// SPDX-License-Identifier: GPL-2.0 /* * BPF JIT compiler for RV32G * * Copyright (c) 2020 Luke Nelson * Copyright (c) 2020 Xi Wang * * The code is based on the BPF JIT compiler for RV64G by Björn Töpel and * the BPF JIT compiler for 32-bit ARM by Shubham Bansal and Mircea Gherzan. */ #include #include #include "bpf_jit.h" /* * Stack layout during BPF program execution: * * high * RV32 fp => +----------+ * | saved ra | * | saved fp | RV32 callee-saved registers * | ... | * +----------+ <= (fp - 4 * NR_SAVED_REGISTERS) * | hi(R6) | * | lo(R6) | * | hi(R7) | JIT scratch space for BPF registers * | lo(R7) | * | ... | * BPF_REG_FP => +----------+ <= (fp - 4 * NR_SAVED_REGISTERS * | | - 4 * BPF_JIT_SCRATCH_REGS) * | | * | ... | BPF program stack * | | * RV32 sp => +----------+ * | | * | ... | Function call stack * | | * +----------+ * low */ enum { /* Stack layout - these are offsets from top of JIT scratch space. */ BPF_R6_HI, BPF_R6_LO, BPF_R7_HI, BPF_R7_LO, BPF_R8_HI, BPF_R8_LO, BPF_R9_HI, BPF_R9_LO, BPF_AX_HI, BPF_AX_LO, /* Stack space for BPF_REG_6 through BPF_REG_9 and BPF_REG_AX. */ BPF_JIT_SCRATCH_REGS, }; /* Number of callee-saved registers stored to stack: ra, fp, s1--s7. */ #define NR_SAVED_REGISTERS 9 /* Offset from fp for BPF registers stored on stack. */ #define STACK_OFFSET(k) (-4 - (4 * NR_SAVED_REGISTERS) - (4 * (k))) #define TMP_REG_1 (MAX_BPF_JIT_REG + 0) #define TMP_REG_2 (MAX_BPF_JIT_REG + 1) #define RV_REG_TCC RV_REG_T6 #define RV_REG_TCC_SAVED RV_REG_S7 static const s8 bpf2rv32[][2] = { /* Return value from in-kernel function, and exit value from eBPF. */ [BPF_REG_0] = {RV_REG_S2, RV_REG_S1}, /* Arguments from eBPF program to in-kernel function. */ [BPF_REG_1] = {RV_REG_A1, RV_REG_A0}, [BPF_REG_2] = {RV_REG_A3, RV_REG_A2}, [BPF_REG_3] = {RV_REG_A5, RV_REG_A4}, [BPF_REG_4] = {RV_REG_A7, RV_REG_A6}, [BPF_REG_5] = {RV_REG_S4, RV_REG_S3}, /* * Callee-saved registers that in-kernel function will preserve. * Stored on the stack. */ [BPF_REG_6] = {STACK_OFFSET(BPF_R6_HI), STACK_OFFSET(BPF_R6_LO)}, [BPF_REG_7] = {STACK_OFFSET(BPF_R7_HI), STACK_OFFSET(BPF_R7_LO)}, [BPF_REG_8] = {STACK_OFFSET(BPF_R8_HI), STACK_OFFSET(BPF_R8_LO)}, [BPF_REG_9] = {STACK_OFFSET(BPF_R9_HI), STACK_OFFSET(BPF_R9_LO)}, /* Read-only frame pointer to access BPF stack. */ [BPF_REG_FP] = {RV_REG_S6, RV_REG_S5}, /* Temporary register for blinding constants. Stored on the stack. */ [BPF_REG_AX] = {STACK_OFFSET(BPF_AX_HI), STACK_OFFSET(BPF_AX_LO)}, /* * Temporary registers used by the JIT to operate on registers stored * on the stack. Save t0 and t1 to be used as temporaries in generated * code. */ [TMP_REG_1] = {RV_REG_T3, RV_REG_T2}, [TMP_REG_2] = {RV_REG_T5, RV_REG_T4}, }; static s8 hi(const s8 *r) { return r[0]; } static s8 lo(const s8 *r) { return r[1]; } static void emit_imm(const s8 rd, s32 imm, struct rv_jit_context *ctx) { u32 upper = (imm + (1 << 11)) >> 12; u32 lower = imm & 0xfff; if (upper) { emit(rv_lui(rd, upper), ctx); emit(rv_addi(rd, rd, lower), ctx); } else { emit(rv_addi(rd, RV_REG_ZERO, lower), ctx); } } static void emit_imm32(const s8 *rd, s32 imm, struct rv_jit_context *ctx) { /* Emit immediate into lower bits. */ emit_imm(lo(rd), imm, ctx); /* Sign-extend into upper bits. */ if (imm >= 0) emit(rv_addi(hi(rd), RV_REG_ZERO, 0), ctx); else emit(rv_addi(hi(rd), RV_REG_ZERO, -1), ctx); } static void emit_imm64(const s8 *rd, s32 imm_hi, s32 imm_lo, struct rv_jit_context *ctx) { emit_imm(lo(rd), imm_lo, ctx); emit_imm(hi(rd), imm_hi, ctx); } static void __build_epilogue(bool is_tail_call, struct rv_jit_context *ctx) { int stack_adjust = ctx->stack_size; const s8 *r0 = bpf2rv32[BPF_REG_0]; /* Set return value if not tail call. */ if (!is_tail_call) { emit(rv_addi(RV_REG_A0, lo(r0), 0), ctx); emit(rv_addi(RV_REG_A1, hi(r0), 0), ctx); } /* Restore callee-saved registers. */ emit(rv_lw(RV_REG_RA, stack_adjust - 4, RV_REG_SP), ctx); emit(rv_lw(RV_REG_FP, stack_adjust - 8, RV_REG_SP), ctx); emit(rv_lw(RV_REG_S1, stack_adjust - 12, RV_REG_SP), ctx); emit(rv_lw(RV_REG_S2, stack_adjust - 16, RV_REG_SP), ctx); emit(rv_lw(RV_REG_S3, stack_adjust - 20, RV_REG_SP), ctx); emit(rv_lw(RV_REG_S4, stack_adjust - 24, RV_REG_SP), ctx); emit(rv_lw(RV_REG_S5, stack_adjust - 28, RV_REG_SP), ctx); emit(rv_lw(RV_REG_S6, stack_adjust - 32, RV_REG_SP), ctx); emit(rv_lw(RV_REG_S7, stack_adjust - 36, RV_REG_SP), ctx); emit(rv_addi(RV_REG_SP, RV_REG_SP, stack_adjust), ctx); if (is_tail_call) { /* * goto *(t0 + 4); * Skips first instruction of prologue which initializes tail * call counter. Assumes t0 contains address of target program, * see emit_bpf_tail_call. */ emit(rv_jalr(RV_REG_ZERO, RV_REG_T0, 4), ctx); } else { emit(rv_jalr(RV_REG_ZERO, RV_REG_RA, 0), ctx); } } static bool is_stacked(s8 reg) { return reg < 0; } static const s8 *bpf_get_reg64(const s8 *reg, const s8 *tmp, struct rv_jit_context *ctx) { if (is_stacked(hi(reg))) { emit(rv_lw(hi(tmp), hi(reg), RV_REG_FP), ctx); emit(rv_lw(lo(tmp), lo(reg), RV_REG_FP), ctx); reg = tmp; } return reg; } static void bpf_put_reg64(const s8 *reg, const s8 *src, struct rv_jit_context *ctx) { if (is_stacked(hi(reg))) { emit(rv_sw(RV_REG_FP, hi(reg), hi(src)), ctx); emit(rv_sw(RV_REG_FP, lo(reg), lo(src)), ctx); } } static const s8 *bpf_get_reg32(const s8 *reg, const s8 *tmp, struct rv_jit_context *ctx) { if (is_stacked(lo(reg))) { emit(rv_lw(lo(tmp), lo(reg), RV_REG_FP), ctx); reg = tmp; } return reg; } static void bpf_put_reg32(const s8 *reg, const s8 *src, struct rv_jit_context *ctx) { if (is_stacked(lo(reg))) { emit(rv_sw(RV_REG_FP, lo(reg), lo(src)), ctx); if (!ctx->prog->aux->verifier_zext) emit(rv_sw(RV_REG_FP, hi(reg), RV_REG_ZERO), ctx); } else if (!ctx->prog->aux->verifier_zext) { emit(rv_addi(hi(reg), RV_REG_ZERO, 0), ctx); } } static void emit_jump_and_link(u8 rd, s32 rvoff, bool force_jalr, struct rv_jit_context *ctx) { s32 upper, lower; if (rvoff && is_21b_int(rvoff) && !force_jalr) { emit(rv_jal(rd, rvoff >> 1), ctx); return; } upper = (rvoff + (1 << 11)) >> 12; lower = rvoff & 0xfff; emit(rv_auipc(RV_REG_T1, upper), ctx); emit(rv_jalr(rd, RV_REG_T1, lower), ctx); } static void emit_alu_i64(const s8 *dst, s32 imm, struct rv_jit_context *ctx, const u8 op) { const s8 *tmp1 = bpf2rv32[TMP_REG_1]; const s8 *rd = bpf_get_reg64(dst, tmp1, ctx); switch (op) { case BPF_MOV: emit_imm32(rd, imm, ctx); break; case BPF_AND: if (is_12b_int(imm)) { emit(rv_andi(lo(rd), lo(rd), imm), ctx); } else { emit_imm(RV_REG_T0, imm, ctx); emit(rv_and(lo(rd), lo(rd), RV_REG_T0), ctx); } if (imm >= 0) emit(rv_addi(hi(rd), RV_REG_ZERO, 0), ctx); break; case BPF_OR: if (is_12b_int(imm)) { emit(rv_ori(lo(rd), lo(rd), imm), ctx); } else { emit_imm(RV_REG_T0, imm, ctx); emit(rv_or(lo(rd), lo(rd), RV_REG_T0), ctx); } if (imm < 0) emit(rv_ori(hi(rd), RV_REG_ZERO, -1), ctx); break; case BPF_XOR: if (is_12b_int(imm)) { emit(rv_xori(lo(rd), lo(rd), imm), ctx); } else { emit_imm(RV_REG_T0, imm, ctx); emit(rv_xor(lo(rd), lo(rd), RV_REG_T0), ctx); } if (imm < 0) emit(rv_xori(hi(rd), hi(rd), -1), ctx); break; case BPF_LSH: if (imm >= 32) { emit(rv_slli(hi(rd), lo(rd), imm - 32), ctx); emit(rv_addi(lo(rd), RV_REG_ZERO, 0), ctx); } else if (imm == 0) { /* Do nothing. */ } else { emit(rv_srli(RV_REG_T0, lo(rd), 32 - imm), ctx); emit(rv_slli(hi(rd), hi(rd), imm), ctx); emit(rv_or(hi(rd), RV_REG_T0, hi(rd)), ctx); emit(rv_slli(lo(rd), lo(rd), imm), ctx); } break; case BPF_RSH: if (imm >= 32) { emit(rv_srli(lo(rd), hi(rd), imm - 32), ctx); emit(rv_addi(hi(rd), RV_REG_ZERO, 0), ctx); } else if (imm == 0) { /* Do nothing. */ } else { emit(rv_slli(RV_REG_T0, hi(rd), 32 - imm), ctx); emit(rv_srli(lo(rd), lo(rd), imm), ctx); emit(rv_or(lo(rd), RV_REG_T0, lo(rd)), ctx); emit(rv_srli(hi(rd), hi(rd), imm), ctx); } break; case BPF_ARSH: if (imm >= 32) { emit(rv_srai(lo(rd), hi(rd), imm - 32), ctx); emit(rv_srai(hi(rd), hi(rd), 31), ctx); } else if (imm == 0) { /* Do nothing. */ } else { emit(rv_slli(RV_REG_T0, hi(rd), 32 - imm), ctx); emit(rv_srli(lo(rd), lo(rd), imm), ctx); emit(rv_or(lo(rd), RV_REG_T0, lo(rd)), ctx); emit(rv_srai(hi(rd), hi(rd), imm), ctx); } break; } bpf_put_reg64(dst, rd, ctx); } static void emit_alu_i32(const s8 *dst, s32 imm, struct rv_jit_context *ctx, const u8 op) { const s8 *tmp1 = bpf2rv32[TMP_REG_1]; const s8 *rd = bpf_get_reg32(dst, tmp1, ctx); switch (op) { case BPF_MOV: emit_imm(lo(rd), imm, ctx); break; case BPF_ADD: if (is_12b_int(imm)) { emit(rv_addi(lo(rd), lo(rd), imm), ctx); } else { emit_imm(RV_REG_T0, imm, ctx); emit(rv_add(lo(rd), lo(rd), RV_REG_T0), ctx); } break; case BPF_SUB: if (is_12b_int(-imm)) { emit(rv_addi(lo(rd), lo(rd), -imm), ctx); } else { emit_imm(RV_REG_T0, imm, ctx); emit(rv_sub(lo(rd), lo(rd), RV_REG_T0), ctx); } break; case BPF_AND: if (is_12b_int(imm)) { emit(rv_andi(lo(rd), lo(rd), imm), ctx); } else { emit_imm(RV_REG_T0, imm, ctx); emit(rv_and(lo(rd), lo(rd), RV_REG_T0), ctx); } break; case BPF_OR: if (is_12b_int(imm)) { emit(rv_ori(lo(rd), lo(rd), imm), ctx); } else { emit_imm(RV_REG_T0, imm, ctx); emit(rv_or(lo(rd), lo(rd), RV_REG_T0), ctx); } break; case BPF_XOR: if (is_12b_int(imm)) { emit(rv_xori(lo(rd), lo(rd), imm), ctx); } else { emit_imm(RV_REG_T0, imm, ctx); emit(rv_xor(lo(rd), lo(rd), RV_REG_T0), ctx); } break; case BPF_LSH: if (is_12b_int(imm)) { emit(rv_slli(lo(rd), lo(rd), imm), ctx); } else { emit_imm(RV_REG_T0, imm, ctx); emit(rv_sll(lo(rd), lo(rd), RV_REG_T0), ctx); } break; case BPF_RSH: if (is_12b_int(imm)) { emit(rv_srli(lo(rd), lo(rd), imm), ctx); } else { emit_imm(RV_REG_T0, imm, ctx); emit(rv_srl(lo(rd), lo(rd), RV_REG_T0), ctx); } break; case BPF_ARSH: if (is_12b_int(imm)) { emit(rv_srai(lo(rd), lo(rd), imm), ctx); } else { emit_imm(RV_REG_T0, imm, ctx); emit(rv_sra(lo(rd), lo(rd), RV_REG_T0), ctx); } break; } bpf_put_reg32(dst, rd, ctx); } static void emit_alu_r64(const s8 *dst, const s8 *src, struct rv_jit_context *ctx, const u8 op) { const s8 *tmp1 = bpf2rv32[TMP_REG_1]; const s8 *tmp2 = bpf2rv32[TMP_REG_2]; const s8 *rd = bpf_get_reg64(dst, tmp1, ctx); const s8 *rs = bpf_get_reg64(src, tmp2, ctx); switch (op) { case BPF_MOV: emit(rv_addi(lo(rd), lo(rs), 0), ctx); emit(rv_addi(hi(rd), hi(rs), 0), ctx); break; case BPF_ADD: if (rd == rs) { emit(rv_srli(RV_REG_T0, lo(rd), 31), ctx); emit(rv_slli(hi(rd), hi(rd), 1), ctx); emit(rv_or(hi(rd), RV_REG_T0, hi(rd)), ctx); emit(rv_slli(lo(rd), lo(rd), 1), ctx); } else { emit(rv_add(lo(rd), lo(rd), lo(rs)), ctx); emit(rv_sltu(RV_REG_T0, lo(rd), lo(rs)), ctx); emit(rv_add(hi(rd), hi(rd), hi(rs)), ctx); emit(rv_add(hi(rd), hi(rd), RV_REG_T0), ctx); } break; case BPF_SUB: emit(rv_sub(RV_REG_T1, hi(rd), hi(rs)), ctx); emit(rv_sltu(RV_REG_T0, lo(rd), lo(rs)), ctx); emit(rv_sub(hi(rd), RV_REG_T1, RV_REG_T0), ctx); emit(rv_sub(lo(rd), lo(rd), lo(rs)), ctx); break; case BPF_AND: emit(rv_and(lo(rd), lo(rd), lo(rs)), ctx); emit(rv_and(hi(rd), hi(rd), hi(rs)), ctx); break; case BPF_OR: emit(rv_or(lo(rd), lo(rd), lo(rs)), ctx); emit(rv_or(hi(rd), hi(rd), hi(rs)), ctx); break; case BPF_XOR: emit(rv_xor(lo(rd), lo(rd), lo(rs)), ctx); emit(rv_xor(hi(rd), hi(rd), hi(rs)), ctx); break; case BPF_MUL: emit(rv_mul(RV_REG_T0, hi(rs), lo(rd)), ctx); emit(rv_mul(hi(rd), hi(rd), lo(rs)), ctx); emit(rv_mulhu(RV_REG_T1, lo(rd), lo(rs)), ctx); emit(rv_add(hi(rd), hi(rd), RV_REG_T0), ctx); emit(rv_mul(lo(rd), lo(rd), lo(rs)), ctx); emit(rv_add(hi(rd), hi(rd), RV_REG_T1), ctx); break; case BPF_LSH: emit(rv_addi(RV_REG_T0, lo(rs), -32), ctx); emit(rv_blt(RV_REG_T0, RV_REG_ZERO, 8), ctx); emit(rv_sll(hi(rd), lo(rd), RV_REG_T0), ctx); emit(rv_addi(lo(rd), RV_REG_ZERO, 0), ctx); emit(rv_jal(RV_REG_ZERO, 16), ctx); emit(rv_addi(RV_REG_T1, RV_REG_ZERO, 31), ctx); emit(rv_srli(RV_REG_T0, lo(rd), 1), ctx); emit(rv_sub(RV_REG_T1, RV_REG_T1, lo(rs)), ctx); emit(rv_srl(RV_REG_T0, RV_REG_T0, RV_REG_T1), ctx); emit(rv_sll(hi(rd), hi(rd), lo(rs)), ctx); emit(rv_or(hi(rd), RV_REG_T0, hi(rd)), ctx); emit(rv_sll(lo(rd), lo(rd), lo(rs)), ctx); break; case BPF_RSH: emit(rv_addi(RV_REG_T0, lo(rs), -32), ctx); emit(rv_blt(RV_REG_T0, RV_REG_ZERO, 8), ctx); emit(rv_srl(lo(rd), hi(rd), RV_REG_T0), ctx); emit(rv_addi(hi(rd), RV_REG_ZERO, 0), ctx); emit(rv_jal(RV_REG_ZERO, 16), ctx); emit(rv_addi(RV_REG_T1, RV_REG_ZERO, 31), ctx); emit(rv_slli(RV_REG_T0, hi(rd), 1), ctx); emit(rv_sub(RV_REG_T1, RV_REG_T1, lo(rs)), ctx); emit(rv_sll(RV_REG_T0, RV_REG_T0, RV_REG_T1), ctx); emit(rv_srl(lo(rd), lo(rd), lo(rs)), ctx); emit(rv_or(lo(rd), RV_REG_T0, lo(rd)), ctx); emit(rv_srl(hi(rd), hi(rd), lo(rs)), ctx); break; case BPF_ARSH: emit(rv_addi(RV_REG_T0, lo(rs), -32), ctx); emit(rv_blt(RV_REG_T0, RV_REG_ZERO, 8), ctx); emit(rv_sra(lo(rd), hi(rd), RV_REG_T0), ctx); emit(rv_srai(hi(rd), hi(rd), 31), ctx); emit(rv_jal(RV_REG_ZERO, 16), ctx); emit(rv_addi(RV_REG_T1, RV_REG_ZERO, 31), ctx); emit(rv_slli(RV_REG_T0, hi(rd), 1), ctx); emit(rv_sub(RV_REG_T1, RV_REG_T1, lo(rs)), ctx); emit(rv_sll(RV_REG_T0, RV_REG_T0, RV_REG_T1), ctx); emit(rv_srl(lo(rd), lo(rd), lo(rs)), ctx); emit(rv_or(lo(rd), RV_REG_T0, lo(rd)), ctx); emit(rv_sra(hi(rd), hi(rd), lo(rs)), ctx); break; case BPF_NEG: emit(rv_sub(lo(rd), RV_REG_ZERO, lo(rd)), ctx); emit(rv_sltu(RV_REG_T0, RV_REG_ZERO, lo(rd)), ctx); emit(rv_sub(hi(rd), RV_REG_ZERO, hi(rd)), ctx); emit(rv_sub(hi(rd), hi(rd), RV_REG_T0), ctx); break; } bpf_put_reg64(dst, rd, ctx); } static void emit_alu_r32(const s8 *dst, const s8 *src, struct rv_jit_context *ctx, const u8 op) { const s8 *tmp1 = bpf2rv32[TMP_REG_1]; const s8 *tmp2 = bpf2rv32[TMP_REG_2]; const s8 *rd = bpf_get_reg32(dst, tmp1, ctx); const s8 *rs = bpf_get_reg32(src, tmp2, ctx); switch (op) { case BPF_MOV: emit(rv_addi(lo(rd), lo(rs), 0), ctx); break; case BPF_ADD: emit(rv_add(lo(rd), lo(rd), lo(rs)), ctx); break; case BPF_SUB: emit(rv_sub(lo(rd), lo(rd), lo(rs)), ctx); break; case BPF_AND: emit(rv_and(lo(rd), lo(rd), lo(rs)), ctx); break; case BPF_OR: emit(rv_or(lo(rd), lo(rd), lo(rs)), ctx); break; case BPF_XOR: emit(rv_xor(lo(rd), lo(rd), lo(rs)), ctx); break; case BPF_MUL: emit(rv_mul(lo(rd), lo(rd), lo(rs)), ctx); break; case BPF_DIV: emit(rv_divu(lo(rd), lo(rd), lo(rs)), ctx); break; case BPF_MOD: emit(rv_remu(lo(rd), lo(rd), lo(rs)), ctx); break; case BPF_LSH: emit(rv_sll(lo(rd), lo(rd), lo(rs)), ctx); break; case BPF_RSH: emit(rv_srl(lo(rd), lo(rd), lo(rs)), ctx); break; case BPF_ARSH: emit(rv_sra(lo(rd), lo(rd), lo(rs)), ctx); break; case BPF_NEG: emit(rv_sub(lo(rd), RV_REG_ZERO, lo(rd)), ctx); break; } bpf_put_reg32(dst, rd, ctx); } static int emit_branch_r64(const s8 *src1, const s8 *src2, s32 rvoff, struct rv_jit_context *ctx, const u8 op) { int e, s = ctx->ninsns; const s8 *tmp1 = bpf2rv32[TMP_REG_1]; const s8 *tmp2 = bpf2rv32[TMP_REG_2]; const s8 *rs1 = bpf_get_reg64(src1, tmp1, ctx); const s8 *rs2 = bpf_get_reg64(src2, tmp2, ctx); /* * NO_JUMP skips over the rest of the instructions and the * emit_jump_and_link, meaning the BPF branch is not taken. * JUMP skips directly to the emit_jump_and_link, meaning * the BPF branch is taken. * * The fallthrough case results in the BPF branch being taken. */ #define NO_JUMP(idx) (6 + (2 * (idx))) #define JUMP(idx) (2 + (2 * (idx))) switch (op) { case BPF_JEQ: emit(rv_bne(hi(rs1), hi(rs2), NO_JUMP(1)), ctx); emit(rv_bne(lo(rs1), lo(rs2), NO_JUMP(0)), ctx); break; case BPF_JGT: emit(rv_bgtu(hi(rs1), hi(rs2), JUMP(2)), ctx); emit(rv_bltu(hi(rs1), hi(rs2), NO_JUMP(1)), ctx); emit(rv_bleu(lo(rs1), lo(rs2), NO_JUMP(0)), ctx); break; case BPF_JLT: emit(rv_bltu(hi(rs1), hi(rs2), JUMP(2)), ctx); emit(rv_bgtu(hi(rs1), hi(rs2), NO_JUMP(1)), ctx); emit(rv_bgeu(lo(rs1), lo(rs2), NO_JUMP(0)), ctx); break; case BPF_JGE: emit(rv_bgtu(hi(rs1), hi(rs2), JUMP(2)), ctx); emit(rv_bltu(hi(rs1), hi(rs2), NO_JUMP(1)), ctx); emit(rv_bltu(lo(rs1), lo(rs2), NO_JUMP(0)), ctx); break; case BPF_JLE: emit(rv_bltu(hi(rs1), hi(rs2), JUMP(2)), ctx); emit(rv_bgtu(hi(rs1), hi(rs2), NO_JUMP(1)), ctx); emit(rv_bgtu(lo(rs1), lo(rs2), NO_JUMP(0)), ctx); break; case BPF_JNE: emit(rv_bne(hi(rs1), hi(rs2), JUMP(1)), ctx); emit(rv_beq(lo(rs1), lo(rs2), NO_JUMP(0)), ctx); break; case BPF_JSGT: emit(rv_bgt(hi(rs1), hi(rs2), JUMP(2)), ctx); emit(rv_blt(hi(rs1), hi(rs2), NO_JUMP(1)), ctx); emit(rv_bleu(lo(rs1), lo(rs2), NO_JUMP(0)), ctx); break; case BPF_JSLT: emit(rv_blt(hi(rs1), hi(rs2), JUMP(2)), ctx); emit(rv_bgt(hi(rs1), hi(rs2), NO_JUMP(1)), ctx); emit(rv_bgeu(lo(rs1), lo(rs2), NO_JUMP(0)), ctx); break; case BPF_JSGE: emit(rv_bgt(hi(rs1), hi(rs2), JUMP(2)), ctx); emit(rv_blt(hi(rs1), hi(rs2), NO_JUMP(1)), ctx); emit(rv_bltu(lo(rs1), lo(rs2), NO_JUMP(0)), ctx); break; case BPF_JSLE: emit(rv_blt(hi(rs1), hi(rs2), JUMP(2)), ctx); emit(rv_bgt(hi(rs1), hi(rs2), NO_JUMP(1)), ctx); emit(rv_bgtu(lo(rs1), lo(rs2), NO_JUMP(0)), ctx); break; case BPF_JSET: emit(rv_and(RV_REG_T0, hi(rs1), hi(rs2)), ctx); emit(rv_bne(RV_REG_T0, RV_REG_ZERO, JUMP(2)), ctx); emit(rv_and(RV_REG_T0, lo(rs1), lo(rs2)), ctx); emit(rv_beq(RV_REG_T0, RV_REG_ZERO, NO_JUMP(0)), ctx); break; } #undef NO_JUMP #undef JUMP e = ctx->ninsns; /* Adjust for extra insns. */ rvoff -= ninsns_rvoff(e - s); emit_jump_and_link(RV_REG_ZERO, rvoff, true, ctx); return 0; } static int emit_bcc(u8 op, u8 rd, u8 rs, int rvoff, struct rv_jit_context *ctx) { int e, s = ctx->ninsns; bool far = false; int off; if (op == BPF_JSET) { /* * BPF_JSET is a special case: it has no inverse so we always * treat it as a far branch. */ far = true; } else if (!is_13b_int(rvoff)) { op = invert_bpf_cond(op); far = true; } /* * For a far branch, the condition is negated and we jump over the * branch itself, and the two instructions from emit_jump_and_link. * For a near branch, just use rvoff. */ off = far ? 6 : (rvoff >> 1); switch (op) { case BPF_JEQ: emit(rv_beq(rd, rs, off), ctx); break; case BPF_JGT: emit(rv_bgtu(rd, rs, off), ctx); break; case BPF_JLT: emit(rv_bltu(rd, rs, off), ctx); break; case BPF_JGE: emit(rv_bgeu(rd, rs, off), ctx); break; case BPF_JLE: emit(rv_bleu(rd, rs, off), ctx); break; case BPF_JNE: emit(rv_bne(rd, rs, off), ctx); break; case BPF_JSGT: emit(rv_bgt(rd, rs, off), ctx); break; case BPF_JSLT: emit(rv_blt(rd, rs, off), ctx); break; case BPF_JSGE: emit(rv_bge(rd, rs, off), ctx); break; case BPF_JSLE: emit(rv_ble(rd, rs, off), ctx); break; case BPF_JSET: emit(rv_and(RV_REG_T0, rd, rs), ctx); emit(rv_beq(RV_REG_T0, RV_REG_ZERO, off), ctx); break; } if (far) { e = ctx->ninsns; /* Adjust for extra insns. */ rvoff -= ninsns_rvoff(e - s); emit_jump_and_link(RV_REG_ZERO, rvoff, true, ctx); } return 0; } static int emit_branch_r32(const s8 *src1, const s8 *src2, s32 rvoff, struct rv_jit_context *ctx, const u8 op) { int e, s = ctx->ninsns; const s8 *tmp1 = bpf2rv32[TMP_REG_1]; const s8 *tmp2 = bpf2rv32[TMP_REG_2]; const s8 *rs1 = bpf_get_reg32(src1, tmp1, ctx); const s8 *rs2 = bpf_get_reg32(src2, tmp2, ctx); e = ctx->ninsns; /* Adjust for extra insns. */ rvoff -= ninsns_rvoff(e - s); if (emit_bcc(op, lo(rs1), lo(rs2), rvoff, ctx)) return -1; return 0; } static void emit_call(bool fixed, u64 addr, struct rv_jit_context *ctx) { const s8 *r0 = bpf2rv32[BPF_REG_0]; const s8 *r5 = bpf2rv32[BPF_REG_5]; u32 upper = ((u32)addr + (1 << 11)) >> 12; u32 lower = addr & 0xfff; /* R1-R4 already in correct registers---need to push R5 to stack. */ emit(rv_addi(RV_REG_SP, RV_REG_SP, -16), ctx); emit(rv_sw(RV_REG_SP, 0, lo(r5)), ctx); emit(rv_sw(RV_REG_SP, 4, hi(r5)), ctx); /* Backup TCC. */ emit(rv_addi(RV_REG_TCC_SAVED, RV_REG_TCC, 0), ctx); /* * Use lui/jalr pair to jump to absolute address. Don't use emit_imm as * the number of emitted instructions should not depend on the value of * addr. */ emit(rv_lui(RV_REG_T1, upper), ctx); emit(rv_jalr(RV_REG_RA, RV_REG_T1, lower), ctx); /* Restore TCC. */ emit(rv_addi(RV_REG_TCC, RV_REG_TCC_SAVED, 0), ctx); /* Set return value and restore stack. */ emit(rv_addi(lo(r0), RV_REG_A0, 0), ctx); emit(rv_addi(hi(r0), RV_REG_A1, 0), ctx); emit(rv_addi(RV_REG_SP, RV_REG_SP, 16), ctx); } static int emit_bpf_tail_call(int insn, struct rv_jit_context *ctx) { /* * R1 -> &ctx * R2 -> &array * R3 -> index */ int tc_ninsn, off, start_insn = ctx->ninsns; const s8 *arr_reg = bpf2rv32[BPF_REG_2]; const s8 *idx_reg = bpf2rv32[BPF_REG_3]; tc_ninsn = insn ? ctx->offset[insn] - ctx->offset[insn - 1] : ctx->offset[0]; /* max_entries = array->map.max_entries; */ off = offsetof(struct bpf_array, map.max_entries); if (is_12b_check(off, insn)) return -1; emit(rv_lw(RV_REG_T1, off, lo(arr_reg)), ctx); /* * if (index >= max_entries) * goto out; */ off = ninsns_rvoff(tc_ninsn - (ctx->ninsns - start_insn)); emit_bcc(BPF_JGE, lo(idx_reg), RV_REG_T1, off, ctx); /* * if (--tcc < 0) * goto out; */ emit(rv_addi(RV_REG_TCC, RV_REG_TCC, -1), ctx); off = ninsns_rvoff(tc_ninsn - (ctx->ninsns - start_insn)); emit_bcc(BPF_JSLT, RV_REG_TCC, RV_REG_ZERO, off, ctx); /* * prog = array->ptrs[index]; * if (!prog) * goto out; */ emit_sh2add(RV_REG_T0, lo(idx_reg), lo(arr_reg), ctx); off = offsetof(struct bpf_array, ptrs); if (is_12b_check(off, insn)) return -1; emit(rv_lw(RV_REG_T0, off, RV_REG_T0), ctx); off = ninsns_rvoff(tc_ninsn - (ctx->ninsns - start_insn)); emit_bcc(BPF_JEQ, RV_REG_T0, RV_REG_ZERO, off, ctx); /* * tcc = temp_tcc; * goto *(prog->bpf_func + 4); */ off = offsetof(struct bpf_prog, bpf_func); if (is_12b_check(off, insn)) return -1; emit(rv_lw(RV_REG_T0, off, RV_REG_T0), ctx); /* Epilogue jumps to *(t0 + 4). */ __build_epilogue(true, ctx); return 0; } static int emit_load_r64(const s8 *dst, const s8 *src, s16 off, struct rv_jit_context *ctx, const u8 size) { const s8 *tmp1 = bpf2rv32[TMP_REG_1]; const s8 *tmp2 = bpf2rv32[TMP_REG_2]; const s8 *rd = bpf_get_reg64(dst, tmp1, ctx); const s8 *rs = bpf_get_reg64(src, tmp2, ctx); emit_imm(RV_REG_T0, off, ctx); emit(rv_add(RV_REG_T0, RV_REG_T0, lo(rs)), ctx); switch (size) { case BPF_B: emit(rv_lbu(lo(rd), 0, RV_REG_T0), ctx); if (!ctx->prog->aux->verifier_zext) emit(rv_addi(hi(rd), RV_REG_ZERO, 0), ctx); break; case BPF_H: emit(rv_lhu(lo(rd), 0, RV_REG_T0), ctx); if (!ctx->prog->aux->verifier_zext) emit(rv_addi(hi(rd), RV_REG_ZERO, 0), ctx); break; case BPF_W: emit(rv_lw(lo(rd), 0, RV_REG_T0), ctx); if (!ctx->prog->aux->verifier_zext) emit(rv_addi(hi(rd), RV_REG_ZERO, 0), ctx); break; case BPF_DW: emit(rv_lw(lo(rd), 0, RV_REG_T0), ctx); emit(rv_lw(hi(rd), 4, RV_REG_T0), ctx); break; } bpf_put_reg64(dst, rd, ctx); return 0; } static int emit_store_r64(const s8 *dst, const s8 *src, s16 off, struct rv_jit_context *ctx, const u8 size, const u8 mode) { const s8 *tmp1 = bpf2rv32[TMP_REG_1]; const s8 *tmp2 = bpf2rv32[TMP_REG_2]; const s8 *rd = bpf_get_reg64(dst, tmp1, ctx); const s8 *rs = bpf_get_reg64(src, tmp2, ctx); if (mode == BPF_ATOMIC && size != BPF_W) return -1; emit_imm(RV_REG_T0, off, ctx); emit(rv_add(RV_REG_T0, RV_REG_T0, lo(rd)), ctx); switch (size) { case BPF_B: emit(rv_sb(RV_REG_T0, 0, lo(rs)), ctx); break; case BPF_H: emit(rv_sh(RV_REG_T0, 0, lo(rs)), ctx); break; case BPF_W: switch (mode) { case BPF_MEM: emit(rv_sw(RV_REG_T0, 0, lo(rs)), ctx); break; case BPF_ATOMIC: /* Only BPF_ADD supported */ emit(rv_amoadd_w(RV_REG_ZERO, lo(rs), RV_REG_T0, 0, 0), ctx); break; } break; case BPF_DW: emit(rv_sw(RV_REG_T0, 0, lo(rs)), ctx); emit(rv_sw(RV_REG_T0, 4, hi(rs)), ctx); break; } return 0; } static void emit_rev16(const s8 rd, struct rv_jit_context *ctx) { emit(rv_slli(rd, rd, 16), ctx); emit(rv_slli(RV_REG_T1, rd, 8), ctx); emit(rv_srli(rd, rd, 8), ctx); emit(rv_add(RV_REG_T1, rd, RV_REG_T1), ctx); emit(rv_srli(rd, RV_REG_T1, 16), ctx); } static void emit_rev32(const s8 rd, struct rv_jit_context *ctx) { emit(rv_addi(RV_REG_T1, RV_REG_ZERO, 0), ctx); emit(rv_andi(RV_REG_T0, rd, 255), ctx); emit(rv_add(RV_REG_T1, RV_REG_T1, RV_REG_T0), ctx); emit(rv_slli(RV_REG_T1, RV_REG_T1, 8), ctx); emit(rv_srli(rd, rd, 8), ctx); emit(rv_andi(RV_REG_T0, rd, 255), ctx); emit(rv_add(RV_REG_T1, RV_REG_T1, RV_REG_T0), ctx); emit(rv_slli(RV_REG_T1, RV_REG_T1, 8), ctx); emit(rv_srli(rd, rd, 8), ctx); emit(rv_andi(RV_REG_T0, rd, 255), ctx); emit(rv_add(RV_REG_T1, RV_REG_T1, RV_REG_T0), ctx); emit(rv_slli(RV_REG_T1, RV_REG_T1, 8), ctx); emit(rv_srli(rd, rd, 8), ctx); emit(rv_andi(RV_REG_T0, rd, 255), ctx); emit(rv_add(RV_REG_T1, RV_REG_T1, RV_REG_T0), ctx); emit(rv_addi(rd, RV_REG_T1, 0), ctx); } static void emit_zext64(const s8 *dst, struct rv_jit_context *ctx) { const s8 *rd; const s8 *tmp1 = bpf2rv32[TMP_REG_1]; rd = bpf_get_reg64(dst, tmp1, ctx); emit(rv_addi(hi(rd), RV_REG_ZERO, 0), ctx); bpf_put_reg64(dst, rd, ctx); } int bpf_jit_emit_insn(const struct bpf_insn *insn, struct rv_jit_context *ctx, bool extra_pass) { bool is64 = BPF_CLASS(insn->code) == BPF_ALU64 || BPF_CLASS(insn->code) == BPF_JMP; int s, e, rvoff, i = insn - ctx->prog->insnsi; u8 code = insn->code; s16 off = insn->off; s32 imm = insn->imm; const s8 *dst = bpf2rv32[insn->dst_reg]; const s8 *src = bpf2rv32[insn->src_reg]; const s8 *tmp1 = bpf2rv32[TMP_REG_1]; const s8 *tmp2 = bpf2rv32[TMP_REG_2]; switch (code) { case BPF_ALU64 | BPF_MOV | BPF_X: case BPF_ALU64 | BPF_ADD | BPF_X: case BPF_ALU64 | BPF_ADD | BPF_K: case BPF_ALU64 | BPF_SUB | BPF_X: case BPF_ALU64 | BPF_SUB | BPF_K: case BPF_ALU64 | BPF_AND | BPF_X: case BPF_ALU64 | BPF_OR | BPF_X: case BPF_ALU64 | BPF_XOR | BPF_X: case BPF_ALU64 | BPF_MUL | BPF_X: case BPF_ALU64 | BPF_MUL | BPF_K: case BPF_ALU64 | BPF_LSH | BPF_X: case BPF_ALU64 | BPF_RSH | BPF_X: case BPF_ALU64 | BPF_ARSH | BPF_X: if (BPF_SRC(code) == BPF_K) { emit_imm32(tmp2, imm, ctx); src = tmp2; } emit_alu_r64(dst, src, ctx, BPF_OP(code)); break; case BPF_ALU64 | BPF_NEG: emit_alu_r64(dst, tmp2, ctx, BPF_OP(code)); break; case BPF_ALU64 | BPF_DIV | BPF_X: case BPF_ALU64 | BPF_DIV | BPF_K: case BPF_ALU64 | BPF_MOD | BPF_X: case BPF_ALU64 | BPF_MOD | BPF_K: goto notsupported; case BPF_ALU64 | BPF_MOV | BPF_K: case BPF_ALU64 | BPF_AND | BPF_K: case BPF_ALU64 | BPF_OR | BPF_K: case BPF_ALU64 | BPF_XOR | BPF_K: case BPF_ALU64 | BPF_LSH | BPF_K: case BPF_ALU64 | BPF_RSH | BPF_K: case BPF_ALU64 | BPF_ARSH | BPF_K: emit_alu_i64(dst, imm, ctx, BPF_OP(code)); break; case BPF_ALU | BPF_MOV | BPF_X: if (imm == 1) { /* Special mov32 for zext. */ emit_zext64(dst, ctx); break; } fallthrough; case BPF_ALU | BPF_ADD | BPF_X: case BPF_ALU | BPF_SUB | BPF_X: case BPF_ALU | BPF_AND | BPF_X: case BPF_ALU | BPF_OR | BPF_X: case BPF_ALU | BPF_XOR | BPF_X: case BPF_ALU | BPF_MUL | BPF_X: case BPF_ALU | BPF_MUL | BPF_K: case BPF_ALU | BPF_DIV | BPF_X: case BPF_ALU | BPF_DIV | BPF_K: case BPF_ALU | BPF_MOD | BPF_X: case BPF_ALU | BPF_MOD | BPF_K: case BPF_ALU | BPF_LSH | BPF_X: case BPF_ALU | BPF_RSH | BPF_X: case BPF_ALU | BPF_ARSH | BPF_X: if (BPF_SRC(code) == BPF_K) { emit_imm32(tmp2, imm, ctx); src = tmp2; } emit_alu_r32(dst, src, ctx, BPF_OP(code)); break; case BPF_ALU | BPF_MOV | BPF_K: case BPF_ALU | BPF_ADD | BPF_K: case BPF_ALU | BPF_SUB | BPF_K: case BPF_ALU | BPF_AND | BPF_K: case BPF_ALU | BPF_OR | BPF_K: case BPF_ALU | BPF_XOR | BPF_K: case BPF_ALU | BPF_LSH | BPF_K: case BPF_ALU | BPF_RSH | BPF_K: case BPF_ALU | BPF_ARSH | BPF_K: /* * mul,div,mod are handled in the BPF_X case since there are * no RISC-V I-type equivalents. */ emit_alu_i32(dst, imm, ctx, BPF_OP(code)); break; case BPF_ALU | BPF_NEG: /* * src is ignored---choose tmp2 as a dummy register since it * is not on the stack. */ emit_alu_r32(dst, tmp2, ctx, BPF_OP(code)); break; case BPF_ALU | BPF_END | BPF_FROM_LE: { const s8 *rd = bpf_get_reg64(dst, tmp1, ctx); switch (imm) { case 16: emit(rv_slli(lo(rd), lo(rd), 16), ctx); emit(rv_srli(lo(rd), lo(rd), 16), ctx); fallthrough; case 32: if (!ctx->prog->aux->verifier_zext) emit(rv_addi(hi(rd), RV_REG_ZERO, 0), ctx); break; case 64: /* Do nothing. */ break; default: pr_err("bpf-jit: BPF_END imm %d invalid\n", imm); return -1; } bpf_put_reg64(dst, rd, ctx); break; } case BPF_ALU | BPF_END | BPF_FROM_BE: { const s8 *rd = bpf_get_reg64(dst, tmp1, ctx); switch (imm) { case 16: emit_rev16(lo(rd), ctx); if (!ctx->prog->aux->verifier_zext) emit(rv_addi(hi(rd), RV_REG_ZERO, 0), ctx); break; case 32: emit_rev32(lo(rd), ctx); if (!ctx->prog->aux->verifier_zext) emit(rv_addi(hi(rd), RV_REG_ZERO, 0), ctx); break; case 64: /* Swap upper and lower halves. */ emit(rv_addi(RV_REG_T0, lo(rd), 0), ctx); emit(rv_addi(lo(rd), hi(rd), 0), ctx); emit(rv_addi(hi(rd), RV_REG_T0, 0), ctx); /* Swap each half. */ emit_rev32(lo(rd), ctx); emit_rev32(hi(rd), ctx); break; default: pr_err("bpf-jit: BPF_END imm %d invalid\n", imm); return -1; } bpf_put_reg64(dst, rd, ctx); break; } case BPF_JMP | BPF_JA: rvoff = rv_offset(i, off, ctx); emit_jump_and_link(RV_REG_ZERO, rvoff, false, ctx); break; case BPF_JMP | BPF_CALL: { bool fixed; int ret; u64 addr; ret = bpf_jit_get_func_addr(ctx->prog, insn, extra_pass, &addr, &fixed); if (ret < 0) return ret; emit_call(fixed, addr, ctx); break; } case BPF_JMP | BPF_TAIL_CALL: if (emit_bpf_tail_call(i, ctx)) return -1; break; case BPF_JMP | BPF_JEQ | BPF_X: case BPF_JMP | BPF_JEQ | BPF_K: case BPF_JMP32 | BPF_JEQ | BPF_X: case BPF_JMP32 | BPF_JEQ | BPF_K: case BPF_JMP | BPF_JNE | BPF_X: case BPF_JMP | BPF_JNE | BPF_K: case BPF_JMP32 | BPF_JNE | BPF_X: case BPF_JMP32 | BPF_JNE | BPF_K: case BPF_JMP | BPF_JLE | BPF_X: case BPF_JMP | BPF_JLE | BPF_K: case BPF_JMP32 | BPF_JLE | BPF_X: case BPF_JMP32 | BPF_JLE | BPF_K: case BPF_JMP | BPF_JLT | BPF_X: case BPF_JMP | BPF_JLT | BPF_K: case BPF_JMP32 | BPF_JLT | BPF_X: case BPF_JMP32 | BPF_JLT | BPF_K: case BPF_JMP | BPF_JGE | BPF_X: case BPF_JMP | BPF_JGE | BPF_K: case BPF_JMP32 | BPF_JGE | BPF_X: case BPF_JMP32 | BPF_JGE | BPF_K: case BPF_JMP | BPF_JGT | BPF_X: case BPF_JMP | BPF_JGT | BPF_K: case BPF_JMP32 | BPF_JGT | BPF_X: case BPF_JMP32 | BPF_JGT | BPF_K: case BPF_JMP | BPF_JSLE | BPF_X: case BPF_JMP | BPF_JSLE | BPF_K: case BPF_JMP32 | BPF_JSLE | BPF_X: case BPF_JMP32 | BPF_JSLE | BPF_K: case BPF_JMP | BPF_JSLT | BPF_X: case BPF_JMP | BPF_JSLT | BPF_K: case BPF_JMP32 | BPF_JSLT | BPF_X: case BPF_JMP32 | BPF_JSLT | BPF_K: case BPF_JMP | BPF_JSGE | BPF_X: case BPF_JMP | BPF_JSGE | BPF_K: case BPF_JMP32 | BPF_JSGE | BPF_X: case BPF_JMP32 | BPF_JSGE | BPF_K: case BPF_JMP | BPF_JSGT | BPF_X: case BPF_JMP | BPF_JSGT | BPF_K: case BPF_JMP32 | BPF_JSGT | BPF_X: case BPF_JMP32 | BPF_JSGT | BPF_K: case BPF_JMP | BPF_JSET | BPF_X: case BPF_JMP | BPF_JSET | BPF_K: case BPF_JMP32 | BPF_JSET | BPF_X: case BPF_JMP32 | BPF_JSET | BPF_K: rvoff = rv_offset(i, off, ctx); if (BPF_SRC(code) == BPF_K) { s = ctx->ninsns; emit_imm32(tmp2, imm, ctx); src = tmp2; e = ctx->ninsns; rvoff -= ninsns_rvoff(e - s); } if (is64) emit_branch_r64(dst, src, rvoff, ctx, BPF_OP(code)); else emit_branch_r32(dst, src, rvoff, ctx, BPF_OP(code)); break; case BPF_JMP | BPF_EXIT: if (i == ctx->prog->len - 1) break; rvoff = epilogue_offset(ctx); emit_jump_and_link(RV_REG_ZERO, rvoff, false, ctx); break; case BPF_LD | BPF_IMM | BPF_DW: { struct bpf_insn insn1 = insn[1]; s32 imm_lo = imm; s32 imm_hi = insn1.imm; const s8 *rd = bpf_get_reg64(dst, tmp1, ctx); emit_imm64(rd, imm_hi, imm_lo, ctx); bpf_put_reg64(dst, rd, ctx); return 1; } case BPF_LDX | BPF_MEM | BPF_B: case BPF_LDX | BPF_MEM | BPF_H: case BPF_LDX | BPF_MEM | BPF_W: case BPF_LDX | BPF_MEM | BPF_DW: if (emit_load_r64(dst, src, off, ctx, BPF_SIZE(code))) return -1; break; /* speculation barrier */ case BPF_ST | BPF_NOSPEC: break; case BPF_ST | BPF_MEM | BPF_B: case BPF_ST | BPF_MEM | BPF_H: case BPF_ST | BPF_MEM | BPF_W: case BPF_ST | BPF_MEM | BPF_DW: case BPF_STX | BPF_MEM | BPF_B: case BPF_STX | BPF_MEM | BPF_H: case BPF_STX | BPF_MEM | BPF_W: case BPF_STX | BPF_MEM | BPF_DW: if (BPF_CLASS(code) == BPF_ST) { emit_imm32(tmp2, imm, ctx); src = tmp2; } if (emit_store_r64(dst, src, off, ctx, BPF_SIZE(code), BPF_MODE(code))) return -1; break; case BPF_STX | BPF_ATOMIC | BPF_W: if (insn->imm != BPF_ADD) { pr_info_once( "bpf-jit: not supported: atomic operation %02x ***\n", insn->imm); return -EFAULT; } if (emit_store_r64(dst, src, off, ctx, BPF_SIZE(code), BPF_MODE(code))) return -1; break; /* No hardware support for 8-byte atomics in RV32. */ case BPF_STX | BPF_ATOMIC | BPF_DW: /* Fallthrough. */ notsupported: pr_info_once("bpf-jit: not supported: opcode %02x ***\n", code); return -EFAULT; default: pr_err("bpf-jit: unknown opcode %02x\n", code); return -EINVAL; } return 0; } void bpf_jit_build_prologue(struct rv_jit_context *ctx, bool is_subprog) { const s8 *fp = bpf2rv32[BPF_REG_FP]; const s8 *r1 = bpf2rv32[BPF_REG_1]; int stack_adjust = 0; int bpf_stack_adjust = round_up(ctx->prog->aux->stack_depth, STACK_ALIGN); /* Make space for callee-saved registers. */ stack_adjust += NR_SAVED_REGISTERS * sizeof(u32); /* Make space for BPF registers on stack. */ stack_adjust += BPF_JIT_SCRATCH_REGS * sizeof(u32); /* Make space for BPF stack. */ stack_adjust += bpf_stack_adjust; /* Round up for stack alignment. */ stack_adjust = round_up(stack_adjust, STACK_ALIGN); /* * The first instruction sets the tail-call-counter (TCC) register. * This instruction is skipped by tail calls. */ emit(rv_addi(RV_REG_TCC, RV_REG_ZERO, MAX_TAIL_CALL_CNT), ctx); emit(rv_addi(RV_REG_SP, RV_REG_SP, -stack_adjust), ctx); /* Save callee-save registers. */ emit(rv_sw(RV_REG_SP, stack_adjust - 4, RV_REG_RA), ctx); emit(rv_sw(RV_REG_SP, stack_adjust - 8, RV_REG_FP), ctx); emit(rv_sw(RV_REG_SP, stack_adjust - 12, RV_REG_S1), ctx); emit(rv_sw(RV_REG_SP, stack_adjust - 16, RV_REG_S2), ctx); emit(rv_sw(RV_REG_SP, stack_adjust - 20, RV_REG_S3), ctx); emit(rv_sw(RV_REG_SP, stack_adjust - 24, RV_REG_S4), ctx); emit(rv_sw(RV_REG_SP, stack_adjust - 28, RV_REG_S5), ctx); emit(rv_sw(RV_REG_SP, stack_adjust - 32, RV_REG_S6), ctx); emit(rv_sw(RV_REG_SP, stack_adjust - 36, RV_REG_S7), ctx); /* Set fp: used as the base address for stacked BPF registers. */ emit(rv_addi(RV_REG_FP, RV_REG_SP, stack_adjust), ctx); /* Set up BPF frame pointer. */ emit(rv_addi(lo(fp), RV_REG_SP, bpf_stack_adjust), ctx); emit(rv_addi(hi(fp), RV_REG_ZERO, 0), ctx); /* Set up BPF context pointer. */ emit(rv_addi(lo(r1), RV_REG_A0, 0), ctx); emit(rv_addi(hi(r1), RV_REG_ZERO, 0), ctx); ctx->stack_size = stack_adjust; } void bpf_jit_build_epilogue(struct rv_jit_context *ctx) { __build_epilogue(false, ctx); }