From 5fac7408d828719db6d3fdba63e3c3726a6d1ee5 Mon Sep 17 00:00:00 2001 From: Dan Williams Date: Fri, 9 Mar 2018 17:44:31 -0800 Subject: mm, fs, dax: handle layout changes to pinned dax mappings Background: get_user_pages() in the filesystem pins file backed memory pages for access by devices performing dma. However, it only pins the memory pages not the page-to-file offset association. If a file is truncated the pages are mapped out of the file and dma may continue indefinitely into a page that is owned by a device driver. This breaks coherency of the file vs dma, but the assumption is that if userspace wants the file-space truncated it does not matter what data is inbound from the device, it is not relevant anymore. The only expectation is that dma can safely continue while the filesystem reallocates the block(s). Problem: This expectation that dma can safely continue while the filesystem changes the block map is broken by dax. With dax the target dma page *is* the filesystem block. The model of leaving the page pinned for dma, but truncating the file block out of the file, means that the filesytem is free to reallocate a block under active dma to another file and now the expected data-incoherency situation has turned into active data-corruption. Solution: Defer all filesystem operations (fallocate(), truncate()) on a dax mode file while any page/block in the file is under active dma. This solution assumes that dma is transient. Cases where dma operations are known to not be transient, like RDMA, have been explicitly disabled via commits like 5f1d43de5416 "IB/core: disable memory registration of filesystem-dax vmas". The dax_layout_busy_page() routine is called by filesystems with a lock held against mm faults (i_mmap_lock) to find pinned / busy dax pages. The process of looking up a busy page invalidates all mappings to trigger any subsequent get_user_pages() to block on i_mmap_lock. The filesystem continues to call dax_layout_busy_page() until it finally returns no more active pages. This approach assumes that the page pinning is transient, if that assumption is violated the system would have likely hung from the uncompleted I/O. Cc: Jeff Moyer Cc: Dave Chinner Cc: Matthew Wilcox Cc: Alexander Viro Cc: "Darrick J. Wong" Cc: Ross Zwisler Cc: Dave Hansen Cc: Andrew Morton Reported-by: Christoph Hellwig Reviewed-by: Christoph Hellwig Reviewed-by: Jan Kara Signed-off-by: Dan Williams --- fs/dax.c | 97 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 97 insertions(+) (limited to 'fs/dax.c') diff --git a/fs/dax.c b/fs/dax.c index aaec72ded1b6..e8f61ea690f7 100644 --- a/fs/dax.c +++ b/fs/dax.c @@ -351,6 +351,19 @@ static void dax_disassociate_entry(void *entry, struct address_space *mapping, } } +static struct page *dax_busy_page(void *entry) +{ + unsigned long pfn; + + for_each_mapped_pfn(entry, pfn) { + struct page *page = pfn_to_page(pfn); + + if (page_ref_count(page) > 1) + return page; + } + return NULL; +} + /* * Find radix tree entry at given index. If it points to an exceptional entry, * return it with the radix tree entry locked. If the radix tree doesn't @@ -492,6 +505,90 @@ restart: return entry; } +/** + * dax_layout_busy_page - find first pinned page in @mapping + * @mapping: address space to scan for a page with ref count > 1 + * + * DAX requires ZONE_DEVICE mapped pages. These pages are never + * 'onlined' to the page allocator so they are considered idle when + * page->count == 1. A filesystem uses this interface to determine if + * any page in the mapping is busy, i.e. for DMA, or other + * get_user_pages() usages. + * + * It is expected that the filesystem is holding locks to block the + * establishment of new mappings in this address_space. I.e. it expects + * to be able to run unmap_mapping_range() and subsequently not race + * mapping_mapped() becoming true. + */ +struct page *dax_layout_busy_page(struct address_space *mapping) +{ + pgoff_t indices[PAGEVEC_SIZE]; + struct page *page = NULL; + struct pagevec pvec; + pgoff_t index, end; + unsigned i; + + /* + * In the 'limited' case get_user_pages() for dax is disabled. + */ + if (IS_ENABLED(CONFIG_FS_DAX_LIMITED)) + return NULL; + + if (!dax_mapping(mapping) || !mapping_mapped(mapping)) + return NULL; + + pagevec_init(&pvec); + index = 0; + end = -1; + + /* + * If we race get_user_pages_fast() here either we'll see the + * elevated page count in the pagevec_lookup and wait, or + * get_user_pages_fast() will see that the page it took a reference + * against is no longer mapped in the page tables and bail to the + * get_user_pages() slow path. The slow path is protected by + * pte_lock() and pmd_lock(). New references are not taken without + * holding those locks, and unmap_mapping_range() will not zero the + * pte or pmd without holding the respective lock, so we are + * guaranteed to either see new references or prevent new + * references from being established. + */ + unmap_mapping_range(mapping, 0, 0, 1); + + while (index < end && pagevec_lookup_entries(&pvec, mapping, index, + min(end - index, (pgoff_t)PAGEVEC_SIZE), + indices)) { + for (i = 0; i < pagevec_count(&pvec); i++) { + struct page *pvec_ent = pvec.pages[i]; + void *entry; + + index = indices[i]; + if (index >= end) + break; + + if (!radix_tree_exceptional_entry(pvec_ent)) + continue; + + xa_lock_irq(&mapping->i_pages); + entry = get_unlocked_mapping_entry(mapping, index, NULL); + if (entry) + page = dax_busy_page(entry); + put_unlocked_mapping_entry(mapping, index, entry); + xa_unlock_irq(&mapping->i_pages); + if (page) + break; + } + pagevec_remove_exceptionals(&pvec); + pagevec_release(&pvec); + index++; + + if (page) + break; + } + return page; +} +EXPORT_SYMBOL_GPL(dax_layout_busy_page); + static int __dax_invalidate_mapping_entry(struct address_space *mapping, pgoff_t index, bool trunc) { -- cgit v1.2.3-58-ga151