// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2017 Marvell * * Antoine Tenart */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "safexcel.h" enum safexcel_cipher_direction { SAFEXCEL_ENCRYPT, SAFEXCEL_DECRYPT, }; enum safexcel_cipher_alg { SAFEXCEL_DES, SAFEXCEL_3DES, SAFEXCEL_AES, }; struct safexcel_cipher_ctx { struct safexcel_context base; struct safexcel_crypto_priv *priv; u32 mode; enum safexcel_cipher_alg alg; bool aead; int xcm; /* 0=authenc, 1=GCM, 2 reserved for CCM */ __le32 key[16]; u32 nonce; unsigned int key_len, xts; /* All the below is AEAD specific */ u32 hash_alg; u32 state_sz; u32 ipad[SHA512_DIGEST_SIZE / sizeof(u32)]; u32 opad[SHA512_DIGEST_SIZE / sizeof(u32)]; struct crypto_cipher *hkaes; }; struct safexcel_cipher_req { enum safexcel_cipher_direction direction; /* Number of result descriptors associated to the request */ unsigned int rdescs; bool needs_inv; int nr_src, nr_dst; }; static void safexcel_cipher_token(struct safexcel_cipher_ctx *ctx, u8 *iv, struct safexcel_command_desc *cdesc) { u32 block_sz = 0; if (ctx->mode == CONTEXT_CONTROL_CRYPTO_MODE_CTR_LOAD) { cdesc->control_data.options |= EIP197_OPTION_4_TOKEN_IV_CMD; /* 32 bit nonce */ cdesc->control_data.token[0] = ctx->nonce; /* 64 bit IV part */ memcpy(&cdesc->control_data.token[1], iv, 8); /* 32 bit counter, start at 1 (big endian!) */ cdesc->control_data.token[3] = cpu_to_be32(1); return; } else if (ctx->mode == CONTEXT_CONTROL_CRYPTO_MODE_XCM) { cdesc->control_data.options |= EIP197_OPTION_4_TOKEN_IV_CMD; /* 96 bit IV part */ memcpy(&cdesc->control_data.token[0], iv, 12); /* 32 bit counter, start at 1 (big endian!) */ cdesc->control_data.token[3] = cpu_to_be32(1); return; } if (ctx->mode != CONTEXT_CONTROL_CRYPTO_MODE_ECB) { switch (ctx->alg) { case SAFEXCEL_DES: block_sz = DES_BLOCK_SIZE; cdesc->control_data.options |= EIP197_OPTION_2_TOKEN_IV_CMD; break; case SAFEXCEL_3DES: block_sz = DES3_EDE_BLOCK_SIZE; cdesc->control_data.options |= EIP197_OPTION_2_TOKEN_IV_CMD; break; case SAFEXCEL_AES: block_sz = AES_BLOCK_SIZE; cdesc->control_data.options |= EIP197_OPTION_4_TOKEN_IV_CMD; break; } memcpy(cdesc->control_data.token, iv, block_sz); } } static void safexcel_skcipher_token(struct safexcel_cipher_ctx *ctx, u8 *iv, struct safexcel_command_desc *cdesc, u32 length) { struct safexcel_token *token; safexcel_cipher_token(ctx, iv, cdesc); /* skip over worst case IV of 4 dwords, no need to be exact */ token = (struct safexcel_token *)(cdesc->control_data.token + 4); token[0].opcode = EIP197_TOKEN_OPCODE_DIRECTION; token[0].packet_length = length; token[0].stat = EIP197_TOKEN_STAT_LAST_PACKET | EIP197_TOKEN_STAT_LAST_HASH; token[0].instructions = EIP197_TOKEN_INS_LAST | EIP197_TOKEN_INS_TYPE_CRYPTO | EIP197_TOKEN_INS_TYPE_OUTPUT; } static void safexcel_aead_token(struct safexcel_cipher_ctx *ctx, u8 *iv, struct safexcel_command_desc *cdesc, enum safexcel_cipher_direction direction, u32 cryptlen, u32 assoclen, u32 digestsize) { struct safexcel_token *token; safexcel_cipher_token(ctx, iv, cdesc); if (direction == SAFEXCEL_ENCRYPT) { /* align end of instruction sequence to end of token */ token = (struct safexcel_token *)(cdesc->control_data.token + EIP197_MAX_TOKENS - 5); token[4].opcode = EIP197_TOKEN_OPCODE_INSERT; token[4].packet_length = digestsize; token[4].stat = EIP197_TOKEN_STAT_LAST_HASH | EIP197_TOKEN_STAT_LAST_PACKET; token[4].instructions = EIP197_TOKEN_INS_TYPE_OUTPUT | EIP197_TOKEN_INS_INSERT_HASH_DIGEST; } else { cryptlen -= digestsize; /* align end of instruction sequence to end of token */ token = (struct safexcel_token *)(cdesc->control_data.token + EIP197_MAX_TOKENS - 6); token[4].opcode = EIP197_TOKEN_OPCODE_RETRIEVE; token[4].packet_length = digestsize; token[4].stat = EIP197_TOKEN_STAT_LAST_HASH | EIP197_TOKEN_STAT_LAST_PACKET; token[4].instructions = EIP197_TOKEN_INS_INSERT_HASH_DIGEST; token[5].opcode = EIP197_TOKEN_OPCODE_VERIFY; token[5].packet_length = digestsize | EIP197_TOKEN_HASH_RESULT_VERIFY; token[5].stat = EIP197_TOKEN_STAT_LAST_HASH | EIP197_TOKEN_STAT_LAST_PACKET; token[5].instructions = EIP197_TOKEN_INS_TYPE_OUTPUT; } token[0].opcode = EIP197_TOKEN_OPCODE_DIRECTION; token[0].packet_length = assoclen; if (likely(cryptlen)) { token[0].instructions = EIP197_TOKEN_INS_TYPE_HASH; token[3].opcode = EIP197_TOKEN_OPCODE_DIRECTION; token[3].packet_length = cryptlen; token[3].stat = EIP197_TOKEN_STAT_LAST_HASH; token[3].instructions = EIP197_TOKEN_INS_LAST | EIP197_TOKEN_INS_TYPE_CRYPTO | EIP197_TOKEN_INS_TYPE_HASH | EIP197_TOKEN_INS_TYPE_OUTPUT; } else { token[0].stat = EIP197_TOKEN_STAT_LAST_HASH; token[0].instructions = EIP197_TOKEN_INS_LAST | EIP197_TOKEN_INS_TYPE_HASH; } if (ctx->xcm) { token[0].instructions = EIP197_TOKEN_INS_LAST | EIP197_TOKEN_INS_TYPE_HASH; token[1].opcode = EIP197_TOKEN_OPCODE_INSERT_REMRES; token[1].packet_length = 0; token[1].stat = EIP197_TOKEN_STAT_LAST_HASH; token[1].instructions = AES_BLOCK_SIZE; token[2].opcode = EIP197_TOKEN_OPCODE_INSERT; token[2].packet_length = AES_BLOCK_SIZE; token[2].instructions = EIP197_TOKEN_INS_TYPE_OUTPUT | EIP197_TOKEN_INS_TYPE_CRYPTO; } } static int safexcel_skcipher_aes_setkey(struct crypto_skcipher *ctfm, const u8 *key, unsigned int len) { struct crypto_tfm *tfm = crypto_skcipher_tfm(ctfm); struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm); struct safexcel_crypto_priv *priv = ctx->priv; struct crypto_aes_ctx aes; int ret, i; ret = aes_expandkey(&aes, key, len); if (ret) { crypto_skcipher_set_flags(ctfm, CRYPTO_TFM_RES_BAD_KEY_LEN); return ret; } if (priv->flags & EIP197_TRC_CACHE && ctx->base.ctxr_dma) { for (i = 0; i < len / sizeof(u32); i++) { if (ctx->key[i] != cpu_to_le32(aes.key_enc[i])) { ctx->base.needs_inv = true; break; } } } for (i = 0; i < len / sizeof(u32); i++) ctx->key[i] = cpu_to_le32(aes.key_enc[i]); ctx->key_len = len; memzero_explicit(&aes, sizeof(aes)); return 0; } static int safexcel_aead_setkey(struct crypto_aead *ctfm, const u8 *key, unsigned int len) { struct crypto_tfm *tfm = crypto_aead_tfm(ctfm); struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm); struct safexcel_ahash_export_state istate, ostate; struct safexcel_crypto_priv *priv = ctx->priv; struct crypto_authenc_keys keys; struct crypto_aes_ctx aes; int err = -EINVAL; if (crypto_authenc_extractkeys(&keys, key, len) != 0) goto badkey; if (ctx->mode == CONTEXT_CONTROL_CRYPTO_MODE_CTR_LOAD) { /* Minimum keysize is minimum AES key size + nonce size */ if (keys.enckeylen < (AES_MIN_KEY_SIZE + CTR_RFC3686_NONCE_SIZE)) goto badkey; /* last 4 bytes of key are the nonce! */ ctx->nonce = *(u32 *)(keys.enckey + keys.enckeylen - CTR_RFC3686_NONCE_SIZE); /* exclude the nonce here */ keys.enckeylen -= CONTEXT_CONTROL_CRYPTO_MODE_CTR_LOAD; } /* Encryption key */ switch (ctx->alg) { case SAFEXCEL_3DES: err = verify_aead_des3_key(ctfm, keys.enckey, keys.enckeylen); if (unlikely(err)) goto badkey_expflags; break; case SAFEXCEL_AES: err = aes_expandkey(&aes, keys.enckey, keys.enckeylen); if (unlikely(err)) goto badkey; break; default: dev_err(priv->dev, "aead: unsupported cipher algorithm\n"); goto badkey; } if (priv->flags & EIP197_TRC_CACHE && ctx->base.ctxr_dma && memcmp(ctx->key, keys.enckey, keys.enckeylen)) ctx->base.needs_inv = true; /* Auth key */ switch (ctx->hash_alg) { case CONTEXT_CONTROL_CRYPTO_ALG_SHA1: if (safexcel_hmac_setkey("safexcel-sha1", keys.authkey, keys.authkeylen, &istate, &ostate)) goto badkey; break; case CONTEXT_CONTROL_CRYPTO_ALG_SHA224: if (safexcel_hmac_setkey("safexcel-sha224", keys.authkey, keys.authkeylen, &istate, &ostate)) goto badkey; break; case CONTEXT_CONTROL_CRYPTO_ALG_SHA256: if (safexcel_hmac_setkey("safexcel-sha256", keys.authkey, keys.authkeylen, &istate, &ostate)) goto badkey; break; case CONTEXT_CONTROL_CRYPTO_ALG_SHA384: if (safexcel_hmac_setkey("safexcel-sha384", keys.authkey, keys.authkeylen, &istate, &ostate)) goto badkey; break; case CONTEXT_CONTROL_CRYPTO_ALG_SHA512: if (safexcel_hmac_setkey("safexcel-sha512", keys.authkey, keys.authkeylen, &istate, &ostate)) goto badkey; break; default: dev_err(priv->dev, "aead: unsupported hash algorithm\n"); goto badkey; } crypto_aead_set_flags(ctfm, crypto_aead_get_flags(ctfm) & CRYPTO_TFM_RES_MASK); if (priv->flags & EIP197_TRC_CACHE && ctx->base.ctxr_dma && (memcmp(ctx->ipad, istate.state, ctx->state_sz) || memcmp(ctx->opad, ostate.state, ctx->state_sz))) ctx->base.needs_inv = true; /* Now copy the keys into the context */ memcpy(ctx->key, keys.enckey, keys.enckeylen); ctx->key_len = keys.enckeylen; memcpy(ctx->ipad, &istate.state, ctx->state_sz); memcpy(ctx->opad, &ostate.state, ctx->state_sz); memzero_explicit(&keys, sizeof(keys)); return 0; badkey: crypto_aead_set_flags(ctfm, CRYPTO_TFM_RES_BAD_KEY_LEN); badkey_expflags: memzero_explicit(&keys, sizeof(keys)); return err; } static int safexcel_context_control(struct safexcel_cipher_ctx *ctx, struct crypto_async_request *async, struct safexcel_cipher_req *sreq, struct safexcel_command_desc *cdesc) { struct safexcel_crypto_priv *priv = ctx->priv; int ctrl_size = ctx->key_len / sizeof(u32); cdesc->control_data.control1 = ctx->mode; if (ctx->aead) { /* Take in account the ipad+opad digests */ if (ctx->xcm) { ctrl_size += ctx->state_sz / sizeof(u32); cdesc->control_data.control0 = CONTEXT_CONTROL_KEY_EN | CONTEXT_CONTROL_DIGEST_XCM | ctx->hash_alg | CONTEXT_CONTROL_SIZE(ctrl_size); } else { ctrl_size += ctx->state_sz / sizeof(u32) * 2; cdesc->control_data.control0 = CONTEXT_CONTROL_KEY_EN | CONTEXT_CONTROL_DIGEST_HMAC | ctx->hash_alg | CONTEXT_CONTROL_SIZE(ctrl_size); } if (sreq->direction == SAFEXCEL_ENCRYPT) cdesc->control_data.control0 |= CONTEXT_CONTROL_TYPE_ENCRYPT_HASH_OUT; else cdesc->control_data.control0 |= CONTEXT_CONTROL_TYPE_HASH_DECRYPT_IN; } else { if (sreq->direction == SAFEXCEL_ENCRYPT) cdesc->control_data.control0 = CONTEXT_CONTROL_TYPE_CRYPTO_OUT | CONTEXT_CONTROL_KEY_EN | CONTEXT_CONTROL_SIZE(ctrl_size); else cdesc->control_data.control0 = CONTEXT_CONTROL_TYPE_CRYPTO_IN | CONTEXT_CONTROL_KEY_EN | CONTEXT_CONTROL_SIZE(ctrl_size); } if (ctx->alg == SAFEXCEL_DES) { cdesc->control_data.control0 |= CONTEXT_CONTROL_CRYPTO_ALG_DES; } else if (ctx->alg == SAFEXCEL_3DES) { cdesc->control_data.control0 |= CONTEXT_CONTROL_CRYPTO_ALG_3DES; } else if (ctx->alg == SAFEXCEL_AES) { switch (ctx->key_len >> ctx->xts) { case AES_KEYSIZE_128: cdesc->control_data.control0 |= CONTEXT_CONTROL_CRYPTO_ALG_AES128; break; case AES_KEYSIZE_192: cdesc->control_data.control0 |= CONTEXT_CONTROL_CRYPTO_ALG_AES192; break; case AES_KEYSIZE_256: cdesc->control_data.control0 |= CONTEXT_CONTROL_CRYPTO_ALG_AES256; break; default: dev_err(priv->dev, "aes keysize not supported: %u\n", ctx->key_len >> ctx->xts); return -EINVAL; } } return 0; } static int safexcel_handle_req_result(struct safexcel_crypto_priv *priv, int ring, struct crypto_async_request *async, struct scatterlist *src, struct scatterlist *dst, unsigned int cryptlen, struct safexcel_cipher_req *sreq, bool *should_complete, int *ret) { struct skcipher_request *areq = skcipher_request_cast(async); struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(areq); struct safexcel_cipher_ctx *ctx = crypto_skcipher_ctx(skcipher); struct safexcel_result_desc *rdesc; int ndesc = 0; *ret = 0; if (unlikely(!sreq->rdescs)) return 0; while (sreq->rdescs--) { rdesc = safexcel_ring_next_rptr(priv, &priv->ring[ring].rdr); if (IS_ERR(rdesc)) { dev_err(priv->dev, "cipher: result: could not retrieve the result descriptor\n"); *ret = PTR_ERR(rdesc); break; } if (likely(!*ret)) *ret = safexcel_rdesc_check_errors(priv, rdesc); ndesc++; } safexcel_complete(priv, ring); if (src == dst) { dma_unmap_sg(priv->dev, src, sreq->nr_src, DMA_BIDIRECTIONAL); } else { dma_unmap_sg(priv->dev, src, sreq->nr_src, DMA_TO_DEVICE); dma_unmap_sg(priv->dev, dst, sreq->nr_dst, DMA_FROM_DEVICE); } /* * Update IV in req from last crypto output word for CBC modes */ if ((!ctx->aead) && (ctx->mode == CONTEXT_CONTROL_CRYPTO_MODE_CBC) && (sreq->direction == SAFEXCEL_ENCRYPT)) { /* For encrypt take the last output word */ sg_pcopy_to_buffer(dst, sreq->nr_dst, areq->iv, crypto_skcipher_ivsize(skcipher), (cryptlen - crypto_skcipher_ivsize(skcipher))); } *should_complete = true; return ndesc; } static int safexcel_send_req(struct crypto_async_request *base, int ring, struct safexcel_cipher_req *sreq, struct scatterlist *src, struct scatterlist *dst, unsigned int cryptlen, unsigned int assoclen, unsigned int digestsize, u8 *iv, int *commands, int *results) { struct skcipher_request *areq = skcipher_request_cast(base); struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(areq); struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(base->tfm); struct safexcel_crypto_priv *priv = ctx->priv; struct safexcel_command_desc *cdesc; struct safexcel_command_desc *first_cdesc = NULL; struct safexcel_result_desc *rdesc, *first_rdesc = NULL; struct scatterlist *sg; unsigned int totlen; unsigned int totlen_src = cryptlen + assoclen; unsigned int totlen_dst = totlen_src; int n_cdesc = 0, n_rdesc = 0; int queued, i, ret = 0; bool first = true; sreq->nr_src = sg_nents_for_len(src, totlen_src); if (ctx->aead) { /* * AEAD has auth tag appended to output for encrypt and * removed from the output for decrypt! */ if (sreq->direction == SAFEXCEL_DECRYPT) totlen_dst -= digestsize; else totlen_dst += digestsize; memcpy(ctx->base.ctxr->data + ctx->key_len / sizeof(u32), ctx->ipad, ctx->state_sz); if (!ctx->xcm) memcpy(ctx->base.ctxr->data + (ctx->key_len + ctx->state_sz) / sizeof(u32), ctx->opad, ctx->state_sz); } else if ((ctx->mode == CONTEXT_CONTROL_CRYPTO_MODE_CBC) && (sreq->direction == SAFEXCEL_DECRYPT)) { /* * Save IV from last crypto input word for CBC modes in decrypt * direction. Need to do this first in case of inplace operation * as it will be overwritten. */ sg_pcopy_to_buffer(src, sreq->nr_src, areq->iv, crypto_skcipher_ivsize(skcipher), (totlen_src - crypto_skcipher_ivsize(skcipher))); } sreq->nr_dst = sg_nents_for_len(dst, totlen_dst); /* * Remember actual input length, source buffer length may be * updated in case of inline operation below. */ totlen = totlen_src; queued = totlen_src; if (src == dst) { sreq->nr_src = max(sreq->nr_src, sreq->nr_dst); sreq->nr_dst = sreq->nr_src; if (unlikely((totlen_src || totlen_dst) && (sreq->nr_src <= 0))) { dev_err(priv->dev, "In-place buffer not large enough (need %d bytes)!", max(totlen_src, totlen_dst)); return -EINVAL; } dma_map_sg(priv->dev, src, sreq->nr_src, DMA_BIDIRECTIONAL); } else { if (unlikely(totlen_src && (sreq->nr_src <= 0))) { dev_err(priv->dev, "Source buffer not large enough (need %d bytes)!", totlen_src); return -EINVAL; } dma_map_sg(priv->dev, src, sreq->nr_src, DMA_TO_DEVICE); if (unlikely(totlen_dst && (sreq->nr_dst <= 0))) { dev_err(priv->dev, "Dest buffer not large enough (need %d bytes)!", totlen_dst); dma_unmap_sg(priv->dev, src, sreq->nr_src, DMA_TO_DEVICE); return -EINVAL; } dma_map_sg(priv->dev, dst, sreq->nr_dst, DMA_FROM_DEVICE); } memcpy(ctx->base.ctxr->data, ctx->key, ctx->key_len); /* The EIP cannot deal with zero length input packets! */ if (totlen == 0) totlen = 1; /* command descriptors */ for_each_sg(src, sg, sreq->nr_src, i) { int len = sg_dma_len(sg); /* Do not overflow the request */ if (queued - len < 0) len = queued; cdesc = safexcel_add_cdesc(priv, ring, !n_cdesc, !(queued - len), sg_dma_address(sg), len, totlen, ctx->base.ctxr_dma); if (IS_ERR(cdesc)) { /* No space left in the command descriptor ring */ ret = PTR_ERR(cdesc); goto cdesc_rollback; } n_cdesc++; if (n_cdesc == 1) { first_cdesc = cdesc; } queued -= len; if (!queued) break; } if (unlikely(!n_cdesc)) { /* * Special case: zero length input buffer. * The engine always needs the 1st command descriptor, however! */ first_cdesc = safexcel_add_cdesc(priv, ring, 1, 1, 0, 0, totlen, ctx->base.ctxr_dma); n_cdesc = 1; } /* Add context control words and token to first command descriptor */ safexcel_context_control(ctx, base, sreq, first_cdesc); if (ctx->aead) safexcel_aead_token(ctx, iv, first_cdesc, sreq->direction, cryptlen, assoclen, digestsize); else safexcel_skcipher_token(ctx, iv, first_cdesc, cryptlen); /* result descriptors */ for_each_sg(dst, sg, sreq->nr_dst, i) { bool last = (i == sreq->nr_dst - 1); u32 len = sg_dma_len(sg); /* only allow the part of the buffer we know we need */ if (len > totlen_dst) len = totlen_dst; if (unlikely(!len)) break; totlen_dst -= len; /* skip over AAD space in buffer - not written */ if (assoclen) { if (assoclen >= len) { assoclen -= len; continue; } rdesc = safexcel_add_rdesc(priv, ring, first, last, sg_dma_address(sg) + assoclen, len - assoclen); assoclen = 0; } else { rdesc = safexcel_add_rdesc(priv, ring, first, last, sg_dma_address(sg), len); } if (IS_ERR(rdesc)) { /* No space left in the result descriptor ring */ ret = PTR_ERR(rdesc); goto rdesc_rollback; } if (first) { first_rdesc = rdesc; first = false; } n_rdesc++; } if (unlikely(first)) { /* * Special case: AEAD decrypt with only AAD data. * In this case there is NO output data from the engine, * but the engine still needs a result descriptor! * Create a dummy one just for catching the result token. */ rdesc = safexcel_add_rdesc(priv, ring, true, true, 0, 0); if (IS_ERR(rdesc)) { /* No space left in the result descriptor ring */ ret = PTR_ERR(rdesc); goto rdesc_rollback; } first_rdesc = rdesc; n_rdesc = 1; } safexcel_rdr_req_set(priv, ring, first_rdesc, base); *commands = n_cdesc; *results = n_rdesc; return 0; rdesc_rollback: for (i = 0; i < n_rdesc; i++) safexcel_ring_rollback_wptr(priv, &priv->ring[ring].rdr); cdesc_rollback: for (i = 0; i < n_cdesc; i++) safexcel_ring_rollback_wptr(priv, &priv->ring[ring].cdr); if (src == dst) { dma_unmap_sg(priv->dev, src, sreq->nr_src, DMA_BIDIRECTIONAL); } else { dma_unmap_sg(priv->dev, src, sreq->nr_src, DMA_TO_DEVICE); dma_unmap_sg(priv->dev, dst, sreq->nr_dst, DMA_FROM_DEVICE); } return ret; } static int safexcel_handle_inv_result(struct safexcel_crypto_priv *priv, int ring, struct crypto_async_request *base, struct safexcel_cipher_req *sreq, bool *should_complete, int *ret) { struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(base->tfm); struct safexcel_result_desc *rdesc; int ndesc = 0, enq_ret; *ret = 0; if (unlikely(!sreq->rdescs)) return 0; while (sreq->rdescs--) { rdesc = safexcel_ring_next_rptr(priv, &priv->ring[ring].rdr); if (IS_ERR(rdesc)) { dev_err(priv->dev, "cipher: invalidate: could not retrieve the result descriptor\n"); *ret = PTR_ERR(rdesc); break; } if (likely(!*ret)) *ret = safexcel_rdesc_check_errors(priv, rdesc); ndesc++; } safexcel_complete(priv, ring); if (ctx->base.exit_inv) { dma_pool_free(priv->context_pool, ctx->base.ctxr, ctx->base.ctxr_dma); *should_complete = true; return ndesc; } ring = safexcel_select_ring(priv); ctx->base.ring = ring; spin_lock_bh(&priv->ring[ring].queue_lock); enq_ret = crypto_enqueue_request(&priv->ring[ring].queue, base); spin_unlock_bh(&priv->ring[ring].queue_lock); if (enq_ret != -EINPROGRESS) *ret = enq_ret; queue_work(priv->ring[ring].workqueue, &priv->ring[ring].work_data.work); *should_complete = false; return ndesc; } static int safexcel_skcipher_handle_result(struct safexcel_crypto_priv *priv, int ring, struct crypto_async_request *async, bool *should_complete, int *ret) { struct skcipher_request *req = skcipher_request_cast(async); struct safexcel_cipher_req *sreq = skcipher_request_ctx(req); int err; if (sreq->needs_inv) { sreq->needs_inv = false; err = safexcel_handle_inv_result(priv, ring, async, sreq, should_complete, ret); } else { err = safexcel_handle_req_result(priv, ring, async, req->src, req->dst, req->cryptlen, sreq, should_complete, ret); } return err; } static int safexcel_aead_handle_result(struct safexcel_crypto_priv *priv, int ring, struct crypto_async_request *async, bool *should_complete, int *ret) { struct aead_request *req = aead_request_cast(async); struct crypto_aead *tfm = crypto_aead_reqtfm(req); struct safexcel_cipher_req *sreq = aead_request_ctx(req); int err; if (sreq->needs_inv) { sreq->needs_inv = false; err = safexcel_handle_inv_result(priv, ring, async, sreq, should_complete, ret); } else { err = safexcel_handle_req_result(priv, ring, async, req->src, req->dst, req->cryptlen + crypto_aead_authsize(tfm), sreq, should_complete, ret); } return err; } static int safexcel_cipher_send_inv(struct crypto_async_request *base, int ring, int *commands, int *results) { struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(base->tfm); struct safexcel_crypto_priv *priv = ctx->priv; int ret; ret = safexcel_invalidate_cache(base, priv, ctx->base.ctxr_dma, ring); if (unlikely(ret)) return ret; *commands = 1; *results = 1; return 0; } static int safexcel_skcipher_send(struct crypto_async_request *async, int ring, int *commands, int *results) { struct skcipher_request *req = skcipher_request_cast(async); struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm); struct safexcel_cipher_req *sreq = skcipher_request_ctx(req); struct safexcel_crypto_priv *priv = ctx->priv; int ret; BUG_ON(!(priv->flags & EIP197_TRC_CACHE) && sreq->needs_inv); if (sreq->needs_inv) { ret = safexcel_cipher_send_inv(async, ring, commands, results); } else { struct crypto_skcipher *skcipher = crypto_skcipher_reqtfm(req); u8 input_iv[AES_BLOCK_SIZE]; /* * Save input IV in case of CBC decrypt mode * Will be overwritten with output IV prior to use! */ memcpy(input_iv, req->iv, crypto_skcipher_ivsize(skcipher)); ret = safexcel_send_req(async, ring, sreq, req->src, req->dst, req->cryptlen, 0, 0, input_iv, commands, results); } sreq->rdescs = *results; return ret; } static int safexcel_aead_send(struct crypto_async_request *async, int ring, int *commands, int *results) { struct aead_request *req = aead_request_cast(async); struct crypto_aead *tfm = crypto_aead_reqtfm(req); struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(req->base.tfm); struct safexcel_cipher_req *sreq = aead_request_ctx(req); struct safexcel_crypto_priv *priv = ctx->priv; int ret; BUG_ON(!(priv->flags & EIP197_TRC_CACHE) && sreq->needs_inv); if (sreq->needs_inv) ret = safexcel_cipher_send_inv(async, ring, commands, results); else ret = safexcel_send_req(async, ring, sreq, req->src, req->dst, req->cryptlen, req->assoclen, crypto_aead_authsize(tfm), req->iv, commands, results); sreq->rdescs = *results; return ret; } static int safexcel_cipher_exit_inv(struct crypto_tfm *tfm, struct crypto_async_request *base, struct safexcel_cipher_req *sreq, struct safexcel_inv_result *result) { struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm); struct safexcel_crypto_priv *priv = ctx->priv; int ring = ctx->base.ring; init_completion(&result->completion); ctx = crypto_tfm_ctx(base->tfm); ctx->base.exit_inv = true; sreq->needs_inv = true; spin_lock_bh(&priv->ring[ring].queue_lock); crypto_enqueue_request(&priv->ring[ring].queue, base); spin_unlock_bh(&priv->ring[ring].queue_lock); queue_work(priv->ring[ring].workqueue, &priv->ring[ring].work_data.work); wait_for_completion(&result->completion); if (result->error) { dev_warn(priv->dev, "cipher: sync: invalidate: completion error %d\n", result->error); return result->error; } return 0; } static int safexcel_skcipher_exit_inv(struct crypto_tfm *tfm) { EIP197_REQUEST_ON_STACK(req, skcipher, EIP197_SKCIPHER_REQ_SIZE); struct safexcel_cipher_req *sreq = skcipher_request_ctx(req); struct safexcel_inv_result result = {}; memset(req, 0, sizeof(struct skcipher_request)); skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, safexcel_inv_complete, &result); skcipher_request_set_tfm(req, __crypto_skcipher_cast(tfm)); return safexcel_cipher_exit_inv(tfm, &req->base, sreq, &result); } static int safexcel_aead_exit_inv(struct crypto_tfm *tfm) { EIP197_REQUEST_ON_STACK(req, aead, EIP197_AEAD_REQ_SIZE); struct safexcel_cipher_req *sreq = aead_request_ctx(req); struct safexcel_inv_result result = {}; memset(req, 0, sizeof(struct aead_request)); aead_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, safexcel_inv_complete, &result); aead_request_set_tfm(req, __crypto_aead_cast(tfm)); return safexcel_cipher_exit_inv(tfm, &req->base, sreq, &result); } static int safexcel_queue_req(struct crypto_async_request *base, struct safexcel_cipher_req *sreq, enum safexcel_cipher_direction dir) { struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(base->tfm); struct safexcel_crypto_priv *priv = ctx->priv; int ret, ring; sreq->needs_inv = false; sreq->direction = dir; if (ctx->base.ctxr) { if (priv->flags & EIP197_TRC_CACHE && ctx->base.needs_inv) { sreq->needs_inv = true; ctx->base.needs_inv = false; } } else { ctx->base.ring = safexcel_select_ring(priv); ctx->base.ctxr = dma_pool_zalloc(priv->context_pool, EIP197_GFP_FLAGS(*base), &ctx->base.ctxr_dma); if (!ctx->base.ctxr) return -ENOMEM; } ring = ctx->base.ring; spin_lock_bh(&priv->ring[ring].queue_lock); ret = crypto_enqueue_request(&priv->ring[ring].queue, base); spin_unlock_bh(&priv->ring[ring].queue_lock); queue_work(priv->ring[ring].workqueue, &priv->ring[ring].work_data.work); return ret; } static int safexcel_encrypt(struct skcipher_request *req) { return safexcel_queue_req(&req->base, skcipher_request_ctx(req), SAFEXCEL_ENCRYPT); } static int safexcel_decrypt(struct skcipher_request *req) { return safexcel_queue_req(&req->base, skcipher_request_ctx(req), SAFEXCEL_DECRYPT); } static int safexcel_skcipher_cra_init(struct crypto_tfm *tfm) { struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm); struct safexcel_alg_template *tmpl = container_of(tfm->__crt_alg, struct safexcel_alg_template, alg.skcipher.base); crypto_skcipher_set_reqsize(__crypto_skcipher_cast(tfm), sizeof(struct safexcel_cipher_req)); ctx->priv = tmpl->priv; ctx->base.send = safexcel_skcipher_send; ctx->base.handle_result = safexcel_skcipher_handle_result; return 0; } static int safexcel_cipher_cra_exit(struct crypto_tfm *tfm) { struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm); memzero_explicit(ctx->key, sizeof(ctx->key)); /* context not allocated, skip invalidation */ if (!ctx->base.ctxr) return -ENOMEM; memzero_explicit(ctx->base.ctxr->data, sizeof(ctx->base.ctxr->data)); return 0; } static void safexcel_skcipher_cra_exit(struct crypto_tfm *tfm) { struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm); struct safexcel_crypto_priv *priv = ctx->priv; int ret; if (safexcel_cipher_cra_exit(tfm)) return; if (priv->flags & EIP197_TRC_CACHE) { ret = safexcel_skcipher_exit_inv(tfm); if (ret) dev_warn(priv->dev, "skcipher: invalidation error %d\n", ret); } else { dma_pool_free(priv->context_pool, ctx->base.ctxr, ctx->base.ctxr_dma); } } static void safexcel_aead_cra_exit(struct crypto_tfm *tfm) { struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm); struct safexcel_crypto_priv *priv = ctx->priv; int ret; if (safexcel_cipher_cra_exit(tfm)) return; if (priv->flags & EIP197_TRC_CACHE) { ret = safexcel_aead_exit_inv(tfm); if (ret) dev_warn(priv->dev, "aead: invalidation error %d\n", ret); } else { dma_pool_free(priv->context_pool, ctx->base.ctxr, ctx->base.ctxr_dma); } } static int safexcel_skcipher_aes_ecb_cra_init(struct crypto_tfm *tfm) { struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm); safexcel_skcipher_cra_init(tfm); ctx->alg = SAFEXCEL_AES; ctx->mode = CONTEXT_CONTROL_CRYPTO_MODE_ECB; return 0; } struct safexcel_alg_template safexcel_alg_ecb_aes = { .type = SAFEXCEL_ALG_TYPE_SKCIPHER, .algo_mask = SAFEXCEL_ALG_AES, .alg.skcipher = { .setkey = safexcel_skcipher_aes_setkey, .encrypt = safexcel_encrypt, .decrypt = safexcel_decrypt, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .base = { .cra_name = "ecb(aes)", .cra_driver_name = "safexcel-ecb-aes", .cra_priority = SAFEXCEL_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct safexcel_cipher_ctx), .cra_alignmask = 0, .cra_init = safexcel_skcipher_aes_ecb_cra_init, .cra_exit = safexcel_skcipher_cra_exit, .cra_module = THIS_MODULE, }, }, }; static int safexcel_skcipher_aes_cbc_cra_init(struct crypto_tfm *tfm) { struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm); safexcel_skcipher_cra_init(tfm); ctx->alg = SAFEXCEL_AES; ctx->mode = CONTEXT_CONTROL_CRYPTO_MODE_CBC; return 0; } struct safexcel_alg_template safexcel_alg_cbc_aes = { .type = SAFEXCEL_ALG_TYPE_SKCIPHER, .algo_mask = SAFEXCEL_ALG_AES, .alg.skcipher = { .setkey = safexcel_skcipher_aes_setkey, .encrypt = safexcel_encrypt, .decrypt = safexcel_decrypt, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .ivsize = AES_BLOCK_SIZE, .base = { .cra_name = "cbc(aes)", .cra_driver_name = "safexcel-cbc-aes", .cra_priority = SAFEXCEL_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct safexcel_cipher_ctx), .cra_alignmask = 0, .cra_init = safexcel_skcipher_aes_cbc_cra_init, .cra_exit = safexcel_skcipher_cra_exit, .cra_module = THIS_MODULE, }, }, }; static int safexcel_skcipher_aesctr_setkey(struct crypto_skcipher *ctfm, const u8 *key, unsigned int len) { struct crypto_tfm *tfm = crypto_skcipher_tfm(ctfm); struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm); struct safexcel_crypto_priv *priv = ctx->priv; struct crypto_aes_ctx aes; int ret, i; unsigned int keylen; /* last 4 bytes of key are the nonce! */ ctx->nonce = *(u32 *)(key + len - CTR_RFC3686_NONCE_SIZE); /* exclude the nonce here */ keylen = len - CTR_RFC3686_NONCE_SIZE; ret = aes_expandkey(&aes, key, keylen); if (ret) { crypto_skcipher_set_flags(ctfm, CRYPTO_TFM_RES_BAD_KEY_LEN); return ret; } if (priv->flags & EIP197_TRC_CACHE && ctx->base.ctxr_dma) { for (i = 0; i < keylen / sizeof(u32); i++) { if (ctx->key[i] != cpu_to_le32(aes.key_enc[i])) { ctx->base.needs_inv = true; break; } } } for (i = 0; i < keylen / sizeof(u32); i++) ctx->key[i] = cpu_to_le32(aes.key_enc[i]); ctx->key_len = keylen; memzero_explicit(&aes, sizeof(aes)); return 0; } static int safexcel_skcipher_aes_ctr_cra_init(struct crypto_tfm *tfm) { struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm); safexcel_skcipher_cra_init(tfm); ctx->alg = SAFEXCEL_AES; ctx->mode = CONTEXT_CONTROL_CRYPTO_MODE_CTR_LOAD; return 0; } struct safexcel_alg_template safexcel_alg_ctr_aes = { .type = SAFEXCEL_ALG_TYPE_SKCIPHER, .algo_mask = SAFEXCEL_ALG_AES, .alg.skcipher = { .setkey = safexcel_skcipher_aesctr_setkey, .encrypt = safexcel_encrypt, .decrypt = safexcel_decrypt, /* Add nonce size */ .min_keysize = AES_MIN_KEY_SIZE + CTR_RFC3686_NONCE_SIZE, .max_keysize = AES_MAX_KEY_SIZE + CTR_RFC3686_NONCE_SIZE, .ivsize = CTR_RFC3686_IV_SIZE, .base = { .cra_name = "rfc3686(ctr(aes))", .cra_driver_name = "safexcel-ctr-aes", .cra_priority = SAFEXCEL_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = 1, .cra_ctxsize = sizeof(struct safexcel_cipher_ctx), .cra_alignmask = 0, .cra_init = safexcel_skcipher_aes_ctr_cra_init, .cra_exit = safexcel_skcipher_cra_exit, .cra_module = THIS_MODULE, }, }, }; static int safexcel_des_setkey(struct crypto_skcipher *ctfm, const u8 *key, unsigned int len) { struct safexcel_cipher_ctx *ctx = crypto_skcipher_ctx(ctfm); int ret; ret = verify_skcipher_des_key(ctfm, key); if (ret) return ret; /* if context exits and key changed, need to invalidate it */ if (ctx->base.ctxr_dma) if (memcmp(ctx->key, key, len)) ctx->base.needs_inv = true; memcpy(ctx->key, key, len); ctx->key_len = len; return 0; } static int safexcel_skcipher_des_cbc_cra_init(struct crypto_tfm *tfm) { struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm); safexcel_skcipher_cra_init(tfm); ctx->alg = SAFEXCEL_DES; ctx->mode = CONTEXT_CONTROL_CRYPTO_MODE_CBC; return 0; } struct safexcel_alg_template safexcel_alg_cbc_des = { .type = SAFEXCEL_ALG_TYPE_SKCIPHER, .algo_mask = SAFEXCEL_ALG_DES, .alg.skcipher = { .setkey = safexcel_des_setkey, .encrypt = safexcel_encrypt, .decrypt = safexcel_decrypt, .min_keysize = DES_KEY_SIZE, .max_keysize = DES_KEY_SIZE, .ivsize = DES_BLOCK_SIZE, .base = { .cra_name = "cbc(des)", .cra_driver_name = "safexcel-cbc-des", .cra_priority = SAFEXCEL_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = DES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct safexcel_cipher_ctx), .cra_alignmask = 0, .cra_init = safexcel_skcipher_des_cbc_cra_init, .cra_exit = safexcel_skcipher_cra_exit, .cra_module = THIS_MODULE, }, }, }; static int safexcel_skcipher_des_ecb_cra_init(struct crypto_tfm *tfm) { struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm); safexcel_skcipher_cra_init(tfm); ctx->alg = SAFEXCEL_DES; ctx->mode = CONTEXT_CONTROL_CRYPTO_MODE_ECB; return 0; } struct safexcel_alg_template safexcel_alg_ecb_des = { .type = SAFEXCEL_ALG_TYPE_SKCIPHER, .algo_mask = SAFEXCEL_ALG_DES, .alg.skcipher = { .setkey = safexcel_des_setkey, .encrypt = safexcel_encrypt, .decrypt = safexcel_decrypt, .min_keysize = DES_KEY_SIZE, .max_keysize = DES_KEY_SIZE, .base = { .cra_name = "ecb(des)", .cra_driver_name = "safexcel-ecb-des", .cra_priority = SAFEXCEL_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = DES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct safexcel_cipher_ctx), .cra_alignmask = 0, .cra_init = safexcel_skcipher_des_ecb_cra_init, .cra_exit = safexcel_skcipher_cra_exit, .cra_module = THIS_MODULE, }, }, }; static int safexcel_des3_ede_setkey(struct crypto_skcipher *ctfm, const u8 *key, unsigned int len) { struct safexcel_cipher_ctx *ctx = crypto_skcipher_ctx(ctfm); int err; err = verify_skcipher_des3_key(ctfm, key); if (err) return err; /* if context exits and key changed, need to invalidate it */ if (ctx->base.ctxr_dma) { if (memcmp(ctx->key, key, len)) ctx->base.needs_inv = true; } memcpy(ctx->key, key, len); ctx->key_len = len; return 0; } static int safexcel_skcipher_des3_cbc_cra_init(struct crypto_tfm *tfm) { struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm); safexcel_skcipher_cra_init(tfm); ctx->alg = SAFEXCEL_3DES; ctx->mode = CONTEXT_CONTROL_CRYPTO_MODE_CBC; return 0; } struct safexcel_alg_template safexcel_alg_cbc_des3_ede = { .type = SAFEXCEL_ALG_TYPE_SKCIPHER, .algo_mask = SAFEXCEL_ALG_DES, .alg.skcipher = { .setkey = safexcel_des3_ede_setkey, .encrypt = safexcel_encrypt, .decrypt = safexcel_decrypt, .min_keysize = DES3_EDE_KEY_SIZE, .max_keysize = DES3_EDE_KEY_SIZE, .ivsize = DES3_EDE_BLOCK_SIZE, .base = { .cra_name = "cbc(des3_ede)", .cra_driver_name = "safexcel-cbc-des3_ede", .cra_priority = SAFEXCEL_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = DES3_EDE_BLOCK_SIZE, .cra_ctxsize = sizeof(struct safexcel_cipher_ctx), .cra_alignmask = 0, .cra_init = safexcel_skcipher_des3_cbc_cra_init, .cra_exit = safexcel_skcipher_cra_exit, .cra_module = THIS_MODULE, }, }, }; static int safexcel_skcipher_des3_ecb_cra_init(struct crypto_tfm *tfm) { struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm); safexcel_skcipher_cra_init(tfm); ctx->alg = SAFEXCEL_3DES; ctx->mode = CONTEXT_CONTROL_CRYPTO_MODE_ECB; return 0; } struct safexcel_alg_template safexcel_alg_ecb_des3_ede = { .type = SAFEXCEL_ALG_TYPE_SKCIPHER, .algo_mask = SAFEXCEL_ALG_DES, .alg.skcipher = { .setkey = safexcel_des3_ede_setkey, .encrypt = safexcel_encrypt, .decrypt = safexcel_decrypt, .min_keysize = DES3_EDE_KEY_SIZE, .max_keysize = DES3_EDE_KEY_SIZE, .base = { .cra_name = "ecb(des3_ede)", .cra_driver_name = "safexcel-ecb-des3_ede", .cra_priority = SAFEXCEL_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = DES3_EDE_BLOCK_SIZE, .cra_ctxsize = sizeof(struct safexcel_cipher_ctx), .cra_alignmask = 0, .cra_init = safexcel_skcipher_des3_ecb_cra_init, .cra_exit = safexcel_skcipher_cra_exit, .cra_module = THIS_MODULE, }, }, }; static int safexcel_aead_encrypt(struct aead_request *req) { struct safexcel_cipher_req *creq = aead_request_ctx(req); return safexcel_queue_req(&req->base, creq, SAFEXCEL_ENCRYPT); } static int safexcel_aead_decrypt(struct aead_request *req) { struct safexcel_cipher_req *creq = aead_request_ctx(req); return safexcel_queue_req(&req->base, creq, SAFEXCEL_DECRYPT); } static int safexcel_aead_cra_init(struct crypto_tfm *tfm) { struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm); struct safexcel_alg_template *tmpl = container_of(tfm->__crt_alg, struct safexcel_alg_template, alg.aead.base); crypto_aead_set_reqsize(__crypto_aead_cast(tfm), sizeof(struct safexcel_cipher_req)); ctx->priv = tmpl->priv; ctx->alg = SAFEXCEL_AES; /* default */ ctx->mode = CONTEXT_CONTROL_CRYPTO_MODE_CBC; /* default */ ctx->aead = true; ctx->base.send = safexcel_aead_send; ctx->base.handle_result = safexcel_aead_handle_result; return 0; } static int safexcel_aead_sha1_cra_init(struct crypto_tfm *tfm) { struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm); safexcel_aead_cra_init(tfm); ctx->hash_alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA1; ctx->state_sz = SHA1_DIGEST_SIZE; return 0; } struct safexcel_alg_template safexcel_alg_authenc_hmac_sha1_cbc_aes = { .type = SAFEXCEL_ALG_TYPE_AEAD, .algo_mask = SAFEXCEL_ALG_AES | SAFEXCEL_ALG_SHA1, .alg.aead = { .setkey = safexcel_aead_setkey, .encrypt = safexcel_aead_encrypt, .decrypt = safexcel_aead_decrypt, .ivsize = AES_BLOCK_SIZE, .maxauthsize = SHA1_DIGEST_SIZE, .base = { .cra_name = "authenc(hmac(sha1),cbc(aes))", .cra_driver_name = "safexcel-authenc-hmac-sha1-cbc-aes", .cra_priority = SAFEXCEL_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct safexcel_cipher_ctx), .cra_alignmask = 0, .cra_init = safexcel_aead_sha1_cra_init, .cra_exit = safexcel_aead_cra_exit, .cra_module = THIS_MODULE, }, }, }; static int safexcel_aead_sha256_cra_init(struct crypto_tfm *tfm) { struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm); safexcel_aead_cra_init(tfm); ctx->hash_alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA256; ctx->state_sz = SHA256_DIGEST_SIZE; return 0; } struct safexcel_alg_template safexcel_alg_authenc_hmac_sha256_cbc_aes = { .type = SAFEXCEL_ALG_TYPE_AEAD, .algo_mask = SAFEXCEL_ALG_AES | SAFEXCEL_ALG_SHA2_256, .alg.aead = { .setkey = safexcel_aead_setkey, .encrypt = safexcel_aead_encrypt, .decrypt = safexcel_aead_decrypt, .ivsize = AES_BLOCK_SIZE, .maxauthsize = SHA256_DIGEST_SIZE, .base = { .cra_name = "authenc(hmac(sha256),cbc(aes))", .cra_driver_name = "safexcel-authenc-hmac-sha256-cbc-aes", .cra_priority = SAFEXCEL_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct safexcel_cipher_ctx), .cra_alignmask = 0, .cra_init = safexcel_aead_sha256_cra_init, .cra_exit = safexcel_aead_cra_exit, .cra_module = THIS_MODULE, }, }, }; static int safexcel_aead_sha224_cra_init(struct crypto_tfm *tfm) { struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm); safexcel_aead_cra_init(tfm); ctx->hash_alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA224; ctx->state_sz = SHA256_DIGEST_SIZE; return 0; } struct safexcel_alg_template safexcel_alg_authenc_hmac_sha224_cbc_aes = { .type = SAFEXCEL_ALG_TYPE_AEAD, .algo_mask = SAFEXCEL_ALG_AES | SAFEXCEL_ALG_SHA2_256, .alg.aead = { .setkey = safexcel_aead_setkey, .encrypt = safexcel_aead_encrypt, .decrypt = safexcel_aead_decrypt, .ivsize = AES_BLOCK_SIZE, .maxauthsize = SHA224_DIGEST_SIZE, .base = { .cra_name = "authenc(hmac(sha224),cbc(aes))", .cra_driver_name = "safexcel-authenc-hmac-sha224-cbc-aes", .cra_priority = SAFEXCEL_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct safexcel_cipher_ctx), .cra_alignmask = 0, .cra_init = safexcel_aead_sha224_cra_init, .cra_exit = safexcel_aead_cra_exit, .cra_module = THIS_MODULE, }, }, }; static int safexcel_aead_sha512_cra_init(struct crypto_tfm *tfm) { struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm); safexcel_aead_cra_init(tfm); ctx->hash_alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA512; ctx->state_sz = SHA512_DIGEST_SIZE; return 0; } struct safexcel_alg_template safexcel_alg_authenc_hmac_sha512_cbc_aes = { .type = SAFEXCEL_ALG_TYPE_AEAD, .algo_mask = SAFEXCEL_ALG_AES | SAFEXCEL_ALG_SHA2_512, .alg.aead = { .setkey = safexcel_aead_setkey, .encrypt = safexcel_aead_encrypt, .decrypt = safexcel_aead_decrypt, .ivsize = AES_BLOCK_SIZE, .maxauthsize = SHA512_DIGEST_SIZE, .base = { .cra_name = "authenc(hmac(sha512),cbc(aes))", .cra_driver_name = "safexcel-authenc-hmac-sha512-cbc-aes", .cra_priority = SAFEXCEL_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct safexcel_cipher_ctx), .cra_alignmask = 0, .cra_init = safexcel_aead_sha512_cra_init, .cra_exit = safexcel_aead_cra_exit, .cra_module = THIS_MODULE, }, }, }; static int safexcel_aead_sha384_cra_init(struct crypto_tfm *tfm) { struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm); safexcel_aead_cra_init(tfm); ctx->hash_alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA384; ctx->state_sz = SHA512_DIGEST_SIZE; return 0; } struct safexcel_alg_template safexcel_alg_authenc_hmac_sha384_cbc_aes = { .type = SAFEXCEL_ALG_TYPE_AEAD, .algo_mask = SAFEXCEL_ALG_AES | SAFEXCEL_ALG_SHA2_512, .alg.aead = { .setkey = safexcel_aead_setkey, .encrypt = safexcel_aead_encrypt, .decrypt = safexcel_aead_decrypt, .ivsize = AES_BLOCK_SIZE, .maxauthsize = SHA384_DIGEST_SIZE, .base = { .cra_name = "authenc(hmac(sha384),cbc(aes))", .cra_driver_name = "safexcel-authenc-hmac-sha384-cbc-aes", .cra_priority = SAFEXCEL_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct safexcel_cipher_ctx), .cra_alignmask = 0, .cra_init = safexcel_aead_sha384_cra_init, .cra_exit = safexcel_aead_cra_exit, .cra_module = THIS_MODULE, }, }, }; static int safexcel_aead_sha1_des3_cra_init(struct crypto_tfm *tfm) { struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm); safexcel_aead_sha1_cra_init(tfm); ctx->alg = SAFEXCEL_3DES; /* override default */ return 0; } struct safexcel_alg_template safexcel_alg_authenc_hmac_sha1_cbc_des3_ede = { .type = SAFEXCEL_ALG_TYPE_AEAD, .algo_mask = SAFEXCEL_ALG_DES | SAFEXCEL_ALG_SHA1, .alg.aead = { .setkey = safexcel_aead_setkey, .encrypt = safexcel_aead_encrypt, .decrypt = safexcel_aead_decrypt, .ivsize = DES3_EDE_BLOCK_SIZE, .maxauthsize = SHA1_DIGEST_SIZE, .base = { .cra_name = "authenc(hmac(sha1),cbc(des3_ede))", .cra_driver_name = "safexcel-authenc-hmac-sha1-cbc-des3_ede", .cra_priority = SAFEXCEL_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = DES3_EDE_BLOCK_SIZE, .cra_ctxsize = sizeof(struct safexcel_cipher_ctx), .cra_alignmask = 0, .cra_init = safexcel_aead_sha1_des3_cra_init, .cra_exit = safexcel_aead_cra_exit, .cra_module = THIS_MODULE, }, }, }; static int safexcel_aead_sha1_ctr_cra_init(struct crypto_tfm *tfm) { struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm); safexcel_aead_sha1_cra_init(tfm); ctx->mode = CONTEXT_CONTROL_CRYPTO_MODE_CTR_LOAD; /* override default */ return 0; } struct safexcel_alg_template safexcel_alg_authenc_hmac_sha1_ctr_aes = { .type = SAFEXCEL_ALG_TYPE_AEAD, .algo_mask = SAFEXCEL_ALG_AES | SAFEXCEL_ALG_SHA1, .alg.aead = { .setkey = safexcel_aead_setkey, .encrypt = safexcel_aead_encrypt, .decrypt = safexcel_aead_decrypt, .ivsize = CTR_RFC3686_IV_SIZE, .maxauthsize = SHA1_DIGEST_SIZE, .base = { .cra_name = "authenc(hmac(sha1),rfc3686(ctr(aes)))", .cra_driver_name = "safexcel-authenc-hmac-sha1-ctr-aes", .cra_priority = SAFEXCEL_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = 1, .cra_ctxsize = sizeof(struct safexcel_cipher_ctx), .cra_alignmask = 0, .cra_init = safexcel_aead_sha1_ctr_cra_init, .cra_exit = safexcel_aead_cra_exit, .cra_module = THIS_MODULE, }, }, }; static int safexcel_aead_sha256_ctr_cra_init(struct crypto_tfm *tfm) { struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm); safexcel_aead_sha256_cra_init(tfm); ctx->mode = CONTEXT_CONTROL_CRYPTO_MODE_CTR_LOAD; /* override default */ return 0; } struct safexcel_alg_template safexcel_alg_authenc_hmac_sha256_ctr_aes = { .type = SAFEXCEL_ALG_TYPE_AEAD, .algo_mask = SAFEXCEL_ALG_AES | SAFEXCEL_ALG_SHA2_256, .alg.aead = { .setkey = safexcel_aead_setkey, .encrypt = safexcel_aead_encrypt, .decrypt = safexcel_aead_decrypt, .ivsize = CTR_RFC3686_IV_SIZE, .maxauthsize = SHA256_DIGEST_SIZE, .base = { .cra_name = "authenc(hmac(sha256),rfc3686(ctr(aes)))", .cra_driver_name = "safexcel-authenc-hmac-sha256-ctr-aes", .cra_priority = SAFEXCEL_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = 1, .cra_ctxsize = sizeof(struct safexcel_cipher_ctx), .cra_alignmask = 0, .cra_init = safexcel_aead_sha256_ctr_cra_init, .cra_exit = safexcel_aead_cra_exit, .cra_module = THIS_MODULE, }, }, }; static int safexcel_aead_sha224_ctr_cra_init(struct crypto_tfm *tfm) { struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm); safexcel_aead_sha224_cra_init(tfm); ctx->mode = CONTEXT_CONTROL_CRYPTO_MODE_CTR_LOAD; /* override default */ return 0; } struct safexcel_alg_template safexcel_alg_authenc_hmac_sha224_ctr_aes = { .type = SAFEXCEL_ALG_TYPE_AEAD, .algo_mask = SAFEXCEL_ALG_AES | SAFEXCEL_ALG_SHA2_256, .alg.aead = { .setkey = safexcel_aead_setkey, .encrypt = safexcel_aead_encrypt, .decrypt = safexcel_aead_decrypt, .ivsize = CTR_RFC3686_IV_SIZE, .maxauthsize = SHA224_DIGEST_SIZE, .base = { .cra_name = "authenc(hmac(sha224),rfc3686(ctr(aes)))", .cra_driver_name = "safexcel-authenc-hmac-sha224-ctr-aes", .cra_priority = SAFEXCEL_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = 1, .cra_ctxsize = sizeof(struct safexcel_cipher_ctx), .cra_alignmask = 0, .cra_init = safexcel_aead_sha224_ctr_cra_init, .cra_exit = safexcel_aead_cra_exit, .cra_module = THIS_MODULE, }, }, }; static int safexcel_aead_sha512_ctr_cra_init(struct crypto_tfm *tfm) { struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm); safexcel_aead_sha512_cra_init(tfm); ctx->mode = CONTEXT_CONTROL_CRYPTO_MODE_CTR_LOAD; /* override default */ return 0; } struct safexcel_alg_template safexcel_alg_authenc_hmac_sha512_ctr_aes = { .type = SAFEXCEL_ALG_TYPE_AEAD, .algo_mask = SAFEXCEL_ALG_AES | SAFEXCEL_ALG_SHA2_512, .alg.aead = { .setkey = safexcel_aead_setkey, .encrypt = safexcel_aead_encrypt, .decrypt = safexcel_aead_decrypt, .ivsize = CTR_RFC3686_IV_SIZE, .maxauthsize = SHA512_DIGEST_SIZE, .base = { .cra_name = "authenc(hmac(sha512),rfc3686(ctr(aes)))", .cra_driver_name = "safexcel-authenc-hmac-sha512-ctr-aes", .cra_priority = SAFEXCEL_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = 1, .cra_ctxsize = sizeof(struct safexcel_cipher_ctx), .cra_alignmask = 0, .cra_init = safexcel_aead_sha512_ctr_cra_init, .cra_exit = safexcel_aead_cra_exit, .cra_module = THIS_MODULE, }, }, }; static int safexcel_aead_sha384_ctr_cra_init(struct crypto_tfm *tfm) { struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm); safexcel_aead_sha384_cra_init(tfm); ctx->mode = CONTEXT_CONTROL_CRYPTO_MODE_CTR_LOAD; /* override default */ return 0; } struct safexcel_alg_template safexcel_alg_authenc_hmac_sha384_ctr_aes = { .type = SAFEXCEL_ALG_TYPE_AEAD, .algo_mask = SAFEXCEL_ALG_AES | SAFEXCEL_ALG_SHA2_512, .alg.aead = { .setkey = safexcel_aead_setkey, .encrypt = safexcel_aead_encrypt, .decrypt = safexcel_aead_decrypt, .ivsize = CTR_RFC3686_IV_SIZE, .maxauthsize = SHA384_DIGEST_SIZE, .base = { .cra_name = "authenc(hmac(sha384),rfc3686(ctr(aes)))", .cra_driver_name = "safexcel-authenc-hmac-sha384-ctr-aes", .cra_priority = SAFEXCEL_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = 1, .cra_ctxsize = sizeof(struct safexcel_cipher_ctx), .cra_alignmask = 0, .cra_init = safexcel_aead_sha384_ctr_cra_init, .cra_exit = safexcel_aead_cra_exit, .cra_module = THIS_MODULE, }, }, }; static int safexcel_skcipher_aesxts_setkey(struct crypto_skcipher *ctfm, const u8 *key, unsigned int len) { struct crypto_tfm *tfm = crypto_skcipher_tfm(ctfm); struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm); struct safexcel_crypto_priv *priv = ctx->priv; struct crypto_aes_ctx aes; int ret, i; unsigned int keylen; /* Check for illegal XTS keys */ ret = xts_verify_key(ctfm, key, len); if (ret) return ret; /* Only half of the key data is cipher key */ keylen = (len >> 1); ret = aes_expandkey(&aes, key, keylen); if (ret) { crypto_skcipher_set_flags(ctfm, CRYPTO_TFM_RES_BAD_KEY_LEN); return ret; } if (priv->flags & EIP197_TRC_CACHE && ctx->base.ctxr_dma) { for (i = 0; i < keylen / sizeof(u32); i++) { if (ctx->key[i] != cpu_to_le32(aes.key_enc[i])) { ctx->base.needs_inv = true; break; } } } for (i = 0; i < keylen / sizeof(u32); i++) ctx->key[i] = cpu_to_le32(aes.key_enc[i]); /* The other half is the tweak key */ ret = aes_expandkey(&aes, (u8 *)(key + keylen), keylen); if (ret) { crypto_skcipher_set_flags(ctfm, CRYPTO_TFM_RES_BAD_KEY_LEN); return ret; } if (priv->flags & EIP197_TRC_CACHE && ctx->base.ctxr_dma) { for (i = 0; i < keylen / sizeof(u32); i++) { if (ctx->key[i + keylen / sizeof(u32)] != cpu_to_le32(aes.key_enc[i])) { ctx->base.needs_inv = true; break; } } } for (i = 0; i < keylen / sizeof(u32); i++) ctx->key[i + keylen / sizeof(u32)] = cpu_to_le32(aes.key_enc[i]); ctx->key_len = keylen << 1; memzero_explicit(&aes, sizeof(aes)); return 0; } static int safexcel_skcipher_aes_xts_cra_init(struct crypto_tfm *tfm) { struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm); safexcel_skcipher_cra_init(tfm); ctx->alg = SAFEXCEL_AES; ctx->xts = 1; ctx->mode = CONTEXT_CONTROL_CRYPTO_MODE_XTS; return 0; } static int safexcel_encrypt_xts(struct skcipher_request *req) { if (req->cryptlen < XTS_BLOCK_SIZE) return -EINVAL; return safexcel_queue_req(&req->base, skcipher_request_ctx(req), SAFEXCEL_ENCRYPT); } static int safexcel_decrypt_xts(struct skcipher_request *req) { if (req->cryptlen < XTS_BLOCK_SIZE) return -EINVAL; return safexcel_queue_req(&req->base, skcipher_request_ctx(req), SAFEXCEL_DECRYPT); } struct safexcel_alg_template safexcel_alg_xts_aes = { .type = SAFEXCEL_ALG_TYPE_SKCIPHER, .algo_mask = SAFEXCEL_ALG_AES | SAFEXCEL_ALG_AES_XTS, .alg.skcipher = { .setkey = safexcel_skcipher_aesxts_setkey, .encrypt = safexcel_encrypt_xts, .decrypt = safexcel_decrypt_xts, /* XTS actually uses 2 AES keys glued together */ .min_keysize = AES_MIN_KEY_SIZE * 2, .max_keysize = AES_MAX_KEY_SIZE * 2, .ivsize = XTS_BLOCK_SIZE, .base = { .cra_name = "xts(aes)", .cra_driver_name = "safexcel-xts-aes", .cra_priority = SAFEXCEL_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = XTS_BLOCK_SIZE, .cra_ctxsize = sizeof(struct safexcel_cipher_ctx), .cra_alignmask = 0, .cra_init = safexcel_skcipher_aes_xts_cra_init, .cra_exit = safexcel_skcipher_cra_exit, .cra_module = THIS_MODULE, }, }, }; static int safexcel_aead_gcm_setkey(struct crypto_aead *ctfm, const u8 *key, unsigned int len) { struct crypto_tfm *tfm = crypto_aead_tfm(ctfm); struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm); struct safexcel_crypto_priv *priv = ctx->priv; struct crypto_aes_ctx aes; u32 hashkey[AES_BLOCK_SIZE >> 2]; int ret, i; ret = aes_expandkey(&aes, key, len); if (ret) { crypto_aead_set_flags(ctfm, CRYPTO_TFM_RES_BAD_KEY_LEN); memzero_explicit(&aes, sizeof(aes)); return ret; } if (priv->flags & EIP197_TRC_CACHE && ctx->base.ctxr_dma) { for (i = 0; i < len / sizeof(u32); i++) { if (ctx->key[i] != cpu_to_le32(aes.key_enc[i])) { ctx->base.needs_inv = true; break; } } } for (i = 0; i < len / sizeof(u32); i++) ctx->key[i] = cpu_to_le32(aes.key_enc[i]); ctx->key_len = len; /* Compute hash key by encrypting zeroes with cipher key */ crypto_cipher_clear_flags(ctx->hkaes, CRYPTO_TFM_REQ_MASK); crypto_cipher_set_flags(ctx->hkaes, crypto_aead_get_flags(ctfm) & CRYPTO_TFM_REQ_MASK); ret = crypto_cipher_setkey(ctx->hkaes, key, len); crypto_aead_set_flags(ctfm, crypto_cipher_get_flags(ctx->hkaes) & CRYPTO_TFM_RES_MASK); if (ret) return ret; memset(hashkey, 0, AES_BLOCK_SIZE); crypto_cipher_encrypt_one(ctx->hkaes, (u8 *)hashkey, (u8 *)hashkey); if (priv->flags & EIP197_TRC_CACHE && ctx->base.ctxr_dma) { for (i = 0; i < AES_BLOCK_SIZE / sizeof(u32); i++) { if (ctx->ipad[i] != cpu_to_be32(hashkey[i])) { ctx->base.needs_inv = true; break; } } } for (i = 0; i < AES_BLOCK_SIZE / sizeof(u32); i++) ctx->ipad[i] = cpu_to_be32(hashkey[i]); memzero_explicit(hashkey, AES_BLOCK_SIZE); memzero_explicit(&aes, sizeof(aes)); return 0; } static int safexcel_aead_gcm_cra_init(struct crypto_tfm *tfm) { struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm); safexcel_aead_cra_init(tfm); ctx->hash_alg = CONTEXT_CONTROL_CRYPTO_ALG_GHASH; ctx->state_sz = GHASH_BLOCK_SIZE; ctx->xcm = 1; /* GCM */ ctx->mode = CONTEXT_CONTROL_CRYPTO_MODE_XCM; /* override default */ ctx->hkaes = crypto_alloc_cipher("aes", 0, 0); if (IS_ERR(ctx->hkaes)) return PTR_ERR(ctx->hkaes); return 0; } static void safexcel_aead_gcm_cra_exit(struct crypto_tfm *tfm) { struct safexcel_cipher_ctx *ctx = crypto_tfm_ctx(tfm); crypto_free_cipher(ctx->hkaes); safexcel_aead_cra_exit(tfm); } static int safexcel_aead_gcm_setauthsize(struct crypto_aead *tfm, unsigned int authsize) { return crypto_gcm_check_authsize(authsize); } struct safexcel_alg_template safexcel_alg_gcm = { .type = SAFEXCEL_ALG_TYPE_AEAD, .algo_mask = SAFEXCEL_ALG_AES | SAFEXCEL_ALG_GHASH, .alg.aead = { .setkey = safexcel_aead_gcm_setkey, .setauthsize = safexcel_aead_gcm_setauthsize, .encrypt = safexcel_aead_encrypt, .decrypt = safexcel_aead_decrypt, .ivsize = GCM_AES_IV_SIZE, .maxauthsize = GHASH_DIGEST_SIZE, .base = { .cra_name = "gcm(aes)", .cra_driver_name = "safexcel-gcm-aes", .cra_priority = SAFEXCEL_CRA_PRIORITY, .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY, .cra_blocksize = 1, .cra_ctxsize = sizeof(struct safexcel_cipher_ctx), .cra_alignmask = 0, .cra_init = safexcel_aead_gcm_cra_init, .cra_exit = safexcel_aead_gcm_cra_exit, .cra_module = THIS_MODULE, }, }, };