/* * Fast and scalable bitmap tagging variant. Uses sparser bitmaps spread * over multiple cachelines to avoid ping-pong between multiple submitters * or submitter and completer. Uses rolling wakeups to avoid falling of * the scaling cliff when we run out of tags and have to start putting * submitters to sleep. * * Uses active queue tracking to support fairer distribution of tags * between multiple submitters when a shared tag map is used. * * Copyright (C) 2013-2014 Jens Axboe */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/random.h> #include <linux/blk-mq.h> #include "blk.h" #include "blk-mq.h" #include "blk-mq-tag.h" static bool bt_has_free_tags(struct blk_mq_bitmap_tags *bt) { int i; for (i = 0; i < bt->map_nr; i++) { struct blk_align_bitmap *bm = &bt->map[i]; int ret; ret = find_first_zero_bit(&bm->word, bm->depth); if (ret < bm->depth) return true; } return false; } bool blk_mq_has_free_tags(struct blk_mq_tags *tags) { if (!tags) return true; return bt_has_free_tags(&tags->bitmap_tags); } static inline int bt_index_inc(int index) { return (index + 1) & (BT_WAIT_QUEUES - 1); } static inline void bt_index_atomic_inc(atomic_t *index) { int old = atomic_read(index); int new = bt_index_inc(old); atomic_cmpxchg(index, old, new); } /* * If a previously inactive queue goes active, bump the active user count. */ bool __blk_mq_tag_busy(struct blk_mq_hw_ctx *hctx) { if (!test_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state) && !test_and_set_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state)) atomic_inc(&hctx->tags->active_queues); return true; } /* * Wakeup all potentially sleeping on tags */ void blk_mq_tag_wakeup_all(struct blk_mq_tags *tags, bool include_reserve) { struct blk_mq_bitmap_tags *bt; int i, wake_index; bt = &tags->bitmap_tags; wake_index = atomic_read(&bt->wake_index); for (i = 0; i < BT_WAIT_QUEUES; i++) { struct bt_wait_state *bs = &bt->bs[wake_index]; if (waitqueue_active(&bs->wait)) wake_up(&bs->wait); wake_index = bt_index_inc(wake_index); } if (include_reserve) { bt = &tags->breserved_tags; if (waitqueue_active(&bt->bs[0].wait)) wake_up(&bt->bs[0].wait); } } /* * If a previously busy queue goes inactive, potential waiters could now * be allowed to queue. Wake them up and check. */ void __blk_mq_tag_idle(struct blk_mq_hw_ctx *hctx) { struct blk_mq_tags *tags = hctx->tags; if (!test_and_clear_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state)) return; atomic_dec(&tags->active_queues); blk_mq_tag_wakeup_all(tags, false); } /* * For shared tag users, we track the number of currently active users * and attempt to provide a fair share of the tag depth for each of them. */ static inline bool hctx_may_queue(struct blk_mq_hw_ctx *hctx, struct blk_mq_bitmap_tags *bt) { unsigned int depth, users; if (!hctx || !(hctx->flags & BLK_MQ_F_TAG_SHARED)) return true; if (!test_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state)) return true; /* * Don't try dividing an ant */ if (bt->depth == 1) return true; users = atomic_read(&hctx->tags->active_queues); if (!users) return true; /* * Allow at least some tags */ depth = max((bt->depth + users - 1) / users, 4U); return atomic_read(&hctx->nr_active) < depth; } static int __bt_get_word(struct blk_align_bitmap *bm, unsigned int last_tag, bool nowrap) { int tag, org_last_tag = last_tag; while (1) { tag = find_next_zero_bit(&bm->word, bm->depth, last_tag); if (unlikely(tag >= bm->depth)) { /* * We started with an offset, and we didn't reset the * offset to 0 in a failure case, so start from 0 to * exhaust the map. */ if (org_last_tag && last_tag && !nowrap) { last_tag = org_last_tag = 0; continue; } return -1; } if (!test_and_set_bit(tag, &bm->word)) break; last_tag = tag + 1; if (last_tag >= bm->depth - 1) last_tag = 0; } return tag; } #define BT_ALLOC_RR(tags) (tags->alloc_policy == BLK_TAG_ALLOC_RR) /* * Straight forward bitmap tag implementation, where each bit is a tag * (cleared == free, and set == busy). The small twist is using per-cpu * last_tag caches, which blk-mq stores in the blk_mq_ctx software queue * contexts. This enables us to drastically limit the space searched, * without dirtying an extra shared cacheline like we would if we stored * the cache value inside the shared blk_mq_bitmap_tags structure. On top * of that, each word of tags is in a separate cacheline. This means that * multiple users will tend to stick to different cachelines, at least * until the map is exhausted. */ static int __bt_get(struct blk_mq_hw_ctx *hctx, struct blk_mq_bitmap_tags *bt, unsigned int *tag_cache, struct blk_mq_tags *tags) { unsigned int last_tag, org_last_tag; int index, i, tag; if (!hctx_may_queue(hctx, bt)) return -1; last_tag = org_last_tag = *tag_cache; index = TAG_TO_INDEX(bt, last_tag); for (i = 0; i < bt->map_nr; i++) { tag = __bt_get_word(&bt->map[index], TAG_TO_BIT(bt, last_tag), BT_ALLOC_RR(tags)); if (tag != -1) { tag += (index << bt->bits_per_word); goto done; } /* * Jump to next index, and reset the last tag to be the * first tag of that index */ index++; last_tag = (index << bt->bits_per_word); if (index >= bt->map_nr) { index = 0; last_tag = 0; } } *tag_cache = 0; return -1; /* * Only update the cache from the allocation path, if we ended * up using the specific cached tag. */ done: if (tag == org_last_tag || unlikely(BT_ALLOC_RR(tags))) { last_tag = tag + 1; if (last_tag >= bt->depth - 1) last_tag = 0; *tag_cache = last_tag; } return tag; } static struct bt_wait_state *bt_wait_ptr(struct blk_mq_bitmap_tags *bt, struct blk_mq_hw_ctx *hctx) { struct bt_wait_state *bs; int wait_index; if (!hctx) return &bt->bs[0]; wait_index = atomic_read(&hctx->wait_index); bs = &bt->bs[wait_index]; bt_index_atomic_inc(&hctx->wait_index); return bs; } static int bt_get(struct blk_mq_alloc_data *data, struct blk_mq_bitmap_tags *bt, struct blk_mq_hw_ctx *hctx, unsigned int *last_tag, struct blk_mq_tags *tags) { struct bt_wait_state *bs; DEFINE_WAIT(wait); int tag; tag = __bt_get(hctx, bt, last_tag, tags); if (tag != -1) return tag; if (!(data->gfp & __GFP_WAIT)) return -1; bs = bt_wait_ptr(bt, hctx); do { prepare_to_wait(&bs->wait, &wait, TASK_UNINTERRUPTIBLE); tag = __bt_get(hctx, bt, last_tag, tags); if (tag != -1) break; /* * We're out of tags on this hardware queue, kick any * pending IO submits before going to sleep waiting for * some to complete. */ blk_mq_run_hw_queue(hctx, false); /* * Retry tag allocation after running the hardware queue, * as running the queue may also have found completions. */ tag = __bt_get(hctx, bt, last_tag, tags); if (tag != -1) break; blk_mq_put_ctx(data->ctx); io_schedule(); data->ctx = blk_mq_get_ctx(data->q); data->hctx = data->q->mq_ops->map_queue(data->q, data->ctx->cpu); if (data->reserved) { bt = &data->hctx->tags->breserved_tags; } else { last_tag = &data->ctx->last_tag; hctx = data->hctx; bt = &hctx->tags->bitmap_tags; } finish_wait(&bs->wait, &wait); bs = bt_wait_ptr(bt, hctx); } while (1); finish_wait(&bs->wait, &wait); return tag; } static unsigned int __blk_mq_get_tag(struct blk_mq_alloc_data *data) { int tag; tag = bt_get(data, &data->hctx->tags->bitmap_tags, data->hctx, &data->ctx->last_tag, data->hctx->tags); if (tag >= 0) return tag + data->hctx->tags->nr_reserved_tags; return BLK_MQ_TAG_FAIL; } static unsigned int __blk_mq_get_reserved_tag(struct blk_mq_alloc_data *data) { int tag, zero = 0; if (unlikely(!data->hctx->tags->nr_reserved_tags)) { WARN_ON_ONCE(1); return BLK_MQ_TAG_FAIL; } tag = bt_get(data, &data->hctx->tags->breserved_tags, NULL, &zero, data->hctx->tags); if (tag < 0) return BLK_MQ_TAG_FAIL; return tag; } unsigned int blk_mq_get_tag(struct blk_mq_alloc_data *data) { if (!data->reserved) return __blk_mq_get_tag(data); return __blk_mq_get_reserved_tag(data); } static struct bt_wait_state *bt_wake_ptr(struct blk_mq_bitmap_tags *bt) { int i, wake_index; wake_index = atomic_read(&bt->wake_index); for (i = 0; i < BT_WAIT_QUEUES; i++) { struct bt_wait_state *bs = &bt->bs[wake_index]; if (waitqueue_active(&bs->wait)) { int o = atomic_read(&bt->wake_index); if (wake_index != o) atomic_cmpxchg(&bt->wake_index, o, wake_index); return bs; } wake_index = bt_index_inc(wake_index); } return NULL; } static void bt_clear_tag(struct blk_mq_bitmap_tags *bt, unsigned int tag) { const int index = TAG_TO_INDEX(bt, tag); struct bt_wait_state *bs; int wait_cnt; clear_bit(TAG_TO_BIT(bt, tag), &bt->map[index].word); /* Ensure that the wait list checks occur after clear_bit(). */ smp_mb(); bs = bt_wake_ptr(bt); if (!bs) return; wait_cnt = atomic_dec_return(&bs->wait_cnt); if (unlikely(wait_cnt < 0)) wait_cnt = atomic_inc_return(&bs->wait_cnt); if (wait_cnt == 0) { atomic_add(bt->wake_cnt, &bs->wait_cnt); bt_index_atomic_inc(&bt->wake_index); wake_up(&bs->wait); } } void blk_mq_put_tag(struct blk_mq_hw_ctx *hctx, unsigned int tag, unsigned int *last_tag) { struct blk_mq_tags *tags = hctx->tags; if (tag >= tags->nr_reserved_tags) { const int real_tag = tag - tags->nr_reserved_tags; BUG_ON(real_tag >= tags->nr_tags); bt_clear_tag(&tags->bitmap_tags, real_tag); if (likely(tags->alloc_policy == BLK_TAG_ALLOC_FIFO)) *last_tag = real_tag; } else { BUG_ON(tag >= tags->nr_reserved_tags); bt_clear_tag(&tags->breserved_tags, tag); } } static void bt_for_each(struct blk_mq_hw_ctx *hctx, struct blk_mq_bitmap_tags *bt, unsigned int off, busy_iter_fn *fn, void *data, bool reserved) { struct request *rq; int bit, i; for (i = 0; i < bt->map_nr; i++) { struct blk_align_bitmap *bm = &bt->map[i]; for (bit = find_first_bit(&bm->word, bm->depth); bit < bm->depth; bit = find_next_bit(&bm->word, bm->depth, bit + 1)) { rq = blk_mq_tag_to_rq(hctx->tags, off + bit); if (rq->q == hctx->queue) fn(hctx, rq, data, reserved); } off += (1 << bt->bits_per_word); } } void blk_mq_tag_busy_iter(struct blk_mq_hw_ctx *hctx, busy_iter_fn *fn, void *priv) { struct blk_mq_tags *tags = hctx->tags; if (tags->nr_reserved_tags) bt_for_each(hctx, &tags->breserved_tags, 0, fn, priv, true); bt_for_each(hctx, &tags->bitmap_tags, tags->nr_reserved_tags, fn, priv, false); } EXPORT_SYMBOL(blk_mq_tag_busy_iter); static unsigned int bt_unused_tags(struct blk_mq_bitmap_tags *bt) { unsigned int i, used; for (i = 0, used = 0; i < bt->map_nr; i++) { struct blk_align_bitmap *bm = &bt->map[i]; used += bitmap_weight(&bm->word, bm->depth); } return bt->depth - used; } static void bt_update_count(struct blk_mq_bitmap_tags *bt, unsigned int depth) { unsigned int tags_per_word = 1U << bt->bits_per_word; unsigned int map_depth = depth; if (depth) { int i; for (i = 0; i < bt->map_nr; i++) { bt->map[i].depth = min(map_depth, tags_per_word); map_depth -= bt->map[i].depth; } } bt->wake_cnt = BT_WAIT_BATCH; if (bt->wake_cnt > depth / BT_WAIT_QUEUES) bt->wake_cnt = max(1U, depth / BT_WAIT_QUEUES); bt->depth = depth; } static int bt_alloc(struct blk_mq_bitmap_tags *bt, unsigned int depth, int node, bool reserved) { int i; bt->bits_per_word = ilog2(BITS_PER_LONG); /* * Depth can be zero for reserved tags, that's not a failure * condition. */ if (depth) { unsigned int nr, tags_per_word; tags_per_word = (1 << bt->bits_per_word); /* * If the tag space is small, shrink the number of tags * per word so we spread over a few cachelines, at least. * If less than 4 tags, just forget about it, it's not * going to work optimally anyway. */ if (depth >= 4) { while (tags_per_word * 4 > depth) { bt->bits_per_word--; tags_per_word = (1 << bt->bits_per_word); } } nr = ALIGN(depth, tags_per_word) / tags_per_word; bt->map = kzalloc_node(nr * sizeof(struct blk_align_bitmap), GFP_KERNEL, node); if (!bt->map) return -ENOMEM; bt->map_nr = nr; } bt->bs = kzalloc(BT_WAIT_QUEUES * sizeof(*bt->bs), GFP_KERNEL); if (!bt->bs) { kfree(bt->map); bt->map = NULL; return -ENOMEM; } bt_update_count(bt, depth); for (i = 0; i < BT_WAIT_QUEUES; i++) { init_waitqueue_head(&bt->bs[i].wait); atomic_set(&bt->bs[i].wait_cnt, bt->wake_cnt); } return 0; } static void bt_free(struct blk_mq_bitmap_tags *bt) { kfree(bt->map); kfree(bt->bs); } static struct blk_mq_tags *blk_mq_init_bitmap_tags(struct blk_mq_tags *tags, int node, int alloc_policy) { unsigned int depth = tags->nr_tags - tags->nr_reserved_tags; tags->alloc_policy = alloc_policy; if (bt_alloc(&tags->bitmap_tags, depth, node, false)) goto enomem; if (bt_alloc(&tags->breserved_tags, tags->nr_reserved_tags, node, true)) goto enomem; return tags; enomem: bt_free(&tags->bitmap_tags); kfree(tags); return NULL; } struct blk_mq_tags *blk_mq_init_tags(unsigned int total_tags, unsigned int reserved_tags, int node, int alloc_policy) { struct blk_mq_tags *tags; if (total_tags > BLK_MQ_TAG_MAX) { pr_err("blk-mq: tag depth too large\n"); return NULL; } tags = kzalloc_node(sizeof(*tags), GFP_KERNEL, node); if (!tags) return NULL; tags->nr_tags = total_tags; tags->nr_reserved_tags = reserved_tags; return blk_mq_init_bitmap_tags(tags, node, alloc_policy); } void blk_mq_free_tags(struct blk_mq_tags *tags) { bt_free(&tags->bitmap_tags); bt_free(&tags->breserved_tags); kfree(tags); } void blk_mq_tag_init_last_tag(struct blk_mq_tags *tags, unsigned int *tag) { unsigned int depth = tags->nr_tags - tags->nr_reserved_tags; *tag = prandom_u32() % depth; } int blk_mq_tag_update_depth(struct blk_mq_tags *tags, unsigned int tdepth) { tdepth -= tags->nr_reserved_tags; if (tdepth > tags->nr_tags) return -EINVAL; /* * Don't need (or can't) update reserved tags here, they remain * static and should never need resizing. */ bt_update_count(&tags->bitmap_tags, tdepth); blk_mq_tag_wakeup_all(tags, false); return 0; } /** * blk_mq_unique_tag() - return a tag that is unique queue-wide * @rq: request for which to compute a unique tag * * The tag field in struct request is unique per hardware queue but not over * all hardware queues. Hence this function that returns a tag with the * hardware context index in the upper bits and the per hardware queue tag in * the lower bits. * * Note: When called for a request that is queued on a non-multiqueue request * queue, the hardware context index is set to zero. */ u32 blk_mq_unique_tag(struct request *rq) { struct request_queue *q = rq->q; struct blk_mq_hw_ctx *hctx; int hwq = 0; if (q->mq_ops) { hctx = q->mq_ops->map_queue(q, rq->mq_ctx->cpu); hwq = hctx->queue_num; } return (hwq << BLK_MQ_UNIQUE_TAG_BITS) | (rq->tag & BLK_MQ_UNIQUE_TAG_MASK); } EXPORT_SYMBOL(blk_mq_unique_tag); ssize_t blk_mq_tag_sysfs_show(struct blk_mq_tags *tags, char *page) { char *orig_page = page; unsigned int free, res; if (!tags) return 0; page += sprintf(page, "nr_tags=%u, reserved_tags=%u, " "bits_per_word=%u\n", tags->nr_tags, tags->nr_reserved_tags, tags->bitmap_tags.bits_per_word); free = bt_unused_tags(&tags->bitmap_tags); res = bt_unused_tags(&tags->breserved_tags); page += sprintf(page, "nr_free=%u, nr_reserved=%u\n", free, res); page += sprintf(page, "active_queues=%u\n", atomic_read(&tags->active_queues)); return page - orig_page; }