// SPDX-License-Identifier: GPL-2.0 /* Copyright (c) 2018, Intel Corporation. */ #include "ice.h" #include "ice_base.h" #include "ice_flow.h" #include "ice_lib.h" #include "ice_fltr.h" #include "ice_dcb_lib.h" #include "ice_vsi_vlan_ops.h" /** * ice_vsi_type_str - maps VSI type enum to string equivalents * @vsi_type: VSI type enum */ const char *ice_vsi_type_str(enum ice_vsi_type vsi_type) { switch (vsi_type) { case ICE_VSI_PF: return "ICE_VSI_PF"; case ICE_VSI_VF: return "ICE_VSI_VF"; case ICE_VSI_CTRL: return "ICE_VSI_CTRL"; case ICE_VSI_CHNL: return "ICE_VSI_CHNL"; case ICE_VSI_LB: return "ICE_VSI_LB"; default: return "unknown"; } } /** * ice_vsi_ctrl_all_rx_rings - Start or stop a VSI's Rx rings * @vsi: the VSI being configured * @ena: start or stop the Rx rings * * First enable/disable all of the Rx rings, flush any remaining writes, and * then verify that they have all been enabled/disabled successfully. This will * let all of the register writes complete when enabling/disabling the Rx rings * before waiting for the change in hardware to complete. */ static int ice_vsi_ctrl_all_rx_rings(struct ice_vsi *vsi, bool ena) { int ret = 0; u16 i; ice_for_each_rxq(vsi, i) ice_vsi_ctrl_one_rx_ring(vsi, ena, i, false); ice_flush(&vsi->back->hw); ice_for_each_rxq(vsi, i) { ret = ice_vsi_wait_one_rx_ring(vsi, ena, i); if (ret) break; } return ret; } /** * ice_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the VSI * @vsi: VSI pointer * * On error: returns error code (negative) * On success: returns 0 */ static int ice_vsi_alloc_arrays(struct ice_vsi *vsi) { struct ice_pf *pf = vsi->back; struct device *dev; dev = ice_pf_to_dev(pf); if (vsi->type == ICE_VSI_CHNL) return 0; /* allocate memory for both Tx and Rx ring pointers */ vsi->tx_rings = devm_kcalloc(dev, vsi->alloc_txq, sizeof(*vsi->tx_rings), GFP_KERNEL); if (!vsi->tx_rings) return -ENOMEM; vsi->rx_rings = devm_kcalloc(dev, vsi->alloc_rxq, sizeof(*vsi->rx_rings), GFP_KERNEL); if (!vsi->rx_rings) goto err_rings; /* txq_map needs to have enough space to track both Tx (stack) rings * and XDP rings; at this point vsi->num_xdp_txq might not be set, * so use num_possible_cpus() as we want to always provide XDP ring * per CPU, regardless of queue count settings from user that might * have come from ethtool's set_channels() callback; */ vsi->txq_map = devm_kcalloc(dev, (vsi->alloc_txq + num_possible_cpus()), sizeof(*vsi->txq_map), GFP_KERNEL); if (!vsi->txq_map) goto err_txq_map; vsi->rxq_map = devm_kcalloc(dev, vsi->alloc_rxq, sizeof(*vsi->rxq_map), GFP_KERNEL); if (!vsi->rxq_map) goto err_rxq_map; /* There is no need to allocate q_vectors for a loopback VSI. */ if (vsi->type == ICE_VSI_LB) return 0; /* allocate memory for q_vector pointers */ vsi->q_vectors = devm_kcalloc(dev, vsi->num_q_vectors, sizeof(*vsi->q_vectors), GFP_KERNEL); if (!vsi->q_vectors) goto err_vectors; vsi->af_xdp_zc_qps = bitmap_zalloc(max_t(int, vsi->alloc_txq, vsi->alloc_rxq), GFP_KERNEL); if (!vsi->af_xdp_zc_qps) goto err_zc_qps; return 0; err_zc_qps: devm_kfree(dev, vsi->q_vectors); err_vectors: devm_kfree(dev, vsi->rxq_map); err_rxq_map: devm_kfree(dev, vsi->txq_map); err_txq_map: devm_kfree(dev, vsi->rx_rings); err_rings: devm_kfree(dev, vsi->tx_rings); return -ENOMEM; } /** * ice_vsi_set_num_desc - Set number of descriptors for queues on this VSI * @vsi: the VSI being configured */ static void ice_vsi_set_num_desc(struct ice_vsi *vsi) { switch (vsi->type) { case ICE_VSI_PF: case ICE_VSI_CTRL: case ICE_VSI_LB: /* a user could change the values of num_[tr]x_desc using * ethtool -G so we should keep those values instead of * overwriting them with the defaults. */ if (!vsi->num_rx_desc) vsi->num_rx_desc = ICE_DFLT_NUM_RX_DESC; if (!vsi->num_tx_desc) vsi->num_tx_desc = ICE_DFLT_NUM_TX_DESC; break; default: dev_dbg(ice_pf_to_dev(vsi->back), "Not setting number of Tx/Rx descriptors for VSI type %d\n", vsi->type); break; } } /** * ice_vsi_set_num_qs - Set number of queues, descriptors and vectors for a VSI * @vsi: the VSI being configured * * Return 0 on success and a negative value on error */ static void ice_vsi_set_num_qs(struct ice_vsi *vsi) { enum ice_vsi_type vsi_type = vsi->type; struct ice_pf *pf = vsi->back; struct ice_vf *vf = vsi->vf; if (WARN_ON(vsi_type == ICE_VSI_VF && !vf)) return; switch (vsi_type) { case ICE_VSI_PF: if (vsi->req_txq) { vsi->alloc_txq = vsi->req_txq; vsi->num_txq = vsi->req_txq; } else { vsi->alloc_txq = min3(pf->num_lan_msix, ice_get_avail_txq_count(pf), (u16)num_online_cpus()); } pf->num_lan_tx = vsi->alloc_txq; /* only 1 Rx queue unless RSS is enabled */ if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { vsi->alloc_rxq = 1; } else { if (vsi->req_rxq) { vsi->alloc_rxq = vsi->req_rxq; vsi->num_rxq = vsi->req_rxq; } else { vsi->alloc_rxq = min3(pf->num_lan_msix, ice_get_avail_rxq_count(pf), (u16)num_online_cpus()); } } pf->num_lan_rx = vsi->alloc_rxq; vsi->num_q_vectors = min_t(int, pf->num_lan_msix, max_t(int, vsi->alloc_rxq, vsi->alloc_txq)); break; case ICE_VSI_VF: if (vf->num_req_qs) vf->num_vf_qs = vf->num_req_qs; vsi->alloc_txq = vf->num_vf_qs; vsi->alloc_rxq = vf->num_vf_qs; /* pf->vfs.num_msix_per includes (VF miscellaneous vector + * data queue interrupts). Since vsi->num_q_vectors is number * of queues vectors, subtract 1 (ICE_NONQ_VECS_VF) from the * original vector count */ vsi->num_q_vectors = vf->num_msix - ICE_NONQ_VECS_VF; break; case ICE_VSI_CTRL: vsi->alloc_txq = 1; vsi->alloc_rxq = 1; vsi->num_q_vectors = 1; break; case ICE_VSI_CHNL: vsi->alloc_txq = 0; vsi->alloc_rxq = 0; break; case ICE_VSI_LB: vsi->alloc_txq = 1; vsi->alloc_rxq = 1; break; default: dev_warn(ice_pf_to_dev(pf), "Unknown VSI type %d\n", vsi_type); break; } ice_vsi_set_num_desc(vsi); } /** * ice_get_free_slot - get the next non-NULL location index in array * @array: array to search * @size: size of the array * @curr: last known occupied index to be used as a search hint * * void * is being used to keep the functionality generic. This lets us use this * function on any array of pointers. */ static int ice_get_free_slot(void *array, int size, int curr) { int **tmp_array = (int **)array; int next; if (curr < (size - 1) && !tmp_array[curr + 1]) { next = curr + 1; } else { int i = 0; while ((i < size) && (tmp_array[i])) i++; if (i == size) next = ICE_NO_VSI; else next = i; } return next; } /** * ice_vsi_delete_from_hw - delete a VSI from the switch * @vsi: pointer to VSI being removed */ static void ice_vsi_delete_from_hw(struct ice_vsi *vsi) { struct ice_pf *pf = vsi->back; struct ice_vsi_ctx *ctxt; int status; ice_fltr_remove_all(vsi); ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); if (!ctxt) return; if (vsi->type == ICE_VSI_VF) ctxt->vf_num = vsi->vf->vf_id; ctxt->vsi_num = vsi->vsi_num; memcpy(&ctxt->info, &vsi->info, sizeof(ctxt->info)); status = ice_free_vsi(&pf->hw, vsi->idx, ctxt, false, NULL); if (status) dev_err(ice_pf_to_dev(pf), "Failed to delete VSI %i in FW - error: %d\n", vsi->vsi_num, status); kfree(ctxt); } /** * ice_vsi_free_arrays - De-allocate queue and vector pointer arrays for the VSI * @vsi: pointer to VSI being cleared */ static void ice_vsi_free_arrays(struct ice_vsi *vsi) { struct ice_pf *pf = vsi->back; struct device *dev; dev = ice_pf_to_dev(pf); bitmap_free(vsi->af_xdp_zc_qps); vsi->af_xdp_zc_qps = NULL; /* free the ring and vector containers */ devm_kfree(dev, vsi->q_vectors); vsi->q_vectors = NULL; devm_kfree(dev, vsi->tx_rings); vsi->tx_rings = NULL; devm_kfree(dev, vsi->rx_rings); vsi->rx_rings = NULL; devm_kfree(dev, vsi->txq_map); vsi->txq_map = NULL; devm_kfree(dev, vsi->rxq_map); vsi->rxq_map = NULL; } /** * ice_vsi_free_stats - Free the ring statistics structures * @vsi: VSI pointer */ static void ice_vsi_free_stats(struct ice_vsi *vsi) { struct ice_vsi_stats *vsi_stat; struct ice_pf *pf = vsi->back; int i; if (vsi->type == ICE_VSI_CHNL) return; if (!pf->vsi_stats) return; vsi_stat = pf->vsi_stats[vsi->idx]; if (!vsi_stat) return; ice_for_each_alloc_txq(vsi, i) { if (vsi_stat->tx_ring_stats[i]) { kfree_rcu(vsi_stat->tx_ring_stats[i], rcu); WRITE_ONCE(vsi_stat->tx_ring_stats[i], NULL); } } ice_for_each_alloc_rxq(vsi, i) { if (vsi_stat->rx_ring_stats[i]) { kfree_rcu(vsi_stat->rx_ring_stats[i], rcu); WRITE_ONCE(vsi_stat->rx_ring_stats[i], NULL); } } kfree(vsi_stat->tx_ring_stats); kfree(vsi_stat->rx_ring_stats); kfree(vsi_stat); pf->vsi_stats[vsi->idx] = NULL; } /** * ice_vsi_alloc_ring_stats - Allocates Tx and Rx ring stats for the VSI * @vsi: VSI which is having stats allocated */ static int ice_vsi_alloc_ring_stats(struct ice_vsi *vsi) { struct ice_ring_stats **tx_ring_stats; struct ice_ring_stats **rx_ring_stats; struct ice_vsi_stats *vsi_stats; struct ice_pf *pf = vsi->back; u16 i; vsi_stats = pf->vsi_stats[vsi->idx]; tx_ring_stats = vsi_stats->tx_ring_stats; rx_ring_stats = vsi_stats->rx_ring_stats; /* Allocate Tx ring stats */ ice_for_each_alloc_txq(vsi, i) { struct ice_ring_stats *ring_stats; struct ice_tx_ring *ring; ring = vsi->tx_rings[i]; ring_stats = tx_ring_stats[i]; if (!ring_stats) { ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL); if (!ring_stats) goto err_out; WRITE_ONCE(tx_ring_stats[i], ring_stats); } ring->ring_stats = ring_stats; } /* Allocate Rx ring stats */ ice_for_each_alloc_rxq(vsi, i) { struct ice_ring_stats *ring_stats; struct ice_rx_ring *ring; ring = vsi->rx_rings[i]; ring_stats = rx_ring_stats[i]; if (!ring_stats) { ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL); if (!ring_stats) goto err_out; WRITE_ONCE(rx_ring_stats[i], ring_stats); } ring->ring_stats = ring_stats; } return 0; err_out: ice_vsi_free_stats(vsi); return -ENOMEM; } /** * ice_vsi_free - clean up and deallocate the provided VSI * @vsi: pointer to VSI being cleared * * This deallocates the VSI's queue resources, removes it from the PF's * VSI array if necessary, and deallocates the VSI */ static void ice_vsi_free(struct ice_vsi *vsi) { struct ice_pf *pf = NULL; struct device *dev; if (!vsi || !vsi->back) return; pf = vsi->back; dev = ice_pf_to_dev(pf); if (!pf->vsi[vsi->idx] || pf->vsi[vsi->idx] != vsi) { dev_dbg(dev, "vsi does not exist at pf->vsi[%d]\n", vsi->idx); return; } mutex_lock(&pf->sw_mutex); /* updates the PF for this cleared VSI */ pf->vsi[vsi->idx] = NULL; pf->next_vsi = vsi->idx; ice_vsi_free_stats(vsi); ice_vsi_free_arrays(vsi); mutex_unlock(&pf->sw_mutex); devm_kfree(dev, vsi); } void ice_vsi_delete(struct ice_vsi *vsi) { ice_vsi_delete_from_hw(vsi); ice_vsi_free(vsi); } /** * ice_msix_clean_ctrl_vsi - MSIX mode interrupt handler for ctrl VSI * @irq: interrupt number * @data: pointer to a q_vector */ static irqreturn_t ice_msix_clean_ctrl_vsi(int __always_unused irq, void *data) { struct ice_q_vector *q_vector = (struct ice_q_vector *)data; if (!q_vector->tx.tx_ring) return IRQ_HANDLED; #define FDIR_RX_DESC_CLEAN_BUDGET 64 ice_clean_rx_irq(q_vector->rx.rx_ring, FDIR_RX_DESC_CLEAN_BUDGET); ice_clean_ctrl_tx_irq(q_vector->tx.tx_ring); return IRQ_HANDLED; } /** * ice_msix_clean_rings - MSIX mode Interrupt Handler * @irq: interrupt number * @data: pointer to a q_vector */ static irqreturn_t ice_msix_clean_rings(int __always_unused irq, void *data) { struct ice_q_vector *q_vector = (struct ice_q_vector *)data; if (!q_vector->tx.tx_ring && !q_vector->rx.rx_ring) return IRQ_HANDLED; q_vector->total_events++; napi_schedule(&q_vector->napi); return IRQ_HANDLED; } /** * ice_vsi_alloc_stat_arrays - Allocate statistics arrays * @vsi: VSI pointer */ static int ice_vsi_alloc_stat_arrays(struct ice_vsi *vsi) { struct ice_vsi_stats *vsi_stat; struct ice_pf *pf = vsi->back; if (vsi->type == ICE_VSI_CHNL) return 0; if (!pf->vsi_stats) return -ENOENT; if (pf->vsi_stats[vsi->idx]) /* realloc will happen in rebuild path */ return 0; vsi_stat = kzalloc(sizeof(*vsi_stat), GFP_KERNEL); if (!vsi_stat) return -ENOMEM; vsi_stat->tx_ring_stats = kcalloc(vsi->alloc_txq, sizeof(*vsi_stat->tx_ring_stats), GFP_KERNEL); if (!vsi_stat->tx_ring_stats) goto err_alloc_tx; vsi_stat->rx_ring_stats = kcalloc(vsi->alloc_rxq, sizeof(*vsi_stat->rx_ring_stats), GFP_KERNEL); if (!vsi_stat->rx_ring_stats) goto err_alloc_rx; pf->vsi_stats[vsi->idx] = vsi_stat; return 0; err_alloc_rx: kfree(vsi_stat->rx_ring_stats); err_alloc_tx: kfree(vsi_stat->tx_ring_stats); kfree(vsi_stat); pf->vsi_stats[vsi->idx] = NULL; return -ENOMEM; } /** * ice_vsi_alloc_def - set default values for already allocated VSI * @vsi: ptr to VSI * @ch: ptr to channel */ static int ice_vsi_alloc_def(struct ice_vsi *vsi, struct ice_channel *ch) { if (vsi->type != ICE_VSI_CHNL) { ice_vsi_set_num_qs(vsi); if (ice_vsi_alloc_arrays(vsi)) return -ENOMEM; } switch (vsi->type) { case ICE_VSI_PF: /* Setup default MSIX irq handler for VSI */ vsi->irq_handler = ice_msix_clean_rings; break; case ICE_VSI_CTRL: /* Setup ctrl VSI MSIX irq handler */ vsi->irq_handler = ice_msix_clean_ctrl_vsi; break; case ICE_VSI_CHNL: if (!ch) return -EINVAL; vsi->num_rxq = ch->num_rxq; vsi->num_txq = ch->num_txq; vsi->next_base_q = ch->base_q; break; case ICE_VSI_VF: case ICE_VSI_LB: break; default: ice_vsi_free_arrays(vsi); return -EINVAL; } return 0; } /** * ice_vsi_alloc - Allocates the next available struct VSI in the PF * @pf: board private structure * * Reserves a VSI index from the PF and allocates an empty VSI structure * without a type. The VSI structure must later be initialized by calling * ice_vsi_cfg(). * * returns a pointer to a VSI on success, NULL on failure. */ static struct ice_vsi *ice_vsi_alloc(struct ice_pf *pf) { struct device *dev = ice_pf_to_dev(pf); struct ice_vsi *vsi = NULL; /* Need to protect the allocation of the VSIs at the PF level */ mutex_lock(&pf->sw_mutex); /* If we have already allocated our maximum number of VSIs, * pf->next_vsi will be ICE_NO_VSI. If not, pf->next_vsi index * is available to be populated */ if (pf->next_vsi == ICE_NO_VSI) { dev_dbg(dev, "out of VSI slots!\n"); goto unlock_pf; } vsi = devm_kzalloc(dev, sizeof(*vsi), GFP_KERNEL); if (!vsi) goto unlock_pf; vsi->back = pf; set_bit(ICE_VSI_DOWN, vsi->state); /* fill slot and make note of the index */ vsi->idx = pf->next_vsi; pf->vsi[pf->next_vsi] = vsi; /* prepare pf->next_vsi for next use */ pf->next_vsi = ice_get_free_slot(pf->vsi, pf->num_alloc_vsi, pf->next_vsi); unlock_pf: mutex_unlock(&pf->sw_mutex); return vsi; } /** * ice_alloc_fd_res - Allocate FD resource for a VSI * @vsi: pointer to the ice_vsi * * This allocates the FD resources * * Returns 0 on success, -EPERM on no-op or -EIO on failure */ static int ice_alloc_fd_res(struct ice_vsi *vsi) { struct ice_pf *pf = vsi->back; u32 g_val, b_val; /* Flow Director filters are only allocated/assigned to the PF VSI or * CHNL VSI which passes the traffic. The CTRL VSI is only used to * add/delete filters so resources are not allocated to it */ if (!test_bit(ICE_FLAG_FD_ENA, pf->flags)) return -EPERM; if (!(vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_VF || vsi->type == ICE_VSI_CHNL)) return -EPERM; /* FD filters from guaranteed pool per VSI */ g_val = pf->hw.func_caps.fd_fltr_guar; if (!g_val) return -EPERM; /* FD filters from best effort pool */ b_val = pf->hw.func_caps.fd_fltr_best_effort; if (!b_val) return -EPERM; /* PF main VSI gets only 64 FD resources from guaranteed pool * when ADQ is configured. */ #define ICE_PF_VSI_GFLTR 64 /* determine FD filter resources per VSI from shared(best effort) and * dedicated pool */ if (vsi->type == ICE_VSI_PF) { vsi->num_gfltr = g_val; /* if MQPRIO is configured, main VSI doesn't get all FD * resources from guaranteed pool. PF VSI gets 64 FD resources */ if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) { if (g_val < ICE_PF_VSI_GFLTR) return -EPERM; /* allow bare minimum entries for PF VSI */ vsi->num_gfltr = ICE_PF_VSI_GFLTR; } /* each VSI gets same "best_effort" quota */ vsi->num_bfltr = b_val; } else if (vsi->type == ICE_VSI_VF) { vsi->num_gfltr = 0; /* each VSI gets same "best_effort" quota */ vsi->num_bfltr = b_val; } else { struct ice_vsi *main_vsi; int numtc; main_vsi = ice_get_main_vsi(pf); if (!main_vsi) return -EPERM; if (!main_vsi->all_numtc) return -EINVAL; /* figure out ADQ numtc */ numtc = main_vsi->all_numtc - ICE_CHNL_START_TC; /* only one TC but still asking resources for channels, * invalid config */ if (numtc < ICE_CHNL_START_TC) return -EPERM; g_val -= ICE_PF_VSI_GFLTR; /* channel VSIs gets equal share from guaranteed pool */ vsi->num_gfltr = g_val / numtc; /* each VSI gets same "best_effort" quota */ vsi->num_bfltr = b_val; } return 0; } /** * ice_vsi_get_qs - Assign queues from PF to VSI * @vsi: the VSI to assign queues to * * Returns 0 on success and a negative value on error */ static int ice_vsi_get_qs(struct ice_vsi *vsi) { struct ice_pf *pf = vsi->back; struct ice_qs_cfg tx_qs_cfg = { .qs_mutex = &pf->avail_q_mutex, .pf_map = pf->avail_txqs, .pf_map_size = pf->max_pf_txqs, .q_count = vsi->alloc_txq, .scatter_count = ICE_MAX_SCATTER_TXQS, .vsi_map = vsi->txq_map, .vsi_map_offset = 0, .mapping_mode = ICE_VSI_MAP_CONTIG }; struct ice_qs_cfg rx_qs_cfg = { .qs_mutex = &pf->avail_q_mutex, .pf_map = pf->avail_rxqs, .pf_map_size = pf->max_pf_rxqs, .q_count = vsi->alloc_rxq, .scatter_count = ICE_MAX_SCATTER_RXQS, .vsi_map = vsi->rxq_map, .vsi_map_offset = 0, .mapping_mode = ICE_VSI_MAP_CONTIG }; int ret; if (vsi->type == ICE_VSI_CHNL) return 0; ret = __ice_vsi_get_qs(&tx_qs_cfg); if (ret) return ret; vsi->tx_mapping_mode = tx_qs_cfg.mapping_mode; ret = __ice_vsi_get_qs(&rx_qs_cfg); if (ret) return ret; vsi->rx_mapping_mode = rx_qs_cfg.mapping_mode; return 0; } /** * ice_vsi_put_qs - Release queues from VSI to PF * @vsi: the VSI that is going to release queues */ static void ice_vsi_put_qs(struct ice_vsi *vsi) { struct ice_pf *pf = vsi->back; int i; mutex_lock(&pf->avail_q_mutex); ice_for_each_alloc_txq(vsi, i) { clear_bit(vsi->txq_map[i], pf->avail_txqs); vsi->txq_map[i] = ICE_INVAL_Q_INDEX; } ice_for_each_alloc_rxq(vsi, i) { clear_bit(vsi->rxq_map[i], pf->avail_rxqs); vsi->rxq_map[i] = ICE_INVAL_Q_INDEX; } mutex_unlock(&pf->avail_q_mutex); } /** * ice_is_safe_mode * @pf: pointer to the PF struct * * returns true if driver is in safe mode, false otherwise */ bool ice_is_safe_mode(struct ice_pf *pf) { return !test_bit(ICE_FLAG_ADV_FEATURES, pf->flags); } /** * ice_is_rdma_ena * @pf: pointer to the PF struct * * returns true if RDMA is currently supported, false otherwise */ bool ice_is_rdma_ena(struct ice_pf *pf) { return test_bit(ICE_FLAG_RDMA_ENA, pf->flags); } /** * ice_vsi_clean_rss_flow_fld - Delete RSS configuration * @vsi: the VSI being cleaned up * * This function deletes RSS input set for all flows that were configured * for this VSI */ static void ice_vsi_clean_rss_flow_fld(struct ice_vsi *vsi) { struct ice_pf *pf = vsi->back; int status; if (ice_is_safe_mode(pf)) return; status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx); if (status) dev_dbg(ice_pf_to_dev(pf), "ice_rem_vsi_rss_cfg failed for vsi = %d, error = %d\n", vsi->vsi_num, status); } /** * ice_rss_clean - Delete RSS related VSI structures and configuration * @vsi: the VSI being removed */ static void ice_rss_clean(struct ice_vsi *vsi) { struct ice_pf *pf = vsi->back; struct device *dev; dev = ice_pf_to_dev(pf); devm_kfree(dev, vsi->rss_hkey_user); devm_kfree(dev, vsi->rss_lut_user); ice_vsi_clean_rss_flow_fld(vsi); /* remove RSS replay list */ if (!ice_is_safe_mode(pf)) ice_rem_vsi_rss_list(&pf->hw, vsi->idx); } /** * ice_vsi_set_rss_params - Setup RSS capabilities per VSI type * @vsi: the VSI being configured */ static void ice_vsi_set_rss_params(struct ice_vsi *vsi) { struct ice_hw_common_caps *cap; struct ice_pf *pf = vsi->back; u16 max_rss_size; if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { vsi->rss_size = 1; return; } cap = &pf->hw.func_caps.common_cap; max_rss_size = BIT(cap->rss_table_entry_width); switch (vsi->type) { case ICE_VSI_CHNL: case ICE_VSI_PF: /* PF VSI will inherit RSS instance of PF */ vsi->rss_table_size = (u16)cap->rss_table_size; if (vsi->type == ICE_VSI_CHNL) vsi->rss_size = min_t(u16, vsi->num_rxq, max_rss_size); else vsi->rss_size = min_t(u16, num_online_cpus(), max_rss_size); vsi->rss_lut_type = ICE_LUT_PF; break; case ICE_VSI_VF: /* VF VSI will get a small RSS table. * For VSI_LUT, LUT size should be set to 64 bytes. */ vsi->rss_table_size = ICE_LUT_VSI_SIZE; vsi->rss_size = ICE_MAX_RSS_QS_PER_VF; vsi->rss_lut_type = ICE_LUT_VSI; break; case ICE_VSI_LB: break; default: dev_dbg(ice_pf_to_dev(pf), "Unsupported VSI type %s\n", ice_vsi_type_str(vsi->type)); break; } } /** * ice_set_dflt_vsi_ctx - Set default VSI context before adding a VSI * @hw: HW structure used to determine the VLAN mode of the device * @ctxt: the VSI context being set * * This initializes a default VSI context for all sections except the Queues. */ static void ice_set_dflt_vsi_ctx(struct ice_hw *hw, struct ice_vsi_ctx *ctxt) { u32 table = 0; memset(&ctxt->info, 0, sizeof(ctxt->info)); /* VSI's should be allocated from shared pool */ ctxt->alloc_from_pool = true; /* Src pruning enabled by default */ ctxt->info.sw_flags = ICE_AQ_VSI_SW_FLAG_SRC_PRUNE; /* Traffic from VSI can be sent to LAN */ ctxt->info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA; /* allow all untagged/tagged packets by default on Tx */ ctxt->info.inner_vlan_flags = FIELD_PREP(ICE_AQ_VSI_INNER_VLAN_TX_MODE_M, ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL); /* SVM - by default bits 3 and 4 in inner_vlan_flags are 0's which * results in legacy behavior (show VLAN, DEI, and UP) in descriptor. * * DVM - leave inner VLAN in packet by default */ if (ice_is_dvm_ena(hw)) { ctxt->info.inner_vlan_flags |= FIELD_PREP(ICE_AQ_VSI_INNER_VLAN_EMODE_M, ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING); ctxt->info.outer_vlan_flags = FIELD_PREP(ICE_AQ_VSI_OUTER_VLAN_TX_MODE_M, ICE_AQ_VSI_OUTER_VLAN_TX_MODE_ALL); ctxt->info.outer_vlan_flags |= FIELD_PREP(ICE_AQ_VSI_OUTER_TAG_TYPE_M, ICE_AQ_VSI_OUTER_TAG_VLAN_8100); ctxt->info.outer_vlan_flags |= FIELD_PREP(ICE_AQ_VSI_OUTER_VLAN_EMODE_M, ICE_AQ_VSI_OUTER_VLAN_EMODE_NOTHING); } /* Have 1:1 UP mapping for both ingress/egress tables */ table |= ICE_UP_TABLE_TRANSLATE(0, 0); table |= ICE_UP_TABLE_TRANSLATE(1, 1); table |= ICE_UP_TABLE_TRANSLATE(2, 2); table |= ICE_UP_TABLE_TRANSLATE(3, 3); table |= ICE_UP_TABLE_TRANSLATE(4, 4); table |= ICE_UP_TABLE_TRANSLATE(5, 5); table |= ICE_UP_TABLE_TRANSLATE(6, 6); table |= ICE_UP_TABLE_TRANSLATE(7, 7); ctxt->info.ingress_table = cpu_to_le32(table); ctxt->info.egress_table = cpu_to_le32(table); /* Have 1:1 UP mapping for outer to inner UP table */ ctxt->info.outer_up_table = cpu_to_le32(table); /* No Outer tag support outer_tag_flags remains to zero */ } /** * ice_vsi_setup_q_map - Setup a VSI queue map * @vsi: the VSI being configured * @ctxt: VSI context structure */ static int ice_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt) { u16 offset = 0, qmap = 0, tx_count = 0, rx_count = 0, pow = 0; u16 num_txq_per_tc, num_rxq_per_tc; u16 qcount_tx = vsi->alloc_txq; u16 qcount_rx = vsi->alloc_rxq; u8 netdev_tc = 0; int i; if (!vsi->tc_cfg.numtc) { /* at least TC0 should be enabled by default */ vsi->tc_cfg.numtc = 1; vsi->tc_cfg.ena_tc = 1; } num_rxq_per_tc = min_t(u16, qcount_rx / vsi->tc_cfg.numtc, ICE_MAX_RXQS_PER_TC); if (!num_rxq_per_tc) num_rxq_per_tc = 1; num_txq_per_tc = qcount_tx / vsi->tc_cfg.numtc; if (!num_txq_per_tc) num_txq_per_tc = 1; /* find the (rounded up) power-of-2 of qcount */ pow = (u16)order_base_2(num_rxq_per_tc); /* TC mapping is a function of the number of Rx queues assigned to the * VSI for each traffic class and the offset of these queues. * The first 10 bits are for queue offset for TC0, next 4 bits for no:of * queues allocated to TC0. No:of queues is a power-of-2. * * If TC is not enabled, the queue offset is set to 0, and allocate one * queue, this way, traffic for the given TC will be sent to the default * queue. * * Setup number and offset of Rx queues for all TCs for the VSI */ ice_for_each_traffic_class(i) { if (!(vsi->tc_cfg.ena_tc & BIT(i))) { /* TC is not enabled */ vsi->tc_cfg.tc_info[i].qoffset = 0; vsi->tc_cfg.tc_info[i].qcount_rx = 1; vsi->tc_cfg.tc_info[i].qcount_tx = 1; vsi->tc_cfg.tc_info[i].netdev_tc = 0; ctxt->info.tc_mapping[i] = 0; continue; } /* TC is enabled */ vsi->tc_cfg.tc_info[i].qoffset = offset; vsi->tc_cfg.tc_info[i].qcount_rx = num_rxq_per_tc; vsi->tc_cfg.tc_info[i].qcount_tx = num_txq_per_tc; vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++; qmap = FIELD_PREP(ICE_AQ_VSI_TC_Q_OFFSET_M, offset); qmap |= FIELD_PREP(ICE_AQ_VSI_TC_Q_NUM_M, pow); offset += num_rxq_per_tc; tx_count += num_txq_per_tc; ctxt->info.tc_mapping[i] = cpu_to_le16(qmap); } /* if offset is non-zero, means it is calculated correctly based on * enabled TCs for a given VSI otherwise qcount_rx will always * be correct and non-zero because it is based off - VSI's * allocated Rx queues which is at least 1 (hence qcount_tx will be * at least 1) */ if (offset) rx_count = offset; else rx_count = num_rxq_per_tc; if (rx_count > vsi->alloc_rxq) { dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Rx queues (%u), than were allocated (%u)!\n", rx_count, vsi->alloc_rxq); return -EINVAL; } if (tx_count > vsi->alloc_txq) { dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Tx queues (%u), than were allocated (%u)!\n", tx_count, vsi->alloc_txq); return -EINVAL; } vsi->num_txq = tx_count; vsi->num_rxq = rx_count; if (vsi->type == ICE_VSI_VF && vsi->num_txq != vsi->num_rxq) { dev_dbg(ice_pf_to_dev(vsi->back), "VF VSI should have same number of Tx and Rx queues. Hence making them equal\n"); /* since there is a chance that num_rxq could have been changed * in the above for loop, make num_txq equal to num_rxq. */ vsi->num_txq = vsi->num_rxq; } /* Rx queue mapping */ ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG); /* q_mapping buffer holds the info for the first queue allocated for * this VSI in the PF space and also the number of queues associated * with this VSI. */ ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]); ctxt->info.q_mapping[1] = cpu_to_le16(vsi->num_rxq); return 0; } /** * ice_set_fd_vsi_ctx - Set FD VSI context before adding a VSI * @ctxt: the VSI context being set * @vsi: the VSI being configured */ static void ice_set_fd_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi) { u8 dflt_q_group, dflt_q_prio; u16 dflt_q, report_q, val; if (vsi->type != ICE_VSI_PF && vsi->type != ICE_VSI_CTRL && vsi->type != ICE_VSI_VF && vsi->type != ICE_VSI_CHNL) return; val = ICE_AQ_VSI_PROP_FLOW_DIR_VALID; ctxt->info.valid_sections |= cpu_to_le16(val); dflt_q = 0; dflt_q_group = 0; report_q = 0; dflt_q_prio = 0; /* enable flow director filtering/programming */ val = ICE_AQ_VSI_FD_ENABLE | ICE_AQ_VSI_FD_PROG_ENABLE; ctxt->info.fd_options = cpu_to_le16(val); /* max of allocated flow director filters */ ctxt->info.max_fd_fltr_dedicated = cpu_to_le16(vsi->num_gfltr); /* max of shared flow director filters any VSI may program */ ctxt->info.max_fd_fltr_shared = cpu_to_le16(vsi->num_bfltr); /* default queue index within the VSI of the default FD */ val = FIELD_PREP(ICE_AQ_VSI_FD_DEF_Q_M, dflt_q); /* target queue or queue group to the FD filter */ val |= FIELD_PREP(ICE_AQ_VSI_FD_DEF_GRP_M, dflt_q_group); ctxt->info.fd_def_q = cpu_to_le16(val); /* queue index on which FD filter completion is reported */ val = FIELD_PREP(ICE_AQ_VSI_FD_REPORT_Q_M, report_q); /* priority of the default qindex action */ val |= FIELD_PREP(ICE_AQ_VSI_FD_DEF_PRIORITY_M, dflt_q_prio); ctxt->info.fd_report_opt = cpu_to_le16(val); } /** * ice_set_rss_vsi_ctx - Set RSS VSI context before adding a VSI * @ctxt: the VSI context being set * @vsi: the VSI being configured */ static void ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi) { u8 lut_type, hash_type; struct device *dev; struct ice_pf *pf; pf = vsi->back; dev = ice_pf_to_dev(pf); switch (vsi->type) { case ICE_VSI_CHNL: case ICE_VSI_PF: /* PF VSI will inherit RSS instance of PF */ lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF; break; case ICE_VSI_VF: /* VF VSI will gets a small RSS table which is a VSI LUT type */ lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI; break; default: dev_dbg(dev, "Unsupported VSI type %s\n", ice_vsi_type_str(vsi->type)); return; } hash_type = ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ; vsi->rss_hfunc = hash_type; ctxt->info.q_opt_rss = FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_LUT_M, lut_type) | FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_HASH_M, hash_type); } static void ice_chnl_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt) { struct ice_pf *pf = vsi->back; u16 qcount, qmap; u8 offset = 0; int pow; qcount = min_t(int, vsi->num_rxq, pf->num_lan_msix); pow = order_base_2(qcount); qmap = FIELD_PREP(ICE_AQ_VSI_TC_Q_OFFSET_M, offset); qmap |= FIELD_PREP(ICE_AQ_VSI_TC_Q_NUM_M, pow); ctxt->info.tc_mapping[0] = cpu_to_le16(qmap); ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG); ctxt->info.q_mapping[0] = cpu_to_le16(vsi->next_base_q); ctxt->info.q_mapping[1] = cpu_to_le16(qcount); } /** * ice_vsi_is_vlan_pruning_ena - check if VLAN pruning is enabled or not * @vsi: VSI to check whether or not VLAN pruning is enabled. * * returns true if Rx VLAN pruning is enabled and false otherwise. */ static bool ice_vsi_is_vlan_pruning_ena(struct ice_vsi *vsi) { return vsi->info.sw_flags2 & ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; } /** * ice_vsi_init - Create and initialize a VSI * @vsi: the VSI being configured * @vsi_flags: VSI configuration flags * * Set ICE_FLAG_VSI_INIT to initialize a new VSI context, clear it to * reconfigure an existing context. * * This initializes a VSI context depending on the VSI type to be added and * passes it down to the add_vsi aq command to create a new VSI. */ static int ice_vsi_init(struct ice_vsi *vsi, u32 vsi_flags) { struct ice_pf *pf = vsi->back; struct ice_hw *hw = &pf->hw; struct ice_vsi_ctx *ctxt; struct device *dev; int ret = 0; dev = ice_pf_to_dev(pf); ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); if (!ctxt) return -ENOMEM; switch (vsi->type) { case ICE_VSI_CTRL: case ICE_VSI_LB: case ICE_VSI_PF: ctxt->flags = ICE_AQ_VSI_TYPE_PF; break; case ICE_VSI_CHNL: ctxt->flags = ICE_AQ_VSI_TYPE_VMDQ2; break; case ICE_VSI_VF: ctxt->flags = ICE_AQ_VSI_TYPE_VF; /* VF number here is the absolute VF number (0-255) */ ctxt->vf_num = vsi->vf->vf_id + hw->func_caps.vf_base_id; break; default: ret = -ENODEV; goto out; } /* Handle VLAN pruning for channel VSI if main VSI has VLAN * prune enabled */ if (vsi->type == ICE_VSI_CHNL) { struct ice_vsi *main_vsi; main_vsi = ice_get_main_vsi(pf); if (main_vsi && ice_vsi_is_vlan_pruning_ena(main_vsi)) ctxt->info.sw_flags2 |= ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; else ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; } ice_set_dflt_vsi_ctx(hw, ctxt); if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) ice_set_fd_vsi_ctx(ctxt, vsi); /* if the switch is in VEB mode, allow VSI loopback */ if (vsi->vsw->bridge_mode == BRIDGE_MODE_VEB) ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB; /* Set LUT type and HASH type if RSS is enabled */ if (test_bit(ICE_FLAG_RSS_ENA, pf->flags) && vsi->type != ICE_VSI_CTRL) { ice_set_rss_vsi_ctx(ctxt, vsi); /* if updating VSI context, make sure to set valid_section: * to indicate which section of VSI context being updated */ if (!(vsi_flags & ICE_VSI_FLAG_INIT)) ctxt->info.valid_sections |= cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID); } ctxt->info.sw_id = vsi->port_info->sw_id; if (vsi->type == ICE_VSI_CHNL) { ice_chnl_vsi_setup_q_map(vsi, ctxt); } else { ret = ice_vsi_setup_q_map(vsi, ctxt); if (ret) goto out; if (!(vsi_flags & ICE_VSI_FLAG_INIT)) /* means VSI being updated */ /* must to indicate which section of VSI context are * being modified */ ctxt->info.valid_sections |= cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID); } /* Allow control frames out of main VSI */ if (vsi->type == ICE_VSI_PF) { ctxt->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD; ctxt->info.valid_sections |= cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID); } if (vsi_flags & ICE_VSI_FLAG_INIT) { ret = ice_add_vsi(hw, vsi->idx, ctxt, NULL); if (ret) { dev_err(dev, "Add VSI failed, err %d\n", ret); ret = -EIO; goto out; } } else { ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL); if (ret) { dev_err(dev, "Update VSI failed, err %d\n", ret); ret = -EIO; goto out; } } /* keep context for update VSI operations */ vsi->info = ctxt->info; /* record VSI number returned */ vsi->vsi_num = ctxt->vsi_num; out: kfree(ctxt); return ret; } /** * ice_vsi_clear_rings - Deallocates the Tx and Rx rings for VSI * @vsi: the VSI having rings deallocated */ static void ice_vsi_clear_rings(struct ice_vsi *vsi) { int i; /* Avoid stale references by clearing map from vector to ring */ if (vsi->q_vectors) { ice_for_each_q_vector(vsi, i) { struct ice_q_vector *q_vector = vsi->q_vectors[i]; if (q_vector) { q_vector->tx.tx_ring = NULL; q_vector->rx.rx_ring = NULL; } } } if (vsi->tx_rings) { ice_for_each_alloc_txq(vsi, i) { if (vsi->tx_rings[i]) { kfree_rcu(vsi->tx_rings[i], rcu); WRITE_ONCE(vsi->tx_rings[i], NULL); } } } if (vsi->rx_rings) { ice_for_each_alloc_rxq(vsi, i) { if (vsi->rx_rings[i]) { kfree_rcu(vsi->rx_rings[i], rcu); WRITE_ONCE(vsi->rx_rings[i], NULL); } } } } /** * ice_vsi_alloc_rings - Allocates Tx and Rx rings for the VSI * @vsi: VSI which is having rings allocated */ static int ice_vsi_alloc_rings(struct ice_vsi *vsi) { bool dvm_ena = ice_is_dvm_ena(&vsi->back->hw); struct ice_pf *pf = vsi->back; struct device *dev; u16 i; dev = ice_pf_to_dev(pf); /* Allocate Tx rings */ ice_for_each_alloc_txq(vsi, i) { struct ice_tx_ring *ring; /* allocate with kzalloc(), free with kfree_rcu() */ ring = kzalloc(sizeof(*ring), GFP_KERNEL); if (!ring) goto err_out; ring->q_index = i; ring->reg_idx = vsi->txq_map[i]; ring->vsi = vsi; ring->tx_tstamps = &pf->ptp.port.tx; ring->dev = dev; ring->count = vsi->num_tx_desc; ring->txq_teid = ICE_INVAL_TEID; if (dvm_ena) ring->flags |= ICE_TX_FLAGS_RING_VLAN_L2TAG2; else ring->flags |= ICE_TX_FLAGS_RING_VLAN_L2TAG1; WRITE_ONCE(vsi->tx_rings[i], ring); } /* Allocate Rx rings */ ice_for_each_alloc_rxq(vsi, i) { struct ice_rx_ring *ring; /* allocate with kzalloc(), free with kfree_rcu() */ ring = kzalloc(sizeof(*ring), GFP_KERNEL); if (!ring) goto err_out; ring->q_index = i; ring->reg_idx = vsi->rxq_map[i]; ring->vsi = vsi; ring->netdev = vsi->netdev; ring->dev = dev; ring->count = vsi->num_rx_desc; ring->cached_phctime = pf->ptp.cached_phc_time; WRITE_ONCE(vsi->rx_rings[i], ring); } return 0; err_out: ice_vsi_clear_rings(vsi); return -ENOMEM; } /** * ice_vsi_manage_rss_lut - disable/enable RSS * @vsi: the VSI being changed * @ena: boolean value indicating if this is an enable or disable request * * In the event of disable request for RSS, this function will zero out RSS * LUT, while in the event of enable request for RSS, it will reconfigure RSS * LUT. */ void ice_vsi_manage_rss_lut(struct ice_vsi *vsi, bool ena) { u8 *lut; lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); if (!lut) return; if (ena) { if (vsi->rss_lut_user) memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); else ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size); } ice_set_rss_lut(vsi, lut, vsi->rss_table_size); kfree(lut); } /** * ice_vsi_cfg_crc_strip - Configure CRC stripping for a VSI * @vsi: VSI to be configured * @disable: set to true to have FCS / CRC in the frame data */ void ice_vsi_cfg_crc_strip(struct ice_vsi *vsi, bool disable) { int i; ice_for_each_rxq(vsi, i) if (disable) vsi->rx_rings[i]->flags |= ICE_RX_FLAGS_CRC_STRIP_DIS; else vsi->rx_rings[i]->flags &= ~ICE_RX_FLAGS_CRC_STRIP_DIS; } /** * ice_vsi_cfg_rss_lut_key - Configure RSS params for a VSI * @vsi: VSI to be configured */ int ice_vsi_cfg_rss_lut_key(struct ice_vsi *vsi) { struct ice_pf *pf = vsi->back; struct device *dev; u8 *lut, *key; int err; dev = ice_pf_to_dev(pf); if (vsi->type == ICE_VSI_PF && vsi->ch_rss_size && (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))) { vsi->rss_size = min_t(u16, vsi->rss_size, vsi->ch_rss_size); } else { vsi->rss_size = min_t(u16, vsi->rss_size, vsi->num_rxq); /* If orig_rss_size is valid and it is less than determined * main VSI's rss_size, update main VSI's rss_size to be * orig_rss_size so that when tc-qdisc is deleted, main VSI * RSS table gets programmed to be correct (whatever it was * to begin with (prior to setup-tc for ADQ config) */ if (vsi->orig_rss_size && vsi->rss_size < vsi->orig_rss_size && vsi->orig_rss_size <= vsi->num_rxq) { vsi->rss_size = vsi->orig_rss_size; /* now orig_rss_size is used, reset it to zero */ vsi->orig_rss_size = 0; } } lut = kzalloc(vsi->rss_table_size, GFP_KERNEL); if (!lut) return -ENOMEM; if (vsi->rss_lut_user) memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size); else ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size); err = ice_set_rss_lut(vsi, lut, vsi->rss_table_size); if (err) { dev_err(dev, "set_rss_lut failed, error %d\n", err); goto ice_vsi_cfg_rss_exit; } key = kzalloc(ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE, GFP_KERNEL); if (!key) { err = -ENOMEM; goto ice_vsi_cfg_rss_exit; } if (vsi->rss_hkey_user) memcpy(key, vsi->rss_hkey_user, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE); else netdev_rss_key_fill((void *)key, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE); err = ice_set_rss_key(vsi, key); if (err) dev_err(dev, "set_rss_key failed, error %d\n", err); kfree(key); ice_vsi_cfg_rss_exit: kfree(lut); return err; } /** * ice_vsi_set_vf_rss_flow_fld - Sets VF VSI RSS input set for different flows * @vsi: VSI to be configured * * This function will only be called during the VF VSI setup. Upon successful * completion of package download, this function will configure default RSS * input sets for VF VSI. */ static void ice_vsi_set_vf_rss_flow_fld(struct ice_vsi *vsi) { struct ice_pf *pf = vsi->back; struct device *dev; int status; dev = ice_pf_to_dev(pf); if (ice_is_safe_mode(pf)) { dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n", vsi->vsi_num); return; } status = ice_add_avf_rss_cfg(&pf->hw, vsi, ICE_DEFAULT_RSS_HENA); if (status) dev_dbg(dev, "ice_add_avf_rss_cfg failed for vsi = %d, error = %d\n", vsi->vsi_num, status); } static const struct ice_rss_hash_cfg default_rss_cfgs[] = { /* configure RSS for IPv4 with input set IP src/dst */ {ICE_FLOW_SEG_HDR_IPV4, ICE_FLOW_HASH_IPV4, ICE_RSS_ANY_HEADERS, false}, /* configure RSS for IPv6 with input set IPv6 src/dst */ {ICE_FLOW_SEG_HDR_IPV6, ICE_FLOW_HASH_IPV6, ICE_RSS_ANY_HEADERS, false}, /* configure RSS for tcp4 with input set IP src/dst, TCP src/dst */ {ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV4, ICE_HASH_TCP_IPV4, ICE_RSS_ANY_HEADERS, false}, /* configure RSS for udp4 with input set IP src/dst, UDP src/dst */ {ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV4, ICE_HASH_UDP_IPV4, ICE_RSS_ANY_HEADERS, false}, /* configure RSS for sctp4 with input set IP src/dst - only support * RSS on SCTPv4 on outer headers (non-tunneled) */ {ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV4, ICE_HASH_SCTP_IPV4, ICE_RSS_OUTER_HEADERS, false}, /* configure RSS for gtpc4 with input set IPv4 src/dst */ {ICE_FLOW_SEG_HDR_GTPC | ICE_FLOW_SEG_HDR_IPV4, ICE_FLOW_HASH_IPV4, ICE_RSS_OUTER_HEADERS, false}, /* configure RSS for gtpc4t with input set IPv4 src/dst */ {ICE_FLOW_SEG_HDR_GTPC_TEID | ICE_FLOW_SEG_HDR_IPV4, ICE_FLOW_HASH_GTP_C_IPV4_TEID, ICE_RSS_OUTER_HEADERS, false}, /* configure RSS for gtpu4 with input set IPv4 src/dst */ {ICE_FLOW_SEG_HDR_GTPU_IP | ICE_FLOW_SEG_HDR_IPV4, ICE_FLOW_HASH_GTP_U_IPV4_TEID, ICE_RSS_OUTER_HEADERS, false}, /* configure RSS for gtpu4e with input set IPv4 src/dst */ {ICE_FLOW_SEG_HDR_GTPU_EH | ICE_FLOW_SEG_HDR_IPV4, ICE_FLOW_HASH_GTP_U_IPV4_EH, ICE_RSS_OUTER_HEADERS, false}, /* configure RSS for gtpu4u with input set IPv4 src/dst */ { ICE_FLOW_SEG_HDR_GTPU_UP | ICE_FLOW_SEG_HDR_IPV4, ICE_FLOW_HASH_GTP_U_IPV4_UP, ICE_RSS_OUTER_HEADERS, false}, /* configure RSS for gtpu4d with input set IPv4 src/dst */ {ICE_FLOW_SEG_HDR_GTPU_DWN | ICE_FLOW_SEG_HDR_IPV4, ICE_FLOW_HASH_GTP_U_IPV4_DWN, ICE_RSS_OUTER_HEADERS, false}, /* configure RSS for tcp6 with input set IPv6 src/dst, TCP src/dst */ {ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV6, ICE_HASH_TCP_IPV6, ICE_RSS_ANY_HEADERS, false}, /* configure RSS for udp6 with input set IPv6 src/dst, UDP src/dst */ {ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV6, ICE_HASH_UDP_IPV6, ICE_RSS_ANY_HEADERS, false}, /* configure RSS for sctp6 with input set IPv6 src/dst - only support * RSS on SCTPv6 on outer headers (non-tunneled) */ {ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV6, ICE_HASH_SCTP_IPV6, ICE_RSS_OUTER_HEADERS, false}, /* configure RSS for IPSEC ESP SPI with input set MAC_IPV4_SPI */ {ICE_FLOW_SEG_HDR_ESP, ICE_FLOW_HASH_ESP_SPI, ICE_RSS_OUTER_HEADERS, false}, /* configure RSS for gtpc6 with input set IPv6 src/dst */ {ICE_FLOW_SEG_HDR_GTPC | ICE_FLOW_SEG_HDR_IPV6, ICE_FLOW_HASH_IPV6, ICE_RSS_OUTER_HEADERS, false}, /* configure RSS for gtpc6t with input set IPv6 src/dst */ {ICE_FLOW_SEG_HDR_GTPC_TEID | ICE_FLOW_SEG_HDR_IPV6, ICE_FLOW_HASH_GTP_C_IPV6_TEID, ICE_RSS_OUTER_HEADERS, false}, /* configure RSS for gtpu6 with input set IPv6 src/dst */ {ICE_FLOW_SEG_HDR_GTPU_IP | ICE_FLOW_SEG_HDR_IPV6, ICE_FLOW_HASH_GTP_U_IPV6_TEID, ICE_RSS_OUTER_HEADERS, false}, /* configure RSS for gtpu6e with input set IPv6 src/dst */ {ICE_FLOW_SEG_HDR_GTPU_EH | ICE_FLOW_SEG_HDR_IPV6, ICE_FLOW_HASH_GTP_U_IPV6_EH, ICE_RSS_OUTER_HEADERS, false}, /* configure RSS for gtpu6u with input set IPv6 src/dst */ { ICE_FLOW_SEG_HDR_GTPU_UP | ICE_FLOW_SEG_HDR_IPV6, ICE_FLOW_HASH_GTP_U_IPV6_UP, ICE_RSS_OUTER_HEADERS, false}, /* configure RSS for gtpu6d with input set IPv6 src/dst */ {ICE_FLOW_SEG_HDR_GTPU_DWN | ICE_FLOW_SEG_HDR_IPV6, ICE_FLOW_HASH_GTP_U_IPV6_DWN, ICE_RSS_OUTER_HEADERS, false}, }; /** * ice_vsi_set_rss_flow_fld - Sets RSS input set for different flows * @vsi: VSI to be configured * * This function will only be called after successful download package call * during initialization of PF. Since the downloaded package will erase the * RSS section, this function will configure RSS input sets for different * flow types. The last profile added has the highest priority, therefore 2 * tuple profiles (i.e. IPv4 src/dst) are added before 4 tuple profiles * (i.e. IPv4 src/dst TCP src/dst port). */ static void ice_vsi_set_rss_flow_fld(struct ice_vsi *vsi) { u16 vsi_num = vsi->vsi_num; struct ice_pf *pf = vsi->back; struct ice_hw *hw = &pf->hw; struct device *dev; int status; u32 i; dev = ice_pf_to_dev(pf); if (ice_is_safe_mode(pf)) { dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n", vsi_num); return; } for (i = 0; i < ARRAY_SIZE(default_rss_cfgs); i++) { const struct ice_rss_hash_cfg *cfg = &default_rss_cfgs[i]; status = ice_add_rss_cfg(hw, vsi, cfg); if (status) dev_dbg(dev, "ice_add_rss_cfg failed, addl_hdrs = %x, hash_flds = %llx, hdr_type = %d, symm = %d\n", cfg->addl_hdrs, cfg->hash_flds, cfg->hdr_type, cfg->symm); } } /** * ice_pf_state_is_nominal - checks the PF for nominal state * @pf: pointer to PF to check * * Check the PF's state for a collection of bits that would indicate * the PF is in a state that would inhibit normal operation for * driver functionality. * * Returns true if PF is in a nominal state, false otherwise */ bool ice_pf_state_is_nominal(struct ice_pf *pf) { DECLARE_BITMAP(check_bits, ICE_STATE_NBITS) = { 0 }; if (!pf) return false; bitmap_set(check_bits, 0, ICE_STATE_NOMINAL_CHECK_BITS); if (bitmap_intersects(pf->state, check_bits, ICE_STATE_NBITS)) return false; return true; } /** * ice_update_eth_stats - Update VSI-specific ethernet statistics counters * @vsi: the VSI to be updated */ void ice_update_eth_stats(struct ice_vsi *vsi) { struct ice_eth_stats *prev_es, *cur_es; struct ice_hw *hw = &vsi->back->hw; struct ice_pf *pf = vsi->back; u16 vsi_num = vsi->vsi_num; /* HW absolute index of a VSI */ prev_es = &vsi->eth_stats_prev; cur_es = &vsi->eth_stats; if (ice_is_reset_in_progress(pf->state)) vsi->stat_offsets_loaded = false; ice_stat_update40(hw, GLV_GORCL(vsi_num), vsi->stat_offsets_loaded, &prev_es->rx_bytes, &cur_es->rx_bytes); ice_stat_update40(hw, GLV_UPRCL(vsi_num), vsi->stat_offsets_loaded, &prev_es->rx_unicast, &cur_es->rx_unicast); ice_stat_update40(hw, GLV_MPRCL(vsi_num), vsi->stat_offsets_loaded, &prev_es->rx_multicast, &cur_es->rx_multicast); ice_stat_update40(hw, GLV_BPRCL(vsi_num), vsi->stat_offsets_loaded, &prev_es->rx_broadcast, &cur_es->rx_broadcast); ice_stat_update32(hw, GLV_RDPC(vsi_num), vsi->stat_offsets_loaded, &prev_es->rx_discards, &cur_es->rx_discards); ice_stat_update40(hw, GLV_GOTCL(vsi_num), vsi->stat_offsets_loaded, &prev_es->tx_bytes, &cur_es->tx_bytes); ice_stat_update40(hw, GLV_UPTCL(vsi_num), vsi->stat_offsets_loaded, &prev_es->tx_unicast, &cur_es->tx_unicast); ice_stat_update40(hw, GLV_MPTCL(vsi_num), vsi->stat_offsets_loaded, &prev_es->tx_multicast, &cur_es->tx_multicast); ice_stat_update40(hw, GLV_BPTCL(vsi_num), vsi->stat_offsets_loaded, &prev_es->tx_broadcast, &cur_es->tx_broadcast); ice_stat_update32(hw, GLV_TEPC(vsi_num), vsi->stat_offsets_loaded, &prev_es->tx_errors, &cur_es->tx_errors); vsi->stat_offsets_loaded = true; } /** * ice_write_qrxflxp_cntxt - write/configure QRXFLXP_CNTXT register * @hw: HW pointer * @pf_q: index of the Rx queue in the PF's queue space * @rxdid: flexible descriptor RXDID * @prio: priority for the RXDID for this queue * @ena_ts: true to enable timestamp and false to disable timestamp */ void ice_write_qrxflxp_cntxt(struct ice_hw *hw, u16 pf_q, u32 rxdid, u32 prio, bool ena_ts) { int regval = rd32(hw, QRXFLXP_CNTXT(pf_q)); /* clear any previous values */ regval &= ~(QRXFLXP_CNTXT_RXDID_IDX_M | QRXFLXP_CNTXT_RXDID_PRIO_M | QRXFLXP_CNTXT_TS_M); regval |= FIELD_PREP(QRXFLXP_CNTXT_RXDID_IDX_M, rxdid); regval |= FIELD_PREP(QRXFLXP_CNTXT_RXDID_PRIO_M, prio); if (ena_ts) /* Enable TimeSync on this queue */ regval |= QRXFLXP_CNTXT_TS_M; wr32(hw, QRXFLXP_CNTXT(pf_q), regval); } /** * ice_intrl_usec_to_reg - convert interrupt rate limit to register value * @intrl: interrupt rate limit in usecs * @gran: interrupt rate limit granularity in usecs * * This function converts a decimal interrupt rate limit in usecs to the format * expected by firmware. */ static u32 ice_intrl_usec_to_reg(u8 intrl, u8 gran) { u32 val = intrl / gran; if (val) return val | GLINT_RATE_INTRL_ENA_M; return 0; } /** * ice_write_intrl - write throttle rate limit to interrupt specific register * @q_vector: pointer to interrupt specific structure * @intrl: throttle rate limit in microseconds to write */ void ice_write_intrl(struct ice_q_vector *q_vector, u8 intrl) { struct ice_hw *hw = &q_vector->vsi->back->hw; wr32(hw, GLINT_RATE(q_vector->reg_idx), ice_intrl_usec_to_reg(intrl, ICE_INTRL_GRAN_ABOVE_25)); } static struct ice_q_vector *ice_pull_qvec_from_rc(struct ice_ring_container *rc) { switch (rc->type) { case ICE_RX_CONTAINER: if (rc->rx_ring) return rc->rx_ring->q_vector; break; case ICE_TX_CONTAINER: if (rc->tx_ring) return rc->tx_ring->q_vector; break; default: break; } return NULL; } /** * __ice_write_itr - write throttle rate to register * @q_vector: pointer to interrupt data structure * @rc: pointer to ring container * @itr: throttle rate in microseconds to write */ static void __ice_write_itr(struct ice_q_vector *q_vector, struct ice_ring_container *rc, u16 itr) { struct ice_hw *hw = &q_vector->vsi->back->hw; wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx), ITR_REG_ALIGN(itr) >> ICE_ITR_GRAN_S); } /** * ice_write_itr - write throttle rate to queue specific register * @rc: pointer to ring container * @itr: throttle rate in microseconds to write */ void ice_write_itr(struct ice_ring_container *rc, u16 itr) { struct ice_q_vector *q_vector; q_vector = ice_pull_qvec_from_rc(rc); if (!q_vector) return; __ice_write_itr(q_vector, rc, itr); } /** * ice_set_q_vector_intrl - set up interrupt rate limiting * @q_vector: the vector to be configured * * Interrupt rate limiting is local to the vector, not per-queue so we must * detect if either ring container has dynamic moderation enabled to decide * what to set the interrupt rate limit to via INTRL settings. In the case that * dynamic moderation is disabled on both, write the value with the cached * setting to make sure INTRL register matches the user visible value. */ void ice_set_q_vector_intrl(struct ice_q_vector *q_vector) { if (ITR_IS_DYNAMIC(&q_vector->tx) || ITR_IS_DYNAMIC(&q_vector->rx)) { /* in the case of dynamic enabled, cap each vector to no more * than (4 us) 250,000 ints/sec, which allows low latency * but still less than 500,000 interrupts per second, which * reduces CPU a bit in the case of the lowest latency * setting. The 4 here is a value in microseconds. */ ice_write_intrl(q_vector, 4); } else { ice_write_intrl(q_vector, q_vector->intrl); } } /** * ice_vsi_cfg_msix - MSIX mode Interrupt Config in the HW * @vsi: the VSI being configured * * This configures MSIX mode interrupts for the PF VSI, and should not be used * for the VF VSI. */ void ice_vsi_cfg_msix(struct ice_vsi *vsi) { struct ice_pf *pf = vsi->back; struct ice_hw *hw = &pf->hw; u16 txq = 0, rxq = 0; int i, q; ice_for_each_q_vector(vsi, i) { struct ice_q_vector *q_vector = vsi->q_vectors[i]; u16 reg_idx = q_vector->reg_idx; ice_cfg_itr(hw, q_vector); /* Both Transmit Queue Interrupt Cause Control register * and Receive Queue Interrupt Cause control register * expects MSIX_INDX field to be the vector index * within the function space and not the absolute * vector index across PF or across device. * For SR-IOV VF VSIs queue vector index always starts * with 1 since first vector index(0) is used for OICR * in VF space. Since VMDq and other PF VSIs are within * the PF function space, use the vector index that is * tracked for this PF. */ for (q = 0; q < q_vector->num_ring_tx; q++) { ice_cfg_txq_interrupt(vsi, txq, reg_idx, q_vector->tx.itr_idx); txq++; } for (q = 0; q < q_vector->num_ring_rx; q++) { ice_cfg_rxq_interrupt(vsi, rxq, reg_idx, q_vector->rx.itr_idx); rxq++; } } } /** * ice_vsi_start_all_rx_rings - start/enable all of a VSI's Rx rings * @vsi: the VSI whose rings are to be enabled * * Returns 0 on success and a negative value on error */ int ice_vsi_start_all_rx_rings(struct ice_vsi *vsi) { return ice_vsi_ctrl_all_rx_rings(vsi, true); } /** * ice_vsi_stop_all_rx_rings - stop/disable all of a VSI's Rx rings * @vsi: the VSI whose rings are to be disabled * * Returns 0 on success and a negative value on error */ int ice_vsi_stop_all_rx_rings(struct ice_vsi *vsi) { return ice_vsi_ctrl_all_rx_rings(vsi, false); } /** * ice_vsi_stop_tx_rings - Disable Tx rings * @vsi: the VSI being configured * @rst_src: reset source * @rel_vmvf_num: Relative ID of VF/VM * @rings: Tx ring array to be stopped * @count: number of Tx ring array elements */ static int ice_vsi_stop_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src, u16 rel_vmvf_num, struct ice_tx_ring **rings, u16 count) { u16 q_idx; if (vsi->num_txq > ICE_LAN_TXQ_MAX_QDIS) return -EINVAL; for (q_idx = 0; q_idx < count; q_idx++) { struct ice_txq_meta txq_meta = { }; int status; if (!rings || !rings[q_idx]) return -EINVAL; ice_fill_txq_meta(vsi, rings[q_idx], &txq_meta); status = ice_vsi_stop_tx_ring(vsi, rst_src, rel_vmvf_num, rings[q_idx], &txq_meta); if (status) return status; } return 0; } /** * ice_vsi_stop_lan_tx_rings - Disable LAN Tx rings * @vsi: the VSI being configured * @rst_src: reset source * @rel_vmvf_num: Relative ID of VF/VM */ int ice_vsi_stop_lan_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src, u16 rel_vmvf_num) { return ice_vsi_stop_tx_rings(vsi, rst_src, rel_vmvf_num, vsi->tx_rings, vsi->num_txq); } /** * ice_vsi_stop_xdp_tx_rings - Disable XDP Tx rings * @vsi: the VSI being configured */ int ice_vsi_stop_xdp_tx_rings(struct ice_vsi *vsi) { return ice_vsi_stop_tx_rings(vsi, ICE_NO_RESET, 0, vsi->xdp_rings, vsi->num_xdp_txq); } /** * ice_vsi_is_rx_queue_active * @vsi: the VSI being configured * * Return true if at least one queue is active. */ bool ice_vsi_is_rx_queue_active(struct ice_vsi *vsi) { struct ice_pf *pf = vsi->back; struct ice_hw *hw = &pf->hw; int i; ice_for_each_rxq(vsi, i) { u32 rx_reg; int pf_q; pf_q = vsi->rxq_map[i]; rx_reg = rd32(hw, QRX_CTRL(pf_q)); if (rx_reg & QRX_CTRL_QENA_STAT_M) return true; } return false; } static void ice_vsi_set_tc_cfg(struct ice_vsi *vsi) { if (!test_bit(ICE_FLAG_DCB_ENA, vsi->back->flags)) { vsi->tc_cfg.ena_tc = ICE_DFLT_TRAFFIC_CLASS; vsi->tc_cfg.numtc = 1; return; } /* set VSI TC information based on DCB config */ ice_vsi_set_dcb_tc_cfg(vsi); } /** * ice_cfg_sw_lldp - Config switch rules for LLDP packet handling * @vsi: the VSI being configured * @tx: bool to determine Tx or Rx rule * @create: bool to determine create or remove Rule */ void ice_cfg_sw_lldp(struct ice_vsi *vsi, bool tx, bool create) { int (*eth_fltr)(struct ice_vsi *v, u16 type, u16 flag, enum ice_sw_fwd_act_type act); struct ice_pf *pf = vsi->back; struct device *dev; int status; dev = ice_pf_to_dev(pf); eth_fltr = create ? ice_fltr_add_eth : ice_fltr_remove_eth; if (tx) { status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_TX, ICE_DROP_PACKET); } else { if (ice_fw_supports_lldp_fltr_ctrl(&pf->hw)) { status = ice_lldp_fltr_add_remove(&pf->hw, vsi->vsi_num, create); } else { status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_RX, ICE_FWD_TO_VSI); } } if (status) dev_dbg(dev, "Fail %s %s LLDP rule on VSI %i error: %d\n", create ? "adding" : "removing", tx ? "TX" : "RX", vsi->vsi_num, status); } /** * ice_set_agg_vsi - sets up scheduler aggregator node and move VSI into it * @vsi: pointer to the VSI * * This function will allocate new scheduler aggregator now if needed and will * move specified VSI into it. */ static void ice_set_agg_vsi(struct ice_vsi *vsi) { struct device *dev = ice_pf_to_dev(vsi->back); struct ice_agg_node *agg_node_iter = NULL; u32 agg_id = ICE_INVALID_AGG_NODE_ID; struct ice_agg_node *agg_node = NULL; int node_offset, max_agg_nodes = 0; struct ice_port_info *port_info; struct ice_pf *pf = vsi->back; u32 agg_node_id_start = 0; int status; /* create (as needed) scheduler aggregator node and move VSI into * corresponding aggregator node * - PF aggregator node to contains VSIs of type _PF and _CTRL * - VF aggregator nodes will contain VF VSI */ port_info = pf->hw.port_info; if (!port_info) return; switch (vsi->type) { case ICE_VSI_CTRL: case ICE_VSI_CHNL: case ICE_VSI_LB: case ICE_VSI_PF: max_agg_nodes = ICE_MAX_PF_AGG_NODES; agg_node_id_start = ICE_PF_AGG_NODE_ID_START; agg_node_iter = &pf->pf_agg_node[0]; break; case ICE_VSI_VF: /* user can create 'n' VFs on a given PF, but since max children * per aggregator node can be only 64. Following code handles * aggregator(s) for VF VSIs, either selects a agg_node which * was already created provided num_vsis < 64, otherwise * select next available node, which will be created */ max_agg_nodes = ICE_MAX_VF_AGG_NODES; agg_node_id_start = ICE_VF_AGG_NODE_ID_START; agg_node_iter = &pf->vf_agg_node[0]; break; default: /* other VSI type, handle later if needed */ dev_dbg(dev, "unexpected VSI type %s\n", ice_vsi_type_str(vsi->type)); return; } /* find the appropriate aggregator node */ for (node_offset = 0; node_offset < max_agg_nodes; node_offset++) { /* see if we can find space in previously created * node if num_vsis < 64, otherwise skip */ if (agg_node_iter->num_vsis && agg_node_iter->num_vsis == ICE_MAX_VSIS_IN_AGG_NODE) { agg_node_iter++; continue; } if (agg_node_iter->valid && agg_node_iter->agg_id != ICE_INVALID_AGG_NODE_ID) { agg_id = agg_node_iter->agg_id; agg_node = agg_node_iter; break; } /* find unclaimed agg_id */ if (agg_node_iter->agg_id == ICE_INVALID_AGG_NODE_ID) { agg_id = node_offset + agg_node_id_start; agg_node = agg_node_iter; break; } /* move to next agg_node */ agg_node_iter++; } if (!agg_node) return; /* if selected aggregator node was not created, create it */ if (!agg_node->valid) { status = ice_cfg_agg(port_info, agg_id, ICE_AGG_TYPE_AGG, (u8)vsi->tc_cfg.ena_tc); if (status) { dev_err(dev, "unable to create aggregator node with agg_id %u\n", agg_id); return; } /* aggregator node is created, store the needed info */ agg_node->valid = true; agg_node->agg_id = agg_id; } /* move VSI to corresponding aggregator node */ status = ice_move_vsi_to_agg(port_info, agg_id, vsi->idx, (u8)vsi->tc_cfg.ena_tc); if (status) { dev_err(dev, "unable to move VSI idx %u into aggregator %u node", vsi->idx, agg_id); return; } /* keep active children count for aggregator node */ agg_node->num_vsis++; /* cache the 'agg_id' in VSI, so that after reset - VSI will be moved * to aggregator node */ vsi->agg_node = agg_node; dev_dbg(dev, "successfully moved VSI idx %u tc_bitmap 0x%x) into aggregator node %d which has num_vsis %u\n", vsi->idx, vsi->tc_cfg.ena_tc, vsi->agg_node->agg_id, vsi->agg_node->num_vsis); } static int ice_vsi_cfg_tc_lan(struct ice_pf *pf, struct ice_vsi *vsi) { u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; struct device *dev = ice_pf_to_dev(pf); int ret, i; /* configure VSI nodes based on number of queues and TC's */ ice_for_each_traffic_class(i) { if (!(vsi->tc_cfg.ena_tc & BIT(i))) continue; if (vsi->type == ICE_VSI_CHNL) { if (!vsi->alloc_txq && vsi->num_txq) max_txqs[i] = vsi->num_txq; else max_txqs[i] = pf->num_lan_tx; } else { max_txqs[i] = vsi->alloc_txq; } if (vsi->type == ICE_VSI_PF) max_txqs[i] += vsi->num_xdp_txq; } dev_dbg(dev, "vsi->tc_cfg.ena_tc = %d\n", vsi->tc_cfg.ena_tc); ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, max_txqs); if (ret) { dev_err(dev, "VSI %d failed lan queue config, error %d\n", vsi->vsi_num, ret); return ret; } return 0; } /** * ice_vsi_cfg_def - configure default VSI based on the type * @vsi: pointer to VSI */ static int ice_vsi_cfg_def(struct ice_vsi *vsi) { struct device *dev = ice_pf_to_dev(vsi->back); struct ice_pf *pf = vsi->back; int ret; vsi->vsw = pf->first_sw; ret = ice_vsi_alloc_def(vsi, vsi->ch); if (ret) return ret; /* allocate memory for Tx/Rx ring stat pointers */ ret = ice_vsi_alloc_stat_arrays(vsi); if (ret) goto unroll_vsi_alloc; ice_alloc_fd_res(vsi); ret = ice_vsi_get_qs(vsi); if (ret) { dev_err(dev, "Failed to allocate queues. vsi->idx = %d\n", vsi->idx); goto unroll_vsi_alloc_stat; } /* set RSS capabilities */ ice_vsi_set_rss_params(vsi); /* set TC configuration */ ice_vsi_set_tc_cfg(vsi); /* create the VSI */ ret = ice_vsi_init(vsi, vsi->flags); if (ret) goto unroll_get_qs; ice_vsi_init_vlan_ops(vsi); switch (vsi->type) { case ICE_VSI_CTRL: case ICE_VSI_PF: ret = ice_vsi_alloc_q_vectors(vsi); if (ret) goto unroll_vsi_init; ret = ice_vsi_alloc_rings(vsi); if (ret) goto unroll_vector_base; ret = ice_vsi_alloc_ring_stats(vsi); if (ret) goto unroll_vector_base; ice_vsi_map_rings_to_vectors(vsi); /* Associate q_vector rings to napi */ ice_vsi_set_napi_queues(vsi); vsi->stat_offsets_loaded = false; if (ice_is_xdp_ena_vsi(vsi)) { ret = ice_vsi_determine_xdp_res(vsi); if (ret) goto unroll_vector_base; ret = ice_prepare_xdp_rings(vsi, vsi->xdp_prog); if (ret) goto unroll_vector_base; } /* ICE_VSI_CTRL does not need RSS so skip RSS processing */ if (vsi->type != ICE_VSI_CTRL) /* Do not exit if configuring RSS had an issue, at * least receive traffic on first queue. Hence no * need to capture return value */ if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { ice_vsi_cfg_rss_lut_key(vsi); ice_vsi_set_rss_flow_fld(vsi); } ice_init_arfs(vsi); break; case ICE_VSI_CHNL: if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { ice_vsi_cfg_rss_lut_key(vsi); ice_vsi_set_rss_flow_fld(vsi); } break; case ICE_VSI_VF: /* VF driver will take care of creating netdev for this type and * map queues to vectors through Virtchnl, PF driver only * creates a VSI and corresponding structures for bookkeeping * purpose */ ret = ice_vsi_alloc_q_vectors(vsi); if (ret) goto unroll_vsi_init; ret = ice_vsi_alloc_rings(vsi); if (ret) goto unroll_alloc_q_vector; ret = ice_vsi_alloc_ring_stats(vsi); if (ret) goto unroll_vector_base; vsi->stat_offsets_loaded = false; /* Do not exit if configuring RSS had an issue, at least * receive traffic on first queue. Hence no need to capture * return value */ if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) { ice_vsi_cfg_rss_lut_key(vsi); ice_vsi_set_vf_rss_flow_fld(vsi); } break; case ICE_VSI_LB: ret = ice_vsi_alloc_rings(vsi); if (ret) goto unroll_vsi_init; ret = ice_vsi_alloc_ring_stats(vsi); if (ret) goto unroll_vector_base; break; default: /* clean up the resources and exit */ ret = -EINVAL; goto unroll_vsi_init; } return 0; unroll_vector_base: /* reclaim SW interrupts back to the common pool */ unroll_alloc_q_vector: ice_vsi_free_q_vectors(vsi); unroll_vsi_init: ice_vsi_delete_from_hw(vsi); unroll_get_qs: ice_vsi_put_qs(vsi); unroll_vsi_alloc_stat: ice_vsi_free_stats(vsi); unroll_vsi_alloc: ice_vsi_free_arrays(vsi); return ret; } /** * ice_vsi_cfg - configure a previously allocated VSI * @vsi: pointer to VSI */ int ice_vsi_cfg(struct ice_vsi *vsi) { struct ice_pf *pf = vsi->back; int ret; if (WARN_ON(vsi->type == ICE_VSI_VF && !vsi->vf)) return -EINVAL; ret = ice_vsi_cfg_def(vsi); if (ret) return ret; ret = ice_vsi_cfg_tc_lan(vsi->back, vsi); if (ret) ice_vsi_decfg(vsi); if (vsi->type == ICE_VSI_CTRL) { if (vsi->vf) { WARN_ON(vsi->vf->ctrl_vsi_idx != ICE_NO_VSI); vsi->vf->ctrl_vsi_idx = vsi->idx; } else { WARN_ON(pf->ctrl_vsi_idx != ICE_NO_VSI); pf->ctrl_vsi_idx = vsi->idx; } } return ret; } /** * ice_vsi_decfg - remove all VSI configuration * @vsi: pointer to VSI */ void ice_vsi_decfg(struct ice_vsi *vsi) { struct ice_pf *pf = vsi->back; int err; /* The Rx rule will only exist to remove if the LLDP FW * engine is currently stopped */ if (!ice_is_safe_mode(pf) && vsi->type == ICE_VSI_PF && !test_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags)) ice_cfg_sw_lldp(vsi, false, false); ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx); err = ice_rm_vsi_rdma_cfg(vsi->port_info, vsi->idx); if (err) dev_err(ice_pf_to_dev(pf), "Failed to remove RDMA scheduler config for VSI %u, err %d\n", vsi->vsi_num, err); if (ice_is_xdp_ena_vsi(vsi)) /* return value check can be skipped here, it always returns * 0 if reset is in progress */ ice_destroy_xdp_rings(vsi); ice_vsi_clear_rings(vsi); ice_vsi_free_q_vectors(vsi); ice_vsi_put_qs(vsi); ice_vsi_free_arrays(vsi); /* SR-IOV determines needed MSIX resources all at once instead of per * VSI since when VFs are spawned we know how many VFs there are and how * many interrupts each VF needs. SR-IOV MSIX resources are also * cleared in the same manner. */ if (vsi->type == ICE_VSI_VF && vsi->agg_node && vsi->agg_node->valid) vsi->agg_node->num_vsis--; } /** * ice_vsi_setup - Set up a VSI by a given type * @pf: board private structure * @params: parameters to use when creating the VSI * * This allocates the sw VSI structure and its queue resources. * * Returns pointer to the successfully allocated and configured VSI sw struct on * success, NULL on failure. */ struct ice_vsi * ice_vsi_setup(struct ice_pf *pf, struct ice_vsi_cfg_params *params) { struct device *dev = ice_pf_to_dev(pf); struct ice_vsi *vsi; int ret; /* ice_vsi_setup can only initialize a new VSI, and we must have * a port_info structure for it. */ if (WARN_ON(!(params->flags & ICE_VSI_FLAG_INIT)) || WARN_ON(!params->port_info)) return NULL; vsi = ice_vsi_alloc(pf); if (!vsi) { dev_err(dev, "could not allocate VSI\n"); return NULL; } vsi->params = *params; ret = ice_vsi_cfg(vsi); if (ret) goto err_vsi_cfg; /* Add switch rule to drop all Tx Flow Control Frames, of look up * type ETHERTYPE from VSIs, and restrict malicious VF from sending * out PAUSE or PFC frames. If enabled, FW can still send FC frames. * The rule is added once for PF VSI in order to create appropriate * recipe, since VSI/VSI list is ignored with drop action... * Also add rules to handle LLDP Tx packets. Tx LLDP packets need to * be dropped so that VFs cannot send LLDP packets to reconfig DCB * settings in the HW. */ if (!ice_is_safe_mode(pf) && vsi->type == ICE_VSI_PF) { ice_fltr_add_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX, ICE_DROP_PACKET); ice_cfg_sw_lldp(vsi, true, true); } if (!vsi->agg_node) ice_set_agg_vsi(vsi); return vsi; err_vsi_cfg: ice_vsi_free(vsi); return NULL; } /** * ice_vsi_release_msix - Clear the queue to Interrupt mapping in HW * @vsi: the VSI being cleaned up */ static void ice_vsi_release_msix(struct ice_vsi *vsi) { struct ice_pf *pf = vsi->back; struct ice_hw *hw = &pf->hw; u32 txq = 0; u32 rxq = 0; int i, q; ice_for_each_q_vector(vsi, i) { struct ice_q_vector *q_vector = vsi->q_vectors[i]; ice_write_intrl(q_vector, 0); for (q = 0; q < q_vector->num_ring_tx; q++) { ice_write_itr(&q_vector->tx, 0); wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), 0); if (ice_is_xdp_ena_vsi(vsi)) { u32 xdp_txq = txq + vsi->num_xdp_txq; wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]), 0); } txq++; } for (q = 0; q < q_vector->num_ring_rx; q++) { ice_write_itr(&q_vector->rx, 0); wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), 0); rxq++; } } ice_flush(hw); } /** * ice_vsi_free_irq - Free the IRQ association with the OS * @vsi: the VSI being configured */ void ice_vsi_free_irq(struct ice_vsi *vsi) { struct ice_pf *pf = vsi->back; int i; if (!vsi->q_vectors || !vsi->irqs_ready) return; ice_vsi_release_msix(vsi); if (vsi->type == ICE_VSI_VF) return; vsi->irqs_ready = false; ice_free_cpu_rx_rmap(vsi); ice_for_each_q_vector(vsi, i) { int irq_num; irq_num = vsi->q_vectors[i]->irq.virq; /* free only the irqs that were actually requested */ if (!vsi->q_vectors[i] || !(vsi->q_vectors[i]->num_ring_tx || vsi->q_vectors[i]->num_ring_rx)) continue; /* clear the affinity notifier in the IRQ descriptor */ if (!IS_ENABLED(CONFIG_RFS_ACCEL)) irq_set_affinity_notifier(irq_num, NULL); /* clear the affinity_mask in the IRQ descriptor */ irq_set_affinity_hint(irq_num, NULL); synchronize_irq(irq_num); devm_free_irq(ice_pf_to_dev(pf), irq_num, vsi->q_vectors[i]); } } /** * ice_vsi_free_tx_rings - Free Tx resources for VSI queues * @vsi: the VSI having resources freed */ void ice_vsi_free_tx_rings(struct ice_vsi *vsi) { int i; if (!vsi->tx_rings) return; ice_for_each_txq(vsi, i) if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) ice_free_tx_ring(vsi->tx_rings[i]); } /** * ice_vsi_free_rx_rings - Free Rx resources for VSI queues * @vsi: the VSI having resources freed */ void ice_vsi_free_rx_rings(struct ice_vsi *vsi) { int i; if (!vsi->rx_rings) return; ice_for_each_rxq(vsi, i) if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc) ice_free_rx_ring(vsi->rx_rings[i]); } /** * ice_vsi_close - Shut down a VSI * @vsi: the VSI being shut down */ void ice_vsi_close(struct ice_vsi *vsi) { if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state)) ice_down(vsi); ice_vsi_free_irq(vsi); ice_vsi_free_tx_rings(vsi); ice_vsi_free_rx_rings(vsi); } /** * ice_ena_vsi - resume a VSI * @vsi: the VSI being resume * @locked: is the rtnl_lock already held */ int ice_ena_vsi(struct ice_vsi *vsi, bool locked) { int err = 0; if (!test_bit(ICE_VSI_NEEDS_RESTART, vsi->state)) return 0; clear_bit(ICE_VSI_NEEDS_RESTART, vsi->state); if (vsi->netdev && vsi->type == ICE_VSI_PF) { if (netif_running(vsi->netdev)) { if (!locked) rtnl_lock(); err = ice_open_internal(vsi->netdev); if (!locked) rtnl_unlock(); } } else if (vsi->type == ICE_VSI_CTRL) { err = ice_vsi_open_ctrl(vsi); } return err; } /** * ice_dis_vsi - pause a VSI * @vsi: the VSI being paused * @locked: is the rtnl_lock already held */ void ice_dis_vsi(struct ice_vsi *vsi, bool locked) { if (test_bit(ICE_VSI_DOWN, vsi->state)) return; set_bit(ICE_VSI_NEEDS_RESTART, vsi->state); if (vsi->type == ICE_VSI_PF && vsi->netdev) { if (netif_running(vsi->netdev)) { if (!locked) rtnl_lock(); ice_vsi_close(vsi); if (!locked) rtnl_unlock(); } else { ice_vsi_close(vsi); } } else if (vsi->type == ICE_VSI_CTRL) { ice_vsi_close(vsi); } } /** * __ice_queue_set_napi - Set the napi instance for the queue * @dev: device to which NAPI and queue belong * @queue_index: Index of queue * @type: queue type as RX or TX * @napi: NAPI context * @locked: is the rtnl_lock already held * * Set the napi instance for the queue. Caller indicates the lock status. */ static void __ice_queue_set_napi(struct net_device *dev, unsigned int queue_index, enum netdev_queue_type type, struct napi_struct *napi, bool locked) { if (!locked) rtnl_lock(); netif_queue_set_napi(dev, queue_index, type, napi); if (!locked) rtnl_unlock(); } /** * ice_queue_set_napi - Set the napi instance for the queue * @vsi: VSI being configured * @queue_index: Index of queue * @type: queue type as RX or TX * @napi: NAPI context * * Set the napi instance for the queue. The rtnl lock state is derived from the * execution path. */ void ice_queue_set_napi(struct ice_vsi *vsi, unsigned int queue_index, enum netdev_queue_type type, struct napi_struct *napi) { struct ice_pf *pf = vsi->back; if (!vsi->netdev) return; if (current_work() == &pf->serv_task || test_bit(ICE_PREPARED_FOR_RESET, pf->state) || test_bit(ICE_DOWN, pf->state) || test_bit(ICE_SUSPENDED, pf->state)) __ice_queue_set_napi(vsi->netdev, queue_index, type, napi, false); else __ice_queue_set_napi(vsi->netdev, queue_index, type, napi, true); } /** * __ice_q_vector_set_napi_queues - Map queue[s] associated with the napi * @q_vector: q_vector pointer * @locked: is the rtnl_lock already held * * Associate the q_vector napi with all the queue[s] on the vector. * Caller indicates the lock status. */ void __ice_q_vector_set_napi_queues(struct ice_q_vector *q_vector, bool locked) { struct ice_rx_ring *rx_ring; struct ice_tx_ring *tx_ring; ice_for_each_rx_ring(rx_ring, q_vector->rx) __ice_queue_set_napi(q_vector->vsi->netdev, rx_ring->q_index, NETDEV_QUEUE_TYPE_RX, &q_vector->napi, locked); ice_for_each_tx_ring(tx_ring, q_vector->tx) __ice_queue_set_napi(q_vector->vsi->netdev, tx_ring->q_index, NETDEV_QUEUE_TYPE_TX, &q_vector->napi, locked); /* Also set the interrupt number for the NAPI */ netif_napi_set_irq(&q_vector->napi, q_vector->irq.virq); } /** * ice_q_vector_set_napi_queues - Map queue[s] associated with the napi * @q_vector: q_vector pointer * * Associate the q_vector napi with all the queue[s] on the vector */ void ice_q_vector_set_napi_queues(struct ice_q_vector *q_vector) { struct ice_rx_ring *rx_ring; struct ice_tx_ring *tx_ring; ice_for_each_rx_ring(rx_ring, q_vector->rx) ice_queue_set_napi(q_vector->vsi, rx_ring->q_index, NETDEV_QUEUE_TYPE_RX, &q_vector->napi); ice_for_each_tx_ring(tx_ring, q_vector->tx) ice_queue_set_napi(q_vector->vsi, tx_ring->q_index, NETDEV_QUEUE_TYPE_TX, &q_vector->napi); /* Also set the interrupt number for the NAPI */ netif_napi_set_irq(&q_vector->napi, q_vector->irq.virq); } /** * ice_vsi_set_napi_queues * @vsi: VSI pointer * * Associate queue[s] with napi for all vectors */ void ice_vsi_set_napi_queues(struct ice_vsi *vsi) { int i; if (!vsi->netdev) return; ice_for_each_q_vector(vsi, i) ice_q_vector_set_napi_queues(vsi->q_vectors[i]); } /** * ice_vsi_release - Delete a VSI and free its resources * @vsi: the VSI being removed * * Returns 0 on success or < 0 on error */ int ice_vsi_release(struct ice_vsi *vsi) { struct ice_pf *pf; if (!vsi->back) return -ENODEV; pf = vsi->back; if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) ice_rss_clean(vsi); ice_vsi_close(vsi); ice_vsi_decfg(vsi); /* retain SW VSI data structure since it is needed to unregister and * free VSI netdev when PF is not in reset recovery pending state,\ * for ex: during rmmod. */ if (!ice_is_reset_in_progress(pf->state)) ice_vsi_delete(vsi); return 0; } /** * ice_vsi_rebuild_get_coalesce - get coalesce from all q_vectors * @vsi: VSI connected with q_vectors * @coalesce: array of struct with stored coalesce * * Returns array size. */ static int ice_vsi_rebuild_get_coalesce(struct ice_vsi *vsi, struct ice_coalesce_stored *coalesce) { int i; ice_for_each_q_vector(vsi, i) { struct ice_q_vector *q_vector = vsi->q_vectors[i]; coalesce[i].itr_tx = q_vector->tx.itr_settings; coalesce[i].itr_rx = q_vector->rx.itr_settings; coalesce[i].intrl = q_vector->intrl; if (i < vsi->num_txq) coalesce[i].tx_valid = true; if (i < vsi->num_rxq) coalesce[i].rx_valid = true; } return vsi->num_q_vectors; } /** * ice_vsi_rebuild_set_coalesce - set coalesce from earlier saved arrays * @vsi: VSI connected with q_vectors * @coalesce: pointer to array of struct with stored coalesce * @size: size of coalesce array * * Before this function, ice_vsi_rebuild_get_coalesce should be called to save * ITR params in arrays. If size is 0 or coalesce wasn't stored set coalesce * to default value. */ static void ice_vsi_rebuild_set_coalesce(struct ice_vsi *vsi, struct ice_coalesce_stored *coalesce, int size) { struct ice_ring_container *rc; int i; if ((size && !coalesce) || !vsi) return; /* There are a couple of cases that have to be handled here: * 1. The case where the number of queue vectors stays the same, but * the number of Tx or Rx rings changes (the first for loop) * 2. The case where the number of queue vectors increased (the * second for loop) */ for (i = 0; i < size && i < vsi->num_q_vectors; i++) { /* There are 2 cases to handle here and they are the same for * both Tx and Rx: * if the entry was valid previously (coalesce[i].[tr]x_valid * and the loop variable is less than the number of rings * allocated, then write the previous values * * if the entry was not valid previously, but the number of * rings is less than are allocated (this means the number of * rings increased from previously), then write out the * values in the first element * * Also, always write the ITR, even if in ITR_IS_DYNAMIC * as there is no harm because the dynamic algorithm * will just overwrite. */ if (i < vsi->alloc_rxq && coalesce[i].rx_valid) { rc = &vsi->q_vectors[i]->rx; rc->itr_settings = coalesce[i].itr_rx; ice_write_itr(rc, rc->itr_setting); } else if (i < vsi->alloc_rxq) { rc = &vsi->q_vectors[i]->rx; rc->itr_settings = coalesce[0].itr_rx; ice_write_itr(rc, rc->itr_setting); } if (i < vsi->alloc_txq && coalesce[i].tx_valid) { rc = &vsi->q_vectors[i]->tx; rc->itr_settings = coalesce[i].itr_tx; ice_write_itr(rc, rc->itr_setting); } else if (i < vsi->alloc_txq) { rc = &vsi->q_vectors[i]->tx; rc->itr_settings = coalesce[0].itr_tx; ice_write_itr(rc, rc->itr_setting); } vsi->q_vectors[i]->intrl = coalesce[i].intrl; ice_set_q_vector_intrl(vsi->q_vectors[i]); } /* the number of queue vectors increased so write whatever is in * the first element */ for (; i < vsi->num_q_vectors; i++) { /* transmit */ rc = &vsi->q_vectors[i]->tx; rc->itr_settings = coalesce[0].itr_tx; ice_write_itr(rc, rc->itr_setting); /* receive */ rc = &vsi->q_vectors[i]->rx; rc->itr_settings = coalesce[0].itr_rx; ice_write_itr(rc, rc->itr_setting); vsi->q_vectors[i]->intrl = coalesce[0].intrl; ice_set_q_vector_intrl(vsi->q_vectors[i]); } } /** * ice_vsi_realloc_stat_arrays - Frees unused stat structures or alloc new ones * @vsi: VSI pointer */ static int ice_vsi_realloc_stat_arrays(struct ice_vsi *vsi) { u16 req_txq = vsi->req_txq ? vsi->req_txq : vsi->alloc_txq; u16 req_rxq = vsi->req_rxq ? vsi->req_rxq : vsi->alloc_rxq; struct ice_ring_stats **tx_ring_stats; struct ice_ring_stats **rx_ring_stats; struct ice_vsi_stats *vsi_stat; struct ice_pf *pf = vsi->back; u16 prev_txq = vsi->alloc_txq; u16 prev_rxq = vsi->alloc_rxq; int i; vsi_stat = pf->vsi_stats[vsi->idx]; if (req_txq < prev_txq) { for (i = req_txq; i < prev_txq; i++) { if (vsi_stat->tx_ring_stats[i]) { kfree_rcu(vsi_stat->tx_ring_stats[i], rcu); WRITE_ONCE(vsi_stat->tx_ring_stats[i], NULL); } } } tx_ring_stats = vsi_stat->tx_ring_stats; vsi_stat->tx_ring_stats = krealloc_array(vsi_stat->tx_ring_stats, req_txq, sizeof(*vsi_stat->tx_ring_stats), GFP_KERNEL | __GFP_ZERO); if (!vsi_stat->tx_ring_stats) { vsi_stat->tx_ring_stats = tx_ring_stats; return -ENOMEM; } if (req_rxq < prev_rxq) { for (i = req_rxq; i < prev_rxq; i++) { if (vsi_stat->rx_ring_stats[i]) { kfree_rcu(vsi_stat->rx_ring_stats[i], rcu); WRITE_ONCE(vsi_stat->rx_ring_stats[i], NULL); } } } rx_ring_stats = vsi_stat->rx_ring_stats; vsi_stat->rx_ring_stats = krealloc_array(vsi_stat->rx_ring_stats, req_rxq, sizeof(*vsi_stat->rx_ring_stats), GFP_KERNEL | __GFP_ZERO); if (!vsi_stat->rx_ring_stats) { vsi_stat->rx_ring_stats = rx_ring_stats; return -ENOMEM; } return 0; } /** * ice_vsi_rebuild - Rebuild VSI after reset * @vsi: VSI to be rebuild * @vsi_flags: flags used for VSI rebuild flow * * Set vsi_flags to ICE_VSI_FLAG_INIT to initialize a new VSI, or * ICE_VSI_FLAG_NO_INIT to rebuild an existing VSI in hardware. * * Returns 0 on success and negative value on failure */ int ice_vsi_rebuild(struct ice_vsi *vsi, u32 vsi_flags) { struct ice_coalesce_stored *coalesce; int prev_num_q_vectors; struct ice_pf *pf; int ret; if (!vsi) return -EINVAL; vsi->flags = vsi_flags; pf = vsi->back; if (WARN_ON(vsi->type == ICE_VSI_VF && !vsi->vf)) return -EINVAL; ret = ice_vsi_realloc_stat_arrays(vsi); if (ret) goto err_vsi_cfg; ice_vsi_decfg(vsi); ret = ice_vsi_cfg_def(vsi); if (ret) goto err_vsi_cfg; coalesce = kcalloc(vsi->num_q_vectors, sizeof(struct ice_coalesce_stored), GFP_KERNEL); if (!coalesce) return -ENOMEM; prev_num_q_vectors = ice_vsi_rebuild_get_coalesce(vsi, coalesce); ret = ice_vsi_cfg_tc_lan(pf, vsi); if (ret) { if (vsi_flags & ICE_VSI_FLAG_INIT) { ret = -EIO; goto err_vsi_cfg_tc_lan; } kfree(coalesce); return ice_schedule_reset(pf, ICE_RESET_PFR); } ice_vsi_rebuild_set_coalesce(vsi, coalesce, prev_num_q_vectors); kfree(coalesce); return 0; err_vsi_cfg_tc_lan: ice_vsi_decfg(vsi); kfree(coalesce); err_vsi_cfg: return ret; } /** * ice_is_reset_in_progress - check for a reset in progress * @state: PF state field */ bool ice_is_reset_in_progress(unsigned long *state) { return test_bit(ICE_RESET_OICR_RECV, state) || test_bit(ICE_PFR_REQ, state) || test_bit(ICE_CORER_REQ, state) || test_bit(ICE_GLOBR_REQ, state); } /** * ice_wait_for_reset - Wait for driver to finish reset and rebuild * @pf: pointer to the PF structure * @timeout: length of time to wait, in jiffies * * Wait (sleep) for a short time until the driver finishes cleaning up from * a device reset. The caller must be able to sleep. Use this to delay * operations that could fail while the driver is cleaning up after a device * reset. * * Returns 0 on success, -EBUSY if the reset is not finished within the * timeout, and -ERESTARTSYS if the thread was interrupted. */ int ice_wait_for_reset(struct ice_pf *pf, unsigned long timeout) { long ret; ret = wait_event_interruptible_timeout(pf->reset_wait_queue, !ice_is_reset_in_progress(pf->state), timeout); if (ret < 0) return ret; else if (!ret) return -EBUSY; else return 0; } /** * ice_vsi_update_q_map - update our copy of the VSI info with new queue map * @vsi: VSI being configured * @ctx: the context buffer returned from AQ VSI update command */ static void ice_vsi_update_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctx) { vsi->info.mapping_flags = ctx->info.mapping_flags; memcpy(&vsi->info.q_mapping, &ctx->info.q_mapping, sizeof(vsi->info.q_mapping)); memcpy(&vsi->info.tc_mapping, ctx->info.tc_mapping, sizeof(vsi->info.tc_mapping)); } /** * ice_vsi_cfg_netdev_tc - Setup the netdev TC configuration * @vsi: the VSI being configured * @ena_tc: TC map to be enabled */ void ice_vsi_cfg_netdev_tc(struct ice_vsi *vsi, u8 ena_tc) { struct net_device *netdev = vsi->netdev; struct ice_pf *pf = vsi->back; int numtc = vsi->tc_cfg.numtc; struct ice_dcbx_cfg *dcbcfg; u8 netdev_tc; int i; if (!netdev) return; /* CHNL VSI doesn't have it's own netdev, hence, no netdev_tc */ if (vsi->type == ICE_VSI_CHNL) return; if (!ena_tc) { netdev_reset_tc(netdev); return; } if (vsi->type == ICE_VSI_PF && ice_is_adq_active(pf)) numtc = vsi->all_numtc; if (netdev_set_num_tc(netdev, numtc)) return; dcbcfg = &pf->hw.port_info->qos_cfg.local_dcbx_cfg; ice_for_each_traffic_class(i) if (vsi->tc_cfg.ena_tc & BIT(i)) netdev_set_tc_queue(netdev, vsi->tc_cfg.tc_info[i].netdev_tc, vsi->tc_cfg.tc_info[i].qcount_tx, vsi->tc_cfg.tc_info[i].qoffset); /* setup TC queue map for CHNL TCs */ ice_for_each_chnl_tc(i) { if (!(vsi->all_enatc & BIT(i))) break; if (!vsi->mqprio_qopt.qopt.count[i]) break; netdev_set_tc_queue(netdev, i, vsi->mqprio_qopt.qopt.count[i], vsi->mqprio_qopt.qopt.offset[i]); } if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) return; for (i = 0; i < ICE_MAX_USER_PRIORITY; i++) { u8 ets_tc = dcbcfg->etscfg.prio_table[i]; /* Get the mapped netdev TC# for the UP */ netdev_tc = vsi->tc_cfg.tc_info[ets_tc].netdev_tc; netdev_set_prio_tc_map(netdev, i, netdev_tc); } } /** * ice_vsi_setup_q_map_mqprio - Prepares mqprio based tc_config * @vsi: the VSI being configured, * @ctxt: VSI context structure * @ena_tc: number of traffic classes to enable * * Prepares VSI tc_config to have queue configurations based on MQPRIO options. */ static int ice_vsi_setup_q_map_mqprio(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt, u8 ena_tc) { u16 pow, offset = 0, qcount_tx = 0, qcount_rx = 0, qmap; u16 tc0_offset = vsi->mqprio_qopt.qopt.offset[0]; int tc0_qcount = vsi->mqprio_qopt.qopt.count[0]; u16 new_txq, new_rxq; u8 netdev_tc = 0; int i; vsi->tc_cfg.ena_tc = ena_tc ? ena_tc : 1; pow = order_base_2(tc0_qcount); qmap = FIELD_PREP(ICE_AQ_VSI_TC_Q_OFFSET_M, tc0_offset); qmap |= FIELD_PREP(ICE_AQ_VSI_TC_Q_NUM_M, pow); ice_for_each_traffic_class(i) { if (!(vsi->tc_cfg.ena_tc & BIT(i))) { /* TC is not enabled */ vsi->tc_cfg.tc_info[i].qoffset = 0; vsi->tc_cfg.tc_info[i].qcount_rx = 1; vsi->tc_cfg.tc_info[i].qcount_tx = 1; vsi->tc_cfg.tc_info[i].netdev_tc = 0; ctxt->info.tc_mapping[i] = 0; continue; } offset = vsi->mqprio_qopt.qopt.offset[i]; qcount_rx = vsi->mqprio_qopt.qopt.count[i]; qcount_tx = vsi->mqprio_qopt.qopt.count[i]; vsi->tc_cfg.tc_info[i].qoffset = offset; vsi->tc_cfg.tc_info[i].qcount_rx = qcount_rx; vsi->tc_cfg.tc_info[i].qcount_tx = qcount_tx; vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++; } if (vsi->all_numtc && vsi->all_numtc != vsi->tc_cfg.numtc) { ice_for_each_chnl_tc(i) { if (!(vsi->all_enatc & BIT(i))) continue; offset = vsi->mqprio_qopt.qopt.offset[i]; qcount_rx = vsi->mqprio_qopt.qopt.count[i]; qcount_tx = vsi->mqprio_qopt.qopt.count[i]; } } new_txq = offset + qcount_tx; if (new_txq > vsi->alloc_txq) { dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Tx queues (%u), than were allocated (%u)!\n", new_txq, vsi->alloc_txq); return -EINVAL; } new_rxq = offset + qcount_rx; if (new_rxq > vsi->alloc_rxq) { dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Rx queues (%u), than were allocated (%u)!\n", new_rxq, vsi->alloc_rxq); return -EINVAL; } /* Set actual Tx/Rx queue pairs */ vsi->num_txq = new_txq; vsi->num_rxq = new_rxq; /* Setup queue TC[0].qmap for given VSI context */ ctxt->info.tc_mapping[0] = cpu_to_le16(qmap); ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]); ctxt->info.q_mapping[1] = cpu_to_le16(tc0_qcount); /* Find queue count available for channel VSIs and starting offset * for channel VSIs */ if (tc0_qcount && tc0_qcount < vsi->num_rxq) { vsi->cnt_q_avail = vsi->num_rxq - tc0_qcount; vsi->next_base_q = tc0_qcount; } dev_dbg(ice_pf_to_dev(vsi->back), "vsi->num_txq = %d\n", vsi->num_txq); dev_dbg(ice_pf_to_dev(vsi->back), "vsi->num_rxq = %d\n", vsi->num_rxq); dev_dbg(ice_pf_to_dev(vsi->back), "all_numtc %u, all_enatc: 0x%04x, tc_cfg.numtc %u\n", vsi->all_numtc, vsi->all_enatc, vsi->tc_cfg.numtc); return 0; } /** * ice_vsi_cfg_tc - Configure VSI Tx Sched for given TC map * @vsi: VSI to be configured * @ena_tc: TC bitmap * * VSI queues expected to be quiesced before calling this function */ int ice_vsi_cfg_tc(struct ice_vsi *vsi, u8 ena_tc) { u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 }; struct ice_pf *pf = vsi->back; struct ice_tc_cfg old_tc_cfg; struct ice_vsi_ctx *ctx; struct device *dev; int i, ret = 0; u8 num_tc = 0; dev = ice_pf_to_dev(pf); if (vsi->tc_cfg.ena_tc == ena_tc && vsi->mqprio_qopt.mode != TC_MQPRIO_MODE_CHANNEL) return 0; ice_for_each_traffic_class(i) { /* build bitmap of enabled TCs */ if (ena_tc & BIT(i)) num_tc++; /* populate max_txqs per TC */ max_txqs[i] = vsi->alloc_txq; /* Update max_txqs if it is CHNL VSI, because alloc_t[r]xq are * zero for CHNL VSI, hence use num_txq instead as max_txqs */ if (vsi->type == ICE_VSI_CHNL && test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) max_txqs[i] = vsi->num_txq; } memcpy(&old_tc_cfg, &vsi->tc_cfg, sizeof(old_tc_cfg)); vsi->tc_cfg.ena_tc = ena_tc; vsi->tc_cfg.numtc = num_tc; ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); if (!ctx) return -ENOMEM; ctx->vf_num = 0; ctx->info = vsi->info; if (vsi->type == ICE_VSI_PF && test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) ret = ice_vsi_setup_q_map_mqprio(vsi, ctx, ena_tc); else ret = ice_vsi_setup_q_map(vsi, ctx); if (ret) { memcpy(&vsi->tc_cfg, &old_tc_cfg, sizeof(vsi->tc_cfg)); goto out; } /* must to indicate which section of VSI context are being modified */ ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID); ret = ice_update_vsi(&pf->hw, vsi->idx, ctx, NULL); if (ret) { dev_info(dev, "Failed VSI Update\n"); goto out; } if (vsi->type == ICE_VSI_PF && test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, 1, max_txqs); else ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc, max_txqs); if (ret) { dev_err(dev, "VSI %d failed TC config, error %d\n", vsi->vsi_num, ret); goto out; } ice_vsi_update_q_map(vsi, ctx); vsi->info.valid_sections = 0; ice_vsi_cfg_netdev_tc(vsi, ena_tc); out: kfree(ctx); return ret; } /** * ice_update_ring_stats - Update ring statistics * @stats: stats to be updated * @pkts: number of processed packets * @bytes: number of processed bytes * * This function assumes that caller has acquired a u64_stats_sync lock. */ static void ice_update_ring_stats(struct ice_q_stats *stats, u64 pkts, u64 bytes) { stats->bytes += bytes; stats->pkts += pkts; } /** * ice_update_tx_ring_stats - Update Tx ring specific counters * @tx_ring: ring to update * @pkts: number of processed packets * @bytes: number of processed bytes */ void ice_update_tx_ring_stats(struct ice_tx_ring *tx_ring, u64 pkts, u64 bytes) { u64_stats_update_begin(&tx_ring->ring_stats->syncp); ice_update_ring_stats(&tx_ring->ring_stats->stats, pkts, bytes); u64_stats_update_end(&tx_ring->ring_stats->syncp); } /** * ice_update_rx_ring_stats - Update Rx ring specific counters * @rx_ring: ring to update * @pkts: number of processed packets * @bytes: number of processed bytes */ void ice_update_rx_ring_stats(struct ice_rx_ring *rx_ring, u64 pkts, u64 bytes) { u64_stats_update_begin(&rx_ring->ring_stats->syncp); ice_update_ring_stats(&rx_ring->ring_stats->stats, pkts, bytes); u64_stats_update_end(&rx_ring->ring_stats->syncp); } /** * ice_is_dflt_vsi_in_use - check if the default forwarding VSI is being used * @pi: port info of the switch with default VSI * * Return true if the there is a single VSI in default forwarding VSI list */ bool ice_is_dflt_vsi_in_use(struct ice_port_info *pi) { bool exists = false; ice_check_if_dflt_vsi(pi, 0, &exists); return exists; } /** * ice_is_vsi_dflt_vsi - check if the VSI passed in is the default VSI * @vsi: VSI to compare against default forwarding VSI * * If this VSI passed in is the default forwarding VSI then return true, else * return false */ bool ice_is_vsi_dflt_vsi(struct ice_vsi *vsi) { return ice_check_if_dflt_vsi(vsi->port_info, vsi->idx, NULL); } /** * ice_set_dflt_vsi - set the default forwarding VSI * @vsi: VSI getting set as the default forwarding VSI on the switch * * If the VSI passed in is already the default VSI and it's enabled just return * success. * * Otherwise try to set the VSI passed in as the switch's default VSI and * return the result. */ int ice_set_dflt_vsi(struct ice_vsi *vsi) { struct device *dev; int status; if (!vsi) return -EINVAL; dev = ice_pf_to_dev(vsi->back); if (ice_lag_is_switchdev_running(vsi->back)) { dev_dbg(dev, "VSI %d passed is a part of LAG containing interfaces in switchdev mode, nothing to do\n", vsi->vsi_num); return 0; } /* the VSI passed in is already the default VSI */ if (ice_is_vsi_dflt_vsi(vsi)) { dev_dbg(dev, "VSI %d passed in is already the default forwarding VSI, nothing to do\n", vsi->vsi_num); return 0; } status = ice_cfg_dflt_vsi(vsi->port_info, vsi->idx, true, ICE_FLTR_RX); if (status) { dev_err(dev, "Failed to set VSI %d as the default forwarding VSI, error %d\n", vsi->vsi_num, status); return status; } return 0; } /** * ice_clear_dflt_vsi - clear the default forwarding VSI * @vsi: VSI to remove from filter list * * If the switch has no default VSI or it's not enabled then return error. * * Otherwise try to clear the default VSI and return the result. */ int ice_clear_dflt_vsi(struct ice_vsi *vsi) { struct device *dev; int status; if (!vsi) return -EINVAL; dev = ice_pf_to_dev(vsi->back); /* there is no default VSI configured */ if (!ice_is_dflt_vsi_in_use(vsi->port_info)) return -ENODEV; status = ice_cfg_dflt_vsi(vsi->port_info, vsi->idx, false, ICE_FLTR_RX); if (status) { dev_err(dev, "Failed to clear the default forwarding VSI %d, error %d\n", vsi->vsi_num, status); return -EIO; } return 0; } /** * ice_get_link_speed_mbps - get link speed in Mbps * @vsi: the VSI whose link speed is being queried * * Return current VSI link speed and 0 if the speed is unknown. */ int ice_get_link_speed_mbps(struct ice_vsi *vsi) { unsigned int link_speed; link_speed = vsi->port_info->phy.link_info.link_speed; return (int)ice_get_link_speed(fls(link_speed) - 1); } /** * ice_get_link_speed_kbps - get link speed in Kbps * @vsi: the VSI whose link speed is being queried * * Return current VSI link speed and 0 if the speed is unknown. */ int ice_get_link_speed_kbps(struct ice_vsi *vsi) { int speed_mbps; speed_mbps = ice_get_link_speed_mbps(vsi); return speed_mbps * 1000; } /** * ice_set_min_bw_limit - setup minimum BW limit for Tx based on min_tx_rate * @vsi: VSI to be configured * @min_tx_rate: min Tx rate in Kbps to be configured as BW limit * * If the min_tx_rate is specified as 0 that means to clear the minimum BW limit * profile, otherwise a non-zero value will force a minimum BW limit for the VSI * on TC 0. */ int ice_set_min_bw_limit(struct ice_vsi *vsi, u64 min_tx_rate) { struct ice_pf *pf = vsi->back; struct device *dev; int status; int speed; dev = ice_pf_to_dev(pf); if (!vsi->port_info) { dev_dbg(dev, "VSI %d, type %u specified doesn't have valid port_info\n", vsi->idx, vsi->type); return -EINVAL; } speed = ice_get_link_speed_kbps(vsi); if (min_tx_rate > (u64)speed) { dev_err(dev, "invalid min Tx rate %llu Kbps specified for %s %d is greater than current link speed %u Kbps\n", min_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx, speed); return -EINVAL; } /* Configure min BW for VSI limit */ if (min_tx_rate) { status = ice_cfg_vsi_bw_lmt_per_tc(vsi->port_info, vsi->idx, 0, ICE_MIN_BW, min_tx_rate); if (status) { dev_err(dev, "failed to set min Tx rate(%llu Kbps) for %s %d\n", min_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx); return status; } dev_dbg(dev, "set min Tx rate(%llu Kbps) for %s\n", min_tx_rate, ice_vsi_type_str(vsi->type)); } else { status = ice_cfg_vsi_bw_dflt_lmt_per_tc(vsi->port_info, vsi->idx, 0, ICE_MIN_BW); if (status) { dev_err(dev, "failed to clear min Tx rate configuration for %s %d\n", ice_vsi_type_str(vsi->type), vsi->idx); return status; } dev_dbg(dev, "cleared min Tx rate configuration for %s %d\n", ice_vsi_type_str(vsi->type), vsi->idx); } return 0; } /** * ice_set_max_bw_limit - setup maximum BW limit for Tx based on max_tx_rate * @vsi: VSI to be configured * @max_tx_rate: max Tx rate in Kbps to be configured as BW limit * * If the max_tx_rate is specified as 0 that means to clear the maximum BW limit * profile, otherwise a non-zero value will force a maximum BW limit for the VSI * on TC 0. */ int ice_set_max_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate) { struct ice_pf *pf = vsi->back; struct device *dev; int status; int speed; dev = ice_pf_to_dev(pf); if (!vsi->port_info) { dev_dbg(dev, "VSI %d, type %u specified doesn't have valid port_info\n", vsi->idx, vsi->type); return -EINVAL; } speed = ice_get_link_speed_kbps(vsi); if (max_tx_rate > (u64)speed) { dev_err(dev, "invalid max Tx rate %llu Kbps specified for %s %d is greater than current link speed %u Kbps\n", max_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx, speed); return -EINVAL; } /* Configure max BW for VSI limit */ if (max_tx_rate) { status = ice_cfg_vsi_bw_lmt_per_tc(vsi->port_info, vsi->idx, 0, ICE_MAX_BW, max_tx_rate); if (status) { dev_err(dev, "failed setting max Tx rate(%llu Kbps) for %s %d\n", max_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx); return status; } dev_dbg(dev, "set max Tx rate(%llu Kbps) for %s %d\n", max_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx); } else { status = ice_cfg_vsi_bw_dflt_lmt_per_tc(vsi->port_info, vsi->idx, 0, ICE_MAX_BW); if (status) { dev_err(dev, "failed clearing max Tx rate configuration for %s %d\n", ice_vsi_type_str(vsi->type), vsi->idx); return status; } dev_dbg(dev, "cleared max Tx rate configuration for %s %d\n", ice_vsi_type_str(vsi->type), vsi->idx); } return 0; } /** * ice_set_link - turn on/off physical link * @vsi: VSI to modify physical link on * @ena: turn on/off physical link */ int ice_set_link(struct ice_vsi *vsi, bool ena) { struct device *dev = ice_pf_to_dev(vsi->back); struct ice_port_info *pi = vsi->port_info; struct ice_hw *hw = pi->hw; int status; if (vsi->type != ICE_VSI_PF) return -EINVAL; status = ice_aq_set_link_restart_an(pi, ena, NULL); /* if link is owned by manageability, FW will return ICE_AQ_RC_EMODE. * this is not a fatal error, so print a warning message and return * a success code. Return an error if FW returns an error code other * than ICE_AQ_RC_EMODE */ if (status == -EIO) { if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE) dev_dbg(dev, "can't set link to %s, err %d aq_err %s. not fatal, continuing\n", (ena ? "ON" : "OFF"), status, ice_aq_str(hw->adminq.sq_last_status)); } else if (status) { dev_err(dev, "can't set link to %s, err %d aq_err %s\n", (ena ? "ON" : "OFF"), status, ice_aq_str(hw->adminq.sq_last_status)); return status; } return 0; } /** * ice_vsi_add_vlan_zero - add VLAN 0 filter(s) for this VSI * @vsi: VSI used to add VLAN filters * * In Single VLAN Mode (SVM), single VLAN filters via ICE_SW_LKUP_VLAN are based * on the inner VLAN ID, so the VLAN TPID (i.e. 0x8100 or 0x888a8) doesn't * matter. In Double VLAN Mode (DVM), outer/single VLAN filters via * ICE_SW_LKUP_VLAN are based on the outer/single VLAN ID + VLAN TPID. * * For both modes add a VLAN 0 + no VLAN TPID filter to handle untagged traffic * when VLAN pruning is enabled. Also, this handles VLAN 0 priority tagged * traffic in SVM, since the VLAN TPID isn't part of filtering. * * If DVM is enabled then an explicit VLAN 0 + VLAN TPID filter needs to be * added to allow VLAN 0 priority tagged traffic in DVM, since the VLAN TPID is * part of filtering. */ int ice_vsi_add_vlan_zero(struct ice_vsi *vsi) { struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); struct ice_vlan vlan; int err; vlan = ICE_VLAN(0, 0, 0); err = vlan_ops->add_vlan(vsi, &vlan); if (err && err != -EEXIST) return err; /* in SVM both VLAN 0 filters are identical */ if (!ice_is_dvm_ena(&vsi->back->hw)) return 0; vlan = ICE_VLAN(ETH_P_8021Q, 0, 0); err = vlan_ops->add_vlan(vsi, &vlan); if (err && err != -EEXIST) return err; return 0; } /** * ice_vsi_del_vlan_zero - delete VLAN 0 filter(s) for this VSI * @vsi: VSI used to add VLAN filters * * Delete the VLAN 0 filters in the same manner that they were added in * ice_vsi_add_vlan_zero. */ int ice_vsi_del_vlan_zero(struct ice_vsi *vsi) { struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi); struct ice_vlan vlan; int err; vlan = ICE_VLAN(0, 0, 0); err = vlan_ops->del_vlan(vsi, &vlan); if (err && err != -EEXIST) return err; /* in SVM both VLAN 0 filters are identical */ if (!ice_is_dvm_ena(&vsi->back->hw)) return 0; vlan = ICE_VLAN(ETH_P_8021Q, 0, 0); err = vlan_ops->del_vlan(vsi, &vlan); if (err && err != -EEXIST) return err; /* when deleting the last VLAN filter, make sure to disable the VLAN * promisc mode so the filter isn't left by accident */ return ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx, ICE_MCAST_VLAN_PROMISC_BITS, 0); } /** * ice_vsi_num_zero_vlans - get number of VLAN 0 filters based on VLAN mode * @vsi: VSI used to get the VLAN mode * * If DVM is enabled then 2 VLAN 0 filters are added, else if SVM is enabled * then 1 VLAN 0 filter is added. See ice_vsi_add_vlan_zero for more details. */ static u16 ice_vsi_num_zero_vlans(struct ice_vsi *vsi) { #define ICE_DVM_NUM_ZERO_VLAN_FLTRS 2 #define ICE_SVM_NUM_ZERO_VLAN_FLTRS 1 /* no VLAN 0 filter is created when a port VLAN is active */ if (vsi->type == ICE_VSI_VF) { if (WARN_ON(!vsi->vf)) return 0; if (ice_vf_is_port_vlan_ena(vsi->vf)) return 0; } if (ice_is_dvm_ena(&vsi->back->hw)) return ICE_DVM_NUM_ZERO_VLAN_FLTRS; else return ICE_SVM_NUM_ZERO_VLAN_FLTRS; } /** * ice_vsi_has_non_zero_vlans - check if VSI has any non-zero VLANs * @vsi: VSI used to determine if any non-zero VLANs have been added */ bool ice_vsi_has_non_zero_vlans(struct ice_vsi *vsi) { return (vsi->num_vlan > ice_vsi_num_zero_vlans(vsi)); } /** * ice_vsi_num_non_zero_vlans - get the number of non-zero VLANs for this VSI * @vsi: VSI used to get the number of non-zero VLANs added */ u16 ice_vsi_num_non_zero_vlans(struct ice_vsi *vsi) { return (vsi->num_vlan - ice_vsi_num_zero_vlans(vsi)); } /** * ice_is_feature_supported * @pf: pointer to the struct ice_pf instance * @f: feature enum to be checked * * returns true if feature is supported, false otherwise */ bool ice_is_feature_supported(struct ice_pf *pf, enum ice_feature f) { if (f < 0 || f >= ICE_F_MAX) return false; return test_bit(f, pf->features); } /** * ice_set_feature_support * @pf: pointer to the struct ice_pf instance * @f: feature enum to set */ void ice_set_feature_support(struct ice_pf *pf, enum ice_feature f) { if (f < 0 || f >= ICE_F_MAX) return; set_bit(f, pf->features); } /** * ice_clear_feature_support * @pf: pointer to the struct ice_pf instance * @f: feature enum to clear */ void ice_clear_feature_support(struct ice_pf *pf, enum ice_feature f) { if (f < 0 || f >= ICE_F_MAX) return; clear_bit(f, pf->features); } /** * ice_init_feature_support * @pf: pointer to the struct ice_pf instance * * called during init to setup supported feature */ void ice_init_feature_support(struct ice_pf *pf) { switch (pf->hw.device_id) { case ICE_DEV_ID_E810C_BACKPLANE: case ICE_DEV_ID_E810C_QSFP: case ICE_DEV_ID_E810C_SFP: case ICE_DEV_ID_E810_XXV_BACKPLANE: case ICE_DEV_ID_E810_XXV_QSFP: case ICE_DEV_ID_E810_XXV_SFP: ice_set_feature_support(pf, ICE_F_DSCP); if (ice_is_phy_rclk_in_netlist(&pf->hw)) ice_set_feature_support(pf, ICE_F_PHY_RCLK); /* If we don't own the timer - don't enable other caps */ if (!ice_pf_src_tmr_owned(pf)) break; if (ice_is_cgu_in_netlist(&pf->hw)) ice_set_feature_support(pf, ICE_F_CGU); if (ice_is_clock_mux_in_netlist(&pf->hw)) ice_set_feature_support(pf, ICE_F_SMA_CTRL); if (ice_gnss_is_gps_present(&pf->hw)) ice_set_feature_support(pf, ICE_F_GNSS); break; default: break; } } /** * ice_vsi_update_security - update security block in VSI * @vsi: pointer to VSI structure * @fill: function pointer to fill ctx */ int ice_vsi_update_security(struct ice_vsi *vsi, void (*fill)(struct ice_vsi_ctx *)) { struct ice_vsi_ctx ctx = { 0 }; ctx.info = vsi->info; ctx.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID); fill(&ctx); if (ice_update_vsi(&vsi->back->hw, vsi->idx, &ctx, NULL)) return -ENODEV; vsi->info = ctx.info; return 0; } /** * ice_vsi_ctx_set_antispoof - set antispoof function in VSI ctx * @ctx: pointer to VSI ctx structure */ void ice_vsi_ctx_set_antispoof(struct ice_vsi_ctx *ctx) { ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF | (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); } /** * ice_vsi_ctx_clear_antispoof - clear antispoof function in VSI ctx * @ctx: pointer to VSI ctx structure */ void ice_vsi_ctx_clear_antispoof(struct ice_vsi_ctx *ctx) { ctx->info.sec_flags &= ~ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF & ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA << ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S); } /** * ice_vsi_ctx_set_allow_override - allow destination override on VSI * @ctx: pointer to VSI ctx structure */ void ice_vsi_ctx_set_allow_override(struct ice_vsi_ctx *ctx) { ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD; } /** * ice_vsi_ctx_clear_allow_override - turn off destination override on VSI * @ctx: pointer to VSI ctx structure */ void ice_vsi_ctx_clear_allow_override(struct ice_vsi_ctx *ctx) { ctx->info.sec_flags &= ~ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD; } /** * ice_vsi_update_local_lb - update sw block in VSI with local loopback bit * @vsi: pointer to VSI structure * @set: set or unset the bit */ int ice_vsi_update_local_lb(struct ice_vsi *vsi, bool set) { struct ice_vsi_ctx ctx = { .info = vsi->info, }; ctx.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID); if (set) ctx.info.sw_flags |= ICE_AQ_VSI_SW_FLAG_LOCAL_LB; else ctx.info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_LOCAL_LB; if (ice_update_vsi(&vsi->back->hw, vsi->idx, &ctx, NULL)) return -ENODEV; vsi->info = ctx.info; return 0; }