/* * KMX61 - Kionix 6-axis Accelerometer/Magnetometer * * Copyright (c) 2014, Intel Corporation. * * This file is subject to the terms and conditions of version 2 of * the GNU General Public License. See the file COPYING in the main * directory of this archive for more details. * * IIO driver for KMX61 (7-bit I2C slave address 0x0E or 0x0F). * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define KMX61_DRV_NAME "kmx61" #define KMX61_GPIO_NAME "kmx61_int" #define KMX61_IRQ_NAME "kmx61_event" #define KMX61_REG_WHO_AM_I 0x00 #define KMX61_REG_INS1 0x01 #define KMX61_REG_INS2 0x02 /* * three 16-bit accelerometer output registers for X/Y/Z axis * we use only XOUT_L as a base register, all other addresses * can be obtained by applying an offset and are provided here * only for clarity. */ #define KMX61_ACC_XOUT_L 0x0A #define KMX61_ACC_XOUT_H 0x0B #define KMX61_ACC_YOUT_L 0x0C #define KMX61_ACC_YOUT_H 0x0D #define KMX61_ACC_ZOUT_L 0x0E #define KMX61_ACC_ZOUT_H 0x0F /* * one 16-bit temperature output register */ #define KMX61_TEMP_L 0x10 #define KMX61_TEMP_H 0x11 /* * three 16-bit magnetometer output registers for X/Y/Z axis */ #define KMX61_MAG_XOUT_L 0x12 #define KMX61_MAG_XOUT_H 0x13 #define KMX61_MAG_YOUT_L 0x14 #define KMX61_MAG_YOUT_H 0x15 #define KMX61_MAG_ZOUT_L 0x16 #define KMX61_MAG_ZOUT_H 0x17 #define KMX61_REG_INL 0x28 #define KMX61_REG_STBY 0x29 #define KMX61_REG_CTRL1 0x2A #define KMX61_REG_CTRL2 0x2B #define KMX61_REG_ODCNTL 0x2C #define KMX61_REG_INC1 0x2D #define KMX61_REG_WUF_THRESH 0x3D #define KMX61_REG_WUF_TIMER 0x3E #define KMX61_ACC_STBY_BIT BIT(0) #define KMX61_MAG_STBY_BIT BIT(1) #define KMX61_ACT_STBY_BIT BIT(7) #define KMX61_ALL_STBY (KMX61_ACC_STBY_BIT | KMX61_MAG_STBY_BIT) #define KMX61_REG_INS1_BIT_WUFS BIT(1) #define KMX61_REG_INS2_BIT_ZP BIT(0) #define KMX61_REG_INS2_BIT_ZN BIT(1) #define KMX61_REG_INS2_BIT_YP BIT(2) #define KMX61_REG_INS2_BIT_YN BIT(3) #define KMX61_REG_INS2_BIT_XP BIT(4) #define KMX61_REG_INS2_BIT_XN BIT(5) #define KMX61_REG_CTRL1_GSEL_MASK 0x03 #define KMX61_REG_CTRL1_BIT_RES BIT(4) #define KMX61_REG_CTRL1_BIT_DRDYE BIT(5) #define KMX61_REG_CTRL1_BIT_WUFE BIT(6) #define KMX61_REG_CTRL1_BIT_BTSE BIT(7) #define KMX61_REG_INC1_BIT_WUFS BIT(0) #define KMX61_REG_INC1_BIT_DRDYM BIT(1) #define KMX61_REG_INC1_BIT_DRDYA BIT(2) #define KMX61_REG_INC1_BIT_IEN BIT(5) #define KMX61_ACC_ODR_SHIFT 0 #define KMX61_MAG_ODR_SHIFT 4 #define KMX61_ACC_ODR_MASK 0x0F #define KMX61_MAG_ODR_MASK 0xF0 #define KMX61_OWUF_MASK 0x7 #define KMX61_DEFAULT_WAKE_THRESH 1 #define KMX61_DEFAULT_WAKE_DURATION 1 #define KMX61_SLEEP_DELAY_MS 2000 #define KMX61_CHIP_ID 0x12 /* KMX61 devices */ #define KMX61_ACC 0x01 #define KMX61_MAG 0x02 struct kmx61_data { struct i2c_client *client; /* serialize access to non-atomic ops, e.g set_mode */ struct mutex lock; /* standby state */ bool acc_stby; bool mag_stby; /* power state */ bool acc_ps; bool mag_ps; /* config bits */ u8 range; u8 odr_bits; u8 wake_thresh; u8 wake_duration; /* accelerometer specific data */ struct iio_dev *acc_indio_dev; struct iio_trigger *acc_dready_trig; struct iio_trigger *motion_trig; bool acc_dready_trig_on; bool motion_trig_on; bool ev_enable_state; /* magnetometer specific data */ struct iio_dev *mag_indio_dev; struct iio_trigger *mag_dready_trig; bool mag_dready_trig_on; }; enum kmx61_range { KMX61_RANGE_2G, KMX61_RANGE_4G, KMX61_RANGE_8G, }; enum kmx61_axis { KMX61_AXIS_X, KMX61_AXIS_Y, KMX61_AXIS_Z, }; static const u16 kmx61_uscale_table[] = {9582, 19163, 38326}; static const struct { int val; int val2; u8 odr_bits; } kmx61_samp_freq_table[] = { {12, 500000, 0x00}, {25, 0, 0x01}, {50, 0, 0x02}, {100, 0, 0x03}, {200, 0, 0x04}, {400, 0, 0x05}, {800, 0, 0x06}, {1600, 0, 0x07}, {0, 781000, 0x08}, {1, 563000, 0x09}, {3, 125000, 0x0A}, {6, 250000, 0x0B} }; static const struct { int val; int val2; int odr_bits; } kmx61_wake_up_odr_table[] = { {0, 781000, 0x00}, {1, 563000, 0x01}, {3, 125000, 0x02}, {6, 250000, 0x03}, {12, 500000, 0x04}, {25, 0, 0x05}, {50, 0, 0x06}, {100, 0, 0x06}, {200, 0, 0x06}, {400, 0, 0x06}, {800, 0, 0x06}, {1600, 0, 0x06} }; static IIO_CONST_ATTR(accel_scale_available, "0.009582 0.019163 0.038326"); static IIO_CONST_ATTR(magn_scale_available, "0.001465"); static IIO_CONST_ATTR_SAMP_FREQ_AVAIL( "0.781000 1.563000 3.125000 6.250000 12.500000 25 50 100 200 400 800"); static struct attribute *kmx61_acc_attributes[] = { &iio_const_attr_accel_scale_available.dev_attr.attr, &iio_const_attr_sampling_frequency_available.dev_attr.attr, NULL, }; static struct attribute *kmx61_mag_attributes[] = { &iio_const_attr_magn_scale_available.dev_attr.attr, &iio_const_attr_sampling_frequency_available.dev_attr.attr, NULL, }; static const struct attribute_group kmx61_acc_attribute_group = { .attrs = kmx61_acc_attributes, }; static const struct attribute_group kmx61_mag_attribute_group = { .attrs = kmx61_mag_attributes, }; static const struct iio_event_spec kmx61_event = { .type = IIO_EV_TYPE_THRESH, .dir = IIO_EV_DIR_EITHER, .mask_separate = BIT(IIO_EV_INFO_VALUE) | BIT(IIO_EV_INFO_ENABLE) | BIT(IIO_EV_INFO_PERIOD), }; #define KMX61_ACC_CHAN(_axis) { \ .type = IIO_ACCEL, \ .modified = 1, \ .channel2 = IIO_MOD_ ## _axis, \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \ .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \ BIT(IIO_CHAN_INFO_SAMP_FREQ), \ .address = KMX61_ACC, \ .scan_index = KMX61_AXIS_ ## _axis, \ .scan_type = { \ .sign = 's', \ .realbits = 12, \ .storagebits = 16, \ .shift = 4, \ .endianness = IIO_LE, \ }, \ .event_spec = &kmx61_event, \ .num_event_specs = 1 \ } #define KMX61_MAG_CHAN(_axis) { \ .type = IIO_MAGN, \ .modified = 1, \ .channel2 = IIO_MOD_ ## _axis, \ .address = KMX61_MAG, \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \ .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \ BIT(IIO_CHAN_INFO_SAMP_FREQ), \ .scan_index = KMX61_AXIS_ ## _axis, \ .scan_type = { \ .sign = 's', \ .realbits = 14, \ .storagebits = 16, \ .shift = 2, \ .endianness = IIO_LE, \ }, \ } static const struct iio_chan_spec kmx61_acc_channels[] = { KMX61_ACC_CHAN(X), KMX61_ACC_CHAN(Y), KMX61_ACC_CHAN(Z), }; static const struct iio_chan_spec kmx61_mag_channels[] = { KMX61_MAG_CHAN(X), KMX61_MAG_CHAN(Y), KMX61_MAG_CHAN(Z), }; static void kmx61_set_data(struct iio_dev *indio_dev, struct kmx61_data *data) { struct kmx61_data **priv = iio_priv(indio_dev); *priv = data; } static struct kmx61_data *kmx61_get_data(struct iio_dev *indio_dev) { return *(struct kmx61_data **)iio_priv(indio_dev); } static int kmx61_convert_freq_to_bit(int val, int val2) { int i; for (i = 0; i < ARRAY_SIZE(kmx61_samp_freq_table); i++) if (val == kmx61_samp_freq_table[i].val && val2 == kmx61_samp_freq_table[i].val2) return kmx61_samp_freq_table[i].odr_bits; return -EINVAL; } static int kmx61_convert_bit_to_freq(u8 odr_bits, int *val, int *val2) { int i; for (i = 0; i < ARRAY_SIZE(kmx61_samp_freq_table); i++) if (odr_bits == kmx61_samp_freq_table[i].odr_bits) { *val = kmx61_samp_freq_table[i].val; *val2 = kmx61_samp_freq_table[i].val2; return 0; } return -EINVAL; } static int kmx61_convert_wake_up_odr_to_bit(int val, int val2) { int i; for (i = 0; i < ARRAY_SIZE(kmx61_wake_up_odr_table); ++i) if (kmx61_wake_up_odr_table[i].val == val && kmx61_wake_up_odr_table[i].val2 == val2) return kmx61_wake_up_odr_table[i].odr_bits; return -EINVAL; } /** * kmx61_set_mode() - set KMX61 device operating mode * @data - kmx61 device private data pointer * @mode - bitmask, indicating operating mode for @device * @device - bitmask, indicating device for which @mode needs to be set * @update - update stby bits stored in device's private @data * * For each sensor (accelerometer/magnetometer) there are two operating modes * STANDBY and OPERATION. Neither accel nor magn can be disabled independently * if they are both enabled. Internal sensors state is saved in acc_stby and * mag_stby members of driver's private @data. */ static int kmx61_set_mode(struct kmx61_data *data, u8 mode, u8 device, bool update) { int ret; int acc_stby = -1, mag_stby = -1; ret = i2c_smbus_read_byte_data(data->client, KMX61_REG_STBY); if (ret < 0) { dev_err(&data->client->dev, "Error reading reg_stby\n"); return ret; } if (device & KMX61_ACC) { if (mode & KMX61_ACC_STBY_BIT) { ret |= KMX61_ACC_STBY_BIT; acc_stby = 1; } else { ret &= ~KMX61_ACC_STBY_BIT; acc_stby = 0; } } if (device & KMX61_MAG) { if (mode & KMX61_MAG_STBY_BIT) { ret |= KMX61_MAG_STBY_BIT; mag_stby = 1; } else { ret &= ~KMX61_MAG_STBY_BIT; mag_stby = 0; } } if (mode & KMX61_ACT_STBY_BIT) ret |= KMX61_ACT_STBY_BIT; ret = i2c_smbus_write_byte_data(data->client, KMX61_REG_STBY, ret); if (ret < 0) { dev_err(&data->client->dev, "Error writing reg_stby\n"); return ret; } if (acc_stby != -1 && update) data->acc_stby = acc_stby; if (mag_stby != -1 && update) data->mag_stby = mag_stby; return 0; } static int kmx61_get_mode(struct kmx61_data *data, u8 *mode, u8 device) { int ret; ret = i2c_smbus_read_byte_data(data->client, KMX61_REG_STBY); if (ret < 0) { dev_err(&data->client->dev, "Error reading reg_stby\n"); return ret; } *mode = 0; if (device & KMX61_ACC) { if (ret & KMX61_ACC_STBY_BIT) *mode |= KMX61_ACC_STBY_BIT; else *mode &= ~KMX61_ACC_STBY_BIT; } if (device & KMX61_MAG) { if (ret & KMX61_MAG_STBY_BIT) *mode |= KMX61_MAG_STBY_BIT; else *mode &= ~KMX61_MAG_STBY_BIT; } return 0; } int kmx61_set_wake_up_odr(struct kmx61_data *data, int val, int val2) { int ret, odr_bits; odr_bits = kmx61_convert_wake_up_odr_to_bit(val, val2); if (odr_bits < 0) return odr_bits; ret = i2c_smbus_write_byte_data(data->client, KMX61_REG_CTRL2, odr_bits); if (ret < 0) dev_err(&data->client->dev, "Error writing reg_ctrl2\n"); return ret; } static int kmx61_set_odr(struct kmx61_data *data, int val, int val2, u8 device) { int ret; u8 mode; int lodr_bits, odr_bits; ret = kmx61_get_mode(data, &mode, KMX61_ACC | KMX61_MAG); if (ret < 0) return ret; lodr_bits = kmx61_convert_freq_to_bit(val, val2); if (lodr_bits < 0) return lodr_bits; /* To change ODR, accel and magn must be in STDBY */ ret = kmx61_set_mode(data, KMX61_ALL_STBY, KMX61_ACC | KMX61_MAG, true); if (ret < 0) return ret; odr_bits = 0; if (device & KMX61_ACC) odr_bits |= lodr_bits << KMX61_ACC_ODR_SHIFT; if (device & KMX61_MAG) odr_bits |= lodr_bits << KMX61_MAG_ODR_SHIFT; ret = i2c_smbus_write_byte_data(data->client, KMX61_REG_ODCNTL, odr_bits); if (ret < 0) return ret; if (device & KMX61_ACC) { ret = kmx61_set_wake_up_odr(data, val, val2); if (ret) return ret; } return kmx61_set_mode(data, mode, KMX61_ACC | KMX61_MAG, true); } static int kmx61_get_odr(struct kmx61_data *data, int *val, int *val2, u8 device) { int i; u8 lodr_bits; if (device & KMX61_ACC) lodr_bits = (data->odr_bits >> KMX61_ACC_ODR_SHIFT) & KMX61_ACC_ODR_MASK; else if (device & KMX61_MAG) lodr_bits = (data->odr_bits >> KMX61_MAG_ODR_SHIFT) & KMX61_MAG_ODR_MASK; else return -EINVAL; for (i = 0; i < ARRAY_SIZE(kmx61_samp_freq_table); i++) if (lodr_bits == kmx61_samp_freq_table[i].odr_bits) { *val = kmx61_samp_freq_table[i].val; *val2 = kmx61_samp_freq_table[i].val2; return 0; } return -EINVAL; } static int kmx61_set_range(struct kmx61_data *data, u8 range) { int ret; ret = i2c_smbus_read_byte_data(data->client, KMX61_REG_CTRL1); if (ret < 0) { dev_err(&data->client->dev, "Error reading reg_ctrl1\n"); return ret; } ret &= ~KMX61_REG_CTRL1_GSEL_MASK; ret |= range & KMX61_REG_CTRL1_GSEL_MASK; ret = i2c_smbus_write_byte_data(data->client, KMX61_REG_CTRL1, ret); if (ret < 0) { dev_err(&data->client->dev, "Error writing reg_ctrl1\n"); return ret; } data->range = range; return 0; } static int kmx61_set_scale(struct kmx61_data *data, u16 uscale) { int ret, i; u8 mode; for (i = 0; i < ARRAY_SIZE(kmx61_uscale_table); i++) { if (kmx61_uscale_table[i] == uscale) { ret = kmx61_get_mode(data, &mode, KMX61_ACC | KMX61_MAG); if (ret < 0) return ret; ret = kmx61_set_mode(data, KMX61_ALL_STBY, KMX61_ACC | KMX61_MAG, true); if (ret < 0) return ret; ret = kmx61_set_range(data, i); if (ret < 0) return ret; return kmx61_set_mode(data, mode, KMX61_ACC | KMX61_MAG, true); } } return -EINVAL; } static int kmx61_chip_init(struct kmx61_data *data) { int ret, val, val2; ret = i2c_smbus_read_byte_data(data->client, KMX61_REG_WHO_AM_I); if (ret < 0) { dev_err(&data->client->dev, "Error reading who_am_i\n"); return ret; } if (ret != KMX61_CHIP_ID) { dev_err(&data->client->dev, "Wrong chip id, got %x expected %x\n", ret, KMX61_CHIP_ID); return -EINVAL; } /* set accel 12bit, 4g range */ ret = kmx61_set_range(data, KMX61_RANGE_4G); if (ret < 0) return ret; ret = i2c_smbus_read_byte_data(data->client, KMX61_REG_ODCNTL); if (ret < 0) { dev_err(&data->client->dev, "Error reading reg_odcntl\n"); return ret; } data->odr_bits = ret; /* set output data rate for wake up (motion detection) function */ ret = kmx61_convert_bit_to_freq(data->odr_bits, &val, &val2); if (ret < 0) return ret; ret = kmx61_set_wake_up_odr(data, val, val2); if (ret < 0) return ret; /* set acc/magn to OPERATION mode */ ret = kmx61_set_mode(data, 0, KMX61_ACC | KMX61_MAG, true); if (ret < 0) return ret; data->wake_thresh = KMX61_DEFAULT_WAKE_THRESH; data->wake_duration = KMX61_DEFAULT_WAKE_DURATION; return 0; } static int kmx61_setup_new_data_interrupt(struct kmx61_data *data, bool status, u8 device) { u8 mode; int ret; ret = kmx61_get_mode(data, &mode, KMX61_ACC | KMX61_MAG); if (ret < 0) return ret; ret = kmx61_set_mode(data, KMX61_ALL_STBY, KMX61_ACC | KMX61_MAG, true); if (ret < 0) return ret; ret = i2c_smbus_read_byte_data(data->client, KMX61_REG_INC1); if (ret < 0) { dev_err(&data->client->dev, "Error reading reg_ctrl1\n"); return ret; } if (status) { ret |= KMX61_REG_INC1_BIT_IEN; if (device & KMX61_ACC) ret |= KMX61_REG_INC1_BIT_DRDYA; if (device & KMX61_MAG) ret |= KMX61_REG_INC1_BIT_DRDYM; } else { ret &= ~KMX61_REG_INC1_BIT_IEN; if (device & KMX61_ACC) ret &= ~KMX61_REG_INC1_BIT_DRDYA; if (device & KMX61_MAG) ret &= ~KMX61_REG_INC1_BIT_DRDYM; } ret = i2c_smbus_write_byte_data(data->client, KMX61_REG_INC1, ret); if (ret < 0) { dev_err(&data->client->dev, "Error writing reg_int_ctrl1\n"); return ret; } ret = i2c_smbus_read_byte_data(data->client, KMX61_REG_CTRL1); if (ret < 0) { dev_err(&data->client->dev, "Error reading reg_ctrl1\n"); return ret; } if (status) ret |= KMX61_REG_CTRL1_BIT_DRDYE; else ret &= ~KMX61_REG_CTRL1_BIT_DRDYE; ret = i2c_smbus_write_byte_data(data->client, KMX61_REG_CTRL1, ret); if (ret < 0) { dev_err(&data->client->dev, "Error writing reg_ctrl1\n"); return ret; } ret = kmx61_set_mode(data, mode, KMX61_ACC | KMX61_MAG, true); if (ret) return ret; return 0; } static int kmx61_chip_update_thresholds(struct kmx61_data *data) { int ret; ret = i2c_smbus_write_byte_data(data->client, KMX61_REG_WUF_TIMER, data->wake_duration); if (ret < 0) { dev_err(&data->client->dev, "Errow writing reg_wuf_timer\n"); return ret; } ret = i2c_smbus_write_byte_data(data->client, KMX61_REG_WUF_THRESH, data->wake_thresh); if (ret < 0) { dev_err(&data->client->dev, "Error writing reg_wuf_thresh\n"); return ret; } return 0; } static int kmx61_setup_any_motion_interrupt(struct kmx61_data *data, bool status, u8 device) { u8 mode; int ret; ret = kmx61_get_mode(data, &mode, KMX61_ACC | KMX61_MAG); if (ret < 0) return ret; ret = kmx61_set_mode(data, KMX61_ALL_STBY, KMX61_ACC | KMX61_MAG, true); if (ret < 0) return ret; ret = kmx61_chip_update_thresholds(data); if (ret < 0) return ret; ret = i2c_smbus_read_byte_data(data->client, KMX61_REG_INC1); if (ret < 0) { dev_err(&data->client->dev, "Error reading reg_inc1\n"); return ret; } if (status) ret |= (KMX61_REG_INC1_BIT_IEN | KMX61_REG_INC1_BIT_WUFS); else ret &= ~(KMX61_REG_INC1_BIT_IEN | KMX61_REG_INC1_BIT_WUFS); ret = i2c_smbus_write_byte_data(data->client, KMX61_REG_INC1, ret); if (ret < 0) { dev_err(&data->client->dev, "Error writing reg_inc1\n"); return ret; } ret = i2c_smbus_read_byte_data(data->client, KMX61_REG_CTRL1); if (ret < 0) { dev_err(&data->client->dev, "Error reading reg_ctrl1\n"); return ret; } if (status) ret |= KMX61_REG_CTRL1_BIT_WUFE | KMX61_REG_CTRL1_BIT_BTSE; else ret &= ~(KMX61_REG_CTRL1_BIT_WUFE | KMX61_REG_CTRL1_BIT_BTSE); ret = i2c_smbus_write_byte_data(data->client, KMX61_REG_CTRL1, ret); if (ret < 0) { dev_err(&data->client->dev, "Error writing reg_ctrl1\n"); return ret; } mode |= KMX61_ACT_STBY_BIT; ret = kmx61_set_mode(data, mode, KMX61_ACC | KMX61_MAG, true); if (ret) return ret; return 0; } /** * kmx61_set_power_state() - set power state for kmx61 @device * @data - kmx61 device private pointer * @on - power state to be set for @device * @device - bitmask indicating device for which @on state needs to be set * * Notice that when ACC power state needs to be set to ON and MAG is in * OPERATION then we know that kmx61_runtime_resume was already called * so we must set ACC OPERATION mode here. The same happens when MAG power * state needs to be set to ON and ACC is in OPERATION. */ static int kmx61_set_power_state(struct kmx61_data *data, bool on, u8 device) { #ifdef CONFIG_PM_RUNTIME int ret; if (device & KMX61_ACC) { if (on && !data->acc_ps && !data->mag_stby) { ret = kmx61_set_mode(data, 0, KMX61_ACC, true); if (ret < 0) return ret; } data->acc_ps = on; } if (device & KMX61_MAG) { if (on && !data->mag_ps && !data->acc_stby) { ret = kmx61_set_mode(data, 0, KMX61_MAG, true); if (ret < 0) return ret; } data->mag_ps = on; } if (on) { ret = pm_runtime_get_sync(&data->client->dev); } else { pm_runtime_mark_last_busy(&data->client->dev); ret = pm_runtime_put_autosuspend(&data->client->dev); } if (ret < 0) { dev_err(&data->client->dev, "Failed: kmx61_set_power_state for %d, ret %d\n", on, ret); if (on) pm_runtime_put_noidle(&data->client->dev); return ret; } #endif return 0; } static int kmx61_read_measurement(struct kmx61_data *data, u8 base, u8 offset) { int ret; u8 reg = base + offset * 2; ret = i2c_smbus_read_word_data(data->client, reg); if (ret < 0) dev_err(&data->client->dev, "failed to read reg at %x\n", reg); return ret; } static int kmx61_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { int ret; u8 base_reg; struct kmx61_data *data = kmx61_get_data(indio_dev); switch (mask) { case IIO_CHAN_INFO_RAW: switch (chan->type) { case IIO_ACCEL: base_reg = KMX61_ACC_XOUT_L; break; case IIO_MAGN: base_reg = KMX61_MAG_XOUT_L; break; default: return -EINVAL; } mutex_lock(&data->lock); kmx61_set_power_state(data, true, chan->address); ret = kmx61_read_measurement(data, base_reg, chan->scan_index); if (ret < 0) { kmx61_set_power_state(data, false, chan->address); mutex_unlock(&data->lock); return ret; } *val = sign_extend32(ret >> chan->scan_type.shift, chan->scan_type.realbits - 1); kmx61_set_power_state(data, false, chan->address); mutex_unlock(&data->lock); return IIO_VAL_INT; case IIO_CHAN_INFO_SCALE: switch (chan->type) { case IIO_ACCEL: *val = 0; *val2 = kmx61_uscale_table[data->range]; return IIO_VAL_INT_PLUS_MICRO; case IIO_MAGN: /* 14 bits res, 1465 microGauss per magn count */ *val = 0; *val2 = 1465; return IIO_VAL_INT_PLUS_MICRO; default: return -EINVAL; } case IIO_CHAN_INFO_SAMP_FREQ: if (chan->type != IIO_ACCEL && chan->type != IIO_MAGN) return -EINVAL; mutex_lock(&data->lock); ret = kmx61_get_odr(data, val, val2, chan->address); mutex_unlock(&data->lock); if (ret) return -EINVAL; return IIO_VAL_INT_PLUS_MICRO; } return -EINVAL; } static int kmx61_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int val, int val2, long mask) { int ret; struct kmx61_data *data = kmx61_get_data(indio_dev); switch (mask) { case IIO_CHAN_INFO_SAMP_FREQ: if (chan->type != IIO_ACCEL && chan->type != IIO_MAGN) return -EINVAL; mutex_lock(&data->lock); ret = kmx61_set_odr(data, val, val2, chan->address); mutex_unlock(&data->lock); return ret; case IIO_CHAN_INFO_SCALE: switch (chan->type) { case IIO_ACCEL: if (val != 0) return -EINVAL; mutex_lock(&data->lock); ret = kmx61_set_scale(data, val2); mutex_unlock(&data->lock); return ret; default: return -EINVAL; } default: return -EINVAL; } } static int kmx61_read_event(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir, enum iio_event_info info, int *val, int *val2) { struct kmx61_data *data = kmx61_get_data(indio_dev); *val2 = 0; switch (info) { case IIO_EV_INFO_VALUE: *val = data->wake_thresh; break; case IIO_EV_INFO_PERIOD: *val = data->wake_duration; break; default: return -EINVAL; } return IIO_VAL_INT; } static int kmx61_write_event(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir, enum iio_event_info info, int val, int val2) { struct kmx61_data *data = kmx61_get_data(indio_dev); if (data->ev_enable_state) return -EBUSY; switch (info) { case IIO_EV_INFO_VALUE: data->wake_thresh = val; break; case IIO_EV_INFO_PERIOD: data->wake_duration = val; break; default: return -EINVAL; } return IIO_VAL_INT; } static int kmx61_read_event_config(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir) { struct kmx61_data *data = kmx61_get_data(indio_dev); return data->ev_enable_state; } static int kmx61_write_event_config(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir, int state) { struct kmx61_data *data = kmx61_get_data(indio_dev); int ret; if (state && data->ev_enable_state) return 0; mutex_lock(&data->lock); if (!state && data->motion_trig_on) { data->ev_enable_state = 0; mutex_unlock(&data->lock); return 0; } ret = kmx61_set_power_state(data, state, KMX61_ACC); if (ret < 0) { mutex_unlock(&data->lock); return ret; } ret = kmx61_setup_any_motion_interrupt(data, state, KMX61_ACC); if (ret < 0) { kmx61_set_power_state(data, false, KMX61_ACC); mutex_unlock(&data->lock); return ret; } data->ev_enable_state = state; mutex_unlock(&data->lock); return 0; } static int kmx61_acc_validate_trigger(struct iio_dev *indio_dev, struct iio_trigger *trig) { struct kmx61_data *data = kmx61_get_data(indio_dev); if (data->acc_dready_trig != trig && data->motion_trig != trig) return -EINVAL; return 0; } static int kmx61_mag_validate_trigger(struct iio_dev *indio_dev, struct iio_trigger *trig) { struct kmx61_data *data = kmx61_get_data(indio_dev); if (data->mag_dready_trig != trig) return -EINVAL; return 0; } static const struct iio_info kmx61_acc_info = { .driver_module = THIS_MODULE, .read_raw = kmx61_read_raw, .write_raw = kmx61_write_raw, .attrs = &kmx61_acc_attribute_group, .read_event_value = kmx61_read_event, .write_event_value = kmx61_write_event, .read_event_config = kmx61_read_event_config, .write_event_config = kmx61_write_event_config, .validate_trigger = kmx61_acc_validate_trigger, }; static const struct iio_info kmx61_mag_info = { .driver_module = THIS_MODULE, .read_raw = kmx61_read_raw, .write_raw = kmx61_write_raw, .attrs = &kmx61_mag_attribute_group, .validate_trigger = kmx61_mag_validate_trigger, }; static int kmx61_data_rdy_trigger_set_state(struct iio_trigger *trig, bool state) { int ret = 0; u8 device; struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig); struct kmx61_data *data = kmx61_get_data(indio_dev); mutex_lock(&data->lock); if (!state && data->ev_enable_state && data->motion_trig_on) { data->motion_trig_on = false; mutex_unlock(&data->lock); return 0; } if (data->acc_dready_trig == trig || data->motion_trig) device = KMX61_ACC; else device = KMX61_MAG; ret = kmx61_set_power_state(data, state, device); if (ret < 0) { mutex_unlock(&data->lock); return ret; } if (data->acc_dready_trig == trig || data->mag_dready_trig == trig) ret = kmx61_setup_new_data_interrupt(data, state, device); else ret = kmx61_setup_any_motion_interrupt(data, state, KMX61_ACC); if (ret < 0) { kmx61_set_power_state(data, false, device); mutex_unlock(&data->lock); return ret; } if (data->acc_dready_trig == trig) data->acc_dready_trig_on = state; else if (data->mag_dready_trig == trig) data->mag_dready_trig_on = state; else data->motion_trig_on = state; mutex_unlock(&data->lock); return 0; } static int kmx61_trig_try_reenable(struct iio_trigger *trig) { struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig); struct kmx61_data *data = kmx61_get_data(indio_dev); int ret; ret = i2c_smbus_read_byte_data(data->client, KMX61_REG_INL); if (ret < 0) { dev_err(&data->client->dev, "Error reading reg_inl\n"); return ret; } return 0; } static const struct iio_trigger_ops kmx61_trigger_ops = { .set_trigger_state = kmx61_data_rdy_trigger_set_state, .try_reenable = kmx61_trig_try_reenable, .owner = THIS_MODULE, }; static irqreturn_t kmx61_event_handler(int irq, void *private) { struct kmx61_data *data = private; struct iio_dev *indio_dev = data->acc_indio_dev; int ret; ret = i2c_smbus_read_byte_data(data->client, KMX61_REG_INS1); if (ret < 0) { dev_err(&data->client->dev, "Error reading reg_ins1\n"); goto ack_intr; } if (ret & KMX61_REG_INS1_BIT_WUFS) { ret = i2c_smbus_read_byte_data(data->client, KMX61_REG_INS2); if (ret < 0) { dev_err(&data->client->dev, "Error reading reg_ins2\n"); goto ack_intr; } if (ret & KMX61_REG_INS2_BIT_XN) iio_push_event(indio_dev, IIO_MOD_EVENT_CODE(IIO_ACCEL, 0, IIO_MOD_X, IIO_EV_TYPE_THRESH, IIO_EV_DIR_FALLING), 0); if (ret & KMX61_REG_INS2_BIT_XP) iio_push_event(indio_dev, IIO_MOD_EVENT_CODE(IIO_ACCEL, 0, IIO_MOD_X, IIO_EV_TYPE_THRESH, IIO_EV_DIR_RISING), 0); if (ret & KMX61_REG_INS2_BIT_YN) iio_push_event(indio_dev, IIO_MOD_EVENT_CODE(IIO_ACCEL, 0, IIO_MOD_Y, IIO_EV_TYPE_THRESH, IIO_EV_DIR_FALLING), 0); if (ret & KMX61_REG_INS2_BIT_YP) iio_push_event(indio_dev, IIO_MOD_EVENT_CODE(IIO_ACCEL, 0, IIO_MOD_Y, IIO_EV_TYPE_THRESH, IIO_EV_DIR_RISING), 0); if (ret & KMX61_REG_INS2_BIT_ZN) iio_push_event(indio_dev, IIO_MOD_EVENT_CODE(IIO_ACCEL, 0, IIO_MOD_Z, IIO_EV_TYPE_THRESH, IIO_EV_DIR_FALLING), 0); if (ret & KMX61_REG_INS2_BIT_ZP) iio_push_event(indio_dev, IIO_MOD_EVENT_CODE(IIO_ACCEL, 0, IIO_MOD_Z, IIO_EV_TYPE_THRESH, IIO_EV_DIR_RISING), 0); } ack_intr: ret = i2c_smbus_read_byte_data(data->client, KMX61_REG_CTRL1); if (ret < 0) dev_err(&data->client->dev, "Error reading reg_ctrl1\n"); ret |= KMX61_REG_CTRL1_BIT_RES; ret = i2c_smbus_write_byte_data(data->client, KMX61_REG_CTRL1, ret); if (ret < 0) dev_err(&data->client->dev, "Error reading reg_ctrl1\n"); ret = i2c_smbus_read_byte_data(data->client, KMX61_REG_INL); if (ret < 0) dev_err(&data->client->dev, "Error reading reg_inl\n"); ret = i2c_smbus_read_byte_data(data->client, KMX61_REG_INS1); return IRQ_HANDLED; } static irqreturn_t kmx61_data_rdy_trig_poll(int irq, void *private) { struct kmx61_data *data = private; if (data->acc_dready_trig_on) iio_trigger_poll(data->acc_dready_trig); if (data->mag_dready_trig_on) iio_trigger_poll(data->mag_dready_trig); if (data->motion_trig_on) iio_trigger_poll(data->motion_trig); if (data->ev_enable_state) return IRQ_WAKE_THREAD; return IRQ_HANDLED; } static irqreturn_t kmx61_trigger_handler(int irq, void *p) { struct iio_poll_func *pf = p; struct iio_dev *indio_dev = pf->indio_dev; struct kmx61_data *data = kmx61_get_data(indio_dev); int bit, ret, i = 0; s16 buffer[8]; mutex_lock(&data->lock); for_each_set_bit(bit, indio_dev->buffer->scan_mask, indio_dev->masklength) { ret = kmx61_read_measurement(data, KMX61_ACC_XOUT_L, bit); if (ret < 0) { mutex_unlock(&data->lock); goto err; } buffer[i++] = ret; } mutex_unlock(&data->lock); iio_push_to_buffers(indio_dev, buffer); err: iio_trigger_notify_done(indio_dev->trig); return IRQ_HANDLED; } static const char *kmx61_match_acpi_device(struct device *dev) { const struct acpi_device_id *id; id = acpi_match_device(dev->driver->acpi_match_table, dev); if (!id) return NULL; return dev_name(dev); } static int kmx61_gpio_probe(struct i2c_client *client, struct kmx61_data *data) { struct device *dev; struct gpio_desc *gpio; int ret; if (!client) return -EINVAL; dev = &client->dev; /* data ready gpio interrupt pin */ gpio = devm_gpiod_get_index(dev, KMX61_GPIO_NAME, 0); if (IS_ERR(gpio)) { dev_err(dev, "acpi gpio get index failed\n"); return PTR_ERR(gpio); } ret = gpiod_direction_input(gpio); if (ret) return ret; ret = gpiod_to_irq(gpio); dev_dbg(dev, "GPIO resource, no:%d irq:%d\n", desc_to_gpio(gpio), ret); return ret; } static struct iio_dev *kmx61_indiodev_setup(struct kmx61_data *data, const struct iio_info *info, const struct iio_chan_spec *chan, int num_channels, const char *name) { struct iio_dev *indio_dev; indio_dev = devm_iio_device_alloc(&data->client->dev, sizeof(data)); if (!indio_dev) return ERR_PTR(-ENOMEM); kmx61_set_data(indio_dev, data); indio_dev->dev.parent = &data->client->dev; indio_dev->channels = chan; indio_dev->num_channels = num_channels; indio_dev->name = name; indio_dev->modes = INDIO_DIRECT_MODE; indio_dev->info = info; return indio_dev; } static struct iio_trigger *kmx61_trigger_setup(struct kmx61_data *data, struct iio_dev *indio_dev, const char *tag) { struct iio_trigger *trig; int ret; trig = devm_iio_trigger_alloc(&data->client->dev, "%s-%s-dev%d", indio_dev->name, tag, indio_dev->id); if (!trig) return ERR_PTR(-ENOMEM); trig->dev.parent = &data->client->dev; trig->ops = &kmx61_trigger_ops; iio_trigger_set_drvdata(trig, indio_dev); ret = iio_trigger_register(trig); if (ret) return ERR_PTR(ret); return trig; } static int kmx61_probe(struct i2c_client *client, const struct i2c_device_id *id) { int ret; struct kmx61_data *data; const char *name = NULL; data = devm_kzalloc(&client->dev, sizeof(*data), GFP_KERNEL); if (!data) return -ENOMEM; i2c_set_clientdata(client, data); data->client = client; mutex_init(&data->lock); if (id) name = id->name; else if (ACPI_HANDLE(&client->dev)) name = kmx61_match_acpi_device(&client->dev); else return -ENODEV; data->acc_indio_dev = kmx61_indiodev_setup(data, &kmx61_acc_info, kmx61_acc_channels, ARRAY_SIZE(kmx61_acc_channels), name); if (IS_ERR(data->acc_indio_dev)) return PTR_ERR(data->acc_indio_dev); data->mag_indio_dev = kmx61_indiodev_setup(data, &kmx61_mag_info, kmx61_mag_channels, ARRAY_SIZE(kmx61_mag_channels), name); if (IS_ERR(data->mag_indio_dev)) return PTR_ERR(data->mag_indio_dev); ret = kmx61_chip_init(data); if (ret < 0) return ret; if (client->irq < 0) client->irq = kmx61_gpio_probe(client, data); if (client->irq >= 0) { ret = devm_request_threaded_irq(&client->dev, client->irq, kmx61_data_rdy_trig_poll, kmx61_event_handler, IRQF_TRIGGER_RISING, KMX61_IRQ_NAME, data); if (ret) goto err_chip_uninit; data->acc_dready_trig = kmx61_trigger_setup(data, data->acc_indio_dev, "dready"); if (IS_ERR(data->acc_dready_trig)) return PTR_ERR(data->acc_dready_trig); data->mag_dready_trig = kmx61_trigger_setup(data, data->mag_indio_dev, "dready"); if (IS_ERR(data->mag_dready_trig)) { ret = PTR_ERR(data->mag_dready_trig); goto err_trigger_unregister; } data->motion_trig = kmx61_trigger_setup(data, data->acc_indio_dev, "any-motion"); if (IS_ERR(data->motion_trig)) { ret = PTR_ERR(data->motion_trig); goto err_trigger_unregister; } ret = iio_triggered_buffer_setup(data->acc_indio_dev, &iio_pollfunc_store_time, kmx61_trigger_handler, NULL); if (ret < 0) { dev_err(&data->client->dev, "Failed to setup acc triggered buffer\n"); goto err_trigger_unregister; } ret = iio_triggered_buffer_setup(data->mag_indio_dev, &iio_pollfunc_store_time, kmx61_trigger_handler, NULL); if (ret < 0) { dev_err(&data->client->dev, "Failed to setup mag triggered buffer\n"); goto err_trigger_unregister; } } ret = iio_device_register(data->acc_indio_dev); if (ret < 0) { dev_err(&client->dev, "Failed to register acc iio device\n"); goto err_buffer_cleanup; } ret = iio_device_register(data->mag_indio_dev); if (ret < 0) { dev_err(&client->dev, "Failed to register mag iio device\n"); goto err_iio_unregister_acc; } ret = pm_runtime_set_active(&client->dev); if (ret < 0) goto err_iio_unregister_mag; pm_runtime_enable(&client->dev); pm_runtime_set_autosuspend_delay(&client->dev, KMX61_SLEEP_DELAY_MS); pm_runtime_use_autosuspend(&client->dev); return 0; err_iio_unregister_mag: iio_device_unregister(data->mag_indio_dev); err_iio_unregister_acc: iio_device_unregister(data->acc_indio_dev); err_buffer_cleanup: if (client->irq >= 0) { iio_triggered_buffer_cleanup(data->acc_indio_dev); iio_triggered_buffer_cleanup(data->mag_indio_dev); } err_trigger_unregister: if (data->acc_dready_trig) iio_trigger_unregister(data->acc_dready_trig); if (data->mag_dready_trig) iio_trigger_unregister(data->mag_dready_trig); if (data->motion_trig) iio_trigger_unregister(data->motion_trig); err_chip_uninit: kmx61_set_mode(data, KMX61_ALL_STBY, KMX61_ACC | KMX61_MAG, true); return ret; } static int kmx61_remove(struct i2c_client *client) { struct kmx61_data *data = i2c_get_clientdata(client); pm_runtime_disable(&client->dev); pm_runtime_set_suspended(&client->dev); pm_runtime_put_noidle(&client->dev); iio_device_unregister(data->acc_indio_dev); iio_device_unregister(data->mag_indio_dev); if (client->irq >= 0) { iio_triggered_buffer_cleanup(data->acc_indio_dev); iio_triggered_buffer_cleanup(data->mag_indio_dev); iio_trigger_unregister(data->acc_dready_trig); iio_trigger_unregister(data->mag_dready_trig); iio_trigger_unregister(data->motion_trig); } mutex_lock(&data->lock); kmx61_set_mode(data, KMX61_ALL_STBY, KMX61_ACC | KMX61_MAG, true); mutex_unlock(&data->lock); return 0; } #ifdef CONFIG_PM_SLEEP static int kmx61_suspend(struct device *dev) { int ret; struct kmx61_data *data = i2c_get_clientdata(to_i2c_client(dev)); mutex_lock(&data->lock); ret = kmx61_set_mode(data, KMX61_ALL_STBY, KMX61_ACC | KMX61_MAG, false); mutex_unlock(&data->lock); return ret; } static int kmx61_resume(struct device *dev) { u8 stby = 0; struct kmx61_data *data = i2c_get_clientdata(to_i2c_client(dev)); if (data->acc_stby) stby |= KMX61_ACC_STBY_BIT; if (data->mag_stby) stby |= KMX61_MAG_STBY_BIT; return kmx61_set_mode(data, stby, KMX61_ACC | KMX61_MAG, true); } #endif #ifdef CONFIG_PM_RUNTIME static int kmx61_runtime_suspend(struct device *dev) { struct kmx61_data *data = i2c_get_clientdata(to_i2c_client(dev)); int ret; mutex_lock(&data->lock); ret = kmx61_set_mode(data, KMX61_ALL_STBY, KMX61_ACC | KMX61_MAG, true); mutex_unlock(&data->lock); return ret; } static int kmx61_runtime_resume(struct device *dev) { struct kmx61_data *data = i2c_get_clientdata(to_i2c_client(dev)); u8 stby = 0; if (!data->acc_ps) stby |= KMX61_ACC_STBY_BIT; if (!data->mag_ps) stby |= KMX61_MAG_STBY_BIT; return kmx61_set_mode(data, stby, KMX61_ACC | KMX61_MAG, true); } #endif static const struct dev_pm_ops kmx61_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS(kmx61_suspend, kmx61_resume) SET_RUNTIME_PM_OPS(kmx61_runtime_suspend, kmx61_runtime_resume, NULL) }; static const struct acpi_device_id kmx61_acpi_match[] = { {"KMX61021", 0}, {} }; MODULE_DEVICE_TABLE(acpi, kmx61_acpi_match); static const struct i2c_device_id kmx61_id[] = { {"kmx611021", 0}, {} }; MODULE_DEVICE_TABLE(i2c, kmx61_id); static struct i2c_driver kmx61_driver = { .driver = { .name = KMX61_DRV_NAME, .acpi_match_table = ACPI_PTR(kmx61_acpi_match), .pm = &kmx61_pm_ops, }, .probe = kmx61_probe, .remove = kmx61_remove, .id_table = kmx61_id, }; module_i2c_driver(kmx61_driver); MODULE_AUTHOR("Daniel Baluta "); MODULE_DESCRIPTION("KMX61 accelerometer/magnetometer driver"); MODULE_LICENSE("GPL v2");