// SPDX-License-Identifier: GPL-2.0-only /* * Overview: * This is the generic MTD driver for NAND flash devices. It should be * capable of working with almost all NAND chips currently available. * * Additional technical information is available on * http://www.linux-mtd.infradead.org/doc/nand.html * * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com) * 2002-2006 Thomas Gleixner (tglx@linutronix.de) * * Credits: * David Woodhouse for adding multichip support * * Aleph One Ltd. and Toby Churchill Ltd. for supporting the * rework for 2K page size chips * * TODO: * Enable cached programming for 2k page size chips * Check, if mtd->ecctype should be set to MTD_ECC_HW * if we have HW ECC support. * BBT table is not serialized, has to be fixed */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "internals.h" /* Define default oob placement schemes for large and small page devices */ static int nand_ooblayout_ecc_sp(struct mtd_info *mtd, int section, struct mtd_oob_region *oobregion) { struct nand_chip *chip = mtd_to_nand(mtd); struct nand_ecc_ctrl *ecc = &chip->ecc; if (section > 1) return -ERANGE; if (!section) { oobregion->offset = 0; if (mtd->oobsize == 16) oobregion->length = 4; else oobregion->length = 3; } else { if (mtd->oobsize == 8) return -ERANGE; oobregion->offset = 6; oobregion->length = ecc->total - 4; } return 0; } static int nand_ooblayout_free_sp(struct mtd_info *mtd, int section, struct mtd_oob_region *oobregion) { if (section > 1) return -ERANGE; if (mtd->oobsize == 16) { if (section) return -ERANGE; oobregion->length = 8; oobregion->offset = 8; } else { oobregion->length = 2; if (!section) oobregion->offset = 3; else oobregion->offset = 6; } return 0; } const struct mtd_ooblayout_ops nand_ooblayout_sp_ops = { .ecc = nand_ooblayout_ecc_sp, .free = nand_ooblayout_free_sp, }; EXPORT_SYMBOL_GPL(nand_ooblayout_sp_ops); static int nand_ooblayout_ecc_lp(struct mtd_info *mtd, int section, struct mtd_oob_region *oobregion) { struct nand_chip *chip = mtd_to_nand(mtd); struct nand_ecc_ctrl *ecc = &chip->ecc; if (section || !ecc->total) return -ERANGE; oobregion->length = ecc->total; oobregion->offset = mtd->oobsize - oobregion->length; return 0; } static int nand_ooblayout_free_lp(struct mtd_info *mtd, int section, struct mtd_oob_region *oobregion) { struct nand_chip *chip = mtd_to_nand(mtd); struct nand_ecc_ctrl *ecc = &chip->ecc; if (section) return -ERANGE; oobregion->length = mtd->oobsize - ecc->total - 2; oobregion->offset = 2; return 0; } const struct mtd_ooblayout_ops nand_ooblayout_lp_ops = { .ecc = nand_ooblayout_ecc_lp, .free = nand_ooblayout_free_lp, }; EXPORT_SYMBOL_GPL(nand_ooblayout_lp_ops); /* * Support the old "large page" layout used for 1-bit Hamming ECC where ECC * are placed at a fixed offset. */ static int nand_ooblayout_ecc_lp_hamming(struct mtd_info *mtd, int section, struct mtd_oob_region *oobregion) { struct nand_chip *chip = mtd_to_nand(mtd); struct nand_ecc_ctrl *ecc = &chip->ecc; if (section) return -ERANGE; switch (mtd->oobsize) { case 64: oobregion->offset = 40; break; case 128: oobregion->offset = 80; break; default: return -EINVAL; } oobregion->length = ecc->total; if (oobregion->offset + oobregion->length > mtd->oobsize) return -ERANGE; return 0; } static int nand_ooblayout_free_lp_hamming(struct mtd_info *mtd, int section, struct mtd_oob_region *oobregion) { struct nand_chip *chip = mtd_to_nand(mtd); struct nand_ecc_ctrl *ecc = &chip->ecc; int ecc_offset = 0; if (section < 0 || section > 1) return -ERANGE; switch (mtd->oobsize) { case 64: ecc_offset = 40; break; case 128: ecc_offset = 80; break; default: return -EINVAL; } if (section == 0) { oobregion->offset = 2; oobregion->length = ecc_offset - 2; } else { oobregion->offset = ecc_offset + ecc->total; oobregion->length = mtd->oobsize - oobregion->offset; } return 0; } static const struct mtd_ooblayout_ops nand_ooblayout_lp_hamming_ops = { .ecc = nand_ooblayout_ecc_lp_hamming, .free = nand_ooblayout_free_lp_hamming, }; static int nand_pairing_dist3_get_info(struct mtd_info *mtd, int page, struct mtd_pairing_info *info) { int lastpage = (mtd->erasesize / mtd->writesize) - 1; int dist = 3; if (page == lastpage) dist = 2; if (!page || (page & 1)) { info->group = 0; info->pair = (page + 1) / 2; } else { info->group = 1; info->pair = (page + 1 - dist) / 2; } return 0; } static int nand_pairing_dist3_get_wunit(struct mtd_info *mtd, const struct mtd_pairing_info *info) { int lastpair = ((mtd->erasesize / mtd->writesize) - 1) / 2; int page = info->pair * 2; int dist = 3; if (!info->group && !info->pair) return 0; if (info->pair == lastpair && info->group) dist = 2; if (!info->group) page--; else if (info->pair) page += dist - 1; if (page >= mtd->erasesize / mtd->writesize) return -EINVAL; return page; } const struct mtd_pairing_scheme dist3_pairing_scheme = { .ngroups = 2, .get_info = nand_pairing_dist3_get_info, .get_wunit = nand_pairing_dist3_get_wunit, }; static int check_offs_len(struct nand_chip *chip, loff_t ofs, uint64_t len) { int ret = 0; /* Start address must align on block boundary */ if (ofs & ((1ULL << chip->phys_erase_shift) - 1)) { pr_debug("%s: unaligned address\n", __func__); ret = -EINVAL; } /* Length must align on block boundary */ if (len & ((1ULL << chip->phys_erase_shift) - 1)) { pr_debug("%s: length not block aligned\n", __func__); ret = -EINVAL; } return ret; } /** * nand_extract_bits - Copy unaligned bits from one buffer to another one * @dst: destination buffer * @dst_off: bit offset at which the writing starts * @src: source buffer * @src_off: bit offset at which the reading starts * @nbits: number of bits to copy from @src to @dst * * Copy bits from one memory region to another (overlap authorized). */ void nand_extract_bits(u8 *dst, unsigned int dst_off, const u8 *src, unsigned int src_off, unsigned int nbits) { unsigned int tmp, n; dst += dst_off / 8; dst_off %= 8; src += src_off / 8; src_off %= 8; while (nbits) { n = min3(8 - dst_off, 8 - src_off, nbits); tmp = (*src >> src_off) & GENMASK(n - 1, 0); *dst &= ~GENMASK(n - 1 + dst_off, dst_off); *dst |= tmp << dst_off; dst_off += n; if (dst_off >= 8) { dst++; dst_off -= 8; } src_off += n; if (src_off >= 8) { src++; src_off -= 8; } nbits -= n; } } EXPORT_SYMBOL_GPL(nand_extract_bits); /** * nand_select_target() - Select a NAND target (A.K.A. die) * @chip: NAND chip object * @cs: the CS line to select. Note that this CS id is always from the chip * PoV, not the controller one * * Select a NAND target so that further operations executed on @chip go to the * selected NAND target. */ void nand_select_target(struct nand_chip *chip, unsigned int cs) { /* * cs should always lie between 0 and nanddev_ntargets(), when that's * not the case it's a bug and the caller should be fixed. */ if (WARN_ON(cs > nanddev_ntargets(&chip->base))) return; chip->cur_cs = cs; if (chip->legacy.select_chip) chip->legacy.select_chip(chip, cs); } EXPORT_SYMBOL_GPL(nand_select_target); /** * nand_deselect_target() - Deselect the currently selected target * @chip: NAND chip object * * Deselect the currently selected NAND target. The result of operations * executed on @chip after the target has been deselected is undefined. */ void nand_deselect_target(struct nand_chip *chip) { if (chip->legacy.select_chip) chip->legacy.select_chip(chip, -1); chip->cur_cs = -1; } EXPORT_SYMBOL_GPL(nand_deselect_target); /** * nand_release_device - [GENERIC] release chip * @chip: NAND chip object * * Release chip lock and wake up anyone waiting on the device. */ static void nand_release_device(struct nand_chip *chip) { /* Release the controller and the chip */ mutex_unlock(&chip->controller->lock); mutex_unlock(&chip->lock); } /** * nand_bbm_get_next_page - Get the next page for bad block markers * @chip: NAND chip object * @page: First page to start checking for bad block marker usage * * Returns an integer that corresponds to the page offset within a block, for * a page that is used to store bad block markers. If no more pages are * available, -EINVAL is returned. */ int nand_bbm_get_next_page(struct nand_chip *chip, int page) { struct mtd_info *mtd = nand_to_mtd(chip); int last_page = ((mtd->erasesize - mtd->writesize) >> chip->page_shift) & chip->pagemask; unsigned int bbm_flags = NAND_BBM_FIRSTPAGE | NAND_BBM_SECONDPAGE | NAND_BBM_LASTPAGE; if (page == 0 && !(chip->options & bbm_flags)) return 0; if (page == 0 && chip->options & NAND_BBM_FIRSTPAGE) return 0; if (page <= 1 && chip->options & NAND_BBM_SECONDPAGE) return 1; if (page <= last_page && chip->options & NAND_BBM_LASTPAGE) return last_page; return -EINVAL; } /** * nand_block_bad - [DEFAULT] Read bad block marker from the chip * @chip: NAND chip object * @ofs: offset from device start * * Check, if the block is bad. */ static int nand_block_bad(struct nand_chip *chip, loff_t ofs) { int first_page, page_offset; int res; u8 bad; first_page = (int)(ofs >> chip->page_shift) & chip->pagemask; page_offset = nand_bbm_get_next_page(chip, 0); while (page_offset >= 0) { res = chip->ecc.read_oob(chip, first_page + page_offset); if (res < 0) return res; bad = chip->oob_poi[chip->badblockpos]; if (likely(chip->badblockbits == 8)) res = bad != 0xFF; else res = hweight8(bad) < chip->badblockbits; if (res) return res; page_offset = nand_bbm_get_next_page(chip, page_offset + 1); } return 0; } static int nand_isbad_bbm(struct nand_chip *chip, loff_t ofs) { if (chip->options & NAND_NO_BBM_QUIRK) return 0; if (chip->legacy.block_bad) return chip->legacy.block_bad(chip, ofs); return nand_block_bad(chip, ofs); } /** * nand_get_device - [GENERIC] Get chip for selected access * @chip: NAND chip structure * * Lock the device and its controller for exclusive access * * Return: -EBUSY if the chip has been suspended, 0 otherwise */ static int nand_get_device(struct nand_chip *chip) { mutex_lock(&chip->lock); if (chip->suspended) { mutex_unlock(&chip->lock); return -EBUSY; } mutex_lock(&chip->controller->lock); return 0; } /** * nand_check_wp - [GENERIC] check if the chip is write protected * @chip: NAND chip object * * Check, if the device is write protected. The function expects, that the * device is already selected. */ static int nand_check_wp(struct nand_chip *chip) { u8 status; int ret; /* Broken xD cards report WP despite being writable */ if (chip->options & NAND_BROKEN_XD) return 0; /* Check the WP bit */ ret = nand_status_op(chip, &status); if (ret) return ret; return status & NAND_STATUS_WP ? 0 : 1; } /** * nand_fill_oob - [INTERN] Transfer client buffer to oob * @chip: NAND chip object * @oob: oob data buffer * @len: oob data write length * @ops: oob ops structure */ static uint8_t *nand_fill_oob(struct nand_chip *chip, uint8_t *oob, size_t len, struct mtd_oob_ops *ops) { struct mtd_info *mtd = nand_to_mtd(chip); int ret; /* * Initialise to all 0xFF, to avoid the possibility of left over OOB * data from a previous OOB read. */ memset(chip->oob_poi, 0xff, mtd->oobsize); switch (ops->mode) { case MTD_OPS_PLACE_OOB: case MTD_OPS_RAW: memcpy(chip->oob_poi + ops->ooboffs, oob, len); return oob + len; case MTD_OPS_AUTO_OOB: ret = mtd_ooblayout_set_databytes(mtd, oob, chip->oob_poi, ops->ooboffs, len); BUG_ON(ret); return oob + len; default: BUG(); } return NULL; } /** * nand_do_write_oob - [MTD Interface] NAND write out-of-band * @chip: NAND chip object * @to: offset to write to * @ops: oob operation description structure * * NAND write out-of-band. */ static int nand_do_write_oob(struct nand_chip *chip, loff_t to, struct mtd_oob_ops *ops) { struct mtd_info *mtd = nand_to_mtd(chip); int chipnr, page, status, len, ret; pr_debug("%s: to = 0x%08x, len = %i\n", __func__, (unsigned int)to, (int)ops->ooblen); len = mtd_oobavail(mtd, ops); /* Do not allow write past end of page */ if ((ops->ooboffs + ops->ooblen) > len) { pr_debug("%s: attempt to write past end of page\n", __func__); return -EINVAL; } chipnr = (int)(to >> chip->chip_shift); /* * Reset the chip. Some chips (like the Toshiba TC5832DC found in one * of my DiskOnChip 2000 test units) will clear the whole data page too * if we don't do this. I have no clue why, but I seem to have 'fixed' * it in the doc2000 driver in August 1999. dwmw2. */ ret = nand_reset(chip, chipnr); if (ret) return ret; nand_select_target(chip, chipnr); /* Shift to get page */ page = (int)(to >> chip->page_shift); /* Check, if it is write protected */ if (nand_check_wp(chip)) { nand_deselect_target(chip); return -EROFS; } /* Invalidate the page cache, if we write to the cached page */ if (page == chip->pagecache.page) chip->pagecache.page = -1; nand_fill_oob(chip, ops->oobbuf, ops->ooblen, ops); if (ops->mode == MTD_OPS_RAW) status = chip->ecc.write_oob_raw(chip, page & chip->pagemask); else status = chip->ecc.write_oob(chip, page & chip->pagemask); nand_deselect_target(chip); if (status) return status; ops->oobretlen = ops->ooblen; return 0; } /** * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker * @chip: NAND chip object * @ofs: offset from device start * * This is the default implementation, which can be overridden by a hardware * specific driver. It provides the details for writing a bad block marker to a * block. */ static int nand_default_block_markbad(struct nand_chip *chip, loff_t ofs) { struct mtd_info *mtd = nand_to_mtd(chip); struct mtd_oob_ops ops; uint8_t buf[2] = { 0, 0 }; int ret = 0, res, page_offset; memset(&ops, 0, sizeof(ops)); ops.oobbuf = buf; ops.ooboffs = chip->badblockpos; if (chip->options & NAND_BUSWIDTH_16) { ops.ooboffs &= ~0x01; ops.len = ops.ooblen = 2; } else { ops.len = ops.ooblen = 1; } ops.mode = MTD_OPS_PLACE_OOB; page_offset = nand_bbm_get_next_page(chip, 0); while (page_offset >= 0) { res = nand_do_write_oob(chip, ofs + (page_offset * mtd->writesize), &ops); if (!ret) ret = res; page_offset = nand_bbm_get_next_page(chip, page_offset + 1); } return ret; } /** * nand_markbad_bbm - mark a block by updating the BBM * @chip: NAND chip object * @ofs: offset of the block to mark bad */ int nand_markbad_bbm(struct nand_chip *chip, loff_t ofs) { if (chip->legacy.block_markbad) return chip->legacy.block_markbad(chip, ofs); return nand_default_block_markbad(chip, ofs); } /** * nand_block_markbad_lowlevel - mark a block bad * @chip: NAND chip object * @ofs: offset from device start * * This function performs the generic NAND bad block marking steps (i.e., bad * block table(s) and/or marker(s)). We only allow the hardware driver to * specify how to write bad block markers to OOB (chip->legacy.block_markbad). * * We try operations in the following order: * * (1) erase the affected block, to allow OOB marker to be written cleanly * (2) write bad block marker to OOB area of affected block (unless flag * NAND_BBT_NO_OOB_BBM is present) * (3) update the BBT * * Note that we retain the first error encountered in (2) or (3), finish the * procedures, and dump the error in the end. */ static int nand_block_markbad_lowlevel(struct nand_chip *chip, loff_t ofs) { struct mtd_info *mtd = nand_to_mtd(chip); int res, ret = 0; if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) { struct erase_info einfo; /* Attempt erase before marking OOB */ memset(&einfo, 0, sizeof(einfo)); einfo.addr = ofs; einfo.len = 1ULL << chip->phys_erase_shift; nand_erase_nand(chip, &einfo, 0); /* Write bad block marker to OOB */ ret = nand_get_device(chip); if (ret) return ret; ret = nand_markbad_bbm(chip, ofs); nand_release_device(chip); } /* Mark block bad in BBT */ if (chip->bbt) { res = nand_markbad_bbt(chip, ofs); if (!ret) ret = res; } if (!ret) mtd->ecc_stats.badblocks++; return ret; } /** * nand_block_isreserved - [GENERIC] Check if a block is marked reserved. * @mtd: MTD device structure * @ofs: offset from device start * * Check if the block is marked as reserved. */ static int nand_block_isreserved(struct mtd_info *mtd, loff_t ofs) { struct nand_chip *chip = mtd_to_nand(mtd); if (!chip->bbt) return 0; /* Return info from the table */ return nand_isreserved_bbt(chip, ofs); } /** * nand_block_checkbad - [GENERIC] Check if a block is marked bad * @chip: NAND chip object * @ofs: offset from device start * @allowbbt: 1, if its allowed to access the bbt area * * Check, if the block is bad. Either by reading the bad block table or * calling of the scan function. */ static int nand_block_checkbad(struct nand_chip *chip, loff_t ofs, int allowbbt) { /* Return info from the table */ if (chip->bbt) return nand_isbad_bbt(chip, ofs, allowbbt); return nand_isbad_bbm(chip, ofs); } /** * nand_soft_waitrdy - Poll STATUS reg until RDY bit is set to 1 * @chip: NAND chip structure * @timeout_ms: Timeout in ms * * Poll the STATUS register using ->exec_op() until the RDY bit becomes 1. * If that does not happen whitin the specified timeout, -ETIMEDOUT is * returned. * * This helper is intended to be used when the controller does not have access * to the NAND R/B pin. * * Be aware that calling this helper from an ->exec_op() implementation means * ->exec_op() must be re-entrant. * * Return 0 if the NAND chip is ready, a negative error otherwise. */ int nand_soft_waitrdy(struct nand_chip *chip, unsigned long timeout_ms) { const struct nand_sdr_timings *timings; u8 status = 0; int ret; if (!nand_has_exec_op(chip)) return -ENOTSUPP; /* Wait tWB before polling the STATUS reg. */ timings = nand_get_sdr_timings(&chip->data_interface); ndelay(PSEC_TO_NSEC(timings->tWB_max)); ret = nand_status_op(chip, NULL); if (ret) return ret; /* * +1 below is necessary because if we are now in the last fraction * of jiffy and msecs_to_jiffies is 1 then we will wait only that * small jiffy fraction - possibly leading to false timeout */ timeout_ms = jiffies + msecs_to_jiffies(timeout_ms) + 1; do { ret = nand_read_data_op(chip, &status, sizeof(status), true, false); if (ret) break; if (status & NAND_STATUS_READY) break; /* * Typical lowest execution time for a tR on most NANDs is 10us, * use this as polling delay before doing something smarter (ie. * deriving a delay from the timeout value, timeout_ms/ratio). */ udelay(10); } while (time_before(jiffies, timeout_ms)); /* * We have to exit READ_STATUS mode in order to read real data on the * bus in case the WAITRDY instruction is preceding a DATA_IN * instruction. */ nand_exit_status_op(chip); if (ret) return ret; return status & NAND_STATUS_READY ? 0 : -ETIMEDOUT; }; EXPORT_SYMBOL_GPL(nand_soft_waitrdy); /** * nand_gpio_waitrdy - Poll R/B GPIO pin until ready * @chip: NAND chip structure * @gpiod: GPIO descriptor of R/B pin * @timeout_ms: Timeout in ms * * Poll the R/B GPIO pin until it becomes ready. If that does not happen * whitin the specified timeout, -ETIMEDOUT is returned. * * This helper is intended to be used when the controller has access to the * NAND R/B pin over GPIO. * * Return 0 if the R/B pin indicates chip is ready, a negative error otherwise. */ int nand_gpio_waitrdy(struct nand_chip *chip, struct gpio_desc *gpiod, unsigned long timeout_ms) { /* * Wait until R/B pin indicates chip is ready or timeout occurs. * +1 below is necessary because if we are now in the last fraction * of jiffy and msecs_to_jiffies is 1 then we will wait only that * small jiffy fraction - possibly leading to false timeout. */ timeout_ms = jiffies + msecs_to_jiffies(timeout_ms) + 1; do { if (gpiod_get_value_cansleep(gpiod)) return 0; cond_resched(); } while (time_before(jiffies, timeout_ms)); return gpiod_get_value_cansleep(gpiod) ? 0 : -ETIMEDOUT; }; EXPORT_SYMBOL_GPL(nand_gpio_waitrdy); /** * panic_nand_wait - [GENERIC] wait until the command is done * @chip: NAND chip structure * @timeo: timeout * * Wait for command done. This is a helper function for nand_wait used when * we are in interrupt context. May happen when in panic and trying to write * an oops through mtdoops. */ void panic_nand_wait(struct nand_chip *chip, unsigned long timeo) { int i; for (i = 0; i < timeo; i++) { if (chip->legacy.dev_ready) { if (chip->legacy.dev_ready(chip)) break; } else { int ret; u8 status; ret = nand_read_data_op(chip, &status, sizeof(status), true, false); if (ret) return; if (status & NAND_STATUS_READY) break; } mdelay(1); } } static bool nand_supports_get_features(struct nand_chip *chip, int addr) { return (chip->parameters.supports_set_get_features && test_bit(addr, chip->parameters.get_feature_list)); } static bool nand_supports_set_features(struct nand_chip *chip, int addr) { return (chip->parameters.supports_set_get_features && test_bit(addr, chip->parameters.set_feature_list)); } /** * nand_reset_data_interface - Reset data interface and timings * @chip: The NAND chip * @chipnr: Internal die id * * Reset the Data interface and timings to ONFI mode 0. * * Returns 0 for success or negative error code otherwise. */ static int nand_reset_data_interface(struct nand_chip *chip, int chipnr) { int ret; if (!nand_has_setup_data_iface(chip)) return 0; /* * The ONFI specification says: * " * To transition from NV-DDR or NV-DDR2 to the SDR data * interface, the host shall use the Reset (FFh) command * using SDR timing mode 0. A device in any timing mode is * required to recognize Reset (FFh) command issued in SDR * timing mode 0. * " * * Configure the data interface in SDR mode and set the * timings to timing mode 0. */ onfi_fill_data_interface(chip, NAND_SDR_IFACE, 0); ret = chip->controller->ops->setup_data_interface(chip, chipnr, &chip->data_interface); if (ret) pr_err("Failed to configure data interface to SDR timing mode 0\n"); return ret; } /** * nand_setup_data_interface - Setup the best data interface and timings * @chip: The NAND chip * @chipnr: Internal die id * * Find and configure the best data interface and NAND timings supported by * the chip and the driver. * First tries to retrieve supported timing modes from ONFI information, * and if the NAND chip does not support ONFI, relies on the * ->onfi_timing_mode_default specified in the nand_ids table. * * Returns 0 for success or negative error code otherwise. */ static int nand_setup_data_interface(struct nand_chip *chip, int chipnr) { u8 tmode_param[ONFI_SUBFEATURE_PARAM_LEN] = { chip->onfi_timing_mode_default, }; int ret; if (!nand_has_setup_data_iface(chip)) return 0; /* Change the mode on the chip side (if supported by the NAND chip) */ if (nand_supports_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE)) { nand_select_target(chip, chipnr); ret = nand_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE, tmode_param); nand_deselect_target(chip); if (ret) return ret; } /* Change the mode on the controller side */ ret = chip->controller->ops->setup_data_interface(chip, chipnr, &chip->data_interface); if (ret) return ret; /* Check the mode has been accepted by the chip, if supported */ if (!nand_supports_get_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE)) return 0; memset(tmode_param, 0, ONFI_SUBFEATURE_PARAM_LEN); nand_select_target(chip, chipnr); ret = nand_get_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE, tmode_param); nand_deselect_target(chip); if (ret) goto err_reset_chip; if (tmode_param[0] != chip->onfi_timing_mode_default) { pr_warn("timing mode %d not acknowledged by the NAND chip\n", chip->onfi_timing_mode_default); goto err_reset_chip; } return 0; err_reset_chip: /* * Fallback to mode 0 if the chip explicitly did not ack the chosen * timing mode. */ nand_reset_data_interface(chip, chipnr); nand_select_target(chip, chipnr); nand_reset_op(chip); nand_deselect_target(chip); return ret; } /** * nand_init_data_interface - find the best data interface and timings * @chip: The NAND chip * * Find the best data interface and NAND timings supported by the chip * and the driver. * First tries to retrieve supported timing modes from ONFI information, * and if the NAND chip does not support ONFI, relies on the * ->onfi_timing_mode_default specified in the nand_ids table. After this * function nand_chip->data_interface is initialized with the best timing mode * available. * * Returns 0 for success or negative error code otherwise. */ static int nand_init_data_interface(struct nand_chip *chip) { int modes, mode, ret; if (!nand_has_setup_data_iface(chip)) return 0; /* * First try to identify the best timings from ONFI parameters and * if the NAND does not support ONFI, fallback to the default ONFI * timing mode. */ if (chip->parameters.onfi) { modes = chip->parameters.onfi->async_timing_mode; } else { if (!chip->onfi_timing_mode_default) return 0; modes = GENMASK(chip->onfi_timing_mode_default, 0); } for (mode = fls(modes) - 1; mode >= 0; mode--) { ret = onfi_fill_data_interface(chip, NAND_SDR_IFACE, mode); if (ret) continue; /* * Pass NAND_DATA_IFACE_CHECK_ONLY to only check if the * controller supports the requested timings. */ ret = chip->controller->ops->setup_data_interface(chip, NAND_DATA_IFACE_CHECK_ONLY, &chip->data_interface); if (!ret) { chip->onfi_timing_mode_default = mode; break; } } return 0; } /** * nand_fill_column_cycles - fill the column cycles of an address * @chip: The NAND chip * @addrs: Array of address cycles to fill * @offset_in_page: The offset in the page * * Fills the first or the first two bytes of the @addrs field depending * on the NAND bus width and the page size. * * Returns the number of cycles needed to encode the column, or a negative * error code in case one of the arguments is invalid. */ static int nand_fill_column_cycles(struct nand_chip *chip, u8 *addrs, unsigned int offset_in_page) { struct mtd_info *mtd = nand_to_mtd(chip); /* Make sure the offset is less than the actual page size. */ if (offset_in_page > mtd->writesize + mtd->oobsize) return -EINVAL; /* * On small page NANDs, there's a dedicated command to access the OOB * area, and the column address is relative to the start of the OOB * area, not the start of the page. Asjust the address accordingly. */ if (mtd->writesize <= 512 && offset_in_page >= mtd->writesize) offset_in_page -= mtd->writesize; /* * The offset in page is expressed in bytes, if the NAND bus is 16-bit * wide, then it must be divided by 2. */ if (chip->options & NAND_BUSWIDTH_16) { if (WARN_ON(offset_in_page % 2)) return -EINVAL; offset_in_page /= 2; } addrs[0] = offset_in_page; /* * Small page NANDs use 1 cycle for the columns, while large page NANDs * need 2 */ if (mtd->writesize <= 512) return 1; addrs[1] = offset_in_page >> 8; return 2; } static int nand_sp_exec_read_page_op(struct nand_chip *chip, unsigned int page, unsigned int offset_in_page, void *buf, unsigned int len) { struct mtd_info *mtd = nand_to_mtd(chip); const struct nand_sdr_timings *sdr = nand_get_sdr_timings(&chip->data_interface); u8 addrs[4]; struct nand_op_instr instrs[] = { NAND_OP_CMD(NAND_CMD_READ0, 0), NAND_OP_ADDR(3, addrs, PSEC_TO_NSEC(sdr->tWB_max)), NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tR_max), PSEC_TO_NSEC(sdr->tRR_min)), NAND_OP_DATA_IN(len, buf, 0), }; struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); int ret; /* Drop the DATA_IN instruction if len is set to 0. */ if (!len) op.ninstrs--; if (offset_in_page >= mtd->writesize) instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB; else if (offset_in_page >= 256 && !(chip->options & NAND_BUSWIDTH_16)) instrs[0].ctx.cmd.opcode = NAND_CMD_READ1; ret = nand_fill_column_cycles(chip, addrs, offset_in_page); if (ret < 0) return ret; addrs[1] = page; addrs[2] = page >> 8; if (chip->options & NAND_ROW_ADDR_3) { addrs[3] = page >> 16; instrs[1].ctx.addr.naddrs++; } return nand_exec_op(chip, &op); } static int nand_lp_exec_read_page_op(struct nand_chip *chip, unsigned int page, unsigned int offset_in_page, void *buf, unsigned int len) { const struct nand_sdr_timings *sdr = nand_get_sdr_timings(&chip->data_interface); u8 addrs[5]; struct nand_op_instr instrs[] = { NAND_OP_CMD(NAND_CMD_READ0, 0), NAND_OP_ADDR(4, addrs, 0), NAND_OP_CMD(NAND_CMD_READSTART, PSEC_TO_NSEC(sdr->tWB_max)), NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tR_max), PSEC_TO_NSEC(sdr->tRR_min)), NAND_OP_DATA_IN(len, buf, 0), }; struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); int ret; /* Drop the DATA_IN instruction if len is set to 0. */ if (!len) op.ninstrs--; ret = nand_fill_column_cycles(chip, addrs, offset_in_page); if (ret < 0) return ret; addrs[2] = page; addrs[3] = page >> 8; if (chip->options & NAND_ROW_ADDR_3) { addrs[4] = page >> 16; instrs[1].ctx.addr.naddrs++; } return nand_exec_op(chip, &op); } /** * nand_read_page_op - Do a READ PAGE operation * @chip: The NAND chip * @page: page to read * @offset_in_page: offset within the page * @buf: buffer used to store the data * @len: length of the buffer * * This function issues a READ PAGE operation. * This function does not select/unselect the CS line. * * Returns 0 on success, a negative error code otherwise. */ int nand_read_page_op(struct nand_chip *chip, unsigned int page, unsigned int offset_in_page, void *buf, unsigned int len) { struct mtd_info *mtd = nand_to_mtd(chip); if (len && !buf) return -EINVAL; if (offset_in_page + len > mtd->writesize + mtd->oobsize) return -EINVAL; if (nand_has_exec_op(chip)) { if (mtd->writesize > 512) return nand_lp_exec_read_page_op(chip, page, offset_in_page, buf, len); return nand_sp_exec_read_page_op(chip, page, offset_in_page, buf, len); } chip->legacy.cmdfunc(chip, NAND_CMD_READ0, offset_in_page, page); if (len) chip->legacy.read_buf(chip, buf, len); return 0; } EXPORT_SYMBOL_GPL(nand_read_page_op); /** * nand_read_param_page_op - Do a READ PARAMETER PAGE operation * @chip: The NAND chip * @page: parameter page to read * @buf: buffer used to store the data * @len: length of the buffer * * This function issues a READ PARAMETER PAGE operation. * This function does not select/unselect the CS line. * * Returns 0 on success, a negative error code otherwise. */ int nand_read_param_page_op(struct nand_chip *chip, u8 page, void *buf, unsigned int len) { unsigned int i; u8 *p = buf; if (len && !buf) return -EINVAL; if (nand_has_exec_op(chip)) { const struct nand_sdr_timings *sdr = nand_get_sdr_timings(&chip->data_interface); struct nand_op_instr instrs[] = { NAND_OP_CMD(NAND_CMD_PARAM, 0), NAND_OP_ADDR(1, &page, PSEC_TO_NSEC(sdr->tWB_max)), NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tR_max), PSEC_TO_NSEC(sdr->tRR_min)), NAND_OP_8BIT_DATA_IN(len, buf, 0), }; struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); /* Drop the DATA_IN instruction if len is set to 0. */ if (!len) op.ninstrs--; return nand_exec_op(chip, &op); } chip->legacy.cmdfunc(chip, NAND_CMD_PARAM, page, -1); for (i = 0; i < len; i++) p[i] = chip->legacy.read_byte(chip); return 0; } /** * nand_change_read_column_op - Do a CHANGE READ COLUMN operation * @chip: The NAND chip * @offset_in_page: offset within the page * @buf: buffer used to store the data * @len: length of the buffer * @force_8bit: force 8-bit bus access * * This function issues a CHANGE READ COLUMN operation. * This function does not select/unselect the CS line. * * Returns 0 on success, a negative error code otherwise. */ int nand_change_read_column_op(struct nand_chip *chip, unsigned int offset_in_page, void *buf, unsigned int len, bool force_8bit) { struct mtd_info *mtd = nand_to_mtd(chip); if (len && !buf) return -EINVAL; if (offset_in_page + len > mtd->writesize + mtd->oobsize) return -EINVAL; /* Small page NANDs do not support column change. */ if (mtd->writesize <= 512) return -ENOTSUPP; if (nand_has_exec_op(chip)) { const struct nand_sdr_timings *sdr = nand_get_sdr_timings(&chip->data_interface); u8 addrs[2] = {}; struct nand_op_instr instrs[] = { NAND_OP_CMD(NAND_CMD_RNDOUT, 0), NAND_OP_ADDR(2, addrs, 0), NAND_OP_CMD(NAND_CMD_RNDOUTSTART, PSEC_TO_NSEC(sdr->tCCS_min)), NAND_OP_DATA_IN(len, buf, 0), }; struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); int ret; ret = nand_fill_column_cycles(chip, addrs, offset_in_page); if (ret < 0) return ret; /* Drop the DATA_IN instruction if len is set to 0. */ if (!len) op.ninstrs--; instrs[3].ctx.data.force_8bit = force_8bit; return nand_exec_op(chip, &op); } chip->legacy.cmdfunc(chip, NAND_CMD_RNDOUT, offset_in_page, -1); if (len) chip->legacy.read_buf(chip, buf, len); return 0; } EXPORT_SYMBOL_GPL(nand_change_read_column_op); /** * nand_read_oob_op - Do a READ OOB operation * @chip: The NAND chip * @page: page to read * @offset_in_oob: offset within the OOB area * @buf: buffer used to store the data * @len: length of the buffer * * This function issues a READ OOB operation. * This function does not select/unselect the CS line. * * Returns 0 on success, a negative error code otherwise. */ int nand_read_oob_op(struct nand_chip *chip, unsigned int page, unsigned int offset_in_oob, void *buf, unsigned int len) { struct mtd_info *mtd = nand_to_mtd(chip); if (len && !buf) return -EINVAL; if (offset_in_oob + len > mtd->oobsize) return -EINVAL; if (nand_has_exec_op(chip)) return nand_read_page_op(chip, page, mtd->writesize + offset_in_oob, buf, len); chip->legacy.cmdfunc(chip, NAND_CMD_READOOB, offset_in_oob, page); if (len) chip->legacy.read_buf(chip, buf, len); return 0; } EXPORT_SYMBOL_GPL(nand_read_oob_op); static int nand_exec_prog_page_op(struct nand_chip *chip, unsigned int page, unsigned int offset_in_page, const void *buf, unsigned int len, bool prog) { struct mtd_info *mtd = nand_to_mtd(chip); const struct nand_sdr_timings *sdr = nand_get_sdr_timings(&chip->data_interface); u8 addrs[5] = {}; struct nand_op_instr instrs[] = { /* * The first instruction will be dropped if we're dealing * with a large page NAND and adjusted if we're dealing * with a small page NAND and the page offset is > 255. */ NAND_OP_CMD(NAND_CMD_READ0, 0), NAND_OP_CMD(NAND_CMD_SEQIN, 0), NAND_OP_ADDR(0, addrs, PSEC_TO_NSEC(sdr->tADL_min)), NAND_OP_DATA_OUT(len, buf, 0), NAND_OP_CMD(NAND_CMD_PAGEPROG, PSEC_TO_NSEC(sdr->tWB_max)), NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tPROG_max), 0), }; struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); int naddrs = nand_fill_column_cycles(chip, addrs, offset_in_page); int ret; u8 status; if (naddrs < 0) return naddrs; addrs[naddrs++] = page; addrs[naddrs++] = page >> 8; if (chip->options & NAND_ROW_ADDR_3) addrs[naddrs++] = page >> 16; instrs[2].ctx.addr.naddrs = naddrs; /* Drop the last two instructions if we're not programming the page. */ if (!prog) { op.ninstrs -= 2; /* Also drop the DATA_OUT instruction if empty. */ if (!len) op.ninstrs--; } if (mtd->writesize <= 512) { /* * Small pages need some more tweaking: we have to adjust the * first instruction depending on the page offset we're trying * to access. */ if (offset_in_page >= mtd->writesize) instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB; else if (offset_in_page >= 256 && !(chip->options & NAND_BUSWIDTH_16)) instrs[0].ctx.cmd.opcode = NAND_CMD_READ1; } else { /* * Drop the first command if we're dealing with a large page * NAND. */ op.instrs++; op.ninstrs--; } ret = nand_exec_op(chip, &op); if (!prog || ret) return ret; ret = nand_status_op(chip, &status); if (ret) return ret; return status; } /** * nand_prog_page_begin_op - starts a PROG PAGE operation * @chip: The NAND chip * @page: page to write * @offset_in_page: offset within the page * @buf: buffer containing the data to write to the page * @len: length of the buffer * * This function issues the first half of a PROG PAGE operation. * This function does not select/unselect the CS line. * * Returns 0 on success, a negative error code otherwise. */ int nand_prog_page_begin_op(struct nand_chip *chip, unsigned int page, unsigned int offset_in_page, const void *buf, unsigned int len) { struct mtd_info *mtd = nand_to_mtd(chip); if (len && !buf) return -EINVAL; if (offset_in_page + len > mtd->writesize + mtd->oobsize) return -EINVAL; if (nand_has_exec_op(chip)) return nand_exec_prog_page_op(chip, page, offset_in_page, buf, len, false); chip->legacy.cmdfunc(chip, NAND_CMD_SEQIN, offset_in_page, page); if (buf) chip->legacy.write_buf(chip, buf, len); return 0; } EXPORT_SYMBOL_GPL(nand_prog_page_begin_op); /** * nand_prog_page_end_op - ends a PROG PAGE operation * @chip: The NAND chip * * This function issues the second half of a PROG PAGE operation. * This function does not select/unselect the CS line. * * Returns 0 on success, a negative error code otherwise. */ int nand_prog_page_end_op(struct nand_chip *chip) { int ret; u8 status; if (nand_has_exec_op(chip)) { const struct nand_sdr_timings *sdr = nand_get_sdr_timings(&chip->data_interface); struct nand_op_instr instrs[] = { NAND_OP_CMD(NAND_CMD_PAGEPROG, PSEC_TO_NSEC(sdr->tWB_max)), NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tPROG_max), 0), }; struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); ret = nand_exec_op(chip, &op); if (ret) return ret; ret = nand_status_op(chip, &status); if (ret) return ret; } else { chip->legacy.cmdfunc(chip, NAND_CMD_PAGEPROG, -1, -1); ret = chip->legacy.waitfunc(chip); if (ret < 0) return ret; status = ret; } if (status & NAND_STATUS_FAIL) return -EIO; return 0; } EXPORT_SYMBOL_GPL(nand_prog_page_end_op); /** * nand_prog_page_op - Do a full PROG PAGE operation * @chip: The NAND chip * @page: page to write * @offset_in_page: offset within the page * @buf: buffer containing the data to write to the page * @len: length of the buffer * * This function issues a full PROG PAGE operation. * This function does not select/unselect the CS line. * * Returns 0 on success, a negative error code otherwise. */ int nand_prog_page_op(struct nand_chip *chip, unsigned int page, unsigned int offset_in_page, const void *buf, unsigned int len) { struct mtd_info *mtd = nand_to_mtd(chip); int status; if (!len || !buf) return -EINVAL; if (offset_in_page + len > mtd->writesize + mtd->oobsize) return -EINVAL; if (nand_has_exec_op(chip)) { status = nand_exec_prog_page_op(chip, page, offset_in_page, buf, len, true); } else { chip->legacy.cmdfunc(chip, NAND_CMD_SEQIN, offset_in_page, page); chip->legacy.write_buf(chip, buf, len); chip->legacy.cmdfunc(chip, NAND_CMD_PAGEPROG, -1, -1); status = chip->legacy.waitfunc(chip); } if (status & NAND_STATUS_FAIL) return -EIO; return 0; } EXPORT_SYMBOL_GPL(nand_prog_page_op); /** * nand_change_write_column_op - Do a CHANGE WRITE COLUMN operation * @chip: The NAND chip * @offset_in_page: offset within the page * @buf: buffer containing the data to send to the NAND * @len: length of the buffer * @force_8bit: force 8-bit bus access * * This function issues a CHANGE WRITE COLUMN operation. * This function does not select/unselect the CS line. * * Returns 0 on success, a negative error code otherwise. */ int nand_change_write_column_op(struct nand_chip *chip, unsigned int offset_in_page, const void *buf, unsigned int len, bool force_8bit) { struct mtd_info *mtd = nand_to_mtd(chip); if (len && !buf) return -EINVAL; if (offset_in_page + len > mtd->writesize + mtd->oobsize) return -EINVAL; /* Small page NANDs do not support column change. */ if (mtd->writesize <= 512) return -ENOTSUPP; if (nand_has_exec_op(chip)) { const struct nand_sdr_timings *sdr = nand_get_sdr_timings(&chip->data_interface); u8 addrs[2]; struct nand_op_instr instrs[] = { NAND_OP_CMD(NAND_CMD_RNDIN, 0), NAND_OP_ADDR(2, addrs, PSEC_TO_NSEC(sdr->tCCS_min)), NAND_OP_DATA_OUT(len, buf, 0), }; struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); int ret; ret = nand_fill_column_cycles(chip, addrs, offset_in_page); if (ret < 0) return ret; instrs[2].ctx.data.force_8bit = force_8bit; /* Drop the DATA_OUT instruction if len is set to 0. */ if (!len) op.ninstrs--; return nand_exec_op(chip, &op); } chip->legacy.cmdfunc(chip, NAND_CMD_RNDIN, offset_in_page, -1); if (len) chip->legacy.write_buf(chip, buf, len); return 0; } EXPORT_SYMBOL_GPL(nand_change_write_column_op); /** * nand_readid_op - Do a READID operation * @chip: The NAND chip * @addr: address cycle to pass after the READID command * @buf: buffer used to store the ID * @len: length of the buffer * * This function sends a READID command and reads back the ID returned by the * NAND. * This function does not select/unselect the CS line. * * Returns 0 on success, a negative error code otherwise. */ int nand_readid_op(struct nand_chip *chip, u8 addr, void *buf, unsigned int len) { unsigned int i; u8 *id = buf; if (len && !buf) return -EINVAL; if (nand_has_exec_op(chip)) { const struct nand_sdr_timings *sdr = nand_get_sdr_timings(&chip->data_interface); struct nand_op_instr instrs[] = { NAND_OP_CMD(NAND_CMD_READID, 0), NAND_OP_ADDR(1, &addr, PSEC_TO_NSEC(sdr->tADL_min)), NAND_OP_8BIT_DATA_IN(len, buf, 0), }; struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); /* Drop the DATA_IN instruction if len is set to 0. */ if (!len) op.ninstrs--; return nand_exec_op(chip, &op); } chip->legacy.cmdfunc(chip, NAND_CMD_READID, addr, -1); for (i = 0; i < len; i++) id[i] = chip->legacy.read_byte(chip); return 0; } EXPORT_SYMBOL_GPL(nand_readid_op); /** * nand_status_op - Do a STATUS operation * @chip: The NAND chip * @status: out variable to store the NAND status * * This function sends a STATUS command and reads back the status returned by * the NAND. * This function does not select/unselect the CS line. * * Returns 0 on success, a negative error code otherwise. */ int nand_status_op(struct nand_chip *chip, u8 *status) { if (nand_has_exec_op(chip)) { const struct nand_sdr_timings *sdr = nand_get_sdr_timings(&chip->data_interface); struct nand_op_instr instrs[] = { NAND_OP_CMD(NAND_CMD_STATUS, PSEC_TO_NSEC(sdr->tADL_min)), NAND_OP_8BIT_DATA_IN(1, status, 0), }; struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); if (!status) op.ninstrs--; return nand_exec_op(chip, &op); } chip->legacy.cmdfunc(chip, NAND_CMD_STATUS, -1, -1); if (status) *status = chip->legacy.read_byte(chip); return 0; } EXPORT_SYMBOL_GPL(nand_status_op); /** * nand_exit_status_op - Exit a STATUS operation * @chip: The NAND chip * * This function sends a READ0 command to cancel the effect of the STATUS * command to avoid reading only the status until a new read command is sent. * * This function does not select/unselect the CS line. * * Returns 0 on success, a negative error code otherwise. */ int nand_exit_status_op(struct nand_chip *chip) { if (nand_has_exec_op(chip)) { struct nand_op_instr instrs[] = { NAND_OP_CMD(NAND_CMD_READ0, 0), }; struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); return nand_exec_op(chip, &op); } chip->legacy.cmdfunc(chip, NAND_CMD_READ0, -1, -1); return 0; } /** * nand_erase_op - Do an erase operation * @chip: The NAND chip * @eraseblock: block to erase * * This function sends an ERASE command and waits for the NAND to be ready * before returning. * This function does not select/unselect the CS line. * * Returns 0 on success, a negative error code otherwise. */ int nand_erase_op(struct nand_chip *chip, unsigned int eraseblock) { unsigned int page = eraseblock << (chip->phys_erase_shift - chip->page_shift); int ret; u8 status; if (nand_has_exec_op(chip)) { const struct nand_sdr_timings *sdr = nand_get_sdr_timings(&chip->data_interface); u8 addrs[3] = { page, page >> 8, page >> 16 }; struct nand_op_instr instrs[] = { NAND_OP_CMD(NAND_CMD_ERASE1, 0), NAND_OP_ADDR(2, addrs, 0), NAND_OP_CMD(NAND_CMD_ERASE2, PSEC_TO_MSEC(sdr->tWB_max)), NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tBERS_max), 0), }; struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); if (chip->options & NAND_ROW_ADDR_3) instrs[1].ctx.addr.naddrs++; ret = nand_exec_op(chip, &op); if (ret) return ret; ret = nand_status_op(chip, &status); if (ret) return ret; } else { chip->legacy.cmdfunc(chip, NAND_CMD_ERASE1, -1, page); chip->legacy.cmdfunc(chip, NAND_CMD_ERASE2, -1, -1); ret = chip->legacy.waitfunc(chip); if (ret < 0) return ret; status = ret; } if (status & NAND_STATUS_FAIL) return -EIO; return 0; } EXPORT_SYMBOL_GPL(nand_erase_op); /** * nand_set_features_op - Do a SET FEATURES operation * @chip: The NAND chip * @feature: feature id * @data: 4 bytes of data * * This function sends a SET FEATURES command and waits for the NAND to be * ready before returning. * This function does not select/unselect the CS line. * * Returns 0 on success, a negative error code otherwise. */ static int nand_set_features_op(struct nand_chip *chip, u8 feature, const void *data) { const u8 *params = data; int i, ret; if (nand_has_exec_op(chip)) { const struct nand_sdr_timings *sdr = nand_get_sdr_timings(&chip->data_interface); struct nand_op_instr instrs[] = { NAND_OP_CMD(NAND_CMD_SET_FEATURES, 0), NAND_OP_ADDR(1, &feature, PSEC_TO_NSEC(sdr->tADL_min)), NAND_OP_8BIT_DATA_OUT(ONFI_SUBFEATURE_PARAM_LEN, data, PSEC_TO_NSEC(sdr->tWB_max)), NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tFEAT_max), 0), }; struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); return nand_exec_op(chip, &op); } chip->legacy.cmdfunc(chip, NAND_CMD_SET_FEATURES, feature, -1); for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i) chip->legacy.write_byte(chip, params[i]); ret = chip->legacy.waitfunc(chip); if (ret < 0) return ret; if (ret & NAND_STATUS_FAIL) return -EIO; return 0; } /** * nand_get_features_op - Do a GET FEATURES operation * @chip: The NAND chip * @feature: feature id * @data: 4 bytes of data * * This function sends a GET FEATURES command and waits for the NAND to be * ready before returning. * This function does not select/unselect the CS line. * * Returns 0 on success, a negative error code otherwise. */ static int nand_get_features_op(struct nand_chip *chip, u8 feature, void *data) { u8 *params = data; int i; if (nand_has_exec_op(chip)) { const struct nand_sdr_timings *sdr = nand_get_sdr_timings(&chip->data_interface); struct nand_op_instr instrs[] = { NAND_OP_CMD(NAND_CMD_GET_FEATURES, 0), NAND_OP_ADDR(1, &feature, PSEC_TO_NSEC(sdr->tWB_max)), NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tFEAT_max), PSEC_TO_NSEC(sdr->tRR_min)), NAND_OP_8BIT_DATA_IN(ONFI_SUBFEATURE_PARAM_LEN, data, 0), }; struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); return nand_exec_op(chip, &op); } chip->legacy.cmdfunc(chip, NAND_CMD_GET_FEATURES, feature, -1); for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i) params[i] = chip->legacy.read_byte(chip); return 0; } static int nand_wait_rdy_op(struct nand_chip *chip, unsigned int timeout_ms, unsigned int delay_ns) { if (nand_has_exec_op(chip)) { struct nand_op_instr instrs[] = { NAND_OP_WAIT_RDY(PSEC_TO_MSEC(timeout_ms), PSEC_TO_NSEC(delay_ns)), }; struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); return nand_exec_op(chip, &op); } /* Apply delay or wait for ready/busy pin */ if (!chip->legacy.dev_ready) udelay(chip->legacy.chip_delay); else nand_wait_ready(chip); return 0; } /** * nand_reset_op - Do a reset operation * @chip: The NAND chip * * This function sends a RESET command and waits for the NAND to be ready * before returning. * This function does not select/unselect the CS line. * * Returns 0 on success, a negative error code otherwise. */ int nand_reset_op(struct nand_chip *chip) { if (nand_has_exec_op(chip)) { const struct nand_sdr_timings *sdr = nand_get_sdr_timings(&chip->data_interface); struct nand_op_instr instrs[] = { NAND_OP_CMD(NAND_CMD_RESET, PSEC_TO_NSEC(sdr->tWB_max)), NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tRST_max), 0), }; struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); return nand_exec_op(chip, &op); } chip->legacy.cmdfunc(chip, NAND_CMD_RESET, -1, -1); return 0; } EXPORT_SYMBOL_GPL(nand_reset_op); /** * nand_read_data_op - Read data from the NAND * @chip: The NAND chip * @buf: buffer used to store the data * @len: length of the buffer * @force_8bit: force 8-bit bus access * @check_only: do not actually run the command, only checks if the * controller driver supports it * * This function does a raw data read on the bus. Usually used after launching * another NAND operation like nand_read_page_op(). * This function does not select/unselect the CS line. * * Returns 0 on success, a negative error code otherwise. */ int nand_read_data_op(struct nand_chip *chip, void *buf, unsigned int len, bool force_8bit, bool check_only) { if (!len || !buf) return -EINVAL; if (nand_has_exec_op(chip)) { struct nand_op_instr instrs[] = { NAND_OP_DATA_IN(len, buf, 0), }; struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); instrs[0].ctx.data.force_8bit = force_8bit; if (check_only) return nand_check_op(chip, &op); return nand_exec_op(chip, &op); } if (check_only) return 0; if (force_8bit) { u8 *p = buf; unsigned int i; for (i = 0; i < len; i++) p[i] = chip->legacy.read_byte(chip); } else { chip->legacy.read_buf(chip, buf, len); } return 0; } EXPORT_SYMBOL_GPL(nand_read_data_op); /** * nand_write_data_op - Write data from the NAND * @chip: The NAND chip * @buf: buffer containing the data to send on the bus * @len: length of the buffer * @force_8bit: force 8-bit bus access * * This function does a raw data write on the bus. Usually used after launching * another NAND operation like nand_write_page_begin_op(). * This function does not select/unselect the CS line. * * Returns 0 on success, a negative error code otherwise. */ int nand_write_data_op(struct nand_chip *chip, const void *buf, unsigned int len, bool force_8bit) { if (!len || !buf) return -EINVAL; if (nand_has_exec_op(chip)) { struct nand_op_instr instrs[] = { NAND_OP_DATA_OUT(len, buf, 0), }; struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs); instrs[0].ctx.data.force_8bit = force_8bit; return nand_exec_op(chip, &op); } if (force_8bit) { const u8 *p = buf; unsigned int i; for (i = 0; i < len; i++) chip->legacy.write_byte(chip, p[i]); } else { chip->legacy.write_buf(chip, buf, len); } return 0; } EXPORT_SYMBOL_GPL(nand_write_data_op); /** * struct nand_op_parser_ctx - Context used by the parser * @instrs: array of all the instructions that must be addressed * @ninstrs: length of the @instrs array * @subop: Sub-operation to be passed to the NAND controller * * This structure is used by the core to split NAND operations into * sub-operations that can be handled by the NAND controller. */ struct nand_op_parser_ctx { const struct nand_op_instr *instrs; unsigned int ninstrs; struct nand_subop subop; }; /** * nand_op_parser_must_split_instr - Checks if an instruction must be split * @pat: the parser pattern element that matches @instr * @instr: pointer to the instruction to check * @start_offset: this is an in/out parameter. If @instr has already been * split, then @start_offset is the offset from which to start * (either an address cycle or an offset in the data buffer). * Conversely, if the function returns true (ie. instr must be * split), this parameter is updated to point to the first * data/address cycle that has not been taken care of. * * Some NAND controllers are limited and cannot send X address cycles with a * unique operation, or cannot read/write more than Y bytes at the same time. * In this case, split the instruction that does not fit in a single * controller-operation into two or more chunks. * * Returns true if the instruction must be split, false otherwise. * The @start_offset parameter is also updated to the offset at which the next * bundle of instruction must start (if an address or a data instruction). */ static bool nand_op_parser_must_split_instr(const struct nand_op_parser_pattern_elem *pat, const struct nand_op_instr *instr, unsigned int *start_offset) { switch (pat->type) { case NAND_OP_ADDR_INSTR: if (!pat->ctx.addr.maxcycles) break; if (instr->ctx.addr.naddrs - *start_offset > pat->ctx.addr.maxcycles) { *start_offset += pat->ctx.addr.maxcycles; return true; } break; case NAND_OP_DATA_IN_INSTR: case NAND_OP_DATA_OUT_INSTR: if (!pat->ctx.data.maxlen) break; if (instr->ctx.data.len - *start_offset > pat->ctx.data.maxlen) { *start_offset += pat->ctx.data.maxlen; return true; } break; default: break; } return false; } /** * nand_op_parser_match_pat - Checks if a pattern matches the instructions * remaining in the parser context * @pat: the pattern to test * @ctx: the parser context structure to match with the pattern @pat * * Check if @pat matches the set or a sub-set of instructions remaining in @ctx. * Returns true if this is the case, false ortherwise. When true is returned, * @ctx->subop is updated with the set of instructions to be passed to the * controller driver. */ static bool nand_op_parser_match_pat(const struct nand_op_parser_pattern *pat, struct nand_op_parser_ctx *ctx) { unsigned int instr_offset = ctx->subop.first_instr_start_off; const struct nand_op_instr *end = ctx->instrs + ctx->ninstrs; const struct nand_op_instr *instr = ctx->subop.instrs; unsigned int i, ninstrs; for (i = 0, ninstrs = 0; i < pat->nelems && instr < end; i++) { /* * The pattern instruction does not match the operation * instruction. If the instruction is marked optional in the * pattern definition, we skip the pattern element and continue * to the next one. If the element is mandatory, there's no * match and we can return false directly. */ if (instr->type != pat->elems[i].type) { if (!pat->elems[i].optional) return false; continue; } /* * Now check the pattern element constraints. If the pattern is * not able to handle the whole instruction in a single step, * we have to split it. * The last_instr_end_off value comes back updated to point to * the position where we have to split the instruction (the * start of the next subop chunk). */ if (nand_op_parser_must_split_instr(&pat->elems[i], instr, &instr_offset)) { ninstrs++; i++; break; } instr++; ninstrs++; instr_offset = 0; } /* * This can happen if all instructions of a pattern are optional. * Still, if there's not at least one instruction handled by this * pattern, this is not a match, and we should try the next one (if * any). */ if (!ninstrs) return false; /* * We had a match on the pattern head, but the pattern may be longer * than the instructions we're asked to execute. We need to make sure * there's no mandatory elements in the pattern tail. */ for (; i < pat->nelems; i++) { if (!pat->elems[i].optional) return false; } /* * We have a match: update the subop structure accordingly and return * true. */ ctx->subop.ninstrs = ninstrs; ctx->subop.last_instr_end_off = instr_offset; return true; } #if IS_ENABLED(CONFIG_DYNAMIC_DEBUG) || defined(DEBUG) static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx) { const struct nand_op_instr *instr; char *prefix = " "; unsigned int i; pr_debug("executing subop (CS%d):\n", ctx->subop.cs); for (i = 0; i < ctx->ninstrs; i++) { instr = &ctx->instrs[i]; if (instr == &ctx->subop.instrs[0]) prefix = " ->"; nand_op_trace(prefix, instr); if (instr == &ctx->subop.instrs[ctx->subop.ninstrs - 1]) prefix = " "; } } #else static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx) { /* NOP */ } #endif static int nand_op_parser_cmp_ctx(const struct nand_op_parser_ctx *a, const struct nand_op_parser_ctx *b) { if (a->subop.ninstrs < b->subop.ninstrs) return -1; else if (a->subop.ninstrs > b->subop.ninstrs) return 1; if (a->subop.last_instr_end_off < b->subop.last_instr_end_off) return -1; else if (a->subop.last_instr_end_off > b->subop.last_instr_end_off) return 1; return 0; } /** * nand_op_parser_exec_op - exec_op parser * @chip: the NAND chip * @parser: patterns description provided by the controller driver * @op: the NAND operation to address * @check_only: when true, the function only checks if @op can be handled but * does not execute the operation * * Helper function designed to ease integration of NAND controller drivers that * only support a limited set of instruction sequences. The supported sequences * are described in @parser, and the framework takes care of splitting @op into * multiple sub-operations (if required) and pass them back to the ->exec() * callback of the matching pattern if @check_only is set to false. * * NAND controller drivers should call this function from their own ->exec_op() * implementation. * * Returns 0 on success, a negative error code otherwise. A failure can be * caused by an unsupported operation (none of the supported patterns is able * to handle the requested operation), or an error returned by one of the * matching pattern->exec() hook. */ int nand_op_parser_exec_op(struct nand_chip *chip, const struct nand_op_parser *parser, const struct nand_operation *op, bool check_only) { struct nand_op_parser_ctx ctx = { .subop.cs = op->cs, .subop.instrs = op->instrs, .instrs = op->instrs, .ninstrs = op->ninstrs, }; unsigned int i; while (ctx.subop.instrs < op->instrs + op->ninstrs) { const struct nand_op_parser_pattern *pattern; struct nand_op_parser_ctx best_ctx; int ret, best_pattern = -1; for (i = 0; i < parser->npatterns; i++) { struct nand_op_parser_ctx test_ctx = ctx; pattern = &parser->patterns[i]; if (!nand_op_parser_match_pat(pattern, &test_ctx)) continue; if (best_pattern >= 0 && nand_op_parser_cmp_ctx(&test_ctx, &best_ctx) <= 0) continue; best_pattern = i; best_ctx = test_ctx; } if (best_pattern < 0) { pr_debug("->exec_op() parser: pattern not found!\n"); return -ENOTSUPP; } ctx = best_ctx; nand_op_parser_trace(&ctx); if (!check_only) { pattern = &parser->patterns[best_pattern]; ret = pattern->exec(chip, &ctx.subop); if (ret) return ret; } /* * Update the context structure by pointing to the start of the * next subop. */ ctx.subop.instrs = ctx.subop.instrs + ctx.subop.ninstrs; if (ctx.subop.last_instr_end_off) ctx.subop.instrs -= 1; ctx.subop.first_instr_start_off = ctx.subop.last_instr_end_off; } return 0; } EXPORT_SYMBOL_GPL(nand_op_parser_exec_op); static bool nand_instr_is_data(const struct nand_op_instr *instr) { return instr && (instr->type == NAND_OP_DATA_IN_INSTR || instr->type == NAND_OP_DATA_OUT_INSTR); } static bool nand_subop_instr_is_valid(const struct nand_subop *subop, unsigned int instr_idx) { return subop && instr_idx < subop->ninstrs; } static unsigned int nand_subop_get_start_off(const struct nand_subop *subop, unsigned int instr_idx) { if (instr_idx) return 0; return subop->first_instr_start_off; } /** * nand_subop_get_addr_start_off - Get the start offset in an address array * @subop: The entire sub-operation * @instr_idx: Index of the instruction inside the sub-operation * * During driver development, one could be tempted to directly use the * ->addr.addrs field of address instructions. This is wrong as address * instructions might be split. * * Given an address instruction, returns the offset of the first cycle to issue. */ unsigned int nand_subop_get_addr_start_off(const struct nand_subop *subop, unsigned int instr_idx) { if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) || subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR)) return 0; return nand_subop_get_start_off(subop, instr_idx); } EXPORT_SYMBOL_GPL(nand_subop_get_addr_start_off); /** * nand_subop_get_num_addr_cyc - Get the remaining address cycles to assert * @subop: The entire sub-operation * @instr_idx: Index of the instruction inside the sub-operation * * During driver development, one could be tempted to directly use the * ->addr->naddrs field of a data instruction. This is wrong as instructions * might be split. * * Given an address instruction, returns the number of address cycle to issue. */ unsigned int nand_subop_get_num_addr_cyc(const struct nand_subop *subop, unsigned int instr_idx) { int start_off, end_off; if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) || subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR)) return 0; start_off = nand_subop_get_addr_start_off(subop, instr_idx); if (instr_idx == subop->ninstrs - 1 && subop->last_instr_end_off) end_off = subop->last_instr_end_off; else end_off = subop->instrs[instr_idx].ctx.addr.naddrs; return end_off - start_off; } EXPORT_SYMBOL_GPL(nand_subop_get_num_addr_cyc); /** * nand_subop_get_data_start_off - Get the start offset in a data array * @subop: The entire sub-operation * @instr_idx: Index of the instruction inside the sub-operation * * During driver development, one could be tempted to directly use the * ->data->buf.{in,out} field of data instructions. This is wrong as data * instructions might be split. * * Given a data instruction, returns the offset to start from. */ unsigned int nand_subop_get_data_start_off(const struct nand_subop *subop, unsigned int instr_idx) { if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) || !nand_instr_is_data(&subop->instrs[instr_idx]))) return 0; return nand_subop_get_start_off(subop, instr_idx); } EXPORT_SYMBOL_GPL(nand_subop_get_data_start_off); /** * nand_subop_get_data_len - Get the number of bytes to retrieve * @subop: The entire sub-operation * @instr_idx: Index of the instruction inside the sub-operation * * During driver development, one could be tempted to directly use the * ->data->len field of a data instruction. This is wrong as data instructions * might be split. * * Returns the length of the chunk of data to send/receive. */ unsigned int nand_subop_get_data_len(const struct nand_subop *subop, unsigned int instr_idx) { int start_off = 0, end_off; if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) || !nand_instr_is_data(&subop->instrs[instr_idx]))) return 0; start_off = nand_subop_get_data_start_off(subop, instr_idx); if (instr_idx == subop->ninstrs - 1 && subop->last_instr_end_off) end_off = subop->last_instr_end_off; else end_off = subop->instrs[instr_idx].ctx.data.len; return end_off - start_off; } EXPORT_SYMBOL_GPL(nand_subop_get_data_len); /** * nand_reset - Reset and initialize a NAND device * @chip: The NAND chip * @chipnr: Internal die id * * Save the timings data structure, then apply SDR timings mode 0 (see * nand_reset_data_interface for details), do the reset operation, and * apply back the previous timings. * * Returns 0 on success, a negative error code otherwise. */ int nand_reset(struct nand_chip *chip, int chipnr) { struct nand_data_interface saved_data_intf = chip->data_interface; int ret; ret = nand_reset_data_interface(chip, chipnr); if (ret) return ret; /* * The CS line has to be released before we can apply the new NAND * interface settings, hence this weird nand_select_target() * nand_deselect_target() dance. */ nand_select_target(chip, chipnr); ret = nand_reset_op(chip); nand_deselect_target(chip); if (ret) return ret; /* * A nand_reset_data_interface() put both the NAND chip and the NAND * controller in timings mode 0. If the default mode for this chip is * also 0, no need to proceed to the change again. Plus, at probe time, * nand_setup_data_interface() uses ->set/get_features() which would * fail anyway as the parameter page is not available yet. */ if (!chip->onfi_timing_mode_default) return 0; chip->data_interface = saved_data_intf; ret = nand_setup_data_interface(chip, chipnr); if (ret) return ret; return 0; } EXPORT_SYMBOL_GPL(nand_reset); /** * nand_get_features - wrapper to perform a GET_FEATURE * @chip: NAND chip info structure * @addr: feature address * @subfeature_param: the subfeature parameters, a four bytes array * * Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the * operation cannot be handled. */ int nand_get_features(struct nand_chip *chip, int addr, u8 *subfeature_param) { if (!nand_supports_get_features(chip, addr)) return -ENOTSUPP; if (chip->legacy.get_features) return chip->legacy.get_features(chip, addr, subfeature_param); return nand_get_features_op(chip, addr, subfeature_param); } /** * nand_set_features - wrapper to perform a SET_FEATURE * @chip: NAND chip info structure * @addr: feature address * @subfeature_param: the subfeature parameters, a four bytes array * * Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the * operation cannot be handled. */ int nand_set_features(struct nand_chip *chip, int addr, u8 *subfeature_param) { if (!nand_supports_set_features(chip, addr)) return -ENOTSUPP; if (chip->legacy.set_features) return chip->legacy.set_features(chip, addr, subfeature_param); return nand_set_features_op(chip, addr, subfeature_param); } /** * nand_check_erased_buf - check if a buffer contains (almost) only 0xff data * @buf: buffer to test * @len: buffer length * @bitflips_threshold: maximum number of bitflips * * Check if a buffer contains only 0xff, which means the underlying region * has been erased and is ready to be programmed. * The bitflips_threshold specify the maximum number of bitflips before * considering the region is not erased. * Note: The logic of this function has been extracted from the memweight * implementation, except that nand_check_erased_buf function exit before * testing the whole buffer if the number of bitflips exceed the * bitflips_threshold value. * * Returns a positive number of bitflips less than or equal to * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the * threshold. */ static int nand_check_erased_buf(void *buf, int len, int bitflips_threshold) { const unsigned char *bitmap = buf; int bitflips = 0; int weight; for (; len && ((uintptr_t)bitmap) % sizeof(long); len--, bitmap++) { weight = hweight8(*bitmap); bitflips += BITS_PER_BYTE - weight; if (unlikely(bitflips > bitflips_threshold)) return -EBADMSG; } for (; len >= sizeof(long); len -= sizeof(long), bitmap += sizeof(long)) { unsigned long d = *((unsigned long *)bitmap); if (d == ~0UL) continue; weight = hweight_long(d); bitflips += BITS_PER_LONG - weight; if (unlikely(bitflips > bitflips_threshold)) return -EBADMSG; } for (; len > 0; len--, bitmap++) { weight = hweight8(*bitmap); bitflips += BITS_PER_BYTE - weight; if (unlikely(bitflips > bitflips_threshold)) return -EBADMSG; } return bitflips; } /** * nand_check_erased_ecc_chunk - check if an ECC chunk contains (almost) only * 0xff data * @data: data buffer to test * @datalen: data length * @ecc: ECC buffer * @ecclen: ECC length * @extraoob: extra OOB buffer * @extraooblen: extra OOB length * @bitflips_threshold: maximum number of bitflips * * Check if a data buffer and its associated ECC and OOB data contains only * 0xff pattern, which means the underlying region has been erased and is * ready to be programmed. * The bitflips_threshold specify the maximum number of bitflips before * considering the region as not erased. * * Note: * 1/ ECC algorithms are working on pre-defined block sizes which are usually * different from the NAND page size. When fixing bitflips, ECC engines will * report the number of errors per chunk, and the NAND core infrastructure * expect you to return the maximum number of bitflips for the whole page. * This is why you should always use this function on a single chunk and * not on the whole page. After checking each chunk you should update your * max_bitflips value accordingly. * 2/ When checking for bitflips in erased pages you should not only check * the payload data but also their associated ECC data, because a user might * have programmed almost all bits to 1 but a few. In this case, we * shouldn't consider the chunk as erased, and checking ECC bytes prevent * this case. * 3/ The extraoob argument is optional, and should be used if some of your OOB * data are protected by the ECC engine. * It could also be used if you support subpages and want to attach some * extra OOB data to an ECC chunk. * * Returns a positive number of bitflips less than or equal to * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the * threshold. In case of success, the passed buffers are filled with 0xff. */ int nand_check_erased_ecc_chunk(void *data, int datalen, void *ecc, int ecclen, void *extraoob, int extraooblen, int bitflips_threshold) { int data_bitflips = 0, ecc_bitflips = 0, extraoob_bitflips = 0; data_bitflips = nand_check_erased_buf(data, datalen, bitflips_threshold); if (data_bitflips < 0) return data_bitflips; bitflips_threshold -= data_bitflips; ecc_bitflips = nand_check_erased_buf(ecc, ecclen, bitflips_threshold); if (ecc_bitflips < 0) return ecc_bitflips; bitflips_threshold -= ecc_bitflips; extraoob_bitflips = nand_check_erased_buf(extraoob, extraooblen, bitflips_threshold); if (extraoob_bitflips < 0) return extraoob_bitflips; if (data_bitflips) memset(data, 0xff, datalen); if (ecc_bitflips) memset(ecc, 0xff, ecclen); if (extraoob_bitflips) memset(extraoob, 0xff, extraooblen); return data_bitflips + ecc_bitflips + extraoob_bitflips; } EXPORT_SYMBOL(nand_check_erased_ecc_chunk); /** * nand_read_page_raw_notsupp - dummy read raw page function * @chip: nand chip info structure * @buf: buffer to store read data * @oob_required: caller requires OOB data read to chip->oob_poi * @page: page number to read * * Returns -ENOTSUPP unconditionally. */ int nand_read_page_raw_notsupp(struct nand_chip *chip, u8 *buf, int oob_required, int page) { return -ENOTSUPP; } /** * nand_read_page_raw - [INTERN] read raw page data without ecc * @chip: nand chip info structure * @buf: buffer to store read data * @oob_required: caller requires OOB data read to chip->oob_poi * @page: page number to read * * Not for syndrome calculating ECC controllers, which use a special oob layout. */ int nand_read_page_raw(struct nand_chip *chip, uint8_t *buf, int oob_required, int page) { struct mtd_info *mtd = nand_to_mtd(chip); int ret; ret = nand_read_page_op(chip, page, 0, buf, mtd->writesize); if (ret) return ret; if (oob_required) { ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, false, false); if (ret) return ret; } return 0; } EXPORT_SYMBOL(nand_read_page_raw); /** * nand_monolithic_read_page_raw - Monolithic page read in raw mode * @chip: NAND chip info structure * @buf: buffer to store read data * @oob_required: caller requires OOB data read to chip->oob_poi * @page: page number to read * * This is a raw page read, ie. without any error detection/correction. * Monolithic means we are requesting all the relevant data (main plus * eventually OOB) to be loaded in the NAND cache and sent over the * bus (from the NAND chip to the NAND controller) in a single * operation. This is an alternative to nand_read_page_raw(), which * first reads the main data, and if the OOB data is requested too, * then reads more data on the bus. */ int nand_monolithic_read_page_raw(struct nand_chip *chip, u8 *buf, int oob_required, int page) { struct mtd_info *mtd = nand_to_mtd(chip); unsigned int size = mtd->writesize; u8 *read_buf = buf; int ret; if (oob_required) { size += mtd->oobsize; if (buf != chip->data_buf) read_buf = nand_get_data_buf(chip); } ret = nand_read_page_op(chip, page, 0, read_buf, size); if (ret) return ret; if (buf != chip->data_buf) memcpy(buf, read_buf, mtd->writesize); return 0; } EXPORT_SYMBOL(nand_monolithic_read_page_raw); /** * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc * @chip: nand chip info structure * @buf: buffer to store read data * @oob_required: caller requires OOB data read to chip->oob_poi * @page: page number to read * * We need a special oob layout and handling even when OOB isn't used. */ static int nand_read_page_raw_syndrome(struct nand_chip *chip, uint8_t *buf, int oob_required, int page) { struct mtd_info *mtd = nand_to_mtd(chip); int eccsize = chip->ecc.size; int eccbytes = chip->ecc.bytes; uint8_t *oob = chip->oob_poi; int steps, size, ret; ret = nand_read_page_op(chip, page, 0, NULL, 0); if (ret) return ret; for (steps = chip->ecc.steps; steps > 0; steps--) { ret = nand_read_data_op(chip, buf, eccsize, false, false); if (ret) return ret; buf += eccsize; if (chip->ecc.prepad) { ret = nand_read_data_op(chip, oob, chip->ecc.prepad, false, false); if (ret) return ret; oob += chip->ecc.prepad; } ret = nand_read_data_op(chip, oob, eccbytes, false, false); if (ret) return ret; oob += eccbytes; if (chip->ecc.postpad) { ret = nand_read_data_op(chip, oob, chip->ecc.postpad, false, false); if (ret) return ret; oob += chip->ecc.postpad; } } size = mtd->oobsize - (oob - chip->oob_poi); if (size) { ret = nand_read_data_op(chip, oob, size, false, false); if (ret) return ret; } return 0; } /** * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function * @chip: nand chip info structure * @buf: buffer to store read data * @oob_required: caller requires OOB data read to chip->oob_poi * @page: page number to read */ static int nand_read_page_swecc(struct nand_chip *chip, uint8_t *buf, int oob_required, int page) { struct mtd_info *mtd = nand_to_mtd(chip); int i, eccsize = chip->ecc.size, ret; int eccbytes = chip->ecc.bytes; int eccsteps = chip->ecc.steps; uint8_t *p = buf; uint8_t *ecc_calc = chip->ecc.calc_buf; uint8_t *ecc_code = chip->ecc.code_buf; unsigned int max_bitflips = 0; chip->ecc.read_page_raw(chip, buf, 1, page); for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) chip->ecc.calculate(chip, p, &ecc_calc[i]); ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0, chip->ecc.total); if (ret) return ret; eccsteps = chip->ecc.steps; p = buf; for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { int stat; stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]); if (stat < 0) { mtd->ecc_stats.failed++; } else { mtd->ecc_stats.corrected += stat; max_bitflips = max_t(unsigned int, max_bitflips, stat); } } return max_bitflips; } /** * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function * @chip: nand chip info structure * @data_offs: offset of requested data within the page * @readlen: data length * @bufpoi: buffer to store read data * @page: page number to read */ static int nand_read_subpage(struct nand_chip *chip, uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi, int page) { struct mtd_info *mtd = nand_to_mtd(chip); int start_step, end_step, num_steps, ret; uint8_t *p; int data_col_addr, i, gaps = 0; int datafrag_len, eccfrag_len, aligned_len, aligned_pos; int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1; int index, section = 0; unsigned int max_bitflips = 0; struct mtd_oob_region oobregion = { }; /* Column address within the page aligned to ECC size (256bytes) */ start_step = data_offs / chip->ecc.size; end_step = (data_offs + readlen - 1) / chip->ecc.size; num_steps = end_step - start_step + 1; index = start_step * chip->ecc.bytes; /* Data size aligned to ECC ecc.size */ datafrag_len = num_steps * chip->ecc.size; eccfrag_len = num_steps * chip->ecc.bytes; data_col_addr = start_step * chip->ecc.size; /* If we read not a page aligned data */ p = bufpoi + data_col_addr; ret = nand_read_page_op(chip, page, data_col_addr, p, datafrag_len); if (ret) return ret; /* Calculate ECC */ for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) chip->ecc.calculate(chip, p, &chip->ecc.calc_buf[i]); /* * The performance is faster if we position offsets according to * ecc.pos. Let's make sure that there are no gaps in ECC positions. */ ret = mtd_ooblayout_find_eccregion(mtd, index, §ion, &oobregion); if (ret) return ret; if (oobregion.length < eccfrag_len) gaps = 1; if (gaps) { ret = nand_change_read_column_op(chip, mtd->writesize, chip->oob_poi, mtd->oobsize, false); if (ret) return ret; } else { /* * Send the command to read the particular ECC bytes take care * about buswidth alignment in read_buf. */ aligned_pos = oobregion.offset & ~(busw - 1); aligned_len = eccfrag_len; if (oobregion.offset & (busw - 1)) aligned_len++; if ((oobregion.offset + (num_steps * chip->ecc.bytes)) & (busw - 1)) aligned_len++; ret = nand_change_read_column_op(chip, mtd->writesize + aligned_pos, &chip->oob_poi[aligned_pos], aligned_len, false); if (ret) return ret; } ret = mtd_ooblayout_get_eccbytes(mtd, chip->ecc.code_buf, chip->oob_poi, index, eccfrag_len); if (ret) return ret; p = bufpoi + data_col_addr; for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) { int stat; stat = chip->ecc.correct(chip, p, &chip->ecc.code_buf[i], &chip->ecc.calc_buf[i]); if (stat == -EBADMSG && (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) { /* check for empty pages with bitflips */ stat = nand_check_erased_ecc_chunk(p, chip->ecc.size, &chip->ecc.code_buf[i], chip->ecc.bytes, NULL, 0, chip->ecc.strength); } if (stat < 0) { mtd->ecc_stats.failed++; } else { mtd->ecc_stats.corrected += stat; max_bitflips = max_t(unsigned int, max_bitflips, stat); } } return max_bitflips; } /** * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function * @chip: nand chip info structure * @buf: buffer to store read data * @oob_required: caller requires OOB data read to chip->oob_poi * @page: page number to read * * Not for syndrome calculating ECC controllers which need a special oob layout. */ static int nand_read_page_hwecc(struct nand_chip *chip, uint8_t *buf, int oob_required, int page) { struct mtd_info *mtd = nand_to_mtd(chip); int i, eccsize = chip->ecc.size, ret; int eccbytes = chip->ecc.bytes; int eccsteps = chip->ecc.steps; uint8_t *p = buf; uint8_t *ecc_calc = chip->ecc.calc_buf; uint8_t *ecc_code = chip->ecc.code_buf; unsigned int max_bitflips = 0; ret = nand_read_page_op(chip, page, 0, NULL, 0); if (ret) return ret; for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { chip->ecc.hwctl(chip, NAND_ECC_READ); ret = nand_read_data_op(chip, p, eccsize, false, false); if (ret) return ret; chip->ecc.calculate(chip, p, &ecc_calc[i]); } ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, false, false); if (ret) return ret; ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0, chip->ecc.total); if (ret) return ret; eccsteps = chip->ecc.steps; p = buf; for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { int stat; stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]); if (stat == -EBADMSG && (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) { /* check for empty pages with bitflips */ stat = nand_check_erased_ecc_chunk(p, eccsize, &ecc_code[i], eccbytes, NULL, 0, chip->ecc.strength); } if (stat < 0) { mtd->ecc_stats.failed++; } else { mtd->ecc_stats.corrected += stat; max_bitflips = max_t(unsigned int, max_bitflips, stat); } } return max_bitflips; } /** * nand_read_page_hwecc_oob_first - [REPLACEABLE] hw ecc, read oob first * @chip: nand chip info structure * @buf: buffer to store read data * @oob_required: caller requires OOB data read to chip->oob_poi * @page: page number to read * * Hardware ECC for large page chips, require OOB to be read first. For this * ECC mode, the write_page method is re-used from ECC_HW. These methods * read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with * multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from * the data area, by overwriting the NAND manufacturer bad block markings. */ static int nand_read_page_hwecc_oob_first(struct nand_chip *chip, uint8_t *buf, int oob_required, int page) { struct mtd_info *mtd = nand_to_mtd(chip); int i, eccsize = chip->ecc.size, ret; int eccbytes = chip->ecc.bytes; int eccsteps = chip->ecc.steps; uint8_t *p = buf; uint8_t *ecc_code = chip->ecc.code_buf; uint8_t *ecc_calc = chip->ecc.calc_buf; unsigned int max_bitflips = 0; /* Read the OOB area first */ ret = nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize); if (ret) return ret; ret = nand_read_page_op(chip, page, 0, NULL, 0); if (ret) return ret; ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0, chip->ecc.total); if (ret) return ret; for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { int stat; chip->ecc.hwctl(chip, NAND_ECC_READ); ret = nand_read_data_op(chip, p, eccsize, false, false); if (ret) return ret; chip->ecc.calculate(chip, p, &ecc_calc[i]); stat = chip->ecc.correct(chip, p, &ecc_code[i], NULL); if (stat == -EBADMSG && (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) { /* check for empty pages with bitflips */ stat = nand_check_erased_ecc_chunk(p, eccsize, &ecc_code[i], eccbytes, NULL, 0, chip->ecc.strength); } if (stat < 0) { mtd->ecc_stats.failed++; } else { mtd->ecc_stats.corrected += stat; max_bitflips = max_t(unsigned int, max_bitflips, stat); } } return max_bitflips; } /** * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read * @chip: nand chip info structure * @buf: buffer to store read data * @oob_required: caller requires OOB data read to chip->oob_poi * @page: page number to read * * The hw generator calculates the error syndrome automatically. Therefore we * need a special oob layout and handling. */ static int nand_read_page_syndrome(struct nand_chip *chip, uint8_t *buf, int oob_required, int page) { struct mtd_info *mtd = nand_to_mtd(chip); int ret, i, eccsize = chip->ecc.size; int eccbytes = chip->ecc.bytes; int eccsteps = chip->ecc.steps; int eccpadbytes = eccbytes + chip->ecc.prepad + chip->ecc.postpad; uint8_t *p = buf; uint8_t *oob = chip->oob_poi; unsigned int max_bitflips = 0; ret = nand_read_page_op(chip, page, 0, NULL, 0); if (ret) return ret; for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { int stat; chip->ecc.hwctl(chip, NAND_ECC_READ); ret = nand_read_data_op(chip, p, eccsize, false, false); if (ret) return ret; if (chip->ecc.prepad) { ret = nand_read_data_op(chip, oob, chip->ecc.prepad, false, false); if (ret) return ret; oob += chip->ecc.prepad; } chip->ecc.hwctl(chip, NAND_ECC_READSYN); ret = nand_read_data_op(chip, oob, eccbytes, false, false); if (ret) return ret; stat = chip->ecc.correct(chip, p, oob, NULL); oob += eccbytes; if (chip->ecc.postpad) { ret = nand_read_data_op(chip, oob, chip->ecc.postpad, false, false); if (ret) return ret; oob += chip->ecc.postpad; } if (stat == -EBADMSG && (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) { /* check for empty pages with bitflips */ stat = nand_check_erased_ecc_chunk(p, chip->ecc.size, oob - eccpadbytes, eccpadbytes, NULL, 0, chip->ecc.strength); } if (stat < 0) { mtd->ecc_stats.failed++; } else { mtd->ecc_stats.corrected += stat; max_bitflips = max_t(unsigned int, max_bitflips, stat); } } /* Calculate remaining oob bytes */ i = mtd->oobsize - (oob - chip->oob_poi); if (i) { ret = nand_read_data_op(chip, oob, i, false, false); if (ret) return ret; } return max_bitflips; } /** * nand_transfer_oob - [INTERN] Transfer oob to client buffer * @chip: NAND chip object * @oob: oob destination address * @ops: oob ops structure * @len: size of oob to transfer */ static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob, struct mtd_oob_ops *ops, size_t len) { struct mtd_info *mtd = nand_to_mtd(chip); int ret; switch (ops->mode) { case MTD_OPS_PLACE_OOB: case MTD_OPS_RAW: memcpy(oob, chip->oob_poi + ops->ooboffs, len); return oob + len; case MTD_OPS_AUTO_OOB: ret = mtd_ooblayout_get_databytes(mtd, oob, chip->oob_poi, ops->ooboffs, len); BUG_ON(ret); return oob + len; default: BUG(); } return NULL; } /** * nand_setup_read_retry - [INTERN] Set the READ RETRY mode * @chip: NAND chip object * @retry_mode: the retry mode to use * * Some vendors supply a special command to shift the Vt threshold, to be used * when there are too many bitflips in a page (i.e., ECC error). After setting * a new threshold, the host should retry reading the page. */ static int nand_setup_read_retry(struct nand_chip *chip, int retry_mode) { pr_debug("setting READ RETRY mode %d\n", retry_mode); if (retry_mode >= chip->read_retries) return -EINVAL; if (!chip->setup_read_retry) return -EOPNOTSUPP; return chip->setup_read_retry(chip, retry_mode); } static void nand_wait_readrdy(struct nand_chip *chip) { const struct nand_sdr_timings *sdr; if (!(chip->options & NAND_NEED_READRDY)) return; sdr = nand_get_sdr_timings(&chip->data_interface); WARN_ON(nand_wait_rdy_op(chip, PSEC_TO_MSEC(sdr->tR_max), 0)); } /** * nand_do_read_ops - [INTERN] Read data with ECC * @chip: NAND chip object * @from: offset to read from * @ops: oob ops structure * * Internal function. Called with chip held. */ static int nand_do_read_ops(struct nand_chip *chip, loff_t from, struct mtd_oob_ops *ops) { int chipnr, page, realpage, col, bytes, aligned, oob_required; struct mtd_info *mtd = nand_to_mtd(chip); int ret = 0; uint32_t readlen = ops->len; uint32_t oobreadlen = ops->ooblen; uint32_t max_oobsize = mtd_oobavail(mtd, ops); uint8_t *bufpoi, *oob, *buf; int use_bounce_buf; unsigned int max_bitflips = 0; int retry_mode = 0; bool ecc_fail = false; chipnr = (int)(from >> chip->chip_shift); nand_select_target(chip, chipnr); realpage = (int)(from >> chip->page_shift); page = realpage & chip->pagemask; col = (int)(from & (mtd->writesize - 1)); buf = ops->datbuf; oob = ops->oobbuf; oob_required = oob ? 1 : 0; while (1) { struct mtd_ecc_stats ecc_stats = mtd->ecc_stats; bytes = min(mtd->writesize - col, readlen); aligned = (bytes == mtd->writesize); if (!aligned) use_bounce_buf = 1; else if (chip->options & NAND_USES_DMA) use_bounce_buf = !virt_addr_valid(buf) || !IS_ALIGNED((unsigned long)buf, chip->buf_align); else use_bounce_buf = 0; /* Is the current page in the buffer? */ if (realpage != chip->pagecache.page || oob) { bufpoi = use_bounce_buf ? chip->data_buf : buf; if (use_bounce_buf && aligned) pr_debug("%s: using read bounce buffer for buf@%p\n", __func__, buf); read_retry: /* * Now read the page into the buffer. Absent an error, * the read methods return max bitflips per ecc step. */ if (unlikely(ops->mode == MTD_OPS_RAW)) ret = chip->ecc.read_page_raw(chip, bufpoi, oob_required, page); else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) && !oob) ret = chip->ecc.read_subpage(chip, col, bytes, bufpoi, page); else ret = chip->ecc.read_page(chip, bufpoi, oob_required, page); if (ret < 0) { if (use_bounce_buf) /* Invalidate page cache */ chip->pagecache.page = -1; break; } /* * Copy back the data in the initial buffer when reading * partial pages or when a bounce buffer is required. */ if (use_bounce_buf) { if (!NAND_HAS_SUBPAGE_READ(chip) && !oob && !(mtd->ecc_stats.failed - ecc_stats.failed) && (ops->mode != MTD_OPS_RAW)) { chip->pagecache.page = realpage; chip->pagecache.bitflips = ret; } else { /* Invalidate page cache */ chip->pagecache.page = -1; } memcpy(buf, bufpoi + col, bytes); } if (unlikely(oob)) { int toread = min(oobreadlen, max_oobsize); if (toread) { oob = nand_transfer_oob(chip, oob, ops, toread); oobreadlen -= toread; } } nand_wait_readrdy(chip); if (mtd->ecc_stats.failed - ecc_stats.failed) { if (retry_mode + 1 < chip->read_retries) { retry_mode++; ret = nand_setup_read_retry(chip, retry_mode); if (ret < 0) break; /* Reset ecc_stats; retry */ mtd->ecc_stats = ecc_stats; goto read_retry; } else { /* No more retry modes; real failure */ ecc_fail = true; } } buf += bytes; max_bitflips = max_t(unsigned int, max_bitflips, ret); } else { memcpy(buf, chip->data_buf + col, bytes); buf += bytes; max_bitflips = max_t(unsigned int, max_bitflips, chip->pagecache.bitflips); } readlen -= bytes; /* Reset to retry mode 0 */ if (retry_mode) { ret = nand_setup_read_retry(chip, 0); if (ret < 0) break; retry_mode = 0; } if (!readlen) break; /* For subsequent reads align to page boundary */ col = 0; /* Increment page address */ realpage++; page = realpage & chip->pagemask; /* Check, if we cross a chip boundary */ if (!page) { chipnr++; nand_deselect_target(chip); nand_select_target(chip, chipnr); } } nand_deselect_target(chip); ops->retlen = ops->len - (size_t) readlen; if (oob) ops->oobretlen = ops->ooblen - oobreadlen; if (ret < 0) return ret; if (ecc_fail) return -EBADMSG; return max_bitflips; } /** * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function * @chip: nand chip info structure * @page: page number to read */ int nand_read_oob_std(struct nand_chip *chip, int page) { struct mtd_info *mtd = nand_to_mtd(chip); return nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize); } EXPORT_SYMBOL(nand_read_oob_std); /** * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC * with syndromes * @chip: nand chip info structure * @page: page number to read */ static int nand_read_oob_syndrome(struct nand_chip *chip, int page) { struct mtd_info *mtd = nand_to_mtd(chip); int length = mtd->oobsize; int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad; int eccsize = chip->ecc.size; uint8_t *bufpoi = chip->oob_poi; int i, toread, sndrnd = 0, pos, ret; ret = nand_read_page_op(chip, page, chip->ecc.size, NULL, 0); if (ret) return ret; for (i = 0; i < chip->ecc.steps; i++) { if (sndrnd) { int ret; pos = eccsize + i * (eccsize + chunk); if (mtd->writesize > 512) ret = nand_change_read_column_op(chip, pos, NULL, 0, false); else ret = nand_read_page_op(chip, page, pos, NULL, 0); if (ret) return ret; } else sndrnd = 1; toread = min_t(int, length, chunk); ret = nand_read_data_op(chip, bufpoi, toread, false, false); if (ret) return ret; bufpoi += toread; length -= toread; } if (length > 0) { ret = nand_read_data_op(chip, bufpoi, length, false, false); if (ret) return ret; } return 0; } /** * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function * @chip: nand chip info structure * @page: page number to write */ int nand_write_oob_std(struct nand_chip *chip, int page) { struct mtd_info *mtd = nand_to_mtd(chip); return nand_prog_page_op(chip, page, mtd->writesize, chip->oob_poi, mtd->oobsize); } EXPORT_SYMBOL(nand_write_oob_std); /** * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC * with syndrome - only for large page flash * @chip: nand chip info structure * @page: page number to write */ static int nand_write_oob_syndrome(struct nand_chip *chip, int page) { struct mtd_info *mtd = nand_to_mtd(chip); int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad; int eccsize = chip->ecc.size, length = mtd->oobsize; int ret, i, len, pos, sndcmd = 0, steps = chip->ecc.steps; const uint8_t *bufpoi = chip->oob_poi; /* * data-ecc-data-ecc ... ecc-oob * or * data-pad-ecc-pad-data-pad .... ecc-pad-oob */ if (!chip->ecc.prepad && !chip->ecc.postpad) { pos = steps * (eccsize + chunk); steps = 0; } else pos = eccsize; ret = nand_prog_page_begin_op(chip, page, pos, NULL, 0); if (ret) return ret; for (i = 0; i < steps; i++) { if (sndcmd) { if (mtd->writesize <= 512) { uint32_t fill = 0xFFFFFFFF; len = eccsize; while (len > 0) { int num = min_t(int, len, 4); ret = nand_write_data_op(chip, &fill, num, false); if (ret) return ret; len -= num; } } else { pos = eccsize + i * (eccsize + chunk); ret = nand_change_write_column_op(chip, pos, NULL, 0, false); if (ret) return ret; } } else sndcmd = 1; len = min_t(int, length, chunk); ret = nand_write_data_op(chip, bufpoi, len, false); if (ret) return ret; bufpoi += len; length -= len; } if (length > 0) { ret = nand_write_data_op(chip, bufpoi, length, false); if (ret) return ret; } return nand_prog_page_end_op(chip); } /** * nand_do_read_oob - [INTERN] NAND read out-of-band * @chip: NAND chip object * @from: offset to read from * @ops: oob operations description structure * * NAND read out-of-band data from the spare area. */ static int nand_do_read_oob(struct nand_chip *chip, loff_t from, struct mtd_oob_ops *ops) { struct mtd_info *mtd = nand_to_mtd(chip); unsigned int max_bitflips = 0; int page, realpage, chipnr; struct mtd_ecc_stats stats; int readlen = ops->ooblen; int len; uint8_t *buf = ops->oobbuf; int ret = 0; pr_debug("%s: from = 0x%08Lx, len = %i\n", __func__, (unsigned long long)from, readlen); stats = mtd->ecc_stats; len = mtd_oobavail(mtd, ops); chipnr = (int)(from >> chip->chip_shift); nand_select_target(chip, chipnr); /* Shift to get page */ realpage = (int)(from >> chip->page_shift); page = realpage & chip->pagemask; while (1) { if (ops->mode == MTD_OPS_RAW) ret = chip->ecc.read_oob_raw(chip, page); else ret = chip->ecc.read_oob(chip, page); if (ret < 0) break; len = min(len, readlen); buf = nand_transfer_oob(chip, buf, ops, len); nand_wait_readrdy(chip); max_bitflips = max_t(unsigned int, max_bitflips, ret); readlen -= len; if (!readlen) break; /* Increment page address */ realpage++; page = realpage & chip->pagemask; /* Check, if we cross a chip boundary */ if (!page) { chipnr++; nand_deselect_target(chip); nand_select_target(chip, chipnr); } } nand_deselect_target(chip); ops->oobretlen = ops->ooblen - readlen; if (ret < 0) return ret; if (mtd->ecc_stats.failed - stats.failed) return -EBADMSG; return max_bitflips; } /** * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band * @mtd: MTD device structure * @from: offset to read from * @ops: oob operation description structure * * NAND read data and/or out-of-band data. */ static int nand_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops) { struct nand_chip *chip = mtd_to_nand(mtd); int ret; ops->retlen = 0; if (ops->mode != MTD_OPS_PLACE_OOB && ops->mode != MTD_OPS_AUTO_OOB && ops->mode != MTD_OPS_RAW) return -ENOTSUPP; ret = nand_get_device(chip); if (ret) return ret; if (!ops->datbuf) ret = nand_do_read_oob(chip, from, ops); else ret = nand_do_read_ops(chip, from, ops); nand_release_device(chip); return ret; } /** * nand_write_page_raw_notsupp - dummy raw page write function * @chip: nand chip info structure * @buf: data buffer * @oob_required: must write chip->oob_poi to OOB * @page: page number to write * * Returns -ENOTSUPP unconditionally. */ int nand_write_page_raw_notsupp(struct nand_chip *chip, const u8 *buf, int oob_required, int page) { return -ENOTSUPP; } /** * nand_write_page_raw - [INTERN] raw page write function * @chip: nand chip info structure * @buf: data buffer * @oob_required: must write chip->oob_poi to OOB * @page: page number to write * * Not for syndrome calculating ECC controllers, which use a special oob layout. */ int nand_write_page_raw(struct nand_chip *chip, const uint8_t *buf, int oob_required, int page) { struct mtd_info *mtd = nand_to_mtd(chip); int ret; ret = nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize); if (ret) return ret; if (oob_required) { ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false); if (ret) return ret; } return nand_prog_page_end_op(chip); } EXPORT_SYMBOL(nand_write_page_raw); /** * nand_monolithic_write_page_raw - Monolithic page write in raw mode * @chip: NAND chip info structure * @buf: data buffer to write * @oob_required: must write chip->oob_poi to OOB * @page: page number to write * * This is a raw page write, ie. without any error detection/correction. * Monolithic means we are requesting all the relevant data (main plus * eventually OOB) to be sent over the bus and effectively programmed * into the NAND chip arrays in a single operation. This is an * alternative to nand_write_page_raw(), which first sends the main * data, then eventually send the OOB data by latching more data * cycles on the NAND bus, and finally sends the program command to * synchronyze the NAND chip cache. */ int nand_monolithic_write_page_raw(struct nand_chip *chip, const u8 *buf, int oob_required, int page) { struct mtd_info *mtd = nand_to_mtd(chip); unsigned int size = mtd->writesize; u8 *write_buf = (u8 *)buf; if (oob_required) { size += mtd->oobsize; if (buf != chip->data_buf) { write_buf = nand_get_data_buf(chip); memcpy(write_buf, buf, mtd->writesize); } } return nand_prog_page_op(chip, page, 0, write_buf, size); } EXPORT_SYMBOL(nand_monolithic_write_page_raw); /** * nand_write_page_raw_syndrome - [INTERN] raw page write function * @chip: nand chip info structure * @buf: data buffer * @oob_required: must write chip->oob_poi to OOB * @page: page number to write * * We need a special oob layout and handling even when ECC isn't checked. */ static int nand_write_page_raw_syndrome(struct nand_chip *chip, const uint8_t *buf, int oob_required, int page) { struct mtd_info *mtd = nand_to_mtd(chip); int eccsize = chip->ecc.size; int eccbytes = chip->ecc.bytes; uint8_t *oob = chip->oob_poi; int steps, size, ret; ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0); if (ret) return ret; for (steps = chip->ecc.steps; steps > 0; steps--) { ret = nand_write_data_op(chip, buf, eccsize, false); if (ret) return ret; buf += eccsize; if (chip->ecc.prepad) { ret = nand_write_data_op(chip, oob, chip->ecc.prepad, false); if (ret) return ret; oob += chip->ecc.prepad; } ret = nand_write_data_op(chip, oob, eccbytes, false); if (ret) return ret; oob += eccbytes; if (chip->ecc.postpad) { ret = nand_write_data_op(chip, oob, chip->ecc.postpad, false); if (ret) return ret; oob += chip->ecc.postpad; } } size = mtd->oobsize - (oob - chip->oob_poi); if (size) { ret = nand_write_data_op(chip, oob, size, false); if (ret) return ret; } return nand_prog_page_end_op(chip); } /** * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function * @chip: nand chip info structure * @buf: data buffer * @oob_required: must write chip->oob_poi to OOB * @page: page number to write */ static int nand_write_page_swecc(struct nand_chip *chip, const uint8_t *buf, int oob_required, int page) { struct mtd_info *mtd = nand_to_mtd(chip); int i, eccsize = chip->ecc.size, ret; int eccbytes = chip->ecc.bytes; int eccsteps = chip->ecc.steps; uint8_t *ecc_calc = chip->ecc.calc_buf; const uint8_t *p = buf; /* Software ECC calculation */ for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) chip->ecc.calculate(chip, p, &ecc_calc[i]); ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0, chip->ecc.total); if (ret) return ret; return chip->ecc.write_page_raw(chip, buf, 1, page); } /** * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function * @chip: nand chip info structure * @buf: data buffer * @oob_required: must write chip->oob_poi to OOB * @page: page number to write */ static int nand_write_page_hwecc(struct nand_chip *chip, const uint8_t *buf, int oob_required, int page) { struct mtd_info *mtd = nand_to_mtd(chip); int i, eccsize = chip->ecc.size, ret; int eccbytes = chip->ecc.bytes; int eccsteps = chip->ecc.steps; uint8_t *ecc_calc = chip->ecc.calc_buf; const uint8_t *p = buf; ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0); if (ret) return ret; for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { chip->ecc.hwctl(chip, NAND_ECC_WRITE); ret = nand_write_data_op(chip, p, eccsize, false); if (ret) return ret; chip->ecc.calculate(chip, p, &ecc_calc[i]); } ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0, chip->ecc.total); if (ret) return ret; ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false); if (ret) return ret; return nand_prog_page_end_op(chip); } /** * nand_write_subpage_hwecc - [REPLACEABLE] hardware ECC based subpage write * @chip: nand chip info structure * @offset: column address of subpage within the page * @data_len: data length * @buf: data buffer * @oob_required: must write chip->oob_poi to OOB * @page: page number to write */ static int nand_write_subpage_hwecc(struct nand_chip *chip, uint32_t offset, uint32_t data_len, const uint8_t *buf, int oob_required, int page) { struct mtd_info *mtd = nand_to_mtd(chip); uint8_t *oob_buf = chip->oob_poi; uint8_t *ecc_calc = chip->ecc.calc_buf; int ecc_size = chip->ecc.size; int ecc_bytes = chip->ecc.bytes; int ecc_steps = chip->ecc.steps; uint32_t start_step = offset / ecc_size; uint32_t end_step = (offset + data_len - 1) / ecc_size; int oob_bytes = mtd->oobsize / ecc_steps; int step, ret; ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0); if (ret) return ret; for (step = 0; step < ecc_steps; step++) { /* configure controller for WRITE access */ chip->ecc.hwctl(chip, NAND_ECC_WRITE); /* write data (untouched subpages already masked by 0xFF) */ ret = nand_write_data_op(chip, buf, ecc_size, false); if (ret) return ret; /* mask ECC of un-touched subpages by padding 0xFF */ if ((step < start_step) || (step > end_step)) memset(ecc_calc, 0xff, ecc_bytes); else chip->ecc.calculate(chip, buf, ecc_calc); /* mask OOB of un-touched subpages by padding 0xFF */ /* if oob_required, preserve OOB metadata of written subpage */ if (!oob_required || (step < start_step) || (step > end_step)) memset(oob_buf, 0xff, oob_bytes); buf += ecc_size; ecc_calc += ecc_bytes; oob_buf += oob_bytes; } /* copy calculated ECC for whole page to chip->buffer->oob */ /* this include masked-value(0xFF) for unwritten subpages */ ecc_calc = chip->ecc.calc_buf; ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0, chip->ecc.total); if (ret) return ret; /* write OOB buffer to NAND device */ ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false); if (ret) return ret; return nand_prog_page_end_op(chip); } /** * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write * @chip: nand chip info structure * @buf: data buffer * @oob_required: must write chip->oob_poi to OOB * @page: page number to write * * The hw generator calculates the error syndrome automatically. Therefore we * need a special oob layout and handling. */ static int nand_write_page_syndrome(struct nand_chip *chip, const uint8_t *buf, int oob_required, int page) { struct mtd_info *mtd = nand_to_mtd(chip); int i, eccsize = chip->ecc.size; int eccbytes = chip->ecc.bytes; int eccsteps = chip->ecc.steps; const uint8_t *p = buf; uint8_t *oob = chip->oob_poi; int ret; ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0); if (ret) return ret; for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { chip->ecc.hwctl(chip, NAND_ECC_WRITE); ret = nand_write_data_op(chip, p, eccsize, false); if (ret) return ret; if (chip->ecc.prepad) { ret = nand_write_data_op(chip, oob, chip->ecc.prepad, false); if (ret) return ret; oob += chip->ecc.prepad; } chip->ecc.calculate(chip, p, oob); ret = nand_write_data_op(chip, oob, eccbytes, false); if (ret) return ret; oob += eccbytes; if (chip->ecc.postpad) { ret = nand_write_data_op(chip, oob, chip->ecc.postpad, false); if (ret) return ret; oob += chip->ecc.postpad; } } /* Calculate remaining oob bytes */ i = mtd->oobsize - (oob - chip->oob_poi); if (i) { ret = nand_write_data_op(chip, oob, i, false); if (ret) return ret; } return nand_prog_page_end_op(chip); } /** * nand_write_page - write one page * @chip: NAND chip descriptor * @offset: address offset within the page * @data_len: length of actual data to be written * @buf: the data to write * @oob_required: must write chip->oob_poi to OOB * @page: page number to write * @raw: use _raw version of write_page */ static int nand_write_page(struct nand_chip *chip, uint32_t offset, int data_len, const uint8_t *buf, int oob_required, int page, int raw) { struct mtd_info *mtd = nand_to_mtd(chip); int status, subpage; if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && chip->ecc.write_subpage) subpage = offset || (data_len < mtd->writesize); else subpage = 0; if (unlikely(raw)) status = chip->ecc.write_page_raw(chip, buf, oob_required, page); else if (subpage) status = chip->ecc.write_subpage(chip, offset, data_len, buf, oob_required, page); else status = chip->ecc.write_page(chip, buf, oob_required, page); if (status < 0) return status; return 0; } #define NOTALIGNED(x) ((x & (chip->subpagesize - 1)) != 0) /** * nand_do_write_ops - [INTERN] NAND write with ECC * @chip: NAND chip object * @to: offset to write to * @ops: oob operations description structure * * NAND write with ECC. */ static int nand_do_write_ops(struct nand_chip *chip, loff_t to, struct mtd_oob_ops *ops) { struct mtd_info *mtd = nand_to_mtd(chip); int chipnr, realpage, page, column; uint32_t writelen = ops->len; uint32_t oobwritelen = ops->ooblen; uint32_t oobmaxlen = mtd_oobavail(mtd, ops); uint8_t *oob = ops->oobbuf; uint8_t *buf = ops->datbuf; int ret; int oob_required = oob ? 1 : 0; ops->retlen = 0; if (!writelen) return 0; /* Reject writes, which are not page aligned */ if (NOTALIGNED(to) || NOTALIGNED(ops->len)) { pr_notice("%s: attempt to write non page aligned data\n", __func__); return -EINVAL; } column = to & (mtd->writesize - 1); chipnr = (int)(to >> chip->chip_shift); nand_select_target(chip, chipnr); /* Check, if it is write protected */ if (nand_check_wp(chip)) { ret = -EIO; goto err_out; } realpage = (int)(to >> chip->page_shift); page = realpage & chip->pagemask; /* Invalidate the page cache, when we write to the cached page */ if (to <= ((loff_t)chip->pagecache.page << chip->page_shift) && ((loff_t)chip->pagecache.page << chip->page_shift) < (to + ops->len)) chip->pagecache.page = -1; /* Don't allow multipage oob writes with offset */ if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) { ret = -EINVAL; goto err_out; } while (1) { int bytes = mtd->writesize; uint8_t *wbuf = buf; int use_bounce_buf; int part_pagewr = (column || writelen < mtd->writesize); if (part_pagewr) use_bounce_buf = 1; else if (chip->options & NAND_USES_DMA) use_bounce_buf = !virt_addr_valid(buf) || !IS_ALIGNED((unsigned long)buf, chip->buf_align); else use_bounce_buf = 0; /* * Copy the data from the initial buffer when doing partial page * writes or when a bounce buffer is required. */ if (use_bounce_buf) { pr_debug("%s: using write bounce buffer for buf@%p\n", __func__, buf); if (part_pagewr) bytes = min_t(int, bytes - column, writelen); wbuf = nand_get_data_buf(chip); memset(wbuf, 0xff, mtd->writesize); memcpy(&wbuf[column], buf, bytes); } if (unlikely(oob)) { size_t len = min(oobwritelen, oobmaxlen); oob = nand_fill_oob(chip, oob, len, ops); oobwritelen -= len; } else { /* We still need to erase leftover OOB data */ memset(chip->oob_poi, 0xff, mtd->oobsize); } ret = nand_write_page(chip, column, bytes, wbuf, oob_required, page, (ops->mode == MTD_OPS_RAW)); if (ret) break; writelen -= bytes; if (!writelen) break; column = 0; buf += bytes; realpage++; page = realpage & chip->pagemask; /* Check, if we cross a chip boundary */ if (!page) { chipnr++; nand_deselect_target(chip); nand_select_target(chip, chipnr); } } ops->retlen = ops->len - writelen; if (unlikely(oob)) ops->oobretlen = ops->ooblen; err_out: nand_deselect_target(chip); return ret; } /** * panic_nand_write - [MTD Interface] NAND write with ECC * @mtd: MTD device structure * @to: offset to write to * @len: number of bytes to write * @retlen: pointer to variable to store the number of written bytes * @buf: the data to write * * NAND write with ECC. Used when performing writes in interrupt context, this * may for example be called by mtdoops when writing an oops while in panic. */ static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const uint8_t *buf) { struct nand_chip *chip = mtd_to_nand(mtd); int chipnr = (int)(to >> chip->chip_shift); struct mtd_oob_ops ops; int ret; nand_select_target(chip, chipnr); /* Wait for the device to get ready */ panic_nand_wait(chip, 400); memset(&ops, 0, sizeof(ops)); ops.len = len; ops.datbuf = (uint8_t *)buf; ops.mode = MTD_OPS_PLACE_OOB; ret = nand_do_write_ops(chip, to, &ops); *retlen = ops.retlen; return ret; } /** * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band * @mtd: MTD device structure * @to: offset to write to * @ops: oob operation description structure */ static int nand_write_oob(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops) { struct nand_chip *chip = mtd_to_nand(mtd); int ret; ops->retlen = 0; ret = nand_get_device(chip); if (ret) return ret; switch (ops->mode) { case MTD_OPS_PLACE_OOB: case MTD_OPS_AUTO_OOB: case MTD_OPS_RAW: break; default: goto out; } if (!ops->datbuf) ret = nand_do_write_oob(chip, to, ops); else ret = nand_do_write_ops(chip, to, ops); out: nand_release_device(chip); return ret; } /** * nand_erase - [MTD Interface] erase block(s) * @mtd: MTD device structure * @instr: erase instruction * * Erase one ore more blocks. */ static int nand_erase(struct mtd_info *mtd, struct erase_info *instr) { return nand_erase_nand(mtd_to_nand(mtd), instr, 0); } /** * nand_erase_nand - [INTERN] erase block(s) * @chip: NAND chip object * @instr: erase instruction * @allowbbt: allow erasing the bbt area * * Erase one ore more blocks. */ int nand_erase_nand(struct nand_chip *chip, struct erase_info *instr, int allowbbt) { int page, pages_per_block, ret, chipnr; loff_t len; pr_debug("%s: start = 0x%012llx, len = %llu\n", __func__, (unsigned long long)instr->addr, (unsigned long long)instr->len); if (check_offs_len(chip, instr->addr, instr->len)) return -EINVAL; /* Grab the lock and see if the device is available */ ret = nand_get_device(chip); if (ret) return ret; /* Shift to get first page */ page = (int)(instr->addr >> chip->page_shift); chipnr = (int)(instr->addr >> chip->chip_shift); /* Calculate pages in each block */ pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift); /* Select the NAND device */ nand_select_target(chip, chipnr); /* Check, if it is write protected */ if (nand_check_wp(chip)) { pr_debug("%s: device is write protected!\n", __func__); ret = -EIO; goto erase_exit; } /* Loop through the pages */ len = instr->len; while (len) { /* Check if we have a bad block, we do not erase bad blocks! */ if (nand_block_checkbad(chip, ((loff_t) page) << chip->page_shift, allowbbt)) { pr_warn("%s: attempt to erase a bad block at page 0x%08x\n", __func__, page); ret = -EIO; goto erase_exit; } /* * Invalidate the page cache, if we erase the block which * contains the current cached page. */ if (page <= chip->pagecache.page && chip->pagecache.page < (page + pages_per_block)) chip->pagecache.page = -1; ret = nand_erase_op(chip, (page & chip->pagemask) >> (chip->phys_erase_shift - chip->page_shift)); if (ret) { pr_debug("%s: failed erase, page 0x%08x\n", __func__, page); instr->fail_addr = ((loff_t)page << chip->page_shift); goto erase_exit; } /* Increment page address and decrement length */ len -= (1ULL << chip->phys_erase_shift); page += pages_per_block; /* Check, if we cross a chip boundary */ if (len && !(page & chip->pagemask)) { chipnr++; nand_deselect_target(chip); nand_select_target(chip, chipnr); } } ret = 0; erase_exit: /* Deselect and wake up anyone waiting on the device */ nand_deselect_target(chip); nand_release_device(chip); /* Return more or less happy */ return ret; } /** * nand_sync - [MTD Interface] sync * @mtd: MTD device structure * * Sync is actually a wait for chip ready function. */ static void nand_sync(struct mtd_info *mtd) { struct nand_chip *chip = mtd_to_nand(mtd); pr_debug("%s: called\n", __func__); /* Grab the lock and see if the device is available */ WARN_ON(nand_get_device(chip)); /* Release it and go back */ nand_release_device(chip); } /** * nand_block_isbad - [MTD Interface] Check if block at offset is bad * @mtd: MTD device structure * @offs: offset relative to mtd start */ static int nand_block_isbad(struct mtd_info *mtd, loff_t offs) { struct nand_chip *chip = mtd_to_nand(mtd); int chipnr = (int)(offs >> chip->chip_shift); int ret; /* Select the NAND device */ ret = nand_get_device(chip); if (ret) return ret; nand_select_target(chip, chipnr); ret = nand_block_checkbad(chip, offs, 0); nand_deselect_target(chip); nand_release_device(chip); return ret; } /** * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad * @mtd: MTD device structure * @ofs: offset relative to mtd start */ static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs) { int ret; ret = nand_block_isbad(mtd, ofs); if (ret) { /* If it was bad already, return success and do nothing */ if (ret > 0) return 0; return ret; } return nand_block_markbad_lowlevel(mtd_to_nand(mtd), ofs); } /** * nand_suspend - [MTD Interface] Suspend the NAND flash * @mtd: MTD device structure * * Returns 0 for success or negative error code otherwise. */ static int nand_suspend(struct mtd_info *mtd) { struct nand_chip *chip = mtd_to_nand(mtd); int ret = 0; mutex_lock(&chip->lock); if (chip->suspend) ret = chip->suspend(chip); if (!ret) chip->suspended = 1; mutex_unlock(&chip->lock); return ret; } /** * nand_resume - [MTD Interface] Resume the NAND flash * @mtd: MTD device structure */ static void nand_resume(struct mtd_info *mtd) { struct nand_chip *chip = mtd_to_nand(mtd); mutex_lock(&chip->lock); if (chip->suspended) { if (chip->resume) chip->resume(chip); chip->suspended = 0; } else { pr_err("%s called for a chip which is not in suspended state\n", __func__); } mutex_unlock(&chip->lock); } /** * nand_shutdown - [MTD Interface] Finish the current NAND operation and * prevent further operations * @mtd: MTD device structure */ static void nand_shutdown(struct mtd_info *mtd) { nand_suspend(mtd); } /** * nand_lock - [MTD Interface] Lock the NAND flash * @mtd: MTD device structure * @ofs: offset byte address * @len: number of bytes to lock (must be a multiple of block/page size) */ static int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) { struct nand_chip *chip = mtd_to_nand(mtd); if (!chip->lock_area) return -ENOTSUPP; return chip->lock_area(chip, ofs, len); } /** * nand_unlock - [MTD Interface] Unlock the NAND flash * @mtd: MTD device structure * @ofs: offset byte address * @len: number of bytes to unlock (must be a multiple of block/page size) */ static int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) { struct nand_chip *chip = mtd_to_nand(mtd); if (!chip->unlock_area) return -ENOTSUPP; return chip->unlock_area(chip, ofs, len); } /* Set default functions */ static void nand_set_defaults(struct nand_chip *chip) { /* If no controller is provided, use the dummy, legacy one. */ if (!chip->controller) { chip->controller = &chip->legacy.dummy_controller; nand_controller_init(chip->controller); } nand_legacy_set_defaults(chip); if (!chip->buf_align) chip->buf_align = 1; } /* Sanitize ONFI strings so we can safely print them */ void sanitize_string(uint8_t *s, size_t len) { ssize_t i; /* Null terminate */ s[len - 1] = 0; /* Remove non printable chars */ for (i = 0; i < len - 1; i++) { if (s[i] < ' ' || s[i] > 127) s[i] = '?'; } /* Remove trailing spaces */ strim(s); } /* * nand_id_has_period - Check if an ID string has a given wraparound period * @id_data: the ID string * @arrlen: the length of the @id_data array * @period: the period of repitition * * Check if an ID string is repeated within a given sequence of bytes at * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a * period of 3). This is a helper function for nand_id_len(). Returns non-zero * if the repetition has a period of @period; otherwise, returns zero. */ static int nand_id_has_period(u8 *id_data, int arrlen, int period) { int i, j; for (i = 0; i < period; i++) for (j = i + period; j < arrlen; j += period) if (id_data[i] != id_data[j]) return 0; return 1; } /* * nand_id_len - Get the length of an ID string returned by CMD_READID * @id_data: the ID string * @arrlen: the length of the @id_data array * Returns the length of the ID string, according to known wraparound/trailing * zero patterns. If no pattern exists, returns the length of the array. */ static int nand_id_len(u8 *id_data, int arrlen) { int last_nonzero, period; /* Find last non-zero byte */ for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--) if (id_data[last_nonzero]) break; /* All zeros */ if (last_nonzero < 0) return 0; /* Calculate wraparound period */ for (period = 1; period < arrlen; period++) if (nand_id_has_period(id_data, arrlen, period)) break; /* There's a repeated pattern */ if (period < arrlen) return period; /* There are trailing zeros */ if (last_nonzero < arrlen - 1) return last_nonzero + 1; /* No pattern detected */ return arrlen; } /* Extract the bits of per cell from the 3rd byte of the extended ID */ static int nand_get_bits_per_cell(u8 cellinfo) { int bits; bits = cellinfo & NAND_CI_CELLTYPE_MSK; bits >>= NAND_CI_CELLTYPE_SHIFT; return bits + 1; } /* * Many new NAND share similar device ID codes, which represent the size of the * chip. The rest of the parameters must be decoded according to generic or * manufacturer-specific "extended ID" decoding patterns. */ void nand_decode_ext_id(struct nand_chip *chip) { struct nand_memory_organization *memorg; struct mtd_info *mtd = nand_to_mtd(chip); int extid; u8 *id_data = chip->id.data; memorg = nanddev_get_memorg(&chip->base); /* The 3rd id byte holds MLC / multichip data */ memorg->bits_per_cell = nand_get_bits_per_cell(id_data[2]); /* The 4th id byte is the important one */ extid = id_data[3]; /* Calc pagesize */ memorg->pagesize = 1024 << (extid & 0x03); mtd->writesize = memorg->pagesize; extid >>= 2; /* Calc oobsize */ memorg->oobsize = (8 << (extid & 0x01)) * (mtd->writesize >> 9); mtd->oobsize = memorg->oobsize; extid >>= 2; /* Calc blocksize. Blocksize is multiples of 64KiB */ memorg->pages_per_eraseblock = ((64 * 1024) << (extid & 0x03)) / memorg->pagesize; mtd->erasesize = (64 * 1024) << (extid & 0x03); extid >>= 2; /* Get buswidth information */ if (extid & 0x1) chip->options |= NAND_BUSWIDTH_16; } EXPORT_SYMBOL_GPL(nand_decode_ext_id); /* * Old devices have chip data hardcoded in the device ID table. nand_decode_id * decodes a matching ID table entry and assigns the MTD size parameters for * the chip. */ static void nand_decode_id(struct nand_chip *chip, struct nand_flash_dev *type) { struct mtd_info *mtd = nand_to_mtd(chip); struct nand_memory_organization *memorg; memorg = nanddev_get_memorg(&chip->base); memorg->pages_per_eraseblock = type->erasesize / type->pagesize; mtd->erasesize = type->erasesize; memorg->pagesize = type->pagesize; mtd->writesize = memorg->pagesize; memorg->oobsize = memorg->pagesize / 32; mtd->oobsize = memorg->oobsize; /* All legacy ID NAND are small-page, SLC */ memorg->bits_per_cell = 1; } /* * Set the bad block marker/indicator (BBM/BBI) patterns according to some * heuristic patterns using various detected parameters (e.g., manufacturer, * page size, cell-type information). */ static void nand_decode_bbm_options(struct nand_chip *chip) { struct mtd_info *mtd = nand_to_mtd(chip); /* Set the bad block position */ if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16)) chip->badblockpos = NAND_BBM_POS_LARGE; else chip->badblockpos = NAND_BBM_POS_SMALL; } static inline bool is_full_id_nand(struct nand_flash_dev *type) { return type->id_len; } static bool find_full_id_nand(struct nand_chip *chip, struct nand_flash_dev *type) { struct mtd_info *mtd = nand_to_mtd(chip); struct nand_memory_organization *memorg; u8 *id_data = chip->id.data; memorg = nanddev_get_memorg(&chip->base); if (!strncmp(type->id, id_data, type->id_len)) { memorg->pagesize = type->pagesize; mtd->writesize = memorg->pagesize; memorg->pages_per_eraseblock = type->erasesize / type->pagesize; mtd->erasesize = type->erasesize; memorg->oobsize = type->oobsize; mtd->oobsize = memorg->oobsize; memorg->bits_per_cell = nand_get_bits_per_cell(id_data[2]); memorg->eraseblocks_per_lun = DIV_ROUND_DOWN_ULL((u64)type->chipsize << 20, memorg->pagesize * memorg->pages_per_eraseblock); chip->options |= type->options; chip->base.eccreq.strength = NAND_ECC_STRENGTH(type); chip->base.eccreq.step_size = NAND_ECC_STEP(type); chip->onfi_timing_mode_default = type->onfi_timing_mode_default; chip->parameters.model = kstrdup(type->name, GFP_KERNEL); if (!chip->parameters.model) return false; return true; } return false; } /* * Manufacturer detection. Only used when the NAND is not ONFI or JEDEC * compliant and does not have a full-id or legacy-id entry in the nand_ids * table. */ static void nand_manufacturer_detect(struct nand_chip *chip) { /* * Try manufacturer detection if available and use * nand_decode_ext_id() otherwise. */ if (chip->manufacturer.desc && chip->manufacturer.desc->ops && chip->manufacturer.desc->ops->detect) { struct nand_memory_organization *memorg; memorg = nanddev_get_memorg(&chip->base); /* The 3rd id byte holds MLC / multichip data */ memorg->bits_per_cell = nand_get_bits_per_cell(chip->id.data[2]); chip->manufacturer.desc->ops->detect(chip); } else { nand_decode_ext_id(chip); } } /* * Manufacturer initialization. This function is called for all NANDs including * ONFI and JEDEC compliant ones. * Manufacturer drivers should put all their specific initialization code in * their ->init() hook. */ static int nand_manufacturer_init(struct nand_chip *chip) { if (!chip->manufacturer.desc || !chip->manufacturer.desc->ops || !chip->manufacturer.desc->ops->init) return 0; return chip->manufacturer.desc->ops->init(chip); } /* * Manufacturer cleanup. This function is called for all NANDs including * ONFI and JEDEC compliant ones. * Manufacturer drivers should put all their specific cleanup code in their * ->cleanup() hook. */ static void nand_manufacturer_cleanup(struct nand_chip *chip) { /* Release manufacturer private data */ if (chip->manufacturer.desc && chip->manufacturer.desc->ops && chip->manufacturer.desc->ops->cleanup) chip->manufacturer.desc->ops->cleanup(chip); } static const char * nand_manufacturer_name(const struct nand_manufacturer *manufacturer) { return manufacturer ? manufacturer->name : "Unknown"; } /* * Get the flash and manufacturer id and lookup if the type is supported. */ static int nand_detect(struct nand_chip *chip, struct nand_flash_dev *type) { const struct nand_manufacturer *manufacturer; struct mtd_info *mtd = nand_to_mtd(chip); struct nand_memory_organization *memorg; int busw, ret; u8 *id_data = chip->id.data; u8 maf_id, dev_id; u64 targetsize; /* * Let's start by initializing memorg fields that might be left * unassigned by the ID-based detection logic. */ memorg = nanddev_get_memorg(&chip->base); memorg->planes_per_lun = 1; memorg->luns_per_target = 1; /* * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx) * after power-up. */ ret = nand_reset(chip, 0); if (ret) return ret; /* Select the device */ nand_select_target(chip, 0); /* Send the command for reading device ID */ ret = nand_readid_op(chip, 0, id_data, 2); if (ret) return ret; /* Read manufacturer and device IDs */ maf_id = id_data[0]; dev_id = id_data[1]; /* * Try again to make sure, as some systems the bus-hold or other * interface concerns can cause random data which looks like a * possibly credible NAND flash to appear. If the two results do * not match, ignore the device completely. */ /* Read entire ID string */ ret = nand_readid_op(chip, 0, id_data, sizeof(chip->id.data)); if (ret) return ret; if (id_data[0] != maf_id || id_data[1] != dev_id) { pr_info("second ID read did not match %02x,%02x against %02x,%02x\n", maf_id, dev_id, id_data[0], id_data[1]); return -ENODEV; } chip->id.len = nand_id_len(id_data, ARRAY_SIZE(chip->id.data)); /* Try to identify manufacturer */ manufacturer = nand_get_manufacturer(maf_id); chip->manufacturer.desc = manufacturer; if (!type) type = nand_flash_ids; /* * Save the NAND_BUSWIDTH_16 flag before letting auto-detection logic * override it. * This is required to make sure initial NAND bus width set by the * NAND controller driver is coherent with the real NAND bus width * (extracted by auto-detection code). */ busw = chip->options & NAND_BUSWIDTH_16; /* * The flag is only set (never cleared), reset it to its default value * before starting auto-detection. */ chip->options &= ~NAND_BUSWIDTH_16; for (; type->name != NULL; type++) { if (is_full_id_nand(type)) { if (find_full_id_nand(chip, type)) goto ident_done; } else if (dev_id == type->dev_id) { break; } } if (!type->name || !type->pagesize) { /* Check if the chip is ONFI compliant */ ret = nand_onfi_detect(chip); if (ret < 0) return ret; else if (ret) goto ident_done; /* Check if the chip is JEDEC compliant */ ret = nand_jedec_detect(chip); if (ret < 0) return ret; else if (ret) goto ident_done; } if (!type->name) return -ENODEV; chip->parameters.model = kstrdup(type->name, GFP_KERNEL); if (!chip->parameters.model) return -ENOMEM; if (!type->pagesize) nand_manufacturer_detect(chip); else nand_decode_id(chip, type); /* Get chip options */ chip->options |= type->options; memorg->eraseblocks_per_lun = DIV_ROUND_DOWN_ULL((u64)type->chipsize << 20, memorg->pagesize * memorg->pages_per_eraseblock); ident_done: if (!mtd->name) mtd->name = chip->parameters.model; if (chip->options & NAND_BUSWIDTH_AUTO) { WARN_ON(busw & NAND_BUSWIDTH_16); nand_set_defaults(chip); } else if (busw != (chip->options & NAND_BUSWIDTH_16)) { /* * Check, if buswidth is correct. Hardware drivers should set * chip correct! */ pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n", maf_id, dev_id); pr_info("%s %s\n", nand_manufacturer_name(manufacturer), mtd->name); pr_warn("bus width %d instead of %d bits\n", busw ? 16 : 8, (chip->options & NAND_BUSWIDTH_16) ? 16 : 8); ret = -EINVAL; goto free_detect_allocation; } nand_decode_bbm_options(chip); /* Calculate the address shift from the page size */ chip->page_shift = ffs(mtd->writesize) - 1; /* Convert chipsize to number of pages per chip -1 */ targetsize = nanddev_target_size(&chip->base); chip->pagemask = (targetsize >> chip->page_shift) - 1; chip->bbt_erase_shift = chip->phys_erase_shift = ffs(mtd->erasesize) - 1; if (targetsize & 0xffffffff) chip->chip_shift = ffs((unsigned)targetsize) - 1; else { chip->chip_shift = ffs((unsigned)(targetsize >> 32)); chip->chip_shift += 32 - 1; } if (chip->chip_shift - chip->page_shift > 16) chip->options |= NAND_ROW_ADDR_3; chip->badblockbits = 8; nand_legacy_adjust_cmdfunc(chip); pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n", maf_id, dev_id); pr_info("%s %s\n", nand_manufacturer_name(manufacturer), chip->parameters.model); pr_info("%d MiB, %s, erase size: %d KiB, page size: %d, OOB size: %d\n", (int)(targetsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC", mtd->erasesize >> 10, mtd->writesize, mtd->oobsize); return 0; free_detect_allocation: kfree(chip->parameters.model); return ret; } static const char * const nand_ecc_modes[] = { [NAND_ECC_NONE] = "none", [NAND_ECC_SOFT] = "soft", [NAND_ECC_HW] = "hw", [NAND_ECC_HW_SYNDROME] = "hw_syndrome", [NAND_ECC_HW_OOB_FIRST] = "hw_oob_first", [NAND_ECC_ON_DIE] = "on-die", }; static int of_get_nand_ecc_mode(struct device_node *np) { const char *pm; int err, i; err = of_property_read_string(np, "nand-ecc-mode", &pm); if (err < 0) return err; for (i = 0; i < ARRAY_SIZE(nand_ecc_modes); i++) if (!strcasecmp(pm, nand_ecc_modes[i])) return i; /* * For backward compatibility we support few obsoleted values that don't * have their mappings into nand_ecc_modes_t anymore (they were merged * with other enums). */ if (!strcasecmp(pm, "soft_bch")) return NAND_ECC_SOFT; return -ENODEV; } static const char * const nand_ecc_algos[] = { [NAND_ECC_HAMMING] = "hamming", [NAND_ECC_BCH] = "bch", [NAND_ECC_RS] = "rs", }; static int of_get_nand_ecc_algo(struct device_node *np) { const char *pm; int err, i; err = of_property_read_string(np, "nand-ecc-algo", &pm); if (!err) { for (i = NAND_ECC_HAMMING; i < ARRAY_SIZE(nand_ecc_algos); i++) if (!strcasecmp(pm, nand_ecc_algos[i])) return i; return -ENODEV; } /* * For backward compatibility we also read "nand-ecc-mode" checking * for some obsoleted values that were specifying ECC algorithm. */ err = of_property_read_string(np, "nand-ecc-mode", &pm); if (err < 0) return err; if (!strcasecmp(pm, "soft")) return NAND_ECC_HAMMING; else if (!strcasecmp(pm, "soft_bch")) return NAND_ECC_BCH; return -ENODEV; } static int of_get_nand_ecc_step_size(struct device_node *np) { int ret; u32 val; ret = of_property_read_u32(np, "nand-ecc-step-size", &val); return ret ? ret : val; } static int of_get_nand_ecc_strength(struct device_node *np) { int ret; u32 val; ret = of_property_read_u32(np, "nand-ecc-strength", &val); return ret ? ret : val; } static int of_get_nand_bus_width(struct device_node *np) { u32 val; if (of_property_read_u32(np, "nand-bus-width", &val)) return 8; switch (val) { case 8: case 16: return val; default: return -EIO; } } static bool of_get_nand_on_flash_bbt(struct device_node *np) { return of_property_read_bool(np, "nand-on-flash-bbt"); } static int nand_dt_init(struct nand_chip *chip) { struct device_node *dn = nand_get_flash_node(chip); int ecc_mode, ecc_algo, ecc_strength, ecc_step; if (!dn) return 0; if (of_get_nand_bus_width(dn) == 16) chip->options |= NAND_BUSWIDTH_16; if (of_property_read_bool(dn, "nand-is-boot-medium")) chip->options |= NAND_IS_BOOT_MEDIUM; if (of_get_nand_on_flash_bbt(dn)) chip->bbt_options |= NAND_BBT_USE_FLASH; ecc_mode = of_get_nand_ecc_mode(dn); ecc_algo = of_get_nand_ecc_algo(dn); ecc_strength = of_get_nand_ecc_strength(dn); ecc_step = of_get_nand_ecc_step_size(dn); if (ecc_mode >= 0) chip->ecc.mode = ecc_mode; if (ecc_algo >= 0) chip->ecc.algo = ecc_algo; if (ecc_strength >= 0) chip->ecc.strength = ecc_strength; if (ecc_step > 0) chip->ecc.size = ecc_step; if (of_property_read_bool(dn, "nand-ecc-maximize")) chip->ecc.options |= NAND_ECC_MAXIMIZE; return 0; } /** * nand_scan_ident - Scan for the NAND device * @chip: NAND chip object * @maxchips: number of chips to scan for * @table: alternative NAND ID table * * This is the first phase of the normal nand_scan() function. It reads the * flash ID and sets up MTD fields accordingly. * * This helper used to be called directly from controller drivers that needed * to tweak some ECC-related parameters before nand_scan_tail(). This separation * prevented dynamic allocations during this phase which was unconvenient and * as been banned for the benefit of the ->init_ecc()/cleanup_ecc() hooks. */ static int nand_scan_ident(struct nand_chip *chip, unsigned int maxchips, struct nand_flash_dev *table) { struct mtd_info *mtd = nand_to_mtd(chip); struct nand_memory_organization *memorg; int nand_maf_id, nand_dev_id; unsigned int i; int ret; memorg = nanddev_get_memorg(&chip->base); /* Assume all dies are deselected when we enter nand_scan_ident(). */ chip->cur_cs = -1; mutex_init(&chip->lock); /* Enforce the right timings for reset/detection */ onfi_fill_data_interface(chip, NAND_SDR_IFACE, 0); ret = nand_dt_init(chip); if (ret) return ret; if (!mtd->name && mtd->dev.parent) mtd->name = dev_name(mtd->dev.parent); /* Set the default functions */ nand_set_defaults(chip); ret = nand_legacy_check_hooks(chip); if (ret) return ret; memorg->ntargets = maxchips; /* Read the flash type */ ret = nand_detect(chip, table); if (ret) { if (!(chip->options & NAND_SCAN_SILENT_NODEV)) pr_warn("No NAND device found\n"); nand_deselect_target(chip); return ret; } nand_maf_id = chip->id.data[0]; nand_dev_id = chip->id.data[1]; nand_deselect_target(chip); /* Check for a chip array */ for (i = 1; i < maxchips; i++) { u8 id[2]; /* See comment in nand_get_flash_type for reset */ ret = nand_reset(chip, i); if (ret) break; nand_select_target(chip, i); /* Send the command for reading device ID */ ret = nand_readid_op(chip, 0, id, sizeof(id)); if (ret) break; /* Read manufacturer and device IDs */ if (nand_maf_id != id[0] || nand_dev_id != id[1]) { nand_deselect_target(chip); break; } nand_deselect_target(chip); } if (i > 1) pr_info("%d chips detected\n", i); /* Store the number of chips and calc total size for mtd */ memorg->ntargets = i; mtd->size = i * nanddev_target_size(&chip->base); return 0; } static void nand_scan_ident_cleanup(struct nand_chip *chip) { kfree(chip->parameters.model); kfree(chip->parameters.onfi); } static int nand_set_ecc_soft_ops(struct nand_chip *chip) { struct mtd_info *mtd = nand_to_mtd(chip); struct nand_ecc_ctrl *ecc = &chip->ecc; if (WARN_ON(ecc->mode != NAND_ECC_SOFT)) return -EINVAL; switch (ecc->algo) { case NAND_ECC_HAMMING: ecc->calculate = nand_calculate_ecc; ecc->correct = nand_correct_data; ecc->read_page = nand_read_page_swecc; ecc->read_subpage = nand_read_subpage; ecc->write_page = nand_write_page_swecc; if (!ecc->read_page_raw) ecc->read_page_raw = nand_read_page_raw; if (!ecc->write_page_raw) ecc->write_page_raw = nand_write_page_raw; ecc->read_oob = nand_read_oob_std; ecc->write_oob = nand_write_oob_std; if (!ecc->size) ecc->size = 256; ecc->bytes = 3; ecc->strength = 1; if (IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_HAMMING_SMC)) ecc->options |= NAND_ECC_SOFT_HAMMING_SM_ORDER; return 0; case NAND_ECC_BCH: if (!mtd_nand_has_bch()) { WARN(1, "CONFIG_MTD_NAND_ECC_SW_BCH not enabled\n"); return -EINVAL; } ecc->calculate = nand_bch_calculate_ecc; ecc->correct = nand_bch_correct_data; ecc->read_page = nand_read_page_swecc; ecc->read_subpage = nand_read_subpage; ecc->write_page = nand_write_page_swecc; if (!ecc->read_page_raw) ecc->read_page_raw = nand_read_page_raw; if (!ecc->write_page_raw) ecc->write_page_raw = nand_write_page_raw; ecc->read_oob = nand_read_oob_std; ecc->write_oob = nand_write_oob_std; /* * Board driver should supply ecc.size and ecc.strength * values to select how many bits are correctable. * Otherwise, default to 4 bits for large page devices. */ if (!ecc->size && (mtd->oobsize >= 64)) { ecc->size = 512; ecc->strength = 4; } /* * if no ecc placement scheme was provided pickup the default * large page one. */ if (!mtd->ooblayout) { /* handle large page devices only */ if (mtd->oobsize < 64) { WARN(1, "OOB layout is required when using software BCH on small pages\n"); return -EINVAL; } mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops); } /* * We can only maximize ECC config when the default layout is * used, otherwise we don't know how many bytes can really be * used. */ if (mtd->ooblayout == &nand_ooblayout_lp_ops && ecc->options & NAND_ECC_MAXIMIZE) { int steps, bytes; /* Always prefer 1k blocks over 512bytes ones */ ecc->size = 1024; steps = mtd->writesize / ecc->size; /* Reserve 2 bytes for the BBM */ bytes = (mtd->oobsize - 2) / steps; ecc->strength = bytes * 8 / fls(8 * ecc->size); } /* See nand_bch_init() for details. */ ecc->bytes = 0; ecc->priv = nand_bch_init(mtd); if (!ecc->priv) { WARN(1, "BCH ECC initialization failed!\n"); return -EINVAL; } return 0; default: WARN(1, "Unsupported ECC algorithm!\n"); return -EINVAL; } } /** * nand_check_ecc_caps - check the sanity of preset ECC settings * @chip: nand chip info structure * @caps: ECC caps info structure * @oobavail: OOB size that the ECC engine can use * * When ECC step size and strength are already set, check if they are supported * by the controller and the calculated ECC bytes fit within the chip's OOB. * On success, the calculated ECC bytes is set. */ static int nand_check_ecc_caps(struct nand_chip *chip, const struct nand_ecc_caps *caps, int oobavail) { struct mtd_info *mtd = nand_to_mtd(chip); const struct nand_ecc_step_info *stepinfo; int preset_step = chip->ecc.size; int preset_strength = chip->ecc.strength; int ecc_bytes, nsteps = mtd->writesize / preset_step; int i, j; for (i = 0; i < caps->nstepinfos; i++) { stepinfo = &caps->stepinfos[i]; if (stepinfo->stepsize != preset_step) continue; for (j = 0; j < stepinfo->nstrengths; j++) { if (stepinfo->strengths[j] != preset_strength) continue; ecc_bytes = caps->calc_ecc_bytes(preset_step, preset_strength); if (WARN_ON_ONCE(ecc_bytes < 0)) return ecc_bytes; if (ecc_bytes * nsteps > oobavail) { pr_err("ECC (step, strength) = (%d, %d) does not fit in OOB", preset_step, preset_strength); return -ENOSPC; } chip->ecc.bytes = ecc_bytes; return 0; } } pr_err("ECC (step, strength) = (%d, %d) not supported on this controller", preset_step, preset_strength); return -ENOTSUPP; } /** * nand_match_ecc_req - meet the chip's requirement with least ECC bytes * @chip: nand chip info structure * @caps: ECC engine caps info structure * @oobavail: OOB size that the ECC engine can use * * If a chip's ECC requirement is provided, try to meet it with the least * number of ECC bytes (i.e. with the largest number of OOB-free bytes). * On success, the chosen ECC settings are set. */ static int nand_match_ecc_req(struct nand_chip *chip, const struct nand_ecc_caps *caps, int oobavail) { struct mtd_info *mtd = nand_to_mtd(chip); const struct nand_ecc_step_info *stepinfo; int req_step = chip->base.eccreq.step_size; int req_strength = chip->base.eccreq.strength; int req_corr, step_size, strength, nsteps, ecc_bytes, ecc_bytes_total; int best_step, best_strength, best_ecc_bytes; int best_ecc_bytes_total = INT_MAX; int i, j; /* No information provided by the NAND chip */ if (!req_step || !req_strength) return -ENOTSUPP; /* number of correctable bits the chip requires in a page */ req_corr = mtd->writesize / req_step * req_strength; for (i = 0; i < caps->nstepinfos; i++) { stepinfo = &caps->stepinfos[i]; step_size = stepinfo->stepsize; for (j = 0; j < stepinfo->nstrengths; j++) { strength = stepinfo->strengths[j]; /* * If both step size and strength are smaller than the * chip's requirement, it is not easy to compare the * resulted reliability. */ if (step_size < req_step && strength < req_strength) continue; if (mtd->writesize % step_size) continue; nsteps = mtd->writesize / step_size; ecc_bytes = caps->calc_ecc_bytes(step_size, strength); if (WARN_ON_ONCE(ecc_bytes < 0)) continue; ecc_bytes_total = ecc_bytes * nsteps; if (ecc_bytes_total > oobavail || strength * nsteps < req_corr) continue; /* * We assume the best is to meet the chip's requrement * with the least number of ECC bytes. */ if (ecc_bytes_total < best_ecc_bytes_total) { best_ecc_bytes_total = ecc_bytes_total; best_step = step_size; best_strength = strength; best_ecc_bytes = ecc_bytes; } } } if (best_ecc_bytes_total == INT_MAX) return -ENOTSUPP; chip->ecc.size = best_step; chip->ecc.strength = best_strength; chip->ecc.bytes = best_ecc_bytes; return 0; } /** * nand_maximize_ecc - choose the max ECC strength available * @chip: nand chip info structure * @caps: ECC engine caps info structure * @oobavail: OOB size that the ECC engine can use * * Choose the max ECC strength that is supported on the controller, and can fit * within the chip's OOB. On success, the chosen ECC settings are set. */ static int nand_maximize_ecc(struct nand_chip *chip, const struct nand_ecc_caps *caps, int oobavail) { struct mtd_info *mtd = nand_to_mtd(chip); const struct nand_ecc_step_info *stepinfo; int step_size, strength, nsteps, ecc_bytes, corr; int best_corr = 0; int best_step = 0; int best_strength, best_ecc_bytes; int i, j; for (i = 0; i < caps->nstepinfos; i++) { stepinfo = &caps->stepinfos[i]; step_size = stepinfo->stepsize; /* If chip->ecc.size is already set, respect it */ if (chip->ecc.size && step_size != chip->ecc.size) continue; for (j = 0; j < stepinfo->nstrengths; j++) { strength = stepinfo->strengths[j]; if (mtd->writesize % step_size) continue; nsteps = mtd->writesize / step_size; ecc_bytes = caps->calc_ecc_bytes(step_size, strength); if (WARN_ON_ONCE(ecc_bytes < 0)) continue; if (ecc_bytes * nsteps > oobavail) continue; corr = strength * nsteps; /* * If the number of correctable bits is the same, * bigger step_size has more reliability. */ if (corr > best_corr || (corr == best_corr && step_size > best_step)) { best_corr = corr; best_step = step_size; best_strength = strength; best_ecc_bytes = ecc_bytes; } } } if (!best_corr) return -ENOTSUPP; chip->ecc.size = best_step; chip->ecc.strength = best_strength; chip->ecc.bytes = best_ecc_bytes; return 0; } /** * nand_ecc_choose_conf - Set the ECC strength and ECC step size * @chip: nand chip info structure * @caps: ECC engine caps info structure * @oobavail: OOB size that the ECC engine can use * * Choose the ECC configuration according to following logic * * 1. If both ECC step size and ECC strength are already set (usually by DT) * then check if it is supported by this controller. * 2. If NAND_ECC_MAXIMIZE is set, then select maximum ECC strength. * 3. Otherwise, try to match the ECC step size and ECC strength closest * to the chip's requirement. If available OOB size can't fit the chip * requirement then fallback to the maximum ECC step size and ECC strength. * * On success, the chosen ECC settings are set. */ int nand_ecc_choose_conf(struct nand_chip *chip, const struct nand_ecc_caps *caps, int oobavail) { struct mtd_info *mtd = nand_to_mtd(chip); if (WARN_ON(oobavail < 0 || oobavail > mtd->oobsize)) return -EINVAL; if (chip->ecc.size && chip->ecc.strength) return nand_check_ecc_caps(chip, caps, oobavail); if (chip->ecc.options & NAND_ECC_MAXIMIZE) return nand_maximize_ecc(chip, caps, oobavail); if (!nand_match_ecc_req(chip, caps, oobavail)) return 0; return nand_maximize_ecc(chip, caps, oobavail); } EXPORT_SYMBOL_GPL(nand_ecc_choose_conf); /* * Check if the chip configuration meet the datasheet requirements. * If our configuration corrects A bits per B bytes and the minimum * required correction level is X bits per Y bytes, then we must ensure * both of the following are true: * * (1) A / B >= X / Y * (2) A >= X * * Requirement (1) ensures we can correct for the required bitflip density. * Requirement (2) ensures we can correct even when all bitflips are clumped * in the same sector. */ static bool nand_ecc_strength_good(struct nand_chip *chip) { struct mtd_info *mtd = nand_to_mtd(chip); struct nand_ecc_ctrl *ecc = &chip->ecc; int corr, ds_corr; if (ecc->size == 0 || chip->base.eccreq.step_size == 0) /* Not enough information */ return true; /* * We get the number of corrected bits per page to compare * the correction density. */ corr = (mtd->writesize * ecc->strength) / ecc->size; ds_corr = (mtd->writesize * chip->base.eccreq.strength) / chip->base.eccreq.step_size; return corr >= ds_corr && ecc->strength >= chip->base.eccreq.strength; } static int rawnand_erase(struct nand_device *nand, const struct nand_pos *pos) { struct nand_chip *chip = container_of(nand, struct nand_chip, base); unsigned int eb = nanddev_pos_to_row(nand, pos); int ret; eb >>= nand->rowconv.eraseblock_addr_shift; nand_select_target(chip, pos->target); ret = nand_erase_op(chip, eb); nand_deselect_target(chip); return ret; } static int rawnand_markbad(struct nand_device *nand, const struct nand_pos *pos) { struct nand_chip *chip = container_of(nand, struct nand_chip, base); return nand_markbad_bbm(chip, nanddev_pos_to_offs(nand, pos)); } static bool rawnand_isbad(struct nand_device *nand, const struct nand_pos *pos) { struct nand_chip *chip = container_of(nand, struct nand_chip, base); int ret; nand_select_target(chip, pos->target); ret = nand_isbad_bbm(chip, nanddev_pos_to_offs(nand, pos)); nand_deselect_target(chip); return ret; } static const struct nand_ops rawnand_ops = { .erase = rawnand_erase, .markbad = rawnand_markbad, .isbad = rawnand_isbad, }; /** * nand_scan_tail - Scan for the NAND device * @chip: NAND chip object * * This is the second phase of the normal nand_scan() function. It fills out * all the uninitialized function pointers with the defaults and scans for a * bad block table if appropriate. */ static int nand_scan_tail(struct nand_chip *chip) { struct mtd_info *mtd = nand_to_mtd(chip); struct nand_ecc_ctrl *ecc = &chip->ecc; int ret, i; /* New bad blocks should be marked in OOB, flash-based BBT, or both */ if (WARN_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) && !(chip->bbt_options & NAND_BBT_USE_FLASH))) { return -EINVAL; } chip->data_buf = kmalloc(mtd->writesize + mtd->oobsize, GFP_KERNEL); if (!chip->data_buf) return -ENOMEM; /* * FIXME: some NAND manufacturer drivers expect the first die to be * selected when manufacturer->init() is called. They should be fixed * to explictly select the relevant die when interacting with the NAND * chip. */ nand_select_target(chip, 0); ret = nand_manufacturer_init(chip); nand_deselect_target(chip); if (ret) goto err_free_buf; /* Set the internal oob buffer location, just after the page data */ chip->oob_poi = chip->data_buf + mtd->writesize; /* * If no default placement scheme is given, select an appropriate one. */ if (!mtd->ooblayout && !(ecc->mode == NAND_ECC_SOFT && ecc->algo == NAND_ECC_BCH)) { switch (mtd->oobsize) { case 8: case 16: mtd_set_ooblayout(mtd, &nand_ooblayout_sp_ops); break; case 64: case 128: mtd_set_ooblayout(mtd, &nand_ooblayout_lp_hamming_ops); break; default: /* * Expose the whole OOB area to users if ECC_NONE * is passed. We could do that for all kind of * ->oobsize, but we must keep the old large/small * page with ECC layout when ->oobsize <= 128 for * compatibility reasons. */ if (ecc->mode == NAND_ECC_NONE) { mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops); break; } WARN(1, "No oob scheme defined for oobsize %d\n", mtd->oobsize); ret = -EINVAL; goto err_nand_manuf_cleanup; } } /* * Check ECC mode, default to software if 3byte/512byte hardware ECC is * selected and we have 256 byte pagesize fallback to software ECC */ switch (ecc->mode) { case NAND_ECC_HW_OOB_FIRST: /* Similar to NAND_ECC_HW, but a separate read_page handle */ if (!ecc->calculate || !ecc->correct || !ecc->hwctl) { WARN(1, "No ECC functions supplied; hardware ECC not possible\n"); ret = -EINVAL; goto err_nand_manuf_cleanup; } if (!ecc->read_page) ecc->read_page = nand_read_page_hwecc_oob_first; fallthrough; case NAND_ECC_HW: /* Use standard hwecc read page function? */ if (!ecc->read_page) ecc->read_page = nand_read_page_hwecc; if (!ecc->write_page) ecc->write_page = nand_write_page_hwecc; if (!ecc->read_page_raw) ecc->read_page_raw = nand_read_page_raw; if (!ecc->write_page_raw) ecc->write_page_raw = nand_write_page_raw; if (!ecc->read_oob) ecc->read_oob = nand_read_oob_std; if (!ecc->write_oob) ecc->write_oob = nand_write_oob_std; if (!ecc->read_subpage) ecc->read_subpage = nand_read_subpage; if (!ecc->write_subpage && ecc->hwctl && ecc->calculate) ecc->write_subpage = nand_write_subpage_hwecc; fallthrough; case NAND_ECC_HW_SYNDROME: if ((!ecc->calculate || !ecc->correct || !ecc->hwctl) && (!ecc->read_page || ecc->read_page == nand_read_page_hwecc || !ecc->write_page || ecc->write_page == nand_write_page_hwecc)) { WARN(1, "No ECC functions supplied; hardware ECC not possible\n"); ret = -EINVAL; goto err_nand_manuf_cleanup; } /* Use standard syndrome read/write page function? */ if (!ecc->read_page) ecc->read_page = nand_read_page_syndrome; if (!ecc->write_page) ecc->write_page = nand_write_page_syndrome; if (!ecc->read_page_raw) ecc->read_page_raw = nand_read_page_raw_syndrome; if (!ecc->write_page_raw) ecc->write_page_raw = nand_write_page_raw_syndrome; if (!ecc->read_oob) ecc->read_oob = nand_read_oob_syndrome; if (!ecc->write_oob) ecc->write_oob = nand_write_oob_syndrome; if (mtd->writesize >= ecc->size) { if (!ecc->strength) { WARN(1, "Driver must set ecc.strength when using hardware ECC\n"); ret = -EINVAL; goto err_nand_manuf_cleanup; } break; } pr_warn("%d byte HW ECC not possible on %d byte page size, fallback to SW ECC\n", ecc->size, mtd->writesize); ecc->mode = NAND_ECC_SOFT; ecc->algo = NAND_ECC_HAMMING; fallthrough; case NAND_ECC_SOFT: ret = nand_set_ecc_soft_ops(chip); if (ret) { ret = -EINVAL; goto err_nand_manuf_cleanup; } break; case NAND_ECC_ON_DIE: if (!ecc->read_page || !ecc->write_page) { WARN(1, "No ECC functions supplied; on-die ECC not possible\n"); ret = -EINVAL; goto err_nand_manuf_cleanup; } if (!ecc->read_oob) ecc->read_oob = nand_read_oob_std; if (!ecc->write_oob) ecc->write_oob = nand_write_oob_std; break; case NAND_ECC_NONE: pr_warn("NAND_ECC_NONE selected by board driver. This is not recommended!\n"); ecc->read_page = nand_read_page_raw; ecc->write_page = nand_write_page_raw; ecc->read_oob = nand_read_oob_std; ecc->read_page_raw = nand_read_page_raw; ecc->write_page_raw = nand_write_page_raw; ecc->write_oob = nand_write_oob_std; ecc->size = mtd->writesize; ecc->bytes = 0; ecc->strength = 0; break; default: WARN(1, "Invalid NAND_ECC_MODE %d\n", ecc->mode); ret = -EINVAL; goto err_nand_manuf_cleanup; } if (ecc->correct || ecc->calculate) { ecc->calc_buf = kmalloc(mtd->oobsize, GFP_KERNEL); ecc->code_buf = kmalloc(mtd->oobsize, GFP_KERNEL); if (!ecc->calc_buf || !ecc->code_buf) { ret = -ENOMEM; goto err_nand_manuf_cleanup; } } /* For many systems, the standard OOB write also works for raw */ if (!ecc->read_oob_raw) ecc->read_oob_raw = ecc->read_oob; if (!ecc->write_oob_raw) ecc->write_oob_raw = ecc->write_oob; /* propagate ecc info to mtd_info */ mtd->ecc_strength = ecc->strength; mtd->ecc_step_size = ecc->size; /* * Set the number of read / write steps for one page depending on ECC * mode. */ ecc->steps = mtd->writesize / ecc->size; if (ecc->steps * ecc->size != mtd->writesize) { WARN(1, "Invalid ECC parameters\n"); ret = -EINVAL; goto err_nand_manuf_cleanup; } ecc->total = ecc->steps * ecc->bytes; if (ecc->total > mtd->oobsize) { WARN(1, "Total number of ECC bytes exceeded oobsize\n"); ret = -EINVAL; goto err_nand_manuf_cleanup; } /* * The number of bytes available for a client to place data into * the out of band area. */ ret = mtd_ooblayout_count_freebytes(mtd); if (ret < 0) ret = 0; mtd->oobavail = ret; /* ECC sanity check: warn if it's too weak */ if (!nand_ecc_strength_good(chip)) pr_warn("WARNING: %s: the ECC used on your system (%db/%dB) is too weak compared to the one required by the NAND chip (%db/%dB)\n", mtd->name, chip->ecc.strength, chip->ecc.size, chip->base.eccreq.strength, chip->base.eccreq.step_size); /* Allow subpage writes up to ecc.steps. Not possible for MLC flash */ if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && nand_is_slc(chip)) { switch (ecc->steps) { case 2: mtd->subpage_sft = 1; break; case 4: case 8: case 16: mtd->subpage_sft = 2; break; } } chip->subpagesize = mtd->writesize >> mtd->subpage_sft; /* Invalidate the pagebuffer reference */ chip->pagecache.page = -1; /* Large page NAND with SOFT_ECC should support subpage reads */ switch (ecc->mode) { case NAND_ECC_SOFT: if (chip->page_shift > 9) chip->options |= NAND_SUBPAGE_READ; break; default: break; } ret = nanddev_init(&chip->base, &rawnand_ops, mtd->owner); if (ret) goto err_nand_manuf_cleanup; /* Adjust the MTD_CAP_ flags when NAND_ROM is set. */ if (chip->options & NAND_ROM) mtd->flags = MTD_CAP_ROM; /* Fill in remaining MTD driver data */ mtd->_erase = nand_erase; mtd->_point = NULL; mtd->_unpoint = NULL; mtd->_panic_write = panic_nand_write; mtd->_read_oob = nand_read_oob; mtd->_write_oob = nand_write_oob; mtd->_sync = nand_sync; mtd->_lock = nand_lock; mtd->_unlock = nand_unlock; mtd->_suspend = nand_suspend; mtd->_resume = nand_resume; mtd->_reboot = nand_shutdown; mtd->_block_isreserved = nand_block_isreserved; mtd->_block_isbad = nand_block_isbad; mtd->_block_markbad = nand_block_markbad; mtd->_max_bad_blocks = nanddev_mtd_max_bad_blocks; /* * Initialize bitflip_threshold to its default prior scan_bbt() call. * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be * properly set. */ if (!mtd->bitflip_threshold) mtd->bitflip_threshold = DIV_ROUND_UP(mtd->ecc_strength * 3, 4); /* Initialize the ->data_interface field. */ ret = nand_init_data_interface(chip); if (ret) goto err_nanddev_cleanup; /* Enter fastest possible mode on all dies. */ for (i = 0; i < nanddev_ntargets(&chip->base); i++) { ret = nand_setup_data_interface(chip, i); if (ret) goto err_nanddev_cleanup; } /* Check, if we should skip the bad block table scan */ if (chip->options & NAND_SKIP_BBTSCAN) return 0; /* Build bad block table */ ret = nand_create_bbt(chip); if (ret) goto err_nanddev_cleanup; return 0; err_nanddev_cleanup: nanddev_cleanup(&chip->base); err_nand_manuf_cleanup: nand_manufacturer_cleanup(chip); err_free_buf: kfree(chip->data_buf); kfree(ecc->code_buf); kfree(ecc->calc_buf); return ret; } static int nand_attach(struct nand_chip *chip) { if (chip->controller->ops && chip->controller->ops->attach_chip) return chip->controller->ops->attach_chip(chip); return 0; } static void nand_detach(struct nand_chip *chip) { if (chip->controller->ops && chip->controller->ops->detach_chip) chip->controller->ops->detach_chip(chip); } /** * nand_scan_with_ids - [NAND Interface] Scan for the NAND device * @chip: NAND chip object * @maxchips: number of chips to scan for. * @ids: optional flash IDs table * * This fills out all the uninitialized function pointers with the defaults. * The flash ID is read and the mtd/chip structures are filled with the * appropriate values. */ int nand_scan_with_ids(struct nand_chip *chip, unsigned int maxchips, struct nand_flash_dev *ids) { int ret; if (!maxchips) return -EINVAL; ret = nand_scan_ident(chip, maxchips, ids); if (ret) return ret; ret = nand_attach(chip); if (ret) goto cleanup_ident; ret = nand_scan_tail(chip); if (ret) goto detach_chip; return 0; detach_chip: nand_detach(chip); cleanup_ident: nand_scan_ident_cleanup(chip); return ret; } EXPORT_SYMBOL(nand_scan_with_ids); /** * nand_cleanup - [NAND Interface] Free resources held by the NAND device * @chip: NAND chip object */ void nand_cleanup(struct nand_chip *chip) { if (chip->ecc.mode == NAND_ECC_SOFT && chip->ecc.algo == NAND_ECC_BCH) nand_bch_free((struct nand_bch_control *)chip->ecc.priv); nanddev_cleanup(&chip->base); /* Free bad block table memory */ kfree(chip->bbt); kfree(chip->data_buf); kfree(chip->ecc.code_buf); kfree(chip->ecc.calc_buf); /* Free bad block descriptor memory */ if (chip->badblock_pattern && chip->badblock_pattern->options & NAND_BBT_DYNAMICSTRUCT) kfree(chip->badblock_pattern); /* Free manufacturer priv data. */ nand_manufacturer_cleanup(chip); /* Free controller specific allocations after chip identification */ nand_detach(chip); /* Free identification phase allocations */ nand_scan_ident_cleanup(chip); } EXPORT_SYMBOL_GPL(nand_cleanup); /** * nand_release - [NAND Interface] Unregister the MTD device and free resources * held by the NAND device * @chip: NAND chip object */ void nand_release(struct nand_chip *chip) { mtd_device_unregister(nand_to_mtd(chip)); nand_cleanup(chip); } EXPORT_SYMBOL_GPL(nand_release); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Steven J. Hill "); MODULE_AUTHOR("Thomas Gleixner "); MODULE_DESCRIPTION("Generic NAND flash driver code");