// SPDX-License-Identifier: GPL-2.0 // Copyright (c) 2019 MediaTek Inc. /* * Bluetooth support for MediaTek SDIO devices * * This file is written based on btsdio.c and btmtkuart.c. * * Author: Sean Wang * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "h4_recv.h" #include "btmtk.h" #define VERSION "0.1" #define MTKBTSDIO_AUTOSUSPEND_DELAY 1000 static bool enable_autosuspend = true; struct btmtksdio_data { const char *fwname; u16 chipid; bool lp_mbox_supported; }; static const struct btmtksdio_data mt7663_data = { .fwname = FIRMWARE_MT7663, .chipid = 0x7663, .lp_mbox_supported = false, }; static const struct btmtksdio_data mt7668_data = { .fwname = FIRMWARE_MT7668, .chipid = 0x7668, .lp_mbox_supported = false, }; static const struct btmtksdio_data mt7921_data = { .fwname = FIRMWARE_MT7961, .chipid = 0x7921, .lp_mbox_supported = true, }; static const struct sdio_device_id btmtksdio_table[] = { {SDIO_DEVICE(SDIO_VENDOR_ID_MEDIATEK, SDIO_DEVICE_ID_MEDIATEK_MT7663), .driver_data = (kernel_ulong_t)&mt7663_data }, {SDIO_DEVICE(SDIO_VENDOR_ID_MEDIATEK, SDIO_DEVICE_ID_MEDIATEK_MT7668), .driver_data = (kernel_ulong_t)&mt7668_data }, {SDIO_DEVICE(SDIO_VENDOR_ID_MEDIATEK, SDIO_DEVICE_ID_MEDIATEK_MT7961), .driver_data = (kernel_ulong_t)&mt7921_data }, { } /* Terminating entry */ }; MODULE_DEVICE_TABLE(sdio, btmtksdio_table); #define MTK_REG_CHLPCR 0x4 /* W1S */ #define C_INT_EN_SET BIT(0) #define C_INT_EN_CLR BIT(1) #define C_FW_OWN_REQ_SET BIT(8) /* For write */ #define C_COM_DRV_OWN BIT(8) /* For read */ #define C_FW_OWN_REQ_CLR BIT(9) #define MTK_REG_CSDIOCSR 0x8 #define SDIO_RE_INIT_EN BIT(0) #define SDIO_INT_CTL BIT(2) #define MTK_REG_CHCR 0xc #define C_INT_CLR_CTRL BIT(1) #define BT_RST_DONE BIT(8) /* CHISR have the same bits field definition with CHIER */ #define MTK_REG_CHISR 0x10 #define MTK_REG_CHIER 0x14 #define FW_OWN_BACK_INT BIT(0) #define RX_DONE_INT BIT(1) #define TX_EMPTY BIT(2) #define TX_FIFO_OVERFLOW BIT(8) #define FW_MAILBOX_INT BIT(15) #define INT_MASK GENMASK(15, 0) #define RX_PKT_LEN GENMASK(31, 16) #define MTK_REG_CSICR 0xc0 #define CSICR_CLR_MBOX_ACK BIT(0) #define MTK_REG_PH2DSM0R 0xc4 #define PH2DSM0R_DRIVER_OWN BIT(0) #define MTK_REG_PD2HRM0R 0xdc #define PD2HRM0R_DRV_OWN BIT(0) #define MTK_REG_CTDR 0x18 #define MTK_REG_CRDR 0x1c #define MTK_REG_CRPLR 0x24 #define MTK_SDIO_BLOCK_SIZE 256 #define BTMTKSDIO_TX_WAIT_VND_EVT 1 #define BTMTKSDIO_HW_TX_READY 2 #define BTMTKSDIO_FUNC_ENABLED 3 #define BTMTKSDIO_PATCH_ENABLED 4 #define BTMTKSDIO_HW_RESET_ACTIVE 5 #define BTMTKSDIO_BT_WAKE_ENABLED 6 struct mtkbtsdio_hdr { __le16 len; __le16 reserved; u8 bt_type; } __packed; struct btmtksdio_dev { struct hci_dev *hdev; struct sdio_func *func; struct device *dev; struct work_struct txrx_work; unsigned long tx_state; struct sk_buff_head txq; struct sk_buff *evt_skb; const struct btmtksdio_data *data; struct gpio_desc *reset; }; static int mtk_hci_wmt_sync(struct hci_dev *hdev, struct btmtk_hci_wmt_params *wmt_params) { struct btmtksdio_dev *bdev = hci_get_drvdata(hdev); struct btmtk_hci_wmt_evt_funcc *wmt_evt_funcc; struct btmtk_hci_wmt_evt_reg *wmt_evt_reg; u32 hlen, status = BTMTK_WMT_INVALID; struct btmtk_hci_wmt_evt *wmt_evt; struct btmtk_hci_wmt_cmd *wc; struct btmtk_wmt_hdr *hdr; int err; /* Send the WMT command and wait until the WMT event returns */ hlen = sizeof(*hdr) + wmt_params->dlen; if (hlen > 255) return -EINVAL; wc = kzalloc(hlen, GFP_KERNEL); if (!wc) return -ENOMEM; hdr = &wc->hdr; hdr->dir = 1; hdr->op = wmt_params->op; hdr->dlen = cpu_to_le16(wmt_params->dlen + 1); hdr->flag = wmt_params->flag; memcpy(wc->data, wmt_params->data, wmt_params->dlen); set_bit(BTMTKSDIO_TX_WAIT_VND_EVT, &bdev->tx_state); err = __hci_cmd_send(hdev, 0xfc6f, hlen, wc); if (err < 0) { clear_bit(BTMTKSDIO_TX_WAIT_VND_EVT, &bdev->tx_state); goto err_free_wc; } /* The vendor specific WMT commands are all answered by a vendor * specific event and will not have the Command Status or Command * Complete as with usual HCI command flow control. * * After sending the command, wait for BTMTKSDIO_TX_WAIT_VND_EVT * state to be cleared. The driver specific event receive routine * will clear that state and with that indicate completion of the * WMT command. */ err = wait_on_bit_timeout(&bdev->tx_state, BTMTKSDIO_TX_WAIT_VND_EVT, TASK_INTERRUPTIBLE, HCI_INIT_TIMEOUT); if (err == -EINTR) { bt_dev_err(hdev, "Execution of wmt command interrupted"); clear_bit(BTMTKSDIO_TX_WAIT_VND_EVT, &bdev->tx_state); goto err_free_wc; } if (err) { bt_dev_err(hdev, "Execution of wmt command timed out"); clear_bit(BTMTKSDIO_TX_WAIT_VND_EVT, &bdev->tx_state); err = -ETIMEDOUT; goto err_free_wc; } /* Parse and handle the return WMT event */ wmt_evt = (struct btmtk_hci_wmt_evt *)bdev->evt_skb->data; if (wmt_evt->whdr.op != hdr->op) { bt_dev_err(hdev, "Wrong op received %d expected %d", wmt_evt->whdr.op, hdr->op); err = -EIO; goto err_free_skb; } switch (wmt_evt->whdr.op) { case BTMTK_WMT_SEMAPHORE: if (wmt_evt->whdr.flag == 2) status = BTMTK_WMT_PATCH_UNDONE; else status = BTMTK_WMT_PATCH_DONE; break; case BTMTK_WMT_FUNC_CTRL: wmt_evt_funcc = (struct btmtk_hci_wmt_evt_funcc *)wmt_evt; if (be16_to_cpu(wmt_evt_funcc->status) == 0x404) status = BTMTK_WMT_ON_DONE; else if (be16_to_cpu(wmt_evt_funcc->status) == 0x420) status = BTMTK_WMT_ON_PROGRESS; else status = BTMTK_WMT_ON_UNDONE; break; case BTMTK_WMT_PATCH_DWNLD: if (wmt_evt->whdr.flag == 2) status = BTMTK_WMT_PATCH_DONE; else if (wmt_evt->whdr.flag == 1) status = BTMTK_WMT_PATCH_PROGRESS; else status = BTMTK_WMT_PATCH_UNDONE; break; case BTMTK_WMT_REGISTER: wmt_evt_reg = (struct btmtk_hci_wmt_evt_reg *)wmt_evt; if (le16_to_cpu(wmt_evt->whdr.dlen) == 12) status = le32_to_cpu(wmt_evt_reg->val); break; } if (wmt_params->status) *wmt_params->status = status; err_free_skb: kfree_skb(bdev->evt_skb); bdev->evt_skb = NULL; err_free_wc: kfree(wc); return err; } static int btmtksdio_tx_packet(struct btmtksdio_dev *bdev, struct sk_buff *skb) { struct mtkbtsdio_hdr *sdio_hdr; int err; /* Make sure that there are enough rooms for SDIO header */ if (unlikely(skb_headroom(skb) < sizeof(*sdio_hdr))) { err = pskb_expand_head(skb, sizeof(*sdio_hdr), 0, GFP_ATOMIC); if (err < 0) return err; } /* Prepend MediaTek SDIO Specific Header */ skb_push(skb, sizeof(*sdio_hdr)); sdio_hdr = (void *)skb->data; sdio_hdr->len = cpu_to_le16(skb->len); sdio_hdr->reserved = cpu_to_le16(0); sdio_hdr->bt_type = hci_skb_pkt_type(skb); clear_bit(BTMTKSDIO_HW_TX_READY, &bdev->tx_state); err = sdio_writesb(bdev->func, MTK_REG_CTDR, skb->data, round_up(skb->len, MTK_SDIO_BLOCK_SIZE)); if (err < 0) goto err_skb_pull; bdev->hdev->stat.byte_tx += skb->len; kfree_skb(skb); return 0; err_skb_pull: skb_pull(skb, sizeof(*sdio_hdr)); return err; } static u32 btmtksdio_drv_own_query(struct btmtksdio_dev *bdev) { return sdio_readl(bdev->func, MTK_REG_CHLPCR, NULL); } static u32 btmtksdio_drv_own_query_79xx(struct btmtksdio_dev *bdev) { return sdio_readl(bdev->func, MTK_REG_PD2HRM0R, NULL); } static u32 btmtksdio_chcr_query(struct btmtksdio_dev *bdev) { return sdio_readl(bdev->func, MTK_REG_CHCR, NULL); } static int btmtksdio_fw_pmctrl(struct btmtksdio_dev *bdev) { u32 status; int err; sdio_claim_host(bdev->func); if (bdev->data->lp_mbox_supported && test_bit(BTMTKSDIO_PATCH_ENABLED, &bdev->tx_state)) { sdio_writel(bdev->func, CSICR_CLR_MBOX_ACK, MTK_REG_CSICR, &err); err = readx_poll_timeout(btmtksdio_drv_own_query_79xx, bdev, status, !(status & PD2HRM0R_DRV_OWN), 2000, 1000000); if (err < 0) { bt_dev_err(bdev->hdev, "mailbox ACK not cleared"); goto out; } } /* Return ownership to the device */ sdio_writel(bdev->func, C_FW_OWN_REQ_SET, MTK_REG_CHLPCR, &err); if (err < 0) goto out; err = readx_poll_timeout(btmtksdio_drv_own_query, bdev, status, !(status & C_COM_DRV_OWN), 2000, 1000000); out: sdio_release_host(bdev->func); if (err < 0) bt_dev_err(bdev->hdev, "Cannot return ownership to device"); return err; } static int btmtksdio_drv_pmctrl(struct btmtksdio_dev *bdev) { u32 status; int err; sdio_claim_host(bdev->func); /* Get ownership from the device */ sdio_writel(bdev->func, C_FW_OWN_REQ_CLR, MTK_REG_CHLPCR, &err); if (err < 0) goto out; err = readx_poll_timeout(btmtksdio_drv_own_query, bdev, status, status & C_COM_DRV_OWN, 2000, 1000000); if (!err && bdev->data->lp_mbox_supported && test_bit(BTMTKSDIO_PATCH_ENABLED, &bdev->tx_state)) err = readx_poll_timeout(btmtksdio_drv_own_query_79xx, bdev, status, status & PD2HRM0R_DRV_OWN, 2000, 1000000); out: sdio_release_host(bdev->func); if (err < 0) bt_dev_err(bdev->hdev, "Cannot get ownership from device"); return err; } static int btmtksdio_recv_event(struct hci_dev *hdev, struct sk_buff *skb) { struct btmtksdio_dev *bdev = hci_get_drvdata(hdev); struct hci_event_hdr *hdr = (void *)skb->data; u8 evt = hdr->evt; int err; /* When someone waits for the WMT event, the skb is being cloned * and being processed the events from there then. */ if (test_bit(BTMTKSDIO_TX_WAIT_VND_EVT, &bdev->tx_state)) { bdev->evt_skb = skb_clone(skb, GFP_KERNEL); if (!bdev->evt_skb) { err = -ENOMEM; goto err_out; } } err = hci_recv_frame(hdev, skb); if (err < 0) goto err_free_skb; if (evt == HCI_EV_WMT) { if (test_and_clear_bit(BTMTKSDIO_TX_WAIT_VND_EVT, &bdev->tx_state)) { /* Barrier to sync with other CPUs */ smp_mb__after_atomic(); wake_up_bit(&bdev->tx_state, BTMTKSDIO_TX_WAIT_VND_EVT); } } return 0; err_free_skb: kfree_skb(bdev->evt_skb); bdev->evt_skb = NULL; err_out: return err; } static int btmtksdio_recv_acl(struct hci_dev *hdev, struct sk_buff *skb) { struct btmtksdio_dev *bdev = hci_get_drvdata(hdev); u16 handle = le16_to_cpu(hci_acl_hdr(skb)->handle); switch (handle) { case 0xfc6f: /* Firmware dump from device: when the firmware hangs, the * device can no longer suspend and thus disable auto-suspend. */ pm_runtime_forbid(bdev->dev); fallthrough; case 0x05ff: case 0x05fe: /* Firmware debug logging */ return hci_recv_diag(hdev, skb); } return hci_recv_frame(hdev, skb); } static const struct h4_recv_pkt mtk_recv_pkts[] = { { H4_RECV_ACL, .recv = btmtksdio_recv_acl }, { H4_RECV_SCO, .recv = hci_recv_frame }, { H4_RECV_EVENT, .recv = btmtksdio_recv_event }, }; static int btmtksdio_rx_packet(struct btmtksdio_dev *bdev, u16 rx_size) { const struct h4_recv_pkt *pkts = mtk_recv_pkts; int pkts_count = ARRAY_SIZE(mtk_recv_pkts); struct mtkbtsdio_hdr *sdio_hdr; int err, i, pad_size; struct sk_buff *skb; u16 dlen; if (rx_size < sizeof(*sdio_hdr)) return -EILSEQ; /* A SDIO packet is exactly containing a Bluetooth packet */ skb = bt_skb_alloc(rx_size, GFP_KERNEL); if (!skb) return -ENOMEM; skb_put(skb, rx_size); err = sdio_readsb(bdev->func, skb->data, MTK_REG_CRDR, rx_size); if (err < 0) goto err_kfree_skb; sdio_hdr = (void *)skb->data; /* We assume the default error as -EILSEQ simply to make the error path * be cleaner. */ err = -EILSEQ; if (rx_size != le16_to_cpu(sdio_hdr->len)) { bt_dev_err(bdev->hdev, "Rx size in sdio header is mismatched "); goto err_kfree_skb; } hci_skb_pkt_type(skb) = sdio_hdr->bt_type; /* Remove MediaTek SDIO header */ skb_pull(skb, sizeof(*sdio_hdr)); /* We have to dig into the packet to get payload size and then know how * many padding bytes at the tail, these padding bytes should be removed * before the packet is indicated to the core layer. */ for (i = 0; i < pkts_count; i++) { if (sdio_hdr->bt_type == (&pkts[i])->type) break; } if (i >= pkts_count) { bt_dev_err(bdev->hdev, "Invalid bt type 0x%02x", sdio_hdr->bt_type); goto err_kfree_skb; } /* Remaining bytes cannot hold a header*/ if (skb->len < (&pkts[i])->hlen) { bt_dev_err(bdev->hdev, "The size of bt header is mismatched"); goto err_kfree_skb; } switch ((&pkts[i])->lsize) { case 1: dlen = skb->data[(&pkts[i])->loff]; break; case 2: dlen = get_unaligned_le16(skb->data + (&pkts[i])->loff); break; default: goto err_kfree_skb; } pad_size = skb->len - (&pkts[i])->hlen - dlen; /* Remaining bytes cannot hold a payload */ if (pad_size < 0) { bt_dev_err(bdev->hdev, "The size of bt payload is mismatched"); goto err_kfree_skb; } /* Remove padding bytes */ skb_trim(skb, skb->len - pad_size); /* Complete frame */ (&pkts[i])->recv(bdev->hdev, skb); bdev->hdev->stat.byte_rx += rx_size; return 0; err_kfree_skb: kfree_skb(skb); return err; } static void btmtksdio_txrx_work(struct work_struct *work) { struct btmtksdio_dev *bdev = container_of(work, struct btmtksdio_dev, txrx_work); unsigned long txrx_timeout; u32 int_status, rx_size; struct sk_buff *skb; int err; pm_runtime_get_sync(bdev->dev); sdio_claim_host(bdev->func); /* Disable interrupt */ sdio_writel(bdev->func, C_INT_EN_CLR, MTK_REG_CHLPCR, NULL); txrx_timeout = jiffies + 5 * HZ; do { int_status = sdio_readl(bdev->func, MTK_REG_CHISR, NULL); /* Ack an interrupt as soon as possible before any operation on * hardware. * * Note that we don't ack any status during operations to avoid race * condition between the host and the device such as it's possible to * mistakenly ack RX_DONE for the next packet and then cause interrupts * not be raised again but there is still pending data in the hardware * FIFO. */ sdio_writel(bdev->func, int_status, MTK_REG_CHISR, NULL); int_status &= INT_MASK; if ((int_status & FW_MAILBOX_INT) && bdev->data->chipid == 0x7921) { sdio_writel(bdev->func, PH2DSM0R_DRIVER_OWN, MTK_REG_PH2DSM0R, NULL); } if (int_status & FW_OWN_BACK_INT) bt_dev_dbg(bdev->hdev, "Get fw own back"); if (int_status & TX_EMPTY) set_bit(BTMTKSDIO_HW_TX_READY, &bdev->tx_state); else if (unlikely(int_status & TX_FIFO_OVERFLOW)) bt_dev_warn(bdev->hdev, "Tx fifo overflow"); if (test_bit(BTMTKSDIO_HW_TX_READY, &bdev->tx_state)) { skb = skb_dequeue(&bdev->txq); if (skb) { err = btmtksdio_tx_packet(bdev, skb); if (err < 0) { bdev->hdev->stat.err_tx++; skb_queue_head(&bdev->txq, skb); } } } if (int_status & RX_DONE_INT) { rx_size = sdio_readl(bdev->func, MTK_REG_CRPLR, NULL); rx_size = (rx_size & RX_PKT_LEN) >> 16; if (btmtksdio_rx_packet(bdev, rx_size) < 0) bdev->hdev->stat.err_rx++; } } while (int_status || time_is_before_jiffies(txrx_timeout)); /* Enable interrupt */ sdio_writel(bdev->func, C_INT_EN_SET, MTK_REG_CHLPCR, NULL); sdio_release_host(bdev->func); pm_runtime_mark_last_busy(bdev->dev); pm_runtime_put_autosuspend(bdev->dev); } static void btmtksdio_interrupt(struct sdio_func *func) { struct btmtksdio_dev *bdev = sdio_get_drvdata(func); if (test_bit(BTMTKSDIO_BT_WAKE_ENABLED, &bdev->tx_state)) { if (bdev->hdev->suspended) pm_wakeup_event(bdev->dev, 0); clear_bit(BTMTKSDIO_BT_WAKE_ENABLED, &bdev->tx_state); } /* Disable interrupt */ sdio_writel(bdev->func, C_INT_EN_CLR, MTK_REG_CHLPCR, NULL); schedule_work(&bdev->txrx_work); } static int btmtksdio_open(struct hci_dev *hdev) { struct btmtksdio_dev *bdev = hci_get_drvdata(hdev); u32 val; int err; sdio_claim_host(bdev->func); err = sdio_enable_func(bdev->func); if (err < 0) goto err_release_host; set_bit(BTMTKSDIO_FUNC_ENABLED, &bdev->tx_state); err = btmtksdio_drv_pmctrl(bdev); if (err < 0) goto err_disable_func; /* Disable interrupt & mask out all interrupt sources */ sdio_writel(bdev->func, C_INT_EN_CLR, MTK_REG_CHLPCR, &err); if (err < 0) goto err_disable_func; sdio_writel(bdev->func, 0, MTK_REG_CHIER, &err); if (err < 0) goto err_disable_func; err = sdio_claim_irq(bdev->func, btmtksdio_interrupt); if (err < 0) goto err_disable_func; err = sdio_set_block_size(bdev->func, MTK_SDIO_BLOCK_SIZE); if (err < 0) goto err_release_irq; /* SDIO CMD 5 allows the SDIO device back to idle state an * synchronous interrupt is supported in SDIO 4-bit mode */ val = sdio_readl(bdev->func, MTK_REG_CSDIOCSR, &err); if (err < 0) goto err_release_irq; val |= SDIO_INT_CTL; sdio_writel(bdev->func, val, MTK_REG_CSDIOCSR, &err); if (err < 0) goto err_release_irq; /* Explitly set write-1-clear method */ val = sdio_readl(bdev->func, MTK_REG_CHCR, &err); if (err < 0) goto err_release_irq; val |= C_INT_CLR_CTRL; sdio_writel(bdev->func, val, MTK_REG_CHCR, &err); if (err < 0) goto err_release_irq; /* Setup interrupt sources */ sdio_writel(bdev->func, RX_DONE_INT | TX_EMPTY | TX_FIFO_OVERFLOW, MTK_REG_CHIER, &err); if (err < 0) goto err_release_irq; /* Enable interrupt */ sdio_writel(bdev->func, C_INT_EN_SET, MTK_REG_CHLPCR, &err); if (err < 0) goto err_release_irq; sdio_release_host(bdev->func); return 0; err_release_irq: sdio_release_irq(bdev->func); err_disable_func: sdio_disable_func(bdev->func); err_release_host: sdio_release_host(bdev->func); return err; } static int btmtksdio_close(struct hci_dev *hdev) { struct btmtksdio_dev *bdev = hci_get_drvdata(hdev); sdio_claim_host(bdev->func); /* Disable interrupt */ sdio_writel(bdev->func, C_INT_EN_CLR, MTK_REG_CHLPCR, NULL); sdio_release_irq(bdev->func); cancel_work_sync(&bdev->txrx_work); btmtksdio_fw_pmctrl(bdev); clear_bit(BTMTKSDIO_FUNC_ENABLED, &bdev->tx_state); sdio_disable_func(bdev->func); sdio_release_host(bdev->func); return 0; } static int btmtksdio_flush(struct hci_dev *hdev) { struct btmtksdio_dev *bdev = hci_get_drvdata(hdev); skb_queue_purge(&bdev->txq); cancel_work_sync(&bdev->txrx_work); return 0; } static int btmtksdio_func_query(struct hci_dev *hdev) { struct btmtk_hci_wmt_params wmt_params; int status, err; u8 param = 0; /* Query whether the function is enabled */ wmt_params.op = BTMTK_WMT_FUNC_CTRL; wmt_params.flag = 4; wmt_params.dlen = sizeof(param); wmt_params.data = ¶m; wmt_params.status = &status; err = mtk_hci_wmt_sync(hdev, &wmt_params); if (err < 0) { bt_dev_err(hdev, "Failed to query function status (%d)", err); return err; } return status; } static int mt76xx_setup(struct hci_dev *hdev, const char *fwname) { struct btmtksdio_dev *bdev = hci_get_drvdata(hdev); struct btmtk_hci_wmt_params wmt_params; struct btmtk_tci_sleep tci_sleep; struct sk_buff *skb; int err, status; u8 param = 0x1; /* Query whether the firmware is already download */ wmt_params.op = BTMTK_WMT_SEMAPHORE; wmt_params.flag = 1; wmt_params.dlen = 0; wmt_params.data = NULL; wmt_params.status = &status; err = mtk_hci_wmt_sync(hdev, &wmt_params); if (err < 0) { bt_dev_err(hdev, "Failed to query firmware status (%d)", err); return err; } if (status == BTMTK_WMT_PATCH_DONE) { bt_dev_info(hdev, "Firmware already downloaded"); goto ignore_setup_fw; } /* Setup a firmware which the device definitely requires */ err = btmtk_setup_firmware(hdev, fwname, mtk_hci_wmt_sync); if (err < 0) return err; ignore_setup_fw: /* Query whether the device is already enabled */ err = readx_poll_timeout(btmtksdio_func_query, hdev, status, status < 0 || status != BTMTK_WMT_ON_PROGRESS, 2000, 5000000); /* -ETIMEDOUT happens */ if (err < 0) return err; /* The other errors happen in btusb_mtk_func_query */ if (status < 0) return status; if (status == BTMTK_WMT_ON_DONE) { bt_dev_info(hdev, "function already on"); goto ignore_func_on; } /* Enable Bluetooth protocol */ wmt_params.op = BTMTK_WMT_FUNC_CTRL; wmt_params.flag = 0; wmt_params.dlen = sizeof(param); wmt_params.data = ¶m; wmt_params.status = NULL; err = mtk_hci_wmt_sync(hdev, &wmt_params); if (err < 0) { bt_dev_err(hdev, "Failed to send wmt func ctrl (%d)", err); return err; } set_bit(BTMTKSDIO_PATCH_ENABLED, &bdev->tx_state); ignore_func_on: /* Apply the low power environment setup */ tci_sleep.mode = 0x5; tci_sleep.duration = cpu_to_le16(0x640); tci_sleep.host_duration = cpu_to_le16(0x640); tci_sleep.host_wakeup_pin = 0; tci_sleep.time_compensation = 0; skb = __hci_cmd_sync(hdev, 0xfc7a, sizeof(tci_sleep), &tci_sleep, HCI_INIT_TIMEOUT); if (IS_ERR(skb)) { err = PTR_ERR(skb); bt_dev_err(hdev, "Failed to apply low power setting (%d)", err); return err; } kfree_skb(skb); return 0; } static int mt79xx_setup(struct hci_dev *hdev, const char *fwname) { struct btmtksdio_dev *bdev = hci_get_drvdata(hdev); struct btmtk_hci_wmt_params wmt_params; u8 param = 0x1; int err; err = btmtk_setup_firmware_79xx(hdev, fwname, mtk_hci_wmt_sync); if (err < 0) { bt_dev_err(hdev, "Failed to setup 79xx firmware (%d)", err); return err; } err = btmtksdio_fw_pmctrl(bdev); if (err < 0) return err; err = btmtksdio_drv_pmctrl(bdev); if (err < 0) return err; /* Enable Bluetooth protocol */ wmt_params.op = BTMTK_WMT_FUNC_CTRL; wmt_params.flag = 0; wmt_params.dlen = sizeof(param); wmt_params.data = ¶m; wmt_params.status = NULL; err = mtk_hci_wmt_sync(hdev, &wmt_params); if (err < 0) { bt_dev_err(hdev, "Failed to send wmt func ctrl (%d)", err); return err; } hci_set_msft_opcode(hdev, 0xFD30); hci_set_aosp_capable(hdev); set_bit(BTMTKSDIO_PATCH_ENABLED, &bdev->tx_state); return err; } static int btmtksdio_mtk_reg_read(struct hci_dev *hdev, u32 reg, u32 *val) { struct btmtk_hci_wmt_params wmt_params; struct reg_read_cmd reg_read = { .type = 1, .num = 1, }; u32 status; int err; reg_read.addr = cpu_to_le32(reg); wmt_params.op = BTMTK_WMT_REGISTER; wmt_params.flag = BTMTK_WMT_REG_READ; wmt_params.dlen = sizeof(reg_read); wmt_params.data = ®_read; wmt_params.status = &status; err = mtk_hci_wmt_sync(hdev, &wmt_params); if (err < 0) { bt_dev_err(hdev, "Failed to read reg (%d)", err); return err; } *val = status; return err; } static int btmtksdio_mtk_reg_write(struct hci_dev *hdev, u32 reg, u32 val, u32 mask) { struct btmtk_hci_wmt_params wmt_params; const struct reg_write_cmd reg_write = { .type = 1, .num = 1, .addr = cpu_to_le32(reg), .data = cpu_to_le32(val), .mask = cpu_to_le32(mask), }; int err, status; wmt_params.op = BTMTK_WMT_REGISTER; wmt_params.flag = BTMTK_WMT_REG_WRITE; wmt_params.dlen = sizeof(reg_write); wmt_params.data = ®_write; wmt_params.status = &status; err = mtk_hci_wmt_sync(hdev, &wmt_params); if (err < 0) bt_dev_err(hdev, "Failed to write reg (%d)", err); return err; } static int btmtksdio_get_data_path_id(struct hci_dev *hdev, __u8 *data_path_id) { /* uses 1 as data path id for all the usecases */ *data_path_id = 1; return 0; } static int btmtksdio_get_codec_config_data(struct hci_dev *hdev, __u8 link, struct bt_codec *codec, __u8 *ven_len, __u8 **ven_data) { int err = 0; if (!ven_data || !ven_len) return -EINVAL; *ven_len = 0; *ven_data = NULL; if (link != ESCO_LINK) { bt_dev_err(hdev, "Invalid link type(%u)", link); return -EINVAL; } *ven_data = kmalloc(sizeof(__u8), GFP_KERNEL); if (!*ven_data) { err = -ENOMEM; goto error; } /* supports only CVSD and mSBC offload codecs */ switch (codec->id) { case 0x02: **ven_data = 0x00; break; case 0x05: **ven_data = 0x01; break; default: err = -EINVAL; bt_dev_err(hdev, "Invalid codec id(%u)", codec->id); goto error; } /* codec and its capabilities are pre-defined to ids * preset id = 0x00 represents CVSD codec with sampling rate 8K * preset id = 0x01 represents mSBC codec with sampling rate 16K */ *ven_len = sizeof(__u8); return err; error: kfree(*ven_data); *ven_data = NULL; return err; } static int btmtksdio_sco_setting(struct hci_dev *hdev) { const struct btmtk_sco sco_setting = { .clock_config = 0x49, .channel_format_config = 0x80, }; struct sk_buff *skb; u32 val; int err; /* Enable SCO over I2S/PCM for MediaTek chipset */ skb = __hci_cmd_sync(hdev, 0xfc72, sizeof(sco_setting), &sco_setting, HCI_CMD_TIMEOUT); if (IS_ERR(skb)) return PTR_ERR(skb); kfree_skb(skb); err = btmtksdio_mtk_reg_read(hdev, MT7921_PINMUX_0, &val); if (err < 0) return err; val |= 0x11000000; err = btmtksdio_mtk_reg_write(hdev, MT7921_PINMUX_0, val, ~0); if (err < 0) return err; err = btmtksdio_mtk_reg_read(hdev, MT7921_PINMUX_1, &val); if (err < 0) return err; val |= 0x00000101; err = btmtksdio_mtk_reg_write(hdev, MT7921_PINMUX_1, val, ~0); if (err < 0) return err; hdev->get_data_path_id = btmtksdio_get_data_path_id; hdev->get_codec_config_data = btmtksdio_get_codec_config_data; return err; } static int btmtksdio_reset_setting(struct hci_dev *hdev) { int err; u32 val; err = btmtksdio_mtk_reg_read(hdev, MT7921_PINMUX_1, &val); if (err < 0) return err; val |= 0x20; /* set the pin (bit field 11:8) work as GPIO mode */ err = btmtksdio_mtk_reg_write(hdev, MT7921_PINMUX_1, val, ~0); if (err < 0) return err; err = btmtksdio_mtk_reg_read(hdev, MT7921_BTSYS_RST, &val); if (err < 0) return err; val |= MT7921_BTSYS_RST_WITH_GPIO; return btmtksdio_mtk_reg_write(hdev, MT7921_BTSYS_RST, val, ~0); } static int btmtksdio_setup(struct hci_dev *hdev) { struct btmtksdio_dev *bdev = hci_get_drvdata(hdev); ktime_t calltime, delta, rettime; unsigned long long duration; char fwname[64]; int err, dev_id; u32 fw_version = 0, val; calltime = ktime_get(); set_bit(BTMTKSDIO_HW_TX_READY, &bdev->tx_state); switch (bdev->data->chipid) { case 0x7921: if (test_bit(BTMTKSDIO_HW_RESET_ACTIVE, &bdev->tx_state)) { err = btmtksdio_mtk_reg_read(hdev, MT7921_DLSTATUS, &val); if (err < 0) return err; val &= ~BT_DL_STATE; err = btmtksdio_mtk_reg_write(hdev, MT7921_DLSTATUS, val, ~0); if (err < 0) return err; btmtksdio_fw_pmctrl(bdev); msleep(20); btmtksdio_drv_pmctrl(bdev); clear_bit(BTMTKSDIO_HW_RESET_ACTIVE, &bdev->tx_state); } err = btmtksdio_mtk_reg_read(hdev, 0x70010200, &dev_id); if (err < 0) { bt_dev_err(hdev, "Failed to get device id (%d)", err); return err; } err = btmtksdio_mtk_reg_read(hdev, 0x80021004, &fw_version); if (err < 0) { bt_dev_err(hdev, "Failed to get fw version (%d)", err); return err; } btmtk_fw_get_filename(fwname, sizeof(fwname), dev_id, fw_version, 0); snprintf(fwname, sizeof(fwname), "mediatek/BT_RAM_CODE_MT%04x_1_%x_hdr.bin", dev_id & 0xffff, (fw_version & 0xff) + 1); err = mt79xx_setup(hdev, fwname); if (err < 0) return err; /* Enable SCO over I2S/PCM */ err = btmtksdio_sco_setting(hdev); if (err < 0) { bt_dev_err(hdev, "Failed to enable SCO setting (%d)", err); return err; } /* Enable WBS with mSBC codec */ set_bit(HCI_QUIRK_WIDEBAND_SPEECH_SUPPORTED, &hdev->quirks); /* Enable GPIO reset mechanism */ if (bdev->reset) { err = btmtksdio_reset_setting(hdev); if (err < 0) { bt_dev_err(hdev, "Failed to enable Reset setting (%d)", err); devm_gpiod_put(bdev->dev, bdev->reset); bdev->reset = NULL; } } /* Valid LE States quirk for MediaTek 7921 */ set_bit(HCI_QUIRK_VALID_LE_STATES, &hdev->quirks); break; case 0x7663: case 0x7668: err = mt76xx_setup(hdev, bdev->data->fwname); if (err < 0) return err; break; default: return -ENODEV; } rettime = ktime_get(); delta = ktime_sub(rettime, calltime); duration = (unsigned long long)ktime_to_ns(delta) >> 10; pm_runtime_set_autosuspend_delay(bdev->dev, MTKBTSDIO_AUTOSUSPEND_DELAY); pm_runtime_use_autosuspend(bdev->dev); err = pm_runtime_set_active(bdev->dev); if (err < 0) return err; /* Default forbid runtime auto suspend, that can be allowed by * enable_autosuspend flag or the PM runtime entry under sysfs. */ pm_runtime_forbid(bdev->dev); pm_runtime_enable(bdev->dev); if (enable_autosuspend) pm_runtime_allow(bdev->dev); bt_dev_info(hdev, "Device setup in %llu usecs", duration); return 0; } static int btmtksdio_shutdown(struct hci_dev *hdev) { struct btmtksdio_dev *bdev = hci_get_drvdata(hdev); struct btmtk_hci_wmt_params wmt_params; u8 param = 0x0; int err; /* Get back the state to be consistent with the state * in btmtksdio_setup. */ pm_runtime_get_sync(bdev->dev); /* wmt command only works until the reset is complete */ if (test_bit(BTMTKSDIO_HW_RESET_ACTIVE, &bdev->tx_state)) goto ignore_wmt_cmd; /* Disable the device */ wmt_params.op = BTMTK_WMT_FUNC_CTRL; wmt_params.flag = 0; wmt_params.dlen = sizeof(param); wmt_params.data = ¶m; wmt_params.status = NULL; err = mtk_hci_wmt_sync(hdev, &wmt_params); if (err < 0) { bt_dev_err(hdev, "Failed to send wmt func ctrl (%d)", err); return err; } ignore_wmt_cmd: pm_runtime_put_noidle(bdev->dev); pm_runtime_disable(bdev->dev); return 0; } static int btmtksdio_send_frame(struct hci_dev *hdev, struct sk_buff *skb) { struct btmtksdio_dev *bdev = hci_get_drvdata(hdev); switch (hci_skb_pkt_type(skb)) { case HCI_COMMAND_PKT: hdev->stat.cmd_tx++; break; case HCI_ACLDATA_PKT: hdev->stat.acl_tx++; break; case HCI_SCODATA_PKT: hdev->stat.sco_tx++; break; default: return -EILSEQ; } skb_queue_tail(&bdev->txq, skb); schedule_work(&bdev->txrx_work); return 0; } static void btmtksdio_cmd_timeout(struct hci_dev *hdev) { struct btmtksdio_dev *bdev = hci_get_drvdata(hdev); u32 status; int err; if (!bdev->reset || bdev->data->chipid != 0x7921) return; pm_runtime_get_sync(bdev->dev); if (test_and_set_bit(BTMTKSDIO_HW_RESET_ACTIVE, &bdev->tx_state)) return; sdio_claim_host(bdev->func); sdio_writel(bdev->func, C_INT_EN_CLR, MTK_REG_CHLPCR, NULL); skb_queue_purge(&bdev->txq); cancel_work_sync(&bdev->txrx_work); gpiod_set_value_cansleep(bdev->reset, 1); msleep(100); gpiod_set_value_cansleep(bdev->reset, 0); err = readx_poll_timeout(btmtksdio_chcr_query, bdev, status, status & BT_RST_DONE, 100000, 2000000); if (err < 0) { bt_dev_err(hdev, "Failed to reset (%d)", err); goto err; } clear_bit(BTMTKSDIO_PATCH_ENABLED, &bdev->tx_state); err: sdio_release_host(bdev->func); pm_runtime_put_noidle(bdev->dev); pm_runtime_disable(bdev->dev); hci_reset_dev(hdev); } static bool btmtksdio_sdio_inband_wakeup(struct hci_dev *hdev) { struct btmtksdio_dev *bdev = hci_get_drvdata(hdev); return device_may_wakeup(bdev->dev); } static bool btmtksdio_sdio_wakeup(struct hci_dev *hdev) { struct btmtksdio_dev *bdev = hci_get_drvdata(hdev); bool may_wakeup = device_may_wakeup(bdev->dev); const struct btmtk_wakeon bt_awake = { .mode = 0x1, .gpo = 0, .active_high = 0x1, .enable_delay = cpu_to_le16(0xc80), .wakeup_delay = cpu_to_le16(0x20), }; if (may_wakeup && bdev->data->chipid == 0x7921) { struct sk_buff *skb; skb = __hci_cmd_sync(hdev, 0xfc27, sizeof(bt_awake), &bt_awake, HCI_CMD_TIMEOUT); if (IS_ERR(skb)) may_wakeup = false; else kfree_skb(skb); } return may_wakeup; } static int btmtksdio_probe(struct sdio_func *func, const struct sdio_device_id *id) { struct btmtksdio_dev *bdev; struct hci_dev *hdev; int err; bdev = devm_kzalloc(&func->dev, sizeof(*bdev), GFP_KERNEL); if (!bdev) return -ENOMEM; bdev->data = (void *)id->driver_data; if (!bdev->data) return -ENODEV; bdev->dev = &func->dev; bdev->func = func; INIT_WORK(&bdev->txrx_work, btmtksdio_txrx_work); skb_queue_head_init(&bdev->txq); /* Initialize and register HCI device */ hdev = hci_alloc_dev(); if (!hdev) { dev_err(&func->dev, "Can't allocate HCI device\n"); return -ENOMEM; } bdev->hdev = hdev; hdev->bus = HCI_SDIO; hci_set_drvdata(hdev, bdev); hdev->open = btmtksdio_open; hdev->close = btmtksdio_close; hdev->cmd_timeout = btmtksdio_cmd_timeout; hdev->flush = btmtksdio_flush; hdev->setup = btmtksdio_setup; hdev->shutdown = btmtksdio_shutdown; hdev->send = btmtksdio_send_frame; hdev->wakeup = btmtksdio_sdio_wakeup; /* * If SDIO controller supports wake on Bluetooth, sending a wakeon * command is not necessary. */ if (device_can_wakeup(func->card->host->parent)) hdev->wakeup = btmtksdio_sdio_inband_wakeup; else hdev->wakeup = btmtksdio_sdio_wakeup; hdev->set_bdaddr = btmtk_set_bdaddr; SET_HCIDEV_DEV(hdev, &func->dev); hdev->manufacturer = 70; set_bit(HCI_QUIRK_NON_PERSISTENT_SETUP, &hdev->quirks); sdio_set_drvdata(func, bdev); err = hci_register_dev(hdev); if (err < 0) { dev_err(&func->dev, "Can't register HCI device\n"); hci_free_dev(hdev); return err; } /* pm_runtime_enable would be done after the firmware is being * downloaded because the core layer probably already enables * runtime PM for this func such as the case host->caps & * MMC_CAP_POWER_OFF_CARD. */ if (pm_runtime_enabled(bdev->dev)) pm_runtime_disable(bdev->dev); /* As explaination in drivers/mmc/core/sdio_bus.c tells us: * Unbound SDIO functions are always suspended. * During probe, the function is set active and the usage count * is incremented. If the driver supports runtime PM, * it should call pm_runtime_put_noidle() in its probe routine and * pm_runtime_get_noresume() in its remove routine. * * So, put a pm_runtime_put_noidle here ! */ pm_runtime_put_noidle(bdev->dev); err = device_init_wakeup(bdev->dev, true); if (err) bt_dev_err(hdev, "failed to initialize device wakeup"); bdev->dev->of_node = of_find_compatible_node(NULL, NULL, "mediatek,mt7921s-bluetooth"); bdev->reset = devm_gpiod_get_optional(bdev->dev, "reset", GPIOD_OUT_LOW); if (IS_ERR(bdev->reset)) err = PTR_ERR(bdev->reset); return err; } static void btmtksdio_remove(struct sdio_func *func) { struct btmtksdio_dev *bdev = sdio_get_drvdata(func); struct hci_dev *hdev; if (!bdev) return; /* Be consistent the state in btmtksdio_probe */ pm_runtime_get_noresume(bdev->dev); hdev = bdev->hdev; sdio_set_drvdata(func, NULL); hci_unregister_dev(hdev); hci_free_dev(hdev); } #ifdef CONFIG_PM static int btmtksdio_runtime_suspend(struct device *dev) { struct sdio_func *func = dev_to_sdio_func(dev); struct btmtksdio_dev *bdev; int err; bdev = sdio_get_drvdata(func); if (!bdev) return 0; if (!test_bit(BTMTKSDIO_FUNC_ENABLED, &bdev->tx_state)) return 0; sdio_set_host_pm_flags(func, MMC_PM_KEEP_POWER); err = btmtksdio_fw_pmctrl(bdev); bt_dev_dbg(bdev->hdev, "status (%d) return ownership to device", err); return err; } static int btmtksdio_system_suspend(struct device *dev) { struct sdio_func *func = dev_to_sdio_func(dev); struct btmtksdio_dev *bdev; bdev = sdio_get_drvdata(func); if (!bdev) return 0; if (!test_bit(BTMTKSDIO_FUNC_ENABLED, &bdev->tx_state)) return 0; set_bit(BTMTKSDIO_BT_WAKE_ENABLED, &bdev->tx_state); return btmtksdio_runtime_suspend(dev); } static int btmtksdio_runtime_resume(struct device *dev) { struct sdio_func *func = dev_to_sdio_func(dev); struct btmtksdio_dev *bdev; int err; bdev = sdio_get_drvdata(func); if (!bdev) return 0; if (!test_bit(BTMTKSDIO_FUNC_ENABLED, &bdev->tx_state)) return 0; err = btmtksdio_drv_pmctrl(bdev); bt_dev_dbg(bdev->hdev, "status (%d) get ownership from device", err); return err; } static int btmtksdio_system_resume(struct device *dev) { return btmtksdio_runtime_resume(dev); } static const struct dev_pm_ops btmtksdio_pm_ops = { SYSTEM_SLEEP_PM_OPS(btmtksdio_system_suspend, btmtksdio_system_resume) RUNTIME_PM_OPS(btmtksdio_runtime_suspend, btmtksdio_runtime_resume, NULL) }; #define BTMTKSDIO_PM_OPS (&btmtksdio_pm_ops) #else /* CONFIG_PM */ #define BTMTKSDIO_PM_OPS NULL #endif /* CONFIG_PM */ static struct sdio_driver btmtksdio_driver = { .name = "btmtksdio", .probe = btmtksdio_probe, .remove = btmtksdio_remove, .id_table = btmtksdio_table, .drv = { .pm = BTMTKSDIO_PM_OPS, } }; module_sdio_driver(btmtksdio_driver); module_param(enable_autosuspend, bool, 0644); MODULE_PARM_DESC(enable_autosuspend, "Enable autosuspend by default"); MODULE_AUTHOR("Sean Wang "); MODULE_DESCRIPTION("MediaTek Bluetooth SDIO driver ver " VERSION); MODULE_VERSION(VERSION); MODULE_LICENSE("GPL");