/* * linux/drivers/mmc/core/sd.c * * Copyright (C) 2003-2004 Russell King, All Rights Reserved. * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved. * Copyright (C) 2005-2007 Pierre Ossman, All Rights Reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include "core.h" #include "bus.h" #include "mmc_ops.h" #include "sd.h" #include "sd_ops.h" static const unsigned int tran_exp[] = { 10000, 100000, 1000000, 10000000, 0, 0, 0, 0 }; static const unsigned char tran_mant[] = { 0, 10, 12, 13, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 70, 80, }; static const unsigned int tacc_exp[] = { 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, }; static const unsigned int tacc_mant[] = { 0, 10, 12, 13, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 70, 80, }; #define UNSTUFF_BITS(resp,start,size) \ ({ \ const int __size = size; \ const u32 __mask = (__size < 32 ? 1 << __size : 0) - 1; \ const int __off = 3 - ((start) / 32); \ const int __shft = (start) & 31; \ u32 __res; \ \ __res = resp[__off] >> __shft; \ if (__size + __shft > 32) \ __res |= resp[__off-1] << ((32 - __shft) % 32); \ __res & __mask; \ }) /* * Given the decoded CSD structure, decode the raw CID to our CID structure. */ void mmc_decode_cid(struct mmc_card *card) { u32 *resp = card->raw_cid; memset(&card->cid, 0, sizeof(struct mmc_cid)); /* * SD doesn't currently have a version field so we will * have to assume we can parse this. */ card->cid.manfid = UNSTUFF_BITS(resp, 120, 8); card->cid.oemid = UNSTUFF_BITS(resp, 104, 16); card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8); card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8); card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8); card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8); card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8); card->cid.hwrev = UNSTUFF_BITS(resp, 60, 4); card->cid.fwrev = UNSTUFF_BITS(resp, 56, 4); card->cid.serial = UNSTUFF_BITS(resp, 24, 32); card->cid.year = UNSTUFF_BITS(resp, 12, 8); card->cid.month = UNSTUFF_BITS(resp, 8, 4); card->cid.year += 2000; /* SD cards year offset */ } /* * Given a 128-bit response, decode to our card CSD structure. */ static int mmc_decode_csd(struct mmc_card *card) { struct mmc_csd *csd = &card->csd; unsigned int e, m, csd_struct; u32 *resp = card->raw_csd; csd_struct = UNSTUFF_BITS(resp, 126, 2); switch (csd_struct) { case 0: m = UNSTUFF_BITS(resp, 115, 4); e = UNSTUFF_BITS(resp, 112, 3); csd->tacc_ns = (tacc_exp[e] * tacc_mant[m] + 9) / 10; csd->tacc_clks = UNSTUFF_BITS(resp, 104, 8) * 100; m = UNSTUFF_BITS(resp, 99, 4); e = UNSTUFF_BITS(resp, 96, 3); csd->max_dtr = tran_exp[e] * tran_mant[m]; csd->cmdclass = UNSTUFF_BITS(resp, 84, 12); e = UNSTUFF_BITS(resp, 47, 3); m = UNSTUFF_BITS(resp, 62, 12); csd->capacity = (1 + m) << (e + 2); csd->read_blkbits = UNSTUFF_BITS(resp, 80, 4); csd->read_partial = UNSTUFF_BITS(resp, 79, 1); csd->write_misalign = UNSTUFF_BITS(resp, 78, 1); csd->read_misalign = UNSTUFF_BITS(resp, 77, 1); csd->r2w_factor = UNSTUFF_BITS(resp, 26, 3); csd->write_blkbits = UNSTUFF_BITS(resp, 22, 4); csd->write_partial = UNSTUFF_BITS(resp, 21, 1); if (UNSTUFF_BITS(resp, 46, 1)) { csd->erase_size = 1; } else if (csd->write_blkbits >= 9) { csd->erase_size = UNSTUFF_BITS(resp, 39, 7) + 1; csd->erase_size <<= csd->write_blkbits - 9; } break; case 1: /* * This is a block-addressed SDHC or SDXC card. Most * interesting fields are unused and have fixed * values. To avoid getting tripped by buggy cards, * we assume those fixed values ourselves. */ mmc_card_set_blockaddr(card); csd->tacc_ns = 0; /* Unused */ csd->tacc_clks = 0; /* Unused */ m = UNSTUFF_BITS(resp, 99, 4); e = UNSTUFF_BITS(resp, 96, 3); csd->max_dtr = tran_exp[e] * tran_mant[m]; csd->cmdclass = UNSTUFF_BITS(resp, 84, 12); csd->c_size = UNSTUFF_BITS(resp, 48, 22); /* SDXC cards have a minimum C_SIZE of 0x00FFFF */ if (csd->c_size >= 0xFFFF) mmc_card_set_ext_capacity(card); m = UNSTUFF_BITS(resp, 48, 22); csd->capacity = (1 + m) << 10; csd->read_blkbits = 9; csd->read_partial = 0; csd->write_misalign = 0; csd->read_misalign = 0; csd->r2w_factor = 4; /* Unused */ csd->write_blkbits = 9; csd->write_partial = 0; csd->erase_size = 1; break; default: printk(KERN_ERR "%s: unrecognised CSD structure version %d\n", mmc_hostname(card->host), csd_struct); return -EINVAL; } card->erase_size = csd->erase_size; return 0; } /* * Given a 64-bit response, decode to our card SCR structure. */ static int mmc_decode_scr(struct mmc_card *card) { struct sd_scr *scr = &card->scr; unsigned int scr_struct; u32 resp[4]; resp[3] = card->raw_scr[1]; resp[2] = card->raw_scr[0]; scr_struct = UNSTUFF_BITS(resp, 60, 4); if (scr_struct != 0) { printk(KERN_ERR "%s: unrecognised SCR structure version %d\n", mmc_hostname(card->host), scr_struct); return -EINVAL; } scr->sda_vsn = UNSTUFF_BITS(resp, 56, 4); scr->bus_widths = UNSTUFF_BITS(resp, 48, 4); if (scr->sda_vsn == SCR_SPEC_VER_2) /* Check if Physical Layer Spec v3.0 is supported */ scr->sda_spec3 = UNSTUFF_BITS(resp, 47, 1); if (UNSTUFF_BITS(resp, 55, 1)) card->erased_byte = 0xFF; else card->erased_byte = 0x0; return 0; } /* * Fetch and process SD Status register. */ static int mmc_read_ssr(struct mmc_card *card) { unsigned int au, es, et, eo; int err, i; u32 *ssr; if (!(card->csd.cmdclass & CCC_APP_SPEC)) { printk(KERN_WARNING "%s: card lacks mandatory SD Status " "function.\n", mmc_hostname(card->host)); return 0; } ssr = kmalloc(64, GFP_KERNEL); if (!ssr) return -ENOMEM; err = mmc_app_sd_status(card, ssr); if (err) { printk(KERN_WARNING "%s: problem reading SD Status " "register.\n", mmc_hostname(card->host)); err = 0; goto out; } for (i = 0; i < 16; i++) ssr[i] = be32_to_cpu(ssr[i]); /* * UNSTUFF_BITS only works with four u32s so we have to offset the * bitfield positions accordingly. */ au = UNSTUFF_BITS(ssr, 428 - 384, 4); if (au > 0 || au <= 9) { card->ssr.au = 1 << (au + 4); es = UNSTUFF_BITS(ssr, 408 - 384, 16); et = UNSTUFF_BITS(ssr, 402 - 384, 6); eo = UNSTUFF_BITS(ssr, 400 - 384, 2); if (es && et) { card->ssr.erase_timeout = (et * 1000) / es; card->ssr.erase_offset = eo * 1000; } } else { printk(KERN_WARNING "%s: SD Status: Invalid Allocation Unit " "size.\n", mmc_hostname(card->host)); } out: kfree(ssr); return err; } /* * Fetches and decodes switch information */ static int mmc_read_switch(struct mmc_card *card) { int err; u8 *status; if (card->scr.sda_vsn < SCR_SPEC_VER_1) return 0; if (!(card->csd.cmdclass & CCC_SWITCH)) { printk(KERN_WARNING "%s: card lacks mandatory switch " "function, performance might suffer.\n", mmc_hostname(card->host)); return 0; } err = -EIO; status = kmalloc(64, GFP_KERNEL); if (!status) { printk(KERN_ERR "%s: could not allocate a buffer for " "switch capabilities.\n", mmc_hostname(card->host)); return -ENOMEM; } /* Find out the supported Bus Speed Modes. */ err = mmc_sd_switch(card, 0, 0, 1, status); if (err) { /* * If the host or the card can't do the switch, * fail more gracefully. */ if (err != -EINVAL && err != -ENOSYS && err != -EFAULT) goto out; printk(KERN_WARNING "%s: problem reading Bus Speed modes.\n", mmc_hostname(card->host)); err = 0; goto out; } if (card->scr.sda_spec3) { card->sw_caps.sd3_bus_mode = status[13]; /* Find out Driver Strengths supported by the card */ err = mmc_sd_switch(card, 0, 2, 1, status); if (err) { /* * If the host or the card can't do the switch, * fail more gracefully. */ if (err != -EINVAL && err != -ENOSYS && err != -EFAULT) goto out; printk(KERN_WARNING "%s: problem reading " "Driver Strength.\n", mmc_hostname(card->host)); err = 0; goto out; } card->sw_caps.sd3_drv_type = status[9]; /* Find out Current Limits supported by the card */ err = mmc_sd_switch(card, 0, 3, 1, status); if (err) { /* * If the host or the card can't do the switch, * fail more gracefully. */ if (err != -EINVAL && err != -ENOSYS && err != -EFAULT) goto out; printk(KERN_WARNING "%s: problem reading " "Current Limit.\n", mmc_hostname(card->host)); err = 0; goto out; } card->sw_caps.sd3_curr_limit = status[7]; } else { if (status[13] & 0x02) card->sw_caps.hs_max_dtr = 50000000; } out: kfree(status); return err; } /* * Test if the card supports high-speed mode and, if so, switch to it. */ int mmc_sd_switch_hs(struct mmc_card *card) { int err; u8 *status; if (card->scr.sda_vsn < SCR_SPEC_VER_1) return 0; if (!(card->csd.cmdclass & CCC_SWITCH)) return 0; if (!(card->host->caps & MMC_CAP_SD_HIGHSPEED)) return 0; if (card->sw_caps.hs_max_dtr == 0) return 0; err = -EIO; status = kmalloc(64, GFP_KERNEL); if (!status) { printk(KERN_ERR "%s: could not allocate a buffer for " "switch capabilities.\n", mmc_hostname(card->host)); return -ENOMEM; } err = mmc_sd_switch(card, 1, 0, 1, status); if (err) goto out; if ((status[16] & 0xF) != 1) { printk(KERN_WARNING "%s: Problem switching card " "into high-speed mode!\n", mmc_hostname(card->host)); err = 0; } else { err = 1; } out: kfree(status); return err; } static int sd_select_driver_type(struct mmc_card *card, u8 *status) { int host_drv_type = 0, card_drv_type = 0; int err; /* * If the host doesn't support any of the Driver Types A,C or D, * default Driver Type B is used. */ if (!(card->host->caps & (MMC_CAP_DRIVER_TYPE_A | MMC_CAP_DRIVER_TYPE_C | MMC_CAP_DRIVER_TYPE_D))) return 0; if (card->host->caps & MMC_CAP_DRIVER_TYPE_A) { host_drv_type = MMC_SET_DRIVER_TYPE_A; if (card->sw_caps.sd3_drv_type & SD_DRIVER_TYPE_A) card_drv_type = MMC_SET_DRIVER_TYPE_A; else if (card->sw_caps.sd3_drv_type & SD_DRIVER_TYPE_B) card_drv_type = MMC_SET_DRIVER_TYPE_B; else if (card->sw_caps.sd3_drv_type & SD_DRIVER_TYPE_C) card_drv_type = MMC_SET_DRIVER_TYPE_C; } else if (card->host->caps & MMC_CAP_DRIVER_TYPE_C) { host_drv_type = MMC_SET_DRIVER_TYPE_C; if (card->sw_caps.sd3_drv_type & SD_DRIVER_TYPE_C) card_drv_type = MMC_SET_DRIVER_TYPE_C; } else if (!(card->host->caps & MMC_CAP_DRIVER_TYPE_D)) { /* * If we are here, that means only the default driver type * B is supported by the host. */ host_drv_type = MMC_SET_DRIVER_TYPE_B; if (card->sw_caps.sd3_drv_type & SD_DRIVER_TYPE_B) card_drv_type = MMC_SET_DRIVER_TYPE_B; else if (card->sw_caps.sd3_drv_type & SD_DRIVER_TYPE_C) card_drv_type = MMC_SET_DRIVER_TYPE_C; } err = mmc_sd_switch(card, 1, 2, card_drv_type, status); if (err) return err; if ((status[15] & 0xF) != card_drv_type) { printk(KERN_WARNING "%s: Problem setting driver strength!\n", mmc_hostname(card->host)); return 0; } mmc_set_driver_type(card->host, host_drv_type); return 0; } static int sd_set_bus_speed_mode(struct mmc_card *card, u8 *status) { unsigned int bus_speed = 0, timing = 0; int err; /* * If the host doesn't support any of the UHS-I modes, fallback on * default speed. */ if (!(card->host->caps & (MMC_CAP_UHS_SDR12 | MMC_CAP_UHS_SDR25 | MMC_CAP_UHS_SDR50 | MMC_CAP_UHS_SDR104 | MMC_CAP_UHS_DDR50))) return 0; if ((card->host->caps & MMC_CAP_UHS_SDR104) && (card->sw_caps.sd3_bus_mode & SD_MODE_UHS_SDR104)) { bus_speed = UHS_SDR104_BUS_SPEED; timing = MMC_TIMING_UHS_SDR104; card->sw_caps.uhs_max_dtr = UHS_SDR104_MAX_DTR; } else if ((card->host->caps & MMC_CAP_UHS_DDR50) && (card->sw_caps.sd3_bus_mode & SD_MODE_UHS_DDR50)) { bus_speed = UHS_DDR50_BUS_SPEED; timing = MMC_TIMING_UHS_DDR50; card->sw_caps.uhs_max_dtr = UHS_DDR50_MAX_DTR; } else if ((card->host->caps & (MMC_CAP_UHS_SDR104 | MMC_CAP_UHS_SDR50)) && (card->sw_caps.sd3_bus_mode & SD_MODE_UHS_SDR50)) { bus_speed = UHS_SDR50_BUS_SPEED; timing = MMC_TIMING_UHS_SDR50; card->sw_caps.uhs_max_dtr = UHS_SDR50_MAX_DTR; } else if ((card->host->caps & (MMC_CAP_UHS_SDR104 | MMC_CAP_UHS_SDR50 | MMC_CAP_UHS_SDR25)) && (card->sw_caps.sd3_bus_mode & SD_MODE_UHS_SDR25)) { bus_speed = UHS_SDR25_BUS_SPEED; timing = MMC_TIMING_UHS_SDR25; card->sw_caps.uhs_max_dtr = UHS_SDR25_MAX_DTR; } else if ((card->host->caps & (MMC_CAP_UHS_SDR104 | MMC_CAP_UHS_SDR50 | MMC_CAP_UHS_SDR25 | MMC_CAP_UHS_SDR12)) && (card->sw_caps.sd3_bus_mode & SD_MODE_UHS_SDR12)) { bus_speed = UHS_SDR12_BUS_SPEED; timing = MMC_TIMING_UHS_SDR12; card->sw_caps.uhs_max_dtr = UHS_SDR12_MAX_DTR; } card->sd_bus_speed = bus_speed; err = mmc_sd_switch(card, 1, 0, bus_speed, status); if (err) return err; if ((status[16] & 0xF) != bus_speed) printk(KERN_WARNING "%s: Problem setting bus speed mode!\n", mmc_hostname(card->host)); else { mmc_set_timing(card->host, timing); mmc_set_clock(card->host, card->sw_caps.uhs_max_dtr); } return 0; } static int sd_set_current_limit(struct mmc_card *card, u8 *status) { int current_limit = 0; int err; /* * Current limit switch is only defined for SDR50, SDR104, and DDR50 * bus speed modes. For other bus speed modes, we set the default * current limit of 200mA. */ if ((card->sd_bus_speed == UHS_SDR50_BUS_SPEED) || (card->sd_bus_speed == UHS_SDR104_BUS_SPEED) || (card->sd_bus_speed == UHS_DDR50_BUS_SPEED)) { if (card->host->caps & MMC_CAP_MAX_CURRENT_800) { if (card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_800) current_limit = SD_SET_CURRENT_LIMIT_800; else if (card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_600) current_limit = SD_SET_CURRENT_LIMIT_600; else if (card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_400) current_limit = SD_SET_CURRENT_LIMIT_400; else if (card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_200) current_limit = SD_SET_CURRENT_LIMIT_200; } else if (card->host->caps & MMC_CAP_MAX_CURRENT_600) { if (card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_600) current_limit = SD_SET_CURRENT_LIMIT_600; else if (card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_400) current_limit = SD_SET_CURRENT_LIMIT_400; else if (card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_200) current_limit = SD_SET_CURRENT_LIMIT_200; } else if (card->host->caps & MMC_CAP_MAX_CURRENT_400) { if (card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_400) current_limit = SD_SET_CURRENT_LIMIT_400; else if (card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_200) current_limit = SD_SET_CURRENT_LIMIT_200; } else if (card->host->caps & MMC_CAP_MAX_CURRENT_200) { if (card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_200) current_limit = SD_SET_CURRENT_LIMIT_200; } } else current_limit = SD_SET_CURRENT_LIMIT_200; err = mmc_sd_switch(card, 1, 3, current_limit, status); if (err) return err; if (((status[15] >> 4) & 0x0F) != current_limit) printk(KERN_WARNING "%s: Problem setting current limit!\n", mmc_hostname(card->host)); return 0; } /* * UHS-I specific initialization procedure */ static int mmc_sd_init_uhs_card(struct mmc_card *card) { int err; u8 *status; if (!card->scr.sda_spec3) return 0; if (!(card->csd.cmdclass & CCC_SWITCH)) return 0; status = kmalloc(64, GFP_KERNEL); if (!status) { printk(KERN_ERR "%s: could not allocate a buffer for " "switch capabilities.\n", mmc_hostname(card->host)); return -ENOMEM; } /* Set 4-bit bus width */ if ((card->host->caps & MMC_CAP_4_BIT_DATA) && (card->scr.bus_widths & SD_SCR_BUS_WIDTH_4)) { err = mmc_app_set_bus_width(card, MMC_BUS_WIDTH_4); if (err) goto out; mmc_set_bus_width(card->host, MMC_BUS_WIDTH_4); } /* Set the driver strength for the card */ err = sd_select_driver_type(card, status); if (err) goto out; /* Set bus speed mode of the card */ err = sd_set_bus_speed_mode(card, status); if (err) goto out; /* Set current limit for the card */ err = sd_set_current_limit(card, status); if (err) goto out; /* SPI mode doesn't define CMD19 */ if (!mmc_host_is_spi(card->host) && card->host->ops->execute_tuning) err = card->host->ops->execute_tuning(card->host); out: kfree(status); return err; } MMC_DEV_ATTR(cid, "%08x%08x%08x%08x\n", card->raw_cid[0], card->raw_cid[1], card->raw_cid[2], card->raw_cid[3]); MMC_DEV_ATTR(csd, "%08x%08x%08x%08x\n", card->raw_csd[0], card->raw_csd[1], card->raw_csd[2], card->raw_csd[3]); MMC_DEV_ATTR(scr, "%08x%08x\n", card->raw_scr[0], card->raw_scr[1]); MMC_DEV_ATTR(date, "%02d/%04d\n", card->cid.month, card->cid.year); MMC_DEV_ATTR(erase_size, "%u\n", card->erase_size << 9); MMC_DEV_ATTR(preferred_erase_size, "%u\n", card->pref_erase << 9); MMC_DEV_ATTR(fwrev, "0x%x\n", card->cid.fwrev); MMC_DEV_ATTR(hwrev, "0x%x\n", card->cid.hwrev); MMC_DEV_ATTR(manfid, "0x%06x\n", card->cid.manfid); MMC_DEV_ATTR(name, "%s\n", card->cid.prod_name); MMC_DEV_ATTR(oemid, "0x%04x\n", card->cid.oemid); MMC_DEV_ATTR(serial, "0x%08x\n", card->cid.serial); static struct attribute *sd_std_attrs[] = { &dev_attr_cid.attr, &dev_attr_csd.attr, &dev_attr_scr.attr, &dev_attr_date.attr, &dev_attr_erase_size.attr, &dev_attr_preferred_erase_size.attr, &dev_attr_fwrev.attr, &dev_attr_hwrev.attr, &dev_attr_manfid.attr, &dev_attr_name.attr, &dev_attr_oemid.attr, &dev_attr_serial.attr, NULL, }; static struct attribute_group sd_std_attr_group = { .attrs = sd_std_attrs, }; static const struct attribute_group *sd_attr_groups[] = { &sd_std_attr_group, NULL, }; struct device_type sd_type = { .groups = sd_attr_groups, }; /* * Fetch CID from card. */ int mmc_sd_get_cid(struct mmc_host *host, u32 ocr, u32 *cid, u32 *rocr) { int err; /* * Since we're changing the OCR value, we seem to * need to tell some cards to go back to the idle * state. We wait 1ms to give cards time to * respond. */ mmc_go_idle(host); /* * If SD_SEND_IF_COND indicates an SD 2.0 * compliant card and we should set bit 30 * of the ocr to indicate that we can handle * block-addressed SDHC cards. */ err = mmc_send_if_cond(host, ocr); if (!err) ocr |= SD_OCR_CCS; /* * If the host supports one of UHS-I modes, request the card * to switch to 1.8V signaling level. */ if (host->caps & (MMC_CAP_UHS_SDR12 | MMC_CAP_UHS_SDR25 | MMC_CAP_UHS_SDR50 | MMC_CAP_UHS_SDR104 | MMC_CAP_UHS_DDR50)) ocr |= SD_OCR_S18R; /* If the host can supply more than 150mA, XPC should be set to 1. */ if (host->caps & (MMC_CAP_SET_XPC_330 | MMC_CAP_SET_XPC_300 | MMC_CAP_SET_XPC_180)) ocr |= SD_OCR_XPC; try_again: err = mmc_send_app_op_cond(host, ocr, rocr); if (err) return err; /* * In case CCS and S18A in the response is set, start Signal Voltage * Switch procedure. SPI mode doesn't support CMD11. */ if (!mmc_host_is_spi(host) && rocr && ((*rocr & 0x41000000) == 0x41000000)) { err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180, true); if (err) { ocr &= ~SD_OCR_S18R; goto try_again; } } if (mmc_host_is_spi(host)) err = mmc_send_cid(host, cid); else err = mmc_all_send_cid(host, cid); return err; } int mmc_sd_get_csd(struct mmc_host *host, struct mmc_card *card) { int err; /* * Fetch CSD from card. */ err = mmc_send_csd(card, card->raw_csd); if (err) return err; err = mmc_decode_csd(card); if (err) return err; return 0; } int mmc_sd_setup_card(struct mmc_host *host, struct mmc_card *card, bool reinit) { int err; if (!reinit) { /* * Fetch SCR from card. */ err = mmc_app_send_scr(card, card->raw_scr); if (err) return err; err = mmc_decode_scr(card); if (err) return err; /* * Fetch and process SD Status register. */ err = mmc_read_ssr(card); if (err) return err; /* Erase init depends on CSD and SSR */ mmc_init_erase(card); /* * Fetch switch information from card. */ err = mmc_read_switch(card); if (err) return err; } /* * For SPI, enable CRC as appropriate. * This CRC enable is located AFTER the reading of the * card registers because some SDHC cards are not able * to provide valid CRCs for non-512-byte blocks. */ if (mmc_host_is_spi(host)) { err = mmc_spi_set_crc(host, use_spi_crc); if (err) return err; } /* * Check if read-only switch is active. */ if (!reinit) { int ro = -1; if (host->ops->get_ro) ro = host->ops->get_ro(host); if (ro < 0) { printk(KERN_WARNING "%s: host does not " "support reading read-only " "switch. assuming write-enable.\n", mmc_hostname(host)); } else if (ro > 0) { mmc_card_set_readonly(card); } } return 0; } unsigned mmc_sd_get_max_clock(struct mmc_card *card) { unsigned max_dtr = (unsigned int)-1; if (mmc_card_highspeed(card)) { if (max_dtr > card->sw_caps.hs_max_dtr) max_dtr = card->sw_caps.hs_max_dtr; } else if (max_dtr > card->csd.max_dtr) { max_dtr = card->csd.max_dtr; } return max_dtr; } void mmc_sd_go_highspeed(struct mmc_card *card) { mmc_card_set_highspeed(card); mmc_set_timing(card->host, MMC_TIMING_SD_HS); } /* * Handle the detection and initialisation of a card. * * In the case of a resume, "oldcard" will contain the card * we're trying to reinitialise. */ static int mmc_sd_init_card(struct mmc_host *host, u32 ocr, struct mmc_card *oldcard) { struct mmc_card *card; int err; u32 cid[4]; u32 rocr = 0; BUG_ON(!host); WARN_ON(!host->claimed); err = mmc_sd_get_cid(host, ocr, cid, &rocr); if (err) return err; if (oldcard) { if (memcmp(cid, oldcard->raw_cid, sizeof(cid)) != 0) return -ENOENT; card = oldcard; } else { /* * Allocate card structure. */ card = mmc_alloc_card(host, &sd_type); if (IS_ERR(card)) return PTR_ERR(card); card->type = MMC_TYPE_SD; memcpy(card->raw_cid, cid, sizeof(card->raw_cid)); } /* * For native busses: get card RCA and quit open drain mode. */ if (!mmc_host_is_spi(host)) { err = mmc_send_relative_addr(host, &card->rca); if (err) return err; mmc_set_bus_mode(host, MMC_BUSMODE_PUSHPULL); } if (!oldcard) { err = mmc_sd_get_csd(host, card); if (err) return err; mmc_decode_cid(card); } /* * Select card, as all following commands rely on that. */ if (!mmc_host_is_spi(host)) { err = mmc_select_card(card); if (err) return err; } err = mmc_sd_setup_card(host, card, oldcard != NULL); if (err) goto free_card; /* Initialization sequence for UHS-I cards */ if (rocr & SD_ROCR_S18A) { err = mmc_sd_init_uhs_card(card); if (err) goto free_card; /* Card is an ultra-high-speed card */ mmc_sd_card_set_uhs(card); /* * Since initialization is now complete, enable preset * value registers for UHS-I cards. */ if (host->ops->enable_preset_value) host->ops->enable_preset_value(host, true); } else { /* * Attempt to change to high-speed (if supported) */ err = mmc_sd_switch_hs(card); if (err > 0) mmc_sd_go_highspeed(card); else if (err) goto free_card; /* * Set bus speed. */ mmc_set_clock(host, mmc_sd_get_max_clock(card)); /* * Switch to wider bus (if supported). */ if ((host->caps & MMC_CAP_4_BIT_DATA) && (card->scr.bus_widths & SD_SCR_BUS_WIDTH_4)) { err = mmc_app_set_bus_width(card, MMC_BUS_WIDTH_4); if (err) goto free_card; mmc_set_bus_width(host, MMC_BUS_WIDTH_4); } } host->card = card; return 0; free_card: if (!oldcard) mmc_remove_card(card); return err; } /* * Host is being removed. Free up the current card. */ static void mmc_sd_remove(struct mmc_host *host) { BUG_ON(!host); BUG_ON(!host->card); mmc_remove_card(host->card); host->card = NULL; } /* * Card detection callback from host. */ static void mmc_sd_detect(struct mmc_host *host) { int err; BUG_ON(!host); BUG_ON(!host->card); mmc_claim_host(host); /* * Just check if our card has been removed. */ err = mmc_send_status(host->card, NULL); mmc_release_host(host); if (err) { mmc_sd_remove(host); mmc_claim_host(host); mmc_detach_bus(host); mmc_release_host(host); } } /* * Suspend callback from host. */ static int mmc_sd_suspend(struct mmc_host *host) { BUG_ON(!host); BUG_ON(!host->card); mmc_claim_host(host); if (!mmc_host_is_spi(host)) mmc_deselect_cards(host); host->card->state &= ~MMC_STATE_HIGHSPEED; mmc_release_host(host); return 0; } /* * Resume callback from host. * * This function tries to determine if the same card is still present * and, if so, restore all state to it. */ static int mmc_sd_resume(struct mmc_host *host) { int err; BUG_ON(!host); BUG_ON(!host->card); mmc_claim_host(host); err = mmc_sd_init_card(host, host->ocr, host->card); mmc_release_host(host); return err; } static int mmc_sd_power_restore(struct mmc_host *host) { int ret; host->card->state &= ~MMC_STATE_HIGHSPEED; mmc_claim_host(host); ret = mmc_sd_init_card(host, host->ocr, host->card); mmc_release_host(host); return ret; } static const struct mmc_bus_ops mmc_sd_ops = { .remove = mmc_sd_remove, .detect = mmc_sd_detect, .suspend = NULL, .resume = NULL, .power_restore = mmc_sd_power_restore, }; static const struct mmc_bus_ops mmc_sd_ops_unsafe = { .remove = mmc_sd_remove, .detect = mmc_sd_detect, .suspend = mmc_sd_suspend, .resume = mmc_sd_resume, .power_restore = mmc_sd_power_restore, }; static void mmc_sd_attach_bus_ops(struct mmc_host *host) { const struct mmc_bus_ops *bus_ops; if (!mmc_card_is_removable(host)) bus_ops = &mmc_sd_ops_unsafe; else bus_ops = &mmc_sd_ops; mmc_attach_bus(host, bus_ops); } /* * Starting point for SD card init. */ int mmc_attach_sd(struct mmc_host *host) { int err; u32 ocr; BUG_ON(!host); WARN_ON(!host->claimed); /* Make sure we are at 3.3V signalling voltage */ err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330, false); if (err) return err; /* Disable preset value enable if already set since last time */ if (host->ops->enable_preset_value) host->ops->enable_preset_value(host, false); err = mmc_send_app_op_cond(host, 0, &ocr); if (err) return err; mmc_sd_attach_bus_ops(host); if (host->ocr_avail_sd) host->ocr_avail = host->ocr_avail_sd; /* * We need to get OCR a different way for SPI. */ if (mmc_host_is_spi(host)) { mmc_go_idle(host); err = mmc_spi_read_ocr(host, 0, &ocr); if (err) goto err; } /* * Sanity check the voltages that the card claims to * support. */ if (ocr & 0x7F) { printk(KERN_WARNING "%s: card claims to support voltages " "below the defined range. These will be ignored.\n", mmc_hostname(host)); ocr &= ~0x7F; } if ((ocr & MMC_VDD_165_195) && !(host->ocr_avail_sd & MMC_VDD_165_195)) { printk(KERN_WARNING "%s: SD card claims to support the " "incompletely defined 'low voltage range'. This " "will be ignored.\n", mmc_hostname(host)); ocr &= ~MMC_VDD_165_195; } host->ocr = mmc_select_voltage(host, ocr); /* * Can we support the voltage(s) of the card(s)? */ if (!host->ocr) { err = -EINVAL; goto err; } /* * Detect and init the card. */ err = mmc_sd_init_card(host, host->ocr, NULL); if (err) goto err; mmc_release_host(host); err = mmc_add_card(host->card); mmc_claim_host(host); if (err) goto remove_card; return 0; remove_card: mmc_release_host(host); mmc_remove_card(host->card); host->card = NULL; mmc_claim_host(host); err: mmc_detach_bus(host); printk(KERN_ERR "%s: error %d whilst initialising SD card\n", mmc_hostname(host), err); return err; }