// SPDX-License-Identifier: GPL-2.0-or-later /* * Algorithm testing framework and tests. * * Copyright (c) 2002 James Morris <jmorris@intercode.com.au> * Copyright (c) 2002 Jean-Francois Dive <jef@linuxbe.org> * Copyright (c) 2007 Nokia Siemens Networks * Copyright (c) 2008 Herbert Xu <herbert@gondor.apana.org.au> * Copyright (c) 2019 Google LLC * * Updated RFC4106 AES-GCM testing. * Authors: Aidan O'Mahony (aidan.o.mahony@intel.com) * Adrian Hoban <adrian.hoban@intel.com> * Gabriele Paoloni <gabriele.paoloni@intel.com> * Tadeusz Struk (tadeusz.struk@intel.com) * Copyright (c) 2010, Intel Corporation. */ #include <crypto/aead.h> #include <crypto/hash.h> #include <crypto/skcipher.h> #include <linux/err.h> #include <linux/fips.h> #include <linux/module.h> #include <linux/once.h> #include <linux/random.h> #include <linux/scatterlist.h> #include <linux/slab.h> #include <linux/string.h> #include <crypto/rng.h> #include <crypto/drbg.h> #include <crypto/akcipher.h> #include <crypto/kpp.h> #include <crypto/acompress.h> #include <crypto/internal/simd.h> #include "internal.h" static bool notests; module_param(notests, bool, 0644); MODULE_PARM_DESC(notests, "disable crypto self-tests"); static bool panic_on_fail; module_param(panic_on_fail, bool, 0444); #ifdef CONFIG_CRYPTO_MANAGER_EXTRA_TESTS static bool noextratests; module_param(noextratests, bool, 0644); MODULE_PARM_DESC(noextratests, "disable expensive crypto self-tests"); static unsigned int fuzz_iterations = 100; module_param(fuzz_iterations, uint, 0644); MODULE_PARM_DESC(fuzz_iterations, "number of fuzz test iterations"); DEFINE_PER_CPU(bool, crypto_simd_disabled_for_test); EXPORT_PER_CPU_SYMBOL_GPL(crypto_simd_disabled_for_test); #endif #ifdef CONFIG_CRYPTO_MANAGER_DISABLE_TESTS /* a perfect nop */ int alg_test(const char *driver, const char *alg, u32 type, u32 mask) { return 0; } #else #include "testmgr.h" /* * Need slab memory for testing (size in number of pages). */ #define XBUFSIZE 8 /* * Used by test_cipher() */ #define ENCRYPT 1 #define DECRYPT 0 struct aead_test_suite { const struct aead_testvec *vecs; unsigned int count; /* * Set if trying to decrypt an inauthentic ciphertext with this * algorithm might result in EINVAL rather than EBADMSG, due to other * validation the algorithm does on the inputs such as length checks. */ unsigned int einval_allowed : 1; /* * Set if the algorithm intentionally ignores the last 8 bytes of the * AAD buffer during decryption. */ unsigned int esp_aad : 1; }; struct cipher_test_suite { const struct cipher_testvec *vecs; unsigned int count; }; struct comp_test_suite { struct { const struct comp_testvec *vecs; unsigned int count; } comp, decomp; }; struct hash_test_suite { const struct hash_testvec *vecs; unsigned int count; }; struct cprng_test_suite { const struct cprng_testvec *vecs; unsigned int count; }; struct drbg_test_suite { const struct drbg_testvec *vecs; unsigned int count; }; struct akcipher_test_suite { const struct akcipher_testvec *vecs; unsigned int count; }; struct kpp_test_suite { const struct kpp_testvec *vecs; unsigned int count; }; struct alg_test_desc { const char *alg; const char *generic_driver; int (*test)(const struct alg_test_desc *desc, const char *driver, u32 type, u32 mask); int fips_allowed; /* set if alg is allowed in fips mode */ union { struct aead_test_suite aead; struct cipher_test_suite cipher; struct comp_test_suite comp; struct hash_test_suite hash; struct cprng_test_suite cprng; struct drbg_test_suite drbg; struct akcipher_test_suite akcipher; struct kpp_test_suite kpp; } suite; }; static void hexdump(unsigned char *buf, unsigned int len) { print_hex_dump(KERN_CONT, "", DUMP_PREFIX_OFFSET, 16, 1, buf, len, false); } static int __testmgr_alloc_buf(char *buf[XBUFSIZE], int order) { int i; for (i = 0; i < XBUFSIZE; i++) { buf[i] = (char *)__get_free_pages(GFP_KERNEL, order); if (!buf[i]) goto err_free_buf; } return 0; err_free_buf: while (i-- > 0) free_pages((unsigned long)buf[i], order); return -ENOMEM; } static int testmgr_alloc_buf(char *buf[XBUFSIZE]) { return __testmgr_alloc_buf(buf, 0); } static void __testmgr_free_buf(char *buf[XBUFSIZE], int order) { int i; for (i = 0; i < XBUFSIZE; i++) free_pages((unsigned long)buf[i], order); } static void testmgr_free_buf(char *buf[XBUFSIZE]) { __testmgr_free_buf(buf, 0); } #define TESTMGR_POISON_BYTE 0xfe #define TESTMGR_POISON_LEN 16 static inline void testmgr_poison(void *addr, size_t len) { memset(addr, TESTMGR_POISON_BYTE, len); } /* Is the memory region still fully poisoned? */ static inline bool testmgr_is_poison(const void *addr, size_t len) { return memchr_inv(addr, TESTMGR_POISON_BYTE, len) == NULL; } /* flush type for hash algorithms */ enum flush_type { /* merge with update of previous buffer(s) */ FLUSH_TYPE_NONE = 0, /* update with previous buffer(s) before doing this one */ FLUSH_TYPE_FLUSH, /* likewise, but also export and re-import the intermediate state */ FLUSH_TYPE_REIMPORT, }; /* finalization function for hash algorithms */ enum finalization_type { FINALIZATION_TYPE_FINAL, /* use final() */ FINALIZATION_TYPE_FINUP, /* use finup() */ FINALIZATION_TYPE_DIGEST, /* use digest() */ }; #define TEST_SG_TOTAL 10000 /** * struct test_sg_division - description of a scatterlist entry * * This struct describes one entry of a scatterlist being constructed to check a * crypto test vector. * * @proportion_of_total: length of this chunk relative to the total length, * given as a proportion out of TEST_SG_TOTAL so that it * scales to fit any test vector * @offset: byte offset into a 2-page buffer at which this chunk will start * @offset_relative_to_alignmask: if true, add the algorithm's alignmask to the * @offset * @flush_type: for hashes, whether an update() should be done now vs. * continuing to accumulate data * @nosimd: if doing the pending update(), do it with SIMD disabled? */ struct test_sg_division { unsigned int proportion_of_total; unsigned int offset; bool offset_relative_to_alignmask; enum flush_type flush_type; bool nosimd; }; /** * struct testvec_config - configuration for testing a crypto test vector * * This struct describes the data layout and other parameters with which each * crypto test vector can be tested. * * @name: name of this config, logged for debugging purposes if a test fails * @inplace: operate on the data in-place, if applicable for the algorithm type? * @req_flags: extra request_flags, e.g. CRYPTO_TFM_REQ_MAY_SLEEP * @src_divs: description of how to arrange the source scatterlist * @dst_divs: description of how to arrange the dst scatterlist, if applicable * for the algorithm type. Defaults to @src_divs if unset. * @iv_offset: misalignment of the IV in the range [0..MAX_ALGAPI_ALIGNMASK+1], * where 0 is aligned to a 2*(MAX_ALGAPI_ALIGNMASK+1) byte boundary * @iv_offset_relative_to_alignmask: if true, add the algorithm's alignmask to * the @iv_offset * @key_offset: misalignment of the key, where 0 is default alignment * @key_offset_relative_to_alignmask: if true, add the algorithm's alignmask to * the @key_offset * @finalization_type: what finalization function to use for hashes * @nosimd: execute with SIMD disabled? Requires !CRYPTO_TFM_REQ_MAY_SLEEP. */ struct testvec_config { const char *name; bool inplace; u32 req_flags; struct test_sg_division src_divs[XBUFSIZE]; struct test_sg_division dst_divs[XBUFSIZE]; unsigned int iv_offset; unsigned int key_offset; bool iv_offset_relative_to_alignmask; bool key_offset_relative_to_alignmask; enum finalization_type finalization_type; bool nosimd; }; #define TESTVEC_CONFIG_NAMELEN 192 /* * The following are the lists of testvec_configs to test for each algorithm * type when the basic crypto self-tests are enabled, i.e. when * CONFIG_CRYPTO_MANAGER_DISABLE_TESTS is unset. They aim to provide good test * coverage, while keeping the test time much shorter than the full fuzz tests * so that the basic tests can be enabled in a wider range of circumstances. */ /* Configs for skciphers and aeads */ static const struct testvec_config default_cipher_testvec_configs[] = { { .name = "in-place", .inplace = true, .src_divs = { { .proportion_of_total = 10000 } }, }, { .name = "out-of-place", .src_divs = { { .proportion_of_total = 10000 } }, }, { .name = "unaligned buffer, offset=1", .src_divs = { { .proportion_of_total = 10000, .offset = 1 } }, .iv_offset = 1, .key_offset = 1, }, { .name = "buffer aligned only to alignmask", .src_divs = { { .proportion_of_total = 10000, .offset = 1, .offset_relative_to_alignmask = true, }, }, .iv_offset = 1, .iv_offset_relative_to_alignmask = true, .key_offset = 1, .key_offset_relative_to_alignmask = true, }, { .name = "two even aligned splits", .src_divs = { { .proportion_of_total = 5000 }, { .proportion_of_total = 5000 }, }, }, { .name = "uneven misaligned splits, may sleep", .req_flags = CRYPTO_TFM_REQ_MAY_SLEEP, .src_divs = { { .proportion_of_total = 1900, .offset = 33 }, { .proportion_of_total = 3300, .offset = 7 }, { .proportion_of_total = 4800, .offset = 18 }, }, .iv_offset = 3, .key_offset = 3, }, { .name = "misaligned splits crossing pages, inplace", .inplace = true, .src_divs = { { .proportion_of_total = 7500, .offset = PAGE_SIZE - 32 }, { .proportion_of_total = 2500, .offset = PAGE_SIZE - 7 }, }, } }; static const struct testvec_config default_hash_testvec_configs[] = { { .name = "init+update+final aligned buffer", .src_divs = { { .proportion_of_total = 10000 } }, .finalization_type = FINALIZATION_TYPE_FINAL, }, { .name = "init+finup aligned buffer", .src_divs = { { .proportion_of_total = 10000 } }, .finalization_type = FINALIZATION_TYPE_FINUP, }, { .name = "digest aligned buffer", .src_divs = { { .proportion_of_total = 10000 } }, .finalization_type = FINALIZATION_TYPE_DIGEST, }, { .name = "init+update+final misaligned buffer", .src_divs = { { .proportion_of_total = 10000, .offset = 1 } }, .finalization_type = FINALIZATION_TYPE_FINAL, .key_offset = 1, }, { .name = "digest buffer aligned only to alignmask", .src_divs = { { .proportion_of_total = 10000, .offset = 1, .offset_relative_to_alignmask = true, }, }, .finalization_type = FINALIZATION_TYPE_DIGEST, .key_offset = 1, .key_offset_relative_to_alignmask = true, }, { .name = "init+update+update+final two even splits", .src_divs = { { .proportion_of_total = 5000 }, { .proportion_of_total = 5000, .flush_type = FLUSH_TYPE_FLUSH, }, }, .finalization_type = FINALIZATION_TYPE_FINAL, }, { .name = "digest uneven misaligned splits, may sleep", .req_flags = CRYPTO_TFM_REQ_MAY_SLEEP, .src_divs = { { .proportion_of_total = 1900, .offset = 33 }, { .proportion_of_total = 3300, .offset = 7 }, { .proportion_of_total = 4800, .offset = 18 }, }, .finalization_type = FINALIZATION_TYPE_DIGEST, }, { .name = "digest misaligned splits crossing pages", .src_divs = { { .proportion_of_total = 7500, .offset = PAGE_SIZE - 32, }, { .proportion_of_total = 2500, .offset = PAGE_SIZE - 7, }, }, .finalization_type = FINALIZATION_TYPE_DIGEST, }, { .name = "import/export", .src_divs = { { .proportion_of_total = 6500, .flush_type = FLUSH_TYPE_REIMPORT, }, { .proportion_of_total = 3500, .flush_type = FLUSH_TYPE_REIMPORT, }, }, .finalization_type = FINALIZATION_TYPE_FINAL, } }; static unsigned int count_test_sg_divisions(const struct test_sg_division *divs) { unsigned int remaining = TEST_SG_TOTAL; unsigned int ndivs = 0; do { remaining -= divs[ndivs++].proportion_of_total; } while (remaining); return ndivs; } #define SGDIVS_HAVE_FLUSHES BIT(0) #define SGDIVS_HAVE_NOSIMD BIT(1) static bool valid_sg_divisions(const struct test_sg_division *divs, unsigned int count, int *flags_ret) { unsigned int total = 0; unsigned int i; for (i = 0; i < count && total != TEST_SG_TOTAL; i++) { if (divs[i].proportion_of_total <= 0 || divs[i].proportion_of_total > TEST_SG_TOTAL - total) return false; total += divs[i].proportion_of_total; if (divs[i].flush_type != FLUSH_TYPE_NONE) *flags_ret |= SGDIVS_HAVE_FLUSHES; if (divs[i].nosimd) *flags_ret |= SGDIVS_HAVE_NOSIMD; } return total == TEST_SG_TOTAL && memchr_inv(&divs[i], 0, (count - i) * sizeof(divs[0])) == NULL; } /* * Check whether the given testvec_config is valid. This isn't strictly needed * since every testvec_config should be valid, but check anyway so that people * don't unknowingly add broken configs that don't do what they wanted. */ static bool valid_testvec_config(const struct testvec_config *cfg) { int flags = 0; if (cfg->name == NULL) return false; if (!valid_sg_divisions(cfg->src_divs, ARRAY_SIZE(cfg->src_divs), &flags)) return false; if (cfg->dst_divs[0].proportion_of_total) { if (!valid_sg_divisions(cfg->dst_divs, ARRAY_SIZE(cfg->dst_divs), &flags)) return false; } else { if (memchr_inv(cfg->dst_divs, 0, sizeof(cfg->dst_divs))) return false; /* defaults to dst_divs=src_divs */ } if (cfg->iv_offset + (cfg->iv_offset_relative_to_alignmask ? MAX_ALGAPI_ALIGNMASK : 0) > MAX_ALGAPI_ALIGNMASK + 1) return false; if ((flags & (SGDIVS_HAVE_FLUSHES | SGDIVS_HAVE_NOSIMD)) && cfg->finalization_type == FINALIZATION_TYPE_DIGEST) return false; if ((cfg->nosimd || (flags & SGDIVS_HAVE_NOSIMD)) && (cfg->req_flags & CRYPTO_TFM_REQ_MAY_SLEEP)) return false; return true; } struct test_sglist { char *bufs[XBUFSIZE]; struct scatterlist sgl[XBUFSIZE]; struct scatterlist sgl_saved[XBUFSIZE]; struct scatterlist *sgl_ptr; unsigned int nents; }; static int init_test_sglist(struct test_sglist *tsgl) { return __testmgr_alloc_buf(tsgl->bufs, 1 /* two pages per buffer */); } static void destroy_test_sglist(struct test_sglist *tsgl) { return __testmgr_free_buf(tsgl->bufs, 1 /* two pages per buffer */); } /** * build_test_sglist() - build a scatterlist for a crypto test * * @tsgl: the scatterlist to build. @tsgl->bufs[] contains an array of 2-page * buffers which the scatterlist @tsgl->sgl[] will be made to point into. * @divs: the layout specification on which the scatterlist will be based * @alignmask: the algorithm's alignmask * @total_len: the total length of the scatterlist to build in bytes * @data: if non-NULL, the buffers will be filled with this data until it ends. * Otherwise the buffers will be poisoned. In both cases, some bytes * past the end of each buffer will be poisoned to help detect overruns. * @out_divs: if non-NULL, the test_sg_division to which each scatterlist entry * corresponds will be returned here. This will match @divs except * that divisions resolving to a length of 0 are omitted as they are * not included in the scatterlist. * * Return: 0 or a -errno value */ static int build_test_sglist(struct test_sglist *tsgl, const struct test_sg_division *divs, const unsigned int alignmask, const unsigned int total_len, struct iov_iter *data, const struct test_sg_division *out_divs[XBUFSIZE]) { struct { const struct test_sg_division *div; size_t length; } partitions[XBUFSIZE]; const unsigned int ndivs = count_test_sg_divisions(divs); unsigned int len_remaining = total_len; unsigned int i; BUILD_BUG_ON(ARRAY_SIZE(partitions) != ARRAY_SIZE(tsgl->sgl)); if (WARN_ON(ndivs > ARRAY_SIZE(partitions))) return -EINVAL; /* Calculate the (div, length) pairs */ tsgl->nents = 0; for (i = 0; i < ndivs; i++) { unsigned int len_this_sg = min(len_remaining, (total_len * divs[i].proportion_of_total + TEST_SG_TOTAL / 2) / TEST_SG_TOTAL); if (len_this_sg != 0) { partitions[tsgl->nents].div = &divs[i]; partitions[tsgl->nents].length = len_this_sg; tsgl->nents++; len_remaining -= len_this_sg; } } if (tsgl->nents == 0) { partitions[tsgl->nents].div = &divs[0]; partitions[tsgl->nents].length = 0; tsgl->nents++; } partitions[tsgl->nents - 1].length += len_remaining; /* Set up the sgl entries and fill the data or poison */ sg_init_table(tsgl->sgl, tsgl->nents); for (i = 0; i < tsgl->nents; i++) { unsigned int offset = partitions[i].div->offset; void *addr; if (partitions[i].div->offset_relative_to_alignmask) offset += alignmask; while (offset + partitions[i].length + TESTMGR_POISON_LEN > 2 * PAGE_SIZE) { if (WARN_ON(offset <= 0)) return -EINVAL; offset /= 2; } addr = &tsgl->bufs[i][offset]; sg_set_buf(&tsgl->sgl[i], addr, partitions[i].length); if (out_divs) out_divs[i] = partitions[i].div; if (data) { size_t copy_len, copied; copy_len = min(partitions[i].length, data->count); copied = copy_from_iter(addr, copy_len, data); if (WARN_ON(copied != copy_len)) return -EINVAL; testmgr_poison(addr + copy_len, partitions[i].length + TESTMGR_POISON_LEN - copy_len); } else { testmgr_poison(addr, partitions[i].length + TESTMGR_POISON_LEN); } } sg_mark_end(&tsgl->sgl[tsgl->nents - 1]); tsgl->sgl_ptr = tsgl->sgl; memcpy(tsgl->sgl_saved, tsgl->sgl, tsgl->nents * sizeof(tsgl->sgl[0])); return 0; } /* * Verify that a scatterlist crypto operation produced the correct output. * * @tsgl: scatterlist containing the actual output * @expected_output: buffer containing the expected output * @len_to_check: length of @expected_output in bytes * @unchecked_prefix_len: number of ignored bytes in @tsgl prior to real result * @check_poison: verify that the poison bytes after each chunk are intact? * * Return: 0 if correct, -EINVAL if incorrect, -EOVERFLOW if buffer overrun. */ static int verify_correct_output(const struct test_sglist *tsgl, const char *expected_output, unsigned int len_to_check, unsigned int unchecked_prefix_len, bool check_poison) { unsigned int i; for (i = 0; i < tsgl->nents; i++) { struct scatterlist *sg = &tsgl->sgl_ptr[i]; unsigned int len = sg->length; unsigned int offset = sg->offset; const char *actual_output; if (unchecked_prefix_len) { if (unchecked_prefix_len >= len) { unchecked_prefix_len -= len; continue; } offset += unchecked_prefix_len; len -= unchecked_prefix_len; unchecked_prefix_len = 0; } len = min(len, len_to_check); actual_output = page_address(sg_page(sg)) + offset; if (memcmp(expected_output, actual_output, len) != 0) return -EINVAL; if (check_poison && !testmgr_is_poison(actual_output + len, TESTMGR_POISON_LEN)) return -EOVERFLOW; len_to_check -= len; expected_output += len; } if (WARN_ON(len_to_check != 0)) return -EINVAL; return 0; } static bool is_test_sglist_corrupted(const struct test_sglist *tsgl) { unsigned int i; for (i = 0; i < tsgl->nents; i++) { if (tsgl->sgl[i].page_link != tsgl->sgl_saved[i].page_link) return true; if (tsgl->sgl[i].offset != tsgl->sgl_saved[i].offset) return true; if (tsgl->sgl[i].length != tsgl->sgl_saved[i].length) return true; } return false; } struct cipher_test_sglists { struct test_sglist src; struct test_sglist dst; }; static struct cipher_test_sglists *alloc_cipher_test_sglists(void) { struct cipher_test_sglists *tsgls; tsgls = kmalloc(sizeof(*tsgls), GFP_KERNEL); if (!tsgls) return NULL; if (init_test_sglist(&tsgls->src) != 0) goto fail_kfree; if (init_test_sglist(&tsgls->dst) != 0) goto fail_destroy_src; return tsgls; fail_destroy_src: destroy_test_sglist(&tsgls->src); fail_kfree: kfree(tsgls); return NULL; } static void free_cipher_test_sglists(struct cipher_test_sglists *tsgls) { if (tsgls) { destroy_test_sglist(&tsgls->src); destroy_test_sglist(&tsgls->dst); kfree(tsgls); } } /* Build the src and dst scatterlists for an skcipher or AEAD test */ static int build_cipher_test_sglists(struct cipher_test_sglists *tsgls, const struct testvec_config *cfg, unsigned int alignmask, unsigned int src_total_len, unsigned int dst_total_len, const struct kvec *inputs, unsigned int nr_inputs) { struct iov_iter input; int err; iov_iter_kvec(&input, WRITE, inputs, nr_inputs, src_total_len); err = build_test_sglist(&tsgls->src, cfg->src_divs, alignmask, cfg->inplace ? max(dst_total_len, src_total_len) : src_total_len, &input, NULL); if (err) return err; if (cfg->inplace) { tsgls->dst.sgl_ptr = tsgls->src.sgl; tsgls->dst.nents = tsgls->src.nents; return 0; } return build_test_sglist(&tsgls->dst, cfg->dst_divs[0].proportion_of_total ? cfg->dst_divs : cfg->src_divs, alignmask, dst_total_len, NULL, NULL); } /* * Support for testing passing a misaligned key to setkey(): * * If cfg->key_offset is set, copy the key into a new buffer at that offset, * optionally adding alignmask. Else, just use the key directly. */ static int prepare_keybuf(const u8 *key, unsigned int ksize, const struct testvec_config *cfg, unsigned int alignmask, const u8 **keybuf_ret, const u8 **keyptr_ret) { unsigned int key_offset = cfg->key_offset; u8 *keybuf = NULL, *keyptr = (u8 *)key; if (key_offset != 0) { if (cfg->key_offset_relative_to_alignmask) key_offset += alignmask; keybuf = kmalloc(key_offset + ksize, GFP_KERNEL); if (!keybuf) return -ENOMEM; keyptr = keybuf + key_offset; memcpy(keyptr, key, ksize); } *keybuf_ret = keybuf; *keyptr_ret = keyptr; return 0; } /* Like setkey_f(tfm, key, ksize), but sometimes misalign the key */ #define do_setkey(setkey_f, tfm, key, ksize, cfg, alignmask) \ ({ \ const u8 *keybuf, *keyptr; \ int err; \ \ err = prepare_keybuf((key), (ksize), (cfg), (alignmask), \ &keybuf, &keyptr); \ if (err == 0) { \ err = setkey_f((tfm), keyptr, (ksize)); \ kfree(keybuf); \ } \ err; \ }) #ifdef CONFIG_CRYPTO_MANAGER_EXTRA_TESTS /* Generate a random length in range [0, max_len], but prefer smaller values */ static unsigned int generate_random_length(unsigned int max_len) { unsigned int len = prandom_u32() % (max_len + 1); switch (prandom_u32() % 4) { case 0: return len % 64; case 1: return len % 256; case 2: return len % 1024; default: return len; } } /* Flip a random bit in the given nonempty data buffer */ static void flip_random_bit(u8 *buf, size_t size) { size_t bitpos; bitpos = prandom_u32() % (size * 8); buf[bitpos / 8] ^= 1 << (bitpos % 8); } /* Flip a random byte in the given nonempty data buffer */ static void flip_random_byte(u8 *buf, size_t size) { buf[prandom_u32() % size] ^= 0xff; } /* Sometimes make some random changes to the given nonempty data buffer */ static void mutate_buffer(u8 *buf, size_t size) { size_t num_flips; size_t i; /* Sometimes flip some bits */ if (prandom_u32() % 4 == 0) { num_flips = min_t(size_t, 1 << (prandom_u32() % 8), size * 8); for (i = 0; i < num_flips; i++) flip_random_bit(buf, size); } /* Sometimes flip some bytes */ if (prandom_u32() % 4 == 0) { num_flips = min_t(size_t, 1 << (prandom_u32() % 8), size); for (i = 0; i < num_flips; i++) flip_random_byte(buf, size); } } /* Randomly generate 'count' bytes, but sometimes make them "interesting" */ static void generate_random_bytes(u8 *buf, size_t count) { u8 b; u8 increment; size_t i; if (count == 0) return; switch (prandom_u32() % 8) { /* Choose a generation strategy */ case 0: case 1: /* All the same byte, plus optional mutations */ switch (prandom_u32() % 4) { case 0: b = 0x00; break; case 1: b = 0xff; break; default: b = (u8)prandom_u32(); break; } memset(buf, b, count); mutate_buffer(buf, count); break; case 2: /* Ascending or descending bytes, plus optional mutations */ increment = (u8)prandom_u32(); b = (u8)prandom_u32(); for (i = 0; i < count; i++, b += increment) buf[i] = b; mutate_buffer(buf, count); break; default: /* Fully random bytes */ for (i = 0; i < count; i++) buf[i] = (u8)prandom_u32(); } } static char *generate_random_sgl_divisions(struct test_sg_division *divs, size_t max_divs, char *p, char *end, bool gen_flushes, u32 req_flags) { struct test_sg_division *div = divs; unsigned int remaining = TEST_SG_TOTAL; do { unsigned int this_len; const char *flushtype_str; if (div == &divs[max_divs - 1] || prandom_u32() % 2 == 0) this_len = remaining; else this_len = 1 + (prandom_u32() % remaining); div->proportion_of_total = this_len; if (prandom_u32() % 4 == 0) div->offset = (PAGE_SIZE - 128) + (prandom_u32() % 128); else if (prandom_u32() % 2 == 0) div->offset = prandom_u32() % 32; else div->offset = prandom_u32() % PAGE_SIZE; if (prandom_u32() % 8 == 0) div->offset_relative_to_alignmask = true; div->flush_type = FLUSH_TYPE_NONE; if (gen_flushes) { switch (prandom_u32() % 4) { case 0: div->flush_type = FLUSH_TYPE_REIMPORT; break; case 1: div->flush_type = FLUSH_TYPE_FLUSH; break; } } if (div->flush_type != FLUSH_TYPE_NONE && !(req_flags & CRYPTO_TFM_REQ_MAY_SLEEP) && prandom_u32() % 2 == 0) div->nosimd = true; switch (div->flush_type) { case FLUSH_TYPE_FLUSH: if (div->nosimd) flushtype_str = "<flush,nosimd>"; else flushtype_str = "<flush>"; break; case FLUSH_TYPE_REIMPORT: if (div->nosimd) flushtype_str = "<reimport,nosimd>"; else flushtype_str = "<reimport>"; break; default: flushtype_str = ""; break; } BUILD_BUG_ON(TEST_SG_TOTAL != 10000); /* for "%u.%u%%" */ p += scnprintf(p, end - p, "%s%u.%u%%@%s+%u%s", flushtype_str, this_len / 100, this_len % 100, div->offset_relative_to_alignmask ? "alignmask" : "", div->offset, this_len == remaining ? "" : ", "); remaining -= this_len; div++; } while (remaining); return p; } /* Generate a random testvec_config for fuzz testing */ static void generate_random_testvec_config(struct testvec_config *cfg, char *name, size_t max_namelen) { char *p = name; char * const end = name + max_namelen; memset(cfg, 0, sizeof(*cfg)); cfg->name = name; p += scnprintf(p, end - p, "random:"); if (prandom_u32() % 2 == 0) { cfg->inplace = true; p += scnprintf(p, end - p, " inplace"); } if (prandom_u32() % 2 == 0) { cfg->req_flags |= CRYPTO_TFM_REQ_MAY_SLEEP; p += scnprintf(p, end - p, " may_sleep"); } switch (prandom_u32() % 4) { case 0: cfg->finalization_type = FINALIZATION_TYPE_FINAL; p += scnprintf(p, end - p, " use_final"); break; case 1: cfg->finalization_type = FINALIZATION_TYPE_FINUP; p += scnprintf(p, end - p, " use_finup"); break; default: cfg->finalization_type = FINALIZATION_TYPE_DIGEST; p += scnprintf(p, end - p, " use_digest"); break; } if (!(cfg->req_flags & CRYPTO_TFM_REQ_MAY_SLEEP) && prandom_u32() % 2 == 0) { cfg->nosimd = true; p += scnprintf(p, end - p, " nosimd"); } p += scnprintf(p, end - p, " src_divs=["); p = generate_random_sgl_divisions(cfg->src_divs, ARRAY_SIZE(cfg->src_divs), p, end, (cfg->finalization_type != FINALIZATION_TYPE_DIGEST), cfg->req_flags); p += scnprintf(p, end - p, "]"); if (!cfg->inplace && prandom_u32() % 2 == 0) { p += scnprintf(p, end - p, " dst_divs=["); p = generate_random_sgl_divisions(cfg->dst_divs, ARRAY_SIZE(cfg->dst_divs), p, end, false, cfg->req_flags); p += scnprintf(p, end - p, "]"); } if (prandom_u32() % 2 == 0) { cfg->iv_offset = 1 + (prandom_u32() % MAX_ALGAPI_ALIGNMASK); p += scnprintf(p, end - p, " iv_offset=%u", cfg->iv_offset); } if (prandom_u32() % 2 == 0) { cfg->key_offset = 1 + (prandom_u32() % MAX_ALGAPI_ALIGNMASK); p += scnprintf(p, end - p, " key_offset=%u", cfg->key_offset); } WARN_ON_ONCE(!valid_testvec_config(cfg)); } static void crypto_disable_simd_for_test(void) { preempt_disable(); __this_cpu_write(crypto_simd_disabled_for_test, true); } static void crypto_reenable_simd_for_test(void) { __this_cpu_write(crypto_simd_disabled_for_test, false); preempt_enable(); } /* * Given an algorithm name, build the name of the generic implementation of that * algorithm, assuming the usual naming convention. Specifically, this appends * "-generic" to every part of the name that is not a template name. Examples: * * aes => aes-generic * cbc(aes) => cbc(aes-generic) * cts(cbc(aes)) => cts(cbc(aes-generic)) * rfc7539(chacha20,poly1305) => rfc7539(chacha20-generic,poly1305-generic) * * Return: 0 on success, or -ENAMETOOLONG if the generic name would be too long */ static int build_generic_driver_name(const char *algname, char driver_name[CRYPTO_MAX_ALG_NAME]) { const char *in = algname; char *out = driver_name; size_t len = strlen(algname); if (len >= CRYPTO_MAX_ALG_NAME) goto too_long; do { const char *in_saved = in; while (*in && *in != '(' && *in != ')' && *in != ',') *out++ = *in++; if (*in != '(' && in > in_saved) { len += 8; if (len >= CRYPTO_MAX_ALG_NAME) goto too_long; memcpy(out, "-generic", 8); out += 8; } } while ((*out++ = *in++) != '\0'); return 0; too_long: pr_err("alg: generic driver name for \"%s\" would be too long\n", algname); return -ENAMETOOLONG; } #else /* !CONFIG_CRYPTO_MANAGER_EXTRA_TESTS */ static void crypto_disable_simd_for_test(void) { } static void crypto_reenable_simd_for_test(void) { } #endif /* !CONFIG_CRYPTO_MANAGER_EXTRA_TESTS */ static int build_hash_sglist(struct test_sglist *tsgl, const struct hash_testvec *vec, const struct testvec_config *cfg, unsigned int alignmask, const struct test_sg_division *divs[XBUFSIZE]) { struct kvec kv; struct iov_iter input; kv.iov_base = (void *)vec->plaintext; kv.iov_len = vec->psize; iov_iter_kvec(&input, WRITE, &kv, 1, vec->psize); return build_test_sglist(tsgl, cfg->src_divs, alignmask, vec->psize, &input, divs); } static int check_hash_result(const char *type, const u8 *result, unsigned int digestsize, const struct hash_testvec *vec, const char *vec_name, const char *driver, const struct testvec_config *cfg) { if (memcmp(result, vec->digest, digestsize) != 0) { pr_err("alg: %s: %s test failed (wrong result) on test vector %s, cfg=\"%s\"\n", type, driver, vec_name, cfg->name); return -EINVAL; } if (!testmgr_is_poison(&result[digestsize], TESTMGR_POISON_LEN)) { pr_err("alg: %s: %s overran result buffer on test vector %s, cfg=\"%s\"\n", type, driver, vec_name, cfg->name); return -EOVERFLOW; } return 0; } static inline int check_shash_op(const char *op, int err, const char *driver, const char *vec_name, const struct testvec_config *cfg) { if (err) pr_err("alg: shash: %s %s() failed with err %d on test vector %s, cfg=\"%s\"\n", driver, op, err, vec_name, cfg->name); return err; } static inline const void *sg_data(struct scatterlist *sg) { return page_address(sg_page(sg)) + sg->offset; } /* Test one hash test vector in one configuration, using the shash API */ static int test_shash_vec_cfg(const char *driver, const struct hash_testvec *vec, const char *vec_name, const struct testvec_config *cfg, struct shash_desc *desc, struct test_sglist *tsgl, u8 *hashstate) { struct crypto_shash *tfm = desc->tfm; const unsigned int alignmask = crypto_shash_alignmask(tfm); const unsigned int digestsize = crypto_shash_digestsize(tfm); const unsigned int statesize = crypto_shash_statesize(tfm); const struct test_sg_division *divs[XBUFSIZE]; unsigned int i; u8 result[HASH_MAX_DIGESTSIZE + TESTMGR_POISON_LEN]; int err; /* Set the key, if specified */ if (vec->ksize) { err = do_setkey(crypto_shash_setkey, tfm, vec->key, vec->ksize, cfg, alignmask); if (err) { if (err == vec->setkey_error) return 0; pr_err("alg: shash: %s setkey failed on test vector %s; expected_error=%d, actual_error=%d, flags=%#x\n", driver, vec_name, vec->setkey_error, err, crypto_shash_get_flags(tfm)); return err; } if (vec->setkey_error) { pr_err("alg: shash: %s setkey unexpectedly succeeded on test vector %s; expected_error=%d\n", driver, vec_name, vec->setkey_error); return -EINVAL; } } /* Build the scatterlist for the source data */ err = build_hash_sglist(tsgl, vec, cfg, alignmask, divs); if (err) { pr_err("alg: shash: %s: error preparing scatterlist for test vector %s, cfg=\"%s\"\n", driver, vec_name, cfg->name); return err; } /* Do the actual hashing */ testmgr_poison(desc->__ctx, crypto_shash_descsize(tfm)); testmgr_poison(result, digestsize + TESTMGR_POISON_LEN); if (cfg->finalization_type == FINALIZATION_TYPE_DIGEST || vec->digest_error) { /* Just using digest() */ if (tsgl->nents != 1) return 0; if (cfg->nosimd) crypto_disable_simd_for_test(); err = crypto_shash_digest(desc, sg_data(&tsgl->sgl[0]), tsgl->sgl[0].length, result); if (cfg->nosimd) crypto_reenable_simd_for_test(); if (err) { if (err == vec->digest_error) return 0; pr_err("alg: shash: %s digest() failed on test vector %s; expected_error=%d, actual_error=%d, cfg=\"%s\"\n", driver, vec_name, vec->digest_error, err, cfg->name); return err; } if (vec->digest_error) { pr_err("alg: shash: %s digest() unexpectedly succeeded on test vector %s; expected_error=%d, cfg=\"%s\"\n", driver, vec_name, vec->digest_error, cfg->name); return -EINVAL; } goto result_ready; } /* Using init(), zero or more update(), then final() or finup() */ if (cfg->nosimd) crypto_disable_simd_for_test(); err = crypto_shash_init(desc); if (cfg->nosimd) crypto_reenable_simd_for_test(); err = check_shash_op("init", err, driver, vec_name, cfg); if (err) return err; for (i = 0; i < tsgl->nents; i++) { if (i + 1 == tsgl->nents && cfg->finalization_type == FINALIZATION_TYPE_FINUP) { if (divs[i]->nosimd) crypto_disable_simd_for_test(); err = crypto_shash_finup(desc, sg_data(&tsgl->sgl[i]), tsgl->sgl[i].length, result); if (divs[i]->nosimd) crypto_reenable_simd_for_test(); err = check_shash_op("finup", err, driver, vec_name, cfg); if (err) return err; goto result_ready; } if (divs[i]->nosimd) crypto_disable_simd_for_test(); err = crypto_shash_update(desc, sg_data(&tsgl->sgl[i]), tsgl->sgl[i].length); if (divs[i]->nosimd) crypto_reenable_simd_for_test(); err = check_shash_op("update", err, driver, vec_name, cfg); if (err) return err; if (divs[i]->flush_type == FLUSH_TYPE_REIMPORT) { /* Test ->export() and ->import() */ testmgr_poison(hashstate + statesize, TESTMGR_POISON_LEN); err = crypto_shash_export(desc, hashstate); err = check_shash_op("export", err, driver, vec_name, cfg); if (err) return err; if (!testmgr_is_poison(hashstate + statesize, TESTMGR_POISON_LEN)) { pr_err("alg: shash: %s export() overran state buffer on test vector %s, cfg=\"%s\"\n", driver, vec_name, cfg->name); return -EOVERFLOW; } testmgr_poison(desc->__ctx, crypto_shash_descsize(tfm)); err = crypto_shash_import(desc, hashstate); err = check_shash_op("import", err, driver, vec_name, cfg); if (err) return err; } } if (cfg->nosimd) crypto_disable_simd_for_test(); err = crypto_shash_final(desc, result); if (cfg->nosimd) crypto_reenable_simd_for_test(); err = check_shash_op("final", err, driver, vec_name, cfg); if (err) return err; result_ready: return check_hash_result("shash", result, digestsize, vec, vec_name, driver, cfg); } static int do_ahash_op(int (*op)(struct ahash_request *req), struct ahash_request *req, struct crypto_wait *wait, bool nosimd) { int err; if (nosimd) crypto_disable_simd_for_test(); err = op(req); if (nosimd) crypto_reenable_simd_for_test(); return crypto_wait_req(err, wait); } static int check_nonfinal_ahash_op(const char *op, int err, u8 *result, unsigned int digestsize, const char *driver, const char *vec_name, const struct testvec_config *cfg) { if (err) { pr_err("alg: ahash: %s %s() failed with err %d on test vector %s, cfg=\"%s\"\n", driver, op, err, vec_name, cfg->name); return err; } if (!testmgr_is_poison(result, digestsize)) { pr_err("alg: ahash: %s %s() used result buffer on test vector %s, cfg=\"%s\"\n", driver, op, vec_name, cfg->name); return -EINVAL; } return 0; } /* Test one hash test vector in one configuration, using the ahash API */ static int test_ahash_vec_cfg(const char *driver, const struct hash_testvec *vec, const char *vec_name, const struct testvec_config *cfg, struct ahash_request *req, struct test_sglist *tsgl, u8 *hashstate) { struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); const unsigned int alignmask = crypto_ahash_alignmask(tfm); const unsigned int digestsize = crypto_ahash_digestsize(tfm); const unsigned int statesize = crypto_ahash_statesize(tfm); const u32 req_flags = CRYPTO_TFM_REQ_MAY_BACKLOG | cfg->req_flags; const struct test_sg_division *divs[XBUFSIZE]; DECLARE_CRYPTO_WAIT(wait); unsigned int i; struct scatterlist *pending_sgl; unsigned int pending_len; u8 result[HASH_MAX_DIGESTSIZE + TESTMGR_POISON_LEN]; int err; /* Set the key, if specified */ if (vec->ksize) { err = do_setkey(crypto_ahash_setkey, tfm, vec->key, vec->ksize, cfg, alignmask); if (err) { if (err == vec->setkey_error) return 0; pr_err("alg: ahash: %s setkey failed on test vector %s; expected_error=%d, actual_error=%d, flags=%#x\n", driver, vec_name, vec->setkey_error, err, crypto_ahash_get_flags(tfm)); return err; } if (vec->setkey_error) { pr_err("alg: ahash: %s setkey unexpectedly succeeded on test vector %s; expected_error=%d\n", driver, vec_name, vec->setkey_error); return -EINVAL; } } /* Build the scatterlist for the source data */ err = build_hash_sglist(tsgl, vec, cfg, alignmask, divs); if (err) { pr_err("alg: ahash: %s: error preparing scatterlist for test vector %s, cfg=\"%s\"\n", driver, vec_name, cfg->name); return err; } /* Do the actual hashing */ testmgr_poison(req->__ctx, crypto_ahash_reqsize(tfm)); testmgr_poison(result, digestsize + TESTMGR_POISON_LEN); if (cfg->finalization_type == FINALIZATION_TYPE_DIGEST || vec->digest_error) { /* Just using digest() */ ahash_request_set_callback(req, req_flags, crypto_req_done, &wait); ahash_request_set_crypt(req, tsgl->sgl, result, vec->psize); err = do_ahash_op(crypto_ahash_digest, req, &wait, cfg->nosimd); if (err) { if (err == vec->digest_error) return 0; pr_err("alg: ahash: %s digest() failed on test vector %s; expected_error=%d, actual_error=%d, cfg=\"%s\"\n", driver, vec_name, vec->digest_error, err, cfg->name); return err; } if (vec->digest_error) { pr_err("alg: ahash: %s digest() unexpectedly succeeded on test vector %s; expected_error=%d, cfg=\"%s\"\n", driver, vec_name, vec->digest_error, cfg->name); return -EINVAL; } goto result_ready; } /* Using init(), zero or more update(), then final() or finup() */ ahash_request_set_callback(req, req_flags, crypto_req_done, &wait); ahash_request_set_crypt(req, NULL, result, 0); err = do_ahash_op(crypto_ahash_init, req, &wait, cfg->nosimd); err = check_nonfinal_ahash_op("init", err, result, digestsize, driver, vec_name, cfg); if (err) return err; pending_sgl = NULL; pending_len = 0; for (i = 0; i < tsgl->nents; i++) { if (divs[i]->flush_type != FLUSH_TYPE_NONE && pending_sgl != NULL) { /* update() with the pending data */ ahash_request_set_callback(req, req_flags, crypto_req_done, &wait); ahash_request_set_crypt(req, pending_sgl, result, pending_len); err = do_ahash_op(crypto_ahash_update, req, &wait, divs[i]->nosimd); err = check_nonfinal_ahash_op("update", err, result, digestsize, driver, vec_name, cfg); if (err) return err; pending_sgl = NULL; pending_len = 0; } if (divs[i]->flush_type == FLUSH_TYPE_REIMPORT) { /* Test ->export() and ->import() */ testmgr_poison(hashstate + statesize, TESTMGR_POISON_LEN); err = crypto_ahash_export(req, hashstate); err = check_nonfinal_ahash_op("export", err, result, digestsize, driver, vec_name, cfg); if (err) return err; if (!testmgr_is_poison(hashstate + statesize, TESTMGR_POISON_LEN)) { pr_err("alg: ahash: %s export() overran state buffer on test vector %s, cfg=\"%s\"\n", driver, vec_name, cfg->name); return -EOVERFLOW; } testmgr_poison(req->__ctx, crypto_ahash_reqsize(tfm)); err = crypto_ahash_import(req, hashstate); err = check_nonfinal_ahash_op("import", err, result, digestsize, driver, vec_name, cfg); if (err) return err; } if (pending_sgl == NULL) pending_sgl = &tsgl->sgl[i]; pending_len += tsgl->sgl[i].length; } ahash_request_set_callback(req, req_flags, crypto_req_done, &wait); ahash_request_set_crypt(req, pending_sgl, result, pending_len); if (cfg->finalization_type == FINALIZATION_TYPE_FINAL) { /* finish with update() and final() */ err = do_ahash_op(crypto_ahash_update, req, &wait, cfg->nosimd); err = check_nonfinal_ahash_op("update", err, result, digestsize, driver, vec_name, cfg); if (err) return err; err = do_ahash_op(crypto_ahash_final, req, &wait, cfg->nosimd); if (err) { pr_err("alg: ahash: %s final() failed with err %d on test vector %s, cfg=\"%s\"\n", driver, err, vec_name, cfg->name); return err; } } else { /* finish with finup() */ err = do_ahash_op(crypto_ahash_finup, req, &wait, cfg->nosimd); if (err) { pr_err("alg: ahash: %s finup() failed with err %d on test vector %s, cfg=\"%s\"\n", driver, err, vec_name, cfg->name); return err; } } result_ready: return check_hash_result("ahash", result, digestsize, vec, vec_name, driver, cfg); } static int test_hash_vec_cfg(const char *driver, const struct hash_testvec *vec, const char *vec_name, const struct testvec_config *cfg, struct ahash_request *req, struct shash_desc *desc, struct test_sglist *tsgl, u8 *hashstate) { int err; /* * For algorithms implemented as "shash", most bugs will be detected by * both the shash and ahash tests. Test the shash API first so that the * failures involve less indirection, so are easier to debug. */ if (desc) { err = test_shash_vec_cfg(driver, vec, vec_name, cfg, desc, tsgl, hashstate); if (err) return err; } return test_ahash_vec_cfg(driver, vec, vec_name, cfg, req, tsgl, hashstate); } static int test_hash_vec(const char *driver, const struct hash_testvec *vec, unsigned int vec_num, struct ahash_request *req, struct shash_desc *desc, struct test_sglist *tsgl, u8 *hashstate) { char vec_name[16]; unsigned int i; int err; sprintf(vec_name, "%u", vec_num); for (i = 0; i < ARRAY_SIZE(default_hash_testvec_configs); i++) { err = test_hash_vec_cfg(driver, vec, vec_name, &default_hash_testvec_configs[i], req, desc, tsgl, hashstate); if (err) return err; } #ifdef CONFIG_CRYPTO_MANAGER_EXTRA_TESTS if (!noextratests) { struct testvec_config cfg; char cfgname[TESTVEC_CONFIG_NAMELEN]; for (i = 0; i < fuzz_iterations; i++) { generate_random_testvec_config(&cfg, cfgname, sizeof(cfgname)); err = test_hash_vec_cfg(driver, vec, vec_name, &cfg, req, desc, tsgl, hashstate); if (err) return err; cond_resched(); } } #endif return 0; } #ifdef CONFIG_CRYPTO_MANAGER_EXTRA_TESTS /* * Generate a hash test vector from the given implementation. * Assumes the buffers in 'vec' were already allocated. */ static void generate_random_hash_testvec(struct shash_desc *desc, struct hash_testvec *vec, unsigned int maxkeysize, unsigned int maxdatasize, char *name, size_t max_namelen) { /* Data */ vec->psize = generate_random_length(maxdatasize); generate_random_bytes((u8 *)vec->plaintext, vec->psize); /* * Key: length in range [1, maxkeysize], but usually choose maxkeysize. * If algorithm is unkeyed, then maxkeysize == 0 and set ksize = 0. */ vec->setkey_error = 0; vec->ksize = 0; if (maxkeysize) { vec->ksize = maxkeysize; if (prandom_u32() % 4 == 0) vec->ksize = 1 + (prandom_u32() % maxkeysize); generate_random_bytes((u8 *)vec->key, vec->ksize); vec->setkey_error = crypto_shash_setkey(desc->tfm, vec->key, vec->ksize); /* If the key couldn't be set, no need to continue to digest. */ if (vec->setkey_error) goto done; } /* Digest */ vec->digest_error = crypto_shash_digest(desc, vec->plaintext, vec->psize, (u8 *)vec->digest); done: snprintf(name, max_namelen, "\"random: psize=%u ksize=%u\"", vec->psize, vec->ksize); } /* * Test the hash algorithm represented by @req against the corresponding generic * implementation, if one is available. */ static int test_hash_vs_generic_impl(const char *driver, const char *generic_driver, unsigned int maxkeysize, struct ahash_request *req, struct shash_desc *desc, struct test_sglist *tsgl, u8 *hashstate) { struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); const unsigned int digestsize = crypto_ahash_digestsize(tfm); const unsigned int blocksize = crypto_ahash_blocksize(tfm); const unsigned int maxdatasize = (2 * PAGE_SIZE) - TESTMGR_POISON_LEN; const char *algname = crypto_hash_alg_common(tfm)->base.cra_name; char _generic_driver[CRYPTO_MAX_ALG_NAME]; struct crypto_shash *generic_tfm = NULL; struct shash_desc *generic_desc = NULL; unsigned int i; struct hash_testvec vec = { 0 }; char vec_name[64]; struct testvec_config *cfg; char cfgname[TESTVEC_CONFIG_NAMELEN]; int err; if (noextratests) return 0; if (!generic_driver) { /* Use default naming convention? */ err = build_generic_driver_name(algname, _generic_driver); if (err) return err; generic_driver = _generic_driver; } if (strcmp(generic_driver, driver) == 0) /* Already the generic impl? */ return 0; generic_tfm = crypto_alloc_shash(generic_driver, 0, 0); if (IS_ERR(generic_tfm)) { err = PTR_ERR(generic_tfm); if (err == -ENOENT) { pr_warn("alg: hash: skipping comparison tests for %s because %s is unavailable\n", driver, generic_driver); return 0; } pr_err("alg: hash: error allocating %s (generic impl of %s): %d\n", generic_driver, algname, err); return err; } cfg = kzalloc(sizeof(*cfg), GFP_KERNEL); if (!cfg) { err = -ENOMEM; goto out; } generic_desc = kzalloc(sizeof(*desc) + crypto_shash_descsize(generic_tfm), GFP_KERNEL); if (!generic_desc) { err = -ENOMEM; goto out; } generic_desc->tfm = generic_tfm; /* Check the algorithm properties for consistency. */ if (digestsize != crypto_shash_digestsize(generic_tfm)) { pr_err("alg: hash: digestsize for %s (%u) doesn't match generic impl (%u)\n", driver, digestsize, crypto_shash_digestsize(generic_tfm)); err = -EINVAL; goto out; } if (blocksize != crypto_shash_blocksize(generic_tfm)) { pr_err("alg: hash: blocksize for %s (%u) doesn't match generic impl (%u)\n", driver, blocksize, crypto_shash_blocksize(generic_tfm)); err = -EINVAL; goto out; } /* * Now generate test vectors using the generic implementation, and test * the other implementation against them. */ vec.key = kmalloc(maxkeysize, GFP_KERNEL); vec.plaintext = kmalloc(maxdatasize, GFP_KERNEL); vec.digest = kmalloc(digestsize, GFP_KERNEL); if (!vec.key || !vec.plaintext || !vec.digest) { err = -ENOMEM; goto out; } for (i = 0; i < fuzz_iterations * 8; i++) { generate_random_hash_testvec(generic_desc, &vec, maxkeysize, maxdatasize, vec_name, sizeof(vec_name)); generate_random_testvec_config(cfg, cfgname, sizeof(cfgname)); err = test_hash_vec_cfg(driver, &vec, vec_name, cfg, req, desc, tsgl, hashstate); if (err) goto out; cond_resched(); } err = 0; out: kfree(cfg); kfree(vec.key); kfree(vec.plaintext); kfree(vec.digest); crypto_free_shash(generic_tfm); kzfree(generic_desc); return err; } #else /* !CONFIG_CRYPTO_MANAGER_EXTRA_TESTS */ static int test_hash_vs_generic_impl(const char *driver, const char *generic_driver, unsigned int maxkeysize, struct ahash_request *req, struct shash_desc *desc, struct test_sglist *tsgl, u8 *hashstate) { return 0; } #endif /* !CONFIG_CRYPTO_MANAGER_EXTRA_TESTS */ static int alloc_shash(const char *driver, u32 type, u32 mask, struct crypto_shash **tfm_ret, struct shash_desc **desc_ret) { struct crypto_shash *tfm; struct shash_desc *desc; tfm = crypto_alloc_shash(driver, type, mask); if (IS_ERR(tfm)) { if (PTR_ERR(tfm) == -ENOENT) { /* * This algorithm is only available through the ahash * API, not the shash API, so skip the shash tests. */ return 0; } pr_err("alg: hash: failed to allocate shash transform for %s: %ld\n", driver, PTR_ERR(tfm)); return PTR_ERR(tfm); } desc = kmalloc(sizeof(*desc) + crypto_shash_descsize(tfm), GFP_KERNEL); if (!desc) { crypto_free_shash(tfm); return -ENOMEM; } desc->tfm = tfm; *tfm_ret = tfm; *desc_ret = desc; return 0; } static int __alg_test_hash(const struct hash_testvec *vecs, unsigned int num_vecs, const char *driver, u32 type, u32 mask, const char *generic_driver, unsigned int maxkeysize) { struct crypto_ahash *atfm = NULL; struct ahash_request *req = NULL; struct crypto_shash *stfm = NULL; struct shash_desc *desc = NULL; struct test_sglist *tsgl = NULL; u8 *hashstate = NULL; unsigned int statesize; unsigned int i; int err; /* * Always test the ahash API. This works regardless of whether the * algorithm is implemented as ahash or shash. */ atfm = crypto_alloc_ahash(driver, type, mask); if (IS_ERR(atfm)) { pr_err("alg: hash: failed to allocate transform for %s: %ld\n", driver, PTR_ERR(atfm)); return PTR_ERR(atfm); } req = ahash_request_alloc(atfm, GFP_KERNEL); if (!req) { pr_err("alg: hash: failed to allocate request for %s\n", driver); err = -ENOMEM; goto out; } /* * If available also test the shash API, to cover corner cases that may * be missed by testing the ahash API only. */ err = alloc_shash(driver, type, mask, &stfm, &desc); if (err) goto out; tsgl = kmalloc(sizeof(*tsgl), GFP_KERNEL); if (!tsgl || init_test_sglist(tsgl) != 0) { pr_err("alg: hash: failed to allocate test buffers for %s\n", driver); kfree(tsgl); tsgl = NULL; err = -ENOMEM; goto out; } statesize = crypto_ahash_statesize(atfm); if (stfm) statesize = max(statesize, crypto_shash_statesize(stfm)); hashstate = kmalloc(statesize + TESTMGR_POISON_LEN, GFP_KERNEL); if (!hashstate) { pr_err("alg: hash: failed to allocate hash state buffer for %s\n", driver); err = -ENOMEM; goto out; } for (i = 0; i < num_vecs; i++) { err = test_hash_vec(driver, &vecs[i], i, req, desc, tsgl, hashstate); if (err) goto out; cond_resched(); } err = test_hash_vs_generic_impl(driver, generic_driver, maxkeysize, req, desc, tsgl, hashstate); out: kfree(hashstate); if (tsgl) { destroy_test_sglist(tsgl); kfree(tsgl); } kfree(desc); crypto_free_shash(stfm); ahash_request_free(req); crypto_free_ahash(atfm); return err; } static int alg_test_hash(const struct alg_test_desc *desc, const char *driver, u32 type, u32 mask) { const struct hash_testvec *template = desc->suite.hash.vecs; unsigned int tcount = desc->suite.hash.count; unsigned int nr_unkeyed, nr_keyed; unsigned int maxkeysize = 0; int err; /* * For OPTIONAL_KEY algorithms, we have to do all the unkeyed tests * first, before setting a key on the tfm. To make this easier, we * require that the unkeyed test vectors (if any) are listed first. */ for (nr_unkeyed = 0; nr_unkeyed < tcount; nr_unkeyed++) { if (template[nr_unkeyed].ksize) break; } for (nr_keyed = 0; nr_unkeyed + nr_keyed < tcount; nr_keyed++) { if (!template[nr_unkeyed + nr_keyed].ksize) { pr_err("alg: hash: test vectors for %s out of order, " "unkeyed ones must come first\n", desc->alg); return -EINVAL; } maxkeysize = max_t(unsigned int, maxkeysize, template[nr_unkeyed + nr_keyed].ksize); } err = 0; if (nr_unkeyed) { err = __alg_test_hash(template, nr_unkeyed, driver, type, mask, desc->generic_driver, maxkeysize); template += nr_unkeyed; } if (!err && nr_keyed) err = __alg_test_hash(template, nr_keyed, driver, type, mask, desc->generic_driver, maxkeysize); return err; } static int test_aead_vec_cfg(const char *driver, int enc, const struct aead_testvec *vec, const char *vec_name, const struct testvec_config *cfg, struct aead_request *req, struct cipher_test_sglists *tsgls) { struct crypto_aead *tfm = crypto_aead_reqtfm(req); const unsigned int alignmask = crypto_aead_alignmask(tfm); const unsigned int ivsize = crypto_aead_ivsize(tfm); const unsigned int authsize = vec->clen - vec->plen; const u32 req_flags = CRYPTO_TFM_REQ_MAY_BACKLOG | cfg->req_flags; const char *op = enc ? "encryption" : "decryption"; DECLARE_CRYPTO_WAIT(wait); u8 _iv[3 * (MAX_ALGAPI_ALIGNMASK + 1) + MAX_IVLEN]; u8 *iv = PTR_ALIGN(&_iv[0], 2 * (MAX_ALGAPI_ALIGNMASK + 1)) + cfg->iv_offset + (cfg->iv_offset_relative_to_alignmask ? alignmask : 0); struct kvec input[2]; int err; /* Set the key */ if (vec->wk) crypto_aead_set_flags(tfm, CRYPTO_TFM_REQ_FORBID_WEAK_KEYS); else crypto_aead_clear_flags(tfm, CRYPTO_TFM_REQ_FORBID_WEAK_KEYS); err = do_setkey(crypto_aead_setkey, tfm, vec->key, vec->klen, cfg, alignmask); if (err && err != vec->setkey_error) { pr_err("alg: aead: %s setkey failed on test vector %s; expected_error=%d, actual_error=%d, flags=%#x\n", driver, vec_name, vec->setkey_error, err, crypto_aead_get_flags(tfm)); return err; } if (!err && vec->setkey_error) { pr_err("alg: aead: %s setkey unexpectedly succeeded on test vector %s; expected_error=%d\n", driver, vec_name, vec->setkey_error); return -EINVAL; } /* Set the authentication tag size */ err = crypto_aead_setauthsize(tfm, authsize); if (err && err != vec->setauthsize_error) { pr_err("alg: aead: %s setauthsize failed on test vector %s; expected_error=%d, actual_error=%d\n", driver, vec_name, vec->setauthsize_error, err); return err; } if (!err && vec->setauthsize_error) { pr_err("alg: aead: %s setauthsize unexpectedly succeeded on test vector %s; expected_error=%d\n", driver, vec_name, vec->setauthsize_error); return -EINVAL; } if (vec->setkey_error || vec->setauthsize_error) return 0; /* The IV must be copied to a buffer, as the algorithm may modify it */ if (WARN_ON(ivsize > MAX_IVLEN)) return -EINVAL; if (vec->iv) memcpy(iv, vec->iv, ivsize); else memset(iv, 0, ivsize); /* Build the src/dst scatterlists */ input[0].iov_base = (void *)vec->assoc; input[0].iov_len = vec->alen; input[1].iov_base = enc ? (void *)vec->ptext : (void *)vec->ctext; input[1].iov_len = enc ? vec->plen : vec->clen; err = build_cipher_test_sglists(tsgls, cfg, alignmask, vec->alen + (enc ? vec->plen : vec->clen), vec->alen + (enc ? vec->clen : vec->plen), input, 2); if (err) { pr_err("alg: aead: %s %s: error preparing scatterlists for test vector %s, cfg=\"%s\"\n", driver, op, vec_name, cfg->name); return err; } /* Do the actual encryption or decryption */ testmgr_poison(req->__ctx, crypto_aead_reqsize(tfm)); aead_request_set_callback(req, req_flags, crypto_req_done, &wait); aead_request_set_crypt(req, tsgls->src.sgl_ptr, tsgls->dst.sgl_ptr, enc ? vec->plen : vec->clen, iv); aead_request_set_ad(req, vec->alen); if (cfg->nosimd) crypto_disable_simd_for_test(); err = enc ? crypto_aead_encrypt(req) : crypto_aead_decrypt(req); if (cfg->nosimd) crypto_reenable_simd_for_test(); err = crypto_wait_req(err, &wait); /* Check that the algorithm didn't overwrite things it shouldn't have */ if (req->cryptlen != (enc ? vec->plen : vec->clen) || req->assoclen != vec->alen || req->iv != iv || req->src != tsgls->src.sgl_ptr || req->dst != tsgls->dst.sgl_ptr || crypto_aead_reqtfm(req) != tfm || req->base.complete != crypto_req_done || req->base.flags != req_flags || req->base.data != &wait) { pr_err("alg: aead: %s %s corrupted request struct on test vector %s, cfg=\"%s\"\n", driver, op, vec_name, cfg->name); if (req->cryptlen != (enc ? vec->plen : vec->clen)) pr_err("alg: aead: changed 'req->cryptlen'\n"); if (req->assoclen != vec->alen) pr_err("alg: aead: changed 'req->assoclen'\n"); if (req->iv != iv) pr_err("alg: aead: changed 'req->iv'\n"); if (req->src != tsgls->src.sgl_ptr) pr_err("alg: aead: changed 'req->src'\n"); if (req->dst != tsgls->dst.sgl_ptr) pr_err("alg: aead: changed 'req->dst'\n"); if (crypto_aead_reqtfm(req) != tfm) pr_err("alg: aead: changed 'req->base.tfm'\n"); if (req->base.complete != crypto_req_done) pr_err("alg: aead: changed 'req->base.complete'\n"); if (req->base.flags != req_flags) pr_err("alg: aead: changed 'req->base.flags'\n"); if (req->base.data != &wait) pr_err("alg: aead: changed 'req->base.data'\n"); return -EINVAL; } if (is_test_sglist_corrupted(&tsgls->src)) { pr_err("alg: aead: %s %s corrupted src sgl on test vector %s, cfg=\"%s\"\n", driver, op, vec_name, cfg->name); return -EINVAL; } if (tsgls->dst.sgl_ptr != tsgls->src.sgl && is_test_sglist_corrupted(&tsgls->dst)) { pr_err("alg: aead: %s %s corrupted dst sgl on test vector %s, cfg=\"%s\"\n", driver, op, vec_name, cfg->name); return -EINVAL; } /* Check for unexpected success or failure, or wrong error code */ if ((err == 0 && vec->novrfy) || (err != vec->crypt_error && !(err == -EBADMSG && vec->novrfy))) { char expected_error[32]; if (vec->novrfy && vec->crypt_error != 0 && vec->crypt_error != -EBADMSG) sprintf(expected_error, "-EBADMSG or %d", vec->crypt_error); else if (vec->novrfy) sprintf(expected_error, "-EBADMSG"); else sprintf(expected_error, "%d", vec->crypt_error); if (err) { pr_err("alg: aead: %s %s failed on test vector %s; expected_error=%s, actual_error=%d, cfg=\"%s\"\n", driver, op, vec_name, expected_error, err, cfg->name); return err; } pr_err("alg: aead: %s %s unexpectedly succeeded on test vector %s; expected_error=%s, cfg=\"%s\"\n", driver, op, vec_name, expected_error, cfg->name); return -EINVAL; } if (err) /* Expectedly failed. */ return 0; /* Check for the correct output (ciphertext or plaintext) */ err = verify_correct_output(&tsgls->dst, enc ? vec->ctext : vec->ptext, enc ? vec->clen : vec->plen, vec->alen, enc || !cfg->inplace); if (err == -EOVERFLOW) { pr_err("alg: aead: %s %s overran dst buffer on test vector %s, cfg=\"%s\"\n", driver, op, vec_name, cfg->name); return err; } if (err) { pr_err("alg: aead: %s %s test failed (wrong result) on test vector %s, cfg=\"%s\"\n", driver, op, vec_name, cfg->name); return err; } return 0; } static int test_aead_vec(const char *driver, int enc, const struct aead_testvec *vec, unsigned int vec_num, struct aead_request *req, struct cipher_test_sglists *tsgls) { char vec_name[16]; unsigned int i; int err; if (enc && vec->novrfy) return 0; sprintf(vec_name, "%u", vec_num); for (i = 0; i < ARRAY_SIZE(default_cipher_testvec_configs); i++) { err = test_aead_vec_cfg(driver, enc, vec, vec_name, &default_cipher_testvec_configs[i], req, tsgls); if (err) return err; } #ifdef CONFIG_CRYPTO_MANAGER_EXTRA_TESTS if (!noextratests) { struct testvec_config cfg; char cfgname[TESTVEC_CONFIG_NAMELEN]; for (i = 0; i < fuzz_iterations; i++) { generate_random_testvec_config(&cfg, cfgname, sizeof(cfgname)); err = test_aead_vec_cfg(driver, enc, vec, vec_name, &cfg, req, tsgls); if (err) return err; cond_resched(); } } #endif return 0; } #ifdef CONFIG_CRYPTO_MANAGER_EXTRA_TESTS struct aead_extra_tests_ctx { struct aead_request *req; struct crypto_aead *tfm; const char *driver; const struct alg_test_desc *test_desc; struct cipher_test_sglists *tsgls; unsigned int maxdatasize; unsigned int maxkeysize; struct aead_testvec vec; char vec_name[64]; char cfgname[TESTVEC_CONFIG_NAMELEN]; struct testvec_config cfg; }; /* * Make at least one random change to a (ciphertext, AAD) pair. "Ciphertext" * here means the full ciphertext including the authentication tag. The * authentication tag (and hence also the ciphertext) is assumed to be nonempty. */ static void mutate_aead_message(struct aead_testvec *vec, bool esp_aad) { const unsigned int aad_tail_size = esp_aad ? 8 : 0; const unsigned int authsize = vec->clen - vec->plen; if (prandom_u32() % 2 == 0 && vec->alen > aad_tail_size) { /* Mutate the AAD */ flip_random_bit((u8 *)vec->assoc, vec->alen - aad_tail_size); if (prandom_u32() % 2 == 0) return; } if (prandom_u32() % 2 == 0) { /* Mutate auth tag (assuming it's at the end of ciphertext) */ flip_random_bit((u8 *)vec->ctext + vec->plen, authsize); } else { /* Mutate any part of the ciphertext */ flip_random_bit((u8 *)vec->ctext, vec->clen); } } /* * Minimum authentication tag size in bytes at which we assume that we can * reliably generate inauthentic messages, i.e. not generate an authentic * message by chance. */ #define MIN_COLLISION_FREE_AUTHSIZE 8 static void generate_aead_message(struct aead_request *req, const struct aead_test_suite *suite, struct aead_testvec *vec, bool prefer_inauthentic) { struct crypto_aead *tfm = crypto_aead_reqtfm(req); const unsigned int ivsize = crypto_aead_ivsize(tfm); const unsigned int authsize = vec->clen - vec->plen; const bool inauthentic = (authsize >= MIN_COLLISION_FREE_AUTHSIZE) && (prefer_inauthentic || prandom_u32() % 4 == 0); /* Generate the AAD. */ generate_random_bytes((u8 *)vec->assoc, vec->alen); if (inauthentic && prandom_u32() % 2 == 0) { /* Generate a random ciphertext. */ generate_random_bytes((u8 *)vec->ctext, vec->clen); } else { int i = 0; struct scatterlist src[2], dst; u8 iv[MAX_IVLEN]; DECLARE_CRYPTO_WAIT(wait); /* Generate a random plaintext and encrypt it. */ sg_init_table(src, 2); if (vec->alen) sg_set_buf(&src[i++], vec->assoc, vec->alen); if (vec->plen) { generate_random_bytes((u8 *)vec->ptext, vec->plen); sg_set_buf(&src[i++], vec->ptext, vec->plen); } sg_init_one(&dst, vec->ctext, vec->alen + vec->clen); memcpy(iv, vec->iv, ivsize); aead_request_set_callback(req, 0, crypto_req_done, &wait); aead_request_set_crypt(req, src, &dst, vec->plen, iv); aead_request_set_ad(req, vec->alen); vec->crypt_error = crypto_wait_req(crypto_aead_encrypt(req), &wait); /* If encryption failed, we're done. */ if (vec->crypt_error != 0) return; memmove((u8 *)vec->ctext, vec->ctext + vec->alen, vec->clen); if (!inauthentic) return; /* * Mutate the authentic (ciphertext, AAD) pair to get an * inauthentic one. */ mutate_aead_message(vec, suite->esp_aad); } vec->novrfy = 1; if (suite->einval_allowed) vec->crypt_error = -EINVAL; } /* * Generate an AEAD test vector 'vec' using the implementation specified by * 'req'. The buffers in 'vec' must already be allocated. * * If 'prefer_inauthentic' is true, then this function will generate inauthentic * test vectors (i.e. vectors with 'vec->novrfy=1') more often. */ static void generate_random_aead_testvec(struct aead_request *req, struct aead_testvec *vec, const struct aead_test_suite *suite, unsigned int maxkeysize, unsigned int maxdatasize, char *name, size_t max_namelen, bool prefer_inauthentic) { struct crypto_aead *tfm = crypto_aead_reqtfm(req); const unsigned int ivsize = crypto_aead_ivsize(tfm); const unsigned int maxauthsize = crypto_aead_maxauthsize(tfm); unsigned int authsize; unsigned int total_len; /* Key: length in [0, maxkeysize], but usually choose maxkeysize */ vec->klen = maxkeysize; if (prandom_u32() % 4 == 0) vec->klen = prandom_u32() % (maxkeysize + 1); generate_random_bytes((u8 *)vec->key, vec->klen); vec->setkey_error = crypto_aead_setkey(tfm, vec->key, vec->klen); /* IV */ generate_random_bytes((u8 *)vec->iv, ivsize); /* Tag length: in [0, maxauthsize], but usually choose maxauthsize */ authsize = maxauthsize; if (prandom_u32() % 4 == 0) authsize = prandom_u32() % (maxauthsize + 1); if (prefer_inauthentic && authsize < MIN_COLLISION_FREE_AUTHSIZE) authsize = MIN_COLLISION_FREE_AUTHSIZE; if (WARN_ON(authsize > maxdatasize)) authsize = maxdatasize; maxdatasize -= authsize; vec->setauthsize_error = crypto_aead_setauthsize(tfm, authsize); /* AAD, plaintext, and ciphertext lengths */ total_len = generate_random_length(maxdatasize); if (prandom_u32() % 4 == 0) vec->alen = 0; else vec->alen = generate_random_length(total_len); vec->plen = total_len - vec->alen; vec->clen = vec->plen + authsize; /* * Generate the AAD, plaintext, and ciphertext. Not applicable if the * key or the authentication tag size couldn't be set. */ vec->novrfy = 0; vec->crypt_error = 0; if (vec->setkey_error == 0 && vec->setauthsize_error == 0) generate_aead_message(req, suite, vec, prefer_inauthentic); snprintf(name, max_namelen, "\"random: alen=%u plen=%u authsize=%u klen=%u novrfy=%d\"", vec->alen, vec->plen, authsize, vec->klen, vec->novrfy); } static void try_to_generate_inauthentic_testvec( struct aead_extra_tests_ctx *ctx) { int i; for (i = 0; i < 10; i++) { generate_random_aead_testvec(ctx->req, &ctx->vec, &ctx->test_desc->suite.aead, ctx->maxkeysize, ctx->maxdatasize, ctx->vec_name, sizeof(ctx->vec_name), true); if (ctx->vec.novrfy) return; } } /* * Generate inauthentic test vectors (i.e. ciphertext, AAD pairs that aren't the * result of an encryption with the key) and verify that decryption fails. */ static int test_aead_inauthentic_inputs(struct aead_extra_tests_ctx *ctx) { unsigned int i; int err; for (i = 0; i < fuzz_iterations * 8; i++) { /* * Since this part of the tests isn't comparing the * implementation to another, there's no point in testing any * test vectors other than inauthentic ones (vec.novrfy=1) here. * * If we're having trouble generating such a test vector, e.g. * if the algorithm keeps rejecting the generated keys, don't * retry forever; just continue on. */ try_to_generate_inauthentic_testvec(ctx); if (ctx->vec.novrfy) { generate_random_testvec_config(&ctx->cfg, ctx->cfgname, sizeof(ctx->cfgname)); err = test_aead_vec_cfg(ctx->driver, DECRYPT, &ctx->vec, ctx->vec_name, &ctx->cfg, ctx->req, ctx->tsgls); if (err) return err; } cond_resched(); } return 0; } /* * Test the AEAD algorithm against the corresponding generic implementation, if * one is available. */ static int test_aead_vs_generic_impl(struct aead_extra_tests_ctx *ctx) { struct crypto_aead *tfm = ctx->tfm; const char *algname = crypto_aead_alg(tfm)->base.cra_name; const char *driver = ctx->driver; const char *generic_driver = ctx->test_desc->generic_driver; char _generic_driver[CRYPTO_MAX_ALG_NAME]; struct crypto_aead *generic_tfm = NULL; struct aead_request *generic_req = NULL; unsigned int i; int err; if (!generic_driver) { /* Use default naming convention? */ err = build_generic_driver_name(algname, _generic_driver); if (err) return err; generic_driver = _generic_driver; } if (strcmp(generic_driver, driver) == 0) /* Already the generic impl? */ return 0; generic_tfm = crypto_alloc_aead(generic_driver, 0, 0); if (IS_ERR(generic_tfm)) { err = PTR_ERR(generic_tfm); if (err == -ENOENT) { pr_warn("alg: aead: skipping comparison tests for %s because %s is unavailable\n", driver, generic_driver); return 0; } pr_err("alg: aead: error allocating %s (generic impl of %s): %d\n", generic_driver, algname, err); return err; } generic_req = aead_request_alloc(generic_tfm, GFP_KERNEL); if (!generic_req) { err = -ENOMEM; goto out; } /* Check the algorithm properties for consistency. */ if (crypto_aead_maxauthsize(tfm) != crypto_aead_maxauthsize(generic_tfm)) { pr_err("alg: aead: maxauthsize for %s (%u) doesn't match generic impl (%u)\n", driver, crypto_aead_maxauthsize(tfm), crypto_aead_maxauthsize(generic_tfm)); err = -EINVAL; goto out; } if (crypto_aead_ivsize(tfm) != crypto_aead_ivsize(generic_tfm)) { pr_err("alg: aead: ivsize for %s (%u) doesn't match generic impl (%u)\n", driver, crypto_aead_ivsize(tfm), crypto_aead_ivsize(generic_tfm)); err = -EINVAL; goto out; } if (crypto_aead_blocksize(tfm) != crypto_aead_blocksize(generic_tfm)) { pr_err("alg: aead: blocksize for %s (%u) doesn't match generic impl (%u)\n", driver, crypto_aead_blocksize(tfm), crypto_aead_blocksize(generic_tfm)); err = -EINVAL; goto out; } /* * Now generate test vectors using the generic implementation, and test * the other implementation against them. */ for (i = 0; i < fuzz_iterations * 8; i++) { generate_random_aead_testvec(generic_req, &ctx->vec, &ctx->test_desc->suite.aead, ctx->maxkeysize, ctx->maxdatasize, ctx->vec_name, sizeof(ctx->vec_name), false); generate_random_testvec_config(&ctx->cfg, ctx->cfgname, sizeof(ctx->cfgname)); if (!ctx->vec.novrfy) { err = test_aead_vec_cfg(driver, ENCRYPT, &ctx->vec, ctx->vec_name, &ctx->cfg, ctx->req, ctx->tsgls); if (err) goto out; } if (ctx->vec.crypt_error == 0 || ctx->vec.novrfy) { err = test_aead_vec_cfg(driver, DECRYPT, &ctx->vec, ctx->vec_name, &ctx->cfg, ctx->req, ctx->tsgls); if (err) goto out; } cond_resched(); } err = 0; out: crypto_free_aead(generic_tfm); aead_request_free(generic_req); return err; } static int test_aead_extra(const char *driver, const struct alg_test_desc *test_desc, struct aead_request *req, struct cipher_test_sglists *tsgls) { struct aead_extra_tests_ctx *ctx; unsigned int i; int err; if (noextratests) return 0; ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); if (!ctx) return -ENOMEM; ctx->req = req; ctx->tfm = crypto_aead_reqtfm(req); ctx->driver = driver; ctx->test_desc = test_desc; ctx->tsgls = tsgls; ctx->maxdatasize = (2 * PAGE_SIZE) - TESTMGR_POISON_LEN; ctx->maxkeysize = 0; for (i = 0; i < test_desc->suite.aead.count; i++) ctx->maxkeysize = max_t(unsigned int, ctx->maxkeysize, test_desc->suite.aead.vecs[i].klen); ctx->vec.key = kmalloc(ctx->maxkeysize, GFP_KERNEL); ctx->vec.iv = kmalloc(crypto_aead_ivsize(ctx->tfm), GFP_KERNEL); ctx->vec.assoc = kmalloc(ctx->maxdatasize, GFP_KERNEL); ctx->vec.ptext = kmalloc(ctx->maxdatasize, GFP_KERNEL); ctx->vec.ctext = kmalloc(ctx->maxdatasize, GFP_KERNEL); if (!ctx->vec.key || !ctx->vec.iv || !ctx->vec.assoc || !ctx->vec.ptext || !ctx->vec.ctext) { err = -ENOMEM; goto out; } err = test_aead_inauthentic_inputs(ctx); if (err) goto out; err = test_aead_vs_generic_impl(ctx); out: kfree(ctx->vec.key); kfree(ctx->vec.iv); kfree(ctx->vec.assoc); kfree(ctx->vec.ptext); kfree(ctx->vec.ctext); kfree(ctx); return err; } #else /* !CONFIG_CRYPTO_MANAGER_EXTRA_TESTS */ static int test_aead_extra(const char *driver, const struct alg_test_desc *test_desc, struct aead_request *req, struct cipher_test_sglists *tsgls) { return 0; } #endif /* !CONFIG_CRYPTO_MANAGER_EXTRA_TESTS */ static int test_aead(const char *driver, int enc, const struct aead_test_suite *suite, struct aead_request *req, struct cipher_test_sglists *tsgls) { unsigned int i; int err; for (i = 0; i < suite->count; i++) { err = test_aead_vec(driver, enc, &suite->vecs[i], i, req, tsgls); if (err) return err; cond_resched(); } return 0; } static int alg_test_aead(const struct alg_test_desc *desc, const char *driver, u32 type, u32 mask) { const struct aead_test_suite *suite = &desc->suite.aead; struct crypto_aead *tfm; struct aead_request *req = NULL; struct cipher_test_sglists *tsgls = NULL; int err; if (suite->count <= 0) { pr_err("alg: aead: empty test suite for %s\n", driver); return -EINVAL; } tfm = crypto_alloc_aead(driver, type, mask); if (IS_ERR(tfm)) { pr_err("alg: aead: failed to allocate transform for %s: %ld\n", driver, PTR_ERR(tfm)); return PTR_ERR(tfm); } req = aead_request_alloc(tfm, GFP_KERNEL); if (!req) { pr_err("alg: aead: failed to allocate request for %s\n", driver); err = -ENOMEM; goto out; } tsgls = alloc_cipher_test_sglists(); if (!tsgls) { pr_err("alg: aead: failed to allocate test buffers for %s\n", driver); err = -ENOMEM; goto out; } err = test_aead(driver, ENCRYPT, suite, req, tsgls); if (err) goto out; err = test_aead(driver, DECRYPT, suite, req, tsgls); if (err) goto out; err = test_aead_extra(driver, desc, req, tsgls); out: free_cipher_test_sglists(tsgls); aead_request_free(req); crypto_free_aead(tfm); return err; } static int test_cipher(struct crypto_cipher *tfm, int enc, const struct cipher_testvec *template, unsigned int tcount) { const char *algo = crypto_tfm_alg_driver_name(crypto_cipher_tfm(tfm)); unsigned int i, j, k; char *q; const char *e; const char *input, *result; void *data; char *xbuf[XBUFSIZE]; int ret = -ENOMEM; if (testmgr_alloc_buf(xbuf)) goto out_nobuf; if (enc == ENCRYPT) e = "encryption"; else e = "decryption"; j = 0; for (i = 0; i < tcount; i++) { if (fips_enabled && template[i].fips_skip) continue; input = enc ? template[i].ptext : template[i].ctext; result = enc ? template[i].ctext : template[i].ptext; j++; ret = -EINVAL; if (WARN_ON(template[i].len > PAGE_SIZE)) goto out; data = xbuf[0]; memcpy(data, input, template[i].len); crypto_cipher_clear_flags(tfm, ~0); if (template[i].wk) crypto_cipher_set_flags(tfm, CRYPTO_TFM_REQ_FORBID_WEAK_KEYS); ret = crypto_cipher_setkey(tfm, template[i].key, template[i].klen); if (ret) { if (ret == template[i].setkey_error) continue; pr_err("alg: cipher: %s setkey failed on test vector %u; expected_error=%d, actual_error=%d, flags=%#x\n", algo, j, template[i].setkey_error, ret, crypto_cipher_get_flags(tfm)); goto out; } if (template[i].setkey_error) { pr_err("alg: cipher: %s setkey unexpectedly succeeded on test vector %u; expected_error=%d\n", algo, j, template[i].setkey_error); ret = -EINVAL; goto out; } for (k = 0; k < template[i].len; k += crypto_cipher_blocksize(tfm)) { if (enc) crypto_cipher_encrypt_one(tfm, data + k, data + k); else crypto_cipher_decrypt_one(tfm, data + k, data + k); } q = data; if (memcmp(q, result, template[i].len)) { printk(KERN_ERR "alg: cipher: Test %d failed " "on %s for %s\n", j, e, algo); hexdump(q, template[i].len); ret = -EINVAL; goto out; } } ret = 0; out: testmgr_free_buf(xbuf); out_nobuf: return ret; } static int test_skcipher_vec_cfg(const char *driver, int enc, const struct cipher_testvec *vec, const char *vec_name, const struct testvec_config *cfg, struct skcipher_request *req, struct cipher_test_sglists *tsgls) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); const unsigned int alignmask = crypto_skcipher_alignmask(tfm); const unsigned int ivsize = crypto_skcipher_ivsize(tfm); const u32 req_flags = CRYPTO_TFM_REQ_MAY_BACKLOG | cfg->req_flags; const char *op = enc ? "encryption" : "decryption"; DECLARE_CRYPTO_WAIT(wait); u8 _iv[3 * (MAX_ALGAPI_ALIGNMASK + 1) + MAX_IVLEN]; u8 *iv = PTR_ALIGN(&_iv[0], 2 * (MAX_ALGAPI_ALIGNMASK + 1)) + cfg->iv_offset + (cfg->iv_offset_relative_to_alignmask ? alignmask : 0); struct kvec input; int err; /* Set the key */ if (vec->wk) crypto_skcipher_set_flags(tfm, CRYPTO_TFM_REQ_FORBID_WEAK_KEYS); else crypto_skcipher_clear_flags(tfm, CRYPTO_TFM_REQ_FORBID_WEAK_KEYS); err = do_setkey(crypto_skcipher_setkey, tfm, vec->key, vec->klen, cfg, alignmask); if (err) { if (err == vec->setkey_error) return 0; pr_err("alg: skcipher: %s setkey failed on test vector %s; expected_error=%d, actual_error=%d, flags=%#x\n", driver, vec_name, vec->setkey_error, err, crypto_skcipher_get_flags(tfm)); return err; } if (vec->setkey_error) { pr_err("alg: skcipher: %s setkey unexpectedly succeeded on test vector %s; expected_error=%d\n", driver, vec_name, vec->setkey_error); return -EINVAL; } /* The IV must be copied to a buffer, as the algorithm may modify it */ if (ivsize) { if (WARN_ON(ivsize > MAX_IVLEN)) return -EINVAL; if (vec->generates_iv && !enc) memcpy(iv, vec->iv_out, ivsize); else if (vec->iv) memcpy(iv, vec->iv, ivsize); else memset(iv, 0, ivsize); } else { if (vec->generates_iv) { pr_err("alg: skcipher: %s has ivsize=0 but test vector %s generates IV!\n", driver, vec_name); return -EINVAL; } iv = NULL; } /* Build the src/dst scatterlists */ input.iov_base = enc ? (void *)vec->ptext : (void *)vec->ctext; input.iov_len = vec->len; err = build_cipher_test_sglists(tsgls, cfg, alignmask, vec->len, vec->len, &input, 1); if (err) { pr_err("alg: skcipher: %s %s: error preparing scatterlists for test vector %s, cfg=\"%s\"\n", driver, op, vec_name, cfg->name); return err; } /* Do the actual encryption or decryption */ testmgr_poison(req->__ctx, crypto_skcipher_reqsize(tfm)); skcipher_request_set_callback(req, req_flags, crypto_req_done, &wait); skcipher_request_set_crypt(req, tsgls->src.sgl_ptr, tsgls->dst.sgl_ptr, vec->len, iv); if (cfg->nosimd) crypto_disable_simd_for_test(); err = enc ? crypto_skcipher_encrypt(req) : crypto_skcipher_decrypt(req); if (cfg->nosimd) crypto_reenable_simd_for_test(); err = crypto_wait_req(err, &wait); /* Check that the algorithm didn't overwrite things it shouldn't have */ if (req->cryptlen != vec->len || req->iv != iv || req->src != tsgls->src.sgl_ptr || req->dst != tsgls->dst.sgl_ptr || crypto_skcipher_reqtfm(req) != tfm || req->base.complete != crypto_req_done || req->base.flags != req_flags || req->base.data != &wait) { pr_err("alg: skcipher: %s %s corrupted request struct on test vector %s, cfg=\"%s\"\n", driver, op, vec_name, cfg->name); if (req->cryptlen != vec->len) pr_err("alg: skcipher: changed 'req->cryptlen'\n"); if (req->iv != iv) pr_err("alg: skcipher: changed 'req->iv'\n"); if (req->src != tsgls->src.sgl_ptr) pr_err("alg: skcipher: changed 'req->src'\n"); if (req->dst != tsgls->dst.sgl_ptr) pr_err("alg: skcipher: changed 'req->dst'\n"); if (crypto_skcipher_reqtfm(req) != tfm) pr_err("alg: skcipher: changed 'req->base.tfm'\n"); if (req->base.complete != crypto_req_done) pr_err("alg: skcipher: changed 'req->base.complete'\n"); if (req->base.flags != req_flags) pr_err("alg: skcipher: changed 'req->base.flags'\n"); if (req->base.data != &wait) pr_err("alg: skcipher: changed 'req->base.data'\n"); return -EINVAL; } if (is_test_sglist_corrupted(&tsgls->src)) { pr_err("alg: skcipher: %s %s corrupted src sgl on test vector %s, cfg=\"%s\"\n", driver, op, vec_name, cfg->name); return -EINVAL; } if (tsgls->dst.sgl_ptr != tsgls->src.sgl && is_test_sglist_corrupted(&tsgls->dst)) { pr_err("alg: skcipher: %s %s corrupted dst sgl on test vector %s, cfg=\"%s\"\n", driver, op, vec_name, cfg->name); return -EINVAL; } /* Check for success or failure */ if (err) { if (err == vec->crypt_error) return 0; pr_err("alg: skcipher: %s %s failed on test vector %s; expected_error=%d, actual_error=%d, cfg=\"%s\"\n", driver, op, vec_name, vec->crypt_error, err, cfg->name); return err; } if (vec->crypt_error) { pr_err("alg: skcipher: %s %s unexpectedly succeeded on test vector %s; expected_error=%d, cfg=\"%s\"\n", driver, op, vec_name, vec->crypt_error, cfg->name); return -EINVAL; } /* Check for the correct output (ciphertext or plaintext) */ err = verify_correct_output(&tsgls->dst, enc ? vec->ctext : vec->ptext, vec->len, 0, true); if (err == -EOVERFLOW) { pr_err("alg: skcipher: %s %s overran dst buffer on test vector %s, cfg=\"%s\"\n", driver, op, vec_name, cfg->name); return err; } if (err) { pr_err("alg: skcipher: %s %s test failed (wrong result) on test vector %s, cfg=\"%s\"\n", driver, op, vec_name, cfg->name); return err; } /* If applicable, check that the algorithm generated the correct IV */ if (vec->iv_out && memcmp(iv, vec->iv_out, ivsize) != 0) { pr_err("alg: skcipher: %s %s test failed (wrong output IV) on test vector %s, cfg=\"%s\"\n", driver, op, vec_name, cfg->name); hexdump(iv, ivsize); return -EINVAL; } return 0; } static int test_skcipher_vec(const char *driver, int enc, const struct cipher_testvec *vec, unsigned int vec_num, struct skcipher_request *req, struct cipher_test_sglists *tsgls) { char vec_name[16]; unsigned int i; int err; if (fips_enabled && vec->fips_skip) return 0; sprintf(vec_name, "%u", vec_num); for (i = 0; i < ARRAY_SIZE(default_cipher_testvec_configs); i++) { err = test_skcipher_vec_cfg(driver, enc, vec, vec_name, &default_cipher_testvec_configs[i], req, tsgls); if (err) return err; } #ifdef CONFIG_CRYPTO_MANAGER_EXTRA_TESTS if (!noextratests) { struct testvec_config cfg; char cfgname[TESTVEC_CONFIG_NAMELEN]; for (i = 0; i < fuzz_iterations; i++) { generate_random_testvec_config(&cfg, cfgname, sizeof(cfgname)); err = test_skcipher_vec_cfg(driver, enc, vec, vec_name, &cfg, req, tsgls); if (err) return err; cond_resched(); } } #endif return 0; } #ifdef CONFIG_CRYPTO_MANAGER_EXTRA_TESTS /* * Generate a symmetric cipher test vector from the given implementation. * Assumes the buffers in 'vec' were already allocated. */ static void generate_random_cipher_testvec(struct skcipher_request *req, struct cipher_testvec *vec, unsigned int maxdatasize, char *name, size_t max_namelen) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); const unsigned int maxkeysize = crypto_skcipher_max_keysize(tfm); const unsigned int ivsize = crypto_skcipher_ivsize(tfm); struct scatterlist src, dst; u8 iv[MAX_IVLEN]; DECLARE_CRYPTO_WAIT(wait); /* Key: length in [0, maxkeysize], but usually choose maxkeysize */ vec->klen = maxkeysize; if (prandom_u32() % 4 == 0) vec->klen = prandom_u32() % (maxkeysize + 1); generate_random_bytes((u8 *)vec->key, vec->klen); vec->setkey_error = crypto_skcipher_setkey(tfm, vec->key, vec->klen); /* IV */ generate_random_bytes((u8 *)vec->iv, ivsize); /* Plaintext */ vec->len = generate_random_length(maxdatasize); generate_random_bytes((u8 *)vec->ptext, vec->len); /* If the key couldn't be set, no need to continue to encrypt. */ if (vec->setkey_error) goto done; /* Ciphertext */ sg_init_one(&src, vec->ptext, vec->len); sg_init_one(&dst, vec->ctext, vec->len); memcpy(iv, vec->iv, ivsize); skcipher_request_set_callback(req, 0, crypto_req_done, &wait); skcipher_request_set_crypt(req, &src, &dst, vec->len, iv); vec->crypt_error = crypto_wait_req(crypto_skcipher_encrypt(req), &wait); if (vec->crypt_error != 0) { /* * The only acceptable error here is for an invalid length, so * skcipher decryption should fail with the same error too. * We'll test for this. But to keep the API usage well-defined, * explicitly initialize the ciphertext buffer too. */ memset((u8 *)vec->ctext, 0, vec->len); } done: snprintf(name, max_namelen, "\"random: len=%u klen=%u\"", vec->len, vec->klen); } /* * Test the skcipher algorithm represented by @req against the corresponding * generic implementation, if one is available. */ static int test_skcipher_vs_generic_impl(const char *driver, const char *generic_driver, struct skcipher_request *req, struct cipher_test_sglists *tsgls) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); const unsigned int maxkeysize = crypto_skcipher_max_keysize(tfm); const unsigned int ivsize = crypto_skcipher_ivsize(tfm); const unsigned int blocksize = crypto_skcipher_blocksize(tfm); const unsigned int maxdatasize = (2 * PAGE_SIZE) - TESTMGR_POISON_LEN; const char *algname = crypto_skcipher_alg(tfm)->base.cra_name; char _generic_driver[CRYPTO_MAX_ALG_NAME]; struct crypto_skcipher *generic_tfm = NULL; struct skcipher_request *generic_req = NULL; unsigned int i; struct cipher_testvec vec = { 0 }; char vec_name[64]; struct testvec_config *cfg; char cfgname[TESTVEC_CONFIG_NAMELEN]; int err; if (noextratests) return 0; /* Keywrap isn't supported here yet as it handles its IV differently. */ if (strncmp(algname, "kw(", 3) == 0) return 0; if (!generic_driver) { /* Use default naming convention? */ err = build_generic_driver_name(algname, _generic_driver); if (err) return err; generic_driver = _generic_driver; } if (strcmp(generic_driver, driver) == 0) /* Already the generic impl? */ return 0; generic_tfm = crypto_alloc_skcipher(generic_driver, 0, 0); if (IS_ERR(generic_tfm)) { err = PTR_ERR(generic_tfm); if (err == -ENOENT) { pr_warn("alg: skcipher: skipping comparison tests for %s because %s is unavailable\n", driver, generic_driver); return 0; } pr_err("alg: skcipher: error allocating %s (generic impl of %s): %d\n", generic_driver, algname, err); return err; } cfg = kzalloc(sizeof(*cfg), GFP_KERNEL); if (!cfg) { err = -ENOMEM; goto out; } generic_req = skcipher_request_alloc(generic_tfm, GFP_KERNEL); if (!generic_req) { err = -ENOMEM; goto out; } /* Check the algorithm properties for consistency. */ if (crypto_skcipher_min_keysize(tfm) != crypto_skcipher_min_keysize(generic_tfm)) { pr_err("alg: skcipher: min keysize for %s (%u) doesn't match generic impl (%u)\n", driver, crypto_skcipher_min_keysize(tfm), crypto_skcipher_min_keysize(generic_tfm)); err = -EINVAL; goto out; } if (maxkeysize != crypto_skcipher_max_keysize(generic_tfm)) { pr_err("alg: skcipher: max keysize for %s (%u) doesn't match generic impl (%u)\n", driver, maxkeysize, crypto_skcipher_max_keysize(generic_tfm)); err = -EINVAL; goto out; } if (ivsize != crypto_skcipher_ivsize(generic_tfm)) { pr_err("alg: skcipher: ivsize for %s (%u) doesn't match generic impl (%u)\n", driver, ivsize, crypto_skcipher_ivsize(generic_tfm)); err = -EINVAL; goto out; } if (blocksize != crypto_skcipher_blocksize(generic_tfm)) { pr_err("alg: skcipher: blocksize for %s (%u) doesn't match generic impl (%u)\n", driver, blocksize, crypto_skcipher_blocksize(generic_tfm)); err = -EINVAL; goto out; } /* * Now generate test vectors using the generic implementation, and test * the other implementation against them. */ vec.key = kmalloc(maxkeysize, GFP_KERNEL); vec.iv = kmalloc(ivsize, GFP_KERNEL); vec.ptext = kmalloc(maxdatasize, GFP_KERNEL); vec.ctext = kmalloc(maxdatasize, GFP_KERNEL); if (!vec.key || !vec.iv || !vec.ptext || !vec.ctext) { err = -ENOMEM; goto out; } for (i = 0; i < fuzz_iterations * 8; i++) { generate_random_cipher_testvec(generic_req, &vec, maxdatasize, vec_name, sizeof(vec_name)); generate_random_testvec_config(cfg, cfgname, sizeof(cfgname)); err = test_skcipher_vec_cfg(driver, ENCRYPT, &vec, vec_name, cfg, req, tsgls); if (err) goto out; err = test_skcipher_vec_cfg(driver, DECRYPT, &vec, vec_name, cfg, req, tsgls); if (err) goto out; cond_resched(); } err = 0; out: kfree(cfg); kfree(vec.key); kfree(vec.iv); kfree(vec.ptext); kfree(vec.ctext); crypto_free_skcipher(generic_tfm); skcipher_request_free(generic_req); return err; } #else /* !CONFIG_CRYPTO_MANAGER_EXTRA_TESTS */ static int test_skcipher_vs_generic_impl(const char *driver, const char *generic_driver, struct skcipher_request *req, struct cipher_test_sglists *tsgls) { return 0; } #endif /* !CONFIG_CRYPTO_MANAGER_EXTRA_TESTS */ static int test_skcipher(const char *driver, int enc, const struct cipher_test_suite *suite, struct skcipher_request *req, struct cipher_test_sglists *tsgls) { unsigned int i; int err; for (i = 0; i < suite->count; i++) { err = test_skcipher_vec(driver, enc, &suite->vecs[i], i, req, tsgls); if (err) return err; cond_resched(); } return 0; } static int alg_test_skcipher(const struct alg_test_desc *desc, const char *driver, u32 type, u32 mask) { const struct cipher_test_suite *suite = &desc->suite.cipher; struct crypto_skcipher *tfm; struct skcipher_request *req = NULL; struct cipher_test_sglists *tsgls = NULL; int err; if (suite->count <= 0) { pr_err("alg: skcipher: empty test suite for %s\n", driver); return -EINVAL; } tfm = crypto_alloc_skcipher(driver, type, mask); if (IS_ERR(tfm)) { pr_err("alg: skcipher: failed to allocate transform for %s: %ld\n", driver, PTR_ERR(tfm)); return PTR_ERR(tfm); } req = skcipher_request_alloc(tfm, GFP_KERNEL); if (!req) { pr_err("alg: skcipher: failed to allocate request for %s\n", driver); err = -ENOMEM; goto out; } tsgls = alloc_cipher_test_sglists(); if (!tsgls) { pr_err("alg: skcipher: failed to allocate test buffers for %s\n", driver); err = -ENOMEM; goto out; } err = test_skcipher(driver, ENCRYPT, suite, req, tsgls); if (err) goto out; err = test_skcipher(driver, DECRYPT, suite, req, tsgls); if (err) goto out; err = test_skcipher_vs_generic_impl(driver, desc->generic_driver, req, tsgls); out: free_cipher_test_sglists(tsgls); skcipher_request_free(req); crypto_free_skcipher(tfm); return err; } static int test_comp(struct crypto_comp *tfm, const struct comp_testvec *ctemplate, const struct comp_testvec *dtemplate, int ctcount, int dtcount) { const char *algo = crypto_tfm_alg_driver_name(crypto_comp_tfm(tfm)); char *output, *decomp_output; unsigned int i; int ret; output = kmalloc(COMP_BUF_SIZE, GFP_KERNEL); if (!output) return -ENOMEM; decomp_output = kmalloc(COMP_BUF_SIZE, GFP_KERNEL); if (!decomp_output) { kfree(output); return -ENOMEM; } for (i = 0; i < ctcount; i++) { int ilen; unsigned int dlen = COMP_BUF_SIZE; memset(output, 0, COMP_BUF_SIZE); memset(decomp_output, 0, COMP_BUF_SIZE); ilen = ctemplate[i].inlen; ret = crypto_comp_compress(tfm, ctemplate[i].input, ilen, output, &dlen); if (ret) { printk(KERN_ERR "alg: comp: compression failed " "on test %d for %s: ret=%d\n", i + 1, algo, -ret); goto out; } ilen = dlen; dlen = COMP_BUF_SIZE; ret = crypto_comp_decompress(tfm, output, ilen, decomp_output, &dlen); if (ret) { pr_err("alg: comp: compression failed: decompress: on test %d for %s failed: ret=%d\n", i + 1, algo, -ret); goto out; } if (dlen != ctemplate[i].inlen) { printk(KERN_ERR "alg: comp: Compression test %d " "failed for %s: output len = %d\n", i + 1, algo, dlen); ret = -EINVAL; goto out; } if (memcmp(decomp_output, ctemplate[i].input, ctemplate[i].inlen)) { pr_err("alg: comp: compression failed: output differs: on test %d for %s\n", i + 1, algo); hexdump(decomp_output, dlen); ret = -EINVAL; goto out; } } for (i = 0; i < dtcount; i++) { int ilen; unsigned int dlen = COMP_BUF_SIZE; memset(decomp_output, 0, COMP_BUF_SIZE); ilen = dtemplate[i].inlen; ret = crypto_comp_decompress(tfm, dtemplate[i].input, ilen, decomp_output, &dlen); if (ret) { printk(KERN_ERR "alg: comp: decompression failed " "on test %d for %s: ret=%d\n", i + 1, algo, -ret); goto out; } if (dlen != dtemplate[i].outlen) { printk(KERN_ERR "alg: comp: Decompression test %d " "failed for %s: output len = %d\n", i + 1, algo, dlen); ret = -EINVAL; goto out; } if (memcmp(decomp_output, dtemplate[i].output, dlen)) { printk(KERN_ERR "alg: comp: Decompression test %d " "failed for %s\n", i + 1, algo); hexdump(decomp_output, dlen); ret = -EINVAL; goto out; } } ret = 0; out: kfree(decomp_output); kfree(output); return ret; } static int test_acomp(struct crypto_acomp *tfm, const struct comp_testvec *ctemplate, const struct comp_testvec *dtemplate, int ctcount, int dtcount) { const char *algo = crypto_tfm_alg_driver_name(crypto_acomp_tfm(tfm)); unsigned int i; char *output, *decomp_out; int ret; struct scatterlist src, dst; struct acomp_req *req; struct crypto_wait wait; output = kmalloc(COMP_BUF_SIZE, GFP_KERNEL); if (!output) return -ENOMEM; decomp_out = kmalloc(COMP_BUF_SIZE, GFP_KERNEL); if (!decomp_out) { kfree(output); return -ENOMEM; } for (i = 0; i < ctcount; i++) { unsigned int dlen = COMP_BUF_SIZE; int ilen = ctemplate[i].inlen; void *input_vec; input_vec = kmemdup(ctemplate[i].input, ilen, GFP_KERNEL); if (!input_vec) { ret = -ENOMEM; goto out; } memset(output, 0, dlen); crypto_init_wait(&wait); sg_init_one(&src, input_vec, ilen); sg_init_one(&dst, output, dlen); req = acomp_request_alloc(tfm); if (!req) { pr_err("alg: acomp: request alloc failed for %s\n", algo); kfree(input_vec); ret = -ENOMEM; goto out; } acomp_request_set_params(req, &src, &dst, ilen, dlen); acomp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, crypto_req_done, &wait); ret = crypto_wait_req(crypto_acomp_compress(req), &wait); if (ret) { pr_err("alg: acomp: compression failed on test %d for %s: ret=%d\n", i + 1, algo, -ret); kfree(input_vec); acomp_request_free(req); goto out; } ilen = req->dlen; dlen = COMP_BUF_SIZE; sg_init_one(&src, output, ilen); sg_init_one(&dst, decomp_out, dlen); crypto_init_wait(&wait); acomp_request_set_params(req, &src, &dst, ilen, dlen); ret = crypto_wait_req(crypto_acomp_decompress(req), &wait); if (ret) { pr_err("alg: acomp: compression failed on test %d for %s: ret=%d\n", i + 1, algo, -ret); kfree(input_vec); acomp_request_free(req); goto out; } if (req->dlen != ctemplate[i].inlen) { pr_err("alg: acomp: Compression test %d failed for %s: output len = %d\n", i + 1, algo, req->dlen); ret = -EINVAL; kfree(input_vec); acomp_request_free(req); goto out; } if (memcmp(input_vec, decomp_out, req->dlen)) { pr_err("alg: acomp: Compression test %d failed for %s\n", i + 1, algo); hexdump(output, req->dlen); ret = -EINVAL; kfree(input_vec); acomp_request_free(req); goto out; } kfree(input_vec); acomp_request_free(req); } for (i = 0; i < dtcount; i++) { unsigned int dlen = COMP_BUF_SIZE; int ilen = dtemplate[i].inlen; void *input_vec; input_vec = kmemdup(dtemplate[i].input, ilen, GFP_KERNEL); if (!input_vec) { ret = -ENOMEM; goto out; } memset(output, 0, dlen); crypto_init_wait(&wait); sg_init_one(&src, input_vec, ilen); sg_init_one(&dst, output, dlen); req = acomp_request_alloc(tfm); if (!req) { pr_err("alg: acomp: request alloc failed for %s\n", algo); kfree(input_vec); ret = -ENOMEM; goto out; } acomp_request_set_params(req, &src, &dst, ilen, dlen); acomp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, crypto_req_done, &wait); ret = crypto_wait_req(crypto_acomp_decompress(req), &wait); if (ret) { pr_err("alg: acomp: decompression failed on test %d for %s: ret=%d\n", i + 1, algo, -ret); kfree(input_vec); acomp_request_free(req); goto out; } if (req->dlen != dtemplate[i].outlen) { pr_err("alg: acomp: Decompression test %d failed for %s: output len = %d\n", i + 1, algo, req->dlen); ret = -EINVAL; kfree(input_vec); acomp_request_free(req); goto out; } if (memcmp(output, dtemplate[i].output, req->dlen)) { pr_err("alg: acomp: Decompression test %d failed for %s\n", i + 1, algo); hexdump(output, req->dlen); ret = -EINVAL; kfree(input_vec); acomp_request_free(req); goto out; } kfree(input_vec); acomp_request_free(req); } ret = 0; out: kfree(decomp_out); kfree(output); return ret; } static int test_cprng(struct crypto_rng *tfm, const struct cprng_testvec *template, unsigned int tcount) { const char *algo = crypto_tfm_alg_driver_name(crypto_rng_tfm(tfm)); int err = 0, i, j, seedsize; u8 *seed; char result[32]; seedsize = crypto_rng_seedsize(tfm); seed = kmalloc(seedsize, GFP_KERNEL); if (!seed) { printk(KERN_ERR "alg: cprng: Failed to allocate seed space " "for %s\n", algo); return -ENOMEM; } for (i = 0; i < tcount; i++) { memset(result, 0, 32); memcpy(seed, template[i].v, template[i].vlen); memcpy(seed + template[i].vlen, template[i].key, template[i].klen); memcpy(seed + template[i].vlen + template[i].klen, template[i].dt, template[i].dtlen); err = crypto_rng_reset(tfm, seed, seedsize); if (err) { printk(KERN_ERR "alg: cprng: Failed to reset rng " "for %s\n", algo); goto out; } for (j = 0; j < template[i].loops; j++) { err = crypto_rng_get_bytes(tfm, result, template[i].rlen); if (err < 0) { printk(KERN_ERR "alg: cprng: Failed to obtain " "the correct amount of random data for " "%s (requested %d)\n", algo, template[i].rlen); goto out; } } err = memcmp(result, template[i].result, template[i].rlen); if (err) { printk(KERN_ERR "alg: cprng: Test %d failed for %s\n", i, algo); hexdump(result, template[i].rlen); err = -EINVAL; goto out; } } out: kfree(seed); return err; } static int alg_test_cipher(const struct alg_test_desc *desc, const char *driver, u32 type, u32 mask) { const struct cipher_test_suite *suite = &desc->suite.cipher; struct crypto_cipher *tfm; int err; tfm = crypto_alloc_cipher(driver, type, mask); if (IS_ERR(tfm)) { printk(KERN_ERR "alg: cipher: Failed to load transform for " "%s: %ld\n", driver, PTR_ERR(tfm)); return PTR_ERR(tfm); } err = test_cipher(tfm, ENCRYPT, suite->vecs, suite->count); if (!err) err = test_cipher(tfm, DECRYPT, suite->vecs, suite->count); crypto_free_cipher(tfm); return err; } static int alg_test_comp(const struct alg_test_desc *desc, const char *driver, u32 type, u32 mask) { struct crypto_comp *comp; struct crypto_acomp *acomp; int err; u32 algo_type = type & CRYPTO_ALG_TYPE_ACOMPRESS_MASK; if (algo_type == CRYPTO_ALG_TYPE_ACOMPRESS) { acomp = crypto_alloc_acomp(driver, type, mask); if (IS_ERR(acomp)) { pr_err("alg: acomp: Failed to load transform for %s: %ld\n", driver, PTR_ERR(acomp)); return PTR_ERR(acomp); } err = test_acomp(acomp, desc->suite.comp.comp.vecs, desc->suite.comp.decomp.vecs, desc->suite.comp.comp.count, desc->suite.comp.decomp.count); crypto_free_acomp(acomp); } else { comp = crypto_alloc_comp(driver, type, mask); if (IS_ERR(comp)) { pr_err("alg: comp: Failed to load transform for %s: %ld\n", driver, PTR_ERR(comp)); return PTR_ERR(comp); } err = test_comp(comp, desc->suite.comp.comp.vecs, desc->suite.comp.decomp.vecs, desc->suite.comp.comp.count, desc->suite.comp.decomp.count); crypto_free_comp(comp); } return err; } static int alg_test_crc32c(const struct alg_test_desc *desc, const char *driver, u32 type, u32 mask) { struct crypto_shash *tfm; __le32 val; int err; err = alg_test_hash(desc, driver, type, mask); if (err) return err; tfm = crypto_alloc_shash(driver, type, mask); if (IS_ERR(tfm)) { if (PTR_ERR(tfm) == -ENOENT) { /* * This crc32c implementation is only available through * ahash API, not the shash API, so the remaining part * of the test is not applicable to it. */ return 0; } printk(KERN_ERR "alg: crc32c: Failed to load transform for %s: " "%ld\n", driver, PTR_ERR(tfm)); return PTR_ERR(tfm); } do { SHASH_DESC_ON_STACK(shash, tfm); u32 *ctx = (u32 *)shash_desc_ctx(shash); shash->tfm = tfm; *ctx = 420553207; err = crypto_shash_final(shash, (u8 *)&val); if (err) { printk(KERN_ERR "alg: crc32c: Operation failed for " "%s: %d\n", driver, err); break; } if (val != cpu_to_le32(~420553207)) { pr_err("alg: crc32c: Test failed for %s: %u\n", driver, le32_to_cpu(val)); err = -EINVAL; } } while (0); crypto_free_shash(tfm); return err; } static int alg_test_cprng(const struct alg_test_desc *desc, const char *driver, u32 type, u32 mask) { struct crypto_rng *rng; int err; rng = crypto_alloc_rng(driver, type, mask); if (IS_ERR(rng)) { printk(KERN_ERR "alg: cprng: Failed to load transform for %s: " "%ld\n", driver, PTR_ERR(rng)); return PTR_ERR(rng); } err = test_cprng(rng, desc->suite.cprng.vecs, desc->suite.cprng.count); crypto_free_rng(rng); return err; } static int drbg_cavs_test(const struct drbg_testvec *test, int pr, const char *driver, u32 type, u32 mask) { int ret = -EAGAIN; struct crypto_rng *drng; struct drbg_test_data test_data; struct drbg_string addtl, pers, testentropy; unsigned char *buf = kzalloc(test->expectedlen, GFP_KERNEL); if (!buf) return -ENOMEM; drng = crypto_alloc_rng(driver, type, mask); if (IS_ERR(drng)) { printk(KERN_ERR "alg: drbg: could not allocate DRNG handle for " "%s\n", driver); kzfree(buf); return -ENOMEM; } test_data.testentropy = &testentropy; drbg_string_fill(&testentropy, test->entropy, test->entropylen); drbg_string_fill(&pers, test->pers, test->perslen); ret = crypto_drbg_reset_test(drng, &pers, &test_data); if (ret) { printk(KERN_ERR "alg: drbg: Failed to reset rng\n"); goto outbuf; } drbg_string_fill(&addtl, test->addtla, test->addtllen); if (pr) { drbg_string_fill(&testentropy, test->entpra, test->entprlen); ret = crypto_drbg_get_bytes_addtl_test(drng, buf, test->expectedlen, &addtl, &test_data); } else { ret = crypto_drbg_get_bytes_addtl(drng, buf, test->expectedlen, &addtl); } if (ret < 0) { printk(KERN_ERR "alg: drbg: could not obtain random data for " "driver %s\n", driver); goto outbuf; } drbg_string_fill(&addtl, test->addtlb, test->addtllen); if (pr) { drbg_string_fill(&testentropy, test->entprb, test->entprlen); ret = crypto_drbg_get_bytes_addtl_test(drng, buf, test->expectedlen, &addtl, &test_data); } else { ret = crypto_drbg_get_bytes_addtl(drng, buf, test->expectedlen, &addtl); } if (ret < 0) { printk(KERN_ERR "alg: drbg: could not obtain random data for " "driver %s\n", driver); goto outbuf; } ret = memcmp(test->expected, buf, test->expectedlen); outbuf: crypto_free_rng(drng); kzfree(buf); return ret; } static int alg_test_drbg(const struct alg_test_desc *desc, const char *driver, u32 type, u32 mask) { int err = 0; int pr = 0; int i = 0; const struct drbg_testvec *template = desc->suite.drbg.vecs; unsigned int tcount = desc->suite.drbg.count; if (0 == memcmp(driver, "drbg_pr_", 8)) pr = 1; for (i = 0; i < tcount; i++) { err = drbg_cavs_test(&template[i], pr, driver, type, mask); if (err) { printk(KERN_ERR "alg: drbg: Test %d failed for %s\n", i, driver); err = -EINVAL; break; } } return err; } static int do_test_kpp(struct crypto_kpp *tfm, const struct kpp_testvec *vec, const char *alg) { struct kpp_request *req; void *input_buf = NULL; void *output_buf = NULL; void *a_public = NULL; void *a_ss = NULL; void *shared_secret = NULL; struct crypto_wait wait; unsigned int out_len_max; int err = -ENOMEM; struct scatterlist src, dst; req = kpp_request_alloc(tfm, GFP_KERNEL); if (!req) return err; crypto_init_wait(&wait); err = crypto_kpp_set_secret(tfm, vec->secret, vec->secret_size); if (err < 0) goto free_req; out_len_max = crypto_kpp_maxsize(tfm); output_buf = kzalloc(out_len_max, GFP_KERNEL); if (!output_buf) { err = -ENOMEM; goto free_req; } /* Use appropriate parameter as base */ kpp_request_set_input(req, NULL, 0); sg_init_one(&dst, output_buf, out_len_max); kpp_request_set_output(req, &dst, out_len_max); kpp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, crypto_req_done, &wait); /* Compute party A's public key */ err = crypto_wait_req(crypto_kpp_generate_public_key(req), &wait); if (err) { pr_err("alg: %s: Party A: generate public key test failed. err %d\n", alg, err); goto free_output; } if (vec->genkey) { /* Save party A's public key */ a_public = kmemdup(sg_virt(req->dst), out_len_max, GFP_KERNEL); if (!a_public) { err = -ENOMEM; goto free_output; } } else { /* Verify calculated public key */ if (memcmp(vec->expected_a_public, sg_virt(req->dst), vec->expected_a_public_size)) { pr_err("alg: %s: Party A: generate public key test failed. Invalid output\n", alg); err = -EINVAL; goto free_output; } } /* Calculate shared secret key by using counter part (b) public key. */ input_buf = kmemdup(vec->b_public, vec->b_public_size, GFP_KERNEL); if (!input_buf) { err = -ENOMEM; goto free_output; } sg_init_one(&src, input_buf, vec->b_public_size); sg_init_one(&dst, output_buf, out_len_max); kpp_request_set_input(req, &src, vec->b_public_size); kpp_request_set_output(req, &dst, out_len_max); kpp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, crypto_req_done, &wait); err = crypto_wait_req(crypto_kpp_compute_shared_secret(req), &wait); if (err) { pr_err("alg: %s: Party A: compute shared secret test failed. err %d\n", alg, err); goto free_all; } if (vec->genkey) { /* Save the shared secret obtained by party A */ a_ss = kmemdup(sg_virt(req->dst), vec->expected_ss_size, GFP_KERNEL); if (!a_ss) { err = -ENOMEM; goto free_all; } /* * Calculate party B's shared secret by using party A's * public key. */ err = crypto_kpp_set_secret(tfm, vec->b_secret, vec->b_secret_size); if (err < 0) goto free_all; sg_init_one(&src, a_public, vec->expected_a_public_size); sg_init_one(&dst, output_buf, out_len_max); kpp_request_set_input(req, &src, vec->expected_a_public_size); kpp_request_set_output(req, &dst, out_len_max); kpp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, crypto_req_done, &wait); err = crypto_wait_req(crypto_kpp_compute_shared_secret(req), &wait); if (err) { pr_err("alg: %s: Party B: compute shared secret failed. err %d\n", alg, err); goto free_all; } shared_secret = a_ss; } else { shared_secret = (void *)vec->expected_ss; } /* * verify shared secret from which the user will derive * secret key by executing whatever hash it has chosen */ if (memcmp(shared_secret, sg_virt(req->dst), vec->expected_ss_size)) { pr_err("alg: %s: compute shared secret test failed. Invalid output\n", alg); err = -EINVAL; } free_all: kfree(a_ss); kfree(input_buf); free_output: kfree(a_public); kfree(output_buf); free_req: kpp_request_free(req); return err; } static int test_kpp(struct crypto_kpp *tfm, const char *alg, const struct kpp_testvec *vecs, unsigned int tcount) { int ret, i; for (i = 0; i < tcount; i++) { ret = do_test_kpp(tfm, vecs++, alg); if (ret) { pr_err("alg: %s: test failed on vector %d, err=%d\n", alg, i + 1, ret); return ret; } } return 0; } static int alg_test_kpp(const struct alg_test_desc *desc, const char *driver, u32 type, u32 mask) { struct crypto_kpp *tfm; int err = 0; tfm = crypto_alloc_kpp(driver, type, mask); if (IS_ERR(tfm)) { pr_err("alg: kpp: Failed to load tfm for %s: %ld\n", driver, PTR_ERR(tfm)); return PTR_ERR(tfm); } if (desc->suite.kpp.vecs) err = test_kpp(tfm, desc->alg, desc->suite.kpp.vecs, desc->suite.kpp.count); crypto_free_kpp(tfm); return err; } static u8 *test_pack_u32(u8 *dst, u32 val) { memcpy(dst, &val, sizeof(val)); return dst + sizeof(val); } static int test_akcipher_one(struct crypto_akcipher *tfm, const struct akcipher_testvec *vecs) { char *xbuf[XBUFSIZE]; struct akcipher_request *req; void *outbuf_enc = NULL; void *outbuf_dec = NULL; struct crypto_wait wait; unsigned int out_len_max, out_len = 0; int err = -ENOMEM; struct scatterlist src, dst, src_tab[3]; const char *m, *c; unsigned int m_size, c_size; const char *op; u8 *key, *ptr; if (testmgr_alloc_buf(xbuf)) return err; req = akcipher_request_alloc(tfm, GFP_KERNEL); if (!req) goto free_xbuf; crypto_init_wait(&wait); key = kmalloc(vecs->key_len + sizeof(u32) * 2 + vecs->param_len, GFP_KERNEL); if (!key) goto free_xbuf; memcpy(key, vecs->key, vecs->key_len); ptr = key + vecs->key_len; ptr = test_pack_u32(ptr, vecs->algo); ptr = test_pack_u32(ptr, vecs->param_len); memcpy(ptr, vecs->params, vecs->param_len); if (vecs->public_key_vec) err = crypto_akcipher_set_pub_key(tfm, key, vecs->key_len); else err = crypto_akcipher_set_priv_key(tfm, key, vecs->key_len); if (err) goto free_req; /* * First run test which do not require a private key, such as * encrypt or verify. */ err = -ENOMEM; out_len_max = crypto_akcipher_maxsize(tfm); outbuf_enc = kzalloc(out_len_max, GFP_KERNEL); if (!outbuf_enc) goto free_req; if (!vecs->siggen_sigver_test) { m = vecs->m; m_size = vecs->m_size; c = vecs->c; c_size = vecs->c_size; op = "encrypt"; } else { /* Swap args so we could keep plaintext (digest) * in vecs->m, and cooked signature in vecs->c. */ m = vecs->c; /* signature */ m_size = vecs->c_size; c = vecs->m; /* digest */ c_size = vecs->m_size; op = "verify"; } if (WARN_ON(m_size > PAGE_SIZE)) goto free_all; memcpy(xbuf[0], m, m_size); sg_init_table(src_tab, 3); sg_set_buf(&src_tab[0], xbuf[0], 8); sg_set_buf(&src_tab[1], xbuf[0] + 8, m_size - 8); if (vecs->siggen_sigver_test) { if (WARN_ON(c_size > PAGE_SIZE)) goto free_all; memcpy(xbuf[1], c, c_size); sg_set_buf(&src_tab[2], xbuf[1], c_size); akcipher_request_set_crypt(req, src_tab, NULL, m_size, c_size); } else { sg_init_one(&dst, outbuf_enc, out_len_max); akcipher_request_set_crypt(req, src_tab, &dst, m_size, out_len_max); } akcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG, crypto_req_done, &wait); err = crypto_wait_req(vecs->siggen_sigver_test ? /* Run asymmetric signature verification */ crypto_akcipher_verify(req) : /* Run asymmetric encrypt */ crypto_akcipher_encrypt(req), &wait); if (err) { pr_err("alg: akcipher: %s test failed. err %d\n", op, err); goto free_all; } if (!vecs->siggen_sigver_test) { if (req->dst_len != c_size) { pr_err("alg: akcipher: %s test failed. Invalid output len\n", op); err = -EINVAL; goto free_all; } /* verify that encrypted message is equal to expected */ if (memcmp(c, outbuf_enc, c_size) != 0) { pr_err("alg: akcipher: %s test failed. Invalid output\n", op); hexdump(outbuf_enc, c_size); err = -EINVAL; goto free_all; } } /* * Don't invoke (decrypt or sign) test which require a private key * for vectors with only a public key. */ if (vecs->public_key_vec) { err = 0; goto free_all; } outbuf_dec = kzalloc(out_len_max, GFP_KERNEL); if (!outbuf_dec) { err = -ENOMEM; goto free_all; } op = vecs->siggen_sigver_test ? "sign" : "decrypt"; if (WARN_ON(c_size > PAGE_SIZE)) goto free_all; memcpy(xbuf[0], c, c_size); sg_init_one(&src, xbuf[0], c_size); sg_init_one(&dst, outbuf_dec, out_len_max); crypto_init_wait(&wait); akcipher_request_set_crypt(req, &src, &dst, c_size, out_len_max); err = crypto_wait_req(vecs->siggen_sigver_test ? /* Run asymmetric signature generation */ crypto_akcipher_sign(req) : /* Run asymmetric decrypt */ crypto_akcipher_decrypt(req), &wait); if (err) { pr_err("alg: akcipher: %s test failed. err %d\n", op, err); goto free_all; } out_len = req->dst_len; if (out_len < m_size) { pr_err("alg: akcipher: %s test failed. Invalid output len %u\n", op, out_len); err = -EINVAL; goto free_all; } /* verify that decrypted message is equal to the original msg */ if (memchr_inv(outbuf_dec, 0, out_len - m_size) || memcmp(m, outbuf_dec + out_len - m_size, m_size)) { pr_err("alg: akcipher: %s test failed. Invalid output\n", op); hexdump(outbuf_dec, out_len); err = -EINVAL; } free_all: kfree(outbuf_dec); kfree(outbuf_enc); free_req: akcipher_request_free(req); kfree(key); free_xbuf: testmgr_free_buf(xbuf); return err; } static int test_akcipher(struct crypto_akcipher *tfm, const char *alg, const struct akcipher_testvec *vecs, unsigned int tcount) { const char *algo = crypto_tfm_alg_driver_name(crypto_akcipher_tfm(tfm)); int ret, i; for (i = 0; i < tcount; i++) { ret = test_akcipher_one(tfm, vecs++); if (!ret) continue; pr_err("alg: akcipher: test %d failed for %s, err=%d\n", i + 1, algo, ret); return ret; } return 0; } static int alg_test_akcipher(const struct alg_test_desc *desc, const char *driver, u32 type, u32 mask) { struct crypto_akcipher *tfm; int err = 0; tfm = crypto_alloc_akcipher(driver, type, mask); if (IS_ERR(tfm)) { pr_err("alg: akcipher: Failed to load tfm for %s: %ld\n", driver, PTR_ERR(tfm)); return PTR_ERR(tfm); } if (desc->suite.akcipher.vecs) err = test_akcipher(tfm, desc->alg, desc->suite.akcipher.vecs, desc->suite.akcipher.count); crypto_free_akcipher(tfm); return err; } static int alg_test_null(const struct alg_test_desc *desc, const char *driver, u32 type, u32 mask) { return 0; } #define ____VECS(tv) .vecs = tv, .count = ARRAY_SIZE(tv) #define __VECS(tv) { ____VECS(tv) } /* Please keep this list sorted by algorithm name. */ static const struct alg_test_desc alg_test_descs[] = { { .alg = "adiantum(xchacha12,aes)", .generic_driver = "adiantum(xchacha12-generic,aes-generic,nhpoly1305-generic)", .test = alg_test_skcipher, .suite = { .cipher = __VECS(adiantum_xchacha12_aes_tv_template) }, }, { .alg = "adiantum(xchacha20,aes)", .generic_driver = "adiantum(xchacha20-generic,aes-generic,nhpoly1305-generic)", .test = alg_test_skcipher, .suite = { .cipher = __VECS(adiantum_xchacha20_aes_tv_template) }, }, { .alg = "aegis128", .test = alg_test_aead, .suite = { .aead = __VECS(aegis128_tv_template) } }, { .alg = "ansi_cprng", .test = alg_test_cprng, .suite = { .cprng = __VECS(ansi_cprng_aes_tv_template) } }, { .alg = "authenc(hmac(md5),ecb(cipher_null))", .test = alg_test_aead, .suite = { .aead = __VECS(hmac_md5_ecb_cipher_null_tv_template) } }, { .alg = "authenc(hmac(sha1),cbc(aes))", .test = alg_test_aead, .fips_allowed = 1, .suite = { .aead = __VECS(hmac_sha1_aes_cbc_tv_temp) } }, { .alg = "authenc(hmac(sha1),cbc(des))", .test = alg_test_aead, .suite = { .aead = __VECS(hmac_sha1_des_cbc_tv_temp) } }, { .alg = "authenc(hmac(sha1),cbc(des3_ede))", .test = alg_test_aead, .fips_allowed = 1, .suite = { .aead = __VECS(hmac_sha1_des3_ede_cbc_tv_temp) } }, { .alg = "authenc(hmac(sha1),ctr(aes))", .test = alg_test_null, .fips_allowed = 1, }, { .alg = "authenc(hmac(sha1),ecb(cipher_null))", .test = alg_test_aead, .suite = { .aead = __VECS(hmac_sha1_ecb_cipher_null_tv_temp) } }, { .alg = "authenc(hmac(sha1),rfc3686(ctr(aes)))", .test = alg_test_null, .fips_allowed = 1, }, { .alg = "authenc(hmac(sha224),cbc(des))", .test = alg_test_aead, .suite = { .aead = __VECS(hmac_sha224_des_cbc_tv_temp) } }, { .alg = "authenc(hmac(sha224),cbc(des3_ede))", .test = alg_test_aead, .fips_allowed = 1, .suite = { .aead = __VECS(hmac_sha224_des3_ede_cbc_tv_temp) } }, { .alg = "authenc(hmac(sha256),cbc(aes))", .test = alg_test_aead, .fips_allowed = 1, .suite = { .aead = __VECS(hmac_sha256_aes_cbc_tv_temp) } }, { .alg = "authenc(hmac(sha256),cbc(des))", .test = alg_test_aead, .suite = { .aead = __VECS(hmac_sha256_des_cbc_tv_temp) } }, { .alg = "authenc(hmac(sha256),cbc(des3_ede))", .test = alg_test_aead, .fips_allowed = 1, .suite = { .aead = __VECS(hmac_sha256_des3_ede_cbc_tv_temp) } }, { .alg = "authenc(hmac(sha256),ctr(aes))", .test = alg_test_null, .fips_allowed = 1, }, { .alg = "authenc(hmac(sha256),rfc3686(ctr(aes)))", .test = alg_test_null, .fips_allowed = 1, }, { .alg = "authenc(hmac(sha384),cbc(des))", .test = alg_test_aead, .suite = { .aead = __VECS(hmac_sha384_des_cbc_tv_temp) } }, { .alg = "authenc(hmac(sha384),cbc(des3_ede))", .test = alg_test_aead, .fips_allowed = 1, .suite = { .aead = __VECS(hmac_sha384_des3_ede_cbc_tv_temp) } }, { .alg = "authenc(hmac(sha384),ctr(aes))", .test = alg_test_null, .fips_allowed = 1, }, { .alg = "authenc(hmac(sha384),rfc3686(ctr(aes)))", .test = alg_test_null, .fips_allowed = 1, }, { .alg = "authenc(hmac(sha512),cbc(aes))", .fips_allowed = 1, .test = alg_test_aead, .suite = { .aead = __VECS(hmac_sha512_aes_cbc_tv_temp) } }, { .alg = "authenc(hmac(sha512),cbc(des))", .test = alg_test_aead, .suite = { .aead = __VECS(hmac_sha512_des_cbc_tv_temp) } }, { .alg = "authenc(hmac(sha512),cbc(des3_ede))", .test = alg_test_aead, .fips_allowed = 1, .suite = { .aead = __VECS(hmac_sha512_des3_ede_cbc_tv_temp) } }, { .alg = "authenc(hmac(sha512),ctr(aes))", .test = alg_test_null, .fips_allowed = 1, }, { .alg = "authenc(hmac(sha512),rfc3686(ctr(aes)))", .test = alg_test_null, .fips_allowed = 1, }, { .alg = "blake2b-160", .test = alg_test_hash, .fips_allowed = 0, .suite = { .hash = __VECS(blake2b_160_tv_template) } }, { .alg = "blake2b-256", .test = alg_test_hash, .fips_allowed = 0, .suite = { .hash = __VECS(blake2b_256_tv_template) } }, { .alg = "blake2b-384", .test = alg_test_hash, .fips_allowed = 0, .suite = { .hash = __VECS(blake2b_384_tv_template) } }, { .alg = "blake2b-512", .test = alg_test_hash, .fips_allowed = 0, .suite = { .hash = __VECS(blake2b_512_tv_template) } }, { .alg = "blake2s-128", .test = alg_test_hash, .suite = { .hash = __VECS(blakes2s_128_tv_template) } }, { .alg = "blake2s-160", .test = alg_test_hash, .suite = { .hash = __VECS(blakes2s_160_tv_template) } }, { .alg = "blake2s-224", .test = alg_test_hash, .suite = { .hash = __VECS(blakes2s_224_tv_template) } }, { .alg = "blake2s-256", .test = alg_test_hash, .suite = { .hash = __VECS(blakes2s_256_tv_template) } }, { .alg = "cbc(aes)", .test = alg_test_skcipher, .fips_allowed = 1, .suite = { .cipher = __VECS(aes_cbc_tv_template) }, }, { .alg = "cbc(anubis)", .test = alg_test_skcipher, .suite = { .cipher = __VECS(anubis_cbc_tv_template) }, }, { .alg = "cbc(blowfish)", .test = alg_test_skcipher, .suite = { .cipher = __VECS(bf_cbc_tv_template) }, }, { .alg = "cbc(camellia)", .test = alg_test_skcipher, .suite = { .cipher = __VECS(camellia_cbc_tv_template) }, }, { .alg = "cbc(cast5)", .test = alg_test_skcipher, .suite = { .cipher = __VECS(cast5_cbc_tv_template) }, }, { .alg = "cbc(cast6)", .test = alg_test_skcipher, .suite = { .cipher = __VECS(cast6_cbc_tv_template) }, }, { .alg = "cbc(des)", .test = alg_test_skcipher, .suite = { .cipher = __VECS(des_cbc_tv_template) }, }, { .alg = "cbc(des3_ede)", .test = alg_test_skcipher, .fips_allowed = 1, .suite = { .cipher = __VECS(des3_ede_cbc_tv_template) }, }, { /* Same as cbc(aes) except the key is stored in * hardware secure memory which we reference by index */ .alg = "cbc(paes)", .test = alg_test_null, .fips_allowed = 1, }, { /* Same as cbc(sm4) except the key is stored in * hardware secure memory which we reference by index */ .alg = "cbc(psm4)", .test = alg_test_null, }, { .alg = "cbc(serpent)", .test = alg_test_skcipher, .suite = { .cipher = __VECS(serpent_cbc_tv_template) }, }, { .alg = "cbc(sm4)", .test = alg_test_skcipher, .suite = { .cipher = __VECS(sm4_cbc_tv_template) } }, { .alg = "cbc(twofish)", .test = alg_test_skcipher, .suite = { .cipher = __VECS(tf_cbc_tv_template) }, }, { #if IS_ENABLED(CONFIG_CRYPTO_PAES_S390) .alg = "cbc-paes-s390", .fips_allowed = 1, .test = alg_test_skcipher, .suite = { .cipher = __VECS(aes_cbc_tv_template) } }, { #endif .alg = "cbcmac(aes)", .fips_allowed = 1, .test = alg_test_hash, .suite = { .hash = __VECS(aes_cbcmac_tv_template) } }, { .alg = "ccm(aes)", .generic_driver = "ccm_base(ctr(aes-generic),cbcmac(aes-generic))", .test = alg_test_aead, .fips_allowed = 1, .suite = { .aead = { ____VECS(aes_ccm_tv_template), .einval_allowed = 1, } } }, { .alg = "cfb(aes)", .test = alg_test_skcipher, .fips_allowed = 1, .suite = { .cipher = __VECS(aes_cfb_tv_template) }, }, { .alg = "cfb(sm4)", .test = alg_test_skcipher, .suite = { .cipher = __VECS(sm4_cfb_tv_template) } }, { .alg = "chacha20", .test = alg_test_skcipher, .suite = { .cipher = __VECS(chacha20_tv_template) }, }, { .alg = "cmac(aes)", .fips_allowed = 1, .test = alg_test_hash, .suite = { .hash = __VECS(aes_cmac128_tv_template) } }, { .alg = "cmac(des3_ede)", .fips_allowed = 1, .test = alg_test_hash, .suite = { .hash = __VECS(des3_ede_cmac64_tv_template) } }, { .alg = "compress_null", .test = alg_test_null, }, { .alg = "crc32", .test = alg_test_hash, .fips_allowed = 1, .suite = { .hash = __VECS(crc32_tv_template) } }, { .alg = "crc32c", .test = alg_test_crc32c, .fips_allowed = 1, .suite = { .hash = __VECS(crc32c_tv_template) } }, { .alg = "crct10dif", .test = alg_test_hash, .fips_allowed = 1, .suite = { .hash = __VECS(crct10dif_tv_template) } }, { .alg = "ctr(aes)", .test = alg_test_skcipher, .fips_allowed = 1, .suite = { .cipher = __VECS(aes_ctr_tv_template) } }, { .alg = "ctr(blowfish)", .test = alg_test_skcipher, .suite = { .cipher = __VECS(bf_ctr_tv_template) } }, { .alg = "ctr(camellia)", .test = alg_test_skcipher, .suite = { .cipher = __VECS(camellia_ctr_tv_template) } }, { .alg = "ctr(cast5)", .test = alg_test_skcipher, .suite = { .cipher = __VECS(cast5_ctr_tv_template) } }, { .alg = "ctr(cast6)", .test = alg_test_skcipher, .suite = { .cipher = __VECS(cast6_ctr_tv_template) } }, { .alg = "ctr(des)", .test = alg_test_skcipher, .suite = { .cipher = __VECS(des_ctr_tv_template) } }, { .alg = "ctr(des3_ede)", .test = alg_test_skcipher, .fips_allowed = 1, .suite = { .cipher = __VECS(des3_ede_ctr_tv_template) } }, { /* Same as ctr(aes) except the key is stored in * hardware secure memory which we reference by index */ .alg = "ctr(paes)", .test = alg_test_null, .fips_allowed = 1, }, { /* Same as ctr(sm4) except the key is stored in * hardware secure memory which we reference by index */ .alg = "ctr(psm4)", .test = alg_test_null, }, { .alg = "ctr(serpent)", .test = alg_test_skcipher, .suite = { .cipher = __VECS(serpent_ctr_tv_template) } }, { .alg = "ctr(sm4)", .test = alg_test_skcipher, .suite = { .cipher = __VECS(sm4_ctr_tv_template) } }, { .alg = "ctr(twofish)", .test = alg_test_skcipher, .suite = { .cipher = __VECS(tf_ctr_tv_template) } }, { #if IS_ENABLED(CONFIG_CRYPTO_PAES_S390) .alg = "ctr-paes-s390", .fips_allowed = 1, .test = alg_test_skcipher, .suite = { .cipher = __VECS(aes_ctr_tv_template) } }, { #endif .alg = "cts(cbc(aes))", .test = alg_test_skcipher, .fips_allowed = 1, .suite = { .cipher = __VECS(cts_mode_tv_template) } }, { /* Same as cts(cbc((aes)) except the key is stored in * hardware secure memory which we reference by index */ .alg = "cts(cbc(paes))", .test = alg_test_null, .fips_allowed = 1, }, { .alg = "curve25519", .test = alg_test_kpp, .suite = { .kpp = __VECS(curve25519_tv_template) } }, { .alg = "deflate", .test = alg_test_comp, .fips_allowed = 1, .suite = { .comp = { .comp = __VECS(deflate_comp_tv_template), .decomp = __VECS(deflate_decomp_tv_template) } } }, { .alg = "dh", .test = alg_test_kpp, .fips_allowed = 1, .suite = { .kpp = __VECS(dh_tv_template) } }, { .alg = "digest_null", .test = alg_test_null, }, { .alg = "drbg_nopr_ctr_aes128", .test = alg_test_drbg, .fips_allowed = 1, .suite = { .drbg = __VECS(drbg_nopr_ctr_aes128_tv_template) } }, { .alg = "drbg_nopr_ctr_aes192", .test = alg_test_drbg, .fips_allowed = 1, .suite = { .drbg = __VECS(drbg_nopr_ctr_aes192_tv_template) } }, { .alg = "drbg_nopr_ctr_aes256", .test = alg_test_drbg, .fips_allowed = 1, .suite = { .drbg = __VECS(drbg_nopr_ctr_aes256_tv_template) } }, { /* * There is no need to specifically test the DRBG with every * backend cipher -- covered by drbg_nopr_hmac_sha256 test */ .alg = "drbg_nopr_hmac_sha1", .fips_allowed = 1, .test = alg_test_null, }, { .alg = "drbg_nopr_hmac_sha256", .test = alg_test_drbg, .fips_allowed = 1, .suite = { .drbg = __VECS(drbg_nopr_hmac_sha256_tv_template) } }, { /* covered by drbg_nopr_hmac_sha256 test */ .alg = "drbg_nopr_hmac_sha384", .fips_allowed = 1, .test = alg_test_null, }, { .alg = "drbg_nopr_hmac_sha512", .test = alg_test_null, .fips_allowed = 1, }, { .alg = "drbg_nopr_sha1", .fips_allowed = 1, .test = alg_test_null, }, { .alg = "drbg_nopr_sha256", .test = alg_test_drbg, .fips_allowed = 1, .suite = { .drbg = __VECS(drbg_nopr_sha256_tv_template) } }, { /* covered by drbg_nopr_sha256 test */ .alg = "drbg_nopr_sha384", .fips_allowed = 1, .test = alg_test_null, }, { .alg = "drbg_nopr_sha512", .fips_allowed = 1, .test = alg_test_null, }, { .alg = "drbg_pr_ctr_aes128", .test = alg_test_drbg, .fips_allowed = 1, .suite = { .drbg = __VECS(drbg_pr_ctr_aes128_tv_template) } }, { /* covered by drbg_pr_ctr_aes128 test */ .alg = "drbg_pr_ctr_aes192", .fips_allowed = 1, .test = alg_test_null, }, { .alg = "drbg_pr_ctr_aes256", .fips_allowed = 1, .test = alg_test_null, }, { .alg = "drbg_pr_hmac_sha1", .fips_allowed = 1, .test = alg_test_null, }, { .alg = "drbg_pr_hmac_sha256", .test = alg_test_drbg, .fips_allowed = 1, .suite = { .drbg = __VECS(drbg_pr_hmac_sha256_tv_template) } }, { /* covered by drbg_pr_hmac_sha256 test */ .alg = "drbg_pr_hmac_sha384", .fips_allowed = 1, .test = alg_test_null, }, { .alg = "drbg_pr_hmac_sha512", .test = alg_test_null, .fips_allowed = 1, }, { .alg = "drbg_pr_sha1", .fips_allowed = 1, .test = alg_test_null, }, { .alg = "drbg_pr_sha256", .test = alg_test_drbg, .fips_allowed = 1, .suite = { .drbg = __VECS(drbg_pr_sha256_tv_template) } }, { /* covered by drbg_pr_sha256 test */ .alg = "drbg_pr_sha384", .fips_allowed = 1, .test = alg_test_null, }, { .alg = "drbg_pr_sha512", .fips_allowed = 1, .test = alg_test_null, }, { .alg = "ecb(aes)", .test = alg_test_skcipher, .fips_allowed = 1, .suite = { .cipher = __VECS(aes_tv_template) } }, { .alg = "ecb(anubis)", .test = alg_test_skcipher, .suite = { .cipher = __VECS(anubis_tv_template) } }, { .alg = "ecb(arc4)", .generic_driver = "ecb(arc4)-generic", .test = alg_test_skcipher, .suite = { .cipher = __VECS(arc4_tv_template) } }, { .alg = "ecb(blowfish)", .test = alg_test_skcipher, .suite = { .cipher = __VECS(bf_tv_template) } }, { .alg = "ecb(camellia)", .test = alg_test_skcipher, .suite = { .cipher = __VECS(camellia_tv_template) } }, { .alg = "ecb(cast5)", .test = alg_test_skcipher, .suite = { .cipher = __VECS(cast5_tv_template) } }, { .alg = "ecb(cast6)", .test = alg_test_skcipher, .suite = { .cipher = __VECS(cast6_tv_template) } }, { .alg = "ecb(cipher_null)", .test = alg_test_null, .fips_allowed = 1, }, { .alg = "ecb(des)", .test = alg_test_skcipher, .suite = { .cipher = __VECS(des_tv_template) } }, { .alg = "ecb(des3_ede)", .test = alg_test_skcipher, .fips_allowed = 1, .suite = { .cipher = __VECS(des3_ede_tv_template) } }, { .alg = "ecb(fcrypt)", .test = alg_test_skcipher, .suite = { .cipher = { .vecs = fcrypt_pcbc_tv_template, .count = 1 } } }, { .alg = "ecb(khazad)", .test = alg_test_skcipher, .suite = { .cipher = __VECS(khazad_tv_template) } }, { /* Same as ecb(aes) except the key is stored in * hardware secure memory which we reference by index */ .alg = "ecb(paes)", .test = alg_test_null, .fips_allowed = 1, }, { .alg = "ecb(seed)", .test = alg_test_skcipher, .suite = { .cipher = __VECS(seed_tv_template) } }, { .alg = "ecb(serpent)", .test = alg_test_skcipher, .suite = { .cipher = __VECS(serpent_tv_template) } }, { .alg = "ecb(sm4)", .test = alg_test_skcipher, .suite = { .cipher = __VECS(sm4_tv_template) } }, { .alg = "ecb(tea)", .test = alg_test_skcipher, .suite = { .cipher = __VECS(tea_tv_template) } }, { .alg = "ecb(tnepres)", .test = alg_test_skcipher, .suite = { .cipher = __VECS(tnepres_tv_template) } }, { .alg = "ecb(twofish)", .test = alg_test_skcipher, .suite = { .cipher = __VECS(tf_tv_template) } }, { .alg = "ecb(xeta)", .test = alg_test_skcipher, .suite = { .cipher = __VECS(xeta_tv_template) } }, { .alg = "ecb(xtea)", .test = alg_test_skcipher, .suite = { .cipher = __VECS(xtea_tv_template) } }, { #if IS_ENABLED(CONFIG_CRYPTO_PAES_S390) .alg = "ecb-paes-s390", .fips_allowed = 1, .test = alg_test_skcipher, .suite = { .cipher = __VECS(aes_tv_template) } }, { #endif .alg = "ecdh", .test = alg_test_kpp, .fips_allowed = 1, .suite = { .kpp = __VECS(ecdh_tv_template) } }, { .alg = "ecrdsa", .test = alg_test_akcipher, .suite = { .akcipher = __VECS(ecrdsa_tv_template) } }, { .alg = "essiv(authenc(hmac(sha256),cbc(aes)),sha256)", .test = alg_test_aead, .fips_allowed = 1, .suite = { .aead = __VECS(essiv_hmac_sha256_aes_cbc_tv_temp) } }, { .alg = "essiv(cbc(aes),sha256)", .test = alg_test_skcipher, .fips_allowed = 1, .suite = { .cipher = __VECS(essiv_aes_cbc_tv_template) } }, { .alg = "gcm(aes)", .generic_driver = "gcm_base(ctr(aes-generic),ghash-generic)", .test = alg_test_aead, .fips_allowed = 1, .suite = { .aead = __VECS(aes_gcm_tv_template) } }, { .alg = "ghash", .test = alg_test_hash, .fips_allowed = 1, .suite = { .hash = __VECS(ghash_tv_template) } }, { .alg = "hmac(md5)", .test = alg_test_hash, .suite = { .hash = __VECS(hmac_md5_tv_template) } }, { .alg = "hmac(rmd128)", .test = alg_test_hash, .suite = { .hash = __VECS(hmac_rmd128_tv_template) } }, { .alg = "hmac(rmd160)", .test = alg_test_hash, .suite = { .hash = __VECS(hmac_rmd160_tv_template) } }, { .alg = "hmac(sha1)", .test = alg_test_hash, .fips_allowed = 1, .suite = { .hash = __VECS(hmac_sha1_tv_template) } }, { .alg = "hmac(sha224)", .test = alg_test_hash, .fips_allowed = 1, .suite = { .hash = __VECS(hmac_sha224_tv_template) } }, { .alg = "hmac(sha256)", .test = alg_test_hash, .fips_allowed = 1, .suite = { .hash = __VECS(hmac_sha256_tv_template) } }, { .alg = "hmac(sha3-224)", .test = alg_test_hash, .fips_allowed = 1, .suite = { .hash = __VECS(hmac_sha3_224_tv_template) } }, { .alg = "hmac(sha3-256)", .test = alg_test_hash, .fips_allowed = 1, .suite = { .hash = __VECS(hmac_sha3_256_tv_template) } }, { .alg = "hmac(sha3-384)", .test = alg_test_hash, .fips_allowed = 1, .suite = { .hash = __VECS(hmac_sha3_384_tv_template) } }, { .alg = "hmac(sha3-512)", .test = alg_test_hash, .fips_allowed = 1, .suite = { .hash = __VECS(hmac_sha3_512_tv_template) } }, { .alg = "hmac(sha384)", .test = alg_test_hash, .fips_allowed = 1, .suite = { .hash = __VECS(hmac_sha384_tv_template) } }, { .alg = "hmac(sha512)", .test = alg_test_hash, .fips_allowed = 1, .suite = { .hash = __VECS(hmac_sha512_tv_template) } }, { .alg = "hmac(sm3)", .test = alg_test_hash, .suite = { .hash = __VECS(hmac_sm3_tv_template) } }, { .alg = "hmac(streebog256)", .test = alg_test_hash, .suite = { .hash = __VECS(hmac_streebog256_tv_template) } }, { .alg = "hmac(streebog512)", .test = alg_test_hash, .suite = { .hash = __VECS(hmac_streebog512_tv_template) } }, { .alg = "jitterentropy_rng", .fips_allowed = 1, .test = alg_test_null, }, { .alg = "kw(aes)", .test = alg_test_skcipher, .fips_allowed = 1, .suite = { .cipher = __VECS(aes_kw_tv_template) } }, { .alg = "lrw(aes)", .generic_driver = "lrw(ecb(aes-generic))", .test = alg_test_skcipher, .suite = { .cipher = __VECS(aes_lrw_tv_template) } }, { .alg = "lrw(camellia)", .generic_driver = "lrw(ecb(camellia-generic))", .test = alg_test_skcipher, .suite = { .cipher = __VECS(camellia_lrw_tv_template) } }, { .alg = "lrw(cast6)", .generic_driver = "lrw(ecb(cast6-generic))", .test = alg_test_skcipher, .suite = { .cipher = __VECS(cast6_lrw_tv_template) } }, { .alg = "lrw(serpent)", .generic_driver = "lrw(ecb(serpent-generic))", .test = alg_test_skcipher, .suite = { .cipher = __VECS(serpent_lrw_tv_template) } }, { .alg = "lrw(twofish)", .generic_driver = "lrw(ecb(twofish-generic))", .test = alg_test_skcipher, .suite = { .cipher = __VECS(tf_lrw_tv_template) } }, { .alg = "lz4", .test = alg_test_comp, .fips_allowed = 1, .suite = { .comp = { .comp = __VECS(lz4_comp_tv_template), .decomp = __VECS(lz4_decomp_tv_template) } } }, { .alg = "lz4hc", .test = alg_test_comp, .fips_allowed = 1, .suite = { .comp = { .comp = __VECS(lz4hc_comp_tv_template), .decomp = __VECS(lz4hc_decomp_tv_template) } } }, { .alg = "lzo", .test = alg_test_comp, .fips_allowed = 1, .suite = { .comp = { .comp = __VECS(lzo_comp_tv_template), .decomp = __VECS(lzo_decomp_tv_template) } } }, { .alg = "lzo-rle", .test = alg_test_comp, .fips_allowed = 1, .suite = { .comp = { .comp = __VECS(lzorle_comp_tv_template), .decomp = __VECS(lzorle_decomp_tv_template) } } }, { .alg = "md4", .test = alg_test_hash, .suite = { .hash = __VECS(md4_tv_template) } }, { .alg = "md5", .test = alg_test_hash, .suite = { .hash = __VECS(md5_tv_template) } }, { .alg = "michael_mic", .test = alg_test_hash, .suite = { .hash = __VECS(michael_mic_tv_template) } }, { .alg = "nhpoly1305", .test = alg_test_hash, .suite = { .hash = __VECS(nhpoly1305_tv_template) } }, { .alg = "ofb(aes)", .test = alg_test_skcipher, .fips_allowed = 1, .suite = { .cipher = __VECS(aes_ofb_tv_template) } }, { /* Same as ofb(aes) except the key is stored in * hardware secure memory which we reference by index */ .alg = "ofb(paes)", .test = alg_test_null, .fips_allowed = 1, }, { .alg = "ofb(sm4)", .test = alg_test_skcipher, .suite = { .cipher = __VECS(sm4_ofb_tv_template) } }, { .alg = "pcbc(fcrypt)", .test = alg_test_skcipher, .suite = { .cipher = __VECS(fcrypt_pcbc_tv_template) } }, { .alg = "pkcs1pad(rsa,sha224)", .test = alg_test_null, .fips_allowed = 1, }, { .alg = "pkcs1pad(rsa,sha256)", .test = alg_test_akcipher, .fips_allowed = 1, .suite = { .akcipher = __VECS(pkcs1pad_rsa_tv_template) } }, { .alg = "pkcs1pad(rsa,sha384)", .test = alg_test_null, .fips_allowed = 1, }, { .alg = "pkcs1pad(rsa,sha512)", .test = alg_test_null, .fips_allowed = 1, }, { .alg = "poly1305", .test = alg_test_hash, .suite = { .hash = __VECS(poly1305_tv_template) } }, { .alg = "rfc3686(ctr(aes))", .test = alg_test_skcipher, .fips_allowed = 1, .suite = { .cipher = __VECS(aes_ctr_rfc3686_tv_template) } }, { .alg = "rfc3686(ctr(sm4))", .test = alg_test_skcipher, .suite = { .cipher = __VECS(sm4_ctr_rfc3686_tv_template) } }, { .alg = "rfc4106(gcm(aes))", .generic_driver = "rfc4106(gcm_base(ctr(aes-generic),ghash-generic))", .test = alg_test_aead, .fips_allowed = 1, .suite = { .aead = { ____VECS(aes_gcm_rfc4106_tv_template), .einval_allowed = 1, .esp_aad = 1, } } }, { .alg = "rfc4309(ccm(aes))", .generic_driver = "rfc4309(ccm_base(ctr(aes-generic),cbcmac(aes-generic)))", .test = alg_test_aead, .fips_allowed = 1, .suite = { .aead = { ____VECS(aes_ccm_rfc4309_tv_template), .einval_allowed = 1, .esp_aad = 1, } } }, { .alg = "rfc4543(gcm(aes))", .generic_driver = "rfc4543(gcm_base(ctr(aes-generic),ghash-generic))", .test = alg_test_aead, .suite = { .aead = { ____VECS(aes_gcm_rfc4543_tv_template), .einval_allowed = 1, } } }, { .alg = "rfc7539(chacha20,poly1305)", .test = alg_test_aead, .suite = { .aead = __VECS(rfc7539_tv_template) } }, { .alg = "rfc7539esp(chacha20,poly1305)", .test = alg_test_aead, .suite = { .aead = { ____VECS(rfc7539esp_tv_template), .einval_allowed = 1, .esp_aad = 1, } } }, { .alg = "rmd128", .test = alg_test_hash, .suite = { .hash = __VECS(rmd128_tv_template) } }, { .alg = "rmd160", .test = alg_test_hash, .suite = { .hash = __VECS(rmd160_tv_template) } }, { .alg = "rmd256", .test = alg_test_hash, .suite = { .hash = __VECS(rmd256_tv_template) } }, { .alg = "rmd320", .test = alg_test_hash, .suite = { .hash = __VECS(rmd320_tv_template) } }, { .alg = "rsa", .test = alg_test_akcipher, .fips_allowed = 1, .suite = { .akcipher = __VECS(rsa_tv_template) } }, { .alg = "salsa20", .test = alg_test_skcipher, .suite = { .cipher = __VECS(salsa20_stream_tv_template) } }, { .alg = "sha1", .test = alg_test_hash, .fips_allowed = 1, .suite = { .hash = __VECS(sha1_tv_template) } }, { .alg = "sha224", .test = alg_test_hash, .fips_allowed = 1, .suite = { .hash = __VECS(sha224_tv_template) } }, { .alg = "sha256", .test = alg_test_hash, .fips_allowed = 1, .suite = { .hash = __VECS(sha256_tv_template) } }, { .alg = "sha3-224", .test = alg_test_hash, .fips_allowed = 1, .suite = { .hash = __VECS(sha3_224_tv_template) } }, { .alg = "sha3-256", .test = alg_test_hash, .fips_allowed = 1, .suite = { .hash = __VECS(sha3_256_tv_template) } }, { .alg = "sha3-384", .test = alg_test_hash, .fips_allowed = 1, .suite = { .hash = __VECS(sha3_384_tv_template) } }, { .alg = "sha3-512", .test = alg_test_hash, .fips_allowed = 1, .suite = { .hash = __VECS(sha3_512_tv_template) } }, { .alg = "sha384", .test = alg_test_hash, .fips_allowed = 1, .suite = { .hash = __VECS(sha384_tv_template) } }, { .alg = "sha512", .test = alg_test_hash, .fips_allowed = 1, .suite = { .hash = __VECS(sha512_tv_template) } }, { .alg = "sm3", .test = alg_test_hash, .suite = { .hash = __VECS(sm3_tv_template) } }, { .alg = "streebog256", .test = alg_test_hash, .suite = { .hash = __VECS(streebog256_tv_template) } }, { .alg = "streebog512", .test = alg_test_hash, .suite = { .hash = __VECS(streebog512_tv_template) } }, { .alg = "tgr128", .test = alg_test_hash, .suite = { .hash = __VECS(tgr128_tv_template) } }, { .alg = "tgr160", .test = alg_test_hash, .suite = { .hash = __VECS(tgr160_tv_template) } }, { .alg = "tgr192", .test = alg_test_hash, .suite = { .hash = __VECS(tgr192_tv_template) } }, { .alg = "vmac64(aes)", .test = alg_test_hash, .suite = { .hash = __VECS(vmac64_aes_tv_template) } }, { .alg = "wp256", .test = alg_test_hash, .suite = { .hash = __VECS(wp256_tv_template) } }, { .alg = "wp384", .test = alg_test_hash, .suite = { .hash = __VECS(wp384_tv_template) } }, { .alg = "wp512", .test = alg_test_hash, .suite = { .hash = __VECS(wp512_tv_template) } }, { .alg = "xcbc(aes)", .test = alg_test_hash, .suite = { .hash = __VECS(aes_xcbc128_tv_template) } }, { .alg = "xchacha12", .test = alg_test_skcipher, .suite = { .cipher = __VECS(xchacha12_tv_template) }, }, { .alg = "xchacha20", .test = alg_test_skcipher, .suite = { .cipher = __VECS(xchacha20_tv_template) }, }, { .alg = "xts(aes)", .generic_driver = "xts(ecb(aes-generic))", .test = alg_test_skcipher, .fips_allowed = 1, .suite = { .cipher = __VECS(aes_xts_tv_template) } }, { .alg = "xts(camellia)", .generic_driver = "xts(ecb(camellia-generic))", .test = alg_test_skcipher, .suite = { .cipher = __VECS(camellia_xts_tv_template) } }, { .alg = "xts(cast6)", .generic_driver = "xts(ecb(cast6-generic))", .test = alg_test_skcipher, .suite = { .cipher = __VECS(cast6_xts_tv_template) } }, { /* Same as xts(aes) except the key is stored in * hardware secure memory which we reference by index */ .alg = "xts(paes)", .test = alg_test_null, .fips_allowed = 1, }, { .alg = "xts(serpent)", .generic_driver = "xts(ecb(serpent-generic))", .test = alg_test_skcipher, .suite = { .cipher = __VECS(serpent_xts_tv_template) } }, { .alg = "xts(twofish)", .generic_driver = "xts(ecb(twofish-generic))", .test = alg_test_skcipher, .suite = { .cipher = __VECS(tf_xts_tv_template) } }, { #if IS_ENABLED(CONFIG_CRYPTO_PAES_S390) .alg = "xts-paes-s390", .fips_allowed = 1, .test = alg_test_skcipher, .suite = { .cipher = __VECS(aes_xts_tv_template) } }, { #endif .alg = "xts4096(paes)", .test = alg_test_null, .fips_allowed = 1, }, { .alg = "xts512(paes)", .test = alg_test_null, .fips_allowed = 1, }, { .alg = "xxhash64", .test = alg_test_hash, .fips_allowed = 1, .suite = { .hash = __VECS(xxhash64_tv_template) } }, { .alg = "zlib-deflate", .test = alg_test_comp, .fips_allowed = 1, .suite = { .comp = { .comp = __VECS(zlib_deflate_comp_tv_template), .decomp = __VECS(zlib_deflate_decomp_tv_template) } } }, { .alg = "zstd", .test = alg_test_comp, .fips_allowed = 1, .suite = { .comp = { .comp = __VECS(zstd_comp_tv_template), .decomp = __VECS(zstd_decomp_tv_template) } } } }; static void alg_check_test_descs_order(void) { int i; for (i = 1; i < ARRAY_SIZE(alg_test_descs); i++) { int diff = strcmp(alg_test_descs[i - 1].alg, alg_test_descs[i].alg); if (WARN_ON(diff > 0)) { pr_warn("testmgr: alg_test_descs entries in wrong order: '%s' before '%s'\n", alg_test_descs[i - 1].alg, alg_test_descs[i].alg); } if (WARN_ON(diff == 0)) { pr_warn("testmgr: duplicate alg_test_descs entry: '%s'\n", alg_test_descs[i].alg); } } } static void alg_check_testvec_configs(void) { int i; for (i = 0; i < ARRAY_SIZE(default_cipher_testvec_configs); i++) WARN_ON(!valid_testvec_config( &default_cipher_testvec_configs[i])); for (i = 0; i < ARRAY_SIZE(default_hash_testvec_configs); i++) WARN_ON(!valid_testvec_config( &default_hash_testvec_configs[i])); } static void testmgr_onetime_init(void) { alg_check_test_descs_order(); alg_check_testvec_configs(); #ifdef CONFIG_CRYPTO_MANAGER_EXTRA_TESTS pr_warn("alg: extra crypto tests enabled. This is intended for developer use only.\n"); #endif } static int alg_find_test(const char *alg) { int start = 0; int end = ARRAY_SIZE(alg_test_descs); while (start < end) { int i = (start + end) / 2; int diff = strcmp(alg_test_descs[i].alg, alg); if (diff > 0) { end = i; continue; } if (diff < 0) { start = i + 1; continue; } return i; } return -1; } int alg_test(const char *driver, const char *alg, u32 type, u32 mask) { int i; int j; int rc; if (!fips_enabled && notests) { printk_once(KERN_INFO "alg: self-tests disabled\n"); return 0; } DO_ONCE(testmgr_onetime_init); if ((type & CRYPTO_ALG_TYPE_MASK) == CRYPTO_ALG_TYPE_CIPHER) { char nalg[CRYPTO_MAX_ALG_NAME]; if (snprintf(nalg, sizeof(nalg), "ecb(%s)", alg) >= sizeof(nalg)) return -ENAMETOOLONG; i = alg_find_test(nalg); if (i < 0) goto notest; if (fips_enabled && !alg_test_descs[i].fips_allowed) goto non_fips_alg; rc = alg_test_cipher(alg_test_descs + i, driver, type, mask); goto test_done; } i = alg_find_test(alg); j = alg_find_test(driver); if (i < 0 && j < 0) goto notest; if (fips_enabled && ((i >= 0 && !alg_test_descs[i].fips_allowed) || (j >= 0 && !alg_test_descs[j].fips_allowed))) goto non_fips_alg; rc = 0; if (i >= 0) rc |= alg_test_descs[i].test(alg_test_descs + i, driver, type, mask); if (j >= 0 && j != i) rc |= alg_test_descs[j].test(alg_test_descs + j, driver, type, mask); test_done: if (rc && (fips_enabled || panic_on_fail)) { fips_fail_notify(); panic("alg: self-tests for %s (%s) failed in %s mode!\n", driver, alg, fips_enabled ? "fips" : "panic_on_fail"); } if (fips_enabled && !rc) pr_info("alg: self-tests for %s (%s) passed\n", driver, alg); return rc; notest: printk(KERN_INFO "alg: No test for %s (%s)\n", alg, driver); return 0; non_fips_alg: return -EINVAL; } #endif /* CONFIG_CRYPTO_MANAGER_DISABLE_TESTS */ EXPORT_SYMBOL_GPL(alg_test);