port->priv, thread, MVPP2_TXQ_NUM_REG, txq->id); mvpp2_thread_write(port->priv, thread, MVPP2_TXQ_DESC_ADDR_REG, 0); mvpp2_thread_write(port->priv, thread, MVPP2_TXQ_DESC_SIZE_REG, 0); put_cpu(); } /* Cleanup Tx ports */ static void mvpp2_txq_clean(struct mvpp2_port *port, struct mvpp2_tx_queue *txq) { struct mvpp2_txq_pcpu *txq_pcpu; int delay, pending; unsigned int thread = mvpp2_cpu_to_thread(port->priv, get_cpu()); u32 val; mvpp2_thread_write(port->priv, thread, MVPP2_TXQ_NUM_REG, txq->id); val = mvpp2_thread_read(port->priv, thread, MVPP2_TXQ_PREF_BUF_REG); val |= MVPP2_TXQ_DRAIN_EN_MASK; mvpp2_thread_write(port->priv, thread, MVPP2_TXQ_PREF_BUF_REG, val); /* The napi queue has been stopped so wait for all packets * to be transmitted. */ delay = 0; do { if (delay >= MVPP2_TX_PENDING_TIMEOUT_MSEC) { netdev_warn(port->dev, "port %d: cleaning queue %d timed out\n", port->id, txq->log_id); break; } mdelay(1); delay++; pending = mvpp2_thread_read(port->priv, thread, MVPP2_TXQ_PENDING_REG); pending &= MVPP2_TXQ_PENDING_MASK; } while (pending); val &= ~MVPP2_TXQ_DRAIN_EN_MASK; mvpp2_thread_write(port->priv, thread, MVPP2_TXQ_PREF_BUF_REG, val); put_cpu(); for (thread = 0; thread < port->priv->nthreads; thread++) { txq_pcpu = per_cpu_ptr(txq->pcpu, thread); /* Release all packets */ mvpp2_txq_bufs_free(port, txq, txq_pcpu, txq_pcpu->count); /* Reset queue */ txq_pcpu->count = 0; txq_pcpu->txq_put_index = 0; txq_pcpu->txq_get_index = 0; } } /* Cleanup all Tx queues */ static void mvpp2_cleanup_txqs(struct mvpp2_port *port) { struct mvpp2_tx_queue *txq; int queue; u32 val; val = mvpp2_read(port->priv, MVPP2_TX_PORT_FLUSH_REG); /* Reset Tx ports and delete Tx queues */ val |= MVPP2_TX_PORT_FLUSH_MASK(port->id); mvpp2_write(port->priv, MVPP2_TX_PORT_FLUSH_REG, val); for (queue = 0; queue < port->ntxqs; queue++) { txq = port->txqs[queue]; mvpp2_txq_clean(port, txq); mvpp2_txq_deinit(port, txq); } on_each_cpu(mvpp2_txq_sent_counter_clear, port, 1); val &= ~MVPP2_TX_PORT_FLUSH_MASK(port->id); mvpp2_write(port->priv, MVPP2_TX_PORT_FLUSH_REG, val); } /* Cleanup all Rx queues */ static void mvpp2_cleanup_rxqs(struct mvpp2_port *port) { int queue; for (queue = 0; queue < port->nrxqs; queue++) mvpp2_rxq_deinit(port, port->rxqs[queue]); if (port->tx_fc) mvpp2_rxq_disable_fc(port); } /* Init all Rx queues for port */ static int mvpp2_setup_rxqs(struct mvpp2_port *port) { int queue, err; for (queue = 0; queue < port->nrxqs; queue++) { err = mvpp2_rxq_init(port, port->rxqs[queue]); if (err) goto err_cleanup; } if (port->tx_fc) mvpp2_rxq_enable_fc(port); return 0; err_cleanup: mvpp2_cleanup_rxqs(port); return err; } /* Init all tx queues for port */ static int mvpp2_setup_txqs(struct mvpp2_port *port) { struct mvpp2_tx_queue *txq; int queue, err; for (queue = 0; queue < port->ntxqs; queue++) { txq = port->txqs[queue]; err = mvpp2_txq_init(port, txq); if (err) goto err_cleanup; /* Assign this queue to a CPU */ if (queue < num_possible_cpus()) netif_set_xps_queue(port->dev, cpumask_of(queue), queue); } if (port->has_tx_irqs) { mvpp2_tx_time_coal_set(port); for (queue = 0; queue < port->ntxqs; queue++) { txq = port->txqs[queue]; mvpp2_tx_pkts_coal_set(port, txq); } } on_each_cpu(mvpp2_txq_sent_counter_clear, port, 1); return 0; err_cleanup: mvpp2_cleanup_txqs(port); return err; } /* The callback for per-port interrupt */ static irqreturn_t mvpp2_isr(int irq, void *dev_id) { struct mvpp2_queue_vector *qv = dev_id; mvpp2_qvec_interrupt_disable(qv); napi_schedule(&qv->napi); return IRQ_HANDLED; } static void mvpp2_isr_handle_ptp_queue(struct mvpp2_port *port, int nq) { struct skb_shared_hwtstamps shhwtstamps; struct mvpp2_hwtstamp_queue *queue; struct sk_buff *skb; void __iomem *ptp_q; unsigned int id; u32 r0, r1, r2; ptp_q = port->priv->iface_base + MVPP22_PTP_BASE(port->gop_id); if (nq) ptp_q += MVPP22_PTP_TX_Q1_R0 - MVPP22_PTP_TX_Q0_R0; queue = &port->tx_hwtstamp_queue[nq]; while (1) { r0 = readl_relaxed(ptp_q + MVPP22_PTP_TX_Q0_R0) & 0xffff; if (!r0) break; r1 = readl_relaxed(ptp_q + MVPP22_PTP_TX_Q0_R1) & 0xffff; r2 = readl_relaxed(ptp_q + MVPP22_PTP_TX_Q0_R2) & 0xffff; id = (r0 >> 1) & 31; skb = queue->skb[id]; queue->skb[id] = NULL; if (skb) { u32 ts = r2 << 19 | r1 << 3 | r0 >> 13; mvpp22_tai_tstamp(port->priv->tai, ts, &shhwtstamps); skb_tstamp_tx(skb, &shhwtstamps); dev_kfree_skb_any(skb); } } } static void mvpp2_isr_handle_ptp(struct mvpp2_port *port) { void __iomem *ptp; u32 val; ptp = port->priv->iface_base + MVPP22_PTP_BASE(port->gop_id); val = readl(ptp + MVPP22_PTP_INT_CAUSE); if (val & MVPP22_PTP_INT_CAUSE_QUEUE0) mvpp2_isr_handle_ptp_queue(port, 0); if (val & MVPP22_PTP_INT_CAUSE_QUEUE1) mvpp2_isr_handle_ptp_queue(port, 1); } static void mvpp2_isr_handle_link(struct mvpp2_port *port, struct phylink_pcs *pcs, bool link) { struct net_device *dev = port->dev; if (port->phylink) { phylink_pcs_change(pcs, link); return; } if (!netif_running(dev)) return; if (link) { mvpp2_interrupts_enable(port); mvpp2_egress_enable(port); mvpp2_ingress_enable(port); netif_carrier_on(dev); netif_tx_wake_all_queues(dev); } else { netif_tx_stop_all_queues(dev); netif_carrier_off(dev); mvpp2_ingress_disable(port); mvpp2_egress_disable(port); mvpp2_interrupts_disable(port); } } static void mvpp2_isr_handle_xlg(struct mvpp2_port *port) { bool link; u32 val; val = readl(port->base + MVPP22_XLG_INT_STAT); if (val & MVPP22_XLG_INT_STAT_LINK) { val = readl(port->base + MVPP22_XLG_STATUS); link = (val & MVPP22_XLG_STATUS_LINK_UP); mvpp2_isr_handle_link(port, &port->pcs_xlg, link); } } static void mvpp2_isr_handle_gmac_internal(struct mvpp2_port *port) { bool link; u32 val; if (phy_interface_mode_is_rgmii(port->phy_interface) || phy_interface_mode_is_8023z(port->phy_interface) || port->phy_interface == PHY_INTERFACE_MODE_SGMII) { val = readl(port->base + MVPP22_GMAC_INT_STAT); if (val & MVPP22_GMAC_INT_STAT_LINK) { val = readl(port->base + MVPP2_GMAC_STATUS0); link = (val & MVPP2_GMAC_STATUS0_LINK_UP); mvpp2_isr_handle_link(port, &port->pcs_gmac, link); } } } /* Per-port interrupt for link status changes */ static irqreturn_t mvpp2_port_isr(int irq, void *dev_id) { struct mvpp2_port *port = (struct mvpp2_port *)dev_id; u32 val; mvpp22_gop_mask_irq(port); if (mvpp2_port_supports_xlg(port) && mvpp2_is_xlg(port->phy_interface)) { /* Check the external status register */ val = readl(port->base + MVPP22_XLG_EXT_INT_STAT); if (val & MVPP22_XLG_EXT_INT_STAT_XLG) mvpp2_isr_handle_xlg(port); if (val & MVPP22_XLG_EXT_INT_STAT_PTP) mvpp2_isr_handle_ptp(port); } else { /* If it's not the XLG, we must be using the GMAC. * Check the summary status. */ val = readl(port->base + MVPP22_GMAC_INT_SUM_STAT); if (val & MVPP22_GMAC_INT_SUM_STAT_INTERNAL) mvpp2_isr_handle_gmac_internal(port); if (val & MVPP22_GMAC_INT_SUM_STAT_PTP) mvpp2_isr_handle_ptp(port); } mvpp22_gop_unmask_irq(port); return IRQ_HANDLED; } static enum hrtimer_restart mvpp2_hr_timer_cb(struct hrtimer *timer) { struct net_device *dev; struct mvpp2_port *port; struct mvpp2_port_pcpu *port_pcpu; unsigned int tx_todo, cause; port_pcpu = container_of(timer, struct mvpp2_port_pcpu, tx_done_timer); dev = port_pcpu->dev; if (!netif_running(dev)) return HRTIMER_NORESTART; port_pcpu->timer_scheduled = false; port = netdev_priv(dev); /* Process all the Tx queues */ cause = (1 << port->ntxqs) - 1; tx_todo = mvpp2_tx_done(port, cause, mvpp2_cpu_to_thread(port->priv, smp_processor_id())); /* Set the timer in case not all the packets were processed */ if (tx_todo && !port_pcpu->timer_scheduled) { port_pcpu->timer_scheduled = true; hrtimer_forward_now(&port_pcpu->tx_done_timer, MVPP2_TXDONE_HRTIMER_PERIOD_NS); return HRTIMER_RESTART; } return HRTIMER_NORESTART; } /* Main RX/TX processing routines */ /* Display more error info */ static void mvpp2_rx_error(struct mvpp2_port *port, struct mvpp2_rx_desc *rx_desc) { u32 status = mvpp2_rxdesc_status_get(port, rx_desc); size_t sz = mvpp2_rxdesc_size_get(port, rx_desc); char *err_str = NULL; switch (status & MVPP2_RXD_ERR_CODE_MASK) { case MVPP2_RXD_ERR_CRC: err_str = "crc"; break; case MVPP2_RXD_ERR_OVERRUN: err_str = "overrun"; break; case MVPP2_RXD_ERR_RESOURCE: err_str = "resource"; break; } if (err_str && net_ratelimit()) netdev_err(port->dev, "bad rx status %08x (%s error), size=%zu\n", status, err_str, sz); } /* Handle RX checksum offload */ static int mvpp2_rx_csum(struct mvpp2_port *port, u32 status) { if (((status & MVPP2_RXD_L3_IP4) && !(status & MVPP2_RXD_IP4_HEADER_ERR)) || (status & MVPP2_RXD_L3_IP6)) if (((status & MVPP2_RXD_L4_UDP) || (status & MVPP2_RXD_L4_TCP)) && (status & MVPP2_RXD_L4_CSUM_OK)) return CHECKSUM_UNNECESSARY; return CHECKSUM_NONE; } /* Allocate a new skb and add it to BM pool */ static int mvpp2_rx_refill(struct mvpp2_port *port, struct mvpp2_bm_pool *bm_pool, struct page_pool *page_pool, int pool) { dma_addr_t dma_addr; phys_addr_t phys_addr; void *buf; buf = mvpp2_buf_alloc(port, bm_pool, page_pool, &dma_addr, &phys_addr, GFP_ATOMIC); if (!buf) return -ENOMEM; mvpp2_bm_pool_put(port, pool, dma_addr, phys_addr); return 0; } /* Handle tx checksum */ static u32 mvpp2_skb_tx_csum(struct mvpp2_port *port, struct sk_buff *skb) { if (skb->ip_summed == CHECKSUM_PARTIAL) { int ip_hdr_len = 0; u8 l4_proto; __be16 l3_proto = vlan_get_protocol(skb); if (l3_proto == htons(ETH_P_IP)) { struct iphdr *ip4h = ip_hdr(skb); /* Calculate IPv4 checksum and L4 checksum */ ip_hdr_len = ip4h->ihl; l4_proto = ip4h->protocol; } else if (l3_proto == htons(ETH_P_IPV6)) { struct ipv6hdr *ip6h = ipv6_hdr(skb); /* Read l4_protocol from one of IPv6 extra headers */ if (skb_network_header_len(skb) > 0) ip_hdr_len = (skb_network_header_len(skb) >> 2); l4_proto = ip6h->nexthdr; } else { return MVPP2_TXD_L4_CSUM_NOT; } return mvpp2_txq_desc_csum(skb_network_offset(skb), l3_proto, ip_hdr_len, l4_proto); } return MVPP2_TXD_L4_CSUM_NOT | MVPP2_TXD_IP_CSUM_DISABLE; } static void mvpp2_xdp_finish_tx(struct mvpp2_port *port, u16 txq_id, int nxmit, int nxmit_byte) { unsigned int thread = mvpp2_cpu_to_thread(port->priv, smp_processor_id()); struct mvpp2_tx_queue *aggr_txq; struct mvpp2_txq_pcpu *txq_pcpu; struct mvpp2_tx_queue *txq; struct netdev_queue *nq; txq = port->txqs[txq_id]; txq_pcpu = per_cpu_ptr(txq->pcpu, thread); nq = netdev_get_tx_queue(port->dev, txq_id); aggr_txq = &port->priv->aggr_txqs[thread]; txq_pcpu->reserved_num -= nxmit; txq_pcpu->count += nxmit; aggr_txq->count += nxmit; /* Enable transmit */ wmb(); mvpp2_aggr_txq_pend_desc_add(port, nxmit); if (txq_pcpu->count >= txq_pcpu->stop_threshold) netif_tx_stop_queue(nq); /* Finalize TX processing */ if (!port->has_tx_irqs && txq_pcpu->count >= txq->done_pkts_coal) mvpp2_txq_done(port, txq, txq_pcpu); } static int mvpp2_xdp_submit_frame(struct mvpp2_port *port, u16 txq_id, struct xdp_frame *xdpf, bool dma_map) { unsigned int thread = mvpp2_cpu_to_thread(port->priv, smp_processor_id()); u32 tx_cmd = MVPP2_TXD_L4_CSUM_NOT | MVPP2_TXD_IP_CSUM_DISABLE | MVPP2_TXD_F_DESC | MVPP2_TXD_L_DESC; enum mvpp2_tx_buf_type buf_type; struct mvpp2_txq_pcpu *txq_pcpu; struct mvpp2_tx_queue *aggr_txq; struct mvpp2_tx_desc *tx_desc; struct mvpp2_tx_queue *txq; int ret = MVPP2_XDP_TX; dma_addr_t dma_addr; txq = port->txqs[txq_id]; txq_pcpu = per_cpu_ptr(txq->pcpu, thread); aggr_txq = &port->priv->aggr_txqs[thread]; /* Check number of available descriptors */ if (mvpp2_aggr_desc_num_check(port, aggr_txq, 1) || mvpp2_txq_reserved_desc_num_proc(port, txq, txq_pcpu, 1)) { ret = MVPP2_XDP_DROPPED; goto out; } /* Get a descriptor for the first part of the packet */ tx_desc = mvpp2_txq_next_desc_get(aggr_txq); mvpp2_txdesc_txq_set(port, tx_desc, txq->id); mvpp2_txdesc_size_set(port, tx_desc, xdpf->len); if (dma_map) { /* XDP_REDIRECT or AF_XDP */ dma_addr = dma_map_single(port->dev->dev.parent, xdpf->data, xdpf->len, DMA_TO_DEVICE); if (unlikely(dma_mapping_error(port->dev->dev.parent, dma_addr))) { mvpp2_txq_desc_put(txq); ret = MVPP2_XDP_DROPPED; goto out; } buf_type = MVPP2_TYPE_XDP_NDO; } else { /* XDP_TX */ struct page *page = virt_to_page(xdpf->data); dma_addr = page_pool_get_dma_addr(page) + sizeof(*xdpf) + xdpf->headroom; dma_sync_single_for_device(port->dev->dev.parent, dma_addr, xdpf->len, DMA_BIDIRECTIONAL); buf_type = MVPP2_TYPE_XDP_TX; } mvpp2_txdesc_dma_addr_set(port, tx_desc, dma_addr); mvpp2_txdesc_cmd_set(port, tx_desc, tx_cmd); mvpp2_txq_inc_put(port, txq_pcpu, xdpf, tx_desc, buf_type); out: return ret; } static int mvpp2_xdp_xmit_back(struct mvpp2_port *port, struct xdp_buff *xdp) { struct mvpp2_pcpu_stats *stats = this_cpu_ptr(port->stats); struct xdp_frame *xdpf; u16 txq_id; int ret; xdpf = xdp_convert_buff_to_frame(xdp); if (unlikely(!xdpf)) return MVPP2_XDP_DROPPED; /* The first of the TX queues are used for XPS, * the second half for XDP_TX */ txq_id = mvpp2_cpu_to_thread(port->priv, smp_processor_id()) + (port->ntxqs / 2); ret = mvpp2_xdp_submit_frame(port, txq_id, xdpf, false); if (ret == MVPP2_XDP_TX) { u64_stats_update_begin(&stats->syncp); stats->tx_bytes += xdpf->len; stats->tx_packets++; stats->xdp_tx++; u64_stats_update_end(&stats->syncp); mvpp2_xdp_finish_tx(port, txq_id, 1, xdpf->len); } else { u64_stats_update_begin(&stats->syncp); stats->xdp_tx_err++; u64_stats_update_end(&stats->syncp); } return ret; } static int mvpp2_xdp_xmit(struct net_device *dev, int num_frame, struct xdp_frame **frames, u32 flags) { struct mvpp2_port *port = netdev_priv(dev); int i, nxmit_byte = 0, nxmit = 0; struct mvpp2_pcpu_stats *stats; u16 txq_id; u32 ret; if (unlikely(test_bit(0, &port->state))) return -ENETDOWN; if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) return -EINVAL; /* The first of the TX queues are used for XPS, * the second half for XDP_TX */ txq_id = mvpp2_cpu_to_thread(port->priv, smp_processor_id()) + (port->ntxqs / 2); for (i = 0; i < num_frame; i++) { ret = mvpp2_xdp_submit_frame(port, txq_id, frames[i], true); if (ret != MVPP2_XDP_TX) break; nxmit_byte += frames[i]->len; nxmit++; } if (likely(nxmit > 0)) mvpp2_xdp_finish_tx(port, txq_id, nxmit, nxmit_byte); stats = this_cpu_ptr(port->stats); u64_stats_update_begin(&stats->syncp); stats->tx_bytes += nxmit_byte; stats->tx_packets += nxmit; stats->xdp_xmit += nxmit; stats->xdp_xmit_err += num_frame - nxmit; u64_stats_update_end(&stats->syncp); return nxmit; } static int mvpp2_run_xdp(struct mvpp2_port *port, struct bpf_prog *prog, struct xdp_buff *xdp, struct page_pool *pp, struct mvpp2_pcpu_stats *stats) { unsigned int len, sync, err; struct page *page; u32 ret, act; len = xdp->data_end - xdp->data_hard_start - MVPP2_SKB_HEADROOM; act = bpf_prog_run_xdp(prog, xdp); /* Due xdp_adjust_tail: DMA sync for_device cover max len CPU touch */ sync = xdp->data_end - xdp->data_hard_start - MVPP2_SKB_HEADROOM; sync = max(sync, len); switch (act) { case XDP_PASS: stats->xdp_pass++; ret = MVPP2_XDP_PASS; break; case XDP_REDIRECT: err = xdp_do_redirect(port->dev, xdp, prog); if (unlikely(err)) { ret = MVPP2_XDP_DROPPED; page = virt_to_head_page(xdp->data); page_pool_put_page(pp, page, sync, true); } else { ret = MVPP2_XDP_REDIR; stats->xdp_redirect++; } break; case XDP_TX: ret = mvpp2_xdp_xmit_back(port, xdp); if (ret != MVPP2_XDP_TX) { page = virt_to_head_page(xdp->data); page_pool_put_page(pp, page, sync, true); } break; default: bpf_warn_invalid_xdp_action(port->dev, prog, act); fallthrough; case XDP_ABORTED: trace_xdp_exception(port->dev, prog, act); fallthrough; case XDP_DROP: page = virt_to_head_page(xdp->data); page_pool_put_page(pp, page, sync, true); ret = MVPP2_XDP_DROPPED; stats->xdp_drop++; break; } return ret; } static void mvpp2_buff_hdr_pool_put(struct mvpp2_port *port, struct mvpp2_rx_desc *rx_desc, int pool, u32 rx_status) { phys_addr_t phys_addr, phys_addr_next; dma_addr_t dma_addr, dma_addr_next; struct mvpp2_buff_hdr *buff_hdr; phys_addr = mvpp2_rxdesc_dma_addr_get(port, rx_desc); dma_addr = mvpp2_rxdesc_cookie_get(port, rx_desc); do { buff_hdr = (struct mvpp2_buff_hdr *)phys_to_virt(phys_addr); phys_addr_next = le32_to_cpu(buff_hdr->next_phys_addr); dma_addr_next = le32_to_cpu(buff_hdr->next_dma_addr); if (port->priv->hw_version >= MVPP22) { phys_addr_next |= ((u64)buff_hdr->next_phys_addr_high << 32); dma_addr_next |= ((u64)buff_hdr->next_dma_addr_high << 32); } mvpp2_bm_pool_put(port, pool, dma_addr, phys_addr); phys_addr = phys_addr_next; dma_addr = dma_addr_next; } while (!MVPP2_B_HDR_INFO_IS_LAST(le16_to_cpu(buff_hdr->info))); } /* Main rx processing */ static int mvpp2_rx(struct mvpp2_port *port, struct napi_struct *napi, int rx_todo, struct mvpp2_rx_queue *rxq) { struct net_device *dev = port->dev; struct mvpp2_pcpu_stats ps = {}; enum dma_data_direction dma_dir; struct bpf_prog *xdp_prog; struct xdp_buff xdp; int rx_received; int rx_done = 0; u32 xdp_ret = 0; xdp_prog = READ_ONCE(port->xdp_prog); /* Get number of received packets and clamp the to-do */ rx_received = mvpp2_rxq_received(port, rxq->id); if (rx_todo > rx_received) rx_todo = rx_received; while (rx_done < rx_todo) { struct mvpp2_rx_desc *rx_desc = mvpp2_rxq_next_desc_get(rxq); struct mvpp2_bm_pool *bm_pool; struct page_pool *pp = NULL; struct sk_buff *skb; unsigned int frag_size; dma_addr_t dma_addr; phys_addr_t phys_addr; u32 rx_status, timestamp; int pool, rx_bytes, err, ret; struct page *page; void *data; phys_addr = mvpp2_rxdesc_cookie_get(port, rx_desc); data = (void *)phys_to_virt(phys_addr); page = virt_to_page(data); prefetch(page); rx_done++; rx_status = mvpp2_rxdesc_status_get(port, rx_desc); rx_bytes = mvpp2_rxdesc_size_get(port, rx_desc); rx_bytes -= MVPP2_MH_SIZE; dma_addr = mvpp2_rxdesc_dma_addr_get(port, rx_desc); pool = (rx_status & MVPP2_RXD_BM_POOL_ID_MASK) >> MVPP2_RXD_BM_POOL_ID_OFFS; bm_pool = &port->priv->bm_pools[pool]; if (port->priv->percpu_pools) { pp = port->priv->page_pool[pool]; dma_dir = page_pool_get_dma_dir(pp); } else { dma_dir = DMA_FROM_DEVICE; } dma_sync_single_for_cpu(dev->dev.parent, dma_addr, rx_bytes + MVPP2_MH_SIZE, dma_dir); /* Buffer header not supported */ if (rx_status & MVPP2_RXD_BUF_HDR) goto err_drop_frame; /* In case of an error, release the requested buffer pointer * to the Buffer Manager. This request process is controlled * by the hardware, and the information about the buffer is * comprised by the RX descriptor. */ if (rx_status & MVPP2_RXD_ERR_SUMMARY) goto err_drop_frame; /* Prefetch header */ prefetch(data + MVPP2_MH_SIZE + MVPP2_SKB_HEADROOM); if (bm_pool->frag_size > PAGE_SIZE) frag_size = 0; else frag_size = bm_pool->frag_size; if (xdp_prog) { struct xdp_rxq_info *xdp_rxq; if (bm_pool->pkt_size == MVPP2_BM_SHORT_PKT_SIZE) xdp_rxq = &rxq->xdp_rxq_short; else xdp_rxq = &rxq->xdp_rxq_long; xdp_init_buff(&xdp, PAGE_SIZE, xdp_rxq); xdp_prepare_buff(&xdp, data, MVPP2_MH_SIZE + MVPP2_SKB_HEADROOM, rx_bytes, false); ret = mvpp2_run_xdp(port, xdp_prog, &xdp, pp, &ps); if (ret) { xdp_ret |= ret; err = mvpp2_rx_refill(port, bm_pool, pp, pool); if (err) { netdev_err(port->dev, "failed to refill BM pools\n"); goto err_drop_frame; } ps.rx_packets++; ps.rx_bytes += rx_bytes; continue; } } if (frag_size) skb = build_skb(data, frag_size); else skb = slab_build_skb(data); if (!skb) { netdev_warn(port->dev, "skb build failed\n"); goto err_drop_frame; } /* If we have RX hardware timestamping enabled, grab the * timestamp from the queue and convert. */ if (mvpp22_rx_hwtstamping(port)) { timestamp = le32_to_cpu(rx_desc->pp22.timestamp); mvpp22_tai_tstamp(port->priv->tai, timestamp, skb_hwtstamps(skb)); } err = mvpp2_rx_refill(port, bm_pool, pp, pool); if (err) { netdev_err(port->dev, "failed to refill BM pools\n"); dev_kfree_skb_any(skb); goto err_drop_frame; } if (pp) skb_mark_for_recycle(skb); else dma_unmap_single_attrs(dev->dev.parent, dma_addr, bm_pool->buf_size, DMA_FROM_DEVICE, DMA_ATTR_SKIP_CPU_SYNC); ps.rx_packets++; ps.rx_bytes += rx_bytes; skb_reserve(skb, MVPP2_MH_SIZE + MVPP2_SKB_HEADROOM); skb_put(skb, rx_bytes); skb->ip_summed = mvpp2_rx_csum(port, rx_status); skb->protocol = eth_type_trans(skb, dev); napi_gro_receive(napi, skb); continue; err_drop_frame: dev->stats.rx_errors++; mvpp2_rx_error(port, rx_desc); /* Return the buffer to the pool */ if (rx_status & MVPP2_RXD_BUF_HDR) mvpp2_buff_hdr_pool_put(port, rx_desc, pool, rx_status); else mvpp2_bm_pool_put(port, pool, dma_addr, phys_addr); } if (xdp_ret & MVPP2_XDP_REDIR) xdp_do_flush(); if (ps.rx_packets) { struct mvpp2_pcpu_stats *stats = this_cpu_ptr(port->stats); u64_stats_update_begin(&stats->syncp); stats->rx_packets += ps.rx_packets; stats->rx_bytes += ps.rx_bytes; /* xdp */ stats->xdp_redirect += ps.xdp_redirect; stats->xdp_pass += ps.xdp_pass; stats->xdp_drop += ps.xdp_drop; u64_stats_update_end(&stats->syncp); } /* Update Rx queue management counters */ wmb(); mvpp2_rxq_status_update(port, rxq->id, rx_done, rx_done); return rx_todo; } static inline void tx_desc_unmap_put(struct mvpp2_port *port, struct mvpp2_tx_queue *txq, struct mvpp2_tx_desc *desc) { unsigned int thread = mvpp2_cpu_to_thread(port->priv, smp_processor_id()); struct mvpp2_txq_pcpu *txq_pcpu = per_cpu_ptr(txq->pcpu, thread); dma_addr_t buf_dma_addr = mvpp2_txdesc_dma_addr_get(port, desc); size_t buf_sz = mvpp2_txdesc_size_get(port, desc); if (!IS_TSO_HEADER(txq_pcpu, buf_dma_addr)) dma_unmap_single(port->dev->dev.parent, buf_dma_addr, buf_sz, DMA_TO_DEVICE); mvpp2_txq_desc_put(txq); } static void mvpp2_txdesc_clear_ptp(struct mvpp2_port *port, struct mvpp2_tx_desc *desc) { /* We only need to clear the low bits */ if (port->priv->hw_version >= MVPP22) desc->pp22.ptp_descriptor &= cpu_to_le32(~MVPP22_PTP_DESC_MASK_LOW); } static bool mvpp2_tx_hw_tstamp(struct mvpp2_port *port, struct mvpp2_tx_desc *tx_desc, struct sk_buff *skb) { struct mvpp2_hwtstamp_queue *queue; unsigned int mtype, type, i; struct ptp_header *hdr; u64 ptpdesc; if (port->priv->hw_version == MVPP21 || port->tx_hwtstamp_type == HWTSTAMP_TX_OFF) return false; type = ptp_classify_raw(skb); if (!type) return false; hdr = ptp_parse_header(skb, type); if (!hdr) return false; skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; ptpdesc = MVPP22_PTP_MACTIMESTAMPINGEN | MVPP22_PTP_ACTION_CAPTURE; queue = &port->tx_hwtstamp_queue[0]; switch (type & PTP_CLASS_VMASK) { case PTP_CLASS_V1: ptpdesc |= MVPP22_PTP_PACKETFORMAT(MVPP22_PTP_PKT_FMT_PTPV1); break; case PTP_CLASS_V2: ptpdesc |= MVPP22_PTP_PACKETFORMAT(MVPP22_PTP_PKT_FMT_PTPV2); mtype = hdr->tsmt & 15; /* Direct PTP Sync messages to queue 1 */ if (mtype == 0) { ptpdesc |= MVPP22_PTP_TIMESTAMPQUEUESELECT; queue = &port->tx_hwtstamp_queue[1]; } break; } /* Take a reference on the skb and insert into our queue */ i = queue->next; queue->next = (i + 1) & 31; if (queue->skb[i]) dev_kfree_skb_any(queue->skb[i]); queue->skb[i] = skb_get(skb); ptpdesc |= MVPP22_PTP_TIMESTAMPENTRYID(i); /* * 3:0 - PTPAction * 6:4 - PTPPacketFormat * 7 - PTP_CF_WraparoundCheckEn * 9:8 - IngressTimestampSeconds[1:0] * 10 - Reserved * 11 - MACTimestampingEn * 17:12 - PTP_TimestampQueueEntryID[5:0] * 18 - PTPTimestampQueueSelect * 19 - UDPChecksumUpdateEn * 27:20 - TimestampOffset * PTP, NTPTransmit, OWAMP/TWAMP - L3 to PTP header * NTPTs, Y.1731 - L3 to timestamp entry * 35:28 - UDP Checksum Offset * * stored in tx descriptor bits 75:64 (11:0) and 191:168 (35:12) */ tx_desc->pp22.ptp_descriptor &= cpu_to_le32(~MVPP22_PTP_DESC_MASK_LOW); tx_desc->pp22.ptp_descriptor |= cpu_to_le32(ptpdesc & MVPP22_PTP_DESC_MASK_LOW); tx_desc->pp22.buf_dma_addr_ptp &= cpu_to_le64(~0xffffff0000000000ULL); tx_desc->pp22.buf_dma_addr_ptp |= cpu_to_le64((ptpdesc >> 12) << 40); return true; } /* Handle tx fragmentation processing */ static int mvpp2_tx_frag_process(struct mvpp2_port *port, struct sk_buff *skb, struct mvpp2_tx_queue *aggr_txq, struct mvpp2_tx_queue *txq) { unsigned int thread = mvpp2_cpu_to_thread(port->priv, smp_processor_id()); struct mvpp2_txq_pcpu *txq_pcpu = per_cpu_ptr(txq->pcpu, thread); struct mvpp2_tx_desc *tx_desc; int i; dma_addr_t buf_dma_addr; for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; void *addr = skb_frag_address(frag); tx_desc = mvpp2_txq_next_desc_get(aggr_txq); mvpp2_txdesc_clear_ptp(port, tx_desc); mvpp2_txdesc_txq_set(port, tx_desc, txq->id); mvpp2_txdesc_size_set(port, tx_desc, skb_frag_size(frag)); buf_dma_addr = dma_map_single(port->dev->dev.parent, addr, skb_frag_size(frag), DMA_TO_DEVICE); if (dma_mapping_error(port->dev->dev.parent, buf_dma_addr)) { mvpp2_txq_desc_put(txq); goto cleanup; } mvpp2_txdesc_dma_addr_set(port, tx_desc, buf_dma_addr); if (i == (skb_shinfo(skb)->nr_frags - 1)) { /* Last descriptor */ mvpp2_txdesc_cmd_set(port, tx_desc, MVPP2_TXD_L_DESC); mvpp2_txq_inc_put(port, txq_pcpu, skb, tx_desc, MVPP2_TYPE_SKB); } else { /* Descriptor in the middle: Not First, Not Last */ mvpp2_txdesc_cmd_set(port, tx_desc, 0); mvpp2_txq_inc_put(port, txq_pcpu, NULL, tx_desc, MVPP2_TYPE_SKB); } } return 0; cleanup: /* Release all descriptors that were used to map fragments of * this packet, as well as the corresponding DMA mappings */ for (i = i - 1; i >= 0; i--) { tx_desc = txq->descs + i; tx_desc_unmap_put(port, txq, tx_desc); } return -ENOMEM; } static inline void mvpp2_tso_put_hdr(struct sk_buff *skb, struct net_device *dev, struct mvpp2_tx_queue *txq, struct mvpp2_tx_queue *aggr_txq, struct mvpp2_txq_pcpu *txq_pcpu, int hdr_sz) { struct mvpp2_port *port = netdev_priv(dev); struct mvpp2_tx_desc *tx_desc = mvpp2_txq_next_desc_get(aggr_txq); dma_addr_t addr; mvpp2_txdesc_clear_ptp(port, tx_desc); mvpp2_txdesc_txq_set(port, tx_desc, txq->id); mvpp2_txdesc_size_set(port, tx_desc, hdr_sz); addr = txq_pcpu->tso_headers_dma + txq_pcpu->txq_put_index * TSO_HEADER_SIZE; mvpp2_txdesc_dma_addr_set(port, tx_desc, addr); mvpp2_txdesc_cmd_set(port, tx_desc, mvpp2_skb_tx_csum(port, skb) | MVPP2_TXD_F_DESC | MVPP2_TXD_PADDING_DISABLE); mvpp2_txq_inc_put(port, txq_pcpu, NULL, tx_desc, MVPP2_TYPE_SKB); } static inline int mvpp2_tso_put_data(struct sk_buff *skb, struct net_device *dev, struct tso_t *tso, struct mvpp2_tx_queue *txq, struct mvpp2_tx_queue *aggr_txq, struct mvpp2_txq_pcpu *txq_pcpu, int sz, bool left, bool last) { struct mvpp2_port *port = netdev_priv(dev); struct mvpp2_tx_desc *tx_desc = mvpp2_txq_next_desc_get(aggr_txq); dma_addr_t buf_dma_addr; mvpp2_txdesc_clear_ptp(port, tx_desc); mvpp2_txdesc_txq_set(port, tx_desc, txq->id); mvpp2_txdesc_size_set(port, tx_desc, sz); buf_dma_addr = dma_map_single(dev->dev.parent, tso->data, sz, DMA_TO_DEVICE); if (unlikely(dma_mapping_error(dev->dev.parent, buf_dma_addr))) { mvpp2_txq_desc_put(txq); return -ENOMEM; } mvpp2_txdesc_dma_addr_set(port, tx_desc, buf_dma_addr); if (!left) { mvpp2_txdesc_cmd_set(port, tx_desc, MVPP2_TXD_L_DESC); if (last) { mvpp2_txq_inc_put(port, txq_pcpu, skb, tx_desc, MVPP2_TYPE_SKB); return 0; } } else { mvpp2_txdesc_cmd_set(port, tx_desc, 0); } mvpp2_txq_inc_put(port, txq_pcpu, NULL, tx_desc, MVPP2_TYPE_SKB); return 0; } static int mvpp2_tx_tso(struct sk_buff *skb, struct net_device *dev, struct mvpp2_tx_queue *txq, struct mvpp2_tx_queue *aggr_txq, struct mvpp2_txq_pcpu *txq_pcpu) { struct mvpp2_port *port = netdev_priv(dev); int hdr_sz, i, len, descs = 0; struct tso_t tso; /* Check number of available descriptors */ if (mvpp2_aggr_desc_num_check(port, aggr_txq, tso_count_descs(skb)) || mvpp2_txq_reserved_desc_num_proc(port, txq, txq_pcpu, tso_count_descs(skb))) return 0; hdr_sz = tso_start(skb, &tso); len = skb->len - hdr_sz; while (len > 0) { int left = min_t(int, skb_shinfo(skb)->gso_size, len); char *hdr = txq_pcpu->tso_headers + txq_pcpu->txq_put_index * TSO_HEADER_SIZE; len -= left; descs++; tso_build_hdr(skb, hdr, &tso, left, len == 0); mvpp2_tso_put_hdr(skb, dev, txq, aggr_txq, txq_pcpu, hdr_sz); while (left > 0) { int sz = min_t(int, tso.size, left); left -= sz; descs++; if (mvpp2_tso_put_data(skb, dev, &tso, txq, aggr_txq, txq_pcpu, sz, left, len == 0)) goto release; tso_build_data(skb, &tso, sz); } } return descs; release: for (i = descs - 1; i >= 0; i--) { struct mvpp2_tx_desc *tx_desc = txq->descs + i; tx_desc_unmap_put(port, txq, tx_desc); } return 0; } /* Main tx processing */ static netdev_tx_t mvpp2_tx(struct sk_buff *skb, struct net_device *dev) { struct mvpp2_port *port = netdev_priv(dev); struct mvpp2_tx_queue *txq, *aggr_txq; struct mvpp2_txq_pcpu *txq_pcpu; struct mvpp2_tx_desc *tx_desc; dma_addr_t buf_dma_addr; unsigned long flags = 0; unsigned int thread; int frags = 0; u16 txq_id; u32 tx_cmd; thread = mvpp2_cpu_to_thread(port->priv, smp_processor_id()); txq_id = skb_get_queue_mapping(skb); txq = port->txqs[txq_id]; txq_pcpu = per_cpu_ptr(txq->pcpu, thread); aggr_txq = &port->priv->aggr_txqs[thread]; if (test_bit(thread, &port->priv->lock_map)) spin_lock_irqsave(&port->tx_lock[thread], flags); if (skb_is_gso(skb)) { frags = mvpp2_tx_tso(skb, dev, txq, aggr_txq, txq_pcpu); goto out; } frags = skb_shinfo(skb)->nr_frags + 1; /* Check number of available descriptors */ if (mvpp2_aggr_desc_num_check(port, aggr_txq, frags) || mvpp2_txq_reserved_desc_num_proc(port, txq, txq_pcpu, frags)) { frags = 0; goto out; } /* Get a descriptor for the first part of the packet */ tx_desc = mvpp2_txq_next_desc_get(aggr_txq); if (!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) || !mvpp2_tx_hw_tstamp(port, tx_desc, skb)) mvpp2_txdesc_clear_ptp(port, tx_desc); mvpp2_txdesc_txq_set(port, tx_desc, txq->id); mvpp2_txdesc_size_set(port, tx_desc, skb_headlen(skb)); buf_dma_addr = dma_map_single(dev->dev.parent, skb->data, skb_headlen(skb), DMA_TO_DEVICE); if (unlikely(dma_mapping_error(dev->dev.parent, buf_dma_addr))) { mvpp2_txq_desc_put(txq); frags = 0; goto out; } mvpp2_txdesc_dma_addr_set(port, tx_desc, buf_dma_addr); tx_cmd = mvpp2_skb_tx_csum(port, skb); if (frags == 1) { /* First and Last descriptor */ tx_cmd |= MVPP2_TXD_F_DESC | MVPP2_TXD_L_DESC; mvpp2_txdesc_cmd_set(port, tx_desc, tx_cmd); mvpp2_txq_inc_put(port, txq_pcpu, skb, tx_desc, MVPP2_TYPE_SKB); } else { /* First but not Last */ tx_cmd |= MVPP2_TXD_F_DESC | MVPP2_TXD_PADDING_DISABLE; mvpp2_txdesc_cmd_set(port, tx_desc, tx_cmd); mvpp2_txq_inc_put(port, txq_pcpu, NULL, tx_desc, MVPP2_TYPE_SKB); /* Continue with other skb fragments */ if (mvpp2_tx_frag_process(port, skb, aggr_txq, txq)) { tx_desc_unmap_put(port, txq, tx_desc); frags = 0; } } out: if (frags > 0) { struct mvpp2_pcpu_stats *stats = per_cpu_ptr(port->stats, thread); struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id); txq_pcpu->reserved_num -= frags; txq_pcpu->count += frags; aggr_txq->count += frags; /* Enable transmit */ wmb(); mvpp2_aggr_txq_pend_desc_add(port, frags); if (txq_pcpu->count >= txq_pcpu->stop_threshold) netif_tx_stop_queue(nq); u64_stats_update_begin(&stats->syncp); stats->tx_packets++; stats->tx_bytes += skb->len; u64_stats_update_end(&stats->syncp); } else { dev->stats.tx_dropped++; dev_kfree_skb_any(skb); } /* Finalize TX processing */ if (!port->has_tx_irqs && txq_pcpu->count >= txq->done_pkts_coal) mvpp2_txq_done(port, txq, txq_pcpu); /* Set the timer in case not all frags were processed */ if (!port->has_tx_irqs && txq_pcpu->count <= frags && txq_pcpu->count > 0) { struct mvpp2_port_pcpu *port_pcpu = per_cpu_ptr(port->pcpu, thread); if (!port_pcpu->timer_scheduled) { port_pcpu->timer_scheduled = true; hrtimer_start(&port_pcpu->tx_done_timer, MVPP2_TXDONE_HRTIMER_PERIOD_NS, HRTIMER_MODE_REL_PINNED_SOFT); } } if (test_bit(thread, &port->priv->lock_map)) spin_unlock_irqrestore(&port->tx_lock[thread], flags); return NETDEV_TX_OK; } static inline void mvpp2_cause_error(struct net_device *dev, int cause) { if (cause & MVPP2_CAUSE_FCS_ERR_MASK) netdev_err(dev, "FCS error\n"); if (cause & MVPP2_CAUSE_RX_FIFO_OVERRUN_MASK) netdev_err(dev, "rx fifo overrun error\n"); if (cause & MVPP2_CAUSE_TX_FIFO_UNDERRUN_MASK) netdev_err(dev, "tx fifo underrun error\n"); } static int mvpp2_poll(struct napi_struct *napi, int budget) { u32 cause_rx_tx, cause_rx, cause_tx, cause_misc; int rx_done = 0; struct mvpp2_port *port = netdev_priv(napi->dev); struct mvpp2_queue_vector *qv; unsigned int thread = mvpp2_cpu_to_thread(port->priv, smp_processor_id()); qv = container_of(napi, struct mvpp2_queue_vector, napi); /* Rx/Tx cause register * * Bits 0-15: each bit indicates received packets on the Rx queue * (bit 0 is for Rx queue 0). * * Bits 16-23: each bit indicates transmitted packets on the Tx queue * (bit 16 is for Tx queue 0). * * Each CPU has its own Rx/Tx cause register */ cause_rx_tx = mvpp2_thread_read_relaxed(port->priv, qv->sw_thread_id, MVPP2_ISR_RX_TX_CAUSE_REG(port->id)); cause_misc = cause_rx_tx & MVPP2_CAUSE_MISC_SUM_MASK; if (cause_misc) { mvpp2_cause_error(port->dev, cause_misc); /* Clear the cause register */ mvpp2_write(port->priv, MVPP2_ISR_MISC_CAUSE_REG, 0); mvpp2_thread_write(port->priv, thread, MVPP2_ISR_RX_TX_CAUSE_REG(port->id), cause_rx_tx & ~MVPP2_CAUSE_MISC_SUM_MASK); } if (port->has_tx_irqs) { cause_tx = cause_rx_tx & MVPP2_CAUSE_TXQ_OCCUP_DESC_ALL_MASK; if (cause_tx) { cause_tx >>= MVPP2_CAUSE_TXQ_OCCUP_DESC_ALL_OFFSET; mvpp2_tx_done(port, cause_tx, qv->sw_thread_id); } } /* Process RX packets */ cause_rx = cause_rx_tx & MVPP2_CAUSE_RXQ_OCCUP_DESC_ALL_MASK(port->priv->hw_version); cause_rx <<= qv->first_rxq; cause_rx |= qv->pending_cause_rx; while (cause_rx && budget > 0) { int count; struct mvpp2_rx_queue *rxq; rxq = mvpp2_get_rx_queue(port, cause_rx); if (!rxq) break; count = mvpp2_rx(port, napi, budget, rxq); rx_done += count; budget -= count; if (budget > 0) { /* Clear the bit associated to this Rx queue * so that next iteration will continue from * the next Rx queue. */ cause_rx &= ~(1 << rxq->logic_rxq); } } if (budget > 0) { cause_rx = 0; napi_complete_done(napi, rx_done); mvpp2_qvec_interrupt_enable(qv); } qv->pending_cause_rx = cause_rx; return rx_done; } static void mvpp22_mode_reconfigure(struct mvpp2_port *port, phy_interface_t interface) { u32 ctrl3; /* Set the GMAC & XLG MAC in reset */ mvpp2_mac_reset_assert(port); /* Set the MPCS and XPCS in reset */ mvpp22_pcs_reset_assert(port); /* comphy reconfiguration */ mvpp22_comphy_init(port, interface); /* gop reconfiguration */ mvpp22_gop_init(port, interface); mvpp22_pcs_reset_deassert(port, interface); if (mvpp2_port_supports_xlg(port)) { ctrl3 = readl(port->base + MVPP22_XLG_CTRL3_REG); ctrl3 &= ~MVPP22_XLG_CTRL3_MACMODESELECT_MASK; if (mvpp2_is_xlg(interface)) ctrl3 |= MVPP22_XLG_CTRL3_MACMODESELECT_10G; else ctrl3 |= MVPP22_XLG_CTRL3_MACMODESELECT_GMAC; writel(ctrl3, port->base + MVPP22_XLG_CTRL3_REG); } if (mvpp2_port_supports_xlg(port) && mvpp2_is_xlg(interface)) mvpp2_xlg_max_rx_size_set(port); else mvpp2_gmac_max_rx_size_set(port); } /* Set hw internals when starting port */ static void mvpp2_start_dev(struct mvpp2_port *port) { int i; mvpp2_txp_max_tx_size_set(port); for (i = 0; i < port->nqvecs; i++) napi_enable(&port->qvecs[i].napi); /* Enable interrupts on all threads */ mvpp2_interrupts_enable(port); if (port->priv->hw_version >= MVPP22) mvpp22_mode_reconfigure(port, port->phy_interface); if (port->phylink) { phylink_start(port->phylink); } else { mvpp2_acpi_start(port); } netif_tx_start_all_queues(port->dev); clear_bit(0, &port->state); } /* Set hw internals when stopping port */ static void mvpp2_stop_dev(struct mvpp2_port *port) { int i; set_bit(0, &port->state); /* Disable interrupts on all threads */ mvpp2_interrupts_disable(port); for (i = 0; i < port->nqvecs; i++) napi_disable(&port->qvecs[i].napi); if (port->phylink) phylink_stop(port->phylink); phy_power_off(port->comphy); } static int mvpp2_check_ringparam_valid(struct net_device *dev, struct ethtool_ringparam *ring) { u16 new_rx_pending = ring->rx_pending; u16 new_tx_pending = ring->tx_pending; if (ring->rx_pending == 0 || ring->tx_pending == 0) return -EINVAL; if (ring->rx_pending > MVPP2_MAX_RXD_MAX) new_rx_pending = MVPP2_MAX_RXD_MAX; else if (ring->rx_pending < MSS_THRESHOLD_START) new_rx_pending = MSS_THRESHOLD_START; else if (!IS_ALIGNED(ring->rx_pending, 16)) new_rx_pending = ALIGN(ring->rx_pending, 16); if (ring->tx_pending > MVPP2_MAX_TXD_MAX) new_tx_pending = MVPP2_MAX_TXD_MAX; else if (!IS_ALIGNED(ring->tx_pending, 32)) new_tx_pending = ALIGN(ring->tx_pending, 32); /* The Tx ring size cannot be smaller than the minimum number of * descriptors needed for TSO. */ if (new_tx_pending < MVPP2_MAX_SKB_DESCS) new_tx_pending = ALIGN(MVPP2_MAX_SKB_DESCS, 32); if (ring->rx_pending != new_rx_pending) { netdev_info(dev, "illegal Rx ring size value %d, round to %d\n", ring->rx_pending, new_rx_pending); ring->rx_pending = new_rx_pending; } if (ring->tx_pending != new_tx_pending) { netdev_info(dev, "illegal Tx ring size value %d, round to %d\n", ring->tx_pending, new_tx_pending); ring->tx_pending = new_tx_pending; } return 0; } static void mvpp21_get_mac_address(struct mvpp2_port *port, unsigned char *addr) { u32 mac_addr_l, mac_addr_m, mac_addr_h; mac_addr_l = readl(port->base + MVPP2_GMAC_CTRL_1_REG); mac_addr_m = readl(port->priv->lms_base + MVPP2_SRC_ADDR_MIDDLE); mac_addr_h = readl(port->priv->lms_base + MVPP2_SRC_ADDR_HIGH); addr[0] = (mac_addr_h >> 24) & 0xFF; addr[1] = (mac_addr_h >> 16) & 0xFF; addr[2] = (mac_addr_h >> 8) & 0xFF; addr[3] = mac_addr_h & 0xFF; addr[4] = mac_addr_m & 0xFF; addr[5] = (mac_addr_l >> MVPP2_GMAC_SA_LOW_OFFS) & 0xFF; } static int mvpp2_irqs_init(struct mvpp2_port *port) { int err, i; for (i = 0; i < port->nqvecs; i++) { struct mvpp2_queue_vector *qv = port->qvecs + i; if (qv->type == MVPP2_QUEUE_VECTOR_PRIVATE) { qv->mask = kzalloc(cpumask_size(), GFP_KERNEL); if (!qv->mask) { err = -ENOMEM; goto err; } irq_set_status_flags(qv->irq, IRQ_NO_BALANCING); } err = request_irq(qv->irq, mvpp2_isr, 0, port->dev->name, qv); if (err) goto err; if (qv->type == MVPP2_QUEUE_VECTOR_PRIVATE) { unsigned int cpu; for_each_present_cpu(cpu) { if (mvpp2_cpu_to_thread(port->priv, cpu) == qv->sw_thread_id) cpumask_set_cpu(cpu, qv->mask); } irq_set_affinity_hint(qv->irq, qv->mask); } } return 0; err: for (i = 0; i < port->nqvecs; i++) { struct mvpp2_queue_vector *qv = port->qvecs + i; irq_set_affinity_hint(qv->irq, NULL); kfree(qv->mask); qv->mask = NULL; free_irq(qv->irq, qv); } return err; } static void mvpp2_irqs_deinit(struct mvpp2_port *port) { int i; for (i = 0; i < port->nqvecs; i++) { struct mvpp2_queue_vector *qv = port->qvecs + i; irq_set_affinity_hint(qv->irq, NULL); kfree(qv->mask); qv->mask = NULL; irq_clear_status_flags(qv->irq, IRQ_NO_BALANCING); free_irq(qv->irq, qv); } } static bool mvpp22_rss_is_supported(struct mvpp2_port *port) { return (queue_mode == MVPP2_QDIST_MULTI_MODE) && !(port->flags & MVPP2_F_LOOPBACK); } static int mvpp2_open(struct net_device *dev) { struct mvpp2_port *port = netdev_priv(dev); struct mvpp2 *priv = port->priv; unsigned char mac_bcast[ETH_ALEN] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; bool valid = false; int err; err = mvpp2_prs_mac_da_accept(port, mac_bcast, true); if (err) { netdev_err(dev, "mvpp2_prs_mac_da_accept BC failed\n"); return err; } err = mvpp2_prs_mac_da_accept(port, dev->dev_addr, true); if (err) { netdev_err(dev, "mvpp2_prs_mac_da_accept own addr failed\n"); return err; } err = mvpp2_prs_tag_mode_set(port->priv, port->id, MVPP2_TAG_TYPE_MH); if (err) { netdev_err(dev, "mvpp2_prs_tag_mode_set failed\n"); return err; } err = mvpp2_prs_def_flow(port); if (err) { netdev_err(dev, "mvpp2_prs_def_flow failed\n"); return err; } /* Allocate the Rx/Tx queues */ err = mvpp2_setup_rxqs(port); if (err) { netdev_err(port->dev, "cannot allocate Rx queues\n"); return err; } err = mvpp2_setup_txqs(port); if (err) { netdev_err(port->dev, "cannot allocate Tx queues\n"); goto err_cleanup_rxqs; } err = mvpp2_irqs_init(port); if (err) { netdev_err(port->dev, "cannot init IRQs\n"); goto err_cleanup_txqs; } if (port->phylink) { err = phylink_fwnode_phy_connect(port->phylink, port->fwnode, 0); if (err) { netdev_err(port->dev, "could not attach PHY (%d)\n", err); goto err_free_irq; } valid = true; } if (priv->hw_version >= MVPP22 && port->port_irq) { err = request_irq(port->port_irq, mvpp2_port_isr, 0, dev->name, port); if (err) { netdev_err(port->dev, "cannot request port link/ptp IRQ %d\n", port->port_irq); goto err_free_irq; } mvpp22_gop_setup_irq(port); /* In default link is down */ netif_carrier_off(port->dev); valid = true; } else { port->port_irq = 0; } if (!valid) { netdev_err(port->dev, "invalid configuration: no dt or link IRQ"); err = -ENOENT; goto err_free_irq; } /* Unmask interrupts on all CPUs */ on_each_cpu(mvpp2_interrupts_unmask, port, 1); mvpp2_shared_interrupt_mask_unmask(port, false); mvpp2_start_dev(port); /* Start hardware statistics gathering */ queue_delayed_work(priv->stats_queue, &port->stats_work, MVPP2_MIB_COUNTERS_STATS_DELAY); return 0; err_free_irq: mvpp2_irqs_deinit(port); err_cleanup_txqs: mvpp2_cleanup_txqs(port); err_cleanup_rxqs: mvpp2_cleanup_rxqs(port); return err; } static int mvpp2_stop(struct net_device *dev) { struct mvpp2_port *port = netdev_priv(dev); struct mvpp2_port_pcpu *port_pcpu; unsigned int thread; mvpp2_stop_dev(port); /* Mask interrupts on all threads */ on_each_cpu(mvpp2_interrupts_mask, port, 1); mvpp2_shared_interrupt_mask_unmask(port, true); if (port->phylink) phylink_disconnect_phy(port->phylink); if (port->port_irq) free_irq(port->port_irq, port); mvpp2_irqs_deinit(port); if (!port->has_tx_irqs) { for (thread = 0; thread < port->priv->nthreads; thread++) { port_pcpu = per_cpu_ptr(port->pcpu, thread); hrtimer_cancel(&port_pcpu->tx_done_timer); port_pcpu->timer_scheduled = false; } } mvpp2_cleanup_rxqs(port); mvpp2_cleanup_txqs(port); cancel_delayed_work_sync(&port->stats_work); mvpp2_mac_reset_assert(port); mvpp22_pcs_reset_assert(port); return 0; } static int mvpp2_prs_mac_da_accept_list(struct mvpp2_port *port, struct netdev_hw_addr_list *list) { struct netdev_hw_addr *ha; int ret; netdev_hw_addr_list_for_each(ha, list) { ret = mvpp2_prs_mac_da_accept(port, ha->addr, true); if (ret) return ret; } return 0; } static void mvpp2_set_rx_promisc(struct mvpp2_port *port, bool enable) { if (!enable && (port->dev->features & NETIF_F_HW_VLAN_CTAG_FILTER)) mvpp2_prs_vid_enable_filtering(port); else mvpp2_prs_vid_disable_filtering(port); mvpp2_prs_mac_promisc_set(port->priv, port->id, MVPP2_PRS_L2_UNI_CAST, enable); mvpp2_prs_mac_promisc_set(port->priv, port->id, MVPP2_PRS_L2_MULTI_CAST, enable); } static void mvpp2_set_rx_mode(struct net_device *dev) { struct mvpp2_port *port = netdev_priv(dev); /* Clear the whole UC and MC list */ mvpp2_prs_mac_del_all(port); if (dev->flags & IFF_PROMISC) { mvpp2_set_rx_promisc(port, true); return; } mvpp2_set_rx_promisc(port, false); if (netdev_uc_count(dev) > MVPP2_PRS_MAC_UC_FILT_MAX || mvpp2_prs_mac_da_accept_list(port, &dev->uc)) mvpp2_prs_mac_promisc_set(port->priv, port->id, MVPP2_PRS_L2_UNI_CAST, true); if (dev->flags & IFF_ALLMULTI) { mvpp2_prs_mac_promisc_set(port->priv, port->id, MVPP2_PRS_L2_MULTI_CAST, true); return; } if (netdev_mc_count(dev) > MVPP2_PRS_MAC_MC_FILT_MAX || mvpp2_prs_mac_da_accept_list(port, &dev->mc)) mvpp2_prs_mac_promisc_set(port->priv, port->id, MVPP2_PRS_L2_MULTI_CAST, true); } static int mvpp2_set_mac_address(struct net_device *dev, void *p) { const struct sockaddr *addr = p; int err; if (!is_valid_ether_addr(addr->sa_data)) return -EADDRNOTAVAIL; err = mvpp2_prs_update_mac_da(dev, addr->sa_data); if (err) { /* Reconfigure parser accept the original MAC address */ mvpp2_prs_update_mac_da(dev, dev->dev_addr); netdev_err(dev, "failed to change MAC address\n"); } return err; } /* Shut down all the ports, reconfigure the pools as percpu or shared, * then bring up again all ports. */ static int mvpp2_bm_switch_buffers(struct mvpp2 *priv, bool percpu) { bool change_percpu = (percpu != priv->percpu_pools); int numbufs = MVPP2_BM_POOLS_NUM, i; struct mvpp2_port *port = NULL; bool status[MVPP2_MAX_PORTS]; for (i = 0; i < priv->port_count; i++) { port = priv->port_list[i]; status[i] = netif_running(port->dev); if (status[i]) mvpp2_stop(port->dev); } /* nrxqs is the same for all ports */ if (priv->percpu_pools) numbufs = port->nrxqs * 2; if (change_percpu) mvpp2_bm_pool_update_priv_fc(priv, false); for (i = 0; i < numbufs; i++) mvpp2_bm_pool_destroy(port->dev->dev.parent, priv, &priv->bm_pools[i]); devm_kfree(port->dev->dev.parent, priv->bm_pools); priv->percpu_pools = percpu; mvpp2_bm_init(port->dev->dev.parent, priv); for (i = 0; i < priv->port_count; i++) { port = priv->port_list[i]; if (percpu && port->ntxqs >= num_possible_cpus() * 2) xdp_set_features_flag(port->dev, NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT | NETDEV_XDP_ACT_NDO_XMIT); else xdp_clear_features_flag(port->dev); mvpp2_swf_bm_pool_init(port); if (status[i]) mvpp2_open(port->dev); } if (change_percpu) mvpp2_bm_pool_update_priv_fc(priv, true); return 0; } static int mvpp2_change_mtu(struct net_device *dev, int mtu) { struct mvpp2_port *port = netdev_priv(dev); bool running = netif_running(dev); struct mvpp2 *priv = port->priv; int err; if (!IS_ALIGNED(MVPP2_RX_PKT_SIZE(mtu), 8)) { netdev_info(dev, "illegal MTU value %d, round to %d\n", mtu, ALIGN(MVPP2_RX_PKT_SIZE(mtu), 8)); mtu = ALIGN(MVPP2_RX_PKT_SIZE(mtu), 8); } if (port->xdp_prog && mtu > MVPP2_MAX_RX_BUF_SIZE) { netdev_err(dev, "Illegal MTU value %d (> %d) for XDP mode\n", mtu, (int)MVPP2_MAX_RX_BUF_SIZE); return -EINVAL; } if (MVPP2_RX_PKT_SIZE(mtu) > MVPP2_BM_LONG_PKT_SIZE) { if (priv->percpu_pools) { netdev_warn(dev, "mtu %d too high, switching to shared buffers", mtu); mvpp2_bm_switch_buffers(priv, false); } } else { bool jumbo = false; int i; for (i = 0; i < priv->port_count; i++) if (priv->port_list[i] != port && MVPP2_RX_PKT_SIZE(priv->port_list[i]->dev->mtu) > MVPP2_BM_LONG_PKT_SIZE) { jumbo = true; break; } /* No port is using jumbo frames */ if (!jumbo) { dev_info(port->dev->dev.parent, "all ports have a low MTU, switching to per-cpu buffers"); mvpp2_bm_switch_buffers(priv, true); } } if (running) mvpp2_stop_dev(port); err = mvpp2_bm_update_mtu(dev, mtu); if (err) { netdev_err(dev, "failed to change MTU\n"); /* Reconfigure BM to the original MTU */ mvpp2_bm_update_mtu(dev, dev->mtu); } else { port->pkt_size = MVPP2_RX_PKT_SIZE(mtu); } if (running) { mvpp2_start_dev(port); mvpp2_egress_enable(port); mvpp2_ingress_enable(port); } return err; } static int mvpp2_check_pagepool_dma(struct mvpp2_port *port) { enum dma_data_direction dma_dir = DMA_FROM_DEVICE; struct mvpp2 *priv = port->priv; int err = -1, i; if (!priv->percpu_pools) return err; if (!priv->page_pool[0]) return -ENOMEM; for (i = 0; i < priv->port_count; i++) { port = priv->port_list[i]; if (port->xdp_prog) { dma_dir = DMA_BIDIRECTIONAL; break; } } /* All pools are equal in terms of DMA direction */ if (priv->page_pool[0]->p.dma_dir != dma_dir) err = mvpp2_bm_switch_buffers(priv, true); return err; } static void mvpp2_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats) { struct mvpp2_port *port = netdev_priv(dev); unsigned int start; unsigned int cpu; for_each_possible_cpu(cpu) { struct mvpp2_pcpu_stats *cpu_stats; u64 rx_packets; u64 rx_bytes; u64 tx_packets; u64 tx_bytes; cpu_stats = per_cpu_ptr(port->stats, cpu); do { start = u64_stats_fetch_begin(&cpu_stats->syncp); rx_packets = cpu_stats->rx_packets; rx_bytes = cpu_stats->rx_bytes; tx_packets = cpu_stats->tx_packets; tx_bytes = cpu_stats->tx_bytes; } while (u64_stats_fetch_retry(&cpu_stats->syncp, start)); stats->rx_packets += rx_packets; stats->rx_bytes += rx_bytes; stats->tx_packets += tx_packets; stats->tx_bytes += tx_bytes; } stats->rx_errors = dev->stats.rx_errors; stats->rx_dropped = dev->stats.rx_dropped; stats->tx_dropped = dev->stats.tx_dropped; } static int mvpp2_set_ts_config(struct mvpp2_port *port, struct ifreq *ifr) { struct hwtstamp_config config; void __iomem *ptp; u32 gcr, int_mask; if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) return -EFAULT; if (config.tx_type != HWTSTAMP_TX_OFF && config.tx_type != HWTSTAMP_TX_ON) return -ERANGE; ptp = port->priv->iface_base + MVPP22_PTP_BASE(port->gop_id); int_mask = gcr = 0; if (config.tx_type != HWTSTAMP_TX_OFF) { gcr |= MVPP22_PTP_GCR_TSU_ENABLE | MVPP22_PTP_GCR_TX_RESET; int_mask |= MVPP22_PTP_INT_MASK_QUEUE1 | MVPP22_PTP_INT_MASK_QUEUE0; } /* It seems we must also release the TX reset when enabling the TSU */ if (config.rx_filter != HWTSTAMP_FILTER_NONE) gcr |= MVPP22_PTP_GCR_TSU_ENABLE | MVPP22_PTP_GCR_RX_RESET | MVPP22_PTP_GCR_TX_RESET; if (gcr & MVPP22_PTP_GCR_TSU_ENABLE) mvpp22_tai_start(port->priv->tai); if (config.rx_filter != HWTSTAMP_FILTER_NONE) { config.rx_filter = HWTSTAMP_FILTER_ALL; mvpp2_modify(ptp + MVPP22_PTP_GCR, MVPP22_PTP_GCR_RX_RESET | MVPP22_PTP_GCR_TX_RESET | MVPP22_PTP_GCR_TSU_ENABLE, gcr); port->rx_hwtstamp = true; } else { port->rx_hwtstamp = false; mvpp2_modify(ptp + MVPP22_PTP_GCR, MVPP22_PTP_GCR_RX_RESET | MVPP22_PTP_GCR_TX_RESET | MVPP22_PTP_GCR_TSU_ENABLE, gcr); } mvpp2_modify(ptp + MVPP22_PTP_INT_MASK, MVPP22_PTP_INT_MASK_QUEUE1 | MVPP22_PTP_INT_MASK_QUEUE0, int_mask); if (!(gcr & MVPP22_PTP_GCR_TSU_ENABLE)) mvpp22_tai_stop(port->priv->tai); port->tx_hwtstamp_type = config.tx_type; if (copy_to_user(ifr->ifr_data, &config, sizeof(config))) return -EFAULT; return 0; } static int mvpp2_get_ts_config(struct mvpp2_port *port, struct ifreq *ifr) { struct hwtstamp_config config; memset(&config, 0, sizeof(config)); config.tx_type = port->tx_hwtstamp_type; config.rx_filter = port->rx_hwtstamp ? HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE; if (copy_to_user(ifr->ifr_data, &config, sizeof(config))) return -EFAULT; return 0; } static int mvpp2_ethtool_get_ts_info(struct net_device *dev, struct kernel_ethtool_ts_info *info) { struct mvpp2_port *port = netdev_priv(dev); if (!port->hwtstamp) return -EOPNOTSUPP; info->phc_index = mvpp22_tai_ptp_clock_index(port->priv->tai); info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE | SOF_TIMESTAMPING_RX_SOFTWARE | SOF_TIMESTAMPING_SOFTWARE | SOF_TIMESTAMPING_TX_HARDWARE | SOF_TIMESTAMPING_RX_HARDWARE | SOF_TIMESTAMPING_RAW_HARDWARE; info->tx_types = BIT(HWTSTAMP_TX_OFF) | BIT(HWTSTAMP_TX_ON); info->rx_filters = BIT(HWTSTAMP_FILTER_NONE) | BIT(HWTSTAMP_FILTER_ALL); return 0; } static int mvpp2_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) { struct mvpp2_port *port = netdev_priv(dev); switch (cmd) { case SIOCSHWTSTAMP: if (port->hwtstamp) return mvpp2_set_ts_config(port, ifr); break; case SIOCGHWTSTAMP: if (port->hwtstamp) return mvpp2_get_ts_config(port, ifr); break; } if (!port->phylink) return -ENOTSUPP; return phylink_mii_ioctl(port->phylink, ifr, cmd); } static int mvpp2_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid) { struct mvpp2_port *port = netdev_priv(dev); int ret; ret = mvpp2_prs_vid_entry_add(port, vid); if (ret) netdev_err(dev, "rx-vlan-filter offloading cannot accept more than %d VIDs per port\n", MVPP2_PRS_VLAN_FILT_MAX - 1); return ret; } static int mvpp2_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid) { struct mvpp2_port *port = netdev_priv(dev); mvpp2_prs_vid_entry_remove(port, vid); return 0; } static int mvpp2_set_features(struct net_device *dev, netdev_features_t features) { netdev_features_t changed = dev->features ^ features; struct mvpp2_port *port = netdev_priv(dev); if (changed & NETIF_F_HW_VLAN_CTAG_FILTER) { if (features & NETIF_F_HW_VLAN_CTAG_FILTER) { mvpp2_prs_vid_enable_filtering(port); } else { /* Invalidate all registered VID filters for this * port */ mvpp2_prs_vid_remove_all(port); mvpp2_prs_vid_disable_filtering(port); } } if (changed & NETIF_F_RXHASH) { if (features & NETIF_F_RXHASH) mvpp22_port_rss_enable(port); else mvpp22_port_rss_disable(port); } return 0; } static int mvpp2_xdp_setup(struct mvpp2_port *port, struct netdev_bpf *bpf) { struct bpf_prog *prog = bpf->prog, *old_prog; bool running = netif_running(port->dev); bool reset = !prog != !port->xdp_prog; if (port->dev->mtu > MVPP2_MAX_RX_BUF_SIZE) { NL_SET_ERR_MSG_MOD(bpf->extack, "MTU too large for XDP"); return -EOPNOTSUPP; } if (!port->priv->percpu_pools) { NL_SET_ERR_MSG_MOD(bpf->extack, "Per CPU Pools required for XDP"); return -EOPNOTSUPP; } if (port->ntxqs < num_possible_cpus() * 2) { NL_SET_ERR_MSG_MOD(bpf->extack, "XDP_TX needs two TX queues per CPU"); return -EOPNOTSUPP; } /* device is up and bpf is added/removed, must setup the RX queues */ if (running && reset) mvpp2_stop(port->dev); old_prog = xchg(&port->xdp_prog, prog); if (old_prog) bpf_prog_put(old_prog); /* bpf is just replaced, RXQ and MTU are already setup */ if (!reset) return 0; /* device was up, restore the link */ if (running) mvpp2_open(port->dev); /* Check Page Pool DMA Direction */ mvpp2_check_pagepool_dma(port); return 0; } static int mvpp2_xdp(struct net_device *dev, struct netdev_bpf *xdp) { struct mvpp2_port *port = netdev_priv(dev); switch (xdp->command) { case XDP_SETUP_PROG: return mvpp2_xdp_setup(port, xdp); default: return -EINVAL; } } /* Ethtool methods */ static int mvpp2_ethtool_nway_reset(struct net_device *dev) { struct mvpp2_port *port = netdev_priv(dev); if (!port->phylink) return -ENOTSUPP; return phylink_ethtool_nway_reset(port->phylink); } /* Set interrupt coalescing for ethtools */ static int mvpp2_ethtool_set_coalesce(struct net_device *dev, struct ethtool_coalesce *c, struct kernel_ethtool_coalesce *kernel_coal, struct netlink_ext_ack *extack) { struct mvpp2_port *port = netdev_priv(dev); int queue; for (queue = 0; queue < port->nrxqs; queue++) { struct mvpp2_rx_queue *rxq = port->rxqs[queue]; rxq->time_coal = c->rx_coalesce_usecs; rxq->pkts_coal = c->rx_max_coalesced_frames; mvpp2_rx_pkts_coal_set(port, rxq); mvpp2_rx_time_coal_set(port, rxq); } if (port->has_tx_irqs) { port->tx_time_coal = c->tx_coalesce_usecs; mvpp2_tx_time_coal_set(port); } for (queue = 0; queue < port->ntxqs; queue++) { struct mvpp2_tx_queue *txq = port->txqs[queue]; txq->done_pkts_coal = c->tx_max_coalesced_frames; if (port->has_tx_irqs) mvpp2_tx_pkts_coal_set(port, txq); } return 0; } /* get coalescing for ethtools */ static int mvpp2_ethtool_get_coalesce(struct net_device *dev, struct ethtool_coalesce *c, struct kernel_ethtool_coalesce *kernel_coal, struct netlink_ext_ack *extack) { struct mvpp2_port *port = netdev_priv(dev); c->rx_coalesce_usecs = port->rxqs[0]->time_coal; c->rx_max_coalesced_frames = port->rxqs[0]->pkts_coal; c->tx_max_coalesced_frames = port->txqs[0]->done_pkts_coal; c->tx_coalesce_usecs = port->tx_time_coal; return 0; } static void mvpp2_ethtool_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *drvinfo) { strscpy(drvinfo->driver, MVPP2_DRIVER_NAME, sizeof(drvinfo->driver)); strscpy(drvinfo->version, MVPP2_DRIVER_VERSION, sizeof(drvinfo->version)); strscpy(drvinfo->bus_info, dev_name(&dev->dev), sizeof(drvinfo->bus_info)); } static void mvpp2_ethtool_get_ringparam(struct net_device *dev, struct ethtool_ringparam *ring, struct kernel_ethtool_ringparam *kernel_ring, struct netlink_ext_ack *extack) { struct mvpp2_port *port = netdev_priv(dev); ring->rx_max_pending = MVPP2_MAX_RXD_MAX; ring->tx_max_pending = MVPP2_MAX_TXD_MAX; ring->rx_pending = port->rx_ring_size; ring->tx_pending = port->tx_ring_size; } static int mvpp2_ethtool_set_ringparam(struct net_device *dev, struct ethtool_ringparam *ring, struct kernel_ethtool_ringparam *kernel_ring, struct netlink_ext_ack *extack) { struct mvpp2_port *port = netdev_priv(dev); u16 prev_rx_ring_size = port->rx_ring_size; u16 prev_tx_ring_size = port->tx_ring_size; int err; err = mvpp2_check_ringparam_valid(dev, ring); if (err) return err; if (!netif_running(dev)) { port->rx_ring_size = ring->rx_pending; port->tx_ring_size = ring->tx_pending; return 0; } /* The interface is running, so we have to force a * reallocation of the queues */ mvpp2_stop_dev(port); mvpp2_cleanup_rxqs(port); mvpp2_cleanup_txqs(port); port->rx_ring_size = ring->rx_pending; port->tx_ring_size = ring->tx_pending; err = mvpp2_setup_rxqs(port); if (err) { /* Reallocate Rx queues with the original ring size */ port->rx_ring_size = prev_rx_ring_size; ring->rx_pending = prev_rx_ring_size; err = mvpp2_setup_rxqs(port); if (err) goto err_out; } err = mvpp2_setup_txqs(port); if (err) { /* Reallocate Tx queues with the original ring size */ port->tx_ring_size = prev_tx_ring_size; ring->tx_pending = prev_tx_ring_size; err = mvpp2_setup_txqs(port); if (err) goto err_clean_rxqs; } mvpp2_start_dev(port); mvpp2_egress_enable(port); mvpp2_ingress_enable(port); return 0; err_clean_rxqs: mvpp2_cleanup_rxqs(port); err_out: netdev_err(dev, "failed to change ring parameters"); return err; } static void mvpp2_ethtool_get_pause_param(struct net_device *dev, struct ethtool_pauseparam *pause) { struct mvpp2_port *port = netdev_priv(dev); if (!port->phylink) return; phylink_ethtool_get_pauseparam(port->phylink, pause); } static int mvpp2_ethtool_set_pause_param(struct net_device *dev, struct ethtool_pauseparam *pause) { struct mvpp2_port *port = netdev_priv(dev); if (!port->phylink) return -ENOTSUPP; return phylink_ethtool_set_pauseparam(port->phylink, pause); } static int mvpp2_ethtool_get_link_ksettings(struct net_device *dev, struct ethtool_link_ksettings *cmd) { struct mvpp2_port *port = netdev_priv(dev); if (!port->phylink) return -ENOTSUPP; return phylink_ethtool_ksettings_get(port->phylink, cmd); } static int mvpp2_ethtool_set_link_ksettings(struct net_device *dev, const struct ethtool_link_ksettings *cmd) { struct mvpp2_port *port = netdev_priv(dev); if (!port->phylink) return -ENOTSUPP; return phylink_ethtool_ksettings_set(port->phylink, cmd); } static int mvpp2_ethtool_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info, u32 *rules) { struct mvpp2_port *port = netdev_priv(dev); int ret = 0, i, loc = 0; if (!mvpp22_rss_is_supported(port)) return -EOPNOTSUPP; switch (info->cmd) { case ETHTOOL_GRXFH: ret = mvpp2_ethtool_rxfh_get(port, info); break; case ETHTOOL_GRXRINGS: info->data = port->nrxqs; break; case ETHTOOL_GRXCLSRLCNT: info->rule_cnt = port->n_rfs_rules; break; case ETHTOOL_GRXCLSRULE: ret = mvpp2_ethtool_cls_rule_get(port, info); break; case ETHTOOL_GRXCLSRLALL: for (i = 0; i < MVPP2_N_RFS_ENTRIES_PER_FLOW; i++) { if (loc == info->rule_cnt) { ret = -EMSGSIZE; break; } if (port->rfs_rules[i]) rules[loc++] = i; } break; default: return -ENOTSUPP; } return ret; } static int mvpp2_ethtool_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info) { struct mvpp2_port *port = netdev_priv(dev); int ret = 0; if (!mvpp22_rss_is_supported(port)) return -EOPNOTSUPP; switch (info->cmd) { case ETHTOOL_SRXFH: ret = mvpp2_ethtool_rxfh_set(port, info); break; case ETHTOOL_SRXCLSRLINS: ret = mvpp2_ethtool_cls_rule_ins(port, info); break; case ETHTOOL_SRXCLSRLDEL: ret = mvpp2_ethtool_cls_rule_del(port, info); break; default: return -EOPNOTSUPP; } return ret; } static u32 mvpp2_ethtool_get_rxfh_indir_size(struct net_device *dev) { struct mvpp2_port *port = netdev_priv(dev); return mvpp22_rss_is_supported(port) ? MVPP22_RSS_TABLE_ENTRIES : 0; } static int mvpp2_ethtool_get_rxfh(struct net_device *dev, struct ethtool_rxfh_param *rxfh) { struct mvpp2_port *port = netdev_priv(dev); u32 rss_context = rxfh->rss_context; int ret = 0; if (!mvpp22_rss_is_supported(port)) return -EOPNOTSUPP; if (rss_context >= MVPP22_N_RSS_TABLES) return -EINVAL; rxfh->hfunc = ETH_RSS_HASH_CRC32; if (rxfh->indir) ret = mvpp22_port_rss_ctx_indir_get(port, rss_context, rxfh->indir); return ret; } static int mvpp2_ethtool_set_rxfh(struct net_device *dev, struct ethtool_rxfh_param *rxfh, struct netlink_ext_ack *extack) { struct mvpp2_port *port = netdev_priv(dev); u32 *rss_context = &rxfh->rss_context; int ret = 0; if (!mvpp22_rss_is_supported(port)) return -EOPNOTSUPP; if (rxfh->hfunc != ETH_RSS_HASH_NO_CHANGE && rxfh->hfunc != ETH_RSS_HASH_CRC32) return -EOPNOTSUPP; if (rxfh->key) return -EOPNOTSUPP; if (*rss_context && rxfh->rss_delete) return mvpp22_port_rss_ctx_delete(port, *rss_context); if (*rss_context == ETH_RXFH_CONTEXT_ALLOC) { ret = mvpp22_port_rss_ctx_create(port, rss_context); if (ret) return ret; } if (rxfh->indir) ret = mvpp22_port_rss_ctx_indir_set(port, *rss_context, rxfh->indir); return ret; } /* Device ops */ static const struct net_device_ops mvpp2_netdev_ops = { .ndo_open = mvpp2_open, .ndo_stop = mvpp2_stop, .ndo_start_xmit = mvpp2_tx, .ndo_set_rx_mode = mvpp2_set_rx_mode, .ndo_set_mac_address = mvpp2_set_mac_address, .ndo_change_mtu = mvpp2_change_mtu, .ndo_get_stats64 = mvpp2_get_stats64, .ndo_eth_ioctl = mvpp2_ioctl, .ndo_vlan_rx_add_vid = mvpp2_vlan_rx_add_vid, .ndo_vlan_rx_kill_vid = mvpp2_vlan_rx_kill_vid, .ndo_set_features = mvpp2_set_features, .ndo_bpf = mvpp2_xdp, .ndo_xdp_xmit = mvpp2_xdp_xmit, }; static const struct ethtool_ops mvpp2_eth_tool_ops = { .cap_rss_ctx_supported = true, .supported_coalesce_params = ETHTOOL_COALESCE_USECS | ETHTOOL_COALESCE_MAX_FRAMES, .nway_reset = mvpp2_ethtool_nway_reset, .get_link = ethtool_op_get_link, .get_ts_info = mvpp2_ethtool_get_ts_info, .set_coalesce = mvpp2_ethtool_set_coalesce, .get_coalesce = mvpp2_ethtool_get_coalesce, .get_drvinfo = mvpp2_ethtool_get_drvinfo, .get_ringparam = mvpp2_ethtool_get_ringparam, .set_ringparam = mvpp2_ethtool_set_ringparam, .get_strings = mvpp2_ethtool_get_strings, .get_ethtool_stats = mvpp2_ethtool_get_stats, .get_sset_count = mvpp2_ethtool_get_sset_count, .get_pauseparam = mvpp2_ethtool_get_pause_param, .set_pauseparam = mvpp2_ethtool_set_pause_param, .get_link_ksettings = mvpp2_ethtool_get_link_ksettings, .set_link_ksettings = mvpp2_ethtool_set_link_ksettings, .get_rxnfc = mvpp2_ethtool_get_rxnfc, .set_rxnfc = mvpp2_ethtool_set_rxnfc, .get_rxfh_indir_size = mvpp2_ethtool_get_rxfh_indir_size, .get_rxfh = mvpp2_ethtool_get_rxfh, .set_rxfh = mvpp2_ethtool_set_rxfh, }; /* Used for PPv2.1, or PPv2.2 with the old Device Tree binding that * had a single IRQ defined per-port. */ static int mvpp2_simple_queue_vectors_init(struct mvpp2_port *port, struct device_node *port_node) { struct mvpp2_queue_vector *v = &port->qvecs[0]; v->first_rxq = 0; v->nrxqs = port->nrxqs; v->type = MVPP2_QUEUE_VECTOR_SHARED; v->sw_thread_id = 0; v->sw_thread_mask = *cpumask_bits(cpu_online_mask); v->port = port; v->irq = irq_of_parse_and_map(port_node, 0); if (v->irq <= 0) return -EINVAL; netif_napi_add(port->dev, &v->napi, mvpp2_poll); port->nqvecs = 1; return 0; } static int mvpp2_multi_queue_vectors_init(struct mvpp2_port *port, struct device_node *port_node) { struct mvpp2 *priv = port->priv; struct mvpp2_queue_vector *v; int i, ret; switch (queue_mode) { case MVPP2_QDIST_SINGLE_MODE: port->nqvecs = priv->nthreads + 1; break; case MVPP2_QDIST_MULTI_MODE: port->nqvecs = priv->nthreads; break; } for (i = 0; i < port->nqvecs; i++) { char irqname[16]; v = port->qvecs + i; v->port = port; v->type = MVPP2_QUEUE_VECTOR_PRIVATE; v->sw_thread_id = i; v->sw_thread_mask = BIT(i); if (port->flags & MVPP2_F_DT_COMPAT) snprintf(irqname, sizeof(irqname), "tx-cpu%d", i); else snprintf(irqname, sizeof(irqname), "hif%d", i); if (queue_mode == MVPP2_QDIST_MULTI_MODE) { v->first_rxq = i; v->nrxqs = 1; } else if (queue_mode == MVPP2_QDIST_SINGLE_MODE && i == (port->nqvecs - 1)) { v->first_rxq = 0; v->nrxqs = port->nrxqs; v->type = MVPP2_QUEUE_VECTOR_SHARED; if (port->flags & MVPP2_F_DT_COMPAT) strscpy(irqname, "rx-shared", sizeof(irqname)); } if (port_node) v->irq = of_irq_get_byname(port_node, irqname); else v->irq = fwnode_irq_get(port->fwnode, i); if (v->irq <= 0) { ret = -EINVAL; goto err; } netif_napi_add(port->dev, &v->napi, mvpp2_poll); } return 0; err: for (i = 0; i < port->nqvecs; i++) irq_dispose_mapping(port->qvecs[i].irq); return ret; } static int mvpp2_queue_vectors_init(struct mvpp2_port *port, struct device_node *port_node) { if (port->has_tx_irqs) return mvpp2_multi_queue_vectors_init(port, port_node); else return mvpp2_simple_queue_vectors_init(port, port_node); } static void mvpp2_queue_vectors_deinit(struct mvpp2_port *port) { int i; for (i = 0; i < port->nqvecs; i++) irq_dispose_mapping(port->qvecs[i].irq); } /* Configure Rx queue group interrupt for this port */ static void mvpp2_rx_irqs_setup(struct mvpp2_port *port) { struct mvpp2 *priv = port->priv; u32 val; int i; if (priv->hw_version == MVPP21) { mvpp2_write(priv, MVPP21_ISR_RXQ_GROUP_REG(port->id), port->nrxqs); return; } /* Handle the more complicated PPv2.2 and PPv2.3 case */ for (i = 0; i < port->nqvecs; i++) { struct mvpp2_queue_vector *qv = port->qvecs + i; if (!qv->nrxqs) continue; val = qv->sw_thread_id; val |= port->id << MVPP22_ISR_RXQ_GROUP_INDEX_GROUP_OFFSET; mvpp2_write(priv, MVPP22_ISR_RXQ_GROUP_INDEX_REG, val); val = qv->first_rxq; val |= qv->nrxqs << MVPP22_ISR_RXQ_SUB_GROUP_SIZE_OFFSET; mvpp2_write(priv, MVPP22_ISR_RXQ_SUB_GROUP_CONFIG_REG, val); } } /* Initialize port HW */ static int mvpp2_port_init(struct mvpp2_port *port) { struct device *dev = port->dev->dev.parent; struct mvpp2 *priv = port->priv; struct mvpp2_txq_pcpu *txq_pcpu; unsigned int thread; int queue, err, val; /* Checks for hardware constraints */ if (port->first_rxq + port->nrxqs > MVPP2_MAX_PORTS * priv->max_port_rxqs) return -EINVAL; if (port->nrxqs > priv->max_port_rxqs || port->ntxqs > MVPP2_MAX_TXQ) return -EINVAL; /* Disable port */ mvpp2_egress_disable(port); mvpp2_port_disable(port); if (mvpp2_is_xlg(port->phy_interface)) { val = readl(port->base + MVPP22_XLG_CTRL0_REG); val &= ~MVPP22_XLG_CTRL0_FORCE_LINK_PASS; val |= MVPP22_XLG_CTRL0_FORCE_LINK_DOWN; writel(val, port->base + MVPP22_XLG_CTRL0_REG); } else { val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG); val &= ~MVPP2_GMAC_FORCE_LINK_PASS; val |= MVPP2_GMAC_FORCE_LINK_DOWN; writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG); } port->tx_time_coal = MVPP2_TXDONE_COAL_USEC; port->txqs = devm_kcalloc(dev, port->ntxqs, sizeof(*port->txqs), GFP_KERNEL); if (!port->txqs) return -ENOMEM; /* Associate physical Tx queues to this port and initialize. * The mapping is predefined. */ for (queue = 0; queue < port->ntxqs; queue++) { int queue_phy_id = mvpp2_txq_phys(port->id, queue); struct mvpp2_tx_queue *txq; txq = devm_kzalloc(dev, sizeof(*txq), GFP_KERNEL); if (!txq) { err = -ENOMEM; goto err_free_percpu; } txq->pcpu = alloc_percpu(struct mvpp2_txq_pcpu); if (!txq->pcpu) { err = -ENOMEM; goto err_free_percpu; } txq->id = queue_phy_id; txq->log_id = queue; txq->done_pkts_coal = MVPP2_TXDONE_COAL_PKTS_THRESH; for (thread = 0; thread < priv->nthreads; thread++) { txq_pcpu = per_cpu_ptr(txq->pcpu, thread); txq_pcpu->thread = thread; } port->txqs[queue] = txq; } port->rxqs = devm_kcalloc(dev, port->nrxqs, sizeof(*port->rxqs), GFP_KERNEL); if (!port->rxqs) { err = -ENOMEM; goto err_free_percpu; } /* Allocate and initialize Rx queue for this port */ for (queue = 0; queue < port->nrxqs; queue++) { struct mvpp2_rx_queue *rxq; /* Map physical Rx queue to port's logical Rx queue */ rxq = devm_kzalloc(dev, sizeof(*rxq), GFP_KERNEL); if (!rxq) { err = -ENOMEM; goto err_free_percpu; } /* Map this Rx queue to a physical queue */ rxq->id = port->first_rxq + queue; rxq->port = port->id; rxq->logic_rxq = queue; port->rxqs[queue] = rxq; } mvpp2_rx_irqs_setup(port); /* Create Rx descriptor rings */ for (queue = 0; queue < port->nrxqs; queue++) { struct mvpp2_rx_queue *rxq = port->rxqs[queue]; rxq->size = port->rx_ring_size; rxq->pkts_coal = MVPP2_RX_COAL_PKTS; rxq->time_coal = MVPP2_RX_COAL_USEC; } mvpp2_ingress_disable(port); /* Port default configuration */ mvpp2_defaults_set(port); /* Port's classifier configuration */ mvpp2_cls_oversize_rxq_set(port); mvpp2_cls_port_config(port); if (mvpp22_rss_is_supported(port)) mvpp22_port_rss_init(port); /* Provide an initial Rx packet size */ port->pkt_size = MVPP2_RX_PKT_SIZE(port->dev->mtu); /* Initialize pools for swf */ err = mvpp2_swf_bm_pool_init(port); if (err) goto err_free_percpu; /* Clear all port stats */ mvpp2_read_stats(port); memset(port->ethtool_stats, 0, MVPP2_N_ETHTOOL_STATS(port->ntxqs, port->nrxqs) * sizeof(u64)); return 0; err_free_percpu: for (queue = 0; queue < port->ntxqs; queue++) { if (!port->txqs[queue]) continue; free_percpu(port->txqs[queue]->pcpu); } return err; } static bool mvpp22_port_has_legacy_tx_irqs(struct device_node *port_node, unsigned long *flags) { char *irqs[5] = { "rx-shared", "tx-cpu0", "tx-cpu1", "tx-cpu2", "tx-cpu3" }; int i; for (i = 0; i < 5; i++) if (of_property_match_string(port_node, "interrupt-names", irqs[i]) < 0) return false; *flags |= MVPP2_F_DT_COMPAT; return true; } /* Checks if the port dt description has the required Tx interrupts: * - PPv2.1: there are no such interrupts. * - PPv2.2 and PPv2.3: * - The old DTs have: "rx-shared", "tx-cpuX" with X in [0...3] * - The new ones have: "hifX" with X in [0..8] * * All those variants are supported to keep the backward compatibility. */ static bool mvpp2_port_has_irqs(struct mvpp2 *priv, struct device_node *port_node, unsigned long *flags) { char name[5]; int i; /* ACPI */ if (!port_node) return true; if (priv->hw_version == MVPP21) return false; if (mvpp22_port_has_legacy_tx_irqs(port_node, flags)) return true; for (i = 0; i < MVPP2_MAX_THREADS; i++) { snprintf(name, 5, "hif%d", i); if (of_property_match_string(port_node, "interrupt-names", name) < 0) return false; } return true; } static int mvpp2_port_copy_mac_addr(struct net_device *dev, struct mvpp2 *priv, struct fwnode_handle *fwnode, char **mac_from) { struct mvpp2_port *port = netdev_priv(dev); char hw_mac_addr[ETH_ALEN] = {0}; char fw_mac_addr[ETH_ALEN]; int ret; if (!fwnode_get_mac_address(fwnode, fw_mac_addr)) { *mac_from = "firmware node"; eth_hw_addr_set(dev, fw_mac_addr); return 0; } if (priv->hw_version == MVPP21) { mvpp21_get_mac_address(port, hw_mac_addr); if (is_valid_ether_addr(hw_mac_addr)) { *mac_from = "hardware"; eth_hw_addr_set(dev, hw_mac_addr); return 0; } } /* Only valid on OF enabled platforms */ ret = of_get_mac_address_nvmem(to_of_node(fwnode), fw_mac_addr); if (ret == -EPROBE_DEFER) return ret; if (!ret) { *mac_from = "nvmem cell"; eth_hw_addr_set(dev, fw_mac_addr); return 0; } *mac_from = "random"; eth_hw_addr_random(dev); return 0; } static struct mvpp2_port *mvpp2_phylink_to_port(struct phylink_config *config) { return container_of(config, struct mvpp2_port, phylink_config); } static struct mvpp2_port *mvpp2_pcs_xlg_to_port(struct phylink_pcs *pcs) { return container_of(pcs, struct mvpp2_port, pcs_xlg); } static struct mvpp2_port *mvpp2_pcs_gmac_to_port(struct phylink_pcs *pcs) { return container_of(pcs, struct mvpp2_port, pcs_gmac); } static void mvpp2_xlg_pcs_get_state(struct phylink_pcs *pcs, struct phylink_link_state *state) { struct mvpp2_port *port = mvpp2_pcs_xlg_to_port(pcs); u32 val; if (port->phy_interface == PHY_INTERFACE_MODE_5GBASER) state->speed = SPEED_5000; else state->speed = SPEED_10000; state->duplex = 1; state->an_complete = 1; val = readl(port->base + MVPP22_XLG_STATUS); state->link = !!(val & MVPP22_XLG_STATUS_LINK_UP); state->pause = 0; val = readl(port->base + MVPP22_XLG_CTRL0_REG); if (val & MVPP22_XLG_CTRL0_TX_FLOW_CTRL_EN) state->pause |= MLO_PAUSE_TX; if (val & MVPP22_XLG_CTRL0_RX_FLOW_CTRL_EN) state->pause |= MLO_PAUSE_RX; } static int mvpp2_xlg_pcs_config(struct phylink_pcs *pcs, unsigned int neg_mode, phy_interface_t interface, const unsigned long *advertising, bool permit_pause_to_mac) { return 0; } static const struct phylink_pcs_ops mvpp2_phylink_xlg_pcs_ops = { .pcs_get_state = mvpp2_xlg_pcs_get_state, .pcs_config = mvpp2_xlg_pcs_config, }; static int mvpp2_gmac_pcs_validate(struct phylink_pcs *pcs, unsigned long *supported, const struct phylink_link_state *state) { /* When in 802.3z mode, we must have AN enabled: * Bit 2 Field InBandAnEn In-band Auto-Negotiation enable. ... * When = 1 (1000BASE-X) this field must be set to 1. */ if (phy_interface_mode_is_8023z(state->interface) && !phylink_test(state->advertising, Autoneg)) return -EINVAL; return 0; } static void mvpp2_gmac_pcs_get_state(struct phylink_pcs *pcs, struct phylink_link_state *state) { struct mvpp2_port *port = mvpp2_pcs_gmac_to_port(pcs); u32 val; val = readl(port->base + MVPP2_GMAC_STATUS0); state->an_complete = !!(val & MVPP2_GMAC_STATUS0_AN_COMPLETE); state->link = !!(val & MVPP2_GMAC_STATUS0_LINK_UP); state->duplex = !!(val & MVPP2_GMAC_STATUS0_FULL_DUPLEX); switch (port->phy_interface) { case PHY_INTERFACE_MODE_1000BASEX: state->speed = SPEED_1000; break; case PHY_INTERFACE_MODE_2500BASEX: state->speed = SPEED_2500; break; default: if (val & MVPP2_GMAC_STATUS0_GMII_SPEED) state->speed = SPEED_1000; else if (val & MVPP2_GMAC_STATUS0_MII_SPEED) state->speed = SPEED_100; else state->speed = SPEED_10; } state->pause = 0; if (val & MVPP2_GMAC_STATUS0_RX_PAUSE) state->pause |= MLO_PAUSE_RX; if (val & MVPP2_GMAC_STATUS0_TX_PAUSE) state->pause |= MLO_PAUSE_TX; } static int mvpp2_gmac_pcs_config(struct phylink_pcs *pcs, unsigned int neg_mode, phy_interface_t interface, const unsigned long *advertising, bool permit_pause_to_mac) { struct mvpp2_port *port = mvpp2_pcs_gmac_to_port(pcs); u32 mask, val, an, old_an, changed; mask = MVPP2_GMAC_IN_BAND_AUTONEG_BYPASS | MVPP2_GMAC_IN_BAND_AUTONEG | MVPP2_GMAC_AN_SPEED_EN | MVPP2_GMAC_FLOW_CTRL_AUTONEG | MVPP2_GMAC_AN_DUPLEX_EN; if (neg_mode == PHYLINK_PCS_NEG_INBAND_ENABLED) { mask |= MVPP2_GMAC_CONFIG_MII_SPEED | MVPP2_GMAC_CONFIG_GMII_SPEED | MVPP2_GMAC_CONFIG_FULL_DUPLEX; val = MVPP2_GMAC_IN_BAND_AUTONEG; if (interface == PHY_INTERFACE_MODE_SGMII) { /* SGMII mode receives the speed and duplex from PHY */ val |= MVPP2_GMAC_AN_SPEED_EN | MVPP2_GMAC_AN_DUPLEX_EN; } else { /* 802.3z mode has fixed speed and duplex */ val |= MVPP2_GMAC_CONFIG_GMII_SPEED | MVPP2_GMAC_CONFIG_FULL_DUPLEX; /* The FLOW_CTRL_AUTONEG bit selects either the hardware * automatically or the bits in MVPP22_GMAC_CTRL_4_REG * manually controls the GMAC pause modes. */ if (permit_pause_to_mac) val |= MVPP2_GMAC_FLOW_CTRL_AUTONEG; /* Configure advertisement bits */ mask |= MVPP2_GMAC_FC_ADV_EN | MVPP2_GMAC_FC_ADV_ASM_EN; if (phylink_test(advertising, Pause)) val |= MVPP2_GMAC_FC_ADV_EN; if (phylink_test(advertising, Asym_Pause)) val |= MVPP2_GMAC_FC_ADV_ASM_EN; } } else { val = 0; } old_an = an = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG); an = (an & ~mask) | val; changed = an ^ old_an; if (changed) writel(an, port->base + MVPP2_GMAC_AUTONEG_CONFIG); /* We are only interested in the advertisement bits changing */ return changed & (MVPP2_GMAC_FC_ADV_EN | MVPP2_GMAC_FC_ADV_ASM_EN); } static void mvpp2_gmac_pcs_an_restart(struct phylink_pcs *pcs) { struct mvpp2_port *port = mvpp2_pcs_gmac_to_port(pcs); u32 val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG); writel(val | MVPP2_GMAC_IN_BAND_RESTART_AN, port->base + MVPP2_GMAC_AUTONEG_CONFIG); writel(val & ~MVPP2_GMAC_IN_BAND_RESTART_AN, port->base + MVPP2_GMAC_AUTONEG_CONFIG); } static const struct phylink_pcs_ops mvpp2_phylink_gmac_pcs_ops = { .pcs_validate = mvpp2_gmac_pcs_validate, .pcs_get_state = mvpp2_gmac_pcs_get_state, .pcs_config = mvpp2_gmac_pcs_config, .pcs_an_restart = mvpp2_gmac_pcs_an_restart, }; static void mvpp2_xlg_config(struct mvpp2_port *port, unsigned int mode, const struct phylink_link_state *state) { u32 val; mvpp2_modify(port->base + MVPP22_XLG_CTRL0_REG, MVPP22_XLG_CTRL0_MAC_RESET_DIS, MVPP22_XLG_CTRL0_MAC_RESET_DIS); mvpp2_modify(port->base + MVPP22_XLG_CTRL4_REG, MVPP22_XLG_CTRL4_MACMODSELECT_GMAC | MVPP22_XLG_CTRL4_EN_IDLE_CHECK | MVPP22_XLG_CTRL4_FWD_FC | MVPP22_XLG_CTRL4_FWD_PFC, MVPP22_XLG_CTRL4_FWD_FC | MVPP22_XLG_CTRL4_FWD_PFC); /* Wait for reset to deassert */ do { val = readl(port->base + MVPP22_XLG_CTRL0_REG); } while (!(val & MVPP22_XLG_CTRL0_MAC_RESET_DIS)); } static void mvpp2_gmac_config(struct mvpp2_port *port, unsigned int mode, const struct phylink_link_state *state) { u32 old_ctrl0, ctrl0; u32 old_ctrl2, ctrl2; u32 old_ctrl4, ctrl4; old_ctrl0 = ctrl0 = readl(port->base + MVPP2_GMAC_CTRL_0_REG); old_ctrl2 = ctrl2 = readl(port->base + MVPP2_GMAC_CTRL_2_REG); old_ctrl4 = ctrl4 = readl(port->base + MVPP22_GMAC_CTRL_4_REG); ctrl0 &= ~MVPP2_GMAC_PORT_TYPE_MASK; ctrl2 &= ~(MVPP2_GMAC_INBAND_AN_MASK | MVPP2_GMAC_PCS_ENABLE_MASK | MVPP2_GMAC_FLOW_CTRL_MASK); /* Configure port type */ if (phy_interface_mode_is_8023z(state->interface)) { ctrl2 |= MVPP2_GMAC_PCS_ENABLE_MASK; ctrl4 &= ~MVPP22_CTRL4_EXT_PIN_GMII_SEL; ctrl4 |= MVPP22_CTRL4_SYNC_BYPASS_DIS | MVPP22_CTRL4_DP_CLK_SEL | MVPP22_CTRL4_QSGMII_BYPASS_ACTIVE; } else if (state->interface == PHY_INTERFACE_MODE_SGMII) { ctrl2 |= MVPP2_GMAC_PCS_ENABLE_MASK | MVPP2_GMAC_INBAND_AN_MASK; ctrl4 &= ~MVPP22_CTRL4_EXT_PIN_GMII_SEL; ctrl4 |= MVPP22_CTRL4_SYNC_BYPASS_DIS | MVPP22_CTRL4_DP_CLK_SEL | MVPP22_CTRL4_QSGMII_BYPASS_ACTIVE; } else if (phy_interface_mode_is_rgmii(state->interface)) { ctrl4 &= ~MVPP22_CTRL4_DP_CLK_SEL; ctrl4 |= MVPP22_CTRL4_EXT_PIN_GMII_SEL | MVPP22_CTRL4_SYNC_BYPASS_DIS | MVPP22_CTRL4_QSGMII_BYPASS_ACTIVE; } /* Configure negotiation style */ if (!phylink_autoneg_inband(mode)) { /* Phy or fixed speed - no in-band AN, nothing to do, leave the * configured speed, duplex and flow control as-is. */ } else if (state->interface == PHY_INTERFACE_MODE_SGMII) { /* SGMII in-band mode receives the speed and duplex from * the PHY. Flow control information is not received. */ } else if (phy_interface_mode_is_8023z(state->interface)) { /* 1000BaseX and 2500BaseX ports cannot negotiate speed nor can * they negotiate duplex: they are always operating with a fixed * speed of 1000/2500Mbps in full duplex, so force 1000/2500 * speed and full duplex here. */ ctrl0 |= MVPP2_GMAC_PORT_TYPE_MASK; } if (old_ctrl0 != ctrl0) writel(ctrl0, port->base + MVPP2_GMAC_CTRL_0_REG); if (old_ctrl2 != ctrl2) writel(ctrl2, port->base + MVPP2_GMAC_CTRL_2_REG); if (old_ctrl4 != ctrl4) writel(ctrl4, port->base + MVPP22_GMAC_CTRL_4_REG); } static struct phylink_pcs *mvpp2_select_pcs(struct phylink_config *config, phy_interface_t interface) { struct mvpp2_port *port = mvpp2_phylink_to_port(config); /* Select the appropriate PCS operations depending on the * configured interface mode. We will only switch to a mode * that the validate() checks have already passed. */ if (mvpp2_is_xlg(interface)) return &port->pcs_xlg; else return &port->pcs_gmac; } static int mvpp2_mac_prepare(struct phylink_config *config, unsigned int mode, phy_interface_t interface) { struct mvpp2_port *port = mvpp2_phylink_to_port(config); /* Check for invalid configuration */ if (mvpp2_is_xlg(interface) && port->gop_id != 0) { netdev_err(port->dev, "Invalid mode on %s\n", port->dev->name); return -EINVAL; } if (port->phy_interface != interface || phylink_autoneg_inband(mode)) { /* Force the link down when changing the interface or if in * in-band mode to ensure we do not change the configuration * while the hardware is indicating link is up. We force both * XLG and GMAC down to ensure that they're both in a known * state. */ mvpp2_modify(port->base + MVPP2_GMAC_AUTONEG_CONFIG, MVPP2_GMAC_FORCE_LINK_PASS | MVPP2_GMAC_FORCE_LINK_DOWN, MVPP2_GMAC_FORCE_LINK_DOWN); if (mvpp2_port_supports_xlg(port)) mvpp2_modify(port->base + MVPP22_XLG_CTRL0_REG, MVPP22_XLG_CTRL0_FORCE_LINK_PASS | MVPP22_XLG_CTRL0_FORCE_LINK_DOWN, MVPP22_XLG_CTRL0_FORCE_LINK_DOWN); } /* Make sure the port is disabled when reconfiguring the mode */ mvpp2_port_disable(port); if (port->phy_interface != interface) { /* Place GMAC into reset */ mvpp2_modify(port->base + MVPP2_GMAC_CTRL_2_REG, MVPP2_GMAC_PORT_RESET_MASK, MVPP2_GMAC_PORT_RESET_MASK); if (port->priv->hw_version >= MVPP22) { mvpp22_gop_mask_irq(port); phy_power_off(port->comphy); /* Reconfigure the serdes lanes */ mvpp22_mode_reconfigure(port, interface); } } return 0; } static void mvpp2_mac_config(struct phylink_config *config, unsigned int mode, const struct phylink_link_state *state) { struct mvpp2_port *port = mvpp2_phylink_to_port(config); /* mac (re)configuration */ if (mvpp2_is_xlg(state->interface)) mvpp2_xlg_config(port, mode, state); else if (phy_interface_mode_is_rgmii(state->interface) || phy_interface_mode_is_8023z(state->interface) || state->interface == PHY_INTERFACE_MODE_SGMII) mvpp2_gmac_config(port, mode, state); if (port->priv->hw_version == MVPP21 && port->flags & MVPP2_F_LOOPBACK) mvpp2_port_loopback_set(port, state); } static int mvpp2_mac_finish(struct phylink_config *config, unsigned int mode, phy_interface_t interface) { struct mvpp2_port *port = mvpp2_phylink_to_port(config); if (port->priv->hw_version >= MVPP22 && port->phy_interface != interface) { port->phy_interface = interface; /* Unmask interrupts */ mvpp22_gop_unmask_irq(port); } if (!mvpp2_is_xlg(interface)) { /* Release GMAC reset and wait */ mvpp2_modify(port->base + MVPP2_GMAC_CTRL_2_REG, MVPP2_GMAC_PORT_RESET_MASK, 0); while (readl(port->base + MVPP2_GMAC_CTRL_2_REG) & MVPP2_GMAC_PORT_RESET_MASK) continue; } mvpp2_port_enable(port); /* Allow the link to come up if in in-band mode, otherwise the * link is forced via mac_link_down()/mac_link_up() */ if (phylink_autoneg_inband(mode)) { if (mvpp2_is_xlg(interface)) mvpp2_modify(port->base + MVPP22_XLG_CTRL0_REG, MVPP22_XLG_CTRL0_FORCE_LINK_PASS | MVPP22_XLG_CTRL0_FORCE_LINK_DOWN, 0); else mvpp2_modify(port->base + MVPP2_GMAC_AUTONEG_CONFIG, MVPP2_GMAC_FORCE_LINK_PASS | MVPP2_GMAC_FORCE_LINK_DOWN, 0); } return 0; } static void mvpp2_mac_link_up(struct phylink_config *config, struct phy_device *phy, unsigned int mode, phy_interface_t interface, int speed, int duplex, bool tx_pause, bool rx_pause) { struct mvpp2_port *port = mvpp2_phylink_to_port(config); u32 val; int i; if (mvpp2_is_xlg(interface)) { if (!phylink_autoneg_inband(mode)) { val = MVPP22_XLG_CTRL0_FORCE_LINK_PASS; if (tx_pause) val |= MVPP22_XLG_CTRL0_TX_FLOW_CTRL_EN; if (rx_pause) val |= MVPP22_XLG_CTRL0_RX_FLOW_CTRL_EN; mvpp2_modify(port->base + MVPP22_XLG_CTRL0_REG, MVPP22_XLG_CTRL0_FORCE_LINK_DOWN | MVPP22_XLG_CTRL0_FORCE_LINK_PASS | MVPP22_XLG_CTRL0_TX_FLOW_CTRL_EN | MVPP22_XLG_CTRL0_RX_FLOW_CTRL_EN, val); } } else { if (!phylink_autoneg_inband(mode)) { val = MVPP2_GMAC_FORCE_LINK_PASS; if (speed == SPEED_1000 || speed == SPEED_2500) val |= MVPP2_GMAC_CONFIG_GMII_SPEED; else if (speed == SPEED_100) val |= MVPP2_GMAC_CONFIG_MII_SPEED; if (duplex == DUPLEX_FULL) val |= MVPP2_GMAC_CONFIG_FULL_DUPLEX; mvpp2_modify(port->base + MVPP2_GMAC_AUTONEG_CONFIG, MVPP2_GMAC_FORCE_LINK_DOWN | MVPP2_GMAC_FORCE_LINK_PASS | MVPP2_GMAC_CONFIG_MII_SPEED | MVPP2_GMAC_CONFIG_GMII_SPEED | MVPP2_GMAC_CONFIG_FULL_DUPLEX, val); } /* We can always update the flow control enable bits; * these will only be effective if flow control AN * (MVPP2_GMAC_FLOW_CTRL_AUTONEG) is disabled. */ val = 0; if (tx_pause) val |= MVPP22_CTRL4_TX_FC_EN; if (rx_pause) val |= MVPP22_CTRL4_RX_FC_EN; mvpp2_modify(port->base + MVPP22_GMAC_CTRL_4_REG, MVPP22_CTRL4_RX_FC_EN | MVPP22_CTRL4_TX_FC_EN, val); } if (port->priv->global_tx_fc) { port->tx_fc = tx_pause; if (tx_pause) mvpp2_rxq_enable_fc(port); else mvpp2_rxq_disable_fc(port); if (port->priv->percpu_pools) { for (i = 0; i < port->nrxqs; i++) mvpp2_bm_pool_update_fc(port, &port->priv->bm_pools[i], tx_pause); } else { mvpp2_bm_pool_update_fc(port, port->pool_long, tx_pause); mvpp2_bm_pool_update_fc(port, port->pool_short, tx_pause); } if (port->priv->hw_version == MVPP23) mvpp23_rx_fifo_fc_en(port->priv, port->id, tx_pause); } mvpp2_port_enable(port); mvpp2_egress_enable(port); mvpp2_ingress_enable(port); netif_tx_wake_all_queues(port->dev); } static void mvpp2_mac_link_down(struct phylink_config *config, unsigned int mode, phy_interface_t interface) { struct mvpp2_port *port = mvpp2_phylink_to_port(config); u32 val; if (!phylink_autoneg_inband(mode)) { if (mvpp2_is_xlg(interface)) { val = readl(port->base + MVPP22_XLG_CTRL0_REG); val &= ~MVPP22_XLG_CTRL0_FORCE_LINK_PASS; val |= MVPP22_XLG_CTRL0_FORCE_LINK_DOWN; writel(val, port->base + MVPP22_XLG_CTRL0_REG); } else { val = readl(port->base + MVPP2_GMAC_AUTONEG_CONFIG); val &= ~MVPP2_GMAC_FORCE_LINK_PASS; val |= MVPP2_GMAC_FORCE_LINK_DOWN; writel(val, port->base + MVPP2_GMAC_AUTONEG_CONFIG); } } netif_tx_stop_all_queues(port->dev); mvpp2_egress_disable(port); mvpp2_ingress_disable(port); mvpp2_port_disable(port); } static const struct phylink_mac_ops mvpp2_phylink_ops = { .mac_select_pcs = mvpp2_select_pcs, .mac_prepare = mvpp2_mac_prepare, .mac_config = mvpp2_mac_config, .mac_finish = mvpp2_mac_finish, .mac_link_up = mvpp2_mac_link_up, .mac_link_down = mvpp2_mac_link_down, }; /* Work-around for ACPI */ static void mvpp2_acpi_start(struct mvpp2_port *port) { /* Phylink isn't used as of now for ACPI, so the MAC has to be * configured manually when the interface is started. This will * be removed as soon as the phylink ACPI support lands in. */ struct phylink_link_state state = { .interface = port->phy_interface, }; struct phylink_pcs *pcs; pcs = mvpp2_select_pcs(&port->phylink_config, port->phy_interface); mvpp2_mac_prepare(&port->phylink_config, MLO_AN_INBAND, port->phy_interface); mvpp2_mac_config(&port->phylink_config, MLO_AN_INBAND, &state); pcs->ops->pcs_config(pcs, PHYLINK_PCS_NEG_INBAND_ENABLED, port->phy_interface, state.advertising, false); mvpp2_mac_finish(&port->phylink_config, MLO_AN_INBAND, port->phy_interface); mvpp2_mac_link_up(&port->phylink_config, NULL, MLO_AN_INBAND, port->phy_interface, SPEED_UNKNOWN, DUPLEX_UNKNOWN, false, false); } /* In order to ensure backward compatibility for ACPI, check if the port * firmware node comprises the necessary description allowing to use phylink. */ static bool mvpp2_use_acpi_compat_mode(struct fwnode_handle *port_fwnode) { if (!is_acpi_node(port_fwnode)) return false; return (!fwnode_property_present(port_fwnode, "phy-handle") && !fwnode_property_present(port_fwnode, "managed") && !fwnode_get_named_child_node(port_fwnode, "fixed-link")); } /* Ports initialization */ static int mvpp2_port_probe(struct platform_device *pdev, struct fwnode_handle *port_fwnode, struct mvpp2 *priv) { struct phy *comphy = NULL; struct mvpp2_port *port; struct mvpp2_port_pcpu *port_pcpu; struct device_node *port_node = to_of_node(port_fwnode); netdev_features_t features; struct net_device *dev; struct phylink *phylink; char *mac_from = ""; unsigned int ntxqs, nrxqs, thread; unsigned long flags = 0; bool has_tx_irqs; u32 id; int phy_mode; int err, i; has_tx_irqs = mvpp2_port_has_irqs(priv, port_node, &flags); if (!has_tx_irqs && queue_mode == MVPP2_QDIST_MULTI_MODE) { dev_err(&pdev->dev, "not enough IRQs to support multi queue mode\n"); return -EINVAL; } ntxqs = MVPP2_MAX_TXQ; nrxqs = mvpp2_get_nrxqs(priv); dev = alloc_etherdev_mqs(sizeof(*port), ntxqs, nrxqs); if (!dev) return -ENOMEM; phy_mode = fwnode_get_phy_mode(port_fwnode); if (phy_mode < 0) { dev_err(&pdev->dev, "incorrect phy mode\n"); err = phy_mode; goto err_free_netdev; } /* * Rewrite 10GBASE-KR to 10GBASE-R for compatibility with existing DT. * Existing usage of 10GBASE-KR is not correct; no backplane * negotiation is done, and this driver does not actually support * 10GBASE-KR. */ if (phy_mode == PHY_INTERFACE_MODE_10GKR) phy_mode = PHY_INTERFACE_MODE_10GBASER; if (port_node) { comphy = devm_of_phy_get(&pdev->dev, port_node, NULL); if (IS_ERR(comphy)) { if (PTR_ERR(comphy) == -EPROBE_DEFER) { err = -EPROBE_DEFER; goto err_free_netdev; } comphy = NULL; } } if (fwnode_property_read_u32(port_fwnode, "port-id", &id)) { err = -EINVAL; dev_err(&pdev->dev, "missing port-id value\n"); goto err_free_netdev; } dev->tx_queue_len = MVPP2_MAX_TXD_MAX; dev->watchdog_timeo = 5 * HZ; dev->netdev_ops = &mvpp2_netdev_ops; dev->ethtool_ops = &mvpp2_eth_tool_ops; port = netdev_priv(dev); port->dev = dev; port->fwnode = port_fwnode; port->ntxqs = ntxqs; port->nrxqs = nrxqs; port->priv = priv; port->has_tx_irqs = has_tx_irqs; port->flags = flags; err = mvpp2_queue_vectors_init(port, port_node); if (err) goto err_free_netdev; if (port_node) port->port_irq = of_irq_get_byname(port_node, "link"); else port->port_irq = fwnode_irq_get(port_fwnode, port->nqvecs + 1); if (port->port_irq == -EPROBE_DEFER) { err = -EPROBE_DEFER; goto err_deinit_qvecs; } if (port->port_irq <= 0) /* the link irq is optional */ port->port_irq = 0; if (fwnode_property_read_bool(port_fwnode, "marvell,loopback")) port->flags |= MVPP2_F_LOOPBACK; port->id = id; if (priv->hw_version == MVPP21) port->first_rxq = port->id * port->nrxqs; else port->first_rxq = port->id * priv->max_port_rxqs; port->of_node = port_node; port->phy_interface = phy_mode; port->comphy = comphy; if (priv->hw_version == MVPP21) { port->base = devm_platform_ioremap_resource(pdev, 2 + id); if (IS_ERR(port->base)) { err = PTR_ERR(port->base); goto err_free_irq; } port->stats_base = port->priv->lms_base + MVPP21_MIB_COUNTERS_OFFSET + port->gop_id * MVPP21_MIB_COUNTERS_PORT_SZ; } else { if (fwnode_property_read_u32(port_fwnode, "gop-port-id", &port->gop_id)) { err = -EINVAL; dev_err(&pdev->dev, "missing gop-port-id value\n"); goto err_deinit_qvecs; } port->base = priv->iface_base + MVPP22_GMAC_BASE(port->gop_id); port->stats_base = port->priv->iface_base + MVPP22_MIB_COUNTERS_OFFSET + port->gop_id * MVPP22_MIB_COUNTERS_PORT_SZ; /* We may want a property to describe whether we should use * MAC hardware timestamping. */ if (priv->tai) port->hwtstamp = true; } /* Alloc per-cpu and ethtool stats */ port->stats = netdev_alloc_pcpu_stats(struct mvpp2_pcpu_stats); if (!port->stats) { err = -ENOMEM; goto err_free_irq; } port->ethtool_stats = devm_kcalloc(&pdev->dev, MVPP2_N_ETHTOOL_STATS(ntxqs, nrxqs), sizeof(u64), GFP_KERNEL); if (!port->ethtool_stats) { err = -ENOMEM; goto err_free_stats; } mutex_init(&port->gather_stats_lock); INIT_DELAYED_WORK(&port->stats_work, mvpp2_gather_hw_statistics); err = mvpp2_port_copy_mac_addr(dev, priv, port_fwnode, &mac_from); if (err < 0) goto err_free_stats; port->tx_ring_size = MVPP2_MAX_TXD_DFLT; port->rx_ring_size = MVPP2_MAX_RXD_DFLT; SET_NETDEV_DEV(dev, &pdev->dev); err = mvpp2_port_init(port); if (err < 0) { dev_err(&pdev->dev, "failed to init port %d\n", id); goto err_free_stats; } mvpp2_port_periodic_xon_disable(port); mvpp2_mac_reset_assert(port); mvpp22_pcs_reset_assert(port); port->pcpu = alloc_percpu(struct mvpp2_port_pcpu); if (!port->pcpu) { err = -ENOMEM; goto err_free_txq_pcpu; } if (!port->has_tx_irqs) { for (thread = 0; thread < priv->nthreads; thread++) { port_pcpu = per_cpu_ptr(port->pcpu, thread); hrtimer_init(&port_pcpu->tx_done_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED_SOFT); port_pcpu->tx_done_timer.function = mvpp2_hr_timer_cb; port_pcpu->timer_scheduled = false; port_pcpu->dev = dev; } } features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_TSO; dev->features = features | NETIF_F_RXCSUM; dev->hw_features |= features | NETIF_F_RXCSUM | NETIF_F_GRO | NETIF_F_HW_VLAN_CTAG_FILTER; if (mvpp22_rss_is_supported(port)) { dev->hw_features |= NETIF_F_RXHASH; dev->features |= NETIF_F_NTUPLE; } if (!port->priv->percpu_pools) mvpp2_set_hw_csum(port, port->pool_long->id); else if (port->ntxqs >= num_possible_cpus() * 2) dev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT | NETDEV_XDP_ACT_NDO_XMIT; dev->vlan_features |= features; netif_set_tso_max_segs(dev, MVPP2_MAX_TSO_SEGS); dev->priv_flags |= IFF_UNICAST_FLT; /* MTU range: 68 - 9704 */ dev->min_mtu = ETH_MIN_MTU; /* 9704 == 9728 - 20 and rounding to 8 */ dev->max_mtu = MVPP2_BM_JUMBO_PKT_SIZE; device_set_node(&dev->dev, port_fwnode); dev->dev_port = port->id; port->pcs_gmac.ops = &mvpp2_phylink_gmac_pcs_ops; port->pcs_gmac.neg_mode = true; port->pcs_xlg.ops = &mvpp2_phylink_xlg_pcs_ops; port->pcs_xlg.neg_mode = true; if (!mvpp2_use_acpi_compat_mode(port_fwnode)) { port->phylink_config.dev = &dev->dev; port->phylink_config.type = PHYLINK_NETDEV; port->phylink_config.mac_capabilities = MAC_2500FD | MAC_1000FD | MAC_100 | MAC_10; if (port->priv->global_tx_fc) port->phylink_config.mac_capabilities |= MAC_SYM_PAUSE | MAC_ASYM_PAUSE; if (mvpp2_port_supports_xlg(port)) { /* If a COMPHY is present, we can support any of * the serdes modes and switch between them. */ if (comphy) { __set_bit(PHY_INTERFACE_MODE_5GBASER, port->phylink_config.supported_interfaces); __set_bit(PHY_INTERFACE_MODE_10GBASER, port->phylink_config.supported_interfaces); __set_bit(PHY_INTERFACE_MODE_XAUI, port->phylink_config.supported_interfaces); } else if (phy_mode == PHY_INTERFACE_MODE_5GBASER) { __set_bit(PHY_INTERFACE_MODE_5GBASER, port->phylink_config.supported_interfaces); } else if (phy_mode == PHY_INTERFACE_MODE_10GBASER) { __set_bit(PHY_INTERFACE_MODE_10GBASER, port->phylink_config.supported_interfaces); } else if (phy_mode == PHY_INTERFACE_MODE_XAUI) { __set_bit(PHY_INTERFACE_MODE_XAUI, port->phylink_config.supported_interfaces); } if (comphy) port->phylink_config.mac_capabilities |= MAC_10000FD | MAC_5000FD; else if (phy_mode == PHY_INTERFACE_MODE_5GBASER) port->phylink_config.mac_capabilities |= MAC_5000FD; else port->phylink_config.mac_capabilities |= MAC_10000FD; } if (mvpp2_port_supports_rgmii(port)) { phy_interface_set_rgmii(port->phylink_config.supported_interfaces); __set_bit(PHY_INTERFACE_MODE_MII, port->phylink_config.supported_interfaces); } if (comphy) { /* If a COMPHY is present, we can support any of the * serdes modes and switch between them. */ __set_bit(PHY_INTERFACE_MODE_SGMII, port->phylink_config.supported_interfaces); __set_bit(PHY_INTERFACE_MODE_1000BASEX, port->phylink_config.supported_interfaces); __set_bit(PHY_INTERFACE_MODE_2500BASEX, port->phylink_config.supported_interfaces); } else if (phy_mode == PHY_INTERFACE_MODE_2500BASEX) { /* No COMPHY, with only 2500BASE-X mode supported */ __set_bit(PHY_INTERFACE_MODE_2500BASEX, port->phylink_config.supported_interfaces); } else if (phy_mode == PHY_INTERFACE_MODE_1000BASEX || phy_mode == PHY_INTERFACE_MODE_SGMII) { /* No COMPHY, we can switch between 1000BASE-X and SGMII */ __set_bit(PHY_INTERFACE_MODE_1000BASEX, port->phylink_config.supported_interfaces); __set_bit(PHY_INTERFACE_MODE_SGMII, port->phylink_config.supported_interfaces); } phylink = phylink_create(&port->phylink_config, port_fwnode, phy_mode, &mvpp2_phylink_ops); if (IS_ERR(phylink)) { err = PTR_ERR(phylink); goto err_free_port_pcpu; } port->phylink = phylink; } else { dev_warn(&pdev->dev, "Use link irqs for port#%d. FW update required\n", port->id); port->phylink = NULL; } /* Cycle the comphy to power it down, saving 270mW per port - * don't worry about an error powering it up. When the comphy * driver does this, we can remove this code. */ if (port->comphy) { err = mvpp22_comphy_init(port, port->phy_interface); if (err == 0) phy_power_off(port->comphy); } err = register_netdev(dev); if (err < 0) { dev_err(&pdev->dev, "failed to register netdev\n"); goto err_phylink; } netdev_info(dev, "Using %s mac address %pM\n", mac_from, dev->dev_addr); priv->port_list[priv->port_count++] = port; return 0; err_phylink: if (port->phylink) phylink_destroy(port->phylink); err_free_port_pcpu: free_percpu(port->pcpu); err_free_txq_pcpu: for (i = 0; i < port->ntxqs; i++) free_percpu(port->txqs[i]->pcpu); err_free_stats: free_percpu(port->stats); err_free_irq: if (port->port_irq) irq_dispose_mapping(port->port_irq); err_deinit_qvecs: mvpp2_queue_vectors_deinit(port); err_free_netdev: free_netdev(dev); return err; } /* Ports removal routine */ static void mvpp2_port_remove(struct mvpp2_port *port) { int i; unregister_netdev(port->dev); if (port->phylink) phylink_destroy(port->phylink); free_percpu(port->pcpu); free_percpu(port->stats); for (i = 0; i < port->ntxqs; i++) free_percpu(port->txqs[i]->pcpu); mvpp2_queue_vectors_deinit(port); if (port->port_irq) irq_dispose_mapping(port->port_irq); free_netdev(port->dev); } /* Initialize decoding windows */ static void mvpp2_conf_mbus_windows(const struct mbus_dram_target_info *dram, struct mvpp2 *priv) { u32 win_enable; int i; for (i = 0; i < 6; i++) { mvpp2_write(priv, MVPP2_WIN_BASE(i), 0); mvpp2_write(priv, MVPP2_WIN_SIZE(i), 0); if (i < 4) mvpp2_write(priv, MVPP2_WIN_REMAP(i), 0); } win_enable = 0; for (i = 0; i < dram->num_cs; i++) { const struct mbus_dram_window *cs = dram->cs + i; mvpp2_write(priv, MVPP2_WIN_BASE(i), (cs->base & 0xffff0000) | (cs->mbus_attr << 8) | dram->mbus_dram_target_id); mvpp2_write(priv, MVPP2_WIN_SIZE(i), (cs->size - 1) & 0xffff0000); win_enable |= (1 << i); } mvpp2_write(priv, MVPP2_BASE_ADDR_ENABLE, win_enable); } /* Initialize Rx FIFO's */ static void mvpp2_rx_fifo_init(struct mvpp2 *priv) { int port; for (port = 0; port < MVPP2_MAX_PORTS; port++) { mvpp2_write(priv, MVPP2_RX_DATA_FIFO_SIZE_REG(port), MVPP2_RX_FIFO_PORT_DATA_SIZE_4KB); mvpp2_write(priv, MVPP2_RX_ATTR_FIFO_SIZE_REG(port), MVPP2_RX_FIFO_PORT_ATTR_SIZE_4KB); } mvpp2_write(priv, MVPP2_RX_MIN_PKT_SIZE_REG, MVPP2_RX_FIFO_PORT_MIN_PKT); mvpp2_write(priv, MVPP2_RX_FIFO_INIT_REG, 0x1); } static void mvpp22_rx_fifo_set_hw(struct mvpp2 *priv, int port, int data_size) { int attr_size = MVPP2_RX_FIFO_PORT_ATTR_SIZE(data_size); mvpp2_write(priv, MVPP2_RX_DATA_FIFO_SIZE_REG(port), data_size); mvpp2_write(priv, MVPP2_RX_ATTR_FIFO_SIZE_REG(port), attr_size); } /* Initialize TX FIFO's: the total FIFO size is 48kB on PPv2.2 and PPv2.3. * 4kB fixed space must be assigned for the loopback port. * Redistribute remaining avialable 44kB space among all active ports. * Guarantee minimum 32kB for 10G port and 8kB for port 1, capable of 2.5G * SGMII link. */ static void mvpp22_rx_fifo_init(struct mvpp2 *priv) { int remaining_ports_count; unsigned long port_map; int size_remainder; int port, size; /* The loopback requires fixed 4kB of the FIFO space assignment. */ mvpp22_rx_fifo_set_hw(priv, MVPP2_LOOPBACK_PORT_INDEX, MVPP2_RX_FIFO_PORT_DATA_SIZE_4KB); port_map = priv->port_map & ~BIT(MVPP2_LOOPBACK_PORT_INDEX); /* Set RX FIFO size to 0 for inactive ports. */ for_each_clear_bit(port, &port_map, MVPP2_LOOPBACK_PORT_INDEX) mvpp22_rx_fifo_set_hw(priv, port, 0); /* Assign remaining RX FIFO space among all active ports. */ size_remainder = MVPP2_RX_FIFO_PORT_DATA_SIZE_44KB; remaining_ports_count = hweight_long(port_map); for_each_set_bit(port, &port_map, MVPP2_LOOPBACK_PORT_INDEX) { if (remaining_ports_count == 1) size = size_remainder; else if (port == 0) size = max(size_remainder / remaining_ports_count, MVPP2_RX_FIFO_PORT_DATA_SIZE_32KB); else if (port == 1) size = max(size_remainder / remaining_ports_count, MVPP2_RX_FIFO_PORT_DATA_SIZE_8KB); else size = size_remainder / remaining_ports_count; size_remainder -= size; remaining_ports_count--; mvpp22_rx_fifo_set_hw(priv, port, size); } mvpp2_write(priv, MVPP2_RX_MIN_PKT_SIZE_REG, MVPP2_RX_FIFO_PORT_MIN_PKT); mvpp2_write(priv, MVPP2_RX_FIFO_INIT_REG, 0x1); } /* Configure Rx FIFO Flow control thresholds */ static void mvpp23_rx_fifo_fc_set_tresh(struct mvpp2 *priv) { int port, val; /* Port 0: maximum speed -10Gb/s port * required by spec RX FIFO threshold 9KB * Port 1: maximum speed -5Gb/s port * required by spec RX FIFO threshold 4KB * Port 2: maximum speed -1Gb/s port * required by spec RX FIFO threshold 2KB */ /* Without loopback port */ for (port = 0; port < (MVPP2_MAX_PORTS - 1); port++) { if (port == 0) { val = (MVPP23_PORT0_FIFO_TRSH / MVPP2_RX_FC_TRSH_UNIT) << MVPP2_RX_FC_TRSH_OFFS; val &= MVPP2_RX_FC_TRSH_MASK; mvpp2_write(priv, MVPP2_RX_FC_REG(port), val); } else if (port == 1) { val = (MVPP23_PORT1_FIFO_TRSH / MVPP2_RX_FC_TRSH_UNIT) << MVPP2_RX_FC_TRSH_OFFS; val &= MVPP2_RX_FC_TRSH_MASK; mvpp2_write(priv, MVPP2_RX_FC_REG(port), val); } else { val = (MVPP23_PORT2_FIFO_TRSH / MVPP2_RX_FC_TRSH_UNIT) << MVPP2_RX_FC_TRSH_OFFS; val &= MVPP2_RX_FC_TRSH_MASK; mvpp2_write(priv, MVPP2_RX_FC_REG(port), val); } } } /* Configure Rx FIFO Flow control thresholds */ void mvpp23_rx_fifo_fc_en(struct mvpp2 *priv, int port, bool en) { int val; val = mvpp2_read(priv, MVPP2_RX_FC_REG(port)); if (en) val |= MVPP2_RX_FC_EN; else val &= ~MVPP2_RX_FC_EN; mvpp2_write(priv, MVPP2_RX_FC_REG(port), val); } static void mvpp22_tx_fifo_set_hw(struct mvpp2 *priv, int port, int size) { int threshold = MVPP2_TX_FIFO_THRESHOLD(size); mvpp2_write(priv, MVPP22_TX_FIFO_SIZE_REG(port), size); mvpp2_write(priv, MVPP22_TX_FIFO_THRESH_REG(port), threshold); } /* Initialize TX FIFO's: the total FIFO size is 19kB on PPv2.2 and PPv2.3. * 1kB fixed space must be assigned for the loopback port. * Redistribute remaining avialable 18kB space among all active ports. * The 10G interface should use 10kB (which is maximum possible size * per single port). */ static void mvpp22_tx_fifo_init(struct mvpp2 *priv) { int remaining_ports_count; unsigned long port_map; int size_remainder; int port, size; /* The loopback requires fixed 1kB of the FIFO space assignment. */ mvpp22_tx_fifo_set_hw(priv, MVPP2_LOOPBACK_PORT_INDEX, MVPP22_TX_FIFO_DATA_SIZE_1KB); port_map = priv->port_map & ~BIT(MVPP2_LOOPBACK_PORT_INDEX); /* Set TX FIFO size to 0 for inactive ports. */ for_each_clear_bit(port, &port_map, MVPP2_LOOPBACK_PORT_INDEX) mvpp22_tx_fifo_set_hw(priv, port, 0); /* Assign remaining TX FIFO space among all active ports. */ size_remainder = MVPP22_TX_FIFO_DATA_SIZE_18KB; remaining_ports_count = hweight_long(port_map); for_each_set_bit(port, &port_map, MVPP2_LOOPBACK_PORT_INDEX) { if (remaining_ports_count == 1) size = min(size_remainder, MVPP22_TX_FIFO_DATA_SIZE_10KB); else if (port == 0) size = MVPP22_TX_FIFO_DATA_SIZE_10KB; else size = size_remainder / remaining_ports_count; size_remainder -= size; remaining_ports_count--; mvpp22_tx_fifo_set_hw(priv, port, size); } } static void mvpp2_axi_init(struct mvpp2 *priv) { u32 val, rdval, wrval; mvpp2_write(priv, MVPP22_BM_ADDR_HIGH_RLS_REG, 0x0); /* AXI Bridge Configuration */ rdval = MVPP22_AXI_CODE_CACHE_RD_CACHE << MVPP22_AXI_ATTR_CACHE_OFFS; rdval |= MVPP22_AXI_CODE_DOMAIN_OUTER_DOM << MVPP22_AXI_ATTR_DOMAIN_OFFS; wrval = MVPP22_AXI_CODE_CACHE_WR_CACHE << MVPP22_AXI_ATTR_CACHE_OFFS; wrval |= MVPP22_AXI_CODE_DOMAIN_OUTER_DOM << MVPP22_AXI_ATTR_DOMAIN_OFFS; /* BM */ mvpp2_write(priv, MVPP22_AXI_BM_WR_ATTR_REG, wrval); mvpp2_write(priv, MVPP22_AXI_BM_RD_ATTR_REG, rdval); /* Descriptors */ mvpp2_write(priv, MVPP22_AXI_AGGRQ_DESCR_RD_ATTR_REG, rdval); mvpp2_write(priv, MVPP22_AXI_TXQ_DESCR_WR_ATTR_REG, wrval); mvpp2_write(priv, MVPP22_AXI_TXQ_DESCR_RD_ATTR_REG, rdval); mvpp2_write(priv, MVPP22_AXI_RXQ_DESCR_WR_ATTR_REG, wrval); /* Buffer Data */ mvpp2_write(priv, MVPP22_AXI_TX_DATA_RD_ATTR_REG, rdval); mvpp2_write(priv, MVPP22_AXI_RX_DATA_WR_ATTR_REG, wrval); val = MVPP22_AXI_CODE_CACHE_NON_CACHE << MVPP22_AXI_CODE_CACHE_OFFS; val |= MVPP22_AXI_CODE_DOMAIN_SYSTEM << MVPP22_AXI_CODE_DOMAIN_OFFS; mvpp2_write(priv, MVPP22_AXI_RD_NORMAL_CODE_REG, val); mvpp2_write(priv, MVPP22_AXI_WR_NORMAL_CODE_REG, val); val = MVPP22_AXI_CODE_CACHE_RD_CACHE << MVPP22_AXI_CODE_CACHE_OFFS; val |= MVPP22_AXI_CODE_DOMAIN_OUTER_DOM << MVPP22_AXI_CODE_DOMAIN_OFFS; mvpp2_write(priv, MVPP22_AXI_RD_SNOOP_CODE_REG, val); val = MVPP22_AXI_CODE_CACHE_WR_CACHE << MVPP22_AXI_CODE_CACHE_OFFS; val |= MVPP22_AXI_CODE_DOMAIN_OUTER_DOM << MVPP22_AXI_CODE_DOMAIN_OFFS; mvpp2_write(priv, MVPP22_AXI_WR_SNOOP_CODE_REG, val); } /* Initialize network controller common part HW */ static int mvpp2_init(struct platform_device *pdev, struct mvpp2 *priv) { const struct mbus_dram_target_info *dram_target_info; int err, i; u32 val; /* MBUS windows configuration */ dram_target_info = mv_mbus_dram_info(); if (dram_target_info) mvpp2_conf_mbus_windows(dram_target_info, priv); if (priv->hw_version >= MVPP22) mvpp2_axi_init(priv); /* Disable HW PHY polling */ if (priv->hw_version == MVPP21) { val = readl(priv->lms_base + MVPP2_PHY_AN_CFG0_REG); val |= MVPP2_PHY_AN_STOP_SMI0_MASK; writel(val, priv->lms_base + MVPP2_PHY_AN_CFG0_REG); } else { val = readl(priv->iface_base + MVPP22_SMI_MISC_CFG_REG); val &= ~MVPP22_SMI_POLLING_EN; writel(val, priv->iface_base + MVPP22_SMI_MISC_CFG_REG); } /* Allocate and initialize aggregated TXQs */ priv->aggr_txqs = devm_kcalloc(&pdev->dev, MVPP2_MAX_THREADS, sizeof(*priv->aggr_txqs), GFP_KERNEL); if (!priv->aggr_txqs) return -ENOMEM; for (i = 0; i < MVPP2_MAX_THREADS; i++) { priv->aggr_txqs[i].id = i; priv->aggr_txqs[i].size = MVPP2_AGGR_TXQ_SIZE; err = mvpp2_aggr_txq_init(pdev, &priv->aggr_txqs[i], i, priv); if (err < 0) return err; } /* Fifo Init */ if (priv->hw_version == MVPP21) { mvpp2_rx_fifo_init(priv); } else { mvpp22_rx_fifo_init(priv); mvpp22_tx_fifo_init(priv); if (priv->hw_version == MVPP23) mvpp23_rx_fifo_fc_set_tresh(priv); } if (priv->hw_version == MVPP21) writel(MVPP2_EXT_GLOBAL_CTRL_DEFAULT, priv->lms_base + MVPP2_MNG_EXTENDED_GLOBAL_CTRL_REG); /* Allow cache snoop when transmiting packets */ mvpp2_write(priv, MVPP2_TX_SNOOP_REG, 0x1); /* Buffer Manager initialization */ err = mvpp2_bm_init(&pdev->dev, priv); if (err < 0) return err; /* Parser default initialization */ err = mvpp2_prs_default_init(pdev, priv); if (err < 0) return err; /* Classifier default initialization */ mvpp2_cls_init(priv); return 0; } static int mvpp2_get_sram(struct platform_device *pdev, struct mvpp2 *priv) { struct resource *res; void __iomem *base; res = platform_get_resource(pdev, IORESOURCE_MEM, 2); if (!res) { if (has_acpi_companion(&pdev->dev)) dev_warn(&pdev->dev, "ACPI is too old, Flow control not supported\n"); else dev_warn(&pdev->dev, "DT is too old, Flow control not supported\n"); return 0; } base = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(base)) return PTR_ERR(base); priv->cm3_base = base; return 0; } static int mvpp2_probe(struct platform_device *pdev) { struct fwnode_handle *fwnode = pdev->dev.fwnode; struct fwnode_handle *port_fwnode; struct mvpp2 *priv; struct resource *res; void __iomem *base; int i, shared; int err; priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; priv->hw_version = (unsigned long)device_get_match_data(&pdev->dev); /* multi queue mode isn't supported on PPV2.1, fallback to single * mode */ if (priv->hw_version == MVPP21) queue_mode = MVPP2_QDIST_SINGLE_MODE; base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(base)) return PTR_ERR(base); if (priv->hw_version == MVPP21) { priv->lms_base = devm_platform_ioremap_resource(pdev, 1); if (IS_ERR(priv->lms_base)) return PTR_ERR(priv->lms_base); } else { res = platform_get_resource(pdev, IORESOURCE_MEM, 1); if (!res) { dev_err(&pdev->dev, "Invalid resource\n"); return -EINVAL; } if (has_acpi_companion(&pdev->dev)) { /* In case the MDIO memory region is declared in * the ACPI, it can already appear as 'in-use' * in the OS. Because it is overlapped by second * region of the network controller, make * sure it is released, before requesting it again. * The care is taken by mvpp2 driver to avoid * concurrent access to this memory region. */ release_resource(res); } priv->iface_base = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(priv->iface_base)) return PTR_ERR(priv->iface_base); /* Map CM3 SRAM */ err = mvpp2_get_sram(pdev, priv); if (err) dev_warn(&pdev->dev, "Fail to alloc CM3 SRAM\n"); /* Enable global Flow Control only if handler to SRAM not NULL */ if (priv->cm3_base) priv->global_tx_fc = true; } if (priv->hw_version >= MVPP22 && dev_of_node(&pdev->dev)) { priv->sysctrl_base = syscon_regmap_lookup_by_phandle(pdev->dev.of_node, "marvell,system-controller"); if (IS_ERR(priv->sysctrl_base)) /* The system controller regmap is optional for dt * compatibility reasons. When not provided, the * configuration of the GoP relies on the * firmware/bootloader. */ priv->sysctrl_base = NULL; } if (priv->hw_version >= MVPP22 && mvpp2_get_nrxqs(priv) * 2 <= MVPP2_BM_MAX_POOLS) priv->percpu_pools = 1; mvpp2_setup_bm_pool(); priv->nthreads = min_t(unsigned int, num_present_cpus(), MVPP2_MAX_THREADS); shared = num_present_cpus() - priv->nthreads; if (shared > 0) bitmap_set(&priv->lock_map, 0, min_t(int, shared, MVPP2_MAX_THREADS)); for (i = 0; i < MVPP2_MAX_THREADS; i++) { u32 addr_space_sz; addr_space_sz = (priv->hw_version == MVPP21 ? MVPP21_ADDR_SPACE_SZ : MVPP22_ADDR_SPACE_SZ); priv->swth_base[i] = base + i * addr_space_sz; } if (priv->hw_version == MVPP21) priv->max_port_rxqs = 8; else priv->max_port_rxqs = 32; if (dev_of_node(&pdev->dev)) { priv->pp_clk = devm_clk_get(&pdev->dev, "pp_clk"); if (IS_ERR(priv->pp_clk)) return PTR_ERR(priv->pp_clk); err = clk_prepare_enable(priv->pp_clk); if (err < 0) return err; priv->gop_clk = devm_clk_get(&pdev->dev, "gop_clk"); if (IS_ERR(priv->gop_clk)) { err = PTR_ERR(priv->gop_clk); goto err_pp_clk; } err = clk_prepare_enable(priv->gop_clk); if (err < 0) goto err_pp_clk; if (priv->hw_version >= MVPP22) { priv->mg_clk = devm_clk_get(&pdev->dev, "mg_clk"); if (IS_ERR(priv->mg_clk)) { err = PTR_ERR(priv->mg_clk); goto err_gop_clk; } err = clk_prepare_enable(priv->mg_clk); if (err < 0) goto err_gop_clk; priv->mg_core_clk = devm_clk_get_optional(&pdev->dev, "mg_core_clk"); if (IS_ERR(priv->mg_core_clk)) { err = PTR_ERR(priv->mg_core_clk); goto err_mg_clk; } err = clk_prepare_enable(priv->mg_core_clk); if (err < 0) goto err_mg_clk; } priv->axi_clk = devm_clk_get_optional(&pdev->dev, "axi_clk"); if (IS_ERR(priv->axi_clk)) { err = PTR_ERR(priv->axi_clk); goto err_mg_core_clk; } err = clk_prepare_enable(priv->axi_clk); if (err < 0) goto err_mg_core_clk; /* Get system's tclk rate */ priv->tclk = clk_get_rate(priv->pp_clk); } else { err = device_property_read_u32(&pdev->dev, "clock-frequency", &priv->tclk); if (err) { dev_err(&pdev->dev, "missing clock-frequency value\n"); return err; } } if (priv->hw_version >= MVPP22) { err = dma_set_mask(&pdev->dev, MVPP2_DESC_DMA_MASK); if (err) goto err_axi_clk; /* Sadly, the BM pools all share the same register to * store the high 32 bits of their address. So they * must all have the same high 32 bits, which forces * us to restrict coherent memory to DMA_BIT_MASK(32). */ err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32)); if (err) goto err_axi_clk; } /* Map DTS-active ports. Should be done before FIFO mvpp2_init */ fwnode_for_each_available_child_node(fwnode, port_fwnode) { if (!fwnode_property_read_u32(port_fwnode, "port-id", &i)) priv->port_map |= BIT(i); } if (mvpp2_read(priv, MVPP2_VER_ID_REG) == MVPP2_VER_PP23) priv->hw_version = MVPP23; /* Init mss lock */ spin_lock_init(&priv->mss_spinlock); /* Initialize network controller */ err = mvpp2_init(pdev, priv); if (err < 0) { dev_err(&pdev->dev, "failed to initialize controller\n"); goto err_axi_clk; } err = mvpp22_tai_probe(&pdev->dev, priv); if (err < 0) goto err_axi_clk; /* Initialize ports */ fwnode_for_each_available_child_node(fwnode, port_fwnode) { err = mvpp2_port_probe(pdev, port_fwnode, priv); if (err < 0) goto err_port_probe; } if (priv->port_count == 0) { dev_err(&pdev->dev, "no ports enabled\n"); err = -ENODEV; goto err_axi_clk; } /* Statistics must be gathered regularly because some of them (like * packets counters) are 32-bit registers and could overflow quite * quickly. For instance, a 10Gb link used at full bandwidth with the * smallest packets (64B) will overflow a 32-bit counter in less than * 30 seconds. Then, use a workqueue to fill 64-bit counters. */ snprintf(priv->queue_name, sizeof(priv->queue_name), "stats-wq-%s%s", netdev_name(priv->port_list[0]->dev), priv->port_count > 1 ? "+" : ""); priv->stats_queue = create_singlethread_workqueue(priv->queue_name); if (!priv->stats_queue) { err = -ENOMEM; goto err_port_probe; } if (priv->global_tx_fc && priv->hw_version >= MVPP22) { err = mvpp2_enable_global_fc(priv); if (err) dev_warn(&pdev->dev, "Minimum of CM3 firmware 18.09 and chip revision B0 required for flow control\n"); } mvpp2_dbgfs_init(priv, pdev->name); platform_set_drvdata(pdev, priv); return 0; err_port_probe: fwnode_handle_put(port_fwnode); i = 0; fwnode_for_each_available_child_node(fwnode, port_fwnode) { if (priv->port_list[i]) mvpp2_port_remove(priv->port_list[i]); i++; } err_axi_clk: clk_disable_unprepare(priv->axi_clk); err_mg_core_clk: clk_disable_unprepare(priv->mg_core_clk); err_mg_clk: clk_disable_unprepare(priv->mg_clk); err_gop_clk: clk_disable_unprepare(priv->gop_clk); err_pp_clk: clk_disable_unprepare(priv->pp_clk); return err; } static void mvpp2_remove(struct platform_device *pdev) { struct mvpp2 *priv = platform_get_drvdata(pdev); struct fwnode_handle *fwnode = pdev->dev.fwnode; int i = 0, poolnum = MVPP2_BM_POOLS_NUM; struct fwnode_handle *port_fwnode; mvpp2_dbgfs_cleanup(priv); fwnode_for_each_available_child_node(fwnode, port_fwnode) { if (priv->port_list[i]) { mutex_destroy(&priv->port_list[i]->gather_stats_lock); mvpp2_port_remove(priv->port_list[i]); } i++; } destroy_workqueue(priv->stats_queue); if (priv->percpu_pools) poolnum = mvpp2_get_nrxqs(priv) * 2; for (i = 0; i < poolnum; i++) { struct mvpp2_bm_pool *bm_pool = &priv->bm_pools[i]; mvpp2_bm_pool_destroy(&pdev->dev, priv, bm_pool); } for (i = 0; i < MVPP2_MAX_THREADS; i++) { struct mvpp2_tx_queue *aggr_txq = &priv->aggr_txqs[i]; dma_free_coherent(&pdev->dev, MVPP2_AGGR_TXQ_SIZE * MVPP2_DESC_ALIGNED_SIZE, aggr_txq->descs, aggr_txq->descs_dma); } if (is_acpi_node(port_fwnode)) return; clk_disable_unprepare(priv->axi_clk); clk_disable_unprepare(priv->mg_core_clk); clk_disable_unprepare(priv->mg_clk); clk_disable_unprepare(priv->pp_clk); clk_disable_unprepare(priv->gop_clk); } static const struct of_device_id mvpp2_match[] = { { .compatible = "marvell,armada-375-pp2", .data = (void *)MVPP21, }, { .compatible = "marvell,armada-7k-pp22", .data = (void *)MVPP22, }, { } }; MODULE_DEVICE_TABLE(of, mvpp2_match); #ifdef CONFIG_ACPI static const struct acpi_device_id mvpp2_acpi_match[] = { { "MRVL0110", MVPP22 }, { }, }; MODULE_DEVICE_TABLE(acpi, mvpp2_acpi_match); #endif static struct platform_driver mvpp2_driver = { .probe = mvpp2_probe, .remove_new = mvpp2_remove, .driver = { .name = MVPP2_DRIVER_NAME, .of_match_table = mvpp2_match, .acpi_match_table = ACPI_PTR(mvpp2_acpi_match), }, }; static int __init mvpp2_driver_init(void) { return platform_driver_register(&mvpp2_driver); } module_init(mvpp2_driver_init); static void __exit mvpp2_driver_exit(void) { platform_driver_unregister(&mvpp2_driver); mvpp2_dbgfs_exit(); } module_exit(mvpp2_driver_exit); MODULE_DESCRIPTION("Marvell PPv2 Ethernet Driver - www.marvell.com"); MODULE_AUTHOR("Marcin Wojtas "); MODULE_LICENSE("GPL v2");