From e6e620f0e15e3bc4b3bc3078c9f3285830f2fd3c Mon Sep 17 00:00:00 2001 From: Boris Brezillon Date: Mon, 22 Jan 2018 10:38:01 +0100 Subject: mtd: Make sure the device supports erase operations in mtd_erase() Some devices do not implement ->_erase() or have an invalid ->erasesize value. In this case, mtd_erase() should return -ENOTSUPP. Note that the test is not done on the MTD_NO_ERASE flag because this flag means 'erasing a block before writing to it is unnecessary', not 'the erase operation is not supported'. Actually, some drivers are setting the MTD_NO_ERASE flag but still implementing the ->_erase() hook and setting a valid ->erasesize value. Signed-off-by: Boris Brezillon Reviewed-by: Miquel Raynal Signed-off-by: Boris Brezillon --- drivers/mtd/mtdcore.c | 4 ++++ 1 file changed, 4 insertions(+) diff --git a/drivers/mtd/mtdcore.c b/drivers/mtd/mtdcore.c index 28553c840d32..56cb037a1052 100644 --- a/drivers/mtd/mtdcore.c +++ b/drivers/mtd/mtdcore.c @@ -971,10 +971,14 @@ EXPORT_SYMBOL_GPL(__put_mtd_device); */ int mtd_erase(struct mtd_info *mtd, struct erase_info *instr) { + if (!mtd->erasesize || !mtd->_erase) + return -ENOTSUPP; + if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr) return -EINVAL; if (!(mtd->flags & MTD_WRITEABLE)) return -EROFS; + instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN; if (!instr->len) { instr->state = MTD_ERASE_DONE; -- cgit v1.2.3-58-ga151 From 2c77c57d22adb05b21cdb333a0c42bdfa0e19835 Mon Sep 17 00:00:00 2001 From: Rafał Miłecki Date: Tue, 16 Jan 2018 16:45:41 +0100 Subject: mtd: move code adding master MTD out of mtd_add_device_partitions() MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit This change is a small cleanup of mtd_device_parse_register(). When using MTD_PARTITIONED_MASTER it makes sure a master MTD is registered before dealing with partitions. The advantage of this is not mixing code handling master MTD with code handling partitions. This commit doesn't change any behavior except from a slightly different failure code path. The new code may need to call del_mtd_device when something goes wrong. Signed-off-by: Rafał Miłecki Signed-off-by: Boris Brezillon --- drivers/mtd/mtdcore.c | 25 +++++++++++++------------ 1 file changed, 13 insertions(+), 12 deletions(-) diff --git a/drivers/mtd/mtdcore.c b/drivers/mtd/mtdcore.c index 56cb037a1052..c6a53a1e55d9 100644 --- a/drivers/mtd/mtdcore.c +++ b/drivers/mtd/mtdcore.c @@ -646,20 +646,12 @@ static int mtd_add_device_partitions(struct mtd_info *mtd, { const struct mtd_partition *real_parts = parts->parts; int nbparts = parts->nr_parts; - int ret; - if (nbparts == 0 || IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) { - ret = add_mtd_device(mtd); - if (ret) - return ret; - } + if (!nbparts && !device_is_registered(&mtd->dev)) + return add_mtd_device(mtd); - if (nbparts > 0) { - ret = add_mtd_partitions(mtd, real_parts, nbparts); - if (ret && IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) - del_mtd_device(mtd); - return ret; - } + if (nbparts > 0) + return add_mtd_partitions(mtd, real_parts, nbparts); return 0; } @@ -719,6 +711,12 @@ int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types, mtd_set_dev_defaults(mtd); + if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) { + ret = add_mtd_device(mtd); + if (ret) + return ret; + } + memset(&parsed, 0, sizeof(parsed)); ret = parse_mtd_partitions(mtd, types, &parsed, parser_data); @@ -758,6 +756,9 @@ int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types, out: /* Cleanup any parsed partitions */ mtd_part_parser_cleanup(&parsed); + if (ret && device_is_registered(&mtd->dev)) + del_mtd_device(mtd); + return ret; } EXPORT_SYMBOL_GPL(mtd_device_parse_register); -- cgit v1.2.3-58-ga151 From 0dbe4ea78d69756efeb0bba0764f6bd4a9ee9567 Mon Sep 17 00:00:00 2001 From: Rafał Miłecki Date: Tue, 16 Jan 2018 16:45:42 +0100 Subject: mtd: get rid of the mtd_add_device_partitions() MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit This simplifies code a bit by: 1) Avoiding an extra (tiny) function 2) Checking for amount of parsed (found) partitions just once 3) Avoiding clearing/filling struct mtd_partitions manually With this commit proper functions are called directly from the mtd_device_parse_register(). It doesn't need to use minor tricks like memsetting struct to 0 to trigger an expected mtd_add_device_partitions() behavior. Signed-off-by: Rafał Miłecki Signed-off-by: Boris Brezillon --- drivers/mtd/mtdcore.c | 43 ++++++++++++------------------------------- 1 file changed, 12 insertions(+), 31 deletions(-) diff --git a/drivers/mtd/mtdcore.c b/drivers/mtd/mtdcore.c index c6a53a1e55d9..a1c94526fb88 100644 --- a/drivers/mtd/mtdcore.c +++ b/drivers/mtd/mtdcore.c @@ -641,21 +641,6 @@ out_error: return ret; } -static int mtd_add_device_partitions(struct mtd_info *mtd, - struct mtd_partitions *parts) -{ - const struct mtd_partition *real_parts = parts->parts; - int nbparts = parts->nr_parts; - - if (!nbparts && !device_is_registered(&mtd->dev)) - return add_mtd_device(mtd); - - if (nbparts > 0) - return add_mtd_partitions(mtd, real_parts, nbparts); - - return 0; -} - /* * Set a few defaults based on the parent devices, if not provided by the * driver @@ -706,7 +691,7 @@ int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types, const struct mtd_partition *parts, int nr_parts) { - struct mtd_partitions parsed; + struct mtd_partitions parsed = { }; int ret; mtd_set_dev_defaults(mtd); @@ -717,24 +702,20 @@ int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types, return ret; } - memset(&parsed, 0, sizeof(parsed)); - + /* Prefer parsed partitions over driver-provided fallback */ ret = parse_mtd_partitions(mtd, types, &parsed, parser_data); - if ((ret < 0 || parsed.nr_parts == 0) && parts && nr_parts) { - /* Fall back to driver-provided partitions */ - parsed = (struct mtd_partitions){ - .parts = parts, - .nr_parts = nr_parts, - }; - } else if (ret < 0) { - /* Didn't come up with parsed OR fallback partitions */ - pr_info("mtd: failed to find partitions; one or more parsers reports errors (%d)\n", - ret); - /* Don't abort on errors; we can still use unpartitioned MTD */ - memset(&parsed, 0, sizeof(parsed)); + if (!ret && parsed.nr_parts) { + parts = parsed.parts; + nr_parts = parsed.nr_parts; } - ret = mtd_add_device_partitions(mtd, &parsed); + if (nr_parts) + ret = add_mtd_partitions(mtd, parts, nr_parts); + else if (!device_is_registered(&mtd->dev)) + ret = add_mtd_device(mtd); + else + ret = 0; + if (ret) goto out; -- cgit v1.2.3-58-ga151 From 1549333167edcbab5e8170ae45fbee99eeb4ddb1 Mon Sep 17 00:00:00 2001 From: Sascha Hauer Date: Wed, 17 Jan 2018 12:32:06 +0100 Subject: mtd: nand: mxc: reorder functions to avoid forward declarations We'll call copy_spare() and mxc_do_addr_cycle() from another place during the next patches, so move functions up to avoid forward declarations. Signed-off-by: Sascha Hauer Signed-off-by: Boris Brezillon --- drivers/mtd/nand/mxc_nand.c | 206 ++++++++++++++++++++++---------------------- 1 file changed, 103 insertions(+), 103 deletions(-) diff --git a/drivers/mtd/nand/mxc_nand.c b/drivers/mtd/nand/mxc_nand.c index f3be0b2a8869..6741af990dc4 100644 --- a/drivers/mtd/nand/mxc_nand.c +++ b/drivers/mtd/nand/mxc_nand.c @@ -252,6 +252,109 @@ static void memcpy16_toio(void __iomem *trg, const void *src, int size) __raw_writew(*s++, t++); } +/* + * The controller splits a page into data chunks of 512 bytes + partial oob. + * There are writesize / 512 such chunks, the size of the partial oob parts is + * oobsize / #chunks rounded down to a multiple of 2. The last oob chunk then + * contains additionally the byte lost by rounding (if any). + * This function handles the needed shuffling between host->data_buf (which + * holds a page in natural order, i.e. writesize bytes data + oobsize bytes + * spare) and the NFC buffer. + */ +static void copy_spare(struct mtd_info *mtd, bool bfrom) +{ + struct nand_chip *this = mtd_to_nand(mtd); + struct mxc_nand_host *host = nand_get_controller_data(this); + u16 i, oob_chunk_size; + u16 num_chunks = mtd->writesize / 512; + + u8 *d = host->data_buf + mtd->writesize; + u8 __iomem *s = host->spare0; + u16 sparebuf_size = host->devtype_data->spare_len; + + /* size of oob chunk for all but possibly the last one */ + oob_chunk_size = (host->used_oobsize / num_chunks) & ~1; + + if (bfrom) { + for (i = 0; i < num_chunks - 1; i++) + memcpy16_fromio(d + i * oob_chunk_size, + s + i * sparebuf_size, + oob_chunk_size); + + /* the last chunk */ + memcpy16_fromio(d + i * oob_chunk_size, + s + i * sparebuf_size, + host->used_oobsize - i * oob_chunk_size); + } else { + for (i = 0; i < num_chunks - 1; i++) + memcpy16_toio(&s[i * sparebuf_size], + &d[i * oob_chunk_size], + oob_chunk_size); + + /* the last chunk */ + memcpy16_toio(&s[i * sparebuf_size], + &d[i * oob_chunk_size], + host->used_oobsize - i * oob_chunk_size); + } +} + +/* + * MXC NANDFC can only perform full page+spare or spare-only read/write. When + * the upper layers perform a read/write buf operation, the saved column address + * is used to index into the full page. So usually this function is called with + * column == 0 (unless no column cycle is needed indicated by column == -1) + */ +static void mxc_do_addr_cycle(struct mtd_info *mtd, int column, int page_addr) +{ + struct nand_chip *nand_chip = mtd_to_nand(mtd); + struct mxc_nand_host *host = nand_get_controller_data(nand_chip); + + /* Write out column address, if necessary */ + if (column != -1) { + host->devtype_data->send_addr(host, column & 0xff, + page_addr == -1); + if (mtd->writesize > 512) + /* another col addr cycle for 2k page */ + host->devtype_data->send_addr(host, + (column >> 8) & 0xff, + false); + } + + /* Write out page address, if necessary */ + if (page_addr != -1) { + /* paddr_0 - p_addr_7 */ + host->devtype_data->send_addr(host, (page_addr & 0xff), false); + + if (mtd->writesize > 512) { + if (mtd->size >= 0x10000000) { + /* paddr_8 - paddr_15 */ + host->devtype_data->send_addr(host, + (page_addr >> 8) & 0xff, + false); + host->devtype_data->send_addr(host, + (page_addr >> 16) & 0xff, + true); + } else + /* paddr_8 - paddr_15 */ + host->devtype_data->send_addr(host, + (page_addr >> 8) & 0xff, true); + } else { + if (nand_chip->options & NAND_ROW_ADDR_3) { + /* paddr_8 - paddr_15 */ + host->devtype_data->send_addr(host, + (page_addr >> 8) & 0xff, + false); + host->devtype_data->send_addr(host, + (page_addr >> 16) & 0xff, + true); + } else + /* paddr_8 - paddr_15 */ + host->devtype_data->send_addr(host, + (page_addr >> 8) & 0xff, true); + } + } +} + static int check_int_v3(struct mxc_nand_host *host) { uint32_t tmp; @@ -772,109 +875,6 @@ static void mxc_nand_select_chip_v2(struct mtd_info *mtd, int chip) writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR); } -/* - * The controller splits a page into data chunks of 512 bytes + partial oob. - * There are writesize / 512 such chunks, the size of the partial oob parts is - * oobsize / #chunks rounded down to a multiple of 2. The last oob chunk then - * contains additionally the byte lost by rounding (if any). - * This function handles the needed shuffling between host->data_buf (which - * holds a page in natural order, i.e. writesize bytes data + oobsize bytes - * spare) and the NFC buffer. - */ -static void copy_spare(struct mtd_info *mtd, bool bfrom) -{ - struct nand_chip *this = mtd_to_nand(mtd); - struct mxc_nand_host *host = nand_get_controller_data(this); - u16 i, oob_chunk_size; - u16 num_chunks = mtd->writesize / 512; - - u8 *d = host->data_buf + mtd->writesize; - u8 __iomem *s = host->spare0; - u16 sparebuf_size = host->devtype_data->spare_len; - - /* size of oob chunk for all but possibly the last one */ - oob_chunk_size = (host->used_oobsize / num_chunks) & ~1; - - if (bfrom) { - for (i = 0; i < num_chunks - 1; i++) - memcpy16_fromio(d + i * oob_chunk_size, - s + i * sparebuf_size, - oob_chunk_size); - - /* the last chunk */ - memcpy16_fromio(d + i * oob_chunk_size, - s + i * sparebuf_size, - host->used_oobsize - i * oob_chunk_size); - } else { - for (i = 0; i < num_chunks - 1; i++) - memcpy16_toio(&s[i * sparebuf_size], - &d[i * oob_chunk_size], - oob_chunk_size); - - /* the last chunk */ - memcpy16_toio(&s[i * sparebuf_size], - &d[i * oob_chunk_size], - host->used_oobsize - i * oob_chunk_size); - } -} - -/* - * MXC NANDFC can only perform full page+spare or spare-only read/write. When - * the upper layers perform a read/write buf operation, the saved column address - * is used to index into the full page. So usually this function is called with - * column == 0 (unless no column cycle is needed indicated by column == -1) - */ -static void mxc_do_addr_cycle(struct mtd_info *mtd, int column, int page_addr) -{ - struct nand_chip *nand_chip = mtd_to_nand(mtd); - struct mxc_nand_host *host = nand_get_controller_data(nand_chip); - - /* Write out column address, if necessary */ - if (column != -1) { - host->devtype_data->send_addr(host, column & 0xff, - page_addr == -1); - if (mtd->writesize > 512) - /* another col addr cycle for 2k page */ - host->devtype_data->send_addr(host, - (column >> 8) & 0xff, - false); - } - - /* Write out page address, if necessary */ - if (page_addr != -1) { - /* paddr_0 - p_addr_7 */ - host->devtype_data->send_addr(host, (page_addr & 0xff), false); - - if (mtd->writesize > 512) { - if (mtd->size >= 0x10000000) { - /* paddr_8 - paddr_15 */ - host->devtype_data->send_addr(host, - (page_addr >> 8) & 0xff, - false); - host->devtype_data->send_addr(host, - (page_addr >> 16) & 0xff, - true); - } else - /* paddr_8 - paddr_15 */ - host->devtype_data->send_addr(host, - (page_addr >> 8) & 0xff, true); - } else { - if (nand_chip->options & NAND_ROW_ADDR_3) { - /* paddr_8 - paddr_15 */ - host->devtype_data->send_addr(host, - (page_addr >> 8) & 0xff, - false); - host->devtype_data->send_addr(host, - (page_addr >> 16) & 0xff, - true); - } else - /* paddr_8 - paddr_15 */ - host->devtype_data->send_addr(host, - (page_addr >> 8) & 0xff, true); - } - } -} - #define MXC_V1_ECCBYTES 5 static int mxc_v1_ooblayout_ecc(struct mtd_info *mtd, int section, -- cgit v1.2.3-58-ga151 From 040bd3f6a3aa51a7182bba4243428e9df8507146 Mon Sep 17 00:00:00 2001 From: Sascha Hauer Date: Wed, 17 Jan 2018 12:32:07 +0100 Subject: mtd: nand: mxc: Add function to control hardware ECC For proper raw read/write support need to be able to control the hardware ECC engine. Add a function to enable/disable it. Signed-off-by: Sascha Hauer Signed-off-by: Boris Brezillon --- drivers/mtd/nand/mxc_nand.c | 42 ++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 42 insertions(+) diff --git a/drivers/mtd/nand/mxc_nand.c b/drivers/mtd/nand/mxc_nand.c index 6741af990dc4..019c58579dbc 100644 --- a/drivers/mtd/nand/mxc_nand.c +++ b/drivers/mtd/nand/mxc_nand.c @@ -154,6 +154,7 @@ struct mxc_nand_devtype_data { u_char *read_ecc, u_char *calc_ecc); int (*setup_data_interface)(struct mtd_info *mtd, int csline, const struct nand_data_interface *conf); + void (*enable_hwecc)(struct nand_chip *chip, bool enable); /* * On i.MX21 the CONFIG2:INT bit cannot be read if interrupts are masked @@ -678,6 +679,42 @@ static uint16_t get_dev_status_v1_v2(struct mxc_nand_host *host) return ret; } +static void mxc_nand_enable_hwecc_v1_v2(struct nand_chip *chip, bool enable) +{ + struct mxc_nand_host *host = nand_get_controller_data(chip); + uint16_t config1; + + if (chip->ecc.mode != NAND_ECC_HW) + return; + + config1 = readw(NFC_V1_V2_CONFIG1); + + if (enable) + config1 |= NFC_V1_V2_CONFIG1_ECC_EN; + else + config1 &= ~NFC_V1_V2_CONFIG1_ECC_EN; + + writew(config1, NFC_V1_V2_CONFIG1); +} + +static void mxc_nand_enable_hwecc_v3(struct nand_chip *chip, bool enable) +{ + struct mxc_nand_host *host = nand_get_controller_data(chip); + uint32_t config2; + + if (chip->ecc.mode != NAND_ECC_HW) + return; + + config2 = readl(NFC_V3_CONFIG2); + + if (enable) + config2 |= NFC_V3_CONFIG2_ECC_EN; + else + config2 &= ~NFC_V3_CONFIG2_ECC_EN; + + writel(config2, NFC_V3_CONFIG2); +} + /* This functions is used by upper layer to checks if device is ready */ static int mxc_nand_dev_ready(struct mtd_info *mtd) { @@ -1408,6 +1445,7 @@ static const struct mxc_nand_devtype_data imx21_nand_devtype_data = { .ooblayout = &mxc_v1_ooblayout_ops, .select_chip = mxc_nand_select_chip_v1_v3, .correct_data = mxc_nand_correct_data_v1, + .enable_hwecc = mxc_nand_enable_hwecc_v1_v2, .irqpending_quirk = 1, .needs_ip = 0, .regs_offset = 0xe00, @@ -1431,6 +1469,7 @@ static const struct mxc_nand_devtype_data imx27_nand_devtype_data = { .ooblayout = &mxc_v1_ooblayout_ops, .select_chip = mxc_nand_select_chip_v1_v3, .correct_data = mxc_nand_correct_data_v1, + .enable_hwecc = mxc_nand_enable_hwecc_v1_v2, .irqpending_quirk = 0, .needs_ip = 0, .regs_offset = 0xe00, @@ -1456,6 +1495,7 @@ static const struct mxc_nand_devtype_data imx25_nand_devtype_data = { .select_chip = mxc_nand_select_chip_v2, .correct_data = mxc_nand_correct_data_v2_v3, .setup_data_interface = mxc_nand_v2_setup_data_interface, + .enable_hwecc = mxc_nand_enable_hwecc_v1_v2, .irqpending_quirk = 0, .needs_ip = 0, .regs_offset = 0x1e00, @@ -1480,6 +1520,7 @@ static const struct mxc_nand_devtype_data imx51_nand_devtype_data = { .ooblayout = &mxc_v2_ooblayout_ops, .select_chip = mxc_nand_select_chip_v1_v3, .correct_data = mxc_nand_correct_data_v2_v3, + .enable_hwecc = mxc_nand_enable_hwecc_v3, .irqpending_quirk = 0, .needs_ip = 1, .regs_offset = 0, @@ -1505,6 +1546,7 @@ static const struct mxc_nand_devtype_data imx53_nand_devtype_data = { .ooblayout = &mxc_v2_ooblayout_ops, .select_chip = mxc_nand_select_chip_v1_v3, .correct_data = mxc_nand_correct_data_v2_v3, + .enable_hwecc = mxc_nand_enable_hwecc_v3, .irqpending_quirk = 0, .needs_ip = 1, .regs_offset = 0, -- cgit v1.2.3-58-ga151 From 1af0b3147448954c50e555496b80d94a0800a5e4 Mon Sep 17 00:00:00 2001 From: Sascha Hauer Date: Wed, 17 Jan 2018 12:32:08 +0100 Subject: mtd: nand: mxc: Add buffer argument to copy_spare With following patches we will have to copy the spare data to/from other buffers, so add the buffer as argument to copy_spare(). Signed-off-by: Sascha Hauer Signed-off-by: Boris Brezillon --- drivers/mtd/nand/mxc_nand.c | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/drivers/mtd/nand/mxc_nand.c b/drivers/mtd/nand/mxc_nand.c index 019c58579dbc..ab9cd45237d3 100644 --- a/drivers/mtd/nand/mxc_nand.c +++ b/drivers/mtd/nand/mxc_nand.c @@ -262,14 +262,14 @@ static void memcpy16_toio(void __iomem *trg, const void *src, int size) * holds a page in natural order, i.e. writesize bytes data + oobsize bytes * spare) and the NFC buffer. */ -static void copy_spare(struct mtd_info *mtd, bool bfrom) +static void copy_spare(struct mtd_info *mtd, bool bfrom, void *buf) { struct nand_chip *this = mtd_to_nand(mtd); struct mxc_nand_host *host = nand_get_controller_data(this); u16 i, oob_chunk_size; u16 num_chunks = mtd->writesize / 512; - u8 *d = host->data_buf + mtd->writesize; + u8 *d = buf; u8 __iomem *s = host->spare0; u16 sparebuf_size = host->devtype_data->spare_len; @@ -1295,7 +1295,7 @@ static void mxc_nand_command(struct mtd_info *mtd, unsigned command, memcpy32_fromio(host->data_buf, host->main_area0, mtd->writesize); - copy_spare(mtd, true); + copy_spare(mtd, true, host->data_buf + mtd->writesize); break; case NAND_CMD_SEQIN: @@ -1314,7 +1314,7 @@ static void mxc_nand_command(struct mtd_info *mtd, unsigned command, case NAND_CMD_PAGEPROG: memcpy32_toio(host->main_area0, host->data_buf, mtd->writesize); - copy_spare(mtd, false); + copy_spare(mtd, false, host->data_buf + mtd->writesize); host->devtype_data->send_page(mtd, NFC_INPUT); host->devtype_data->send_cmd(host, command, true); WARN_ONCE(column != -1 || page_addr != -1, -- cgit v1.2.3-58-ga151 From 67b87f66cae0bca0dd6602739383381c10b0c9c4 Mon Sep 17 00:00:00 2001 From: Sascha Hauer Date: Wed, 17 Jan 2018 12:32:09 +0100 Subject: mtd: nand: mxc: Fix failed/corrected values for v2/v3 controllers Currently nand_read_page_hwecc() from nand_base calls mxc_nand_correct_data_v2_v3() for each subpage, but in this function we return the corrected/failed results for the whole page instead of a single subpage. On a 2k page size Nand this leads to results which are 4 times too high. The whole ecc.calculate/ecc.correct mechanism used by nand_read_page_hwecc() is not suitable for devices which correct the data in hardware, so fix this by using a driver specific read_page function which does the right thing. Also add read_page_raw and read_oob For proper raw and oob read support. Signed-off-by: Sascha Hauer Signed-off-by: Boris Brezillon --- drivers/mtd/nand/mxc_nand.c | 86 ++++++++++++++++++++++++++++++++++++++++----- 1 file changed, 77 insertions(+), 9 deletions(-) diff --git a/drivers/mtd/nand/mxc_nand.c b/drivers/mtd/nand/mxc_nand.c index ab9cd45237d3..48804320056f 100644 --- a/drivers/mtd/nand/mxc_nand.c +++ b/drivers/mtd/nand/mxc_nand.c @@ -140,6 +140,8 @@ struct mxc_nand_host; struct mxc_nand_devtype_data { void (*preset)(struct mtd_info *); + int (*read_page)(struct nand_chip *chip, void *buf, void *oob, bool ecc, + int page); void (*send_cmd)(struct mxc_nand_host *, uint16_t, int); void (*send_addr)(struct mxc_nand_host *, uint16_t, int); void (*send_page)(struct mtd_info *, unsigned int); @@ -757,13 +759,35 @@ static int mxc_nand_correct_data_v1(struct mtd_info *mtd, u_char *dat, static int mxc_nand_correct_data_v2_v3(struct mtd_info *mtd, u_char *dat, u_char *read_ecc, u_char *calc_ecc) { - struct nand_chip *nand_chip = mtd_to_nand(mtd); - struct mxc_nand_host *host = nand_get_controller_data(nand_chip); + return 0; +} + +static int mxc_nand_read_page_v2_v3(struct nand_chip *chip, void *buf, + void *oob, bool ecc, int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct mxc_nand_host *host = nand_get_controller_data(chip); + unsigned int max_bitflips = 0; u32 ecc_stat, err; - int no_subpages = 1; - int ret = 0; + int no_subpages; u8 ecc_bit_mask, err_limit; + host->devtype_data->enable_hwecc(chip, ecc); + + host->devtype_data->send_cmd(host, NAND_CMD_READ0, false); + mxc_do_addr_cycle(mtd, 0, page); + + if (mtd->writesize > 512) + host->devtype_data->send_cmd(host, + NAND_CMD_READSTART, true); + + host->devtype_data->send_page(mtd, NFC_OUTPUT); + + if (buf) + memcpy32_fromio(buf, host->main_area0, mtd->writesize); + if (oob) + copy_spare(mtd, true, oob); + ecc_bit_mask = (host->eccsize == 4) ? 0x7 : 0xf; err_limit = (host->eccsize == 4) ? 0x4 : 0x8; @@ -774,17 +798,53 @@ static int mxc_nand_correct_data_v2_v3(struct mtd_info *mtd, u_char *dat, do { err = ecc_stat & ecc_bit_mask; if (err > err_limit) { - dev_dbg(host->dev, "UnCorrectable RS-ECC Error\n"); - return -EBADMSG; + mtd->ecc_stats.failed++; } else { - ret += err; + mtd->ecc_stats.corrected += err; + max_bitflips = max_t(unsigned int, max_bitflips, err); } + ecc_stat >>= 4; } while (--no_subpages); - dev_dbg(host->dev, "%d Symbol Correctable RS-ECC Error\n", ret); + return max_bitflips; +} - return ret; +static int mxc_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip, + uint8_t *buf, int oob_required, int page) +{ + struct mxc_nand_host *host = nand_get_controller_data(chip); + void *oob_buf; + + if (oob_required) + oob_buf = chip->oob_poi; + else + oob_buf = NULL; + + return host->devtype_data->read_page(chip, buf, oob_buf, 1, page); +} + +static int mxc_nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip, + uint8_t *buf, int oob_required, int page) +{ + struct mxc_nand_host *host = nand_get_controller_data(chip); + void *oob_buf; + + if (oob_required) + oob_buf = chip->oob_poi; + else + oob_buf = NULL; + + return host->devtype_data->read_page(chip, buf, oob_buf, 0, page); +} + +static int mxc_nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip, + int page) +{ + struct mxc_nand_host *host = nand_get_controller_data(chip); + + return host->devtype_data->read_page(chip, NULL, chip->oob_poi, 0, + page); } static int mxc_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, @@ -1483,6 +1543,7 @@ static const struct mxc_nand_devtype_data imx27_nand_devtype_data = { /* v21: i.MX25, i.MX35 */ static const struct mxc_nand_devtype_data imx25_nand_devtype_data = { .preset = preset_v2, + .read_page = mxc_nand_read_page_v2_v3, .send_cmd = send_cmd_v1_v2, .send_addr = send_addr_v1_v2, .send_page = send_page_v2, @@ -1509,6 +1570,7 @@ static const struct mxc_nand_devtype_data imx25_nand_devtype_data = { /* v3.2a: i.MX51 */ static const struct mxc_nand_devtype_data imx51_nand_devtype_data = { .preset = preset_v3, + .read_page = mxc_nand_read_page_v2_v3, .send_cmd = send_cmd_v3, .send_addr = send_addr_v3, .send_page = send_page_v3, @@ -1535,6 +1597,7 @@ static const struct mxc_nand_devtype_data imx51_nand_devtype_data = { /* v3.2b: i.MX53 */ static const struct mxc_nand_devtype_data imx53_nand_devtype_data = { .preset = preset_v3, + .read_page = mxc_nand_read_page_v2_v3, .send_cmd = send_cmd_v3, .send_addr = send_addr_v3, .send_page = send_page_v3, @@ -1793,6 +1856,11 @@ static int mxcnd_probe(struct platform_device *pdev) switch (this->ecc.mode) { case NAND_ECC_HW: + if (host->devtype_data->read_page) { + this->ecc.read_page = mxc_nand_read_page; + this->ecc.read_page_raw = mxc_nand_read_page_raw; + this->ecc.read_oob = mxc_nand_read_oob; + } this->ecc.calculate = mxc_nand_calculate_ecc; this->ecc.hwctl = mxc_nand_enable_hwecc; this->ecc.correct = host->devtype_data->correct_data; -- cgit v1.2.3-58-ga151 From 5039fc9f2d6db603cba48c770e29251d661ce4e2 Mon Sep 17 00:00:00 2001 From: Sascha Hauer Date: Wed, 17 Jan 2018 12:32:10 +0100 Subject: mtd: nand: mxc: Fix failed/corrected values for v1 controllers The v1 controller code has several flaws: - We do not forward the number of corrected bitflips to the upper layers - For 2k page NAND chips only the status results from the fourth subpage read are evaluated, so ECC failures in the other subpages remain uncovered - When there are uncorrectable errors we have to increase the statistics counter, but still have to return successfully. Currently we return an error This patch fixes this by introducing a v1 specific read_page function. Signed-off-by: Sascha Hauer Signed-off-by: Boris Brezillon --- drivers/mtd/nand/mxc_nand.c | 77 +++++++++++++++++++++++++++++++++++---------- 1 file changed, 60 insertions(+), 17 deletions(-) diff --git a/drivers/mtd/nand/mxc_nand.c b/drivers/mtd/nand/mxc_nand.c index 48804320056f..49885afbcf43 100644 --- a/drivers/mtd/nand/mxc_nand.c +++ b/drivers/mtd/nand/mxc_nand.c @@ -738,22 +738,65 @@ static void mxc_nand_enable_hwecc(struct mtd_info *mtd, int mode) static int mxc_nand_correct_data_v1(struct mtd_info *mtd, u_char *dat, u_char *read_ecc, u_char *calc_ecc) { - struct nand_chip *nand_chip = mtd_to_nand(mtd); - struct mxc_nand_host *host = nand_get_controller_data(nand_chip); + return 0; +} - /* - * 1-Bit errors are automatically corrected in HW. No need for - * additional correction. 2-Bit errors cannot be corrected by - * HW ECC, so we need to return failure - */ - uint16_t ecc_status = get_ecc_status_v1(host); +static int mxc_nand_read_page_v1(struct nand_chip *chip, void *buf, void *oob, + bool ecc, int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct mxc_nand_host *host = nand_get_controller_data(chip); + unsigned int bitflips_corrected = 0; + int no_subpages; + int i; + + host->devtype_data->enable_hwecc(chip, ecc); + + host->devtype_data->send_cmd(host, NAND_CMD_READ0, false); + mxc_do_addr_cycle(mtd, 0, page); + + if (mtd->writesize > 512) + host->devtype_data->send_cmd(host, NAND_CMD_READSTART, true); + + no_subpages = mtd->writesize >> 9; + + for (i = 0; i < no_subpages; i++) { + uint16_t ecc_stats; - if (((ecc_status & 0x3) == 2) || ((ecc_status >> 2) == 2)) { - dev_dbg(host->dev, "HWECC uncorrectable 2-bit ECC error\n"); - return -EBADMSG; + /* NANDFC buffer 0 is used for page read/write */ + writew((host->active_cs << 4) | i, NFC_V1_V2_BUF_ADDR); + + writew(NFC_OUTPUT, NFC_V1_V2_CONFIG2); + + /* Wait for operation to complete */ + wait_op_done(host, true); + + ecc_stats = get_ecc_status_v1(host); + + ecc_stats >>= 2; + + if (buf && ecc) { + switch (ecc_stats & 0x3) { + case 0: + default: + break; + case 1: + mtd->ecc_stats.corrected++; + bitflips_corrected = 1; + break; + case 2: + mtd->ecc_stats.failed++; + break; + } + } } - return 0; + if (buf) + memcpy32_fromio(buf, host->main_area0, mtd->writesize); + if (oob) + copy_spare(mtd, true, oob); + + return bitflips_corrected; } static int mxc_nand_correct_data_v2_v3(struct mtd_info *mtd, u_char *dat, @@ -1494,6 +1537,7 @@ static struct nand_bbt_descr bbt_mirror_descr = { /* v1 + irqpending_quirk: i.MX21 */ static const struct mxc_nand_devtype_data imx21_nand_devtype_data = { .preset = preset_v1, + .read_page = mxc_nand_read_page_v1, .send_cmd = send_cmd_v1_v2, .send_addr = send_addr_v1_v2, .send_page = send_page_v1, @@ -1518,6 +1562,7 @@ static const struct mxc_nand_devtype_data imx21_nand_devtype_data = { /* v1 + !irqpending_quirk: i.MX27, i.MX31 */ static const struct mxc_nand_devtype_data imx27_nand_devtype_data = { .preset = preset_v1, + .read_page = mxc_nand_read_page_v1, .send_cmd = send_cmd_v1_v2, .send_addr = send_addr_v1_v2, .send_page = send_page_v1, @@ -1856,11 +1901,9 @@ static int mxcnd_probe(struct platform_device *pdev) switch (this->ecc.mode) { case NAND_ECC_HW: - if (host->devtype_data->read_page) { - this->ecc.read_page = mxc_nand_read_page; - this->ecc.read_page_raw = mxc_nand_read_page_raw; - this->ecc.read_oob = mxc_nand_read_oob; - } + this->ecc.read_page = mxc_nand_read_page; + this->ecc.read_page_raw = mxc_nand_read_page_raw; + this->ecc.read_oob = mxc_nand_read_oob; this->ecc.calculate = mxc_nand_calculate_ecc; this->ecc.hwctl = mxc_nand_enable_hwecc; this->ecc.correct = host->devtype_data->correct_data; -- cgit v1.2.3-58-ga151 From 6811c4642aa0b40e3199aa7fb86053be1ee10ad8 Mon Sep 17 00:00:00 2001 From: Sascha Hauer Date: Wed, 17 Jan 2018 12:32:11 +0100 Subject: mtd: nand: mxc: Add own write_page Now that we have our own read_page function add a write_page function for consistency aswell. This can be a lot easier than the generic function since we do not have to iterate over subpages but can write the whole page at once. Also add write_page_raw and write_oob for proper raw and oob write support. Signed-off-by: Sascha Hauer Signed-off-by: Boris Brezillon --- drivers/mtd/nand/mxc_nand.c | 47 +++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 47 insertions(+) diff --git a/drivers/mtd/nand/mxc_nand.c b/drivers/mtd/nand/mxc_nand.c index 49885afbcf43..2811102b0469 100644 --- a/drivers/mtd/nand/mxc_nand.c +++ b/drivers/mtd/nand/mxc_nand.c @@ -890,6 +890,50 @@ static int mxc_nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip, page); } +static int mxc_nand_write_page(struct nand_chip *chip, const uint8_t *buf, + bool ecc, int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct mxc_nand_host *host = nand_get_controller_data(chip); + + host->devtype_data->enable_hwecc(chip, ecc); + + host->devtype_data->send_cmd(host, NAND_CMD_SEQIN, false); + mxc_do_addr_cycle(mtd, 0, page); + + memcpy32_toio(host->main_area0, buf, mtd->writesize); + copy_spare(mtd, false, chip->oob_poi); + + host->devtype_data->send_page(mtd, NFC_INPUT); + host->devtype_data->send_cmd(host, NAND_CMD_PAGEPROG, true); + mxc_do_addr_cycle(mtd, 0, page); + + return 0; +} + +static int mxc_nand_write_page_ecc(struct mtd_info *mtd, struct nand_chip *chip, + const uint8_t *buf, int oob_required, + int page) +{ + return mxc_nand_write_page(chip, buf, true, page); +} + +static int mxc_nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip, + const uint8_t *buf, int oob_required, int page) +{ + return mxc_nand_write_page(chip, buf, false, page); +} + +static int mxc_nand_write_oob(struct mtd_info *mtd, struct nand_chip *chip, + int page) +{ + struct mxc_nand_host *host = nand_get_controller_data(chip); + + memset(host->data_buf, 0xff, mtd->writesize); + + return mxc_nand_write_page(chip, host->data_buf, false, page); +} + static int mxc_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code) { @@ -1904,6 +1948,9 @@ static int mxcnd_probe(struct platform_device *pdev) this->ecc.read_page = mxc_nand_read_page; this->ecc.read_page_raw = mxc_nand_read_page_raw; this->ecc.read_oob = mxc_nand_read_oob; + this->ecc.write_page = mxc_nand_write_page_ecc; + this->ecc.write_page_raw = mxc_nand_write_page_raw; + this->ecc.write_oob = mxc_nand_write_oob; this->ecc.calculate = mxc_nand_calculate_ecc; this->ecc.hwctl = mxc_nand_enable_hwecc; this->ecc.correct = host->devtype_data->correct_data; -- cgit v1.2.3-58-ga151 From cd8b4655332d45b1507a7cf1db025b869d0eb89a Mon Sep 17 00:00:00 2001 From: Sascha Hauer Date: Wed, 17 Jan 2018 12:32:12 +0100 Subject: mtd: nand: mxc: Drop now unnecessary functions Since we have our own read_page/write_page functions correct_data and calculate are no longer needed. Remove them. Signed-off-by: Sascha Hauer Signed-off-by: Boris Brezillon --- drivers/mtd/nand/mxc_nand.c | 36 ------------------------------------ 1 file changed, 36 deletions(-) diff --git a/drivers/mtd/nand/mxc_nand.c b/drivers/mtd/nand/mxc_nand.c index 2811102b0469..a7c4fdd1988e 100644 --- a/drivers/mtd/nand/mxc_nand.c +++ b/drivers/mtd/nand/mxc_nand.c @@ -152,8 +152,6 @@ struct mxc_nand_devtype_data { u32 (*get_ecc_status)(struct mxc_nand_host *); const struct mtd_ooblayout_ops *ooblayout; void (*select_chip)(struct mtd_info *mtd, int chip); - int (*correct_data)(struct mtd_info *mtd, u_char *dat, - u_char *read_ecc, u_char *calc_ecc); int (*setup_data_interface)(struct mtd_info *mtd, int csline, const struct nand_data_interface *conf); void (*enable_hwecc)(struct nand_chip *chip, bool enable); @@ -727,20 +725,6 @@ static int mxc_nand_dev_ready(struct mtd_info *mtd) return 1; } -static void mxc_nand_enable_hwecc(struct mtd_info *mtd, int mode) -{ - /* - * If HW ECC is enabled, we turn it on during init. There is - * no need to enable again here. - */ -} - -static int mxc_nand_correct_data_v1(struct mtd_info *mtd, u_char *dat, - u_char *read_ecc, u_char *calc_ecc) -{ - return 0; -} - static int mxc_nand_read_page_v1(struct nand_chip *chip, void *buf, void *oob, bool ecc, int page) { @@ -799,12 +783,6 @@ static int mxc_nand_read_page_v1(struct nand_chip *chip, void *buf, void *oob, return bitflips_corrected; } -static int mxc_nand_correct_data_v2_v3(struct mtd_info *mtd, u_char *dat, - u_char *read_ecc, u_char *calc_ecc) -{ - return 0; -} - static int mxc_nand_read_page_v2_v3(struct nand_chip *chip, void *buf, void *oob, bool ecc, int page) { @@ -934,12 +912,6 @@ static int mxc_nand_write_oob(struct mtd_info *mtd, struct nand_chip *chip, return mxc_nand_write_page(chip, host->data_buf, false, page); } -static int mxc_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, - u_char *ecc_code) -{ - return 0; -} - static u_char mxc_nand_read_byte(struct mtd_info *mtd) { struct nand_chip *nand_chip = mtd_to_nand(mtd); @@ -1592,7 +1564,6 @@ static const struct mxc_nand_devtype_data imx21_nand_devtype_data = { .get_ecc_status = get_ecc_status_v1, .ooblayout = &mxc_v1_ooblayout_ops, .select_chip = mxc_nand_select_chip_v1_v3, - .correct_data = mxc_nand_correct_data_v1, .enable_hwecc = mxc_nand_enable_hwecc_v1_v2, .irqpending_quirk = 1, .needs_ip = 0, @@ -1617,7 +1588,6 @@ static const struct mxc_nand_devtype_data imx27_nand_devtype_data = { .get_ecc_status = get_ecc_status_v1, .ooblayout = &mxc_v1_ooblayout_ops, .select_chip = mxc_nand_select_chip_v1_v3, - .correct_data = mxc_nand_correct_data_v1, .enable_hwecc = mxc_nand_enable_hwecc_v1_v2, .irqpending_quirk = 0, .needs_ip = 0, @@ -1643,7 +1613,6 @@ static const struct mxc_nand_devtype_data imx25_nand_devtype_data = { .get_ecc_status = get_ecc_status_v2, .ooblayout = &mxc_v2_ooblayout_ops, .select_chip = mxc_nand_select_chip_v2, - .correct_data = mxc_nand_correct_data_v2_v3, .setup_data_interface = mxc_nand_v2_setup_data_interface, .enable_hwecc = mxc_nand_enable_hwecc_v1_v2, .irqpending_quirk = 0, @@ -1670,7 +1639,6 @@ static const struct mxc_nand_devtype_data imx51_nand_devtype_data = { .get_ecc_status = get_ecc_status_v3, .ooblayout = &mxc_v2_ooblayout_ops, .select_chip = mxc_nand_select_chip_v1_v3, - .correct_data = mxc_nand_correct_data_v2_v3, .enable_hwecc = mxc_nand_enable_hwecc_v3, .irqpending_quirk = 0, .needs_ip = 1, @@ -1697,7 +1665,6 @@ static const struct mxc_nand_devtype_data imx53_nand_devtype_data = { .get_ecc_status = get_ecc_status_v3, .ooblayout = &mxc_v2_ooblayout_ops, .select_chip = mxc_nand_select_chip_v1_v3, - .correct_data = mxc_nand_correct_data_v2_v3, .enable_hwecc = mxc_nand_enable_hwecc_v3, .irqpending_quirk = 0, .needs_ip = 1, @@ -1951,9 +1918,6 @@ static int mxcnd_probe(struct platform_device *pdev) this->ecc.write_page = mxc_nand_write_page_ecc; this->ecc.write_page_raw = mxc_nand_write_page_raw; this->ecc.write_oob = mxc_nand_write_oob; - this->ecc.calculate = mxc_nand_calculate_ecc; - this->ecc.hwctl = mxc_nand_enable_hwecc; - this->ecc.correct = host->devtype_data->correct_data; break; case NAND_ECC_SOFT: -- cgit v1.2.3-58-ga151 From 68dc8e41fdffcc26db8185dd336ee1ff91872770 Mon Sep 17 00:00:00 2001 From: Sascha Hauer Date: Wed, 17 Jan 2018 12:32:13 +0100 Subject: mtd: nand: mxc: remove now unused code Since we now have our own read_page/write_page functions mxc_nand_command() will no longer be called with NAND_CMD_READ0, NAND_CMD_READOOB, NAND_CMD_SEQIN and NAND_CMD_PAGEPROG. Remove the code handling these commands. Signed-off-by: Sascha Hauer Signed-off-by: Boris Brezillon --- drivers/mtd/nand/mxc_nand.c | 51 --------------------------------------------- 1 file changed, 51 deletions(-) diff --git a/drivers/mtd/nand/mxc_nand.c b/drivers/mtd/nand/mxc_nand.c index a7c4fdd1988e..87b5ee66e501 100644 --- a/drivers/mtd/nand/mxc_nand.c +++ b/drivers/mtd/nand/mxc_nand.c @@ -1391,57 +1391,6 @@ static void mxc_nand_command(struct mtd_info *mtd, unsigned command, mxc_do_addr_cycle(mtd, column, page_addr); break; - case NAND_CMD_READ0: - case NAND_CMD_READOOB: - if (command == NAND_CMD_READ0) - host->buf_start = column; - else - host->buf_start = column + mtd->writesize; - - command = NAND_CMD_READ0; /* only READ0 is valid */ - - host->devtype_data->send_cmd(host, command, false); - WARN_ONCE(column < 0, - "Unexpected column/row value (cmd=%u, col=%d, row=%d)\n", - command, column, page_addr); - mxc_do_addr_cycle(mtd, 0, page_addr); - - if (mtd->writesize > 512) - host->devtype_data->send_cmd(host, - NAND_CMD_READSTART, true); - - host->devtype_data->send_page(mtd, NFC_OUTPUT); - - memcpy32_fromio(host->data_buf, host->main_area0, - mtd->writesize); - copy_spare(mtd, true, host->data_buf + mtd->writesize); - break; - - case NAND_CMD_SEQIN: - if (column >= mtd->writesize) - /* call ourself to read a page */ - mxc_nand_command(mtd, NAND_CMD_READ0, 0, page_addr); - - host->buf_start = column; - - host->devtype_data->send_cmd(host, command, false); - WARN_ONCE(column < -1, - "Unexpected column/row value (cmd=%u, col=%d, row=%d)\n", - command, column, page_addr); - mxc_do_addr_cycle(mtd, 0, page_addr); - break; - - case NAND_CMD_PAGEPROG: - memcpy32_toio(host->main_area0, host->data_buf, mtd->writesize); - copy_spare(mtd, false, host->data_buf + mtd->writesize); - host->devtype_data->send_page(mtd, NFC_INPUT); - host->devtype_data->send_cmd(host, command, true); - WARN_ONCE(column != -1 || page_addr != -1, - "Unexpected column/row value (cmd=%u, col=%d, row=%d)\n", - command, column, page_addr); - mxc_do_addr_cycle(mtd, column, page_addr); - break; - case NAND_CMD_READID: host->devtype_data->send_cmd(host, command, true); mxc_do_addr_cycle(mtd, column, page_addr); -- cgit v1.2.3-58-ga151 From 07ad5a7214841704e71540493a00041fd7f4e3af Mon Sep 17 00:00:00 2001 From: Miquel Raynal Date: Wed, 17 Jan 2018 00:19:34 +0100 Subject: mtd: nand: add ->setup_data_interface() support for Marvell NFCv1 First generation of Marvell NAND flash controllers (eg. embedded in PXA boards) did not make use of the NAND core hook ->setup_data_interface() to setup controller timings. Add support for it. Signed-off-by: Miquel Raynal Signed-off-by: Boris Brezillon --- drivers/mtd/nand/marvell_nand.c | 39 +++++++++++++++++++++++++++++---------- 1 file changed, 29 insertions(+), 10 deletions(-) diff --git a/drivers/mtd/nand/marvell_nand.c b/drivers/mtd/nand/marvell_nand.c index 2196f2a233d6..cc21f9633edd 100644 --- a/drivers/mtd/nand/marvell_nand.c +++ b/drivers/mtd/nand/marvell_nand.c @@ -379,6 +379,8 @@ struct marvell_nfc_timings { * return the number of clock periods. */ #define TO_CYCLES(ps, period_ns) (DIV_ROUND_UP(ps / 1000, period_ns)) +#define TO_CYCLES64(ps, period_ns) (DIV_ROUND_UP_ULL(div_u64(ps, 1000), \ + period_ns)) /** * NAND driver structure filled during the parsing of the ->exec_op() subop @@ -2236,8 +2238,20 @@ static int marvell_nfc_setup_data_interface(struct mtd_info *mtd, int chipnr, nfc_tmg.tRHW = TO_CYCLES(max_t(int, sdr->tRHW_min, sdr->tCCS_min), period_ns); - /* Use WAIT_MODE (wait for RB line) instead of only relying on delays */ - nfc_tmg.tR = TO_CYCLES(sdr->tWB_max, period_ns); + /* + * NFCv2: Use WAIT_MODE (wait for RB line), do not rely only on delays. + * NFCv1: No WAIT_MODE, tR must be maximal. + */ + if (nfc->caps->is_nfcv2) { + nfc_tmg.tR = TO_CYCLES(sdr->tWB_max, period_ns); + } else { + nfc_tmg.tR = TO_CYCLES64(sdr->tWB_max + sdr->tR_max, + period_ns); + if (nfc_tmg.tR + 3 > nfc_tmg.tCH) + nfc_tmg.tR = nfc_tmg.tCH - 3; + else + nfc_tmg.tR = 0; + } if (chipnr < 0) return 0; @@ -2249,18 +2263,24 @@ static int marvell_nfc_setup_data_interface(struct mtd_info *mtd, int chipnr, NDTR0_TWP(nfc_tmg.tWP) | NDTR0_TWH(nfc_tmg.tWH) | NDTR0_TCS(nfc_tmg.tCS) | - NDTR0_TCH(nfc_tmg.tCH) | - NDTR0_RD_CNT_DEL(read_delay) | - NDTR0_SELCNTR | - NDTR0_TADL(nfc_tmg.tADL); + NDTR0_TCH(nfc_tmg.tCH); marvell_nand->ndtr1 = NDTR1_TAR(nfc_tmg.tAR) | NDTR1_TWHR(nfc_tmg.tWHR) | - NDTR1_TRHW(nfc_tmg.tRHW) | - NDTR1_WAIT_MODE | NDTR1_TR(nfc_tmg.tR); + if (nfc->caps->is_nfcv2) { + marvell_nand->ndtr0 |= + NDTR0_RD_CNT_DEL(read_delay) | + NDTR0_SELCNTR | + NDTR0_TADL(nfc_tmg.tADL); + + marvell_nand->ndtr1 |= + NDTR1_TRHW(nfc_tmg.tRHW) | + NDTR1_WAIT_MODE; + } + return 0; } @@ -2395,8 +2415,7 @@ static int marvell_nand_chip_init(struct device *dev, struct marvell_nfc *nfc, chip->exec_op = marvell_nfc_exec_op; chip->select_chip = marvell_nfc_select_chip; - if (nfc->caps->is_nfcv2 && - !of_property_read_bool(np, "marvell,nand-keep-config")) + if (!of_property_read_bool(np, "marvell,nand-keep-config")) chip->setup_data_interface = marvell_nfc_setup_data_interface; mtd = nand_to_mtd(chip); -- cgit v1.2.3-58-ga151 From 532a1cf9a0f22f1a8699284e74aecf0bda3ffd29 Mon Sep 17 00:00:00 2001 From: Stefan Agner Date: Fri, 9 Feb 2018 00:59:19 +0100 Subject: mtd: nand: vf610_nfc: remove unused function The function count_written_bits has been replaced by the generic nand_check_erased_ecc_chunk() function with commit 48c25cf44118 ("mtd: nand: vf610_nfc: use nand_check_erased_ecc_chunk() helper"). Remove the unused function. Signed-off-by: Stefan Agner Signed-off-by: Boris Brezillon --- drivers/mtd/nand/vf610_nfc.c | 15 --------------- 1 file changed, 15 deletions(-) diff --git a/drivers/mtd/nand/vf610_nfc.c b/drivers/mtd/nand/vf610_nfc.c index 80d31a58e558..2fa61cbdbaf7 100644 --- a/drivers/mtd/nand/vf610_nfc.c +++ b/drivers/mtd/nand/vf610_nfc.c @@ -511,21 +511,6 @@ static void vf610_nfc_select_chip(struct mtd_info *mtd, int chip) vf610_nfc_write(nfc, NFC_ROW_ADDR, tmp); } -/* Count the number of 0's in buff up to max_bits */ -static inline int count_written_bits(uint8_t *buff, int size, int max_bits) -{ - uint32_t *buff32 = (uint32_t *)buff; - int k, written_bits = 0; - - for (k = 0; k < (size / 4); k++) { - written_bits += hweight32(~buff32[k]); - if (unlikely(written_bits > max_bits)) - break; - } - - return written_bits; -} - static inline int vf610_nfc_correct_data(struct mtd_info *mtd, uint8_t *dat, uint8_t *oob, int page) { -- cgit v1.2.3-58-ga151 From f5a666bdd585b47bea60cec3cb5f4d9fbbc6e409 Mon Sep 17 00:00:00 2001 From: Alexey Khoroshilov Date: Sat, 10 Feb 2018 01:28:34 +0300 Subject: mtd: nand: vf610: remove the unnecessary of_node_put() Calling of_node_put() in vf610_nfc_probe() is wrong because nothing in this code retains a reference to the DT node. Signed-off-by: Alexey Khoroshilov Reviewed-by: Stefan Agner Signed-off-by: Boris Brezillon --- drivers/mtd/nand/vf610_nfc.c | 18 ++++++++---------- 1 file changed, 8 insertions(+), 10 deletions(-) diff --git a/drivers/mtd/nand/vf610_nfc.c b/drivers/mtd/nand/vf610_nfc.c index 2fa61cbdbaf7..9c6d87d282c3 100644 --- a/drivers/mtd/nand/vf610_nfc.c +++ b/drivers/mtd/nand/vf610_nfc.c @@ -667,7 +667,7 @@ static int vf610_nfc_probe(struct platform_device *pdev) dev_err(nfc->dev, "Only one NAND chip supported!\n"); err = -EINVAL; - goto error; + goto err_clk; } nand_set_flash_node(chip, child); @@ -697,7 +697,7 @@ static int vf610_nfc_probe(struct platform_device *pdev) err = devm_request_irq(nfc->dev, irq, vf610_nfc_irq, 0, DRV_NAME, mtd); if (err) { dev_err(nfc->dev, "Error requesting IRQ!\n"); - goto error; + goto err_clk; } vf610_nfc_preinit_controller(nfc); @@ -705,7 +705,7 @@ static int vf610_nfc_probe(struct platform_device *pdev) /* first scan to find the device and get the page size */ err = nand_scan_ident(mtd, 1, NULL); if (err) - goto error; + goto err_clk; vf610_nfc_init_controller(nfc); @@ -717,20 +717,20 @@ static int vf610_nfc_probe(struct platform_device *pdev) if (mtd->writesize + mtd->oobsize > PAGE_2K + OOB_MAX - 8) { dev_err(nfc->dev, "Unsupported flash page size\n"); err = -ENXIO; - goto error; + goto err_clk; } if (chip->ecc.mode == NAND_ECC_HW) { if (mtd->writesize != PAGE_2K && mtd->oobsize < 64) { dev_err(nfc->dev, "Unsupported flash with hwecc\n"); err = -ENXIO; - goto error; + goto err_clk; } if (chip->ecc.size != mtd->writesize) { dev_err(nfc->dev, "Step size needs to be page size\n"); err = -ENXIO; - goto error; + goto err_clk; } /* Only 64 byte ECC layouts known */ @@ -750,7 +750,7 @@ static int vf610_nfc_probe(struct platform_device *pdev) } else { dev_err(nfc->dev, "Unsupported ECC strength\n"); err = -ENXIO; - goto error; + goto err_clk; } chip->ecc.read_page = vf610_nfc_read_page; @@ -762,15 +762,13 @@ static int vf610_nfc_probe(struct platform_device *pdev) /* second phase scan */ err = nand_scan_tail(mtd); if (err) - goto error; + goto err_clk; platform_set_drvdata(pdev, mtd); /* Register device in MTD */ return mtd_device_register(mtd, NULL, 0); -error: - of_node_put(nand_get_flash_node(chip)); err_clk: clk_disable_unprepare(nfc->clk); return err; -- cgit v1.2.3-58-ga151 From 196644fd09ab7bf47040c0bdd1b48fc3c2bc08a6 Mon Sep 17 00:00:00 2001 From: Alexey Khoroshilov Date: Sat, 10 Feb 2018 01:28:35 +0300 Subject: mtd: nand: vf610: improve readability of error label Use clearer error labels as Boris Brezillon suggested. Signed-off-by: Alexey Khoroshilov Reviewed-by: Stefan Agner Signed-off-by: Boris Brezillon --- drivers/mtd/nand/vf610_nfc.c | 20 ++++++++++---------- 1 file changed, 10 insertions(+), 10 deletions(-) diff --git a/drivers/mtd/nand/vf610_nfc.c b/drivers/mtd/nand/vf610_nfc.c index 9c6d87d282c3..1939503b0960 100644 --- a/drivers/mtd/nand/vf610_nfc.c +++ b/drivers/mtd/nand/vf610_nfc.c @@ -667,7 +667,7 @@ static int vf610_nfc_probe(struct platform_device *pdev) dev_err(nfc->dev, "Only one NAND chip supported!\n"); err = -EINVAL; - goto err_clk; + goto err_disable_clk; } nand_set_flash_node(chip, child); @@ -677,7 +677,7 @@ static int vf610_nfc_probe(struct platform_device *pdev) if (!nand_get_flash_node(chip)) { dev_err(nfc->dev, "NAND chip sub-node missing!\n"); err = -ENODEV; - goto err_clk; + goto err_disable_clk; } chip->dev_ready = vf610_nfc_dev_ready; @@ -697,7 +697,7 @@ static int vf610_nfc_probe(struct platform_device *pdev) err = devm_request_irq(nfc->dev, irq, vf610_nfc_irq, 0, DRV_NAME, mtd); if (err) { dev_err(nfc->dev, "Error requesting IRQ!\n"); - goto err_clk; + goto err_disable_clk; } vf610_nfc_preinit_controller(nfc); @@ -705,7 +705,7 @@ static int vf610_nfc_probe(struct platform_device *pdev) /* first scan to find the device and get the page size */ err = nand_scan_ident(mtd, 1, NULL); if (err) - goto err_clk; + goto err_disable_clk; vf610_nfc_init_controller(nfc); @@ -717,20 +717,20 @@ static int vf610_nfc_probe(struct platform_device *pdev) if (mtd->writesize + mtd->oobsize > PAGE_2K + OOB_MAX - 8) { dev_err(nfc->dev, "Unsupported flash page size\n"); err = -ENXIO; - goto err_clk; + goto err_disable_clk; } if (chip->ecc.mode == NAND_ECC_HW) { if (mtd->writesize != PAGE_2K && mtd->oobsize < 64) { dev_err(nfc->dev, "Unsupported flash with hwecc\n"); err = -ENXIO; - goto err_clk; + goto err_disable_clk; } if (chip->ecc.size != mtd->writesize) { dev_err(nfc->dev, "Step size needs to be page size\n"); err = -ENXIO; - goto err_clk; + goto err_disable_clk; } /* Only 64 byte ECC layouts known */ @@ -750,7 +750,7 @@ static int vf610_nfc_probe(struct platform_device *pdev) } else { dev_err(nfc->dev, "Unsupported ECC strength\n"); err = -ENXIO; - goto err_clk; + goto err_disable_clk; } chip->ecc.read_page = vf610_nfc_read_page; @@ -762,14 +762,14 @@ static int vf610_nfc_probe(struct platform_device *pdev) /* second phase scan */ err = nand_scan_tail(mtd); if (err) - goto err_clk; + goto err_disable_clk; platform_set_drvdata(pdev, mtd); /* Register device in MTD */ return mtd_device_register(mtd, NULL, 0); -err_clk: +err_disable_clk: clk_disable_unprepare(nfc->clk); return err; } -- cgit v1.2.3-58-ga151 From 1b8c90985f59ccd8a1adb723b58b42628b36e668 Mon Sep 17 00:00:00 2001 From: Alexey Khoroshilov Date: Sat, 10 Feb 2018 01:28:36 +0300 Subject: mtd: nand: vf610: check mtd_device_register() return code vf610_nfc_probe() misses error handling of mtd_device_register(). Found by Linux Driver Verification project (linuxtesting.org). Signed-off-by: Alexey Khoroshilov Reviewed-by: Stefan Agner Signed-off-by: Boris Brezillon --- drivers/mtd/nand/vf610_nfc.c | 7 ++++++- 1 file changed, 6 insertions(+), 1 deletion(-) diff --git a/drivers/mtd/nand/vf610_nfc.c b/drivers/mtd/nand/vf610_nfc.c index 1939503b0960..5d7a1f8f580f 100644 --- a/drivers/mtd/nand/vf610_nfc.c +++ b/drivers/mtd/nand/vf610_nfc.c @@ -767,8 +767,13 @@ static int vf610_nfc_probe(struct platform_device *pdev) platform_set_drvdata(pdev, mtd); /* Register device in MTD */ - return mtd_device_register(mtd, NULL, 0); + err = mtd_device_register(mtd, NULL, 0); + if (err) + goto err_cleanup_nand; + return 0; +err_cleanup_nand: + nand_cleanup(chip); err_disable_clk: clk_disable_unprepare(nfc->clk); return err; -- cgit v1.2.3-58-ga151 From fb3bff5b407e58493fa6bc44f24217f649aecd25 Mon Sep 17 00:00:00 2001 From: KOBAYASHI Yoshitake Date: Thu, 15 Feb 2018 00:35:06 +0900 Subject: mtd: nand: toshiba: Retrieve ECC requirements from extended ID This patch enables support to read the ECC strength and size from the NAND flash using Toshiba Memory SLC NAND extended-ID. This patch is based on the information of the 6th ID byte of the Toshiba Memory SLC NAND. Signed-off-by: KOBAYASHI Yoshitake Signed-off-by: Boris Brezillon --- drivers/mtd/nand/nand_toshiba.c | 26 ++++++++++++++++++++++++++ 1 file changed, 26 insertions(+) diff --git a/drivers/mtd/nand/nand_toshiba.c b/drivers/mtd/nand/nand_toshiba.c index 57df857074e6..ab43f027cd23 100644 --- a/drivers/mtd/nand/nand_toshiba.c +++ b/drivers/mtd/nand/nand_toshiba.c @@ -35,6 +35,32 @@ static void toshiba_nand_decode_id(struct nand_chip *chip) (chip->id.data[5] & 0x7) == 0x6 /* 24nm */ && !(chip->id.data[4] & 0x80) /* !BENAND */) mtd->oobsize = 32 * mtd->writesize >> 9; + + /* + * Extract ECC requirements from 6th id byte. + * For Toshiba SLC, ecc requrements are as follows: + * - 43nm: 1 bit ECC for each 512Byte is required. + * - 32nm: 4 bit ECC for each 512Byte is required. + * - 24nm: 8 bit ECC for each 512Byte is required. + */ + if (chip->id.len >= 6 && nand_is_slc(chip)) { + chip->ecc_step_ds = 512; + switch (chip->id.data[5] & 0x7) { + case 0x4: + chip->ecc_strength_ds = 1; + break; + case 0x5: + chip->ecc_strength_ds = 4; + break; + case 0x6: + chip->ecc_strength_ds = 8; + break; + default: + WARN(1, "Could not get ECC info"); + chip->ecc_step_ds = 0; + break; + } + } } static int toshiba_nand_init(struct nand_chip *chip) -- cgit v1.2.3-58-ga151 From 43a0a45abc4ab386f3ba978c877a2b68a0cad448 Mon Sep 17 00:00:00 2001 From: Boris Brezillon Date: Mon, 5 Feb 2018 23:01:59 +0100 Subject: mtd: nand: Get rid of comments giving the file path inside the file itself Some files add a comment giving the path of the file inside the Linux tree, which is pretty useless since the reader had to find the file to open it. Getting rid of these comments will also allow us to easily move these files around when needed. Signed-off-by: Boris Brezillon --- drivers/mtd/nand/Makefile | 3 --- drivers/mtd/nand/ams-delta.c | 2 -- drivers/mtd/nand/au1550nd.c | 2 -- drivers/mtd/nand/bf5xx_nand.c | 3 +-- drivers/mtd/nand/cmx270_nand.c | 2 -- drivers/mtd/nand/cs553x_nand.c | 2 -- drivers/mtd/nand/diskonchip.c | 2 -- drivers/mtd/nand/fsmc_nand.c | 2 -- drivers/mtd/nand/gpio.c | 2 -- drivers/mtd/nand/nand_ecc.c | 2 -- drivers/mtd/nand/orion_nand.c | 2 -- drivers/mtd/nand/pxa3xx_nand.c | 2 -- drivers/mtd/nand/s3c2410.c | 3 +-- drivers/mtd/nand/sharpsl.c | 2 -- drivers/mtd/nand/socrates_nand.c | 2 -- include/linux/mtd/bbm.h | 2 -- include/linux/mtd/nand_ecc.h | 2 -- include/linux/mtd/ndfc.h | 2 -- 18 files changed, 2 insertions(+), 37 deletions(-) diff --git a/drivers/mtd/nand/Makefile b/drivers/mtd/nand/Makefile index 921634ba400c..4e0982476267 100644 --- a/drivers/mtd/nand/Makefile +++ b/drivers/mtd/nand/Makefile @@ -1,7 +1,4 @@ # SPDX-License-Identifier: GPL-2.0 -# -# linux/drivers/nand/Makefile -# obj-$(CONFIG_MTD_NAND) += nand.o obj-$(CONFIG_MTD_NAND_ECC) += nand_ecc.o diff --git a/drivers/mtd/nand/ams-delta.c b/drivers/mtd/nand/ams-delta.c index d60ada45c549..e15991d81a20 100644 --- a/drivers/mtd/nand/ams-delta.c +++ b/drivers/mtd/nand/ams-delta.c @@ -1,6 +1,4 @@ /* - * drivers/mtd/nand/ams-delta.c - * * Copyright (C) 2006 Jonathan McDowell * * Derived from drivers/mtd/toto.c diff --git a/drivers/mtd/nand/au1550nd.c b/drivers/mtd/nand/au1550nd.c index 8ab827edf94e..df0ef1f1e2f5 100644 --- a/drivers/mtd/nand/au1550nd.c +++ b/drivers/mtd/nand/au1550nd.c @@ -1,6 +1,4 @@ /* - * drivers/mtd/nand/au1550nd.c - * * Copyright (C) 2004 Embedded Edge, LLC * * This program is free software; you can redistribute it and/or modify diff --git a/drivers/mtd/nand/bf5xx_nand.c b/drivers/mtd/nand/bf5xx_nand.c index 87bbd177b3e5..4a5f56f76efd 100644 --- a/drivers/mtd/nand/bf5xx_nand.c +++ b/drivers/mtd/nand/bf5xx_nand.c @@ -1,5 +1,4 @@ -/* linux/drivers/mtd/nand/bf5xx_nand.c - * +/* * Copyright 2006-2008 Analog Devices Inc. * http://blackfin.uclinux.org/ * Bryan Wu diff --git a/drivers/mtd/nand/cmx270_nand.c b/drivers/mtd/nand/cmx270_nand.c index b01c9804590e..66749ade9654 100644 --- a/drivers/mtd/nand/cmx270_nand.c +++ b/drivers/mtd/nand/cmx270_nand.c @@ -1,6 +1,4 @@ /* - * linux/drivers/mtd/nand/cmx270-nand.c - * * Copyright (C) 2006 Compulab, Ltd. * Mike Rapoport * diff --git a/drivers/mtd/nand/cs553x_nand.c b/drivers/mtd/nand/cs553x_nand.c index d48877540f14..be1f28fc7363 100644 --- a/drivers/mtd/nand/cs553x_nand.c +++ b/drivers/mtd/nand/cs553x_nand.c @@ -1,6 +1,4 @@ /* - * drivers/mtd/nand/cs553x_nand.c - * * (C) 2005, 2006 Red Hat Inc. * * Author: David Woodhouse diff --git a/drivers/mtd/nand/diskonchip.c b/drivers/mtd/nand/diskonchip.c index 6bc93ea66f50..1af77f798fe5 100644 --- a/drivers/mtd/nand/diskonchip.c +++ b/drivers/mtd/nand/diskonchip.c @@ -1,6 +1,4 @@ /* - * drivers/mtd/nand/diskonchip.c - * * (C) 2003 Red Hat, Inc. * (C) 2004 Dan Brown * (C) 2004 Kalev Lember diff --git a/drivers/mtd/nand/fsmc_nand.c b/drivers/mtd/nand/fsmc_nand.c index f49ed46fa770..e763161a7c82 100644 --- a/drivers/mtd/nand/fsmc_nand.c +++ b/drivers/mtd/nand/fsmc_nand.c @@ -1,6 +1,4 @@ /* - * drivers/mtd/nand/fsmc_nand.c - * * ST Microelectronics * Flexible Static Memory Controller (FSMC) * Driver for NAND portions diff --git a/drivers/mtd/nand/gpio.c b/drivers/mtd/nand/gpio.c index a8bde6665c24..2780af26d9ab 100644 --- a/drivers/mtd/nand/gpio.c +++ b/drivers/mtd/nand/gpio.c @@ -1,6 +1,4 @@ /* - * drivers/mtd/nand/gpio.c - * * Updated, and converted to generic GPIO based driver by Russell King. * * Written by Ben Dooks diff --git a/drivers/mtd/nand/nand_ecc.c b/drivers/mtd/nand/nand_ecc.c index 7613a0388044..3630f0fe8fa4 100644 --- a/drivers/mtd/nand/nand_ecc.c +++ b/drivers/mtd/nand/nand_ecc.c @@ -2,8 +2,6 @@ * This file contains an ECC algorithm that detects and corrects 1 bit * errors in a 256 byte block of data. * - * drivers/mtd/nand/nand_ecc.c - * * Copyright © 2008 Koninklijke Philips Electronics NV. * Author: Frans Meulenbroeks * diff --git a/drivers/mtd/nand/orion_nand.c b/drivers/mtd/nand/orion_nand.c index 5a5aa1f07d07..7825fd3ce66b 100644 --- a/drivers/mtd/nand/orion_nand.c +++ b/drivers/mtd/nand/orion_nand.c @@ -1,6 +1,4 @@ /* - * drivers/mtd/nand/orion_nand.c - * * NAND support for Marvell Orion SoC platforms * * Tzachi Perelstein diff --git a/drivers/mtd/nand/pxa3xx_nand.c b/drivers/mtd/nand/pxa3xx_nand.c index d1979c7dbe7e..d75f30263d21 100644 --- a/drivers/mtd/nand/pxa3xx_nand.c +++ b/drivers/mtd/nand/pxa3xx_nand.c @@ -1,6 +1,4 @@ /* - * drivers/mtd/nand/pxa3xx_nand.c - * * Copyright © 2005 Intel Corporation * Copyright © 2006 Marvell International Ltd. * diff --git a/drivers/mtd/nand/s3c2410.c b/drivers/mtd/nand/s3c2410.c index 4c383eeec6f6..b5bc5f106c09 100644 --- a/drivers/mtd/nand/s3c2410.c +++ b/drivers/mtd/nand/s3c2410.c @@ -1,5 +1,4 @@ -/* linux/drivers/mtd/nand/s3c2410.c - * +/* * Copyright © 2004-2008 Simtec Electronics * http://armlinux.simtec.co.uk/ * Ben Dooks diff --git a/drivers/mtd/nand/sharpsl.c b/drivers/mtd/nand/sharpsl.c index f59c455d9f51..e93df02c825e 100644 --- a/drivers/mtd/nand/sharpsl.c +++ b/drivers/mtd/nand/sharpsl.c @@ -1,6 +1,4 @@ /* - * drivers/mtd/nand/sharpsl.c - * * Copyright (C) 2004 Richard Purdie * Copyright (C) 2008 Dmitry Baryshkov * diff --git a/drivers/mtd/nand/socrates_nand.c b/drivers/mtd/nand/socrates_nand.c index 575997d0ef8a..9824a9923583 100644 --- a/drivers/mtd/nand/socrates_nand.c +++ b/drivers/mtd/nand/socrates_nand.c @@ -1,6 +1,4 @@ /* - * drivers/mtd/nand/socrates_nand.c - * * Copyright © 2008 Ilya Yanok, Emcraft Systems * * diff --git a/include/linux/mtd/bbm.h b/include/linux/mtd/bbm.h index 3bf8f954b642..3102bd754d18 100644 --- a/include/linux/mtd/bbm.h +++ b/include/linux/mtd/bbm.h @@ -1,6 +1,4 @@ /* - * linux/include/linux/mtd/bbm.h - * * NAND family Bad Block Management (BBM) header file * - Bad Block Table (BBT) implementation * diff --git a/include/linux/mtd/nand_ecc.h b/include/linux/mtd/nand_ecc.h index 4d8406c81652..8a2decf7462c 100644 --- a/include/linux/mtd/nand_ecc.h +++ b/include/linux/mtd/nand_ecc.h @@ -1,6 +1,4 @@ /* - * drivers/mtd/nand_ecc.h - * * Copyright (C) 2000-2010 Steven J. Hill * David Woodhouse * Thomas Gleixner diff --git a/include/linux/mtd/ndfc.h b/include/linux/mtd/ndfc.h index d0558a982628..357e88b3263a 100644 --- a/include/linux/mtd/ndfc.h +++ b/include/linux/mtd/ndfc.h @@ -1,6 +1,4 @@ /* - * linux/include/linux/mtd/ndfc.h - * * Copyright (c) 2006 Thomas Gleixner * * This program is free software; you can redistribute it and/or modify -- cgit v1.2.3-58-ga151 From 93cbd6f354f178b6e0a7d80482981520be6347b4 Mon Sep 17 00:00:00 2001 From: Boris Brezillon Date: Mon, 5 Feb 2018 23:02:00 +0100 Subject: mtd: nand: Stop using full path when referring to files placed in the same dir Some NAND drivers are derived from other NAND drivers and state it in their license header. Using full path to point to other driver files sitting in the same directory is not such a good idea, since the NAND drivers might be moved to a different directory at some point, and we don't to patch all license/copyright headers everytime this happen. The only exception where we keep full path is when the referred source files no longer exist in the tree. Signed-off-by: Boris Brezillon --- drivers/mtd/nand/ams-delta.c | 2 +- drivers/mtd/nand/bf5xx_nand.c | 4 ++-- drivers/mtd/nand/mpc5121_nfc.c | 5 ++--- 3 files changed, 5 insertions(+), 6 deletions(-) diff --git a/drivers/mtd/nand/ams-delta.c b/drivers/mtd/nand/ams-delta.c index e15991d81a20..f3eaea9df90b 100644 --- a/drivers/mtd/nand/ams-delta.c +++ b/drivers/mtd/nand/ams-delta.c @@ -3,7 +3,7 @@ * * Derived from drivers/mtd/toto.c * Converted to platform driver by Janusz Krzysztofik - * Partially stolen from drivers/mtd/nand/plat_nand.c + * Partially stolen from plat_nand.c * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as diff --git a/drivers/mtd/nand/bf5xx_nand.c b/drivers/mtd/nand/bf5xx_nand.c index 4a5f56f76efd..9a1d8d104570 100644 --- a/drivers/mtd/nand/bf5xx_nand.c +++ b/drivers/mtd/nand/bf5xx_nand.c @@ -5,10 +5,10 @@ * * Blackfin BF5xx on-chip NAND flash controller driver * - * Derived from drivers/mtd/nand/s3c2410.c + * Derived from s3c2410.c * Copyright (c) 2007 Ben Dooks * - * Derived from drivers/mtd/nand/cafe.c + * Derived from cafe.c * Copyright © 2006 Red Hat, Inc. * Copyright © 2006 David Woodhouse * diff --git a/drivers/mtd/nand/mpc5121_nfc.c b/drivers/mtd/nand/mpc5121_nfc.c index b6b97cc9fba6..913b9d1225c6 100644 --- a/drivers/mtd/nand/mpc5121_nfc.c +++ b/drivers/mtd/nand/mpc5121_nfc.c @@ -6,9 +6,8 @@ * by OSADL membership fees in 2009; for details see www.osadl.org. * * Based on original driver from Freescale Semiconductor - * written by John Rigby on basis - * of drivers/mtd/nand/mxc_nand.c. Reworked and extended - * Piotr Ziecik . + * written by John Rigby on basis of mxc_nand.c. + * Reworked and extended by Piotr Ziecik . * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License -- cgit v1.2.3-58-ga151 From e36f2eb6ca707853b17fea63e222e86f914617cc Mon Sep 17 00:00:00 2001 From: Boris Brezillon Date: Mon, 5 Feb 2018 23:02:01 +0100 Subject: mtd: nand: ams-delta: Fix path to toto.c source file Last known location of toto.c was drivers/mtd/nand/toto.c. Fix the path so that one can use git log to find when the driver was deleted and possibly checkout the source code. Signed-off-by: Boris Brezillon --- drivers/mtd/nand/ams-delta.c | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/drivers/mtd/nand/ams-delta.c b/drivers/mtd/nand/ams-delta.c index f3eaea9df90b..25a92474fa59 100644 --- a/drivers/mtd/nand/ams-delta.c +++ b/drivers/mtd/nand/ams-delta.c @@ -1,7 +1,7 @@ /* * Copyright (C) 2006 Jonathan McDowell * - * Derived from drivers/mtd/toto.c + * Derived from drivers/mtd/nand/toto.c * Converted to platform driver by Janusz Krzysztofik * Partially stolen from plat_nand.c * -- cgit v1.2.3-58-ga151 From 187c54488ead35d19082d3ee75afdbe94d3d4026 Mon Sep 17 00:00:00 2001 From: Boris Brezillon Date: Mon, 5 Feb 2018 23:02:02 +0100 Subject: mtd: nand: State when references to other drivers are no longer valid A lot of NAND drivers have been derived from other old NAND drivers which have since then been removed from the Linux tree. When this is the case, specify when the file the header is referring to has been removed so that people can find the original implementation more easily. Signed-off-by: Boris Brezillon --- arch/cris/arch-v32/drivers/mach-a3/nandflash.c | 2 +- arch/cris/arch-v32/drivers/mach-fs/nandflash.c | 2 +- drivers/mtd/nand/ams-delta.c | 2 +- drivers/mtd/nand/atmel/nand-controller.c | 4 ++-- drivers/mtd/nand/atmel/pmecc.c | 4 ++-- drivers/mtd/nand/atmel/pmecc.h | 4 ++-- drivers/mtd/nand/cmx270_nand.c | 2 +- drivers/mtd/nand/fsmc_nand.c | 2 +- 8 files changed, 11 insertions(+), 11 deletions(-) diff --git a/arch/cris/arch-v32/drivers/mach-a3/nandflash.c b/arch/cris/arch-v32/drivers/mach-a3/nandflash.c index 925a98eb6d68..7ec29d2d3661 100644 --- a/arch/cris/arch-v32/drivers/mach-a3/nandflash.c +++ b/arch/cris/arch-v32/drivers/mach-a3/nandflash.c @@ -3,7 +3,7 @@ * * Copyright (c) 2007 * - * Derived from drivers/mtd/nand/spia.c + * Derived from drivers/mtd/nand/spia.c (removed in v3.8) * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com) * * This program is free software; you can redistribute it and/or modify diff --git a/arch/cris/arch-v32/drivers/mach-fs/nandflash.c b/arch/cris/arch-v32/drivers/mach-fs/nandflash.c index 53b56a429dde..7ce72906039a 100644 --- a/arch/cris/arch-v32/drivers/mach-fs/nandflash.c +++ b/arch/cris/arch-v32/drivers/mach-fs/nandflash.c @@ -3,7 +3,7 @@ * * Copyright (c) 2004 * - * Derived from drivers/mtd/nand/spia.c + * Derived from drivers/mtd/nand/spia.c (removed in v3.8) * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com) * * This program is free software; you can redistribute it and/or modify diff --git a/drivers/mtd/nand/ams-delta.c b/drivers/mtd/nand/ams-delta.c index 25a92474fa59..24173a0a7875 100644 --- a/drivers/mtd/nand/ams-delta.c +++ b/drivers/mtd/nand/ams-delta.c @@ -1,7 +1,7 @@ /* * Copyright (C) 2006 Jonathan McDowell * - * Derived from drivers/mtd/nand/toto.c + * Derived from drivers/mtd/nand/toto.c (removed in v2.6.28) * Converted to platform driver by Janusz Krzysztofik * Partially stolen from plat_nand.c * diff --git a/drivers/mtd/nand/atmel/nand-controller.c b/drivers/mtd/nand/atmel/nand-controller.c index b2f00b398490..12f6753d47ae 100644 --- a/drivers/mtd/nand/atmel/nand-controller.c +++ b/drivers/mtd/nand/atmel/nand-controller.c @@ -9,10 +9,10 @@ * * Copyright 2003 Rick Bronson * - * Derived from drivers/mtd/nand/autcpu12.c + * Derived from drivers/mtd/nand/autcpu12.c (removed in v3.8) * Copyright 2001 Thomas Gleixner (gleixner@autronix.de) * - * Derived from drivers/mtd/spia.c + * Derived from drivers/mtd/spia.c (removed in v3.8) * Copyright 2000 Steven J. Hill (sjhill@cotw.com) * * diff --git a/drivers/mtd/nand/atmel/pmecc.c b/drivers/mtd/nand/atmel/pmecc.c index fcbe4fd6e684..9de29c9afb0c 100644 --- a/drivers/mtd/nand/atmel/pmecc.c +++ b/drivers/mtd/nand/atmel/pmecc.c @@ -9,10 +9,10 @@ * * Copyright 2003 Rick Bronson * - * Derived from drivers/mtd/nand/autcpu12.c + * Derived from drivers/mtd/nand/autcpu12.c (removed in v3.8) * Copyright 2001 Thomas Gleixner (gleixner@autronix.de) * - * Derived from drivers/mtd/spia.c + * Derived from drivers/mtd/spia.c (removed in v3.8) * Copyright 2000 Steven J. Hill (sjhill@cotw.com) * * Add Hardware ECC support for AT91SAM9260 / AT91SAM9263 diff --git a/drivers/mtd/nand/atmel/pmecc.h b/drivers/mtd/nand/atmel/pmecc.h index 817e0dd9fd15..808f1be0d6ad 100644 --- a/drivers/mtd/nand/atmel/pmecc.h +++ b/drivers/mtd/nand/atmel/pmecc.h @@ -9,10 +9,10 @@ * * Copyright © 2003 Rick Bronson * - * Derived from drivers/mtd/nand/autcpu12.c + * Derived from drivers/mtd/nand/autcpu12.c (removed in v3.8) * Copyright © 2001 Thomas Gleixner (gleixner@autronix.de) * - * Derived from drivers/mtd/spia.c + * Derived from drivers/mtd/spia.c (removed in v3.8) * Copyright © 2000 Steven J. Hill (sjhill@cotw.com) * * diff --git a/drivers/mtd/nand/cmx270_nand.c b/drivers/mtd/nand/cmx270_nand.c index 66749ade9654..02d6751e9efe 100644 --- a/drivers/mtd/nand/cmx270_nand.c +++ b/drivers/mtd/nand/cmx270_nand.c @@ -2,7 +2,7 @@ * Copyright (C) 2006 Compulab, Ltd. * Mike Rapoport * - * Derived from drivers/mtd/nand/h1910.c + * Derived from drivers/mtd/nand/h1910.c (removed in v3.10) * Copyright (C) 2002 Marius Gröger (mag@sysgo.de) * Copyright (c) 2001 Thomas Gleixner (gleixner@autronix.de) * diff --git a/drivers/mtd/nand/fsmc_nand.c b/drivers/mtd/nand/fsmc_nand.c index e763161a7c82..a4a5da318eed 100644 --- a/drivers/mtd/nand/fsmc_nand.c +++ b/drivers/mtd/nand/fsmc_nand.c @@ -7,7 +7,7 @@ * Vipin Kumar * Ashish Priyadarshi * - * Based on drivers/mtd/nand/nomadik_nand.c + * Based on drivers/mtd/nand/nomadik_nand.c (removed in v3.8) * * This file is licensed under the terms of the GNU General Public * License version 2. This program is licensed "as is" without any -- cgit v1.2.3-58-ga151 From 7b6afee7291802aa8c02aa918782033992caf641 Mon Sep 17 00:00:00 2001 From: Boris Brezillon Date: Mon, 5 Feb 2018 23:02:03 +0100 Subject: mtd: nand: Add missing copyright information Some drivers have been derived from others which have then been removed from the source tree. When this is the case, add mention the copyright of the source file(s) they've been derived from. Signed-off-by: Boris Brezillon --- drivers/mtd/nand/ams-delta.c | 3 +++ drivers/mtd/nand/fsmc_nand.c | 2 ++ 2 files changed, 5 insertions(+) diff --git a/drivers/mtd/nand/ams-delta.c b/drivers/mtd/nand/ams-delta.c index 24173a0a7875..35f80523e52e 100644 --- a/drivers/mtd/nand/ams-delta.c +++ b/drivers/mtd/nand/ams-delta.c @@ -2,6 +2,9 @@ * Copyright (C) 2006 Jonathan McDowell * * Derived from drivers/mtd/nand/toto.c (removed in v2.6.28) + * Copyright (c) 2003 Texas Instruments + * Copyright (c) 2002 Thomas Gleixner + * * Converted to platform driver by Janusz Krzysztofik * Partially stolen from plat_nand.c * diff --git a/drivers/mtd/nand/fsmc_nand.c b/drivers/mtd/nand/fsmc_nand.c index a4a5da318eed..7e66268f8154 100644 --- a/drivers/mtd/nand/fsmc_nand.c +++ b/drivers/mtd/nand/fsmc_nand.c @@ -8,6 +8,8 @@ * Ashish Priyadarshi * * Based on drivers/mtd/nand/nomadik_nand.c (removed in v3.8) + * Copyright © 2007 STMicroelectronics Pvt. Ltd. + * Copyright © 2009 Alessandro Rubini * * This file is licensed under the terms of the GNU General Public * License version 2. This program is licensed "as is" without any -- cgit v1.2.3-58-ga151 From 93db446a424cee9387b532995e6b516667079555 Mon Sep 17 00:00:00 2001 From: Boris Brezillon Date: Mon, 5 Feb 2018 23:02:04 +0100 Subject: mtd: nand: move raw NAND related code to the raw/ subdir As part of the process of sharing more code between different NAND based devices, we need to move all raw NAND related code to the raw/ subdirectory. Signed-off-by: Boris Brezillon --- Documentation/arm/Samsung-S3C24XX/S3C2412.txt | 2 +- Documentation/driver-api/mtdnand.rst | 8 +- Documentation/gpio/drivers-on-gpio.txt | 4 +- MAINTAINERS | 22 +- drivers/mtd/nand/Kconfig | 581 +- drivers/mtd/nand/Makefile | 67 +- drivers/mtd/nand/ams-delta.c | 291 - drivers/mtd/nand/atmel/Makefile | 4 - drivers/mtd/nand/atmel/nand-controller.c | 2565 -------- drivers/mtd/nand/atmel/pmecc.c | 1012 --- drivers/mtd/nand/atmel/pmecc.h | 74 - drivers/mtd/nand/au1550nd.c | 515 -- drivers/mtd/nand/bcm47xxnflash/Makefile | 4 - drivers/mtd/nand/bcm47xxnflash/bcm47xxnflash.h | 26 - drivers/mtd/nand/bcm47xxnflash/main.c | 81 - drivers/mtd/nand/bcm47xxnflash/ops_bcm4706.c | 456 -- drivers/mtd/nand/bf5xx_nand.c | 861 --- drivers/mtd/nand/brcmnand/Makefile | 8 - drivers/mtd/nand/brcmnand/bcm63138_nand.c | 109 - drivers/mtd/nand/brcmnand/bcm6368_nand.c | 142 - drivers/mtd/nand/brcmnand/brcmnand.c | 2620 -------- drivers/mtd/nand/brcmnand/brcmnand.h | 74 - drivers/mtd/nand/brcmnand/brcmstb_nand.c | 44 - drivers/mtd/nand/brcmnand/iproc_nand.c | 160 - drivers/mtd/nand/cafe_nand.c | 871 --- drivers/mtd/nand/cmx270_nand.c | 244 - drivers/mtd/nand/cs553x_nand.c | 355 -- drivers/mtd/nand/davinci_nand.c | 879 --- drivers/mtd/nand/denali.c | 1408 ----- drivers/mtd/nand/denali.h | 335 - drivers/mtd/nand/denali_dt.c | 163 - drivers/mtd/nand/denali_pci.c | 131 - drivers/mtd/nand/diskonchip.c | 1709 ----- drivers/mtd/nand/docg4.c | 1421 ----- drivers/mtd/nand/fsl_elbc_nand.c | 979 --- drivers/mtd/nand/fsl_ifc_nand.c | 1117 ---- drivers/mtd/nand/fsl_upm.c | 363 -- drivers/mtd/nand/fsmc_nand.c | 1175 ---- drivers/mtd/nand/gpio.c | 327 - drivers/mtd/nand/gpmi-nand/Makefile | 3 - drivers/mtd/nand/gpmi-nand/bch-regs.h | 128 - drivers/mtd/nand/gpmi-nand/gpmi-lib.c | 1510 ----- drivers/mtd/nand/gpmi-nand/gpmi-nand.c | 2182 ------- drivers/mtd/nand/gpmi-nand/gpmi-nand.h | 315 - drivers/mtd/nand/gpmi-nand/gpmi-regs.h | 187 - drivers/mtd/nand/hisi504_nand.c | 896 --- drivers/mtd/nand/jz4740_nand.c | 536 -- drivers/mtd/nand/jz4780_bch.c | 380 -- drivers/mtd/nand/jz4780_bch.h | 43 - drivers/mtd/nand/jz4780_nand.c | 416 -- drivers/mtd/nand/lpc32xx_mlc.c | 909 --- drivers/mtd/nand/lpc32xx_slc.c | 1032 --- drivers/mtd/nand/marvell_nand.c | 2915 --------- drivers/mtd/nand/mpc5121_nfc.c | 856 --- drivers/mtd/nand/mtk_ecc.c | 608 -- drivers/mtd/nand/mtk_ecc.h | 49 - drivers/mtd/nand/mtk_nand.c | 1599 ----- drivers/mtd/nand/mxc_nand.c | 1966 ------ drivers/mtd/nand/nand_amd.c | 51 - drivers/mtd/nand/nand_base.c | 6582 -------------------- drivers/mtd/nand/nand_bbt.c | 1452 ----- drivers/mtd/nand/nand_bch.c | 234 - drivers/mtd/nand/nand_ecc.c | 531 -- drivers/mtd/nand/nand_hynix.c | 676 -- drivers/mtd/nand/nand_ids.c | 207 - drivers/mtd/nand/nand_macronix.c | 30 - drivers/mtd/nand/nand_micron.c | 289 - drivers/mtd/nand/nand_samsung.c | 134 - drivers/mtd/nand/nand_timings.c | 324 - drivers/mtd/nand/nand_toshiba.c | 77 - drivers/mtd/nand/nandsim.c | 2392 ------- drivers/mtd/nand/ndfc.c | 286 - drivers/mtd/nand/nuc900_nand.c | 306 - drivers/mtd/nand/omap2.c | 2316 ------- drivers/mtd/nand/omap_elm.c | 578 -- drivers/mtd/nand/orion_nand.c | 232 - drivers/mtd/nand/oxnas_nand.c | 206 - drivers/mtd/nand/pasemi_nand.c | 232 - drivers/mtd/nand/plat_nand.c | 144 - drivers/mtd/nand/pxa3xx_nand.c | 2103 ------- drivers/mtd/nand/qcom_nandc.c | 2921 --------- drivers/mtd/nand/r852.c | 1079 ---- drivers/mtd/nand/r852.h | 160 - drivers/mtd/nand/raw/Kconfig | 580 ++ drivers/mtd/nand/raw/Makefile | 68 + drivers/mtd/nand/raw/ams-delta.c | 291 + drivers/mtd/nand/raw/atmel/Makefile | 4 + drivers/mtd/nand/raw/atmel/nand-controller.c | 2565 ++++++++ drivers/mtd/nand/raw/atmel/pmecc.c | 1012 +++ drivers/mtd/nand/raw/atmel/pmecc.h | 74 + drivers/mtd/nand/raw/au1550nd.c | 515 ++ drivers/mtd/nand/raw/bcm47xxnflash/Makefile | 4 + drivers/mtd/nand/raw/bcm47xxnflash/bcm47xxnflash.h | 26 + drivers/mtd/nand/raw/bcm47xxnflash/main.c | 81 + drivers/mtd/nand/raw/bcm47xxnflash/ops_bcm4706.c | 456 ++ drivers/mtd/nand/raw/bf5xx_nand.c | 861 +++ drivers/mtd/nand/raw/brcmnand/Makefile | 8 + drivers/mtd/nand/raw/brcmnand/bcm63138_nand.c | 109 + drivers/mtd/nand/raw/brcmnand/bcm6368_nand.c | 142 + drivers/mtd/nand/raw/brcmnand/brcmnand.c | 2620 ++++++++ drivers/mtd/nand/raw/brcmnand/brcmnand.h | 74 + drivers/mtd/nand/raw/brcmnand/brcmstb_nand.c | 44 + drivers/mtd/nand/raw/brcmnand/iproc_nand.c | 160 + drivers/mtd/nand/raw/cafe_nand.c | 871 +++ drivers/mtd/nand/raw/cmx270_nand.c | 244 + drivers/mtd/nand/raw/cs553x_nand.c | 355 ++ drivers/mtd/nand/raw/davinci_nand.c | 879 +++ drivers/mtd/nand/raw/denali.c | 1408 +++++ drivers/mtd/nand/raw/denali.h | 335 + drivers/mtd/nand/raw/denali_dt.c | 163 + drivers/mtd/nand/raw/denali_pci.c | 131 + drivers/mtd/nand/raw/diskonchip.c | 1709 +++++ drivers/mtd/nand/raw/docg4.c | 1421 +++++ drivers/mtd/nand/raw/fsl_elbc_nand.c | 979 +++ drivers/mtd/nand/raw/fsl_ifc_nand.c | 1117 ++++ drivers/mtd/nand/raw/fsl_upm.c | 363 ++ drivers/mtd/nand/raw/fsmc_nand.c | 1175 ++++ drivers/mtd/nand/raw/gpio.c | 327 + drivers/mtd/nand/raw/gpmi-nand/Makefile | 3 + drivers/mtd/nand/raw/gpmi-nand/bch-regs.h | 128 + drivers/mtd/nand/raw/gpmi-nand/gpmi-lib.c | 1510 +++++ drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.c | 2182 +++++++ drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.h | 315 + drivers/mtd/nand/raw/gpmi-nand/gpmi-regs.h | 187 + drivers/mtd/nand/raw/hisi504_nand.c | 896 +++ drivers/mtd/nand/raw/jz4740_nand.c | 536 ++ drivers/mtd/nand/raw/jz4780_bch.c | 380 ++ drivers/mtd/nand/raw/jz4780_bch.h | 43 + drivers/mtd/nand/raw/jz4780_nand.c | 416 ++ drivers/mtd/nand/raw/lpc32xx_mlc.c | 909 +++ drivers/mtd/nand/raw/lpc32xx_slc.c | 1032 +++ drivers/mtd/nand/raw/marvell_nand.c | 2915 +++++++++ drivers/mtd/nand/raw/mpc5121_nfc.c | 856 +++ drivers/mtd/nand/raw/mtk_ecc.c | 608 ++ drivers/mtd/nand/raw/mtk_ecc.h | 49 + drivers/mtd/nand/raw/mtk_nand.c | 1599 +++++ drivers/mtd/nand/raw/mxc_nand.c | 1966 ++++++ drivers/mtd/nand/raw/nand_amd.c | 51 + drivers/mtd/nand/raw/nand_base.c | 6582 ++++++++++++++++++++ drivers/mtd/nand/raw/nand_bbt.c | 1452 +++++ drivers/mtd/nand/raw/nand_bch.c | 234 + drivers/mtd/nand/raw/nand_ecc.c | 531 ++ drivers/mtd/nand/raw/nand_hynix.c | 676 ++ drivers/mtd/nand/raw/nand_ids.c | 207 + drivers/mtd/nand/raw/nand_macronix.c | 30 + drivers/mtd/nand/raw/nand_micron.c | 289 + drivers/mtd/nand/raw/nand_samsung.c | 134 + drivers/mtd/nand/raw/nand_timings.c | 324 + drivers/mtd/nand/raw/nand_toshiba.c | 77 + drivers/mtd/nand/raw/nandsim.c | 2392 +++++++ drivers/mtd/nand/raw/ndfc.c | 286 + drivers/mtd/nand/raw/nuc900_nand.c | 306 + drivers/mtd/nand/raw/omap2.c | 2316 +++++++ drivers/mtd/nand/raw/omap_elm.c | 578 ++ drivers/mtd/nand/raw/orion_nand.c | 232 + drivers/mtd/nand/raw/oxnas_nand.c | 206 + drivers/mtd/nand/raw/pasemi_nand.c | 232 + drivers/mtd/nand/raw/plat_nand.c | 144 + drivers/mtd/nand/raw/pxa3xx_nand.c | 2103 +++++++ drivers/mtd/nand/raw/qcom_nandc.c | 2921 +++++++++ drivers/mtd/nand/raw/r852.c | 1079 ++++ drivers/mtd/nand/raw/r852.h | 160 + drivers/mtd/nand/raw/s3c2410.c | 1295 ++++ drivers/mtd/nand/raw/sh_flctl.c | 1250 ++++ drivers/mtd/nand/raw/sharpsl.c | 233 + drivers/mtd/nand/raw/sm_common.c | 202 + drivers/mtd/nand/raw/sm_common.h | 61 + drivers/mtd/nand/raw/socrates_nand.c | 241 + drivers/mtd/nand/raw/sunxi_nand.c | 2321 +++++++ drivers/mtd/nand/raw/tango_nand.c | 688 ++ drivers/mtd/nand/raw/tmio_nand.c | 513 ++ drivers/mtd/nand/raw/txx9ndfmc.c | 423 ++ drivers/mtd/nand/raw/vf610_nfc.c | 835 +++ drivers/mtd/nand/raw/xway_nand.c | 245 + drivers/mtd/nand/s3c2410.c | 1295 ---- drivers/mtd/nand/sh_flctl.c | 1250 ---- drivers/mtd/nand/sharpsl.c | 233 - drivers/mtd/nand/sm_common.c | 202 - drivers/mtd/nand/sm_common.h | 61 - drivers/mtd/nand/socrates_nand.c | 241 - drivers/mtd/nand/sunxi_nand.c | 2321 ------- drivers/mtd/nand/tango_nand.c | 688 -- drivers/mtd/nand/tmio_nand.c | 513 -- drivers/mtd/nand/txx9ndfmc.c | 423 -- drivers/mtd/nand/vf610_nfc.c | 835 --- drivers/mtd/nand/xway_nand.c | 245 - drivers/mtd/sm_ftl.c | 2 +- 187 files changed, 69571 insertions(+), 69567 deletions(-) delete mode 100644 drivers/mtd/nand/ams-delta.c delete mode 100644 drivers/mtd/nand/atmel/Makefile delete mode 100644 drivers/mtd/nand/atmel/nand-controller.c delete mode 100644 drivers/mtd/nand/atmel/pmecc.c delete mode 100644 drivers/mtd/nand/atmel/pmecc.h delete mode 100644 drivers/mtd/nand/au1550nd.c delete mode 100644 drivers/mtd/nand/bcm47xxnflash/Makefile delete mode 100644 drivers/mtd/nand/bcm47xxnflash/bcm47xxnflash.h delete mode 100644 drivers/mtd/nand/bcm47xxnflash/main.c delete mode 100644 drivers/mtd/nand/bcm47xxnflash/ops_bcm4706.c delete mode 100644 drivers/mtd/nand/bf5xx_nand.c delete mode 100644 drivers/mtd/nand/brcmnand/Makefile delete mode 100644 drivers/mtd/nand/brcmnand/bcm63138_nand.c delete mode 100644 drivers/mtd/nand/brcmnand/bcm6368_nand.c delete mode 100644 drivers/mtd/nand/brcmnand/brcmnand.c delete mode 100644 drivers/mtd/nand/brcmnand/brcmnand.h delete mode 100644 drivers/mtd/nand/brcmnand/brcmstb_nand.c delete mode 100644 drivers/mtd/nand/brcmnand/iproc_nand.c delete mode 100644 drivers/mtd/nand/cafe_nand.c delete mode 100644 drivers/mtd/nand/cmx270_nand.c delete mode 100644 drivers/mtd/nand/cs553x_nand.c delete mode 100644 drivers/mtd/nand/davinci_nand.c delete mode 100644 drivers/mtd/nand/denali.c delete mode 100644 drivers/mtd/nand/denali.h delete mode 100644 drivers/mtd/nand/denali_dt.c delete mode 100644 drivers/mtd/nand/denali_pci.c delete mode 100644 drivers/mtd/nand/diskonchip.c delete mode 100644 drivers/mtd/nand/docg4.c delete mode 100644 drivers/mtd/nand/fsl_elbc_nand.c delete mode 100644 drivers/mtd/nand/fsl_ifc_nand.c delete mode 100644 drivers/mtd/nand/fsl_upm.c delete mode 100644 drivers/mtd/nand/fsmc_nand.c delete mode 100644 drivers/mtd/nand/gpio.c delete mode 100644 drivers/mtd/nand/gpmi-nand/Makefile delete mode 100644 drivers/mtd/nand/gpmi-nand/bch-regs.h delete mode 100644 drivers/mtd/nand/gpmi-nand/gpmi-lib.c delete mode 100644 drivers/mtd/nand/gpmi-nand/gpmi-nand.c delete mode 100644 drivers/mtd/nand/gpmi-nand/gpmi-nand.h delete mode 100644 drivers/mtd/nand/gpmi-nand/gpmi-regs.h delete mode 100644 drivers/mtd/nand/hisi504_nand.c delete mode 100644 drivers/mtd/nand/jz4740_nand.c delete mode 100644 drivers/mtd/nand/jz4780_bch.c delete mode 100644 drivers/mtd/nand/jz4780_bch.h delete mode 100644 drivers/mtd/nand/jz4780_nand.c delete mode 100644 drivers/mtd/nand/lpc32xx_mlc.c delete mode 100644 drivers/mtd/nand/lpc32xx_slc.c delete mode 100644 drivers/mtd/nand/marvell_nand.c delete mode 100644 drivers/mtd/nand/mpc5121_nfc.c delete mode 100644 drivers/mtd/nand/mtk_ecc.c delete mode 100644 drivers/mtd/nand/mtk_ecc.h delete mode 100644 drivers/mtd/nand/mtk_nand.c delete mode 100644 drivers/mtd/nand/mxc_nand.c delete mode 100644 drivers/mtd/nand/nand_amd.c delete mode 100644 drivers/mtd/nand/nand_base.c delete mode 100644 drivers/mtd/nand/nand_bbt.c delete mode 100644 drivers/mtd/nand/nand_bch.c delete mode 100644 drivers/mtd/nand/nand_ecc.c delete mode 100644 drivers/mtd/nand/nand_hynix.c delete mode 100644 drivers/mtd/nand/nand_ids.c delete mode 100644 drivers/mtd/nand/nand_macronix.c delete mode 100644 drivers/mtd/nand/nand_micron.c delete mode 100644 drivers/mtd/nand/nand_samsung.c delete mode 100644 drivers/mtd/nand/nand_timings.c delete mode 100644 drivers/mtd/nand/nand_toshiba.c delete mode 100644 drivers/mtd/nand/nandsim.c delete mode 100644 drivers/mtd/nand/ndfc.c delete mode 100644 drivers/mtd/nand/nuc900_nand.c delete mode 100644 drivers/mtd/nand/omap2.c delete mode 100644 drivers/mtd/nand/omap_elm.c delete mode 100644 drivers/mtd/nand/orion_nand.c delete mode 100644 drivers/mtd/nand/oxnas_nand.c delete mode 100644 drivers/mtd/nand/pasemi_nand.c delete mode 100644 drivers/mtd/nand/plat_nand.c delete mode 100644 drivers/mtd/nand/pxa3xx_nand.c delete mode 100644 drivers/mtd/nand/qcom_nandc.c delete mode 100644 drivers/mtd/nand/r852.c delete mode 100644 drivers/mtd/nand/r852.h create mode 100644 drivers/mtd/nand/raw/Kconfig create mode 100644 drivers/mtd/nand/raw/Makefile create mode 100644 drivers/mtd/nand/raw/ams-delta.c create mode 100644 drivers/mtd/nand/raw/atmel/Makefile create mode 100644 drivers/mtd/nand/raw/atmel/nand-controller.c create mode 100644 drivers/mtd/nand/raw/atmel/pmecc.c create mode 100644 drivers/mtd/nand/raw/atmel/pmecc.h create mode 100644 drivers/mtd/nand/raw/au1550nd.c create mode 100644 drivers/mtd/nand/raw/bcm47xxnflash/Makefile create mode 100644 drivers/mtd/nand/raw/bcm47xxnflash/bcm47xxnflash.h create mode 100644 drivers/mtd/nand/raw/bcm47xxnflash/main.c create mode 100644 drivers/mtd/nand/raw/bcm47xxnflash/ops_bcm4706.c create mode 100644 drivers/mtd/nand/raw/bf5xx_nand.c create mode 100644 drivers/mtd/nand/raw/brcmnand/Makefile create mode 100644 drivers/mtd/nand/raw/brcmnand/bcm63138_nand.c create mode 100644 drivers/mtd/nand/raw/brcmnand/bcm6368_nand.c create mode 100644 drivers/mtd/nand/raw/brcmnand/brcmnand.c create mode 100644 drivers/mtd/nand/raw/brcmnand/brcmnand.h create mode 100644 drivers/mtd/nand/raw/brcmnand/brcmstb_nand.c create mode 100644 drivers/mtd/nand/raw/brcmnand/iproc_nand.c create mode 100644 drivers/mtd/nand/raw/cafe_nand.c create mode 100644 drivers/mtd/nand/raw/cmx270_nand.c create mode 100644 drivers/mtd/nand/raw/cs553x_nand.c create mode 100644 drivers/mtd/nand/raw/davinci_nand.c create mode 100644 drivers/mtd/nand/raw/denali.c create mode 100644 drivers/mtd/nand/raw/denali.h create mode 100644 drivers/mtd/nand/raw/denali_dt.c create mode 100644 drivers/mtd/nand/raw/denali_pci.c create mode 100644 drivers/mtd/nand/raw/diskonchip.c create mode 100644 drivers/mtd/nand/raw/docg4.c create mode 100644 drivers/mtd/nand/raw/fsl_elbc_nand.c create mode 100644 drivers/mtd/nand/raw/fsl_ifc_nand.c create mode 100644 drivers/mtd/nand/raw/fsl_upm.c create mode 100644 drivers/mtd/nand/raw/fsmc_nand.c create mode 100644 drivers/mtd/nand/raw/gpio.c create mode 100644 drivers/mtd/nand/raw/gpmi-nand/Makefile create mode 100644 drivers/mtd/nand/raw/gpmi-nand/bch-regs.h create mode 100644 drivers/mtd/nand/raw/gpmi-nand/gpmi-lib.c create mode 100644 drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.c create mode 100644 drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.h create mode 100644 drivers/mtd/nand/raw/gpmi-nand/gpmi-regs.h create mode 100644 drivers/mtd/nand/raw/hisi504_nand.c create mode 100644 drivers/mtd/nand/raw/jz4740_nand.c create mode 100644 drivers/mtd/nand/raw/jz4780_bch.c create mode 100644 drivers/mtd/nand/raw/jz4780_bch.h create mode 100644 drivers/mtd/nand/raw/jz4780_nand.c create mode 100644 drivers/mtd/nand/raw/lpc32xx_mlc.c create mode 100644 drivers/mtd/nand/raw/lpc32xx_slc.c create mode 100644 drivers/mtd/nand/raw/marvell_nand.c create mode 100644 drivers/mtd/nand/raw/mpc5121_nfc.c create mode 100644 drivers/mtd/nand/raw/mtk_ecc.c create mode 100644 drivers/mtd/nand/raw/mtk_ecc.h create mode 100644 drivers/mtd/nand/raw/mtk_nand.c create mode 100644 drivers/mtd/nand/raw/mxc_nand.c create mode 100644 drivers/mtd/nand/raw/nand_amd.c create mode 100644 drivers/mtd/nand/raw/nand_base.c create mode 100644 drivers/mtd/nand/raw/nand_bbt.c create mode 100644 drivers/mtd/nand/raw/nand_bch.c create mode 100644 drivers/mtd/nand/raw/nand_ecc.c create mode 100644 drivers/mtd/nand/raw/nand_hynix.c create mode 100644 drivers/mtd/nand/raw/nand_ids.c create mode 100644 drivers/mtd/nand/raw/nand_macronix.c create mode 100644 drivers/mtd/nand/raw/nand_micron.c create mode 100644 drivers/mtd/nand/raw/nand_samsung.c create mode 100644 drivers/mtd/nand/raw/nand_timings.c create mode 100644 drivers/mtd/nand/raw/nand_toshiba.c create mode 100644 drivers/mtd/nand/raw/nandsim.c create mode 100644 drivers/mtd/nand/raw/ndfc.c create mode 100644 drivers/mtd/nand/raw/nuc900_nand.c create mode 100644 drivers/mtd/nand/raw/omap2.c create mode 100644 drivers/mtd/nand/raw/omap_elm.c create mode 100644 drivers/mtd/nand/raw/orion_nand.c create mode 100644 drivers/mtd/nand/raw/oxnas_nand.c create mode 100644 drivers/mtd/nand/raw/pasemi_nand.c create mode 100644 drivers/mtd/nand/raw/plat_nand.c create mode 100644 drivers/mtd/nand/raw/pxa3xx_nand.c create mode 100644 drivers/mtd/nand/raw/qcom_nandc.c create mode 100644 drivers/mtd/nand/raw/r852.c create mode 100644 drivers/mtd/nand/raw/r852.h create mode 100644 drivers/mtd/nand/raw/s3c2410.c create mode 100644 drivers/mtd/nand/raw/sh_flctl.c create mode 100644 drivers/mtd/nand/raw/sharpsl.c create mode 100644 drivers/mtd/nand/raw/sm_common.c create mode 100644 drivers/mtd/nand/raw/sm_common.h create mode 100644 drivers/mtd/nand/raw/socrates_nand.c create mode 100644 drivers/mtd/nand/raw/sunxi_nand.c create mode 100644 drivers/mtd/nand/raw/tango_nand.c create mode 100644 drivers/mtd/nand/raw/tmio_nand.c create mode 100644 drivers/mtd/nand/raw/txx9ndfmc.c create mode 100644 drivers/mtd/nand/raw/vf610_nfc.c create mode 100644 drivers/mtd/nand/raw/xway_nand.c delete mode 100644 drivers/mtd/nand/s3c2410.c delete mode 100644 drivers/mtd/nand/sh_flctl.c delete mode 100644 drivers/mtd/nand/sharpsl.c delete mode 100644 drivers/mtd/nand/sm_common.c delete mode 100644 drivers/mtd/nand/sm_common.h delete mode 100644 drivers/mtd/nand/socrates_nand.c delete mode 100644 drivers/mtd/nand/sunxi_nand.c delete mode 100644 drivers/mtd/nand/tango_nand.c delete mode 100644 drivers/mtd/nand/tmio_nand.c delete mode 100644 drivers/mtd/nand/txx9ndfmc.c delete mode 100644 drivers/mtd/nand/vf610_nfc.c delete mode 100644 drivers/mtd/nand/xway_nand.c diff --git a/Documentation/arm/Samsung-S3C24XX/S3C2412.txt b/Documentation/arm/Samsung-S3C24XX/S3C2412.txt index f057876b920b..dc1fd362d3c1 100644 --- a/Documentation/arm/Samsung-S3C24XX/S3C2412.txt +++ b/Documentation/arm/Samsung-S3C24XX/S3C2412.txt @@ -46,7 +46,7 @@ NAND ---- The NAND hardware is similar to the S3C2440, and is supported by the - s3c2410 driver in the drivers/mtd/nand directory. + s3c2410 driver in the drivers/mtd/nand/raw directory. USB Host diff --git a/Documentation/driver-api/mtdnand.rst b/Documentation/driver-api/mtdnand.rst index 2a5191b6d445..dcd63599f700 100644 --- a/Documentation/driver-api/mtdnand.rst +++ b/Documentation/driver-api/mtdnand.rst @@ -967,10 +967,10 @@ API functions which are exported. Each function has a short description which is marked with an [XXX] identifier. See the chapter "Documentation hints" for an explanation. -.. kernel-doc:: drivers/mtd/nand/nand_base.c +.. kernel-doc:: drivers/mtd/nand/raw/nand_base.c :export: -.. kernel-doc:: drivers/mtd/nand/nand_ecc.c +.. kernel-doc:: drivers/mtd/nand/raw/nand_ecc.c :export: Internal Functions Provided @@ -982,10 +982,10 @@ marked with an [XXX] identifier. See the chapter "Documentation hints" for an explanation. The functions marked with [DEFAULT] might be relevant for a board driver developer. -.. kernel-doc:: drivers/mtd/nand/nand_base.c +.. kernel-doc:: drivers/mtd/nand/raw/nand_base.c :internal: -.. kernel-doc:: drivers/mtd/nand/nand_bbt.c +.. kernel-doc:: drivers/mtd/nand/raw/nand_bbt.c :internal: Credits diff --git a/Documentation/gpio/drivers-on-gpio.txt b/Documentation/gpio/drivers-on-gpio.txt index a2ccbab12eb7..a3e612f55bc7 100644 --- a/Documentation/gpio/drivers-on-gpio.txt +++ b/Documentation/gpio/drivers-on-gpio.txt @@ -74,8 +74,8 @@ hardware descriptions such as device tree or ACPI: it from 1-to-0-to-1. If that hardware does not receive its "ping" periodically, it will reset the system. -- gpio-nand: drivers/mtd/nand/gpio.c is used to connect a NAND flash chip to - a set of simple GPIO lines: RDY, NCE, ALE, CLE, NWP. It interacts with the +- gpio-nand: drivers/mtd/nand/raw/gpio.c is used to connect a NAND flash chip + to a set of simple GPIO lines: RDY, NCE, ALE, CLE, NWP. It interacts with the NAND flash MTD subsystem and provides chip access and partition parsing like any other NAND driving hardware. diff --git a/MAINTAINERS b/MAINTAINERS index 3bdc260e36b7..34b2e9ed6d3d 100644 --- a/MAINTAINERS +++ b/MAINTAINERS @@ -1710,7 +1710,7 @@ F: drivers/input/keyboard/w90p910_keypad.c F: drivers/input/touchscreen/w90p910_ts.c F: drivers/watchdog/nuc900_wdt.c F: drivers/net/ethernet/nuvoton/w90p910_ether.c -F: drivers/mtd/nand/nuc900_nand.c +F: drivers/mtd/nand/raw/nuc900_nand.c F: drivers/rtc/rtc-nuc900.c F: drivers/spi/spi-nuc900.c F: drivers/usb/host/ehci-w90x900.c @@ -3014,7 +3014,7 @@ M: Kamal Dasu L: linux-mtd@lists.infradead.org L: bcm-kernel-feedback-list@broadcom.com S: Maintained -F: drivers/mtd/nand/brcmnand/ +F: drivers/mtd/nand/raw/brcmnand/ BROADCOM STB DPFE DRIVER M: Markus Mayer @@ -4116,7 +4116,7 @@ DENALI NAND DRIVER M: Masahiro Yamada L: linux-mtd@lists.infradead.org S: Supported -F: drivers/mtd/nand/denali* +F: drivers/mtd/nand/raw/denali* DESIGNWARE USB2 DRD IP DRIVER M: John Youn @@ -5646,7 +5646,7 @@ FREESCALE GPMI NAND DRIVER M: Han Xu L: linux-mtd@lists.infradead.org S: Maintained -F: drivers/mtd/nand/gpmi-nand/* +F: drivers/mtd/nand/raw/gpmi-nand/* FREESCALE I2C CPM DRIVER M: Jochen Friedrich @@ -6955,7 +6955,7 @@ INGENIC JZ4780 NAND DRIVER M: Harvey Hunt L: linux-mtd@lists.infradead.org S: Maintained -F: drivers/mtd/nand/jz4780_* +F: drivers/mtd/nand/raw/jz4780_* INOTIFY M: Jan Kara @@ -8474,7 +8474,7 @@ MARVELL NAND CONTROLLER DRIVER M: Miquel Raynal L: linux-mtd@lists.infradead.org S: Maintained -F: drivers/mtd/nand/marvell_nand.c +F: drivers/mtd/nand/raw/marvell_nand.c F: Documentation/devicetree/bindings/mtd/marvell-nand.txt MARVELL SOC MMC/SD/SDIO CONTROLLER DRIVER @@ -9136,7 +9136,7 @@ M: Wenyou Yang M: Josh Wu L: linux-mtd@lists.infradead.org S: Supported -F: drivers/mtd/nand/atmel/* +F: drivers/mtd/nand/raw/atmel/* F: Documentation/devicetree/bindings/mtd/atmel-nand.txt MICROCHIP KSZ SERIES ETHERNET SWITCH DRIVER @@ -11331,7 +11331,7 @@ PXA3xx NAND FLASH DRIVER M: Ezequiel Garcia L: linux-mtd@lists.infradead.org S: Maintained -F: drivers/mtd/nand/pxa3xx_nand.c +F: drivers/mtd/nand/raw/pxa3xx_nand.c QAT DRIVER M: Giovanni Cabiddu @@ -11815,8 +11815,8 @@ F: drivers/memstick/host/r592.* RICOH SMARTMEDIA/XD DRIVER M: Maxim Levitsky S: Maintained -F: drivers/mtd/nand/r852.c -F: drivers/mtd/nand/r852.h +F: drivers/mtd/nand/raw/r852.c +F: drivers/mtd/nand/raw/r852.h RISC-V ARCHITECTURE M: Palmer Dabbelt @@ -14635,7 +14635,7 @@ VF610 NAND DRIVER M: Stefan Agner L: linux-mtd@lists.infradead.org S: Supported -F: drivers/mtd/nand/vf610_nfc.c +F: drivers/mtd/nand/raw/vf610_nfc.c VFAT/FAT/MSDOS FILESYSTEM M: OGAWA Hirofumi diff --git a/drivers/mtd/nand/Kconfig b/drivers/mtd/nand/Kconfig index e6b8c59f2c0d..6d5373471809 100644 --- a/drivers/mtd/nand/Kconfig +++ b/drivers/mtd/nand/Kconfig @@ -1,580 +1 @@ -config MTD_NAND_ECC - tristate - -config MTD_NAND_ECC_SMC - bool "NAND ECC Smart Media byte order" - depends on MTD_NAND_ECC - default n - help - Software ECC according to the Smart Media Specification. - The original Linux implementation had byte 0 and 1 swapped. - - -menuconfig MTD_NAND - tristate "NAND Device Support" - depends on MTD - select MTD_NAND_ECC - help - This enables support for accessing all type of NAND flash - devices. For further information see - . - -if MTD_NAND - -config MTD_NAND_BCH - tristate - select BCH - depends on MTD_NAND_ECC_BCH - default MTD_NAND - -config MTD_NAND_ECC_BCH - bool "Support software BCH ECC" - default n - help - This enables support for software BCH error correction. Binary BCH - codes are more powerful and cpu intensive than traditional Hamming - ECC codes. They are used with NAND devices requiring more than 1 bit - of error correction. - -config MTD_SM_COMMON - tristate - default n - -config MTD_NAND_DENALI - tristate - -config MTD_NAND_DENALI_PCI - tristate "Support Denali NAND controller on Intel Moorestown" - select MTD_NAND_DENALI - depends on HAS_DMA && PCI - help - Enable the driver for NAND flash on Intel Moorestown, using the - Denali NAND controller core. - -config MTD_NAND_DENALI_DT - tristate "Support Denali NAND controller as a DT device" - select MTD_NAND_DENALI - depends on HAS_DMA && HAVE_CLK && OF - help - Enable the driver for NAND flash on platforms using a Denali NAND - controller as a DT device. - -config MTD_NAND_GPIO - tristate "GPIO assisted NAND Flash driver" - depends on GPIOLIB || COMPILE_TEST - depends on HAS_IOMEM - help - This enables a NAND flash driver where control signals are - connected to GPIO pins, and commands and data are communicated - via a memory mapped interface. - -config MTD_NAND_AMS_DELTA - tristate "NAND Flash device on Amstrad E3" - depends on MACH_AMS_DELTA - default y - help - Support for NAND flash on Amstrad E3 (Delta). - -config MTD_NAND_OMAP2 - tristate "NAND Flash device on OMAP2, OMAP3, OMAP4 and Keystone" - depends on (ARCH_OMAP2PLUS || ARCH_KEYSTONE) - help - Support for NAND flash on Texas Instruments OMAP2, OMAP3, OMAP4 - and Keystone platforms. - -config MTD_NAND_OMAP_BCH - depends on MTD_NAND_OMAP2 - bool "Support hardware based BCH error correction" - default n - select BCH - help - This config enables the ELM hardware engine, which can be used to - locate and correct errors when using BCH ECC scheme. This offloads - the cpu from doing ECC error searching and correction. However some - legacy OMAP families like OMAP2xxx, OMAP3xxx do not have ELM engine - so this is optional for them. - -config MTD_NAND_OMAP_BCH_BUILD - def_tristate MTD_NAND_OMAP2 && MTD_NAND_OMAP_BCH - -config MTD_NAND_RICOH - tristate "Ricoh xD card reader" - default n - depends on PCI - select MTD_SM_COMMON - help - Enable support for Ricoh R5C852 xD card reader - You also need to enable ether - NAND SSFDC (SmartMedia) read only translation layer' or new - expermental, readwrite - 'SmartMedia/xD new translation layer' - -config MTD_NAND_AU1550 - tristate "Au1550/1200 NAND support" - depends on MIPS_ALCHEMY - help - This enables the driver for the NAND flash controller on the - AMD/Alchemy 1550 SOC. - -config MTD_NAND_BF5XX - tristate "Blackfin on-chip NAND Flash Controller driver" - depends on BF54x || BF52x - help - This enables the Blackfin on-chip NAND flash controller - - No board specific support is done by this driver, each board - must advertise a platform_device for the driver to attach. - - This driver can also be built as a module. If so, the module - will be called bf5xx-nand. - -config MTD_NAND_BF5XX_HWECC - bool "BF5XX NAND Hardware ECC" - default y - depends on MTD_NAND_BF5XX - help - Enable the use of the BF5XX's internal ECC generator when - using NAND. - -config MTD_NAND_BF5XX_BOOTROM_ECC - bool "Use Blackfin BootROM ECC Layout" - default n - depends on MTD_NAND_BF5XX_HWECC - help - If you wish to modify NAND pages and allow the Blackfin on-chip - BootROM to boot from them, say Y here. This is only necessary - if you are booting U-Boot out of NAND and you wish to update - U-Boot from Linux' userspace. Otherwise, you should say N here. - - If unsure, say N. - -config MTD_NAND_S3C2410 - tristate "NAND Flash support for Samsung S3C SoCs" - depends on ARCH_S3C24XX || ARCH_S3C64XX - help - This enables the NAND flash controller on the S3C24xx and S3C64xx - SoCs - - No board specific support is done by this driver, each board - must advertise a platform_device for the driver to attach. - -config MTD_NAND_S3C2410_DEBUG - bool "Samsung S3C NAND driver debug" - depends on MTD_NAND_S3C2410 - help - Enable debugging of the S3C NAND driver - -config MTD_NAND_NDFC - tristate "NDFC NanD Flash Controller" - depends on 4xx - select MTD_NAND_ECC_SMC - help - NDFC Nand Flash Controllers are integrated in IBM/AMCC's 4xx SoCs - -config MTD_NAND_S3C2410_CLKSTOP - bool "Samsung S3C NAND IDLE clock stop" - depends on MTD_NAND_S3C2410 - default n - help - Stop the clock to the NAND controller when there is no chip - selected to save power. This will mean there is a small delay - when the is NAND chip selected or released, but will save - approximately 5mA of power when there is nothing happening. - -config MTD_NAND_TANGO - tristate "NAND Flash support for Tango chips" - depends on ARCH_TANGO || COMPILE_TEST - depends on HAS_DMA - help - Enables the NAND Flash controller on Tango chips. - -config MTD_NAND_DISKONCHIP - tristate "DiskOnChip 2000, Millennium and Millennium Plus (NAND reimplementation)" - depends on HAS_IOMEM - select REED_SOLOMON - select REED_SOLOMON_DEC16 - help - This is a reimplementation of M-Systems DiskOnChip 2000, - Millennium and Millennium Plus as a standard NAND device driver, - as opposed to the earlier self-contained MTD device drivers. - This should enable, among other things, proper JFFS2 operation on - these devices. - -config MTD_NAND_DISKONCHIP_PROBE_ADVANCED - bool "Advanced detection options for DiskOnChip" - depends on MTD_NAND_DISKONCHIP - help - This option allows you to specify nonstandard address at which to - probe for a DiskOnChip, or to change the detection options. You - are unlikely to need any of this unless you are using LinuxBIOS. - Say 'N'. - -config MTD_NAND_DISKONCHIP_PROBE_ADDRESS - hex "Physical address of DiskOnChip" if MTD_NAND_DISKONCHIP_PROBE_ADVANCED - depends on MTD_NAND_DISKONCHIP - default "0" - ---help--- - By default, the probe for DiskOnChip devices will look for a - DiskOnChip at every multiple of 0x2000 between 0xC8000 and 0xEE000. - This option allows you to specify a single address at which to probe - for the device, which is useful if you have other devices in that - range which get upset when they are probed. - - (Note that on PowerPC, the normal probe will only check at - 0xE4000000.) - - Normally, you should leave this set to zero, to allow the probe at - the normal addresses. - -config MTD_NAND_DISKONCHIP_PROBE_HIGH - bool "Probe high addresses" - depends on MTD_NAND_DISKONCHIP_PROBE_ADVANCED - help - By default, the probe for DiskOnChip devices will look for a - DiskOnChip at every multiple of 0x2000 between 0xC8000 and 0xEE000. - This option changes to make it probe between 0xFFFC8000 and - 0xFFFEE000. Unless you are using LinuxBIOS, this is unlikely to be - useful to you. Say 'N'. - -config MTD_NAND_DISKONCHIP_BBTWRITE - bool "Allow BBT writes on DiskOnChip Millennium and 2000TSOP" - depends on MTD_NAND_DISKONCHIP - help - On DiskOnChip devices shipped with the INFTL filesystem (Millennium - and 2000 TSOP/Alon), Linux reserves some space at the end of the - device for the Bad Block Table (BBT). If you have existing INFTL - data on your device (created by non-Linux tools such as M-Systems' - DOS drivers), your data might overlap the area Linux wants to use for - the BBT. If this is a concern for you, leave this option disabled and - Linux will not write BBT data into this area. - The downside of leaving this option disabled is that if bad blocks - are detected by Linux, they will not be recorded in the BBT, which - could cause future problems. - Once you enable this option, new filesystems (INFTL or others, created - in Linux or other operating systems) will not use the reserved area. - The only reason not to enable this option is to prevent damage to - preexisting filesystems. - Even if you leave this disabled, you can enable BBT writes at module - load time (assuming you build diskonchip as a module) with the module - parameter "inftl_bbt_write=1". - -config MTD_NAND_DOCG4 - tristate "Support for DiskOnChip G4" - depends on HAS_IOMEM - select BCH - select BITREVERSE - help - Support for diskonchip G4 nand flash, found in various smartphones and - PDAs, among them the Palm Treo680, HTC Prophet and Wizard, Toshiba - Portege G900, Asus P526, and O2 XDA Zinc. - - With this driver you will be able to use UBI and create a ubifs on the - device, so you may wish to consider enabling UBI and UBIFS as well. - - These devices ship with the Mys/Sandisk SAFTL formatting, for which - there is currently no mtd parser, so you may want to use command line - partitioning to segregate write-protected blocks. On the Treo680, the - first five erase blocks (256KiB each) are write-protected, followed - by the block containing the saftl partition table. This is probably - typical. - -config MTD_NAND_SHARPSL - tristate "Support for NAND Flash on Sharp SL Series (C7xx + others)" - depends on ARCH_PXA - -config MTD_NAND_CAFE - tristate "NAND support for OLPC CAFÉ chip" - depends on PCI - select REED_SOLOMON - select REED_SOLOMON_DEC16 - help - Use NAND flash attached to the CAFÉ chip designed for the OLPC - laptop. - -config MTD_NAND_CS553X - tristate "NAND support for CS5535/CS5536 (AMD Geode companion chip)" - depends on X86_32 - depends on !UML && HAS_IOMEM - help - The CS553x companion chips for the AMD Geode processor - include NAND flash controllers with built-in hardware ECC - capabilities; enabling this option will allow you to use - these. The driver will check the MSRs to verify that the - controller is enabled for NAND, and currently requires that - the controller be in MMIO mode. - - If you say "m", the module will be called cs553x_nand. - -config MTD_NAND_ATMEL - tristate "Support for NAND Flash / SmartMedia on AT91" - depends on ARCH_AT91 - select MFD_ATMEL_SMC - help - Enables support for NAND Flash / Smart Media Card interface - on Atmel AT91 processors. - -config MTD_NAND_PXA3xx - tristate "NAND support on PXA3xx and Armada 370/XP" - depends on !MTD_NAND_MARVELL - depends on PXA3xx || ARCH_MMP || PLAT_ORION || ARCH_MVEBU - help - - This enables the driver for the NAND flash device found on - PXA3xx processors (NFCv1) and also on 32-bit Armada - platforms (XP, 370, 375, 38x, 39x) and 64-bit Armada - platforms (7K, 8K) (NFCv2). - -config MTD_NAND_MARVELL - tristate "NAND controller support on Marvell boards" - depends on PXA3xx || ARCH_MMP || PLAT_ORION || ARCH_MVEBU || \ - COMPILE_TEST - depends on HAS_IOMEM - help - This enables the NAND flash controller driver for Marvell boards, - including: - - PXA3xx processors (NFCv1) - - 32-bit Armada platforms (XP, 37x, 38x, 39x) (NFCv2) - - 64-bit Aramda platforms (7k, 8k) (NFCv2) - -config MTD_NAND_SLC_LPC32XX - tristate "NXP LPC32xx SLC Controller" - depends on ARCH_LPC32XX - help - Enables support for NXP's LPC32XX SLC (i.e. for Single Level Cell - chips) NAND controller. This is the default for the PHYTEC 3250 - reference board which contains a NAND256R3A2CZA6 chip. - - Please check the actual NAND chip connected and its support - by the SLC NAND controller. - -config MTD_NAND_MLC_LPC32XX - tristate "NXP LPC32xx MLC Controller" - depends on ARCH_LPC32XX - help - Uses the LPC32XX MLC (i.e. for Multi Level Cell chips) NAND - controller. This is the default for the WORK92105 controller - board. - - Please check the actual NAND chip connected and its support - by the MLC NAND controller. - -config MTD_NAND_CM_X270 - tristate "Support for NAND Flash on CM-X270 modules" - depends on MACH_ARMCORE - -config MTD_NAND_PASEMI - tristate "NAND support for PA Semi PWRficient" - depends on PPC_PASEMI - help - Enables support for NAND Flash interface on PA Semi PWRficient - based boards - -config MTD_NAND_TMIO - tristate "NAND Flash device on Toshiba Mobile IO Controller" - depends on MFD_TMIO - help - Support for NAND flash connected to a Toshiba Mobile IO - Controller in some PDAs, including the Sharp SL6000x. - -config MTD_NAND_NANDSIM - tristate "Support for NAND Flash Simulator" - help - The simulator may simulate various NAND flash chips for the - MTD nand layer. - -config MTD_NAND_GPMI_NAND - tristate "GPMI NAND Flash Controller driver" - depends on MTD_NAND && MXS_DMA - help - Enables NAND Flash support for IMX23, IMX28 or IMX6. - The GPMI controller is very powerful, with the help of BCH - module, it can do the hardware ECC. The GPMI supports several - NAND flashs at the same time. - -config MTD_NAND_BRCMNAND - tristate "Broadcom STB NAND controller" - depends on ARM || ARM64 || MIPS - help - Enables the Broadcom NAND controller driver. The controller was - originally designed for Set-Top Box but is used on various BCM7xxx, - BCM3xxx, BCM63xxx, iProc/Cygnus and more. - -config MTD_NAND_BCM47XXNFLASH - tristate "Support for NAND flash on BCM4706 BCMA bus" - depends on BCMA_NFLASH - help - BCMA bus can have various flash memories attached, they are - registered by bcma as platform devices. This enables driver for - NAND flash memories. For now only BCM4706 is supported. - -config MTD_NAND_PLATFORM - tristate "Support for generic platform NAND driver" - depends on HAS_IOMEM - help - This implements a generic NAND driver for on-SOC platform - devices. You will need to provide platform-specific functions - via platform_data. - -config MTD_NAND_ORION - tristate "NAND Flash support for Marvell Orion SoC" - depends on PLAT_ORION - help - This enables the NAND flash controller on Orion machines. - - No board specific support is done by this driver, each board - must advertise a platform_device for the driver to attach. - -config MTD_NAND_OXNAS - tristate "NAND Flash support for Oxford Semiconductor SoC" - depends on ARCH_OXNAS || COMPILE_TEST - depends on HAS_IOMEM - help - This enables the NAND flash controller on Oxford Semiconductor SoCs. - -config MTD_NAND_FSL_ELBC - tristate "NAND support for Freescale eLBC controllers" - depends on FSL_SOC - select FSL_LBC - help - Various Freescale chips, including the 8313, include a NAND Flash - Controller Module with built-in hardware ECC capabilities. - Enabling this option will enable you to use this to control - external NAND devices. - -config MTD_NAND_FSL_IFC - tristate "NAND support for Freescale IFC controller" - depends on FSL_SOC || ARCH_LAYERSCAPE || SOC_LS1021A - select FSL_IFC - select MEMORY - help - Various Freescale chips e.g P1010, include a NAND Flash machine - with built-in hardware ECC capabilities. - Enabling this option will enable you to use this to control - external NAND devices. - -config MTD_NAND_FSL_UPM - tristate "Support for NAND on Freescale UPM" - depends on PPC_83xx || PPC_85xx - select FSL_LBC - help - Enables support for NAND Flash chips wired onto Freescale PowerPC - processor localbus with User-Programmable Machine support. - -config MTD_NAND_MPC5121_NFC - tristate "MPC5121 built-in NAND Flash Controller support" - depends on PPC_MPC512x - help - This enables the driver for the NAND flash controller on the - MPC5121 SoC. - -config MTD_NAND_VF610_NFC - tristate "Support for Freescale NFC for VF610/MPC5125" - depends on (SOC_VF610 || COMPILE_TEST) - depends on HAS_IOMEM - help - Enables support for NAND Flash Controller on some Freescale - processors like the VF610, MPC5125, MCF54418 or Kinetis K70. - The driver supports a maximum 2k page size. With 2k pages and - 64 bytes or more of OOB, hardware ECC with up to 32-bit error - correction is supported. Hardware ECC is only enabled through - device tree. - -config MTD_NAND_MXC - tristate "MXC NAND support" - depends on ARCH_MXC - help - This enables the driver for the NAND flash controller on the - MXC processors. - -config MTD_NAND_SH_FLCTL - tristate "Support for NAND on Renesas SuperH FLCTL" - depends on SUPERH || COMPILE_TEST - depends on HAS_IOMEM - depends on HAS_DMA - help - Several Renesas SuperH CPU has FLCTL. This option enables support - for NAND Flash using FLCTL. - -config MTD_NAND_DAVINCI - tristate "Support NAND on DaVinci/Keystone SoC" - depends on ARCH_DAVINCI || (ARCH_KEYSTONE && TI_AEMIF) - help - Enable the driver for NAND flash chips on Texas Instruments - DaVinci/Keystone processors. - -config MTD_NAND_TXX9NDFMC - tristate "NAND Flash support for TXx9 SoC" - depends on SOC_TX4938 || SOC_TX4939 - help - This enables the NAND flash controller on the TXx9 SoCs. - -config MTD_NAND_SOCRATES - tristate "Support for NAND on Socrates board" - depends on SOCRATES - help - Enables support for NAND Flash chips wired onto Socrates board. - -config MTD_NAND_NUC900 - tristate "Support for NAND on Nuvoton NUC9xx/w90p910 evaluation boards." - depends on ARCH_W90X900 - help - This enables the driver for the NAND Flash on evaluation board based - on w90p910 / NUC9xx. - -config MTD_NAND_JZ4740 - tristate "Support for JZ4740 SoC NAND controller" - depends on MACH_JZ4740 - help - Enables support for NAND Flash on JZ4740 SoC based boards. - -config MTD_NAND_JZ4780 - tristate "Support for NAND on JZ4780 SoC" - depends on MACH_JZ4780 && JZ4780_NEMC - help - Enables support for NAND Flash connected to the NEMC on JZ4780 SoC - based boards, using the BCH controller for hardware error correction. - -config MTD_NAND_FSMC - tristate "Support for NAND on ST Micros FSMC" - depends on OF - depends on PLAT_SPEAR || ARCH_NOMADIK || ARCH_U8500 || MACH_U300 - help - Enables support for NAND Flash chips on the ST Microelectronics - Flexible Static Memory Controller (FSMC) - -config MTD_NAND_XWAY - bool "Support for NAND on Lantiq XWAY SoC" - depends on LANTIQ && SOC_TYPE_XWAY - help - Enables support for NAND Flash chips on Lantiq XWAY SoCs. NAND is attached - to the External Bus Unit (EBU). - -config MTD_NAND_SUNXI - tristate "Support for NAND on Allwinner SoCs" - depends on ARCH_SUNXI - help - Enables support for NAND Flash chips on Allwinner SoCs. - -config MTD_NAND_HISI504 - tristate "Support for NAND controller on Hisilicon SoC Hip04" - depends on ARCH_HISI || COMPILE_TEST - depends on HAS_DMA - help - Enables support for NAND controller on Hisilicon SoC Hip04. - -config MTD_NAND_QCOM - tristate "Support for NAND on QCOM SoCs" - depends on ARCH_QCOM - help - Enables support for NAND flash chips on SoCs containing the EBI2 NAND - controller. This controller is found on IPQ806x SoC. - -config MTD_NAND_MTK - tristate "Support for NAND controller on MTK SoCs" - depends on ARCH_MEDIATEK || COMPILE_TEST - depends on HAS_DMA - help - Enables support for NAND controller on MTK SoCs. - This controller is found on mt27xx, mt81xx, mt65xx SoCs. - -endif # MTD_NAND +source "drivers/mtd/nand/raw/Kconfig" diff --git a/drivers/mtd/nand/Makefile b/drivers/mtd/nand/Makefile index 4e0982476267..32af7168c5ba 100644 --- a/drivers/mtd/nand/Makefile +++ b/drivers/mtd/nand/Makefile @@ -1,68 +1,3 @@ # SPDX-License-Identifier: GPL-2.0 -obj-$(CONFIG_MTD_NAND) += nand.o -obj-$(CONFIG_MTD_NAND_ECC) += nand_ecc.o -obj-$(CONFIG_MTD_NAND_BCH) += nand_bch.o -obj-$(CONFIG_MTD_SM_COMMON) += sm_common.o - -obj-$(CONFIG_MTD_NAND_CAFE) += cafe_nand.o -obj-$(CONFIG_MTD_NAND_AMS_DELTA) += ams-delta.o -obj-$(CONFIG_MTD_NAND_DENALI) += denali.o -obj-$(CONFIG_MTD_NAND_DENALI_PCI) += denali_pci.o -obj-$(CONFIG_MTD_NAND_DENALI_DT) += denali_dt.o -obj-$(CONFIG_MTD_NAND_AU1550) += au1550nd.o -obj-$(CONFIG_MTD_NAND_BF5XX) += bf5xx_nand.o -obj-$(CONFIG_MTD_NAND_S3C2410) += s3c2410.o -obj-$(CONFIG_MTD_NAND_TANGO) += tango_nand.o -obj-$(CONFIG_MTD_NAND_DAVINCI) += davinci_nand.o -obj-$(CONFIG_MTD_NAND_DISKONCHIP) += diskonchip.o -obj-$(CONFIG_MTD_NAND_DOCG4) += docg4.o -obj-$(CONFIG_MTD_NAND_FSMC) += fsmc_nand.o -obj-$(CONFIG_MTD_NAND_SHARPSL) += sharpsl.o -obj-$(CONFIG_MTD_NAND_NANDSIM) += nandsim.o -obj-$(CONFIG_MTD_NAND_CS553X) += cs553x_nand.o -obj-$(CONFIG_MTD_NAND_NDFC) += ndfc.o -obj-$(CONFIG_MTD_NAND_ATMEL) += atmel/ -obj-$(CONFIG_MTD_NAND_GPIO) += gpio.o -omap2_nand-objs := omap2.o -obj-$(CONFIG_MTD_NAND_OMAP2) += omap2_nand.o -obj-$(CONFIG_MTD_NAND_OMAP_BCH_BUILD) += omap_elm.o -obj-$(CONFIG_MTD_NAND_CM_X270) += cmx270_nand.o -obj-$(CONFIG_MTD_NAND_PXA3xx) += pxa3xx_nand.o -obj-$(CONFIG_MTD_NAND_MARVELL) += marvell_nand.o -obj-$(CONFIG_MTD_NAND_TMIO) += tmio_nand.o -obj-$(CONFIG_MTD_NAND_PLATFORM) += plat_nand.o -obj-$(CONFIG_MTD_NAND_PASEMI) += pasemi_nand.o -obj-$(CONFIG_MTD_NAND_ORION) += orion_nand.o -obj-$(CONFIG_MTD_NAND_OXNAS) += oxnas_nand.o -obj-$(CONFIG_MTD_NAND_FSL_ELBC) += fsl_elbc_nand.o -obj-$(CONFIG_MTD_NAND_FSL_IFC) += fsl_ifc_nand.o -obj-$(CONFIG_MTD_NAND_FSL_UPM) += fsl_upm.o -obj-$(CONFIG_MTD_NAND_SLC_LPC32XX) += lpc32xx_slc.o -obj-$(CONFIG_MTD_NAND_MLC_LPC32XX) += lpc32xx_mlc.o -obj-$(CONFIG_MTD_NAND_SH_FLCTL) += sh_flctl.o -obj-$(CONFIG_MTD_NAND_MXC) += mxc_nand.o -obj-$(CONFIG_MTD_NAND_SOCRATES) += socrates_nand.o -obj-$(CONFIG_MTD_NAND_TXX9NDFMC) += txx9ndfmc.o -obj-$(CONFIG_MTD_NAND_NUC900) += nuc900_nand.o -obj-$(CONFIG_MTD_NAND_MPC5121_NFC) += mpc5121_nfc.o -obj-$(CONFIG_MTD_NAND_VF610_NFC) += vf610_nfc.o -obj-$(CONFIG_MTD_NAND_RICOH) += r852.o -obj-$(CONFIG_MTD_NAND_JZ4740) += jz4740_nand.o -obj-$(CONFIG_MTD_NAND_JZ4780) += jz4780_nand.o jz4780_bch.o -obj-$(CONFIG_MTD_NAND_GPMI_NAND) += gpmi-nand/ -obj-$(CONFIG_MTD_NAND_XWAY) += xway_nand.o -obj-$(CONFIG_MTD_NAND_BCM47XXNFLASH) += bcm47xxnflash/ -obj-$(CONFIG_MTD_NAND_SUNXI) += sunxi_nand.o -obj-$(CONFIG_MTD_NAND_HISI504) += hisi504_nand.o -obj-$(CONFIG_MTD_NAND_BRCMNAND) += brcmnand/ -obj-$(CONFIG_MTD_NAND_QCOM) += qcom_nandc.o -obj-$(CONFIG_MTD_NAND_MTK) += mtk_ecc.o mtk_nand.o - -nand-objs := nand_base.o nand_bbt.o nand_timings.o nand_ids.o -nand-objs += nand_amd.o -nand-objs += nand_hynix.o -nand-objs += nand_macronix.o -nand-objs += nand_micron.o -nand-objs += nand_samsung.o -nand-objs += nand_toshiba.o +obj-y += raw/ diff --git a/drivers/mtd/nand/ams-delta.c b/drivers/mtd/nand/ams-delta.c deleted file mode 100644 index 35f80523e52e..000000000000 --- a/drivers/mtd/nand/ams-delta.c +++ /dev/null @@ -1,291 +0,0 @@ -/* - * Copyright (C) 2006 Jonathan McDowell - * - * Derived from drivers/mtd/nand/toto.c (removed in v2.6.28) - * Copyright (c) 2003 Texas Instruments - * Copyright (c) 2002 Thomas Gleixner - * - * Converted to platform driver by Janusz Krzysztofik - * Partially stolen from plat_nand.c - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License version 2 as - * published by the Free Software Foundation. - * - * Overview: - * This is a device driver for the NAND flash device found on the - * Amstrad E3 (Delta). - */ - -#include -#include -#include -#include -#include -#include -#include -#include - -#include -#include - -#include - -#include - -/* - * MTD structure for E3 (Delta) - */ -static struct mtd_info *ams_delta_mtd = NULL; - -/* - * Define partitions for flash devices - */ - -static const struct mtd_partition partition_info[] = { - { .name = "Kernel", - .offset = 0, - .size = 3 * SZ_1M + SZ_512K }, - { .name = "u-boot", - .offset = 3 * SZ_1M + SZ_512K, - .size = SZ_256K }, - { .name = "u-boot params", - .offset = 3 * SZ_1M + SZ_512K + SZ_256K, - .size = SZ_256K }, - { .name = "Amstrad LDR", - .offset = 4 * SZ_1M, - .size = SZ_256K }, - { .name = "File system", - .offset = 4 * SZ_1M + 1 * SZ_256K, - .size = 27 * SZ_1M }, - { .name = "PBL reserved", - .offset = 32 * SZ_1M - 3 * SZ_256K, - .size = 3 * SZ_256K }, -}; - -static void ams_delta_write_byte(struct mtd_info *mtd, u_char byte) -{ - struct nand_chip *this = mtd_to_nand(mtd); - void __iomem *io_base = (void __iomem *)nand_get_controller_data(this); - - writew(0, io_base + OMAP_MPUIO_IO_CNTL); - writew(byte, this->IO_ADDR_W); - gpio_set_value(AMS_DELTA_GPIO_PIN_NAND_NWE, 0); - ndelay(40); - gpio_set_value(AMS_DELTA_GPIO_PIN_NAND_NWE, 1); -} - -static u_char ams_delta_read_byte(struct mtd_info *mtd) -{ - u_char res; - struct nand_chip *this = mtd_to_nand(mtd); - void __iomem *io_base = (void __iomem *)nand_get_controller_data(this); - - gpio_set_value(AMS_DELTA_GPIO_PIN_NAND_NRE, 0); - ndelay(40); - writew(~0, io_base + OMAP_MPUIO_IO_CNTL); - res = readw(this->IO_ADDR_R); - gpio_set_value(AMS_DELTA_GPIO_PIN_NAND_NRE, 1); - - return res; -} - -static void ams_delta_write_buf(struct mtd_info *mtd, const u_char *buf, - int len) -{ - int i; - - for (i=0; i bit 2 - * NAND_CLE: bit 1 -> bit 7 - * NAND_ALE: bit 2 -> bit 6 - */ -static void ams_delta_hwcontrol(struct mtd_info *mtd, int cmd, - unsigned int ctrl) -{ - - if (ctrl & NAND_CTRL_CHANGE) { - gpio_set_value(AMS_DELTA_GPIO_PIN_NAND_NCE, - (ctrl & NAND_NCE) == 0); - gpio_set_value(AMS_DELTA_GPIO_PIN_NAND_CLE, - (ctrl & NAND_CLE) != 0); - gpio_set_value(AMS_DELTA_GPIO_PIN_NAND_ALE, - (ctrl & NAND_ALE) != 0); - } - - if (cmd != NAND_CMD_NONE) - ams_delta_write_byte(mtd, cmd); -} - -static int ams_delta_nand_ready(struct mtd_info *mtd) -{ - return gpio_get_value(AMS_DELTA_GPIO_PIN_NAND_RB); -} - -static const struct gpio _mandatory_gpio[] = { - { - .gpio = AMS_DELTA_GPIO_PIN_NAND_NCE, - .flags = GPIOF_OUT_INIT_HIGH, - .label = "nand_nce", - }, - { - .gpio = AMS_DELTA_GPIO_PIN_NAND_NRE, - .flags = GPIOF_OUT_INIT_HIGH, - .label = "nand_nre", - }, - { - .gpio = AMS_DELTA_GPIO_PIN_NAND_NWP, - .flags = GPIOF_OUT_INIT_HIGH, - .label = "nand_nwp", - }, - { - .gpio = AMS_DELTA_GPIO_PIN_NAND_NWE, - .flags = GPIOF_OUT_INIT_HIGH, - .label = "nand_nwe", - }, - { - .gpio = AMS_DELTA_GPIO_PIN_NAND_ALE, - .flags = GPIOF_OUT_INIT_LOW, - .label = "nand_ale", - }, - { - .gpio = AMS_DELTA_GPIO_PIN_NAND_CLE, - .flags = GPIOF_OUT_INIT_LOW, - .label = "nand_cle", - }, -}; - -/* - * Main initialization routine - */ -static int ams_delta_init(struct platform_device *pdev) -{ - struct nand_chip *this; - struct resource *res = platform_get_resource(pdev, IORESOURCE_MEM, 0); - void __iomem *io_base; - int err = 0; - - if (!res) - return -ENXIO; - - /* Allocate memory for MTD device structure and private data */ - this = kzalloc(sizeof(struct nand_chip), GFP_KERNEL); - if (!this) { - printk (KERN_WARNING "Unable to allocate E3 NAND MTD device structure.\n"); - err = -ENOMEM; - goto out; - } - - ams_delta_mtd = nand_to_mtd(this); - ams_delta_mtd->owner = THIS_MODULE; - - /* - * Don't try to request the memory region from here, - * it should have been already requested from the - * gpio-omap driver and requesting it again would fail. - */ - - io_base = ioremap(res->start, resource_size(res)); - if (io_base == NULL) { - dev_err(&pdev->dev, "ioremap failed\n"); - err = -EIO; - goto out_free; - } - - nand_set_controller_data(this, (void *)io_base); - - /* Set address of NAND IO lines */ - this->IO_ADDR_R = io_base + OMAP_MPUIO_INPUT_LATCH; - this->IO_ADDR_W = io_base + OMAP_MPUIO_OUTPUT; - this->read_byte = ams_delta_read_byte; - this->write_buf = ams_delta_write_buf; - this->read_buf = ams_delta_read_buf; - this->cmd_ctrl = ams_delta_hwcontrol; - if (gpio_request(AMS_DELTA_GPIO_PIN_NAND_RB, "nand_rdy") == 0) { - this->dev_ready = ams_delta_nand_ready; - } else { - this->dev_ready = NULL; - printk(KERN_NOTICE "Couldn't request gpio for Delta NAND ready.\n"); - } - /* 25 us command delay time */ - this->chip_delay = 30; - this->ecc.mode = NAND_ECC_SOFT; - this->ecc.algo = NAND_ECC_HAMMING; - - platform_set_drvdata(pdev, io_base); - - /* Set chip enabled, but */ - err = gpio_request_array(_mandatory_gpio, ARRAY_SIZE(_mandatory_gpio)); - if (err) - goto out_gpio; - - /* Scan to find existence of the device */ - err = nand_scan(ams_delta_mtd, 1); - if (err) - goto out_mtd; - - /* Register the partitions */ - mtd_device_register(ams_delta_mtd, partition_info, - ARRAY_SIZE(partition_info)); - - goto out; - - out_mtd: - gpio_free_array(_mandatory_gpio, ARRAY_SIZE(_mandatory_gpio)); -out_gpio: - gpio_free(AMS_DELTA_GPIO_PIN_NAND_RB); - iounmap(io_base); -out_free: - kfree(this); - out: - return err; -} - -/* - * Clean up routine - */ -static int ams_delta_cleanup(struct platform_device *pdev) -{ - void __iomem *io_base = platform_get_drvdata(pdev); - - /* Release resources, unregister device */ - nand_release(ams_delta_mtd); - - gpio_free_array(_mandatory_gpio, ARRAY_SIZE(_mandatory_gpio)); - gpio_free(AMS_DELTA_GPIO_PIN_NAND_RB); - iounmap(io_base); - - /* Free the MTD device structure */ - kfree(mtd_to_nand(ams_delta_mtd)); - - return 0; -} - -static struct platform_driver ams_delta_nand_driver = { - .probe = ams_delta_init, - .remove = ams_delta_cleanup, - .driver = { - .name = "ams-delta-nand", - }, -}; - -module_platform_driver(ams_delta_nand_driver); - -MODULE_LICENSE("GPL"); -MODULE_AUTHOR("Jonathan McDowell "); -MODULE_DESCRIPTION("Glue layer for NAND flash on Amstrad E3 (Delta)"); diff --git a/drivers/mtd/nand/atmel/Makefile b/drivers/mtd/nand/atmel/Makefile deleted file mode 100644 index 288db4f38a8f..000000000000 --- a/drivers/mtd/nand/atmel/Makefile +++ /dev/null @@ -1,4 +0,0 @@ -obj-$(CONFIG_MTD_NAND_ATMEL) += atmel-nand-controller.o atmel-pmecc.o - -atmel-nand-controller-objs := nand-controller.o -atmel-pmecc-objs := pmecc.o diff --git a/drivers/mtd/nand/atmel/nand-controller.c b/drivers/mtd/nand/atmel/nand-controller.c deleted file mode 100644 index 12f6753d47ae..000000000000 --- a/drivers/mtd/nand/atmel/nand-controller.c +++ /dev/null @@ -1,2565 +0,0 @@ -/* - * Copyright 2017 ATMEL - * Copyright 2017 Free Electrons - * - * Author: Boris Brezillon - * - * Derived from the atmel_nand.c driver which contained the following - * copyrights: - * - * Copyright 2003 Rick Bronson - * - * Derived from drivers/mtd/nand/autcpu12.c (removed in v3.8) - * Copyright 2001 Thomas Gleixner (gleixner@autronix.de) - * - * Derived from drivers/mtd/spia.c (removed in v3.8) - * Copyright 2000 Steven J. Hill (sjhill@cotw.com) - * - * - * Add Hardware ECC support for AT91SAM9260 / AT91SAM9263 - * Richard Genoud (richard.genoud@gmail.com), Adeneo Copyright 2007 - * - * Derived from Das U-Boot source code - * (u-boot-1.1.5/board/atmel/at91sam9263ek/nand.c) - * Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas - * - * Add Programmable Multibit ECC support for various AT91 SoC - * Copyright 2012 ATMEL, Hong Xu - * - * Add Nand Flash Controller support for SAMA5 SoC - * Copyright 2013 ATMEL, Josh Wu (josh.wu@atmel.com) - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License version 2 as - * published by the Free Software Foundation. - * - * A few words about the naming convention in this file. This convention - * applies to structure and function names. - * - * Prefixes: - * - * - atmel_nand_: all generic structures/functions - * - atmel_smc_nand_: all structures/functions specific to the SMC interface - * (at91sam9 and avr32 SoCs) - * - atmel_hsmc_nand_: all structures/functions specific to the HSMC interface - * (sama5 SoCs and later) - * - atmel_nfc_: all structures/functions used to manipulate the NFC sub-block - * that is available in the HSMC block - * - _nand_: all SoC specific structures/functions - */ - -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include - -#include "pmecc.h" - -#define ATMEL_HSMC_NFC_CFG 0x0 -#define ATMEL_HSMC_NFC_CFG_SPARESIZE(x) (((x) / 4) << 24) -#define ATMEL_HSMC_NFC_CFG_SPARESIZE_MASK GENMASK(30, 24) -#define ATMEL_HSMC_NFC_CFG_DTO(cyc, mul) (((cyc) << 16) | ((mul) << 20)) -#define ATMEL_HSMC_NFC_CFG_DTO_MAX GENMASK(22, 16) -#define ATMEL_HSMC_NFC_CFG_RBEDGE BIT(13) -#define ATMEL_HSMC_NFC_CFG_FALLING_EDGE BIT(12) -#define ATMEL_HSMC_NFC_CFG_RSPARE BIT(9) -#define ATMEL_HSMC_NFC_CFG_WSPARE BIT(8) -#define ATMEL_HSMC_NFC_CFG_PAGESIZE_MASK GENMASK(2, 0) -#define ATMEL_HSMC_NFC_CFG_PAGESIZE(x) (fls((x) / 512) - 1) - -#define ATMEL_HSMC_NFC_CTRL 0x4 -#define ATMEL_HSMC_NFC_CTRL_EN BIT(0) -#define ATMEL_HSMC_NFC_CTRL_DIS BIT(1) - -#define ATMEL_HSMC_NFC_SR 0x8 -#define ATMEL_HSMC_NFC_IER 0xc -#define ATMEL_HSMC_NFC_IDR 0x10 -#define ATMEL_HSMC_NFC_IMR 0x14 -#define ATMEL_HSMC_NFC_SR_ENABLED BIT(1) -#define ATMEL_HSMC_NFC_SR_RB_RISE BIT(4) -#define ATMEL_HSMC_NFC_SR_RB_FALL BIT(5) -#define ATMEL_HSMC_NFC_SR_BUSY BIT(8) -#define ATMEL_HSMC_NFC_SR_WR BIT(11) -#define ATMEL_HSMC_NFC_SR_CSID GENMASK(14, 12) -#define ATMEL_HSMC_NFC_SR_XFRDONE BIT(16) -#define ATMEL_HSMC_NFC_SR_CMDDONE BIT(17) -#define ATMEL_HSMC_NFC_SR_DTOE BIT(20) -#define ATMEL_HSMC_NFC_SR_UNDEF BIT(21) -#define ATMEL_HSMC_NFC_SR_AWB BIT(22) -#define ATMEL_HSMC_NFC_SR_NFCASE BIT(23) -#define ATMEL_HSMC_NFC_SR_ERRORS (ATMEL_HSMC_NFC_SR_DTOE | \ - ATMEL_HSMC_NFC_SR_UNDEF | \ - ATMEL_HSMC_NFC_SR_AWB | \ - ATMEL_HSMC_NFC_SR_NFCASE) -#define ATMEL_HSMC_NFC_SR_RBEDGE(x) BIT((x) + 24) - -#define ATMEL_HSMC_NFC_ADDR 0x18 -#define ATMEL_HSMC_NFC_BANK 0x1c - -#define ATMEL_NFC_MAX_RB_ID 7 - -#define ATMEL_NFC_SRAM_SIZE 0x2400 - -#define ATMEL_NFC_CMD(pos, cmd) ((cmd) << (((pos) * 8) + 2)) -#define ATMEL_NFC_VCMD2 BIT(18) -#define ATMEL_NFC_ACYCLE(naddrs) ((naddrs) << 19) -#define ATMEL_NFC_CSID(cs) ((cs) << 22) -#define ATMEL_NFC_DATAEN BIT(25) -#define ATMEL_NFC_NFCWR BIT(26) - -#define ATMEL_NFC_MAX_ADDR_CYCLES 5 - -#define ATMEL_NAND_ALE_OFFSET BIT(21) -#define ATMEL_NAND_CLE_OFFSET BIT(22) - -#define DEFAULT_TIMEOUT_MS 1000 -#define MIN_DMA_LEN 128 - -enum atmel_nand_rb_type { - ATMEL_NAND_NO_RB, - ATMEL_NAND_NATIVE_RB, - ATMEL_NAND_GPIO_RB, -}; - -struct atmel_nand_rb { - enum atmel_nand_rb_type type; - union { - struct gpio_desc *gpio; - int id; - }; -}; - -struct atmel_nand_cs { - int id; - struct atmel_nand_rb rb; - struct gpio_desc *csgpio; - struct { - void __iomem *virt; - dma_addr_t dma; - } io; - - struct atmel_smc_cs_conf smcconf; -}; - -struct atmel_nand { - struct list_head node; - struct device *dev; - struct nand_chip base; - struct atmel_nand_cs *activecs; - struct atmel_pmecc_user *pmecc; - struct gpio_desc *cdgpio; - int numcs; - struct atmel_nand_cs cs[]; -}; - -static inline struct atmel_nand *to_atmel_nand(struct nand_chip *chip) -{ - return container_of(chip, struct atmel_nand, base); -} - -enum atmel_nfc_data_xfer { - ATMEL_NFC_NO_DATA, - ATMEL_NFC_READ_DATA, - ATMEL_NFC_WRITE_DATA, -}; - -struct atmel_nfc_op { - u8 cs; - u8 ncmds; - u8 cmds[2]; - u8 naddrs; - u8 addrs[5]; - enum atmel_nfc_data_xfer data; - u32 wait; - u32 errors; -}; - -struct atmel_nand_controller; -struct atmel_nand_controller_caps; - -struct atmel_nand_controller_ops { - int (*probe)(struct platform_device *pdev, - const struct atmel_nand_controller_caps *caps); - int (*remove)(struct atmel_nand_controller *nc); - void (*nand_init)(struct atmel_nand_controller *nc, - struct atmel_nand *nand); - int (*ecc_init)(struct atmel_nand *nand); - int (*setup_data_interface)(struct atmel_nand *nand, int csline, - const struct nand_data_interface *conf); -}; - -struct atmel_nand_controller_caps { - bool has_dma; - bool legacy_of_bindings; - u32 ale_offs; - u32 cle_offs; - const struct atmel_nand_controller_ops *ops; -}; - -struct atmel_nand_controller { - struct nand_hw_control base; - const struct atmel_nand_controller_caps *caps; - struct device *dev; - struct regmap *smc; - struct dma_chan *dmac; - struct atmel_pmecc *pmecc; - struct list_head chips; - struct clk *mck; -}; - -static inline struct atmel_nand_controller * -to_nand_controller(struct nand_hw_control *ctl) -{ - return container_of(ctl, struct atmel_nand_controller, base); -} - -struct atmel_smc_nand_controller { - struct atmel_nand_controller base; - struct regmap *matrix; - unsigned int ebi_csa_offs; -}; - -static inline struct atmel_smc_nand_controller * -to_smc_nand_controller(struct nand_hw_control *ctl) -{ - return container_of(to_nand_controller(ctl), - struct atmel_smc_nand_controller, base); -} - -struct atmel_hsmc_nand_controller { - struct atmel_nand_controller base; - struct { - struct gen_pool *pool; - void __iomem *virt; - dma_addr_t dma; - } sram; - const struct atmel_hsmc_reg_layout *hsmc_layout; - struct regmap *io; - struct atmel_nfc_op op; - struct completion complete; - int irq; - - /* Only used when instantiating from legacy DT bindings. */ - struct clk *clk; -}; - -static inline struct atmel_hsmc_nand_controller * -to_hsmc_nand_controller(struct nand_hw_control *ctl) -{ - return container_of(to_nand_controller(ctl), - struct atmel_hsmc_nand_controller, base); -} - -static bool atmel_nfc_op_done(struct atmel_nfc_op *op, u32 status) -{ - op->errors |= status & ATMEL_HSMC_NFC_SR_ERRORS; - op->wait ^= status & op->wait; - - return !op->wait || op->errors; -} - -static irqreturn_t atmel_nfc_interrupt(int irq, void *data) -{ - struct atmel_hsmc_nand_controller *nc = data; - u32 sr, rcvd; - bool done; - - regmap_read(nc->base.smc, ATMEL_HSMC_NFC_SR, &sr); - - rcvd = sr & (nc->op.wait | ATMEL_HSMC_NFC_SR_ERRORS); - done = atmel_nfc_op_done(&nc->op, sr); - - if (rcvd) - regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, rcvd); - - if (done) - complete(&nc->complete); - - return rcvd ? IRQ_HANDLED : IRQ_NONE; -} - -static int atmel_nfc_wait(struct atmel_hsmc_nand_controller *nc, bool poll, - unsigned int timeout_ms) -{ - int ret; - - if (!timeout_ms) - timeout_ms = DEFAULT_TIMEOUT_MS; - - if (poll) { - u32 status; - - ret = regmap_read_poll_timeout(nc->base.smc, - ATMEL_HSMC_NFC_SR, status, - atmel_nfc_op_done(&nc->op, - status), - 0, timeout_ms * 1000); - } else { - init_completion(&nc->complete); - regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IER, - nc->op.wait | ATMEL_HSMC_NFC_SR_ERRORS); - ret = wait_for_completion_timeout(&nc->complete, - msecs_to_jiffies(timeout_ms)); - if (!ret) - ret = -ETIMEDOUT; - else - ret = 0; - - regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, 0xffffffff); - } - - if (nc->op.errors & ATMEL_HSMC_NFC_SR_DTOE) { - dev_err(nc->base.dev, "Waiting NAND R/B Timeout\n"); - ret = -ETIMEDOUT; - } - - if (nc->op.errors & ATMEL_HSMC_NFC_SR_UNDEF) { - dev_err(nc->base.dev, "Access to an undefined area\n"); - ret = -EIO; - } - - if (nc->op.errors & ATMEL_HSMC_NFC_SR_AWB) { - dev_err(nc->base.dev, "Access while busy\n"); - ret = -EIO; - } - - if (nc->op.errors & ATMEL_HSMC_NFC_SR_NFCASE) { - dev_err(nc->base.dev, "Wrong access size\n"); - ret = -EIO; - } - - return ret; -} - -static void atmel_nand_dma_transfer_finished(void *data) -{ - struct completion *finished = data; - - complete(finished); -} - -static int atmel_nand_dma_transfer(struct atmel_nand_controller *nc, - void *buf, dma_addr_t dev_dma, size_t len, - enum dma_data_direction dir) -{ - DECLARE_COMPLETION_ONSTACK(finished); - dma_addr_t src_dma, dst_dma, buf_dma; - struct dma_async_tx_descriptor *tx; - dma_cookie_t cookie; - - buf_dma = dma_map_single(nc->dev, buf, len, dir); - if (dma_mapping_error(nc->dev, dev_dma)) { - dev_err(nc->dev, - "Failed to prepare a buffer for DMA access\n"); - goto err; - } - - if (dir == DMA_FROM_DEVICE) { - src_dma = dev_dma; - dst_dma = buf_dma; - } else { - src_dma = buf_dma; - dst_dma = dev_dma; - } - - tx = dmaengine_prep_dma_memcpy(nc->dmac, dst_dma, src_dma, len, - DMA_CTRL_ACK | DMA_PREP_INTERRUPT); - if (!tx) { - dev_err(nc->dev, "Failed to prepare DMA memcpy\n"); - goto err_unmap; - } - - tx->callback = atmel_nand_dma_transfer_finished; - tx->callback_param = &finished; - - cookie = dmaengine_submit(tx); - if (dma_submit_error(cookie)) { - dev_err(nc->dev, "Failed to do DMA tx_submit\n"); - goto err_unmap; - } - - dma_async_issue_pending(nc->dmac); - wait_for_completion(&finished); - - return 0; - -err_unmap: - dma_unmap_single(nc->dev, buf_dma, len, dir); - -err: - dev_dbg(nc->dev, "Fall back to CPU I/O\n"); - - return -EIO; -} - -static u8 atmel_nand_read_byte(struct mtd_info *mtd) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct atmel_nand *nand = to_atmel_nand(chip); - - return ioread8(nand->activecs->io.virt); -} - -static u16 atmel_nand_read_word(struct mtd_info *mtd) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct atmel_nand *nand = to_atmel_nand(chip); - - return ioread16(nand->activecs->io.virt); -} - -static void atmel_nand_write_byte(struct mtd_info *mtd, u8 byte) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct atmel_nand *nand = to_atmel_nand(chip); - - if (chip->options & NAND_BUSWIDTH_16) - iowrite16(byte | (byte << 8), nand->activecs->io.virt); - else - iowrite8(byte, nand->activecs->io.virt); -} - -static void atmel_nand_read_buf(struct mtd_info *mtd, u8 *buf, int len) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct atmel_nand *nand = to_atmel_nand(chip); - struct atmel_nand_controller *nc; - - nc = to_nand_controller(chip->controller); - - /* - * If the controller supports DMA, the buffer address is DMA-able and - * len is long enough to make DMA transfers profitable, let's trigger - * a DMA transfer. If it fails, fallback to PIO mode. - */ - if (nc->dmac && virt_addr_valid(buf) && - len >= MIN_DMA_LEN && - !atmel_nand_dma_transfer(nc, buf, nand->activecs->io.dma, len, - DMA_FROM_DEVICE)) - return; - - if (chip->options & NAND_BUSWIDTH_16) - ioread16_rep(nand->activecs->io.virt, buf, len / 2); - else - ioread8_rep(nand->activecs->io.virt, buf, len); -} - -static void atmel_nand_write_buf(struct mtd_info *mtd, const u8 *buf, int len) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct atmel_nand *nand = to_atmel_nand(chip); - struct atmel_nand_controller *nc; - - nc = to_nand_controller(chip->controller); - - /* - * If the controller supports DMA, the buffer address is DMA-able and - * len is long enough to make DMA transfers profitable, let's trigger - * a DMA transfer. If it fails, fallback to PIO mode. - */ - if (nc->dmac && virt_addr_valid(buf) && - len >= MIN_DMA_LEN && - !atmel_nand_dma_transfer(nc, (void *)buf, nand->activecs->io.dma, - len, DMA_TO_DEVICE)) - return; - - if (chip->options & NAND_BUSWIDTH_16) - iowrite16_rep(nand->activecs->io.virt, buf, len / 2); - else - iowrite8_rep(nand->activecs->io.virt, buf, len); -} - -static int atmel_nand_dev_ready(struct mtd_info *mtd) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct atmel_nand *nand = to_atmel_nand(chip); - - return gpiod_get_value(nand->activecs->rb.gpio); -} - -static void atmel_nand_select_chip(struct mtd_info *mtd, int cs) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct atmel_nand *nand = to_atmel_nand(chip); - - if (cs < 0 || cs >= nand->numcs) { - nand->activecs = NULL; - chip->dev_ready = NULL; - return; - } - - nand->activecs = &nand->cs[cs]; - - if (nand->activecs->rb.type == ATMEL_NAND_GPIO_RB) - chip->dev_ready = atmel_nand_dev_ready; -} - -static int atmel_hsmc_nand_dev_ready(struct mtd_info *mtd) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct atmel_nand *nand = to_atmel_nand(chip); - struct atmel_hsmc_nand_controller *nc; - u32 status; - - nc = to_hsmc_nand_controller(chip->controller); - - regmap_read(nc->base.smc, ATMEL_HSMC_NFC_SR, &status); - - return status & ATMEL_HSMC_NFC_SR_RBEDGE(nand->activecs->rb.id); -} - -static void atmel_hsmc_nand_select_chip(struct mtd_info *mtd, int cs) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct atmel_nand *nand = to_atmel_nand(chip); - struct atmel_hsmc_nand_controller *nc; - - nc = to_hsmc_nand_controller(chip->controller); - - atmel_nand_select_chip(mtd, cs); - - if (!nand->activecs) { - regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CTRL, - ATMEL_HSMC_NFC_CTRL_DIS); - return; - } - - if (nand->activecs->rb.type == ATMEL_NAND_NATIVE_RB) - chip->dev_ready = atmel_hsmc_nand_dev_ready; - - regmap_update_bits(nc->base.smc, ATMEL_HSMC_NFC_CFG, - ATMEL_HSMC_NFC_CFG_PAGESIZE_MASK | - ATMEL_HSMC_NFC_CFG_SPARESIZE_MASK | - ATMEL_HSMC_NFC_CFG_RSPARE | - ATMEL_HSMC_NFC_CFG_WSPARE, - ATMEL_HSMC_NFC_CFG_PAGESIZE(mtd->writesize) | - ATMEL_HSMC_NFC_CFG_SPARESIZE(mtd->oobsize) | - ATMEL_HSMC_NFC_CFG_RSPARE); - regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CTRL, - ATMEL_HSMC_NFC_CTRL_EN); -} - -static int atmel_nfc_exec_op(struct atmel_hsmc_nand_controller *nc, bool poll) -{ - u8 *addrs = nc->op.addrs; - unsigned int op = 0; - u32 addr, val; - int i, ret; - - nc->op.wait = ATMEL_HSMC_NFC_SR_CMDDONE; - - for (i = 0; i < nc->op.ncmds; i++) - op |= ATMEL_NFC_CMD(i, nc->op.cmds[i]); - - if (nc->op.naddrs == ATMEL_NFC_MAX_ADDR_CYCLES) - regmap_write(nc->base.smc, ATMEL_HSMC_NFC_ADDR, *addrs++); - - op |= ATMEL_NFC_CSID(nc->op.cs) | - ATMEL_NFC_ACYCLE(nc->op.naddrs); - - if (nc->op.ncmds > 1) - op |= ATMEL_NFC_VCMD2; - - addr = addrs[0] | (addrs[1] << 8) | (addrs[2] << 16) | - (addrs[3] << 24); - - if (nc->op.data != ATMEL_NFC_NO_DATA) { - op |= ATMEL_NFC_DATAEN; - nc->op.wait |= ATMEL_HSMC_NFC_SR_XFRDONE; - - if (nc->op.data == ATMEL_NFC_WRITE_DATA) - op |= ATMEL_NFC_NFCWR; - } - - /* Clear all flags. */ - regmap_read(nc->base.smc, ATMEL_HSMC_NFC_SR, &val); - - /* Send the command. */ - regmap_write(nc->io, op, addr); - - ret = atmel_nfc_wait(nc, poll, 0); - if (ret) - dev_err(nc->base.dev, - "Failed to send NAND command (err = %d)!", - ret); - - /* Reset the op state. */ - memset(&nc->op, 0, sizeof(nc->op)); - - return ret; -} - -static void atmel_hsmc_nand_cmd_ctrl(struct mtd_info *mtd, int dat, - unsigned int ctrl) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct atmel_nand *nand = to_atmel_nand(chip); - struct atmel_hsmc_nand_controller *nc; - - nc = to_hsmc_nand_controller(chip->controller); - - if (ctrl & NAND_ALE) { - if (nc->op.naddrs == ATMEL_NFC_MAX_ADDR_CYCLES) - return; - - nc->op.addrs[nc->op.naddrs++] = dat; - } else if (ctrl & NAND_CLE) { - if (nc->op.ncmds > 1) - return; - - nc->op.cmds[nc->op.ncmds++] = dat; - } - - if (dat == NAND_CMD_NONE) { - nc->op.cs = nand->activecs->id; - atmel_nfc_exec_op(nc, true); - } -} - -static void atmel_nand_cmd_ctrl(struct mtd_info *mtd, int cmd, - unsigned int ctrl) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct atmel_nand *nand = to_atmel_nand(chip); - struct atmel_nand_controller *nc; - - nc = to_nand_controller(chip->controller); - - if ((ctrl & NAND_CTRL_CHANGE) && nand->activecs->csgpio) { - if (ctrl & NAND_NCE) - gpiod_set_value(nand->activecs->csgpio, 0); - else - gpiod_set_value(nand->activecs->csgpio, 1); - } - - if (ctrl & NAND_ALE) - writeb(cmd, nand->activecs->io.virt + nc->caps->ale_offs); - else if (ctrl & NAND_CLE) - writeb(cmd, nand->activecs->io.virt + nc->caps->cle_offs); -} - -static void atmel_nfc_copy_to_sram(struct nand_chip *chip, const u8 *buf, - bool oob_required) -{ - struct mtd_info *mtd = nand_to_mtd(chip); - struct atmel_hsmc_nand_controller *nc; - int ret = -EIO; - - nc = to_hsmc_nand_controller(chip->controller); - - if (nc->base.dmac) - ret = atmel_nand_dma_transfer(&nc->base, (void *)buf, - nc->sram.dma, mtd->writesize, - DMA_TO_DEVICE); - - /* Falling back to CPU copy. */ - if (ret) - memcpy_toio(nc->sram.virt, buf, mtd->writesize); - - if (oob_required) - memcpy_toio(nc->sram.virt + mtd->writesize, chip->oob_poi, - mtd->oobsize); -} - -static void atmel_nfc_copy_from_sram(struct nand_chip *chip, u8 *buf, - bool oob_required) -{ - struct mtd_info *mtd = nand_to_mtd(chip); - struct atmel_hsmc_nand_controller *nc; - int ret = -EIO; - - nc = to_hsmc_nand_controller(chip->controller); - - if (nc->base.dmac) - ret = atmel_nand_dma_transfer(&nc->base, buf, nc->sram.dma, - mtd->writesize, DMA_FROM_DEVICE); - - /* Falling back to CPU copy. */ - if (ret) - memcpy_fromio(buf, nc->sram.virt, mtd->writesize); - - if (oob_required) - memcpy_fromio(chip->oob_poi, nc->sram.virt + mtd->writesize, - mtd->oobsize); -} - -static void atmel_nfc_set_op_addr(struct nand_chip *chip, int page, int column) -{ - struct mtd_info *mtd = nand_to_mtd(chip); - struct atmel_hsmc_nand_controller *nc; - - nc = to_hsmc_nand_controller(chip->controller); - - if (column >= 0) { - nc->op.addrs[nc->op.naddrs++] = column; - - /* - * 2 address cycles for the column offset on large page NANDs. - */ - if (mtd->writesize > 512) - nc->op.addrs[nc->op.naddrs++] = column >> 8; - } - - if (page >= 0) { - nc->op.addrs[nc->op.naddrs++] = page; - nc->op.addrs[nc->op.naddrs++] = page >> 8; - - if (chip->options & NAND_ROW_ADDR_3) - nc->op.addrs[nc->op.naddrs++] = page >> 16; - } -} - -static int atmel_nand_pmecc_enable(struct nand_chip *chip, int op, bool raw) -{ - struct atmel_nand *nand = to_atmel_nand(chip); - struct atmel_nand_controller *nc; - int ret; - - nc = to_nand_controller(chip->controller); - - if (raw) - return 0; - - ret = atmel_pmecc_enable(nand->pmecc, op); - if (ret) - dev_err(nc->dev, - "Failed to enable ECC engine (err = %d)\n", ret); - - return ret; -} - -static void atmel_nand_pmecc_disable(struct nand_chip *chip, bool raw) -{ - struct atmel_nand *nand = to_atmel_nand(chip); - - if (!raw) - atmel_pmecc_disable(nand->pmecc); -} - -static int atmel_nand_pmecc_generate_eccbytes(struct nand_chip *chip, bool raw) -{ - struct atmel_nand *nand = to_atmel_nand(chip); - struct mtd_info *mtd = nand_to_mtd(chip); - struct atmel_nand_controller *nc; - struct mtd_oob_region oobregion; - void *eccbuf; - int ret, i; - - nc = to_nand_controller(chip->controller); - - if (raw) - return 0; - - ret = atmel_pmecc_wait_rdy(nand->pmecc); - if (ret) { - dev_err(nc->dev, - "Failed to transfer NAND page data (err = %d)\n", - ret); - return ret; - } - - mtd_ooblayout_ecc(mtd, 0, &oobregion); - eccbuf = chip->oob_poi + oobregion.offset; - - for (i = 0; i < chip->ecc.steps; i++) { - atmel_pmecc_get_generated_eccbytes(nand->pmecc, i, - eccbuf); - eccbuf += chip->ecc.bytes; - } - - return 0; -} - -static int atmel_nand_pmecc_correct_data(struct nand_chip *chip, void *buf, - bool raw) -{ - struct atmel_nand *nand = to_atmel_nand(chip); - struct mtd_info *mtd = nand_to_mtd(chip); - struct atmel_nand_controller *nc; - struct mtd_oob_region oobregion; - int ret, i, max_bitflips = 0; - void *databuf, *eccbuf; - - nc = to_nand_controller(chip->controller); - - if (raw) - return 0; - - ret = atmel_pmecc_wait_rdy(nand->pmecc); - if (ret) { - dev_err(nc->dev, - "Failed to read NAND page data (err = %d)\n", - ret); - return ret; - } - - mtd_ooblayout_ecc(mtd, 0, &oobregion); - eccbuf = chip->oob_poi + oobregion.offset; - databuf = buf; - - for (i = 0; i < chip->ecc.steps; i++) { - ret = atmel_pmecc_correct_sector(nand->pmecc, i, databuf, - eccbuf); - if (ret < 0 && !atmel_pmecc_correct_erased_chunks(nand->pmecc)) - ret = nand_check_erased_ecc_chunk(databuf, - chip->ecc.size, - eccbuf, - chip->ecc.bytes, - NULL, 0, - chip->ecc.strength); - - if (ret >= 0) - max_bitflips = max(ret, max_bitflips); - else - mtd->ecc_stats.failed++; - - databuf += chip->ecc.size; - eccbuf += chip->ecc.bytes; - } - - return max_bitflips; -} - -static int atmel_nand_pmecc_write_pg(struct nand_chip *chip, const u8 *buf, - bool oob_required, int page, bool raw) -{ - struct mtd_info *mtd = nand_to_mtd(chip); - struct atmel_nand *nand = to_atmel_nand(chip); - int ret; - - nand_prog_page_begin_op(chip, page, 0, NULL, 0); - - ret = atmel_nand_pmecc_enable(chip, NAND_ECC_WRITE, raw); - if (ret) - return ret; - - atmel_nand_write_buf(mtd, buf, mtd->writesize); - - ret = atmel_nand_pmecc_generate_eccbytes(chip, raw); - if (ret) { - atmel_pmecc_disable(nand->pmecc); - return ret; - } - - atmel_nand_pmecc_disable(chip, raw); - - atmel_nand_write_buf(mtd, chip->oob_poi, mtd->oobsize); - - return nand_prog_page_end_op(chip); -} - -static int atmel_nand_pmecc_write_page(struct mtd_info *mtd, - struct nand_chip *chip, const u8 *buf, - int oob_required, int page) -{ - return atmel_nand_pmecc_write_pg(chip, buf, oob_required, page, false); -} - -static int atmel_nand_pmecc_write_page_raw(struct mtd_info *mtd, - struct nand_chip *chip, - const u8 *buf, int oob_required, - int page) -{ - return atmel_nand_pmecc_write_pg(chip, buf, oob_required, page, true); -} - -static int atmel_nand_pmecc_read_pg(struct nand_chip *chip, u8 *buf, - bool oob_required, int page, bool raw) -{ - struct mtd_info *mtd = nand_to_mtd(chip); - int ret; - - nand_read_page_op(chip, page, 0, NULL, 0); - - ret = atmel_nand_pmecc_enable(chip, NAND_ECC_READ, raw); - if (ret) - return ret; - - atmel_nand_read_buf(mtd, buf, mtd->writesize); - atmel_nand_read_buf(mtd, chip->oob_poi, mtd->oobsize); - - ret = atmel_nand_pmecc_correct_data(chip, buf, raw); - - atmel_nand_pmecc_disable(chip, raw); - - return ret; -} - -static int atmel_nand_pmecc_read_page(struct mtd_info *mtd, - struct nand_chip *chip, u8 *buf, - int oob_required, int page) -{ - return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page, false); -} - -static int atmel_nand_pmecc_read_page_raw(struct mtd_info *mtd, - struct nand_chip *chip, u8 *buf, - int oob_required, int page) -{ - return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page, true); -} - -static int atmel_hsmc_nand_pmecc_write_pg(struct nand_chip *chip, - const u8 *buf, bool oob_required, - int page, bool raw) -{ - struct mtd_info *mtd = nand_to_mtd(chip); - struct atmel_nand *nand = to_atmel_nand(chip); - struct atmel_hsmc_nand_controller *nc; - int ret, status; - - nc = to_hsmc_nand_controller(chip->controller); - - atmel_nfc_copy_to_sram(chip, buf, false); - - nc->op.cmds[0] = NAND_CMD_SEQIN; - nc->op.ncmds = 1; - atmel_nfc_set_op_addr(chip, page, 0x0); - nc->op.cs = nand->activecs->id; - nc->op.data = ATMEL_NFC_WRITE_DATA; - - ret = atmel_nand_pmecc_enable(chip, NAND_ECC_WRITE, raw); - if (ret) - return ret; - - ret = atmel_nfc_exec_op(nc, false); - if (ret) { - atmel_nand_pmecc_disable(chip, raw); - dev_err(nc->base.dev, - "Failed to transfer NAND page data (err = %d)\n", - ret); - return ret; - } - - ret = atmel_nand_pmecc_generate_eccbytes(chip, raw); - - atmel_nand_pmecc_disable(chip, raw); - - if (ret) - return ret; - - atmel_nand_write_buf(mtd, chip->oob_poi, mtd->oobsize); - - nc->op.cmds[0] = NAND_CMD_PAGEPROG; - nc->op.ncmds = 1; - nc->op.cs = nand->activecs->id; - ret = atmel_nfc_exec_op(nc, false); - if (ret) - dev_err(nc->base.dev, "Failed to program NAND page (err = %d)\n", - ret); - - status = chip->waitfunc(mtd, chip); - if (status & NAND_STATUS_FAIL) - return -EIO; - - return ret; -} - -static int atmel_hsmc_nand_pmecc_write_page(struct mtd_info *mtd, - struct nand_chip *chip, - const u8 *buf, int oob_required, - int page) -{ - return atmel_hsmc_nand_pmecc_write_pg(chip, buf, oob_required, page, - false); -} - -static int atmel_hsmc_nand_pmecc_write_page_raw(struct mtd_info *mtd, - struct nand_chip *chip, - const u8 *buf, - int oob_required, int page) -{ - return atmel_hsmc_nand_pmecc_write_pg(chip, buf, oob_required, page, - true); -} - -static int atmel_hsmc_nand_pmecc_read_pg(struct nand_chip *chip, u8 *buf, - bool oob_required, int page, - bool raw) -{ - struct mtd_info *mtd = nand_to_mtd(chip); - struct atmel_nand *nand = to_atmel_nand(chip); - struct atmel_hsmc_nand_controller *nc; - int ret; - - nc = to_hsmc_nand_controller(chip->controller); - - /* - * Optimized read page accessors only work when the NAND R/B pin is - * connected to a native SoC R/B pin. If that's not the case, fallback - * to the non-optimized one. - */ - if (nand->activecs->rb.type != ATMEL_NAND_NATIVE_RB) { - nand_read_page_op(chip, page, 0, NULL, 0); - - return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page, - raw); - } - - nc->op.cmds[nc->op.ncmds++] = NAND_CMD_READ0; - - if (mtd->writesize > 512) - nc->op.cmds[nc->op.ncmds++] = NAND_CMD_READSTART; - - atmel_nfc_set_op_addr(chip, page, 0x0); - nc->op.cs = nand->activecs->id; - nc->op.data = ATMEL_NFC_READ_DATA; - - ret = atmel_nand_pmecc_enable(chip, NAND_ECC_READ, raw); - if (ret) - return ret; - - ret = atmel_nfc_exec_op(nc, false); - if (ret) { - atmel_nand_pmecc_disable(chip, raw); - dev_err(nc->base.dev, - "Failed to load NAND page data (err = %d)\n", - ret); - return ret; - } - - atmel_nfc_copy_from_sram(chip, buf, true); - - ret = atmel_nand_pmecc_correct_data(chip, buf, raw); - - atmel_nand_pmecc_disable(chip, raw); - - return ret; -} - -static int atmel_hsmc_nand_pmecc_read_page(struct mtd_info *mtd, - struct nand_chip *chip, u8 *buf, - int oob_required, int page) -{ - return atmel_hsmc_nand_pmecc_read_pg(chip, buf, oob_required, page, - false); -} - -static int atmel_hsmc_nand_pmecc_read_page_raw(struct mtd_info *mtd, - struct nand_chip *chip, - u8 *buf, int oob_required, - int page) -{ - return atmel_hsmc_nand_pmecc_read_pg(chip, buf, oob_required, page, - true); -} - -static int atmel_nand_pmecc_init(struct nand_chip *chip) -{ - struct mtd_info *mtd = nand_to_mtd(chip); - struct atmel_nand *nand = to_atmel_nand(chip); - struct atmel_nand_controller *nc; - struct atmel_pmecc_user_req req; - - nc = to_nand_controller(chip->controller); - - if (!nc->pmecc) { - dev_err(nc->dev, "HW ECC not supported\n"); - return -ENOTSUPP; - } - - if (nc->caps->legacy_of_bindings) { - u32 val; - - if (!of_property_read_u32(nc->dev->of_node, "atmel,pmecc-cap", - &val)) - chip->ecc.strength = val; - - if (!of_property_read_u32(nc->dev->of_node, - "atmel,pmecc-sector-size", - &val)) - chip->ecc.size = val; - } - - if (chip->ecc.options & NAND_ECC_MAXIMIZE) - req.ecc.strength = ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH; - else if (chip->ecc.strength) - req.ecc.strength = chip->ecc.strength; - else if (chip->ecc_strength_ds) - req.ecc.strength = chip->ecc_strength_ds; - else - req.ecc.strength = ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH; - - if (chip->ecc.size) - req.ecc.sectorsize = chip->ecc.size; - else if (chip->ecc_step_ds) - req.ecc.sectorsize = chip->ecc_step_ds; - else - req.ecc.sectorsize = ATMEL_PMECC_SECTOR_SIZE_AUTO; - - req.pagesize = mtd->writesize; - req.oobsize = mtd->oobsize; - - if (mtd->writesize <= 512) { - req.ecc.bytes = 4; - req.ecc.ooboffset = 0; - } else { - req.ecc.bytes = mtd->oobsize - 2; - req.ecc.ooboffset = ATMEL_PMECC_OOBOFFSET_AUTO; - } - - nand->pmecc = atmel_pmecc_create_user(nc->pmecc, &req); - if (IS_ERR(nand->pmecc)) - return PTR_ERR(nand->pmecc); - - chip->ecc.algo = NAND_ECC_BCH; - chip->ecc.size = req.ecc.sectorsize; - chip->ecc.bytes = req.ecc.bytes / req.ecc.nsectors; - chip->ecc.strength = req.ecc.strength; - - chip->options |= NAND_NO_SUBPAGE_WRITE; - - mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops); - - return 0; -} - -static int atmel_nand_ecc_init(struct atmel_nand *nand) -{ - struct nand_chip *chip = &nand->base; - struct atmel_nand_controller *nc; - int ret; - - nc = to_nand_controller(chip->controller); - - switch (chip->ecc.mode) { - case NAND_ECC_NONE: - case NAND_ECC_SOFT: - /* - * Nothing to do, the core will initialize everything for us. - */ - break; - - case NAND_ECC_HW: - ret = atmel_nand_pmecc_init(chip); - if (ret) - return ret; - - chip->ecc.read_page = atmel_nand_pmecc_read_page; - chip->ecc.write_page = atmel_nand_pmecc_write_page; - chip->ecc.read_page_raw = atmel_nand_pmecc_read_page_raw; - chip->ecc.write_page_raw = atmel_nand_pmecc_write_page_raw; - break; - - default: - /* Other modes are not supported. */ - dev_err(nc->dev, "Unsupported ECC mode: %d\n", - chip->ecc.mode); - return -ENOTSUPP; - } - - return 0; -} - -static int atmel_hsmc_nand_ecc_init(struct atmel_nand *nand) -{ - struct nand_chip *chip = &nand->base; - int ret; - - ret = atmel_nand_ecc_init(nand); - if (ret) - return ret; - - if (chip->ecc.mode != NAND_ECC_HW) - return 0; - - /* Adjust the ECC operations for the HSMC IP. */ - chip->ecc.read_page = atmel_hsmc_nand_pmecc_read_page; - chip->ecc.write_page = atmel_hsmc_nand_pmecc_write_page; - chip->ecc.read_page_raw = atmel_hsmc_nand_pmecc_read_page_raw; - chip->ecc.write_page_raw = atmel_hsmc_nand_pmecc_write_page_raw; - - return 0; -} - -static int atmel_smc_nand_prepare_smcconf(struct atmel_nand *nand, - const struct nand_data_interface *conf, - struct atmel_smc_cs_conf *smcconf) -{ - u32 ncycles, totalcycles, timeps, mckperiodps; - struct atmel_nand_controller *nc; - int ret; - - nc = to_nand_controller(nand->base.controller); - - /* DDR interface not supported. */ - if (conf->type != NAND_SDR_IFACE) - return -ENOTSUPP; - - /* - * tRC < 30ns implies EDO mode. This controller does not support this - * mode. - */ - if (conf->timings.sdr.tRC_min < 30000) - return -ENOTSUPP; - - atmel_smc_cs_conf_init(smcconf); - - mckperiodps = NSEC_PER_SEC / clk_get_rate(nc->mck); - mckperiodps *= 1000; - - /* - * Set write pulse timing. This one is easy to extract: - * - * NWE_PULSE = tWP - */ - ncycles = DIV_ROUND_UP(conf->timings.sdr.tWP_min, mckperiodps); - totalcycles = ncycles; - ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NWE_SHIFT, - ncycles); - if (ret) - return ret; - - /* - * The write setup timing depends on the operation done on the NAND. - * All operations goes through the same data bus, but the operation - * type depends on the address we are writing to (ALE/CLE address - * lines). - * Since we have no way to differentiate the different operations at - * the SMC level, we must consider the worst case (the biggest setup - * time among all operation types): - * - * NWE_SETUP = max(tCLS, tCS, tALS, tDS) - NWE_PULSE - */ - timeps = max3(conf->timings.sdr.tCLS_min, conf->timings.sdr.tCS_min, - conf->timings.sdr.tALS_min); - timeps = max(timeps, conf->timings.sdr.tDS_min); - ncycles = DIV_ROUND_UP(timeps, mckperiodps); - ncycles = ncycles > totalcycles ? ncycles - totalcycles : 0; - totalcycles += ncycles; - ret = atmel_smc_cs_conf_set_setup(smcconf, ATMEL_SMC_NWE_SHIFT, - ncycles); - if (ret) - return ret; - - /* - * As for the write setup timing, the write hold timing depends on the - * operation done on the NAND: - * - * NWE_HOLD = max(tCLH, tCH, tALH, tDH, tWH) - */ - timeps = max3(conf->timings.sdr.tCLH_min, conf->timings.sdr.tCH_min, - conf->timings.sdr.tALH_min); - timeps = max3(timeps, conf->timings.sdr.tDH_min, - conf->timings.sdr.tWH_min); - ncycles = DIV_ROUND_UP(timeps, mckperiodps); - totalcycles += ncycles; - - /* - * The write cycle timing is directly matching tWC, but is also - * dependent on the other timings on the setup and hold timings we - * calculated earlier, which gives: - * - * NWE_CYCLE = max(tWC, NWE_SETUP + NWE_PULSE + NWE_HOLD) - */ - ncycles = DIV_ROUND_UP(conf->timings.sdr.tWC_min, mckperiodps); - ncycles = max(totalcycles, ncycles); - ret = atmel_smc_cs_conf_set_cycle(smcconf, ATMEL_SMC_NWE_SHIFT, - ncycles); - if (ret) - return ret; - - /* - * We don't want the CS line to be toggled between each byte/word - * transfer to the NAND. The only way to guarantee that is to have the - * NCS_{WR,RD}_{SETUP,HOLD} timings set to 0, which in turn means: - * - * NCS_WR_PULSE = NWE_CYCLE - */ - ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NCS_WR_SHIFT, - ncycles); - if (ret) - return ret; - - /* - * As for the write setup timing, the read hold timing depends on the - * operation done on the NAND: - * - * NRD_HOLD = max(tREH, tRHOH) - */ - timeps = max(conf->timings.sdr.tREH_min, conf->timings.sdr.tRHOH_min); - ncycles = DIV_ROUND_UP(timeps, mckperiodps); - totalcycles = ncycles; - - /* - * TDF = tRHZ - NRD_HOLD - */ - ncycles = DIV_ROUND_UP(conf->timings.sdr.tRHZ_max, mckperiodps); - ncycles -= totalcycles; - - /* - * In ONFI 4.0 specs, tRHZ has been increased to support EDO NANDs and - * we might end up with a config that does not fit in the TDF field. - * Just take the max value in this case and hope that the NAND is more - * tolerant than advertised. - */ - if (ncycles > ATMEL_SMC_MODE_TDF_MAX) - ncycles = ATMEL_SMC_MODE_TDF_MAX; - else if (ncycles < ATMEL_SMC_MODE_TDF_MIN) - ncycles = ATMEL_SMC_MODE_TDF_MIN; - - smcconf->mode |= ATMEL_SMC_MODE_TDF(ncycles) | - ATMEL_SMC_MODE_TDFMODE_OPTIMIZED; - - /* - * Read pulse timing directly matches tRP: - * - * NRD_PULSE = tRP - */ - ncycles = DIV_ROUND_UP(conf->timings.sdr.tRP_min, mckperiodps); - totalcycles += ncycles; - ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NRD_SHIFT, - ncycles); - if (ret) - return ret; - - /* - * The write cycle timing is directly matching tWC, but is also - * dependent on the setup and hold timings we calculated earlier, - * which gives: - * - * NRD_CYCLE = max(tRC, NRD_PULSE + NRD_HOLD) - * - * NRD_SETUP is always 0. - */ - ncycles = DIV_ROUND_UP(conf->timings.sdr.tRC_min, mckperiodps); - ncycles = max(totalcycles, ncycles); - ret = atmel_smc_cs_conf_set_cycle(smcconf, ATMEL_SMC_NRD_SHIFT, - ncycles); - if (ret) - return ret; - - /* - * We don't want the CS line to be toggled between each byte/word - * transfer from the NAND. The only way to guarantee that is to have - * the NCS_{WR,RD}_{SETUP,HOLD} timings set to 0, which in turn means: - * - * NCS_RD_PULSE = NRD_CYCLE - */ - ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NCS_RD_SHIFT, - ncycles); - if (ret) - return ret; - - /* Txxx timings are directly matching tXXX ones. */ - ncycles = DIV_ROUND_UP(conf->timings.sdr.tCLR_min, mckperiodps); - ret = atmel_smc_cs_conf_set_timing(smcconf, - ATMEL_HSMC_TIMINGS_TCLR_SHIFT, - ncycles); - if (ret) - return ret; - - ncycles = DIV_ROUND_UP(conf->timings.sdr.tADL_min, mckperiodps); - ret = atmel_smc_cs_conf_set_timing(smcconf, - ATMEL_HSMC_TIMINGS_TADL_SHIFT, - ncycles); - /* - * Version 4 of the ONFI spec mandates that tADL be at least 400 - * nanoseconds, but, depending on the master clock rate, 400 ns may not - * fit in the tADL field of the SMC reg. We need to relax the check and - * accept the -ERANGE return code. - * - * Note that previous versions of the ONFI spec had a lower tADL_min - * (100 or 200 ns). It's not clear why this timing constraint got - * increased but it seems most NANDs are fine with values lower than - * 400ns, so we should be safe. - */ - if (ret && ret != -ERANGE) - return ret; - - ncycles = DIV_ROUND_UP(conf->timings.sdr.tAR_min, mckperiodps); - ret = atmel_smc_cs_conf_set_timing(smcconf, - ATMEL_HSMC_TIMINGS_TAR_SHIFT, - ncycles); - if (ret) - return ret; - - ncycles = DIV_ROUND_UP(conf->timings.sdr.tRR_min, mckperiodps); - ret = atmel_smc_cs_conf_set_timing(smcconf, - ATMEL_HSMC_TIMINGS_TRR_SHIFT, - ncycles); - if (ret) - return ret; - - ncycles = DIV_ROUND_UP(conf->timings.sdr.tWB_max, mckperiodps); - ret = atmel_smc_cs_conf_set_timing(smcconf, - ATMEL_HSMC_TIMINGS_TWB_SHIFT, - ncycles); - if (ret) - return ret; - - /* Attach the CS line to the NFC logic. */ - smcconf->timings |= ATMEL_HSMC_TIMINGS_NFSEL; - - /* Set the appropriate data bus width. */ - if (nand->base.options & NAND_BUSWIDTH_16) - smcconf->mode |= ATMEL_SMC_MODE_DBW_16; - - /* Operate in NRD/NWE READ/WRITEMODE. */ - smcconf->mode |= ATMEL_SMC_MODE_READMODE_NRD | - ATMEL_SMC_MODE_WRITEMODE_NWE; - - return 0; -} - -static int atmel_smc_nand_setup_data_interface(struct atmel_nand *nand, - int csline, - const struct nand_data_interface *conf) -{ - struct atmel_nand_controller *nc; - struct atmel_smc_cs_conf smcconf; - struct atmel_nand_cs *cs; - int ret; - - nc = to_nand_controller(nand->base.controller); - - ret = atmel_smc_nand_prepare_smcconf(nand, conf, &smcconf); - if (ret) - return ret; - - if (csline == NAND_DATA_IFACE_CHECK_ONLY) - return 0; - - cs = &nand->cs[csline]; - cs->smcconf = smcconf; - atmel_smc_cs_conf_apply(nc->smc, cs->id, &cs->smcconf); - - return 0; -} - -static int atmel_hsmc_nand_setup_data_interface(struct atmel_nand *nand, - int csline, - const struct nand_data_interface *conf) -{ - struct atmel_hsmc_nand_controller *nc; - struct atmel_smc_cs_conf smcconf; - struct atmel_nand_cs *cs; - int ret; - - nc = to_hsmc_nand_controller(nand->base.controller); - - ret = atmel_smc_nand_prepare_smcconf(nand, conf, &smcconf); - if (ret) - return ret; - - if (csline == NAND_DATA_IFACE_CHECK_ONLY) - return 0; - - cs = &nand->cs[csline]; - cs->smcconf = smcconf; - - if (cs->rb.type == ATMEL_NAND_NATIVE_RB) - cs->smcconf.timings |= ATMEL_HSMC_TIMINGS_RBNSEL(cs->rb.id); - - atmel_hsmc_cs_conf_apply(nc->base.smc, nc->hsmc_layout, cs->id, - &cs->smcconf); - - return 0; -} - -static int atmel_nand_setup_data_interface(struct mtd_info *mtd, int csline, - const struct nand_data_interface *conf) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct atmel_nand *nand = to_atmel_nand(chip); - struct atmel_nand_controller *nc; - - nc = to_nand_controller(nand->base.controller); - - if (csline >= nand->numcs || - (csline < 0 && csline != NAND_DATA_IFACE_CHECK_ONLY)) - return -EINVAL; - - return nc->caps->ops->setup_data_interface(nand, csline, conf); -} - -static void atmel_nand_init(struct atmel_nand_controller *nc, - struct atmel_nand *nand) -{ - struct nand_chip *chip = &nand->base; - struct mtd_info *mtd = nand_to_mtd(chip); - - mtd->dev.parent = nc->dev; - nand->base.controller = &nc->base; - - chip->cmd_ctrl = atmel_nand_cmd_ctrl; - chip->read_byte = atmel_nand_read_byte; - chip->read_word = atmel_nand_read_word; - chip->write_byte = atmel_nand_write_byte; - chip->read_buf = atmel_nand_read_buf; - chip->write_buf = atmel_nand_write_buf; - chip->select_chip = atmel_nand_select_chip; - - if (nc->mck && nc->caps->ops->setup_data_interface) - chip->setup_data_interface = atmel_nand_setup_data_interface; - - /* Some NANDs require a longer delay than the default one (20us). */ - chip->chip_delay = 40; - - /* - * Use a bounce buffer when the buffer passed by the MTD user is not - * suitable for DMA. - */ - if (nc->dmac) - chip->options |= NAND_USE_BOUNCE_BUFFER; - - /* Default to HW ECC if pmecc is available. */ - if (nc->pmecc) - chip->ecc.mode = NAND_ECC_HW; -} - -static void atmel_smc_nand_init(struct atmel_nand_controller *nc, - struct atmel_nand *nand) -{ - struct nand_chip *chip = &nand->base; - struct atmel_smc_nand_controller *smc_nc; - int i; - - atmel_nand_init(nc, nand); - - smc_nc = to_smc_nand_controller(chip->controller); - if (!smc_nc->matrix) - return; - - /* Attach the CS to the NAND Flash logic. */ - for (i = 0; i < nand->numcs; i++) - regmap_update_bits(smc_nc->matrix, smc_nc->ebi_csa_offs, - BIT(nand->cs[i].id), BIT(nand->cs[i].id)); -} - -static void atmel_hsmc_nand_init(struct atmel_nand_controller *nc, - struct atmel_nand *nand) -{ - struct nand_chip *chip = &nand->base; - - atmel_nand_init(nc, nand); - - /* Overload some methods for the HSMC controller. */ - chip->cmd_ctrl = atmel_hsmc_nand_cmd_ctrl; - chip->select_chip = atmel_hsmc_nand_select_chip; -} - -static int atmel_nand_detect(struct atmel_nand *nand) -{ - struct nand_chip *chip = &nand->base; - struct mtd_info *mtd = nand_to_mtd(chip); - struct atmel_nand_controller *nc; - int ret; - - nc = to_nand_controller(chip->controller); - - ret = nand_scan_ident(mtd, nand->numcs, NULL); - if (ret) - dev_err(nc->dev, "nand_scan_ident() failed: %d\n", ret); - - return ret; -} - -static int atmel_nand_unregister(struct atmel_nand *nand) -{ - struct nand_chip *chip = &nand->base; - struct mtd_info *mtd = nand_to_mtd(chip); - int ret; - - ret = mtd_device_unregister(mtd); - if (ret) - return ret; - - nand_cleanup(chip); - list_del(&nand->node); - - return 0; -} - -static int atmel_nand_register(struct atmel_nand *nand) -{ - struct nand_chip *chip = &nand->base; - struct mtd_info *mtd = nand_to_mtd(chip); - struct atmel_nand_controller *nc; - int ret; - - nc = to_nand_controller(chip->controller); - - if (nc->caps->legacy_of_bindings || !nc->dev->of_node) { - /* - * We keep the MTD name unchanged to avoid breaking platforms - * where the MTD cmdline parser is used and the bootloader - * has not been updated to use the new naming scheme. - */ - mtd->name = "atmel_nand"; - } else if (!mtd->name) { - /* - * If the new bindings are used and the bootloader has not been - * updated to pass a new mtdparts parameter on the cmdline, you - * should define the following property in your nand node: - * - * label = "atmel_nand"; - * - * This way, mtd->name will be set by the core when - * nand_set_flash_node() is called. - */ - mtd->name = devm_kasprintf(nc->dev, GFP_KERNEL, - "%s:nand.%d", dev_name(nc->dev), - nand->cs[0].id); - if (!mtd->name) { - dev_err(nc->dev, "Failed to allocate mtd->name\n"); - return -ENOMEM; - } - } - - ret = nand_scan_tail(mtd); - if (ret) { - dev_err(nc->dev, "nand_scan_tail() failed: %d\n", ret); - return ret; - } - - ret = mtd_device_register(mtd, NULL, 0); - if (ret) { - dev_err(nc->dev, "Failed to register mtd device: %d\n", ret); - nand_cleanup(chip); - return ret; - } - - list_add_tail(&nand->node, &nc->chips); - - return 0; -} - -static struct atmel_nand *atmel_nand_create(struct atmel_nand_controller *nc, - struct device_node *np, - int reg_cells) -{ - struct atmel_nand *nand; - struct gpio_desc *gpio; - int numcs, ret, i; - - numcs = of_property_count_elems_of_size(np, "reg", - reg_cells * sizeof(u32)); - if (numcs < 1) { - dev_err(nc->dev, "Missing or invalid reg property\n"); - return ERR_PTR(-EINVAL); - } - - nand = devm_kzalloc(nc->dev, - sizeof(*nand) + (numcs * sizeof(*nand->cs)), - GFP_KERNEL); - if (!nand) { - dev_err(nc->dev, "Failed to allocate NAND object\n"); - return ERR_PTR(-ENOMEM); - } - - nand->numcs = numcs; - - gpio = devm_fwnode_get_index_gpiod_from_child(nc->dev, "det", 0, - &np->fwnode, GPIOD_IN, - "nand-det"); - if (IS_ERR(gpio) && PTR_ERR(gpio) != -ENOENT) { - dev_err(nc->dev, - "Failed to get detect gpio (err = %ld)\n", - PTR_ERR(gpio)); - return ERR_CAST(gpio); - } - - if (!IS_ERR(gpio)) - nand->cdgpio = gpio; - - for (i = 0; i < numcs; i++) { - struct resource res; - u32 val; - - ret = of_address_to_resource(np, 0, &res); - if (ret) { - dev_err(nc->dev, "Invalid reg property (err = %d)\n", - ret); - return ERR_PTR(ret); - } - - ret = of_property_read_u32_index(np, "reg", i * reg_cells, - &val); - if (ret) { - dev_err(nc->dev, "Invalid reg property (err = %d)\n", - ret); - return ERR_PTR(ret); - } - - nand->cs[i].id = val; - - nand->cs[i].io.dma = res.start; - nand->cs[i].io.virt = devm_ioremap_resource(nc->dev, &res); - if (IS_ERR(nand->cs[i].io.virt)) - return ERR_CAST(nand->cs[i].io.virt); - - if (!of_property_read_u32(np, "atmel,rb", &val)) { - if (val > ATMEL_NFC_MAX_RB_ID) - return ERR_PTR(-EINVAL); - - nand->cs[i].rb.type = ATMEL_NAND_NATIVE_RB; - nand->cs[i].rb.id = val; - } else { - gpio = devm_fwnode_get_index_gpiod_from_child(nc->dev, - "rb", i, &np->fwnode, - GPIOD_IN, "nand-rb"); - if (IS_ERR(gpio) && PTR_ERR(gpio) != -ENOENT) { - dev_err(nc->dev, - "Failed to get R/B gpio (err = %ld)\n", - PTR_ERR(gpio)); - return ERR_CAST(gpio); - } - - if (!IS_ERR(gpio)) { - nand->cs[i].rb.type = ATMEL_NAND_GPIO_RB; - nand->cs[i].rb.gpio = gpio; - } - } - - gpio = devm_fwnode_get_index_gpiod_from_child(nc->dev, "cs", - i, &np->fwnode, - GPIOD_OUT_HIGH, - "nand-cs"); - if (IS_ERR(gpio) && PTR_ERR(gpio) != -ENOENT) { - dev_err(nc->dev, - "Failed to get CS gpio (err = %ld)\n", - PTR_ERR(gpio)); - return ERR_CAST(gpio); - } - - if (!IS_ERR(gpio)) - nand->cs[i].csgpio = gpio; - } - - nand_set_flash_node(&nand->base, np); - - return nand; -} - -static int -atmel_nand_controller_add_nand(struct atmel_nand_controller *nc, - struct atmel_nand *nand) -{ - int ret; - - /* No card inserted, skip this NAND. */ - if (nand->cdgpio && gpiod_get_value(nand->cdgpio)) { - dev_info(nc->dev, "No SmartMedia card inserted.\n"); - return 0; - } - - nc->caps->ops->nand_init(nc, nand); - - ret = atmel_nand_detect(nand); - if (ret) - return ret; - - ret = nc->caps->ops->ecc_init(nand); - if (ret) - return ret; - - return atmel_nand_register(nand); -} - -static int -atmel_nand_controller_remove_nands(struct atmel_nand_controller *nc) -{ - struct atmel_nand *nand, *tmp; - int ret; - - list_for_each_entry_safe(nand, tmp, &nc->chips, node) { - ret = atmel_nand_unregister(nand); - if (ret) - return ret; - } - - return 0; -} - -static int -atmel_nand_controller_legacy_add_nands(struct atmel_nand_controller *nc) -{ - struct device *dev = nc->dev; - struct platform_device *pdev = to_platform_device(dev); - struct atmel_nand *nand; - struct gpio_desc *gpio; - struct resource *res; - - /* - * Legacy bindings only allow connecting a single NAND with a unique CS - * line to the controller. - */ - nand = devm_kzalloc(nc->dev, sizeof(*nand) + sizeof(*nand->cs), - GFP_KERNEL); - if (!nand) - return -ENOMEM; - - nand->numcs = 1; - - res = platform_get_resource(pdev, IORESOURCE_MEM, 0); - nand->cs[0].io.virt = devm_ioremap_resource(dev, res); - if (IS_ERR(nand->cs[0].io.virt)) - return PTR_ERR(nand->cs[0].io.virt); - - nand->cs[0].io.dma = res->start; - - /* - * The old driver was hardcoding the CS id to 3 for all sama5 - * controllers. Since this id is only meaningful for the sama5 - * controller we can safely assign this id to 3 no matter the - * controller. - * If one wants to connect a NAND to a different CS line, he will - * have to use the new bindings. - */ - nand->cs[0].id = 3; - - /* R/B GPIO. */ - gpio = devm_gpiod_get_index_optional(dev, NULL, 0, GPIOD_IN); - if (IS_ERR(gpio)) { - dev_err(dev, "Failed to get R/B gpio (err = %ld)\n", - PTR_ERR(gpio)); - return PTR_ERR(gpio); - } - - if (gpio) { - nand->cs[0].rb.type = ATMEL_NAND_GPIO_RB; - nand->cs[0].rb.gpio = gpio; - } - - /* CS GPIO. */ - gpio = devm_gpiod_get_index_optional(dev, NULL, 1, GPIOD_OUT_HIGH); - if (IS_ERR(gpio)) { - dev_err(dev, "Failed to get CS gpio (err = %ld)\n", - PTR_ERR(gpio)); - return PTR_ERR(gpio); - } - - nand->cs[0].csgpio = gpio; - - /* Card detect GPIO. */ - gpio = devm_gpiod_get_index_optional(nc->dev, NULL, 2, GPIOD_IN); - if (IS_ERR(gpio)) { - dev_err(dev, - "Failed to get detect gpio (err = %ld)\n", - PTR_ERR(gpio)); - return PTR_ERR(gpio); - } - - nand->cdgpio = gpio; - - nand_set_flash_node(&nand->base, nc->dev->of_node); - - return atmel_nand_controller_add_nand(nc, nand); -} - -static int atmel_nand_controller_add_nands(struct atmel_nand_controller *nc) -{ - struct device_node *np, *nand_np; - struct device *dev = nc->dev; - int ret, reg_cells; - u32 val; - - /* We do not retrieve the SMC syscon when parsing old DTs. */ - if (nc->caps->legacy_of_bindings) - return atmel_nand_controller_legacy_add_nands(nc); - - np = dev->of_node; - - ret = of_property_read_u32(np, "#address-cells", &val); - if (ret) { - dev_err(dev, "missing #address-cells property\n"); - return ret; - } - - reg_cells = val; - - ret = of_property_read_u32(np, "#size-cells", &val); - if (ret) { - dev_err(dev, "missing #address-cells property\n"); - return ret; - } - - reg_cells += val; - - for_each_child_of_node(np, nand_np) { - struct atmel_nand *nand; - - nand = atmel_nand_create(nc, nand_np, reg_cells); - if (IS_ERR(nand)) { - ret = PTR_ERR(nand); - goto err; - } - - ret = atmel_nand_controller_add_nand(nc, nand); - if (ret) - goto err; - } - - return 0; - -err: - atmel_nand_controller_remove_nands(nc); - - return ret; -} - -static void atmel_nand_controller_cleanup(struct atmel_nand_controller *nc) -{ - if (nc->dmac) - dma_release_channel(nc->dmac); - - clk_put(nc->mck); -} - -static const struct of_device_id atmel_matrix_of_ids[] = { - { - .compatible = "atmel,at91sam9260-matrix", - .data = (void *)AT91SAM9260_MATRIX_EBICSA, - }, - { - .compatible = "atmel,at91sam9261-matrix", - .data = (void *)AT91SAM9261_MATRIX_EBICSA, - }, - { - .compatible = "atmel,at91sam9263-matrix", - .data = (void *)AT91SAM9263_MATRIX_EBI0CSA, - }, - { - .compatible = "atmel,at91sam9rl-matrix", - .data = (void *)AT91SAM9RL_MATRIX_EBICSA, - }, - { - .compatible = "atmel,at91sam9g45-matrix", - .data = (void *)AT91SAM9G45_MATRIX_EBICSA, - }, - { - .compatible = "atmel,at91sam9n12-matrix", - .data = (void *)AT91SAM9N12_MATRIX_EBICSA, - }, - { - .compatible = "atmel,at91sam9x5-matrix", - .data = (void *)AT91SAM9X5_MATRIX_EBICSA, - }, - { /* sentinel */ }, -}; - -static int atmel_nand_controller_init(struct atmel_nand_controller *nc, - struct platform_device *pdev, - const struct atmel_nand_controller_caps *caps) -{ - struct device *dev = &pdev->dev; - struct device_node *np = dev->of_node; - int ret; - - nand_hw_control_init(&nc->base); - INIT_LIST_HEAD(&nc->chips); - nc->dev = dev; - nc->caps = caps; - - platform_set_drvdata(pdev, nc); - - nc->pmecc = devm_atmel_pmecc_get(dev); - if (IS_ERR(nc->pmecc)) { - ret = PTR_ERR(nc->pmecc); - if (ret != -EPROBE_DEFER) - dev_err(dev, "Could not get PMECC object (err = %d)\n", - ret); - return ret; - } - - if (nc->caps->has_dma) { - dma_cap_mask_t mask; - - dma_cap_zero(mask); - dma_cap_set(DMA_MEMCPY, mask); - - nc->dmac = dma_request_channel(mask, NULL, NULL); - if (!nc->dmac) - dev_err(nc->dev, "Failed to request DMA channel\n"); - } - - /* We do not retrieve the SMC syscon when parsing old DTs. */ - if (nc->caps->legacy_of_bindings) - return 0; - - nc->mck = of_clk_get(dev->parent->of_node, 0); - if (IS_ERR(nc->mck)) { - dev_err(dev, "Failed to retrieve MCK clk\n"); - return PTR_ERR(nc->mck); - } - - np = of_parse_phandle(dev->parent->of_node, "atmel,smc", 0); - if (!np) { - dev_err(dev, "Missing or invalid atmel,smc property\n"); - return -EINVAL; - } - - nc->smc = syscon_node_to_regmap(np); - of_node_put(np); - if (IS_ERR(nc->smc)) { - ret = PTR_ERR(nc->smc); - dev_err(dev, "Could not get SMC regmap (err = %d)\n", ret); - return ret; - } - - return 0; -} - -static int -atmel_smc_nand_controller_init(struct atmel_smc_nand_controller *nc) -{ - struct device *dev = nc->base.dev; - const struct of_device_id *match; - struct device_node *np; - int ret; - - /* We do not retrieve the matrix syscon when parsing old DTs. */ - if (nc->base.caps->legacy_of_bindings) - return 0; - - np = of_parse_phandle(dev->parent->of_node, "atmel,matrix", 0); - if (!np) - return 0; - - match = of_match_node(atmel_matrix_of_ids, np); - if (!match) { - of_node_put(np); - return 0; - } - - nc->matrix = syscon_node_to_regmap(np); - of_node_put(np); - if (IS_ERR(nc->matrix)) { - ret = PTR_ERR(nc->matrix); - dev_err(dev, "Could not get Matrix regmap (err = %d)\n", ret); - return ret; - } - - nc->ebi_csa_offs = (unsigned int)match->data; - - /* - * The at91sam9263 has 2 EBIs, if the NAND controller is under EBI1 - * add 4 to ->ebi_csa_offs. - */ - if (of_device_is_compatible(dev->parent->of_node, - "atmel,at91sam9263-ebi1")) - nc->ebi_csa_offs += 4; - - return 0; -} - -static int -atmel_hsmc_nand_controller_legacy_init(struct atmel_hsmc_nand_controller *nc) -{ - struct regmap_config regmap_conf = { - .reg_bits = 32, - .val_bits = 32, - .reg_stride = 4, - }; - - struct device *dev = nc->base.dev; - struct device_node *nand_np, *nfc_np; - void __iomem *iomem; - struct resource res; - int ret; - - nand_np = dev->of_node; - nfc_np = of_find_compatible_node(dev->of_node, NULL, - "atmel,sama5d3-nfc"); - - nc->clk = of_clk_get(nfc_np, 0); - if (IS_ERR(nc->clk)) { - ret = PTR_ERR(nc->clk); - dev_err(dev, "Failed to retrieve HSMC clock (err = %d)\n", - ret); - goto out; - } - - ret = clk_prepare_enable(nc->clk); - if (ret) { - dev_err(dev, "Failed to enable the HSMC clock (err = %d)\n", - ret); - goto out; - } - - nc->irq = of_irq_get(nand_np, 0); - if (nc->irq <= 0) { - ret = nc->irq ?: -ENXIO; - if (ret != -EPROBE_DEFER) - dev_err(dev, "Failed to get IRQ number (err = %d)\n", - ret); - goto out; - } - - ret = of_address_to_resource(nfc_np, 0, &res); - if (ret) { - dev_err(dev, "Invalid or missing NFC IO resource (err = %d)\n", - ret); - goto out; - } - - iomem = devm_ioremap_resource(dev, &res); - if (IS_ERR(iomem)) { - ret = PTR_ERR(iomem); - goto out; - } - - regmap_conf.name = "nfc-io"; - regmap_conf.max_register = resource_size(&res) - 4; - nc->io = devm_regmap_init_mmio(dev, iomem, ®map_conf); - if (IS_ERR(nc->io)) { - ret = PTR_ERR(nc->io); - dev_err(dev, "Could not create NFC IO regmap (err = %d)\n", - ret); - goto out; - } - - ret = of_address_to_resource(nfc_np, 1, &res); - if (ret) { - dev_err(dev, "Invalid or missing HSMC resource (err = %d)\n", - ret); - goto out; - } - - iomem = devm_ioremap_resource(dev, &res); - if (IS_ERR(iomem)) { - ret = PTR_ERR(iomem); - goto out; - } - - regmap_conf.name = "smc"; - regmap_conf.max_register = resource_size(&res) - 4; - nc->base.smc = devm_regmap_init_mmio(dev, iomem, ®map_conf); - if (IS_ERR(nc->base.smc)) { - ret = PTR_ERR(nc->base.smc); - dev_err(dev, "Could not create NFC IO regmap (err = %d)\n", - ret); - goto out; - } - - ret = of_address_to_resource(nfc_np, 2, &res); - if (ret) { - dev_err(dev, "Invalid or missing SRAM resource (err = %d)\n", - ret); - goto out; - } - - nc->sram.virt = devm_ioremap_resource(dev, &res); - if (IS_ERR(nc->sram.virt)) { - ret = PTR_ERR(nc->sram.virt); - goto out; - } - - nc->sram.dma = res.start; - -out: - of_node_put(nfc_np); - - return ret; -} - -static int -atmel_hsmc_nand_controller_init(struct atmel_hsmc_nand_controller *nc) -{ - struct device *dev = nc->base.dev; - struct device_node *np; - int ret; - - np = of_parse_phandle(dev->parent->of_node, "atmel,smc", 0); - if (!np) { - dev_err(dev, "Missing or invalid atmel,smc property\n"); - return -EINVAL; - } - - nc->hsmc_layout = atmel_hsmc_get_reg_layout(np); - - nc->irq = of_irq_get(np, 0); - of_node_put(np); - if (nc->irq <= 0) { - ret = nc->irq ?: -ENXIO; - if (ret != -EPROBE_DEFER) - dev_err(dev, "Failed to get IRQ number (err = %d)\n", - ret); - return ret; - } - - np = of_parse_phandle(dev->of_node, "atmel,nfc-io", 0); - if (!np) { - dev_err(dev, "Missing or invalid atmel,nfc-io property\n"); - return -EINVAL; - } - - nc->io = syscon_node_to_regmap(np); - of_node_put(np); - if (IS_ERR(nc->io)) { - ret = PTR_ERR(nc->io); - dev_err(dev, "Could not get NFC IO regmap (err = %d)\n", ret); - return ret; - } - - nc->sram.pool = of_gen_pool_get(nc->base.dev->of_node, - "atmel,nfc-sram", 0); - if (!nc->sram.pool) { - dev_err(nc->base.dev, "Missing SRAM\n"); - return -ENOMEM; - } - - nc->sram.virt = gen_pool_dma_alloc(nc->sram.pool, - ATMEL_NFC_SRAM_SIZE, - &nc->sram.dma); - if (!nc->sram.virt) { - dev_err(nc->base.dev, - "Could not allocate memory from the NFC SRAM pool\n"); - return -ENOMEM; - } - - return 0; -} - -static int -atmel_hsmc_nand_controller_remove(struct atmel_nand_controller *nc) -{ - struct atmel_hsmc_nand_controller *hsmc_nc; - int ret; - - ret = atmel_nand_controller_remove_nands(nc); - if (ret) - return ret; - - hsmc_nc = container_of(nc, struct atmel_hsmc_nand_controller, base); - if (hsmc_nc->sram.pool) - gen_pool_free(hsmc_nc->sram.pool, - (unsigned long)hsmc_nc->sram.virt, - ATMEL_NFC_SRAM_SIZE); - - if (hsmc_nc->clk) { - clk_disable_unprepare(hsmc_nc->clk); - clk_put(hsmc_nc->clk); - } - - atmel_nand_controller_cleanup(nc); - - return 0; -} - -static int atmel_hsmc_nand_controller_probe(struct platform_device *pdev, - const struct atmel_nand_controller_caps *caps) -{ - struct device *dev = &pdev->dev; - struct atmel_hsmc_nand_controller *nc; - int ret; - - nc = devm_kzalloc(dev, sizeof(*nc), GFP_KERNEL); - if (!nc) - return -ENOMEM; - - ret = atmel_nand_controller_init(&nc->base, pdev, caps); - if (ret) - return ret; - - if (caps->legacy_of_bindings) - ret = atmel_hsmc_nand_controller_legacy_init(nc); - else - ret = atmel_hsmc_nand_controller_init(nc); - - if (ret) - return ret; - - /* Make sure all irqs are masked before registering our IRQ handler. */ - regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, 0xffffffff); - ret = devm_request_irq(dev, nc->irq, atmel_nfc_interrupt, - IRQF_SHARED, "nfc", nc); - if (ret) { - dev_err(dev, - "Could not get register NFC interrupt handler (err = %d)\n", - ret); - goto err; - } - - /* Initial NFC configuration. */ - regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CFG, - ATMEL_HSMC_NFC_CFG_DTO_MAX); - - ret = atmel_nand_controller_add_nands(&nc->base); - if (ret) - goto err; - - return 0; - -err: - atmel_hsmc_nand_controller_remove(&nc->base); - - return ret; -} - -static const struct atmel_nand_controller_ops atmel_hsmc_nc_ops = { - .probe = atmel_hsmc_nand_controller_probe, - .remove = atmel_hsmc_nand_controller_remove, - .ecc_init = atmel_hsmc_nand_ecc_init, - .nand_init = atmel_hsmc_nand_init, - .setup_data_interface = atmel_hsmc_nand_setup_data_interface, -}; - -static const struct atmel_nand_controller_caps atmel_sama5_nc_caps = { - .has_dma = true, - .ale_offs = BIT(21), - .cle_offs = BIT(22), - .ops = &atmel_hsmc_nc_ops, -}; - -/* Only used to parse old bindings. */ -static const struct atmel_nand_controller_caps atmel_sama5_nand_caps = { - .has_dma = true, - .ale_offs = BIT(21), - .cle_offs = BIT(22), - .ops = &atmel_hsmc_nc_ops, - .legacy_of_bindings = true, -}; - -static int atmel_smc_nand_controller_probe(struct platform_device *pdev, - const struct atmel_nand_controller_caps *caps) -{ - struct device *dev = &pdev->dev; - struct atmel_smc_nand_controller *nc; - int ret; - - nc = devm_kzalloc(dev, sizeof(*nc), GFP_KERNEL); - if (!nc) - return -ENOMEM; - - ret = atmel_nand_controller_init(&nc->base, pdev, caps); - if (ret) - return ret; - - ret = atmel_smc_nand_controller_init(nc); - if (ret) - return ret; - - return atmel_nand_controller_add_nands(&nc->base); -} - -static int -atmel_smc_nand_controller_remove(struct atmel_nand_controller *nc) -{ - int ret; - - ret = atmel_nand_controller_remove_nands(nc); - if (ret) - return ret; - - atmel_nand_controller_cleanup(nc); - - return 0; -} - -/* - * The SMC reg layout of at91rm9200 is completely different which prevents us - * from re-using atmel_smc_nand_setup_data_interface() for the - * ->setup_data_interface() hook. - * At this point, there's no support for the at91rm9200 SMC IP, so we leave - * ->setup_data_interface() unassigned. - */ -static const struct atmel_nand_controller_ops at91rm9200_nc_ops = { - .probe = atmel_smc_nand_controller_probe, - .remove = atmel_smc_nand_controller_remove, - .ecc_init = atmel_nand_ecc_init, - .nand_init = atmel_smc_nand_init, -}; - -static const struct atmel_nand_controller_caps atmel_rm9200_nc_caps = { - .ale_offs = BIT(21), - .cle_offs = BIT(22), - .ops = &at91rm9200_nc_ops, -}; - -static const struct atmel_nand_controller_ops atmel_smc_nc_ops = { - .probe = atmel_smc_nand_controller_probe, - .remove = atmel_smc_nand_controller_remove, - .ecc_init = atmel_nand_ecc_init, - .nand_init = atmel_smc_nand_init, - .setup_data_interface = atmel_smc_nand_setup_data_interface, -}; - -static const struct atmel_nand_controller_caps atmel_sam9260_nc_caps = { - .ale_offs = BIT(21), - .cle_offs = BIT(22), - .ops = &atmel_smc_nc_ops, -}; - -static const struct atmel_nand_controller_caps atmel_sam9261_nc_caps = { - .ale_offs = BIT(22), - .cle_offs = BIT(21), - .ops = &atmel_smc_nc_ops, -}; - -static const struct atmel_nand_controller_caps atmel_sam9g45_nc_caps = { - .has_dma = true, - .ale_offs = BIT(21), - .cle_offs = BIT(22), - .ops = &atmel_smc_nc_ops, -}; - -/* Only used to parse old bindings. */ -static const struct atmel_nand_controller_caps atmel_rm9200_nand_caps = { - .ale_offs = BIT(21), - .cle_offs = BIT(22), - .ops = &atmel_smc_nc_ops, - .legacy_of_bindings = true, -}; - -static const struct atmel_nand_controller_caps atmel_sam9261_nand_caps = { - .ale_offs = BIT(22), - .cle_offs = BIT(21), - .ops = &atmel_smc_nc_ops, - .legacy_of_bindings = true, -}; - -static const struct atmel_nand_controller_caps atmel_sam9g45_nand_caps = { - .has_dma = true, - .ale_offs = BIT(21), - .cle_offs = BIT(22), - .ops = &atmel_smc_nc_ops, - .legacy_of_bindings = true, -}; - -static const struct of_device_id atmel_nand_controller_of_ids[] = { - { - .compatible = "atmel,at91rm9200-nand-controller", - .data = &atmel_rm9200_nc_caps, - }, - { - .compatible = "atmel,at91sam9260-nand-controller", - .data = &atmel_sam9260_nc_caps, - }, - { - .compatible = "atmel,at91sam9261-nand-controller", - .data = &atmel_sam9261_nc_caps, - }, - { - .compatible = "atmel,at91sam9g45-nand-controller", - .data = &atmel_sam9g45_nc_caps, - }, - { - .compatible = "atmel,sama5d3-nand-controller", - .data = &atmel_sama5_nc_caps, - }, - /* Support for old/deprecated bindings: */ - { - .compatible = "atmel,at91rm9200-nand", - .data = &atmel_rm9200_nand_caps, - }, - { - .compatible = "atmel,sama5d4-nand", - .data = &atmel_rm9200_nand_caps, - }, - { - .compatible = "atmel,sama5d2-nand", - .data = &atmel_rm9200_nand_caps, - }, - { /* sentinel */ }, -}; -MODULE_DEVICE_TABLE(of, atmel_nand_controller_of_ids); - -static int atmel_nand_controller_probe(struct platform_device *pdev) -{ - const struct atmel_nand_controller_caps *caps; - - if (pdev->id_entry) - caps = (void *)pdev->id_entry->driver_data; - else - caps = of_device_get_match_data(&pdev->dev); - - if (!caps) { - dev_err(&pdev->dev, "Could not retrieve NFC caps\n"); - return -EINVAL; - } - - if (caps->legacy_of_bindings) { - u32 ale_offs = 21; - - /* - * If we are parsing legacy DT props and the DT contains a - * valid NFC node, forward the request to the sama5 logic. - */ - if (of_find_compatible_node(pdev->dev.of_node, NULL, - "atmel,sama5d3-nfc")) - caps = &atmel_sama5_nand_caps; - - /* - * Even if the compatible says we are dealing with an - * at91rm9200 controller, the atmel,nand-has-dma specify that - * this controller supports DMA, which means we are in fact - * dealing with an at91sam9g45+ controller. - */ - if (!caps->has_dma && - of_property_read_bool(pdev->dev.of_node, - "atmel,nand-has-dma")) - caps = &atmel_sam9g45_nand_caps; - - /* - * All SoCs except the at91sam9261 are assigning ALE to A21 and - * CLE to A22. If atmel,nand-addr-offset != 21 this means we're - * actually dealing with an at91sam9261 controller. - */ - of_property_read_u32(pdev->dev.of_node, - "atmel,nand-addr-offset", &ale_offs); - if (ale_offs != 21) - caps = &atmel_sam9261_nand_caps; - } - - return caps->ops->probe(pdev, caps); -} - -static int atmel_nand_controller_remove(struct platform_device *pdev) -{ - struct atmel_nand_controller *nc = platform_get_drvdata(pdev); - - return nc->caps->ops->remove(nc); -} - -static __maybe_unused int atmel_nand_controller_resume(struct device *dev) -{ - struct atmel_nand_controller *nc = dev_get_drvdata(dev); - struct atmel_nand *nand; - - if (nc->pmecc) - atmel_pmecc_reset(nc->pmecc); - - list_for_each_entry(nand, &nc->chips, node) { - int i; - - for (i = 0; i < nand->numcs; i++) - nand_reset(&nand->base, i); - } - - return 0; -} - -static SIMPLE_DEV_PM_OPS(atmel_nand_controller_pm_ops, NULL, - atmel_nand_controller_resume); - -static struct platform_driver atmel_nand_controller_driver = { - .driver = { - .name = "atmel-nand-controller", - .of_match_table = of_match_ptr(atmel_nand_controller_of_ids), - .pm = &atmel_nand_controller_pm_ops, - }, - .probe = atmel_nand_controller_probe, - .remove = atmel_nand_controller_remove, -}; -module_platform_driver(atmel_nand_controller_driver); - -MODULE_LICENSE("GPL"); -MODULE_AUTHOR("Boris Brezillon "); -MODULE_DESCRIPTION("NAND Flash Controller driver for Atmel SoCs"); -MODULE_ALIAS("platform:atmel-nand-controller"); diff --git a/drivers/mtd/nand/atmel/pmecc.c b/drivers/mtd/nand/atmel/pmecc.c deleted file mode 100644 index 9de29c9afb0c..000000000000 --- a/drivers/mtd/nand/atmel/pmecc.c +++ /dev/null @@ -1,1012 +0,0 @@ -/* - * Copyright 2017 ATMEL - * Copyright 2017 Free Electrons - * - * Author: Boris Brezillon - * - * Derived from the atmel_nand.c driver which contained the following - * copyrights: - * - * Copyright 2003 Rick Bronson - * - * Derived from drivers/mtd/nand/autcpu12.c (removed in v3.8) - * Copyright 2001 Thomas Gleixner (gleixner@autronix.de) - * - * Derived from drivers/mtd/spia.c (removed in v3.8) - * Copyright 2000 Steven J. Hill (sjhill@cotw.com) - * - * Add Hardware ECC support for AT91SAM9260 / AT91SAM9263 - * Richard Genoud (richard.genoud@gmail.com), Adeneo Copyright 2007 - * - * Derived from Das U-Boot source code - * (u-boot-1.1.5/board/atmel/at91sam9263ek/nand.c) - * Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas - * - * Add Programmable Multibit ECC support for various AT91 SoC - * Copyright 2012 ATMEL, Hong Xu - * - * Add Nand Flash Controller support for SAMA5 SoC - * Copyright 2013 ATMEL, Josh Wu (josh.wu@atmel.com) - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License version 2 as - * published by the Free Software Foundation. - * - * The PMECC is an hardware assisted BCH engine, which means part of the - * ECC algorithm is left to the software. The hardware/software repartition - * is explained in the "PMECC Controller Functional Description" chapter in - * Atmel datasheets, and some of the functions in this file are directly - * implementing the algorithms described in the "Software Implementation" - * sub-section. - * - * TODO: it seems that the software BCH implementation in lib/bch.c is already - * providing some of the logic we are implementing here. It would be smart - * to expose the needed lib/bch.c helpers/functions and re-use them here. - */ - -#include -#include -#include -#include -#include -#include -#include -#include - -#include "pmecc.h" - -/* Galois field dimension */ -#define PMECC_GF_DIMENSION_13 13 -#define PMECC_GF_DIMENSION_14 14 - -/* Primitive Polynomial used by PMECC */ -#define PMECC_GF_13_PRIMITIVE_POLY 0x201b -#define PMECC_GF_14_PRIMITIVE_POLY 0x4443 - -#define PMECC_LOOKUP_TABLE_SIZE_512 0x2000 -#define PMECC_LOOKUP_TABLE_SIZE_1024 0x4000 - -/* Time out value for reading PMECC status register */ -#define PMECC_MAX_TIMEOUT_MS 100 - -/* PMECC Register Definitions */ -#define ATMEL_PMECC_CFG 0x0 -#define PMECC_CFG_BCH_STRENGTH(x) (x) -#define PMECC_CFG_BCH_STRENGTH_MASK GENMASK(2, 0) -#define PMECC_CFG_SECTOR512 (0 << 4) -#define PMECC_CFG_SECTOR1024 (1 << 4) -#define PMECC_CFG_NSECTORS(x) ((fls(x) - 1) << 8) -#define PMECC_CFG_READ_OP (0 << 12) -#define PMECC_CFG_WRITE_OP (1 << 12) -#define PMECC_CFG_SPARE_ENABLE BIT(16) -#define PMECC_CFG_AUTO_ENABLE BIT(20) - -#define ATMEL_PMECC_SAREA 0x4 -#define ATMEL_PMECC_SADDR 0x8 -#define ATMEL_PMECC_EADDR 0xc - -#define ATMEL_PMECC_CLK 0x10 -#define PMECC_CLK_133MHZ (2 << 0) - -#define ATMEL_PMECC_CTRL 0x14 -#define PMECC_CTRL_RST BIT(0) -#define PMECC_CTRL_DATA BIT(1) -#define PMECC_CTRL_USER BIT(2) -#define PMECC_CTRL_ENABLE BIT(4) -#define PMECC_CTRL_DISABLE BIT(5) - -#define ATMEL_PMECC_SR 0x18 -#define PMECC_SR_BUSY BIT(0) -#define PMECC_SR_ENABLE BIT(4) - -#define ATMEL_PMECC_IER 0x1c -#define ATMEL_PMECC_IDR 0x20 -#define ATMEL_PMECC_IMR 0x24 -#define ATMEL_PMECC_ISR 0x28 -#define PMECC_ERROR_INT BIT(0) - -#define ATMEL_PMECC_ECC(sector, n) \ - ((((sector) + 1) * 0x40) + (n)) - -#define ATMEL_PMECC_REM(sector, n) \ - ((((sector) + 1) * 0x40) + ((n) * 4) + 0x200) - -/* PMERRLOC Register Definitions */ -#define ATMEL_PMERRLOC_ELCFG 0x0 -#define PMERRLOC_ELCFG_SECTOR_512 (0 << 0) -#define PMERRLOC_ELCFG_SECTOR_1024 (1 << 0) -#define PMERRLOC_ELCFG_NUM_ERRORS(n) ((n) << 16) - -#define ATMEL_PMERRLOC_ELPRIM 0x4 -#define ATMEL_PMERRLOC_ELEN 0x8 -#define ATMEL_PMERRLOC_ELDIS 0xc -#define PMERRLOC_DISABLE BIT(0) - -#define ATMEL_PMERRLOC_ELSR 0x10 -#define PMERRLOC_ELSR_BUSY BIT(0) - -#define ATMEL_PMERRLOC_ELIER 0x14 -#define ATMEL_PMERRLOC_ELIDR 0x18 -#define ATMEL_PMERRLOC_ELIMR 0x1c -#define ATMEL_PMERRLOC_ELISR 0x20 -#define PMERRLOC_ERR_NUM_MASK GENMASK(12, 8) -#define PMERRLOC_CALC_DONE BIT(0) - -#define ATMEL_PMERRLOC_SIGMA(x) (((x) * 0x4) + 0x28) - -#define ATMEL_PMERRLOC_EL(offs, x) (((x) * 0x4) + (offs)) - -struct atmel_pmecc_gf_tables { - u16 *alpha_to; - u16 *index_of; -}; - -struct atmel_pmecc_caps { - const int *strengths; - int nstrengths; - int el_offset; - bool correct_erased_chunks; -}; - -struct atmel_pmecc { - struct device *dev; - const struct atmel_pmecc_caps *caps; - - struct { - void __iomem *base; - void __iomem *errloc; - } regs; - - struct mutex lock; -}; - -struct atmel_pmecc_user_conf_cache { - u32 cfg; - u32 sarea; - u32 saddr; - u32 eaddr; -}; - -struct atmel_pmecc_user { - struct atmel_pmecc_user_conf_cache cache; - struct atmel_pmecc *pmecc; - const struct atmel_pmecc_gf_tables *gf_tables; - int eccbytes; - s16 *partial_syn; - s16 *si; - s16 *lmu; - s16 *smu; - s32 *mu; - s32 *dmu; - s32 *delta; - u32 isr; -}; - -static DEFINE_MUTEX(pmecc_gf_tables_lock); -static const struct atmel_pmecc_gf_tables *pmecc_gf_tables_512; -static const struct atmel_pmecc_gf_tables *pmecc_gf_tables_1024; - -static inline int deg(unsigned int poly) -{ - /* polynomial degree is the most-significant bit index */ - return fls(poly) - 1; -} - -static int atmel_pmecc_build_gf_tables(int mm, unsigned int poly, - struct atmel_pmecc_gf_tables *gf_tables) -{ - unsigned int i, x = 1; - const unsigned int k = BIT(deg(poly)); - unsigned int nn = BIT(mm) - 1; - - /* primitive polynomial must be of degree m */ - if (k != (1u << mm)) - return -EINVAL; - - for (i = 0; i < nn; i++) { - gf_tables->alpha_to[i] = x; - gf_tables->index_of[x] = i; - if (i && (x == 1)) - /* polynomial is not primitive (a^i=1 with 0alpha_to[nn] = 1; - gf_tables->index_of[0] = 0; - - return 0; -} - -static const struct atmel_pmecc_gf_tables * -atmel_pmecc_create_gf_tables(const struct atmel_pmecc_user_req *req) -{ - struct atmel_pmecc_gf_tables *gf_tables; - unsigned int poly, degree, table_size; - int ret; - - if (req->ecc.sectorsize == 512) { - degree = PMECC_GF_DIMENSION_13; - poly = PMECC_GF_13_PRIMITIVE_POLY; - table_size = PMECC_LOOKUP_TABLE_SIZE_512; - } else { - degree = PMECC_GF_DIMENSION_14; - poly = PMECC_GF_14_PRIMITIVE_POLY; - table_size = PMECC_LOOKUP_TABLE_SIZE_1024; - } - - gf_tables = kzalloc(sizeof(*gf_tables) + - (2 * table_size * sizeof(u16)), - GFP_KERNEL); - if (!gf_tables) - return ERR_PTR(-ENOMEM); - - gf_tables->alpha_to = (void *)(gf_tables + 1); - gf_tables->index_of = gf_tables->alpha_to + table_size; - - ret = atmel_pmecc_build_gf_tables(degree, poly, gf_tables); - if (ret) { - kfree(gf_tables); - return ERR_PTR(ret); - } - - return gf_tables; -} - -static const struct atmel_pmecc_gf_tables * -atmel_pmecc_get_gf_tables(const struct atmel_pmecc_user_req *req) -{ - const struct atmel_pmecc_gf_tables **gf_tables, *ret; - - mutex_lock(&pmecc_gf_tables_lock); - if (req->ecc.sectorsize == 512) - gf_tables = &pmecc_gf_tables_512; - else - gf_tables = &pmecc_gf_tables_1024; - - ret = *gf_tables; - - if (!ret) { - ret = atmel_pmecc_create_gf_tables(req); - if (!IS_ERR(ret)) - *gf_tables = ret; - } - mutex_unlock(&pmecc_gf_tables_lock); - - return ret; -} - -static int atmel_pmecc_prepare_user_req(struct atmel_pmecc *pmecc, - struct atmel_pmecc_user_req *req) -{ - int i, max_eccbytes, eccbytes = 0, eccstrength = 0; - - if (req->pagesize <= 0 || req->oobsize <= 0 || req->ecc.bytes <= 0) - return -EINVAL; - - if (req->ecc.ooboffset >= 0 && - req->ecc.ooboffset + req->ecc.bytes > req->oobsize) - return -EINVAL; - - if (req->ecc.sectorsize == ATMEL_PMECC_SECTOR_SIZE_AUTO) { - if (req->ecc.strength != ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH) - return -EINVAL; - - if (req->pagesize > 512) - req->ecc.sectorsize = 1024; - else - req->ecc.sectorsize = 512; - } - - if (req->ecc.sectorsize != 512 && req->ecc.sectorsize != 1024) - return -EINVAL; - - if (req->pagesize % req->ecc.sectorsize) - return -EINVAL; - - req->ecc.nsectors = req->pagesize / req->ecc.sectorsize; - - max_eccbytes = req->ecc.bytes; - - for (i = 0; i < pmecc->caps->nstrengths; i++) { - int nbytes, strength = pmecc->caps->strengths[i]; - - if (req->ecc.strength != ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH && - strength < req->ecc.strength) - continue; - - nbytes = DIV_ROUND_UP(strength * fls(8 * req->ecc.sectorsize), - 8); - nbytes *= req->ecc.nsectors; - - if (nbytes > max_eccbytes) - break; - - eccstrength = strength; - eccbytes = nbytes; - - if (req->ecc.strength != ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH) - break; - } - - if (!eccstrength) - return -EINVAL; - - req->ecc.bytes = eccbytes; - req->ecc.strength = eccstrength; - - if (req->ecc.ooboffset < 0) - req->ecc.ooboffset = req->oobsize - eccbytes; - - return 0; -} - -struct atmel_pmecc_user * -atmel_pmecc_create_user(struct atmel_pmecc *pmecc, - struct atmel_pmecc_user_req *req) -{ - struct atmel_pmecc_user *user; - const struct atmel_pmecc_gf_tables *gf_tables; - int strength, size, ret; - - ret = atmel_pmecc_prepare_user_req(pmecc, req); - if (ret) - return ERR_PTR(ret); - - size = sizeof(*user); - size = ALIGN(size, sizeof(u16)); - /* Reserve space for partial_syn, si and smu */ - size += ((2 * req->ecc.strength) + 1) * sizeof(u16) * - (2 + req->ecc.strength + 2); - /* Reserve space for lmu. */ - size += (req->ecc.strength + 1) * sizeof(u16); - /* Reserve space for mu, dmu and delta. */ - size = ALIGN(size, sizeof(s32)); - size += (req->ecc.strength + 1) * sizeof(s32) * 3; - - user = kzalloc(size, GFP_KERNEL); - if (!user) - return ERR_PTR(-ENOMEM); - - user->pmecc = pmecc; - - user->partial_syn = (s16 *)PTR_ALIGN(user + 1, sizeof(u16)); - user->si = user->partial_syn + ((2 * req->ecc.strength) + 1); - user->lmu = user->si + ((2 * req->ecc.strength) + 1); - user->smu = user->lmu + (req->ecc.strength + 1); - user->mu = (s32 *)PTR_ALIGN(user->smu + - (((2 * req->ecc.strength) + 1) * - (req->ecc.strength + 2)), - sizeof(s32)); - user->dmu = user->mu + req->ecc.strength + 1; - user->delta = user->dmu + req->ecc.strength + 1; - - gf_tables = atmel_pmecc_get_gf_tables(req); - if (IS_ERR(gf_tables)) { - kfree(user); - return ERR_CAST(gf_tables); - } - - user->gf_tables = gf_tables; - - user->eccbytes = req->ecc.bytes / req->ecc.nsectors; - - for (strength = 0; strength < pmecc->caps->nstrengths; strength++) { - if (pmecc->caps->strengths[strength] == req->ecc.strength) - break; - } - - user->cache.cfg = PMECC_CFG_BCH_STRENGTH(strength) | - PMECC_CFG_NSECTORS(req->ecc.nsectors); - - if (req->ecc.sectorsize == 1024) - user->cache.cfg |= PMECC_CFG_SECTOR1024; - - user->cache.sarea = req->oobsize - 1; - user->cache.saddr = req->ecc.ooboffset; - user->cache.eaddr = req->ecc.ooboffset + req->ecc.bytes - 1; - - return user; -} -EXPORT_SYMBOL_GPL(atmel_pmecc_create_user); - -void atmel_pmecc_destroy_user(struct atmel_pmecc_user *user) -{ - kfree(user); -} -EXPORT_SYMBOL_GPL(atmel_pmecc_destroy_user); - -static int get_strength(struct atmel_pmecc_user *user) -{ - const int *strengths = user->pmecc->caps->strengths; - - return strengths[user->cache.cfg & PMECC_CFG_BCH_STRENGTH_MASK]; -} - -static int get_sectorsize(struct atmel_pmecc_user *user) -{ - return user->cache.cfg & PMECC_LOOKUP_TABLE_SIZE_1024 ? 1024 : 512; -} - -static void atmel_pmecc_gen_syndrome(struct atmel_pmecc_user *user, int sector) -{ - int strength = get_strength(user); - u32 value; - int i; - - /* Fill odd syndromes */ - for (i = 0; i < strength; i++) { - value = readl_relaxed(user->pmecc->regs.base + - ATMEL_PMECC_REM(sector, i / 2)); - if (i & 1) - value >>= 16; - - user->partial_syn[(2 * i) + 1] = value; - } -} - -static void atmel_pmecc_substitute(struct atmel_pmecc_user *user) -{ - int degree = get_sectorsize(user) == 512 ? 13 : 14; - int cw_len = BIT(degree) - 1; - int strength = get_strength(user); - s16 *alpha_to = user->gf_tables->alpha_to; - s16 *index_of = user->gf_tables->index_of; - s16 *partial_syn = user->partial_syn; - s16 *si; - int i, j; - - /* - * si[] is a table that holds the current syndrome value, - * an element of that table belongs to the field - */ - si = user->si; - - memset(&si[1], 0, sizeof(s16) * ((2 * strength) - 1)); - - /* Computation 2t syndromes based on S(x) */ - /* Odd syndromes */ - for (i = 1; i < 2 * strength; i += 2) { - for (j = 0; j < degree; j++) { - if (partial_syn[i] & BIT(j)) - si[i] = alpha_to[i * j] ^ si[i]; - } - } - /* Even syndrome = (Odd syndrome) ** 2 */ - for (i = 2, j = 1; j <= strength; i = ++j << 1) { - if (si[j] == 0) { - si[i] = 0; - } else { - s16 tmp; - - tmp = index_of[si[j]]; - tmp = (tmp * 2) % cw_len; - si[i] = alpha_to[tmp]; - } - } -} - -static void atmel_pmecc_get_sigma(struct atmel_pmecc_user *user) -{ - s16 *lmu = user->lmu; - s16 *si = user->si; - s32 *mu = user->mu; - s32 *dmu = user->dmu; - s32 *delta = user->delta; - int degree = get_sectorsize(user) == 512 ? 13 : 14; - int cw_len = BIT(degree) - 1; - int strength = get_strength(user); - int num = 2 * strength + 1; - s16 *index_of = user->gf_tables->index_of; - s16 *alpha_to = user->gf_tables->alpha_to; - int i, j, k; - u32 dmu_0_count, tmp; - s16 *smu = user->smu; - - /* index of largest delta */ - int ro; - int largest; - int diff; - - dmu_0_count = 0; - - /* First Row */ - - /* Mu */ - mu[0] = -1; - - memset(smu, 0, sizeof(s16) * num); - smu[0] = 1; - - /* discrepancy set to 1 */ - dmu[0] = 1; - /* polynom order set to 0 */ - lmu[0] = 0; - delta[0] = (mu[0] * 2 - lmu[0]) >> 1; - - /* Second Row */ - - /* Mu */ - mu[1] = 0; - /* Sigma(x) set to 1 */ - memset(&smu[num], 0, sizeof(s16) * num); - smu[num] = 1; - - /* discrepancy set to S1 */ - dmu[1] = si[1]; - - /* polynom order set to 0 */ - lmu[1] = 0; - - delta[1] = (mu[1] * 2 - lmu[1]) >> 1; - - /* Init the Sigma(x) last row */ - memset(&smu[(strength + 1) * num], 0, sizeof(s16) * num); - - for (i = 1; i <= strength; i++) { - mu[i + 1] = i << 1; - /* Begin Computing Sigma (Mu+1) and L(mu) */ - /* check if discrepancy is set to 0 */ - if (dmu[i] == 0) { - dmu_0_count++; - - tmp = ((strength - (lmu[i] >> 1) - 1) / 2); - if ((strength - (lmu[i] >> 1) - 1) & 0x1) - tmp += 2; - else - tmp += 1; - - if (dmu_0_count == tmp) { - for (j = 0; j <= (lmu[i] >> 1) + 1; j++) - smu[(strength + 1) * num + j] = - smu[i * num + j]; - - lmu[strength + 1] = lmu[i]; - return; - } - - /* copy polynom */ - for (j = 0; j <= lmu[i] >> 1; j++) - smu[(i + 1) * num + j] = smu[i * num + j]; - - /* copy previous polynom order to the next */ - lmu[i + 1] = lmu[i]; - } else { - ro = 0; - largest = -1; - /* find largest delta with dmu != 0 */ - for (j = 0; j < i; j++) { - if ((dmu[j]) && (delta[j] > largest)) { - largest = delta[j]; - ro = j; - } - } - - /* compute difference */ - diff = (mu[i] - mu[ro]); - - /* Compute degree of the new smu polynomial */ - if ((lmu[i] >> 1) > ((lmu[ro] >> 1) + diff)) - lmu[i + 1] = lmu[i]; - else - lmu[i + 1] = ((lmu[ro] >> 1) + diff) * 2; - - /* Init smu[i+1] with 0 */ - for (k = 0; k < num; k++) - smu[(i + 1) * num + k] = 0; - - /* Compute smu[i+1] */ - for (k = 0; k <= lmu[ro] >> 1; k++) { - s16 a, b, c; - - if (!(smu[ro * num + k] && dmu[i])) - continue; - - a = index_of[dmu[i]]; - b = index_of[dmu[ro]]; - c = index_of[smu[ro * num + k]]; - tmp = a + (cw_len - b) + c; - a = alpha_to[tmp % cw_len]; - smu[(i + 1) * num + (k + diff)] = a; - } - - for (k = 0; k <= lmu[i] >> 1; k++) - smu[(i + 1) * num + k] ^= smu[i * num + k]; - } - - /* End Computing Sigma (Mu+1) and L(mu) */ - /* In either case compute delta */ - delta[i + 1] = (mu[i + 1] * 2 - lmu[i + 1]) >> 1; - - /* Do not compute discrepancy for the last iteration */ - if (i >= strength) - continue; - - for (k = 0; k <= (lmu[i + 1] >> 1); k++) { - tmp = 2 * (i - 1); - if (k == 0) { - dmu[i + 1] = si[tmp + 3]; - } else if (smu[(i + 1) * num + k] && si[tmp + 3 - k]) { - s16 a, b, c; - - a = index_of[smu[(i + 1) * num + k]]; - b = si[2 * (i - 1) + 3 - k]; - c = index_of[b]; - tmp = a + c; - tmp %= cw_len; - dmu[i + 1] = alpha_to[tmp] ^ dmu[i + 1]; - } - } - } -} - -static int atmel_pmecc_err_location(struct atmel_pmecc_user *user) -{ - int sector_size = get_sectorsize(user); - int degree = sector_size == 512 ? 13 : 14; - struct atmel_pmecc *pmecc = user->pmecc; - int strength = get_strength(user); - int ret, roots_nbr, i, err_nbr = 0; - int num = (2 * strength) + 1; - s16 *smu = user->smu; - u32 val; - - writel(PMERRLOC_DISABLE, pmecc->regs.errloc + ATMEL_PMERRLOC_ELDIS); - - for (i = 0; i <= user->lmu[strength + 1] >> 1; i++) { - writel_relaxed(smu[(strength + 1) * num + i], - pmecc->regs.errloc + ATMEL_PMERRLOC_SIGMA(i)); - err_nbr++; - } - - val = (err_nbr - 1) << 16; - if (sector_size == 1024) - val |= 1; - - writel(val, pmecc->regs.errloc + ATMEL_PMERRLOC_ELCFG); - writel((sector_size * 8) + (degree * strength), - pmecc->regs.errloc + ATMEL_PMERRLOC_ELEN); - - ret = readl_relaxed_poll_timeout(pmecc->regs.errloc + - ATMEL_PMERRLOC_ELISR, - val, val & PMERRLOC_CALC_DONE, 0, - PMECC_MAX_TIMEOUT_MS * 1000); - if (ret) { - dev_err(pmecc->dev, - "PMECC: Timeout to calculate error location.\n"); - return ret; - } - - roots_nbr = (val & PMERRLOC_ERR_NUM_MASK) >> 8; - /* Number of roots == degree of smu hence <= cap */ - if (roots_nbr == user->lmu[strength + 1] >> 1) - return err_nbr - 1; - - /* - * Number of roots does not match the degree of smu - * unable to correct error. - */ - return -EBADMSG; -} - -int atmel_pmecc_correct_sector(struct atmel_pmecc_user *user, int sector, - void *data, void *ecc) -{ - struct atmel_pmecc *pmecc = user->pmecc; - int sectorsize = get_sectorsize(user); - int eccbytes = user->eccbytes; - int i, nerrors; - - if (!(user->isr & BIT(sector))) - return 0; - - atmel_pmecc_gen_syndrome(user, sector); - atmel_pmecc_substitute(user); - atmel_pmecc_get_sigma(user); - - nerrors = atmel_pmecc_err_location(user); - if (nerrors < 0) - return nerrors; - - for (i = 0; i < nerrors; i++) { - const char *area; - int byte, bit; - u32 errpos; - u8 *ptr; - - errpos = readl_relaxed(pmecc->regs.errloc + - ATMEL_PMERRLOC_EL(pmecc->caps->el_offset, i)); - errpos--; - - byte = errpos / 8; - bit = errpos % 8; - - if (byte < sectorsize) { - ptr = data + byte; - area = "data"; - } else if (byte < sectorsize + eccbytes) { - ptr = ecc + byte - sectorsize; - area = "ECC"; - } else { - dev_dbg(pmecc->dev, - "Invalid errpos value (%d, max is %d)\n", - errpos, (sectorsize + eccbytes) * 8); - return -EINVAL; - } - - dev_dbg(pmecc->dev, - "Bit flip in %s area, byte %d: 0x%02x -> 0x%02x\n", - area, byte, *ptr, (unsigned int)(*ptr ^ BIT(bit))); - - *ptr ^= BIT(bit); - } - - return nerrors; -} -EXPORT_SYMBOL_GPL(atmel_pmecc_correct_sector); - -bool atmel_pmecc_correct_erased_chunks(struct atmel_pmecc_user *user) -{ - return user->pmecc->caps->correct_erased_chunks; -} -EXPORT_SYMBOL_GPL(atmel_pmecc_correct_erased_chunks); - -void atmel_pmecc_get_generated_eccbytes(struct atmel_pmecc_user *user, - int sector, void *ecc) -{ - struct atmel_pmecc *pmecc = user->pmecc; - u8 *ptr = ecc; - int i; - - for (i = 0; i < user->eccbytes; i++) - ptr[i] = readb_relaxed(pmecc->regs.base + - ATMEL_PMECC_ECC(sector, i)); -} -EXPORT_SYMBOL_GPL(atmel_pmecc_get_generated_eccbytes); - -void atmel_pmecc_reset(struct atmel_pmecc *pmecc) -{ - writel(PMECC_CTRL_RST, pmecc->regs.base + ATMEL_PMECC_CTRL); - writel(PMECC_CTRL_DISABLE, pmecc->regs.base + ATMEL_PMECC_CTRL); -} -EXPORT_SYMBOL_GPL(atmel_pmecc_reset); - -int atmel_pmecc_enable(struct atmel_pmecc_user *user, int op) -{ - struct atmel_pmecc *pmecc = user->pmecc; - u32 cfg; - - if (op != NAND_ECC_READ && op != NAND_ECC_WRITE) { - dev_err(pmecc->dev, "Bad ECC operation!"); - return -EINVAL; - } - - mutex_lock(&user->pmecc->lock); - - cfg = user->cache.cfg; - if (op == NAND_ECC_WRITE) - cfg |= PMECC_CFG_WRITE_OP; - else - cfg |= PMECC_CFG_AUTO_ENABLE; - - writel(cfg, pmecc->regs.base + ATMEL_PMECC_CFG); - writel(user->cache.sarea, pmecc->regs.base + ATMEL_PMECC_SAREA); - writel(user->cache.saddr, pmecc->regs.base + ATMEL_PMECC_SADDR); - writel(user->cache.eaddr, pmecc->regs.base + ATMEL_PMECC_EADDR); - - writel(PMECC_CTRL_ENABLE, pmecc->regs.base + ATMEL_PMECC_CTRL); - writel(PMECC_CTRL_DATA, pmecc->regs.base + ATMEL_PMECC_CTRL); - - return 0; -} -EXPORT_SYMBOL_GPL(atmel_pmecc_enable); - -void atmel_pmecc_disable(struct atmel_pmecc_user *user) -{ - atmel_pmecc_reset(user->pmecc); - mutex_unlock(&user->pmecc->lock); -} -EXPORT_SYMBOL_GPL(atmel_pmecc_disable); - -int atmel_pmecc_wait_rdy(struct atmel_pmecc_user *user) -{ - struct atmel_pmecc *pmecc = user->pmecc; - u32 status; - int ret; - - ret = readl_relaxed_poll_timeout(pmecc->regs.base + - ATMEL_PMECC_SR, - status, !(status & PMECC_SR_BUSY), 0, - PMECC_MAX_TIMEOUT_MS * 1000); - if (ret) { - dev_err(pmecc->dev, - "Timeout while waiting for PMECC ready.\n"); - return ret; - } - - user->isr = readl_relaxed(pmecc->regs.base + ATMEL_PMECC_ISR); - - return 0; -} -EXPORT_SYMBOL_GPL(atmel_pmecc_wait_rdy); - -static struct atmel_pmecc *atmel_pmecc_create(struct platform_device *pdev, - const struct atmel_pmecc_caps *caps, - int pmecc_res_idx, int errloc_res_idx) -{ - struct device *dev = &pdev->dev; - struct atmel_pmecc *pmecc; - struct resource *res; - - pmecc = devm_kzalloc(dev, sizeof(*pmecc), GFP_KERNEL); - if (!pmecc) - return ERR_PTR(-ENOMEM); - - pmecc->caps = caps; - pmecc->dev = dev; - mutex_init(&pmecc->lock); - - res = platform_get_resource(pdev, IORESOURCE_MEM, pmecc_res_idx); - pmecc->regs.base = devm_ioremap_resource(dev, res); - if (IS_ERR(pmecc->regs.base)) - return ERR_CAST(pmecc->regs.base); - - res = platform_get_resource(pdev, IORESOURCE_MEM, errloc_res_idx); - pmecc->regs.errloc = devm_ioremap_resource(dev, res); - if (IS_ERR(pmecc->regs.errloc)) - return ERR_CAST(pmecc->regs.errloc); - - /* Disable all interrupts before registering the PMECC handler. */ - writel(0xffffffff, pmecc->regs.base + ATMEL_PMECC_IDR); - atmel_pmecc_reset(pmecc); - - return pmecc; -} - -static void devm_atmel_pmecc_put(struct device *dev, void *res) -{ - struct atmel_pmecc **pmecc = res; - - put_device((*pmecc)->dev); -} - -static struct atmel_pmecc *atmel_pmecc_get_by_node(struct device *userdev, - struct device_node *np) -{ - struct platform_device *pdev; - struct atmel_pmecc *pmecc, **ptr; - - pdev = of_find_device_by_node(np); - if (!pdev || !platform_get_drvdata(pdev)) - return ERR_PTR(-EPROBE_DEFER); - - ptr = devres_alloc(devm_atmel_pmecc_put, sizeof(*ptr), GFP_KERNEL); - if (!ptr) - return ERR_PTR(-ENOMEM); - - get_device(&pdev->dev); - pmecc = platform_get_drvdata(pdev); - - *ptr = pmecc; - - devres_add(userdev, ptr); - - return pmecc; -} - -static const int atmel_pmecc_strengths[] = { 2, 4, 8, 12, 24, 32 }; - -static struct atmel_pmecc_caps at91sam9g45_caps = { - .strengths = atmel_pmecc_strengths, - .nstrengths = 5, - .el_offset = 0x8c, -}; - -static struct atmel_pmecc_caps sama5d4_caps = { - .strengths = atmel_pmecc_strengths, - .nstrengths = 5, - .el_offset = 0x8c, - .correct_erased_chunks = true, -}; - -static struct atmel_pmecc_caps sama5d2_caps = { - .strengths = atmel_pmecc_strengths, - .nstrengths = 6, - .el_offset = 0xac, - .correct_erased_chunks = true, -}; - -static const struct of_device_id atmel_pmecc_legacy_match[] = { - { .compatible = "atmel,sama5d4-nand", &sama5d4_caps }, - { .compatible = "atmel,sama5d2-nand", &sama5d2_caps }, - { /* sentinel */ } -}; - -struct atmel_pmecc *devm_atmel_pmecc_get(struct device *userdev) -{ - struct atmel_pmecc *pmecc; - struct device_node *np; - - if (!userdev) - return ERR_PTR(-EINVAL); - - if (!userdev->of_node) - return NULL; - - np = of_parse_phandle(userdev->of_node, "ecc-engine", 0); - if (np) { - pmecc = atmel_pmecc_get_by_node(userdev, np); - of_node_put(np); - } else { - /* - * Support old DT bindings: in this case the PMECC iomem - * resources are directly defined in the user pdev at position - * 1 and 2. Extract all relevant information from there. - */ - struct platform_device *pdev = to_platform_device(userdev); - const struct atmel_pmecc_caps *caps; - const struct of_device_id *match; - - /* No PMECC engine available. */ - if (!of_property_read_bool(userdev->of_node, - "atmel,has-pmecc")) - return NULL; - - caps = &at91sam9g45_caps; - - /* Find the caps associated to the NAND dev node. */ - match = of_match_node(atmel_pmecc_legacy_match, - userdev->of_node); - if (match && match->data) - caps = match->data; - - pmecc = atmel_pmecc_create(pdev, caps, 1, 2); - } - - return pmecc; -} -EXPORT_SYMBOL(devm_atmel_pmecc_get); - -static const struct of_device_id atmel_pmecc_match[] = { - { .compatible = "atmel,at91sam9g45-pmecc", &at91sam9g45_caps }, - { .compatible = "atmel,sama5d4-pmecc", &sama5d4_caps }, - { .compatible = "atmel,sama5d2-pmecc", &sama5d2_caps }, - { /* sentinel */ } -}; -MODULE_DEVICE_TABLE(of, atmel_pmecc_match); - -static int atmel_pmecc_probe(struct platform_device *pdev) -{ - struct device *dev = &pdev->dev; - const struct atmel_pmecc_caps *caps; - struct atmel_pmecc *pmecc; - - caps = of_device_get_match_data(&pdev->dev); - if (!caps) { - dev_err(dev, "Invalid caps\n"); - return -EINVAL; - } - - pmecc = atmel_pmecc_create(pdev, caps, 0, 1); - if (IS_ERR(pmecc)) - return PTR_ERR(pmecc); - - platform_set_drvdata(pdev, pmecc); - - return 0; -} - -static struct platform_driver atmel_pmecc_driver = { - .driver = { - .name = "atmel-pmecc", - .of_match_table = of_match_ptr(atmel_pmecc_match), - }, - .probe = atmel_pmecc_probe, -}; -module_platform_driver(atmel_pmecc_driver); - -MODULE_LICENSE("GPL"); -MODULE_AUTHOR("Boris Brezillon "); -MODULE_DESCRIPTION("PMECC engine driver"); -MODULE_ALIAS("platform:atmel_pmecc"); diff --git a/drivers/mtd/nand/atmel/pmecc.h b/drivers/mtd/nand/atmel/pmecc.h deleted file mode 100644 index 808f1be0d6ad..000000000000 --- a/drivers/mtd/nand/atmel/pmecc.h +++ /dev/null @@ -1,74 +0,0 @@ -/* - * © Copyright 2016 ATMEL - * © Copyright 2016 Free Electrons - * - * Author: Boris Brezillon - * - * Derived from the atmel_nand.c driver which contained the following - * copyrights: - * - * Copyright © 2003 Rick Bronson - * - * Derived from drivers/mtd/nand/autcpu12.c (removed in v3.8) - * Copyright © 2001 Thomas Gleixner (gleixner@autronix.de) - * - * Derived from drivers/mtd/spia.c (removed in v3.8) - * Copyright © 2000 Steven J. Hill (sjhill@cotw.com) - * - * - * Add Hardware ECC support for AT91SAM9260 / AT91SAM9263 - * Richard Genoud (richard.genoud@gmail.com), Adeneo Copyright © 2007 - * - * Derived from Das U-Boot source code - * (u-boot-1.1.5/board/atmel/at91sam9263ek/nand.c) - * © Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas - * - * Add Programmable Multibit ECC support for various AT91 SoC - * © Copyright 2012 ATMEL, Hong Xu - * - * Add Nand Flash Controller support for SAMA5 SoC - * © Copyright 2013 ATMEL, Josh Wu (josh.wu@atmel.com) - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License version 2 as - * published by the Free Software Foundation. - * - */ - -#ifndef ATMEL_PMECC_H -#define ATMEL_PMECC_H - -#define ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH 0 -#define ATMEL_PMECC_SECTOR_SIZE_AUTO 0 -#define ATMEL_PMECC_OOBOFFSET_AUTO -1 - -struct atmel_pmecc_user_req { - int pagesize; - int oobsize; - struct { - int strength; - int bytes; - int sectorsize; - int nsectors; - int ooboffset; - } ecc; -}; - -struct atmel_pmecc *devm_atmel_pmecc_get(struct device *dev); - -struct atmel_pmecc_user * -atmel_pmecc_create_user(struct atmel_pmecc *pmecc, - struct atmel_pmecc_user_req *req); -void atmel_pmecc_destroy_user(struct atmel_pmecc_user *user); - -void atmel_pmecc_reset(struct atmel_pmecc *pmecc); -int atmel_pmecc_enable(struct atmel_pmecc_user *user, int op); -void atmel_pmecc_disable(struct atmel_pmecc_user *user); -int atmel_pmecc_wait_rdy(struct atmel_pmecc_user *user); -int atmel_pmecc_correct_sector(struct atmel_pmecc_user *user, int sector, - void *data, void *ecc); -bool atmel_pmecc_correct_erased_chunks(struct atmel_pmecc_user *user); -void atmel_pmecc_get_generated_eccbytes(struct atmel_pmecc_user *user, - int sector, void *ecc); - -#endif /* ATMEL_PMECC_H */ diff --git a/drivers/mtd/nand/au1550nd.c b/drivers/mtd/nand/au1550nd.c deleted file mode 100644 index df0ef1f1e2f5..000000000000 --- a/drivers/mtd/nand/au1550nd.c +++ /dev/null @@ -1,515 +0,0 @@ -/* - * Copyright (C) 2004 Embedded Edge, LLC - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License version 2 as - * published by the Free Software Foundation. - * - */ - -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include - - -struct au1550nd_ctx { - struct nand_chip chip; - - int cs; - void __iomem *base; - void (*write_byte)(struct mtd_info *, u_char); -}; - -/** - * au_read_byte - read one byte from the chip - * @mtd: MTD device structure - * - * read function for 8bit buswidth - */ -static u_char au_read_byte(struct mtd_info *mtd) -{ - struct nand_chip *this = mtd_to_nand(mtd); - u_char ret = readb(this->IO_ADDR_R); - wmb(); /* drain writebuffer */ - return ret; -} - -/** - * au_write_byte - write one byte to the chip - * @mtd: MTD device structure - * @byte: pointer to data byte to write - * - * write function for 8it buswidth - */ -static void au_write_byte(struct mtd_info *mtd, u_char byte) -{ - struct nand_chip *this = mtd_to_nand(mtd); - writeb(byte, this->IO_ADDR_W); - wmb(); /* drain writebuffer */ -} - -/** - * au_read_byte16 - read one byte endianness aware from the chip - * @mtd: MTD device structure - * - * read function for 16bit buswidth with endianness conversion - */ -static u_char au_read_byte16(struct mtd_info *mtd) -{ - struct nand_chip *this = mtd_to_nand(mtd); - u_char ret = (u_char) cpu_to_le16(readw(this->IO_ADDR_R)); - wmb(); /* drain writebuffer */ - return ret; -} - -/** - * au_write_byte16 - write one byte endianness aware to the chip - * @mtd: MTD device structure - * @byte: pointer to data byte to write - * - * write function for 16bit buswidth with endianness conversion - */ -static void au_write_byte16(struct mtd_info *mtd, u_char byte) -{ - struct nand_chip *this = mtd_to_nand(mtd); - writew(le16_to_cpu((u16) byte), this->IO_ADDR_W); - wmb(); /* drain writebuffer */ -} - -/** - * au_read_word - read one word from the chip - * @mtd: MTD device structure - * - * read function for 16bit buswidth without endianness conversion - */ -static u16 au_read_word(struct mtd_info *mtd) -{ - struct nand_chip *this = mtd_to_nand(mtd); - u16 ret = readw(this->IO_ADDR_R); - wmb(); /* drain writebuffer */ - return ret; -} - -/** - * au_write_buf - write buffer to chip - * @mtd: MTD device structure - * @buf: data buffer - * @len: number of bytes to write - * - * write function for 8bit buswidth - */ -static void au_write_buf(struct mtd_info *mtd, const u_char *buf, int len) -{ - int i; - struct nand_chip *this = mtd_to_nand(mtd); - - for (i = 0; i < len; i++) { - writeb(buf[i], this->IO_ADDR_W); - wmb(); /* drain writebuffer */ - } -} - -/** - * au_read_buf - read chip data into buffer - * @mtd: MTD device structure - * @buf: buffer to store date - * @len: number of bytes to read - * - * read function for 8bit buswidth - */ -static void au_read_buf(struct mtd_info *mtd, u_char *buf, int len) -{ - int i; - struct nand_chip *this = mtd_to_nand(mtd); - - for (i = 0; i < len; i++) { - buf[i] = readb(this->IO_ADDR_R); - wmb(); /* drain writebuffer */ - } -} - -/** - * au_write_buf16 - write buffer to chip - * @mtd: MTD device structure - * @buf: data buffer - * @len: number of bytes to write - * - * write function for 16bit buswidth - */ -static void au_write_buf16(struct mtd_info *mtd, const u_char *buf, int len) -{ - int i; - struct nand_chip *this = mtd_to_nand(mtd); - u16 *p = (u16 *) buf; - len >>= 1; - - for (i = 0; i < len; i++) { - writew(p[i], this->IO_ADDR_W); - wmb(); /* drain writebuffer */ - } - -} - -/** - * au_read_buf16 - read chip data into buffer - * @mtd: MTD device structure - * @buf: buffer to store date - * @len: number of bytes to read - * - * read function for 16bit buswidth - */ -static void au_read_buf16(struct mtd_info *mtd, u_char *buf, int len) -{ - int i; - struct nand_chip *this = mtd_to_nand(mtd); - u16 *p = (u16 *) buf; - len >>= 1; - - for (i = 0; i < len; i++) { - p[i] = readw(this->IO_ADDR_R); - wmb(); /* drain writebuffer */ - } -} - -/* Select the chip by setting nCE to low */ -#define NAND_CTL_SETNCE 1 -/* Deselect the chip by setting nCE to high */ -#define NAND_CTL_CLRNCE 2 -/* Select the command latch by setting CLE to high */ -#define NAND_CTL_SETCLE 3 -/* Deselect the command latch by setting CLE to low */ -#define NAND_CTL_CLRCLE 4 -/* Select the address latch by setting ALE to high */ -#define NAND_CTL_SETALE 5 -/* Deselect the address latch by setting ALE to low */ -#define NAND_CTL_CLRALE 6 - -static void au1550_hwcontrol(struct mtd_info *mtd, int cmd) -{ - struct nand_chip *this = mtd_to_nand(mtd); - struct au1550nd_ctx *ctx = container_of(this, struct au1550nd_ctx, - chip); - - switch (cmd) { - - case NAND_CTL_SETCLE: - this->IO_ADDR_W = ctx->base + MEM_STNAND_CMD; - break; - - case NAND_CTL_CLRCLE: - this->IO_ADDR_W = ctx->base + MEM_STNAND_DATA; - break; - - case NAND_CTL_SETALE: - this->IO_ADDR_W = ctx->base + MEM_STNAND_ADDR; - break; - - case NAND_CTL_CLRALE: - this->IO_ADDR_W = ctx->base + MEM_STNAND_DATA; - /* FIXME: Nobody knows why this is necessary, - * but it works only that way */ - udelay(1); - break; - - case NAND_CTL_SETNCE: - /* assert (force assert) chip enable */ - alchemy_wrsmem((1 << (4 + ctx->cs)), AU1000_MEM_STNDCTL); - break; - - case NAND_CTL_CLRNCE: - /* deassert chip enable */ - alchemy_wrsmem(0, AU1000_MEM_STNDCTL); - break; - } - - this->IO_ADDR_R = this->IO_ADDR_W; - - wmb(); /* Drain the writebuffer */ -} - -int au1550_device_ready(struct mtd_info *mtd) -{ - return (alchemy_rdsmem(AU1000_MEM_STSTAT) & 0x1) ? 1 : 0; -} - -/** - * au1550_select_chip - control -CE line - * Forbid driving -CE manually permitting the NAND controller to do this. - * Keeping -CE asserted during the whole sector reads interferes with the - * NOR flash and PCMCIA drivers as it causes contention on the static bus. - * We only have to hold -CE low for the NAND read commands since the flash - * chip needs it to be asserted during chip not ready time but the NAND - * controller keeps it released. - * - * @mtd: MTD device structure - * @chip: chipnumber to select, -1 for deselect - */ -static void au1550_select_chip(struct mtd_info *mtd, int chip) -{ -} - -/** - * au1550_command - Send command to NAND device - * @mtd: MTD device structure - * @command: the command to be sent - * @column: the column address for this command, -1 if none - * @page_addr: the page address for this command, -1 if none - */ -static void au1550_command(struct mtd_info *mtd, unsigned command, int column, int page_addr) -{ - struct nand_chip *this = mtd_to_nand(mtd); - struct au1550nd_ctx *ctx = container_of(this, struct au1550nd_ctx, - chip); - int ce_override = 0, i; - unsigned long flags = 0; - - /* Begin command latch cycle */ - au1550_hwcontrol(mtd, NAND_CTL_SETCLE); - /* - * Write out the command to the device. - */ - if (command == NAND_CMD_SEQIN) { - int readcmd; - - if (column >= mtd->writesize) { - /* OOB area */ - column -= mtd->writesize; - readcmd = NAND_CMD_READOOB; - } else if (column < 256) { - /* First 256 bytes --> READ0 */ - readcmd = NAND_CMD_READ0; - } else { - column -= 256; - readcmd = NAND_CMD_READ1; - } - ctx->write_byte(mtd, readcmd); - } - ctx->write_byte(mtd, command); - - /* Set ALE and clear CLE to start address cycle */ - au1550_hwcontrol(mtd, NAND_CTL_CLRCLE); - - if (column != -1 || page_addr != -1) { - au1550_hwcontrol(mtd, NAND_CTL_SETALE); - - /* Serially input address */ - if (column != -1) { - /* Adjust columns for 16 bit buswidth */ - if (this->options & NAND_BUSWIDTH_16 && - !nand_opcode_8bits(command)) - column >>= 1; - ctx->write_byte(mtd, column); - } - if (page_addr != -1) { - ctx->write_byte(mtd, (u8)(page_addr & 0xff)); - - if (command == NAND_CMD_READ0 || - command == NAND_CMD_READ1 || - command == NAND_CMD_READOOB) { - /* - * NAND controller will release -CE after - * the last address byte is written, so we'll - * have to forcibly assert it. No interrupts - * are allowed while we do this as we don't - * want the NOR flash or PCMCIA drivers to - * steal our precious bytes of data... - */ - ce_override = 1; - local_irq_save(flags); - au1550_hwcontrol(mtd, NAND_CTL_SETNCE); - } - - ctx->write_byte(mtd, (u8)(page_addr >> 8)); - - if (this->options & NAND_ROW_ADDR_3) - ctx->write_byte(mtd, - ((page_addr >> 16) & 0x0f)); - } - /* Latch in address */ - au1550_hwcontrol(mtd, NAND_CTL_CLRALE); - } - - /* - * Program and erase have their own busy handlers. - * Status and sequential in need no delay. - */ - switch (command) { - - case NAND_CMD_PAGEPROG: - case NAND_CMD_ERASE1: - case NAND_CMD_ERASE2: - case NAND_CMD_SEQIN: - case NAND_CMD_STATUS: - return; - - case NAND_CMD_RESET: - break; - - case NAND_CMD_READ0: - case NAND_CMD_READ1: - case NAND_CMD_READOOB: - /* Check if we're really driving -CE low (just in case) */ - if (unlikely(!ce_override)) - break; - - /* Apply a short delay always to ensure that we do wait tWB. */ - ndelay(100); - /* Wait for a chip to become ready... */ - for (i = this->chip_delay; !this->dev_ready(mtd) && i > 0; --i) - udelay(1); - - /* Release -CE and re-enable interrupts. */ - au1550_hwcontrol(mtd, NAND_CTL_CLRNCE); - local_irq_restore(flags); - return; - } - /* Apply this short delay always to ensure that we do wait tWB. */ - ndelay(100); - - while(!this->dev_ready(mtd)); -} - -static int find_nand_cs(unsigned long nand_base) -{ - void __iomem *base = - (void __iomem *)KSEG1ADDR(AU1000_STATIC_MEM_PHYS_ADDR); - unsigned long addr, staddr, start, mask, end; - int i; - - for (i = 0; i < 4; i++) { - addr = 0x1000 + (i * 0x10); /* CSx */ - staddr = __raw_readl(base + addr + 0x08); /* STADDRx */ - /* figure out the decoded range of this CS */ - start = (staddr << 4) & 0xfffc0000; - mask = (staddr << 18) & 0xfffc0000; - end = (start | (start - 1)) & ~(start ^ mask); - if ((nand_base >= start) && (nand_base < end)) - return i; - } - - return -ENODEV; -} - -static int au1550nd_probe(struct platform_device *pdev) -{ - struct au1550nd_platdata *pd; - struct au1550nd_ctx *ctx; - struct nand_chip *this; - struct mtd_info *mtd; - struct resource *r; - int ret, cs; - - pd = dev_get_platdata(&pdev->dev); - if (!pd) { - dev_err(&pdev->dev, "missing platform data\n"); - return -ENODEV; - } - - ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); - if (!ctx) - return -ENOMEM; - - r = platform_get_resource(pdev, IORESOURCE_MEM, 0); - if (!r) { - dev_err(&pdev->dev, "no NAND memory resource\n"); - ret = -ENODEV; - goto out1; - } - if (request_mem_region(r->start, resource_size(r), "au1550-nand")) { - dev_err(&pdev->dev, "cannot claim NAND memory area\n"); - ret = -ENOMEM; - goto out1; - } - - ctx->base = ioremap_nocache(r->start, 0x1000); - if (!ctx->base) { - dev_err(&pdev->dev, "cannot remap NAND memory area\n"); - ret = -ENODEV; - goto out2; - } - - this = &ctx->chip; - mtd = nand_to_mtd(this); - mtd->dev.parent = &pdev->dev; - - /* figure out which CS# r->start belongs to */ - cs = find_nand_cs(r->start); - if (cs < 0) { - dev_err(&pdev->dev, "cannot detect NAND chipselect\n"); - ret = -ENODEV; - goto out3; - } - ctx->cs = cs; - - this->dev_ready = au1550_device_ready; - this->select_chip = au1550_select_chip; - this->cmdfunc = au1550_command; - - /* 30 us command delay time */ - this->chip_delay = 30; - this->ecc.mode = NAND_ECC_SOFT; - this->ecc.algo = NAND_ECC_HAMMING; - - if (pd->devwidth) - this->options |= NAND_BUSWIDTH_16; - - this->read_byte = (pd->devwidth) ? au_read_byte16 : au_read_byte; - ctx->write_byte = (pd->devwidth) ? au_write_byte16 : au_write_byte; - this->read_word = au_read_word; - this->write_buf = (pd->devwidth) ? au_write_buf16 : au_write_buf; - this->read_buf = (pd->devwidth) ? au_read_buf16 : au_read_buf; - - ret = nand_scan(mtd, 1); - if (ret) { - dev_err(&pdev->dev, "NAND scan failed with %d\n", ret); - goto out3; - } - - mtd_device_register(mtd, pd->parts, pd->num_parts); - - platform_set_drvdata(pdev, ctx); - - return 0; - -out3: - iounmap(ctx->base); -out2: - release_mem_region(r->start, resource_size(r)); -out1: - kfree(ctx); - return ret; -} - -static int au1550nd_remove(struct platform_device *pdev) -{ - struct au1550nd_ctx *ctx = platform_get_drvdata(pdev); - struct resource *r = platform_get_resource(pdev, IORESOURCE_MEM, 0); - - nand_release(nand_to_mtd(&ctx->chip)); - iounmap(ctx->base); - release_mem_region(r->start, 0x1000); - kfree(ctx); - return 0; -} - -static struct platform_driver au1550nd_driver = { - .driver = { - .name = "au1550-nand", - }, - .probe = au1550nd_probe, - .remove = au1550nd_remove, -}; - -module_platform_driver(au1550nd_driver); - -MODULE_LICENSE("GPL"); -MODULE_AUTHOR("Embedded Edge, LLC"); -MODULE_DESCRIPTION("Board-specific glue layer for NAND flash on Pb1550 board"); diff --git a/drivers/mtd/nand/bcm47xxnflash/Makefile b/drivers/mtd/nand/bcm47xxnflash/Makefile deleted file mode 100644 index f05b119e134b..000000000000 --- a/drivers/mtd/nand/bcm47xxnflash/Makefile +++ /dev/null @@ -1,4 +0,0 @@ -bcm47xxnflash-y += main.o -bcm47xxnflash-y += ops_bcm4706.o - -obj-$(CONFIG_MTD_NAND_BCM47XXNFLASH) += bcm47xxnflash.o diff --git a/drivers/mtd/nand/bcm47xxnflash/bcm47xxnflash.h b/drivers/mtd/nand/bcm47xxnflash/bcm47xxnflash.h deleted file mode 100644 index 201b9baa52a0..000000000000 --- a/drivers/mtd/nand/bcm47xxnflash/bcm47xxnflash.h +++ /dev/null @@ -1,26 +0,0 @@ -/* SPDX-License-Identifier: GPL-2.0 */ -#ifndef __BCM47XXNFLASH_H -#define __BCM47XXNFLASH_H - -#ifndef pr_fmt -#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt -#endif - -#include -#include - -struct bcm47xxnflash { - struct bcma_drv_cc *cc; - - struct nand_chip nand_chip; - - unsigned curr_command; - int curr_page_addr; - int curr_column; - - u8 id_data[8]; -}; - -int bcm47xxnflash_ops_bcm4706_init(struct bcm47xxnflash *b47n); - -#endif /* BCM47XXNFLASH */ diff --git a/drivers/mtd/nand/bcm47xxnflash/main.c b/drivers/mtd/nand/bcm47xxnflash/main.c deleted file mode 100644 index fb31429b70a9..000000000000 --- a/drivers/mtd/nand/bcm47xxnflash/main.c +++ /dev/null @@ -1,81 +0,0 @@ -/* - * BCM47XX NAND flash driver - * - * Copyright (C) 2012 Rafał Miłecki - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License version 2 as - * published by the Free Software Foundation. - * - */ - -#include "bcm47xxnflash.h" - -#include -#include -#include -#include -#include - -MODULE_DESCRIPTION("NAND flash driver for BCMA bus"); -MODULE_LICENSE("GPL"); -MODULE_AUTHOR("Rafał Miłecki"); - -static const char *probes[] = { "bcm47xxpart", NULL }; - -static int bcm47xxnflash_probe(struct platform_device *pdev) -{ - struct bcma_nflash *nflash = dev_get_platdata(&pdev->dev); - struct bcm47xxnflash *b47n; - struct mtd_info *mtd; - int err = 0; - - b47n = devm_kzalloc(&pdev->dev, sizeof(*b47n), GFP_KERNEL); - if (!b47n) - return -ENOMEM; - - nand_set_controller_data(&b47n->nand_chip, b47n); - mtd = nand_to_mtd(&b47n->nand_chip); - mtd->dev.parent = &pdev->dev; - b47n->cc = container_of(nflash, struct bcma_drv_cc, nflash); - - if (b47n->cc->core->bus->chipinfo.id == BCMA_CHIP_ID_BCM4706) { - err = bcm47xxnflash_ops_bcm4706_init(b47n); - } else { - pr_err("Device not supported\n"); - err = -ENOTSUPP; - } - if (err) { - pr_err("Initialization failed: %d\n", err); - return err; - } - - platform_set_drvdata(pdev, b47n); - - err = mtd_device_parse_register(mtd, probes, NULL, NULL, 0); - if (err) { - pr_err("Failed to register MTD device: %d\n", err); - return err; - } - - return 0; -} - -static int bcm47xxnflash_remove(struct platform_device *pdev) -{ - struct bcm47xxnflash *nflash = platform_get_drvdata(pdev); - - nand_release(nand_to_mtd(&nflash->nand_chip)); - - return 0; -} - -static struct platform_driver bcm47xxnflash_driver = { - .probe = bcm47xxnflash_probe, - .remove = bcm47xxnflash_remove, - .driver = { - .name = "bcma_nflash", - }, -}; - -module_platform_driver(bcm47xxnflash_driver); diff --git a/drivers/mtd/nand/bcm47xxnflash/ops_bcm4706.c b/drivers/mtd/nand/bcm47xxnflash/ops_bcm4706.c deleted file mode 100644 index 54bac5b73f0a..000000000000 --- a/drivers/mtd/nand/bcm47xxnflash/ops_bcm4706.c +++ /dev/null @@ -1,456 +0,0 @@ -/* - * BCM47XX NAND flash driver - * - * Copyright (C) 2012 Rafał Miłecki - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License version 2 as - * published by the Free Software Foundation. - * - */ - -#include "bcm47xxnflash.h" - -#include -#include -#include -#include -#include - -/* Broadcom uses 1'000'000 but it seems to be too many. Tests on WNDR4500 has - * shown ~1000 retries as maxiumum. */ -#define NFLASH_READY_RETRIES 10000 - -#define NFLASH_SECTOR_SIZE 512 - -#define NCTL_CMD0 0x00010000 -#define NCTL_COL 0x00020000 /* Update column with value from BCMA_CC_NFLASH_COL_ADDR */ -#define NCTL_ROW 0x00040000 /* Update row (page) with value from BCMA_CC_NFLASH_ROW_ADDR */ -#define NCTL_CMD1W 0x00080000 -#define NCTL_READ 0x00100000 -#define NCTL_WRITE 0x00200000 -#define NCTL_SPECADDR 0x01000000 -#define NCTL_READY 0x04000000 -#define NCTL_ERR 0x08000000 -#define NCTL_CSA 0x40000000 -#define NCTL_START 0x80000000 - -/************************************************** - * Various helpers - **************************************************/ - -static inline u8 bcm47xxnflash_ops_bcm4706_ns_to_cycle(u16 ns, u16 clock) -{ - return ((ns * 1000 * clock) / 1000000) + 1; -} - -static int bcm47xxnflash_ops_bcm4706_ctl_cmd(struct bcma_drv_cc *cc, u32 code) -{ - int i = 0; - - bcma_cc_write32(cc, BCMA_CC_NFLASH_CTL, NCTL_START | code); - for (i = 0; i < NFLASH_READY_RETRIES; i++) { - if (!(bcma_cc_read32(cc, BCMA_CC_NFLASH_CTL) & NCTL_START)) { - i = 0; - break; - } - } - if (i) { - pr_err("NFLASH control command not ready!\n"); - return -EBUSY; - } - return 0; -} - -static int bcm47xxnflash_ops_bcm4706_poll(struct bcma_drv_cc *cc) -{ - int i; - - for (i = 0; i < NFLASH_READY_RETRIES; i++) { - if (bcma_cc_read32(cc, BCMA_CC_NFLASH_CTL) & NCTL_READY) { - if (bcma_cc_read32(cc, BCMA_CC_NFLASH_CTL) & - BCMA_CC_NFLASH_CTL_ERR) { - pr_err("Error on polling\n"); - return -EBUSY; - } else { - return 0; - } - } - } - - pr_err("Polling timeout!\n"); - return -EBUSY; -} - -/************************************************** - * R/W - **************************************************/ - -static void bcm47xxnflash_ops_bcm4706_read(struct mtd_info *mtd, uint8_t *buf, - int len) -{ - struct nand_chip *nand_chip = mtd_to_nand(mtd); - struct bcm47xxnflash *b47n = nand_get_controller_data(nand_chip); - - u32 ctlcode; - u32 *dest = (u32 *)buf; - int i; - int toread; - - BUG_ON(b47n->curr_page_addr & ~nand_chip->pagemask); - /* Don't validate column using nand_chip->page_shift, it may be bigger - * when accessing OOB */ - - while (len) { - /* We can read maximum of 0x200 bytes at once */ - toread = min(len, 0x200); - - /* Set page and column */ - bcma_cc_write32(b47n->cc, BCMA_CC_NFLASH_COL_ADDR, - b47n->curr_column); - bcma_cc_write32(b47n->cc, BCMA_CC_NFLASH_ROW_ADDR, - b47n->curr_page_addr); - - /* Prepare to read */ - ctlcode = NCTL_CSA | NCTL_CMD1W | NCTL_ROW | NCTL_COL | - NCTL_CMD0; - ctlcode |= NAND_CMD_READSTART << 8; - if (bcm47xxnflash_ops_bcm4706_ctl_cmd(b47n->cc, ctlcode)) - return; - if (bcm47xxnflash_ops_bcm4706_poll(b47n->cc)) - return; - - /* Eventually read some data :) */ - for (i = 0; i < toread; i += 4, dest++) { - ctlcode = NCTL_CSA | 0x30000000 | NCTL_READ; - if (i == toread - 4) /* Last read goes without that */ - ctlcode &= ~NCTL_CSA; - if (bcm47xxnflash_ops_bcm4706_ctl_cmd(b47n->cc, - ctlcode)) - return; - *dest = bcma_cc_read32(b47n->cc, BCMA_CC_NFLASH_DATA); - } - - b47n->curr_column += toread; - len -= toread; - } -} - -static void bcm47xxnflash_ops_bcm4706_write(struct mtd_info *mtd, - const uint8_t *buf, int len) -{ - struct nand_chip *nand_chip = mtd_to_nand(mtd); - struct bcm47xxnflash *b47n = nand_get_controller_data(nand_chip); - struct bcma_drv_cc *cc = b47n->cc; - - u32 ctlcode; - const u32 *data = (u32 *)buf; - int i; - - BUG_ON(b47n->curr_page_addr & ~nand_chip->pagemask); - /* Don't validate column using nand_chip->page_shift, it may be bigger - * when accessing OOB */ - - for (i = 0; i < len; i += 4, data++) { - bcma_cc_write32(cc, BCMA_CC_NFLASH_DATA, *data); - - ctlcode = NCTL_CSA | 0x30000000 | NCTL_WRITE; - if (i == len - 4) /* Last read goes without that */ - ctlcode &= ~NCTL_CSA; - if (bcm47xxnflash_ops_bcm4706_ctl_cmd(cc, ctlcode)) { - pr_err("%s ctl_cmd didn't work!\n", __func__); - return; - } - } - - b47n->curr_column += len; -} - -/************************************************** - * NAND chip ops - **************************************************/ - -static void bcm47xxnflash_ops_bcm4706_cmd_ctrl(struct mtd_info *mtd, int cmd, - unsigned int ctrl) -{ - struct nand_chip *nand_chip = mtd_to_nand(mtd); - struct bcm47xxnflash *b47n = nand_get_controller_data(nand_chip); - u32 code = 0; - - if (cmd == NAND_CMD_NONE) - return; - - if (cmd & NAND_CTRL_CLE) - code = cmd | NCTL_CMD0; - - /* nCS is not needed for reset command */ - if (cmd != NAND_CMD_RESET) - code |= NCTL_CSA; - - bcm47xxnflash_ops_bcm4706_ctl_cmd(b47n->cc, code); -} - -/* Default nand_select_chip calls cmd_ctrl, which is not used in BCM4706 */ -static void bcm47xxnflash_ops_bcm4706_select_chip(struct mtd_info *mtd, - int chip) -{ - return; -} - -static int bcm47xxnflash_ops_bcm4706_dev_ready(struct mtd_info *mtd) -{ - struct nand_chip *nand_chip = mtd_to_nand(mtd); - struct bcm47xxnflash *b47n = nand_get_controller_data(nand_chip); - - return !!(bcma_cc_read32(b47n->cc, BCMA_CC_NFLASH_CTL) & NCTL_READY); -} - -/* - * Default nand_command and nand_command_lp don't match BCM4706 hardware layout. - * For example, reading chip id is performed in a non-standard way. - * Setting column and page is also handled differently, we use a special - * registers of ChipCommon core. Hacking cmd_ctrl to understand and convert - * standard commands would be much more complicated. - */ -static void bcm47xxnflash_ops_bcm4706_cmdfunc(struct mtd_info *mtd, - unsigned command, int column, - int page_addr) -{ - struct nand_chip *nand_chip = mtd_to_nand(mtd); - struct bcm47xxnflash *b47n = nand_get_controller_data(nand_chip); - struct bcma_drv_cc *cc = b47n->cc; - u32 ctlcode; - int i; - - if (column != -1) - b47n->curr_column = column; - if (page_addr != -1) - b47n->curr_page_addr = page_addr; - - switch (command) { - case NAND_CMD_RESET: - nand_chip->cmd_ctrl(mtd, command, NAND_CTRL_CLE); - - ndelay(100); - nand_wait_ready(mtd); - break; - case NAND_CMD_READID: - ctlcode = NCTL_CSA | 0x01000000 | NCTL_CMD1W | NCTL_CMD0; - ctlcode |= NAND_CMD_READID; - if (bcm47xxnflash_ops_bcm4706_ctl_cmd(b47n->cc, ctlcode)) { - pr_err("READID error\n"); - break; - } - - /* - * Reading is specific, last one has to go without NCTL_CSA - * bit. We don't know how many reads NAND subsystem is going - * to perform, so cache everything. - */ - for (i = 0; i < ARRAY_SIZE(b47n->id_data); i++) { - ctlcode = NCTL_CSA | NCTL_READ; - if (i == ARRAY_SIZE(b47n->id_data) - 1) - ctlcode &= ~NCTL_CSA; - if (bcm47xxnflash_ops_bcm4706_ctl_cmd(b47n->cc, - ctlcode)) { - pr_err("READID error\n"); - break; - } - b47n->id_data[i] = - bcma_cc_read32(b47n->cc, BCMA_CC_NFLASH_DATA) - & 0xFF; - } - - break; - case NAND_CMD_STATUS: - ctlcode = NCTL_CSA | NCTL_CMD0 | NAND_CMD_STATUS; - if (bcm47xxnflash_ops_bcm4706_ctl_cmd(cc, ctlcode)) - pr_err("STATUS command error\n"); - break; - case NAND_CMD_READ0: - break; - case NAND_CMD_READOOB: - if (page_addr != -1) - b47n->curr_column += mtd->writesize; - break; - case NAND_CMD_ERASE1: - bcma_cc_write32(cc, BCMA_CC_NFLASH_ROW_ADDR, - b47n->curr_page_addr); - ctlcode = NCTL_ROW | NCTL_CMD1W | NCTL_CMD0 | - NAND_CMD_ERASE1 | (NAND_CMD_ERASE2 << 8); - if (bcm47xxnflash_ops_bcm4706_ctl_cmd(cc, ctlcode)) - pr_err("ERASE1 failed\n"); - break; - case NAND_CMD_ERASE2: - break; - case NAND_CMD_SEQIN: - /* Set page and column */ - bcma_cc_write32(cc, BCMA_CC_NFLASH_COL_ADDR, - b47n->curr_column); - bcma_cc_write32(cc, BCMA_CC_NFLASH_ROW_ADDR, - b47n->curr_page_addr); - - /* Prepare to write */ - ctlcode = 0x40000000 | NCTL_ROW | NCTL_COL | NCTL_CMD0; - ctlcode |= NAND_CMD_SEQIN; - if (bcm47xxnflash_ops_bcm4706_ctl_cmd(cc, ctlcode)) - pr_err("SEQIN failed\n"); - break; - case NAND_CMD_PAGEPROG: - if (bcm47xxnflash_ops_bcm4706_ctl_cmd(cc, NCTL_CMD0 | - NAND_CMD_PAGEPROG)) - pr_err("PAGEPROG failed\n"); - if (bcm47xxnflash_ops_bcm4706_poll(cc)) - pr_err("PAGEPROG not ready\n"); - break; - default: - pr_err("Command 0x%X unsupported\n", command); - break; - } - b47n->curr_command = command; -} - -static u8 bcm47xxnflash_ops_bcm4706_read_byte(struct mtd_info *mtd) -{ - struct nand_chip *nand_chip = mtd_to_nand(mtd); - struct bcm47xxnflash *b47n = nand_get_controller_data(nand_chip); - struct bcma_drv_cc *cc = b47n->cc; - u32 tmp = 0; - - switch (b47n->curr_command) { - case NAND_CMD_READID: - if (b47n->curr_column >= ARRAY_SIZE(b47n->id_data)) { - pr_err("Requested invalid id_data: %d\n", - b47n->curr_column); - return 0; - } - return b47n->id_data[b47n->curr_column++]; - case NAND_CMD_STATUS: - if (bcm47xxnflash_ops_bcm4706_ctl_cmd(cc, NCTL_READ)) - return 0; - return bcma_cc_read32(cc, BCMA_CC_NFLASH_DATA) & 0xff; - case NAND_CMD_READOOB: - bcm47xxnflash_ops_bcm4706_read(mtd, (u8 *)&tmp, 4); - return tmp & 0xFF; - } - - pr_err("Invalid command for byte read: 0x%X\n", b47n->curr_command); - return 0; -} - -static void bcm47xxnflash_ops_bcm4706_read_buf(struct mtd_info *mtd, - uint8_t *buf, int len) -{ - struct nand_chip *nand_chip = mtd_to_nand(mtd); - struct bcm47xxnflash *b47n = nand_get_controller_data(nand_chip); - - switch (b47n->curr_command) { - case NAND_CMD_READ0: - case NAND_CMD_READOOB: - bcm47xxnflash_ops_bcm4706_read(mtd, buf, len); - return; - } - - pr_err("Invalid command for buf read: 0x%X\n", b47n->curr_command); -} - -static void bcm47xxnflash_ops_bcm4706_write_buf(struct mtd_info *mtd, - const uint8_t *buf, int len) -{ - struct nand_chip *nand_chip = mtd_to_nand(mtd); - struct bcm47xxnflash *b47n = nand_get_controller_data(nand_chip); - - switch (b47n->curr_command) { - case NAND_CMD_SEQIN: - bcm47xxnflash_ops_bcm4706_write(mtd, buf, len); - return; - } - - pr_err("Invalid command for buf write: 0x%X\n", b47n->curr_command); -} - -/************************************************** - * Init - **************************************************/ - -int bcm47xxnflash_ops_bcm4706_init(struct bcm47xxnflash *b47n) -{ - struct nand_chip *nand_chip = (struct nand_chip *)&b47n->nand_chip; - int err; - u32 freq; - u16 clock; - u8 w0, w1, w2, w3, w4; - - unsigned long chipsize; /* MiB */ - u8 tbits, col_bits, col_size, row_bits, row_bsize; - u32 val; - - b47n->nand_chip.select_chip = bcm47xxnflash_ops_bcm4706_select_chip; - nand_chip->cmd_ctrl = bcm47xxnflash_ops_bcm4706_cmd_ctrl; - nand_chip->dev_ready = bcm47xxnflash_ops_bcm4706_dev_ready; - b47n->nand_chip.cmdfunc = bcm47xxnflash_ops_bcm4706_cmdfunc; - b47n->nand_chip.read_byte = bcm47xxnflash_ops_bcm4706_read_byte; - b47n->nand_chip.read_buf = bcm47xxnflash_ops_bcm4706_read_buf; - b47n->nand_chip.write_buf = bcm47xxnflash_ops_bcm4706_write_buf; - b47n->nand_chip.onfi_set_features = nand_onfi_get_set_features_notsupp; - b47n->nand_chip.onfi_get_features = nand_onfi_get_set_features_notsupp; - - nand_chip->chip_delay = 50; - b47n->nand_chip.bbt_options = NAND_BBT_USE_FLASH; - b47n->nand_chip.ecc.mode = NAND_ECC_NONE; /* TODO: implement ECC */ - - /* Enable NAND flash access */ - bcma_cc_set32(b47n->cc, BCMA_CC_4706_FLASHSCFG, - BCMA_CC_4706_FLASHSCFG_NF1); - - /* Configure wait counters */ - if (b47n->cc->status & BCMA_CC_CHIPST_4706_PKG_OPTION) { - /* 400 MHz */ - freq = 400000000 / 4; - } else { - freq = bcma_chipco_pll_read(b47n->cc, 4); - freq = (freq & 0xFFF) >> 3; - /* Fixed reference clock 25 MHz and m = 2 */ - freq = (freq * 25000000 / 2) / 4; - } - clock = freq / 1000000; - w0 = bcm47xxnflash_ops_bcm4706_ns_to_cycle(15, clock); - w1 = bcm47xxnflash_ops_bcm4706_ns_to_cycle(20, clock); - w2 = bcm47xxnflash_ops_bcm4706_ns_to_cycle(10, clock); - w3 = bcm47xxnflash_ops_bcm4706_ns_to_cycle(10, clock); - w4 = bcm47xxnflash_ops_bcm4706_ns_to_cycle(100, clock); - bcma_cc_write32(b47n->cc, BCMA_CC_NFLASH_WAITCNT0, - (w4 << 24 | w3 << 18 | w2 << 12 | w1 << 6 | w0)); - - /* Scan NAND */ - err = nand_scan(nand_to_mtd(&b47n->nand_chip), 1); - if (err) { - pr_err("Could not scan NAND flash: %d\n", err); - goto exit; - } - - /* Configure FLASH */ - chipsize = b47n->nand_chip.chipsize >> 20; - tbits = ffs(chipsize); /* find first bit set */ - if (!tbits || tbits != fls(chipsize)) { - pr_err("Invalid flash size: 0x%lX\n", chipsize); - err = -ENOTSUPP; - goto exit; - } - tbits += 19; /* Broadcom increases *index* by 20, we increase *pos* */ - - col_bits = b47n->nand_chip.page_shift + 1; - col_size = (col_bits + 7) / 8; - - row_bits = tbits - col_bits + 1; - row_bsize = (row_bits + 7) / 8; - - val = ((row_bsize - 1) << 6) | ((col_size - 1) << 4) | 2; - bcma_cc_write32(b47n->cc, BCMA_CC_NFLASH_CONF, val); - -exit: - if (err) - bcma_cc_mask32(b47n->cc, BCMA_CC_4706_FLASHSCFG, - ~BCMA_CC_4706_FLASHSCFG_NF1); - return err; -} diff --git a/drivers/mtd/nand/bf5xx_nand.c b/drivers/mtd/nand/bf5xx_nand.c deleted file mode 100644 index 9a1d8d104570..000000000000 --- a/drivers/mtd/nand/bf5xx_nand.c +++ /dev/null @@ -1,861 +0,0 @@ -/* - * Copyright 2006-2008 Analog Devices Inc. - * http://blackfin.uclinux.org/ - * Bryan Wu - * - * Blackfin BF5xx on-chip NAND flash controller driver - * - * Derived from s3c2410.c - * Copyright (c) 2007 Ben Dooks - * - * Derived from cafe.c - * Copyright © 2006 Red Hat, Inc. - * Copyright © 2006 David Woodhouse - * - * Changelog: - * 12-Jun-2007 Bryan Wu: Initial version - * 18-Jul-2007 Bryan Wu: - * - ECC_HW and ECC_SW supported - * - DMA supported in ECC_HW - * - YAFFS tested as rootfs in both ECC_HW and ECC_SW - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation; either version 2 of the License, or - * (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License - * along with this program; if not, write to the Free Software - * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA -*/ - -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include - -#include -#include -#include -#include - -#include -#include -#include -#include -#include - -#define DRV_NAME "bf5xx-nand" -#define DRV_VERSION "1.2" -#define DRV_AUTHOR "Bryan Wu " -#define DRV_DESC "BF5xx on-chip NAND FLash Controller Driver" - -/* NFC_STAT Masks */ -#define NBUSY 0x01 /* Not Busy */ -#define WB_FULL 0x02 /* Write Buffer Full */ -#define PG_WR_STAT 0x04 /* Page Write Pending */ -#define PG_RD_STAT 0x08 /* Page Read Pending */ -#define WB_EMPTY 0x10 /* Write Buffer Empty */ - -/* NFC_IRQSTAT Masks */ -#define NBUSYIRQ 0x01 /* Not Busy IRQ */ -#define WB_OVF 0x02 /* Write Buffer Overflow */ -#define WB_EDGE 0x04 /* Write Buffer Edge Detect */ -#define RD_RDY 0x08 /* Read Data Ready */ -#define WR_DONE 0x10 /* Page Write Done */ - -/* NFC_RST Masks */ -#define ECC_RST 0x01 /* ECC (and NFC counters) Reset */ - -/* NFC_PGCTL Masks */ -#define PG_RD_START 0x01 /* Page Read Start */ -#define PG_WR_START 0x02 /* Page Write Start */ - -#ifdef CONFIG_MTD_NAND_BF5XX_HWECC -static int hardware_ecc = 1; -#else -static int hardware_ecc; -#endif - -static const unsigned short bfin_nfc_pin_req[] = - {P_NAND_CE, - P_NAND_RB, - P_NAND_D0, - P_NAND_D1, - P_NAND_D2, - P_NAND_D3, - P_NAND_D4, - P_NAND_D5, - P_NAND_D6, - P_NAND_D7, - P_NAND_WE, - P_NAND_RE, - P_NAND_CLE, - P_NAND_ALE, - 0}; - -#ifdef CONFIG_MTD_NAND_BF5XX_BOOTROM_ECC -static int bootrom_ooblayout_ecc(struct mtd_info *mtd, int section, - struct mtd_oob_region *oobregion) -{ - if (section > 7) - return -ERANGE; - - oobregion->offset = section * 8; - oobregion->length = 3; - - return 0; -} - -static int bootrom_ooblayout_free(struct mtd_info *mtd, int section, - struct mtd_oob_region *oobregion) -{ - if (section > 7) - return -ERANGE; - - oobregion->offset = (section * 8) + 3; - oobregion->length = 5; - - return 0; -} - -static const struct mtd_ooblayout_ops bootrom_ooblayout_ops = { - .ecc = bootrom_ooblayout_ecc, - .free = bootrom_ooblayout_free, -}; -#endif - -/* - * Data structures for bf5xx nand flash controller driver - */ - -/* bf5xx nand info */ -struct bf5xx_nand_info { - /* mtd info */ - struct nand_hw_control controller; - struct nand_chip chip; - - /* platform info */ - struct bf5xx_nand_platform *platform; - - /* device info */ - struct device *device; - - /* DMA stuff */ - struct completion dma_completion; -}; - -/* - * Conversion functions - */ -static struct bf5xx_nand_info *mtd_to_nand_info(struct mtd_info *mtd) -{ - return container_of(mtd_to_nand(mtd), struct bf5xx_nand_info, - chip); -} - -static struct bf5xx_nand_info *to_nand_info(struct platform_device *pdev) -{ - return platform_get_drvdata(pdev); -} - -static struct bf5xx_nand_platform *to_nand_plat(struct platform_device *pdev) -{ - return dev_get_platdata(&pdev->dev); -} - -/* - * struct nand_chip interface function pointers - */ - -/* - * bf5xx_nand_hwcontrol - * - * Issue command and address cycles to the chip - */ -static void bf5xx_nand_hwcontrol(struct mtd_info *mtd, int cmd, - unsigned int ctrl) -{ - if (cmd == NAND_CMD_NONE) - return; - - while (bfin_read_NFC_STAT() & WB_FULL) - cpu_relax(); - - if (ctrl & NAND_CLE) - bfin_write_NFC_CMD(cmd); - else if (ctrl & NAND_ALE) - bfin_write_NFC_ADDR(cmd); - SSYNC(); -} - -/* - * bf5xx_nand_devready() - * - * returns 0 if the nand is busy, 1 if it is ready - */ -static int bf5xx_nand_devready(struct mtd_info *mtd) -{ - unsigned short val = bfin_read_NFC_STAT(); - - if ((val & NBUSY) == NBUSY) - return 1; - else - return 0; -} - -/* - * ECC functions - * These allow the bf5xx to use the controller's ECC - * generator block to ECC the data as it passes through - */ - -/* - * ECC error correction function - */ -static int bf5xx_nand_correct_data_256(struct mtd_info *mtd, u_char *dat, - u_char *read_ecc, u_char *calc_ecc) -{ - struct bf5xx_nand_info *info = mtd_to_nand_info(mtd); - u32 syndrome[5]; - u32 calced, stored; - int i; - unsigned short failing_bit, failing_byte; - u_char data; - - calced = calc_ecc[0] | (calc_ecc[1] << 8) | (calc_ecc[2] << 16); - stored = read_ecc[0] | (read_ecc[1] << 8) | (read_ecc[2] << 16); - - syndrome[0] = (calced ^ stored); - - /* - * syndrome 0: all zero - * No error in data - * No action - */ - if (!syndrome[0] || !calced || !stored) - return 0; - - /* - * sysdrome 0: only one bit is one - * ECC data was incorrect - * No action - */ - if (hweight32(syndrome[0]) == 1) { - dev_err(info->device, "ECC data was incorrect!\n"); - return -EBADMSG; - } - - syndrome[1] = (calced & 0x7FF) ^ (stored & 0x7FF); - syndrome[2] = (calced & 0x7FF) ^ ((calced >> 11) & 0x7FF); - syndrome[3] = (stored & 0x7FF) ^ ((stored >> 11) & 0x7FF); - syndrome[4] = syndrome[2] ^ syndrome[3]; - - for (i = 0; i < 5; i++) - dev_info(info->device, "syndrome[%d] 0x%08x\n", i, syndrome[i]); - - dev_info(info->device, - "calced[0x%08x], stored[0x%08x]\n", - calced, stored); - - /* - * sysdrome 0: exactly 11 bits are one, each parity - * and parity' pair is 1 & 0 or 0 & 1. - * 1-bit correctable error - * Correct the error - */ - if (hweight32(syndrome[0]) == 11 && syndrome[4] == 0x7FF) { - dev_info(info->device, - "1-bit correctable error, correct it.\n"); - dev_info(info->device, - "syndrome[1] 0x%08x\n", syndrome[1]); - - failing_bit = syndrome[1] & 0x7; - failing_byte = syndrome[1] >> 0x3; - data = *(dat + failing_byte); - data = data ^ (0x1 << failing_bit); - *(dat + failing_byte) = data; - - return 1; - } - - /* - * sysdrome 0: random data - * More than 1-bit error, non-correctable error - * Discard data, mark bad block - */ - dev_err(info->device, - "More than 1-bit error, non-correctable error.\n"); - dev_err(info->device, - "Please discard data, mark bad block\n"); - - return -EBADMSG; -} - -static int bf5xx_nand_correct_data(struct mtd_info *mtd, u_char *dat, - u_char *read_ecc, u_char *calc_ecc) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - int ret, bitflips = 0; - - ret = bf5xx_nand_correct_data_256(mtd, dat, read_ecc, calc_ecc); - if (ret < 0) - return ret; - - bitflips = ret; - - /* If ecc size is 512, correct second 256 bytes */ - if (chip->ecc.size == 512) { - dat += 256; - read_ecc += 3; - calc_ecc += 3; - ret = bf5xx_nand_correct_data_256(mtd, dat, read_ecc, calc_ecc); - if (ret < 0) - return ret; - - bitflips += ret; - } - - return bitflips; -} - -static void bf5xx_nand_enable_hwecc(struct mtd_info *mtd, int mode) -{ - return; -} - -static int bf5xx_nand_calculate_ecc(struct mtd_info *mtd, - const u_char *dat, u_char *ecc_code) -{ - struct bf5xx_nand_info *info = mtd_to_nand_info(mtd); - struct nand_chip *chip = mtd_to_nand(mtd); - u16 ecc0, ecc1; - u32 code[2]; - u8 *p; - - /* first 3 bytes ECC code for 256 page size */ - ecc0 = bfin_read_NFC_ECC0(); - ecc1 = bfin_read_NFC_ECC1(); - - code[0] = (ecc0 & 0x7ff) | ((ecc1 & 0x7ff) << 11); - - dev_dbg(info->device, "returning ecc 0x%08x\n", code[0]); - - p = (u8 *) code; - memcpy(ecc_code, p, 3); - - /* second 3 bytes ECC code for 512 ecc size */ - if (chip->ecc.size == 512) { - ecc0 = bfin_read_NFC_ECC2(); - ecc1 = bfin_read_NFC_ECC3(); - code[1] = (ecc0 & 0x7ff) | ((ecc1 & 0x7ff) << 11); - - /* second 3 bytes in ecc_code for second 256 - * bytes of 512 page size - */ - p = (u8 *) (code + 1); - memcpy((ecc_code + 3), p, 3); - dev_dbg(info->device, "returning ecc 0x%08x\n", code[1]); - } - - return 0; -} - -/* - * PIO mode for buffer writing and reading - */ -static void bf5xx_nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) -{ - int i; - unsigned short val; - - /* - * Data reads are requested by first writing to NFC_DATA_RD - * and then reading back from NFC_READ. - */ - for (i = 0; i < len; i++) { - while (bfin_read_NFC_STAT() & WB_FULL) - cpu_relax(); - - /* Contents do not matter */ - bfin_write_NFC_DATA_RD(0x0000); - SSYNC(); - - while ((bfin_read_NFC_IRQSTAT() & RD_RDY) != RD_RDY) - cpu_relax(); - - buf[i] = bfin_read_NFC_READ(); - - val = bfin_read_NFC_IRQSTAT(); - val |= RD_RDY; - bfin_write_NFC_IRQSTAT(val); - SSYNC(); - } -} - -static uint8_t bf5xx_nand_read_byte(struct mtd_info *mtd) -{ - uint8_t val; - - bf5xx_nand_read_buf(mtd, &val, 1); - - return val; -} - -static void bf5xx_nand_write_buf(struct mtd_info *mtd, - const uint8_t *buf, int len) -{ - int i; - - for (i = 0; i < len; i++) { - while (bfin_read_NFC_STAT() & WB_FULL) - cpu_relax(); - - bfin_write_NFC_DATA_WR(buf[i]); - SSYNC(); - } -} - -static void bf5xx_nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len) -{ - int i; - u16 *p = (u16 *) buf; - len >>= 1; - - /* - * Data reads are requested by first writing to NFC_DATA_RD - * and then reading back from NFC_READ. - */ - bfin_write_NFC_DATA_RD(0x5555); - - SSYNC(); - - for (i = 0; i < len; i++) - p[i] = bfin_read_NFC_READ(); -} - -static void bf5xx_nand_write_buf16(struct mtd_info *mtd, - const uint8_t *buf, int len) -{ - int i; - u16 *p = (u16 *) buf; - len >>= 1; - - for (i = 0; i < len; i++) - bfin_write_NFC_DATA_WR(p[i]); - - SSYNC(); -} - -/* - * DMA functions for buffer writing and reading - */ -static irqreturn_t bf5xx_nand_dma_irq(int irq, void *dev_id) -{ - struct bf5xx_nand_info *info = dev_id; - - clear_dma_irqstat(CH_NFC); - disable_dma(CH_NFC); - complete(&info->dma_completion); - - return IRQ_HANDLED; -} - -static void bf5xx_nand_dma_rw(struct mtd_info *mtd, - uint8_t *buf, int is_read) -{ - struct bf5xx_nand_info *info = mtd_to_nand_info(mtd); - struct nand_chip *chip = mtd_to_nand(mtd); - unsigned short val; - - dev_dbg(info->device, " mtd->%p, buf->%p, is_read %d\n", - mtd, buf, is_read); - - /* - * Before starting a dma transfer, be sure to invalidate/flush - * the cache over the address range of your DMA buffer to - * prevent cache coherency problems. Otherwise very subtle bugs - * can be introduced to your driver. - */ - if (is_read) - invalidate_dcache_range((unsigned int)buf, - (unsigned int)(buf + chip->ecc.size)); - else - flush_dcache_range((unsigned int)buf, - (unsigned int)(buf + chip->ecc.size)); - - /* - * This register must be written before each page is - * transferred to generate the correct ECC register - * values. - */ - bfin_write_NFC_RST(ECC_RST); - SSYNC(); - while (bfin_read_NFC_RST() & ECC_RST) - cpu_relax(); - - disable_dma(CH_NFC); - clear_dma_irqstat(CH_NFC); - - /* setup DMA register with Blackfin DMA API */ - set_dma_config(CH_NFC, 0x0); - set_dma_start_addr(CH_NFC, (unsigned long) buf); - - /* The DMAs have different size on BF52x and BF54x */ -#ifdef CONFIG_BF52x - set_dma_x_count(CH_NFC, (chip->ecc.size >> 1)); - set_dma_x_modify(CH_NFC, 2); - val = DI_EN | WDSIZE_16; -#endif - -#ifdef CONFIG_BF54x - set_dma_x_count(CH_NFC, (chip->ecc.size >> 2)); - set_dma_x_modify(CH_NFC, 4); - val = DI_EN | WDSIZE_32; -#endif - /* setup write or read operation */ - if (is_read) - val |= WNR; - set_dma_config(CH_NFC, val); - enable_dma(CH_NFC); - - /* Start PAGE read/write operation */ - if (is_read) - bfin_write_NFC_PGCTL(PG_RD_START); - else - bfin_write_NFC_PGCTL(PG_WR_START); - wait_for_completion(&info->dma_completion); -} - -static void bf5xx_nand_dma_read_buf(struct mtd_info *mtd, - uint8_t *buf, int len) -{ - struct bf5xx_nand_info *info = mtd_to_nand_info(mtd); - struct nand_chip *chip = mtd_to_nand(mtd); - - dev_dbg(info->device, "mtd->%p, buf->%p, int %d\n", mtd, buf, len); - - if (len == chip->ecc.size) - bf5xx_nand_dma_rw(mtd, buf, 1); - else - bf5xx_nand_read_buf(mtd, buf, len); -} - -static void bf5xx_nand_dma_write_buf(struct mtd_info *mtd, - const uint8_t *buf, int len) -{ - struct bf5xx_nand_info *info = mtd_to_nand_info(mtd); - struct nand_chip *chip = mtd_to_nand(mtd); - - dev_dbg(info->device, "mtd->%p, buf->%p, len %d\n", mtd, buf, len); - - if (len == chip->ecc.size) - bf5xx_nand_dma_rw(mtd, (uint8_t *)buf, 0); - else - bf5xx_nand_write_buf(mtd, buf, len); -} - -static int bf5xx_nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip, - uint8_t *buf, int oob_required, int page) -{ - nand_read_page_op(chip, page, 0, NULL, 0); - - bf5xx_nand_read_buf(mtd, buf, mtd->writesize); - bf5xx_nand_read_buf(mtd, chip->oob_poi, mtd->oobsize); - - return 0; -} - -static int bf5xx_nand_write_page_raw(struct mtd_info *mtd, - struct nand_chip *chip, const uint8_t *buf, int oob_required, - int page) -{ - nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize); - bf5xx_nand_write_buf(mtd, chip->oob_poi, mtd->oobsize); - - return nand_prog_page_end_op(chip); -} - -/* - * System initialization functions - */ -static int bf5xx_nand_dma_init(struct bf5xx_nand_info *info) -{ - int ret; - - /* Do not use dma */ - if (!hardware_ecc) - return 0; - - init_completion(&info->dma_completion); - - /* Request NFC DMA channel */ - ret = request_dma(CH_NFC, "BF5XX NFC driver"); - if (ret < 0) { - dev_err(info->device, " unable to get DMA channel\n"); - return ret; - } - -#ifdef CONFIG_BF54x - /* Setup DMAC1 channel mux for NFC which shared with SDH */ - bfin_write_DMAC1_PERIMUX(bfin_read_DMAC1_PERIMUX() & ~1); - SSYNC(); -#endif - - set_dma_callback(CH_NFC, bf5xx_nand_dma_irq, info); - - /* Turn off the DMA channel first */ - disable_dma(CH_NFC); - return 0; -} - -static void bf5xx_nand_dma_remove(struct bf5xx_nand_info *info) -{ - /* Free NFC DMA channel */ - if (hardware_ecc) - free_dma(CH_NFC); -} - -/* - * BF5XX NFC hardware initialization - * - pin mux setup - * - clear interrupt status - */ -static int bf5xx_nand_hw_init(struct bf5xx_nand_info *info) -{ - int err = 0; - unsigned short val; - struct bf5xx_nand_platform *plat = info->platform; - - /* setup NFC_CTL register */ - dev_info(info->device, - "data_width=%d, wr_dly=%d, rd_dly=%d\n", - (plat->data_width ? 16 : 8), - plat->wr_dly, plat->rd_dly); - - val = (1 << NFC_PG_SIZE_OFFSET) | - (plat->data_width << NFC_NWIDTH_OFFSET) | - (plat->rd_dly << NFC_RDDLY_OFFSET) | - (plat->wr_dly << NFC_WRDLY_OFFSET); - dev_dbg(info->device, "NFC_CTL is 0x%04x\n", val); - - bfin_write_NFC_CTL(val); - SSYNC(); - - /* clear interrupt status */ - bfin_write_NFC_IRQMASK(0x0); - SSYNC(); - val = bfin_read_NFC_IRQSTAT(); - bfin_write_NFC_IRQSTAT(val); - SSYNC(); - - /* DMA initialization */ - if (bf5xx_nand_dma_init(info)) - err = -ENXIO; - - return err; -} - -/* - * Device management interface - */ -static int bf5xx_nand_add_partition(struct bf5xx_nand_info *info) -{ - struct mtd_info *mtd = nand_to_mtd(&info->chip); - struct mtd_partition *parts = info->platform->partitions; - int nr = info->platform->nr_partitions; - - return mtd_device_register(mtd, parts, nr); -} - -static int bf5xx_nand_remove(struct platform_device *pdev) -{ - struct bf5xx_nand_info *info = to_nand_info(pdev); - - /* first thing we need to do is release all our mtds - * and their partitions, then go through freeing the - * resources used - */ - nand_release(nand_to_mtd(&info->chip)); - - peripheral_free_list(bfin_nfc_pin_req); - bf5xx_nand_dma_remove(info); - - return 0; -} - -static int bf5xx_nand_scan(struct mtd_info *mtd) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - int ret; - - ret = nand_scan_ident(mtd, 1, NULL); - if (ret) - return ret; - - if (hardware_ecc) { - /* - * for nand with page size > 512B, think it as several sections with 512B - */ - if (likely(mtd->writesize >= 512)) { - chip->ecc.size = 512; - chip->ecc.bytes = 6; - chip->ecc.strength = 2; - } else { - chip->ecc.size = 256; - chip->ecc.bytes = 3; - chip->ecc.strength = 1; - bfin_write_NFC_CTL(bfin_read_NFC_CTL() & ~(1 << NFC_PG_SIZE_OFFSET)); - SSYNC(); - } - } - - return nand_scan_tail(mtd); -} - -/* - * bf5xx_nand_probe - * - * called by device layer when it finds a device matching - * one our driver can handled. This code checks to see if - * it can allocate all necessary resources then calls the - * nand layer to look for devices - */ -static int bf5xx_nand_probe(struct platform_device *pdev) -{ - struct bf5xx_nand_platform *plat = to_nand_plat(pdev); - struct bf5xx_nand_info *info = NULL; - struct nand_chip *chip = NULL; - struct mtd_info *mtd = NULL; - int err = 0; - - dev_dbg(&pdev->dev, "(%p)\n", pdev); - - if (!plat) { - dev_err(&pdev->dev, "no platform specific information\n"); - return -EINVAL; - } - - if (peripheral_request_list(bfin_nfc_pin_req, DRV_NAME)) { - dev_err(&pdev->dev, "requesting Peripherals failed\n"); - return -EFAULT; - } - - info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL); - if (info == NULL) { - err = -ENOMEM; - goto out_err; - } - - platform_set_drvdata(pdev, info); - - nand_hw_control_init(&info->controller); - - info->device = &pdev->dev; - info->platform = plat; - - /* initialise chip data struct */ - chip = &info->chip; - mtd = nand_to_mtd(&info->chip); - - if (plat->data_width) - chip->options |= NAND_BUSWIDTH_16; - - chip->options |= NAND_CACHEPRG | NAND_SKIP_BBTSCAN; - - chip->read_buf = (plat->data_width) ? - bf5xx_nand_read_buf16 : bf5xx_nand_read_buf; - chip->write_buf = (plat->data_width) ? - bf5xx_nand_write_buf16 : bf5xx_nand_write_buf; - - chip->read_byte = bf5xx_nand_read_byte; - - chip->cmd_ctrl = bf5xx_nand_hwcontrol; - chip->dev_ready = bf5xx_nand_devready; - - nand_set_controller_data(chip, mtd); - chip->controller = &info->controller; - - chip->IO_ADDR_R = (void __iomem *) NFC_READ; - chip->IO_ADDR_W = (void __iomem *) NFC_DATA_WR; - - chip->chip_delay = 0; - - /* initialise mtd info data struct */ - mtd->dev.parent = &pdev->dev; - - /* initialise the hardware */ - err = bf5xx_nand_hw_init(info); - if (err) - goto out_err; - - /* setup hardware ECC data struct */ - if (hardware_ecc) { -#ifdef CONFIG_MTD_NAND_BF5XX_BOOTROM_ECC - mtd_set_ooblayout(mtd, &bootrom_ooblayout_ops); -#endif - chip->read_buf = bf5xx_nand_dma_read_buf; - chip->write_buf = bf5xx_nand_dma_write_buf; - chip->ecc.calculate = bf5xx_nand_calculate_ecc; - chip->ecc.correct = bf5xx_nand_correct_data; - chip->ecc.mode = NAND_ECC_HW; - chip->ecc.hwctl = bf5xx_nand_enable_hwecc; - chip->ecc.read_page_raw = bf5xx_nand_read_page_raw; - chip->ecc.write_page_raw = bf5xx_nand_write_page_raw; - } else { - chip->ecc.mode = NAND_ECC_SOFT; - chip->ecc.algo = NAND_ECC_HAMMING; - } - - /* scan hardware nand chip and setup mtd info data struct */ - if (bf5xx_nand_scan(mtd)) { - err = -ENXIO; - goto out_err_nand_scan; - } - -#ifdef CONFIG_MTD_NAND_BF5XX_BOOTROM_ECC - chip->badblockpos = 63; -#endif - - /* add NAND partition */ - bf5xx_nand_add_partition(info); - - dev_dbg(&pdev->dev, "initialised ok\n"); - return 0; - -out_err_nand_scan: - bf5xx_nand_dma_remove(info); -out_err: - peripheral_free_list(bfin_nfc_pin_req); - - return err; -} - -/* driver device registration */ -static struct platform_driver bf5xx_nand_driver = { - .probe = bf5xx_nand_probe, - .remove = bf5xx_nand_remove, - .driver = { - .name = DRV_NAME, - }, -}; - -module_platform_driver(bf5xx_nand_driver); - -MODULE_LICENSE("GPL"); -MODULE_AUTHOR(DRV_AUTHOR); -MODULE_DESCRIPTION(DRV_DESC); -MODULE_ALIAS("platform:" DRV_NAME); diff --git a/drivers/mtd/nand/brcmnand/Makefile b/drivers/mtd/nand/brcmnand/Makefile deleted file mode 100644 index 195b845e48b8..000000000000 --- a/drivers/mtd/nand/brcmnand/Makefile +++ /dev/null @@ -1,8 +0,0 @@ -# SPDX-License-Identifier: GPL-2.0 -# link order matters; don't link the more generic brcmstb_nand.o before the -# more specific iproc_nand.o, for instance -obj-$(CONFIG_MTD_NAND_BRCMNAND) += iproc_nand.o -obj-$(CONFIG_MTD_NAND_BRCMNAND) += bcm63138_nand.o -obj-$(CONFIG_MTD_NAND_BRCMNAND) += bcm6368_nand.o -obj-$(CONFIG_MTD_NAND_BRCMNAND) += brcmstb_nand.o -obj-$(CONFIG_MTD_NAND_BRCMNAND) += brcmnand.o diff --git a/drivers/mtd/nand/brcmnand/bcm63138_nand.c b/drivers/mtd/nand/brcmnand/bcm63138_nand.c deleted file mode 100644 index 59444b3a697d..000000000000 --- a/drivers/mtd/nand/brcmnand/bcm63138_nand.c +++ /dev/null @@ -1,109 +0,0 @@ -/* - * Copyright © 2015 Broadcom Corporation - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License version 2 as - * published by the Free Software Foundation. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - */ - -#include -#include -#include -#include -#include -#include -#include -#include - -#include "brcmnand.h" - -struct bcm63138_nand_soc { - struct brcmnand_soc soc; - void __iomem *base; -}; - -#define BCM63138_NAND_INT_STATUS 0x00 -#define BCM63138_NAND_INT_EN 0x04 - -enum { - BCM63138_CTLRDY = BIT(4), -}; - -static bool bcm63138_nand_intc_ack(struct brcmnand_soc *soc) -{ - struct bcm63138_nand_soc *priv = - container_of(soc, struct bcm63138_nand_soc, soc); - void __iomem *mmio = priv->base + BCM63138_NAND_INT_STATUS; - u32 val = brcmnand_readl(mmio); - - if (val & BCM63138_CTLRDY) { - brcmnand_writel(val & ~BCM63138_CTLRDY, mmio); - return true; - } - - return false; -} - -static void bcm63138_nand_intc_set(struct brcmnand_soc *soc, bool en) -{ - struct bcm63138_nand_soc *priv = - container_of(soc, struct bcm63138_nand_soc, soc); - void __iomem *mmio = priv->base + BCM63138_NAND_INT_EN; - u32 val = brcmnand_readl(mmio); - - if (en) - val |= BCM63138_CTLRDY; - else - val &= ~BCM63138_CTLRDY; - - brcmnand_writel(val, mmio); -} - -static int bcm63138_nand_probe(struct platform_device *pdev) -{ - struct device *dev = &pdev->dev; - struct bcm63138_nand_soc *priv; - struct brcmnand_soc *soc; - struct resource *res; - - priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); - if (!priv) - return -ENOMEM; - soc = &priv->soc; - - res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand-int-base"); - priv->base = devm_ioremap_resource(dev, res); - if (IS_ERR(priv->base)) - return PTR_ERR(priv->base); - - soc->ctlrdy_ack = bcm63138_nand_intc_ack; - soc->ctlrdy_set_enabled = bcm63138_nand_intc_set; - - return brcmnand_probe(pdev, soc); -} - -static const struct of_device_id bcm63138_nand_of_match[] = { - { .compatible = "brcm,nand-bcm63138" }, - {}, -}; -MODULE_DEVICE_TABLE(of, bcm63138_nand_of_match); - -static struct platform_driver bcm63138_nand_driver = { - .probe = bcm63138_nand_probe, - .remove = brcmnand_remove, - .driver = { - .name = "bcm63138_nand", - .pm = &brcmnand_pm_ops, - .of_match_table = bcm63138_nand_of_match, - } -}; -module_platform_driver(bcm63138_nand_driver); - -MODULE_LICENSE("GPL v2"); -MODULE_AUTHOR("Brian Norris"); -MODULE_DESCRIPTION("NAND driver for BCM63138"); diff --git a/drivers/mtd/nand/brcmnand/bcm6368_nand.c b/drivers/mtd/nand/brcmnand/bcm6368_nand.c deleted file mode 100644 index 34c91b0e1e69..000000000000 --- a/drivers/mtd/nand/brcmnand/bcm6368_nand.c +++ /dev/null @@ -1,142 +0,0 @@ -/* - * Copyright 2015 Simon Arlott - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License version 2 as - * published by the Free Software Foundation. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - * - * Derived from bcm63138_nand.c: - * Copyright © 2015 Broadcom Corporation - * - * Derived from bcm963xx_4.12L.06B_consumer/shared/opensource/include/bcm963xx/63268_map_part.h: - * Copyright 2000-2010 Broadcom Corporation - * - * Derived from bcm963xx_4.12L.06B_consumer/shared/opensource/flash/nandflash.c: - * Copyright 2000-2010 Broadcom Corporation - */ - -#include -#include -#include -#include -#include -#include -#include -#include - -#include "brcmnand.h" - -struct bcm6368_nand_soc { - struct brcmnand_soc soc; - void __iomem *base; -}; - -#define BCM6368_NAND_INT 0x00 -#define BCM6368_NAND_STATUS_SHIFT 0 -#define BCM6368_NAND_STATUS_MASK (0xfff << BCM6368_NAND_STATUS_SHIFT) -#define BCM6368_NAND_ENABLE_SHIFT 16 -#define BCM6368_NAND_ENABLE_MASK (0xffff << BCM6368_NAND_ENABLE_SHIFT) -#define BCM6368_NAND_BASE_ADDR0 0x04 -#define BCM6368_NAND_BASE_ADDR1 0x0c - -enum { - BCM6368_NP_READ = BIT(0), - BCM6368_BLOCK_ERASE = BIT(1), - BCM6368_COPY_BACK = BIT(2), - BCM6368_PAGE_PGM = BIT(3), - BCM6368_CTRL_READY = BIT(4), - BCM6368_DEV_RBPIN = BIT(5), - BCM6368_ECC_ERR_UNC = BIT(6), - BCM6368_ECC_ERR_CORR = BIT(7), -}; - -static bool bcm6368_nand_intc_ack(struct brcmnand_soc *soc) -{ - struct bcm6368_nand_soc *priv = - container_of(soc, struct bcm6368_nand_soc, soc); - void __iomem *mmio = priv->base + BCM6368_NAND_INT; - u32 val = brcmnand_readl(mmio); - - if (val & (BCM6368_CTRL_READY << BCM6368_NAND_STATUS_SHIFT)) { - /* Ack interrupt */ - val &= ~BCM6368_NAND_STATUS_MASK; - val |= BCM6368_CTRL_READY << BCM6368_NAND_STATUS_SHIFT; - brcmnand_writel(val, mmio); - return true; - } - - return false; -} - -static void bcm6368_nand_intc_set(struct brcmnand_soc *soc, bool en) -{ - struct bcm6368_nand_soc *priv = - container_of(soc, struct bcm6368_nand_soc, soc); - void __iomem *mmio = priv->base + BCM6368_NAND_INT; - u32 val = brcmnand_readl(mmio); - - /* Don't ack any interrupts */ - val &= ~BCM6368_NAND_STATUS_MASK; - - if (en) - val |= BCM6368_CTRL_READY << BCM6368_NAND_ENABLE_SHIFT; - else - val &= ~(BCM6368_CTRL_READY << BCM6368_NAND_ENABLE_SHIFT); - - brcmnand_writel(val, mmio); -} - -static int bcm6368_nand_probe(struct platform_device *pdev) -{ - struct device *dev = &pdev->dev; - struct bcm6368_nand_soc *priv; - struct brcmnand_soc *soc; - struct resource *res; - - priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); - if (!priv) - return -ENOMEM; - soc = &priv->soc; - - res = platform_get_resource_byname(pdev, - IORESOURCE_MEM, "nand-int-base"); - priv->base = devm_ioremap_resource(dev, res); - if (IS_ERR(priv->base)) - return PTR_ERR(priv->base); - - soc->ctlrdy_ack = bcm6368_nand_intc_ack; - soc->ctlrdy_set_enabled = bcm6368_nand_intc_set; - - /* Disable and ack all interrupts */ - brcmnand_writel(0, priv->base + BCM6368_NAND_INT); - brcmnand_writel(BCM6368_NAND_STATUS_MASK, - priv->base + BCM6368_NAND_INT); - - return brcmnand_probe(pdev, soc); -} - -static const struct of_device_id bcm6368_nand_of_match[] = { - { .compatible = "brcm,nand-bcm6368" }, - {}, -}; -MODULE_DEVICE_TABLE(of, bcm6368_nand_of_match); - -static struct platform_driver bcm6368_nand_driver = { - .probe = bcm6368_nand_probe, - .remove = brcmnand_remove, - .driver = { - .name = "bcm6368_nand", - .pm = &brcmnand_pm_ops, - .of_match_table = bcm6368_nand_of_match, - } -}; -module_platform_driver(bcm6368_nand_driver); - -MODULE_LICENSE("GPL"); -MODULE_AUTHOR("Simon Arlott"); -MODULE_DESCRIPTION("NAND driver for BCM6368"); diff --git a/drivers/mtd/nand/brcmnand/brcmnand.c b/drivers/mtd/nand/brcmnand/brcmnand.c deleted file mode 100644 index c28fd2bc1a84..000000000000 --- a/drivers/mtd/nand/brcmnand/brcmnand.c +++ /dev/null @@ -1,2620 +0,0 @@ -/* - * Copyright © 2010-2015 Broadcom Corporation - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License version 2 as - * published by the Free Software Foundation. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - */ - -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include - -#include "brcmnand.h" - -/* - * This flag controls if WP stays on between erase/write commands to mitigate - * flash corruption due to power glitches. Values: - * 0: NAND_WP is not used or not available - * 1: NAND_WP is set by default, cleared for erase/write operations - * 2: NAND_WP is always cleared - */ -static int wp_on = 1; -module_param(wp_on, int, 0444); - -/*********************************************************************** - * Definitions - ***********************************************************************/ - -#define DRV_NAME "brcmnand" - -#define CMD_NULL 0x00 -#define CMD_PAGE_READ 0x01 -#define CMD_SPARE_AREA_READ 0x02 -#define CMD_STATUS_READ 0x03 -#define CMD_PROGRAM_PAGE 0x04 -#define CMD_PROGRAM_SPARE_AREA 0x05 -#define CMD_COPY_BACK 0x06 -#define CMD_DEVICE_ID_READ 0x07 -#define CMD_BLOCK_ERASE 0x08 -#define CMD_FLASH_RESET 0x09 -#define CMD_BLOCKS_LOCK 0x0a -#define CMD_BLOCKS_LOCK_DOWN 0x0b -#define CMD_BLOCKS_UNLOCK 0x0c -#define CMD_READ_BLOCKS_LOCK_STATUS 0x0d -#define CMD_PARAMETER_READ 0x0e -#define CMD_PARAMETER_CHANGE_COL 0x0f -#define CMD_LOW_LEVEL_OP 0x10 - -struct brcm_nand_dma_desc { - u32 next_desc; - u32 next_desc_ext; - u32 cmd_irq; - u32 dram_addr; - u32 dram_addr_ext; - u32 tfr_len; - u32 total_len; - u32 flash_addr; - u32 flash_addr_ext; - u32 cs; - u32 pad2[5]; - u32 status_valid; -} __packed; - -/* Bitfields for brcm_nand_dma_desc::status_valid */ -#define FLASH_DMA_ECC_ERROR (1 << 8) -#define FLASH_DMA_CORR_ERROR (1 << 9) - -/* 512B flash cache in the NAND controller HW */ -#define FC_SHIFT 9U -#define FC_BYTES 512U -#define FC_WORDS (FC_BYTES >> 2) - -#define BRCMNAND_MIN_PAGESIZE 512 -#define BRCMNAND_MIN_BLOCKSIZE (8 * 1024) -#define BRCMNAND_MIN_DEVSIZE (4ULL * 1024 * 1024) - -#define NAND_CTRL_RDY (INTFC_CTLR_READY | INTFC_FLASH_READY) -#define NAND_POLL_STATUS_TIMEOUT_MS 100 - -/* Controller feature flags */ -enum { - BRCMNAND_HAS_1K_SECTORS = BIT(0), - BRCMNAND_HAS_PREFETCH = BIT(1), - BRCMNAND_HAS_CACHE_MODE = BIT(2), - BRCMNAND_HAS_WP = BIT(3), -}; - -struct brcmnand_controller { - struct device *dev; - struct nand_hw_control controller; - void __iomem *nand_base; - void __iomem *nand_fc; /* flash cache */ - void __iomem *flash_dma_base; - unsigned int irq; - unsigned int dma_irq; - int nand_version; - - /* Some SoCs provide custom interrupt status register(s) */ - struct brcmnand_soc *soc; - - /* Some SoCs have a gateable clock for the controller */ - struct clk *clk; - - int cmd_pending; - bool dma_pending; - struct completion done; - struct completion dma_done; - - /* List of NAND hosts (one for each chip-select) */ - struct list_head host_list; - - struct brcm_nand_dma_desc *dma_desc; - dma_addr_t dma_pa; - - /* in-memory cache of the FLASH_CACHE, used only for some commands */ - u8 flash_cache[FC_BYTES]; - - /* Controller revision details */ - const u16 *reg_offsets; - unsigned int reg_spacing; /* between CS1, CS2, ... regs */ - const u8 *cs_offsets; /* within each chip-select */ - const u8 *cs0_offsets; /* within CS0, if different */ - unsigned int max_block_size; - const unsigned int *block_sizes; - unsigned int max_page_size; - const unsigned int *page_sizes; - unsigned int max_oob; - u32 features; - - /* for low-power standby/resume only */ - u32 nand_cs_nand_select; - u32 nand_cs_nand_xor; - u32 corr_stat_threshold; - u32 flash_dma_mode; -}; - -struct brcmnand_cfg { - u64 device_size; - unsigned int block_size; - unsigned int page_size; - unsigned int spare_area_size; - unsigned int device_width; - unsigned int col_adr_bytes; - unsigned int blk_adr_bytes; - unsigned int ful_adr_bytes; - unsigned int sector_size_1k; - unsigned int ecc_level; - /* use for low-power standby/resume only */ - u32 acc_control; - u32 config; - u32 config_ext; - u32 timing_1; - u32 timing_2; -}; - -struct brcmnand_host { - struct list_head node; - - struct nand_chip chip; - struct platform_device *pdev; - int cs; - - unsigned int last_cmd; - unsigned int last_byte; - u64 last_addr; - struct brcmnand_cfg hwcfg; - struct brcmnand_controller *ctrl; -}; - -enum brcmnand_reg { - BRCMNAND_CMD_START = 0, - BRCMNAND_CMD_EXT_ADDRESS, - BRCMNAND_CMD_ADDRESS, - BRCMNAND_INTFC_STATUS, - BRCMNAND_CS_SELECT, - BRCMNAND_CS_XOR, - BRCMNAND_LL_OP, - BRCMNAND_CS0_BASE, - BRCMNAND_CS1_BASE, /* CS1 regs, if non-contiguous */ - BRCMNAND_CORR_THRESHOLD, - BRCMNAND_CORR_THRESHOLD_EXT, - BRCMNAND_UNCORR_COUNT, - BRCMNAND_CORR_COUNT, - BRCMNAND_CORR_EXT_ADDR, - BRCMNAND_CORR_ADDR, - BRCMNAND_UNCORR_EXT_ADDR, - BRCMNAND_UNCORR_ADDR, - BRCMNAND_SEMAPHORE, - BRCMNAND_ID, - BRCMNAND_ID_EXT, - BRCMNAND_LL_RDATA, - BRCMNAND_OOB_READ_BASE, - BRCMNAND_OOB_READ_10_BASE, /* offset 0x10, if non-contiguous */ - BRCMNAND_OOB_WRITE_BASE, - BRCMNAND_OOB_WRITE_10_BASE, /* offset 0x10, if non-contiguous */ - BRCMNAND_FC_BASE, -}; - -/* BRCMNAND v4.0 */ -static const u16 brcmnand_regs_v40[] = { - [BRCMNAND_CMD_START] = 0x04, - [BRCMNAND_CMD_EXT_ADDRESS] = 0x08, - [BRCMNAND_CMD_ADDRESS] = 0x0c, - [BRCMNAND_INTFC_STATUS] = 0x6c, - [BRCMNAND_CS_SELECT] = 0x14, - [BRCMNAND_CS_XOR] = 0x18, - [BRCMNAND_LL_OP] = 0x178, - [BRCMNAND_CS0_BASE] = 0x40, - [BRCMNAND_CS1_BASE] = 0xd0, - [BRCMNAND_CORR_THRESHOLD] = 0x84, - [BRCMNAND_CORR_THRESHOLD_EXT] = 0, - [BRCMNAND_UNCORR_COUNT] = 0, - [BRCMNAND_CORR_COUNT] = 0, - [BRCMNAND_CORR_EXT_ADDR] = 0x70, - [BRCMNAND_CORR_ADDR] = 0x74, - [BRCMNAND_UNCORR_EXT_ADDR] = 0x78, - [BRCMNAND_UNCORR_ADDR] = 0x7c, - [BRCMNAND_SEMAPHORE] = 0x58, - [BRCMNAND_ID] = 0x60, - [BRCMNAND_ID_EXT] = 0x64, - [BRCMNAND_LL_RDATA] = 0x17c, - [BRCMNAND_OOB_READ_BASE] = 0x20, - [BRCMNAND_OOB_READ_10_BASE] = 0x130, - [BRCMNAND_OOB_WRITE_BASE] = 0x30, - [BRCMNAND_OOB_WRITE_10_BASE] = 0, - [BRCMNAND_FC_BASE] = 0x200, -}; - -/* BRCMNAND v5.0 */ -static const u16 brcmnand_regs_v50[] = { - [BRCMNAND_CMD_START] = 0x04, - [BRCMNAND_CMD_EXT_ADDRESS] = 0x08, - [BRCMNAND_CMD_ADDRESS] = 0x0c, - [BRCMNAND_INTFC_STATUS] = 0x6c, - [BRCMNAND_CS_SELECT] = 0x14, - [BRCMNAND_CS_XOR] = 0x18, - [BRCMNAND_LL_OP] = 0x178, - [BRCMNAND_CS0_BASE] = 0x40, - [BRCMNAND_CS1_BASE] = 0xd0, - [BRCMNAND_CORR_THRESHOLD] = 0x84, - [BRCMNAND_CORR_THRESHOLD_EXT] = 0, - [BRCMNAND_UNCORR_COUNT] = 0, - [BRCMNAND_CORR_COUNT] = 0, - [BRCMNAND_CORR_EXT_ADDR] = 0x70, - [BRCMNAND_CORR_ADDR] = 0x74, - [BRCMNAND_UNCORR_EXT_ADDR] = 0x78, - [BRCMNAND_UNCORR_ADDR] = 0x7c, - [BRCMNAND_SEMAPHORE] = 0x58, - [BRCMNAND_ID] = 0x60, - [BRCMNAND_ID_EXT] = 0x64, - [BRCMNAND_LL_RDATA] = 0x17c, - [BRCMNAND_OOB_READ_BASE] = 0x20, - [BRCMNAND_OOB_READ_10_BASE] = 0x130, - [BRCMNAND_OOB_WRITE_BASE] = 0x30, - [BRCMNAND_OOB_WRITE_10_BASE] = 0x140, - [BRCMNAND_FC_BASE] = 0x200, -}; - -/* BRCMNAND v6.0 - v7.1 */ -static const u16 brcmnand_regs_v60[] = { - [BRCMNAND_CMD_START] = 0x04, - [BRCMNAND_CMD_EXT_ADDRESS] = 0x08, - [BRCMNAND_CMD_ADDRESS] = 0x0c, - [BRCMNAND_INTFC_STATUS] = 0x14, - [BRCMNAND_CS_SELECT] = 0x18, - [BRCMNAND_CS_XOR] = 0x1c, - [BRCMNAND_LL_OP] = 0x20, - [BRCMNAND_CS0_BASE] = 0x50, - [BRCMNAND_CS1_BASE] = 0, - [BRCMNAND_CORR_THRESHOLD] = 0xc0, - [BRCMNAND_CORR_THRESHOLD_EXT] = 0xc4, - [BRCMNAND_UNCORR_COUNT] = 0xfc, - [BRCMNAND_CORR_COUNT] = 0x100, - [BRCMNAND_CORR_EXT_ADDR] = 0x10c, - [BRCMNAND_CORR_ADDR] = 0x110, - [BRCMNAND_UNCORR_EXT_ADDR] = 0x114, - [BRCMNAND_UNCORR_ADDR] = 0x118, - [BRCMNAND_SEMAPHORE] = 0x150, - [BRCMNAND_ID] = 0x194, - [BRCMNAND_ID_EXT] = 0x198, - [BRCMNAND_LL_RDATA] = 0x19c, - [BRCMNAND_OOB_READ_BASE] = 0x200, - [BRCMNAND_OOB_READ_10_BASE] = 0, - [BRCMNAND_OOB_WRITE_BASE] = 0x280, - [BRCMNAND_OOB_WRITE_10_BASE] = 0, - [BRCMNAND_FC_BASE] = 0x400, -}; - -/* BRCMNAND v7.1 */ -static const u16 brcmnand_regs_v71[] = { - [BRCMNAND_CMD_START] = 0x04, - [BRCMNAND_CMD_EXT_ADDRESS] = 0x08, - [BRCMNAND_CMD_ADDRESS] = 0x0c, - [BRCMNAND_INTFC_STATUS] = 0x14, - [BRCMNAND_CS_SELECT] = 0x18, - [BRCMNAND_CS_XOR] = 0x1c, - [BRCMNAND_LL_OP] = 0x20, - [BRCMNAND_CS0_BASE] = 0x50, - [BRCMNAND_CS1_BASE] = 0, - [BRCMNAND_CORR_THRESHOLD] = 0xdc, - [BRCMNAND_CORR_THRESHOLD_EXT] = 0xe0, - [BRCMNAND_UNCORR_COUNT] = 0xfc, - [BRCMNAND_CORR_COUNT] = 0x100, - [BRCMNAND_CORR_EXT_ADDR] = 0x10c, - [BRCMNAND_CORR_ADDR] = 0x110, - [BRCMNAND_UNCORR_EXT_ADDR] = 0x114, - [BRCMNAND_UNCORR_ADDR] = 0x118, - [BRCMNAND_SEMAPHORE] = 0x150, - [BRCMNAND_ID] = 0x194, - [BRCMNAND_ID_EXT] = 0x198, - [BRCMNAND_LL_RDATA] = 0x19c, - [BRCMNAND_OOB_READ_BASE] = 0x200, - [BRCMNAND_OOB_READ_10_BASE] = 0, - [BRCMNAND_OOB_WRITE_BASE] = 0x280, - [BRCMNAND_OOB_WRITE_10_BASE] = 0, - [BRCMNAND_FC_BASE] = 0x400, -}; - -/* BRCMNAND v7.2 */ -static const u16 brcmnand_regs_v72[] = { - [BRCMNAND_CMD_START] = 0x04, - [BRCMNAND_CMD_EXT_ADDRESS] = 0x08, - [BRCMNAND_CMD_ADDRESS] = 0x0c, - [BRCMNAND_INTFC_STATUS] = 0x14, - [BRCMNAND_CS_SELECT] = 0x18, - [BRCMNAND_CS_XOR] = 0x1c, - [BRCMNAND_LL_OP] = 0x20, - [BRCMNAND_CS0_BASE] = 0x50, - [BRCMNAND_CS1_BASE] = 0, - [BRCMNAND_CORR_THRESHOLD] = 0xdc, - [BRCMNAND_CORR_THRESHOLD_EXT] = 0xe0, - [BRCMNAND_UNCORR_COUNT] = 0xfc, - [BRCMNAND_CORR_COUNT] = 0x100, - [BRCMNAND_CORR_EXT_ADDR] = 0x10c, - [BRCMNAND_CORR_ADDR] = 0x110, - [BRCMNAND_UNCORR_EXT_ADDR] = 0x114, - [BRCMNAND_UNCORR_ADDR] = 0x118, - [BRCMNAND_SEMAPHORE] = 0x150, - [BRCMNAND_ID] = 0x194, - [BRCMNAND_ID_EXT] = 0x198, - [BRCMNAND_LL_RDATA] = 0x19c, - [BRCMNAND_OOB_READ_BASE] = 0x200, - [BRCMNAND_OOB_READ_10_BASE] = 0, - [BRCMNAND_OOB_WRITE_BASE] = 0x400, - [BRCMNAND_OOB_WRITE_10_BASE] = 0, - [BRCMNAND_FC_BASE] = 0x600, -}; - -enum brcmnand_cs_reg { - BRCMNAND_CS_CFG_EXT = 0, - BRCMNAND_CS_CFG, - BRCMNAND_CS_ACC_CONTROL, - BRCMNAND_CS_TIMING1, - BRCMNAND_CS_TIMING2, -}; - -/* Per chip-select offsets for v7.1 */ -static const u8 brcmnand_cs_offsets_v71[] = { - [BRCMNAND_CS_ACC_CONTROL] = 0x00, - [BRCMNAND_CS_CFG_EXT] = 0x04, - [BRCMNAND_CS_CFG] = 0x08, - [BRCMNAND_CS_TIMING1] = 0x0c, - [BRCMNAND_CS_TIMING2] = 0x10, -}; - -/* Per chip-select offsets for pre v7.1, except CS0 on <= v5.0 */ -static const u8 brcmnand_cs_offsets[] = { - [BRCMNAND_CS_ACC_CONTROL] = 0x00, - [BRCMNAND_CS_CFG_EXT] = 0x04, - [BRCMNAND_CS_CFG] = 0x04, - [BRCMNAND_CS_TIMING1] = 0x08, - [BRCMNAND_CS_TIMING2] = 0x0c, -}; - -/* Per chip-select offset for <= v5.0 on CS0 only */ -static const u8 brcmnand_cs_offsets_cs0[] = { - [BRCMNAND_CS_ACC_CONTROL] = 0x00, - [BRCMNAND_CS_CFG_EXT] = 0x08, - [BRCMNAND_CS_CFG] = 0x08, - [BRCMNAND_CS_TIMING1] = 0x10, - [BRCMNAND_CS_TIMING2] = 0x14, -}; - -/* - * Bitfields for the CFG and CFG_EXT registers. Pre-v7.1 controllers only had - * one config register, but once the bitfields overflowed, newer controllers - * (v7.1 and newer) added a CFG_EXT register and shuffled a few fields around. - */ -enum { - CFG_BLK_ADR_BYTES_SHIFT = 8, - CFG_COL_ADR_BYTES_SHIFT = 12, - CFG_FUL_ADR_BYTES_SHIFT = 16, - CFG_BUS_WIDTH_SHIFT = 23, - CFG_BUS_WIDTH = BIT(CFG_BUS_WIDTH_SHIFT), - CFG_DEVICE_SIZE_SHIFT = 24, - - /* Only for pre-v7.1 (with no CFG_EXT register) */ - CFG_PAGE_SIZE_SHIFT = 20, - CFG_BLK_SIZE_SHIFT = 28, - - /* Only for v7.1+ (with CFG_EXT register) */ - CFG_EXT_PAGE_SIZE_SHIFT = 0, - CFG_EXT_BLK_SIZE_SHIFT = 4, -}; - -/* BRCMNAND_INTFC_STATUS */ -enum { - INTFC_FLASH_STATUS = GENMASK(7, 0), - - INTFC_ERASED = BIT(27), - INTFC_OOB_VALID = BIT(28), - INTFC_CACHE_VALID = BIT(29), - INTFC_FLASH_READY = BIT(30), - INTFC_CTLR_READY = BIT(31), -}; - -static inline u32 nand_readreg(struct brcmnand_controller *ctrl, u32 offs) -{ - return brcmnand_readl(ctrl->nand_base + offs); -} - -static inline void nand_writereg(struct brcmnand_controller *ctrl, u32 offs, - u32 val) -{ - brcmnand_writel(val, ctrl->nand_base + offs); -} - -static int brcmnand_revision_init(struct brcmnand_controller *ctrl) -{ - static const unsigned int block_sizes_v6[] = { 8, 16, 128, 256, 512, 1024, 2048, 0 }; - static const unsigned int block_sizes_v4[] = { 16, 128, 8, 512, 256, 1024, 2048, 0 }; - static const unsigned int page_sizes[] = { 512, 2048, 4096, 8192, 0 }; - - ctrl->nand_version = nand_readreg(ctrl, 0) & 0xffff; - - /* Only support v4.0+? */ - if (ctrl->nand_version < 0x0400) { - dev_err(ctrl->dev, "version %#x not supported\n", - ctrl->nand_version); - return -ENODEV; - } - - /* Register offsets */ - if (ctrl->nand_version >= 0x0702) - ctrl->reg_offsets = brcmnand_regs_v72; - else if (ctrl->nand_version >= 0x0701) - ctrl->reg_offsets = brcmnand_regs_v71; - else if (ctrl->nand_version >= 0x0600) - ctrl->reg_offsets = brcmnand_regs_v60; - else if (ctrl->nand_version >= 0x0500) - ctrl->reg_offsets = brcmnand_regs_v50; - else if (ctrl->nand_version >= 0x0400) - ctrl->reg_offsets = brcmnand_regs_v40; - - /* Chip-select stride */ - if (ctrl->nand_version >= 0x0701) - ctrl->reg_spacing = 0x14; - else - ctrl->reg_spacing = 0x10; - - /* Per chip-select registers */ - if (ctrl->nand_version >= 0x0701) { - ctrl->cs_offsets = brcmnand_cs_offsets_v71; - } else { - ctrl->cs_offsets = brcmnand_cs_offsets; - - /* v5.0 and earlier has a different CS0 offset layout */ - if (ctrl->nand_version <= 0x0500) - ctrl->cs0_offsets = brcmnand_cs_offsets_cs0; - } - - /* Page / block sizes */ - if (ctrl->nand_version >= 0x0701) { - /* >= v7.1 use nice power-of-2 values! */ - ctrl->max_page_size = 16 * 1024; - ctrl->max_block_size = 2 * 1024 * 1024; - } else { - ctrl->page_sizes = page_sizes; - if (ctrl->nand_version >= 0x0600) - ctrl->block_sizes = block_sizes_v6; - else - ctrl->block_sizes = block_sizes_v4; - - if (ctrl->nand_version < 0x0400) { - ctrl->max_page_size = 4096; - ctrl->max_block_size = 512 * 1024; - } - } - - /* Maximum spare area sector size (per 512B) */ - if (ctrl->nand_version >= 0x0702) - ctrl->max_oob = 128; - else if (ctrl->nand_version >= 0x0600) - ctrl->max_oob = 64; - else if (ctrl->nand_version >= 0x0500) - ctrl->max_oob = 32; - else - ctrl->max_oob = 16; - - /* v6.0 and newer (except v6.1) have prefetch support */ - if (ctrl->nand_version >= 0x0600 && ctrl->nand_version != 0x0601) - ctrl->features |= BRCMNAND_HAS_PREFETCH; - - /* - * v6.x has cache mode, but it's implemented differently. Ignore it for - * now. - */ - if (ctrl->nand_version >= 0x0700) - ctrl->features |= BRCMNAND_HAS_CACHE_MODE; - - if (ctrl->nand_version >= 0x0500) - ctrl->features |= BRCMNAND_HAS_1K_SECTORS; - - if (ctrl->nand_version >= 0x0700) - ctrl->features |= BRCMNAND_HAS_WP; - else if (of_property_read_bool(ctrl->dev->of_node, "brcm,nand-has-wp")) - ctrl->features |= BRCMNAND_HAS_WP; - - return 0; -} - -static inline u32 brcmnand_read_reg(struct brcmnand_controller *ctrl, - enum brcmnand_reg reg) -{ - u16 offs = ctrl->reg_offsets[reg]; - - if (offs) - return nand_readreg(ctrl, offs); - else - return 0; -} - -static inline void brcmnand_write_reg(struct brcmnand_controller *ctrl, - enum brcmnand_reg reg, u32 val) -{ - u16 offs = ctrl->reg_offsets[reg]; - - if (offs) - nand_writereg(ctrl, offs, val); -} - -static inline void brcmnand_rmw_reg(struct brcmnand_controller *ctrl, - enum brcmnand_reg reg, u32 mask, unsigned - int shift, u32 val) -{ - u32 tmp = brcmnand_read_reg(ctrl, reg); - - tmp &= ~mask; - tmp |= val << shift; - brcmnand_write_reg(ctrl, reg, tmp); -} - -static inline u32 brcmnand_read_fc(struct brcmnand_controller *ctrl, int word) -{ - return __raw_readl(ctrl->nand_fc + word * 4); -} - -static inline void brcmnand_write_fc(struct brcmnand_controller *ctrl, - int word, u32 val) -{ - __raw_writel(val, ctrl->nand_fc + word * 4); -} - -static inline u16 brcmnand_cs_offset(struct brcmnand_controller *ctrl, int cs, - enum brcmnand_cs_reg reg) -{ - u16 offs_cs0 = ctrl->reg_offsets[BRCMNAND_CS0_BASE]; - u16 offs_cs1 = ctrl->reg_offsets[BRCMNAND_CS1_BASE]; - u8 cs_offs; - - if (cs == 0 && ctrl->cs0_offsets) - cs_offs = ctrl->cs0_offsets[reg]; - else - cs_offs = ctrl->cs_offsets[reg]; - - if (cs && offs_cs1) - return offs_cs1 + (cs - 1) * ctrl->reg_spacing + cs_offs; - - return offs_cs0 + cs * ctrl->reg_spacing + cs_offs; -} - -static inline u32 brcmnand_count_corrected(struct brcmnand_controller *ctrl) -{ - if (ctrl->nand_version < 0x0600) - return 1; - return brcmnand_read_reg(ctrl, BRCMNAND_CORR_COUNT); -} - -static void brcmnand_wr_corr_thresh(struct brcmnand_host *host, u8 val) -{ - struct brcmnand_controller *ctrl = host->ctrl; - unsigned int shift = 0, bits; - enum brcmnand_reg reg = BRCMNAND_CORR_THRESHOLD; - int cs = host->cs; - - if (ctrl->nand_version >= 0x0702) - bits = 7; - else if (ctrl->nand_version >= 0x0600) - bits = 6; - else if (ctrl->nand_version >= 0x0500) - bits = 5; - else - bits = 4; - - if (ctrl->nand_version >= 0x0702) { - if (cs >= 4) - reg = BRCMNAND_CORR_THRESHOLD_EXT; - shift = (cs % 4) * bits; - } else if (ctrl->nand_version >= 0x0600) { - if (cs >= 5) - reg = BRCMNAND_CORR_THRESHOLD_EXT; - shift = (cs % 5) * bits; - } - brcmnand_rmw_reg(ctrl, reg, (bits - 1) << shift, shift, val); -} - -static inline int brcmnand_cmd_shift(struct brcmnand_controller *ctrl) -{ - if (ctrl->nand_version < 0x0602) - return 24; - return 0; -} - -/*********************************************************************** - * NAND ACC CONTROL bitfield - * - * Some bits have remained constant throughout hardware revision, while - * others have shifted around. - ***********************************************************************/ - -/* Constant for all versions (where supported) */ -enum { - /* See BRCMNAND_HAS_CACHE_MODE */ - ACC_CONTROL_CACHE_MODE = BIT(22), - - /* See BRCMNAND_HAS_PREFETCH */ - ACC_CONTROL_PREFETCH = BIT(23), - - ACC_CONTROL_PAGE_HIT = BIT(24), - ACC_CONTROL_WR_PREEMPT = BIT(25), - ACC_CONTROL_PARTIAL_PAGE = BIT(26), - ACC_CONTROL_RD_ERASED = BIT(27), - ACC_CONTROL_FAST_PGM_RDIN = BIT(28), - ACC_CONTROL_WR_ECC = BIT(30), - ACC_CONTROL_RD_ECC = BIT(31), -}; - -static inline u32 brcmnand_spare_area_mask(struct brcmnand_controller *ctrl) -{ - if (ctrl->nand_version >= 0x0702) - return GENMASK(7, 0); - else if (ctrl->nand_version >= 0x0600) - return GENMASK(6, 0); - else - return GENMASK(5, 0); -} - -#define NAND_ACC_CONTROL_ECC_SHIFT 16 -#define NAND_ACC_CONTROL_ECC_EXT_SHIFT 13 - -static inline u32 brcmnand_ecc_level_mask(struct brcmnand_controller *ctrl) -{ - u32 mask = (ctrl->nand_version >= 0x0600) ? 0x1f : 0x0f; - - mask <<= NAND_ACC_CONTROL_ECC_SHIFT; - - /* v7.2 includes additional ECC levels */ - if (ctrl->nand_version >= 0x0702) - mask |= 0x7 << NAND_ACC_CONTROL_ECC_EXT_SHIFT; - - return mask; -} - -static void brcmnand_set_ecc_enabled(struct brcmnand_host *host, int en) -{ - struct brcmnand_controller *ctrl = host->ctrl; - u16 offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_ACC_CONTROL); - u32 acc_control = nand_readreg(ctrl, offs); - u32 ecc_flags = ACC_CONTROL_WR_ECC | ACC_CONTROL_RD_ECC; - - if (en) { - acc_control |= ecc_flags; /* enable RD/WR ECC */ - acc_control |= host->hwcfg.ecc_level - << NAND_ACC_CONTROL_ECC_SHIFT; - } else { - acc_control &= ~ecc_flags; /* disable RD/WR ECC */ - acc_control &= ~brcmnand_ecc_level_mask(ctrl); - } - - nand_writereg(ctrl, offs, acc_control); -} - -static inline int brcmnand_sector_1k_shift(struct brcmnand_controller *ctrl) -{ - if (ctrl->nand_version >= 0x0702) - return 9; - else if (ctrl->nand_version >= 0x0600) - return 7; - else if (ctrl->nand_version >= 0x0500) - return 6; - else - return -1; -} - -static int brcmnand_get_sector_size_1k(struct brcmnand_host *host) -{ - struct brcmnand_controller *ctrl = host->ctrl; - int shift = brcmnand_sector_1k_shift(ctrl); - u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs, - BRCMNAND_CS_ACC_CONTROL); - - if (shift < 0) - return 0; - - return (nand_readreg(ctrl, acc_control_offs) >> shift) & 0x1; -} - -static void brcmnand_set_sector_size_1k(struct brcmnand_host *host, int val) -{ - struct brcmnand_controller *ctrl = host->ctrl; - int shift = brcmnand_sector_1k_shift(ctrl); - u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs, - BRCMNAND_CS_ACC_CONTROL); - u32 tmp; - - if (shift < 0) - return; - - tmp = nand_readreg(ctrl, acc_control_offs); - tmp &= ~(1 << shift); - tmp |= (!!val) << shift; - nand_writereg(ctrl, acc_control_offs, tmp); -} - -/*********************************************************************** - * CS_NAND_SELECT - ***********************************************************************/ - -enum { - CS_SELECT_NAND_WP = BIT(29), - CS_SELECT_AUTO_DEVICE_ID_CFG = BIT(30), -}; - -static int bcmnand_ctrl_poll_status(struct brcmnand_controller *ctrl, - u32 mask, u32 expected_val, - unsigned long timeout_ms) -{ - unsigned long limit; - u32 val; - - if (!timeout_ms) - timeout_ms = NAND_POLL_STATUS_TIMEOUT_MS; - - limit = jiffies + msecs_to_jiffies(timeout_ms); - do { - val = brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS); - if ((val & mask) == expected_val) - return 0; - - cpu_relax(); - } while (time_after(limit, jiffies)); - - dev_warn(ctrl->dev, "timeout on status poll (expected %x got %x)\n", - expected_val, val & mask); - - return -ETIMEDOUT; -} - -static inline void brcmnand_set_wp(struct brcmnand_controller *ctrl, bool en) -{ - u32 val = en ? CS_SELECT_NAND_WP : 0; - - brcmnand_rmw_reg(ctrl, BRCMNAND_CS_SELECT, CS_SELECT_NAND_WP, 0, val); -} - -/*********************************************************************** - * Flash DMA - ***********************************************************************/ - -enum flash_dma_reg { - FLASH_DMA_REVISION = 0x00, - FLASH_DMA_FIRST_DESC = 0x04, - FLASH_DMA_FIRST_DESC_EXT = 0x08, - FLASH_DMA_CTRL = 0x0c, - FLASH_DMA_MODE = 0x10, - FLASH_DMA_STATUS = 0x14, - FLASH_DMA_INTERRUPT_DESC = 0x18, - FLASH_DMA_INTERRUPT_DESC_EXT = 0x1c, - FLASH_DMA_ERROR_STATUS = 0x20, - FLASH_DMA_CURRENT_DESC = 0x24, - FLASH_DMA_CURRENT_DESC_EXT = 0x28, -}; - -static inline bool has_flash_dma(struct brcmnand_controller *ctrl) -{ - return ctrl->flash_dma_base; -} - -static inline bool flash_dma_buf_ok(const void *buf) -{ - return buf && !is_vmalloc_addr(buf) && - likely(IS_ALIGNED((uintptr_t)buf, 4)); -} - -static inline void flash_dma_writel(struct brcmnand_controller *ctrl, u8 offs, - u32 val) -{ - brcmnand_writel(val, ctrl->flash_dma_base + offs); -} - -static inline u32 flash_dma_readl(struct brcmnand_controller *ctrl, u8 offs) -{ - return brcmnand_readl(ctrl->flash_dma_base + offs); -} - -/* Low-level operation types: command, address, write, or read */ -enum brcmnand_llop_type { - LL_OP_CMD, - LL_OP_ADDR, - LL_OP_WR, - LL_OP_RD, -}; - -/*********************************************************************** - * Internal support functions - ***********************************************************************/ - -static inline bool is_hamming_ecc(struct brcmnand_controller *ctrl, - struct brcmnand_cfg *cfg) -{ - if (ctrl->nand_version <= 0x0701) - return cfg->sector_size_1k == 0 && cfg->spare_area_size == 16 && - cfg->ecc_level == 15; - else - return cfg->sector_size_1k == 0 && ((cfg->spare_area_size == 16 && - cfg->ecc_level == 15) || - (cfg->spare_area_size == 28 && cfg->ecc_level == 16)); -} - -/* - * Set mtd->ooblayout to the appropriate mtd_ooblayout_ops given - * the layout/configuration. - * Returns -ERRCODE on failure. - */ -static int brcmnand_hamming_ooblayout_ecc(struct mtd_info *mtd, int section, - struct mtd_oob_region *oobregion) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct brcmnand_host *host = nand_get_controller_data(chip); - struct brcmnand_cfg *cfg = &host->hwcfg; - int sas = cfg->spare_area_size << cfg->sector_size_1k; - int sectors = cfg->page_size / (512 << cfg->sector_size_1k); - - if (section >= sectors) - return -ERANGE; - - oobregion->offset = (section * sas) + 6; - oobregion->length = 3; - - return 0; -} - -static int brcmnand_hamming_ooblayout_free(struct mtd_info *mtd, int section, - struct mtd_oob_region *oobregion) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct brcmnand_host *host = nand_get_controller_data(chip); - struct brcmnand_cfg *cfg = &host->hwcfg; - int sas = cfg->spare_area_size << cfg->sector_size_1k; - int sectors = cfg->page_size / (512 << cfg->sector_size_1k); - - if (section >= sectors * 2) - return -ERANGE; - - oobregion->offset = (section / 2) * sas; - - if (section & 1) { - oobregion->offset += 9; - oobregion->length = 7; - } else { - oobregion->length = 6; - - /* First sector of each page may have BBI */ - if (!section) { - /* - * Small-page NAND use byte 6 for BBI while large-page - * NAND use byte 0. - */ - if (cfg->page_size > 512) - oobregion->offset++; - oobregion->length--; - } - } - - return 0; -} - -static const struct mtd_ooblayout_ops brcmnand_hamming_ooblayout_ops = { - .ecc = brcmnand_hamming_ooblayout_ecc, - .free = brcmnand_hamming_ooblayout_free, -}; - -static int brcmnand_bch_ooblayout_ecc(struct mtd_info *mtd, int section, - struct mtd_oob_region *oobregion) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct brcmnand_host *host = nand_get_controller_data(chip); - struct brcmnand_cfg *cfg = &host->hwcfg; - int sas = cfg->spare_area_size << cfg->sector_size_1k; - int sectors = cfg->page_size / (512 << cfg->sector_size_1k); - - if (section >= sectors) - return -ERANGE; - - oobregion->offset = (section * (sas + 1)) - chip->ecc.bytes; - oobregion->length = chip->ecc.bytes; - - return 0; -} - -static int brcmnand_bch_ooblayout_free_lp(struct mtd_info *mtd, int section, - struct mtd_oob_region *oobregion) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct brcmnand_host *host = nand_get_controller_data(chip); - struct brcmnand_cfg *cfg = &host->hwcfg; - int sas = cfg->spare_area_size << cfg->sector_size_1k; - int sectors = cfg->page_size / (512 << cfg->sector_size_1k); - - if (section >= sectors) - return -ERANGE; - - if (sas <= chip->ecc.bytes) - return 0; - - oobregion->offset = section * sas; - oobregion->length = sas - chip->ecc.bytes; - - if (!section) { - oobregion->offset++; - oobregion->length--; - } - - return 0; -} - -static int brcmnand_bch_ooblayout_free_sp(struct mtd_info *mtd, int section, - struct mtd_oob_region *oobregion) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct brcmnand_host *host = nand_get_controller_data(chip); - struct brcmnand_cfg *cfg = &host->hwcfg; - int sas = cfg->spare_area_size << cfg->sector_size_1k; - - if (section > 1 || sas - chip->ecc.bytes < 6 || - (section && sas - chip->ecc.bytes == 6)) - return -ERANGE; - - if (!section) { - oobregion->offset = 0; - oobregion->length = 5; - } else { - oobregion->offset = 6; - oobregion->length = sas - chip->ecc.bytes - 6; - } - - return 0; -} - -static const struct mtd_ooblayout_ops brcmnand_bch_lp_ooblayout_ops = { - .ecc = brcmnand_bch_ooblayout_ecc, - .free = brcmnand_bch_ooblayout_free_lp, -}; - -static const struct mtd_ooblayout_ops brcmnand_bch_sp_ooblayout_ops = { - .ecc = brcmnand_bch_ooblayout_ecc, - .free = brcmnand_bch_ooblayout_free_sp, -}; - -static int brcmstb_choose_ecc_layout(struct brcmnand_host *host) -{ - struct brcmnand_cfg *p = &host->hwcfg; - struct mtd_info *mtd = nand_to_mtd(&host->chip); - struct nand_ecc_ctrl *ecc = &host->chip.ecc; - unsigned int ecc_level = p->ecc_level; - int sas = p->spare_area_size << p->sector_size_1k; - int sectors = p->page_size / (512 << p->sector_size_1k); - - if (p->sector_size_1k) - ecc_level <<= 1; - - if (is_hamming_ecc(host->ctrl, p)) { - ecc->bytes = 3 * sectors; - mtd_set_ooblayout(mtd, &brcmnand_hamming_ooblayout_ops); - return 0; - } - - /* - * CONTROLLER_VERSION: - * < v5.0: ECC_REQ = ceil(BCH_T * 13/8) - * >= v5.0: ECC_REQ = ceil(BCH_T * 14/8) - * But we will just be conservative. - */ - ecc->bytes = DIV_ROUND_UP(ecc_level * 14, 8); - if (p->page_size == 512) - mtd_set_ooblayout(mtd, &brcmnand_bch_sp_ooblayout_ops); - else - mtd_set_ooblayout(mtd, &brcmnand_bch_lp_ooblayout_ops); - - if (ecc->bytes >= sas) { - dev_err(&host->pdev->dev, - "error: ECC too large for OOB (ECC bytes %d, spare sector %d)\n", - ecc->bytes, sas); - return -EINVAL; - } - - return 0; -} - -static void brcmnand_wp(struct mtd_info *mtd, int wp) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct brcmnand_host *host = nand_get_controller_data(chip); - struct brcmnand_controller *ctrl = host->ctrl; - - if ((ctrl->features & BRCMNAND_HAS_WP) && wp_on == 1) { - static int old_wp = -1; - int ret; - - if (old_wp != wp) { - dev_dbg(ctrl->dev, "WP %s\n", wp ? "on" : "off"); - old_wp = wp; - } - - /* - * make sure ctrl/flash ready before and after - * changing state of #WP pin - */ - ret = bcmnand_ctrl_poll_status(ctrl, NAND_CTRL_RDY | - NAND_STATUS_READY, - NAND_CTRL_RDY | - NAND_STATUS_READY, 0); - if (ret) - return; - - brcmnand_set_wp(ctrl, wp); - nand_status_op(chip, NULL); - /* NAND_STATUS_WP 0x00 = protected, 0x80 = not protected */ - ret = bcmnand_ctrl_poll_status(ctrl, - NAND_CTRL_RDY | - NAND_STATUS_READY | - NAND_STATUS_WP, - NAND_CTRL_RDY | - NAND_STATUS_READY | - (wp ? 0 : NAND_STATUS_WP), 0); - - if (ret) - dev_err_ratelimited(&host->pdev->dev, - "nand #WP expected %s\n", - wp ? "on" : "off"); - } -} - -/* Helper functions for reading and writing OOB registers */ -static inline u8 oob_reg_read(struct brcmnand_controller *ctrl, u32 offs) -{ - u16 offset0, offset10, reg_offs; - - offset0 = ctrl->reg_offsets[BRCMNAND_OOB_READ_BASE]; - offset10 = ctrl->reg_offsets[BRCMNAND_OOB_READ_10_BASE]; - - if (offs >= ctrl->max_oob) - return 0x77; - - if (offs >= 16 && offset10) - reg_offs = offset10 + ((offs - 0x10) & ~0x03); - else - reg_offs = offset0 + (offs & ~0x03); - - return nand_readreg(ctrl, reg_offs) >> (24 - ((offs & 0x03) << 3)); -} - -static inline void oob_reg_write(struct brcmnand_controller *ctrl, u32 offs, - u32 data) -{ - u16 offset0, offset10, reg_offs; - - offset0 = ctrl->reg_offsets[BRCMNAND_OOB_WRITE_BASE]; - offset10 = ctrl->reg_offsets[BRCMNAND_OOB_WRITE_10_BASE]; - - if (offs >= ctrl->max_oob) - return; - - if (offs >= 16 && offset10) - reg_offs = offset10 + ((offs - 0x10) & ~0x03); - else - reg_offs = offset0 + (offs & ~0x03); - - nand_writereg(ctrl, reg_offs, data); -} - -/* - * read_oob_from_regs - read data from OOB registers - * @ctrl: NAND controller - * @i: sub-page sector index - * @oob: buffer to read to - * @sas: spare area sector size (i.e., OOB size per FLASH_CACHE) - * @sector_1k: 1 for 1KiB sectors, 0 for 512B, other values are illegal - */ -static int read_oob_from_regs(struct brcmnand_controller *ctrl, int i, u8 *oob, - int sas, int sector_1k) -{ - int tbytes = sas << sector_1k; - int j; - - /* Adjust OOB values for 1K sector size */ - if (sector_1k && (i & 0x01)) - tbytes = max(0, tbytes - (int)ctrl->max_oob); - tbytes = min_t(int, tbytes, ctrl->max_oob); - - for (j = 0; j < tbytes; j++) - oob[j] = oob_reg_read(ctrl, j); - return tbytes; -} - -/* - * write_oob_to_regs - write data to OOB registers - * @i: sub-page sector index - * @oob: buffer to write from - * @sas: spare area sector size (i.e., OOB size per FLASH_CACHE) - * @sector_1k: 1 for 1KiB sectors, 0 for 512B, other values are illegal - */ -static int write_oob_to_regs(struct brcmnand_controller *ctrl, int i, - const u8 *oob, int sas, int sector_1k) -{ - int tbytes = sas << sector_1k; - int j; - - /* Adjust OOB values for 1K sector size */ - if (sector_1k && (i & 0x01)) - tbytes = max(0, tbytes - (int)ctrl->max_oob); - tbytes = min_t(int, tbytes, ctrl->max_oob); - - for (j = 0; j < tbytes; j += 4) - oob_reg_write(ctrl, j, - (oob[j + 0] << 24) | - (oob[j + 1] << 16) | - (oob[j + 2] << 8) | - (oob[j + 3] << 0)); - return tbytes; -} - -static irqreturn_t brcmnand_ctlrdy_irq(int irq, void *data) -{ - struct brcmnand_controller *ctrl = data; - - /* Discard all NAND_CTLRDY interrupts during DMA */ - if (ctrl->dma_pending) - return IRQ_HANDLED; - - complete(&ctrl->done); - return IRQ_HANDLED; -} - -/* Handle SoC-specific interrupt hardware */ -static irqreturn_t brcmnand_irq(int irq, void *data) -{ - struct brcmnand_controller *ctrl = data; - - if (ctrl->soc->ctlrdy_ack(ctrl->soc)) - return brcmnand_ctlrdy_irq(irq, data); - - return IRQ_NONE; -} - -static irqreturn_t brcmnand_dma_irq(int irq, void *data) -{ - struct brcmnand_controller *ctrl = data; - - complete(&ctrl->dma_done); - - return IRQ_HANDLED; -} - -static void brcmnand_send_cmd(struct brcmnand_host *host, int cmd) -{ - struct brcmnand_controller *ctrl = host->ctrl; - int ret; - - dev_dbg(ctrl->dev, "send native cmd %d addr_lo 0x%x\n", cmd, - brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS)); - BUG_ON(ctrl->cmd_pending != 0); - ctrl->cmd_pending = cmd; - - ret = bcmnand_ctrl_poll_status(ctrl, NAND_CTRL_RDY, NAND_CTRL_RDY, 0); - WARN_ON(ret); - - mb(); /* flush previous writes */ - brcmnand_write_reg(ctrl, BRCMNAND_CMD_START, - cmd << brcmnand_cmd_shift(ctrl)); -} - -/*********************************************************************** - * NAND MTD API: read/program/erase - ***********************************************************************/ - -static void brcmnand_cmd_ctrl(struct mtd_info *mtd, int dat, - unsigned int ctrl) -{ - /* intentionally left blank */ -} - -static int brcmnand_waitfunc(struct mtd_info *mtd, struct nand_chip *this) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct brcmnand_host *host = nand_get_controller_data(chip); - struct brcmnand_controller *ctrl = host->ctrl; - unsigned long timeo = msecs_to_jiffies(100); - - dev_dbg(ctrl->dev, "wait on native cmd %d\n", ctrl->cmd_pending); - if (ctrl->cmd_pending && - wait_for_completion_timeout(&ctrl->done, timeo) <= 0) { - u32 cmd = brcmnand_read_reg(ctrl, BRCMNAND_CMD_START) - >> brcmnand_cmd_shift(ctrl); - - dev_err_ratelimited(ctrl->dev, - "timeout waiting for command %#02x\n", cmd); - dev_err_ratelimited(ctrl->dev, "intfc status %08x\n", - brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS)); - } - ctrl->cmd_pending = 0; - return brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS) & - INTFC_FLASH_STATUS; -} - -enum { - LLOP_RE = BIT(16), - LLOP_WE = BIT(17), - LLOP_ALE = BIT(18), - LLOP_CLE = BIT(19), - LLOP_RETURN_IDLE = BIT(31), - - LLOP_DATA_MASK = GENMASK(15, 0), -}; - -static int brcmnand_low_level_op(struct brcmnand_host *host, - enum brcmnand_llop_type type, u32 data, - bool last_op) -{ - struct mtd_info *mtd = nand_to_mtd(&host->chip); - struct nand_chip *chip = &host->chip; - struct brcmnand_controller *ctrl = host->ctrl; - u32 tmp; - - tmp = data & LLOP_DATA_MASK; - switch (type) { - case LL_OP_CMD: - tmp |= LLOP_WE | LLOP_CLE; - break; - case LL_OP_ADDR: - /* WE | ALE */ - tmp |= LLOP_WE | LLOP_ALE; - break; - case LL_OP_WR: - /* WE */ - tmp |= LLOP_WE; - break; - case LL_OP_RD: - /* RE */ - tmp |= LLOP_RE; - break; - } - if (last_op) - /* RETURN_IDLE */ - tmp |= LLOP_RETURN_IDLE; - - dev_dbg(ctrl->dev, "ll_op cmd %#x\n", tmp); - - brcmnand_write_reg(ctrl, BRCMNAND_LL_OP, tmp); - (void)brcmnand_read_reg(ctrl, BRCMNAND_LL_OP); - - brcmnand_send_cmd(host, CMD_LOW_LEVEL_OP); - return brcmnand_waitfunc(mtd, chip); -} - -static void brcmnand_cmdfunc(struct mtd_info *mtd, unsigned command, - int column, int page_addr) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct brcmnand_host *host = nand_get_controller_data(chip); - struct brcmnand_controller *ctrl = host->ctrl; - u64 addr = (u64)page_addr << chip->page_shift; - int native_cmd = 0; - - if (command == NAND_CMD_READID || command == NAND_CMD_PARAM || - command == NAND_CMD_RNDOUT) - addr = (u64)column; - /* Avoid propagating a negative, don't-care address */ - else if (page_addr < 0) - addr = 0; - - dev_dbg(ctrl->dev, "cmd 0x%x addr 0x%llx\n", command, - (unsigned long long)addr); - - host->last_cmd = command; - host->last_byte = 0; - host->last_addr = addr; - - switch (command) { - case NAND_CMD_RESET: - native_cmd = CMD_FLASH_RESET; - break; - case NAND_CMD_STATUS: - native_cmd = CMD_STATUS_READ; - break; - case NAND_CMD_READID: - native_cmd = CMD_DEVICE_ID_READ; - break; - case NAND_CMD_READOOB: - native_cmd = CMD_SPARE_AREA_READ; - break; - case NAND_CMD_ERASE1: - native_cmd = CMD_BLOCK_ERASE; - brcmnand_wp(mtd, 0); - break; - case NAND_CMD_PARAM: - native_cmd = CMD_PARAMETER_READ; - break; - case NAND_CMD_SET_FEATURES: - case NAND_CMD_GET_FEATURES: - brcmnand_low_level_op(host, LL_OP_CMD, command, false); - brcmnand_low_level_op(host, LL_OP_ADDR, column, false); - break; - case NAND_CMD_RNDOUT: - native_cmd = CMD_PARAMETER_CHANGE_COL; - addr &= ~((u64)(FC_BYTES - 1)); - /* - * HW quirk: PARAMETER_CHANGE_COL requires SECTOR_SIZE_1K=0 - * NB: hwcfg.sector_size_1k may not be initialized yet - */ - if (brcmnand_get_sector_size_1k(host)) { - host->hwcfg.sector_size_1k = - brcmnand_get_sector_size_1k(host); - brcmnand_set_sector_size_1k(host, 0); - } - break; - } - - if (!native_cmd) - return; - - brcmnand_write_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS, - (host->cs << 16) | ((addr >> 32) & 0xffff)); - (void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS); - brcmnand_write_reg(ctrl, BRCMNAND_CMD_ADDRESS, lower_32_bits(addr)); - (void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS); - - brcmnand_send_cmd(host, native_cmd); - brcmnand_waitfunc(mtd, chip); - - if (native_cmd == CMD_PARAMETER_READ || - native_cmd == CMD_PARAMETER_CHANGE_COL) { - /* Copy flash cache word-wise */ - u32 *flash_cache = (u32 *)ctrl->flash_cache; - int i; - - brcmnand_soc_data_bus_prepare(ctrl->soc, true); - - /* - * Must cache the FLASH_CACHE now, since changes in - * SECTOR_SIZE_1K may invalidate it - */ - for (i = 0; i < FC_WORDS; i++) - /* - * Flash cache is big endian for parameter pages, at - * least on STB SoCs - */ - flash_cache[i] = be32_to_cpu(brcmnand_read_fc(ctrl, i)); - - brcmnand_soc_data_bus_unprepare(ctrl->soc, true); - - /* Cleanup from HW quirk: restore SECTOR_SIZE_1K */ - if (host->hwcfg.sector_size_1k) - brcmnand_set_sector_size_1k(host, - host->hwcfg.sector_size_1k); - } - - /* Re-enable protection is necessary only after erase */ - if (command == NAND_CMD_ERASE1) - brcmnand_wp(mtd, 1); -} - -static uint8_t brcmnand_read_byte(struct mtd_info *mtd) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct brcmnand_host *host = nand_get_controller_data(chip); - struct brcmnand_controller *ctrl = host->ctrl; - uint8_t ret = 0; - int addr, offs; - - switch (host->last_cmd) { - case NAND_CMD_READID: - if (host->last_byte < 4) - ret = brcmnand_read_reg(ctrl, BRCMNAND_ID) >> - (24 - (host->last_byte << 3)); - else if (host->last_byte < 8) - ret = brcmnand_read_reg(ctrl, BRCMNAND_ID_EXT) >> - (56 - (host->last_byte << 3)); - break; - - case NAND_CMD_READOOB: - ret = oob_reg_read(ctrl, host->last_byte); - break; - - case NAND_CMD_STATUS: - ret = brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS) & - INTFC_FLASH_STATUS; - if (wp_on) /* hide WP status */ - ret |= NAND_STATUS_WP; - break; - - case NAND_CMD_PARAM: - case NAND_CMD_RNDOUT: - addr = host->last_addr + host->last_byte; - offs = addr & (FC_BYTES - 1); - - /* At FC_BYTES boundary, switch to next column */ - if (host->last_byte > 0 && offs == 0) - nand_change_read_column_op(chip, addr, NULL, 0, false); - - ret = ctrl->flash_cache[offs]; - break; - case NAND_CMD_GET_FEATURES: - if (host->last_byte >= ONFI_SUBFEATURE_PARAM_LEN) { - ret = 0; - } else { - bool last = host->last_byte == - ONFI_SUBFEATURE_PARAM_LEN - 1; - brcmnand_low_level_op(host, LL_OP_RD, 0, last); - ret = brcmnand_read_reg(ctrl, BRCMNAND_LL_RDATA) & 0xff; - } - } - - dev_dbg(ctrl->dev, "read byte = 0x%02x\n", ret); - host->last_byte++; - - return ret; -} - -static void brcmnand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) -{ - int i; - - for (i = 0; i < len; i++, buf++) - *buf = brcmnand_read_byte(mtd); -} - -static void brcmnand_write_buf(struct mtd_info *mtd, const uint8_t *buf, - int len) -{ - int i; - struct nand_chip *chip = mtd_to_nand(mtd); - struct brcmnand_host *host = nand_get_controller_data(chip); - - switch (host->last_cmd) { - case NAND_CMD_SET_FEATURES: - for (i = 0; i < len; i++) - brcmnand_low_level_op(host, LL_OP_WR, buf[i], - (i + 1) == len); - break; - default: - BUG(); - break; - } -} - -/** - * Construct a FLASH_DMA descriptor as part of a linked list. You must know the - * following ahead of time: - * - Is this descriptor the beginning or end of a linked list? - * - What is the (DMA) address of the next descriptor in the linked list? - */ -static int brcmnand_fill_dma_desc(struct brcmnand_host *host, - struct brcm_nand_dma_desc *desc, u64 addr, - dma_addr_t buf, u32 len, u8 dma_cmd, - bool begin, bool end, - dma_addr_t next_desc) -{ - memset(desc, 0, sizeof(*desc)); - /* Descriptors are written in native byte order (wordwise) */ - desc->next_desc = lower_32_bits(next_desc); - desc->next_desc_ext = upper_32_bits(next_desc); - desc->cmd_irq = (dma_cmd << 24) | - (end ? (0x03 << 8) : 0) | /* IRQ | STOP */ - (!!begin) | ((!!end) << 1); /* head, tail */ -#ifdef CONFIG_CPU_BIG_ENDIAN - desc->cmd_irq |= 0x01 << 12; -#endif - desc->dram_addr = lower_32_bits(buf); - desc->dram_addr_ext = upper_32_bits(buf); - desc->tfr_len = len; - desc->total_len = len; - desc->flash_addr = lower_32_bits(addr); - desc->flash_addr_ext = upper_32_bits(addr); - desc->cs = host->cs; - desc->status_valid = 0x01; - return 0; -} - -/** - * Kick the FLASH_DMA engine, with a given DMA descriptor - */ -static void brcmnand_dma_run(struct brcmnand_host *host, dma_addr_t desc) -{ - struct brcmnand_controller *ctrl = host->ctrl; - unsigned long timeo = msecs_to_jiffies(100); - - flash_dma_writel(ctrl, FLASH_DMA_FIRST_DESC, lower_32_bits(desc)); - (void)flash_dma_readl(ctrl, FLASH_DMA_FIRST_DESC); - flash_dma_writel(ctrl, FLASH_DMA_FIRST_DESC_EXT, upper_32_bits(desc)); - (void)flash_dma_readl(ctrl, FLASH_DMA_FIRST_DESC_EXT); - - /* Start FLASH_DMA engine */ - ctrl->dma_pending = true; - mb(); /* flush previous writes */ - flash_dma_writel(ctrl, FLASH_DMA_CTRL, 0x03); /* wake | run */ - - if (wait_for_completion_timeout(&ctrl->dma_done, timeo) <= 0) { - dev_err(ctrl->dev, - "timeout waiting for DMA; status %#x, error status %#x\n", - flash_dma_readl(ctrl, FLASH_DMA_STATUS), - flash_dma_readl(ctrl, FLASH_DMA_ERROR_STATUS)); - } - ctrl->dma_pending = false; - flash_dma_writel(ctrl, FLASH_DMA_CTRL, 0); /* force stop */ -} - -static int brcmnand_dma_trans(struct brcmnand_host *host, u64 addr, u32 *buf, - u32 len, u8 dma_cmd) -{ - struct brcmnand_controller *ctrl = host->ctrl; - dma_addr_t buf_pa; - int dir = dma_cmd == CMD_PAGE_READ ? DMA_FROM_DEVICE : DMA_TO_DEVICE; - - buf_pa = dma_map_single(ctrl->dev, buf, len, dir); - if (dma_mapping_error(ctrl->dev, buf_pa)) { - dev_err(ctrl->dev, "unable to map buffer for DMA\n"); - return -ENOMEM; - } - - brcmnand_fill_dma_desc(host, ctrl->dma_desc, addr, buf_pa, len, - dma_cmd, true, true, 0); - - brcmnand_dma_run(host, ctrl->dma_pa); - - dma_unmap_single(ctrl->dev, buf_pa, len, dir); - - if (ctrl->dma_desc->status_valid & FLASH_DMA_ECC_ERROR) - return -EBADMSG; - else if (ctrl->dma_desc->status_valid & FLASH_DMA_CORR_ERROR) - return -EUCLEAN; - - return 0; -} - -/* - * Assumes proper CS is already set - */ -static int brcmnand_read_by_pio(struct mtd_info *mtd, struct nand_chip *chip, - u64 addr, unsigned int trans, u32 *buf, - u8 *oob, u64 *err_addr) -{ - struct brcmnand_host *host = nand_get_controller_data(chip); - struct brcmnand_controller *ctrl = host->ctrl; - int i, j, ret = 0; - - /* Clear error addresses */ - brcmnand_write_reg(ctrl, BRCMNAND_UNCORR_ADDR, 0); - brcmnand_write_reg(ctrl, BRCMNAND_CORR_ADDR, 0); - brcmnand_write_reg(ctrl, BRCMNAND_UNCORR_EXT_ADDR, 0); - brcmnand_write_reg(ctrl, BRCMNAND_CORR_EXT_ADDR, 0); - - brcmnand_write_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS, - (host->cs << 16) | ((addr >> 32) & 0xffff)); - (void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS); - - for (i = 0; i < trans; i++, addr += FC_BYTES) { - brcmnand_write_reg(ctrl, BRCMNAND_CMD_ADDRESS, - lower_32_bits(addr)); - (void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS); - /* SPARE_AREA_READ does not use ECC, so just use PAGE_READ */ - brcmnand_send_cmd(host, CMD_PAGE_READ); - brcmnand_waitfunc(mtd, chip); - - if (likely(buf)) { - brcmnand_soc_data_bus_prepare(ctrl->soc, false); - - for (j = 0; j < FC_WORDS; j++, buf++) - *buf = brcmnand_read_fc(ctrl, j); - - brcmnand_soc_data_bus_unprepare(ctrl->soc, false); - } - - if (oob) - oob += read_oob_from_regs(ctrl, i, oob, - mtd->oobsize / trans, - host->hwcfg.sector_size_1k); - - if (!ret) { - *err_addr = brcmnand_read_reg(ctrl, - BRCMNAND_UNCORR_ADDR) | - ((u64)(brcmnand_read_reg(ctrl, - BRCMNAND_UNCORR_EXT_ADDR) - & 0xffff) << 32); - if (*err_addr) - ret = -EBADMSG; - } - - if (!ret) { - *err_addr = brcmnand_read_reg(ctrl, - BRCMNAND_CORR_ADDR) | - ((u64)(brcmnand_read_reg(ctrl, - BRCMNAND_CORR_EXT_ADDR) - & 0xffff) << 32); - if (*err_addr) - ret = -EUCLEAN; - } - } - - return ret; -} - -/* - * Check a page to see if it is erased (w/ bitflips) after an uncorrectable ECC - * error - * - * Because the HW ECC signals an ECC error if an erase paged has even a single - * bitflip, we must check each ECC error to see if it is actually an erased - * page with bitflips, not a truly corrupted page. - * - * On a real error, return a negative error code (-EBADMSG for ECC error), and - * buf will contain raw data. - * Otherwise, buf gets filled with 0xffs and return the maximum number of - * bitflips-per-ECC-sector to the caller. - * - */ -static int brcmstb_nand_verify_erased_page(struct mtd_info *mtd, - struct nand_chip *chip, void *buf, u64 addr) -{ - int i, sas; - void *oob = chip->oob_poi; - int bitflips = 0; - int page = addr >> chip->page_shift; - int ret; - - if (!buf) { - buf = chip->data_buf; - /* Invalidate page cache */ - chip->pagebuf = -1; - } - - sas = mtd->oobsize / chip->ecc.steps; - - /* read without ecc for verification */ - ret = chip->ecc.read_page_raw(mtd, chip, buf, true, page); - if (ret) - return ret; - - for (i = 0; i < chip->ecc.steps; i++, oob += sas) { - ret = nand_check_erased_ecc_chunk(buf, chip->ecc.size, - oob, sas, NULL, 0, - chip->ecc.strength); - if (ret < 0) - return ret; - - bitflips = max(bitflips, ret); - } - - return bitflips; -} - -static int brcmnand_read(struct mtd_info *mtd, struct nand_chip *chip, - u64 addr, unsigned int trans, u32 *buf, u8 *oob) -{ - struct brcmnand_host *host = nand_get_controller_data(chip); - struct brcmnand_controller *ctrl = host->ctrl; - u64 err_addr = 0; - int err; - bool retry = true; - - dev_dbg(ctrl->dev, "read %llx -> %p\n", (unsigned long long)addr, buf); - -try_dmaread: - brcmnand_write_reg(ctrl, BRCMNAND_UNCORR_COUNT, 0); - - if (has_flash_dma(ctrl) && !oob && flash_dma_buf_ok(buf)) { - err = brcmnand_dma_trans(host, addr, buf, trans * FC_BYTES, - CMD_PAGE_READ); - if (err) { - if (mtd_is_bitflip_or_eccerr(err)) - err_addr = addr; - else - return -EIO; - } - } else { - if (oob) - memset(oob, 0x99, mtd->oobsize); - - err = brcmnand_read_by_pio(mtd, chip, addr, trans, buf, - oob, &err_addr); - } - - if (mtd_is_eccerr(err)) { - /* - * On controller version and 7.0, 7.1 , DMA read after a - * prior PIO read that reported uncorrectable error, - * the DMA engine captures this error following DMA read - * cleared only on subsequent DMA read, so just retry once - * to clear a possible false error reported for current DMA - * read - */ - if ((ctrl->nand_version == 0x0700) || - (ctrl->nand_version == 0x0701)) { - if (retry) { - retry = false; - goto try_dmaread; - } - } - - /* - * Controller version 7.2 has hw encoder to detect erased page - * bitflips, apply sw verification for older controllers only - */ - if (ctrl->nand_version < 0x0702) { - err = brcmstb_nand_verify_erased_page(mtd, chip, buf, - addr); - /* erased page bitflips corrected */ - if (err >= 0) - return err; - } - - dev_dbg(ctrl->dev, "uncorrectable error at 0x%llx\n", - (unsigned long long)err_addr); - mtd->ecc_stats.failed++; - /* NAND layer expects zero on ECC errors */ - return 0; - } - - if (mtd_is_bitflip(err)) { - unsigned int corrected = brcmnand_count_corrected(ctrl); - - dev_dbg(ctrl->dev, "corrected error at 0x%llx\n", - (unsigned long long)err_addr); - mtd->ecc_stats.corrected += corrected; - /* Always exceed the software-imposed threshold */ - return max(mtd->bitflip_threshold, corrected); - } - - return 0; -} - -static int brcmnand_read_page(struct mtd_info *mtd, struct nand_chip *chip, - uint8_t *buf, int oob_required, int page) -{ - struct brcmnand_host *host = nand_get_controller_data(chip); - u8 *oob = oob_required ? (u8 *)chip->oob_poi : NULL; - - nand_read_page_op(chip, page, 0, NULL, 0); - - return brcmnand_read(mtd, chip, host->last_addr, - mtd->writesize >> FC_SHIFT, (u32 *)buf, oob); -} - -static int brcmnand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip, - uint8_t *buf, int oob_required, int page) -{ - struct brcmnand_host *host = nand_get_controller_data(chip); - u8 *oob = oob_required ? (u8 *)chip->oob_poi : NULL; - int ret; - - nand_read_page_op(chip, page, 0, NULL, 0); - - brcmnand_set_ecc_enabled(host, 0); - ret = brcmnand_read(mtd, chip, host->last_addr, - mtd->writesize >> FC_SHIFT, (u32 *)buf, oob); - brcmnand_set_ecc_enabled(host, 1); - return ret; -} - -static int brcmnand_read_oob(struct mtd_info *mtd, struct nand_chip *chip, - int page) -{ - return brcmnand_read(mtd, chip, (u64)page << chip->page_shift, - mtd->writesize >> FC_SHIFT, - NULL, (u8 *)chip->oob_poi); -} - -static int brcmnand_read_oob_raw(struct mtd_info *mtd, struct nand_chip *chip, - int page) -{ - struct brcmnand_host *host = nand_get_controller_data(chip); - - brcmnand_set_ecc_enabled(host, 0); - brcmnand_read(mtd, chip, (u64)page << chip->page_shift, - mtd->writesize >> FC_SHIFT, - NULL, (u8 *)chip->oob_poi); - brcmnand_set_ecc_enabled(host, 1); - return 0; -} - -static int brcmnand_write(struct mtd_info *mtd, struct nand_chip *chip, - u64 addr, const u32 *buf, u8 *oob) -{ - struct brcmnand_host *host = nand_get_controller_data(chip); - struct brcmnand_controller *ctrl = host->ctrl; - unsigned int i, j, trans = mtd->writesize >> FC_SHIFT; - int status, ret = 0; - - dev_dbg(ctrl->dev, "write %llx <- %p\n", (unsigned long long)addr, buf); - - if (unlikely((unsigned long)buf & 0x03)) { - dev_warn(ctrl->dev, "unaligned buffer: %p\n", buf); - buf = (u32 *)((unsigned long)buf & ~0x03); - } - - brcmnand_wp(mtd, 0); - - for (i = 0; i < ctrl->max_oob; i += 4) - oob_reg_write(ctrl, i, 0xffffffff); - - if (has_flash_dma(ctrl) && !oob && flash_dma_buf_ok(buf)) { - if (brcmnand_dma_trans(host, addr, (u32 *)buf, - mtd->writesize, CMD_PROGRAM_PAGE)) - ret = -EIO; - goto out; - } - - brcmnand_write_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS, - (host->cs << 16) | ((addr >> 32) & 0xffff)); - (void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS); - - for (i = 0; i < trans; i++, addr += FC_BYTES) { - /* full address MUST be set before populating FC */ - brcmnand_write_reg(ctrl, BRCMNAND_CMD_ADDRESS, - lower_32_bits(addr)); - (void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS); - - if (buf) { - brcmnand_soc_data_bus_prepare(ctrl->soc, false); - - for (j = 0; j < FC_WORDS; j++, buf++) - brcmnand_write_fc(ctrl, j, *buf); - - brcmnand_soc_data_bus_unprepare(ctrl->soc, false); - } else if (oob) { - for (j = 0; j < FC_WORDS; j++) - brcmnand_write_fc(ctrl, j, 0xffffffff); - } - - if (oob) { - oob += write_oob_to_regs(ctrl, i, oob, - mtd->oobsize / trans, - host->hwcfg.sector_size_1k); - } - - /* we cannot use SPARE_AREA_PROGRAM when PARTIAL_PAGE_EN=0 */ - brcmnand_send_cmd(host, CMD_PROGRAM_PAGE); - status = brcmnand_waitfunc(mtd, chip); - - if (status & NAND_STATUS_FAIL) { - dev_info(ctrl->dev, "program failed at %llx\n", - (unsigned long long)addr); - ret = -EIO; - goto out; - } - } -out: - brcmnand_wp(mtd, 1); - return ret; -} - -static int brcmnand_write_page(struct mtd_info *mtd, struct nand_chip *chip, - const uint8_t *buf, int oob_required, int page) -{ - struct brcmnand_host *host = nand_get_controller_data(chip); - void *oob = oob_required ? chip->oob_poi : NULL; - - nand_prog_page_begin_op(chip, page, 0, NULL, 0); - brcmnand_write(mtd, chip, host->last_addr, (const u32 *)buf, oob); - - return nand_prog_page_end_op(chip); -} - -static int brcmnand_write_page_raw(struct mtd_info *mtd, - struct nand_chip *chip, const uint8_t *buf, - int oob_required, int page) -{ - struct brcmnand_host *host = nand_get_controller_data(chip); - void *oob = oob_required ? chip->oob_poi : NULL; - - nand_prog_page_begin_op(chip, page, 0, NULL, 0); - brcmnand_set_ecc_enabled(host, 0); - brcmnand_write(mtd, chip, host->last_addr, (const u32 *)buf, oob); - brcmnand_set_ecc_enabled(host, 1); - - return nand_prog_page_end_op(chip); -} - -static int brcmnand_write_oob(struct mtd_info *mtd, struct nand_chip *chip, - int page) -{ - return brcmnand_write(mtd, chip, (u64)page << chip->page_shift, - NULL, chip->oob_poi); -} - -static int brcmnand_write_oob_raw(struct mtd_info *mtd, struct nand_chip *chip, - int page) -{ - struct brcmnand_host *host = nand_get_controller_data(chip); - int ret; - - brcmnand_set_ecc_enabled(host, 0); - ret = brcmnand_write(mtd, chip, (u64)page << chip->page_shift, NULL, - (u8 *)chip->oob_poi); - brcmnand_set_ecc_enabled(host, 1); - - return ret; -} - -/*********************************************************************** - * Per-CS setup (1 NAND device) - ***********************************************************************/ - -static int brcmnand_set_cfg(struct brcmnand_host *host, - struct brcmnand_cfg *cfg) -{ - struct brcmnand_controller *ctrl = host->ctrl; - struct nand_chip *chip = &host->chip; - u16 cfg_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_CFG); - u16 cfg_ext_offs = brcmnand_cs_offset(ctrl, host->cs, - BRCMNAND_CS_CFG_EXT); - u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs, - BRCMNAND_CS_ACC_CONTROL); - u8 block_size = 0, page_size = 0, device_size = 0; - u32 tmp; - - if (ctrl->block_sizes) { - int i, found; - - for (i = 0, found = 0; ctrl->block_sizes[i]; i++) - if (ctrl->block_sizes[i] * 1024 == cfg->block_size) { - block_size = i; - found = 1; - } - if (!found) { - dev_warn(ctrl->dev, "invalid block size %u\n", - cfg->block_size); - return -EINVAL; - } - } else { - block_size = ffs(cfg->block_size) - ffs(BRCMNAND_MIN_BLOCKSIZE); - } - - if (cfg->block_size < BRCMNAND_MIN_BLOCKSIZE || (ctrl->max_block_size && - cfg->block_size > ctrl->max_block_size)) { - dev_warn(ctrl->dev, "invalid block size %u\n", - cfg->block_size); - block_size = 0; - } - - if (ctrl->page_sizes) { - int i, found; - - for (i = 0, found = 0; ctrl->page_sizes[i]; i++) - if (ctrl->page_sizes[i] == cfg->page_size) { - page_size = i; - found = 1; - } - if (!found) { - dev_warn(ctrl->dev, "invalid page size %u\n", - cfg->page_size); - return -EINVAL; - } - } else { - page_size = ffs(cfg->page_size) - ffs(BRCMNAND_MIN_PAGESIZE); - } - - if (cfg->page_size < BRCMNAND_MIN_PAGESIZE || (ctrl->max_page_size && - cfg->page_size > ctrl->max_page_size)) { - dev_warn(ctrl->dev, "invalid page size %u\n", cfg->page_size); - return -EINVAL; - } - - if (fls64(cfg->device_size) < fls64(BRCMNAND_MIN_DEVSIZE)) { - dev_warn(ctrl->dev, "invalid device size 0x%llx\n", - (unsigned long long)cfg->device_size); - return -EINVAL; - } - device_size = fls64(cfg->device_size) - fls64(BRCMNAND_MIN_DEVSIZE); - - tmp = (cfg->blk_adr_bytes << CFG_BLK_ADR_BYTES_SHIFT) | - (cfg->col_adr_bytes << CFG_COL_ADR_BYTES_SHIFT) | - (cfg->ful_adr_bytes << CFG_FUL_ADR_BYTES_SHIFT) | - (!!(cfg->device_width == 16) << CFG_BUS_WIDTH_SHIFT) | - (device_size << CFG_DEVICE_SIZE_SHIFT); - if (cfg_offs == cfg_ext_offs) { - tmp |= (page_size << CFG_PAGE_SIZE_SHIFT) | - (block_size << CFG_BLK_SIZE_SHIFT); - nand_writereg(ctrl, cfg_offs, tmp); - } else { - nand_writereg(ctrl, cfg_offs, tmp); - tmp = (page_size << CFG_EXT_PAGE_SIZE_SHIFT) | - (block_size << CFG_EXT_BLK_SIZE_SHIFT); - nand_writereg(ctrl, cfg_ext_offs, tmp); - } - - tmp = nand_readreg(ctrl, acc_control_offs); - tmp &= ~brcmnand_ecc_level_mask(ctrl); - tmp |= cfg->ecc_level << NAND_ACC_CONTROL_ECC_SHIFT; - tmp &= ~brcmnand_spare_area_mask(ctrl); - tmp |= cfg->spare_area_size; - nand_writereg(ctrl, acc_control_offs, tmp); - - brcmnand_set_sector_size_1k(host, cfg->sector_size_1k); - - /* threshold = ceil(BCH-level * 0.75) */ - brcmnand_wr_corr_thresh(host, DIV_ROUND_UP(chip->ecc.strength * 3, 4)); - - return 0; -} - -static void brcmnand_print_cfg(struct brcmnand_host *host, - char *buf, struct brcmnand_cfg *cfg) -{ - buf += sprintf(buf, - "%lluMiB total, %uKiB blocks, %u%s pages, %uB OOB, %u-bit", - (unsigned long long)cfg->device_size >> 20, - cfg->block_size >> 10, - cfg->page_size >= 1024 ? cfg->page_size >> 10 : cfg->page_size, - cfg->page_size >= 1024 ? "KiB" : "B", - cfg->spare_area_size, cfg->device_width); - - /* Account for Hamming ECC and for BCH 512B vs 1KiB sectors */ - if (is_hamming_ecc(host->ctrl, cfg)) - sprintf(buf, ", Hamming ECC"); - else if (cfg->sector_size_1k) - sprintf(buf, ", BCH-%u (1KiB sector)", cfg->ecc_level << 1); - else - sprintf(buf, ", BCH-%u", cfg->ecc_level); -} - -/* - * Minimum number of bytes to address a page. Calculated as: - * roundup(log2(size / page-size) / 8) - * - * NB: the following does not "round up" for non-power-of-2 'size'; but this is - * OK because many other things will break if 'size' is irregular... - */ -static inline int get_blk_adr_bytes(u64 size, u32 writesize) -{ - return ALIGN(ilog2(size) - ilog2(writesize), 8) >> 3; -} - -static int brcmnand_setup_dev(struct brcmnand_host *host) -{ - struct mtd_info *mtd = nand_to_mtd(&host->chip); - struct nand_chip *chip = &host->chip; - struct brcmnand_controller *ctrl = host->ctrl; - struct brcmnand_cfg *cfg = &host->hwcfg; - char msg[128]; - u32 offs, tmp, oob_sector; - int ret; - - memset(cfg, 0, sizeof(*cfg)); - - ret = of_property_read_u32(nand_get_flash_node(chip), - "brcm,nand-oob-sector-size", - &oob_sector); - if (ret) { - /* Use detected size */ - cfg->spare_area_size = mtd->oobsize / - (mtd->writesize >> FC_SHIFT); - } else { - cfg->spare_area_size = oob_sector; - } - if (cfg->spare_area_size > ctrl->max_oob) - cfg->spare_area_size = ctrl->max_oob; - /* - * Set oobsize to be consistent with controller's spare_area_size, as - * the rest is inaccessible. - */ - mtd->oobsize = cfg->spare_area_size * (mtd->writesize >> FC_SHIFT); - - cfg->device_size = mtd->size; - cfg->block_size = mtd->erasesize; - cfg->page_size = mtd->writesize; - cfg->device_width = (chip->options & NAND_BUSWIDTH_16) ? 16 : 8; - cfg->col_adr_bytes = 2; - cfg->blk_adr_bytes = get_blk_adr_bytes(mtd->size, mtd->writesize); - - if (chip->ecc.mode != NAND_ECC_HW) { - dev_err(ctrl->dev, "only HW ECC supported; selected: %d\n", - chip->ecc.mode); - return -EINVAL; - } - - if (chip->ecc.algo == NAND_ECC_UNKNOWN) { - if (chip->ecc.strength == 1 && chip->ecc.size == 512) - /* Default to Hamming for 1-bit ECC, if unspecified */ - chip->ecc.algo = NAND_ECC_HAMMING; - else - /* Otherwise, BCH */ - chip->ecc.algo = NAND_ECC_BCH; - } - - if (chip->ecc.algo == NAND_ECC_HAMMING && (chip->ecc.strength != 1 || - chip->ecc.size != 512)) { - dev_err(ctrl->dev, "invalid Hamming params: %d bits per %d bytes\n", - chip->ecc.strength, chip->ecc.size); - return -EINVAL; - } - - switch (chip->ecc.size) { - case 512: - if (chip->ecc.algo == NAND_ECC_HAMMING) - cfg->ecc_level = 15; - else - cfg->ecc_level = chip->ecc.strength; - cfg->sector_size_1k = 0; - break; - case 1024: - if (!(ctrl->features & BRCMNAND_HAS_1K_SECTORS)) { - dev_err(ctrl->dev, "1KB sectors not supported\n"); - return -EINVAL; - } - if (chip->ecc.strength & 0x1) { - dev_err(ctrl->dev, - "odd ECC not supported with 1KB sectors\n"); - return -EINVAL; - } - - cfg->ecc_level = chip->ecc.strength >> 1; - cfg->sector_size_1k = 1; - break; - default: - dev_err(ctrl->dev, "unsupported ECC size: %d\n", - chip->ecc.size); - return -EINVAL; - } - - cfg->ful_adr_bytes = cfg->blk_adr_bytes; - if (mtd->writesize > 512) - cfg->ful_adr_bytes += cfg->col_adr_bytes; - else - cfg->ful_adr_bytes += 1; - - ret = brcmnand_set_cfg(host, cfg); - if (ret) - return ret; - - brcmnand_set_ecc_enabled(host, 1); - - brcmnand_print_cfg(host, msg, cfg); - dev_info(ctrl->dev, "detected %s\n", msg); - - /* Configure ACC_CONTROL */ - offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_ACC_CONTROL); - tmp = nand_readreg(ctrl, offs); - tmp &= ~ACC_CONTROL_PARTIAL_PAGE; - tmp &= ~ACC_CONTROL_RD_ERASED; - - /* We need to turn on Read from erased paged protected by ECC */ - if (ctrl->nand_version >= 0x0702) - tmp |= ACC_CONTROL_RD_ERASED; - tmp &= ~ACC_CONTROL_FAST_PGM_RDIN; - if (ctrl->features & BRCMNAND_HAS_PREFETCH) - tmp &= ~ACC_CONTROL_PREFETCH; - - nand_writereg(ctrl, offs, tmp); - - return 0; -} - -static int brcmnand_init_cs(struct brcmnand_host *host, struct device_node *dn) -{ - struct brcmnand_controller *ctrl = host->ctrl; - struct platform_device *pdev = host->pdev; - struct mtd_info *mtd; - struct nand_chip *chip; - int ret; - u16 cfg_offs; - - ret = of_property_read_u32(dn, "reg", &host->cs); - if (ret) { - dev_err(&pdev->dev, "can't get chip-select\n"); - return -ENXIO; - } - - mtd = nand_to_mtd(&host->chip); - chip = &host->chip; - - nand_set_flash_node(chip, dn); - nand_set_controller_data(chip, host); - mtd->name = devm_kasprintf(&pdev->dev, GFP_KERNEL, "brcmnand.%d", - host->cs); - if (!mtd->name) - return -ENOMEM; - - mtd->owner = THIS_MODULE; - mtd->dev.parent = &pdev->dev; - - chip->IO_ADDR_R = (void __iomem *)0xdeadbeef; - chip->IO_ADDR_W = (void __iomem *)0xdeadbeef; - - chip->cmd_ctrl = brcmnand_cmd_ctrl; - chip->cmdfunc = brcmnand_cmdfunc; - chip->waitfunc = brcmnand_waitfunc; - chip->read_byte = brcmnand_read_byte; - chip->read_buf = brcmnand_read_buf; - chip->write_buf = brcmnand_write_buf; - - chip->ecc.mode = NAND_ECC_HW; - chip->ecc.read_page = brcmnand_read_page; - chip->ecc.write_page = brcmnand_write_page; - chip->ecc.read_page_raw = brcmnand_read_page_raw; - chip->ecc.write_page_raw = brcmnand_write_page_raw; - chip->ecc.write_oob_raw = brcmnand_write_oob_raw; - chip->ecc.read_oob_raw = brcmnand_read_oob_raw; - chip->ecc.read_oob = brcmnand_read_oob; - chip->ecc.write_oob = brcmnand_write_oob; - - chip->controller = &ctrl->controller; - - /* - * The bootloader might have configured 16bit mode but - * NAND READID command only works in 8bit mode. We force - * 8bit mode here to ensure that NAND READID commands works. - */ - cfg_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_CFG); - nand_writereg(ctrl, cfg_offs, - nand_readreg(ctrl, cfg_offs) & ~CFG_BUS_WIDTH); - - ret = nand_scan_ident(mtd, 1, NULL); - if (ret) - return ret; - - chip->options |= NAND_NO_SUBPAGE_WRITE; - /* - * Avoid (for instance) kmap()'d buffers from JFFS2, which we can't DMA - * to/from, and have nand_base pass us a bounce buffer instead, as - * needed. - */ - chip->options |= NAND_USE_BOUNCE_BUFFER; - - if (chip->bbt_options & NAND_BBT_USE_FLASH) - chip->bbt_options |= NAND_BBT_NO_OOB; - - if (brcmnand_setup_dev(host)) - return -ENXIO; - - chip->ecc.size = host->hwcfg.sector_size_1k ? 1024 : 512; - /* only use our internal HW threshold */ - mtd->bitflip_threshold = 1; - - ret = brcmstb_choose_ecc_layout(host); - if (ret) - return ret; - - ret = nand_scan_tail(mtd); - if (ret) - return ret; - - return mtd_device_register(mtd, NULL, 0); -} - -static void brcmnand_save_restore_cs_config(struct brcmnand_host *host, - int restore) -{ - struct brcmnand_controller *ctrl = host->ctrl; - u16 cfg_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_CFG); - u16 cfg_ext_offs = brcmnand_cs_offset(ctrl, host->cs, - BRCMNAND_CS_CFG_EXT); - u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs, - BRCMNAND_CS_ACC_CONTROL); - u16 t1_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_TIMING1); - u16 t2_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_TIMING2); - - if (restore) { - nand_writereg(ctrl, cfg_offs, host->hwcfg.config); - if (cfg_offs != cfg_ext_offs) - nand_writereg(ctrl, cfg_ext_offs, - host->hwcfg.config_ext); - nand_writereg(ctrl, acc_control_offs, host->hwcfg.acc_control); - nand_writereg(ctrl, t1_offs, host->hwcfg.timing_1); - nand_writereg(ctrl, t2_offs, host->hwcfg.timing_2); - } else { - host->hwcfg.config = nand_readreg(ctrl, cfg_offs); - if (cfg_offs != cfg_ext_offs) - host->hwcfg.config_ext = - nand_readreg(ctrl, cfg_ext_offs); - host->hwcfg.acc_control = nand_readreg(ctrl, acc_control_offs); - host->hwcfg.timing_1 = nand_readreg(ctrl, t1_offs); - host->hwcfg.timing_2 = nand_readreg(ctrl, t2_offs); - } -} - -static int brcmnand_suspend(struct device *dev) -{ - struct brcmnand_controller *ctrl = dev_get_drvdata(dev); - struct brcmnand_host *host; - - list_for_each_entry(host, &ctrl->host_list, node) - brcmnand_save_restore_cs_config(host, 0); - - ctrl->nand_cs_nand_select = brcmnand_read_reg(ctrl, BRCMNAND_CS_SELECT); - ctrl->nand_cs_nand_xor = brcmnand_read_reg(ctrl, BRCMNAND_CS_XOR); - ctrl->corr_stat_threshold = - brcmnand_read_reg(ctrl, BRCMNAND_CORR_THRESHOLD); - - if (has_flash_dma(ctrl)) - ctrl->flash_dma_mode = flash_dma_readl(ctrl, FLASH_DMA_MODE); - - return 0; -} - -static int brcmnand_resume(struct device *dev) -{ - struct brcmnand_controller *ctrl = dev_get_drvdata(dev); - struct brcmnand_host *host; - - if (has_flash_dma(ctrl)) { - flash_dma_writel(ctrl, FLASH_DMA_MODE, ctrl->flash_dma_mode); - flash_dma_writel(ctrl, FLASH_DMA_ERROR_STATUS, 0); - } - - brcmnand_write_reg(ctrl, BRCMNAND_CS_SELECT, ctrl->nand_cs_nand_select); - brcmnand_write_reg(ctrl, BRCMNAND_CS_XOR, ctrl->nand_cs_nand_xor); - brcmnand_write_reg(ctrl, BRCMNAND_CORR_THRESHOLD, - ctrl->corr_stat_threshold); - if (ctrl->soc) { - /* Clear/re-enable interrupt */ - ctrl->soc->ctlrdy_ack(ctrl->soc); - ctrl->soc->ctlrdy_set_enabled(ctrl->soc, true); - } - - list_for_each_entry(host, &ctrl->host_list, node) { - struct nand_chip *chip = &host->chip; - - brcmnand_save_restore_cs_config(host, 1); - - /* Reset the chip, required by some chips after power-up */ - nand_reset_op(chip); - } - - return 0; -} - -const struct dev_pm_ops brcmnand_pm_ops = { - .suspend = brcmnand_suspend, - .resume = brcmnand_resume, -}; -EXPORT_SYMBOL_GPL(brcmnand_pm_ops); - -static const struct of_device_id brcmnand_of_match[] = { - { .compatible = "brcm,brcmnand-v4.0" }, - { .compatible = "brcm,brcmnand-v5.0" }, - { .compatible = "brcm,brcmnand-v6.0" }, - { .compatible = "brcm,brcmnand-v6.1" }, - { .compatible = "brcm,brcmnand-v6.2" }, - { .compatible = "brcm,brcmnand-v7.0" }, - { .compatible = "brcm,brcmnand-v7.1" }, - { .compatible = "brcm,brcmnand-v7.2" }, - {}, -}; -MODULE_DEVICE_TABLE(of, brcmnand_of_match); - -/*********************************************************************** - * Platform driver setup (per controller) - ***********************************************************************/ - -int brcmnand_probe(struct platform_device *pdev, struct brcmnand_soc *soc) -{ - struct device *dev = &pdev->dev; - struct device_node *dn = dev->of_node, *child; - struct brcmnand_controller *ctrl; - struct resource *res; - int ret; - - /* We only support device-tree instantiation */ - if (!dn) - return -ENODEV; - - if (!of_match_node(brcmnand_of_match, dn)) - return -ENODEV; - - ctrl = devm_kzalloc(dev, sizeof(*ctrl), GFP_KERNEL); - if (!ctrl) - return -ENOMEM; - - dev_set_drvdata(dev, ctrl); - ctrl->dev = dev; - - init_completion(&ctrl->done); - init_completion(&ctrl->dma_done); - nand_hw_control_init(&ctrl->controller); - INIT_LIST_HEAD(&ctrl->host_list); - - /* NAND register range */ - res = platform_get_resource(pdev, IORESOURCE_MEM, 0); - ctrl->nand_base = devm_ioremap_resource(dev, res); - if (IS_ERR(ctrl->nand_base)) - return PTR_ERR(ctrl->nand_base); - - /* Enable clock before using NAND registers */ - ctrl->clk = devm_clk_get(dev, "nand"); - if (!IS_ERR(ctrl->clk)) { - ret = clk_prepare_enable(ctrl->clk); - if (ret) - return ret; - } else { - ret = PTR_ERR(ctrl->clk); - if (ret == -EPROBE_DEFER) - return ret; - - ctrl->clk = NULL; - } - - /* Initialize NAND revision */ - ret = brcmnand_revision_init(ctrl); - if (ret) - goto err; - - /* - * Most chips have this cache at a fixed offset within 'nand' block. - * Some must specify this region separately. - */ - res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand-cache"); - if (res) { - ctrl->nand_fc = devm_ioremap_resource(dev, res); - if (IS_ERR(ctrl->nand_fc)) { - ret = PTR_ERR(ctrl->nand_fc); - goto err; - } - } else { - ctrl->nand_fc = ctrl->nand_base + - ctrl->reg_offsets[BRCMNAND_FC_BASE]; - } - - /* FLASH_DMA */ - res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "flash-dma"); - if (res) { - ctrl->flash_dma_base = devm_ioremap_resource(dev, res); - if (IS_ERR(ctrl->flash_dma_base)) { - ret = PTR_ERR(ctrl->flash_dma_base); - goto err; - } - - flash_dma_writel(ctrl, FLASH_DMA_MODE, 1); /* linked-list */ - flash_dma_writel(ctrl, FLASH_DMA_ERROR_STATUS, 0); - - /* Allocate descriptor(s) */ - ctrl->dma_desc = dmam_alloc_coherent(dev, - sizeof(*ctrl->dma_desc), - &ctrl->dma_pa, GFP_KERNEL); - if (!ctrl->dma_desc) { - ret = -ENOMEM; - goto err; - } - - ctrl->dma_irq = platform_get_irq(pdev, 1); - if ((int)ctrl->dma_irq < 0) { - dev_err(dev, "missing FLASH_DMA IRQ\n"); - ret = -ENODEV; - goto err; - } - - ret = devm_request_irq(dev, ctrl->dma_irq, - brcmnand_dma_irq, 0, DRV_NAME, - ctrl); - if (ret < 0) { - dev_err(dev, "can't allocate IRQ %d: error %d\n", - ctrl->dma_irq, ret); - goto err; - } - - dev_info(dev, "enabling FLASH_DMA\n"); - } - - /* Disable automatic device ID config, direct addressing */ - brcmnand_rmw_reg(ctrl, BRCMNAND_CS_SELECT, - CS_SELECT_AUTO_DEVICE_ID_CFG | 0xff, 0, 0); - /* Disable XOR addressing */ - brcmnand_rmw_reg(ctrl, BRCMNAND_CS_XOR, 0xff, 0, 0); - - if (ctrl->features & BRCMNAND_HAS_WP) { - /* Permanently disable write protection */ - if (wp_on == 2) - brcmnand_set_wp(ctrl, false); - } else { - wp_on = 0; - } - - /* IRQ */ - ctrl->irq = platform_get_irq(pdev, 0); - if ((int)ctrl->irq < 0) { - dev_err(dev, "no IRQ defined\n"); - ret = -ENODEV; - goto err; - } - - /* - * Some SoCs integrate this controller (e.g., its interrupt bits) in - * interesting ways - */ - if (soc) { - ctrl->soc = soc; - - ret = devm_request_irq(dev, ctrl->irq, brcmnand_irq, 0, - DRV_NAME, ctrl); - - /* Enable interrupt */ - ctrl->soc->ctlrdy_ack(ctrl->soc); - ctrl->soc->ctlrdy_set_enabled(ctrl->soc, true); - } else { - /* Use standard interrupt infrastructure */ - ret = devm_request_irq(dev, ctrl->irq, brcmnand_ctlrdy_irq, 0, - DRV_NAME, ctrl); - } - if (ret < 0) { - dev_err(dev, "can't allocate IRQ %d: error %d\n", - ctrl->irq, ret); - goto err; - } - - for_each_available_child_of_node(dn, child) { - if (of_device_is_compatible(child, "brcm,nandcs")) { - struct brcmnand_host *host; - - host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL); - if (!host) { - of_node_put(child); - ret = -ENOMEM; - goto err; - } - host->pdev = pdev; - host->ctrl = ctrl; - - ret = brcmnand_init_cs(host, child); - if (ret) { - devm_kfree(dev, host); - continue; /* Try all chip-selects */ - } - - list_add_tail(&host->node, &ctrl->host_list); - } - } - - /* No chip-selects could initialize properly */ - if (list_empty(&ctrl->host_list)) { - ret = -ENODEV; - goto err; - } - - return 0; - -err: - clk_disable_unprepare(ctrl->clk); - return ret; - -} -EXPORT_SYMBOL_GPL(brcmnand_probe); - -int brcmnand_remove(struct platform_device *pdev) -{ - struct brcmnand_controller *ctrl = dev_get_drvdata(&pdev->dev); - struct brcmnand_host *host; - - list_for_each_entry(host, &ctrl->host_list, node) - nand_release(nand_to_mtd(&host->chip)); - - clk_disable_unprepare(ctrl->clk); - - dev_set_drvdata(&pdev->dev, NULL); - - return 0; -} -EXPORT_SYMBOL_GPL(brcmnand_remove); - -MODULE_LICENSE("GPL v2"); -MODULE_AUTHOR("Kevin Cernekee"); -MODULE_AUTHOR("Brian Norris"); -MODULE_DESCRIPTION("NAND driver for Broadcom chips"); -MODULE_ALIAS("platform:brcmnand"); diff --git a/drivers/mtd/nand/brcmnand/brcmnand.h b/drivers/mtd/nand/brcmnand/brcmnand.h deleted file mode 100644 index 5c44cd4aba87..000000000000 --- a/drivers/mtd/nand/brcmnand/brcmnand.h +++ /dev/null @@ -1,74 +0,0 @@ -/* - * Copyright © 2015 Broadcom Corporation - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License version 2 as - * published by the Free Software Foundation. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - */ - -#ifndef __BRCMNAND_H__ -#define __BRCMNAND_H__ - -#include -#include - -struct platform_device; -struct dev_pm_ops; - -struct brcmnand_soc { - bool (*ctlrdy_ack)(struct brcmnand_soc *soc); - void (*ctlrdy_set_enabled)(struct brcmnand_soc *soc, bool en); - void (*prepare_data_bus)(struct brcmnand_soc *soc, bool prepare, - bool is_param); -}; - -static inline void brcmnand_soc_data_bus_prepare(struct brcmnand_soc *soc, - bool is_param) -{ - if (soc && soc->prepare_data_bus) - soc->prepare_data_bus(soc, true, is_param); -} - -static inline void brcmnand_soc_data_bus_unprepare(struct brcmnand_soc *soc, - bool is_param) -{ - if (soc && soc->prepare_data_bus) - soc->prepare_data_bus(soc, false, is_param); -} - -static inline u32 brcmnand_readl(void __iomem *addr) -{ - /* - * MIPS endianness is configured by boot strap, which also reverses all - * bus endianness (i.e., big-endian CPU + big endian bus ==> native - * endian I/O). - * - * Other architectures (e.g., ARM) either do not support big endian, or - * else leave I/O in little endian mode. - */ - if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN)) - return __raw_readl(addr); - else - return readl_relaxed(addr); -} - -static inline void brcmnand_writel(u32 val, void __iomem *addr) -{ - /* See brcmnand_readl() comments */ - if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN)) - __raw_writel(val, addr); - else - writel_relaxed(val, addr); -} - -int brcmnand_probe(struct platform_device *pdev, struct brcmnand_soc *soc); -int brcmnand_remove(struct platform_device *pdev); - -extern const struct dev_pm_ops brcmnand_pm_ops; - -#endif /* __BRCMNAND_H__ */ diff --git a/drivers/mtd/nand/brcmnand/brcmstb_nand.c b/drivers/mtd/nand/brcmnand/brcmstb_nand.c deleted file mode 100644 index 5c271077ac87..000000000000 --- a/drivers/mtd/nand/brcmnand/brcmstb_nand.c +++ /dev/null @@ -1,44 +0,0 @@ -/* - * Copyright © 2015 Broadcom Corporation - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License version 2 as - * published by the Free Software Foundation. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - */ - -#include -#include -#include - -#include "brcmnand.h" - -static const struct of_device_id brcmstb_nand_of_match[] = { - { .compatible = "brcm,brcmnand" }, - {}, -}; -MODULE_DEVICE_TABLE(of, brcmstb_nand_of_match); - -static int brcmstb_nand_probe(struct platform_device *pdev) -{ - return brcmnand_probe(pdev, NULL); -} - -static struct platform_driver brcmstb_nand_driver = { - .probe = brcmstb_nand_probe, - .remove = brcmnand_remove, - .driver = { - .name = "brcmstb_nand", - .pm = &brcmnand_pm_ops, - .of_match_table = brcmstb_nand_of_match, - } -}; -module_platform_driver(brcmstb_nand_driver); - -MODULE_LICENSE("GPL v2"); -MODULE_AUTHOR("Brian Norris"); -MODULE_DESCRIPTION("NAND driver for Broadcom STB chips"); diff --git a/drivers/mtd/nand/brcmnand/iproc_nand.c b/drivers/mtd/nand/brcmnand/iproc_nand.c deleted file mode 100644 index 4c6ae113664d..000000000000 --- a/drivers/mtd/nand/brcmnand/iproc_nand.c +++ /dev/null @@ -1,160 +0,0 @@ -/* - * Copyright © 2015 Broadcom Corporation - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License version 2 as - * published by the Free Software Foundation. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - */ - -#include -#include -#include -#include -#include -#include -#include -#include - -#include "brcmnand.h" - -struct iproc_nand_soc { - struct brcmnand_soc soc; - - void __iomem *idm_base; - void __iomem *ext_base; - spinlock_t idm_lock; -}; - -#define IPROC_NAND_CTLR_READY_OFFSET 0x10 -#define IPROC_NAND_CTLR_READY BIT(0) - -#define IPROC_NAND_IO_CTRL_OFFSET 0x00 -#define IPROC_NAND_APB_LE_MODE BIT(24) -#define IPROC_NAND_INT_CTRL_READ_ENABLE BIT(6) - -static bool iproc_nand_intc_ack(struct brcmnand_soc *soc) -{ - struct iproc_nand_soc *priv = - container_of(soc, struct iproc_nand_soc, soc); - void __iomem *mmio = priv->ext_base + IPROC_NAND_CTLR_READY_OFFSET; - u32 val = brcmnand_readl(mmio); - - if (val & IPROC_NAND_CTLR_READY) { - brcmnand_writel(IPROC_NAND_CTLR_READY, mmio); - return true; - } - - return false; -} - -static void iproc_nand_intc_set(struct brcmnand_soc *soc, bool en) -{ - struct iproc_nand_soc *priv = - container_of(soc, struct iproc_nand_soc, soc); - void __iomem *mmio = priv->idm_base + IPROC_NAND_IO_CTRL_OFFSET; - u32 val; - unsigned long flags; - - spin_lock_irqsave(&priv->idm_lock, flags); - - val = brcmnand_readl(mmio); - - if (en) - val |= IPROC_NAND_INT_CTRL_READ_ENABLE; - else - val &= ~IPROC_NAND_INT_CTRL_READ_ENABLE; - - brcmnand_writel(val, mmio); - - spin_unlock_irqrestore(&priv->idm_lock, flags); -} - -static void iproc_nand_apb_access(struct brcmnand_soc *soc, bool prepare, - bool is_param) -{ - struct iproc_nand_soc *priv = - container_of(soc, struct iproc_nand_soc, soc); - void __iomem *mmio = priv->idm_base + IPROC_NAND_IO_CTRL_OFFSET; - u32 val; - unsigned long flags; - - spin_lock_irqsave(&priv->idm_lock, flags); - - val = brcmnand_readl(mmio); - - /* - * In the case of BE or when dealing with NAND data, alway configure - * the APB bus to LE mode before accessing the FIFO and back to BE mode - * after the access is done - */ - if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) || !is_param) { - if (prepare) - val |= IPROC_NAND_APB_LE_MODE; - else - val &= ~IPROC_NAND_APB_LE_MODE; - } else { /* when in LE accessing the parameter page, keep APB in BE */ - val &= ~IPROC_NAND_APB_LE_MODE; - } - - brcmnand_writel(val, mmio); - - spin_unlock_irqrestore(&priv->idm_lock, flags); -} - -static int iproc_nand_probe(struct platform_device *pdev) -{ - struct device *dev = &pdev->dev; - struct iproc_nand_soc *priv; - struct brcmnand_soc *soc; - struct resource *res; - - priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); - if (!priv) - return -ENOMEM; - soc = &priv->soc; - - spin_lock_init(&priv->idm_lock); - - res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "iproc-idm"); - priv->idm_base = devm_ioremap_resource(dev, res); - if (IS_ERR(priv->idm_base)) - return PTR_ERR(priv->idm_base); - - res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "iproc-ext"); - priv->ext_base = devm_ioremap_resource(dev, res); - if (IS_ERR(priv->ext_base)) - return PTR_ERR(priv->ext_base); - - soc->ctlrdy_ack = iproc_nand_intc_ack; - soc->ctlrdy_set_enabled = iproc_nand_intc_set; - soc->prepare_data_bus = iproc_nand_apb_access; - - return brcmnand_probe(pdev, soc); -} - -static const struct of_device_id iproc_nand_of_match[] = { - { .compatible = "brcm,nand-iproc" }, - {}, -}; -MODULE_DEVICE_TABLE(of, iproc_nand_of_match); - -static struct platform_driver iproc_nand_driver = { - .probe = iproc_nand_probe, - .remove = brcmnand_remove, - .driver = { - .name = "iproc_nand", - .pm = &brcmnand_pm_ops, - .of_match_table = iproc_nand_of_match, - } -}; -module_platform_driver(iproc_nand_driver); - -MODULE_LICENSE("GPL v2"); -MODULE_AUTHOR("Brian Norris"); -MODULE_AUTHOR("Ray Jui"); -MODULE_DESCRIPTION("NAND driver for Broadcom IPROC-based SoCs"); diff --git a/drivers/mtd/nand/cafe_nand.c b/drivers/mtd/nand/cafe_nand.c deleted file mode 100644 index 567ff972d5fc..000000000000 --- a/drivers/mtd/nand/cafe_nand.c +++ /dev/null @@ -1,871 +0,0 @@ -/* - * Driver for One Laptop Per Child ‘CAFÉ’ controller, aka Marvell 88ALP01 - * - * The data sheet for this device can be found at: - * http://wiki.laptop.org/go/Datasheets - * - * Copyright © 2006 Red Hat, Inc. - * Copyright © 2006 David Woodhouse - */ - -#define DEBUG - -#include -#undef DEBUG -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include - -#define CAFE_NAND_CTRL1 0x00 -#define CAFE_NAND_CTRL2 0x04 -#define CAFE_NAND_CTRL3 0x08 -#define CAFE_NAND_STATUS 0x0c -#define CAFE_NAND_IRQ 0x10 -#define CAFE_NAND_IRQ_MASK 0x14 -#define CAFE_NAND_DATA_LEN 0x18 -#define CAFE_NAND_ADDR1 0x1c -#define CAFE_NAND_ADDR2 0x20 -#define CAFE_NAND_TIMING1 0x24 -#define CAFE_NAND_TIMING2 0x28 -#define CAFE_NAND_TIMING3 0x2c -#define CAFE_NAND_NONMEM 0x30 -#define CAFE_NAND_ECC_RESULT 0x3C -#define CAFE_NAND_DMA_CTRL 0x40 -#define CAFE_NAND_DMA_ADDR0 0x44 -#define CAFE_NAND_DMA_ADDR1 0x48 -#define CAFE_NAND_ECC_SYN01 0x50 -#define CAFE_NAND_ECC_SYN23 0x54 -#define CAFE_NAND_ECC_SYN45 0x58 -#define CAFE_NAND_ECC_SYN67 0x5c -#define CAFE_NAND_READ_DATA 0x1000 -#define CAFE_NAND_WRITE_DATA 0x2000 - -#define CAFE_GLOBAL_CTRL 0x3004 -#define CAFE_GLOBAL_IRQ 0x3008 -#define CAFE_GLOBAL_IRQ_MASK 0x300c -#define CAFE_NAND_RESET 0x3034 - -/* Missing from the datasheet: bit 19 of CTRL1 sets CE0 vs. CE1 */ -#define CTRL1_CHIPSELECT (1<<19) - -struct cafe_priv { - struct nand_chip nand; - struct pci_dev *pdev; - void __iomem *mmio; - struct rs_control *rs; - uint32_t ctl1; - uint32_t ctl2; - int datalen; - int nr_data; - int data_pos; - int page_addr; - dma_addr_t dmaaddr; - unsigned char *dmabuf; -}; - -static int usedma = 1; -module_param(usedma, int, 0644); - -static int skipbbt = 0; -module_param(skipbbt, int, 0644); - -static int debug = 0; -module_param(debug, int, 0644); - -static int regdebug = 0; -module_param(regdebug, int, 0644); - -static int checkecc = 1; -module_param(checkecc, int, 0644); - -static unsigned int numtimings; -static int timing[3]; -module_param_array(timing, int, &numtimings, 0644); - -static const char *part_probes[] = { "cmdlinepart", "RedBoot", NULL }; - -/* Hrm. Why isn't this already conditional on something in the struct device? */ -#define cafe_dev_dbg(dev, args...) do { if (debug) dev_dbg(dev, ##args); } while(0) - -/* Make it easier to switch to PIO if we need to */ -#define cafe_readl(cafe, addr) readl((cafe)->mmio + CAFE_##addr) -#define cafe_writel(cafe, datum, addr) writel(datum, (cafe)->mmio + CAFE_##addr) - -static int cafe_device_ready(struct mtd_info *mtd) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct cafe_priv *cafe = nand_get_controller_data(chip); - int result = !!(cafe_readl(cafe, NAND_STATUS) & 0x40000000); - uint32_t irqs = cafe_readl(cafe, NAND_IRQ); - - cafe_writel(cafe, irqs, NAND_IRQ); - - cafe_dev_dbg(&cafe->pdev->dev, "NAND device is%s ready, IRQ %x (%x) (%x,%x)\n", - result?"":" not", irqs, cafe_readl(cafe, NAND_IRQ), - cafe_readl(cafe, GLOBAL_IRQ), cafe_readl(cafe, GLOBAL_IRQ_MASK)); - - return result; -} - - -static void cafe_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct cafe_priv *cafe = nand_get_controller_data(chip); - - if (usedma) - memcpy(cafe->dmabuf + cafe->datalen, buf, len); - else - memcpy_toio(cafe->mmio + CAFE_NAND_WRITE_DATA + cafe->datalen, buf, len); - - cafe->datalen += len; - - cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes to write buffer. datalen 0x%x\n", - len, cafe->datalen); -} - -static void cafe_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct cafe_priv *cafe = nand_get_controller_data(chip); - - if (usedma) - memcpy(buf, cafe->dmabuf + cafe->datalen, len); - else - memcpy_fromio(buf, cafe->mmio + CAFE_NAND_READ_DATA + cafe->datalen, len); - - cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes from position 0x%x in read buffer.\n", - len, cafe->datalen); - cafe->datalen += len; -} - -static uint8_t cafe_read_byte(struct mtd_info *mtd) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct cafe_priv *cafe = nand_get_controller_data(chip); - uint8_t d; - - cafe_read_buf(mtd, &d, 1); - cafe_dev_dbg(&cafe->pdev->dev, "Read %02x\n", d); - - return d; -} - -static void cafe_nand_cmdfunc(struct mtd_info *mtd, unsigned command, - int column, int page_addr) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct cafe_priv *cafe = nand_get_controller_data(chip); - int adrbytes = 0; - uint32_t ctl1; - uint32_t doneint = 0x80000000; - - cafe_dev_dbg(&cafe->pdev->dev, "cmdfunc %02x, 0x%x, 0x%x\n", - command, column, page_addr); - - if (command == NAND_CMD_ERASE2 || command == NAND_CMD_PAGEPROG) { - /* Second half of a command we already calculated */ - cafe_writel(cafe, cafe->ctl2 | 0x100 | command, NAND_CTRL2); - ctl1 = cafe->ctl1; - cafe->ctl2 &= ~(1<<30); - cafe_dev_dbg(&cafe->pdev->dev, "Continue command, ctl1 %08x, #data %d\n", - cafe->ctl1, cafe->nr_data); - goto do_command; - } - /* Reset ECC engine */ - cafe_writel(cafe, 0, NAND_CTRL2); - - /* Emulate NAND_CMD_READOOB on large-page chips */ - if (mtd->writesize > 512 && - command == NAND_CMD_READOOB) { - column += mtd->writesize; - command = NAND_CMD_READ0; - } - - /* FIXME: Do we need to send read command before sending data - for small-page chips, to position the buffer correctly? */ - - if (column != -1) { - cafe_writel(cafe, column, NAND_ADDR1); - adrbytes = 2; - if (page_addr != -1) - goto write_adr2; - } else if (page_addr != -1) { - cafe_writel(cafe, page_addr & 0xffff, NAND_ADDR1); - page_addr >>= 16; - write_adr2: - cafe_writel(cafe, page_addr, NAND_ADDR2); - adrbytes += 2; - if (mtd->size > mtd->writesize << 16) - adrbytes++; - } - - cafe->data_pos = cafe->datalen = 0; - - /* Set command valid bit, mask in the chip select bit */ - ctl1 = 0x80000000 | command | (cafe->ctl1 & CTRL1_CHIPSELECT); - - /* Set RD or WR bits as appropriate */ - if (command == NAND_CMD_READID || command == NAND_CMD_STATUS) { - ctl1 |= (1<<26); /* rd */ - /* Always 5 bytes, for now */ - cafe->datalen = 4; - /* And one address cycle -- even for STATUS, since the controller doesn't work without */ - adrbytes = 1; - } else if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 || - command == NAND_CMD_READOOB || command == NAND_CMD_RNDOUT) { - ctl1 |= 1<<26; /* rd */ - /* For now, assume just read to end of page */ - cafe->datalen = mtd->writesize + mtd->oobsize - column; - } else if (command == NAND_CMD_SEQIN) - ctl1 |= 1<<25; /* wr */ - - /* Set number of address bytes */ - if (adrbytes) - ctl1 |= ((adrbytes-1)|8) << 27; - - if (command == NAND_CMD_SEQIN || command == NAND_CMD_ERASE1) { - /* Ignore the first command of a pair; the hardware - deals with them both at once, later */ - cafe->ctl1 = ctl1; - cafe_dev_dbg(&cafe->pdev->dev, "Setup for delayed command, ctl1 %08x, dlen %x\n", - cafe->ctl1, cafe->datalen); - return; - } - /* RNDOUT and READ0 commands need a following byte */ - if (command == NAND_CMD_RNDOUT) - cafe_writel(cafe, cafe->ctl2 | 0x100 | NAND_CMD_RNDOUTSTART, NAND_CTRL2); - else if (command == NAND_CMD_READ0 && mtd->writesize > 512) - cafe_writel(cafe, cafe->ctl2 | 0x100 | NAND_CMD_READSTART, NAND_CTRL2); - - do_command: - cafe_dev_dbg(&cafe->pdev->dev, "dlen %x, ctl1 %x, ctl2 %x\n", - cafe->datalen, ctl1, cafe_readl(cafe, NAND_CTRL2)); - - /* NB: The datasheet lies -- we really should be subtracting 1 here */ - cafe_writel(cafe, cafe->datalen, NAND_DATA_LEN); - cafe_writel(cafe, 0x90000000, NAND_IRQ); - if (usedma && (ctl1 & (3<<25))) { - uint32_t dmactl = 0xc0000000 + cafe->datalen; - /* If WR or RD bits set, set up DMA */ - if (ctl1 & (1<<26)) { - /* It's a read */ - dmactl |= (1<<29); - /* ... so it's done when the DMA is done, not just - the command. */ - doneint = 0x10000000; - } - cafe_writel(cafe, dmactl, NAND_DMA_CTRL); - } - cafe->datalen = 0; - - if (unlikely(regdebug)) { - int i; - printk("About to write command %08x to register 0\n", ctl1); - for (i=4; i< 0x5c; i+=4) - printk("Register %x: %08x\n", i, readl(cafe->mmio + i)); - } - - cafe_writel(cafe, ctl1, NAND_CTRL1); - /* Apply this short delay always to ensure that we do wait tWB in - * any case on any machine. */ - ndelay(100); - - if (1) { - int c; - uint32_t irqs; - - for (c = 500000; c != 0; c--) { - irqs = cafe_readl(cafe, NAND_IRQ); - if (irqs & doneint) - break; - udelay(1); - if (!(c % 100000)) - cafe_dev_dbg(&cafe->pdev->dev, "Wait for ready, IRQ %x\n", irqs); - cpu_relax(); - } - cafe_writel(cafe, doneint, NAND_IRQ); - cafe_dev_dbg(&cafe->pdev->dev, "Command %x completed after %d usec, irqs %x (%x)\n", - command, 500000-c, irqs, cafe_readl(cafe, NAND_IRQ)); - } - - WARN_ON(cafe->ctl2 & (1<<30)); - - switch (command) { - - case NAND_CMD_CACHEDPROG: - case NAND_CMD_PAGEPROG: - case NAND_CMD_ERASE1: - case NAND_CMD_ERASE2: - case NAND_CMD_SEQIN: - case NAND_CMD_RNDIN: - case NAND_CMD_STATUS: - case NAND_CMD_RNDOUT: - cafe_writel(cafe, cafe->ctl2, NAND_CTRL2); - return; - } - nand_wait_ready(mtd); - cafe_writel(cafe, cafe->ctl2, NAND_CTRL2); -} - -static void cafe_select_chip(struct mtd_info *mtd, int chipnr) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct cafe_priv *cafe = nand_get_controller_data(chip); - - cafe_dev_dbg(&cafe->pdev->dev, "select_chip %d\n", chipnr); - - /* Mask the appropriate bit into the stored value of ctl1 - which will be used by cafe_nand_cmdfunc() */ - if (chipnr) - cafe->ctl1 |= CTRL1_CHIPSELECT; - else - cafe->ctl1 &= ~CTRL1_CHIPSELECT; -} - -static irqreturn_t cafe_nand_interrupt(int irq, void *id) -{ - struct mtd_info *mtd = id; - struct nand_chip *chip = mtd_to_nand(mtd); - struct cafe_priv *cafe = nand_get_controller_data(chip); - uint32_t irqs = cafe_readl(cafe, NAND_IRQ); - cafe_writel(cafe, irqs & ~0x90000000, NAND_IRQ); - if (!irqs) - return IRQ_NONE; - - cafe_dev_dbg(&cafe->pdev->dev, "irq, bits %x (%x)\n", irqs, cafe_readl(cafe, NAND_IRQ)); - return IRQ_HANDLED; -} - -static void cafe_nand_bug(struct mtd_info *mtd) -{ - BUG(); -} - -static int cafe_nand_write_oob(struct mtd_info *mtd, - struct nand_chip *chip, int page) -{ - return nand_prog_page_op(chip, page, mtd->writesize, chip->oob_poi, - mtd->oobsize); -} - -/* Don't use -- use nand_read_oob_std for now */ -static int cafe_nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip, - int page) -{ - return nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize); -} -/** - * cafe_nand_read_page_syndrome - [REPLACEABLE] hardware ecc syndrome based page read - * @mtd: mtd info structure - * @chip: nand chip info structure - * @buf: buffer to store read data - * @oob_required: caller expects OOB data read to chip->oob_poi - * - * The hw generator calculates the error syndrome automatically. Therefore - * we need a special oob layout and handling. - */ -static int cafe_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip, - uint8_t *buf, int oob_required, int page) -{ - struct cafe_priv *cafe = nand_get_controller_data(chip); - unsigned int max_bitflips = 0; - - cafe_dev_dbg(&cafe->pdev->dev, "ECC result %08x SYN1,2 %08x\n", - cafe_readl(cafe, NAND_ECC_RESULT), - cafe_readl(cafe, NAND_ECC_SYN01)); - - nand_read_page_op(chip, page, 0, buf, mtd->writesize); - chip->read_buf(mtd, chip->oob_poi, mtd->oobsize); - - if (checkecc && cafe_readl(cafe, NAND_ECC_RESULT) & (1<<18)) { - unsigned short syn[8], pat[4]; - int pos[4]; - u8 *oob = chip->oob_poi; - int i, n; - - for (i=0; i<8; i+=2) { - uint32_t tmp = cafe_readl(cafe, NAND_ECC_SYN01 + (i*2)); - syn[i] = cafe->rs->index_of[tmp & 0xfff]; - syn[i+1] = cafe->rs->index_of[(tmp >> 16) & 0xfff]; - } - - n = decode_rs16(cafe->rs, NULL, NULL, 1367, syn, 0, pos, 0, - pat); - - for (i = 0; i < n; i++) { - int p = pos[i]; - - /* The 12-bit symbols are mapped to bytes here */ - - if (p > 1374) { - /* out of range */ - n = -1374; - } else if (p == 0) { - /* high four bits do not correspond to data */ - if (pat[i] > 0xff) - n = -2048; - else - buf[0] ^= pat[i]; - } else if (p == 1365) { - buf[2047] ^= pat[i] >> 4; - oob[0] ^= pat[i] << 4; - } else if (p > 1365) { - if ((p & 1) == 1) { - oob[3*p/2 - 2048] ^= pat[i] >> 4; - oob[3*p/2 - 2047] ^= pat[i] << 4; - } else { - oob[3*p/2 - 2049] ^= pat[i] >> 8; - oob[3*p/2 - 2048] ^= pat[i]; - } - } else if ((p & 1) == 1) { - buf[3*p/2] ^= pat[i] >> 4; - buf[3*p/2 + 1] ^= pat[i] << 4; - } else { - buf[3*p/2 - 1] ^= pat[i] >> 8; - buf[3*p/2] ^= pat[i]; - } - } - - if (n < 0) { - dev_dbg(&cafe->pdev->dev, "Failed to correct ECC at %08x\n", - cafe_readl(cafe, NAND_ADDR2) * 2048); - for (i = 0; i < 0x5c; i += 4) - printk("Register %x: %08x\n", i, readl(cafe->mmio + i)); - mtd->ecc_stats.failed++; - } else { - dev_dbg(&cafe->pdev->dev, "Corrected %d symbol errors\n", n); - mtd->ecc_stats.corrected += n; - max_bitflips = max_t(unsigned int, max_bitflips, n); - } - } - - return max_bitflips; -} - -static int cafe_ooblayout_ecc(struct mtd_info *mtd, int section, - struct mtd_oob_region *oobregion) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - - if (section) - return -ERANGE; - - oobregion->offset = 0; - oobregion->length = chip->ecc.total; - - return 0; -} - -static int cafe_ooblayout_free(struct mtd_info *mtd, int section, - struct mtd_oob_region *oobregion) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - - if (section) - return -ERANGE; - - oobregion->offset = chip->ecc.total; - oobregion->length = mtd->oobsize - chip->ecc.total; - - return 0; -} - -static const struct mtd_ooblayout_ops cafe_ooblayout_ops = { - .ecc = cafe_ooblayout_ecc, - .free = cafe_ooblayout_free, -}; - -/* Ick. The BBT code really ought to be able to work this bit out - for itself from the above, at least for the 2KiB case */ -static uint8_t cafe_bbt_pattern_2048[] = { 'B', 'b', 't', '0' }; -static uint8_t cafe_mirror_pattern_2048[] = { '1', 't', 'b', 'B' }; - -static uint8_t cafe_bbt_pattern_512[] = { 0xBB }; -static uint8_t cafe_mirror_pattern_512[] = { 0xBC }; - - -static struct nand_bbt_descr cafe_bbt_main_descr_2048 = { - .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE - | NAND_BBT_2BIT | NAND_BBT_VERSION, - .offs = 14, - .len = 4, - .veroffs = 18, - .maxblocks = 4, - .pattern = cafe_bbt_pattern_2048 -}; - -static struct nand_bbt_descr cafe_bbt_mirror_descr_2048 = { - .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE - | NAND_BBT_2BIT | NAND_BBT_VERSION, - .offs = 14, - .len = 4, - .veroffs = 18, - .maxblocks = 4, - .pattern = cafe_mirror_pattern_2048 -}; - -static struct nand_bbt_descr cafe_bbt_main_descr_512 = { - .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE - | NAND_BBT_2BIT | NAND_BBT_VERSION, - .offs = 14, - .len = 1, - .veroffs = 15, - .maxblocks = 4, - .pattern = cafe_bbt_pattern_512 -}; - -static struct nand_bbt_descr cafe_bbt_mirror_descr_512 = { - .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE - | NAND_BBT_2BIT | NAND_BBT_VERSION, - .offs = 14, - .len = 1, - .veroffs = 15, - .maxblocks = 4, - .pattern = cafe_mirror_pattern_512 -}; - - -static int cafe_nand_write_page_lowlevel(struct mtd_info *mtd, - struct nand_chip *chip, - const uint8_t *buf, int oob_required, - int page) -{ - struct cafe_priv *cafe = nand_get_controller_data(chip); - - nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize); - chip->write_buf(mtd, chip->oob_poi, mtd->oobsize); - - /* Set up ECC autogeneration */ - cafe->ctl2 |= (1<<30); - - return nand_prog_page_end_op(chip); -} - -static int cafe_nand_block_bad(struct mtd_info *mtd, loff_t ofs) -{ - return 0; -} - -/* F_2[X]/(X**6+X+1) */ -static unsigned short gf64_mul(u8 a, u8 b) -{ - u8 c; - unsigned int i; - - c = 0; - for (i = 0; i < 6; i++) { - if (a & 1) - c ^= b; - a >>= 1; - b <<= 1; - if ((b & 0x40) != 0) - b ^= 0x43; - } - - return c; -} - -/* F_64[X]/(X**2+X+A**-1) with A the generator of F_64[X] */ -static u16 gf4096_mul(u16 a, u16 b) -{ - u8 ah, al, bh, bl, ch, cl; - - ah = a >> 6; - al = a & 0x3f; - bh = b >> 6; - bl = b & 0x3f; - - ch = gf64_mul(ah ^ al, bh ^ bl) ^ gf64_mul(al, bl); - cl = gf64_mul(gf64_mul(ah, bh), 0x21) ^ gf64_mul(al, bl); - - return (ch << 6) ^ cl; -} - -static int cafe_mul(int x) -{ - if (x == 0) - return 1; - return gf4096_mul(x, 0xe01); -} - -static int cafe_nand_probe(struct pci_dev *pdev, - const struct pci_device_id *ent) -{ - struct mtd_info *mtd; - struct cafe_priv *cafe; - uint32_t ctrl; - int err = 0; - int old_dma; - - /* Very old versions shared the same PCI ident for all three - functions on the chip. Verify the class too... */ - if ((pdev->class >> 8) != PCI_CLASS_MEMORY_FLASH) - return -ENODEV; - - err = pci_enable_device(pdev); - if (err) - return err; - - pci_set_master(pdev); - - cafe = kzalloc(sizeof(*cafe), GFP_KERNEL); - if (!cafe) - return -ENOMEM; - - mtd = nand_to_mtd(&cafe->nand); - mtd->dev.parent = &pdev->dev; - nand_set_controller_data(&cafe->nand, cafe); - - cafe->pdev = pdev; - cafe->mmio = pci_iomap(pdev, 0, 0); - if (!cafe->mmio) { - dev_warn(&pdev->dev, "failed to iomap\n"); - err = -ENOMEM; - goto out_free_mtd; - } - - cafe->rs = init_rs_non_canonical(12, &cafe_mul, 0, 1, 8); - if (!cafe->rs) { - err = -ENOMEM; - goto out_ior; - } - - cafe->nand.cmdfunc = cafe_nand_cmdfunc; - cafe->nand.dev_ready = cafe_device_ready; - cafe->nand.read_byte = cafe_read_byte; - cafe->nand.read_buf = cafe_read_buf; - cafe->nand.write_buf = cafe_write_buf; - cafe->nand.select_chip = cafe_select_chip; - cafe->nand.onfi_set_features = nand_onfi_get_set_features_notsupp; - cafe->nand.onfi_get_features = nand_onfi_get_set_features_notsupp; - - cafe->nand.chip_delay = 0; - - /* Enable the following for a flash based bad block table */ - cafe->nand.bbt_options = NAND_BBT_USE_FLASH; - - if (skipbbt) { - cafe->nand.options |= NAND_SKIP_BBTSCAN; - cafe->nand.block_bad = cafe_nand_block_bad; - } - - if (numtimings && numtimings != 3) { - dev_warn(&cafe->pdev->dev, "%d timing register values ignored; precisely three are required\n", numtimings); - } - - if (numtimings == 3) { - cafe_dev_dbg(&cafe->pdev->dev, "Using provided timings (%08x %08x %08x)\n", - timing[0], timing[1], timing[2]); - } else { - timing[0] = cafe_readl(cafe, NAND_TIMING1); - timing[1] = cafe_readl(cafe, NAND_TIMING2); - timing[2] = cafe_readl(cafe, NAND_TIMING3); - - if (timing[0] | timing[1] | timing[2]) { - cafe_dev_dbg(&cafe->pdev->dev, "Timing registers already set (%08x %08x %08x)\n", - timing[0], timing[1], timing[2]); - } else { - dev_warn(&cafe->pdev->dev, "Timing registers unset; using most conservative defaults\n"); - timing[0] = timing[1] = timing[2] = 0xffffffff; - } - } - - /* Start off by resetting the NAND controller completely */ - cafe_writel(cafe, 1, NAND_RESET); - cafe_writel(cafe, 0, NAND_RESET); - - cafe_writel(cafe, timing[0], NAND_TIMING1); - cafe_writel(cafe, timing[1], NAND_TIMING2); - cafe_writel(cafe, timing[2], NAND_TIMING3); - - cafe_writel(cafe, 0xffffffff, NAND_IRQ_MASK); - err = request_irq(pdev->irq, &cafe_nand_interrupt, IRQF_SHARED, - "CAFE NAND", mtd); - if (err) { - dev_warn(&pdev->dev, "Could not register IRQ %d\n", pdev->irq); - goto out_ior; - } - - /* Disable master reset, enable NAND clock */ - ctrl = cafe_readl(cafe, GLOBAL_CTRL); - ctrl &= 0xffffeff0; - ctrl |= 0x00007000; - cafe_writel(cafe, ctrl | 0x05, GLOBAL_CTRL); - cafe_writel(cafe, ctrl | 0x0a, GLOBAL_CTRL); - cafe_writel(cafe, 0, NAND_DMA_CTRL); - - cafe_writel(cafe, 0x7006, GLOBAL_CTRL); - cafe_writel(cafe, 0x700a, GLOBAL_CTRL); - - /* Enable NAND IRQ in global IRQ mask register */ - cafe_writel(cafe, 0x80000007, GLOBAL_IRQ_MASK); - cafe_dev_dbg(&cafe->pdev->dev, "Control %x, IRQ mask %x\n", - cafe_readl(cafe, GLOBAL_CTRL), - cafe_readl(cafe, GLOBAL_IRQ_MASK)); - - /* Do not use the DMA for the nand_scan_ident() */ - old_dma = usedma; - usedma = 0; - - /* Scan to find existence of the device */ - err = nand_scan_ident(mtd, 2, NULL); - if (err) - goto out_irq; - - cafe->dmabuf = dma_alloc_coherent(&cafe->pdev->dev, 2112, - &cafe->dmaaddr, GFP_KERNEL); - if (!cafe->dmabuf) { - err = -ENOMEM; - goto out_irq; - } - - /* Set up DMA address */ - cafe_writel(cafe, lower_32_bits(cafe->dmaaddr), NAND_DMA_ADDR0); - cafe_writel(cafe, upper_32_bits(cafe->dmaaddr), NAND_DMA_ADDR1); - - cafe_dev_dbg(&cafe->pdev->dev, "Set DMA address to %x (virt %p)\n", - cafe_readl(cafe, NAND_DMA_ADDR0), cafe->dmabuf); - - /* Restore the DMA flag */ - usedma = old_dma; - - cafe->ctl2 = 1<<27; /* Reed-Solomon ECC */ - if (mtd->writesize == 2048) - cafe->ctl2 |= 1<<29; /* 2KiB page size */ - - /* Set up ECC according to the type of chip we found */ - mtd_set_ooblayout(mtd, &cafe_ooblayout_ops); - if (mtd->writesize == 2048) { - cafe->nand.bbt_td = &cafe_bbt_main_descr_2048; - cafe->nand.bbt_md = &cafe_bbt_mirror_descr_2048; - } else if (mtd->writesize == 512) { - cafe->nand.bbt_td = &cafe_bbt_main_descr_512; - cafe->nand.bbt_md = &cafe_bbt_mirror_descr_512; - } else { - printk(KERN_WARNING "Unexpected NAND flash writesize %d. Aborting\n", - mtd->writesize); - goto out_free_dma; - } - cafe->nand.ecc.mode = NAND_ECC_HW_SYNDROME; - cafe->nand.ecc.size = mtd->writesize; - cafe->nand.ecc.bytes = 14; - cafe->nand.ecc.strength = 4; - cafe->nand.ecc.hwctl = (void *)cafe_nand_bug; - cafe->nand.ecc.calculate = (void *)cafe_nand_bug; - cafe->nand.ecc.correct = (void *)cafe_nand_bug; - cafe->nand.ecc.write_page = cafe_nand_write_page_lowlevel; - cafe->nand.ecc.write_oob = cafe_nand_write_oob; - cafe->nand.ecc.read_page = cafe_nand_read_page; - cafe->nand.ecc.read_oob = cafe_nand_read_oob; - - err = nand_scan_tail(mtd); - if (err) - goto out_free_dma; - - pci_set_drvdata(pdev, mtd); - - mtd->name = "cafe_nand"; - mtd_device_parse_register(mtd, part_probes, NULL, NULL, 0); - - goto out; - - out_free_dma: - dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr); - out_irq: - /* Disable NAND IRQ in global IRQ mask register */ - cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK); - free_irq(pdev->irq, mtd); - out_ior: - pci_iounmap(pdev, cafe->mmio); - out_free_mtd: - kfree(cafe); - out: - return err; -} - -static void cafe_nand_remove(struct pci_dev *pdev) -{ - struct mtd_info *mtd = pci_get_drvdata(pdev); - struct nand_chip *chip = mtd_to_nand(mtd); - struct cafe_priv *cafe = nand_get_controller_data(chip); - - /* Disable NAND IRQ in global IRQ mask register */ - cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK); - free_irq(pdev->irq, mtd); - nand_release(mtd); - free_rs(cafe->rs); - pci_iounmap(pdev, cafe->mmio); - dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr); - kfree(cafe); -} - -static const struct pci_device_id cafe_nand_tbl[] = { - { PCI_VENDOR_ID_MARVELL, PCI_DEVICE_ID_MARVELL_88ALP01_NAND, - PCI_ANY_ID, PCI_ANY_ID }, - { } -}; - -MODULE_DEVICE_TABLE(pci, cafe_nand_tbl); - -static int cafe_nand_resume(struct pci_dev *pdev) -{ - uint32_t ctrl; - struct mtd_info *mtd = pci_get_drvdata(pdev); - struct nand_chip *chip = mtd_to_nand(mtd); - struct cafe_priv *cafe = nand_get_controller_data(chip); - - /* Start off by resetting the NAND controller completely */ - cafe_writel(cafe, 1, NAND_RESET); - cafe_writel(cafe, 0, NAND_RESET); - cafe_writel(cafe, 0xffffffff, NAND_IRQ_MASK); - - /* Restore timing configuration */ - cafe_writel(cafe, timing[0], NAND_TIMING1); - cafe_writel(cafe, timing[1], NAND_TIMING2); - cafe_writel(cafe, timing[2], NAND_TIMING3); - - /* Disable master reset, enable NAND clock */ - ctrl = cafe_readl(cafe, GLOBAL_CTRL); - ctrl &= 0xffffeff0; - ctrl |= 0x00007000; - cafe_writel(cafe, ctrl | 0x05, GLOBAL_CTRL); - cafe_writel(cafe, ctrl | 0x0a, GLOBAL_CTRL); - cafe_writel(cafe, 0, NAND_DMA_CTRL); - cafe_writel(cafe, 0x7006, GLOBAL_CTRL); - cafe_writel(cafe, 0x700a, GLOBAL_CTRL); - - /* Set up DMA address */ - cafe_writel(cafe, cafe->dmaaddr & 0xffffffff, NAND_DMA_ADDR0); - if (sizeof(cafe->dmaaddr) > 4) - /* Shift in two parts to shut the compiler up */ - cafe_writel(cafe, (cafe->dmaaddr >> 16) >> 16, NAND_DMA_ADDR1); - else - cafe_writel(cafe, 0, NAND_DMA_ADDR1); - - /* Enable NAND IRQ in global IRQ mask register */ - cafe_writel(cafe, 0x80000007, GLOBAL_IRQ_MASK); - return 0; -} - -static struct pci_driver cafe_nand_pci_driver = { - .name = "CAFÉ NAND", - .id_table = cafe_nand_tbl, - .probe = cafe_nand_probe, - .remove = cafe_nand_remove, - .resume = cafe_nand_resume, -}; - -module_pci_driver(cafe_nand_pci_driver); - -MODULE_LICENSE("GPL"); -MODULE_AUTHOR("David Woodhouse "); -MODULE_DESCRIPTION("NAND flash driver for OLPC CAFÉ chip"); diff --git a/drivers/mtd/nand/cmx270_nand.c b/drivers/mtd/nand/cmx270_nand.c deleted file mode 100644 index 02d6751e9efe..000000000000 --- a/drivers/mtd/nand/cmx270_nand.c +++ /dev/null @@ -1,244 +0,0 @@ -/* - * Copyright (C) 2006 Compulab, Ltd. - * Mike Rapoport - * - * Derived from drivers/mtd/nand/h1910.c (removed in v3.10) - * Copyright (C) 2002 Marius Gröger (mag@sysgo.de) - * Copyright (c) 2001 Thomas Gleixner (gleixner@autronix.de) - * - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License version 2 as - * published by the Free Software Foundation. - * - * Overview: - * This is a device driver for the NAND flash device found on the - * CM-X270 board. - */ - -#include -#include -#include -#include -#include - -#include -#include -#include - -#include - -#define GPIO_NAND_CS (11) -#define GPIO_NAND_RB (89) - -/* MTD structure for CM-X270 board */ -static struct mtd_info *cmx270_nand_mtd; - -/* remaped IO address of the device */ -static void __iomem *cmx270_nand_io; - -/* - * Define static partitions for flash device - */ -static const struct mtd_partition partition_info[] = { - [0] = { - .name = "cmx270-0", - .offset = 0, - .size = MTDPART_SIZ_FULL - } -}; -#define NUM_PARTITIONS (ARRAY_SIZE(partition_info)) - -static u_char cmx270_read_byte(struct mtd_info *mtd) -{ - struct nand_chip *this = mtd_to_nand(mtd); - - return (readl(this->IO_ADDR_R) >> 16); -} - -static void cmx270_write_buf(struct mtd_info *mtd, const u_char *buf, int len) -{ - int i; - struct nand_chip *this = mtd_to_nand(mtd); - - for (i=0; iIO_ADDR_W); -} - -static void cmx270_read_buf(struct mtd_info *mtd, u_char *buf, int len) -{ - int i; - struct nand_chip *this = mtd_to_nand(mtd); - - for (i=0; iIO_ADDR_R) >> 16; -} - -static inline void nand_cs_on(void) -{ - gpio_set_value(GPIO_NAND_CS, 0); -} - -static void nand_cs_off(void) -{ - dsb(); - - gpio_set_value(GPIO_NAND_CS, 1); -} - -/* - * hardware specific access to control-lines - */ -static void cmx270_hwcontrol(struct mtd_info *mtd, int dat, - unsigned int ctrl) -{ - struct nand_chip *this = mtd_to_nand(mtd); - unsigned int nandaddr = (unsigned int)this->IO_ADDR_W; - - dsb(); - - if (ctrl & NAND_CTRL_CHANGE) { - if ( ctrl & NAND_ALE ) - nandaddr |= (1 << 3); - else - nandaddr &= ~(1 << 3); - if ( ctrl & NAND_CLE ) - nandaddr |= (1 << 2); - else - nandaddr &= ~(1 << 2); - if ( ctrl & NAND_NCE ) - nand_cs_on(); - else - nand_cs_off(); - } - - dsb(); - this->IO_ADDR_W = (void __iomem*)nandaddr; - if (dat != NAND_CMD_NONE) - writel((dat << 16), this->IO_ADDR_W); - - dsb(); -} - -/* - * read device ready pin - */ -static int cmx270_device_ready(struct mtd_info *mtd) -{ - dsb(); - - return (gpio_get_value(GPIO_NAND_RB)); -} - -/* - * Main initialization routine - */ -static int __init cmx270_init(void) -{ - struct nand_chip *this; - int ret; - - if (!(machine_is_armcore() && cpu_is_pxa27x())) - return -ENODEV; - - ret = gpio_request(GPIO_NAND_CS, "NAND CS"); - if (ret) { - pr_warn("CM-X270: failed to request NAND CS gpio\n"); - return ret; - } - - gpio_direction_output(GPIO_NAND_CS, 1); - - ret = gpio_request(GPIO_NAND_RB, "NAND R/B"); - if (ret) { - pr_warn("CM-X270: failed to request NAND R/B gpio\n"); - goto err_gpio_request; - } - - gpio_direction_input(GPIO_NAND_RB); - - /* Allocate memory for MTD device structure and private data */ - this = kzalloc(sizeof(struct nand_chip), GFP_KERNEL); - if (!this) { - ret = -ENOMEM; - goto err_kzalloc; - } - - cmx270_nand_io = ioremap(PXA_CS1_PHYS, 12); - if (!cmx270_nand_io) { - pr_debug("Unable to ioremap NAND device\n"); - ret = -EINVAL; - goto err_ioremap; - } - - cmx270_nand_mtd = nand_to_mtd(this); - - /* Link the private data with the MTD structure */ - cmx270_nand_mtd->owner = THIS_MODULE; - - /* insert callbacks */ - this->IO_ADDR_R = cmx270_nand_io; - this->IO_ADDR_W = cmx270_nand_io; - this->cmd_ctrl = cmx270_hwcontrol; - this->dev_ready = cmx270_device_ready; - - /* 15 us command delay time */ - this->chip_delay = 20; - this->ecc.mode = NAND_ECC_SOFT; - this->ecc.algo = NAND_ECC_HAMMING; - - /* read/write functions */ - this->read_byte = cmx270_read_byte; - this->read_buf = cmx270_read_buf; - this->write_buf = cmx270_write_buf; - - /* Scan to find existence of the device */ - ret = nand_scan(cmx270_nand_mtd, 1); - if (ret) { - pr_notice("No NAND device\n"); - goto err_scan; - } - - /* Register the partitions */ - ret = mtd_device_parse_register(cmx270_nand_mtd, NULL, NULL, - partition_info, NUM_PARTITIONS); - if (ret) - goto err_scan; - - /* Return happy */ - return 0; - -err_scan: - iounmap(cmx270_nand_io); -err_ioremap: - kfree(this); -err_kzalloc: - gpio_free(GPIO_NAND_RB); -err_gpio_request: - gpio_free(GPIO_NAND_CS); - - return ret; - -} -module_init(cmx270_init); - -/* - * Clean up routine - */ -static void __exit cmx270_cleanup(void) -{ - /* Release resources, unregister device */ - nand_release(cmx270_nand_mtd); - - gpio_free(GPIO_NAND_RB); - gpio_free(GPIO_NAND_CS); - - iounmap(cmx270_nand_io); - - kfree(mtd_to_nand(cmx270_nand_mtd)); -} -module_exit(cmx270_cleanup); - -MODULE_LICENSE("GPL"); -MODULE_AUTHOR("Mike Rapoport "); -MODULE_DESCRIPTION("NAND flash driver for Compulab CM-X270 Module"); diff --git a/drivers/mtd/nand/cs553x_nand.c b/drivers/mtd/nand/cs553x_nand.c deleted file mode 100644 index be1f28fc7363..000000000000 --- a/drivers/mtd/nand/cs553x_nand.c +++ /dev/null @@ -1,355 +0,0 @@ -/* - * (C) 2005, 2006 Red Hat Inc. - * - * Author: David Woodhouse - * Tom Sylla - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License version 2 as - * published by the Free Software Foundation. - * - * Overview: - * This is a device driver for the NAND flash controller found on - * the AMD CS5535/CS5536 companion chipsets for the Geode processor. - * mtd-id for command line partitioning is cs553x_nand_cs[0-3] - * where 0-3 reflects the chip select for NAND. - * - */ - -#include -#include -#include -#include -#include -#include -#include -#include -#include - -#include -#include - -#define NR_CS553X_CONTROLLERS 4 - -#define MSR_DIVIL_GLD_CAP 0x51400000 /* DIVIL capabilitiies */ -#define CAP_CS5535 0x2df000ULL -#define CAP_CS5536 0x5df500ULL - -/* NAND Timing MSRs */ -#define MSR_NANDF_DATA 0x5140001b /* NAND Flash Data Timing MSR */ -#define MSR_NANDF_CTL 0x5140001c /* NAND Flash Control Timing */ -#define MSR_NANDF_RSVD 0x5140001d /* Reserved */ - -/* NAND BAR MSRs */ -#define MSR_DIVIL_LBAR_FLSH0 0x51400010 /* Flash Chip Select 0 */ -#define MSR_DIVIL_LBAR_FLSH1 0x51400011 /* Flash Chip Select 1 */ -#define MSR_DIVIL_LBAR_FLSH2 0x51400012 /* Flash Chip Select 2 */ -#define MSR_DIVIL_LBAR_FLSH3 0x51400013 /* Flash Chip Select 3 */ - /* Each made up of... */ -#define FLSH_LBAR_EN (1ULL<<32) -#define FLSH_NOR_NAND (1ULL<<33) /* 1 for NAND */ -#define FLSH_MEM_IO (1ULL<<34) /* 1 for MMIO */ - /* I/O BARs have BASE_ADDR in bits 15:4, IO_MASK in 47:36 */ - /* MMIO BARs have BASE_ADDR in bits 31:12, MEM_MASK in 63:44 */ - -/* Pin function selection MSR (IDE vs. flash on the IDE pins) */ -#define MSR_DIVIL_BALL_OPTS 0x51400015 -#define PIN_OPT_IDE (1<<0) /* 0 for flash, 1 for IDE */ - -/* Registers within the NAND flash controller BAR -- memory mapped */ -#define MM_NAND_DATA 0x00 /* 0 to 0x7ff, in fact */ -#define MM_NAND_CTL 0x800 /* Any even address 0x800-0x80e */ -#define MM_NAND_IO 0x801 /* Any odd address 0x801-0x80f */ -#define MM_NAND_STS 0x810 -#define MM_NAND_ECC_LSB 0x811 -#define MM_NAND_ECC_MSB 0x812 -#define MM_NAND_ECC_COL 0x813 -#define MM_NAND_LAC 0x814 -#define MM_NAND_ECC_CTL 0x815 - -/* Registers within the NAND flash controller BAR -- I/O mapped */ -#define IO_NAND_DATA 0x00 /* 0 to 3, in fact */ -#define IO_NAND_CTL 0x04 -#define IO_NAND_IO 0x05 -#define IO_NAND_STS 0x06 -#define IO_NAND_ECC_CTL 0x08 -#define IO_NAND_ECC_LSB 0x09 -#define IO_NAND_ECC_MSB 0x0a -#define IO_NAND_ECC_COL 0x0b -#define IO_NAND_LAC 0x0c - -#define CS_NAND_CTL_DIST_EN (1<<4) /* Enable NAND Distract interrupt */ -#define CS_NAND_CTL_RDY_INT_MASK (1<<3) /* Enable RDY/BUSY# interrupt */ -#define CS_NAND_CTL_ALE (1<<2) -#define CS_NAND_CTL_CLE (1<<1) -#define CS_NAND_CTL_CE (1<<0) /* Keep low; 1 to reset */ - -#define CS_NAND_STS_FLASH_RDY (1<<3) -#define CS_NAND_CTLR_BUSY (1<<2) -#define CS_NAND_CMD_COMP (1<<1) -#define CS_NAND_DIST_ST (1<<0) - -#define CS_NAND_ECC_PARITY (1<<2) -#define CS_NAND_ECC_CLRECC (1<<1) -#define CS_NAND_ECC_ENECC (1<<0) - -static void cs553x_read_buf(struct mtd_info *mtd, u_char *buf, int len) -{ - struct nand_chip *this = mtd_to_nand(mtd); - - while (unlikely(len > 0x800)) { - memcpy_fromio(buf, this->IO_ADDR_R, 0x800); - buf += 0x800; - len -= 0x800; - } - memcpy_fromio(buf, this->IO_ADDR_R, len); -} - -static void cs553x_write_buf(struct mtd_info *mtd, const u_char *buf, int len) -{ - struct nand_chip *this = mtd_to_nand(mtd); - - while (unlikely(len > 0x800)) { - memcpy_toio(this->IO_ADDR_R, buf, 0x800); - buf += 0x800; - len -= 0x800; - } - memcpy_toio(this->IO_ADDR_R, buf, len); -} - -static unsigned char cs553x_read_byte(struct mtd_info *mtd) -{ - struct nand_chip *this = mtd_to_nand(mtd); - return readb(this->IO_ADDR_R); -} - -static void cs553x_write_byte(struct mtd_info *mtd, u_char byte) -{ - struct nand_chip *this = mtd_to_nand(mtd); - int i = 100000; - - while (i && readb(this->IO_ADDR_R + MM_NAND_STS) & CS_NAND_CTLR_BUSY) { - udelay(1); - i--; - } - writeb(byte, this->IO_ADDR_W + 0x801); -} - -static void cs553x_hwcontrol(struct mtd_info *mtd, int cmd, - unsigned int ctrl) -{ - struct nand_chip *this = mtd_to_nand(mtd); - void __iomem *mmio_base = this->IO_ADDR_R; - if (ctrl & NAND_CTRL_CHANGE) { - unsigned char ctl = (ctrl & ~NAND_CTRL_CHANGE ) ^ 0x01; - writeb(ctl, mmio_base + MM_NAND_CTL); - } - if (cmd != NAND_CMD_NONE) - cs553x_write_byte(mtd, cmd); -} - -static int cs553x_device_ready(struct mtd_info *mtd) -{ - struct nand_chip *this = mtd_to_nand(mtd); - void __iomem *mmio_base = this->IO_ADDR_R; - unsigned char foo = readb(mmio_base + MM_NAND_STS); - - return (foo & CS_NAND_STS_FLASH_RDY) && !(foo & CS_NAND_CTLR_BUSY); -} - -static void cs_enable_hwecc(struct mtd_info *mtd, int mode) -{ - struct nand_chip *this = mtd_to_nand(mtd); - void __iomem *mmio_base = this->IO_ADDR_R; - - writeb(0x07, mmio_base + MM_NAND_ECC_CTL); -} - -static int cs_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code) -{ - uint32_t ecc; - struct nand_chip *this = mtd_to_nand(mtd); - void __iomem *mmio_base = this->IO_ADDR_R; - - ecc = readl(mmio_base + MM_NAND_STS); - - ecc_code[1] = ecc >> 8; - ecc_code[0] = ecc >> 16; - ecc_code[2] = ecc >> 24; - return 0; -} - -static struct mtd_info *cs553x_mtd[4]; - -static int __init cs553x_init_one(int cs, int mmio, unsigned long adr) -{ - int err = 0; - struct nand_chip *this; - struct mtd_info *new_mtd; - - printk(KERN_NOTICE "Probing CS553x NAND controller CS#%d at %sIO 0x%08lx\n", cs, mmio?"MM":"P", adr); - - if (!mmio) { - printk(KERN_NOTICE "PIO mode not yet implemented for CS553X NAND controller\n"); - return -ENXIO; - } - - /* Allocate memory for MTD device structure and private data */ - this = kzalloc(sizeof(struct nand_chip), GFP_KERNEL); - if (!this) { - err = -ENOMEM; - goto out; - } - - new_mtd = nand_to_mtd(this); - - /* Link the private data with the MTD structure */ - new_mtd->owner = THIS_MODULE; - - /* map physical address */ - this->IO_ADDR_R = this->IO_ADDR_W = ioremap(adr, 4096); - if (!this->IO_ADDR_R) { - printk(KERN_WARNING "ioremap cs553x NAND @0x%08lx failed\n", adr); - err = -EIO; - goto out_mtd; - } - - this->cmd_ctrl = cs553x_hwcontrol; - this->dev_ready = cs553x_device_ready; - this->read_byte = cs553x_read_byte; - this->read_buf = cs553x_read_buf; - this->write_buf = cs553x_write_buf; - - this->chip_delay = 0; - - this->ecc.mode = NAND_ECC_HW; - this->ecc.size = 256; - this->ecc.bytes = 3; - this->ecc.hwctl = cs_enable_hwecc; - this->ecc.calculate = cs_calculate_ecc; - this->ecc.correct = nand_correct_data; - this->ecc.strength = 1; - - /* Enable the following for a flash based bad block table */ - this->bbt_options = NAND_BBT_USE_FLASH; - - new_mtd->name = kasprintf(GFP_KERNEL, "cs553x_nand_cs%d", cs); - if (!new_mtd->name) { - err = -ENOMEM; - goto out_ior; - } - - /* Scan to find existence of the device */ - err = nand_scan(new_mtd, 1); - if (err) - goto out_free; - - cs553x_mtd[cs] = new_mtd; - goto out; - -out_free: - kfree(new_mtd->name); -out_ior: - iounmap(this->IO_ADDR_R); -out_mtd: - kfree(this); -out: - return err; -} - -static int is_geode(void) -{ - /* These are the CPUs which will have a CS553[56] companion chip */ - if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD && - boot_cpu_data.x86 == 5 && - boot_cpu_data.x86_model == 10) - return 1; /* Geode LX */ - - if ((boot_cpu_data.x86_vendor == X86_VENDOR_NSC || - boot_cpu_data.x86_vendor == X86_VENDOR_CYRIX) && - boot_cpu_data.x86 == 5 && - boot_cpu_data.x86_model == 5) - return 1; /* Geode GX (née GX2) */ - - return 0; -} - -static int __init cs553x_init(void) -{ - int err = -ENXIO; - int i; - uint64_t val; - - /* If the CPU isn't a Geode GX or LX, abort */ - if (!is_geode()) - return -ENXIO; - - /* If it doesn't have the CS553[56], abort */ - rdmsrl(MSR_DIVIL_GLD_CAP, val); - val &= ~0xFFULL; - if (val != CAP_CS5535 && val != CAP_CS5536) - return -ENXIO; - - /* If it doesn't have the NAND controller enabled, abort */ - rdmsrl(MSR_DIVIL_BALL_OPTS, val); - if (val & PIN_OPT_IDE) { - printk(KERN_INFO "CS553x NAND controller: Flash I/O not enabled in MSR_DIVIL_BALL_OPTS.\n"); - return -ENXIO; - } - - for (i = 0; i < NR_CS553X_CONTROLLERS; i++) { - rdmsrl(MSR_DIVIL_LBAR_FLSH0 + i, val); - - if ((val & (FLSH_LBAR_EN|FLSH_NOR_NAND)) == (FLSH_LBAR_EN|FLSH_NOR_NAND)) - err = cs553x_init_one(i, !!(val & FLSH_MEM_IO), val & 0xFFFFFFFF); - } - - /* Register all devices together here. This means we can easily hack it to - do mtdconcat etc. if we want to. */ - for (i = 0; i < NR_CS553X_CONTROLLERS; i++) { - if (cs553x_mtd[i]) { - /* If any devices registered, return success. Else the last error. */ - mtd_device_parse_register(cs553x_mtd[i], NULL, NULL, - NULL, 0); - err = 0; - } - } - - return err; -} - -module_init(cs553x_init); - -static void __exit cs553x_cleanup(void) -{ - int i; - - for (i = 0; i < NR_CS553X_CONTROLLERS; i++) { - struct mtd_info *mtd = cs553x_mtd[i]; - struct nand_chip *this; - void __iomem *mmio_base; - - if (!mtd) - continue; - - this = mtd_to_nand(mtd); - mmio_base = this->IO_ADDR_R; - - /* Release resources, unregister device */ - nand_release(mtd); - kfree(mtd->name); - cs553x_mtd[i] = NULL; - - /* unmap physical address */ - iounmap(mmio_base); - - /* Free the MTD device structure */ - kfree(this); - } -} - -module_exit(cs553x_cleanup); - -MODULE_LICENSE("GPL"); -MODULE_AUTHOR("David Woodhouse "); -MODULE_DESCRIPTION("NAND controller driver for AMD CS5535/CS5536 companion chip"); diff --git a/drivers/mtd/nand/davinci_nand.c b/drivers/mtd/nand/davinci_nand.c deleted file mode 100644 index ccc8c43abcff..000000000000 --- a/drivers/mtd/nand/davinci_nand.c +++ /dev/null @@ -1,879 +0,0 @@ -/* - * davinci_nand.c - NAND Flash Driver for DaVinci family chips - * - * Copyright © 2006 Texas Instruments. - * - * Port to 2.6.23 Copyright © 2008 by: - * Sander Huijsen - * Troy Kisky - * Dirk Behme - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation; either version 2 of the License, or - * (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License - * along with this program; if not, write to the Free Software - * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. - */ - -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include - -#include -#include - -/* - * This is a device driver for the NAND flash controller found on the - * various DaVinci family chips. It handles up to four SoC chipselects, - * and some flavors of secondary chipselect (e.g. based on A12) as used - * with multichip packages. - * - * The 1-bit ECC hardware is supported, as well as the newer 4-bit ECC - * available on chips like the DM355 and OMAP-L137 and needed with the - * more error-prone MLC NAND chips. - * - * This driver assumes EM_WAIT connects all the NAND devices' RDY/nBUSY - * outputs in a "wire-AND" configuration, with no per-chip signals. - */ -struct davinci_nand_info { - struct nand_chip chip; - - struct device *dev; - struct clk *clk; - - bool is_readmode; - - void __iomem *base; - void __iomem *vaddr; - - uint32_t ioaddr; - uint32_t current_cs; - - uint32_t mask_chipsel; - uint32_t mask_ale; - uint32_t mask_cle; - - uint32_t core_chipsel; - - struct davinci_aemif_timing *timing; -}; - -static DEFINE_SPINLOCK(davinci_nand_lock); -static bool ecc4_busy; - -static inline struct davinci_nand_info *to_davinci_nand(struct mtd_info *mtd) -{ - return container_of(mtd_to_nand(mtd), struct davinci_nand_info, chip); -} - -static inline unsigned int davinci_nand_readl(struct davinci_nand_info *info, - int offset) -{ - return __raw_readl(info->base + offset); -} - -static inline void davinci_nand_writel(struct davinci_nand_info *info, - int offset, unsigned long value) -{ - __raw_writel(value, info->base + offset); -} - -/*----------------------------------------------------------------------*/ - -/* - * Access to hardware control lines: ALE, CLE, secondary chipselect. - */ - -static void nand_davinci_hwcontrol(struct mtd_info *mtd, int cmd, - unsigned int ctrl) -{ - struct davinci_nand_info *info = to_davinci_nand(mtd); - uint32_t addr = info->current_cs; - struct nand_chip *nand = mtd_to_nand(mtd); - - /* Did the control lines change? */ - if (ctrl & NAND_CTRL_CHANGE) { - if ((ctrl & NAND_CTRL_CLE) == NAND_CTRL_CLE) - addr |= info->mask_cle; - else if ((ctrl & NAND_CTRL_ALE) == NAND_CTRL_ALE) - addr |= info->mask_ale; - - nand->IO_ADDR_W = (void __iomem __force *)addr; - } - - if (cmd != NAND_CMD_NONE) - iowrite8(cmd, nand->IO_ADDR_W); -} - -static void nand_davinci_select_chip(struct mtd_info *mtd, int chip) -{ - struct davinci_nand_info *info = to_davinci_nand(mtd); - uint32_t addr = info->ioaddr; - - /* maybe kick in a second chipselect */ - if (chip > 0) - addr |= info->mask_chipsel; - info->current_cs = addr; - - info->chip.IO_ADDR_W = (void __iomem __force *)addr; - info->chip.IO_ADDR_R = info->chip.IO_ADDR_W; -} - -/*----------------------------------------------------------------------*/ - -/* - * 1-bit hardware ECC ... context maintained for each core chipselect - */ - -static inline uint32_t nand_davinci_readecc_1bit(struct mtd_info *mtd) -{ - struct davinci_nand_info *info = to_davinci_nand(mtd); - - return davinci_nand_readl(info, NANDF1ECC_OFFSET - + 4 * info->core_chipsel); -} - -static void nand_davinci_hwctl_1bit(struct mtd_info *mtd, int mode) -{ - struct davinci_nand_info *info; - uint32_t nandcfr; - unsigned long flags; - - info = to_davinci_nand(mtd); - - /* Reset ECC hardware */ - nand_davinci_readecc_1bit(mtd); - - spin_lock_irqsave(&davinci_nand_lock, flags); - - /* Restart ECC hardware */ - nandcfr = davinci_nand_readl(info, NANDFCR_OFFSET); - nandcfr |= BIT(8 + info->core_chipsel); - davinci_nand_writel(info, NANDFCR_OFFSET, nandcfr); - - spin_unlock_irqrestore(&davinci_nand_lock, flags); -} - -/* - * Read hardware ECC value and pack into three bytes - */ -static int nand_davinci_calculate_1bit(struct mtd_info *mtd, - const u_char *dat, u_char *ecc_code) -{ - unsigned int ecc_val = nand_davinci_readecc_1bit(mtd); - unsigned int ecc24 = (ecc_val & 0x0fff) | ((ecc_val & 0x0fff0000) >> 4); - - /* invert so that erased block ecc is correct */ - ecc24 = ~ecc24; - ecc_code[0] = (u_char)(ecc24); - ecc_code[1] = (u_char)(ecc24 >> 8); - ecc_code[2] = (u_char)(ecc24 >> 16); - - return 0; -} - -static int nand_davinci_correct_1bit(struct mtd_info *mtd, u_char *dat, - u_char *read_ecc, u_char *calc_ecc) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - uint32_t eccNand = read_ecc[0] | (read_ecc[1] << 8) | - (read_ecc[2] << 16); - uint32_t eccCalc = calc_ecc[0] | (calc_ecc[1] << 8) | - (calc_ecc[2] << 16); - uint32_t diff = eccCalc ^ eccNand; - - if (diff) { - if ((((diff >> 12) ^ diff) & 0xfff) == 0xfff) { - /* Correctable error */ - if ((diff >> (12 + 3)) < chip->ecc.size) { - dat[diff >> (12 + 3)] ^= BIT((diff >> 12) & 7); - return 1; - } else { - return -EBADMSG; - } - } else if (!(diff & (diff - 1))) { - /* Single bit ECC error in the ECC itself, - * nothing to fix */ - return 1; - } else { - /* Uncorrectable error */ - return -EBADMSG; - } - - } - return 0; -} - -/*----------------------------------------------------------------------*/ - -/* - * 4-bit hardware ECC ... context maintained over entire AEMIF - * - * This is a syndrome engine, but we avoid NAND_ECC_HW_SYNDROME - * since that forces use of a problematic "infix OOB" layout. - * Among other things, it trashes manufacturer bad block markers. - * Also, and specific to this hardware, it ECC-protects the "prepad" - * in the OOB ... while having ECC protection for parts of OOB would - * seem useful, the current MTD stack sometimes wants to update the - * OOB without recomputing ECC. - */ - -static void nand_davinci_hwctl_4bit(struct mtd_info *mtd, int mode) -{ - struct davinci_nand_info *info = to_davinci_nand(mtd); - unsigned long flags; - u32 val; - - /* Reset ECC hardware */ - davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET); - - spin_lock_irqsave(&davinci_nand_lock, flags); - - /* Start 4-bit ECC calculation for read/write */ - val = davinci_nand_readl(info, NANDFCR_OFFSET); - val &= ~(0x03 << 4); - val |= (info->core_chipsel << 4) | BIT(12); - davinci_nand_writel(info, NANDFCR_OFFSET, val); - - info->is_readmode = (mode == NAND_ECC_READ); - - spin_unlock_irqrestore(&davinci_nand_lock, flags); -} - -/* Read raw ECC code after writing to NAND. */ -static void -nand_davinci_readecc_4bit(struct davinci_nand_info *info, u32 code[4]) -{ - const u32 mask = 0x03ff03ff; - - code[0] = davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET) & mask; - code[1] = davinci_nand_readl(info, NAND_4BIT_ECC2_OFFSET) & mask; - code[2] = davinci_nand_readl(info, NAND_4BIT_ECC3_OFFSET) & mask; - code[3] = davinci_nand_readl(info, NAND_4BIT_ECC4_OFFSET) & mask; -} - -/* Terminate read ECC; or return ECC (as bytes) of data written to NAND. */ -static int nand_davinci_calculate_4bit(struct mtd_info *mtd, - const u_char *dat, u_char *ecc_code) -{ - struct davinci_nand_info *info = to_davinci_nand(mtd); - u32 raw_ecc[4], *p; - unsigned i; - - /* After a read, terminate ECC calculation by a dummy read - * of some 4-bit ECC register. ECC covers everything that - * was read; correct() just uses the hardware state, so - * ecc_code is not needed. - */ - if (info->is_readmode) { - davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET); - return 0; - } - - /* Pack eight raw 10-bit ecc values into ten bytes, making - * two passes which each convert four values (in upper and - * lower halves of two 32-bit words) into five bytes. The - * ROM boot loader uses this same packing scheme. - */ - nand_davinci_readecc_4bit(info, raw_ecc); - for (i = 0, p = raw_ecc; i < 2; i++, p += 2) { - *ecc_code++ = p[0] & 0xff; - *ecc_code++ = ((p[0] >> 8) & 0x03) | ((p[0] >> 14) & 0xfc); - *ecc_code++ = ((p[0] >> 22) & 0x0f) | ((p[1] << 4) & 0xf0); - *ecc_code++ = ((p[1] >> 4) & 0x3f) | ((p[1] >> 10) & 0xc0); - *ecc_code++ = (p[1] >> 18) & 0xff; - } - - return 0; -} - -/* Correct up to 4 bits in data we just read, using state left in the - * hardware plus the ecc_code computed when it was first written. - */ -static int nand_davinci_correct_4bit(struct mtd_info *mtd, - u_char *data, u_char *ecc_code, u_char *null) -{ - int i; - struct davinci_nand_info *info = to_davinci_nand(mtd); - unsigned short ecc10[8]; - unsigned short *ecc16; - u32 syndrome[4]; - u32 ecc_state; - unsigned num_errors, corrected; - unsigned long timeo; - - /* Unpack ten bytes into eight 10 bit values. We know we're - * little-endian, and use type punning for less shifting/masking. - */ - if (WARN_ON(0x01 & (unsigned) ecc_code)) - return -EINVAL; - ecc16 = (unsigned short *)ecc_code; - - ecc10[0] = (ecc16[0] >> 0) & 0x3ff; - ecc10[1] = ((ecc16[0] >> 10) & 0x3f) | ((ecc16[1] << 6) & 0x3c0); - ecc10[2] = (ecc16[1] >> 4) & 0x3ff; - ecc10[3] = ((ecc16[1] >> 14) & 0x3) | ((ecc16[2] << 2) & 0x3fc); - ecc10[4] = (ecc16[2] >> 8) | ((ecc16[3] << 8) & 0x300); - ecc10[5] = (ecc16[3] >> 2) & 0x3ff; - ecc10[6] = ((ecc16[3] >> 12) & 0xf) | ((ecc16[4] << 4) & 0x3f0); - ecc10[7] = (ecc16[4] >> 6) & 0x3ff; - - /* Tell ECC controller about the expected ECC codes. */ - for (i = 7; i >= 0; i--) - davinci_nand_writel(info, NAND_4BIT_ECC_LOAD_OFFSET, ecc10[i]); - - /* Allow time for syndrome calculation ... then read it. - * A syndrome of all zeroes 0 means no detected errors. - */ - davinci_nand_readl(info, NANDFSR_OFFSET); - nand_davinci_readecc_4bit(info, syndrome); - if (!(syndrome[0] | syndrome[1] | syndrome[2] | syndrome[3])) - return 0; - - /* - * Clear any previous address calculation by doing a dummy read of an - * error address register. - */ - davinci_nand_readl(info, NAND_ERR_ADD1_OFFSET); - - /* Start address calculation, and wait for it to complete. - * We _could_ start reading more data while this is working, - * to speed up the overall page read. - */ - davinci_nand_writel(info, NANDFCR_OFFSET, - davinci_nand_readl(info, NANDFCR_OFFSET) | BIT(13)); - - /* - * ECC_STATE field reads 0x3 (Error correction complete) immediately - * after setting the 4BITECC_ADD_CALC_START bit. So if you immediately - * begin trying to poll for the state, you may fall right out of your - * loop without any of the correction calculations having taken place. - * The recommendation from the hardware team is to initially delay as - * long as ECC_STATE reads less than 4. After that, ECC HW has entered - * correction state. - */ - timeo = jiffies + usecs_to_jiffies(100); - do { - ecc_state = (davinci_nand_readl(info, - NANDFSR_OFFSET) >> 8) & 0x0f; - cpu_relax(); - } while ((ecc_state < 4) && time_before(jiffies, timeo)); - - for (;;) { - u32 fsr = davinci_nand_readl(info, NANDFSR_OFFSET); - - switch ((fsr >> 8) & 0x0f) { - case 0: /* no error, should not happen */ - davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET); - return 0; - case 1: /* five or more errors detected */ - davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET); - return -EBADMSG; - case 2: /* error addresses computed */ - case 3: - num_errors = 1 + ((fsr >> 16) & 0x03); - goto correct; - default: /* still working on it */ - cpu_relax(); - continue; - } - } - -correct: - /* correct each error */ - for (i = 0, corrected = 0; i < num_errors; i++) { - int error_address, error_value; - - if (i > 1) { - error_address = davinci_nand_readl(info, - NAND_ERR_ADD2_OFFSET); - error_value = davinci_nand_readl(info, - NAND_ERR_ERRVAL2_OFFSET); - } else { - error_address = davinci_nand_readl(info, - NAND_ERR_ADD1_OFFSET); - error_value = davinci_nand_readl(info, - NAND_ERR_ERRVAL1_OFFSET); - } - - if (i & 1) { - error_address >>= 16; - error_value >>= 16; - } - error_address &= 0x3ff; - error_address = (512 + 7) - error_address; - - if (error_address < 512) { - data[error_address] ^= error_value; - corrected++; - } - } - - return corrected; -} - -/*----------------------------------------------------------------------*/ - -/* - * NOTE: NAND boot requires ALE == EM_A[1], CLE == EM_A[2], so that's - * how these chips are normally wired. This translates to both 8 and 16 - * bit busses using ALE == BIT(3) in byte addresses, and CLE == BIT(4). - * - * For now we assume that configuration, or any other one which ignores - * the two LSBs for NAND access ... so we can issue 32-bit reads/writes - * and have that transparently morphed into multiple NAND operations. - */ -static void nand_davinci_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - - if ((0x03 & ((unsigned)buf)) == 0 && (0x03 & len) == 0) - ioread32_rep(chip->IO_ADDR_R, buf, len >> 2); - else if ((0x01 & ((unsigned)buf)) == 0 && (0x01 & len) == 0) - ioread16_rep(chip->IO_ADDR_R, buf, len >> 1); - else - ioread8_rep(chip->IO_ADDR_R, buf, len); -} - -static void nand_davinci_write_buf(struct mtd_info *mtd, - const uint8_t *buf, int len) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - - if ((0x03 & ((unsigned)buf)) == 0 && (0x03 & len) == 0) - iowrite32_rep(chip->IO_ADDR_R, buf, len >> 2); - else if ((0x01 & ((unsigned)buf)) == 0 && (0x01 & len) == 0) - iowrite16_rep(chip->IO_ADDR_R, buf, len >> 1); - else - iowrite8_rep(chip->IO_ADDR_R, buf, len); -} - -/* - * Check hardware register for wait status. Returns 1 if device is ready, - * 0 if it is still busy. - */ -static int nand_davinci_dev_ready(struct mtd_info *mtd) -{ - struct davinci_nand_info *info = to_davinci_nand(mtd); - - return davinci_nand_readl(info, NANDFSR_OFFSET) & BIT(0); -} - -/*----------------------------------------------------------------------*/ - -/* An ECC layout for using 4-bit ECC with small-page flash, storing - * ten ECC bytes plus the manufacturer's bad block marker byte, and - * and not overlapping the default BBT markers. - */ -static int hwecc4_ooblayout_small_ecc(struct mtd_info *mtd, int section, - struct mtd_oob_region *oobregion) -{ - if (section > 2) - return -ERANGE; - - if (!section) { - oobregion->offset = 0; - oobregion->length = 5; - } else if (section == 1) { - oobregion->offset = 6; - oobregion->length = 2; - } else { - oobregion->offset = 13; - oobregion->length = 3; - } - - return 0; -} - -static int hwecc4_ooblayout_small_free(struct mtd_info *mtd, int section, - struct mtd_oob_region *oobregion) -{ - if (section > 1) - return -ERANGE; - - if (!section) { - oobregion->offset = 8; - oobregion->length = 5; - } else { - oobregion->offset = 16; - oobregion->length = mtd->oobsize - 16; - } - - return 0; -} - -static const struct mtd_ooblayout_ops hwecc4_small_ooblayout_ops = { - .ecc = hwecc4_ooblayout_small_ecc, - .free = hwecc4_ooblayout_small_free, -}; - -#if defined(CONFIG_OF) -static const struct of_device_id davinci_nand_of_match[] = { - {.compatible = "ti,davinci-nand", }, - {.compatible = "ti,keystone-nand", }, - {}, -}; -MODULE_DEVICE_TABLE(of, davinci_nand_of_match); - -static struct davinci_nand_pdata - *nand_davinci_get_pdata(struct platform_device *pdev) -{ - if (!dev_get_platdata(&pdev->dev) && pdev->dev.of_node) { - struct davinci_nand_pdata *pdata; - const char *mode; - u32 prop; - - pdata = devm_kzalloc(&pdev->dev, - sizeof(struct davinci_nand_pdata), - GFP_KERNEL); - pdev->dev.platform_data = pdata; - if (!pdata) - return ERR_PTR(-ENOMEM); - if (!of_property_read_u32(pdev->dev.of_node, - "ti,davinci-chipselect", &prop)) - pdev->id = prop; - else - return ERR_PTR(-EINVAL); - - if (!of_property_read_u32(pdev->dev.of_node, - "ti,davinci-mask-ale", &prop)) - pdata->mask_ale = prop; - if (!of_property_read_u32(pdev->dev.of_node, - "ti,davinci-mask-cle", &prop)) - pdata->mask_cle = prop; - if (!of_property_read_u32(pdev->dev.of_node, - "ti,davinci-mask-chipsel", &prop)) - pdata->mask_chipsel = prop; - if (!of_property_read_string(pdev->dev.of_node, - "ti,davinci-ecc-mode", &mode)) { - if (!strncmp("none", mode, 4)) - pdata->ecc_mode = NAND_ECC_NONE; - if (!strncmp("soft", mode, 4)) - pdata->ecc_mode = NAND_ECC_SOFT; - if (!strncmp("hw", mode, 2)) - pdata->ecc_mode = NAND_ECC_HW; - } - if (!of_property_read_u32(pdev->dev.of_node, - "ti,davinci-ecc-bits", &prop)) - pdata->ecc_bits = prop; - - if (!of_property_read_u32(pdev->dev.of_node, - "ti,davinci-nand-buswidth", &prop) && prop == 16) - pdata->options |= NAND_BUSWIDTH_16; - - if (of_property_read_bool(pdev->dev.of_node, - "ti,davinci-nand-use-bbt")) - pdata->bbt_options = NAND_BBT_USE_FLASH; - - /* - * Since kernel v4.8, this driver has been fixed to enable - * use of 4-bit hardware ECC with subpages and verified on - * TI's keystone EVMs (K2L, K2HK and K2E). - * However, in the interest of not breaking systems using - * existing UBI partitions, sub-page writes are not being - * (re)enabled. If you want to use subpage writes on Keystone - * platforms (i.e. do not have any existing UBI partitions), - * then use "ti,davinci-nand" as the compatible in your - * device-tree file. - */ - if (of_device_is_compatible(pdev->dev.of_node, - "ti,keystone-nand")) { - pdata->options |= NAND_NO_SUBPAGE_WRITE; - } - } - - return dev_get_platdata(&pdev->dev); -} -#else -static struct davinci_nand_pdata - *nand_davinci_get_pdata(struct platform_device *pdev) -{ - return dev_get_platdata(&pdev->dev); -} -#endif - -static int nand_davinci_probe(struct platform_device *pdev) -{ - struct davinci_nand_pdata *pdata; - struct davinci_nand_info *info; - struct resource *res1; - struct resource *res2; - void __iomem *vaddr; - void __iomem *base; - int ret; - uint32_t val; - struct mtd_info *mtd; - - pdata = nand_davinci_get_pdata(pdev); - if (IS_ERR(pdata)) - return PTR_ERR(pdata); - - /* insist on board-specific configuration */ - if (!pdata) - return -ENODEV; - - /* which external chipselect will we be managing? */ - if (pdev->id < 0 || pdev->id > 3) - return -ENODEV; - - info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL); - if (!info) - return -ENOMEM; - - platform_set_drvdata(pdev, info); - - res1 = platform_get_resource(pdev, IORESOURCE_MEM, 0); - res2 = platform_get_resource(pdev, IORESOURCE_MEM, 1); - if (!res1 || !res2) { - dev_err(&pdev->dev, "resource missing\n"); - return -EINVAL; - } - - vaddr = devm_ioremap_resource(&pdev->dev, res1); - if (IS_ERR(vaddr)) - return PTR_ERR(vaddr); - - /* - * This registers range is used to setup NAND settings. In case with - * TI AEMIF driver, the same memory address range is requested already - * by AEMIF, so we cannot request it twice, just ioremap. - * The AEMIF and NAND drivers not use the same registers in this range. - */ - base = devm_ioremap(&pdev->dev, res2->start, resource_size(res2)); - if (!base) { - dev_err(&pdev->dev, "ioremap failed for resource %pR\n", res2); - return -EADDRNOTAVAIL; - } - - info->dev = &pdev->dev; - info->base = base; - info->vaddr = vaddr; - - mtd = nand_to_mtd(&info->chip); - mtd->dev.parent = &pdev->dev; - nand_set_flash_node(&info->chip, pdev->dev.of_node); - - info->chip.IO_ADDR_R = vaddr; - info->chip.IO_ADDR_W = vaddr; - info->chip.chip_delay = 0; - info->chip.select_chip = nand_davinci_select_chip; - - /* options such as NAND_BBT_USE_FLASH */ - info->chip.bbt_options = pdata->bbt_options; - /* options such as 16-bit widths */ - info->chip.options = pdata->options; - info->chip.bbt_td = pdata->bbt_td; - info->chip.bbt_md = pdata->bbt_md; - info->timing = pdata->timing; - - info->ioaddr = (uint32_t __force) vaddr; - - info->current_cs = info->ioaddr; - info->core_chipsel = pdev->id; - info->mask_chipsel = pdata->mask_chipsel; - - /* use nandboot-capable ALE/CLE masks by default */ - info->mask_ale = pdata->mask_ale ? : MASK_ALE; - info->mask_cle = pdata->mask_cle ? : MASK_CLE; - - /* Set address of hardware control function */ - info->chip.cmd_ctrl = nand_davinci_hwcontrol; - info->chip.dev_ready = nand_davinci_dev_ready; - - /* Speed up buffer I/O */ - info->chip.read_buf = nand_davinci_read_buf; - info->chip.write_buf = nand_davinci_write_buf; - - /* Use board-specific ECC config */ - info->chip.ecc.mode = pdata->ecc_mode; - - ret = -EINVAL; - - info->clk = devm_clk_get(&pdev->dev, "aemif"); - if (IS_ERR(info->clk)) { - ret = PTR_ERR(info->clk); - dev_dbg(&pdev->dev, "unable to get AEMIF clock, err %d\n", ret); - return ret; - } - - ret = clk_prepare_enable(info->clk); - if (ret < 0) { - dev_dbg(&pdev->dev, "unable to enable AEMIF clock, err %d\n", - ret); - goto err_clk_enable; - } - - spin_lock_irq(&davinci_nand_lock); - - /* put CSxNAND into NAND mode */ - val = davinci_nand_readl(info, NANDFCR_OFFSET); - val |= BIT(info->core_chipsel); - davinci_nand_writel(info, NANDFCR_OFFSET, val); - - spin_unlock_irq(&davinci_nand_lock); - - /* Scan to find existence of the device(s) */ - ret = nand_scan_ident(mtd, pdata->mask_chipsel ? 2 : 1, NULL); - if (ret < 0) { - dev_dbg(&pdev->dev, "no NAND chip(s) found\n"); - goto err; - } - - switch (info->chip.ecc.mode) { - case NAND_ECC_NONE: - pdata->ecc_bits = 0; - break; - case NAND_ECC_SOFT: - pdata->ecc_bits = 0; - /* - * This driver expects Hamming based ECC when ecc_mode is set - * to NAND_ECC_SOFT. Force ecc.algo to NAND_ECC_HAMMING to - * avoid adding an extra ->ecc_algo field to - * davinci_nand_pdata. - */ - info->chip.ecc.algo = NAND_ECC_HAMMING; - break; - case NAND_ECC_HW: - if (pdata->ecc_bits == 4) { - /* No sanity checks: CPUs must support this, - * and the chips may not use NAND_BUSWIDTH_16. - */ - - /* No sharing 4-bit hardware between chipselects yet */ - spin_lock_irq(&davinci_nand_lock); - if (ecc4_busy) - ret = -EBUSY; - else - ecc4_busy = true; - spin_unlock_irq(&davinci_nand_lock); - - if (ret == -EBUSY) - return ret; - - info->chip.ecc.calculate = nand_davinci_calculate_4bit; - info->chip.ecc.correct = nand_davinci_correct_4bit; - info->chip.ecc.hwctl = nand_davinci_hwctl_4bit; - info->chip.ecc.bytes = 10; - info->chip.ecc.options = NAND_ECC_GENERIC_ERASED_CHECK; - info->chip.ecc.algo = NAND_ECC_BCH; - } else { - /* 1bit ecc hamming */ - info->chip.ecc.calculate = nand_davinci_calculate_1bit; - info->chip.ecc.correct = nand_davinci_correct_1bit; - info->chip.ecc.hwctl = nand_davinci_hwctl_1bit; - info->chip.ecc.bytes = 3; - info->chip.ecc.algo = NAND_ECC_HAMMING; - } - info->chip.ecc.size = 512; - info->chip.ecc.strength = pdata->ecc_bits; - break; - default: - return -EINVAL; - } - - /* Update ECC layout if needed ... for 1-bit HW ECC, the default - * is OK, but it allocates 6 bytes when only 3 are needed (for - * each 512 bytes). For the 4-bit HW ECC, that default is not - * usable: 10 bytes are needed, not 6. - */ - if (pdata->ecc_bits == 4) { - int chunks = mtd->writesize / 512; - - if (!chunks || mtd->oobsize < 16) { - dev_dbg(&pdev->dev, "too small\n"); - ret = -EINVAL; - goto err; - } - - /* For small page chips, preserve the manufacturer's - * badblock marking data ... and make sure a flash BBT - * table marker fits in the free bytes. - */ - if (chunks == 1) { - mtd_set_ooblayout(mtd, &hwecc4_small_ooblayout_ops); - } else if (chunks == 4 || chunks == 8) { - mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops); - info->chip.ecc.mode = NAND_ECC_HW_OOB_FIRST; - } else { - ret = -EIO; - goto err; - } - } - - ret = nand_scan_tail(mtd); - if (ret < 0) - goto err; - - if (pdata->parts) - ret = mtd_device_parse_register(mtd, NULL, NULL, - pdata->parts, pdata->nr_parts); - else - ret = mtd_device_register(mtd, NULL, 0); - if (ret < 0) - goto err; - - val = davinci_nand_readl(info, NRCSR_OFFSET); - dev_info(&pdev->dev, "controller rev. %d.%d\n", - (val >> 8) & 0xff, val & 0xff); - - return 0; - -err: - clk_disable_unprepare(info->clk); - -err_clk_enable: - spin_lock_irq(&davinci_nand_lock); - if (info->chip.ecc.mode == NAND_ECC_HW_SYNDROME) - ecc4_busy = false; - spin_unlock_irq(&davinci_nand_lock); - return ret; -} - -static int nand_davinci_remove(struct platform_device *pdev) -{ - struct davinci_nand_info *info = platform_get_drvdata(pdev); - - spin_lock_irq(&davinci_nand_lock); - if (info->chip.ecc.mode == NAND_ECC_HW_SYNDROME) - ecc4_busy = false; - spin_unlock_irq(&davinci_nand_lock); - - nand_release(nand_to_mtd(&info->chip)); - - clk_disable_unprepare(info->clk); - - return 0; -} - -static struct platform_driver nand_davinci_driver = { - .probe = nand_davinci_probe, - .remove = nand_davinci_remove, - .driver = { - .name = "davinci_nand", - .of_match_table = of_match_ptr(davinci_nand_of_match), - }, -}; -MODULE_ALIAS("platform:davinci_nand"); - -module_platform_driver(nand_davinci_driver); - -MODULE_LICENSE("GPL"); -MODULE_AUTHOR("Texas Instruments"); -MODULE_DESCRIPTION("Davinci NAND flash driver"); - diff --git a/drivers/mtd/nand/denali.c b/drivers/mtd/nand/denali.c deleted file mode 100644 index 313c7f50621b..000000000000 --- a/drivers/mtd/nand/denali.c +++ /dev/null @@ -1,1408 +0,0 @@ -/* - * NAND Flash Controller Device Driver - * Copyright © 2009-2010, Intel Corporation and its suppliers. - * - * This program is free software; you can redistribute it and/or modify it - * under the terms and conditions of the GNU General Public License, - * version 2, as published by the Free Software Foundation. - * - * This program is distributed in the hope it will be useful, but WITHOUT - * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or - * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for - * more details. - */ - -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include - -#include "denali.h" - -MODULE_LICENSE("GPL"); - -#define DENALI_NAND_NAME "denali-nand" - -/* for Indexed Addressing */ -#define DENALI_INDEXED_CTRL 0x00 -#define DENALI_INDEXED_DATA 0x10 - -#define DENALI_MAP00 (0 << 26) /* direct access to buffer */ -#define DENALI_MAP01 (1 << 26) /* read/write pages in PIO */ -#define DENALI_MAP10 (2 << 26) /* high-level control plane */ -#define DENALI_MAP11 (3 << 26) /* direct controller access */ - -/* MAP11 access cycle type */ -#define DENALI_MAP11_CMD ((DENALI_MAP11) | 0) /* command cycle */ -#define DENALI_MAP11_ADDR ((DENALI_MAP11) | 1) /* address cycle */ -#define DENALI_MAP11_DATA ((DENALI_MAP11) | 2) /* data cycle */ - -/* MAP10 commands */ -#define DENALI_ERASE 0x01 - -#define DENALI_BANK(denali) ((denali)->active_bank << 24) - -#define DENALI_INVALID_BANK -1 -#define DENALI_NR_BANKS 4 - -/* - * The bus interface clock, clk_x, is phase aligned with the core clock. The - * clk_x is an integral multiple N of the core clk. The value N is configured - * at IP delivery time, and its available value is 4, 5, or 6. We need to align - * to the largest value to make it work with any possible configuration. - */ -#define DENALI_CLK_X_MULT 6 - -static inline struct denali_nand_info *mtd_to_denali(struct mtd_info *mtd) -{ - return container_of(mtd_to_nand(mtd), struct denali_nand_info, nand); -} - -/* - * Direct Addressing - the slave address forms the control information (command - * type, bank, block, and page address). The slave data is the actual data to - * be transferred. This mode requires 28 bits of address region allocated. - */ -static u32 denali_direct_read(struct denali_nand_info *denali, u32 addr) -{ - return ioread32(denali->host + addr); -} - -static void denali_direct_write(struct denali_nand_info *denali, u32 addr, - u32 data) -{ - iowrite32(data, denali->host + addr); -} - -/* - * Indexed Addressing - address translation module intervenes in passing the - * control information. This mode reduces the required address range. The - * control information and transferred data are latched by the registers in - * the translation module. - */ -static u32 denali_indexed_read(struct denali_nand_info *denali, u32 addr) -{ - iowrite32(addr, denali->host + DENALI_INDEXED_CTRL); - return ioread32(denali->host + DENALI_INDEXED_DATA); -} - -static void denali_indexed_write(struct denali_nand_info *denali, u32 addr, - u32 data) -{ - iowrite32(addr, denali->host + DENALI_INDEXED_CTRL); - iowrite32(data, denali->host + DENALI_INDEXED_DATA); -} - -/* - * Use the configuration feature register to determine the maximum number of - * banks that the hardware supports. - */ -static void denali_detect_max_banks(struct denali_nand_info *denali) -{ - uint32_t features = ioread32(denali->reg + FEATURES); - - denali->max_banks = 1 << FIELD_GET(FEATURES__N_BANKS, features); - - /* the encoding changed from rev 5.0 to 5.1 */ - if (denali->revision < 0x0501) - denali->max_banks <<= 1; -} - -static void denali_enable_irq(struct denali_nand_info *denali) -{ - int i; - - for (i = 0; i < DENALI_NR_BANKS; i++) - iowrite32(U32_MAX, denali->reg + INTR_EN(i)); - iowrite32(GLOBAL_INT_EN_FLAG, denali->reg + GLOBAL_INT_ENABLE); -} - -static void denali_disable_irq(struct denali_nand_info *denali) -{ - int i; - - for (i = 0; i < DENALI_NR_BANKS; i++) - iowrite32(0, denali->reg + INTR_EN(i)); - iowrite32(0, denali->reg + GLOBAL_INT_ENABLE); -} - -static void denali_clear_irq(struct denali_nand_info *denali, - int bank, uint32_t irq_status) -{ - /* write one to clear bits */ - iowrite32(irq_status, denali->reg + INTR_STATUS(bank)); -} - -static void denali_clear_irq_all(struct denali_nand_info *denali) -{ - int i; - - for (i = 0; i < DENALI_NR_BANKS; i++) - denali_clear_irq(denali, i, U32_MAX); -} - -static irqreturn_t denali_isr(int irq, void *dev_id) -{ - struct denali_nand_info *denali = dev_id; - irqreturn_t ret = IRQ_NONE; - uint32_t irq_status; - int i; - - spin_lock(&denali->irq_lock); - - for (i = 0; i < DENALI_NR_BANKS; i++) { - irq_status = ioread32(denali->reg + INTR_STATUS(i)); - if (irq_status) - ret = IRQ_HANDLED; - - denali_clear_irq(denali, i, irq_status); - - if (i != denali->active_bank) - continue; - - denali->irq_status |= irq_status; - - if (denali->irq_status & denali->irq_mask) - complete(&denali->complete); - } - - spin_unlock(&denali->irq_lock); - - return ret; -} - -static void denali_reset_irq(struct denali_nand_info *denali) -{ - unsigned long flags; - - spin_lock_irqsave(&denali->irq_lock, flags); - denali->irq_status = 0; - denali->irq_mask = 0; - spin_unlock_irqrestore(&denali->irq_lock, flags); -} - -static uint32_t denali_wait_for_irq(struct denali_nand_info *denali, - uint32_t irq_mask) -{ - unsigned long time_left, flags; - uint32_t irq_status; - - spin_lock_irqsave(&denali->irq_lock, flags); - - irq_status = denali->irq_status; - - if (irq_mask & irq_status) { - /* return immediately if the IRQ has already happened. */ - spin_unlock_irqrestore(&denali->irq_lock, flags); - return irq_status; - } - - denali->irq_mask = irq_mask; - reinit_completion(&denali->complete); - spin_unlock_irqrestore(&denali->irq_lock, flags); - - time_left = wait_for_completion_timeout(&denali->complete, - msecs_to_jiffies(1000)); - if (!time_left) { - dev_err(denali->dev, "timeout while waiting for irq 0x%x\n", - irq_mask); - return 0; - } - - return denali->irq_status; -} - -static uint32_t denali_check_irq(struct denali_nand_info *denali) -{ - unsigned long flags; - uint32_t irq_status; - - spin_lock_irqsave(&denali->irq_lock, flags); - irq_status = denali->irq_status; - spin_unlock_irqrestore(&denali->irq_lock, flags); - - return irq_status; -} - -static void denali_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) -{ - struct denali_nand_info *denali = mtd_to_denali(mtd); - u32 addr = DENALI_MAP11_DATA | DENALI_BANK(denali); - int i; - - for (i = 0; i < len; i++) - buf[i] = denali->host_read(denali, addr); -} - -static void denali_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) -{ - struct denali_nand_info *denali = mtd_to_denali(mtd); - u32 addr = DENALI_MAP11_DATA | DENALI_BANK(denali); - int i; - - for (i = 0; i < len; i++) - denali->host_write(denali, addr, buf[i]); -} - -static void denali_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len) -{ - struct denali_nand_info *denali = mtd_to_denali(mtd); - u32 addr = DENALI_MAP11_DATA | DENALI_BANK(denali); - uint16_t *buf16 = (uint16_t *)buf; - int i; - - for (i = 0; i < len / 2; i++) - buf16[i] = denali->host_read(denali, addr); -} - -static void denali_write_buf16(struct mtd_info *mtd, const uint8_t *buf, - int len) -{ - struct denali_nand_info *denali = mtd_to_denali(mtd); - u32 addr = DENALI_MAP11_DATA | DENALI_BANK(denali); - const uint16_t *buf16 = (const uint16_t *)buf; - int i; - - for (i = 0; i < len / 2; i++) - denali->host_write(denali, addr, buf16[i]); -} - -static uint8_t denali_read_byte(struct mtd_info *mtd) -{ - uint8_t byte; - - denali_read_buf(mtd, &byte, 1); - - return byte; -} - -static void denali_write_byte(struct mtd_info *mtd, uint8_t byte) -{ - denali_write_buf(mtd, &byte, 1); -} - -static uint16_t denali_read_word(struct mtd_info *mtd) -{ - uint16_t word; - - denali_read_buf16(mtd, (uint8_t *)&word, 2); - - return word; -} - -static void denali_cmd_ctrl(struct mtd_info *mtd, int dat, unsigned int ctrl) -{ - struct denali_nand_info *denali = mtd_to_denali(mtd); - uint32_t type; - - if (ctrl & NAND_CLE) - type = DENALI_MAP11_CMD; - else if (ctrl & NAND_ALE) - type = DENALI_MAP11_ADDR; - else - return; - - /* - * Some commands are followed by chip->dev_ready or chip->waitfunc. - * irq_status must be cleared here to catch the R/B# interrupt later. - */ - if (ctrl & NAND_CTRL_CHANGE) - denali_reset_irq(denali); - - denali->host_write(denali, DENALI_BANK(denali) | type, dat); -} - -static int denali_dev_ready(struct mtd_info *mtd) -{ - struct denali_nand_info *denali = mtd_to_denali(mtd); - - return !!(denali_check_irq(denali) & INTR__INT_ACT); -} - -static int denali_check_erased_page(struct mtd_info *mtd, - struct nand_chip *chip, uint8_t *buf, - unsigned long uncor_ecc_flags, - unsigned int max_bitflips) -{ - struct denali_nand_info *denali = mtd_to_denali(mtd); - uint8_t *ecc_code = chip->oob_poi + denali->oob_skip_bytes; - int ecc_steps = chip->ecc.steps; - int ecc_size = chip->ecc.size; - int ecc_bytes = chip->ecc.bytes; - int i, stat; - - for (i = 0; i < ecc_steps; i++) { - if (!(uncor_ecc_flags & BIT(i))) - continue; - - stat = nand_check_erased_ecc_chunk(buf, ecc_size, - ecc_code, ecc_bytes, - NULL, 0, - chip->ecc.strength); - if (stat < 0) { - mtd->ecc_stats.failed++; - } else { - mtd->ecc_stats.corrected += stat; - max_bitflips = max_t(unsigned int, max_bitflips, stat); - } - - buf += ecc_size; - ecc_code += ecc_bytes; - } - - return max_bitflips; -} - -static int denali_hw_ecc_fixup(struct mtd_info *mtd, - struct denali_nand_info *denali, - unsigned long *uncor_ecc_flags) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - int bank = denali->active_bank; - uint32_t ecc_cor; - unsigned int max_bitflips; - - ecc_cor = ioread32(denali->reg + ECC_COR_INFO(bank)); - ecc_cor >>= ECC_COR_INFO__SHIFT(bank); - - if (ecc_cor & ECC_COR_INFO__UNCOR_ERR) { - /* - * This flag is set when uncorrectable error occurs at least in - * one ECC sector. We can not know "how many sectors", or - * "which sector(s)". We need erase-page check for all sectors. - */ - *uncor_ecc_flags = GENMASK(chip->ecc.steps - 1, 0); - return 0; - } - - max_bitflips = FIELD_GET(ECC_COR_INFO__MAX_ERRORS, ecc_cor); - - /* - * The register holds the maximum of per-sector corrected bitflips. - * This is suitable for the return value of the ->read_page() callback. - * Unfortunately, we can not know the total number of corrected bits in - * the page. Increase the stats by max_bitflips. (compromised solution) - */ - mtd->ecc_stats.corrected += max_bitflips; - - return max_bitflips; -} - -static int denali_sw_ecc_fixup(struct mtd_info *mtd, - struct denali_nand_info *denali, - unsigned long *uncor_ecc_flags, uint8_t *buf) -{ - unsigned int ecc_size = denali->nand.ecc.size; - unsigned int bitflips = 0; - unsigned int max_bitflips = 0; - uint32_t err_addr, err_cor_info; - unsigned int err_byte, err_sector, err_device; - uint8_t err_cor_value; - unsigned int prev_sector = 0; - uint32_t irq_status; - - denali_reset_irq(denali); - - do { - err_addr = ioread32(denali->reg + ECC_ERROR_ADDRESS); - err_sector = FIELD_GET(ECC_ERROR_ADDRESS__SECTOR, err_addr); - err_byte = FIELD_GET(ECC_ERROR_ADDRESS__OFFSET, err_addr); - - err_cor_info = ioread32(denali->reg + ERR_CORRECTION_INFO); - err_cor_value = FIELD_GET(ERR_CORRECTION_INFO__BYTE, - err_cor_info); - err_device = FIELD_GET(ERR_CORRECTION_INFO__DEVICE, - err_cor_info); - - /* reset the bitflip counter when crossing ECC sector */ - if (err_sector != prev_sector) - bitflips = 0; - - if (err_cor_info & ERR_CORRECTION_INFO__UNCOR) { - /* - * Check later if this is a real ECC error, or - * an erased sector. - */ - *uncor_ecc_flags |= BIT(err_sector); - } else if (err_byte < ecc_size) { - /* - * If err_byte is larger than ecc_size, means error - * happened in OOB, so we ignore it. It's no need for - * us to correct it err_device is represented the NAND - * error bits are happened in if there are more than - * one NAND connected. - */ - int offset; - unsigned int flips_in_byte; - - offset = (err_sector * ecc_size + err_byte) * - denali->devs_per_cs + err_device; - - /* correct the ECC error */ - flips_in_byte = hweight8(buf[offset] ^ err_cor_value); - buf[offset] ^= err_cor_value; - mtd->ecc_stats.corrected += flips_in_byte; - bitflips += flips_in_byte; - - max_bitflips = max(max_bitflips, bitflips); - } - - prev_sector = err_sector; - } while (!(err_cor_info & ERR_CORRECTION_INFO__LAST_ERR)); - - /* - * Once handle all ECC errors, controller will trigger an - * ECC_TRANSACTION_DONE interrupt. - */ - irq_status = denali_wait_for_irq(denali, INTR__ECC_TRANSACTION_DONE); - if (!(irq_status & INTR__ECC_TRANSACTION_DONE)) - return -EIO; - - return max_bitflips; -} - -static void denali_setup_dma64(struct denali_nand_info *denali, - dma_addr_t dma_addr, int page, int write) -{ - uint32_t mode; - const int page_count = 1; - - mode = DENALI_MAP10 | DENALI_BANK(denali) | page; - - /* DMA is a three step process */ - - /* - * 1. setup transfer type, interrupt when complete, - * burst len = 64 bytes, the number of pages - */ - denali->host_write(denali, mode, - 0x01002000 | (64 << 16) | (write << 8) | page_count); - - /* 2. set memory low address */ - denali->host_write(denali, mode, lower_32_bits(dma_addr)); - - /* 3. set memory high address */ - denali->host_write(denali, mode, upper_32_bits(dma_addr)); -} - -static void denali_setup_dma32(struct denali_nand_info *denali, - dma_addr_t dma_addr, int page, int write) -{ - uint32_t mode; - const int page_count = 1; - - mode = DENALI_MAP10 | DENALI_BANK(denali); - - /* DMA is a four step process */ - - /* 1. setup transfer type and # of pages */ - denali->host_write(denali, mode | page, - 0x2000 | (write << 8) | page_count); - - /* 2. set memory high address bits 23:8 */ - denali->host_write(denali, mode | ((dma_addr >> 16) << 8), 0x2200); - - /* 3. set memory low address bits 23:8 */ - denali->host_write(denali, mode | ((dma_addr & 0xffff) << 8), 0x2300); - - /* 4. interrupt when complete, burst len = 64 bytes */ - denali->host_write(denali, mode | 0x14000, 0x2400); -} - -static int denali_pio_read(struct denali_nand_info *denali, void *buf, - size_t size, int page, int raw) -{ - u32 addr = DENALI_MAP01 | DENALI_BANK(denali) | page; - uint32_t *buf32 = (uint32_t *)buf; - uint32_t irq_status, ecc_err_mask; - int i; - - if (denali->caps & DENALI_CAP_HW_ECC_FIXUP) - ecc_err_mask = INTR__ECC_UNCOR_ERR; - else - ecc_err_mask = INTR__ECC_ERR; - - denali_reset_irq(denali); - - for (i = 0; i < size / 4; i++) - *buf32++ = denali->host_read(denali, addr); - - irq_status = denali_wait_for_irq(denali, INTR__PAGE_XFER_INC); - if (!(irq_status & INTR__PAGE_XFER_INC)) - return -EIO; - - if (irq_status & INTR__ERASED_PAGE) - memset(buf, 0xff, size); - - return irq_status & ecc_err_mask ? -EBADMSG : 0; -} - -static int denali_pio_write(struct denali_nand_info *denali, - const void *buf, size_t size, int page, int raw) -{ - u32 addr = DENALI_MAP01 | DENALI_BANK(denali) | page; - const uint32_t *buf32 = (uint32_t *)buf; - uint32_t irq_status; - int i; - - denali_reset_irq(denali); - - for (i = 0; i < size / 4; i++) - denali->host_write(denali, addr, *buf32++); - - irq_status = denali_wait_for_irq(denali, - INTR__PROGRAM_COMP | INTR__PROGRAM_FAIL); - if (!(irq_status & INTR__PROGRAM_COMP)) - return -EIO; - - return 0; -} - -static int denali_pio_xfer(struct denali_nand_info *denali, void *buf, - size_t size, int page, int raw, int write) -{ - if (write) - return denali_pio_write(denali, buf, size, page, raw); - else - return denali_pio_read(denali, buf, size, page, raw); -} - -static int denali_dma_xfer(struct denali_nand_info *denali, void *buf, - size_t size, int page, int raw, int write) -{ - dma_addr_t dma_addr; - uint32_t irq_mask, irq_status, ecc_err_mask; - enum dma_data_direction dir = write ? DMA_TO_DEVICE : DMA_FROM_DEVICE; - int ret = 0; - - dma_addr = dma_map_single(denali->dev, buf, size, dir); - if (dma_mapping_error(denali->dev, dma_addr)) { - dev_dbg(denali->dev, "Failed to DMA-map buffer. Trying PIO.\n"); - return denali_pio_xfer(denali, buf, size, page, raw, write); - } - - if (write) { - /* - * INTR__PROGRAM_COMP is never asserted for the DMA transfer. - * We can use INTR__DMA_CMD_COMP instead. This flag is asserted - * when the page program is completed. - */ - irq_mask = INTR__DMA_CMD_COMP | INTR__PROGRAM_FAIL; - ecc_err_mask = 0; - } else if (denali->caps & DENALI_CAP_HW_ECC_FIXUP) { - irq_mask = INTR__DMA_CMD_COMP; - ecc_err_mask = INTR__ECC_UNCOR_ERR; - } else { - irq_mask = INTR__DMA_CMD_COMP; - ecc_err_mask = INTR__ECC_ERR; - } - - iowrite32(DMA_ENABLE__FLAG, denali->reg + DMA_ENABLE); - - denali_reset_irq(denali); - denali->setup_dma(denali, dma_addr, page, write); - - irq_status = denali_wait_for_irq(denali, irq_mask); - if (!(irq_status & INTR__DMA_CMD_COMP)) - ret = -EIO; - else if (irq_status & ecc_err_mask) - ret = -EBADMSG; - - iowrite32(0, denali->reg + DMA_ENABLE); - - dma_unmap_single(denali->dev, dma_addr, size, dir); - - if (irq_status & INTR__ERASED_PAGE) - memset(buf, 0xff, size); - - return ret; -} - -static int denali_data_xfer(struct denali_nand_info *denali, void *buf, - size_t size, int page, int raw, int write) -{ - iowrite32(raw ? 0 : ECC_ENABLE__FLAG, denali->reg + ECC_ENABLE); - iowrite32(raw ? TRANSFER_SPARE_REG__FLAG : 0, - denali->reg + TRANSFER_SPARE_REG); - - if (denali->dma_avail) - return denali_dma_xfer(denali, buf, size, page, raw, write); - else - return denali_pio_xfer(denali, buf, size, page, raw, write); -} - -static void denali_oob_xfer(struct mtd_info *mtd, struct nand_chip *chip, - int page, int write) -{ - struct denali_nand_info *denali = mtd_to_denali(mtd); - int writesize = mtd->writesize; - int oobsize = mtd->oobsize; - uint8_t *bufpoi = chip->oob_poi; - int ecc_steps = chip->ecc.steps; - int ecc_size = chip->ecc.size; - int ecc_bytes = chip->ecc.bytes; - int oob_skip = denali->oob_skip_bytes; - size_t size = writesize + oobsize; - int i, pos, len; - - /* BBM at the beginning of the OOB area */ - if (write) - nand_prog_page_begin_op(chip, page, writesize, bufpoi, - oob_skip); - else - nand_read_page_op(chip, page, writesize, bufpoi, oob_skip); - bufpoi += oob_skip; - - /* OOB ECC */ - for (i = 0; i < ecc_steps; i++) { - pos = ecc_size + i * (ecc_size + ecc_bytes); - len = ecc_bytes; - - if (pos >= writesize) - pos += oob_skip; - else if (pos + len > writesize) - len = writesize - pos; - - if (write) - nand_change_write_column_op(chip, pos, bufpoi, len, - false); - else - nand_change_read_column_op(chip, pos, bufpoi, len, - false); - bufpoi += len; - if (len < ecc_bytes) { - len = ecc_bytes - len; - if (write) - nand_change_write_column_op(chip, writesize + - oob_skip, bufpoi, - len, false); - else - nand_change_read_column_op(chip, writesize + - oob_skip, bufpoi, - len, false); - bufpoi += len; - } - } - - /* OOB free */ - len = oobsize - (bufpoi - chip->oob_poi); - if (write) - nand_change_write_column_op(chip, size - len, bufpoi, len, - false); - else - nand_change_read_column_op(chip, size - len, bufpoi, len, - false); -} - -static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip, - uint8_t *buf, int oob_required, int page) -{ - struct denali_nand_info *denali = mtd_to_denali(mtd); - int writesize = mtd->writesize; - int oobsize = mtd->oobsize; - int ecc_steps = chip->ecc.steps; - int ecc_size = chip->ecc.size; - int ecc_bytes = chip->ecc.bytes; - void *tmp_buf = denali->buf; - int oob_skip = denali->oob_skip_bytes; - size_t size = writesize + oobsize; - int ret, i, pos, len; - - ret = denali_data_xfer(denali, tmp_buf, size, page, 1, 0); - if (ret) - return ret; - - /* Arrange the buffer for syndrome payload/ecc layout */ - if (buf) { - for (i = 0; i < ecc_steps; i++) { - pos = i * (ecc_size + ecc_bytes); - len = ecc_size; - - if (pos >= writesize) - pos += oob_skip; - else if (pos + len > writesize) - len = writesize - pos; - - memcpy(buf, tmp_buf + pos, len); - buf += len; - if (len < ecc_size) { - len = ecc_size - len; - memcpy(buf, tmp_buf + writesize + oob_skip, - len); - buf += len; - } - } - } - - if (oob_required) { - uint8_t *oob = chip->oob_poi; - - /* BBM at the beginning of the OOB area */ - memcpy(oob, tmp_buf + writesize, oob_skip); - oob += oob_skip; - - /* OOB ECC */ - for (i = 0; i < ecc_steps; i++) { - pos = ecc_size + i * (ecc_size + ecc_bytes); - len = ecc_bytes; - - if (pos >= writesize) - pos += oob_skip; - else if (pos + len > writesize) - len = writesize - pos; - - memcpy(oob, tmp_buf + pos, len); - oob += len; - if (len < ecc_bytes) { - len = ecc_bytes - len; - memcpy(oob, tmp_buf + writesize + oob_skip, - len); - oob += len; - } - } - - /* OOB free */ - len = oobsize - (oob - chip->oob_poi); - memcpy(oob, tmp_buf + size - len, len); - } - - return 0; -} - -static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip, - int page) -{ - denali_oob_xfer(mtd, chip, page, 0); - - return 0; -} - -static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip, - int page) -{ - struct denali_nand_info *denali = mtd_to_denali(mtd); - - denali_reset_irq(denali); - - denali_oob_xfer(mtd, chip, page, 1); - - return nand_prog_page_end_op(chip); -} - -static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip, - uint8_t *buf, int oob_required, int page) -{ - struct denali_nand_info *denali = mtd_to_denali(mtd); - unsigned long uncor_ecc_flags = 0; - int stat = 0; - int ret; - - ret = denali_data_xfer(denali, buf, mtd->writesize, page, 0, 0); - if (ret && ret != -EBADMSG) - return ret; - - if (denali->caps & DENALI_CAP_HW_ECC_FIXUP) - stat = denali_hw_ecc_fixup(mtd, denali, &uncor_ecc_flags); - else if (ret == -EBADMSG) - stat = denali_sw_ecc_fixup(mtd, denali, &uncor_ecc_flags, buf); - - if (stat < 0) - return stat; - - if (uncor_ecc_flags) { - ret = denali_read_oob(mtd, chip, page); - if (ret) - return ret; - - stat = denali_check_erased_page(mtd, chip, buf, - uncor_ecc_flags, stat); - } - - return stat; -} - -static int denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip, - const uint8_t *buf, int oob_required, int page) -{ - struct denali_nand_info *denali = mtd_to_denali(mtd); - int writesize = mtd->writesize; - int oobsize = mtd->oobsize; - int ecc_steps = chip->ecc.steps; - int ecc_size = chip->ecc.size; - int ecc_bytes = chip->ecc.bytes; - void *tmp_buf = denali->buf; - int oob_skip = denali->oob_skip_bytes; - size_t size = writesize + oobsize; - int i, pos, len; - - /* - * Fill the buffer with 0xff first except the full page transfer. - * This simplifies the logic. - */ - if (!buf || !oob_required) - memset(tmp_buf, 0xff, size); - - /* Arrange the buffer for syndrome payload/ecc layout */ - if (buf) { - for (i = 0; i < ecc_steps; i++) { - pos = i * (ecc_size + ecc_bytes); - len = ecc_size; - - if (pos >= writesize) - pos += oob_skip; - else if (pos + len > writesize) - len = writesize - pos; - - memcpy(tmp_buf + pos, buf, len); - buf += len; - if (len < ecc_size) { - len = ecc_size - len; - memcpy(tmp_buf + writesize + oob_skip, buf, - len); - buf += len; - } - } - } - - if (oob_required) { - const uint8_t *oob = chip->oob_poi; - - /* BBM at the beginning of the OOB area */ - memcpy(tmp_buf + writesize, oob, oob_skip); - oob += oob_skip; - - /* OOB ECC */ - for (i = 0; i < ecc_steps; i++) { - pos = ecc_size + i * (ecc_size + ecc_bytes); - len = ecc_bytes; - - if (pos >= writesize) - pos += oob_skip; - else if (pos + len > writesize) - len = writesize - pos; - - memcpy(tmp_buf + pos, oob, len); - oob += len; - if (len < ecc_bytes) { - len = ecc_bytes - len; - memcpy(tmp_buf + writesize + oob_skip, oob, - len); - oob += len; - } - } - - /* OOB free */ - len = oobsize - (oob - chip->oob_poi); - memcpy(tmp_buf + size - len, oob, len); - } - - return denali_data_xfer(denali, tmp_buf, size, page, 1, 1); -} - -static int denali_write_page(struct mtd_info *mtd, struct nand_chip *chip, - const uint8_t *buf, int oob_required, int page) -{ - struct denali_nand_info *denali = mtd_to_denali(mtd); - - return denali_data_xfer(denali, (void *)buf, mtd->writesize, - page, 0, 1); -} - -static void denali_select_chip(struct mtd_info *mtd, int chip) -{ - struct denali_nand_info *denali = mtd_to_denali(mtd); - - denali->active_bank = chip; -} - -static int denali_waitfunc(struct mtd_info *mtd, struct nand_chip *chip) -{ - struct denali_nand_info *denali = mtd_to_denali(mtd); - uint32_t irq_status; - - /* R/B# pin transitioned from low to high? */ - irq_status = denali_wait_for_irq(denali, INTR__INT_ACT); - - return irq_status & INTR__INT_ACT ? 0 : NAND_STATUS_FAIL; -} - -static int denali_erase(struct mtd_info *mtd, int page) -{ - struct denali_nand_info *denali = mtd_to_denali(mtd); - uint32_t irq_status; - - denali_reset_irq(denali); - - denali->host_write(denali, DENALI_MAP10 | DENALI_BANK(denali) | page, - DENALI_ERASE); - - /* wait for erase to complete or failure to occur */ - irq_status = denali_wait_for_irq(denali, - INTR__ERASE_COMP | INTR__ERASE_FAIL); - - return irq_status & INTR__ERASE_COMP ? 0 : -EIO; -} - -static int denali_setup_data_interface(struct mtd_info *mtd, int chipnr, - const struct nand_data_interface *conf) -{ - struct denali_nand_info *denali = mtd_to_denali(mtd); - const struct nand_sdr_timings *timings; - unsigned long t_clk; - int acc_clks, re_2_we, re_2_re, we_2_re, addr_2_data; - int rdwr_en_lo, rdwr_en_hi, rdwr_en_lo_hi, cs_setup; - int addr_2_data_mask; - uint32_t tmp; - - timings = nand_get_sdr_timings(conf); - if (IS_ERR(timings)) - return PTR_ERR(timings); - - /* clk_x period in picoseconds */ - t_clk = DIV_ROUND_DOWN_ULL(1000000000000ULL, denali->clk_x_rate); - if (!t_clk) - return -EINVAL; - - if (chipnr == NAND_DATA_IFACE_CHECK_ONLY) - return 0; - - /* tREA -> ACC_CLKS */ - acc_clks = DIV_ROUND_UP(timings->tREA_max, t_clk); - acc_clks = min_t(int, acc_clks, ACC_CLKS__VALUE); - - tmp = ioread32(denali->reg + ACC_CLKS); - tmp &= ~ACC_CLKS__VALUE; - tmp |= FIELD_PREP(ACC_CLKS__VALUE, acc_clks); - iowrite32(tmp, denali->reg + ACC_CLKS); - - /* tRWH -> RE_2_WE */ - re_2_we = DIV_ROUND_UP(timings->tRHW_min, t_clk); - re_2_we = min_t(int, re_2_we, RE_2_WE__VALUE); - - tmp = ioread32(denali->reg + RE_2_WE); - tmp &= ~RE_2_WE__VALUE; - tmp |= FIELD_PREP(RE_2_WE__VALUE, re_2_we); - iowrite32(tmp, denali->reg + RE_2_WE); - - /* tRHZ -> RE_2_RE */ - re_2_re = DIV_ROUND_UP(timings->tRHZ_max, t_clk); - re_2_re = min_t(int, re_2_re, RE_2_RE__VALUE); - - tmp = ioread32(denali->reg + RE_2_RE); - tmp &= ~RE_2_RE__VALUE; - tmp |= FIELD_PREP(RE_2_RE__VALUE, re_2_re); - iowrite32(tmp, denali->reg + RE_2_RE); - - /* - * tCCS, tWHR -> WE_2_RE - * - * With WE_2_RE properly set, the Denali controller automatically takes - * care of the delay; the driver need not set NAND_WAIT_TCCS. - */ - we_2_re = DIV_ROUND_UP(max(timings->tCCS_min, timings->tWHR_min), - t_clk); - we_2_re = min_t(int, we_2_re, TWHR2_AND_WE_2_RE__WE_2_RE); - - tmp = ioread32(denali->reg + TWHR2_AND_WE_2_RE); - tmp &= ~TWHR2_AND_WE_2_RE__WE_2_RE; - tmp |= FIELD_PREP(TWHR2_AND_WE_2_RE__WE_2_RE, we_2_re); - iowrite32(tmp, denali->reg + TWHR2_AND_WE_2_RE); - - /* tADL -> ADDR_2_DATA */ - - /* for older versions, ADDR_2_DATA is only 6 bit wide */ - addr_2_data_mask = TCWAW_AND_ADDR_2_DATA__ADDR_2_DATA; - if (denali->revision < 0x0501) - addr_2_data_mask >>= 1; - - addr_2_data = DIV_ROUND_UP(timings->tADL_min, t_clk); - addr_2_data = min_t(int, addr_2_data, addr_2_data_mask); - - tmp = ioread32(denali->reg + TCWAW_AND_ADDR_2_DATA); - tmp &= ~TCWAW_AND_ADDR_2_DATA__ADDR_2_DATA; - tmp |= FIELD_PREP(TCWAW_AND_ADDR_2_DATA__ADDR_2_DATA, addr_2_data); - iowrite32(tmp, denali->reg + TCWAW_AND_ADDR_2_DATA); - - /* tREH, tWH -> RDWR_EN_HI_CNT */ - rdwr_en_hi = DIV_ROUND_UP(max(timings->tREH_min, timings->tWH_min), - t_clk); - rdwr_en_hi = min_t(int, rdwr_en_hi, RDWR_EN_HI_CNT__VALUE); - - tmp = ioread32(denali->reg + RDWR_EN_HI_CNT); - tmp &= ~RDWR_EN_HI_CNT__VALUE; - tmp |= FIELD_PREP(RDWR_EN_HI_CNT__VALUE, rdwr_en_hi); - iowrite32(tmp, denali->reg + RDWR_EN_HI_CNT); - - /* tRP, tWP -> RDWR_EN_LO_CNT */ - rdwr_en_lo = DIV_ROUND_UP(max(timings->tRP_min, timings->tWP_min), - t_clk); - rdwr_en_lo_hi = DIV_ROUND_UP(max(timings->tRC_min, timings->tWC_min), - t_clk); - rdwr_en_lo_hi = max(rdwr_en_lo_hi, DENALI_CLK_X_MULT); - rdwr_en_lo = max(rdwr_en_lo, rdwr_en_lo_hi - rdwr_en_hi); - rdwr_en_lo = min_t(int, rdwr_en_lo, RDWR_EN_LO_CNT__VALUE); - - tmp = ioread32(denali->reg + RDWR_EN_LO_CNT); - tmp &= ~RDWR_EN_LO_CNT__VALUE; - tmp |= FIELD_PREP(RDWR_EN_LO_CNT__VALUE, rdwr_en_lo); - iowrite32(tmp, denali->reg + RDWR_EN_LO_CNT); - - /* tCS, tCEA -> CS_SETUP_CNT */ - cs_setup = max3((int)DIV_ROUND_UP(timings->tCS_min, t_clk) - rdwr_en_lo, - (int)DIV_ROUND_UP(timings->tCEA_max, t_clk) - acc_clks, - 0); - cs_setup = min_t(int, cs_setup, CS_SETUP_CNT__VALUE); - - tmp = ioread32(denali->reg + CS_SETUP_CNT); - tmp &= ~CS_SETUP_CNT__VALUE; - tmp |= FIELD_PREP(CS_SETUP_CNT__VALUE, cs_setup); - iowrite32(tmp, denali->reg + CS_SETUP_CNT); - - return 0; -} - -static void denali_reset_banks(struct denali_nand_info *denali) -{ - u32 irq_status; - int i; - - for (i = 0; i < denali->max_banks; i++) { - denali->active_bank = i; - - denali_reset_irq(denali); - - iowrite32(DEVICE_RESET__BANK(i), - denali->reg + DEVICE_RESET); - - irq_status = denali_wait_for_irq(denali, - INTR__RST_COMP | INTR__INT_ACT | INTR__TIME_OUT); - if (!(irq_status & INTR__INT_ACT)) - break; - } - - dev_dbg(denali->dev, "%d chips connected\n", i); - denali->max_banks = i; -} - -static void denali_hw_init(struct denali_nand_info *denali) -{ - /* - * The REVISION register may not be reliable. Platforms are allowed to - * override it. - */ - if (!denali->revision) - denali->revision = swab16(ioread32(denali->reg + REVISION)); - - /* - * tell driver how many bit controller will skip before - * writing ECC code in OOB, this register may be already - * set by firmware. So we read this value out. - * if this value is 0, just let it be. - */ - denali->oob_skip_bytes = ioread32(denali->reg + SPARE_AREA_SKIP_BYTES); - denali_detect_max_banks(denali); - iowrite32(0x0F, denali->reg + RB_PIN_ENABLED); - iowrite32(CHIP_EN_DONT_CARE__FLAG, denali->reg + CHIP_ENABLE_DONT_CARE); - - iowrite32(0xffff, denali->reg + SPARE_AREA_MARKER); -} - -int denali_calc_ecc_bytes(int step_size, int strength) -{ - /* BCH code. Denali requires ecc.bytes to be multiple of 2 */ - return DIV_ROUND_UP(strength * fls(step_size * 8), 16) * 2; -} -EXPORT_SYMBOL(denali_calc_ecc_bytes); - -static int denali_ecc_setup(struct mtd_info *mtd, struct nand_chip *chip, - struct denali_nand_info *denali) -{ - int oobavail = mtd->oobsize - denali->oob_skip_bytes; - int ret; - - /* - * If .size and .strength are already set (usually by DT), - * check if they are supported by this controller. - */ - if (chip->ecc.size && chip->ecc.strength) - return nand_check_ecc_caps(chip, denali->ecc_caps, oobavail); - - /* - * We want .size and .strength closest to the chip's requirement - * unless NAND_ECC_MAXIMIZE is requested. - */ - if (!(chip->ecc.options & NAND_ECC_MAXIMIZE)) { - ret = nand_match_ecc_req(chip, denali->ecc_caps, oobavail); - if (!ret) - return 0; - } - - /* Max ECC strength is the last thing we can do */ - return nand_maximize_ecc(chip, denali->ecc_caps, oobavail); -} - -static int denali_ooblayout_ecc(struct mtd_info *mtd, int section, - struct mtd_oob_region *oobregion) -{ - struct denali_nand_info *denali = mtd_to_denali(mtd); - struct nand_chip *chip = mtd_to_nand(mtd); - - if (section) - return -ERANGE; - - oobregion->offset = denali->oob_skip_bytes; - oobregion->length = chip->ecc.total; - - return 0; -} - -static int denali_ooblayout_free(struct mtd_info *mtd, int section, - struct mtd_oob_region *oobregion) -{ - struct denali_nand_info *denali = mtd_to_denali(mtd); - struct nand_chip *chip = mtd_to_nand(mtd); - - if (section) - return -ERANGE; - - oobregion->offset = chip->ecc.total + denali->oob_skip_bytes; - oobregion->length = mtd->oobsize - oobregion->offset; - - return 0; -} - -static const struct mtd_ooblayout_ops denali_ooblayout_ops = { - .ecc = denali_ooblayout_ecc, - .free = denali_ooblayout_free, -}; - -static int denali_multidev_fixup(struct denali_nand_info *denali) -{ - struct nand_chip *chip = &denali->nand; - struct mtd_info *mtd = nand_to_mtd(chip); - - /* - * Support for multi device: - * When the IP configuration is x16 capable and two x8 chips are - * connected in parallel, DEVICES_CONNECTED should be set to 2. - * In this case, the core framework knows nothing about this fact, - * so we should tell it the _logical_ pagesize and anything necessary. - */ - denali->devs_per_cs = ioread32(denali->reg + DEVICES_CONNECTED); - - /* - * On some SoCs, DEVICES_CONNECTED is not auto-detected. - * For those, DEVICES_CONNECTED is left to 0. Set 1 if it is the case. - */ - if (denali->devs_per_cs == 0) { - denali->devs_per_cs = 1; - iowrite32(1, denali->reg + DEVICES_CONNECTED); - } - - if (denali->devs_per_cs == 1) - return 0; - - if (denali->devs_per_cs != 2) { - dev_err(denali->dev, "unsupported number of devices %d\n", - denali->devs_per_cs); - return -EINVAL; - } - - /* 2 chips in parallel */ - mtd->size <<= 1; - mtd->erasesize <<= 1; - mtd->writesize <<= 1; - mtd->oobsize <<= 1; - chip->chipsize <<= 1; - chip->page_shift += 1; - chip->phys_erase_shift += 1; - chip->bbt_erase_shift += 1; - chip->chip_shift += 1; - chip->pagemask <<= 1; - chip->ecc.size <<= 1; - chip->ecc.bytes <<= 1; - chip->ecc.strength <<= 1; - denali->oob_skip_bytes <<= 1; - - return 0; -} - -int denali_init(struct denali_nand_info *denali) -{ - struct nand_chip *chip = &denali->nand; - struct mtd_info *mtd = nand_to_mtd(chip); - u32 features = ioread32(denali->reg + FEATURES); - int ret; - - mtd->dev.parent = denali->dev; - denali_hw_init(denali); - - init_completion(&denali->complete); - spin_lock_init(&denali->irq_lock); - - denali_clear_irq_all(denali); - - ret = devm_request_irq(denali->dev, denali->irq, denali_isr, - IRQF_SHARED, DENALI_NAND_NAME, denali); - if (ret) { - dev_err(denali->dev, "Unable to request IRQ\n"); - return ret; - } - - denali_enable_irq(denali); - denali_reset_banks(denali); - - denali->active_bank = DENALI_INVALID_BANK; - - nand_set_flash_node(chip, denali->dev->of_node); - /* Fallback to the default name if DT did not give "label" property */ - if (!mtd->name) - mtd->name = "denali-nand"; - - chip->select_chip = denali_select_chip; - chip->read_byte = denali_read_byte; - chip->write_byte = denali_write_byte; - chip->read_word = denali_read_word; - chip->cmd_ctrl = denali_cmd_ctrl; - chip->dev_ready = denali_dev_ready; - chip->waitfunc = denali_waitfunc; - - if (features & FEATURES__INDEX_ADDR) { - denali->host_read = denali_indexed_read; - denali->host_write = denali_indexed_write; - } else { - denali->host_read = denali_direct_read; - denali->host_write = denali_direct_write; - } - - /* clk rate info is needed for setup_data_interface */ - if (denali->clk_x_rate) - chip->setup_data_interface = denali_setup_data_interface; - - ret = nand_scan_ident(mtd, denali->max_banks, NULL); - if (ret) - goto disable_irq; - - if (ioread32(denali->reg + FEATURES) & FEATURES__DMA) - denali->dma_avail = 1; - - if (denali->dma_avail) { - int dma_bit = denali->caps & DENALI_CAP_DMA_64BIT ? 64 : 32; - - ret = dma_set_mask(denali->dev, DMA_BIT_MASK(dma_bit)); - if (ret) { - dev_info(denali->dev, - "Failed to set DMA mask. Disabling DMA.\n"); - denali->dma_avail = 0; - } - } - - if (denali->dma_avail) { - chip->options |= NAND_USE_BOUNCE_BUFFER; - chip->buf_align = 16; - if (denali->caps & DENALI_CAP_DMA_64BIT) - denali->setup_dma = denali_setup_dma64; - else - denali->setup_dma = denali_setup_dma32; - } - - chip->bbt_options |= NAND_BBT_USE_FLASH; - chip->bbt_options |= NAND_BBT_NO_OOB; - chip->ecc.mode = NAND_ECC_HW_SYNDROME; - chip->options |= NAND_NO_SUBPAGE_WRITE; - - ret = denali_ecc_setup(mtd, chip, denali); - if (ret) { - dev_err(denali->dev, "Failed to setup ECC settings.\n"); - goto disable_irq; - } - - dev_dbg(denali->dev, - "chosen ECC settings: step=%d, strength=%d, bytes=%d\n", - chip->ecc.size, chip->ecc.strength, chip->ecc.bytes); - - iowrite32(FIELD_PREP(ECC_CORRECTION__ERASE_THRESHOLD, 1) | - FIELD_PREP(ECC_CORRECTION__VALUE, chip->ecc.strength), - denali->reg + ECC_CORRECTION); - iowrite32(mtd->erasesize / mtd->writesize, - denali->reg + PAGES_PER_BLOCK); - iowrite32(chip->options & NAND_BUSWIDTH_16 ? 1 : 0, - denali->reg + DEVICE_WIDTH); - iowrite32(chip->options & NAND_ROW_ADDR_3 ? 0 : TWO_ROW_ADDR_CYCLES__FLAG, - denali->reg + TWO_ROW_ADDR_CYCLES); - iowrite32(mtd->writesize, denali->reg + DEVICE_MAIN_AREA_SIZE); - iowrite32(mtd->oobsize, denali->reg + DEVICE_SPARE_AREA_SIZE); - - iowrite32(chip->ecc.size, denali->reg + CFG_DATA_BLOCK_SIZE); - iowrite32(chip->ecc.size, denali->reg + CFG_LAST_DATA_BLOCK_SIZE); - /* chip->ecc.steps is set by nand_scan_tail(); not available here */ - iowrite32(mtd->writesize / chip->ecc.size, - denali->reg + CFG_NUM_DATA_BLOCKS); - - mtd_set_ooblayout(mtd, &denali_ooblayout_ops); - - if (chip->options & NAND_BUSWIDTH_16) { - chip->read_buf = denali_read_buf16; - chip->write_buf = denali_write_buf16; - } else { - chip->read_buf = denali_read_buf; - chip->write_buf = denali_write_buf; - } - chip->ecc.read_page = denali_read_page; - chip->ecc.read_page_raw = denali_read_page_raw; - chip->ecc.write_page = denali_write_page; - chip->ecc.write_page_raw = denali_write_page_raw; - chip->ecc.read_oob = denali_read_oob; - chip->ecc.write_oob = denali_write_oob; - chip->erase = denali_erase; - - ret = denali_multidev_fixup(denali); - if (ret) - goto disable_irq; - - /* - * This buffer is DMA-mapped by denali_{read,write}_page_raw. Do not - * use devm_kmalloc() because the memory allocated by devm_ does not - * guarantee DMA-safe alignment. - */ - denali->buf = kmalloc(mtd->writesize + mtd->oobsize, GFP_KERNEL); - if (!denali->buf) { - ret = -ENOMEM; - goto disable_irq; - } - - ret = nand_scan_tail(mtd); - if (ret) - goto free_buf; - - ret = mtd_device_register(mtd, NULL, 0); - if (ret) { - dev_err(denali->dev, "Failed to register MTD: %d\n", ret); - goto free_buf; - } - return 0; - -free_buf: - kfree(denali->buf); -disable_irq: - denali_disable_irq(denali); - - return ret; -} -EXPORT_SYMBOL(denali_init); - -void denali_remove(struct denali_nand_info *denali) -{ - struct mtd_info *mtd = nand_to_mtd(&denali->nand); - - nand_release(mtd); - kfree(denali->buf); - denali_disable_irq(denali); -} -EXPORT_SYMBOL(denali_remove); diff --git a/drivers/mtd/nand/denali.h b/drivers/mtd/nand/denali.h deleted file mode 100644 index 9ad33d237378..000000000000 --- a/drivers/mtd/nand/denali.h +++ /dev/null @@ -1,335 +0,0 @@ -/* - * NAND Flash Controller Device Driver - * Copyright (c) 2009 - 2010, Intel Corporation and its suppliers. - * - * This program is free software; you can redistribute it and/or modify it - * under the terms and conditions of the GNU General Public License, - * version 2, as published by the Free Software Foundation. - * - * This program is distributed in the hope it will be useful, but WITHOUT - * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or - * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for - * more details. - */ - -#ifndef __DENALI_H__ -#define __DENALI_H__ - -#include -#include -#include -#include -#include - -#define DEVICE_RESET 0x0 -#define DEVICE_RESET__BANK(bank) BIT(bank) - -#define TRANSFER_SPARE_REG 0x10 -#define TRANSFER_SPARE_REG__FLAG BIT(0) - -#define LOAD_WAIT_CNT 0x20 -#define LOAD_WAIT_CNT__VALUE GENMASK(15, 0) - -#define PROGRAM_WAIT_CNT 0x30 -#define PROGRAM_WAIT_CNT__VALUE GENMASK(15, 0) - -#define ERASE_WAIT_CNT 0x40 -#define ERASE_WAIT_CNT__VALUE GENMASK(15, 0) - -#define INT_MON_CYCCNT 0x50 -#define INT_MON_CYCCNT__VALUE GENMASK(15, 0) - -#define RB_PIN_ENABLED 0x60 -#define RB_PIN_ENABLED__BANK(bank) BIT(bank) - -#define MULTIPLANE_OPERATION 0x70 -#define MULTIPLANE_OPERATION__FLAG BIT(0) - -#define MULTIPLANE_READ_ENABLE 0x80 -#define MULTIPLANE_READ_ENABLE__FLAG BIT(0) - -#define COPYBACK_DISABLE 0x90 -#define COPYBACK_DISABLE__FLAG BIT(0) - -#define CACHE_WRITE_ENABLE 0xa0 -#define CACHE_WRITE_ENABLE__FLAG BIT(0) - -#define CACHE_READ_ENABLE 0xb0 -#define CACHE_READ_ENABLE__FLAG BIT(0) - -#define PREFETCH_MODE 0xc0 -#define PREFETCH_MODE__PREFETCH_EN BIT(0) -#define PREFETCH_MODE__PREFETCH_BURST_LENGTH GENMASK(15, 4) - -#define CHIP_ENABLE_DONT_CARE 0xd0 -#define CHIP_EN_DONT_CARE__FLAG BIT(0) - -#define ECC_ENABLE 0xe0 -#define ECC_ENABLE__FLAG BIT(0) - -#define GLOBAL_INT_ENABLE 0xf0 -#define GLOBAL_INT_EN_FLAG BIT(0) - -#define TWHR2_AND_WE_2_RE 0x100 -#define TWHR2_AND_WE_2_RE__WE_2_RE GENMASK(5, 0) -#define TWHR2_AND_WE_2_RE__TWHR2 GENMASK(13, 8) - -#define TCWAW_AND_ADDR_2_DATA 0x110 -/* The width of ADDR_2_DATA is 6 bit for old IP, 7 bit for new IP */ -#define TCWAW_AND_ADDR_2_DATA__ADDR_2_DATA GENMASK(6, 0) -#define TCWAW_AND_ADDR_2_DATA__TCWAW GENMASK(13, 8) - -#define RE_2_WE 0x120 -#define RE_2_WE__VALUE GENMASK(5, 0) - -#define ACC_CLKS 0x130 -#define ACC_CLKS__VALUE GENMASK(3, 0) - -#define NUMBER_OF_PLANES 0x140 -#define NUMBER_OF_PLANES__VALUE GENMASK(2, 0) - -#define PAGES_PER_BLOCK 0x150 -#define PAGES_PER_BLOCK__VALUE GENMASK(15, 0) - -#define DEVICE_WIDTH 0x160 -#define DEVICE_WIDTH__VALUE GENMASK(1, 0) - -#define DEVICE_MAIN_AREA_SIZE 0x170 -#define DEVICE_MAIN_AREA_SIZE__VALUE GENMASK(15, 0) - -#define DEVICE_SPARE_AREA_SIZE 0x180 -#define DEVICE_SPARE_AREA_SIZE__VALUE GENMASK(15, 0) - -#define TWO_ROW_ADDR_CYCLES 0x190 -#define TWO_ROW_ADDR_CYCLES__FLAG BIT(0) - -#define MULTIPLANE_ADDR_RESTRICT 0x1a0 -#define MULTIPLANE_ADDR_RESTRICT__FLAG BIT(0) - -#define ECC_CORRECTION 0x1b0 -#define ECC_CORRECTION__VALUE GENMASK(4, 0) -#define ECC_CORRECTION__ERASE_THRESHOLD GENMASK(31, 16) - -#define READ_MODE 0x1c0 -#define READ_MODE__VALUE GENMASK(3, 0) - -#define WRITE_MODE 0x1d0 -#define WRITE_MODE__VALUE GENMASK(3, 0) - -#define COPYBACK_MODE 0x1e0 -#define COPYBACK_MODE__VALUE GENMASK(3, 0) - -#define RDWR_EN_LO_CNT 0x1f0 -#define RDWR_EN_LO_CNT__VALUE GENMASK(4, 0) - -#define RDWR_EN_HI_CNT 0x200 -#define RDWR_EN_HI_CNT__VALUE GENMASK(4, 0) - -#define MAX_RD_DELAY 0x210 -#define MAX_RD_DELAY__VALUE GENMASK(3, 0) - -#define CS_SETUP_CNT 0x220 -#define CS_SETUP_CNT__VALUE GENMASK(4, 0) -#define CS_SETUP_CNT__TWB GENMASK(17, 12) - -#define SPARE_AREA_SKIP_BYTES 0x230 -#define SPARE_AREA_SKIP_BYTES__VALUE GENMASK(5, 0) - -#define SPARE_AREA_MARKER 0x240 -#define SPARE_AREA_MARKER__VALUE GENMASK(15, 0) - -#define DEVICES_CONNECTED 0x250 -#define DEVICES_CONNECTED__VALUE GENMASK(2, 0) - -#define DIE_MASK 0x260 -#define DIE_MASK__VALUE GENMASK(7, 0) - -#define FIRST_BLOCK_OF_NEXT_PLANE 0x270 -#define FIRST_BLOCK_OF_NEXT_PLANE__VALUE GENMASK(15, 0) - -#define WRITE_PROTECT 0x280 -#define WRITE_PROTECT__FLAG BIT(0) - -#define RE_2_RE 0x290 -#define RE_2_RE__VALUE GENMASK(5, 0) - -#define MANUFACTURER_ID 0x300 -#define MANUFACTURER_ID__VALUE GENMASK(7, 0) - -#define DEVICE_ID 0x310 -#define DEVICE_ID__VALUE GENMASK(7, 0) - -#define DEVICE_PARAM_0 0x320 -#define DEVICE_PARAM_0__VALUE GENMASK(7, 0) - -#define DEVICE_PARAM_1 0x330 -#define DEVICE_PARAM_1__VALUE GENMASK(7, 0) - -#define DEVICE_PARAM_2 0x340 -#define DEVICE_PARAM_2__VALUE GENMASK(7, 0) - -#define LOGICAL_PAGE_DATA_SIZE 0x350 -#define LOGICAL_PAGE_DATA_SIZE__VALUE GENMASK(15, 0) - -#define LOGICAL_PAGE_SPARE_SIZE 0x360 -#define LOGICAL_PAGE_SPARE_SIZE__VALUE GENMASK(15, 0) - -#define REVISION 0x370 -#define REVISION__VALUE GENMASK(15, 0) - -#define ONFI_DEVICE_FEATURES 0x380 -#define ONFI_DEVICE_FEATURES__VALUE GENMASK(5, 0) - -#define ONFI_OPTIONAL_COMMANDS 0x390 -#define ONFI_OPTIONAL_COMMANDS__VALUE GENMASK(5, 0) - -#define ONFI_TIMING_MODE 0x3a0 -#define ONFI_TIMING_MODE__VALUE GENMASK(5, 0) - -#define ONFI_PGM_CACHE_TIMING_MODE 0x3b0 -#define ONFI_PGM_CACHE_TIMING_MODE__VALUE GENMASK(5, 0) - -#define ONFI_DEVICE_NO_OF_LUNS 0x3c0 -#define ONFI_DEVICE_NO_OF_LUNS__NO_OF_LUNS GENMASK(7, 0) -#define ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE BIT(8) - -#define ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_L 0x3d0 -#define ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_L__VALUE GENMASK(15, 0) - -#define ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_U 0x3e0 -#define ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_U__VALUE GENMASK(15, 0) - -#define FEATURES 0x3f0 -#define FEATURES__N_BANKS GENMASK(1, 0) -#define FEATURES__ECC_MAX_ERR GENMASK(5, 2) -#define FEATURES__DMA BIT(6) -#define FEATURES__CMD_DMA BIT(7) -#define FEATURES__PARTITION BIT(8) -#define FEATURES__XDMA_SIDEBAND BIT(9) -#define FEATURES__GPREG BIT(10) -#define FEATURES__INDEX_ADDR BIT(11) - -#define TRANSFER_MODE 0x400 -#define TRANSFER_MODE__VALUE GENMASK(1, 0) - -#define INTR_STATUS(bank) (0x410 + (bank) * 0x50) -#define INTR_EN(bank) (0x420 + (bank) * 0x50) -/* bit[1:0] is used differently depending on IP version */ -#define INTR__ECC_UNCOR_ERR BIT(0) /* new IP */ -#define INTR__ECC_TRANSACTION_DONE BIT(0) /* old IP */ -#define INTR__ECC_ERR BIT(1) /* old IP */ -#define INTR__DMA_CMD_COMP BIT(2) -#define INTR__TIME_OUT BIT(3) -#define INTR__PROGRAM_FAIL BIT(4) -#define INTR__ERASE_FAIL BIT(5) -#define INTR__LOAD_COMP BIT(6) -#define INTR__PROGRAM_COMP BIT(7) -#define INTR__ERASE_COMP BIT(8) -#define INTR__PIPE_CPYBCK_CMD_COMP BIT(9) -#define INTR__LOCKED_BLK BIT(10) -#define INTR__UNSUP_CMD BIT(11) -#define INTR__INT_ACT BIT(12) -#define INTR__RST_COMP BIT(13) -#define INTR__PIPE_CMD_ERR BIT(14) -#define INTR__PAGE_XFER_INC BIT(15) -#define INTR__ERASED_PAGE BIT(16) - -#define PAGE_CNT(bank) (0x430 + (bank) * 0x50) -#define ERR_PAGE_ADDR(bank) (0x440 + (bank) * 0x50) -#define ERR_BLOCK_ADDR(bank) (0x450 + (bank) * 0x50) - -#define ECC_THRESHOLD 0x600 -#define ECC_THRESHOLD__VALUE GENMASK(9, 0) - -#define ECC_ERROR_BLOCK_ADDRESS 0x610 -#define ECC_ERROR_BLOCK_ADDRESS__VALUE GENMASK(15, 0) - -#define ECC_ERROR_PAGE_ADDRESS 0x620 -#define ECC_ERROR_PAGE_ADDRESS__VALUE GENMASK(11, 0) -#define ECC_ERROR_PAGE_ADDRESS__BANK GENMASK(15, 12) - -#define ECC_ERROR_ADDRESS 0x630 -#define ECC_ERROR_ADDRESS__OFFSET GENMASK(11, 0) -#define ECC_ERROR_ADDRESS__SECTOR GENMASK(15, 12) - -#define ERR_CORRECTION_INFO 0x640 -#define ERR_CORRECTION_INFO__BYTE GENMASK(7, 0) -#define ERR_CORRECTION_INFO__DEVICE GENMASK(11, 8) -#define ERR_CORRECTION_INFO__UNCOR BIT(14) -#define ERR_CORRECTION_INFO__LAST_ERR BIT(15) - -#define ECC_COR_INFO(bank) (0x650 + (bank) / 2 * 0x10) -#define ECC_COR_INFO__SHIFT(bank) ((bank) % 2 * 8) -#define ECC_COR_INFO__MAX_ERRORS GENMASK(6, 0) -#define ECC_COR_INFO__UNCOR_ERR BIT(7) - -#define CFG_DATA_BLOCK_SIZE 0x6b0 - -#define CFG_LAST_DATA_BLOCK_SIZE 0x6c0 - -#define CFG_NUM_DATA_BLOCKS 0x6d0 - -#define CFG_META_DATA_SIZE 0x6e0 - -#define DMA_ENABLE 0x700 -#define DMA_ENABLE__FLAG BIT(0) - -#define IGNORE_ECC_DONE 0x710 -#define IGNORE_ECC_DONE__FLAG BIT(0) - -#define DMA_INTR 0x720 -#define DMA_INTR_EN 0x730 -#define DMA_INTR__TARGET_ERROR BIT(0) -#define DMA_INTR__DESC_COMP_CHANNEL0 BIT(1) -#define DMA_INTR__DESC_COMP_CHANNEL1 BIT(2) -#define DMA_INTR__DESC_COMP_CHANNEL2 BIT(3) -#define DMA_INTR__DESC_COMP_CHANNEL3 BIT(4) -#define DMA_INTR__MEMCOPY_DESC_COMP BIT(5) - -#define TARGET_ERR_ADDR_LO 0x740 -#define TARGET_ERR_ADDR_LO__VALUE GENMASK(15, 0) - -#define TARGET_ERR_ADDR_HI 0x750 -#define TARGET_ERR_ADDR_HI__VALUE GENMASK(15, 0) - -#define CHNL_ACTIVE 0x760 -#define CHNL_ACTIVE__CHANNEL0 BIT(0) -#define CHNL_ACTIVE__CHANNEL1 BIT(1) -#define CHNL_ACTIVE__CHANNEL2 BIT(2) -#define CHNL_ACTIVE__CHANNEL3 BIT(3) - -struct denali_nand_info { - struct nand_chip nand; - unsigned long clk_x_rate; /* bus interface clock rate */ - int active_bank; /* currently selected bank */ - struct device *dev; - void __iomem *reg; /* Register Interface */ - void __iomem *host; /* Host Data/Command Interface */ - struct completion complete; - spinlock_t irq_lock; /* protect irq_mask and irq_status */ - u32 irq_mask; /* interrupts we are waiting for */ - u32 irq_status; /* interrupts that have happened */ - int irq; - void *buf; /* for syndrome layout conversion */ - dma_addr_t dma_addr; - int dma_avail; /* can support DMA? */ - int devs_per_cs; /* devices connected in parallel */ - int oob_skip_bytes; /* number of bytes reserved for BBM */ - int max_banks; - unsigned int revision; /* IP revision */ - unsigned int caps; /* IP capability (or quirk) */ - const struct nand_ecc_caps *ecc_caps; - u32 (*host_read)(struct denali_nand_info *denali, u32 addr); - void (*host_write)(struct denali_nand_info *denali, u32 addr, u32 data); - void (*setup_dma)(struct denali_nand_info *denali, dma_addr_t dma_addr, - int page, int write); -}; - -#define DENALI_CAP_HW_ECC_FIXUP BIT(0) -#define DENALI_CAP_DMA_64BIT BIT(1) - -int denali_calc_ecc_bytes(int step_size, int strength); -int denali_init(struct denali_nand_info *denali); -void denali_remove(struct denali_nand_info *denali); - -#endif /* __DENALI_H__ */ diff --git a/drivers/mtd/nand/denali_dt.c b/drivers/mtd/nand/denali_dt.c deleted file mode 100644 index cfd33e6ca77f..000000000000 --- a/drivers/mtd/nand/denali_dt.c +++ /dev/null @@ -1,163 +0,0 @@ -/* - * NAND Flash Controller Device Driver for DT - * - * Copyright © 2011, Picochip. - * - * This program is free software; you can redistribute it and/or modify it - * under the terms and conditions of the GNU General Public License, - * version 2, as published by the Free Software Foundation. - * - * This program is distributed in the hope it will be useful, but WITHOUT - * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or - * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for - * more details. - */ - -#include -#include -#include -#include -#include -#include -#include -#include -#include - -#include "denali.h" - -struct denali_dt { - struct denali_nand_info denali; - struct clk *clk; -}; - -struct denali_dt_data { - unsigned int revision; - unsigned int caps; - const struct nand_ecc_caps *ecc_caps; -}; - -NAND_ECC_CAPS_SINGLE(denali_socfpga_ecc_caps, denali_calc_ecc_bytes, - 512, 8, 15); -static const struct denali_dt_data denali_socfpga_data = { - .caps = DENALI_CAP_HW_ECC_FIXUP, - .ecc_caps = &denali_socfpga_ecc_caps, -}; - -NAND_ECC_CAPS_SINGLE(denali_uniphier_v5a_ecc_caps, denali_calc_ecc_bytes, - 1024, 8, 16, 24); -static const struct denali_dt_data denali_uniphier_v5a_data = { - .caps = DENALI_CAP_HW_ECC_FIXUP | - DENALI_CAP_DMA_64BIT, - .ecc_caps = &denali_uniphier_v5a_ecc_caps, -}; - -NAND_ECC_CAPS_SINGLE(denali_uniphier_v5b_ecc_caps, denali_calc_ecc_bytes, - 1024, 8, 16); -static const struct denali_dt_data denali_uniphier_v5b_data = { - .revision = 0x0501, - .caps = DENALI_CAP_HW_ECC_FIXUP | - DENALI_CAP_DMA_64BIT, - .ecc_caps = &denali_uniphier_v5b_ecc_caps, -}; - -static const struct of_device_id denali_nand_dt_ids[] = { - { - .compatible = "altr,socfpga-denali-nand", - .data = &denali_socfpga_data, - }, - { - .compatible = "socionext,uniphier-denali-nand-v5a", - .data = &denali_uniphier_v5a_data, - }, - { - .compatible = "socionext,uniphier-denali-nand-v5b", - .data = &denali_uniphier_v5b_data, - }, - { /* sentinel */ } -}; -MODULE_DEVICE_TABLE(of, denali_nand_dt_ids); - -static int denali_dt_probe(struct platform_device *pdev) -{ - struct resource *res; - struct denali_dt *dt; - const struct denali_dt_data *data; - struct denali_nand_info *denali; - int ret; - - dt = devm_kzalloc(&pdev->dev, sizeof(*dt), GFP_KERNEL); - if (!dt) - return -ENOMEM; - denali = &dt->denali; - - data = of_device_get_match_data(&pdev->dev); - if (data) { - denali->revision = data->revision; - denali->caps = data->caps; - denali->ecc_caps = data->ecc_caps; - } - - denali->dev = &pdev->dev; - denali->irq = platform_get_irq(pdev, 0); - if (denali->irq < 0) { - dev_err(&pdev->dev, "no irq defined\n"); - return denali->irq; - } - - res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "denali_reg"); - denali->reg = devm_ioremap_resource(&pdev->dev, res); - if (IS_ERR(denali->reg)) - return PTR_ERR(denali->reg); - - res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_data"); - denali->host = devm_ioremap_resource(&pdev->dev, res); - if (IS_ERR(denali->host)) - return PTR_ERR(denali->host); - - dt->clk = devm_clk_get(&pdev->dev, NULL); - if (IS_ERR(dt->clk)) { - dev_err(&pdev->dev, "no clk available\n"); - return PTR_ERR(dt->clk); - } - ret = clk_prepare_enable(dt->clk); - if (ret) - return ret; - - denali->clk_x_rate = clk_get_rate(dt->clk); - - ret = denali_init(denali); - if (ret) - goto out_disable_clk; - - platform_set_drvdata(pdev, dt); - return 0; - -out_disable_clk: - clk_disable_unprepare(dt->clk); - - return ret; -} - -static int denali_dt_remove(struct platform_device *pdev) -{ - struct denali_dt *dt = platform_get_drvdata(pdev); - - denali_remove(&dt->denali); - clk_disable_unprepare(dt->clk); - - return 0; -} - -static struct platform_driver denali_dt_driver = { - .probe = denali_dt_probe, - .remove = denali_dt_remove, - .driver = { - .name = "denali-nand-dt", - .of_match_table = denali_nand_dt_ids, - }, -}; -module_platform_driver(denali_dt_driver); - -MODULE_LICENSE("GPL"); -MODULE_AUTHOR("Jamie Iles"); -MODULE_DESCRIPTION("DT driver for Denali NAND controller"); diff --git a/drivers/mtd/nand/denali_pci.c b/drivers/mtd/nand/denali_pci.c deleted file mode 100644 index 49cb3e1f8bd0..000000000000 --- a/drivers/mtd/nand/denali_pci.c +++ /dev/null @@ -1,131 +0,0 @@ -/* - * NAND Flash Controller Device Driver - * Copyright © 2009-2010, Intel Corporation and its suppliers. - * - * This program is free software; you can redistribute it and/or modify it - * under the terms and conditions of the GNU General Public License, - * version 2, as published by the Free Software Foundation. - * - * This program is distributed in the hope it will be useful, but WITHOUT - * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or - * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for - * more details. - */ - -#include -#include -#include -#include -#include - -#include "denali.h" - -#define DENALI_NAND_NAME "denali-nand-pci" - -#define INTEL_CE4100 1 -#define INTEL_MRST 2 - -/* List of platforms this NAND controller has be integrated into */ -static const struct pci_device_id denali_pci_ids[] = { - { PCI_VDEVICE(INTEL, 0x0701), INTEL_CE4100 }, - { PCI_VDEVICE(INTEL, 0x0809), INTEL_MRST }, - { /* end: all zeroes */ } -}; -MODULE_DEVICE_TABLE(pci, denali_pci_ids); - -NAND_ECC_CAPS_SINGLE(denali_pci_ecc_caps, denali_calc_ecc_bytes, 512, 8, 15); - -static int denali_pci_probe(struct pci_dev *dev, const struct pci_device_id *id) -{ - int ret; - resource_size_t csr_base, mem_base; - unsigned long csr_len, mem_len; - struct denali_nand_info *denali; - - denali = devm_kzalloc(&dev->dev, sizeof(*denali), GFP_KERNEL); - if (!denali) - return -ENOMEM; - - ret = pcim_enable_device(dev); - if (ret) { - dev_err(&dev->dev, "Spectra: pci_enable_device failed.\n"); - return ret; - } - - if (id->driver_data == INTEL_CE4100) { - mem_base = pci_resource_start(dev, 0); - mem_len = pci_resource_len(dev, 1); - csr_base = pci_resource_start(dev, 1); - csr_len = pci_resource_len(dev, 1); - } else { - csr_base = pci_resource_start(dev, 0); - csr_len = pci_resource_len(dev, 0); - mem_base = pci_resource_start(dev, 1); - mem_len = pci_resource_len(dev, 1); - if (!mem_len) { - mem_base = csr_base + csr_len; - mem_len = csr_len; - } - } - - pci_set_master(dev); - denali->dev = &dev->dev; - denali->irq = dev->irq; - denali->ecc_caps = &denali_pci_ecc_caps; - denali->nand.ecc.options |= NAND_ECC_MAXIMIZE; - denali->clk_x_rate = 200000000; /* 200 MHz */ - - ret = pci_request_regions(dev, DENALI_NAND_NAME); - if (ret) { - dev_err(&dev->dev, "Spectra: Unable to request memory regions\n"); - return ret; - } - - denali->reg = ioremap_nocache(csr_base, csr_len); - if (!denali->reg) { - dev_err(&dev->dev, "Spectra: Unable to remap memory region\n"); - return -ENOMEM; - } - - denali->host = ioremap_nocache(mem_base, mem_len); - if (!denali->host) { - dev_err(&dev->dev, "Spectra: ioremap_nocache failed!"); - ret = -ENOMEM; - goto failed_remap_reg; - } - - ret = denali_init(denali); - if (ret) - goto failed_remap_mem; - - pci_set_drvdata(dev, denali); - - return 0; - -failed_remap_mem: - iounmap(denali->host); -failed_remap_reg: - iounmap(denali->reg); - return ret; -} - -static void denali_pci_remove(struct pci_dev *dev) -{ - struct denali_nand_info *denali = pci_get_drvdata(dev); - - denali_remove(denali); - iounmap(denali->reg); - iounmap(denali->host); -} - -static struct pci_driver denali_pci_driver = { - .name = DENALI_NAND_NAME, - .id_table = denali_pci_ids, - .probe = denali_pci_probe, - .remove = denali_pci_remove, -}; -module_pci_driver(denali_pci_driver); - -MODULE_DESCRIPTION("PCI driver for Denali NAND controller"); -MODULE_AUTHOR("Intel Corporation and its suppliers"); -MODULE_LICENSE("GPL v2"); diff --git a/drivers/mtd/nand/diskonchip.c b/drivers/mtd/nand/diskonchip.c deleted file mode 100644 index 1af77f798fe5..000000000000 --- a/drivers/mtd/nand/diskonchip.c +++ /dev/null @@ -1,1709 +0,0 @@ -/* - * (C) 2003 Red Hat, Inc. - * (C) 2004 Dan Brown - * (C) 2004 Kalev Lember - * - * Author: David Woodhouse - * Additional Diskonchip 2000 and Millennium support by Dan Brown - * Diskonchip Millennium Plus support by Kalev Lember - * - * Error correction code lifted from the old docecc code - * Author: Fabrice Bellard (fabrice.bellard@netgem.com) - * Copyright (C) 2000 Netgem S.A. - * converted to the generic Reed-Solomon library by Thomas Gleixner - * - * Interface to generic NAND code for M-Systems DiskOnChip devices - */ - -#include -#include -#include -#include -#include -#include -#include -#include - -#include -#include -#include -#include -#include -#include - -/* Where to look for the devices? */ -#ifndef CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS -#define CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS 0 -#endif - -static unsigned long doc_locations[] __initdata = { -#if defined (__alpha__) || defined(__i386__) || defined(__x86_64__) -#ifdef CONFIG_MTD_NAND_DISKONCHIP_PROBE_HIGH - 0xfffc8000, 0xfffca000, 0xfffcc000, 0xfffce000, - 0xfffd0000, 0xfffd2000, 0xfffd4000, 0xfffd6000, - 0xfffd8000, 0xfffda000, 0xfffdc000, 0xfffde000, - 0xfffe0000, 0xfffe2000, 0xfffe4000, 0xfffe6000, - 0xfffe8000, 0xfffea000, 0xfffec000, 0xfffee000, -#else - 0xc8000, 0xca000, 0xcc000, 0xce000, - 0xd0000, 0xd2000, 0xd4000, 0xd6000, - 0xd8000, 0xda000, 0xdc000, 0xde000, - 0xe0000, 0xe2000, 0xe4000, 0xe6000, - 0xe8000, 0xea000, 0xec000, 0xee000, -#endif -#endif - 0xffffffff }; - -static struct mtd_info *doclist = NULL; - -struct doc_priv { - void __iomem *virtadr; - unsigned long physadr; - u_char ChipID; - u_char CDSNControl; - int chips_per_floor; /* The number of chips detected on each floor */ - int curfloor; - int curchip; - int mh0_page; - int mh1_page; - struct mtd_info *nextdoc; - - /* Handle the last stage of initialization (BBT scan, partitioning) */ - int (*late_init)(struct mtd_info *mtd); -}; - -/* This is the ecc value computed by the HW ecc generator upon writing an empty - page, one with all 0xff for data. */ -static u_char empty_write_ecc[6] = { 0x4b, 0x00, 0xe2, 0x0e, 0x93, 0xf7 }; - -#define INFTL_BBT_RESERVED_BLOCKS 4 - -#define DoC_is_MillenniumPlus(doc) ((doc)->ChipID == DOC_ChipID_DocMilPlus16 || (doc)->ChipID == DOC_ChipID_DocMilPlus32) -#define DoC_is_Millennium(doc) ((doc)->ChipID == DOC_ChipID_DocMil) -#define DoC_is_2000(doc) ((doc)->ChipID == DOC_ChipID_Doc2k) - -static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd, - unsigned int bitmask); -static void doc200x_select_chip(struct mtd_info *mtd, int chip); - -static int debug = 0; -module_param(debug, int, 0); - -static int try_dword = 1; -module_param(try_dword, int, 0); - -static int no_ecc_failures = 0; -module_param(no_ecc_failures, int, 0); - -static int no_autopart = 0; -module_param(no_autopart, int, 0); - -static int show_firmware_partition = 0; -module_param(show_firmware_partition, int, 0); - -#ifdef CONFIG_MTD_NAND_DISKONCHIP_BBTWRITE -static int inftl_bbt_write = 1; -#else -static int inftl_bbt_write = 0; -#endif -module_param(inftl_bbt_write, int, 0); - -static unsigned long doc_config_location = CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS; -module_param(doc_config_location, ulong, 0); -MODULE_PARM_DESC(doc_config_location, "Physical memory address at which to probe for DiskOnChip"); - -/* Sector size for HW ECC */ -#define SECTOR_SIZE 512 -/* The sector bytes are packed into NB_DATA 10 bit words */ -#define NB_DATA (((SECTOR_SIZE + 1) * 8 + 6) / 10) -/* Number of roots */ -#define NROOTS 4 -/* First consective root */ -#define FCR 510 -/* Number of symbols */ -#define NN 1023 - -/* the Reed Solomon control structure */ -static struct rs_control *rs_decoder; - -/* - * The HW decoder in the DoC ASIC's provides us a error syndrome, - * which we must convert to a standard syndrome usable by the generic - * Reed-Solomon library code. - * - * Fabrice Bellard figured this out in the old docecc code. I added - * some comments, improved a minor bit and converted it to make use - * of the generic Reed-Solomon library. tglx - */ -static int doc_ecc_decode(struct rs_control *rs, uint8_t *data, uint8_t *ecc) -{ - int i, j, nerr, errpos[8]; - uint8_t parity; - uint16_t ds[4], s[5], tmp, errval[8], syn[4]; - - memset(syn, 0, sizeof(syn)); - /* Convert the ecc bytes into words */ - ds[0] = ((ecc[4] & 0xff) >> 0) | ((ecc[5] & 0x03) << 8); - ds[1] = ((ecc[5] & 0xfc) >> 2) | ((ecc[2] & 0x0f) << 6); - ds[2] = ((ecc[2] & 0xf0) >> 4) | ((ecc[3] & 0x3f) << 4); - ds[3] = ((ecc[3] & 0xc0) >> 6) | ((ecc[0] & 0xff) << 2); - parity = ecc[1]; - - /* Initialize the syndrome buffer */ - for (i = 0; i < NROOTS; i++) - s[i] = ds[0]; - /* - * Evaluate - * s[i] = ds[3]x^3 + ds[2]x^2 + ds[1]x^1 + ds[0] - * where x = alpha^(FCR + i) - */ - for (j = 1; j < NROOTS; j++) { - if (ds[j] == 0) - continue; - tmp = rs->index_of[ds[j]]; - for (i = 0; i < NROOTS; i++) - s[i] ^= rs->alpha_to[rs_modnn(rs, tmp + (FCR + i) * j)]; - } - - /* Calc syn[i] = s[i] / alpha^(v + i) */ - for (i = 0; i < NROOTS; i++) { - if (s[i]) - syn[i] = rs_modnn(rs, rs->index_of[s[i]] + (NN - FCR - i)); - } - /* Call the decoder library */ - nerr = decode_rs16(rs, NULL, NULL, 1019, syn, 0, errpos, 0, errval); - - /* Incorrectable errors ? */ - if (nerr < 0) - return nerr; - - /* - * Correct the errors. The bitpositions are a bit of magic, - * but they are given by the design of the de/encoder circuit - * in the DoC ASIC's. - */ - for (i = 0; i < nerr; i++) { - int index, bitpos, pos = 1015 - errpos[i]; - uint8_t val; - if (pos >= NB_DATA && pos < 1019) - continue; - if (pos < NB_DATA) { - /* extract bit position (MSB first) */ - pos = 10 * (NB_DATA - 1 - pos) - 6; - /* now correct the following 10 bits. At most two bytes - can be modified since pos is even */ - index = (pos >> 3) ^ 1; - bitpos = pos & 7; - if ((index >= 0 && index < SECTOR_SIZE) || index == (SECTOR_SIZE + 1)) { - val = (uint8_t) (errval[i] >> (2 + bitpos)); - parity ^= val; - if (index < SECTOR_SIZE) - data[index] ^= val; - } - index = ((pos >> 3) + 1) ^ 1; - bitpos = (bitpos + 10) & 7; - if (bitpos == 0) - bitpos = 8; - if ((index >= 0 && index < SECTOR_SIZE) || index == (SECTOR_SIZE + 1)) { - val = (uint8_t) (errval[i] << (8 - bitpos)); - parity ^= val; - if (index < SECTOR_SIZE) - data[index] ^= val; - } - } - } - /* If the parity is wrong, no rescue possible */ - return parity ? -EBADMSG : nerr; -} - -static void DoC_Delay(struct doc_priv *doc, unsigned short cycles) -{ - volatile char dummy; - int i; - - for (i = 0; i < cycles; i++) { - if (DoC_is_Millennium(doc)) - dummy = ReadDOC(doc->virtadr, NOP); - else if (DoC_is_MillenniumPlus(doc)) - dummy = ReadDOC(doc->virtadr, Mplus_NOP); - else - dummy = ReadDOC(doc->virtadr, DOCStatus); - } - -} - -#define CDSN_CTRL_FR_B_MASK (CDSN_CTRL_FR_B0 | CDSN_CTRL_FR_B1) - -/* DOC_WaitReady: Wait for RDY line to be asserted by the flash chip */ -static int _DoC_WaitReady(struct doc_priv *doc) -{ - void __iomem *docptr = doc->virtadr; - unsigned long timeo = jiffies + (HZ * 10); - - if (debug) - printk("_DoC_WaitReady...\n"); - /* Out-of-line routine to wait for chip response */ - if (DoC_is_MillenniumPlus(doc)) { - while ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) { - if (time_after(jiffies, timeo)) { - printk("_DoC_WaitReady timed out.\n"); - return -EIO; - } - udelay(1); - cond_resched(); - } - } else { - while (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) { - if (time_after(jiffies, timeo)) { - printk("_DoC_WaitReady timed out.\n"); - return -EIO; - } - udelay(1); - cond_resched(); - } - } - - return 0; -} - -static inline int DoC_WaitReady(struct doc_priv *doc) -{ - void __iomem *docptr = doc->virtadr; - int ret = 0; - - if (DoC_is_MillenniumPlus(doc)) { - DoC_Delay(doc, 4); - - if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) - /* Call the out-of-line routine to wait */ - ret = _DoC_WaitReady(doc); - } else { - DoC_Delay(doc, 4); - - if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) - /* Call the out-of-line routine to wait */ - ret = _DoC_WaitReady(doc); - DoC_Delay(doc, 2); - } - - if (debug) - printk("DoC_WaitReady OK\n"); - return ret; -} - -static void doc2000_write_byte(struct mtd_info *mtd, u_char datum) -{ - struct nand_chip *this = mtd_to_nand(mtd); - struct doc_priv *doc = nand_get_controller_data(this); - void __iomem *docptr = doc->virtadr; - - if (debug) - printk("write_byte %02x\n", datum); - WriteDOC(datum, docptr, CDSNSlowIO); - WriteDOC(datum, docptr, 2k_CDSN_IO); -} - -static u_char doc2000_read_byte(struct mtd_info *mtd) -{ - struct nand_chip *this = mtd_to_nand(mtd); - struct doc_priv *doc = nand_get_controller_data(this); - void __iomem *docptr = doc->virtadr; - u_char ret; - - ReadDOC(docptr, CDSNSlowIO); - DoC_Delay(doc, 2); - ret = ReadDOC(docptr, 2k_CDSN_IO); - if (debug) - printk("read_byte returns %02x\n", ret); - return ret; -} - -static void doc2000_writebuf(struct mtd_info *mtd, const u_char *buf, int len) -{ - struct nand_chip *this = mtd_to_nand(mtd); - struct doc_priv *doc = nand_get_controller_data(this); - void __iomem *docptr = doc->virtadr; - int i; - if (debug) - printk("writebuf of %d bytes: ", len); - for (i = 0; i < len; i++) { - WriteDOC_(buf[i], docptr, DoC_2k_CDSN_IO + i); - if (debug && i < 16) - printk("%02x ", buf[i]); - } - if (debug) - printk("\n"); -} - -static void doc2000_readbuf(struct mtd_info *mtd, u_char *buf, int len) -{ - struct nand_chip *this = mtd_to_nand(mtd); - struct doc_priv *doc = nand_get_controller_data(this); - void __iomem *docptr = doc->virtadr; - int i; - - if (debug) - printk("readbuf of %d bytes: ", len); - - for (i = 0; i < len; i++) { - buf[i] = ReadDOC(docptr, 2k_CDSN_IO + i); - } -} - -static void doc2000_readbuf_dword(struct mtd_info *mtd, u_char *buf, int len) -{ - struct nand_chip *this = mtd_to_nand(mtd); - struct doc_priv *doc = nand_get_controller_data(this); - void __iomem *docptr = doc->virtadr; - int i; - - if (debug) - printk("readbuf_dword of %d bytes: ", len); - - if (unlikely((((unsigned long)buf) | len) & 3)) { - for (i = 0; i < len; i++) { - *(uint8_t *) (&buf[i]) = ReadDOC(docptr, 2k_CDSN_IO + i); - } - } else { - for (i = 0; i < len; i += 4) { - *(uint32_t *) (&buf[i]) = readl(docptr + DoC_2k_CDSN_IO + i); - } - } -} - -static uint16_t __init doc200x_ident_chip(struct mtd_info *mtd, int nr) -{ - struct nand_chip *this = mtd_to_nand(mtd); - struct doc_priv *doc = nand_get_controller_data(this); - uint16_t ret; - - doc200x_select_chip(mtd, nr); - doc200x_hwcontrol(mtd, NAND_CMD_READID, - NAND_CTRL_CLE | NAND_CTRL_CHANGE); - doc200x_hwcontrol(mtd, 0, NAND_CTRL_ALE | NAND_CTRL_CHANGE); - doc200x_hwcontrol(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE); - - /* We can't use dev_ready here, but at least we wait for the - * command to complete - */ - udelay(50); - - ret = this->read_byte(mtd) << 8; - ret |= this->read_byte(mtd); - - if (doc->ChipID == DOC_ChipID_Doc2k && try_dword && !nr) { - /* First chip probe. See if we get same results by 32-bit access */ - union { - uint32_t dword; - uint8_t byte[4]; - } ident; - void __iomem *docptr = doc->virtadr; - - doc200x_hwcontrol(mtd, NAND_CMD_READID, - NAND_CTRL_CLE | NAND_CTRL_CHANGE); - doc200x_hwcontrol(mtd, 0, NAND_CTRL_ALE | NAND_CTRL_CHANGE); - doc200x_hwcontrol(mtd, NAND_CMD_NONE, - NAND_NCE | NAND_CTRL_CHANGE); - - udelay(50); - - ident.dword = readl(docptr + DoC_2k_CDSN_IO); - if (((ident.byte[0] << 8) | ident.byte[1]) == ret) { - printk(KERN_INFO "DiskOnChip 2000 responds to DWORD access\n"); - this->read_buf = &doc2000_readbuf_dword; - } - } - - return ret; -} - -static void __init doc2000_count_chips(struct mtd_info *mtd) -{ - struct nand_chip *this = mtd_to_nand(mtd); - struct doc_priv *doc = nand_get_controller_data(this); - uint16_t mfrid; - int i; - - /* Max 4 chips per floor on DiskOnChip 2000 */ - doc->chips_per_floor = 4; - - /* Find out what the first chip is */ - mfrid = doc200x_ident_chip(mtd, 0); - - /* Find how many chips in each floor. */ - for (i = 1; i < 4; i++) { - if (doc200x_ident_chip(mtd, i) != mfrid) - break; - } - doc->chips_per_floor = i; - printk(KERN_DEBUG "Detected %d chips per floor.\n", i); -} - -static int doc200x_wait(struct mtd_info *mtd, struct nand_chip *this) -{ - struct doc_priv *doc = nand_get_controller_data(this); - - int status; - - DoC_WaitReady(doc); - nand_status_op(this, NULL); - DoC_WaitReady(doc); - status = (int)this->read_byte(mtd); - - return status; -} - -static void doc2001_write_byte(struct mtd_info *mtd, u_char datum) -{ - struct nand_chip *this = mtd_to_nand(mtd); - struct doc_priv *doc = nand_get_controller_data(this); - void __iomem *docptr = doc->virtadr; - - WriteDOC(datum, docptr, CDSNSlowIO); - WriteDOC(datum, docptr, Mil_CDSN_IO); - WriteDOC(datum, docptr, WritePipeTerm); -} - -static u_char doc2001_read_byte(struct mtd_info *mtd) -{ - struct nand_chip *this = mtd_to_nand(mtd); - struct doc_priv *doc = nand_get_controller_data(this); - void __iomem *docptr = doc->virtadr; - - //ReadDOC(docptr, CDSNSlowIO); - /* 11.4.5 -- delay twice to allow extended length cycle */ - DoC_Delay(doc, 2); - ReadDOC(docptr, ReadPipeInit); - //return ReadDOC(docptr, Mil_CDSN_IO); - return ReadDOC(docptr, LastDataRead); -} - -static void doc2001_writebuf(struct mtd_info *mtd, const u_char *buf, int len) -{ - struct nand_chip *this = mtd_to_nand(mtd); - struct doc_priv *doc = nand_get_controller_data(this); - void __iomem *docptr = doc->virtadr; - int i; - - for (i = 0; i < len; i++) - WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i); - /* Terminate write pipeline */ - WriteDOC(0x00, docptr, WritePipeTerm); -} - -static void doc2001_readbuf(struct mtd_info *mtd, u_char *buf, int len) -{ - struct nand_chip *this = mtd_to_nand(mtd); - struct doc_priv *doc = nand_get_controller_data(this); - void __iomem *docptr = doc->virtadr; - int i; - - /* Start read pipeline */ - ReadDOC(docptr, ReadPipeInit); - - for (i = 0; i < len - 1; i++) - buf[i] = ReadDOC(docptr, Mil_CDSN_IO + (i & 0xff)); - - /* Terminate read pipeline */ - buf[i] = ReadDOC(docptr, LastDataRead); -} - -static u_char doc2001plus_read_byte(struct mtd_info *mtd) -{ - struct nand_chip *this = mtd_to_nand(mtd); - struct doc_priv *doc = nand_get_controller_data(this); - void __iomem *docptr = doc->virtadr; - u_char ret; - - ReadDOC(docptr, Mplus_ReadPipeInit); - ReadDOC(docptr, Mplus_ReadPipeInit); - ret = ReadDOC(docptr, Mplus_LastDataRead); - if (debug) - printk("read_byte returns %02x\n", ret); - return ret; -} - -static void doc2001plus_writebuf(struct mtd_info *mtd, const u_char *buf, int len) -{ - struct nand_chip *this = mtd_to_nand(mtd); - struct doc_priv *doc = nand_get_controller_data(this); - void __iomem *docptr = doc->virtadr; - int i; - - if (debug) - printk("writebuf of %d bytes: ", len); - for (i = 0; i < len; i++) { - WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i); - if (debug && i < 16) - printk("%02x ", buf[i]); - } - if (debug) - printk("\n"); -} - -static void doc2001plus_readbuf(struct mtd_info *mtd, u_char *buf, int len) -{ - struct nand_chip *this = mtd_to_nand(mtd); - struct doc_priv *doc = nand_get_controller_data(this); - void __iomem *docptr = doc->virtadr; - int i; - - if (debug) - printk("readbuf of %d bytes: ", len); - - /* Start read pipeline */ - ReadDOC(docptr, Mplus_ReadPipeInit); - ReadDOC(docptr, Mplus_ReadPipeInit); - - for (i = 0; i < len - 2; i++) { - buf[i] = ReadDOC(docptr, Mil_CDSN_IO); - if (debug && i < 16) - printk("%02x ", buf[i]); - } - - /* Terminate read pipeline */ - buf[len - 2] = ReadDOC(docptr, Mplus_LastDataRead); - if (debug && i < 16) - printk("%02x ", buf[len - 2]); - buf[len - 1] = ReadDOC(docptr, Mplus_LastDataRead); - if (debug && i < 16) - printk("%02x ", buf[len - 1]); - if (debug) - printk("\n"); -} - -static void doc2001plus_select_chip(struct mtd_info *mtd, int chip) -{ - struct nand_chip *this = mtd_to_nand(mtd); - struct doc_priv *doc = nand_get_controller_data(this); - void __iomem *docptr = doc->virtadr; - int floor = 0; - - if (debug) - printk("select chip (%d)\n", chip); - - if (chip == -1) { - /* Disable flash internally */ - WriteDOC(0, docptr, Mplus_FlashSelect); - return; - } - - floor = chip / doc->chips_per_floor; - chip -= (floor * doc->chips_per_floor); - - /* Assert ChipEnable and deassert WriteProtect */ - WriteDOC((DOC_FLASH_CE), docptr, Mplus_FlashSelect); - nand_reset_op(this); - - doc->curchip = chip; - doc->curfloor = floor; -} - -static void doc200x_select_chip(struct mtd_info *mtd, int chip) -{ - struct nand_chip *this = mtd_to_nand(mtd); - struct doc_priv *doc = nand_get_controller_data(this); - void __iomem *docptr = doc->virtadr; - int floor = 0; - - if (debug) - printk("select chip (%d)\n", chip); - - if (chip == -1) - return; - - floor = chip / doc->chips_per_floor; - chip -= (floor * doc->chips_per_floor); - - /* 11.4.4 -- deassert CE before changing chip */ - doc200x_hwcontrol(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE); - - WriteDOC(floor, docptr, FloorSelect); - WriteDOC(chip, docptr, CDSNDeviceSelect); - - doc200x_hwcontrol(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE); - - doc->curchip = chip; - doc->curfloor = floor; -} - -#define CDSN_CTRL_MSK (CDSN_CTRL_CE | CDSN_CTRL_CLE | CDSN_CTRL_ALE) - -static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd, - unsigned int ctrl) -{ - struct nand_chip *this = mtd_to_nand(mtd); - struct doc_priv *doc = nand_get_controller_data(this); - void __iomem *docptr = doc->virtadr; - - if (ctrl & NAND_CTRL_CHANGE) { - doc->CDSNControl &= ~CDSN_CTRL_MSK; - doc->CDSNControl |= ctrl & CDSN_CTRL_MSK; - if (debug) - printk("hwcontrol(%d): %02x\n", cmd, doc->CDSNControl); - WriteDOC(doc->CDSNControl, docptr, CDSNControl); - /* 11.4.3 -- 4 NOPs after CSDNControl write */ - DoC_Delay(doc, 4); - } - if (cmd != NAND_CMD_NONE) { - if (DoC_is_2000(doc)) - doc2000_write_byte(mtd, cmd); - else - doc2001_write_byte(mtd, cmd); - } -} - -static void doc2001plus_command(struct mtd_info *mtd, unsigned command, int column, int page_addr) -{ - struct nand_chip *this = mtd_to_nand(mtd); - struct doc_priv *doc = nand_get_controller_data(this); - void __iomem *docptr = doc->virtadr; - - /* - * Must terminate write pipeline before sending any commands - * to the device. - */ - if (command == NAND_CMD_PAGEPROG) { - WriteDOC(0x00, docptr, Mplus_WritePipeTerm); - WriteDOC(0x00, docptr, Mplus_WritePipeTerm); - } - - /* - * Write out the command to the device. - */ - if (command == NAND_CMD_SEQIN) { - int readcmd; - - if (column >= mtd->writesize) { - /* OOB area */ - column -= mtd->writesize; - readcmd = NAND_CMD_READOOB; - } else if (column < 256) { - /* First 256 bytes --> READ0 */ - readcmd = NAND_CMD_READ0; - } else { - column -= 256; - readcmd = NAND_CMD_READ1; - } - WriteDOC(readcmd, docptr, Mplus_FlashCmd); - } - WriteDOC(command, docptr, Mplus_FlashCmd); - WriteDOC(0, docptr, Mplus_WritePipeTerm); - WriteDOC(0, docptr, Mplus_WritePipeTerm); - - if (column != -1 || page_addr != -1) { - /* Serially input address */ - if (column != -1) { - /* Adjust columns for 16 bit buswidth */ - if (this->options & NAND_BUSWIDTH_16 && - !nand_opcode_8bits(command)) - column >>= 1; - WriteDOC(column, docptr, Mplus_FlashAddress); - } - if (page_addr != -1) { - WriteDOC((unsigned char)(page_addr & 0xff), docptr, Mplus_FlashAddress); - WriteDOC((unsigned char)((page_addr >> 8) & 0xff), docptr, Mplus_FlashAddress); - if (this->options & NAND_ROW_ADDR_3) { - WriteDOC((unsigned char)((page_addr >> 16) & 0x0f), docptr, Mplus_FlashAddress); - printk("high density\n"); - } - } - WriteDOC(0, docptr, Mplus_WritePipeTerm); - WriteDOC(0, docptr, Mplus_WritePipeTerm); - /* deassert ALE */ - if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 || - command == NAND_CMD_READOOB || command == NAND_CMD_READID) - WriteDOC(0, docptr, Mplus_FlashControl); - } - - /* - * program and erase have their own busy handlers - * status and sequential in needs no delay - */ - switch (command) { - - case NAND_CMD_PAGEPROG: - case NAND_CMD_ERASE1: - case NAND_CMD_ERASE2: - case NAND_CMD_SEQIN: - case NAND_CMD_STATUS: - return; - - case NAND_CMD_RESET: - if (this->dev_ready) - break; - udelay(this->chip_delay); - WriteDOC(NAND_CMD_STATUS, docptr, Mplus_FlashCmd); - WriteDOC(0, docptr, Mplus_WritePipeTerm); - WriteDOC(0, docptr, Mplus_WritePipeTerm); - while (!(this->read_byte(mtd) & 0x40)) ; - return; - - /* This applies to read commands */ - default: - /* - * If we don't have access to the busy pin, we apply the given - * command delay - */ - if (!this->dev_ready) { - udelay(this->chip_delay); - return; - } - } - - /* Apply this short delay always to ensure that we do wait tWB in - * any case on any machine. */ - ndelay(100); - /* wait until command is processed */ - while (!this->dev_ready(mtd)) ; -} - -static int doc200x_dev_ready(struct mtd_info *mtd) -{ - struct nand_chip *this = mtd_to_nand(mtd); - struct doc_priv *doc = nand_get_controller_data(this); - void __iomem *docptr = doc->virtadr; - - if (DoC_is_MillenniumPlus(doc)) { - /* 11.4.2 -- must NOP four times before checking FR/B# */ - DoC_Delay(doc, 4); - if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) { - if (debug) - printk("not ready\n"); - return 0; - } - if (debug) - printk("was ready\n"); - return 1; - } else { - /* 11.4.2 -- must NOP four times before checking FR/B# */ - DoC_Delay(doc, 4); - if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) { - if (debug) - printk("not ready\n"); - return 0; - } - /* 11.4.2 -- Must NOP twice if it's ready */ - DoC_Delay(doc, 2); - if (debug) - printk("was ready\n"); - return 1; - } -} - -static int doc200x_block_bad(struct mtd_info *mtd, loff_t ofs) -{ - /* This is our last resort if we couldn't find or create a BBT. Just - pretend all blocks are good. */ - return 0; -} - -static void doc200x_enable_hwecc(struct mtd_info *mtd, int mode) -{ - struct nand_chip *this = mtd_to_nand(mtd); - struct doc_priv *doc = nand_get_controller_data(this); - void __iomem *docptr = doc->virtadr; - - /* Prime the ECC engine */ - switch (mode) { - case NAND_ECC_READ: - WriteDOC(DOC_ECC_RESET, docptr, ECCConf); - WriteDOC(DOC_ECC_EN, docptr, ECCConf); - break; - case NAND_ECC_WRITE: - WriteDOC(DOC_ECC_RESET, docptr, ECCConf); - WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, ECCConf); - break; - } -} - -static void doc2001plus_enable_hwecc(struct mtd_info *mtd, int mode) -{ - struct nand_chip *this = mtd_to_nand(mtd); - struct doc_priv *doc = nand_get_controller_data(this); - void __iomem *docptr = doc->virtadr; - - /* Prime the ECC engine */ - switch (mode) { - case NAND_ECC_READ: - WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf); - WriteDOC(DOC_ECC_EN, docptr, Mplus_ECCConf); - break; - case NAND_ECC_WRITE: - WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf); - WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, Mplus_ECCConf); - break; - } -} - -/* This code is only called on write */ -static int doc200x_calculate_ecc(struct mtd_info *mtd, const u_char *dat, unsigned char *ecc_code) -{ - struct nand_chip *this = mtd_to_nand(mtd); - struct doc_priv *doc = nand_get_controller_data(this); - void __iomem *docptr = doc->virtadr; - int i; - int emptymatch = 1; - - /* flush the pipeline */ - if (DoC_is_2000(doc)) { - WriteDOC(doc->CDSNControl & ~CDSN_CTRL_FLASH_IO, docptr, CDSNControl); - WriteDOC(0, docptr, 2k_CDSN_IO); - WriteDOC(0, docptr, 2k_CDSN_IO); - WriteDOC(0, docptr, 2k_CDSN_IO); - WriteDOC(doc->CDSNControl, docptr, CDSNControl); - } else if (DoC_is_MillenniumPlus(doc)) { - WriteDOC(0, docptr, Mplus_NOP); - WriteDOC(0, docptr, Mplus_NOP); - WriteDOC(0, docptr, Mplus_NOP); - } else { - WriteDOC(0, docptr, NOP); - WriteDOC(0, docptr, NOP); - WriteDOC(0, docptr, NOP); - } - - for (i = 0; i < 6; i++) { - if (DoC_is_MillenniumPlus(doc)) - ecc_code[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i); - else - ecc_code[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i); - if (ecc_code[i] != empty_write_ecc[i]) - emptymatch = 0; - } - if (DoC_is_MillenniumPlus(doc)) - WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf); - else - WriteDOC(DOC_ECC_DIS, docptr, ECCConf); -#if 0 - /* If emptymatch=1, we might have an all-0xff data buffer. Check. */ - if (emptymatch) { - /* Note: this somewhat expensive test should not be triggered - often. It could be optimized away by examining the data in - the writebuf routine, and remembering the result. */ - for (i = 0; i < 512; i++) { - if (dat[i] == 0xff) - continue; - emptymatch = 0; - break; - } - } - /* If emptymatch still =1, we do have an all-0xff data buffer. - Return all-0xff ecc value instead of the computed one, so - it'll look just like a freshly-erased page. */ - if (emptymatch) - memset(ecc_code, 0xff, 6); -#endif - return 0; -} - -static int doc200x_correct_data(struct mtd_info *mtd, u_char *dat, - u_char *read_ecc, u_char *isnull) -{ - int i, ret = 0; - struct nand_chip *this = mtd_to_nand(mtd); - struct doc_priv *doc = nand_get_controller_data(this); - void __iomem *docptr = doc->virtadr; - uint8_t calc_ecc[6]; - volatile u_char dummy; - - /* flush the pipeline */ - if (DoC_is_2000(doc)) { - dummy = ReadDOC(docptr, 2k_ECCStatus); - dummy = ReadDOC(docptr, 2k_ECCStatus); - dummy = ReadDOC(docptr, 2k_ECCStatus); - } else if (DoC_is_MillenniumPlus(doc)) { - dummy = ReadDOC(docptr, Mplus_ECCConf); - dummy = ReadDOC(docptr, Mplus_ECCConf); - dummy = ReadDOC(docptr, Mplus_ECCConf); - } else { - dummy = ReadDOC(docptr, ECCConf); - dummy = ReadDOC(docptr, ECCConf); - dummy = ReadDOC(docptr, ECCConf); - } - - /* Error occurred ? */ - if (dummy & 0x80) { - for (i = 0; i < 6; i++) { - if (DoC_is_MillenniumPlus(doc)) - calc_ecc[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i); - else - calc_ecc[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i); - } - - ret = doc_ecc_decode(rs_decoder, dat, calc_ecc); - if (ret > 0) - printk(KERN_ERR "doc200x_correct_data corrected %d errors\n", ret); - } - if (DoC_is_MillenniumPlus(doc)) - WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf); - else - WriteDOC(DOC_ECC_DIS, docptr, ECCConf); - if (no_ecc_failures && mtd_is_eccerr(ret)) { - printk(KERN_ERR "suppressing ECC failure\n"); - ret = 0; - } - return ret; -} - -//u_char mydatabuf[528]; - -static int doc200x_ooblayout_ecc(struct mtd_info *mtd, int section, - struct mtd_oob_region *oobregion) -{ - if (section) - return -ERANGE; - - oobregion->offset = 0; - oobregion->length = 6; - - return 0; -} - -static int doc200x_ooblayout_free(struct mtd_info *mtd, int section, - struct mtd_oob_region *oobregion) -{ - if (section > 1) - return -ERANGE; - - /* - * The strange out-of-order free bytes definition is a (possibly - * unneeded) attempt to retain compatibility. It used to read: - * .oobfree = { {8, 8} } - * Since that leaves two bytes unusable, it was changed. But the - * following scheme might affect existing jffs2 installs by moving the - * cleanmarker: - * .oobfree = { {6, 10} } - * jffs2 seems to handle the above gracefully, but the current scheme - * seems safer. The only problem with it is that any code retrieving - * free bytes position must be able to handle out-of-order segments. - */ - if (!section) { - oobregion->offset = 8; - oobregion->length = 8; - } else { - oobregion->offset = 6; - oobregion->length = 2; - } - - return 0; -} - -static const struct mtd_ooblayout_ops doc200x_ooblayout_ops = { - .ecc = doc200x_ooblayout_ecc, - .free = doc200x_ooblayout_free, -}; - -/* Find the (I)NFTL Media Header, and optionally also the mirror media header. - On successful return, buf will contain a copy of the media header for - further processing. id is the string to scan for, and will presumably be - either "ANAND" or "BNAND". If findmirror=1, also look for the mirror media - header. The page #s of the found media headers are placed in mh0_page and - mh1_page in the DOC private structure. */ -static int __init find_media_headers(struct mtd_info *mtd, u_char *buf, const char *id, int findmirror) -{ - struct nand_chip *this = mtd_to_nand(mtd); - struct doc_priv *doc = nand_get_controller_data(this); - unsigned offs; - int ret; - size_t retlen; - - for (offs = 0; offs < mtd->size; offs += mtd->erasesize) { - ret = mtd_read(mtd, offs, mtd->writesize, &retlen, buf); - if (retlen != mtd->writesize) - continue; - if (ret) { - printk(KERN_WARNING "ECC error scanning DOC at 0x%x\n", offs); - } - if (memcmp(buf, id, 6)) - continue; - printk(KERN_INFO "Found DiskOnChip %s Media Header at 0x%x\n", id, offs); - if (doc->mh0_page == -1) { - doc->mh0_page = offs >> this->page_shift; - if (!findmirror) - return 1; - continue; - } - doc->mh1_page = offs >> this->page_shift; - return 2; - } - if (doc->mh0_page == -1) { - printk(KERN_WARNING "DiskOnChip %s Media Header not found.\n", id); - return 0; - } - /* Only one mediaheader was found. We want buf to contain a - mediaheader on return, so we'll have to re-read the one we found. */ - offs = doc->mh0_page << this->page_shift; - ret = mtd_read(mtd, offs, mtd->writesize, &retlen, buf); - if (retlen != mtd->writesize) { - /* Insanity. Give up. */ - printk(KERN_ERR "Read DiskOnChip Media Header once, but can't reread it???\n"); - return 0; - } - return 1; -} - -static inline int __init nftl_partscan(struct mtd_info *mtd, struct mtd_partition *parts) -{ - struct nand_chip *this = mtd_to_nand(mtd); - struct doc_priv *doc = nand_get_controller_data(this); - int ret = 0; - u_char *buf; - struct NFTLMediaHeader *mh; - const unsigned psize = 1 << this->page_shift; - int numparts = 0; - unsigned blocks, maxblocks; - int offs, numheaders; - - buf = kmalloc(mtd->writesize, GFP_KERNEL); - if (!buf) { - return 0; - } - if (!(numheaders = find_media_headers(mtd, buf, "ANAND", 1))) - goto out; - mh = (struct NFTLMediaHeader *)buf; - - le16_to_cpus(&mh->NumEraseUnits); - le16_to_cpus(&mh->FirstPhysicalEUN); - le32_to_cpus(&mh->FormattedSize); - - printk(KERN_INFO " DataOrgID = %s\n" - " NumEraseUnits = %d\n" - " FirstPhysicalEUN = %d\n" - " FormattedSize = %d\n" - " UnitSizeFactor = %d\n", - mh->DataOrgID, mh->NumEraseUnits, - mh->FirstPhysicalEUN, mh->FormattedSize, - mh->UnitSizeFactor); - - blocks = mtd->size >> this->phys_erase_shift; - maxblocks = min(32768U, mtd->erasesize - psize); - - if (mh->UnitSizeFactor == 0x00) { - /* Auto-determine UnitSizeFactor. The constraints are: - - There can be at most 32768 virtual blocks. - - There can be at most (virtual block size - page size) - virtual blocks (because MediaHeader+BBT must fit in 1). - */ - mh->UnitSizeFactor = 0xff; - while (blocks > maxblocks) { - blocks >>= 1; - maxblocks = min(32768U, (maxblocks << 1) + psize); - mh->UnitSizeFactor--; - } - printk(KERN_WARNING "UnitSizeFactor=0x00 detected. Correct value is assumed to be 0x%02x.\n", mh->UnitSizeFactor); - } - - /* NOTE: The lines below modify internal variables of the NAND and MTD - layers; variables with have already been configured by nand_scan. - Unfortunately, we didn't know before this point what these values - should be. Thus, this code is somewhat dependent on the exact - implementation of the NAND layer. */ - if (mh->UnitSizeFactor != 0xff) { - this->bbt_erase_shift += (0xff - mh->UnitSizeFactor); - mtd->erasesize <<= (0xff - mh->UnitSizeFactor); - printk(KERN_INFO "Setting virtual erase size to %d\n", mtd->erasesize); - blocks = mtd->size >> this->bbt_erase_shift; - maxblocks = min(32768U, mtd->erasesize - psize); - } - - if (blocks > maxblocks) { - printk(KERN_ERR "UnitSizeFactor of 0x%02x is inconsistent with device size. Aborting.\n", mh->UnitSizeFactor); - goto out; - } - - /* Skip past the media headers. */ - offs = max(doc->mh0_page, doc->mh1_page); - offs <<= this->page_shift; - offs += mtd->erasesize; - - if (show_firmware_partition == 1) { - parts[0].name = " DiskOnChip Firmware / Media Header partition"; - parts[0].offset = 0; - parts[0].size = offs; - numparts = 1; - } - - parts[numparts].name = " DiskOnChip BDTL partition"; - parts[numparts].offset = offs; - parts[numparts].size = (mh->NumEraseUnits - numheaders) << this->bbt_erase_shift; - - offs += parts[numparts].size; - numparts++; - - if (offs < mtd->size) { - parts[numparts].name = " DiskOnChip Remainder partition"; - parts[numparts].offset = offs; - parts[numparts].size = mtd->size - offs; - numparts++; - } - - ret = numparts; - out: - kfree(buf); - return ret; -} - -/* This is a stripped-down copy of the code in inftlmount.c */ -static inline int __init inftl_partscan(struct mtd_info *mtd, struct mtd_partition *parts) -{ - struct nand_chip *this = mtd_to_nand(mtd); - struct doc_priv *doc = nand_get_controller_data(this); - int ret = 0; - u_char *buf; - struct INFTLMediaHeader *mh; - struct INFTLPartition *ip; - int numparts = 0; - int blocks; - int vshift, lastvunit = 0; - int i; - int end = mtd->size; - - if (inftl_bbt_write) - end -= (INFTL_BBT_RESERVED_BLOCKS << this->phys_erase_shift); - - buf = kmalloc(mtd->writesize, GFP_KERNEL); - if (!buf) { - return 0; - } - - if (!find_media_headers(mtd, buf, "BNAND", 0)) - goto out; - doc->mh1_page = doc->mh0_page + (4096 >> this->page_shift); - mh = (struct INFTLMediaHeader *)buf; - - le32_to_cpus(&mh->NoOfBootImageBlocks); - le32_to_cpus(&mh->NoOfBinaryPartitions); - le32_to_cpus(&mh->NoOfBDTLPartitions); - le32_to_cpus(&mh->BlockMultiplierBits); - le32_to_cpus(&mh->FormatFlags); - le32_to_cpus(&mh->PercentUsed); - - printk(KERN_INFO " bootRecordID = %s\n" - " NoOfBootImageBlocks = %d\n" - " NoOfBinaryPartitions = %d\n" - " NoOfBDTLPartitions = %d\n" - " BlockMultiplerBits = %d\n" - " FormatFlgs = %d\n" - " OsakVersion = %d.%d.%d.%d\n" - " PercentUsed = %d\n", - mh->bootRecordID, mh->NoOfBootImageBlocks, - mh->NoOfBinaryPartitions, - mh->NoOfBDTLPartitions, - mh->BlockMultiplierBits, mh->FormatFlags, - ((unsigned char *) &mh->OsakVersion)[0] & 0xf, - ((unsigned char *) &mh->OsakVersion)[1] & 0xf, - ((unsigned char *) &mh->OsakVersion)[2] & 0xf, - ((unsigned char *) &mh->OsakVersion)[3] & 0xf, - mh->PercentUsed); - - vshift = this->phys_erase_shift + mh->BlockMultiplierBits; - - blocks = mtd->size >> vshift; - if (blocks > 32768) { - printk(KERN_ERR "BlockMultiplierBits=%d is inconsistent with device size. Aborting.\n", mh->BlockMultiplierBits); - goto out; - } - - blocks = doc->chips_per_floor << (this->chip_shift - this->phys_erase_shift); - if (inftl_bbt_write && (blocks > mtd->erasesize)) { - printk(KERN_ERR "Writeable BBTs spanning more than one erase block are not yet supported. FIX ME!\n"); - goto out; - } - - /* Scan the partitions */ - for (i = 0; (i < 4); i++) { - ip = &(mh->Partitions[i]); - le32_to_cpus(&ip->virtualUnits); - le32_to_cpus(&ip->firstUnit); - le32_to_cpus(&ip->lastUnit); - le32_to_cpus(&ip->flags); - le32_to_cpus(&ip->spareUnits); - le32_to_cpus(&ip->Reserved0); - - printk(KERN_INFO " PARTITION[%d] ->\n" - " virtualUnits = %d\n" - " firstUnit = %d\n" - " lastUnit = %d\n" - " flags = 0x%x\n" - " spareUnits = %d\n", - i, ip->virtualUnits, ip->firstUnit, - ip->lastUnit, ip->flags, - ip->spareUnits); - - if ((show_firmware_partition == 1) && - (i == 0) && (ip->firstUnit > 0)) { - parts[0].name = " DiskOnChip IPL / Media Header partition"; - parts[0].offset = 0; - parts[0].size = mtd->erasesize * ip->firstUnit; - numparts = 1; - } - - if (ip->flags & INFTL_BINARY) - parts[numparts].name = " DiskOnChip BDK partition"; - else - parts[numparts].name = " DiskOnChip BDTL partition"; - parts[numparts].offset = ip->firstUnit << vshift; - parts[numparts].size = (1 + ip->lastUnit - ip->firstUnit) << vshift; - numparts++; - if (ip->lastUnit > lastvunit) - lastvunit = ip->lastUnit; - if (ip->flags & INFTL_LAST) - break; - } - lastvunit++; - if ((lastvunit << vshift) < end) { - parts[numparts].name = " DiskOnChip Remainder partition"; - parts[numparts].offset = lastvunit << vshift; - parts[numparts].size = end - parts[numparts].offset; - numparts++; - } - ret = numparts; - out: - kfree(buf); - return ret; -} - -static int __init nftl_scan_bbt(struct mtd_info *mtd) -{ - int ret, numparts; - struct nand_chip *this = mtd_to_nand(mtd); - struct doc_priv *doc = nand_get_controller_data(this); - struct mtd_partition parts[2]; - - memset((char *)parts, 0, sizeof(parts)); - /* On NFTL, we have to find the media headers before we can read the - BBTs, since they're stored in the media header eraseblocks. */ - numparts = nftl_partscan(mtd, parts); - if (!numparts) - return -EIO; - this->bbt_td->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT | - NAND_BBT_SAVECONTENT | NAND_BBT_WRITE | - NAND_BBT_VERSION; - this->bbt_td->veroffs = 7; - this->bbt_td->pages[0] = doc->mh0_page + 1; - if (doc->mh1_page != -1) { - this->bbt_md->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT | - NAND_BBT_SAVECONTENT | NAND_BBT_WRITE | - NAND_BBT_VERSION; - this->bbt_md->veroffs = 7; - this->bbt_md->pages[0] = doc->mh1_page + 1; - } else { - this->bbt_md = NULL; - } - - ret = this->scan_bbt(mtd); - if (ret) - return ret; - - return mtd_device_register(mtd, parts, no_autopart ? 0 : numparts); -} - -static int __init inftl_scan_bbt(struct mtd_info *mtd) -{ - int ret, numparts; - struct nand_chip *this = mtd_to_nand(mtd); - struct doc_priv *doc = nand_get_controller_data(this); - struct mtd_partition parts[5]; - - if (this->numchips > doc->chips_per_floor) { - printk(KERN_ERR "Multi-floor INFTL devices not yet supported.\n"); - return -EIO; - } - - if (DoC_is_MillenniumPlus(doc)) { - this->bbt_td->options = NAND_BBT_2BIT | NAND_BBT_ABSPAGE; - if (inftl_bbt_write) - this->bbt_td->options |= NAND_BBT_WRITE; - this->bbt_td->pages[0] = 2; - this->bbt_md = NULL; - } else { - this->bbt_td->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT | NAND_BBT_VERSION; - if (inftl_bbt_write) - this->bbt_td->options |= NAND_BBT_WRITE; - this->bbt_td->offs = 8; - this->bbt_td->len = 8; - this->bbt_td->veroffs = 7; - this->bbt_td->maxblocks = INFTL_BBT_RESERVED_BLOCKS; - this->bbt_td->reserved_block_code = 0x01; - this->bbt_td->pattern = "MSYS_BBT"; - - this->bbt_md->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT | NAND_BBT_VERSION; - if (inftl_bbt_write) - this->bbt_md->options |= NAND_BBT_WRITE; - this->bbt_md->offs = 8; - this->bbt_md->len = 8; - this->bbt_md->veroffs = 7; - this->bbt_md->maxblocks = INFTL_BBT_RESERVED_BLOCKS; - this->bbt_md->reserved_block_code = 0x01; - this->bbt_md->pattern = "TBB_SYSM"; - } - - ret = this->scan_bbt(mtd); - if (ret) - return ret; - - memset((char *)parts, 0, sizeof(parts)); - numparts = inftl_partscan(mtd, parts); - /* At least for now, require the INFTL Media Header. We could probably - do without it for non-INFTL use, since all it gives us is - autopartitioning, but I want to give it more thought. */ - if (!numparts) - return -EIO; - return mtd_device_register(mtd, parts, no_autopart ? 0 : numparts); -} - -static inline int __init doc2000_init(struct mtd_info *mtd) -{ - struct nand_chip *this = mtd_to_nand(mtd); - struct doc_priv *doc = nand_get_controller_data(this); - - this->read_byte = doc2000_read_byte; - this->write_buf = doc2000_writebuf; - this->read_buf = doc2000_readbuf; - doc->late_init = nftl_scan_bbt; - - doc->CDSNControl = CDSN_CTRL_FLASH_IO | CDSN_CTRL_ECC_IO; - doc2000_count_chips(mtd); - mtd->name = "DiskOnChip 2000 (NFTL Model)"; - return (4 * doc->chips_per_floor); -} - -static inline int __init doc2001_init(struct mtd_info *mtd) -{ - struct nand_chip *this = mtd_to_nand(mtd); - struct doc_priv *doc = nand_get_controller_data(this); - - this->read_byte = doc2001_read_byte; - this->write_buf = doc2001_writebuf; - this->read_buf = doc2001_readbuf; - - ReadDOC(doc->virtadr, ChipID); - ReadDOC(doc->virtadr, ChipID); - ReadDOC(doc->virtadr, ChipID); - if (ReadDOC(doc->virtadr, ChipID) != DOC_ChipID_DocMil) { - /* It's not a Millennium; it's one of the newer - DiskOnChip 2000 units with a similar ASIC. - Treat it like a Millennium, except that it - can have multiple chips. */ - doc2000_count_chips(mtd); - mtd->name = "DiskOnChip 2000 (INFTL Model)"; - doc->late_init = inftl_scan_bbt; - return (4 * doc->chips_per_floor); - } else { - /* Bog-standard Millennium */ - doc->chips_per_floor = 1; - mtd->name = "DiskOnChip Millennium"; - doc->late_init = nftl_scan_bbt; - return 1; - } -} - -static inline int __init doc2001plus_init(struct mtd_info *mtd) -{ - struct nand_chip *this = mtd_to_nand(mtd); - struct doc_priv *doc = nand_get_controller_data(this); - - this->read_byte = doc2001plus_read_byte; - this->write_buf = doc2001plus_writebuf; - this->read_buf = doc2001plus_readbuf; - doc->late_init = inftl_scan_bbt; - this->cmd_ctrl = NULL; - this->select_chip = doc2001plus_select_chip; - this->cmdfunc = doc2001plus_command; - this->ecc.hwctl = doc2001plus_enable_hwecc; - - doc->chips_per_floor = 1; - mtd->name = "DiskOnChip Millennium Plus"; - - return 1; -} - -static int __init doc_probe(unsigned long physadr) -{ - unsigned char ChipID; - struct mtd_info *mtd; - struct nand_chip *nand; - struct doc_priv *doc; - void __iomem *virtadr; - unsigned char save_control; - unsigned char tmp, tmpb, tmpc; - int reg, len, numchips; - int ret = 0; - - if (!request_mem_region(physadr, DOC_IOREMAP_LEN, "DiskOnChip")) - return -EBUSY; - virtadr = ioremap(physadr, DOC_IOREMAP_LEN); - if (!virtadr) { - printk(KERN_ERR "Diskonchip ioremap failed: 0x%x bytes at 0x%lx\n", DOC_IOREMAP_LEN, physadr); - ret = -EIO; - goto error_ioremap; - } - - /* It's not possible to cleanly detect the DiskOnChip - the - * bootup procedure will put the device into reset mode, and - * it's not possible to talk to it without actually writing - * to the DOCControl register. So we store the current contents - * of the DOCControl register's location, in case we later decide - * that it's not a DiskOnChip, and want to put it back how we - * found it. - */ - save_control = ReadDOC(virtadr, DOCControl); - - /* Reset the DiskOnChip ASIC */ - WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, virtadr, DOCControl); - WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, virtadr, DOCControl); - - /* Enable the DiskOnChip ASIC */ - WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, virtadr, DOCControl); - WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, virtadr, DOCControl); - - ChipID = ReadDOC(virtadr, ChipID); - - switch (ChipID) { - case DOC_ChipID_Doc2k: - reg = DoC_2k_ECCStatus; - break; - case DOC_ChipID_DocMil: - reg = DoC_ECCConf; - break; - case DOC_ChipID_DocMilPlus16: - case DOC_ChipID_DocMilPlus32: - case 0: - /* Possible Millennium Plus, need to do more checks */ - /* Possibly release from power down mode */ - for (tmp = 0; (tmp < 4); tmp++) - ReadDOC(virtadr, Mplus_Power); - - /* Reset the Millennium Plus ASIC */ - tmp = DOC_MODE_RESET | DOC_MODE_MDWREN | DOC_MODE_RST_LAT | DOC_MODE_BDECT; - WriteDOC(tmp, virtadr, Mplus_DOCControl); - WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm); - - mdelay(1); - /* Enable the Millennium Plus ASIC */ - tmp = DOC_MODE_NORMAL | DOC_MODE_MDWREN | DOC_MODE_RST_LAT | DOC_MODE_BDECT; - WriteDOC(tmp, virtadr, Mplus_DOCControl); - WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm); - mdelay(1); - - ChipID = ReadDOC(virtadr, ChipID); - - switch (ChipID) { - case DOC_ChipID_DocMilPlus16: - reg = DoC_Mplus_Toggle; - break; - case DOC_ChipID_DocMilPlus32: - printk(KERN_ERR "DiskOnChip Millennium Plus 32MB is not supported, ignoring.\n"); - default: - ret = -ENODEV; - goto notfound; - } - break; - - default: - ret = -ENODEV; - goto notfound; - } - /* Check the TOGGLE bit in the ECC register */ - tmp = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT; - tmpb = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT; - tmpc = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT; - if ((tmp == tmpb) || (tmp != tmpc)) { - printk(KERN_WARNING "Possible DiskOnChip at 0x%lx failed TOGGLE test, dropping.\n", physadr); - ret = -ENODEV; - goto notfound; - } - - for (mtd = doclist; mtd; mtd = doc->nextdoc) { - unsigned char oldval; - unsigned char newval; - nand = mtd_to_nand(mtd); - doc = nand_get_controller_data(nand); - /* Use the alias resolution register to determine if this is - in fact the same DOC aliased to a new address. If writes - to one chip's alias resolution register change the value on - the other chip, they're the same chip. */ - if (ChipID == DOC_ChipID_DocMilPlus16) { - oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution); - newval = ReadDOC(virtadr, Mplus_AliasResolution); - } else { - oldval = ReadDOC(doc->virtadr, AliasResolution); - newval = ReadDOC(virtadr, AliasResolution); - } - if (oldval != newval) - continue; - if (ChipID == DOC_ChipID_DocMilPlus16) { - WriteDOC(~newval, virtadr, Mplus_AliasResolution); - oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution); - WriteDOC(newval, virtadr, Mplus_AliasResolution); // restore it - } else { - WriteDOC(~newval, virtadr, AliasResolution); - oldval = ReadDOC(doc->virtadr, AliasResolution); - WriteDOC(newval, virtadr, AliasResolution); // restore it - } - newval = ~newval; - if (oldval == newval) { - printk(KERN_DEBUG "Found alias of DOC at 0x%lx to 0x%lx\n", doc->physadr, physadr); - goto notfound; - } - } - - printk(KERN_NOTICE "DiskOnChip found at 0x%lx\n", physadr); - - len = sizeof(struct nand_chip) + sizeof(struct doc_priv) + - (2 * sizeof(struct nand_bbt_descr)); - nand = kzalloc(len, GFP_KERNEL); - if (!nand) { - ret = -ENOMEM; - goto fail; - } - - mtd = nand_to_mtd(nand); - doc = (struct doc_priv *) (nand + 1); - nand->bbt_td = (struct nand_bbt_descr *) (doc + 1); - nand->bbt_md = nand->bbt_td + 1; - - mtd->owner = THIS_MODULE; - mtd_set_ooblayout(mtd, &doc200x_ooblayout_ops); - - nand_set_controller_data(nand, doc); - nand->select_chip = doc200x_select_chip; - nand->cmd_ctrl = doc200x_hwcontrol; - nand->dev_ready = doc200x_dev_ready; - nand->waitfunc = doc200x_wait; - nand->block_bad = doc200x_block_bad; - nand->ecc.hwctl = doc200x_enable_hwecc; - nand->ecc.calculate = doc200x_calculate_ecc; - nand->ecc.correct = doc200x_correct_data; - - nand->ecc.mode = NAND_ECC_HW_SYNDROME; - nand->ecc.size = 512; - nand->ecc.bytes = 6; - nand->ecc.strength = 2; - nand->ecc.options = NAND_ECC_GENERIC_ERASED_CHECK; - nand->bbt_options = NAND_BBT_USE_FLASH; - /* Skip the automatic BBT scan so we can run it manually */ - nand->options |= NAND_SKIP_BBTSCAN; - - doc->physadr = physadr; - doc->virtadr = virtadr; - doc->ChipID = ChipID; - doc->curfloor = -1; - doc->curchip = -1; - doc->mh0_page = -1; - doc->mh1_page = -1; - doc->nextdoc = doclist; - - if (ChipID == DOC_ChipID_Doc2k) - numchips = doc2000_init(mtd); - else if (ChipID == DOC_ChipID_DocMilPlus16) - numchips = doc2001plus_init(mtd); - else - numchips = doc2001_init(mtd); - - if ((ret = nand_scan(mtd, numchips)) || (ret = doc->late_init(mtd))) { - /* DBB note: i believe nand_release is necessary here, as - buffers may have been allocated in nand_base. Check with - Thomas. FIX ME! */ - /* nand_release will call mtd_device_unregister, but we - haven't yet added it. This is handled without incident by - mtd_device_unregister, as far as I can tell. */ - nand_release(mtd); - kfree(nand); - goto fail; - } - - /* Success! */ - doclist = mtd; - return 0; - - notfound: - /* Put back the contents of the DOCControl register, in case it's not - actually a DiskOnChip. */ - WriteDOC(save_control, virtadr, DOCControl); - fail: - iounmap(virtadr); - -error_ioremap: - release_mem_region(physadr, DOC_IOREMAP_LEN); - - return ret; -} - -static void release_nanddoc(void) -{ - struct mtd_info *mtd, *nextmtd; - struct nand_chip *nand; - struct doc_priv *doc; - - for (mtd = doclist; mtd; mtd = nextmtd) { - nand = mtd_to_nand(mtd); - doc = nand_get_controller_data(nand); - - nextmtd = doc->nextdoc; - nand_release(mtd); - iounmap(doc->virtadr); - release_mem_region(doc->physadr, DOC_IOREMAP_LEN); - kfree(nand); - } -} - -static int __init init_nanddoc(void) -{ - int i, ret = 0; - - /* We could create the decoder on demand, if memory is a concern. - * This way we have it handy, if an error happens - * - * Symbolsize is 10 (bits) - * Primitve polynomial is x^10+x^3+1 - * first consecutive root is 510 - * primitve element to generate roots = 1 - * generator polinomial degree = 4 - */ - rs_decoder = init_rs(10, 0x409, FCR, 1, NROOTS); - if (!rs_decoder) { - printk(KERN_ERR "DiskOnChip: Could not create a RS decoder\n"); - return -ENOMEM; - } - - if (doc_config_location) { - printk(KERN_INFO "Using configured DiskOnChip probe address 0x%lx\n", doc_config_location); - ret = doc_probe(doc_config_location); - if (ret < 0) - goto outerr; - } else { - for (i = 0; (doc_locations[i] != 0xffffffff); i++) { - doc_probe(doc_locations[i]); - } - } - /* No banner message any more. Print a message if no DiskOnChip - found, so the user knows we at least tried. */ - if (!doclist) { - printk(KERN_INFO "No valid DiskOnChip devices found\n"); - ret = -ENODEV; - goto outerr; - } - return 0; - outerr: - free_rs(rs_decoder); - return ret; -} - -static void __exit cleanup_nanddoc(void) -{ - /* Cleanup the nand/DoC resources */ - release_nanddoc(); - - /* Free the reed solomon resources */ - if (rs_decoder) { - free_rs(rs_decoder); - } -} - -module_init(init_nanddoc); -module_exit(cleanup_nanddoc); - -MODULE_LICENSE("GPL"); -MODULE_AUTHOR("David Woodhouse "); -MODULE_DESCRIPTION("M-Systems DiskOnChip 2000, Millennium and Millennium Plus device driver"); diff --git a/drivers/mtd/nand/docg4.c b/drivers/mtd/nand/docg4.c deleted file mode 100644 index 72f1327c4430..000000000000 --- a/drivers/mtd/nand/docg4.c +++ /dev/null @@ -1,1421 +0,0 @@ -/* - * Copyright © 2012 Mike Dunn - * - * mtd nand driver for M-Systems DiskOnChip G4 - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation; either version 2 of the License, or - * (at your option) any later version. - * - * Tested on the Palm Treo 680. The G4 is also present on Toshiba Portege, Asus - * P526, some HTC smartphones (Wizard, Prophet, ...), O2 XDA Zinc, maybe others. - * Should work on these as well. Let me know! - * - * TODO: - * - * Mechanism for management of password-protected areas - * - * Hamming ecc when reading oob only - * - * According to the M-Sys documentation, this device is also available in a - * "dual-die" configuration having a 256MB capacity, but no mechanism for - * detecting this variant is documented. Currently this driver assumes 128MB - * capacity. - * - * Support for multiple cascaded devices ("floors"). Not sure which gadgets - * contain multiple G4s in a cascaded configuration, if any. - * - */ - -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include - -/* - * In "reliable mode" consecutive 2k pages are used in parallel (in some - * fashion) to store the same data. The data can be read back from the - * even-numbered pages in the normal manner; odd-numbered pages will appear to - * contain junk. Systems that boot from the docg4 typically write the secondary - * program loader (SPL) code in this mode. The SPL is loaded by the initial - * program loader (IPL, stored in the docg4's 2k NOR-like region that is mapped - * to the reset vector address). This module parameter enables you to use this - * driver to write the SPL. When in this mode, no more than 2k of data can be - * written at a time, because the addresses do not increment in the normal - * manner, and the starting offset must be within an even-numbered 2k region; - * i.e., invalid starting offsets are 0x800, 0xa00, 0xc00, 0xe00, 0x1800, - * 0x1a00, ... Reliable mode is a special case and should not be used unless - * you know what you're doing. - */ -static bool reliable_mode; -module_param(reliable_mode, bool, 0); -MODULE_PARM_DESC(reliable_mode, "pages are programmed in reliable mode"); - -/* - * You'll want to ignore badblocks if you're reading a partition that contains - * data written by the TrueFFS library (i.e., by PalmOS, Windows, etc), since - * it does not use mtd nand's method for marking bad blocks (using oob area). - * This will also skip the check of the "page written" flag. - */ -static bool ignore_badblocks; -module_param(ignore_badblocks, bool, 0); -MODULE_PARM_DESC(ignore_badblocks, "no badblock checking performed"); - -struct docg4_priv { - struct mtd_info *mtd; - struct device *dev; - void __iomem *virtadr; - int status; - struct { - unsigned int command; - int column; - int page; - } last_command; - uint8_t oob_buf[16]; - uint8_t ecc_buf[7]; - int oob_page; - struct bch_control *bch; -}; - -/* - * Defines prefixed with DOCG4 are unique to the diskonchip G4. All others are - * shared with other diskonchip devices (P3, G3 at least). - * - * Functions with names prefixed with docg4_ are mtd / nand interface functions - * (though they may also be called internally). All others are internal. - */ - -#define DOC_IOSPACE_DATA 0x0800 - -/* register offsets */ -#define DOC_CHIPID 0x1000 -#define DOC_DEVICESELECT 0x100a -#define DOC_ASICMODE 0x100c -#define DOC_DATAEND 0x101e -#define DOC_NOP 0x103e - -#define DOC_FLASHSEQUENCE 0x1032 -#define DOC_FLASHCOMMAND 0x1034 -#define DOC_FLASHADDRESS 0x1036 -#define DOC_FLASHCONTROL 0x1038 -#define DOC_ECCCONF0 0x1040 -#define DOC_ECCCONF1 0x1042 -#define DOC_HAMMINGPARITY 0x1046 -#define DOC_BCH_SYNDROM(idx) (0x1048 + idx) - -#define DOC_ASICMODECONFIRM 0x1072 -#define DOC_CHIPID_INV 0x1074 -#define DOC_POWERMODE 0x107c - -#define DOCG4_MYSTERY_REG 0x1050 - -/* apparently used only to write oob bytes 6 and 7 */ -#define DOCG4_OOB_6_7 0x1052 - -/* DOC_FLASHSEQUENCE register commands */ -#define DOC_SEQ_RESET 0x00 -#define DOCG4_SEQ_PAGE_READ 0x03 -#define DOCG4_SEQ_FLUSH 0x29 -#define DOCG4_SEQ_PAGEWRITE 0x16 -#define DOCG4_SEQ_PAGEPROG 0x1e -#define DOCG4_SEQ_BLOCKERASE 0x24 -#define DOCG4_SEQ_SETMODE 0x45 - -/* DOC_FLASHCOMMAND register commands */ -#define DOCG4_CMD_PAGE_READ 0x00 -#define DOC_CMD_ERASECYCLE2 0xd0 -#define DOCG4_CMD_FLUSH 0x70 -#define DOCG4_CMD_READ2 0x30 -#define DOC_CMD_PROG_BLOCK_ADDR 0x60 -#define DOCG4_CMD_PAGEWRITE 0x80 -#define DOC_CMD_PROG_CYCLE2 0x10 -#define DOCG4_CMD_FAST_MODE 0xa3 /* functionality guessed */ -#define DOC_CMD_RELIABLE_MODE 0x22 -#define DOC_CMD_RESET 0xff - -/* DOC_POWERMODE register bits */ -#define DOC_POWERDOWN_READY 0x80 - -/* DOC_FLASHCONTROL register bits */ -#define DOC_CTRL_CE 0x10 -#define DOC_CTRL_UNKNOWN 0x40 -#define DOC_CTRL_FLASHREADY 0x01 - -/* DOC_ECCCONF0 register bits */ -#define DOC_ECCCONF0_READ_MODE 0x8000 -#define DOC_ECCCONF0_UNKNOWN 0x2000 -#define DOC_ECCCONF0_ECC_ENABLE 0x1000 -#define DOC_ECCCONF0_DATA_BYTES_MASK 0x07ff - -/* DOC_ECCCONF1 register bits */ -#define DOC_ECCCONF1_BCH_SYNDROM_ERR 0x80 -#define DOC_ECCCONF1_ECC_ENABLE 0x07 -#define DOC_ECCCONF1_PAGE_IS_WRITTEN 0x20 - -/* DOC_ASICMODE register bits */ -#define DOC_ASICMODE_RESET 0x00 -#define DOC_ASICMODE_NORMAL 0x01 -#define DOC_ASICMODE_POWERDOWN 0x02 -#define DOC_ASICMODE_MDWREN 0x04 -#define DOC_ASICMODE_BDETCT_RESET 0x08 -#define DOC_ASICMODE_RSTIN_RESET 0x10 -#define DOC_ASICMODE_RAM_WE 0x20 - -/* good status values read after read/write/erase operations */ -#define DOCG4_PROGSTATUS_GOOD 0x51 -#define DOCG4_PROGSTATUS_GOOD_2 0xe0 - -/* - * On read operations (page and oob-only), the first byte read from I/O reg is a - * status. On error, it reads 0x73; otherwise, it reads either 0x71 (first read - * after reset only) or 0x51, so bit 1 is presumed to be an error indicator. - */ -#define DOCG4_READ_ERROR 0x02 /* bit 1 indicates read error */ - -/* anatomy of the device */ -#define DOCG4_CHIP_SIZE 0x8000000 -#define DOCG4_PAGE_SIZE 0x200 -#define DOCG4_PAGES_PER_BLOCK 0x200 -#define DOCG4_BLOCK_SIZE (DOCG4_PAGES_PER_BLOCK * DOCG4_PAGE_SIZE) -#define DOCG4_NUMBLOCKS (DOCG4_CHIP_SIZE / DOCG4_BLOCK_SIZE) -#define DOCG4_OOB_SIZE 0x10 -#define DOCG4_CHIP_SHIFT 27 /* log_2(DOCG4_CHIP_SIZE) */ -#define DOCG4_PAGE_SHIFT 9 /* log_2(DOCG4_PAGE_SIZE) */ -#define DOCG4_ERASE_SHIFT 18 /* log_2(DOCG4_BLOCK_SIZE) */ - -/* all but the last byte is included in ecc calculation */ -#define DOCG4_BCH_SIZE (DOCG4_PAGE_SIZE + DOCG4_OOB_SIZE - 1) - -#define DOCG4_USERDATA_LEN 520 /* 512 byte page plus 8 oob avail to user */ - -/* expected values from the ID registers */ -#define DOCG4_IDREG1_VALUE 0x0400 -#define DOCG4_IDREG2_VALUE 0xfbff - -/* primitive polynomial used to build the Galois field used by hw ecc gen */ -#define DOCG4_PRIMITIVE_POLY 0x4443 - -#define DOCG4_M 14 /* Galois field is of order 2^14 */ -#define DOCG4_T 4 /* BCH alg corrects up to 4 bit errors */ - -#define DOCG4_FACTORY_BBT_PAGE 16 /* page where read-only factory bbt lives */ -#define DOCG4_REDUNDANT_BBT_PAGE 24 /* page where redundant factory bbt lives */ - -/* - * Bytes 0, 1 are used as badblock marker. - * Bytes 2 - 6 are available to the user. - * Byte 7 is hamming ecc for first 7 oob bytes only. - * Bytes 8 - 14 are hw-generated ecc covering entire page + oob bytes 0 - 14. - * Byte 15 (the last) is used by the driver as a "page written" flag. - */ -static int docg4_ooblayout_ecc(struct mtd_info *mtd, int section, - struct mtd_oob_region *oobregion) -{ - if (section) - return -ERANGE; - - oobregion->offset = 7; - oobregion->length = 9; - - return 0; -} - -static int docg4_ooblayout_free(struct mtd_info *mtd, int section, - struct mtd_oob_region *oobregion) -{ - if (section) - return -ERANGE; - - oobregion->offset = 2; - oobregion->length = 5; - - return 0; -} - -static const struct mtd_ooblayout_ops docg4_ooblayout_ops = { - .ecc = docg4_ooblayout_ecc, - .free = docg4_ooblayout_free, -}; - -/* - * The device has a nop register which M-Sys claims is for the purpose of - * inserting precise delays. But beware; at least some operations fail if the - * nop writes are replaced with a generic delay! - */ -static inline void write_nop(void __iomem *docptr) -{ - writew(0, docptr + DOC_NOP); -} - -static void docg4_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) -{ - int i; - struct nand_chip *nand = mtd_to_nand(mtd); - uint16_t *p = (uint16_t *) buf; - len >>= 1; - - for (i = 0; i < len; i++) - p[i] = readw(nand->IO_ADDR_R); -} - -static void docg4_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len) -{ - int i; - struct nand_chip *nand = mtd_to_nand(mtd); - uint16_t *p = (uint16_t *) buf; - len >>= 1; - - for (i = 0; i < len; i++) - writew(p[i], nand->IO_ADDR_W); -} - -static int poll_status(struct docg4_priv *doc) -{ - /* - * Busy-wait for the FLASHREADY bit to be set in the FLASHCONTROL - * register. Operations known to take a long time (e.g., block erase) - * should sleep for a while before calling this. - */ - - uint16_t flash_status; - unsigned long timeo; - void __iomem *docptr = doc->virtadr; - - dev_dbg(doc->dev, "%s...\n", __func__); - - /* hardware quirk requires reading twice initially */ - flash_status = readw(docptr + DOC_FLASHCONTROL); - - timeo = jiffies + msecs_to_jiffies(200); /* generous timeout */ - do { - cpu_relax(); - flash_status = readb(docptr + DOC_FLASHCONTROL); - } while (!(flash_status & DOC_CTRL_FLASHREADY) && - time_before(jiffies, timeo)); - - if (unlikely(!(flash_status & DOC_CTRL_FLASHREADY))) { - dev_err(doc->dev, "%s: timed out!\n", __func__); - return NAND_STATUS_FAIL; - } - - return 0; -} - - -static int docg4_wait(struct mtd_info *mtd, struct nand_chip *nand) -{ - - struct docg4_priv *doc = nand_get_controller_data(nand); - int status = NAND_STATUS_WP; /* inverse logic?? */ - dev_dbg(doc->dev, "%s...\n", __func__); - - /* report any previously unreported error */ - if (doc->status) { - status |= doc->status; - doc->status = 0; - return status; - } - - status |= poll_status(doc); - return status; -} - -static void docg4_select_chip(struct mtd_info *mtd, int chip) -{ - /* - * Select among multiple cascaded chips ("floors"). Multiple floors are - * not yet supported, so the only valid non-negative value is 0. - */ - struct nand_chip *nand = mtd_to_nand(mtd); - struct docg4_priv *doc = nand_get_controller_data(nand); - void __iomem *docptr = doc->virtadr; - - dev_dbg(doc->dev, "%s: chip %d\n", __func__, chip); - - if (chip < 0) - return; /* deselected */ - - if (chip > 0) - dev_warn(doc->dev, "multiple floors currently unsupported\n"); - - writew(0, docptr + DOC_DEVICESELECT); -} - -static void reset(struct mtd_info *mtd) -{ - /* full device reset */ - - struct nand_chip *nand = mtd_to_nand(mtd); - struct docg4_priv *doc = nand_get_controller_data(nand); - void __iomem *docptr = doc->virtadr; - - writew(DOC_ASICMODE_RESET | DOC_ASICMODE_MDWREN, - docptr + DOC_ASICMODE); - writew(~(DOC_ASICMODE_RESET | DOC_ASICMODE_MDWREN), - docptr + DOC_ASICMODECONFIRM); - write_nop(docptr); - - writew(DOC_ASICMODE_NORMAL | DOC_ASICMODE_MDWREN, - docptr + DOC_ASICMODE); - writew(~(DOC_ASICMODE_NORMAL | DOC_ASICMODE_MDWREN), - docptr + DOC_ASICMODECONFIRM); - - writew(DOC_ECCCONF1_ECC_ENABLE, docptr + DOC_ECCCONF1); - - poll_status(doc); -} - -static void read_hw_ecc(void __iomem *docptr, uint8_t *ecc_buf) -{ - /* read the 7 hw-generated ecc bytes */ - - int i; - for (i = 0; i < 7; i++) { /* hw quirk; read twice */ - ecc_buf[i] = readb(docptr + DOC_BCH_SYNDROM(i)); - ecc_buf[i] = readb(docptr + DOC_BCH_SYNDROM(i)); - } -} - -static int correct_data(struct mtd_info *mtd, uint8_t *buf, int page) -{ - /* - * Called after a page read when hardware reports bitflips. - * Up to four bitflips can be corrected. - */ - - struct nand_chip *nand = mtd_to_nand(mtd); - struct docg4_priv *doc = nand_get_controller_data(nand); - void __iomem *docptr = doc->virtadr; - int i, numerrs, errpos[4]; - const uint8_t blank_read_hwecc[8] = { - 0xcf, 0x72, 0xfc, 0x1b, 0xa9, 0xc7, 0xb9, 0 }; - - read_hw_ecc(docptr, doc->ecc_buf); /* read 7 hw-generated ecc bytes */ - - /* check if read error is due to a blank page */ - if (!memcmp(doc->ecc_buf, blank_read_hwecc, 7)) - return 0; /* yes */ - - /* skip additional check of "written flag" if ignore_badblocks */ - if (ignore_badblocks == false) { - - /* - * If the hw ecc bytes are not those of a blank page, there's - * still a chance that the page is blank, but was read with - * errors. Check the "written flag" in last oob byte, which - * is set to zero when a page is written. If more than half - * the bits are set, assume a blank page. Unfortunately, the - * bit flips(s) are not reported in stats. - */ - - if (nand->oob_poi[15]) { - int bit, numsetbits = 0; - unsigned long written_flag = nand->oob_poi[15]; - for_each_set_bit(bit, &written_flag, 8) - numsetbits++; - if (numsetbits > 4) { /* assume blank */ - dev_warn(doc->dev, - "error(s) in blank page " - "at offset %08x\n", - page * DOCG4_PAGE_SIZE); - return 0; - } - } - } - - /* - * The hardware ecc unit produces oob_ecc ^ calc_ecc. The kernel's bch - * algorithm is used to decode this. However the hw operates on page - * data in a bit order that is the reverse of that of the bch alg, - * requiring that the bits be reversed on the result. Thanks to Ivan - * Djelic for his analysis! - */ - for (i = 0; i < 7; i++) - doc->ecc_buf[i] = bitrev8(doc->ecc_buf[i]); - - numerrs = decode_bch(doc->bch, NULL, DOCG4_USERDATA_LEN, NULL, - doc->ecc_buf, NULL, errpos); - - if (numerrs == -EBADMSG) { - dev_warn(doc->dev, "uncorrectable errors at offset %08x\n", - page * DOCG4_PAGE_SIZE); - return -EBADMSG; - } - - BUG_ON(numerrs < 0); /* -EINVAL, or anything other than -EBADMSG */ - - /* undo last step in BCH alg (modulo mirroring not needed) */ - for (i = 0; i < numerrs; i++) - errpos[i] = (errpos[i] & ~7)|(7-(errpos[i] & 7)); - - /* fix the errors */ - for (i = 0; i < numerrs; i++) { - - /* ignore if error within oob ecc bytes */ - if (errpos[i] > DOCG4_USERDATA_LEN * 8) - continue; - - /* if error within oob area preceeding ecc bytes... */ - if (errpos[i] > DOCG4_PAGE_SIZE * 8) - change_bit(errpos[i] - DOCG4_PAGE_SIZE * 8, - (unsigned long *)nand->oob_poi); - - else /* error in page data */ - change_bit(errpos[i], (unsigned long *)buf); - } - - dev_notice(doc->dev, "%d error(s) corrected at offset %08x\n", - numerrs, page * DOCG4_PAGE_SIZE); - - return numerrs; -} - -static uint8_t docg4_read_byte(struct mtd_info *mtd) -{ - struct nand_chip *nand = mtd_to_nand(mtd); - struct docg4_priv *doc = nand_get_controller_data(nand); - - dev_dbg(doc->dev, "%s\n", __func__); - - if (doc->last_command.command == NAND_CMD_STATUS) { - int status; - - /* - * Previous nand command was status request, so nand - * infrastructure code expects to read the status here. If an - * error occurred in a previous operation, report it. - */ - doc->last_command.command = 0; - - if (doc->status) { - status = doc->status; - doc->status = 0; - } - - /* why is NAND_STATUS_WP inverse logic?? */ - else - status = NAND_STATUS_WP | NAND_STATUS_READY; - - return status; - } - - dev_warn(doc->dev, "unexpected call to read_byte()\n"); - - return 0; -} - -static void write_addr(struct docg4_priv *doc, uint32_t docg4_addr) -{ - /* write the four address bytes packed in docg4_addr to the device */ - - void __iomem *docptr = doc->virtadr; - writeb(docg4_addr & 0xff, docptr + DOC_FLASHADDRESS); - docg4_addr >>= 8; - writeb(docg4_addr & 0xff, docptr + DOC_FLASHADDRESS); - docg4_addr >>= 8; - writeb(docg4_addr & 0xff, docptr + DOC_FLASHADDRESS); - docg4_addr >>= 8; - writeb(docg4_addr & 0xff, docptr + DOC_FLASHADDRESS); -} - -static int read_progstatus(struct docg4_priv *doc) -{ - /* - * This apparently checks the status of programming. Done after an - * erasure, and after page data is written. On error, the status is - * saved, to be later retrieved by the nand infrastructure code. - */ - void __iomem *docptr = doc->virtadr; - - /* status is read from the I/O reg */ - uint16_t status1 = readw(docptr + DOC_IOSPACE_DATA); - uint16_t status2 = readw(docptr + DOC_IOSPACE_DATA); - uint16_t status3 = readw(docptr + DOCG4_MYSTERY_REG); - - dev_dbg(doc->dev, "docg4: %s: %02x %02x %02x\n", - __func__, status1, status2, status3); - - if (status1 != DOCG4_PROGSTATUS_GOOD - || status2 != DOCG4_PROGSTATUS_GOOD_2 - || status3 != DOCG4_PROGSTATUS_GOOD_2) { - doc->status = NAND_STATUS_FAIL; - dev_warn(doc->dev, "read_progstatus failed: " - "%02x, %02x, %02x\n", status1, status2, status3); - return -EIO; - } - return 0; -} - -static int pageprog(struct mtd_info *mtd) -{ - /* - * Final step in writing a page. Writes the contents of its - * internal buffer out to the flash array, or some such. - */ - - struct nand_chip *nand = mtd_to_nand(mtd); - struct docg4_priv *doc = nand_get_controller_data(nand); - void __iomem *docptr = doc->virtadr; - int retval = 0; - - dev_dbg(doc->dev, "docg4: %s\n", __func__); - - writew(DOCG4_SEQ_PAGEPROG, docptr + DOC_FLASHSEQUENCE); - writew(DOC_CMD_PROG_CYCLE2, docptr + DOC_FLASHCOMMAND); - write_nop(docptr); - write_nop(docptr); - - /* Just busy-wait; usleep_range() slows things down noticeably. */ - poll_status(doc); - - writew(DOCG4_SEQ_FLUSH, docptr + DOC_FLASHSEQUENCE); - writew(DOCG4_CMD_FLUSH, docptr + DOC_FLASHCOMMAND); - writew(DOC_ECCCONF0_READ_MODE | 4, docptr + DOC_ECCCONF0); - write_nop(docptr); - write_nop(docptr); - write_nop(docptr); - write_nop(docptr); - write_nop(docptr); - - retval = read_progstatus(doc); - writew(0, docptr + DOC_DATAEND); - write_nop(docptr); - poll_status(doc); - write_nop(docptr); - - return retval; -} - -static void sequence_reset(struct mtd_info *mtd) -{ - /* common starting sequence for all operations */ - - struct nand_chip *nand = mtd_to_nand(mtd); - struct docg4_priv *doc = nand_get_controller_data(nand); - void __iomem *docptr = doc->virtadr; - - writew(DOC_CTRL_UNKNOWN | DOC_CTRL_CE, docptr + DOC_FLASHCONTROL); - writew(DOC_SEQ_RESET, docptr + DOC_FLASHSEQUENCE); - writew(DOC_CMD_RESET, docptr + DOC_FLASHCOMMAND); - write_nop(docptr); - write_nop(docptr); - poll_status(doc); - write_nop(docptr); -} - -static void read_page_prologue(struct mtd_info *mtd, uint32_t docg4_addr) -{ - /* first step in reading a page */ - - struct nand_chip *nand = mtd_to_nand(mtd); - struct docg4_priv *doc = nand_get_controller_data(nand); - void __iomem *docptr = doc->virtadr; - - dev_dbg(doc->dev, - "docg4: %s: g4 page %08x\n", __func__, docg4_addr); - - sequence_reset(mtd); - - writew(DOCG4_SEQ_PAGE_READ, docptr + DOC_FLASHSEQUENCE); - writew(DOCG4_CMD_PAGE_READ, docptr + DOC_FLASHCOMMAND); - write_nop(docptr); - - write_addr(doc, docg4_addr); - - write_nop(docptr); - writew(DOCG4_CMD_READ2, docptr + DOC_FLASHCOMMAND); - write_nop(docptr); - write_nop(docptr); - - poll_status(doc); -} - -static void write_page_prologue(struct mtd_info *mtd, uint32_t docg4_addr) -{ - /* first step in writing a page */ - - struct nand_chip *nand = mtd_to_nand(mtd); - struct docg4_priv *doc = nand_get_controller_data(nand); - void __iomem *docptr = doc->virtadr; - - dev_dbg(doc->dev, - "docg4: %s: g4 addr: %x\n", __func__, docg4_addr); - sequence_reset(mtd); - - if (unlikely(reliable_mode)) { - writew(DOCG4_SEQ_SETMODE, docptr + DOC_FLASHSEQUENCE); - writew(DOCG4_CMD_FAST_MODE, docptr + DOC_FLASHCOMMAND); - writew(DOC_CMD_RELIABLE_MODE, docptr + DOC_FLASHCOMMAND); - write_nop(docptr); - } - - writew(DOCG4_SEQ_PAGEWRITE, docptr + DOC_FLASHSEQUENCE); - writew(DOCG4_CMD_PAGEWRITE, docptr + DOC_FLASHCOMMAND); - write_nop(docptr); - write_addr(doc, docg4_addr); - write_nop(docptr); - write_nop(docptr); - poll_status(doc); -} - -static uint32_t mtd_to_docg4_address(int page, int column) -{ - /* - * Convert mtd address to format used by the device, 32 bit packed. - * - * Some notes on G4 addressing... The M-Sys documentation on this device - * claims that pages are 2K in length, and indeed, the format of the - * address used by the device reflects that. But within each page are - * four 512 byte "sub-pages", each with its own oob data that is - * read/written immediately after the 512 bytes of page data. This oob - * data contains the ecc bytes for the preceeding 512 bytes. - * - * Rather than tell the mtd nand infrastructure that page size is 2k, - * with four sub-pages each, we engage in a little subterfuge and tell - * the infrastructure code that pages are 512 bytes in size. This is - * done because during the course of reverse-engineering the device, I - * never observed an instance where an entire 2K "page" was read or - * written as a unit. Each "sub-page" is always addressed individually, - * its data read/written, and ecc handled before the next "sub-page" is - * addressed. - * - * This requires us to convert addresses passed by the mtd nand - * infrastructure code to those used by the device. - * - * The address that is written to the device consists of four bytes: the - * first two are the 2k page number, and the second is the index into - * the page. The index is in terms of 16-bit half-words and includes - * the preceeding oob data, so e.g., the index into the second - * "sub-page" is 0x108, and the full device address of the start of mtd - * page 0x201 is 0x00800108. - */ - int g4_page = page / 4; /* device's 2K page */ - int g4_index = (page % 4) * 0x108 + column/2; /* offset into page */ - return (g4_page << 16) | g4_index; /* pack */ -} - -static void docg4_command(struct mtd_info *mtd, unsigned command, int column, - int page_addr) -{ - /* handle standard nand commands */ - - struct nand_chip *nand = mtd_to_nand(mtd); - struct docg4_priv *doc = nand_get_controller_data(nand); - uint32_t g4_addr = mtd_to_docg4_address(page_addr, column); - - dev_dbg(doc->dev, "%s %x, page_addr=%x, column=%x\n", - __func__, command, page_addr, column); - - /* - * Save the command and its arguments. This enables emulation of - * standard flash devices, and also some optimizations. - */ - doc->last_command.command = command; - doc->last_command.column = column; - doc->last_command.page = page_addr; - - switch (command) { - - case NAND_CMD_RESET: - reset(mtd); - break; - - case NAND_CMD_READ0: - read_page_prologue(mtd, g4_addr); - break; - - case NAND_CMD_STATUS: - /* next call to read_byte() will expect a status */ - break; - - case NAND_CMD_SEQIN: - if (unlikely(reliable_mode)) { - uint16_t g4_page = g4_addr >> 16; - - /* writes to odd-numbered 2k pages are invalid */ - if (g4_page & 0x01) - dev_warn(doc->dev, - "invalid reliable mode address\n"); - } - - write_page_prologue(mtd, g4_addr); - - /* hack for deferred write of oob bytes */ - if (doc->oob_page == page_addr) - memcpy(nand->oob_poi, doc->oob_buf, 16); - break; - - case NAND_CMD_PAGEPROG: - pageprog(mtd); - break; - - /* we don't expect these, based on review of nand_base.c */ - case NAND_CMD_READOOB: - case NAND_CMD_READID: - case NAND_CMD_ERASE1: - case NAND_CMD_ERASE2: - dev_warn(doc->dev, "docg4_command: " - "unexpected nand command 0x%x\n", command); - break; - - } -} - -static int read_page(struct mtd_info *mtd, struct nand_chip *nand, - uint8_t *buf, int page, bool use_ecc) -{ - struct docg4_priv *doc = nand_get_controller_data(nand); - void __iomem *docptr = doc->virtadr; - uint16_t status, edc_err, *buf16; - int bits_corrected = 0; - - dev_dbg(doc->dev, "%s: page %08x\n", __func__, page); - - nand_read_page_op(nand, page, 0, NULL, 0); - - writew(DOC_ECCCONF0_READ_MODE | - DOC_ECCCONF0_ECC_ENABLE | - DOC_ECCCONF0_UNKNOWN | - DOCG4_BCH_SIZE, - docptr + DOC_ECCCONF0); - write_nop(docptr); - write_nop(docptr); - write_nop(docptr); - write_nop(docptr); - write_nop(docptr); - - /* the 1st byte from the I/O reg is a status; the rest is page data */ - status = readw(docptr + DOC_IOSPACE_DATA); - if (status & DOCG4_READ_ERROR) { - dev_err(doc->dev, - "docg4_read_page: bad status: 0x%02x\n", status); - writew(0, docptr + DOC_DATAEND); - return -EIO; - } - - dev_dbg(doc->dev, "%s: status = 0x%x\n", __func__, status); - - docg4_read_buf(mtd, buf, DOCG4_PAGE_SIZE); /* read the page data */ - - /* this device always reads oob after page data */ - /* first 14 oob bytes read from I/O reg */ - docg4_read_buf(mtd, nand->oob_poi, 14); - - /* last 2 read from another reg */ - buf16 = (uint16_t *)(nand->oob_poi + 14); - *buf16 = readw(docptr + DOCG4_MYSTERY_REG); - - write_nop(docptr); - - if (likely(use_ecc == true)) { - - /* read the register that tells us if bitflip(s) detected */ - edc_err = readw(docptr + DOC_ECCCONF1); - edc_err = readw(docptr + DOC_ECCCONF1); - dev_dbg(doc->dev, "%s: edc_err = 0x%02x\n", __func__, edc_err); - - /* If bitflips are reported, attempt to correct with ecc */ - if (edc_err & DOC_ECCCONF1_BCH_SYNDROM_ERR) { - bits_corrected = correct_data(mtd, buf, page); - if (bits_corrected == -EBADMSG) - mtd->ecc_stats.failed++; - else - mtd->ecc_stats.corrected += bits_corrected; - } - } - - writew(0, docptr + DOC_DATAEND); - if (bits_corrected == -EBADMSG) /* uncorrectable errors */ - return 0; - return bits_corrected; -} - - -static int docg4_read_page_raw(struct mtd_info *mtd, struct nand_chip *nand, - uint8_t *buf, int oob_required, int page) -{ - return read_page(mtd, nand, buf, page, false); -} - -static int docg4_read_page(struct mtd_info *mtd, struct nand_chip *nand, - uint8_t *buf, int oob_required, int page) -{ - return read_page(mtd, nand, buf, page, true); -} - -static int docg4_read_oob(struct mtd_info *mtd, struct nand_chip *nand, - int page) -{ - struct docg4_priv *doc = nand_get_controller_data(nand); - void __iomem *docptr = doc->virtadr; - uint16_t status; - - dev_dbg(doc->dev, "%s: page %x\n", __func__, page); - - nand_read_page_op(nand, page, nand->ecc.size, NULL, 0); - - writew(DOC_ECCCONF0_READ_MODE | DOCG4_OOB_SIZE, docptr + DOC_ECCCONF0); - write_nop(docptr); - write_nop(docptr); - write_nop(docptr); - write_nop(docptr); - write_nop(docptr); - - /* the 1st byte from the I/O reg is a status; the rest is oob data */ - status = readw(docptr + DOC_IOSPACE_DATA); - if (status & DOCG4_READ_ERROR) { - dev_warn(doc->dev, - "docg4_read_oob failed: status = 0x%02x\n", status); - return -EIO; - } - - dev_dbg(doc->dev, "%s: status = 0x%x\n", __func__, status); - - docg4_read_buf(mtd, nand->oob_poi, 16); - - write_nop(docptr); - write_nop(docptr); - write_nop(docptr); - writew(0, docptr + DOC_DATAEND); - write_nop(docptr); - - return 0; -} - -static int docg4_erase_block(struct mtd_info *mtd, int page) -{ - struct nand_chip *nand = mtd_to_nand(mtd); - struct docg4_priv *doc = nand_get_controller_data(nand); - void __iomem *docptr = doc->virtadr; - uint16_t g4_page; - int status; - - dev_dbg(doc->dev, "%s: page %04x\n", __func__, page); - - sequence_reset(mtd); - - writew(DOCG4_SEQ_BLOCKERASE, docptr + DOC_FLASHSEQUENCE); - writew(DOC_CMD_PROG_BLOCK_ADDR, docptr + DOC_FLASHCOMMAND); - write_nop(docptr); - - /* only 2 bytes of address are written to specify erase block */ - g4_page = (uint16_t)(page / 4); /* to g4's 2k page addressing */ - writeb(g4_page & 0xff, docptr + DOC_FLASHADDRESS); - g4_page >>= 8; - writeb(g4_page & 0xff, docptr + DOC_FLASHADDRESS); - write_nop(docptr); - - /* start the erasure */ - writew(DOC_CMD_ERASECYCLE2, docptr + DOC_FLASHCOMMAND); - write_nop(docptr); - write_nop(docptr); - - usleep_range(500, 1000); /* erasure is long; take a snooze */ - poll_status(doc); - writew(DOCG4_SEQ_FLUSH, docptr + DOC_FLASHSEQUENCE); - writew(DOCG4_CMD_FLUSH, docptr + DOC_FLASHCOMMAND); - writew(DOC_ECCCONF0_READ_MODE | 4, docptr + DOC_ECCCONF0); - write_nop(docptr); - write_nop(docptr); - write_nop(docptr); - write_nop(docptr); - write_nop(docptr); - - read_progstatus(doc); - - writew(0, docptr + DOC_DATAEND); - write_nop(docptr); - poll_status(doc); - write_nop(docptr); - - status = nand->waitfunc(mtd, nand); - if (status < 0) - return status; - - return status & NAND_STATUS_FAIL ? -EIO : 0; -} - -static int write_page(struct mtd_info *mtd, struct nand_chip *nand, - const uint8_t *buf, int page, bool use_ecc) -{ - struct docg4_priv *doc = nand_get_controller_data(nand); - void __iomem *docptr = doc->virtadr; - uint8_t ecc_buf[8]; - - dev_dbg(doc->dev, "%s...\n", __func__); - - nand_prog_page_begin_op(nand, page, 0, NULL, 0); - - writew(DOC_ECCCONF0_ECC_ENABLE | - DOC_ECCCONF0_UNKNOWN | - DOCG4_BCH_SIZE, - docptr + DOC_ECCCONF0); - write_nop(docptr); - - /* write the page data */ - docg4_write_buf16(mtd, buf, DOCG4_PAGE_SIZE); - - /* oob bytes 0 through 5 are written to I/O reg */ - docg4_write_buf16(mtd, nand->oob_poi, 6); - - /* oob byte 6 written to a separate reg */ - writew(nand->oob_poi[6], docptr + DOCG4_OOB_6_7); - - write_nop(docptr); - write_nop(docptr); - - /* write hw-generated ecc bytes to oob */ - if (likely(use_ecc == true)) { - /* oob byte 7 is hamming code */ - uint8_t hamming = readb(docptr + DOC_HAMMINGPARITY); - hamming = readb(docptr + DOC_HAMMINGPARITY); /* 2nd read */ - writew(hamming, docptr + DOCG4_OOB_6_7); - write_nop(docptr); - - /* read the 7 bch bytes from ecc regs */ - read_hw_ecc(docptr, ecc_buf); - ecc_buf[7] = 0; /* clear the "page written" flag */ - } - - /* write user-supplied bytes to oob */ - else { - writew(nand->oob_poi[7], docptr + DOCG4_OOB_6_7); - write_nop(docptr); - memcpy(ecc_buf, &nand->oob_poi[8], 8); - } - - docg4_write_buf16(mtd, ecc_buf, 8); - write_nop(docptr); - write_nop(docptr); - writew(0, docptr + DOC_DATAEND); - write_nop(docptr); - - return nand_prog_page_end_op(nand); -} - -static int docg4_write_page_raw(struct mtd_info *mtd, struct nand_chip *nand, - const uint8_t *buf, int oob_required, int page) -{ - return write_page(mtd, nand, buf, page, false); -} - -static int docg4_write_page(struct mtd_info *mtd, struct nand_chip *nand, - const uint8_t *buf, int oob_required, int page) -{ - return write_page(mtd, nand, buf, page, true); -} - -static int docg4_write_oob(struct mtd_info *mtd, struct nand_chip *nand, - int page) -{ - /* - * Writing oob-only is not really supported, because MLC nand must write - * oob bytes at the same time as page data. Nonetheless, we save the - * oob buffer contents here, and then write it along with the page data - * if the same page is subsequently written. This allows user space - * utilities that write the oob data prior to the page data to work - * (e.g., nandwrite). The disdvantage is that, if the intention was to - * write oob only, the operation is quietly ignored. Also, oob can get - * corrupted if two concurrent processes are running nandwrite. - */ - - /* note that bytes 7..14 are hw generated hamming/ecc and overwritten */ - struct docg4_priv *doc = nand_get_controller_data(nand); - doc->oob_page = page; - memcpy(doc->oob_buf, nand->oob_poi, 16); - return 0; -} - -static int __init read_factory_bbt(struct mtd_info *mtd) -{ - /* - * The device contains a read-only factory bad block table. Read it and - * update the memory-based bbt accordingly. - */ - - struct nand_chip *nand = mtd_to_nand(mtd); - struct docg4_priv *doc = nand_get_controller_data(nand); - uint32_t g4_addr = mtd_to_docg4_address(DOCG4_FACTORY_BBT_PAGE, 0); - uint8_t *buf; - int i, block; - __u32 eccfailed_stats = mtd->ecc_stats.failed; - - buf = kzalloc(DOCG4_PAGE_SIZE, GFP_KERNEL); - if (buf == NULL) - return -ENOMEM; - - read_page_prologue(mtd, g4_addr); - docg4_read_page(mtd, nand, buf, 0, DOCG4_FACTORY_BBT_PAGE); - - /* - * If no memory-based bbt was created, exit. This will happen if module - * parameter ignore_badblocks is set. Then why even call this function? - * For an unknown reason, block erase always fails if it's the first - * operation after device power-up. The above read ensures it never is. - * Ugly, I know. - */ - if (nand->bbt == NULL) /* no memory-based bbt */ - goto exit; - - if (mtd->ecc_stats.failed > eccfailed_stats) { - /* - * Whoops, an ecc failure ocurred reading the factory bbt. - * It is stored redundantly, so we get another chance. - */ - eccfailed_stats = mtd->ecc_stats.failed; - docg4_read_page(mtd, nand, buf, 0, DOCG4_REDUNDANT_BBT_PAGE); - if (mtd->ecc_stats.failed > eccfailed_stats) { - dev_warn(doc->dev, - "The factory bbt could not be read!\n"); - goto exit; - } - } - - /* - * Parse factory bbt and update memory-based bbt. Factory bbt format is - * simple: one bit per block, block numbers increase left to right (msb - * to lsb). Bit clear means bad block. - */ - for (i = block = 0; block < DOCG4_NUMBLOCKS; block += 8, i++) { - int bitnum; - unsigned long bits = ~buf[i]; - for_each_set_bit(bitnum, &bits, 8) { - int badblock = block + 7 - bitnum; - nand->bbt[badblock / 4] |= - 0x03 << ((badblock % 4) * 2); - mtd->ecc_stats.badblocks++; - dev_notice(doc->dev, "factory-marked bad block: %d\n", - badblock); - } - } - exit: - kfree(buf); - return 0; -} - -static int docg4_block_markbad(struct mtd_info *mtd, loff_t ofs) -{ - /* - * Mark a block as bad. Bad blocks are marked in the oob area of the - * first page of the block. The default scan_bbt() in the nand - * infrastructure code works fine for building the memory-based bbt - * during initialization, as does the nand infrastructure function that - * checks if a block is bad by reading the bbt. This function replaces - * the nand default because writes to oob-only are not supported. - */ - - int ret, i; - uint8_t *buf; - struct nand_chip *nand = mtd_to_nand(mtd); - struct docg4_priv *doc = nand_get_controller_data(nand); - struct nand_bbt_descr *bbtd = nand->badblock_pattern; - int page = (int)(ofs >> nand->page_shift); - uint32_t g4_addr = mtd_to_docg4_address(page, 0); - - dev_dbg(doc->dev, "%s: %08llx\n", __func__, ofs); - - if (unlikely(ofs & (DOCG4_BLOCK_SIZE - 1))) - dev_warn(doc->dev, "%s: ofs %llx not start of block!\n", - __func__, ofs); - - /* allocate blank buffer for page data */ - buf = kzalloc(DOCG4_PAGE_SIZE, GFP_KERNEL); - if (buf == NULL) - return -ENOMEM; - - /* write bit-wise negation of pattern to oob buffer */ - memset(nand->oob_poi, 0xff, mtd->oobsize); - for (i = 0; i < bbtd->len; i++) - nand->oob_poi[bbtd->offs + i] = ~bbtd->pattern[i]; - - /* write first page of block */ - write_page_prologue(mtd, g4_addr); - docg4_write_page(mtd, nand, buf, 1, page); - ret = pageprog(mtd); - - kfree(buf); - - return ret; -} - -static int docg4_block_neverbad(struct mtd_info *mtd, loff_t ofs) -{ - /* only called when module_param ignore_badblocks is set */ - return 0; -} - -static int docg4_suspend(struct platform_device *pdev, pm_message_t state) -{ - /* - * Put the device into "deep power-down" mode. Note that CE# must be - * deasserted for this to take effect. The xscale, e.g., can be - * configured to float this signal when the processor enters power-down, - * and a suitable pull-up ensures its deassertion. - */ - - int i; - uint8_t pwr_down; - struct docg4_priv *doc = platform_get_drvdata(pdev); - void __iomem *docptr = doc->virtadr; - - dev_dbg(doc->dev, "%s...\n", __func__); - - /* poll the register that tells us we're ready to go to sleep */ - for (i = 0; i < 10; i++) { - pwr_down = readb(docptr + DOC_POWERMODE); - if (pwr_down & DOC_POWERDOWN_READY) - break; - usleep_range(1000, 4000); - } - - if (pwr_down & DOC_POWERDOWN_READY) { - dev_err(doc->dev, "suspend failed; " - "timeout polling DOC_POWERDOWN_READY\n"); - return -EIO; - } - - writew(DOC_ASICMODE_POWERDOWN | DOC_ASICMODE_MDWREN, - docptr + DOC_ASICMODE); - writew(~(DOC_ASICMODE_POWERDOWN | DOC_ASICMODE_MDWREN), - docptr + DOC_ASICMODECONFIRM); - - write_nop(docptr); - - return 0; -} - -static int docg4_resume(struct platform_device *pdev) -{ - - /* - * Exit power-down. Twelve consecutive reads of the address below - * accomplishes this, assuming CE# has been asserted. - */ - - struct docg4_priv *doc = platform_get_drvdata(pdev); - void __iomem *docptr = doc->virtadr; - int i; - - dev_dbg(doc->dev, "%s...\n", __func__); - - for (i = 0; i < 12; i++) - readb(docptr + 0x1fff); - - return 0; -} - -static void __init init_mtd_structs(struct mtd_info *mtd) -{ - /* initialize mtd and nand data structures */ - - /* - * Note that some of the following initializations are not usually - * required within a nand driver because they are performed by the nand - * infrastructure code as part of nand_scan(). In this case they need - * to be initialized here because we skip call to nand_scan_ident() (the - * first half of nand_scan()). The call to nand_scan_ident() is skipped - * because for this device the chip id is not read in the manner of a - * standard nand device. Unfortunately, nand_scan_ident() does other - * things as well, such as call nand_set_defaults(). - */ - - struct nand_chip *nand = mtd_to_nand(mtd); - struct docg4_priv *doc = nand_get_controller_data(nand); - - mtd->size = DOCG4_CHIP_SIZE; - mtd->name = "Msys_Diskonchip_G4"; - mtd->writesize = DOCG4_PAGE_SIZE; - mtd->erasesize = DOCG4_BLOCK_SIZE; - mtd->oobsize = DOCG4_OOB_SIZE; - mtd_set_ooblayout(mtd, &docg4_ooblayout_ops); - nand->chipsize = DOCG4_CHIP_SIZE; - nand->chip_shift = DOCG4_CHIP_SHIFT; - nand->bbt_erase_shift = nand->phys_erase_shift = DOCG4_ERASE_SHIFT; - nand->chip_delay = 20; - nand->page_shift = DOCG4_PAGE_SHIFT; - nand->pagemask = 0x3ffff; - nand->badblockpos = NAND_LARGE_BADBLOCK_POS; - nand->badblockbits = 8; - nand->ecc.mode = NAND_ECC_HW_SYNDROME; - nand->ecc.size = DOCG4_PAGE_SIZE; - nand->ecc.prepad = 8; - nand->ecc.bytes = 8; - nand->ecc.strength = DOCG4_T; - nand->options = NAND_BUSWIDTH_16 | NAND_NO_SUBPAGE_WRITE; - nand->IO_ADDR_R = nand->IO_ADDR_W = doc->virtadr + DOC_IOSPACE_DATA; - nand->controller = &nand->hwcontrol; - nand_hw_control_init(nand->controller); - - /* methods */ - nand->cmdfunc = docg4_command; - nand->waitfunc = docg4_wait; - nand->select_chip = docg4_select_chip; - nand->read_byte = docg4_read_byte; - nand->block_markbad = docg4_block_markbad; - nand->read_buf = docg4_read_buf; - nand->write_buf = docg4_write_buf16; - nand->erase = docg4_erase_block; - nand->onfi_set_features = nand_onfi_get_set_features_notsupp; - nand->onfi_get_features = nand_onfi_get_set_features_notsupp; - nand->ecc.read_page = docg4_read_page; - nand->ecc.write_page = docg4_write_page; - nand->ecc.read_page_raw = docg4_read_page_raw; - nand->ecc.write_page_raw = docg4_write_page_raw; - nand->ecc.read_oob = docg4_read_oob; - nand->ecc.write_oob = docg4_write_oob; - - /* - * The way the nand infrastructure code is written, a memory-based bbt - * is not created if NAND_SKIP_BBTSCAN is set. With no memory bbt, - * nand->block_bad() is used. So when ignoring bad blocks, we skip the - * scan and define a dummy block_bad() which always returns 0. - */ - if (ignore_badblocks) { - nand->options |= NAND_SKIP_BBTSCAN; - nand->block_bad = docg4_block_neverbad; - } - -} - -static int __init read_id_reg(struct mtd_info *mtd) -{ - struct nand_chip *nand = mtd_to_nand(mtd); - struct docg4_priv *doc = nand_get_controller_data(nand); - void __iomem *docptr = doc->virtadr; - uint16_t id1, id2; - - /* check for presence of g4 chip by reading id registers */ - id1 = readw(docptr + DOC_CHIPID); - id1 = readw(docptr + DOCG4_MYSTERY_REG); - id2 = readw(docptr + DOC_CHIPID_INV); - id2 = readw(docptr + DOCG4_MYSTERY_REG); - - if (id1 == DOCG4_IDREG1_VALUE && id2 == DOCG4_IDREG2_VALUE) { - dev_info(doc->dev, - "NAND device: 128MiB Diskonchip G4 detected\n"); - return 0; - } - - return -ENODEV; -} - -static char const *part_probes[] = { "cmdlinepart", "saftlpart", NULL }; - -static int __init probe_docg4(struct platform_device *pdev) -{ - struct mtd_info *mtd; - struct nand_chip *nand; - void __iomem *virtadr; - struct docg4_priv *doc; - int len, retval; - struct resource *r; - struct device *dev = &pdev->dev; - - r = platform_get_resource(pdev, IORESOURCE_MEM, 0); - if (r == NULL) { - dev_err(dev, "no io memory resource defined!\n"); - return -ENODEV; - } - - virtadr = ioremap(r->start, resource_size(r)); - if (!virtadr) { - dev_err(dev, "Diskonchip ioremap failed: %pR\n", r); - return -EIO; - } - - len = sizeof(struct nand_chip) + sizeof(struct docg4_priv); - nand = kzalloc(len, GFP_KERNEL); - if (nand == NULL) { - retval = -ENOMEM; - goto fail_unmap; - } - - mtd = nand_to_mtd(nand); - doc = (struct docg4_priv *) (nand + 1); - nand_set_controller_data(nand, doc); - mtd->dev.parent = &pdev->dev; - doc->virtadr = virtadr; - doc->dev = dev; - - init_mtd_structs(mtd); - - /* initialize kernel bch algorithm */ - doc->bch = init_bch(DOCG4_M, DOCG4_T, DOCG4_PRIMITIVE_POLY); - if (doc->bch == NULL) { - retval = -EINVAL; - goto fail; - } - - platform_set_drvdata(pdev, doc); - - reset(mtd); - retval = read_id_reg(mtd); - if (retval == -ENODEV) { - dev_warn(dev, "No diskonchip G4 device found.\n"); - goto fail; - } - - retval = nand_scan_tail(mtd); - if (retval) - goto fail; - - retval = read_factory_bbt(mtd); - if (retval) - goto fail; - - retval = mtd_device_parse_register(mtd, part_probes, NULL, NULL, 0); - if (retval) - goto fail; - - doc->mtd = mtd; - return 0; - -fail: - nand_release(mtd); /* deletes partitions and mtd devices */ - free_bch(doc->bch); - kfree(nand); - -fail_unmap: - iounmap(virtadr); - - return retval; -} - -static int __exit cleanup_docg4(struct platform_device *pdev) -{ - struct docg4_priv *doc = platform_get_drvdata(pdev); - nand_release(doc->mtd); - free_bch(doc->bch); - kfree(mtd_to_nand(doc->mtd)); - iounmap(doc->virtadr); - return 0; -} - -static struct platform_driver docg4_driver = { - .driver = { - .name = "docg4", - }, - .suspend = docg4_suspend, - .resume = docg4_resume, - .remove = __exit_p(cleanup_docg4), -}; - -module_platform_driver_probe(docg4_driver, probe_docg4); - -MODULE_LICENSE("GPL"); -MODULE_AUTHOR("Mike Dunn"); -MODULE_DESCRIPTION("M-Systems DiskOnChip G4 device driver"); diff --git a/drivers/mtd/nand/fsl_elbc_nand.c b/drivers/mtd/nand/fsl_elbc_nand.c deleted file mode 100644 index 8b6dcd739ecb..000000000000 --- a/drivers/mtd/nand/fsl_elbc_nand.c +++ /dev/null @@ -1,979 +0,0 @@ -/* Freescale Enhanced Local Bus Controller NAND driver - * - * Copyright © 2006-2007, 2010 Freescale Semiconductor - * - * Authors: Nick Spence , - * Scott Wood - * Jack Lan - * Roy Zang - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation; either version 2 of the License, or - * (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License - * along with this program; if not, write to the Free Software - * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA - */ - -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include - -#include -#include -#include -#include - -#include -#include - -#define MAX_BANKS 8 -#define ERR_BYTE 0xFF /* Value returned for read bytes when read failed */ -#define FCM_TIMEOUT_MSECS 500 /* Maximum number of mSecs to wait for FCM */ - -/* mtd information per set */ - -struct fsl_elbc_mtd { - struct nand_chip chip; - struct fsl_lbc_ctrl *ctrl; - - struct device *dev; - int bank; /* Chip select bank number */ - u8 __iomem *vbase; /* Chip select base virtual address */ - int page_size; /* NAND page size (0=512, 1=2048) */ - unsigned int fmr; /* FCM Flash Mode Register value */ -}; - -/* Freescale eLBC FCM controller information */ - -struct fsl_elbc_fcm_ctrl { - struct nand_hw_control controller; - struct fsl_elbc_mtd *chips[MAX_BANKS]; - - u8 __iomem *addr; /* Address of assigned FCM buffer */ - unsigned int page; /* Last page written to / read from */ - unsigned int read_bytes; /* Number of bytes read during command */ - unsigned int column; /* Saved column from SEQIN */ - unsigned int index; /* Pointer to next byte to 'read' */ - unsigned int status; /* status read from LTESR after last op */ - unsigned int mdr; /* UPM/FCM Data Register value */ - unsigned int use_mdr; /* Non zero if the MDR is to be set */ - unsigned int oob; /* Non zero if operating on OOB data */ - unsigned int counter; /* counter for the initializations */ - unsigned int max_bitflips; /* Saved during READ0 cmd */ -}; - -/* These map to the positions used by the FCM hardware ECC generator */ - -static int fsl_elbc_ooblayout_ecc(struct mtd_info *mtd, int section, - struct mtd_oob_region *oobregion) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct fsl_elbc_mtd *priv = nand_get_controller_data(chip); - - if (section >= chip->ecc.steps) - return -ERANGE; - - oobregion->offset = (16 * section) + 6; - if (priv->fmr & FMR_ECCM) - oobregion->offset += 2; - - oobregion->length = chip->ecc.bytes; - - return 0; -} - -static int fsl_elbc_ooblayout_free(struct mtd_info *mtd, int section, - struct mtd_oob_region *oobregion) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct fsl_elbc_mtd *priv = nand_get_controller_data(chip); - - if (section > chip->ecc.steps) - return -ERANGE; - - if (!section) { - oobregion->offset = 0; - if (mtd->writesize > 512) - oobregion->offset++; - oobregion->length = (priv->fmr & FMR_ECCM) ? 7 : 5; - } else { - oobregion->offset = (16 * section) - - ((priv->fmr & FMR_ECCM) ? 5 : 7); - if (section < chip->ecc.steps) - oobregion->length = 13; - else - oobregion->length = mtd->oobsize - oobregion->offset; - } - - return 0; -} - -static const struct mtd_ooblayout_ops fsl_elbc_ooblayout_ops = { - .ecc = fsl_elbc_ooblayout_ecc, - .free = fsl_elbc_ooblayout_free, -}; - -/* - * ELBC may use HW ECC, so that OOB offsets, that NAND core uses for bbt, - * interfere with ECC positions, that's why we implement our own descriptors. - * OOB {11, 5}, works for both SP and LP chips, with ECCM = 1 and ECCM = 0. - */ -static u8 bbt_pattern[] = {'B', 'b', 't', '0' }; -static u8 mirror_pattern[] = {'1', 't', 'b', 'B' }; - -static struct nand_bbt_descr bbt_main_descr = { - .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | - NAND_BBT_2BIT | NAND_BBT_VERSION, - .offs = 11, - .len = 4, - .veroffs = 15, - .maxblocks = 4, - .pattern = bbt_pattern, -}; - -static struct nand_bbt_descr bbt_mirror_descr = { - .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | - NAND_BBT_2BIT | NAND_BBT_VERSION, - .offs = 11, - .len = 4, - .veroffs = 15, - .maxblocks = 4, - .pattern = mirror_pattern, -}; - -/*=================================*/ - -/* - * Set up the FCM hardware block and page address fields, and the fcm - * structure addr field to point to the correct FCM buffer in memory - */ -static void set_addr(struct mtd_info *mtd, int column, int page_addr, int oob) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct fsl_elbc_mtd *priv = nand_get_controller_data(chip); - struct fsl_lbc_ctrl *ctrl = priv->ctrl; - struct fsl_lbc_regs __iomem *lbc = ctrl->regs; - struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand; - int buf_num; - - elbc_fcm_ctrl->page = page_addr; - - if (priv->page_size) { - /* - * large page size chip : FPAR[PI] save the lowest 6 bits, - * FBAR[BLK] save the other bits. - */ - out_be32(&lbc->fbar, page_addr >> 6); - out_be32(&lbc->fpar, - ((page_addr << FPAR_LP_PI_SHIFT) & FPAR_LP_PI) | - (oob ? FPAR_LP_MS : 0) | column); - buf_num = (page_addr & 1) << 2; - } else { - /* - * small page size chip : FPAR[PI] save the lowest 5 bits, - * FBAR[BLK] save the other bits. - */ - out_be32(&lbc->fbar, page_addr >> 5); - out_be32(&lbc->fpar, - ((page_addr << FPAR_SP_PI_SHIFT) & FPAR_SP_PI) | - (oob ? FPAR_SP_MS : 0) | column); - buf_num = page_addr & 7; - } - - elbc_fcm_ctrl->addr = priv->vbase + buf_num * 1024; - elbc_fcm_ctrl->index = column; - - /* for OOB data point to the second half of the buffer */ - if (oob) - elbc_fcm_ctrl->index += priv->page_size ? 2048 : 512; - - dev_vdbg(priv->dev, "set_addr: bank=%d, " - "elbc_fcm_ctrl->addr=0x%p (0x%p), " - "index %x, pes %d ps %d\n", - buf_num, elbc_fcm_ctrl->addr, priv->vbase, - elbc_fcm_ctrl->index, - chip->phys_erase_shift, chip->page_shift); -} - -/* - * execute FCM command and wait for it to complete - */ -static int fsl_elbc_run_command(struct mtd_info *mtd) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct fsl_elbc_mtd *priv = nand_get_controller_data(chip); - struct fsl_lbc_ctrl *ctrl = priv->ctrl; - struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand; - struct fsl_lbc_regs __iomem *lbc = ctrl->regs; - - /* Setup the FMR[OP] to execute without write protection */ - out_be32(&lbc->fmr, priv->fmr | 3); - if (elbc_fcm_ctrl->use_mdr) - out_be32(&lbc->mdr, elbc_fcm_ctrl->mdr); - - dev_vdbg(priv->dev, - "fsl_elbc_run_command: fmr=%08x fir=%08x fcr=%08x\n", - in_be32(&lbc->fmr), in_be32(&lbc->fir), in_be32(&lbc->fcr)); - dev_vdbg(priv->dev, - "fsl_elbc_run_command: fbar=%08x fpar=%08x " - "fbcr=%08x bank=%d\n", - in_be32(&lbc->fbar), in_be32(&lbc->fpar), - in_be32(&lbc->fbcr), priv->bank); - - ctrl->irq_status = 0; - /* execute special operation */ - out_be32(&lbc->lsor, priv->bank); - - /* wait for FCM complete flag or timeout */ - wait_event_timeout(ctrl->irq_wait, ctrl->irq_status, - FCM_TIMEOUT_MSECS * HZ/1000); - elbc_fcm_ctrl->status = ctrl->irq_status; - /* store mdr value in case it was needed */ - if (elbc_fcm_ctrl->use_mdr) - elbc_fcm_ctrl->mdr = in_be32(&lbc->mdr); - - elbc_fcm_ctrl->use_mdr = 0; - - if (elbc_fcm_ctrl->status != LTESR_CC) { - dev_info(priv->dev, - "command failed: fir %x fcr %x status %x mdr %x\n", - in_be32(&lbc->fir), in_be32(&lbc->fcr), - elbc_fcm_ctrl->status, elbc_fcm_ctrl->mdr); - return -EIO; - } - - if (chip->ecc.mode != NAND_ECC_HW) - return 0; - - elbc_fcm_ctrl->max_bitflips = 0; - - if (elbc_fcm_ctrl->read_bytes == mtd->writesize + mtd->oobsize) { - uint32_t lteccr = in_be32(&lbc->lteccr); - /* - * if command was a full page read and the ELBC - * has the LTECCR register, then bits 12-15 (ppc order) of - * LTECCR indicates which 512 byte sub-pages had fixed errors. - * bits 28-31 are uncorrectable errors, marked elsewhere. - * for small page nand only 1 bit is used. - * if the ELBC doesn't have the lteccr register it reads 0 - * FIXME: 4 bits can be corrected on NANDs with 2k pages, so - * count the number of sub-pages with bitflips and update - * ecc_stats.corrected accordingly. - */ - if (lteccr & 0x000F000F) - out_be32(&lbc->lteccr, 0x000F000F); /* clear lteccr */ - if (lteccr & 0x000F0000) { - mtd->ecc_stats.corrected++; - elbc_fcm_ctrl->max_bitflips = 1; - } - } - - return 0; -} - -static void fsl_elbc_do_read(struct nand_chip *chip, int oob) -{ - struct fsl_elbc_mtd *priv = nand_get_controller_data(chip); - struct fsl_lbc_ctrl *ctrl = priv->ctrl; - struct fsl_lbc_regs __iomem *lbc = ctrl->regs; - - if (priv->page_size) { - out_be32(&lbc->fir, - (FIR_OP_CM0 << FIR_OP0_SHIFT) | - (FIR_OP_CA << FIR_OP1_SHIFT) | - (FIR_OP_PA << FIR_OP2_SHIFT) | - (FIR_OP_CM1 << FIR_OP3_SHIFT) | - (FIR_OP_RBW << FIR_OP4_SHIFT)); - - out_be32(&lbc->fcr, (NAND_CMD_READ0 << FCR_CMD0_SHIFT) | - (NAND_CMD_READSTART << FCR_CMD1_SHIFT)); - } else { - out_be32(&lbc->fir, - (FIR_OP_CM0 << FIR_OP0_SHIFT) | - (FIR_OP_CA << FIR_OP1_SHIFT) | - (FIR_OP_PA << FIR_OP2_SHIFT) | - (FIR_OP_RBW << FIR_OP3_SHIFT)); - - if (oob) - out_be32(&lbc->fcr, NAND_CMD_READOOB << FCR_CMD0_SHIFT); - else - out_be32(&lbc->fcr, NAND_CMD_READ0 << FCR_CMD0_SHIFT); - } -} - -/* cmdfunc send commands to the FCM */ -static void fsl_elbc_cmdfunc(struct mtd_info *mtd, unsigned int command, - int column, int page_addr) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct fsl_elbc_mtd *priv = nand_get_controller_data(chip); - struct fsl_lbc_ctrl *ctrl = priv->ctrl; - struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand; - struct fsl_lbc_regs __iomem *lbc = ctrl->regs; - - elbc_fcm_ctrl->use_mdr = 0; - - /* clear the read buffer */ - elbc_fcm_ctrl->read_bytes = 0; - if (command != NAND_CMD_PAGEPROG) - elbc_fcm_ctrl->index = 0; - - switch (command) { - /* READ0 and READ1 read the entire buffer to use hardware ECC. */ - case NAND_CMD_READ1: - column += 256; - - /* fall-through */ - case NAND_CMD_READ0: - dev_dbg(priv->dev, - "fsl_elbc_cmdfunc: NAND_CMD_READ0, page_addr:" - " 0x%x, column: 0x%x.\n", page_addr, column); - - - out_be32(&lbc->fbcr, 0); /* read entire page to enable ECC */ - set_addr(mtd, 0, page_addr, 0); - - elbc_fcm_ctrl->read_bytes = mtd->writesize + mtd->oobsize; - elbc_fcm_ctrl->index += column; - - fsl_elbc_do_read(chip, 0); - fsl_elbc_run_command(mtd); - return; - - /* READOOB reads only the OOB because no ECC is performed. */ - case NAND_CMD_READOOB: - dev_vdbg(priv->dev, - "fsl_elbc_cmdfunc: NAND_CMD_READOOB, page_addr:" - " 0x%x, column: 0x%x.\n", page_addr, column); - - out_be32(&lbc->fbcr, mtd->oobsize - column); - set_addr(mtd, column, page_addr, 1); - - elbc_fcm_ctrl->read_bytes = mtd->writesize + mtd->oobsize; - - fsl_elbc_do_read(chip, 1); - fsl_elbc_run_command(mtd); - return; - - case NAND_CMD_READID: - case NAND_CMD_PARAM: - dev_vdbg(priv->dev, "fsl_elbc_cmdfunc: NAND_CMD %x\n", command); - - out_be32(&lbc->fir, (FIR_OP_CM0 << FIR_OP0_SHIFT) | - (FIR_OP_UA << FIR_OP1_SHIFT) | - (FIR_OP_RBW << FIR_OP2_SHIFT)); - out_be32(&lbc->fcr, command << FCR_CMD0_SHIFT); - /* - * although currently it's 8 bytes for READID, we always read - * the maximum 256 bytes(for PARAM) - */ - out_be32(&lbc->fbcr, 256); - elbc_fcm_ctrl->read_bytes = 256; - elbc_fcm_ctrl->use_mdr = 1; - elbc_fcm_ctrl->mdr = column; - set_addr(mtd, 0, 0, 0); - fsl_elbc_run_command(mtd); - return; - - /* ERASE1 stores the block and page address */ - case NAND_CMD_ERASE1: - dev_vdbg(priv->dev, - "fsl_elbc_cmdfunc: NAND_CMD_ERASE1, " - "page_addr: 0x%x.\n", page_addr); - set_addr(mtd, 0, page_addr, 0); - return; - - /* ERASE2 uses the block and page address from ERASE1 */ - case NAND_CMD_ERASE2: - dev_vdbg(priv->dev, "fsl_elbc_cmdfunc: NAND_CMD_ERASE2.\n"); - - out_be32(&lbc->fir, - (FIR_OP_CM0 << FIR_OP0_SHIFT) | - (FIR_OP_PA << FIR_OP1_SHIFT) | - (FIR_OP_CM2 << FIR_OP2_SHIFT) | - (FIR_OP_CW1 << FIR_OP3_SHIFT) | - (FIR_OP_RS << FIR_OP4_SHIFT)); - - out_be32(&lbc->fcr, - (NAND_CMD_ERASE1 << FCR_CMD0_SHIFT) | - (NAND_CMD_STATUS << FCR_CMD1_SHIFT) | - (NAND_CMD_ERASE2 << FCR_CMD2_SHIFT)); - - out_be32(&lbc->fbcr, 0); - elbc_fcm_ctrl->read_bytes = 0; - elbc_fcm_ctrl->use_mdr = 1; - - fsl_elbc_run_command(mtd); - return; - - /* SEQIN sets up the addr buffer and all registers except the length */ - case NAND_CMD_SEQIN: { - __be32 fcr; - dev_vdbg(priv->dev, - "fsl_elbc_cmdfunc: NAND_CMD_SEQIN/PAGE_PROG, " - "page_addr: 0x%x, column: 0x%x.\n", - page_addr, column); - - elbc_fcm_ctrl->column = column; - elbc_fcm_ctrl->use_mdr = 1; - - if (column >= mtd->writesize) { - /* OOB area */ - column -= mtd->writesize; - elbc_fcm_ctrl->oob = 1; - } else { - WARN_ON(column != 0); - elbc_fcm_ctrl->oob = 0; - } - - fcr = (NAND_CMD_STATUS << FCR_CMD1_SHIFT) | - (NAND_CMD_SEQIN << FCR_CMD2_SHIFT) | - (NAND_CMD_PAGEPROG << FCR_CMD3_SHIFT); - - if (priv->page_size) { - out_be32(&lbc->fir, - (FIR_OP_CM2 << FIR_OP0_SHIFT) | - (FIR_OP_CA << FIR_OP1_SHIFT) | - (FIR_OP_PA << FIR_OP2_SHIFT) | - (FIR_OP_WB << FIR_OP3_SHIFT) | - (FIR_OP_CM3 << FIR_OP4_SHIFT) | - (FIR_OP_CW1 << FIR_OP5_SHIFT) | - (FIR_OP_RS << FIR_OP6_SHIFT)); - } else { - out_be32(&lbc->fir, - (FIR_OP_CM0 << FIR_OP0_SHIFT) | - (FIR_OP_CM2 << FIR_OP1_SHIFT) | - (FIR_OP_CA << FIR_OP2_SHIFT) | - (FIR_OP_PA << FIR_OP3_SHIFT) | - (FIR_OP_WB << FIR_OP4_SHIFT) | - (FIR_OP_CM3 << FIR_OP5_SHIFT) | - (FIR_OP_CW1 << FIR_OP6_SHIFT) | - (FIR_OP_RS << FIR_OP7_SHIFT)); - - if (elbc_fcm_ctrl->oob) - /* OOB area --> READOOB */ - fcr |= NAND_CMD_READOOB << FCR_CMD0_SHIFT; - else - /* First 256 bytes --> READ0 */ - fcr |= NAND_CMD_READ0 << FCR_CMD0_SHIFT; - } - - out_be32(&lbc->fcr, fcr); - set_addr(mtd, column, page_addr, elbc_fcm_ctrl->oob); - return; - } - - /* PAGEPROG reuses all of the setup from SEQIN and adds the length */ - case NAND_CMD_PAGEPROG: { - dev_vdbg(priv->dev, - "fsl_elbc_cmdfunc: NAND_CMD_PAGEPROG " - "writing %d bytes.\n", elbc_fcm_ctrl->index); - - /* if the write did not start at 0 or is not a full page - * then set the exact length, otherwise use a full page - * write so the HW generates the ECC. - */ - if (elbc_fcm_ctrl->oob || elbc_fcm_ctrl->column != 0 || - elbc_fcm_ctrl->index != mtd->writesize + mtd->oobsize) - out_be32(&lbc->fbcr, - elbc_fcm_ctrl->index - elbc_fcm_ctrl->column); - else - out_be32(&lbc->fbcr, 0); - - fsl_elbc_run_command(mtd); - return; - } - - /* CMD_STATUS must read the status byte while CEB is active */ - /* Note - it does not wait for the ready line */ - case NAND_CMD_STATUS: - out_be32(&lbc->fir, - (FIR_OP_CM0 << FIR_OP0_SHIFT) | - (FIR_OP_RBW << FIR_OP1_SHIFT)); - out_be32(&lbc->fcr, NAND_CMD_STATUS << FCR_CMD0_SHIFT); - out_be32(&lbc->fbcr, 1); - set_addr(mtd, 0, 0, 0); - elbc_fcm_ctrl->read_bytes = 1; - - fsl_elbc_run_command(mtd); - - /* The chip always seems to report that it is - * write-protected, even when it is not. - */ - setbits8(elbc_fcm_ctrl->addr, NAND_STATUS_WP); - return; - - /* RESET without waiting for the ready line */ - case NAND_CMD_RESET: - dev_dbg(priv->dev, "fsl_elbc_cmdfunc: NAND_CMD_RESET.\n"); - out_be32(&lbc->fir, FIR_OP_CM0 << FIR_OP0_SHIFT); - out_be32(&lbc->fcr, NAND_CMD_RESET << FCR_CMD0_SHIFT); - fsl_elbc_run_command(mtd); - return; - - default: - dev_err(priv->dev, - "fsl_elbc_cmdfunc: error, unsupported command 0x%x.\n", - command); - } -} - -static void fsl_elbc_select_chip(struct mtd_info *mtd, int chip) -{ - /* The hardware does not seem to support multiple - * chips per bank. - */ -} - -/* - * Write buf to the FCM Controller Data Buffer - */ -static void fsl_elbc_write_buf(struct mtd_info *mtd, const u8 *buf, int len) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct fsl_elbc_mtd *priv = nand_get_controller_data(chip); - struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand; - unsigned int bufsize = mtd->writesize + mtd->oobsize; - - if (len <= 0) { - dev_err(priv->dev, "write_buf of %d bytes", len); - elbc_fcm_ctrl->status = 0; - return; - } - - if ((unsigned int)len > bufsize - elbc_fcm_ctrl->index) { - dev_err(priv->dev, - "write_buf beyond end of buffer " - "(%d requested, %u available)\n", - len, bufsize - elbc_fcm_ctrl->index); - len = bufsize - elbc_fcm_ctrl->index; - } - - memcpy_toio(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index], buf, len); - /* - * This is workaround for the weird elbc hangs during nand write, - * Scott Wood says: "...perhaps difference in how long it takes a - * write to make it through the localbus compared to a write to IMMR - * is causing problems, and sync isn't helping for some reason." - * Reading back the last byte helps though. - */ - in_8(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index] + len - 1); - - elbc_fcm_ctrl->index += len; -} - -/* - * read a byte from either the FCM hardware buffer if it has any data left - * otherwise issue a command to read a single byte. - */ -static u8 fsl_elbc_read_byte(struct mtd_info *mtd) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct fsl_elbc_mtd *priv = nand_get_controller_data(chip); - struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand; - - /* If there are still bytes in the FCM, then use the next byte. */ - if (elbc_fcm_ctrl->index < elbc_fcm_ctrl->read_bytes) - return in_8(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index++]); - - dev_err(priv->dev, "read_byte beyond end of buffer\n"); - return ERR_BYTE; -} - -/* - * Read from the FCM Controller Data Buffer - */ -static void fsl_elbc_read_buf(struct mtd_info *mtd, u8 *buf, int len) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct fsl_elbc_mtd *priv = nand_get_controller_data(chip); - struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand; - int avail; - - if (len < 0) - return; - - avail = min((unsigned int)len, - elbc_fcm_ctrl->read_bytes - elbc_fcm_ctrl->index); - memcpy_fromio(buf, &elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index], avail); - elbc_fcm_ctrl->index += avail; - - if (len > avail) - dev_err(priv->dev, - "read_buf beyond end of buffer " - "(%d requested, %d available)\n", - len, avail); -} - -/* This function is called after Program and Erase Operations to - * check for success or failure. - */ -static int fsl_elbc_wait(struct mtd_info *mtd, struct nand_chip *chip) -{ - struct fsl_elbc_mtd *priv = nand_get_controller_data(chip); - struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand; - - if (elbc_fcm_ctrl->status != LTESR_CC) - return NAND_STATUS_FAIL; - - /* The chip always seems to report that it is - * write-protected, even when it is not. - */ - return (elbc_fcm_ctrl->mdr & 0xff) | NAND_STATUS_WP; -} - -static int fsl_elbc_chip_init_tail(struct mtd_info *mtd) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct fsl_elbc_mtd *priv = nand_get_controller_data(chip); - struct fsl_lbc_ctrl *ctrl = priv->ctrl; - struct fsl_lbc_regs __iomem *lbc = ctrl->regs; - unsigned int al; - - /* calculate FMR Address Length field */ - al = 0; - if (chip->pagemask & 0xffff0000) - al++; - if (chip->pagemask & 0xff000000) - al++; - - priv->fmr |= al << FMR_AL_SHIFT; - - dev_dbg(priv->dev, "fsl_elbc_init: nand->numchips = %d\n", - chip->numchips); - dev_dbg(priv->dev, "fsl_elbc_init: nand->chipsize = %lld\n", - chip->chipsize); - dev_dbg(priv->dev, "fsl_elbc_init: nand->pagemask = %8x\n", - chip->pagemask); - dev_dbg(priv->dev, "fsl_elbc_init: nand->chip_delay = %d\n", - chip->chip_delay); - dev_dbg(priv->dev, "fsl_elbc_init: nand->badblockpos = %d\n", - chip->badblockpos); - dev_dbg(priv->dev, "fsl_elbc_init: nand->chip_shift = %d\n", - chip->chip_shift); - dev_dbg(priv->dev, "fsl_elbc_init: nand->page_shift = %d\n", - chip->page_shift); - dev_dbg(priv->dev, "fsl_elbc_init: nand->phys_erase_shift = %d\n", - chip->phys_erase_shift); - dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.mode = %d\n", - chip->ecc.mode); - dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.steps = %d\n", - chip->ecc.steps); - dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.bytes = %d\n", - chip->ecc.bytes); - dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.total = %d\n", - chip->ecc.total); - dev_dbg(priv->dev, "fsl_elbc_init: mtd->ooblayout = %p\n", - mtd->ooblayout); - dev_dbg(priv->dev, "fsl_elbc_init: mtd->flags = %08x\n", mtd->flags); - dev_dbg(priv->dev, "fsl_elbc_init: mtd->size = %lld\n", mtd->size); - dev_dbg(priv->dev, "fsl_elbc_init: mtd->erasesize = %d\n", - mtd->erasesize); - dev_dbg(priv->dev, "fsl_elbc_init: mtd->writesize = %d\n", - mtd->writesize); - dev_dbg(priv->dev, "fsl_elbc_init: mtd->oobsize = %d\n", - mtd->oobsize); - - /* adjust Option Register and ECC to match Flash page size */ - if (mtd->writesize == 512) { - priv->page_size = 0; - clrbits32(&lbc->bank[priv->bank].or, OR_FCM_PGS); - } else if (mtd->writesize == 2048) { - priv->page_size = 1; - setbits32(&lbc->bank[priv->bank].or, OR_FCM_PGS); - } else { - dev_err(priv->dev, - "fsl_elbc_init: page size %d is not supported\n", - mtd->writesize); - return -1; - } - - return 0; -} - -static int fsl_elbc_read_page(struct mtd_info *mtd, struct nand_chip *chip, - uint8_t *buf, int oob_required, int page) -{ - struct fsl_elbc_mtd *priv = nand_get_controller_data(chip); - struct fsl_lbc_ctrl *ctrl = priv->ctrl; - struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand; - - nand_read_page_op(chip, page, 0, buf, mtd->writesize); - if (oob_required) - fsl_elbc_read_buf(mtd, chip->oob_poi, mtd->oobsize); - - if (fsl_elbc_wait(mtd, chip) & NAND_STATUS_FAIL) - mtd->ecc_stats.failed++; - - return elbc_fcm_ctrl->max_bitflips; -} - -/* ECC will be calculated automatically, and errors will be detected in - * waitfunc. - */ -static int fsl_elbc_write_page(struct mtd_info *mtd, struct nand_chip *chip, - const uint8_t *buf, int oob_required, int page) -{ - nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize); - fsl_elbc_write_buf(mtd, chip->oob_poi, mtd->oobsize); - - return nand_prog_page_end_op(chip); -} - -/* ECC will be calculated automatically, and errors will be detected in - * waitfunc. - */ -static int fsl_elbc_write_subpage(struct mtd_info *mtd, struct nand_chip *chip, - uint32_t offset, uint32_t data_len, - const uint8_t *buf, int oob_required, int page) -{ - nand_prog_page_begin_op(chip, page, 0, NULL, 0); - fsl_elbc_write_buf(mtd, buf, mtd->writesize); - fsl_elbc_write_buf(mtd, chip->oob_poi, mtd->oobsize); - return nand_prog_page_end_op(chip); -} - -static int fsl_elbc_chip_init(struct fsl_elbc_mtd *priv) -{ - struct fsl_lbc_ctrl *ctrl = priv->ctrl; - struct fsl_lbc_regs __iomem *lbc = ctrl->regs; - struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand; - struct nand_chip *chip = &priv->chip; - struct mtd_info *mtd = nand_to_mtd(chip); - - dev_dbg(priv->dev, "eLBC Set Information for bank %d\n", priv->bank); - - /* Fill in fsl_elbc_mtd structure */ - mtd->dev.parent = priv->dev; - nand_set_flash_node(chip, priv->dev->of_node); - - /* set timeout to maximum */ - priv->fmr = 15 << FMR_CWTO_SHIFT; - if (in_be32(&lbc->bank[priv->bank].or) & OR_FCM_PGS) - priv->fmr |= FMR_ECCM; - - /* fill in nand_chip structure */ - /* set up function call table */ - chip->read_byte = fsl_elbc_read_byte; - chip->write_buf = fsl_elbc_write_buf; - chip->read_buf = fsl_elbc_read_buf; - chip->select_chip = fsl_elbc_select_chip; - chip->cmdfunc = fsl_elbc_cmdfunc; - chip->waitfunc = fsl_elbc_wait; - chip->onfi_set_features = nand_onfi_get_set_features_notsupp; - chip->onfi_get_features = nand_onfi_get_set_features_notsupp; - - chip->bbt_td = &bbt_main_descr; - chip->bbt_md = &bbt_mirror_descr; - - /* set up nand options */ - chip->bbt_options = NAND_BBT_USE_FLASH; - - chip->controller = &elbc_fcm_ctrl->controller; - nand_set_controller_data(chip, priv); - - chip->ecc.read_page = fsl_elbc_read_page; - chip->ecc.write_page = fsl_elbc_write_page; - chip->ecc.write_subpage = fsl_elbc_write_subpage; - - /* If CS Base Register selects full hardware ECC then use it */ - if ((in_be32(&lbc->bank[priv->bank].br) & BR_DECC) == - BR_DECC_CHK_GEN) { - chip->ecc.mode = NAND_ECC_HW; - mtd_set_ooblayout(mtd, &fsl_elbc_ooblayout_ops); - chip->ecc.size = 512; - chip->ecc.bytes = 3; - chip->ecc.strength = 1; - } else { - /* otherwise fall back to default software ECC */ - chip->ecc.mode = NAND_ECC_SOFT; - chip->ecc.algo = NAND_ECC_HAMMING; - } - - return 0; -} - -static int fsl_elbc_chip_remove(struct fsl_elbc_mtd *priv) -{ - struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand; - struct mtd_info *mtd = nand_to_mtd(&priv->chip); - - nand_release(mtd); - - kfree(mtd->name); - - if (priv->vbase) - iounmap(priv->vbase); - - elbc_fcm_ctrl->chips[priv->bank] = NULL; - kfree(priv); - return 0; -} - -static DEFINE_MUTEX(fsl_elbc_nand_mutex); - -static int fsl_elbc_nand_probe(struct platform_device *pdev) -{ - struct fsl_lbc_regs __iomem *lbc; - struct fsl_elbc_mtd *priv; - struct resource res; - struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl; - static const char *part_probe_types[] - = { "cmdlinepart", "RedBoot", "ofpart", NULL }; - int ret; - int bank; - struct device *dev; - struct device_node *node = pdev->dev.of_node; - struct mtd_info *mtd; - - if (!fsl_lbc_ctrl_dev || !fsl_lbc_ctrl_dev->regs) - return -ENODEV; - lbc = fsl_lbc_ctrl_dev->regs; - dev = fsl_lbc_ctrl_dev->dev; - - /* get, allocate and map the memory resource */ - ret = of_address_to_resource(node, 0, &res); - if (ret) { - dev_err(dev, "failed to get resource\n"); - return ret; - } - - /* find which chip select it is connected to */ - for (bank = 0; bank < MAX_BANKS; bank++) - if ((in_be32(&lbc->bank[bank].br) & BR_V) && - (in_be32(&lbc->bank[bank].br) & BR_MSEL) == BR_MS_FCM && - (in_be32(&lbc->bank[bank].br) & - in_be32(&lbc->bank[bank].or) & BR_BA) - == fsl_lbc_addr(res.start)) - break; - - if (bank >= MAX_BANKS) { - dev_err(dev, "address did not match any chip selects\n"); - return -ENODEV; - } - - priv = kzalloc(sizeof(*priv), GFP_KERNEL); - if (!priv) - return -ENOMEM; - - mutex_lock(&fsl_elbc_nand_mutex); - if (!fsl_lbc_ctrl_dev->nand) { - elbc_fcm_ctrl = kzalloc(sizeof(*elbc_fcm_ctrl), GFP_KERNEL); - if (!elbc_fcm_ctrl) { - mutex_unlock(&fsl_elbc_nand_mutex); - ret = -ENOMEM; - goto err; - } - elbc_fcm_ctrl->counter++; - - nand_hw_control_init(&elbc_fcm_ctrl->controller); - fsl_lbc_ctrl_dev->nand = elbc_fcm_ctrl; - } else { - elbc_fcm_ctrl = fsl_lbc_ctrl_dev->nand; - } - mutex_unlock(&fsl_elbc_nand_mutex); - - elbc_fcm_ctrl->chips[bank] = priv; - priv->bank = bank; - priv->ctrl = fsl_lbc_ctrl_dev; - priv->dev = &pdev->dev; - dev_set_drvdata(priv->dev, priv); - - priv->vbase = ioremap(res.start, resource_size(&res)); - if (!priv->vbase) { - dev_err(dev, "failed to map chip region\n"); - ret = -ENOMEM; - goto err; - } - - mtd = nand_to_mtd(&priv->chip); - mtd->name = kasprintf(GFP_KERNEL, "%llx.flash", (u64)res.start); - if (!nand_to_mtd(&priv->chip)->name) { - ret = -ENOMEM; - goto err; - } - - ret = fsl_elbc_chip_init(priv); - if (ret) - goto err; - - ret = nand_scan_ident(mtd, 1, NULL); - if (ret) - goto err; - - ret = fsl_elbc_chip_init_tail(mtd); - if (ret) - goto err; - - ret = nand_scan_tail(mtd); - if (ret) - goto err; - - /* First look for RedBoot table or partitions on the command - * line, these take precedence over device tree information */ - mtd_device_parse_register(mtd, part_probe_types, NULL, - NULL, 0); - - printk(KERN_INFO "eLBC NAND device at 0x%llx, bank %d\n", - (unsigned long long)res.start, priv->bank); - return 0; - -err: - fsl_elbc_chip_remove(priv); - return ret; -} - -static int fsl_elbc_nand_remove(struct platform_device *pdev) -{ - struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = fsl_lbc_ctrl_dev->nand; - struct fsl_elbc_mtd *priv = dev_get_drvdata(&pdev->dev); - - fsl_elbc_chip_remove(priv); - - mutex_lock(&fsl_elbc_nand_mutex); - elbc_fcm_ctrl->counter--; - if (!elbc_fcm_ctrl->counter) { - fsl_lbc_ctrl_dev->nand = NULL; - kfree(elbc_fcm_ctrl); - } - mutex_unlock(&fsl_elbc_nand_mutex); - - return 0; - -} - -static const struct of_device_id fsl_elbc_nand_match[] = { - { .compatible = "fsl,elbc-fcm-nand", }, - {} -}; -MODULE_DEVICE_TABLE(of, fsl_elbc_nand_match); - -static struct platform_driver fsl_elbc_nand_driver = { - .driver = { - .name = "fsl,elbc-fcm-nand", - .of_match_table = fsl_elbc_nand_match, - }, - .probe = fsl_elbc_nand_probe, - .remove = fsl_elbc_nand_remove, -}; - -module_platform_driver(fsl_elbc_nand_driver); - -MODULE_LICENSE("GPL"); -MODULE_AUTHOR("Freescale"); -MODULE_DESCRIPTION("Freescale Enhanced Local Bus Controller MTD NAND driver"); diff --git a/drivers/mtd/nand/fsl_ifc_nand.c b/drivers/mtd/nand/fsl_ifc_nand.c deleted file mode 100644 index 4872a7ba6503..000000000000 --- a/drivers/mtd/nand/fsl_ifc_nand.c +++ /dev/null @@ -1,1117 +0,0 @@ -/* - * Freescale Integrated Flash Controller NAND driver - * - * Copyright 2011-2012 Freescale Semiconductor, Inc - * - * Author: Dipen Dudhat - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation; either version 2 of the License, or - * (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License - * along with this program; if not, write to the Free Software - * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA - */ - -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include - -#define ERR_BYTE 0xFF /* Value returned for read - bytes when read failed */ -#define IFC_TIMEOUT_MSECS 500 /* Maximum number of mSecs to wait - for IFC NAND Machine */ - -struct fsl_ifc_ctrl; - -/* mtd information per set */ -struct fsl_ifc_mtd { - struct nand_chip chip; - struct fsl_ifc_ctrl *ctrl; - - struct device *dev; - int bank; /* Chip select bank number */ - unsigned int bufnum_mask; /* bufnum = page & bufnum_mask */ - u8 __iomem *vbase; /* Chip select base virtual address */ -}; - -/* overview of the fsl ifc controller */ -struct fsl_ifc_nand_ctrl { - struct nand_hw_control controller; - struct fsl_ifc_mtd *chips[FSL_IFC_BANK_COUNT]; - - void __iomem *addr; /* Address of assigned IFC buffer */ - unsigned int page; /* Last page written to / read from */ - unsigned int read_bytes;/* Number of bytes read during command */ - unsigned int column; /* Saved column from SEQIN */ - unsigned int index; /* Pointer to next byte to 'read' */ - unsigned int oob; /* Non zero if operating on OOB data */ - unsigned int eccread; /* Non zero for a full-page ECC read */ - unsigned int counter; /* counter for the initializations */ - unsigned int max_bitflips; /* Saved during READ0 cmd */ -}; - -static struct fsl_ifc_nand_ctrl *ifc_nand_ctrl; - -/* - * Generic flash bbt descriptors - */ -static u8 bbt_pattern[] = {'B', 'b', 't', '0' }; -static u8 mirror_pattern[] = {'1', 't', 'b', 'B' }; - -static struct nand_bbt_descr bbt_main_descr = { - .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | - NAND_BBT_2BIT | NAND_BBT_VERSION, - .offs = 2, /* 0 on 8-bit small page */ - .len = 4, - .veroffs = 6, - .maxblocks = 4, - .pattern = bbt_pattern, -}; - -static struct nand_bbt_descr bbt_mirror_descr = { - .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | - NAND_BBT_2BIT | NAND_BBT_VERSION, - .offs = 2, /* 0 on 8-bit small page */ - .len = 4, - .veroffs = 6, - .maxblocks = 4, - .pattern = mirror_pattern, -}; - -static int fsl_ifc_ooblayout_ecc(struct mtd_info *mtd, int section, - struct mtd_oob_region *oobregion) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - - if (section) - return -ERANGE; - - oobregion->offset = 8; - oobregion->length = chip->ecc.total; - - return 0; -} - -static int fsl_ifc_ooblayout_free(struct mtd_info *mtd, int section, - struct mtd_oob_region *oobregion) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - - if (section > 1) - return -ERANGE; - - if (mtd->writesize == 512 && - !(chip->options & NAND_BUSWIDTH_16)) { - if (!section) { - oobregion->offset = 0; - oobregion->length = 5; - } else { - oobregion->offset = 6; - oobregion->length = 2; - } - - return 0; - } - - if (!section) { - oobregion->offset = 2; - oobregion->length = 6; - } else { - oobregion->offset = chip->ecc.total + 8; - oobregion->length = mtd->oobsize - oobregion->offset; - } - - return 0; -} - -static const struct mtd_ooblayout_ops fsl_ifc_ooblayout_ops = { - .ecc = fsl_ifc_ooblayout_ecc, - .free = fsl_ifc_ooblayout_free, -}; - -/* - * Set up the IFC hardware block and page address fields, and the ifc nand - * structure addr field to point to the correct IFC buffer in memory - */ -static void set_addr(struct mtd_info *mtd, int column, int page_addr, int oob) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct fsl_ifc_mtd *priv = nand_get_controller_data(chip); - struct fsl_ifc_ctrl *ctrl = priv->ctrl; - struct fsl_ifc_runtime __iomem *ifc = ctrl->rregs; - int buf_num; - - ifc_nand_ctrl->page = page_addr; - /* Program ROW0/COL0 */ - ifc_out32(page_addr, &ifc->ifc_nand.row0); - ifc_out32((oob ? IFC_NAND_COL_MS : 0) | column, &ifc->ifc_nand.col0); - - buf_num = page_addr & priv->bufnum_mask; - - ifc_nand_ctrl->addr = priv->vbase + buf_num * (mtd->writesize * 2); - ifc_nand_ctrl->index = column; - - /* for OOB data point to the second half of the buffer */ - if (oob) - ifc_nand_ctrl->index += mtd->writesize; -} - -/* returns nonzero if entire page is blank */ -static int check_read_ecc(struct mtd_info *mtd, struct fsl_ifc_ctrl *ctrl, - u32 *eccstat, unsigned int bufnum) -{ - u32 reg = eccstat[bufnum / 4]; - int errors; - - errors = (reg >> ((3 - bufnum % 4) * 8)) & 15; - - return errors; -} - -/* - * execute IFC NAND command and wait for it to complete - */ -static void fsl_ifc_run_command(struct mtd_info *mtd) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct fsl_ifc_mtd *priv = nand_get_controller_data(chip); - struct fsl_ifc_ctrl *ctrl = priv->ctrl; - struct fsl_ifc_nand_ctrl *nctrl = ifc_nand_ctrl; - struct fsl_ifc_runtime __iomem *ifc = ctrl->rregs; - u32 eccstat[4]; - int i; - - /* set the chip select for NAND Transaction */ - ifc_out32(priv->bank << IFC_NAND_CSEL_SHIFT, - &ifc->ifc_nand.nand_csel); - - dev_vdbg(priv->dev, - "%s: fir0=%08x fcr0=%08x\n", - __func__, - ifc_in32(&ifc->ifc_nand.nand_fir0), - ifc_in32(&ifc->ifc_nand.nand_fcr0)); - - ctrl->nand_stat = 0; - - /* start read/write seq */ - ifc_out32(IFC_NAND_SEQ_STRT_FIR_STRT, &ifc->ifc_nand.nandseq_strt); - - /* wait for command complete flag or timeout */ - wait_event_timeout(ctrl->nand_wait, ctrl->nand_stat, - msecs_to_jiffies(IFC_TIMEOUT_MSECS)); - - /* ctrl->nand_stat will be updated from IRQ context */ - if (!ctrl->nand_stat) - dev_err(priv->dev, "Controller is not responding\n"); - if (ctrl->nand_stat & IFC_NAND_EVTER_STAT_FTOER) - dev_err(priv->dev, "NAND Flash Timeout Error\n"); - if (ctrl->nand_stat & IFC_NAND_EVTER_STAT_WPER) - dev_err(priv->dev, "NAND Flash Write Protect Error\n"); - - nctrl->max_bitflips = 0; - - if (nctrl->eccread) { - int errors; - int bufnum = nctrl->page & priv->bufnum_mask; - int sector = bufnum * chip->ecc.steps; - int sector_end = sector + chip->ecc.steps - 1; - __be32 *eccstat_regs; - - if (ctrl->version >= FSL_IFC_VERSION_2_0_0) - eccstat_regs = ifc->ifc_nand.v2_nand_eccstat; - else - eccstat_regs = ifc->ifc_nand.v1_nand_eccstat; - - for (i = sector / 4; i <= sector_end / 4; i++) - eccstat[i] = ifc_in32(&eccstat_regs[i]); - - for (i = sector; i <= sector_end; i++) { - errors = check_read_ecc(mtd, ctrl, eccstat, i); - - if (errors == 15) { - /* - * Uncorrectable error. - * We'll check for blank pages later. - * - * We disable ECCER reporting due to... - * erratum IFC-A002770 -- so report it now if we - * see an uncorrectable error in ECCSTAT. - */ - ctrl->nand_stat |= IFC_NAND_EVTER_STAT_ECCER; - continue; - } - - mtd->ecc_stats.corrected += errors; - nctrl->max_bitflips = max_t(unsigned int, - nctrl->max_bitflips, - errors); - } - - nctrl->eccread = 0; - } -} - -static void fsl_ifc_do_read(struct nand_chip *chip, - int oob, - struct mtd_info *mtd) -{ - struct fsl_ifc_mtd *priv = nand_get_controller_data(chip); - struct fsl_ifc_ctrl *ctrl = priv->ctrl; - struct fsl_ifc_runtime __iomem *ifc = ctrl->rregs; - - /* Program FIR/IFC_NAND_FCR0 for Small/Large page */ - if (mtd->writesize > 512) { - ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | - (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) | - (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) | - (IFC_FIR_OP_CMD1 << IFC_NAND_FIR0_OP3_SHIFT) | - (IFC_FIR_OP_RBCD << IFC_NAND_FIR0_OP4_SHIFT), - &ifc->ifc_nand.nand_fir0); - ifc_out32(0x0, &ifc->ifc_nand.nand_fir1); - - ifc_out32((NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT) | - (NAND_CMD_READSTART << IFC_NAND_FCR0_CMD1_SHIFT), - &ifc->ifc_nand.nand_fcr0); - } else { - ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | - (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) | - (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) | - (IFC_FIR_OP_RBCD << IFC_NAND_FIR0_OP3_SHIFT), - &ifc->ifc_nand.nand_fir0); - ifc_out32(0x0, &ifc->ifc_nand.nand_fir1); - - if (oob) - ifc_out32(NAND_CMD_READOOB << - IFC_NAND_FCR0_CMD0_SHIFT, - &ifc->ifc_nand.nand_fcr0); - else - ifc_out32(NAND_CMD_READ0 << - IFC_NAND_FCR0_CMD0_SHIFT, - &ifc->ifc_nand.nand_fcr0); - } -} - -/* cmdfunc send commands to the IFC NAND Machine */ -static void fsl_ifc_cmdfunc(struct mtd_info *mtd, unsigned int command, - int column, int page_addr) { - struct nand_chip *chip = mtd_to_nand(mtd); - struct fsl_ifc_mtd *priv = nand_get_controller_data(chip); - struct fsl_ifc_ctrl *ctrl = priv->ctrl; - struct fsl_ifc_runtime __iomem *ifc = ctrl->rregs; - - /* clear the read buffer */ - ifc_nand_ctrl->read_bytes = 0; - if (command != NAND_CMD_PAGEPROG) - ifc_nand_ctrl->index = 0; - - switch (command) { - /* READ0 read the entire buffer to use hardware ECC. */ - case NAND_CMD_READ0: - ifc_out32(0, &ifc->ifc_nand.nand_fbcr); - set_addr(mtd, 0, page_addr, 0); - - ifc_nand_ctrl->read_bytes = mtd->writesize + mtd->oobsize; - ifc_nand_ctrl->index += column; - - if (chip->ecc.mode == NAND_ECC_HW) - ifc_nand_ctrl->eccread = 1; - - fsl_ifc_do_read(chip, 0, mtd); - fsl_ifc_run_command(mtd); - return; - - /* READOOB reads only the OOB because no ECC is performed. */ - case NAND_CMD_READOOB: - ifc_out32(mtd->oobsize - column, &ifc->ifc_nand.nand_fbcr); - set_addr(mtd, column, page_addr, 1); - - ifc_nand_ctrl->read_bytes = mtd->writesize + mtd->oobsize; - - fsl_ifc_do_read(chip, 1, mtd); - fsl_ifc_run_command(mtd); - - return; - - case NAND_CMD_READID: - case NAND_CMD_PARAM: { - int timing = IFC_FIR_OP_RB; - if (command == NAND_CMD_PARAM) - timing = IFC_FIR_OP_RBCD; - - ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | - (IFC_FIR_OP_UA << IFC_NAND_FIR0_OP1_SHIFT) | - (timing << IFC_NAND_FIR0_OP2_SHIFT), - &ifc->ifc_nand.nand_fir0); - ifc_out32(command << IFC_NAND_FCR0_CMD0_SHIFT, - &ifc->ifc_nand.nand_fcr0); - ifc_out32(column, &ifc->ifc_nand.row3); - - /* - * although currently it's 8 bytes for READID, we always read - * the maximum 256 bytes(for PARAM) - */ - ifc_out32(256, &ifc->ifc_nand.nand_fbcr); - ifc_nand_ctrl->read_bytes = 256; - - set_addr(mtd, 0, 0, 0); - fsl_ifc_run_command(mtd); - return; - } - - /* ERASE1 stores the block and page address */ - case NAND_CMD_ERASE1: - set_addr(mtd, 0, page_addr, 0); - return; - - /* ERASE2 uses the block and page address from ERASE1 */ - case NAND_CMD_ERASE2: - ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | - (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP1_SHIFT) | - (IFC_FIR_OP_CMD1 << IFC_NAND_FIR0_OP2_SHIFT), - &ifc->ifc_nand.nand_fir0); - - ifc_out32((NAND_CMD_ERASE1 << IFC_NAND_FCR0_CMD0_SHIFT) | - (NAND_CMD_ERASE2 << IFC_NAND_FCR0_CMD1_SHIFT), - &ifc->ifc_nand.nand_fcr0); - - ifc_out32(0, &ifc->ifc_nand.nand_fbcr); - ifc_nand_ctrl->read_bytes = 0; - fsl_ifc_run_command(mtd); - return; - - /* SEQIN sets up the addr buffer and all registers except the length */ - case NAND_CMD_SEQIN: { - u32 nand_fcr0; - ifc_nand_ctrl->column = column; - ifc_nand_ctrl->oob = 0; - - if (mtd->writesize > 512) { - nand_fcr0 = - (NAND_CMD_SEQIN << IFC_NAND_FCR0_CMD0_SHIFT) | - (NAND_CMD_STATUS << IFC_NAND_FCR0_CMD1_SHIFT) | - (NAND_CMD_PAGEPROG << IFC_NAND_FCR0_CMD2_SHIFT); - - ifc_out32( - (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | - (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) | - (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) | - (IFC_FIR_OP_WBCD << IFC_NAND_FIR0_OP3_SHIFT) | - (IFC_FIR_OP_CMD2 << IFC_NAND_FIR0_OP4_SHIFT), - &ifc->ifc_nand.nand_fir0); - ifc_out32( - (IFC_FIR_OP_CW1 << IFC_NAND_FIR1_OP5_SHIFT) | - (IFC_FIR_OP_RDSTAT << IFC_NAND_FIR1_OP6_SHIFT) | - (IFC_FIR_OP_NOP << IFC_NAND_FIR1_OP7_SHIFT), - &ifc->ifc_nand.nand_fir1); - } else { - nand_fcr0 = ((NAND_CMD_PAGEPROG << - IFC_NAND_FCR0_CMD1_SHIFT) | - (NAND_CMD_SEQIN << - IFC_NAND_FCR0_CMD2_SHIFT) | - (NAND_CMD_STATUS << - IFC_NAND_FCR0_CMD3_SHIFT)); - - ifc_out32( - (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | - (IFC_FIR_OP_CMD2 << IFC_NAND_FIR0_OP1_SHIFT) | - (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP2_SHIFT) | - (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP3_SHIFT) | - (IFC_FIR_OP_WBCD << IFC_NAND_FIR0_OP4_SHIFT), - &ifc->ifc_nand.nand_fir0); - ifc_out32( - (IFC_FIR_OP_CMD1 << IFC_NAND_FIR1_OP5_SHIFT) | - (IFC_FIR_OP_CW3 << IFC_NAND_FIR1_OP6_SHIFT) | - (IFC_FIR_OP_RDSTAT << IFC_NAND_FIR1_OP7_SHIFT) | - (IFC_FIR_OP_NOP << IFC_NAND_FIR1_OP8_SHIFT), - &ifc->ifc_nand.nand_fir1); - - if (column >= mtd->writesize) - nand_fcr0 |= - NAND_CMD_READOOB << IFC_NAND_FCR0_CMD0_SHIFT; - else - nand_fcr0 |= - NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT; - } - - if (column >= mtd->writesize) { - /* OOB area --> READOOB */ - column -= mtd->writesize; - ifc_nand_ctrl->oob = 1; - } - ifc_out32(nand_fcr0, &ifc->ifc_nand.nand_fcr0); - set_addr(mtd, column, page_addr, ifc_nand_ctrl->oob); - return; - } - - /* PAGEPROG reuses all of the setup from SEQIN and adds the length */ - case NAND_CMD_PAGEPROG: { - if (ifc_nand_ctrl->oob) { - ifc_out32(ifc_nand_ctrl->index - - ifc_nand_ctrl->column, - &ifc->ifc_nand.nand_fbcr); - } else { - ifc_out32(0, &ifc->ifc_nand.nand_fbcr); - } - - fsl_ifc_run_command(mtd); - return; - } - - case NAND_CMD_STATUS: { - void __iomem *addr; - - ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | - (IFC_FIR_OP_RB << IFC_NAND_FIR0_OP1_SHIFT), - &ifc->ifc_nand.nand_fir0); - ifc_out32(NAND_CMD_STATUS << IFC_NAND_FCR0_CMD0_SHIFT, - &ifc->ifc_nand.nand_fcr0); - ifc_out32(1, &ifc->ifc_nand.nand_fbcr); - set_addr(mtd, 0, 0, 0); - ifc_nand_ctrl->read_bytes = 1; - - fsl_ifc_run_command(mtd); - - /* - * The chip always seems to report that it is - * write-protected, even when it is not. - */ - addr = ifc_nand_ctrl->addr; - if (chip->options & NAND_BUSWIDTH_16) - ifc_out16(ifc_in16(addr) | (NAND_STATUS_WP), addr); - else - ifc_out8(ifc_in8(addr) | (NAND_STATUS_WP), addr); - return; - } - - case NAND_CMD_RESET: - ifc_out32(IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT, - &ifc->ifc_nand.nand_fir0); - ifc_out32(NAND_CMD_RESET << IFC_NAND_FCR0_CMD0_SHIFT, - &ifc->ifc_nand.nand_fcr0); - fsl_ifc_run_command(mtd); - return; - - default: - dev_err(priv->dev, "%s: error, unsupported command 0x%x.\n", - __func__, command); - } -} - -static void fsl_ifc_select_chip(struct mtd_info *mtd, int chip) -{ - /* The hardware does not seem to support multiple - * chips per bank. - */ -} - -/* - * Write buf to the IFC NAND Controller Data Buffer - */ -static void fsl_ifc_write_buf(struct mtd_info *mtd, const u8 *buf, int len) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct fsl_ifc_mtd *priv = nand_get_controller_data(chip); - unsigned int bufsize = mtd->writesize + mtd->oobsize; - - if (len <= 0) { - dev_err(priv->dev, "%s: len %d bytes", __func__, len); - return; - } - - if ((unsigned int)len > bufsize - ifc_nand_ctrl->index) { - dev_err(priv->dev, - "%s: beyond end of buffer (%d requested, %u available)\n", - __func__, len, bufsize - ifc_nand_ctrl->index); - len = bufsize - ifc_nand_ctrl->index; - } - - memcpy_toio(ifc_nand_ctrl->addr + ifc_nand_ctrl->index, buf, len); - ifc_nand_ctrl->index += len; -} - -/* - * Read a byte from either the IFC hardware buffer - * read function for 8-bit buswidth - */ -static uint8_t fsl_ifc_read_byte(struct mtd_info *mtd) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct fsl_ifc_mtd *priv = nand_get_controller_data(chip); - unsigned int offset; - - /* - * If there are still bytes in the IFC buffer, then use the - * next byte. - */ - if (ifc_nand_ctrl->index < ifc_nand_ctrl->read_bytes) { - offset = ifc_nand_ctrl->index++; - return ifc_in8(ifc_nand_ctrl->addr + offset); - } - - dev_err(priv->dev, "%s: beyond end of buffer\n", __func__); - return ERR_BYTE; -} - -/* - * Read two bytes from the IFC hardware buffer - * read function for 16-bit buswith - */ -static uint8_t fsl_ifc_read_byte16(struct mtd_info *mtd) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct fsl_ifc_mtd *priv = nand_get_controller_data(chip); - uint16_t data; - - /* - * If there are still bytes in the IFC buffer, then use the - * next byte. - */ - if (ifc_nand_ctrl->index < ifc_nand_ctrl->read_bytes) { - data = ifc_in16(ifc_nand_ctrl->addr + ifc_nand_ctrl->index); - ifc_nand_ctrl->index += 2; - return (uint8_t) data; - } - - dev_err(priv->dev, "%s: beyond end of buffer\n", __func__); - return ERR_BYTE; -} - -/* - * Read from the IFC Controller Data Buffer - */ -static void fsl_ifc_read_buf(struct mtd_info *mtd, u8 *buf, int len) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct fsl_ifc_mtd *priv = nand_get_controller_data(chip); - int avail; - - if (len < 0) { - dev_err(priv->dev, "%s: len %d bytes", __func__, len); - return; - } - - avail = min((unsigned int)len, - ifc_nand_ctrl->read_bytes - ifc_nand_ctrl->index); - memcpy_fromio(buf, ifc_nand_ctrl->addr + ifc_nand_ctrl->index, avail); - ifc_nand_ctrl->index += avail; - - if (len > avail) - dev_err(priv->dev, - "%s: beyond end of buffer (%d requested, %d available)\n", - __func__, len, avail); -} - -/* - * This function is called after Program and Erase Operations to - * check for success or failure. - */ -static int fsl_ifc_wait(struct mtd_info *mtd, struct nand_chip *chip) -{ - struct fsl_ifc_mtd *priv = nand_get_controller_data(chip); - struct fsl_ifc_ctrl *ctrl = priv->ctrl; - struct fsl_ifc_runtime __iomem *ifc = ctrl->rregs; - u32 nand_fsr; - - /* Use READ_STATUS command, but wait for the device to be ready */ - ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | - (IFC_FIR_OP_RDSTAT << IFC_NAND_FIR0_OP1_SHIFT), - &ifc->ifc_nand.nand_fir0); - ifc_out32(NAND_CMD_STATUS << IFC_NAND_FCR0_CMD0_SHIFT, - &ifc->ifc_nand.nand_fcr0); - ifc_out32(1, &ifc->ifc_nand.nand_fbcr); - set_addr(mtd, 0, 0, 0); - ifc_nand_ctrl->read_bytes = 1; - - fsl_ifc_run_command(mtd); - - nand_fsr = ifc_in32(&ifc->ifc_nand.nand_fsr); - - /* - * The chip always seems to report that it is - * write-protected, even when it is not. - */ - return nand_fsr | NAND_STATUS_WP; -} - -/* - * The controller does not check for bitflips in erased pages, - * therefore software must check instead. - */ -static int check_erased_page(struct nand_chip *chip, u8 *buf) -{ - struct mtd_info *mtd = nand_to_mtd(chip); - u8 *ecc = chip->oob_poi; - const int ecc_size = chip->ecc.bytes; - const int pkt_size = chip->ecc.size; - int i, res, bitflips = 0; - struct mtd_oob_region oobregion = { }; - - mtd_ooblayout_ecc(mtd, 0, &oobregion); - ecc += oobregion.offset; - - for (i = 0; i < chip->ecc.steps; ++i) { - res = nand_check_erased_ecc_chunk(buf, pkt_size, ecc, ecc_size, - NULL, 0, - chip->ecc.strength); - if (res < 0) - mtd->ecc_stats.failed++; - else - mtd->ecc_stats.corrected += res; - - bitflips = max(res, bitflips); - buf += pkt_size; - ecc += ecc_size; - } - - return bitflips; -} - -static int fsl_ifc_read_page(struct mtd_info *mtd, struct nand_chip *chip, - uint8_t *buf, int oob_required, int page) -{ - struct fsl_ifc_mtd *priv = nand_get_controller_data(chip); - struct fsl_ifc_ctrl *ctrl = priv->ctrl; - struct fsl_ifc_nand_ctrl *nctrl = ifc_nand_ctrl; - - nand_read_page_op(chip, page, 0, buf, mtd->writesize); - if (oob_required) - fsl_ifc_read_buf(mtd, chip->oob_poi, mtd->oobsize); - - if (ctrl->nand_stat & IFC_NAND_EVTER_STAT_ECCER) { - if (!oob_required) - fsl_ifc_read_buf(mtd, chip->oob_poi, mtd->oobsize); - - return check_erased_page(chip, buf); - } - - if (ctrl->nand_stat != IFC_NAND_EVTER_STAT_OPC) - mtd->ecc_stats.failed++; - - return nctrl->max_bitflips; -} - -/* ECC will be calculated automatically, and errors will be detected in - * waitfunc. - */ -static int fsl_ifc_write_page(struct mtd_info *mtd, struct nand_chip *chip, - const uint8_t *buf, int oob_required, int page) -{ - nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize); - fsl_ifc_write_buf(mtd, chip->oob_poi, mtd->oobsize); - - return nand_prog_page_end_op(chip); -} - -static int fsl_ifc_chip_init_tail(struct mtd_info *mtd) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct fsl_ifc_mtd *priv = nand_get_controller_data(chip); - - dev_dbg(priv->dev, "%s: nand->numchips = %d\n", __func__, - chip->numchips); - dev_dbg(priv->dev, "%s: nand->chipsize = %lld\n", __func__, - chip->chipsize); - dev_dbg(priv->dev, "%s: nand->pagemask = %8x\n", __func__, - chip->pagemask); - dev_dbg(priv->dev, "%s: nand->chip_delay = %d\n", __func__, - chip->chip_delay); - dev_dbg(priv->dev, "%s: nand->badblockpos = %d\n", __func__, - chip->badblockpos); - dev_dbg(priv->dev, "%s: nand->chip_shift = %d\n", __func__, - chip->chip_shift); - dev_dbg(priv->dev, "%s: nand->page_shift = %d\n", __func__, - chip->page_shift); - dev_dbg(priv->dev, "%s: nand->phys_erase_shift = %d\n", __func__, - chip->phys_erase_shift); - dev_dbg(priv->dev, "%s: nand->ecc.mode = %d\n", __func__, - chip->ecc.mode); - dev_dbg(priv->dev, "%s: nand->ecc.steps = %d\n", __func__, - chip->ecc.steps); - dev_dbg(priv->dev, "%s: nand->ecc.bytes = %d\n", __func__, - chip->ecc.bytes); - dev_dbg(priv->dev, "%s: nand->ecc.total = %d\n", __func__, - chip->ecc.total); - dev_dbg(priv->dev, "%s: mtd->ooblayout = %p\n", __func__, - mtd->ooblayout); - dev_dbg(priv->dev, "%s: mtd->flags = %08x\n", __func__, mtd->flags); - dev_dbg(priv->dev, "%s: mtd->size = %lld\n", __func__, mtd->size); - dev_dbg(priv->dev, "%s: mtd->erasesize = %d\n", __func__, - mtd->erasesize); - dev_dbg(priv->dev, "%s: mtd->writesize = %d\n", __func__, - mtd->writesize); - dev_dbg(priv->dev, "%s: mtd->oobsize = %d\n", __func__, - mtd->oobsize); - - return 0; -} - -static void fsl_ifc_sram_init(struct fsl_ifc_mtd *priv) -{ - struct fsl_ifc_ctrl *ctrl = priv->ctrl; - struct fsl_ifc_runtime __iomem *ifc_runtime = ctrl->rregs; - struct fsl_ifc_global __iomem *ifc_global = ctrl->gregs; - uint32_t csor = 0, csor_8k = 0, csor_ext = 0; - uint32_t cs = priv->bank; - - /* Save CSOR and CSOR_ext */ - csor = ifc_in32(&ifc_global->csor_cs[cs].csor); - csor_ext = ifc_in32(&ifc_global->csor_cs[cs].csor_ext); - - /* chage PageSize 8K and SpareSize 1K*/ - csor_8k = (csor & ~(CSOR_NAND_PGS_MASK)) | 0x0018C000; - ifc_out32(csor_8k, &ifc_global->csor_cs[cs].csor); - ifc_out32(0x0000400, &ifc_global->csor_cs[cs].csor_ext); - - /* READID */ - ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | - (IFC_FIR_OP_UA << IFC_NAND_FIR0_OP1_SHIFT) | - (IFC_FIR_OP_RB << IFC_NAND_FIR0_OP2_SHIFT), - &ifc_runtime->ifc_nand.nand_fir0); - ifc_out32(NAND_CMD_READID << IFC_NAND_FCR0_CMD0_SHIFT, - &ifc_runtime->ifc_nand.nand_fcr0); - ifc_out32(0x0, &ifc_runtime->ifc_nand.row3); - - ifc_out32(0x0, &ifc_runtime->ifc_nand.nand_fbcr); - - /* Program ROW0/COL0 */ - ifc_out32(0x0, &ifc_runtime->ifc_nand.row0); - ifc_out32(0x0, &ifc_runtime->ifc_nand.col0); - - /* set the chip select for NAND Transaction */ - ifc_out32(cs << IFC_NAND_CSEL_SHIFT, - &ifc_runtime->ifc_nand.nand_csel); - - /* start read seq */ - ifc_out32(IFC_NAND_SEQ_STRT_FIR_STRT, - &ifc_runtime->ifc_nand.nandseq_strt); - - /* wait for command complete flag or timeout */ - wait_event_timeout(ctrl->nand_wait, ctrl->nand_stat, - msecs_to_jiffies(IFC_TIMEOUT_MSECS)); - - if (ctrl->nand_stat != IFC_NAND_EVTER_STAT_OPC) - printk(KERN_ERR "fsl-ifc: Failed to Initialise SRAM\n"); - - /* Restore CSOR and CSOR_ext */ - ifc_out32(csor, &ifc_global->csor_cs[cs].csor); - ifc_out32(csor_ext, &ifc_global->csor_cs[cs].csor_ext); -} - -static int fsl_ifc_chip_init(struct fsl_ifc_mtd *priv) -{ - struct fsl_ifc_ctrl *ctrl = priv->ctrl; - struct fsl_ifc_global __iomem *ifc_global = ctrl->gregs; - struct fsl_ifc_runtime __iomem *ifc_runtime = ctrl->rregs; - struct nand_chip *chip = &priv->chip; - struct mtd_info *mtd = nand_to_mtd(&priv->chip); - u32 csor; - - /* Fill in fsl_ifc_mtd structure */ - mtd->dev.parent = priv->dev; - nand_set_flash_node(chip, priv->dev->of_node); - - /* fill in nand_chip structure */ - /* set up function call table */ - if ((ifc_in32(&ifc_global->cspr_cs[priv->bank].cspr)) - & CSPR_PORT_SIZE_16) - chip->read_byte = fsl_ifc_read_byte16; - else - chip->read_byte = fsl_ifc_read_byte; - - chip->write_buf = fsl_ifc_write_buf; - chip->read_buf = fsl_ifc_read_buf; - chip->select_chip = fsl_ifc_select_chip; - chip->cmdfunc = fsl_ifc_cmdfunc; - chip->waitfunc = fsl_ifc_wait; - chip->onfi_set_features = nand_onfi_get_set_features_notsupp; - chip->onfi_get_features = nand_onfi_get_set_features_notsupp; - - chip->bbt_td = &bbt_main_descr; - chip->bbt_md = &bbt_mirror_descr; - - ifc_out32(0x0, &ifc_runtime->ifc_nand.ncfgr); - - /* set up nand options */ - chip->bbt_options = NAND_BBT_USE_FLASH; - chip->options = NAND_NO_SUBPAGE_WRITE; - - if (ifc_in32(&ifc_global->cspr_cs[priv->bank].cspr) - & CSPR_PORT_SIZE_16) { - chip->read_byte = fsl_ifc_read_byte16; - chip->options |= NAND_BUSWIDTH_16; - } else { - chip->read_byte = fsl_ifc_read_byte; - } - - chip->controller = &ifc_nand_ctrl->controller; - nand_set_controller_data(chip, priv); - - chip->ecc.read_page = fsl_ifc_read_page; - chip->ecc.write_page = fsl_ifc_write_page; - - csor = ifc_in32(&ifc_global->csor_cs[priv->bank].csor); - - switch (csor & CSOR_NAND_PGS_MASK) { - case CSOR_NAND_PGS_512: - if (!(chip->options & NAND_BUSWIDTH_16)) { - /* Avoid conflict with bad block marker */ - bbt_main_descr.offs = 0; - bbt_mirror_descr.offs = 0; - } - - priv->bufnum_mask = 15; - break; - - case CSOR_NAND_PGS_2K: - priv->bufnum_mask = 3; - break; - - case CSOR_NAND_PGS_4K: - priv->bufnum_mask = 1; - break; - - case CSOR_NAND_PGS_8K: - priv->bufnum_mask = 0; - break; - - default: - dev_err(priv->dev, "bad csor %#x: bad page size\n", csor); - return -ENODEV; - } - - /* Must also set CSOR_NAND_ECC_ENC_EN if DEC_EN set */ - if (csor & CSOR_NAND_ECC_DEC_EN) { - chip->ecc.mode = NAND_ECC_HW; - mtd_set_ooblayout(mtd, &fsl_ifc_ooblayout_ops); - - /* Hardware generates ECC per 512 Bytes */ - chip->ecc.size = 512; - if ((csor & CSOR_NAND_ECC_MODE_MASK) == CSOR_NAND_ECC_MODE_4) { - chip->ecc.bytes = 8; - chip->ecc.strength = 4; - } else { - chip->ecc.bytes = 16; - chip->ecc.strength = 8; - } - } else { - chip->ecc.mode = NAND_ECC_SOFT; - chip->ecc.algo = NAND_ECC_HAMMING; - } - - if (ctrl->version >= FSL_IFC_VERSION_1_1_0) - fsl_ifc_sram_init(priv); - - /* - * As IFC version 2.0.0 has 16KB of internal SRAM as compared to older - * versions which had 8KB. Hence bufnum mask needs to be updated. - */ - if (ctrl->version >= FSL_IFC_VERSION_2_0_0) - priv->bufnum_mask = (priv->bufnum_mask * 2) + 1; - - return 0; -} - -static int fsl_ifc_chip_remove(struct fsl_ifc_mtd *priv) -{ - struct mtd_info *mtd = nand_to_mtd(&priv->chip); - - nand_release(mtd); - - kfree(mtd->name); - - if (priv->vbase) - iounmap(priv->vbase); - - ifc_nand_ctrl->chips[priv->bank] = NULL; - - return 0; -} - -static int match_bank(struct fsl_ifc_global __iomem *ifc_global, int bank, - phys_addr_t addr) -{ - u32 cspr = ifc_in32(&ifc_global->cspr_cs[bank].cspr); - - if (!(cspr & CSPR_V)) - return 0; - if ((cspr & CSPR_MSEL) != CSPR_MSEL_NAND) - return 0; - - return (cspr & CSPR_BA) == convert_ifc_address(addr); -} - -static DEFINE_MUTEX(fsl_ifc_nand_mutex); - -static int fsl_ifc_nand_probe(struct platform_device *dev) -{ - struct fsl_ifc_runtime __iomem *ifc; - struct fsl_ifc_mtd *priv; - struct resource res; - static const char *part_probe_types[] - = { "cmdlinepart", "RedBoot", "ofpart", NULL }; - int ret; - int bank; - struct device_node *node = dev->dev.of_node; - struct mtd_info *mtd; - - if (!fsl_ifc_ctrl_dev || !fsl_ifc_ctrl_dev->rregs) - return -ENODEV; - ifc = fsl_ifc_ctrl_dev->rregs; - - /* get, allocate and map the memory resource */ - ret = of_address_to_resource(node, 0, &res); - if (ret) { - dev_err(&dev->dev, "%s: failed to get resource\n", __func__); - return ret; - } - - /* find which chip select it is connected to */ - for (bank = 0; bank < fsl_ifc_ctrl_dev->banks; bank++) { - if (match_bank(fsl_ifc_ctrl_dev->gregs, bank, res.start)) - break; - } - - if (bank >= fsl_ifc_ctrl_dev->banks) { - dev_err(&dev->dev, "%s: address did not match any chip selects\n", - __func__); - return -ENODEV; - } - - priv = devm_kzalloc(&dev->dev, sizeof(*priv), GFP_KERNEL); - if (!priv) - return -ENOMEM; - - mutex_lock(&fsl_ifc_nand_mutex); - if (!fsl_ifc_ctrl_dev->nand) { - ifc_nand_ctrl = kzalloc(sizeof(*ifc_nand_ctrl), GFP_KERNEL); - if (!ifc_nand_ctrl) { - mutex_unlock(&fsl_ifc_nand_mutex); - return -ENOMEM; - } - - ifc_nand_ctrl->read_bytes = 0; - ifc_nand_ctrl->index = 0; - ifc_nand_ctrl->addr = NULL; - fsl_ifc_ctrl_dev->nand = ifc_nand_ctrl; - - nand_hw_control_init(&ifc_nand_ctrl->controller); - } else { - ifc_nand_ctrl = fsl_ifc_ctrl_dev->nand; - } - mutex_unlock(&fsl_ifc_nand_mutex); - - ifc_nand_ctrl->chips[bank] = priv; - priv->bank = bank; - priv->ctrl = fsl_ifc_ctrl_dev; - priv->dev = &dev->dev; - - priv->vbase = ioremap(res.start, resource_size(&res)); - if (!priv->vbase) { - dev_err(priv->dev, "%s: failed to map chip region\n", __func__); - ret = -ENOMEM; - goto err; - } - - dev_set_drvdata(priv->dev, priv); - - ifc_out32(IFC_NAND_EVTER_EN_OPC_EN | - IFC_NAND_EVTER_EN_FTOER_EN | - IFC_NAND_EVTER_EN_WPER_EN, - &ifc->ifc_nand.nand_evter_en); - - /* enable NAND Machine Interrupts */ - ifc_out32(IFC_NAND_EVTER_INTR_OPCIR_EN | - IFC_NAND_EVTER_INTR_FTOERIR_EN | - IFC_NAND_EVTER_INTR_WPERIR_EN, - &ifc->ifc_nand.nand_evter_intr_en); - - mtd = nand_to_mtd(&priv->chip); - mtd->name = kasprintf(GFP_KERNEL, "%llx.flash", (u64)res.start); - if (!mtd->name) { - ret = -ENOMEM; - goto err; - } - - ret = fsl_ifc_chip_init(priv); - if (ret) - goto err; - - ret = nand_scan_ident(mtd, 1, NULL); - if (ret) - goto err; - - ret = fsl_ifc_chip_init_tail(mtd); - if (ret) - goto err; - - ret = nand_scan_tail(mtd); - if (ret) - goto err; - - /* First look for RedBoot table or partitions on the command - * line, these take precedence over device tree information */ - mtd_device_parse_register(mtd, part_probe_types, NULL, NULL, 0); - - dev_info(priv->dev, "IFC NAND device at 0x%llx, bank %d\n", - (unsigned long long)res.start, priv->bank); - return 0; - -err: - fsl_ifc_chip_remove(priv); - return ret; -} - -static int fsl_ifc_nand_remove(struct platform_device *dev) -{ - struct fsl_ifc_mtd *priv = dev_get_drvdata(&dev->dev); - - fsl_ifc_chip_remove(priv); - - mutex_lock(&fsl_ifc_nand_mutex); - ifc_nand_ctrl->counter--; - if (!ifc_nand_ctrl->counter) { - fsl_ifc_ctrl_dev->nand = NULL; - kfree(ifc_nand_ctrl); - } - mutex_unlock(&fsl_ifc_nand_mutex); - - return 0; -} - -static const struct of_device_id fsl_ifc_nand_match[] = { - { - .compatible = "fsl,ifc-nand", - }, - {} -}; -MODULE_DEVICE_TABLE(of, fsl_ifc_nand_match); - -static struct platform_driver fsl_ifc_nand_driver = { - .driver = { - .name = "fsl,ifc-nand", - .of_match_table = fsl_ifc_nand_match, - }, - .probe = fsl_ifc_nand_probe, - .remove = fsl_ifc_nand_remove, -}; - -module_platform_driver(fsl_ifc_nand_driver); - -MODULE_LICENSE("GPL"); -MODULE_AUTHOR("Freescale"); -MODULE_DESCRIPTION("Freescale Integrated Flash Controller MTD NAND driver"); diff --git a/drivers/mtd/nand/fsl_upm.c b/drivers/mtd/nand/fsl_upm.c deleted file mode 100644 index a88e2cf66e0f..000000000000 --- a/drivers/mtd/nand/fsl_upm.c +++ /dev/null @@ -1,363 +0,0 @@ -/* - * Freescale UPM NAND driver. - * - * Copyright © 2007-2008 MontaVista Software, Inc. - * - * Author: Anton Vorontsov - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation; either version 2 of the License, or - * (at your option) any later version. - */ - -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include - -#define FSL_UPM_WAIT_RUN_PATTERN 0x1 -#define FSL_UPM_WAIT_WRITE_BYTE 0x2 -#define FSL_UPM_WAIT_WRITE_BUFFER 0x4 - -struct fsl_upm_nand { - struct device *dev; - struct nand_chip chip; - int last_ctrl; - struct mtd_partition *parts; - struct fsl_upm upm; - uint8_t upm_addr_offset; - uint8_t upm_cmd_offset; - void __iomem *io_base; - int rnb_gpio[NAND_MAX_CHIPS]; - uint32_t mchip_offsets[NAND_MAX_CHIPS]; - uint32_t mchip_count; - uint32_t mchip_number; - int chip_delay; - uint32_t wait_flags; -}; - -static inline struct fsl_upm_nand *to_fsl_upm_nand(struct mtd_info *mtdinfo) -{ - return container_of(mtd_to_nand(mtdinfo), struct fsl_upm_nand, - chip); -} - -static int fun_chip_ready(struct mtd_info *mtd) -{ - struct fsl_upm_nand *fun = to_fsl_upm_nand(mtd); - - if (gpio_get_value(fun->rnb_gpio[fun->mchip_number])) - return 1; - - dev_vdbg(fun->dev, "busy\n"); - return 0; -} - -static void fun_wait_rnb(struct fsl_upm_nand *fun) -{ - if (fun->rnb_gpio[fun->mchip_number] >= 0) { - struct mtd_info *mtd = nand_to_mtd(&fun->chip); - int cnt = 1000000; - - while (--cnt && !fun_chip_ready(mtd)) - cpu_relax(); - if (!cnt) - dev_err(fun->dev, "tired waiting for RNB\n"); - } else { - ndelay(100); - } -} - -static void fun_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct fsl_upm_nand *fun = to_fsl_upm_nand(mtd); - u32 mar; - - if (!(ctrl & fun->last_ctrl)) { - fsl_upm_end_pattern(&fun->upm); - - if (cmd == NAND_CMD_NONE) - return; - - fun->last_ctrl = ctrl & (NAND_ALE | NAND_CLE); - } - - if (ctrl & NAND_CTRL_CHANGE) { - if (ctrl & NAND_ALE) - fsl_upm_start_pattern(&fun->upm, fun->upm_addr_offset); - else if (ctrl & NAND_CLE) - fsl_upm_start_pattern(&fun->upm, fun->upm_cmd_offset); - } - - mar = (cmd << (32 - fun->upm.width)) | - fun->mchip_offsets[fun->mchip_number]; - fsl_upm_run_pattern(&fun->upm, chip->IO_ADDR_R, mar); - - if (fun->wait_flags & FSL_UPM_WAIT_RUN_PATTERN) - fun_wait_rnb(fun); -} - -static void fun_select_chip(struct mtd_info *mtd, int mchip_nr) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct fsl_upm_nand *fun = to_fsl_upm_nand(mtd); - - if (mchip_nr == -1) { - chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE); - } else if (mchip_nr >= 0 && mchip_nr < NAND_MAX_CHIPS) { - fun->mchip_number = mchip_nr; - chip->IO_ADDR_R = fun->io_base + fun->mchip_offsets[mchip_nr]; - chip->IO_ADDR_W = chip->IO_ADDR_R; - } else { - BUG(); - } -} - -static uint8_t fun_read_byte(struct mtd_info *mtd) -{ - struct fsl_upm_nand *fun = to_fsl_upm_nand(mtd); - - return in_8(fun->chip.IO_ADDR_R); -} - -static void fun_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) -{ - struct fsl_upm_nand *fun = to_fsl_upm_nand(mtd); - int i; - - for (i = 0; i < len; i++) - buf[i] = in_8(fun->chip.IO_ADDR_R); -} - -static void fun_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) -{ - struct fsl_upm_nand *fun = to_fsl_upm_nand(mtd); - int i; - - for (i = 0; i < len; i++) { - out_8(fun->chip.IO_ADDR_W, buf[i]); - if (fun->wait_flags & FSL_UPM_WAIT_WRITE_BYTE) - fun_wait_rnb(fun); - } - if (fun->wait_flags & FSL_UPM_WAIT_WRITE_BUFFER) - fun_wait_rnb(fun); -} - -static int fun_chip_init(struct fsl_upm_nand *fun, - const struct device_node *upm_np, - const struct resource *io_res) -{ - struct mtd_info *mtd = nand_to_mtd(&fun->chip); - int ret; - struct device_node *flash_np; - - fun->chip.IO_ADDR_R = fun->io_base; - fun->chip.IO_ADDR_W = fun->io_base; - fun->chip.cmd_ctrl = fun_cmd_ctrl; - fun->chip.chip_delay = fun->chip_delay; - fun->chip.read_byte = fun_read_byte; - fun->chip.read_buf = fun_read_buf; - fun->chip.write_buf = fun_write_buf; - fun->chip.ecc.mode = NAND_ECC_SOFT; - fun->chip.ecc.algo = NAND_ECC_HAMMING; - if (fun->mchip_count > 1) - fun->chip.select_chip = fun_select_chip; - - if (fun->rnb_gpio[0] >= 0) - fun->chip.dev_ready = fun_chip_ready; - - mtd->dev.parent = fun->dev; - - flash_np = of_get_next_child(upm_np, NULL); - if (!flash_np) - return -ENODEV; - - nand_set_flash_node(&fun->chip, flash_np); - mtd->name = kasprintf(GFP_KERNEL, "0x%llx.%s", (u64)io_res->start, - flash_np->name); - if (!mtd->name) { - ret = -ENOMEM; - goto err; - } - - ret = nand_scan(mtd, fun->mchip_count); - if (ret) - goto err; - - ret = mtd_device_register(mtd, NULL, 0); -err: - of_node_put(flash_np); - if (ret) - kfree(mtd->name); - return ret; -} - -static int fun_probe(struct platform_device *ofdev) -{ - struct fsl_upm_nand *fun; - struct resource io_res; - const __be32 *prop; - int rnb_gpio; - int ret; - int size; - int i; - - fun = kzalloc(sizeof(*fun), GFP_KERNEL); - if (!fun) - return -ENOMEM; - - ret = of_address_to_resource(ofdev->dev.of_node, 0, &io_res); - if (ret) { - dev_err(&ofdev->dev, "can't get IO base\n"); - goto err1; - } - - ret = fsl_upm_find(io_res.start, &fun->upm); - if (ret) { - dev_err(&ofdev->dev, "can't find UPM\n"); - goto err1; - } - - prop = of_get_property(ofdev->dev.of_node, "fsl,upm-addr-offset", - &size); - if (!prop || size != sizeof(uint32_t)) { - dev_err(&ofdev->dev, "can't get UPM address offset\n"); - ret = -EINVAL; - goto err1; - } - fun->upm_addr_offset = *prop; - - prop = of_get_property(ofdev->dev.of_node, "fsl,upm-cmd-offset", &size); - if (!prop || size != sizeof(uint32_t)) { - dev_err(&ofdev->dev, "can't get UPM command offset\n"); - ret = -EINVAL; - goto err1; - } - fun->upm_cmd_offset = *prop; - - prop = of_get_property(ofdev->dev.of_node, - "fsl,upm-addr-line-cs-offsets", &size); - if (prop && (size / sizeof(uint32_t)) > 0) { - fun->mchip_count = size / sizeof(uint32_t); - if (fun->mchip_count >= NAND_MAX_CHIPS) { - dev_err(&ofdev->dev, "too much multiple chips\n"); - goto err1; - } - for (i = 0; i < fun->mchip_count; i++) - fun->mchip_offsets[i] = be32_to_cpu(prop[i]); - } else { - fun->mchip_count = 1; - } - - for (i = 0; i < fun->mchip_count; i++) { - fun->rnb_gpio[i] = -1; - rnb_gpio = of_get_gpio(ofdev->dev.of_node, i); - if (rnb_gpio >= 0) { - ret = gpio_request(rnb_gpio, dev_name(&ofdev->dev)); - if (ret) { - dev_err(&ofdev->dev, - "can't request RNB gpio #%d\n", i); - goto err2; - } - gpio_direction_input(rnb_gpio); - fun->rnb_gpio[i] = rnb_gpio; - } else if (rnb_gpio == -EINVAL) { - dev_err(&ofdev->dev, "RNB gpio #%d is invalid\n", i); - goto err2; - } - } - - prop = of_get_property(ofdev->dev.of_node, "chip-delay", NULL); - if (prop) - fun->chip_delay = be32_to_cpup(prop); - else - fun->chip_delay = 50; - - prop = of_get_property(ofdev->dev.of_node, "fsl,upm-wait-flags", &size); - if (prop && size == sizeof(uint32_t)) - fun->wait_flags = be32_to_cpup(prop); - else - fun->wait_flags = FSL_UPM_WAIT_RUN_PATTERN | - FSL_UPM_WAIT_WRITE_BYTE; - - fun->io_base = devm_ioremap_nocache(&ofdev->dev, io_res.start, - resource_size(&io_res)); - if (!fun->io_base) { - ret = -ENOMEM; - goto err2; - } - - fun->dev = &ofdev->dev; - fun->last_ctrl = NAND_CLE; - - ret = fun_chip_init(fun, ofdev->dev.of_node, &io_res); - if (ret) - goto err2; - - dev_set_drvdata(&ofdev->dev, fun); - - return 0; -err2: - for (i = 0; i < fun->mchip_count; i++) { - if (fun->rnb_gpio[i] < 0) - break; - gpio_free(fun->rnb_gpio[i]); - } -err1: - kfree(fun); - - return ret; -} - -static int fun_remove(struct platform_device *ofdev) -{ - struct fsl_upm_nand *fun = dev_get_drvdata(&ofdev->dev); - struct mtd_info *mtd = nand_to_mtd(&fun->chip); - int i; - - nand_release(mtd); - kfree(mtd->name); - - for (i = 0; i < fun->mchip_count; i++) { - if (fun->rnb_gpio[i] < 0) - break; - gpio_free(fun->rnb_gpio[i]); - } - - kfree(fun); - - return 0; -} - -static const struct of_device_id of_fun_match[] = { - { .compatible = "fsl,upm-nand" }, - {}, -}; -MODULE_DEVICE_TABLE(of, of_fun_match); - -static struct platform_driver of_fun_driver = { - .driver = { - .name = "fsl,upm-nand", - .of_match_table = of_fun_match, - }, - .probe = fun_probe, - .remove = fun_remove, -}; - -module_platform_driver(of_fun_driver); - -MODULE_LICENSE("GPL"); -MODULE_AUTHOR("Anton Vorontsov "); -MODULE_DESCRIPTION("Driver for NAND chips working through Freescale " - "LocalBus User-Programmable Machine"); diff --git a/drivers/mtd/nand/fsmc_nand.c b/drivers/mtd/nand/fsmc_nand.c deleted file mode 100644 index 7e66268f8154..000000000000 --- a/drivers/mtd/nand/fsmc_nand.c +++ /dev/null @@ -1,1175 +0,0 @@ -/* - * ST Microelectronics - * Flexible Static Memory Controller (FSMC) - * Driver for NAND portions - * - * Copyright © 2010 ST Microelectronics - * Vipin Kumar - * Ashish Priyadarshi - * - * Based on drivers/mtd/nand/nomadik_nand.c (removed in v3.8) - * Copyright © 2007 STMicroelectronics Pvt. Ltd. - * Copyright © 2009 Alessandro Rubini - * - * This file is licensed under the terms of the GNU General Public - * License version 2. This program is licensed "as is" without any - * warranty of any kind, whether express or implied. - */ - -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include - -/* fsmc controller registers for NOR flash */ -#define CTRL 0x0 - /* ctrl register definitions */ - #define BANK_ENABLE (1 << 0) - #define MUXED (1 << 1) - #define NOR_DEV (2 << 2) - #define WIDTH_8 (0 << 4) - #define WIDTH_16 (1 << 4) - #define RSTPWRDWN (1 << 6) - #define WPROT (1 << 7) - #define WRT_ENABLE (1 << 12) - #define WAIT_ENB (1 << 13) - -#define CTRL_TIM 0x4 - /* ctrl_tim register definitions */ - -#define FSMC_NOR_BANK_SZ 0x8 -#define FSMC_NOR_REG_SIZE 0x40 - -#define FSMC_NOR_REG(base, bank, reg) (base + \ - FSMC_NOR_BANK_SZ * (bank) + \ - reg) - -/* fsmc controller registers for NAND flash */ -#define PC 0x00 - /* pc register definitions */ - #define FSMC_RESET (1 << 0) - #define FSMC_WAITON (1 << 1) - #define FSMC_ENABLE (1 << 2) - #define FSMC_DEVTYPE_NAND (1 << 3) - #define FSMC_DEVWID_8 (0 << 4) - #define FSMC_DEVWID_16 (1 << 4) - #define FSMC_ECCEN (1 << 6) - #define FSMC_ECCPLEN_512 (0 << 7) - #define FSMC_ECCPLEN_256 (1 << 7) - #define FSMC_TCLR_1 (1) - #define FSMC_TCLR_SHIFT (9) - #define FSMC_TCLR_MASK (0xF) - #define FSMC_TAR_1 (1) - #define FSMC_TAR_SHIFT (13) - #define FSMC_TAR_MASK (0xF) -#define STS 0x04 - /* sts register definitions */ - #define FSMC_CODE_RDY (1 << 15) -#define COMM 0x08 - /* comm register definitions */ - #define FSMC_TSET_0 0 - #define FSMC_TSET_SHIFT 0 - #define FSMC_TSET_MASK 0xFF - #define FSMC_TWAIT_6 6 - #define FSMC_TWAIT_SHIFT 8 - #define FSMC_TWAIT_MASK 0xFF - #define FSMC_THOLD_4 4 - #define FSMC_THOLD_SHIFT 16 - #define FSMC_THOLD_MASK 0xFF - #define FSMC_THIZ_1 1 - #define FSMC_THIZ_SHIFT 24 - #define FSMC_THIZ_MASK 0xFF -#define ATTRIB 0x0C -#define IOATA 0x10 -#define ECC1 0x14 -#define ECC2 0x18 -#define ECC3 0x1C -#define FSMC_NAND_BANK_SZ 0x20 - -#define FSMC_NAND_REG(base, bank, reg) (base + FSMC_NOR_REG_SIZE + \ - (FSMC_NAND_BANK_SZ * (bank)) + \ - reg) - -#define FSMC_BUSY_WAIT_TIMEOUT (1 * HZ) - -struct fsmc_nand_timings { - uint8_t tclr; - uint8_t tar; - uint8_t thiz; - uint8_t thold; - uint8_t twait; - uint8_t tset; -}; - -enum access_mode { - USE_DMA_ACCESS = 1, - USE_WORD_ACCESS, -}; - -/** - * struct fsmc_nand_data - structure for FSMC NAND device state - * - * @pid: Part ID on the AMBA PrimeCell format - * @mtd: MTD info for a NAND flash. - * @nand: Chip related info for a NAND flash. - * @partitions: Partition info for a NAND Flash. - * @nr_partitions: Total number of partition of a NAND flash. - * - * @bank: Bank number for probed device. - * @clk: Clock structure for FSMC. - * - * @read_dma_chan: DMA channel for read access - * @write_dma_chan: DMA channel for write access to NAND - * @dma_access_complete: Completion structure - * - * @data_pa: NAND Physical port for Data. - * @data_va: NAND port for Data. - * @cmd_va: NAND port for Command. - * @addr_va: NAND port for Address. - * @regs_va: FSMC regs base address. - */ -struct fsmc_nand_data { - u32 pid; - struct nand_chip nand; - - unsigned int bank; - struct device *dev; - enum access_mode mode; - struct clk *clk; - - /* DMA related objects */ - struct dma_chan *read_dma_chan; - struct dma_chan *write_dma_chan; - struct completion dma_access_complete; - - struct fsmc_nand_timings *dev_timings; - - dma_addr_t data_pa; - void __iomem *data_va; - void __iomem *cmd_va; - void __iomem *addr_va; - void __iomem *regs_va; -}; - -static int fsmc_ecc1_ooblayout_ecc(struct mtd_info *mtd, int section, - struct mtd_oob_region *oobregion) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - - if (section >= chip->ecc.steps) - return -ERANGE; - - oobregion->offset = (section * 16) + 2; - oobregion->length = 3; - - return 0; -} - -static int fsmc_ecc1_ooblayout_free(struct mtd_info *mtd, int section, - struct mtd_oob_region *oobregion) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - - if (section >= chip->ecc.steps) - return -ERANGE; - - oobregion->offset = (section * 16) + 8; - - if (section < chip->ecc.steps - 1) - oobregion->length = 8; - else - oobregion->length = mtd->oobsize - oobregion->offset; - - return 0; -} - -static const struct mtd_ooblayout_ops fsmc_ecc1_ooblayout_ops = { - .ecc = fsmc_ecc1_ooblayout_ecc, - .free = fsmc_ecc1_ooblayout_free, -}; - -/* - * ECC placement definitions in oobfree type format. - * There are 13 bytes of ecc for every 512 byte block and it has to be read - * consecutively and immediately after the 512 byte data block for hardware to - * generate the error bit offsets in 512 byte data. - */ -static int fsmc_ecc4_ooblayout_ecc(struct mtd_info *mtd, int section, - struct mtd_oob_region *oobregion) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - - if (section >= chip->ecc.steps) - return -ERANGE; - - oobregion->length = chip->ecc.bytes; - - if (!section && mtd->writesize <= 512) - oobregion->offset = 0; - else - oobregion->offset = (section * 16) + 2; - - return 0; -} - -static int fsmc_ecc4_ooblayout_free(struct mtd_info *mtd, int section, - struct mtd_oob_region *oobregion) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - - if (section >= chip->ecc.steps) - return -ERANGE; - - oobregion->offset = (section * 16) + 15; - - if (section < chip->ecc.steps - 1) - oobregion->length = 3; - else - oobregion->length = mtd->oobsize - oobregion->offset; - - return 0; -} - -static const struct mtd_ooblayout_ops fsmc_ecc4_ooblayout_ops = { - .ecc = fsmc_ecc4_ooblayout_ecc, - .free = fsmc_ecc4_ooblayout_free, -}; - -static inline struct fsmc_nand_data *mtd_to_fsmc(struct mtd_info *mtd) -{ - return container_of(mtd_to_nand(mtd), struct fsmc_nand_data, nand); -} - -/* - * fsmc_cmd_ctrl - For facilitaing Hardware access - * This routine allows hardware specific access to control-lines(ALE,CLE) - */ -static void fsmc_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl) -{ - struct nand_chip *this = mtd_to_nand(mtd); - struct fsmc_nand_data *host = mtd_to_fsmc(mtd); - void __iomem *regs = host->regs_va; - unsigned int bank = host->bank; - - if (ctrl & NAND_CTRL_CHANGE) { - u32 pc; - - if (ctrl & NAND_CLE) { - this->IO_ADDR_R = host->cmd_va; - this->IO_ADDR_W = host->cmd_va; - } else if (ctrl & NAND_ALE) { - this->IO_ADDR_R = host->addr_va; - this->IO_ADDR_W = host->addr_va; - } else { - this->IO_ADDR_R = host->data_va; - this->IO_ADDR_W = host->data_va; - } - - pc = readl(FSMC_NAND_REG(regs, bank, PC)); - if (ctrl & NAND_NCE) - pc |= FSMC_ENABLE; - else - pc &= ~FSMC_ENABLE; - writel_relaxed(pc, FSMC_NAND_REG(regs, bank, PC)); - } - - mb(); - - if (cmd != NAND_CMD_NONE) - writeb_relaxed(cmd, this->IO_ADDR_W); -} - -/* - * fsmc_nand_setup - FSMC (Flexible Static Memory Controller) init routine - * - * This routine initializes timing parameters related to NAND memory access in - * FSMC registers - */ -static void fsmc_nand_setup(struct fsmc_nand_data *host, - struct fsmc_nand_timings *tims) -{ - uint32_t value = FSMC_DEVTYPE_NAND | FSMC_ENABLE | FSMC_WAITON; - uint32_t tclr, tar, thiz, thold, twait, tset; - unsigned int bank = host->bank; - void __iomem *regs = host->regs_va; - - tclr = (tims->tclr & FSMC_TCLR_MASK) << FSMC_TCLR_SHIFT; - tar = (tims->tar & FSMC_TAR_MASK) << FSMC_TAR_SHIFT; - thiz = (tims->thiz & FSMC_THIZ_MASK) << FSMC_THIZ_SHIFT; - thold = (tims->thold & FSMC_THOLD_MASK) << FSMC_THOLD_SHIFT; - twait = (tims->twait & FSMC_TWAIT_MASK) << FSMC_TWAIT_SHIFT; - tset = (tims->tset & FSMC_TSET_MASK) << FSMC_TSET_SHIFT; - - if (host->nand.options & NAND_BUSWIDTH_16) - writel_relaxed(value | FSMC_DEVWID_16, - FSMC_NAND_REG(regs, bank, PC)); - else - writel_relaxed(value | FSMC_DEVWID_8, - FSMC_NAND_REG(regs, bank, PC)); - - writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) | tclr | tar, - FSMC_NAND_REG(regs, bank, PC)); - writel_relaxed(thiz | thold | twait | tset, - FSMC_NAND_REG(regs, bank, COMM)); - writel_relaxed(thiz | thold | twait | tset, - FSMC_NAND_REG(regs, bank, ATTRIB)); -} - -static int fsmc_calc_timings(struct fsmc_nand_data *host, - const struct nand_sdr_timings *sdrt, - struct fsmc_nand_timings *tims) -{ - unsigned long hclk = clk_get_rate(host->clk); - unsigned long hclkn = NSEC_PER_SEC / hclk; - uint32_t thiz, thold, twait, tset; - - if (sdrt->tRC_min < 30000) - return -EOPNOTSUPP; - - tims->tar = DIV_ROUND_UP(sdrt->tAR_min / 1000, hclkn) - 1; - if (tims->tar > FSMC_TAR_MASK) - tims->tar = FSMC_TAR_MASK; - tims->tclr = DIV_ROUND_UP(sdrt->tCLR_min / 1000, hclkn) - 1; - if (tims->tclr > FSMC_TCLR_MASK) - tims->tclr = FSMC_TCLR_MASK; - - thiz = sdrt->tCS_min - sdrt->tWP_min; - tims->thiz = DIV_ROUND_UP(thiz / 1000, hclkn); - - thold = sdrt->tDH_min; - if (thold < sdrt->tCH_min) - thold = sdrt->tCH_min; - if (thold < sdrt->tCLH_min) - thold = sdrt->tCLH_min; - if (thold < sdrt->tWH_min) - thold = sdrt->tWH_min; - if (thold < sdrt->tALH_min) - thold = sdrt->tALH_min; - if (thold < sdrt->tREH_min) - thold = sdrt->tREH_min; - tims->thold = DIV_ROUND_UP(thold / 1000, hclkn); - if (tims->thold == 0) - tims->thold = 1; - else if (tims->thold > FSMC_THOLD_MASK) - tims->thold = FSMC_THOLD_MASK; - - twait = max(sdrt->tRP_min, sdrt->tWP_min); - tims->twait = DIV_ROUND_UP(twait / 1000, hclkn) - 1; - if (tims->twait == 0) - tims->twait = 1; - else if (tims->twait > FSMC_TWAIT_MASK) - tims->twait = FSMC_TWAIT_MASK; - - tset = max(sdrt->tCS_min - sdrt->tWP_min, - sdrt->tCEA_max - sdrt->tREA_max); - tims->tset = DIV_ROUND_UP(tset / 1000, hclkn) - 1; - if (tims->tset == 0) - tims->tset = 1; - else if (tims->tset > FSMC_TSET_MASK) - tims->tset = FSMC_TSET_MASK; - - return 0; -} - -static int fsmc_setup_data_interface(struct mtd_info *mtd, int csline, - const struct nand_data_interface *conf) -{ - struct nand_chip *nand = mtd_to_nand(mtd); - struct fsmc_nand_data *host = nand_get_controller_data(nand); - struct fsmc_nand_timings tims; - const struct nand_sdr_timings *sdrt; - int ret; - - sdrt = nand_get_sdr_timings(conf); - if (IS_ERR(sdrt)) - return PTR_ERR(sdrt); - - ret = fsmc_calc_timings(host, sdrt, &tims); - if (ret) - return ret; - - if (csline == NAND_DATA_IFACE_CHECK_ONLY) - return 0; - - fsmc_nand_setup(host, &tims); - - return 0; -} - -/* - * fsmc_enable_hwecc - Enables Hardware ECC through FSMC registers - */ -static void fsmc_enable_hwecc(struct mtd_info *mtd, int mode) -{ - struct fsmc_nand_data *host = mtd_to_fsmc(mtd); - void __iomem *regs = host->regs_va; - uint32_t bank = host->bank; - - writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) & ~FSMC_ECCPLEN_256, - FSMC_NAND_REG(regs, bank, PC)); - writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) & ~FSMC_ECCEN, - FSMC_NAND_REG(regs, bank, PC)); - writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) | FSMC_ECCEN, - FSMC_NAND_REG(regs, bank, PC)); -} - -/* - * fsmc_read_hwecc_ecc4 - Hardware ECC calculator for ecc4 option supported by - * FSMC. ECC is 13 bytes for 512 bytes of data (supports error correction up to - * max of 8-bits) - */ -static int fsmc_read_hwecc_ecc4(struct mtd_info *mtd, const uint8_t *data, - uint8_t *ecc) -{ - struct fsmc_nand_data *host = mtd_to_fsmc(mtd); - void __iomem *regs = host->regs_va; - uint32_t bank = host->bank; - uint32_t ecc_tmp; - unsigned long deadline = jiffies + FSMC_BUSY_WAIT_TIMEOUT; - - do { - if (readl_relaxed(FSMC_NAND_REG(regs, bank, STS)) & FSMC_CODE_RDY) - break; - else - cond_resched(); - } while (!time_after_eq(jiffies, deadline)); - - if (time_after_eq(jiffies, deadline)) { - dev_err(host->dev, "calculate ecc timed out\n"); - return -ETIMEDOUT; - } - - ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC1)); - ecc[0] = (uint8_t) (ecc_tmp >> 0); - ecc[1] = (uint8_t) (ecc_tmp >> 8); - ecc[2] = (uint8_t) (ecc_tmp >> 16); - ecc[3] = (uint8_t) (ecc_tmp >> 24); - - ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC2)); - ecc[4] = (uint8_t) (ecc_tmp >> 0); - ecc[5] = (uint8_t) (ecc_tmp >> 8); - ecc[6] = (uint8_t) (ecc_tmp >> 16); - ecc[7] = (uint8_t) (ecc_tmp >> 24); - - ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC3)); - ecc[8] = (uint8_t) (ecc_tmp >> 0); - ecc[9] = (uint8_t) (ecc_tmp >> 8); - ecc[10] = (uint8_t) (ecc_tmp >> 16); - ecc[11] = (uint8_t) (ecc_tmp >> 24); - - ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, STS)); - ecc[12] = (uint8_t) (ecc_tmp >> 16); - - return 0; -} - -/* - * fsmc_read_hwecc_ecc1 - Hardware ECC calculator for ecc1 option supported by - * FSMC. ECC is 3 bytes for 512 bytes of data (supports error correction up to - * max of 1-bit) - */ -static int fsmc_read_hwecc_ecc1(struct mtd_info *mtd, const uint8_t *data, - uint8_t *ecc) -{ - struct fsmc_nand_data *host = mtd_to_fsmc(mtd); - void __iomem *regs = host->regs_va; - uint32_t bank = host->bank; - uint32_t ecc_tmp; - - ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC1)); - ecc[0] = (uint8_t) (ecc_tmp >> 0); - ecc[1] = (uint8_t) (ecc_tmp >> 8); - ecc[2] = (uint8_t) (ecc_tmp >> 16); - - return 0; -} - -/* Count the number of 0's in buff upto a max of max_bits */ -static int count_written_bits(uint8_t *buff, int size, int max_bits) -{ - int k, written_bits = 0; - - for (k = 0; k < size; k++) { - written_bits += hweight8(~buff[k]); - if (written_bits > max_bits) - break; - } - - return written_bits; -} - -static void dma_complete(void *param) -{ - struct fsmc_nand_data *host = param; - - complete(&host->dma_access_complete); -} - -static int dma_xfer(struct fsmc_nand_data *host, void *buffer, int len, - enum dma_data_direction direction) -{ - struct dma_chan *chan; - struct dma_device *dma_dev; - struct dma_async_tx_descriptor *tx; - dma_addr_t dma_dst, dma_src, dma_addr; - dma_cookie_t cookie; - unsigned long flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT; - int ret; - unsigned long time_left; - - if (direction == DMA_TO_DEVICE) - chan = host->write_dma_chan; - else if (direction == DMA_FROM_DEVICE) - chan = host->read_dma_chan; - else - return -EINVAL; - - dma_dev = chan->device; - dma_addr = dma_map_single(dma_dev->dev, buffer, len, direction); - - if (direction == DMA_TO_DEVICE) { - dma_src = dma_addr; - dma_dst = host->data_pa; - } else { - dma_src = host->data_pa; - dma_dst = dma_addr; - } - - tx = dma_dev->device_prep_dma_memcpy(chan, dma_dst, dma_src, - len, flags); - if (!tx) { - dev_err(host->dev, "device_prep_dma_memcpy error\n"); - ret = -EIO; - goto unmap_dma; - } - - tx->callback = dma_complete; - tx->callback_param = host; - cookie = tx->tx_submit(tx); - - ret = dma_submit_error(cookie); - if (ret) { - dev_err(host->dev, "dma_submit_error %d\n", cookie); - goto unmap_dma; - } - - dma_async_issue_pending(chan); - - time_left = - wait_for_completion_timeout(&host->dma_access_complete, - msecs_to_jiffies(3000)); - if (time_left == 0) { - dmaengine_terminate_all(chan); - dev_err(host->dev, "wait_for_completion_timeout\n"); - ret = -ETIMEDOUT; - goto unmap_dma; - } - - ret = 0; - -unmap_dma: - dma_unmap_single(dma_dev->dev, dma_addr, len, direction); - - return ret; -} - -/* - * fsmc_write_buf - write buffer to chip - * @mtd: MTD device structure - * @buf: data buffer - * @len: number of bytes to write - */ -static void fsmc_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) -{ - int i; - struct nand_chip *chip = mtd_to_nand(mtd); - - if (IS_ALIGNED((uint32_t)buf, sizeof(uint32_t)) && - IS_ALIGNED(len, sizeof(uint32_t))) { - uint32_t *p = (uint32_t *)buf; - len = len >> 2; - for (i = 0; i < len; i++) - writel_relaxed(p[i], chip->IO_ADDR_W); - } else { - for (i = 0; i < len; i++) - writeb_relaxed(buf[i], chip->IO_ADDR_W); - } -} - -/* - * fsmc_read_buf - read chip data into buffer - * @mtd: MTD device structure - * @buf: buffer to store date - * @len: number of bytes to read - */ -static void fsmc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) -{ - int i; - struct nand_chip *chip = mtd_to_nand(mtd); - - if (IS_ALIGNED((uint32_t)buf, sizeof(uint32_t)) && - IS_ALIGNED(len, sizeof(uint32_t))) { - uint32_t *p = (uint32_t *)buf; - len = len >> 2; - for (i = 0; i < len; i++) - p[i] = readl_relaxed(chip->IO_ADDR_R); - } else { - for (i = 0; i < len; i++) - buf[i] = readb_relaxed(chip->IO_ADDR_R); - } -} - -/* - * fsmc_read_buf_dma - read chip data into buffer - * @mtd: MTD device structure - * @buf: buffer to store date - * @len: number of bytes to read - */ -static void fsmc_read_buf_dma(struct mtd_info *mtd, uint8_t *buf, int len) -{ - struct fsmc_nand_data *host = mtd_to_fsmc(mtd); - - dma_xfer(host, buf, len, DMA_FROM_DEVICE); -} - -/* - * fsmc_write_buf_dma - write buffer to chip - * @mtd: MTD device structure - * @buf: data buffer - * @len: number of bytes to write - */ -static void fsmc_write_buf_dma(struct mtd_info *mtd, const uint8_t *buf, - int len) -{ - struct fsmc_nand_data *host = mtd_to_fsmc(mtd); - - dma_xfer(host, (void *)buf, len, DMA_TO_DEVICE); -} - -/* - * fsmc_read_page_hwecc - * @mtd: mtd info structure - * @chip: nand chip info structure - * @buf: buffer to store read data - * @oob_required: caller expects OOB data read to chip->oob_poi - * @page: page number to read - * - * This routine is needed for fsmc version 8 as reading from NAND chip has to be - * performed in a strict sequence as follows: - * data(512 byte) -> ecc(13 byte) - * After this read, fsmc hardware generates and reports error data bits(up to a - * max of 8 bits) - */ -static int fsmc_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip, - uint8_t *buf, int oob_required, int page) -{ - int i, j, s, stat, eccsize = chip->ecc.size; - int eccbytes = chip->ecc.bytes; - int eccsteps = chip->ecc.steps; - uint8_t *p = buf; - uint8_t *ecc_calc = chip->ecc.calc_buf; - uint8_t *ecc_code = chip->ecc.code_buf; - int off, len, group = 0; - /* - * ecc_oob is intentionally taken as uint16_t. In 16bit devices, we - * end up reading 14 bytes (7 words) from oob. The local array is - * to maintain word alignment - */ - uint16_t ecc_oob[7]; - uint8_t *oob = (uint8_t *)&ecc_oob[0]; - unsigned int max_bitflips = 0; - - for (i = 0, s = 0; s < eccsteps; s++, i += eccbytes, p += eccsize) { - nand_read_page_op(chip, page, s * eccsize, NULL, 0); - chip->ecc.hwctl(mtd, NAND_ECC_READ); - chip->read_buf(mtd, p, eccsize); - - for (j = 0; j < eccbytes;) { - struct mtd_oob_region oobregion; - int ret; - - ret = mtd_ooblayout_ecc(mtd, group++, &oobregion); - if (ret) - return ret; - - off = oobregion.offset; - len = oobregion.length; - - /* - * length is intentionally kept a higher multiple of 2 - * to read at least 13 bytes even in case of 16 bit NAND - * devices - */ - if (chip->options & NAND_BUSWIDTH_16) - len = roundup(len, 2); - - nand_read_oob_op(chip, page, off, oob + j, len); - j += len; - } - - memcpy(&ecc_code[i], oob, chip->ecc.bytes); - chip->ecc.calculate(mtd, p, &ecc_calc[i]); - - stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]); - if (stat < 0) { - mtd->ecc_stats.failed++; - } else { - mtd->ecc_stats.corrected += stat; - max_bitflips = max_t(unsigned int, max_bitflips, stat); - } - } - - return max_bitflips; -} - -/* - * fsmc_bch8_correct_data - * @mtd: mtd info structure - * @dat: buffer of read data - * @read_ecc: ecc read from device spare area - * @calc_ecc: ecc calculated from read data - * - * calc_ecc is a 104 bit information containing maximum of 8 error - * offset informations of 13 bits each in 512 bytes of read data. - */ -static int fsmc_bch8_correct_data(struct mtd_info *mtd, uint8_t *dat, - uint8_t *read_ecc, uint8_t *calc_ecc) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct fsmc_nand_data *host = mtd_to_fsmc(mtd); - void __iomem *regs = host->regs_va; - unsigned int bank = host->bank; - uint32_t err_idx[8]; - uint32_t num_err, i; - uint32_t ecc1, ecc2, ecc3, ecc4; - - num_err = (readl_relaxed(FSMC_NAND_REG(regs, bank, STS)) >> 10) & 0xF; - - /* no bit flipping */ - if (likely(num_err == 0)) - return 0; - - /* too many errors */ - if (unlikely(num_err > 8)) { - /* - * This is a temporary erase check. A newly erased page read - * would result in an ecc error because the oob data is also - * erased to FF and the calculated ecc for an FF data is not - * FF..FF. - * This is a workaround to skip performing correction in case - * data is FF..FF - * - * Logic: - * For every page, each bit written as 0 is counted until these - * number of bits are greater than 8 (the maximum correction - * capability of FSMC for each 512 + 13 bytes) - */ - - int bits_ecc = count_written_bits(read_ecc, chip->ecc.bytes, 8); - int bits_data = count_written_bits(dat, chip->ecc.size, 8); - - if ((bits_ecc + bits_data) <= 8) { - if (bits_data) - memset(dat, 0xff, chip->ecc.size); - return bits_data; - } - - return -EBADMSG; - } - - /* - * ------------------- calc_ecc[] bit wise -----------|--13 bits--| - * |---idx[7]--|--.....-----|---idx[2]--||---idx[1]--||---idx[0]--| - * - * calc_ecc is a 104 bit information containing maximum of 8 error - * offset informations of 13 bits each. calc_ecc is copied into a - * uint64_t array and error offset indexes are populated in err_idx - * array - */ - ecc1 = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC1)); - ecc2 = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC2)); - ecc3 = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC3)); - ecc4 = readl_relaxed(FSMC_NAND_REG(regs, bank, STS)); - - err_idx[0] = (ecc1 >> 0) & 0x1FFF; - err_idx[1] = (ecc1 >> 13) & 0x1FFF; - err_idx[2] = (((ecc2 >> 0) & 0x7F) << 6) | ((ecc1 >> 26) & 0x3F); - err_idx[3] = (ecc2 >> 7) & 0x1FFF; - err_idx[4] = (((ecc3 >> 0) & 0x1) << 12) | ((ecc2 >> 20) & 0xFFF); - err_idx[5] = (ecc3 >> 1) & 0x1FFF; - err_idx[6] = (ecc3 >> 14) & 0x1FFF; - err_idx[7] = (((ecc4 >> 16) & 0xFF) << 5) | ((ecc3 >> 27) & 0x1F); - - i = 0; - while (num_err--) { - change_bit(0, (unsigned long *)&err_idx[i]); - change_bit(1, (unsigned long *)&err_idx[i]); - - if (err_idx[i] < chip->ecc.size * 8) { - change_bit(err_idx[i], (unsigned long *)dat); - i++; - } - } - return i; -} - -static bool filter(struct dma_chan *chan, void *slave) -{ - chan->private = slave; - return true; -} - -static int fsmc_nand_probe_config_dt(struct platform_device *pdev, - struct fsmc_nand_data *host, - struct nand_chip *nand) -{ - struct device_node *np = pdev->dev.of_node; - u32 val; - int ret; - - nand->options = 0; - - if (!of_property_read_u32(np, "bank-width", &val)) { - if (val == 2) { - nand->options |= NAND_BUSWIDTH_16; - } else if (val != 1) { - dev_err(&pdev->dev, "invalid bank-width %u\n", val); - return -EINVAL; - } - } - - if (of_get_property(np, "nand-skip-bbtscan", NULL)) - nand->options |= NAND_SKIP_BBTSCAN; - - host->dev_timings = devm_kzalloc(&pdev->dev, - sizeof(*host->dev_timings), GFP_KERNEL); - if (!host->dev_timings) - return -ENOMEM; - ret = of_property_read_u8_array(np, "timings", (u8 *)host->dev_timings, - sizeof(*host->dev_timings)); - if (ret) - host->dev_timings = NULL; - - /* Set default NAND bank to 0 */ - host->bank = 0; - if (!of_property_read_u32(np, "bank", &val)) { - if (val > 3) { - dev_err(&pdev->dev, "invalid bank %u\n", val); - return -EINVAL; - } - host->bank = val; - } - return 0; -} - -/* - * fsmc_nand_probe - Probe function - * @pdev: platform device structure - */ -static int __init fsmc_nand_probe(struct platform_device *pdev) -{ - struct fsmc_nand_data *host; - struct mtd_info *mtd; - struct nand_chip *nand; - struct resource *res; - dma_cap_mask_t mask; - int ret = 0; - u32 pid; - int i; - - /* Allocate memory for the device structure (and zero it) */ - host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL); - if (!host) - return -ENOMEM; - - nand = &host->nand; - - ret = fsmc_nand_probe_config_dt(pdev, host, nand); - if (ret) - return ret; - - res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_data"); - host->data_va = devm_ioremap_resource(&pdev->dev, res); - if (IS_ERR(host->data_va)) - return PTR_ERR(host->data_va); - - host->data_pa = (dma_addr_t)res->start; - - res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_addr"); - host->addr_va = devm_ioremap_resource(&pdev->dev, res); - if (IS_ERR(host->addr_va)) - return PTR_ERR(host->addr_va); - - res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_cmd"); - host->cmd_va = devm_ioremap_resource(&pdev->dev, res); - if (IS_ERR(host->cmd_va)) - return PTR_ERR(host->cmd_va); - - res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "fsmc_regs"); - host->regs_va = devm_ioremap_resource(&pdev->dev, res); - if (IS_ERR(host->regs_va)) - return PTR_ERR(host->regs_va); - - host->clk = devm_clk_get(&pdev->dev, NULL); - if (IS_ERR(host->clk)) { - dev_err(&pdev->dev, "failed to fetch block clock\n"); - return PTR_ERR(host->clk); - } - - ret = clk_prepare_enable(host->clk); - if (ret) - return ret; - - /* - * This device ID is actually a common AMBA ID as used on the - * AMBA PrimeCell bus. However it is not a PrimeCell. - */ - for (pid = 0, i = 0; i < 4; i++) - pid |= (readl(host->regs_va + resource_size(res) - 0x20 + 4 * i) & 255) << (i * 8); - host->pid = pid; - dev_info(&pdev->dev, "FSMC device partno %03x, manufacturer %02x, " - "revision %02x, config %02x\n", - AMBA_PART_BITS(pid), AMBA_MANF_BITS(pid), - AMBA_REV_BITS(pid), AMBA_CONFIG_BITS(pid)); - - host->dev = &pdev->dev; - - if (host->mode == USE_DMA_ACCESS) - init_completion(&host->dma_access_complete); - - /* Link all private pointers */ - mtd = nand_to_mtd(&host->nand); - nand_set_controller_data(nand, host); - nand_set_flash_node(nand, pdev->dev.of_node); - - mtd->dev.parent = &pdev->dev; - nand->IO_ADDR_R = host->data_va; - nand->IO_ADDR_W = host->data_va; - nand->cmd_ctrl = fsmc_cmd_ctrl; - nand->chip_delay = 30; - - /* - * Setup default ECC mode. nand_dt_init() called from nand_scan_ident() - * can overwrite this value if the DT provides a different value. - */ - nand->ecc.mode = NAND_ECC_HW; - nand->ecc.hwctl = fsmc_enable_hwecc; - nand->ecc.size = 512; - nand->badblockbits = 7; - - switch (host->mode) { - case USE_DMA_ACCESS: - dma_cap_zero(mask); - dma_cap_set(DMA_MEMCPY, mask); - host->read_dma_chan = dma_request_channel(mask, filter, NULL); - if (!host->read_dma_chan) { - dev_err(&pdev->dev, "Unable to get read dma channel\n"); - goto err_req_read_chnl; - } - host->write_dma_chan = dma_request_channel(mask, filter, NULL); - if (!host->write_dma_chan) { - dev_err(&pdev->dev, "Unable to get write dma channel\n"); - goto err_req_write_chnl; - } - nand->read_buf = fsmc_read_buf_dma; - nand->write_buf = fsmc_write_buf_dma; - break; - - default: - case USE_WORD_ACCESS: - nand->read_buf = fsmc_read_buf; - nand->write_buf = fsmc_write_buf; - break; - } - - if (host->dev_timings) - fsmc_nand_setup(host, host->dev_timings); - else - nand->setup_data_interface = fsmc_setup_data_interface; - - if (AMBA_REV_BITS(host->pid) >= 8) { - nand->ecc.read_page = fsmc_read_page_hwecc; - nand->ecc.calculate = fsmc_read_hwecc_ecc4; - nand->ecc.correct = fsmc_bch8_correct_data; - nand->ecc.bytes = 13; - nand->ecc.strength = 8; - } - - /* - * Scan to find existence of the device - */ - ret = nand_scan_ident(mtd, 1, NULL); - if (ret) { - dev_err(&pdev->dev, "No NAND Device found!\n"); - goto err_scan_ident; - } - - if (AMBA_REV_BITS(host->pid) >= 8) { - switch (mtd->oobsize) { - case 16: - case 64: - case 128: - case 224: - case 256: - break; - default: - dev_warn(&pdev->dev, "No oob scheme defined for oobsize %d\n", - mtd->oobsize); - ret = -EINVAL; - goto err_probe; - } - - mtd_set_ooblayout(mtd, &fsmc_ecc4_ooblayout_ops); - } else { - switch (nand->ecc.mode) { - case NAND_ECC_HW: - dev_info(&pdev->dev, "Using 1-bit HW ECC scheme\n"); - nand->ecc.calculate = fsmc_read_hwecc_ecc1; - nand->ecc.correct = nand_correct_data; - nand->ecc.bytes = 3; - nand->ecc.strength = 1; - break; - - case NAND_ECC_SOFT: - if (nand->ecc.algo == NAND_ECC_BCH) { - dev_info(&pdev->dev, "Using 4-bit SW BCH ECC scheme\n"); - break; - } - - case NAND_ECC_ON_DIE: - break; - - default: - dev_err(&pdev->dev, "Unsupported ECC mode!\n"); - goto err_probe; - } - - /* - * Don't set layout for BCH4 SW ECC. This will be - * generated later in nand_bch_init() later. - */ - if (nand->ecc.mode == NAND_ECC_HW) { - switch (mtd->oobsize) { - case 16: - case 64: - case 128: - mtd_set_ooblayout(mtd, - &fsmc_ecc1_ooblayout_ops); - break; - default: - dev_warn(&pdev->dev, - "No oob scheme defined for oobsize %d\n", - mtd->oobsize); - ret = -EINVAL; - goto err_probe; - } - } - } - - /* Second stage of scan to fill MTD data-structures */ - ret = nand_scan_tail(mtd); - if (ret) - goto err_probe; - - mtd->name = "nand"; - ret = mtd_device_register(mtd, NULL, 0); - if (ret) - goto err_probe; - - platform_set_drvdata(pdev, host); - dev_info(&pdev->dev, "FSMC NAND driver registration successful\n"); - return 0; - -err_probe: -err_scan_ident: - if (host->mode == USE_DMA_ACCESS) - dma_release_channel(host->write_dma_chan); -err_req_write_chnl: - if (host->mode == USE_DMA_ACCESS) - dma_release_channel(host->read_dma_chan); -err_req_read_chnl: - clk_disable_unprepare(host->clk); - return ret; -} - -/* - * Clean up routine - */ -static int fsmc_nand_remove(struct platform_device *pdev) -{ - struct fsmc_nand_data *host = platform_get_drvdata(pdev); - - if (host) { - nand_release(nand_to_mtd(&host->nand)); - - if (host->mode == USE_DMA_ACCESS) { - dma_release_channel(host->write_dma_chan); - dma_release_channel(host->read_dma_chan); - } - clk_disable_unprepare(host->clk); - } - - return 0; -} - -#ifdef CONFIG_PM_SLEEP -static int fsmc_nand_suspend(struct device *dev) -{ - struct fsmc_nand_data *host = dev_get_drvdata(dev); - if (host) - clk_disable_unprepare(host->clk); - return 0; -} - -static int fsmc_nand_resume(struct device *dev) -{ - struct fsmc_nand_data *host = dev_get_drvdata(dev); - if (host) { - clk_prepare_enable(host->clk); - if (host->dev_timings) - fsmc_nand_setup(host, host->dev_timings); - } - return 0; -} -#endif - -static SIMPLE_DEV_PM_OPS(fsmc_nand_pm_ops, fsmc_nand_suspend, fsmc_nand_resume); - -static const struct of_device_id fsmc_nand_id_table[] = { - { .compatible = "st,spear600-fsmc-nand" }, - { .compatible = "stericsson,fsmc-nand" }, - {} -}; -MODULE_DEVICE_TABLE(of, fsmc_nand_id_table); - -static struct platform_driver fsmc_nand_driver = { - .remove = fsmc_nand_remove, - .driver = { - .name = "fsmc-nand", - .of_match_table = fsmc_nand_id_table, - .pm = &fsmc_nand_pm_ops, - }, -}; - -module_platform_driver_probe(fsmc_nand_driver, fsmc_nand_probe); - -MODULE_LICENSE("GPL"); -MODULE_AUTHOR("Vipin Kumar , Ashish Priyadarshi"); -MODULE_DESCRIPTION("NAND driver for SPEAr Platforms"); diff --git a/drivers/mtd/nand/gpio.c b/drivers/mtd/nand/gpio.c deleted file mode 100644 index 2780af26d9ab..000000000000 --- a/drivers/mtd/nand/gpio.c +++ /dev/null @@ -1,327 +0,0 @@ -/* - * Updated, and converted to generic GPIO based driver by Russell King. - * - * Written by Ben Dooks - * Based on 2.4 version by Mark Whittaker - * - * © 2004 Simtec Electronics - * - * Device driver for NAND flash that uses a memory mapped interface to - * read/write the NAND commands and data, and GPIO pins for control signals - * (the DT binding refers to this as "GPIO assisted NAND flash") - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License version 2 as - * published by the Free Software Foundation. - * - */ - -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include - -struct gpiomtd { - void __iomem *io_sync; - struct nand_chip nand_chip; - struct gpio_nand_platdata plat; - struct gpio_desc *nce; /* Optional chip enable */ - struct gpio_desc *cle; - struct gpio_desc *ale; - struct gpio_desc *rdy; - struct gpio_desc *nwp; /* Optional write protection */ -}; - -static inline struct gpiomtd *gpio_nand_getpriv(struct mtd_info *mtd) -{ - return container_of(mtd_to_nand(mtd), struct gpiomtd, nand_chip); -} - - -#ifdef CONFIG_ARM -/* gpio_nand_dosync() - * - * Make sure the GPIO state changes occur in-order with writes to NAND - * memory region. - * Needed on PXA due to bus-reordering within the SoC itself (see section on - * I/O ordering in PXA manual (section 2.3, p35) - */ -static void gpio_nand_dosync(struct gpiomtd *gpiomtd) -{ - unsigned long tmp; - - if (gpiomtd->io_sync) { - /* - * Linux memory barriers don't cater for what's required here. - * What's required is what's here - a read from a separate - * region with a dependency on that read. - */ - tmp = readl(gpiomtd->io_sync); - asm volatile("mov %1, %0\n" : "=r" (tmp) : "r" (tmp)); - } -} -#else -static inline void gpio_nand_dosync(struct gpiomtd *gpiomtd) {} -#endif - -static void gpio_nand_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl) -{ - struct gpiomtd *gpiomtd = gpio_nand_getpriv(mtd); - - gpio_nand_dosync(gpiomtd); - - if (ctrl & NAND_CTRL_CHANGE) { - if (gpiomtd->nce) - gpiod_set_value(gpiomtd->nce, !(ctrl & NAND_NCE)); - gpiod_set_value(gpiomtd->cle, !!(ctrl & NAND_CLE)); - gpiod_set_value(gpiomtd->ale, !!(ctrl & NAND_ALE)); - gpio_nand_dosync(gpiomtd); - } - if (cmd == NAND_CMD_NONE) - return; - - writeb(cmd, gpiomtd->nand_chip.IO_ADDR_W); - gpio_nand_dosync(gpiomtd); -} - -static int gpio_nand_devready(struct mtd_info *mtd) -{ - struct gpiomtd *gpiomtd = gpio_nand_getpriv(mtd); - - return gpiod_get_value(gpiomtd->rdy); -} - -#ifdef CONFIG_OF -static const struct of_device_id gpio_nand_id_table[] = { - { .compatible = "gpio-control-nand" }, - {} -}; -MODULE_DEVICE_TABLE(of, gpio_nand_id_table); - -static int gpio_nand_get_config_of(const struct device *dev, - struct gpio_nand_platdata *plat) -{ - u32 val; - - if (!dev->of_node) - return -ENODEV; - - if (!of_property_read_u32(dev->of_node, "bank-width", &val)) { - if (val == 2) { - plat->options |= NAND_BUSWIDTH_16; - } else if (val != 1) { - dev_err(dev, "invalid bank-width %u\n", val); - return -EINVAL; - } - } - - if (!of_property_read_u32(dev->of_node, "chip-delay", &val)) - plat->chip_delay = val; - - return 0; -} - -static struct resource *gpio_nand_get_io_sync_of(struct platform_device *pdev) -{ - struct resource *r; - u64 addr; - - if (of_property_read_u64(pdev->dev.of_node, - "gpio-control-nand,io-sync-reg", &addr)) - return NULL; - - r = devm_kzalloc(&pdev->dev, sizeof(*r), GFP_KERNEL); - if (!r) - return NULL; - - r->start = addr; - r->end = r->start + 0x3; - r->flags = IORESOURCE_MEM; - - return r; -} -#else /* CONFIG_OF */ -static inline int gpio_nand_get_config_of(const struct device *dev, - struct gpio_nand_platdata *plat) -{ - return -ENOSYS; -} - -static inline struct resource * -gpio_nand_get_io_sync_of(struct platform_device *pdev) -{ - return NULL; -} -#endif /* CONFIG_OF */ - -static inline int gpio_nand_get_config(const struct device *dev, - struct gpio_nand_platdata *plat) -{ - int ret = gpio_nand_get_config_of(dev, plat); - - if (!ret) - return ret; - - if (dev_get_platdata(dev)) { - memcpy(plat, dev_get_platdata(dev), sizeof(*plat)); - return 0; - } - - return -EINVAL; -} - -static inline struct resource * -gpio_nand_get_io_sync(struct platform_device *pdev) -{ - struct resource *r = gpio_nand_get_io_sync_of(pdev); - - if (r) - return r; - - return platform_get_resource(pdev, IORESOURCE_MEM, 1); -} - -static int gpio_nand_remove(struct platform_device *pdev) -{ - struct gpiomtd *gpiomtd = platform_get_drvdata(pdev); - - nand_release(nand_to_mtd(&gpiomtd->nand_chip)); - - /* Enable write protection and disable the chip */ - if (gpiomtd->nwp && !IS_ERR(gpiomtd->nwp)) - gpiod_set_value(gpiomtd->nwp, 0); - if (gpiomtd->nce && !IS_ERR(gpiomtd->nce)) - gpiod_set_value(gpiomtd->nce, 0); - - return 0; -} - -static int gpio_nand_probe(struct platform_device *pdev) -{ - struct gpiomtd *gpiomtd; - struct nand_chip *chip; - struct mtd_info *mtd; - struct resource *res; - struct device *dev = &pdev->dev; - int ret = 0; - - if (!dev->of_node && !dev_get_platdata(dev)) - return -EINVAL; - - gpiomtd = devm_kzalloc(dev, sizeof(*gpiomtd), GFP_KERNEL); - if (!gpiomtd) - return -ENOMEM; - - chip = &gpiomtd->nand_chip; - - res = platform_get_resource(pdev, IORESOURCE_MEM, 0); - chip->IO_ADDR_R = devm_ioremap_resource(dev, res); - if (IS_ERR(chip->IO_ADDR_R)) - return PTR_ERR(chip->IO_ADDR_R); - - res = gpio_nand_get_io_sync(pdev); - if (res) { - gpiomtd->io_sync = devm_ioremap_resource(dev, res); - if (IS_ERR(gpiomtd->io_sync)) - return PTR_ERR(gpiomtd->io_sync); - } - - ret = gpio_nand_get_config(dev, &gpiomtd->plat); - if (ret) - return ret; - - /* Just enable the chip */ - gpiomtd->nce = devm_gpiod_get_optional(dev, "nce", GPIOD_OUT_HIGH); - if (IS_ERR(gpiomtd->nce)) - return PTR_ERR(gpiomtd->nce); - - /* We disable write protection once we know probe() will succeed */ - gpiomtd->nwp = devm_gpiod_get_optional(dev, "nwp", GPIOD_OUT_LOW); - if (IS_ERR(gpiomtd->nwp)) { - ret = PTR_ERR(gpiomtd->nwp); - goto out_ce; - } - - gpiomtd->ale = devm_gpiod_get(dev, "ale", GPIOD_OUT_LOW); - if (IS_ERR(gpiomtd->ale)) { - ret = PTR_ERR(gpiomtd->ale); - goto out_ce; - } - - gpiomtd->cle = devm_gpiod_get(dev, "cle", GPIOD_OUT_LOW); - if (IS_ERR(gpiomtd->cle)) { - ret = PTR_ERR(gpiomtd->cle); - goto out_ce; - } - - gpiomtd->rdy = devm_gpiod_get_optional(dev, "rdy", GPIOD_IN); - if (IS_ERR(gpiomtd->rdy)) { - ret = PTR_ERR(gpiomtd->rdy); - goto out_ce; - } - /* Using RDY pin */ - if (gpiomtd->rdy) - chip->dev_ready = gpio_nand_devready; - - nand_set_flash_node(chip, pdev->dev.of_node); - chip->IO_ADDR_W = chip->IO_ADDR_R; - chip->ecc.mode = NAND_ECC_SOFT; - chip->ecc.algo = NAND_ECC_HAMMING; - chip->options = gpiomtd->plat.options; - chip->chip_delay = gpiomtd->plat.chip_delay; - chip->cmd_ctrl = gpio_nand_cmd_ctrl; - - mtd = nand_to_mtd(chip); - mtd->dev.parent = dev; - - platform_set_drvdata(pdev, gpiomtd); - - /* Disable write protection, if wired up */ - if (gpiomtd->nwp && !IS_ERR(gpiomtd->nwp)) - gpiod_direction_output(gpiomtd->nwp, 1); - - ret = nand_scan(mtd, 1); - if (ret) - goto err_wp; - - if (gpiomtd->plat.adjust_parts) - gpiomtd->plat.adjust_parts(&gpiomtd->plat, mtd->size); - - ret = mtd_device_register(mtd, gpiomtd->plat.parts, - gpiomtd->plat.num_parts); - if (!ret) - return 0; - -err_wp: - if (gpiomtd->nwp && !IS_ERR(gpiomtd->nwp)) - gpiod_set_value(gpiomtd->nwp, 0); -out_ce: - if (gpiomtd->nce && !IS_ERR(gpiomtd->nce)) - gpiod_set_value(gpiomtd->nce, 0); - - return ret; -} - -static struct platform_driver gpio_nand_driver = { - .probe = gpio_nand_probe, - .remove = gpio_nand_remove, - .driver = { - .name = "gpio-nand", - .of_match_table = of_match_ptr(gpio_nand_id_table), - }, -}; - -module_platform_driver(gpio_nand_driver); - -MODULE_LICENSE("GPL"); -MODULE_AUTHOR("Ben Dooks "); -MODULE_DESCRIPTION("GPIO NAND Driver"); diff --git a/drivers/mtd/nand/gpmi-nand/Makefile b/drivers/mtd/nand/gpmi-nand/Makefile deleted file mode 100644 index 3a462487c35e..000000000000 --- a/drivers/mtd/nand/gpmi-nand/Makefile +++ /dev/null @@ -1,3 +0,0 @@ -obj-$(CONFIG_MTD_NAND_GPMI_NAND) += gpmi_nand.o -gpmi_nand-objs += gpmi-nand.o -gpmi_nand-objs += gpmi-lib.o diff --git a/drivers/mtd/nand/gpmi-nand/bch-regs.h b/drivers/mtd/nand/gpmi-nand/bch-regs.h deleted file mode 100644 index 05bb91f2f4c4..000000000000 --- a/drivers/mtd/nand/gpmi-nand/bch-regs.h +++ /dev/null @@ -1,128 +0,0 @@ -/* - * Freescale GPMI NAND Flash Driver - * - * Copyright 2008-2011 Freescale Semiconductor, Inc. - * Copyright 2008 Embedded Alley Solutions, Inc. - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation; either version 2 of the License, or - * (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License along - * with this program; if not, write to the Free Software Foundation, Inc., - * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. - */ -#ifndef __GPMI_NAND_BCH_REGS_H -#define __GPMI_NAND_BCH_REGS_H - -#define HW_BCH_CTRL 0x00000000 -#define HW_BCH_CTRL_SET 0x00000004 -#define HW_BCH_CTRL_CLR 0x00000008 -#define HW_BCH_CTRL_TOG 0x0000000c - -#define BM_BCH_CTRL_COMPLETE_IRQ_EN (1 << 8) -#define BM_BCH_CTRL_COMPLETE_IRQ (1 << 0) - -#define HW_BCH_STATUS0 0x00000010 -#define HW_BCH_MODE 0x00000020 -#define HW_BCH_ENCODEPTR 0x00000030 -#define HW_BCH_DATAPTR 0x00000040 -#define HW_BCH_METAPTR 0x00000050 -#define HW_BCH_LAYOUTSELECT 0x00000070 - -#define HW_BCH_FLASH0LAYOUT0 0x00000080 - -#define BP_BCH_FLASH0LAYOUT0_NBLOCKS 24 -#define BM_BCH_FLASH0LAYOUT0_NBLOCKS (0xff << BP_BCH_FLASH0LAYOUT0_NBLOCKS) -#define BF_BCH_FLASH0LAYOUT0_NBLOCKS(v) \ - (((v) << BP_BCH_FLASH0LAYOUT0_NBLOCKS) & BM_BCH_FLASH0LAYOUT0_NBLOCKS) - -#define BP_BCH_FLASH0LAYOUT0_META_SIZE 16 -#define BM_BCH_FLASH0LAYOUT0_META_SIZE (0xff << BP_BCH_FLASH0LAYOUT0_META_SIZE) -#define BF_BCH_FLASH0LAYOUT0_META_SIZE(v) \ - (((v) << BP_BCH_FLASH0LAYOUT0_META_SIZE)\ - & BM_BCH_FLASH0LAYOUT0_META_SIZE) - -#define BP_BCH_FLASH0LAYOUT0_ECC0 12 -#define BM_BCH_FLASH0LAYOUT0_ECC0 (0xf << BP_BCH_FLASH0LAYOUT0_ECC0) -#define MX6Q_BP_BCH_FLASH0LAYOUT0_ECC0 11 -#define MX6Q_BM_BCH_FLASH0LAYOUT0_ECC0 (0x1f << MX6Q_BP_BCH_FLASH0LAYOUT0_ECC0) -#define BF_BCH_FLASH0LAYOUT0_ECC0(v, x) \ - (GPMI_IS_MX6(x) \ - ? (((v) << MX6Q_BP_BCH_FLASH0LAYOUT0_ECC0) \ - & MX6Q_BM_BCH_FLASH0LAYOUT0_ECC0) \ - : (((v) << BP_BCH_FLASH0LAYOUT0_ECC0) \ - & BM_BCH_FLASH0LAYOUT0_ECC0) \ - ) - -#define MX6Q_BP_BCH_FLASH0LAYOUT0_GF_13_14 10 -#define MX6Q_BM_BCH_FLASH0LAYOUT0_GF_13_14 \ - (0x1 << MX6Q_BP_BCH_FLASH0LAYOUT0_GF_13_14) -#define BF_BCH_FLASH0LAYOUT0_GF(v, x) \ - ((GPMI_IS_MX6(x) && ((v) == 14)) \ - ? (((1) << MX6Q_BP_BCH_FLASH0LAYOUT0_GF_13_14) \ - & MX6Q_BM_BCH_FLASH0LAYOUT0_GF_13_14) \ - : 0 \ - ) - -#define BP_BCH_FLASH0LAYOUT0_DATA0_SIZE 0 -#define BM_BCH_FLASH0LAYOUT0_DATA0_SIZE \ - (0xfff << BP_BCH_FLASH0LAYOUT0_DATA0_SIZE) -#define MX6Q_BM_BCH_FLASH0LAYOUT0_DATA0_SIZE \ - (0x3ff << BP_BCH_FLASH0LAYOUT0_DATA0_SIZE) -#define BF_BCH_FLASH0LAYOUT0_DATA0_SIZE(v, x) \ - (GPMI_IS_MX6(x) \ - ? (((v) >> 2) & MX6Q_BM_BCH_FLASH0LAYOUT0_DATA0_SIZE) \ - : ((v) & BM_BCH_FLASH0LAYOUT0_DATA0_SIZE) \ - ) - -#define HW_BCH_FLASH0LAYOUT1 0x00000090 - -#define BP_BCH_FLASH0LAYOUT1_PAGE_SIZE 16 -#define BM_BCH_FLASH0LAYOUT1_PAGE_SIZE \ - (0xffff << BP_BCH_FLASH0LAYOUT1_PAGE_SIZE) -#define BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(v) \ - (((v) << BP_BCH_FLASH0LAYOUT1_PAGE_SIZE) \ - & BM_BCH_FLASH0LAYOUT1_PAGE_SIZE) - -#define BP_BCH_FLASH0LAYOUT1_ECCN 12 -#define BM_BCH_FLASH0LAYOUT1_ECCN (0xf << BP_BCH_FLASH0LAYOUT1_ECCN) -#define MX6Q_BP_BCH_FLASH0LAYOUT1_ECCN 11 -#define MX6Q_BM_BCH_FLASH0LAYOUT1_ECCN (0x1f << MX6Q_BP_BCH_FLASH0LAYOUT1_ECCN) -#define BF_BCH_FLASH0LAYOUT1_ECCN(v, x) \ - (GPMI_IS_MX6(x) \ - ? (((v) << MX6Q_BP_BCH_FLASH0LAYOUT1_ECCN) \ - & MX6Q_BM_BCH_FLASH0LAYOUT1_ECCN) \ - : (((v) << BP_BCH_FLASH0LAYOUT1_ECCN) \ - & BM_BCH_FLASH0LAYOUT1_ECCN) \ - ) - -#define MX6Q_BP_BCH_FLASH0LAYOUT1_GF_13_14 10 -#define MX6Q_BM_BCH_FLASH0LAYOUT1_GF_13_14 \ - (0x1 << MX6Q_BP_BCH_FLASH0LAYOUT1_GF_13_14) -#define BF_BCH_FLASH0LAYOUT1_GF(v, x) \ - ((GPMI_IS_MX6(x) && ((v) == 14)) \ - ? (((1) << MX6Q_BP_BCH_FLASH0LAYOUT1_GF_13_14) \ - & MX6Q_BM_BCH_FLASH0LAYOUT1_GF_13_14) \ - : 0 \ - ) - -#define BP_BCH_FLASH0LAYOUT1_DATAN_SIZE 0 -#define BM_BCH_FLASH0LAYOUT1_DATAN_SIZE \ - (0xfff << BP_BCH_FLASH0LAYOUT1_DATAN_SIZE) -#define MX6Q_BM_BCH_FLASH0LAYOUT1_DATAN_SIZE \ - (0x3ff << BP_BCH_FLASH0LAYOUT1_DATAN_SIZE) -#define BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(v, x) \ - (GPMI_IS_MX6(x) \ - ? (((v) >> 2) & MX6Q_BM_BCH_FLASH0LAYOUT1_DATAN_SIZE) \ - : ((v) & BM_BCH_FLASH0LAYOUT1_DATAN_SIZE) \ - ) - -#define HW_BCH_VERSION 0x00000160 -#endif diff --git a/drivers/mtd/nand/gpmi-nand/gpmi-lib.c b/drivers/mtd/nand/gpmi-nand/gpmi-lib.c deleted file mode 100644 index 97787246af41..000000000000 --- a/drivers/mtd/nand/gpmi-nand/gpmi-lib.c +++ /dev/null @@ -1,1510 +0,0 @@ -/* - * Freescale GPMI NAND Flash Driver - * - * Copyright (C) 2008-2011 Freescale Semiconductor, Inc. - * Copyright (C) 2008 Embedded Alley Solutions, Inc. - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation; either version 2 of the License, or - * (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License along - * with this program; if not, write to the Free Software Foundation, Inc., - * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. - */ -#include -#include -#include - -#include "gpmi-nand.h" -#include "gpmi-regs.h" -#include "bch-regs.h" - -static struct timing_threshold timing_default_threshold = { - .max_data_setup_cycles = (BM_GPMI_TIMING0_DATA_SETUP >> - BP_GPMI_TIMING0_DATA_SETUP), - .internal_data_setup_in_ns = 0, - .max_sample_delay_factor = (BM_GPMI_CTRL1_RDN_DELAY >> - BP_GPMI_CTRL1_RDN_DELAY), - .max_dll_clock_period_in_ns = 32, - .max_dll_delay_in_ns = 16, -}; - -#define MXS_SET_ADDR 0x4 -#define MXS_CLR_ADDR 0x8 -/* - * Clear the bit and poll it cleared. This is usually called with - * a reset address and mask being either SFTRST(bit 31) or CLKGATE - * (bit 30). - */ -static int clear_poll_bit(void __iomem *addr, u32 mask) -{ - int timeout = 0x400; - - /* clear the bit */ - writel(mask, addr + MXS_CLR_ADDR); - - /* - * SFTRST needs 3 GPMI clocks to settle, the reference manual - * recommends to wait 1us. - */ - udelay(1); - - /* poll the bit becoming clear */ - while ((readl(addr) & mask) && --timeout) - /* nothing */; - - return !timeout; -} - -#define MODULE_CLKGATE (1 << 30) -#define MODULE_SFTRST (1 << 31) -/* - * The current mxs_reset_block() will do two things: - * [1] enable the module. - * [2] reset the module. - * - * In most of the cases, it's ok. - * But in MX23, there is a hardware bug in the BCH block (see erratum #2847). - * If you try to soft reset the BCH block, it becomes unusable until - * the next hard reset. This case occurs in the NAND boot mode. When the board - * boots by NAND, the ROM of the chip will initialize the BCH blocks itself. - * So If the driver tries to reset the BCH again, the BCH will not work anymore. - * You will see a DMA timeout in this case. The bug has been fixed - * in the following chips, such as MX28. - * - * To avoid this bug, just add a new parameter `just_enable` for - * the mxs_reset_block(), and rewrite it here. - */ -static int gpmi_reset_block(void __iomem *reset_addr, bool just_enable) -{ - int ret; - int timeout = 0x400; - - /* clear and poll SFTRST */ - ret = clear_poll_bit(reset_addr, MODULE_SFTRST); - if (unlikely(ret)) - goto error; - - /* clear CLKGATE */ - writel(MODULE_CLKGATE, reset_addr + MXS_CLR_ADDR); - - if (!just_enable) { - /* set SFTRST to reset the block */ - writel(MODULE_SFTRST, reset_addr + MXS_SET_ADDR); - udelay(1); - - /* poll CLKGATE becoming set */ - while ((!(readl(reset_addr) & MODULE_CLKGATE)) && --timeout) - /* nothing */; - if (unlikely(!timeout)) - goto error; - } - - /* clear and poll SFTRST */ - ret = clear_poll_bit(reset_addr, MODULE_SFTRST); - if (unlikely(ret)) - goto error; - - /* clear and poll CLKGATE */ - ret = clear_poll_bit(reset_addr, MODULE_CLKGATE); - if (unlikely(ret)) - goto error; - - return 0; - -error: - pr_err("%s(%p): module reset timeout\n", __func__, reset_addr); - return -ETIMEDOUT; -} - -static int __gpmi_enable_clk(struct gpmi_nand_data *this, bool v) -{ - struct clk *clk; - int ret; - int i; - - for (i = 0; i < GPMI_CLK_MAX; i++) { - clk = this->resources.clock[i]; - if (!clk) - break; - - if (v) { - ret = clk_prepare_enable(clk); - if (ret) - goto err_clk; - } else { - clk_disable_unprepare(clk); - } - } - return 0; - -err_clk: - for (; i > 0; i--) - clk_disable_unprepare(this->resources.clock[i - 1]); - return ret; -} - -#define gpmi_enable_clk(x) __gpmi_enable_clk(x, true) -#define gpmi_disable_clk(x) __gpmi_enable_clk(x, false) - -int gpmi_init(struct gpmi_nand_data *this) -{ - struct resources *r = &this->resources; - int ret; - - ret = gpmi_enable_clk(this); - if (ret) - return ret; - ret = gpmi_reset_block(r->gpmi_regs, false); - if (ret) - goto err_out; - - /* - * Reset BCH here, too. We got failures otherwise :( - * See later BCH reset for explanation of MX23 handling - */ - ret = gpmi_reset_block(r->bch_regs, GPMI_IS_MX23(this)); - if (ret) - goto err_out; - - - /* Choose NAND mode. */ - writel(BM_GPMI_CTRL1_GPMI_MODE, r->gpmi_regs + HW_GPMI_CTRL1_CLR); - - /* Set the IRQ polarity. */ - writel(BM_GPMI_CTRL1_ATA_IRQRDY_POLARITY, - r->gpmi_regs + HW_GPMI_CTRL1_SET); - - /* Disable Write-Protection. */ - writel(BM_GPMI_CTRL1_DEV_RESET, r->gpmi_regs + HW_GPMI_CTRL1_SET); - - /* Select BCH ECC. */ - writel(BM_GPMI_CTRL1_BCH_MODE, r->gpmi_regs + HW_GPMI_CTRL1_SET); - - /* - * Decouple the chip select from dma channel. We use dma0 for all - * the chips. - */ - writel(BM_GPMI_CTRL1_DECOUPLE_CS, r->gpmi_regs + HW_GPMI_CTRL1_SET); - - gpmi_disable_clk(this); - return 0; -err_out: - gpmi_disable_clk(this); - return ret; -} - -/* This function is very useful. It is called only when the bug occur. */ -void gpmi_dump_info(struct gpmi_nand_data *this) -{ - struct resources *r = &this->resources; - struct bch_geometry *geo = &this->bch_geometry; - u32 reg; - int i; - - dev_err(this->dev, "Show GPMI registers :\n"); - for (i = 0; i <= HW_GPMI_DEBUG / 0x10 + 1; i++) { - reg = readl(r->gpmi_regs + i * 0x10); - dev_err(this->dev, "offset 0x%.3x : 0x%.8x\n", i * 0x10, reg); - } - - /* start to print out the BCH info */ - dev_err(this->dev, "Show BCH registers :\n"); - for (i = 0; i <= HW_BCH_VERSION / 0x10 + 1; i++) { - reg = readl(r->bch_regs + i * 0x10); - dev_err(this->dev, "offset 0x%.3x : 0x%.8x\n", i * 0x10, reg); - } - dev_err(this->dev, "BCH Geometry :\n" - "GF length : %u\n" - "ECC Strength : %u\n" - "Page Size in Bytes : %u\n" - "Metadata Size in Bytes : %u\n" - "ECC Chunk Size in Bytes: %u\n" - "ECC Chunk Count : %u\n" - "Payload Size in Bytes : %u\n" - "Auxiliary Size in Bytes: %u\n" - "Auxiliary Status Offset: %u\n" - "Block Mark Byte Offset : %u\n" - "Block Mark Bit Offset : %u\n", - geo->gf_len, - geo->ecc_strength, - geo->page_size, - geo->metadata_size, - geo->ecc_chunk_size, - geo->ecc_chunk_count, - geo->payload_size, - geo->auxiliary_size, - geo->auxiliary_status_offset, - geo->block_mark_byte_offset, - geo->block_mark_bit_offset); -} - -/* Configures the geometry for BCH. */ -int bch_set_geometry(struct gpmi_nand_data *this) -{ - struct resources *r = &this->resources; - struct bch_geometry *bch_geo = &this->bch_geometry; - unsigned int block_count; - unsigned int block_size; - unsigned int metadata_size; - unsigned int ecc_strength; - unsigned int page_size; - unsigned int gf_len; - int ret; - - if (common_nfc_set_geometry(this)) - return !0; - - block_count = bch_geo->ecc_chunk_count - 1; - block_size = bch_geo->ecc_chunk_size; - metadata_size = bch_geo->metadata_size; - ecc_strength = bch_geo->ecc_strength >> 1; - page_size = bch_geo->page_size; - gf_len = bch_geo->gf_len; - - ret = gpmi_enable_clk(this); - if (ret) - return ret; - - /* - * Due to erratum #2847 of the MX23, the BCH cannot be soft reset on this - * chip, otherwise it will lock up. So we skip resetting BCH on the MX23. - * On the other hand, the MX28 needs the reset, because one case has been - * seen where the BCH produced ECC errors constantly after 10000 - * consecutive reboots. The latter case has not been seen on the MX23 - * yet, still we don't know if it could happen there as well. - */ - ret = gpmi_reset_block(r->bch_regs, GPMI_IS_MX23(this)); - if (ret) - goto err_out; - - /* Configure layout 0. */ - writel(BF_BCH_FLASH0LAYOUT0_NBLOCKS(block_count) - | BF_BCH_FLASH0LAYOUT0_META_SIZE(metadata_size) - | BF_BCH_FLASH0LAYOUT0_ECC0(ecc_strength, this) - | BF_BCH_FLASH0LAYOUT0_GF(gf_len, this) - | BF_BCH_FLASH0LAYOUT0_DATA0_SIZE(block_size, this), - r->bch_regs + HW_BCH_FLASH0LAYOUT0); - - writel(BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(page_size) - | BF_BCH_FLASH0LAYOUT1_ECCN(ecc_strength, this) - | BF_BCH_FLASH0LAYOUT1_GF(gf_len, this) - | BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(block_size, this), - r->bch_regs + HW_BCH_FLASH0LAYOUT1); - - /* Set *all* chip selects to use layout 0. */ - writel(0, r->bch_regs + HW_BCH_LAYOUTSELECT); - - /* Enable interrupts. */ - writel(BM_BCH_CTRL_COMPLETE_IRQ_EN, - r->bch_regs + HW_BCH_CTRL_SET); - - gpmi_disable_clk(this); - return 0; -err_out: - gpmi_disable_clk(this); - return ret; -} - -/* Converts time in nanoseconds to cycles. */ -static unsigned int ns_to_cycles(unsigned int time, - unsigned int period, unsigned int min) -{ - unsigned int k; - - k = (time + period - 1) / period; - return max(k, min); -} - -#define DEF_MIN_PROP_DELAY 5 -#define DEF_MAX_PROP_DELAY 9 -/* Apply timing to current hardware conditions. */ -static int gpmi_nfc_compute_hardware_timing(struct gpmi_nand_data *this, - struct gpmi_nfc_hardware_timing *hw) -{ - struct timing_threshold *nfc = &timing_default_threshold; - struct resources *r = &this->resources; - struct nand_chip *nand = &this->nand; - struct nand_timing target = this->timing; - bool improved_timing_is_available; - unsigned long clock_frequency_in_hz; - unsigned int clock_period_in_ns; - bool dll_use_half_periods; - unsigned int dll_delay_shift; - unsigned int max_sample_delay_in_ns; - unsigned int address_setup_in_cycles; - unsigned int data_setup_in_ns; - unsigned int data_setup_in_cycles; - unsigned int data_hold_in_cycles; - int ideal_sample_delay_in_ns; - unsigned int sample_delay_factor; - int tEYE; - unsigned int min_prop_delay_in_ns = DEF_MIN_PROP_DELAY; - unsigned int max_prop_delay_in_ns = DEF_MAX_PROP_DELAY; - - /* - * If there are multiple chips, we need to relax the timings to allow - * for signal distortion due to higher capacitance. - */ - if (nand->numchips > 2) { - target.data_setup_in_ns += 10; - target.data_hold_in_ns += 10; - target.address_setup_in_ns += 10; - } else if (nand->numchips > 1) { - target.data_setup_in_ns += 5; - target.data_hold_in_ns += 5; - target.address_setup_in_ns += 5; - } - - /* Check if improved timing information is available. */ - improved_timing_is_available = - (target.tREA_in_ns >= 0) && - (target.tRLOH_in_ns >= 0) && - (target.tRHOH_in_ns >= 0); - - /* Inspect the clock. */ - nfc->clock_frequency_in_hz = clk_get_rate(r->clock[0]); - clock_frequency_in_hz = nfc->clock_frequency_in_hz; - clock_period_in_ns = NSEC_PER_SEC / clock_frequency_in_hz; - - /* - * The NFC quantizes setup and hold parameters in terms of clock cycles. - * Here, we quantize the setup and hold timing parameters to the - * next-highest clock period to make sure we apply at least the - * specified times. - * - * For data setup and data hold, the hardware interprets a value of zero - * as the largest possible delay. This is not what's intended by a zero - * in the input parameter, so we impose a minimum of one cycle. - */ - data_setup_in_cycles = ns_to_cycles(target.data_setup_in_ns, - clock_period_in_ns, 1); - data_hold_in_cycles = ns_to_cycles(target.data_hold_in_ns, - clock_period_in_ns, 1); - address_setup_in_cycles = ns_to_cycles(target.address_setup_in_ns, - clock_period_in_ns, 0); - - /* - * The clock's period affects the sample delay in a number of ways: - * - * (1) The NFC HAL tells us the maximum clock period the sample delay - * DLL can tolerate. If the clock period is greater than half that - * maximum, we must configure the DLL to be driven by half periods. - * - * (2) We need to convert from an ideal sample delay, in ns, to a - * "sample delay factor," which the NFC uses. This factor depends on - * whether we're driving the DLL with full or half periods. - * Paraphrasing the reference manual: - * - * AD = SDF x 0.125 x RP - * - * where: - * - * AD is the applied delay, in ns. - * SDF is the sample delay factor, which is dimensionless. - * RP is the reference period, in ns, which is a full clock period - * if the DLL is being driven by full periods, or half that if - * the DLL is being driven by half periods. - * - * Let's re-arrange this in a way that's more useful to us: - * - * 8 - * SDF = AD x ---- - * RP - * - * The reference period is either the clock period or half that, so this - * is: - * - * 8 AD x DDF - * SDF = AD x ----- = -------- - * f x P P - * - * where: - * - * f is 1 or 1/2, depending on how we're driving the DLL. - * P is the clock period. - * DDF is the DLL Delay Factor, a dimensionless value that - * incorporates all the constants in the conversion. - * - * DDF will be either 8 or 16, both of which are powers of two. We can - * reduce the cost of this conversion by using bit shifts instead of - * multiplication or division. Thus: - * - * AD << DDS - * SDF = --------- - * P - * - * or - * - * AD = (SDF >> DDS) x P - * - * where: - * - * DDS is the DLL Delay Shift, the logarithm to base 2 of the DDF. - */ - if (clock_period_in_ns > (nfc->max_dll_clock_period_in_ns >> 1)) { - dll_use_half_periods = true; - dll_delay_shift = 3 + 1; - } else { - dll_use_half_periods = false; - dll_delay_shift = 3; - } - - /* - * Compute the maximum sample delay the NFC allows, under current - * conditions. If the clock is running too slowly, no sample delay is - * possible. - */ - if (clock_period_in_ns > nfc->max_dll_clock_period_in_ns) - max_sample_delay_in_ns = 0; - else { - /* - * Compute the delay implied by the largest sample delay factor - * the NFC allows. - */ - max_sample_delay_in_ns = - (nfc->max_sample_delay_factor * clock_period_in_ns) >> - dll_delay_shift; - - /* - * Check if the implied sample delay larger than the NFC - * actually allows. - */ - if (max_sample_delay_in_ns > nfc->max_dll_delay_in_ns) - max_sample_delay_in_ns = nfc->max_dll_delay_in_ns; - } - - /* - * Check if improved timing information is available. If not, we have to - * use a less-sophisticated algorithm. - */ - if (!improved_timing_is_available) { - /* - * Fold the read setup time required by the NFC into the ideal - * sample delay. - */ - ideal_sample_delay_in_ns = target.gpmi_sample_delay_in_ns + - nfc->internal_data_setup_in_ns; - - /* - * The ideal sample delay may be greater than the maximum - * allowed by the NFC. If so, we can trade off sample delay time - * for more data setup time. - * - * In each iteration of the following loop, we add a cycle to - * the data setup time and subtract a corresponding amount from - * the sample delay until we've satisified the constraints or - * can't do any better. - */ - while ((ideal_sample_delay_in_ns > max_sample_delay_in_ns) && - (data_setup_in_cycles < nfc->max_data_setup_cycles)) { - - data_setup_in_cycles++; - ideal_sample_delay_in_ns -= clock_period_in_ns; - - if (ideal_sample_delay_in_ns < 0) - ideal_sample_delay_in_ns = 0; - - } - - /* - * Compute the sample delay factor that corresponds most closely - * to the ideal sample delay. If the result is too large for the - * NFC, use the maximum value. - * - * Notice that we use the ns_to_cycles function to compute the - * sample delay factor. We do this because the form of the - * computation is the same as that for calculating cycles. - */ - sample_delay_factor = - ns_to_cycles( - ideal_sample_delay_in_ns << dll_delay_shift, - clock_period_in_ns, 0); - - if (sample_delay_factor > nfc->max_sample_delay_factor) - sample_delay_factor = nfc->max_sample_delay_factor; - - /* Skip to the part where we return our results. */ - goto return_results; - } - - /* - * If control arrives here, we have more detailed timing information, - * so we can use a better algorithm. - */ - - /* - * Fold the read setup time required by the NFC into the maximum - * propagation delay. - */ - max_prop_delay_in_ns += nfc->internal_data_setup_in_ns; - - /* - * Earlier, we computed the number of clock cycles required to satisfy - * the data setup time. Now, we need to know the actual nanoseconds. - */ - data_setup_in_ns = clock_period_in_ns * data_setup_in_cycles; - - /* - * Compute tEYE, the width of the data eye when reading from the NAND - * Flash. The eye width is fundamentally determined by the data setup - * time, perturbed by propagation delays and some characteristics of the - * NAND Flash device. - * - * start of the eye = max_prop_delay + tREA - * end of the eye = min_prop_delay + tRHOH + data_setup - */ - tEYE = (int)min_prop_delay_in_ns + (int)target.tRHOH_in_ns + - (int)data_setup_in_ns; - - tEYE -= (int)max_prop_delay_in_ns + (int)target.tREA_in_ns; - - /* - * The eye must be open. If it's not, we can try to open it by - * increasing its main forcer, the data setup time. - * - * In each iteration of the following loop, we increase the data setup - * time by a single clock cycle. We do this until either the eye is - * open or we run into NFC limits. - */ - while ((tEYE <= 0) && - (data_setup_in_cycles < nfc->max_data_setup_cycles)) { - /* Give a cycle to data setup. */ - data_setup_in_cycles++; - /* Synchronize the data setup time with the cycles. */ - data_setup_in_ns += clock_period_in_ns; - /* Adjust tEYE accordingly. */ - tEYE += clock_period_in_ns; - } - - /* - * When control arrives here, the eye is open. The ideal time to sample - * the data is in the center of the eye: - * - * end of the eye + start of the eye - * --------------------------------- - data_setup - * 2 - * - * After some algebra, this simplifies to the code immediately below. - */ - ideal_sample_delay_in_ns = - ((int)max_prop_delay_in_ns + - (int)target.tREA_in_ns + - (int)min_prop_delay_in_ns + - (int)target.tRHOH_in_ns - - (int)data_setup_in_ns) >> 1; - - /* - * The following figure illustrates some aspects of a NAND Flash read: - * - * - * __ _____________________________________ - * RDN \_________________/ - * - * <---- tEYE -----> - * /-----------------\ - * Read Data ----------------------------< >--------- - * \-----------------/ - * ^ ^ ^ ^ - * | | | | - * |<--Data Setup -->|<--Delay Time -->| | - * | | | | - * | | | - * | |<-- Quantized Delay Time -->| - * | | | - * - * - * We have some issues we must now address: - * - * (1) The *ideal* sample delay time must not be negative. If it is, we - * jam it to zero. - * - * (2) The *ideal* sample delay time must not be greater than that - * allowed by the NFC. If it is, we can increase the data setup - * time, which will reduce the delay between the end of the data - * setup and the center of the eye. It will also make the eye - * larger, which might help with the next issue... - * - * (3) The *quantized* sample delay time must not fall either before the - * eye opens or after it closes (the latter is the problem - * illustrated in the above figure). - */ - - /* Jam a negative ideal sample delay to zero. */ - if (ideal_sample_delay_in_ns < 0) - ideal_sample_delay_in_ns = 0; - - /* - * Extend the data setup as needed to reduce the ideal sample delay - * below the maximum permitted by the NFC. - */ - while ((ideal_sample_delay_in_ns > max_sample_delay_in_ns) && - (data_setup_in_cycles < nfc->max_data_setup_cycles)) { - - /* Give a cycle to data setup. */ - data_setup_in_cycles++; - /* Synchronize the data setup time with the cycles. */ - data_setup_in_ns += clock_period_in_ns; - /* Adjust tEYE accordingly. */ - tEYE += clock_period_in_ns; - - /* - * Decrease the ideal sample delay by one half cycle, to keep it - * in the middle of the eye. - */ - ideal_sample_delay_in_ns -= (clock_period_in_ns >> 1); - - /* Jam a negative ideal sample delay to zero. */ - if (ideal_sample_delay_in_ns < 0) - ideal_sample_delay_in_ns = 0; - } - - /* - * Compute the sample delay factor that corresponds to the ideal sample - * delay. If the result is too large, then use the maximum allowed - * value. - * - * Notice that we use the ns_to_cycles function to compute the sample - * delay factor. We do this because the form of the computation is the - * same as that for calculating cycles. - */ - sample_delay_factor = - ns_to_cycles(ideal_sample_delay_in_ns << dll_delay_shift, - clock_period_in_ns, 0); - - if (sample_delay_factor > nfc->max_sample_delay_factor) - sample_delay_factor = nfc->max_sample_delay_factor; - - /* - * These macros conveniently encapsulate a computation we'll use to - * continuously evaluate whether or not the data sample delay is inside - * the eye. - */ - #define IDEAL_DELAY ((int) ideal_sample_delay_in_ns) - - #define QUANTIZED_DELAY \ - ((int) ((sample_delay_factor * clock_period_in_ns) >> \ - dll_delay_shift)) - - #define DELAY_ERROR (abs(QUANTIZED_DELAY - IDEAL_DELAY)) - - #define SAMPLE_IS_NOT_WITHIN_THE_EYE (DELAY_ERROR > (tEYE >> 1)) - - /* - * While the quantized sample time falls outside the eye, reduce the - * sample delay or extend the data setup to move the sampling point back - * toward the eye. Do not allow the number of data setup cycles to - * exceed the maximum allowed by the NFC. - */ - while (SAMPLE_IS_NOT_WITHIN_THE_EYE && - (data_setup_in_cycles < nfc->max_data_setup_cycles)) { - /* - * If control arrives here, the quantized sample delay falls - * outside the eye. Check if it's before the eye opens, or after - * the eye closes. - */ - if (QUANTIZED_DELAY > IDEAL_DELAY) { - /* - * If control arrives here, the quantized sample delay - * falls after the eye closes. Decrease the quantized - * delay time and then go back to re-evaluate. - */ - if (sample_delay_factor != 0) - sample_delay_factor--; - continue; - } - - /* - * If control arrives here, the quantized sample delay falls - * before the eye opens. Shift the sample point by increasing - * data setup time. This will also make the eye larger. - */ - - /* Give a cycle to data setup. */ - data_setup_in_cycles++; - /* Synchronize the data setup time with the cycles. */ - data_setup_in_ns += clock_period_in_ns; - /* Adjust tEYE accordingly. */ - tEYE += clock_period_in_ns; - - /* - * Decrease the ideal sample delay by one half cycle, to keep it - * in the middle of the eye. - */ - ideal_sample_delay_in_ns -= (clock_period_in_ns >> 1); - - /* ...and one less period for the delay time. */ - ideal_sample_delay_in_ns -= clock_period_in_ns; - - /* Jam a negative ideal sample delay to zero. */ - if (ideal_sample_delay_in_ns < 0) - ideal_sample_delay_in_ns = 0; - - /* - * We have a new ideal sample delay, so re-compute the quantized - * delay. - */ - sample_delay_factor = - ns_to_cycles( - ideal_sample_delay_in_ns << dll_delay_shift, - clock_period_in_ns, 0); - - if (sample_delay_factor > nfc->max_sample_delay_factor) - sample_delay_factor = nfc->max_sample_delay_factor; - } - - /* Control arrives here when we're ready to return our results. */ -return_results: - hw->data_setup_in_cycles = data_setup_in_cycles; - hw->data_hold_in_cycles = data_hold_in_cycles; - hw->address_setup_in_cycles = address_setup_in_cycles; - hw->use_half_periods = dll_use_half_periods; - hw->sample_delay_factor = sample_delay_factor; - hw->device_busy_timeout = GPMI_DEFAULT_BUSY_TIMEOUT; - hw->wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_4_TO_8NS; - - /* Return success. */ - return 0; -} - -/* - * <1> Firstly, we should know what's the GPMI-clock means. - * The GPMI-clock is the internal clock in the gpmi nand controller. - * If you set 100MHz to gpmi nand controller, the GPMI-clock's period - * is 10ns. Mark the GPMI-clock's period as GPMI-clock-period. - * - * <2> Secondly, we should know what's the frequency on the nand chip pins. - * The frequency on the nand chip pins is derived from the GPMI-clock. - * We can get it from the following equation: - * - * F = G / (DS + DH) - * - * F : the frequency on the nand chip pins. - * G : the GPMI clock, such as 100MHz. - * DS : GPMI_HW_GPMI_TIMING0:DATA_SETUP - * DH : GPMI_HW_GPMI_TIMING0:DATA_HOLD - * - * <3> Thirdly, when the frequency on the nand chip pins is above 33MHz, - * the nand EDO(extended Data Out) timing could be applied. - * The GPMI implements a feedback read strobe to sample the read data. - * The feedback read strobe can be delayed to support the nand EDO timing - * where the read strobe may deasserts before the read data is valid, and - * read data is valid for some time after read strobe. - * - * The following figure illustrates some aspects of a NAND Flash read: - * - * |<---tREA---->| - * | | - * | | | - * |<--tRP-->| | - * | | | - * __ ___|__________________________________ - * RDN \________/ | - * | - * /---------\ - * Read Data --------------< >--------- - * \---------/ - * | | - * |<-D->| - * FeedbackRDN ________ ____________ - * \___________/ - * - * D stands for delay, set in the HW_GPMI_CTRL1:RDN_DELAY. - * - * - * <4> Now, we begin to describe how to compute the right RDN_DELAY. - * - * 4.1) From the aspect of the nand chip pins: - * Delay = (tREA + C - tRP) {1} - * - * tREA : the maximum read access time. From the ONFI nand standards, - * we know that tREA is 16ns in mode 5, tREA is 20ns is mode 4. - * Please check it in : www.onfi.org - * C : a constant for adjust the delay. default is 4. - * tRP : the read pulse width. - * Specified by the HW_GPMI_TIMING0:DATA_SETUP: - * tRP = (GPMI-clock-period) * DATA_SETUP - * - * 4.2) From the aspect of the GPMI nand controller: - * Delay = RDN_DELAY * 0.125 * RP {2} - * - * RP : the DLL reference period. - * if (GPMI-clock-period > DLL_THRETHOLD) - * RP = GPMI-clock-period / 2; - * else - * RP = GPMI-clock-period; - * - * Set the HW_GPMI_CTRL1:HALF_PERIOD if GPMI-clock-period - * is greater DLL_THRETHOLD. In other SOCs, the DLL_THRETHOLD - * is 16ns, but in mx6q, we use 12ns. - * - * 4.3) since {1} equals {2}, we get: - * - * (tREA + 4 - tRP) * 8 - * RDN_DELAY = --------------------- {3} - * RP - * - * 4.4) We only support the fastest asynchronous mode of ONFI nand. - * For some ONFI nand, the mode 4 is the fastest mode; - * while for some ONFI nand, the mode 5 is the fastest mode. - * So we only support the mode 4 and mode 5. It is no need to - * support other modes. - */ -static void gpmi_compute_edo_timing(struct gpmi_nand_data *this, - struct gpmi_nfc_hardware_timing *hw) -{ - struct resources *r = &this->resources; - unsigned long rate = clk_get_rate(r->clock[0]); - int mode = this->timing_mode; - int dll_threshold = this->devdata->max_chain_delay; - unsigned long delay; - unsigned long clk_period; - int t_rea; - int c = 4; - int t_rp; - int rp; - - /* - * [1] for GPMI_HW_GPMI_TIMING0: - * The async mode requires 40MHz for mode 4, 50MHz for mode 5. - * The GPMI can support 100MHz at most. So if we want to - * get the 40MHz or 50MHz, we have to set DS=1, DH=1. - * Set the ADDRESS_SETUP to 0 in mode 4. - */ - hw->data_setup_in_cycles = 1; - hw->data_hold_in_cycles = 1; - hw->address_setup_in_cycles = ((mode == 5) ? 1 : 0); - - /* [2] for GPMI_HW_GPMI_TIMING1 */ - hw->device_busy_timeout = 0x9000; - - /* [3] for GPMI_HW_GPMI_CTRL1 */ - hw->wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY; - - /* - * Enlarge 10 times for the numerator and denominator in {3}. - * This make us to get more accurate result. - */ - clk_period = NSEC_PER_SEC / (rate / 10); - dll_threshold *= 10; - t_rea = ((mode == 5) ? 16 : 20) * 10; - c *= 10; - - t_rp = clk_period * 1; /* DATA_SETUP is 1 */ - - if (clk_period > dll_threshold) { - hw->use_half_periods = 1; - rp = clk_period / 2; - } else { - hw->use_half_periods = 0; - rp = clk_period; - } - - /* - * Multiply the numerator with 10, we could do a round off: - * 7.8 round up to 8; 7.4 round down to 7. - */ - delay = (((t_rea + c - t_rp) * 8) * 10) / rp; - delay = (delay + 5) / 10; - - hw->sample_delay_factor = delay; -} - -static int enable_edo_mode(struct gpmi_nand_data *this, int mode) -{ - struct resources *r = &this->resources; - struct nand_chip *nand = &this->nand; - struct mtd_info *mtd = nand_to_mtd(nand); - uint8_t *feature; - unsigned long rate; - int ret; - - feature = kzalloc(ONFI_SUBFEATURE_PARAM_LEN, GFP_KERNEL); - if (!feature) - return -ENOMEM; - - nand->select_chip(mtd, 0); - - /* [1] send SET FEATURE command to NAND */ - feature[0] = mode; - ret = nand->onfi_set_features(mtd, nand, - ONFI_FEATURE_ADDR_TIMING_MODE, feature); - if (ret) - goto err_out; - - /* [2] send GET FEATURE command to double-check the timing mode */ - memset(feature, 0, ONFI_SUBFEATURE_PARAM_LEN); - ret = nand->onfi_get_features(mtd, nand, - ONFI_FEATURE_ADDR_TIMING_MODE, feature); - if (ret || feature[0] != mode) - goto err_out; - - nand->select_chip(mtd, -1); - - /* [3] set the main IO clock, 100MHz for mode 5, 80MHz for mode 4. */ - rate = (mode == 5) ? 100000000 : 80000000; - clk_set_rate(r->clock[0], rate); - - /* Let the gpmi_begin() re-compute the timing again. */ - this->flags &= ~GPMI_TIMING_INIT_OK; - - this->flags |= GPMI_ASYNC_EDO_ENABLED; - this->timing_mode = mode; - kfree(feature); - dev_info(this->dev, "enable the asynchronous EDO mode %d\n", mode); - return 0; - -err_out: - nand->select_chip(mtd, -1); - kfree(feature); - dev_err(this->dev, "mode:%d ,failed in set feature.\n", mode); - return -EINVAL; -} - -int gpmi_extra_init(struct gpmi_nand_data *this) -{ - struct nand_chip *chip = &this->nand; - - /* Enable the asynchronous EDO feature. */ - if (GPMI_IS_MX6(this) && chip->onfi_version) { - int mode = onfi_get_async_timing_mode(chip); - - /* We only support the timing mode 4 and mode 5. */ - if (mode & ONFI_TIMING_MODE_5) - mode = 5; - else if (mode & ONFI_TIMING_MODE_4) - mode = 4; - else - return 0; - - return enable_edo_mode(this, mode); - } - return 0; -} - -/* Begin the I/O */ -void gpmi_begin(struct gpmi_nand_data *this) -{ - struct resources *r = &this->resources; - void __iomem *gpmi_regs = r->gpmi_regs; - unsigned int clock_period_in_ns; - uint32_t reg; - unsigned int dll_wait_time_in_us; - struct gpmi_nfc_hardware_timing hw; - int ret; - - /* Enable the clock. */ - ret = gpmi_enable_clk(this); - if (ret) { - dev_err(this->dev, "We failed in enable the clk\n"); - goto err_out; - } - - /* Only initialize the timing once */ - if (this->flags & GPMI_TIMING_INIT_OK) - return; - this->flags |= GPMI_TIMING_INIT_OK; - - if (this->flags & GPMI_ASYNC_EDO_ENABLED) - gpmi_compute_edo_timing(this, &hw); - else - gpmi_nfc_compute_hardware_timing(this, &hw); - - /* [1] Set HW_GPMI_TIMING0 */ - reg = BF_GPMI_TIMING0_ADDRESS_SETUP(hw.address_setup_in_cycles) | - BF_GPMI_TIMING0_DATA_HOLD(hw.data_hold_in_cycles) | - BF_GPMI_TIMING0_DATA_SETUP(hw.data_setup_in_cycles); - - writel(reg, gpmi_regs + HW_GPMI_TIMING0); - - /* [2] Set HW_GPMI_TIMING1 */ - writel(BF_GPMI_TIMING1_BUSY_TIMEOUT(hw.device_busy_timeout), - gpmi_regs + HW_GPMI_TIMING1); - - /* [3] The following code is to set the HW_GPMI_CTRL1. */ - - /* Set the WRN_DLY_SEL */ - writel(BM_GPMI_CTRL1_WRN_DLY_SEL, gpmi_regs + HW_GPMI_CTRL1_CLR); - writel(BF_GPMI_CTRL1_WRN_DLY_SEL(hw.wrn_dly_sel), - gpmi_regs + HW_GPMI_CTRL1_SET); - - /* DLL_ENABLE must be set to 0 when setting RDN_DELAY or HALF_PERIOD. */ - writel(BM_GPMI_CTRL1_DLL_ENABLE, gpmi_regs + HW_GPMI_CTRL1_CLR); - - /* Clear out the DLL control fields. */ - reg = BM_GPMI_CTRL1_RDN_DELAY | BM_GPMI_CTRL1_HALF_PERIOD; - writel(reg, gpmi_regs + HW_GPMI_CTRL1_CLR); - - /* If no sample delay is called for, return immediately. */ - if (!hw.sample_delay_factor) - return; - - /* Set RDN_DELAY or HALF_PERIOD. */ - reg = ((hw.use_half_periods) ? BM_GPMI_CTRL1_HALF_PERIOD : 0) - | BF_GPMI_CTRL1_RDN_DELAY(hw.sample_delay_factor); - - writel(reg, gpmi_regs + HW_GPMI_CTRL1_SET); - - /* At last, we enable the DLL. */ - writel(BM_GPMI_CTRL1_DLL_ENABLE, gpmi_regs + HW_GPMI_CTRL1_SET); - - /* - * After we enable the GPMI DLL, we have to wait 64 clock cycles before - * we can use the GPMI. Calculate the amount of time we need to wait, - * in microseconds. - */ - clock_period_in_ns = NSEC_PER_SEC / clk_get_rate(r->clock[0]); - dll_wait_time_in_us = (clock_period_in_ns * 64) / 1000; - - if (!dll_wait_time_in_us) - dll_wait_time_in_us = 1; - - /* Wait for the DLL to settle. */ - udelay(dll_wait_time_in_us); - -err_out: - return; -} - -void gpmi_end(struct gpmi_nand_data *this) -{ - gpmi_disable_clk(this); -} - -/* Clears a BCH interrupt. */ -void gpmi_clear_bch(struct gpmi_nand_data *this) -{ - struct resources *r = &this->resources; - writel(BM_BCH_CTRL_COMPLETE_IRQ, r->bch_regs + HW_BCH_CTRL_CLR); -} - -/* Returns the Ready/Busy status of the given chip. */ -int gpmi_is_ready(struct gpmi_nand_data *this, unsigned chip) -{ - struct resources *r = &this->resources; - uint32_t mask = 0; - uint32_t reg = 0; - - if (GPMI_IS_MX23(this)) { - mask = MX23_BM_GPMI_DEBUG_READY0 << chip; - reg = readl(r->gpmi_regs + HW_GPMI_DEBUG); - } else if (GPMI_IS_MX28(this) || GPMI_IS_MX6(this)) { - /* - * In the imx6, all the ready/busy pins are bound - * together. So we only need to check chip 0. - */ - if (GPMI_IS_MX6(this)) - chip = 0; - - /* MX28 shares the same R/B register as MX6Q. */ - mask = MX28_BF_GPMI_STAT_READY_BUSY(1 << chip); - reg = readl(r->gpmi_regs + HW_GPMI_STAT); - } else - dev_err(this->dev, "unknown arch.\n"); - return reg & mask; -} - -static inline void set_dma_type(struct gpmi_nand_data *this, - enum dma_ops_type type) -{ - this->last_dma_type = this->dma_type; - this->dma_type = type; -} - -int gpmi_send_command(struct gpmi_nand_data *this) -{ - struct dma_chan *channel = get_dma_chan(this); - struct dma_async_tx_descriptor *desc; - struct scatterlist *sgl; - int chip = this->current_chip; - u32 pio[3]; - - /* [1] send out the PIO words */ - pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WRITE) - | BM_GPMI_CTRL0_WORD_LENGTH - | BF_GPMI_CTRL0_CS(chip, this) - | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this) - | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_CLE) - | BM_GPMI_CTRL0_ADDRESS_INCREMENT - | BF_GPMI_CTRL0_XFER_COUNT(this->command_length); - pio[1] = pio[2] = 0; - desc = dmaengine_prep_slave_sg(channel, - (struct scatterlist *)pio, - ARRAY_SIZE(pio), DMA_TRANS_NONE, 0); - if (!desc) - return -EINVAL; - - /* [2] send out the COMMAND + ADDRESS string stored in @buffer */ - sgl = &this->cmd_sgl; - - sg_init_one(sgl, this->cmd_buffer, this->command_length); - dma_map_sg(this->dev, sgl, 1, DMA_TO_DEVICE); - desc = dmaengine_prep_slave_sg(channel, - sgl, 1, DMA_MEM_TO_DEV, - DMA_PREP_INTERRUPT | DMA_CTRL_ACK); - if (!desc) - return -EINVAL; - - /* [3] submit the DMA */ - set_dma_type(this, DMA_FOR_COMMAND); - return start_dma_without_bch_irq(this, desc); -} - -int gpmi_send_data(struct gpmi_nand_data *this) -{ - struct dma_async_tx_descriptor *desc; - struct dma_chan *channel = get_dma_chan(this); - int chip = this->current_chip; - uint32_t command_mode; - uint32_t address; - u32 pio[2]; - - /* [1] PIO */ - command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WRITE; - address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA; - - pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode) - | BM_GPMI_CTRL0_WORD_LENGTH - | BF_GPMI_CTRL0_CS(chip, this) - | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this) - | BF_GPMI_CTRL0_ADDRESS(address) - | BF_GPMI_CTRL0_XFER_COUNT(this->upper_len); - pio[1] = 0; - desc = dmaengine_prep_slave_sg(channel, (struct scatterlist *)pio, - ARRAY_SIZE(pio), DMA_TRANS_NONE, 0); - if (!desc) - return -EINVAL; - - /* [2] send DMA request */ - prepare_data_dma(this, DMA_TO_DEVICE); - desc = dmaengine_prep_slave_sg(channel, &this->data_sgl, - 1, DMA_MEM_TO_DEV, - DMA_PREP_INTERRUPT | DMA_CTRL_ACK); - if (!desc) - return -EINVAL; - - /* [3] submit the DMA */ - set_dma_type(this, DMA_FOR_WRITE_DATA); - return start_dma_without_bch_irq(this, desc); -} - -int gpmi_read_data(struct gpmi_nand_data *this) -{ - struct dma_async_tx_descriptor *desc; - struct dma_chan *channel = get_dma_chan(this); - int chip = this->current_chip; - u32 pio[2]; - - /* [1] : send PIO */ - pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__READ) - | BM_GPMI_CTRL0_WORD_LENGTH - | BF_GPMI_CTRL0_CS(chip, this) - | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this) - | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA) - | BF_GPMI_CTRL0_XFER_COUNT(this->upper_len); - pio[1] = 0; - desc = dmaengine_prep_slave_sg(channel, - (struct scatterlist *)pio, - ARRAY_SIZE(pio), DMA_TRANS_NONE, 0); - if (!desc) - return -EINVAL; - - /* [2] : send DMA request */ - prepare_data_dma(this, DMA_FROM_DEVICE); - desc = dmaengine_prep_slave_sg(channel, &this->data_sgl, - 1, DMA_DEV_TO_MEM, - DMA_PREP_INTERRUPT | DMA_CTRL_ACK); - if (!desc) - return -EINVAL; - - /* [3] : submit the DMA */ - set_dma_type(this, DMA_FOR_READ_DATA); - return start_dma_without_bch_irq(this, desc); -} - -int gpmi_send_page(struct gpmi_nand_data *this, - dma_addr_t payload, dma_addr_t auxiliary) -{ - struct bch_geometry *geo = &this->bch_geometry; - uint32_t command_mode; - uint32_t address; - uint32_t ecc_command; - uint32_t buffer_mask; - struct dma_async_tx_descriptor *desc; - struct dma_chan *channel = get_dma_chan(this); - int chip = this->current_chip; - u32 pio[6]; - - /* A DMA descriptor that does an ECC page read. */ - command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WRITE; - address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA; - ecc_command = BV_GPMI_ECCCTRL_ECC_CMD__BCH_ENCODE; - buffer_mask = BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE | - BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY; - - pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode) - | BM_GPMI_CTRL0_WORD_LENGTH - | BF_GPMI_CTRL0_CS(chip, this) - | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this) - | BF_GPMI_CTRL0_ADDRESS(address) - | BF_GPMI_CTRL0_XFER_COUNT(0); - pio[1] = 0; - pio[2] = BM_GPMI_ECCCTRL_ENABLE_ECC - | BF_GPMI_ECCCTRL_ECC_CMD(ecc_command) - | BF_GPMI_ECCCTRL_BUFFER_MASK(buffer_mask); - pio[3] = geo->page_size; - pio[4] = payload; - pio[5] = auxiliary; - - desc = dmaengine_prep_slave_sg(channel, - (struct scatterlist *)pio, - ARRAY_SIZE(pio), DMA_TRANS_NONE, - DMA_CTRL_ACK); - if (!desc) - return -EINVAL; - - set_dma_type(this, DMA_FOR_WRITE_ECC_PAGE); - return start_dma_with_bch_irq(this, desc); -} - -int gpmi_read_page(struct gpmi_nand_data *this, - dma_addr_t payload, dma_addr_t auxiliary) -{ - struct bch_geometry *geo = &this->bch_geometry; - uint32_t command_mode; - uint32_t address; - uint32_t ecc_command; - uint32_t buffer_mask; - struct dma_async_tx_descriptor *desc; - struct dma_chan *channel = get_dma_chan(this); - int chip = this->current_chip; - u32 pio[6]; - - /* [1] Wait for the chip to report ready. */ - command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY; - address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA; - - pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode) - | BM_GPMI_CTRL0_WORD_LENGTH - | BF_GPMI_CTRL0_CS(chip, this) - | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this) - | BF_GPMI_CTRL0_ADDRESS(address) - | BF_GPMI_CTRL0_XFER_COUNT(0); - pio[1] = 0; - desc = dmaengine_prep_slave_sg(channel, - (struct scatterlist *)pio, 2, - DMA_TRANS_NONE, 0); - if (!desc) - return -EINVAL; - - /* [2] Enable the BCH block and read. */ - command_mode = BV_GPMI_CTRL0_COMMAND_MODE__READ; - address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA; - ecc_command = BV_GPMI_ECCCTRL_ECC_CMD__BCH_DECODE; - buffer_mask = BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE - | BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY; - - pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode) - | BM_GPMI_CTRL0_WORD_LENGTH - | BF_GPMI_CTRL0_CS(chip, this) - | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this) - | BF_GPMI_CTRL0_ADDRESS(address) - | BF_GPMI_CTRL0_XFER_COUNT(geo->page_size); - - pio[1] = 0; - pio[2] = BM_GPMI_ECCCTRL_ENABLE_ECC - | BF_GPMI_ECCCTRL_ECC_CMD(ecc_command) - | BF_GPMI_ECCCTRL_BUFFER_MASK(buffer_mask); - pio[3] = geo->page_size; - pio[4] = payload; - pio[5] = auxiliary; - desc = dmaengine_prep_slave_sg(channel, - (struct scatterlist *)pio, - ARRAY_SIZE(pio), DMA_TRANS_NONE, - DMA_PREP_INTERRUPT | DMA_CTRL_ACK); - if (!desc) - return -EINVAL; - - /* [3] Disable the BCH block */ - command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY; - address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA; - - pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode) - | BM_GPMI_CTRL0_WORD_LENGTH - | BF_GPMI_CTRL0_CS(chip, this) - | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this) - | BF_GPMI_CTRL0_ADDRESS(address) - | BF_GPMI_CTRL0_XFER_COUNT(geo->page_size); - pio[1] = 0; - pio[2] = 0; /* clear GPMI_HW_GPMI_ECCCTRL, disable the BCH. */ - desc = dmaengine_prep_slave_sg(channel, - (struct scatterlist *)pio, 3, - DMA_TRANS_NONE, - DMA_PREP_INTERRUPT | DMA_CTRL_ACK); - if (!desc) - return -EINVAL; - - /* [4] submit the DMA */ - set_dma_type(this, DMA_FOR_READ_ECC_PAGE); - return start_dma_with_bch_irq(this, desc); -} - -/** - * gpmi_copy_bits - copy bits from one memory region to another - * @dst: destination buffer - * @dst_bit_off: bit offset we're starting to write at - * @src: source buffer - * @src_bit_off: bit offset we're starting to read from - * @nbits: number of bits to copy - * - * This functions copies bits from one memory region to another, and is used by - * the GPMI driver to copy ECC sections which are not guaranteed to be byte - * aligned. - * - * src and dst should not overlap. - * - */ -void gpmi_copy_bits(u8 *dst, size_t dst_bit_off, - const u8 *src, size_t src_bit_off, - size_t nbits) -{ - size_t i; - size_t nbytes; - u32 src_buffer = 0; - size_t bits_in_src_buffer = 0; - - if (!nbits) - return; - - /* - * Move src and dst pointers to the closest byte pointer and store bit - * offsets within a byte. - */ - src += src_bit_off / 8; - src_bit_off %= 8; - - dst += dst_bit_off / 8; - dst_bit_off %= 8; - - /* - * Initialize the src_buffer value with bits available in the first - * byte of data so that we end up with a byte aligned src pointer. - */ - if (src_bit_off) { - src_buffer = src[0] >> src_bit_off; - if (nbits >= (8 - src_bit_off)) { - bits_in_src_buffer += 8 - src_bit_off; - } else { - src_buffer &= GENMASK(nbits - 1, 0); - bits_in_src_buffer += nbits; - } - nbits -= bits_in_src_buffer; - src++; - } - - /* Calculate the number of bytes that can be copied from src to dst. */ - nbytes = nbits / 8; - - /* Try to align dst to a byte boundary. */ - if (dst_bit_off) { - if (bits_in_src_buffer < (8 - dst_bit_off) && nbytes) { - src_buffer |= src[0] << bits_in_src_buffer; - bits_in_src_buffer += 8; - src++; - nbytes--; - } - - if (bits_in_src_buffer >= (8 - dst_bit_off)) { - dst[0] &= GENMASK(dst_bit_off - 1, 0); - dst[0] |= src_buffer << dst_bit_off; - src_buffer >>= (8 - dst_bit_off); - bits_in_src_buffer -= (8 - dst_bit_off); - dst_bit_off = 0; - dst++; - if (bits_in_src_buffer > 7) { - bits_in_src_buffer -= 8; - dst[0] = src_buffer; - dst++; - src_buffer >>= 8; - } - } - } - - if (!bits_in_src_buffer && !dst_bit_off) { - /* - * Both src and dst pointers are byte aligned, thus we can - * just use the optimized memcpy function. - */ - if (nbytes) - memcpy(dst, src, nbytes); - } else { - /* - * src buffer is not byte aligned, hence we have to copy each - * src byte to the src_buffer variable before extracting a byte - * to store in dst. - */ - for (i = 0; i < nbytes; i++) { - src_buffer |= src[i] << bits_in_src_buffer; - dst[i] = src_buffer; - src_buffer >>= 8; - } - } - /* Update dst and src pointers */ - dst += nbytes; - src += nbytes; - - /* - * nbits is the number of remaining bits. It should not exceed 8 as - * we've already copied as much bytes as possible. - */ - nbits %= 8; - - /* - * If there's no more bits to copy to the destination and src buffer - * was already byte aligned, then we're done. - */ - if (!nbits && !bits_in_src_buffer) - return; - - /* Copy the remaining bits to src_buffer */ - if (nbits) - src_buffer |= (*src & GENMASK(nbits - 1, 0)) << - bits_in_src_buffer; - bits_in_src_buffer += nbits; - - /* - * In case there were not enough bits to get a byte aligned dst buffer - * prepare the src_buffer variable to match the dst organization (shift - * src_buffer by dst_bit_off and retrieve the least significant bits - * from dst). - */ - if (dst_bit_off) - src_buffer = (src_buffer << dst_bit_off) | - (*dst & GENMASK(dst_bit_off - 1, 0)); - bits_in_src_buffer += dst_bit_off; - - /* - * Keep most significant bits from dst if we end up with an unaligned - * number of bits. - */ - nbytes = bits_in_src_buffer / 8; - if (bits_in_src_buffer % 8) { - src_buffer |= (dst[nbytes] & - GENMASK(7, bits_in_src_buffer % 8)) << - (nbytes * 8); - nbytes++; - } - - /* Copy the remaining bytes to dst */ - for (i = 0; i < nbytes; i++) { - dst[i] = src_buffer; - src_buffer >>= 8; - } -} diff --git a/drivers/mtd/nand/gpmi-nand/gpmi-nand.c b/drivers/mtd/nand/gpmi-nand/gpmi-nand.c deleted file mode 100644 index 61fdd733492f..000000000000 --- a/drivers/mtd/nand/gpmi-nand/gpmi-nand.c +++ /dev/null @@ -1,2182 +0,0 @@ -/* - * Freescale GPMI NAND Flash Driver - * - * Copyright (C) 2010-2015 Freescale Semiconductor, Inc. - * Copyright (C) 2008 Embedded Alley Solutions, Inc. - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation; either version 2 of the License, or - * (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License along - * with this program; if not, write to the Free Software Foundation, Inc., - * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. - */ -#include -#include -#include -#include -#include -#include -#include -#include -#include "gpmi-nand.h" -#include "bch-regs.h" - -/* Resource names for the GPMI NAND driver. */ -#define GPMI_NAND_GPMI_REGS_ADDR_RES_NAME "gpmi-nand" -#define GPMI_NAND_BCH_REGS_ADDR_RES_NAME "bch" -#define GPMI_NAND_BCH_INTERRUPT_RES_NAME "bch" - -/* add our owner bbt descriptor */ -static uint8_t scan_ff_pattern[] = { 0xff }; -static struct nand_bbt_descr gpmi_bbt_descr = { - .options = 0, - .offs = 0, - .len = 1, - .pattern = scan_ff_pattern -}; - -/* - * We may change the layout if we can get the ECC info from the datasheet, - * else we will use all the (page + OOB). - */ -static int gpmi_ooblayout_ecc(struct mtd_info *mtd, int section, - struct mtd_oob_region *oobregion) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct gpmi_nand_data *this = nand_get_controller_data(chip); - struct bch_geometry *geo = &this->bch_geometry; - - if (section) - return -ERANGE; - - oobregion->offset = 0; - oobregion->length = geo->page_size - mtd->writesize; - - return 0; -} - -static int gpmi_ooblayout_free(struct mtd_info *mtd, int section, - struct mtd_oob_region *oobregion) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct gpmi_nand_data *this = nand_get_controller_data(chip); - struct bch_geometry *geo = &this->bch_geometry; - - if (section) - return -ERANGE; - - /* The available oob size we have. */ - if (geo->page_size < mtd->writesize + mtd->oobsize) { - oobregion->offset = geo->page_size - mtd->writesize; - oobregion->length = mtd->oobsize - oobregion->offset; - } - - return 0; -} - -static const char * const gpmi_clks_for_mx2x[] = { - "gpmi_io", -}; - -static const struct mtd_ooblayout_ops gpmi_ooblayout_ops = { - .ecc = gpmi_ooblayout_ecc, - .free = gpmi_ooblayout_free, -}; - -static const struct gpmi_devdata gpmi_devdata_imx23 = { - .type = IS_MX23, - .bch_max_ecc_strength = 20, - .max_chain_delay = 16, - .clks = gpmi_clks_for_mx2x, - .clks_count = ARRAY_SIZE(gpmi_clks_for_mx2x), -}; - -static const struct gpmi_devdata gpmi_devdata_imx28 = { - .type = IS_MX28, - .bch_max_ecc_strength = 20, - .max_chain_delay = 16, - .clks = gpmi_clks_for_mx2x, - .clks_count = ARRAY_SIZE(gpmi_clks_for_mx2x), -}; - -static const char * const gpmi_clks_for_mx6[] = { - "gpmi_io", "gpmi_apb", "gpmi_bch", "gpmi_bch_apb", "per1_bch", -}; - -static const struct gpmi_devdata gpmi_devdata_imx6q = { - .type = IS_MX6Q, - .bch_max_ecc_strength = 40, - .max_chain_delay = 12, - .clks = gpmi_clks_for_mx6, - .clks_count = ARRAY_SIZE(gpmi_clks_for_mx6), -}; - -static const struct gpmi_devdata gpmi_devdata_imx6sx = { - .type = IS_MX6SX, - .bch_max_ecc_strength = 62, - .max_chain_delay = 12, - .clks = gpmi_clks_for_mx6, - .clks_count = ARRAY_SIZE(gpmi_clks_for_mx6), -}; - -static const char * const gpmi_clks_for_mx7d[] = { - "gpmi_io", "gpmi_bch_apb", -}; - -static const struct gpmi_devdata gpmi_devdata_imx7d = { - .type = IS_MX7D, - .bch_max_ecc_strength = 62, - .max_chain_delay = 12, - .clks = gpmi_clks_for_mx7d, - .clks_count = ARRAY_SIZE(gpmi_clks_for_mx7d), -}; - -static irqreturn_t bch_irq(int irq, void *cookie) -{ - struct gpmi_nand_data *this = cookie; - - gpmi_clear_bch(this); - complete(&this->bch_done); - return IRQ_HANDLED; -} - -/* - * Calculate the ECC strength by hand: - * E : The ECC strength. - * G : the length of Galois Field. - * N : The chunk count of per page. - * O : the oobsize of the NAND chip. - * M : the metasize of per page. - * - * The formula is : - * E * G * N - * ------------ <= (O - M) - * 8 - * - * So, we get E by: - * (O - M) * 8 - * E <= ------------- - * G * N - */ -static inline int get_ecc_strength(struct gpmi_nand_data *this) -{ - struct bch_geometry *geo = &this->bch_geometry; - struct mtd_info *mtd = nand_to_mtd(&this->nand); - int ecc_strength; - - ecc_strength = ((mtd->oobsize - geo->metadata_size) * 8) - / (geo->gf_len * geo->ecc_chunk_count); - - /* We need the minor even number. */ - return round_down(ecc_strength, 2); -} - -static inline bool gpmi_check_ecc(struct gpmi_nand_data *this) -{ - struct bch_geometry *geo = &this->bch_geometry; - - /* Do the sanity check. */ - if (GPMI_IS_MX23(this) || GPMI_IS_MX28(this)) { - /* The mx23/mx28 only support the GF13. */ - if (geo->gf_len == 14) - return false; - } - return geo->ecc_strength <= this->devdata->bch_max_ecc_strength; -} - -/* - * If we can get the ECC information from the nand chip, we do not - * need to calculate them ourselves. - * - * We may have available oob space in this case. - */ -static int set_geometry_by_ecc_info(struct gpmi_nand_data *this) -{ - struct bch_geometry *geo = &this->bch_geometry; - struct nand_chip *chip = &this->nand; - struct mtd_info *mtd = nand_to_mtd(chip); - unsigned int block_mark_bit_offset; - - if (!(chip->ecc_strength_ds > 0 && chip->ecc_step_ds > 0)) - return -EINVAL; - - switch (chip->ecc_step_ds) { - case SZ_512: - geo->gf_len = 13; - break; - case SZ_1K: - geo->gf_len = 14; - break; - default: - dev_err(this->dev, - "unsupported nand chip. ecc bits : %d, ecc size : %d\n", - chip->ecc_strength_ds, chip->ecc_step_ds); - return -EINVAL; - } - geo->ecc_chunk_size = chip->ecc_step_ds; - geo->ecc_strength = round_up(chip->ecc_strength_ds, 2); - if (!gpmi_check_ecc(this)) - return -EINVAL; - - /* Keep the C >= O */ - if (geo->ecc_chunk_size < mtd->oobsize) { - dev_err(this->dev, - "unsupported nand chip. ecc size: %d, oob size : %d\n", - chip->ecc_step_ds, mtd->oobsize); - return -EINVAL; - } - - /* The default value, see comment in the legacy_set_geometry(). */ - geo->metadata_size = 10; - - geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunk_size; - - /* - * Now, the NAND chip with 2K page(data chunk is 512byte) shows below: - * - * | P | - * |<----------------------------------------------------->| - * | | - * | (Block Mark) | - * | P' | | | | - * |<-------------------------------------------->| D | | O' | - * | |<---->| |<--->| - * V V V V V - * +---+----------+-+----------+-+----------+-+----------+-+-----+ - * | M | data |E| data |E| data |E| data |E| | - * +---+----------+-+----------+-+----------+-+----------+-+-----+ - * ^ ^ - * | O | - * |<------------>| - * | | - * - * P : the page size for BCH module. - * E : The ECC strength. - * G : the length of Galois Field. - * N : The chunk count of per page. - * M : the metasize of per page. - * C : the ecc chunk size, aka the "data" above. - * P': the nand chip's page size. - * O : the nand chip's oob size. - * O': the free oob. - * - * The formula for P is : - * - * E * G * N - * P = ------------ + P' + M - * 8 - * - * The position of block mark moves forward in the ECC-based view - * of page, and the delta is: - * - * E * G * (N - 1) - * D = (---------------- + M) - * 8 - * - * Please see the comment in legacy_set_geometry(). - * With the condition C >= O , we still can get same result. - * So the bit position of the physical block mark within the ECC-based - * view of the page is : - * (P' - D) * 8 - */ - geo->page_size = mtd->writesize + geo->metadata_size + - (geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) / 8; - - geo->payload_size = mtd->writesize; - - geo->auxiliary_status_offset = ALIGN(geo->metadata_size, 4); - geo->auxiliary_size = ALIGN(geo->metadata_size, 4) - + ALIGN(geo->ecc_chunk_count, 4); - - if (!this->swap_block_mark) - return 0; - - /* For bit swap. */ - block_mark_bit_offset = mtd->writesize * 8 - - (geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1) - + geo->metadata_size * 8); - - geo->block_mark_byte_offset = block_mark_bit_offset / 8; - geo->block_mark_bit_offset = block_mark_bit_offset % 8; - return 0; -} - -static int legacy_set_geometry(struct gpmi_nand_data *this) -{ - struct bch_geometry *geo = &this->bch_geometry; - struct mtd_info *mtd = nand_to_mtd(&this->nand); - unsigned int metadata_size; - unsigned int status_size; - unsigned int block_mark_bit_offset; - - /* - * The size of the metadata can be changed, though we set it to 10 - * bytes now. But it can't be too large, because we have to save - * enough space for BCH. - */ - geo->metadata_size = 10; - - /* The default for the length of Galois Field. */ - geo->gf_len = 13; - - /* The default for chunk size. */ - geo->ecc_chunk_size = 512; - while (geo->ecc_chunk_size < mtd->oobsize) { - geo->ecc_chunk_size *= 2; /* keep C >= O */ - geo->gf_len = 14; - } - - geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunk_size; - - /* We use the same ECC strength for all chunks. */ - geo->ecc_strength = get_ecc_strength(this); - if (!gpmi_check_ecc(this)) { - dev_err(this->dev, - "ecc strength: %d cannot be supported by the controller (%d)\n" - "try to use minimum ecc strength that NAND chip required\n", - geo->ecc_strength, - this->devdata->bch_max_ecc_strength); - return -EINVAL; - } - - geo->page_size = mtd->writesize + geo->metadata_size + - (geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) / 8; - geo->payload_size = mtd->writesize; - - /* - * The auxiliary buffer contains the metadata and the ECC status. The - * metadata is padded to the nearest 32-bit boundary. The ECC status - * contains one byte for every ECC chunk, and is also padded to the - * nearest 32-bit boundary. - */ - metadata_size = ALIGN(geo->metadata_size, 4); - status_size = ALIGN(geo->ecc_chunk_count, 4); - - geo->auxiliary_size = metadata_size + status_size; - geo->auxiliary_status_offset = metadata_size; - - if (!this->swap_block_mark) - return 0; - - /* - * We need to compute the byte and bit offsets of - * the physical block mark within the ECC-based view of the page. - * - * NAND chip with 2K page shows below: - * (Block Mark) - * | | - * | D | - * |<---->| - * V V - * +---+----------+-+----------+-+----------+-+----------+-+ - * | M | data |E| data |E| data |E| data |E| - * +---+----------+-+----------+-+----------+-+----------+-+ - * - * The position of block mark moves forward in the ECC-based view - * of page, and the delta is: - * - * E * G * (N - 1) - * D = (---------------- + M) - * 8 - * - * With the formula to compute the ECC strength, and the condition - * : C >= O (C is the ecc chunk size) - * - * It's easy to deduce to the following result: - * - * E * G (O - M) C - M C - M - * ----------- <= ------- <= -------- < --------- - * 8 N N (N - 1) - * - * So, we get: - * - * E * G * (N - 1) - * D = (---------------- + M) < C - * 8 - * - * The above inequality means the position of block mark - * within the ECC-based view of the page is still in the data chunk, - * and it's NOT in the ECC bits of the chunk. - * - * Use the following to compute the bit position of the - * physical block mark within the ECC-based view of the page: - * (page_size - D) * 8 - * - * --Huang Shijie - */ - block_mark_bit_offset = mtd->writesize * 8 - - (geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1) - + geo->metadata_size * 8); - - geo->block_mark_byte_offset = block_mark_bit_offset / 8; - geo->block_mark_bit_offset = block_mark_bit_offset % 8; - return 0; -} - -int common_nfc_set_geometry(struct gpmi_nand_data *this) -{ - if ((of_property_read_bool(this->dev->of_node, "fsl,use-minimum-ecc")) - || legacy_set_geometry(this)) - return set_geometry_by_ecc_info(this); - - return 0; -} - -struct dma_chan *get_dma_chan(struct gpmi_nand_data *this) -{ - /* We use the DMA channel 0 to access all the nand chips. */ - return this->dma_chans[0]; -} - -/* Can we use the upper's buffer directly for DMA? */ -void prepare_data_dma(struct gpmi_nand_data *this, enum dma_data_direction dr) -{ - struct scatterlist *sgl = &this->data_sgl; - int ret; - - /* first try to map the upper buffer directly */ - if (virt_addr_valid(this->upper_buf) && - !object_is_on_stack(this->upper_buf)) { - sg_init_one(sgl, this->upper_buf, this->upper_len); - ret = dma_map_sg(this->dev, sgl, 1, dr); - if (ret == 0) - goto map_fail; - - this->direct_dma_map_ok = true; - return; - } - -map_fail: - /* We have to use our own DMA buffer. */ - sg_init_one(sgl, this->data_buffer_dma, this->upper_len); - - if (dr == DMA_TO_DEVICE) - memcpy(this->data_buffer_dma, this->upper_buf, this->upper_len); - - dma_map_sg(this->dev, sgl, 1, dr); - - this->direct_dma_map_ok = false; -} - -/* This will be called after the DMA operation is finished. */ -static void dma_irq_callback(void *param) -{ - struct gpmi_nand_data *this = param; - struct completion *dma_c = &this->dma_done; - - switch (this->dma_type) { - case DMA_FOR_COMMAND: - dma_unmap_sg(this->dev, &this->cmd_sgl, 1, DMA_TO_DEVICE); - break; - - case DMA_FOR_READ_DATA: - dma_unmap_sg(this->dev, &this->data_sgl, 1, DMA_FROM_DEVICE); - if (this->direct_dma_map_ok == false) - memcpy(this->upper_buf, this->data_buffer_dma, - this->upper_len); - break; - - case DMA_FOR_WRITE_DATA: - dma_unmap_sg(this->dev, &this->data_sgl, 1, DMA_TO_DEVICE); - break; - - case DMA_FOR_READ_ECC_PAGE: - case DMA_FOR_WRITE_ECC_PAGE: - /* We have to wait the BCH interrupt to finish. */ - break; - - default: - dev_err(this->dev, "in wrong DMA operation.\n"); - } - - complete(dma_c); -} - -int start_dma_without_bch_irq(struct gpmi_nand_data *this, - struct dma_async_tx_descriptor *desc) -{ - struct completion *dma_c = &this->dma_done; - unsigned long timeout; - - init_completion(dma_c); - - desc->callback = dma_irq_callback; - desc->callback_param = this; - dmaengine_submit(desc); - dma_async_issue_pending(get_dma_chan(this)); - - /* Wait for the interrupt from the DMA block. */ - timeout = wait_for_completion_timeout(dma_c, msecs_to_jiffies(1000)); - if (!timeout) { - dev_err(this->dev, "DMA timeout, last DMA :%d\n", - this->last_dma_type); - gpmi_dump_info(this); - return -ETIMEDOUT; - } - return 0; -} - -/* - * This function is used in BCH reading or BCH writing pages. - * It will wait for the BCH interrupt as long as ONE second. - * Actually, we must wait for two interrupts : - * [1] firstly the DMA interrupt and - * [2] secondly the BCH interrupt. - */ -int start_dma_with_bch_irq(struct gpmi_nand_data *this, - struct dma_async_tx_descriptor *desc) -{ - struct completion *bch_c = &this->bch_done; - unsigned long timeout; - - /* Prepare to receive an interrupt from the BCH block. */ - init_completion(bch_c); - - /* start the DMA */ - start_dma_without_bch_irq(this, desc); - - /* Wait for the interrupt from the BCH block. */ - timeout = wait_for_completion_timeout(bch_c, msecs_to_jiffies(1000)); - if (!timeout) { - dev_err(this->dev, "BCH timeout, last DMA :%d\n", - this->last_dma_type); - gpmi_dump_info(this); - return -ETIMEDOUT; - } - return 0; -} - -static int acquire_register_block(struct gpmi_nand_data *this, - const char *res_name) -{ - struct platform_device *pdev = this->pdev; - struct resources *res = &this->resources; - struct resource *r; - void __iomem *p; - - r = platform_get_resource_byname(pdev, IORESOURCE_MEM, res_name); - p = devm_ioremap_resource(&pdev->dev, r); - if (IS_ERR(p)) - return PTR_ERR(p); - - if (!strcmp(res_name, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME)) - res->gpmi_regs = p; - else if (!strcmp(res_name, GPMI_NAND_BCH_REGS_ADDR_RES_NAME)) - res->bch_regs = p; - else - dev_err(this->dev, "unknown resource name : %s\n", res_name); - - return 0; -} - -static int acquire_bch_irq(struct gpmi_nand_data *this, irq_handler_t irq_h) -{ - struct platform_device *pdev = this->pdev; - const char *res_name = GPMI_NAND_BCH_INTERRUPT_RES_NAME; - struct resource *r; - int err; - - r = platform_get_resource_byname(pdev, IORESOURCE_IRQ, res_name); - if (!r) { - dev_err(this->dev, "Can't get resource for %s\n", res_name); - return -ENODEV; - } - - err = devm_request_irq(this->dev, r->start, irq_h, 0, res_name, this); - if (err) - dev_err(this->dev, "error requesting BCH IRQ\n"); - - return err; -} - -static void release_dma_channels(struct gpmi_nand_data *this) -{ - unsigned int i; - for (i = 0; i < DMA_CHANS; i++) - if (this->dma_chans[i]) { - dma_release_channel(this->dma_chans[i]); - this->dma_chans[i] = NULL; - } -} - -static int acquire_dma_channels(struct gpmi_nand_data *this) -{ - struct platform_device *pdev = this->pdev; - struct dma_chan *dma_chan; - - /* request dma channel */ - dma_chan = dma_request_slave_channel(&pdev->dev, "rx-tx"); - if (!dma_chan) { - dev_err(this->dev, "Failed to request DMA channel.\n"); - goto acquire_err; - } - - this->dma_chans[0] = dma_chan; - return 0; - -acquire_err: - release_dma_channels(this); - return -EINVAL; -} - -static int gpmi_get_clks(struct gpmi_nand_data *this) -{ - struct resources *r = &this->resources; - struct clk *clk; - int err, i; - - for (i = 0; i < this->devdata->clks_count; i++) { - clk = devm_clk_get(this->dev, this->devdata->clks[i]); - if (IS_ERR(clk)) { - err = PTR_ERR(clk); - goto err_clock; - } - - r->clock[i] = clk; - } - - if (GPMI_IS_MX6(this)) - /* - * Set the default value for the gpmi clock. - * - * If you want to use the ONFI nand which is in the - * Synchronous Mode, you should change the clock as you need. - */ - clk_set_rate(r->clock[0], 22000000); - - return 0; - -err_clock: - dev_dbg(this->dev, "failed in finding the clocks.\n"); - return err; -} - -static int acquire_resources(struct gpmi_nand_data *this) -{ - int ret; - - ret = acquire_register_block(this, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME); - if (ret) - goto exit_regs; - - ret = acquire_register_block(this, GPMI_NAND_BCH_REGS_ADDR_RES_NAME); - if (ret) - goto exit_regs; - - ret = acquire_bch_irq(this, bch_irq); - if (ret) - goto exit_regs; - - ret = acquire_dma_channels(this); - if (ret) - goto exit_regs; - - ret = gpmi_get_clks(this); - if (ret) - goto exit_clock; - return 0; - -exit_clock: - release_dma_channels(this); -exit_regs: - return ret; -} - -static void release_resources(struct gpmi_nand_data *this) -{ - release_dma_channels(this); -} - -static int init_hardware(struct gpmi_nand_data *this) -{ - int ret; - - /* - * This structure contains the "safe" GPMI timing that should succeed - * with any NAND Flash device - * (although, with less-than-optimal performance). - */ - struct nand_timing safe_timing = { - .data_setup_in_ns = 80, - .data_hold_in_ns = 60, - .address_setup_in_ns = 25, - .gpmi_sample_delay_in_ns = 6, - .tREA_in_ns = -1, - .tRLOH_in_ns = -1, - .tRHOH_in_ns = -1, - }; - - /* Initialize the hardwares. */ - ret = gpmi_init(this); - if (ret) - return ret; - - this->timing = safe_timing; - return 0; -} - -static int read_page_prepare(struct gpmi_nand_data *this, - void *destination, unsigned length, - void *alt_virt, dma_addr_t alt_phys, unsigned alt_size, - void **use_virt, dma_addr_t *use_phys) -{ - struct device *dev = this->dev; - - if (virt_addr_valid(destination)) { - dma_addr_t dest_phys; - - dest_phys = dma_map_single(dev, destination, - length, DMA_FROM_DEVICE); - if (dma_mapping_error(dev, dest_phys)) { - if (alt_size < length) { - dev_err(dev, "Alternate buffer is too small\n"); - return -ENOMEM; - } - goto map_failed; - } - *use_virt = destination; - *use_phys = dest_phys; - this->direct_dma_map_ok = true; - return 0; - } - -map_failed: - *use_virt = alt_virt; - *use_phys = alt_phys; - this->direct_dma_map_ok = false; - return 0; -} - -static inline void read_page_end(struct gpmi_nand_data *this, - void *destination, unsigned length, - void *alt_virt, dma_addr_t alt_phys, unsigned alt_size, - void *used_virt, dma_addr_t used_phys) -{ - if (this->direct_dma_map_ok) - dma_unmap_single(this->dev, used_phys, length, DMA_FROM_DEVICE); -} - -static inline void read_page_swap_end(struct gpmi_nand_data *this, - void *destination, unsigned length, - void *alt_virt, dma_addr_t alt_phys, unsigned alt_size, - void *used_virt, dma_addr_t used_phys) -{ - if (!this->direct_dma_map_ok) - memcpy(destination, alt_virt, length); -} - -static int send_page_prepare(struct gpmi_nand_data *this, - const void *source, unsigned length, - void *alt_virt, dma_addr_t alt_phys, unsigned alt_size, - const void **use_virt, dma_addr_t *use_phys) -{ - struct device *dev = this->dev; - - if (virt_addr_valid(source)) { - dma_addr_t source_phys; - - source_phys = dma_map_single(dev, (void *)source, length, - DMA_TO_DEVICE); - if (dma_mapping_error(dev, source_phys)) { - if (alt_size < length) { - dev_err(dev, "Alternate buffer is too small\n"); - return -ENOMEM; - } - goto map_failed; - } - *use_virt = source; - *use_phys = source_phys; - return 0; - } -map_failed: - /* - * Copy the content of the source buffer into the alternate - * buffer and set up the return values accordingly. - */ - memcpy(alt_virt, source, length); - - *use_virt = alt_virt; - *use_phys = alt_phys; - return 0; -} - -static void send_page_end(struct gpmi_nand_data *this, - const void *source, unsigned length, - void *alt_virt, dma_addr_t alt_phys, unsigned alt_size, - const void *used_virt, dma_addr_t used_phys) -{ - struct device *dev = this->dev; - if (used_virt == source) - dma_unmap_single(dev, used_phys, length, DMA_TO_DEVICE); -} - -static void gpmi_free_dma_buffer(struct gpmi_nand_data *this) -{ - struct device *dev = this->dev; - - if (this->page_buffer_virt && virt_addr_valid(this->page_buffer_virt)) - dma_free_coherent(dev, this->page_buffer_size, - this->page_buffer_virt, - this->page_buffer_phys); - kfree(this->cmd_buffer); - kfree(this->data_buffer_dma); - kfree(this->raw_buffer); - - this->cmd_buffer = NULL; - this->data_buffer_dma = NULL; - this->raw_buffer = NULL; - this->page_buffer_virt = NULL; - this->page_buffer_size = 0; -} - -/* Allocate the DMA buffers */ -static int gpmi_alloc_dma_buffer(struct gpmi_nand_data *this) -{ - struct bch_geometry *geo = &this->bch_geometry; - struct device *dev = this->dev; - struct mtd_info *mtd = nand_to_mtd(&this->nand); - - /* [1] Allocate a command buffer. PAGE_SIZE is enough. */ - this->cmd_buffer = kzalloc(PAGE_SIZE, GFP_DMA | GFP_KERNEL); - if (this->cmd_buffer == NULL) - goto error_alloc; - - /* - * [2] Allocate a read/write data buffer. - * The gpmi_alloc_dma_buffer can be called twice. - * We allocate a PAGE_SIZE length buffer if gpmi_alloc_dma_buffer - * is called before the nand_scan_ident; and we allocate a buffer - * of the real NAND page size when the gpmi_alloc_dma_buffer is - * called after the nand_scan_ident. - */ - this->data_buffer_dma = kzalloc(mtd->writesize ?: PAGE_SIZE, - GFP_DMA | GFP_KERNEL); - if (this->data_buffer_dma == NULL) - goto error_alloc; - - /* - * [3] Allocate the page buffer. - * - * Both the payload buffer and the auxiliary buffer must appear on - * 32-bit boundaries. We presume the size of the payload buffer is a - * power of two and is much larger than four, which guarantees the - * auxiliary buffer will appear on a 32-bit boundary. - */ - this->page_buffer_size = geo->payload_size + geo->auxiliary_size; - this->page_buffer_virt = dma_alloc_coherent(dev, this->page_buffer_size, - &this->page_buffer_phys, GFP_DMA); - if (!this->page_buffer_virt) - goto error_alloc; - - this->raw_buffer = kzalloc(mtd->writesize + mtd->oobsize, GFP_KERNEL); - if (!this->raw_buffer) - goto error_alloc; - - /* Slice up the page buffer. */ - this->payload_virt = this->page_buffer_virt; - this->payload_phys = this->page_buffer_phys; - this->auxiliary_virt = this->payload_virt + geo->payload_size; - this->auxiliary_phys = this->payload_phys + geo->payload_size; - return 0; - -error_alloc: - gpmi_free_dma_buffer(this); - return -ENOMEM; -} - -static void gpmi_cmd_ctrl(struct mtd_info *mtd, int data, unsigned int ctrl) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct gpmi_nand_data *this = nand_get_controller_data(chip); - int ret; - - /* - * Every operation begins with a command byte and a series of zero or - * more address bytes. These are distinguished by either the Address - * Latch Enable (ALE) or Command Latch Enable (CLE) signals being - * asserted. When MTD is ready to execute the command, it will deassert - * both latch enables. - * - * Rather than run a separate DMA operation for every single byte, we - * queue them up and run a single DMA operation for the entire series - * of command and data bytes. NAND_CMD_NONE means the END of the queue. - */ - if ((ctrl & (NAND_ALE | NAND_CLE))) { - if (data != NAND_CMD_NONE) - this->cmd_buffer[this->command_length++] = data; - return; - } - - if (!this->command_length) - return; - - ret = gpmi_send_command(this); - if (ret) - dev_err(this->dev, "Chip: %u, Error %d\n", - this->current_chip, ret); - - this->command_length = 0; -} - -static int gpmi_dev_ready(struct mtd_info *mtd) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct gpmi_nand_data *this = nand_get_controller_data(chip); - - return gpmi_is_ready(this, this->current_chip); -} - -static void gpmi_select_chip(struct mtd_info *mtd, int chipnr) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct gpmi_nand_data *this = nand_get_controller_data(chip); - - if ((this->current_chip < 0) && (chipnr >= 0)) - gpmi_begin(this); - else if ((this->current_chip >= 0) && (chipnr < 0)) - gpmi_end(this); - - this->current_chip = chipnr; -} - -static void gpmi_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct gpmi_nand_data *this = nand_get_controller_data(chip); - - dev_dbg(this->dev, "len is %d\n", len); - this->upper_buf = buf; - this->upper_len = len; - - gpmi_read_data(this); -} - -static void gpmi_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct gpmi_nand_data *this = nand_get_controller_data(chip); - - dev_dbg(this->dev, "len is %d\n", len); - this->upper_buf = (uint8_t *)buf; - this->upper_len = len; - - gpmi_send_data(this); -} - -static uint8_t gpmi_read_byte(struct mtd_info *mtd) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct gpmi_nand_data *this = nand_get_controller_data(chip); - uint8_t *buf = this->data_buffer_dma; - - gpmi_read_buf(mtd, buf, 1); - return buf[0]; -} - -/* - * Handles block mark swapping. - * It can be called in swapping the block mark, or swapping it back, - * because the the operations are the same. - */ -static void block_mark_swapping(struct gpmi_nand_data *this, - void *payload, void *auxiliary) -{ - struct bch_geometry *nfc_geo = &this->bch_geometry; - unsigned char *p; - unsigned char *a; - unsigned int bit; - unsigned char mask; - unsigned char from_data; - unsigned char from_oob; - - if (!this->swap_block_mark) - return; - - /* - * If control arrives here, we're swapping. Make some convenience - * variables. - */ - bit = nfc_geo->block_mark_bit_offset; - p = payload + nfc_geo->block_mark_byte_offset; - a = auxiliary; - - /* - * Get the byte from the data area that overlays the block mark. Since - * the ECC engine applies its own view to the bits in the page, the - * physical block mark won't (in general) appear on a byte boundary in - * the data. - */ - from_data = (p[0] >> bit) | (p[1] << (8 - bit)); - - /* Get the byte from the OOB. */ - from_oob = a[0]; - - /* Swap them. */ - a[0] = from_data; - - mask = (0x1 << bit) - 1; - p[0] = (p[0] & mask) | (from_oob << bit); - - mask = ~0 << bit; - p[1] = (p[1] & mask) | (from_oob >> (8 - bit)); -} - -static int gpmi_ecc_read_page_data(struct nand_chip *chip, - uint8_t *buf, int oob_required, - int page) -{ - struct gpmi_nand_data *this = nand_get_controller_data(chip); - struct bch_geometry *nfc_geo = &this->bch_geometry; - struct mtd_info *mtd = nand_to_mtd(chip); - void *payload_virt; - dma_addr_t payload_phys; - void *auxiliary_virt; - dma_addr_t auxiliary_phys; - unsigned int i; - unsigned char *status; - unsigned int max_bitflips = 0; - int ret; - - dev_dbg(this->dev, "page number is : %d\n", page); - ret = read_page_prepare(this, buf, nfc_geo->payload_size, - this->payload_virt, this->payload_phys, - nfc_geo->payload_size, - &payload_virt, &payload_phys); - if (ret) { - dev_err(this->dev, "Inadequate DMA buffer\n"); - ret = -ENOMEM; - return ret; - } - auxiliary_virt = this->auxiliary_virt; - auxiliary_phys = this->auxiliary_phys; - - /* go! */ - ret = gpmi_read_page(this, payload_phys, auxiliary_phys); - read_page_end(this, buf, nfc_geo->payload_size, - this->payload_virt, this->payload_phys, - nfc_geo->payload_size, - payload_virt, payload_phys); - if (ret) { - dev_err(this->dev, "Error in ECC-based read: %d\n", ret); - return ret; - } - - /* Loop over status bytes, accumulating ECC status. */ - status = auxiliary_virt + nfc_geo->auxiliary_status_offset; - - read_page_swap_end(this, buf, nfc_geo->payload_size, - this->payload_virt, this->payload_phys, - nfc_geo->payload_size, - payload_virt, payload_phys); - - for (i = 0; i < nfc_geo->ecc_chunk_count; i++, status++) { - if ((*status == STATUS_GOOD) || (*status == STATUS_ERASED)) - continue; - - if (*status == STATUS_UNCORRECTABLE) { - int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len; - u8 *eccbuf = this->raw_buffer; - int offset, bitoffset; - int eccbytes; - int flips; - - /* Read ECC bytes into our internal raw_buffer */ - offset = nfc_geo->metadata_size * 8; - offset += ((8 * nfc_geo->ecc_chunk_size) + eccbits) * (i + 1); - offset -= eccbits; - bitoffset = offset % 8; - eccbytes = DIV_ROUND_UP(offset + eccbits, 8); - offset /= 8; - eccbytes -= offset; - nand_change_read_column_op(chip, offset, eccbuf, - eccbytes, false); - - /* - * ECC data are not byte aligned and we may have - * in-band data in the first and last byte of - * eccbuf. Set non-eccbits to one so that - * nand_check_erased_ecc_chunk() does not count them - * as bitflips. - */ - if (bitoffset) - eccbuf[0] |= GENMASK(bitoffset - 1, 0); - - bitoffset = (bitoffset + eccbits) % 8; - if (bitoffset) - eccbuf[eccbytes - 1] |= GENMASK(7, bitoffset); - - /* - * The ECC hardware has an uncorrectable ECC status - * code in case we have bitflips in an erased page. As - * nothing was written into this subpage the ECC is - * obviously wrong and we can not trust it. We assume - * at this point that we are reading an erased page and - * try to correct the bitflips in buffer up to - * ecc_strength bitflips. If this is a page with random - * data, we exceed this number of bitflips and have a - * ECC failure. Otherwise we use the corrected buffer. - */ - if (i == 0) { - /* The first block includes metadata */ - flips = nand_check_erased_ecc_chunk( - buf + i * nfc_geo->ecc_chunk_size, - nfc_geo->ecc_chunk_size, - eccbuf, eccbytes, - auxiliary_virt, - nfc_geo->metadata_size, - nfc_geo->ecc_strength); - } else { - flips = nand_check_erased_ecc_chunk( - buf + i * nfc_geo->ecc_chunk_size, - nfc_geo->ecc_chunk_size, - eccbuf, eccbytes, - NULL, 0, - nfc_geo->ecc_strength); - } - - if (flips > 0) { - max_bitflips = max_t(unsigned int, max_bitflips, - flips); - mtd->ecc_stats.corrected += flips; - continue; - } - - mtd->ecc_stats.failed++; - continue; - } - - mtd->ecc_stats.corrected += *status; - max_bitflips = max_t(unsigned int, max_bitflips, *status); - } - - /* handle the block mark swapping */ - block_mark_swapping(this, buf, auxiliary_virt); - - if (oob_required) { - /* - * It's time to deliver the OOB bytes. See gpmi_ecc_read_oob() - * for details about our policy for delivering the OOB. - * - * We fill the caller's buffer with set bits, and then copy the - * block mark to th caller's buffer. Note that, if block mark - * swapping was necessary, it has already been done, so we can - * rely on the first byte of the auxiliary buffer to contain - * the block mark. - */ - memset(chip->oob_poi, ~0, mtd->oobsize); - chip->oob_poi[0] = ((uint8_t *) auxiliary_virt)[0]; - } - - return max_bitflips; -} - -static int gpmi_ecc_read_page(struct mtd_info *mtd, struct nand_chip *chip, - uint8_t *buf, int oob_required, int page) -{ - nand_read_page_op(chip, page, 0, NULL, 0); - - return gpmi_ecc_read_page_data(chip, buf, oob_required, page); -} - -/* Fake a virtual small page for the subpage read */ -static int gpmi_ecc_read_subpage(struct mtd_info *mtd, struct nand_chip *chip, - uint32_t offs, uint32_t len, uint8_t *buf, int page) -{ - struct gpmi_nand_data *this = nand_get_controller_data(chip); - void __iomem *bch_regs = this->resources.bch_regs; - struct bch_geometry old_geo = this->bch_geometry; - struct bch_geometry *geo = &this->bch_geometry; - int size = chip->ecc.size; /* ECC chunk size */ - int meta, n, page_size; - u32 r1_old, r2_old, r1_new, r2_new; - unsigned int max_bitflips; - int first, last, marker_pos; - int ecc_parity_size; - int col = 0; - int old_swap_block_mark = this->swap_block_mark; - - /* The size of ECC parity */ - ecc_parity_size = geo->gf_len * geo->ecc_strength / 8; - - /* Align it with the chunk size */ - first = offs / size; - last = (offs + len - 1) / size; - - if (this->swap_block_mark) { - /* - * Find the chunk which contains the Block Marker. - * If this chunk is in the range of [first, last], - * we have to read out the whole page. - * Why? since we had swapped the data at the position of Block - * Marker to the metadata which is bound with the chunk 0. - */ - marker_pos = geo->block_mark_byte_offset / size; - if (last >= marker_pos && first <= marker_pos) { - dev_dbg(this->dev, - "page:%d, first:%d, last:%d, marker at:%d\n", - page, first, last, marker_pos); - return gpmi_ecc_read_page(mtd, chip, buf, 0, page); - } - } - - meta = geo->metadata_size; - if (first) { - col = meta + (size + ecc_parity_size) * first; - meta = 0; - buf = buf + first * size; - } - - nand_read_page_op(chip, page, col, NULL, 0); - - /* Save the old environment */ - r1_old = r1_new = readl(bch_regs + HW_BCH_FLASH0LAYOUT0); - r2_old = r2_new = readl(bch_regs + HW_BCH_FLASH0LAYOUT1); - - /* change the BCH registers and bch_geometry{} */ - n = last - first + 1; - page_size = meta + (size + ecc_parity_size) * n; - - r1_new &= ~(BM_BCH_FLASH0LAYOUT0_NBLOCKS | - BM_BCH_FLASH0LAYOUT0_META_SIZE); - r1_new |= BF_BCH_FLASH0LAYOUT0_NBLOCKS(n - 1) - | BF_BCH_FLASH0LAYOUT0_META_SIZE(meta); - writel(r1_new, bch_regs + HW_BCH_FLASH0LAYOUT0); - - r2_new &= ~BM_BCH_FLASH0LAYOUT1_PAGE_SIZE; - r2_new |= BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(page_size); - writel(r2_new, bch_regs + HW_BCH_FLASH0LAYOUT1); - - geo->ecc_chunk_count = n; - geo->payload_size = n * size; - geo->page_size = page_size; - geo->auxiliary_status_offset = ALIGN(meta, 4); - - dev_dbg(this->dev, "page:%d(%d:%d)%d, chunk:(%d:%d), BCH PG size:%d\n", - page, offs, len, col, first, n, page_size); - - /* Read the subpage now */ - this->swap_block_mark = false; - max_bitflips = gpmi_ecc_read_page_data(chip, buf, 0, page); - - /* Restore */ - writel(r1_old, bch_regs + HW_BCH_FLASH0LAYOUT0); - writel(r2_old, bch_regs + HW_BCH_FLASH0LAYOUT1); - this->bch_geometry = old_geo; - this->swap_block_mark = old_swap_block_mark; - - return max_bitflips; -} - -static int gpmi_ecc_write_page(struct mtd_info *mtd, struct nand_chip *chip, - const uint8_t *buf, int oob_required, int page) -{ - struct gpmi_nand_data *this = nand_get_controller_data(chip); - struct bch_geometry *nfc_geo = &this->bch_geometry; - const void *payload_virt; - dma_addr_t payload_phys; - const void *auxiliary_virt; - dma_addr_t auxiliary_phys; - int ret; - - dev_dbg(this->dev, "ecc write page.\n"); - - nand_prog_page_begin_op(chip, page, 0, NULL, 0); - - if (this->swap_block_mark) { - /* - * If control arrives here, we're doing block mark swapping. - * Since we can't modify the caller's buffers, we must copy them - * into our own. - */ - memcpy(this->payload_virt, buf, mtd->writesize); - payload_virt = this->payload_virt; - payload_phys = this->payload_phys; - - memcpy(this->auxiliary_virt, chip->oob_poi, - nfc_geo->auxiliary_size); - auxiliary_virt = this->auxiliary_virt; - auxiliary_phys = this->auxiliary_phys; - - /* Handle block mark swapping. */ - block_mark_swapping(this, - (void *)payload_virt, (void *)auxiliary_virt); - } else { - /* - * If control arrives here, we're not doing block mark swapping, - * so we can to try and use the caller's buffers. - */ - ret = send_page_prepare(this, - buf, mtd->writesize, - this->payload_virt, this->payload_phys, - nfc_geo->payload_size, - &payload_virt, &payload_phys); - if (ret) { - dev_err(this->dev, "Inadequate payload DMA buffer\n"); - return 0; - } - - ret = send_page_prepare(this, - chip->oob_poi, mtd->oobsize, - this->auxiliary_virt, this->auxiliary_phys, - nfc_geo->auxiliary_size, - &auxiliary_virt, &auxiliary_phys); - if (ret) { - dev_err(this->dev, "Inadequate auxiliary DMA buffer\n"); - goto exit_auxiliary; - } - } - - /* Ask the NFC. */ - ret = gpmi_send_page(this, payload_phys, auxiliary_phys); - if (ret) - dev_err(this->dev, "Error in ECC-based write: %d\n", ret); - - if (!this->swap_block_mark) { - send_page_end(this, chip->oob_poi, mtd->oobsize, - this->auxiliary_virt, this->auxiliary_phys, - nfc_geo->auxiliary_size, - auxiliary_virt, auxiliary_phys); -exit_auxiliary: - send_page_end(this, buf, mtd->writesize, - this->payload_virt, this->payload_phys, - nfc_geo->payload_size, - payload_virt, payload_phys); - } - - if (ret) - return ret; - - return nand_prog_page_end_op(chip); -} - -/* - * There are several places in this driver where we have to handle the OOB and - * block marks. This is the function where things are the most complicated, so - * this is where we try to explain it all. All the other places refer back to - * here. - * - * These are the rules, in order of decreasing importance: - * - * 1) Nothing the caller does can be allowed to imperil the block mark. - * - * 2) In read operations, the first byte of the OOB we return must reflect the - * true state of the block mark, no matter where that block mark appears in - * the physical page. - * - * 3) ECC-based read operations return an OOB full of set bits (since we never - * allow ECC-based writes to the OOB, it doesn't matter what ECC-based reads - * return). - * - * 4) "Raw" read operations return a direct view of the physical bytes in the - * page, using the conventional definition of which bytes are data and which - * are OOB. This gives the caller a way to see the actual, physical bytes - * in the page, without the distortions applied by our ECC engine. - * - * - * What we do for this specific read operation depends on two questions: - * - * 1) Are we doing a "raw" read, or an ECC-based read? - * - * 2) Are we using block mark swapping or transcription? - * - * There are four cases, illustrated by the following Karnaugh map: - * - * | Raw | ECC-based | - * -------------+-------------------------+-------------------------+ - * | Read the conventional | | - * | OOB at the end of the | | - * Swapping | page and return it. It | | - * | contains exactly what | | - * | we want. | Read the block mark and | - * -------------+-------------------------+ return it in a buffer | - * | Read the conventional | full of set bits. | - * | OOB at the end of the | | - * | page and also the block | | - * Transcribing | mark in the metadata. | | - * | Copy the block mark | | - * | into the first byte of | | - * | the OOB. | | - * -------------+-------------------------+-------------------------+ - * - * Note that we break rule #4 in the Transcribing/Raw case because we're not - * giving an accurate view of the actual, physical bytes in the page (we're - * overwriting the block mark). That's OK because it's more important to follow - * rule #2. - * - * It turns out that knowing whether we want an "ECC-based" or "raw" read is not - * easy. When reading a page, for example, the NAND Flash MTD code calls our - * ecc.read_page or ecc.read_page_raw function. Thus, the fact that MTD wants an - * ECC-based or raw view of the page is implicit in which function it calls - * (there is a similar pair of ECC-based/raw functions for writing). - */ -static int gpmi_ecc_read_oob(struct mtd_info *mtd, struct nand_chip *chip, - int page) -{ - struct gpmi_nand_data *this = nand_get_controller_data(chip); - - dev_dbg(this->dev, "page number is %d\n", page); - /* clear the OOB buffer */ - memset(chip->oob_poi, ~0, mtd->oobsize); - - /* Read out the conventional OOB. */ - nand_read_page_op(chip, page, mtd->writesize, NULL, 0); - chip->read_buf(mtd, chip->oob_poi, mtd->oobsize); - - /* - * Now, we want to make sure the block mark is correct. In the - * non-transcribing case (!GPMI_IS_MX23()), we already have it. - * Otherwise, we need to explicitly read it. - */ - if (GPMI_IS_MX23(this)) { - /* Read the block mark into the first byte of the OOB buffer. */ - nand_read_page_op(chip, page, 0, NULL, 0); - chip->oob_poi[0] = chip->read_byte(mtd); - } - - return 0; -} - -static int -gpmi_ecc_write_oob(struct mtd_info *mtd, struct nand_chip *chip, int page) -{ - struct mtd_oob_region of = { }; - - /* Do we have available oob area? */ - mtd_ooblayout_free(mtd, 0, &of); - if (!of.length) - return -EPERM; - - if (!nand_is_slc(chip)) - return -EPERM; - - return nand_prog_page_op(chip, page, mtd->writesize + of.offset, - chip->oob_poi + of.offset, of.length); -} - -/* - * This function reads a NAND page without involving the ECC engine (no HW - * ECC correction). - * The tricky part in the GPMI/BCH controller is that it stores ECC bits - * inline (interleaved with payload DATA), and do not align data chunk on - * byte boundaries. - * We thus need to take care moving the payload data and ECC bits stored in the - * page into the provided buffers, which is why we're using gpmi_copy_bits. - * - * See set_geometry_by_ecc_info inline comments to have a full description - * of the layout used by the GPMI controller. - */ -static int gpmi_ecc_read_page_raw(struct mtd_info *mtd, - struct nand_chip *chip, uint8_t *buf, - int oob_required, int page) -{ - struct gpmi_nand_data *this = nand_get_controller_data(chip); - struct bch_geometry *nfc_geo = &this->bch_geometry; - int eccsize = nfc_geo->ecc_chunk_size; - int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len; - u8 *tmp_buf = this->raw_buffer; - size_t src_bit_off; - size_t oob_bit_off; - size_t oob_byte_off; - uint8_t *oob = chip->oob_poi; - int step; - - nand_read_page_op(chip, page, 0, tmp_buf, - mtd->writesize + mtd->oobsize); - - /* - * If required, swap the bad block marker and the data stored in the - * metadata section, so that we don't wrongly consider a block as bad. - * - * See the layout description for a detailed explanation on why this - * is needed. - */ - if (this->swap_block_mark) - swap(tmp_buf[0], tmp_buf[mtd->writesize]); - - /* - * Copy the metadata section into the oob buffer (this section is - * guaranteed to be aligned on a byte boundary). - */ - if (oob_required) - memcpy(oob, tmp_buf, nfc_geo->metadata_size); - - oob_bit_off = nfc_geo->metadata_size * 8; - src_bit_off = oob_bit_off; - - /* Extract interleaved payload data and ECC bits */ - for (step = 0; step < nfc_geo->ecc_chunk_count; step++) { - if (buf) - gpmi_copy_bits(buf, step * eccsize * 8, - tmp_buf, src_bit_off, - eccsize * 8); - src_bit_off += eccsize * 8; - - /* Align last ECC block to align a byte boundary */ - if (step == nfc_geo->ecc_chunk_count - 1 && - (oob_bit_off + eccbits) % 8) - eccbits += 8 - ((oob_bit_off + eccbits) % 8); - - if (oob_required) - gpmi_copy_bits(oob, oob_bit_off, - tmp_buf, src_bit_off, - eccbits); - - src_bit_off += eccbits; - oob_bit_off += eccbits; - } - - if (oob_required) { - oob_byte_off = oob_bit_off / 8; - - if (oob_byte_off < mtd->oobsize) - memcpy(oob + oob_byte_off, - tmp_buf + mtd->writesize + oob_byte_off, - mtd->oobsize - oob_byte_off); - } - - return 0; -} - -/* - * This function writes a NAND page without involving the ECC engine (no HW - * ECC generation). - * The tricky part in the GPMI/BCH controller is that it stores ECC bits - * inline (interleaved with payload DATA), and do not align data chunk on - * byte boundaries. - * We thus need to take care moving the OOB area at the right place in the - * final page, which is why we're using gpmi_copy_bits. - * - * See set_geometry_by_ecc_info inline comments to have a full description - * of the layout used by the GPMI controller. - */ -static int gpmi_ecc_write_page_raw(struct mtd_info *mtd, - struct nand_chip *chip, - const uint8_t *buf, - int oob_required, int page) -{ - struct gpmi_nand_data *this = nand_get_controller_data(chip); - struct bch_geometry *nfc_geo = &this->bch_geometry; - int eccsize = nfc_geo->ecc_chunk_size; - int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len; - u8 *tmp_buf = this->raw_buffer; - uint8_t *oob = chip->oob_poi; - size_t dst_bit_off; - size_t oob_bit_off; - size_t oob_byte_off; - int step; - - /* - * Initialize all bits to 1 in case we don't have a buffer for the - * payload or oob data in order to leave unspecified bits of data - * to their initial state. - */ - if (!buf || !oob_required) - memset(tmp_buf, 0xff, mtd->writesize + mtd->oobsize); - - /* - * First copy the metadata section (stored in oob buffer) at the - * beginning of the page, as imposed by the GPMI layout. - */ - memcpy(tmp_buf, oob, nfc_geo->metadata_size); - oob_bit_off = nfc_geo->metadata_size * 8; - dst_bit_off = oob_bit_off; - - /* Interleave payload data and ECC bits */ - for (step = 0; step < nfc_geo->ecc_chunk_count; step++) { - if (buf) - gpmi_copy_bits(tmp_buf, dst_bit_off, - buf, step * eccsize * 8, eccsize * 8); - dst_bit_off += eccsize * 8; - - /* Align last ECC block to align a byte boundary */ - if (step == nfc_geo->ecc_chunk_count - 1 && - (oob_bit_off + eccbits) % 8) - eccbits += 8 - ((oob_bit_off + eccbits) % 8); - - if (oob_required) - gpmi_copy_bits(tmp_buf, dst_bit_off, - oob, oob_bit_off, eccbits); - - dst_bit_off += eccbits; - oob_bit_off += eccbits; - } - - oob_byte_off = oob_bit_off / 8; - - if (oob_required && oob_byte_off < mtd->oobsize) - memcpy(tmp_buf + mtd->writesize + oob_byte_off, - oob + oob_byte_off, mtd->oobsize - oob_byte_off); - - /* - * If required, swap the bad block marker and the first byte of the - * metadata section, so that we don't modify the bad block marker. - * - * See the layout description for a detailed explanation on why this - * is needed. - */ - if (this->swap_block_mark) - swap(tmp_buf[0], tmp_buf[mtd->writesize]); - - return nand_prog_page_op(chip, page, 0, tmp_buf, - mtd->writesize + mtd->oobsize); -} - -static int gpmi_ecc_read_oob_raw(struct mtd_info *mtd, struct nand_chip *chip, - int page) -{ - return gpmi_ecc_read_page_raw(mtd, chip, NULL, 1, page); -} - -static int gpmi_ecc_write_oob_raw(struct mtd_info *mtd, struct nand_chip *chip, - int page) -{ - return gpmi_ecc_write_page_raw(mtd, chip, NULL, 1, page); -} - -static int gpmi_block_markbad(struct mtd_info *mtd, loff_t ofs) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct gpmi_nand_data *this = nand_get_controller_data(chip); - int ret = 0; - uint8_t *block_mark; - int column, page, chipnr; - - chipnr = (int)(ofs >> chip->chip_shift); - chip->select_chip(mtd, chipnr); - - column = !GPMI_IS_MX23(this) ? mtd->writesize : 0; - - /* Write the block mark. */ - block_mark = this->data_buffer_dma; - block_mark[0] = 0; /* bad block marker */ - - /* Shift to get page */ - page = (int)(ofs >> chip->page_shift); - - ret = nand_prog_page_op(chip, page, column, block_mark, 1); - - chip->select_chip(mtd, -1); - - return ret; -} - -static int nand_boot_set_geometry(struct gpmi_nand_data *this) -{ - struct boot_rom_geometry *geometry = &this->rom_geometry; - - /* - * Set the boot block stride size. - * - * In principle, we should be reading this from the OTP bits, since - * that's where the ROM is going to get it. In fact, we don't have any - * way to read the OTP bits, so we go with the default and hope for the - * best. - */ - geometry->stride_size_in_pages = 64; - - /* - * Set the search area stride exponent. - * - * In principle, we should be reading this from the OTP bits, since - * that's where the ROM is going to get it. In fact, we don't have any - * way to read the OTP bits, so we go with the default and hope for the - * best. - */ - geometry->search_area_stride_exponent = 2; - return 0; -} - -static const char *fingerprint = "STMP"; -static int mx23_check_transcription_stamp(struct gpmi_nand_data *this) -{ - struct boot_rom_geometry *rom_geo = &this->rom_geometry; - struct device *dev = this->dev; - struct nand_chip *chip = &this->nand; - struct mtd_info *mtd = nand_to_mtd(chip); - unsigned int search_area_size_in_strides; - unsigned int stride; - unsigned int page; - uint8_t *buffer = chip->data_buf; - int saved_chip_number; - int found_an_ncb_fingerprint = false; - - /* Compute the number of strides in a search area. */ - search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent; - - saved_chip_number = this->current_chip; - chip->select_chip(mtd, 0); - - /* - * Loop through the first search area, looking for the NCB fingerprint. - */ - dev_dbg(dev, "Scanning for an NCB fingerprint...\n"); - - for (stride = 0; stride < search_area_size_in_strides; stride++) { - /* Compute the page addresses. */ - page = stride * rom_geo->stride_size_in_pages; - - dev_dbg(dev, "Looking for a fingerprint in page 0x%x\n", page); - - /* - * Read the NCB fingerprint. The fingerprint is four bytes long - * and starts in the 12th byte of the page. - */ - nand_read_page_op(chip, page, 12, NULL, 0); - chip->read_buf(mtd, buffer, strlen(fingerprint)); - - /* Look for the fingerprint. */ - if (!memcmp(buffer, fingerprint, strlen(fingerprint))) { - found_an_ncb_fingerprint = true; - break; - } - - } - - chip->select_chip(mtd, saved_chip_number); - - if (found_an_ncb_fingerprint) - dev_dbg(dev, "\tFound a fingerprint\n"); - else - dev_dbg(dev, "\tNo fingerprint found\n"); - return found_an_ncb_fingerprint; -} - -/* Writes a transcription stamp. */ -static int mx23_write_transcription_stamp(struct gpmi_nand_data *this) -{ - struct device *dev = this->dev; - struct boot_rom_geometry *rom_geo = &this->rom_geometry; - struct nand_chip *chip = &this->nand; - struct mtd_info *mtd = nand_to_mtd(chip); - unsigned int block_size_in_pages; - unsigned int search_area_size_in_strides; - unsigned int search_area_size_in_pages; - unsigned int search_area_size_in_blocks; - unsigned int block; - unsigned int stride; - unsigned int page; - uint8_t *buffer = chip->data_buf; - int saved_chip_number; - int status; - - /* Compute the search area geometry. */ - block_size_in_pages = mtd->erasesize / mtd->writesize; - search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent; - search_area_size_in_pages = search_area_size_in_strides * - rom_geo->stride_size_in_pages; - search_area_size_in_blocks = - (search_area_size_in_pages + (block_size_in_pages - 1)) / - block_size_in_pages; - - dev_dbg(dev, "Search Area Geometry :\n"); - dev_dbg(dev, "\tin Blocks : %u\n", search_area_size_in_blocks); - dev_dbg(dev, "\tin Strides: %u\n", search_area_size_in_strides); - dev_dbg(dev, "\tin Pages : %u\n", search_area_size_in_pages); - - /* Select chip 0. */ - saved_chip_number = this->current_chip; - chip->select_chip(mtd, 0); - - /* Loop over blocks in the first search area, erasing them. */ - dev_dbg(dev, "Erasing the search area...\n"); - - for (block = 0; block < search_area_size_in_blocks; block++) { - /* Erase this block. */ - dev_dbg(dev, "\tErasing block 0x%x\n", block); - status = nand_erase_op(chip, block); - if (status) - dev_err(dev, "[%s] Erase failed.\n", __func__); - } - - /* Write the NCB fingerprint into the page buffer. */ - memset(buffer, ~0, mtd->writesize); - memcpy(buffer + 12, fingerprint, strlen(fingerprint)); - - /* Loop through the first search area, writing NCB fingerprints. */ - dev_dbg(dev, "Writing NCB fingerprints...\n"); - for (stride = 0; stride < search_area_size_in_strides; stride++) { - /* Compute the page addresses. */ - page = stride * rom_geo->stride_size_in_pages; - - /* Write the first page of the current stride. */ - dev_dbg(dev, "Writing an NCB fingerprint in page 0x%x\n", page); - - status = chip->ecc.write_page_raw(mtd, chip, buffer, 0, page); - if (status) - dev_err(dev, "[%s] Write failed.\n", __func__); - } - - /* Deselect chip 0. */ - chip->select_chip(mtd, saved_chip_number); - return 0; -} - -static int mx23_boot_init(struct gpmi_nand_data *this) -{ - struct device *dev = this->dev; - struct nand_chip *chip = &this->nand; - struct mtd_info *mtd = nand_to_mtd(chip); - unsigned int block_count; - unsigned int block; - int chipnr; - int page; - loff_t byte; - uint8_t block_mark; - int ret = 0; - - /* - * If control arrives here, we can't use block mark swapping, which - * means we're forced to use transcription. First, scan for the - * transcription stamp. If we find it, then we don't have to do - * anything -- the block marks are already transcribed. - */ - if (mx23_check_transcription_stamp(this)) - return 0; - - /* - * If control arrives here, we couldn't find a transcription stamp, so - * so we presume the block marks are in the conventional location. - */ - dev_dbg(dev, "Transcribing bad block marks...\n"); - - /* Compute the number of blocks in the entire medium. */ - block_count = chip->chipsize >> chip->phys_erase_shift; - - /* - * Loop over all the blocks in the medium, transcribing block marks as - * we go. - */ - for (block = 0; block < block_count; block++) { - /* - * Compute the chip, page and byte addresses for this block's - * conventional mark. - */ - chipnr = block >> (chip->chip_shift - chip->phys_erase_shift); - page = block << (chip->phys_erase_shift - chip->page_shift); - byte = block << chip->phys_erase_shift; - - /* Send the command to read the conventional block mark. */ - chip->select_chip(mtd, chipnr); - nand_read_page_op(chip, page, mtd->writesize, NULL, 0); - block_mark = chip->read_byte(mtd); - chip->select_chip(mtd, -1); - - /* - * Check if the block is marked bad. If so, we need to mark it - * again, but this time the result will be a mark in the - * location where we transcribe block marks. - */ - if (block_mark != 0xff) { - dev_dbg(dev, "Transcribing mark in block %u\n", block); - ret = chip->block_markbad(mtd, byte); - if (ret) - dev_err(dev, - "Failed to mark block bad with ret %d\n", - ret); - } - } - - /* Write the stamp that indicates we've transcribed the block marks. */ - mx23_write_transcription_stamp(this); - return 0; -} - -static int nand_boot_init(struct gpmi_nand_data *this) -{ - nand_boot_set_geometry(this); - - /* This is ROM arch-specific initilization before the BBT scanning. */ - if (GPMI_IS_MX23(this)) - return mx23_boot_init(this); - return 0; -} - -static int gpmi_set_geometry(struct gpmi_nand_data *this) -{ - int ret; - - /* Free the temporary DMA memory for reading ID. */ - gpmi_free_dma_buffer(this); - - /* Set up the NFC geometry which is used by BCH. */ - ret = bch_set_geometry(this); - if (ret) { - dev_err(this->dev, "Error setting BCH geometry : %d\n", ret); - return ret; - } - - /* Alloc the new DMA buffers according to the pagesize and oobsize */ - return gpmi_alloc_dma_buffer(this); -} - -static int gpmi_init_last(struct gpmi_nand_data *this) -{ - struct nand_chip *chip = &this->nand; - struct mtd_info *mtd = nand_to_mtd(chip); - struct nand_ecc_ctrl *ecc = &chip->ecc; - struct bch_geometry *bch_geo = &this->bch_geometry; - int ret; - - /* Set up the medium geometry */ - ret = gpmi_set_geometry(this); - if (ret) - return ret; - - /* Init the nand_ecc_ctrl{} */ - ecc->read_page = gpmi_ecc_read_page; - ecc->write_page = gpmi_ecc_write_page; - ecc->read_oob = gpmi_ecc_read_oob; - ecc->write_oob = gpmi_ecc_write_oob; - ecc->read_page_raw = gpmi_ecc_read_page_raw; - ecc->write_page_raw = gpmi_ecc_write_page_raw; - ecc->read_oob_raw = gpmi_ecc_read_oob_raw; - ecc->write_oob_raw = gpmi_ecc_write_oob_raw; - ecc->mode = NAND_ECC_HW; - ecc->size = bch_geo->ecc_chunk_size; - ecc->strength = bch_geo->ecc_strength; - mtd_set_ooblayout(mtd, &gpmi_ooblayout_ops); - - /* - * We only enable the subpage read when: - * (1) the chip is imx6, and - * (2) the size of the ECC parity is byte aligned. - */ - if (GPMI_IS_MX6(this) && - ((bch_geo->gf_len * bch_geo->ecc_strength) % 8) == 0) { - ecc->read_subpage = gpmi_ecc_read_subpage; - chip->options |= NAND_SUBPAGE_READ; - } - - /* - * Can we enable the extra features? such as EDO or Sync mode. - * - * We do not check the return value now. That's means if we fail in - * enable the extra features, we still can run in the normal way. - */ - gpmi_extra_init(this); - - return 0; -} - -static int gpmi_nand_init(struct gpmi_nand_data *this) -{ - struct nand_chip *chip = &this->nand; - struct mtd_info *mtd = nand_to_mtd(chip); - int ret; - - /* init current chip */ - this->current_chip = -1; - - /* init the MTD data structures */ - mtd->name = "gpmi-nand"; - mtd->dev.parent = this->dev; - - /* init the nand_chip{}, we don't support a 16-bit NAND Flash bus. */ - nand_set_controller_data(chip, this); - nand_set_flash_node(chip, this->pdev->dev.of_node); - chip->select_chip = gpmi_select_chip; - chip->cmd_ctrl = gpmi_cmd_ctrl; - chip->dev_ready = gpmi_dev_ready; - chip->read_byte = gpmi_read_byte; - chip->read_buf = gpmi_read_buf; - chip->write_buf = gpmi_write_buf; - chip->badblock_pattern = &gpmi_bbt_descr; - chip->block_markbad = gpmi_block_markbad; - chip->options |= NAND_NO_SUBPAGE_WRITE; - - /* Set up swap_block_mark, must be set before the gpmi_set_geometry() */ - this->swap_block_mark = !GPMI_IS_MX23(this); - - /* - * Allocate a temporary DMA buffer for reading ID in the - * nand_scan_ident(). - */ - this->bch_geometry.payload_size = 1024; - this->bch_geometry.auxiliary_size = 128; - ret = gpmi_alloc_dma_buffer(this); - if (ret) - goto err_out; - - ret = nand_scan_ident(mtd, GPMI_IS_MX6(this) ? 2 : 1, NULL); - if (ret) - goto err_out; - - if (chip->bbt_options & NAND_BBT_USE_FLASH) { - chip->bbt_options |= NAND_BBT_NO_OOB; - - if (of_property_read_bool(this->dev->of_node, - "fsl,no-blockmark-swap")) - this->swap_block_mark = false; - } - dev_dbg(this->dev, "Blockmark swapping %sabled\n", - this->swap_block_mark ? "en" : "dis"); - - ret = gpmi_init_last(this); - if (ret) - goto err_out; - - chip->options |= NAND_SKIP_BBTSCAN; - ret = nand_scan_tail(mtd); - if (ret) - goto err_out; - - ret = nand_boot_init(this); - if (ret) - goto err_nand_cleanup; - ret = chip->scan_bbt(mtd); - if (ret) - goto err_nand_cleanup; - - ret = mtd_device_register(mtd, NULL, 0); - if (ret) - goto err_nand_cleanup; - return 0; - -err_nand_cleanup: - nand_cleanup(chip); -err_out: - gpmi_free_dma_buffer(this); - return ret; -} - -static const struct of_device_id gpmi_nand_id_table[] = { - { - .compatible = "fsl,imx23-gpmi-nand", - .data = &gpmi_devdata_imx23, - }, { - .compatible = "fsl,imx28-gpmi-nand", - .data = &gpmi_devdata_imx28, - }, { - .compatible = "fsl,imx6q-gpmi-nand", - .data = &gpmi_devdata_imx6q, - }, { - .compatible = "fsl,imx6sx-gpmi-nand", - .data = &gpmi_devdata_imx6sx, - }, { - .compatible = "fsl,imx7d-gpmi-nand", - .data = &gpmi_devdata_imx7d, - }, {} -}; -MODULE_DEVICE_TABLE(of, gpmi_nand_id_table); - -static int gpmi_nand_probe(struct platform_device *pdev) -{ - struct gpmi_nand_data *this; - const struct of_device_id *of_id; - int ret; - - this = devm_kzalloc(&pdev->dev, sizeof(*this), GFP_KERNEL); - if (!this) - return -ENOMEM; - - of_id = of_match_device(gpmi_nand_id_table, &pdev->dev); - if (of_id) { - this->devdata = of_id->data; - } else { - dev_err(&pdev->dev, "Failed to find the right device id.\n"); - return -ENODEV; - } - - platform_set_drvdata(pdev, this); - this->pdev = pdev; - this->dev = &pdev->dev; - - ret = acquire_resources(this); - if (ret) - goto exit_acquire_resources; - - ret = init_hardware(this); - if (ret) - goto exit_nfc_init; - - ret = gpmi_nand_init(this); - if (ret) - goto exit_nfc_init; - - dev_info(this->dev, "driver registered.\n"); - - return 0; - -exit_nfc_init: - release_resources(this); -exit_acquire_resources: - - return ret; -} - -static int gpmi_nand_remove(struct platform_device *pdev) -{ - struct gpmi_nand_data *this = platform_get_drvdata(pdev); - - nand_release(nand_to_mtd(&this->nand)); - gpmi_free_dma_buffer(this); - release_resources(this); - return 0; -} - -#ifdef CONFIG_PM_SLEEP -static int gpmi_pm_suspend(struct device *dev) -{ - struct gpmi_nand_data *this = dev_get_drvdata(dev); - - release_dma_channels(this); - return 0; -} - -static int gpmi_pm_resume(struct device *dev) -{ - struct gpmi_nand_data *this = dev_get_drvdata(dev); - int ret; - - ret = acquire_dma_channels(this); - if (ret < 0) - return ret; - - /* re-init the GPMI registers */ - this->flags &= ~GPMI_TIMING_INIT_OK; - ret = gpmi_init(this); - if (ret) { - dev_err(this->dev, "Error setting GPMI : %d\n", ret); - return ret; - } - - /* re-init the BCH registers */ - ret = bch_set_geometry(this); - if (ret) { - dev_err(this->dev, "Error setting BCH : %d\n", ret); - return ret; - } - - /* re-init others */ - gpmi_extra_init(this); - - return 0; -} -#endif /* CONFIG_PM_SLEEP */ - -static const struct dev_pm_ops gpmi_pm_ops = { - SET_SYSTEM_SLEEP_PM_OPS(gpmi_pm_suspend, gpmi_pm_resume) -}; - -static struct platform_driver gpmi_nand_driver = { - .driver = { - .name = "gpmi-nand", - .pm = &gpmi_pm_ops, - .of_match_table = gpmi_nand_id_table, - }, - .probe = gpmi_nand_probe, - .remove = gpmi_nand_remove, -}; -module_platform_driver(gpmi_nand_driver); - -MODULE_AUTHOR("Freescale Semiconductor, Inc."); -MODULE_DESCRIPTION("i.MX GPMI NAND Flash Controller Driver"); -MODULE_LICENSE("GPL"); diff --git a/drivers/mtd/nand/gpmi-nand/gpmi-nand.h b/drivers/mtd/nand/gpmi-nand/gpmi-nand.h deleted file mode 100644 index 06c1f993912c..000000000000 --- a/drivers/mtd/nand/gpmi-nand/gpmi-nand.h +++ /dev/null @@ -1,315 +0,0 @@ -/* - * Freescale GPMI NAND Flash Driver - * - * Copyright (C) 2010-2011 Freescale Semiconductor, Inc. - * Copyright (C) 2008 Embedded Alley Solutions, Inc. - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation; either version 2 of the License, or - * (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - */ -#ifndef __DRIVERS_MTD_NAND_GPMI_NAND_H -#define __DRIVERS_MTD_NAND_GPMI_NAND_H - -#include -#include -#include -#include - -#define GPMI_CLK_MAX 5 /* MX6Q needs five clocks */ -struct resources { - void __iomem *gpmi_regs; - void __iomem *bch_regs; - unsigned int dma_low_channel; - unsigned int dma_high_channel; - struct clk *clock[GPMI_CLK_MAX]; -}; - -/** - * struct bch_geometry - BCH geometry description. - * @gf_len: The length of Galois Field. (e.g., 13 or 14) - * @ecc_strength: A number that describes the strength of the ECC - * algorithm. - * @page_size: The size, in bytes, of a physical page, including - * both data and OOB. - * @metadata_size: The size, in bytes, of the metadata. - * @ecc_chunk_size: The size, in bytes, of a single ECC chunk. Note - * the first chunk in the page includes both data and - * metadata, so it's a bit larger than this value. - * @ecc_chunk_count: The number of ECC chunks in the page, - * @payload_size: The size, in bytes, of the payload buffer. - * @auxiliary_size: The size, in bytes, of the auxiliary buffer. - * @auxiliary_status_offset: The offset into the auxiliary buffer at which - * the ECC status appears. - * @block_mark_byte_offset: The byte offset in the ECC-based page view at - * which the underlying physical block mark appears. - * @block_mark_bit_offset: The bit offset into the ECC-based page view at - * which the underlying physical block mark appears. - */ -struct bch_geometry { - unsigned int gf_len; - unsigned int ecc_strength; - unsigned int page_size; - unsigned int metadata_size; - unsigned int ecc_chunk_size; - unsigned int ecc_chunk_count; - unsigned int payload_size; - unsigned int auxiliary_size; - unsigned int auxiliary_status_offset; - unsigned int block_mark_byte_offset; - unsigned int block_mark_bit_offset; -}; - -/** - * struct boot_rom_geometry - Boot ROM geometry description. - * @stride_size_in_pages: The size of a boot block stride, in pages. - * @search_area_stride_exponent: The logarithm to base 2 of the size of a - * search area in boot block strides. - */ -struct boot_rom_geometry { - unsigned int stride_size_in_pages; - unsigned int search_area_stride_exponent; -}; - -/* DMA operations types */ -enum dma_ops_type { - DMA_FOR_COMMAND = 1, - DMA_FOR_READ_DATA, - DMA_FOR_WRITE_DATA, - DMA_FOR_READ_ECC_PAGE, - DMA_FOR_WRITE_ECC_PAGE -}; - -/** - * struct nand_timing - Fundamental timing attributes for NAND. - * @data_setup_in_ns: The data setup time, in nanoseconds. Usually the - * maximum of tDS and tWP. A negative value - * indicates this characteristic isn't known. - * @data_hold_in_ns: The data hold time, in nanoseconds. Usually the - * maximum of tDH, tWH and tREH. A negative value - * indicates this characteristic isn't known. - * @address_setup_in_ns: The address setup time, in nanoseconds. Usually - * the maximum of tCLS, tCS and tALS. A negative - * value indicates this characteristic isn't known. - * @gpmi_sample_delay_in_ns: A GPMI-specific timing parameter. A negative value - * indicates this characteristic isn't known. - * @tREA_in_ns: tREA, in nanoseconds, from the data sheet. A - * negative value indicates this characteristic isn't - * known. - * @tRLOH_in_ns: tRLOH, in nanoseconds, from the data sheet. A - * negative value indicates this characteristic isn't - * known. - * @tRHOH_in_ns: tRHOH, in nanoseconds, from the data sheet. A - * negative value indicates this characteristic isn't - * known. - */ -struct nand_timing { - int8_t data_setup_in_ns; - int8_t data_hold_in_ns; - int8_t address_setup_in_ns; - int8_t gpmi_sample_delay_in_ns; - int8_t tREA_in_ns; - int8_t tRLOH_in_ns; - int8_t tRHOH_in_ns; -}; - -enum gpmi_type { - IS_MX23, - IS_MX28, - IS_MX6Q, - IS_MX6SX, - IS_MX7D, -}; - -struct gpmi_devdata { - enum gpmi_type type; - int bch_max_ecc_strength; - int max_chain_delay; /* See the async EDO mode */ - const char * const *clks; - const int clks_count; -}; - -struct gpmi_nand_data { - /* flags */ -#define GPMI_ASYNC_EDO_ENABLED (1 << 0) -#define GPMI_TIMING_INIT_OK (1 << 1) - int flags; - const struct gpmi_devdata *devdata; - - /* System Interface */ - struct device *dev; - struct platform_device *pdev; - - /* Resources */ - struct resources resources; - - /* Flash Hardware */ - struct nand_timing timing; - int timing_mode; - - /* BCH */ - struct bch_geometry bch_geometry; - struct completion bch_done; - - /* NAND Boot issue */ - bool swap_block_mark; - struct boot_rom_geometry rom_geometry; - - /* MTD / NAND */ - struct nand_chip nand; - - /* General-use Variables */ - int current_chip; - unsigned int command_length; - - /* passed from upper layer */ - uint8_t *upper_buf; - int upper_len; - - /* for DMA operations */ - bool direct_dma_map_ok; - - struct scatterlist cmd_sgl; - char *cmd_buffer; - - struct scatterlist data_sgl; - char *data_buffer_dma; - - void *page_buffer_virt; - dma_addr_t page_buffer_phys; - unsigned int page_buffer_size; - - void *payload_virt; - dma_addr_t payload_phys; - - void *auxiliary_virt; - dma_addr_t auxiliary_phys; - - void *raw_buffer; - - /* DMA channels */ -#define DMA_CHANS 8 - struct dma_chan *dma_chans[DMA_CHANS]; - enum dma_ops_type last_dma_type; - enum dma_ops_type dma_type; - struct completion dma_done; - - /* private */ - void *private; -}; - -/** - * struct gpmi_nfc_hardware_timing - GPMI hardware timing parameters. - * @data_setup_in_cycles: The data setup time, in cycles. - * @data_hold_in_cycles: The data hold time, in cycles. - * @address_setup_in_cycles: The address setup time, in cycles. - * @device_busy_timeout: The timeout waiting for NAND Ready/Busy, - * this value is the number of cycles multiplied - * by 4096. - * @use_half_periods: Indicates the clock is running slowly, so the - * NFC DLL should use half-periods. - * @sample_delay_factor: The sample delay factor. - * @wrn_dly_sel: The delay on the GPMI write strobe. - */ -struct gpmi_nfc_hardware_timing { - /* for HW_GPMI_TIMING0 */ - uint8_t data_setup_in_cycles; - uint8_t data_hold_in_cycles; - uint8_t address_setup_in_cycles; - - /* for HW_GPMI_TIMING1 */ - uint16_t device_busy_timeout; -#define GPMI_DEFAULT_BUSY_TIMEOUT 0x500 /* default busy timeout value.*/ - - /* for HW_GPMI_CTRL1 */ - bool use_half_periods; - uint8_t sample_delay_factor; - uint8_t wrn_dly_sel; -}; - -/** - * struct timing_threshold - Timing threshold - * @max_data_setup_cycles: The maximum number of data setup cycles that - * can be expressed in the hardware. - * @internal_data_setup_in_ns: The time, in ns, that the NFC hardware requires - * for data read internal setup. In the Reference - * Manual, see the chapter "High-Speed NAND - * Timing" for more details. - * @max_sample_delay_factor: The maximum sample delay factor that can be - * expressed in the hardware. - * @max_dll_clock_period_in_ns: The maximum period of the GPMI clock that the - * sample delay DLL hardware can possibly work - * with (the DLL is unusable with longer periods). - * If the full-cycle period is greater than HALF - * this value, the DLL must be configured to use - * half-periods. - * @max_dll_delay_in_ns: The maximum amount of delay, in ns, that the - * DLL can implement. - * @clock_frequency_in_hz: The clock frequency, in Hz, during the current - * I/O transaction. If no I/O transaction is in - * progress, this is the clock frequency during - * the most recent I/O transaction. - */ -struct timing_threshold { - const unsigned int max_chip_count; - const unsigned int max_data_setup_cycles; - const unsigned int internal_data_setup_in_ns; - const unsigned int max_sample_delay_factor; - const unsigned int max_dll_clock_period_in_ns; - const unsigned int max_dll_delay_in_ns; - unsigned long clock_frequency_in_hz; - -}; - -/* Common Services */ -int common_nfc_set_geometry(struct gpmi_nand_data *); -struct dma_chan *get_dma_chan(struct gpmi_nand_data *); -void prepare_data_dma(struct gpmi_nand_data *, - enum dma_data_direction dr); -int start_dma_without_bch_irq(struct gpmi_nand_data *, - struct dma_async_tx_descriptor *); -int start_dma_with_bch_irq(struct gpmi_nand_data *, - struct dma_async_tx_descriptor *); - -/* GPMI-NAND helper function library */ -int gpmi_init(struct gpmi_nand_data *); -int gpmi_extra_init(struct gpmi_nand_data *); -void gpmi_clear_bch(struct gpmi_nand_data *); -void gpmi_dump_info(struct gpmi_nand_data *); -int bch_set_geometry(struct gpmi_nand_data *); -int gpmi_is_ready(struct gpmi_nand_data *, unsigned chip); -int gpmi_send_command(struct gpmi_nand_data *); -void gpmi_begin(struct gpmi_nand_data *); -void gpmi_end(struct gpmi_nand_data *); -int gpmi_read_data(struct gpmi_nand_data *); -int gpmi_send_data(struct gpmi_nand_data *); -int gpmi_send_page(struct gpmi_nand_data *, - dma_addr_t payload, dma_addr_t auxiliary); -int gpmi_read_page(struct gpmi_nand_data *, - dma_addr_t payload, dma_addr_t auxiliary); - -void gpmi_copy_bits(u8 *dst, size_t dst_bit_off, - const u8 *src, size_t src_bit_off, - size_t nbits); - -/* BCH : Status Block Completion Codes */ -#define STATUS_GOOD 0x00 -#define STATUS_ERASED 0xff -#define STATUS_UNCORRECTABLE 0xfe - -/* Use the devdata to distinguish different Archs. */ -#define GPMI_IS_MX23(x) ((x)->devdata->type == IS_MX23) -#define GPMI_IS_MX28(x) ((x)->devdata->type == IS_MX28) -#define GPMI_IS_MX6Q(x) ((x)->devdata->type == IS_MX6Q) -#define GPMI_IS_MX6SX(x) ((x)->devdata->type == IS_MX6SX) -#define GPMI_IS_MX7D(x) ((x)->devdata->type == IS_MX7D) - -#define GPMI_IS_MX6(x) (GPMI_IS_MX6Q(x) || GPMI_IS_MX6SX(x) || \ - GPMI_IS_MX7D(x)) -#endif diff --git a/drivers/mtd/nand/gpmi-nand/gpmi-regs.h b/drivers/mtd/nand/gpmi-nand/gpmi-regs.h deleted file mode 100644 index 82114cdc8330..000000000000 --- a/drivers/mtd/nand/gpmi-nand/gpmi-regs.h +++ /dev/null @@ -1,187 +0,0 @@ -/* - * Freescale GPMI NAND Flash Driver - * - * Copyright 2008-2011 Freescale Semiconductor, Inc. - * Copyright 2008 Embedded Alley Solutions, Inc. - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation; either version 2 of the License, or - * (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License along - * with this program; if not, write to the Free Software Foundation, Inc., - * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. - */ -#ifndef __GPMI_NAND_GPMI_REGS_H -#define __GPMI_NAND_GPMI_REGS_H - -#define HW_GPMI_CTRL0 0x00000000 -#define HW_GPMI_CTRL0_SET 0x00000004 -#define HW_GPMI_CTRL0_CLR 0x00000008 -#define HW_GPMI_CTRL0_TOG 0x0000000c - -#define BP_GPMI_CTRL0_COMMAND_MODE 24 -#define BM_GPMI_CTRL0_COMMAND_MODE (3 << BP_GPMI_CTRL0_COMMAND_MODE) -#define BF_GPMI_CTRL0_COMMAND_MODE(v) \ - (((v) << BP_GPMI_CTRL0_COMMAND_MODE) & BM_GPMI_CTRL0_COMMAND_MODE) -#define BV_GPMI_CTRL0_COMMAND_MODE__WRITE 0x0 -#define BV_GPMI_CTRL0_COMMAND_MODE__READ 0x1 -#define BV_GPMI_CTRL0_COMMAND_MODE__READ_AND_COMPARE 0x2 -#define BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY 0x3 - -#define BM_GPMI_CTRL0_WORD_LENGTH (1 << 23) -#define BV_GPMI_CTRL0_WORD_LENGTH__16_BIT 0x0 -#define BV_GPMI_CTRL0_WORD_LENGTH__8_BIT 0x1 - -/* - * Difference in LOCK_CS between imx23 and imx28 : - * This bit may impact the _POWER_ consumption. So some chips - * do not set it. - */ -#define MX23_BP_GPMI_CTRL0_LOCK_CS 22 -#define MX28_BP_GPMI_CTRL0_LOCK_CS 27 -#define LOCK_CS_ENABLE 0x1 -#define BF_GPMI_CTRL0_LOCK_CS(v, x) 0x0 - -/* Difference in CS between imx23 and imx28 */ -#define BP_GPMI_CTRL0_CS 20 -#define MX23_BM_GPMI_CTRL0_CS (3 << BP_GPMI_CTRL0_CS) -#define MX28_BM_GPMI_CTRL0_CS (7 << BP_GPMI_CTRL0_CS) -#define BF_GPMI_CTRL0_CS(v, x) (((v) << BP_GPMI_CTRL0_CS) & \ - (GPMI_IS_MX23((x)) \ - ? MX23_BM_GPMI_CTRL0_CS \ - : MX28_BM_GPMI_CTRL0_CS)) - -#define BP_GPMI_CTRL0_ADDRESS 17 -#define BM_GPMI_CTRL0_ADDRESS (3 << BP_GPMI_CTRL0_ADDRESS) -#define BF_GPMI_CTRL0_ADDRESS(v) \ - (((v) << BP_GPMI_CTRL0_ADDRESS) & BM_GPMI_CTRL0_ADDRESS) -#define BV_GPMI_CTRL0_ADDRESS__NAND_DATA 0x0 -#define BV_GPMI_CTRL0_ADDRESS__NAND_CLE 0x1 -#define BV_GPMI_CTRL0_ADDRESS__NAND_ALE 0x2 - -#define BM_GPMI_CTRL0_ADDRESS_INCREMENT (1 << 16) -#define BV_GPMI_CTRL0_ADDRESS_INCREMENT__DISABLED 0x0 -#define BV_GPMI_CTRL0_ADDRESS_INCREMENT__ENABLED 0x1 - -#define BP_GPMI_CTRL0_XFER_COUNT 0 -#define BM_GPMI_CTRL0_XFER_COUNT (0xffff << BP_GPMI_CTRL0_XFER_COUNT) -#define BF_GPMI_CTRL0_XFER_COUNT(v) \ - (((v) << BP_GPMI_CTRL0_XFER_COUNT) & BM_GPMI_CTRL0_XFER_COUNT) - -#define HW_GPMI_COMPARE 0x00000010 - -#define HW_GPMI_ECCCTRL 0x00000020 -#define HW_GPMI_ECCCTRL_SET 0x00000024 -#define HW_GPMI_ECCCTRL_CLR 0x00000028 -#define HW_GPMI_ECCCTRL_TOG 0x0000002c - -#define BP_GPMI_ECCCTRL_ECC_CMD 13 -#define BM_GPMI_ECCCTRL_ECC_CMD (3 << BP_GPMI_ECCCTRL_ECC_CMD) -#define BF_GPMI_ECCCTRL_ECC_CMD(v) \ - (((v) << BP_GPMI_ECCCTRL_ECC_CMD) & BM_GPMI_ECCCTRL_ECC_CMD) -#define BV_GPMI_ECCCTRL_ECC_CMD__BCH_DECODE 0x0 -#define BV_GPMI_ECCCTRL_ECC_CMD__BCH_ENCODE 0x1 - -#define BM_GPMI_ECCCTRL_ENABLE_ECC (1 << 12) -#define BV_GPMI_ECCCTRL_ENABLE_ECC__ENABLE 0x1 -#define BV_GPMI_ECCCTRL_ENABLE_ECC__DISABLE 0x0 - -#define BP_GPMI_ECCCTRL_BUFFER_MASK 0 -#define BM_GPMI_ECCCTRL_BUFFER_MASK (0x1ff << BP_GPMI_ECCCTRL_BUFFER_MASK) -#define BF_GPMI_ECCCTRL_BUFFER_MASK(v) \ - (((v) << BP_GPMI_ECCCTRL_BUFFER_MASK) & BM_GPMI_ECCCTRL_BUFFER_MASK) -#define BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY 0x100 -#define BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE 0x1FF - -#define HW_GPMI_ECCCOUNT 0x00000030 -#define HW_GPMI_PAYLOAD 0x00000040 -#define HW_GPMI_AUXILIARY 0x00000050 -#define HW_GPMI_CTRL1 0x00000060 -#define HW_GPMI_CTRL1_SET 0x00000064 -#define HW_GPMI_CTRL1_CLR 0x00000068 -#define HW_GPMI_CTRL1_TOG 0x0000006c - -#define BP_GPMI_CTRL1_DECOUPLE_CS 24 -#define BM_GPMI_CTRL1_DECOUPLE_CS (1 << BP_GPMI_CTRL1_DECOUPLE_CS) - -#define BP_GPMI_CTRL1_WRN_DLY_SEL 22 -#define BM_GPMI_CTRL1_WRN_DLY_SEL (0x3 << BP_GPMI_CTRL1_WRN_DLY_SEL) -#define BF_GPMI_CTRL1_WRN_DLY_SEL(v) \ - (((v) << BP_GPMI_CTRL1_WRN_DLY_SEL) & BM_GPMI_CTRL1_WRN_DLY_SEL) -#define BV_GPMI_CTRL1_WRN_DLY_SEL_4_TO_8NS 0x0 -#define BV_GPMI_CTRL1_WRN_DLY_SEL_6_TO_10NS 0x1 -#define BV_GPMI_CTRL1_WRN_DLY_SEL_7_TO_12NS 0x2 -#define BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY 0x3 - -#define BM_GPMI_CTRL1_BCH_MODE (1 << 18) - -#define BP_GPMI_CTRL1_DLL_ENABLE 17 -#define BM_GPMI_CTRL1_DLL_ENABLE (1 << BP_GPMI_CTRL1_DLL_ENABLE) - -#define BP_GPMI_CTRL1_HALF_PERIOD 16 -#define BM_GPMI_CTRL1_HALF_PERIOD (1 << BP_GPMI_CTRL1_HALF_PERIOD) - -#define BP_GPMI_CTRL1_RDN_DELAY 12 -#define BM_GPMI_CTRL1_RDN_DELAY (0xf << BP_GPMI_CTRL1_RDN_DELAY) -#define BF_GPMI_CTRL1_RDN_DELAY(v) \ - (((v) << BP_GPMI_CTRL1_RDN_DELAY) & BM_GPMI_CTRL1_RDN_DELAY) - -#define BM_GPMI_CTRL1_DEV_RESET (1 << 3) -#define BV_GPMI_CTRL1_DEV_RESET__ENABLED 0x0 -#define BV_GPMI_CTRL1_DEV_RESET__DISABLED 0x1 - -#define BM_GPMI_CTRL1_ATA_IRQRDY_POLARITY (1 << 2) -#define BV_GPMI_CTRL1_ATA_IRQRDY_POLARITY__ACTIVELOW 0x0 -#define BV_GPMI_CTRL1_ATA_IRQRDY_POLARITY__ACTIVEHIGH 0x1 - -#define BM_GPMI_CTRL1_CAMERA_MODE (1 << 1) -#define BV_GPMI_CTRL1_GPMI_MODE__NAND 0x0 -#define BV_GPMI_CTRL1_GPMI_MODE__ATA 0x1 - -#define BM_GPMI_CTRL1_GPMI_MODE (1 << 0) - -#define HW_GPMI_TIMING0 0x00000070 - -#define BP_GPMI_TIMING0_ADDRESS_SETUP 16 -#define BM_GPMI_TIMING0_ADDRESS_SETUP (0xff << BP_GPMI_TIMING0_ADDRESS_SETUP) -#define BF_GPMI_TIMING0_ADDRESS_SETUP(v) \ - (((v) << BP_GPMI_TIMING0_ADDRESS_SETUP) & BM_GPMI_TIMING0_ADDRESS_SETUP) - -#define BP_GPMI_TIMING0_DATA_HOLD 8 -#define BM_GPMI_TIMING0_DATA_HOLD (0xff << BP_GPMI_TIMING0_DATA_HOLD) -#define BF_GPMI_TIMING0_DATA_HOLD(v) \ - (((v) << BP_GPMI_TIMING0_DATA_HOLD) & BM_GPMI_TIMING0_DATA_HOLD) - -#define BP_GPMI_TIMING0_DATA_SETUP 0 -#define BM_GPMI_TIMING0_DATA_SETUP (0xff << BP_GPMI_TIMING0_DATA_SETUP) -#define BF_GPMI_TIMING0_DATA_SETUP(v) \ - (((v) << BP_GPMI_TIMING0_DATA_SETUP) & BM_GPMI_TIMING0_DATA_SETUP) - -#define HW_GPMI_TIMING1 0x00000080 -#define BP_GPMI_TIMING1_BUSY_TIMEOUT 16 -#define BM_GPMI_TIMING1_BUSY_TIMEOUT (0xffff << BP_GPMI_TIMING1_BUSY_TIMEOUT) -#define BF_GPMI_TIMING1_BUSY_TIMEOUT(v) \ - (((v) << BP_GPMI_TIMING1_BUSY_TIMEOUT) & BM_GPMI_TIMING1_BUSY_TIMEOUT) - -#define HW_GPMI_TIMING2 0x00000090 -#define HW_GPMI_DATA 0x000000a0 - -/* MX28 uses this to detect READY. */ -#define HW_GPMI_STAT 0x000000b0 -#define MX28_BP_GPMI_STAT_READY_BUSY 24 -#define MX28_BM_GPMI_STAT_READY_BUSY (0xff << MX28_BP_GPMI_STAT_READY_BUSY) -#define MX28_BF_GPMI_STAT_READY_BUSY(v) \ - (((v) << MX28_BP_GPMI_STAT_READY_BUSY) & MX28_BM_GPMI_STAT_READY_BUSY) - -/* MX23 uses this to detect READY. */ -#define HW_GPMI_DEBUG 0x000000c0 -#define MX23_BP_GPMI_DEBUG_READY0 28 -#define MX23_BM_GPMI_DEBUG_READY0 (1 << MX23_BP_GPMI_DEBUG_READY0) -#endif diff --git a/drivers/mtd/nand/hisi504_nand.c b/drivers/mtd/nand/hisi504_nand.c deleted file mode 100644 index cb862793ab6d..000000000000 --- a/drivers/mtd/nand/hisi504_nand.c +++ /dev/null @@ -1,896 +0,0 @@ -/* - * Hisilicon NAND Flash controller driver - * - * Copyright © 2012-2014 HiSilicon Technologies Co., Ltd. - * http://www.hisilicon.com - * - * Author: Zhou Wang - * The initial developer of the original code is Zhiyong Cai - * - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation; either version 2 of the License, or - * (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - */ -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include - -#define HINFC504_MAX_CHIP (4) -#define HINFC504_W_LATCH (5) -#define HINFC504_R_LATCH (7) -#define HINFC504_RW_LATCH (3) - -#define HINFC504_NFC_TIMEOUT (2 * HZ) -#define HINFC504_NFC_PM_TIMEOUT (1 * HZ) -#define HINFC504_NFC_DMA_TIMEOUT (5 * HZ) -#define HINFC504_CHIP_DELAY (25) - -#define HINFC504_REG_BASE_ADDRESS_LEN (0x100) -#define HINFC504_BUFFER_BASE_ADDRESS_LEN (2048 + 128) - -#define HINFC504_ADDR_CYCLE_MASK 0x4 - -#define HINFC504_CON 0x00 -#define HINFC504_CON_OP_MODE_NORMAL BIT(0) -#define HINFC504_CON_PAGEISZE_SHIFT (1) -#define HINFC504_CON_PAGESIZE_MASK (0x07) -#define HINFC504_CON_BUS_WIDTH BIT(4) -#define HINFC504_CON_READY_BUSY_SEL BIT(8) -#define HINFC504_CON_ECCTYPE_SHIFT (9) -#define HINFC504_CON_ECCTYPE_MASK (0x07) - -#define HINFC504_PWIDTH 0x04 -#define SET_HINFC504_PWIDTH(_w_lcnt, _r_lcnt, _rw_hcnt) \ - ((_w_lcnt) | (((_r_lcnt) & 0x0F) << 4) | (((_rw_hcnt) & 0x0F) << 8)) - -#define HINFC504_CMD 0x0C -#define HINFC504_ADDRL 0x10 -#define HINFC504_ADDRH 0x14 -#define HINFC504_DATA_NUM 0x18 - -#define HINFC504_OP 0x1C -#define HINFC504_OP_READ_DATA_EN BIT(1) -#define HINFC504_OP_WAIT_READY_EN BIT(2) -#define HINFC504_OP_CMD2_EN BIT(3) -#define HINFC504_OP_WRITE_DATA_EN BIT(4) -#define HINFC504_OP_ADDR_EN BIT(5) -#define HINFC504_OP_CMD1_EN BIT(6) -#define HINFC504_OP_NF_CS_SHIFT (7) -#define HINFC504_OP_NF_CS_MASK (3) -#define HINFC504_OP_ADDR_CYCLE_SHIFT (9) -#define HINFC504_OP_ADDR_CYCLE_MASK (7) - -#define HINFC504_STATUS 0x20 -#define HINFC504_READY BIT(0) - -#define HINFC504_INTEN 0x24 -#define HINFC504_INTEN_DMA BIT(9) -#define HINFC504_INTEN_UE BIT(6) -#define HINFC504_INTEN_CE BIT(5) - -#define HINFC504_INTS 0x28 -#define HINFC504_INTS_DMA BIT(9) -#define HINFC504_INTS_UE BIT(6) -#define HINFC504_INTS_CE BIT(5) - -#define HINFC504_INTCLR 0x2C -#define HINFC504_INTCLR_DMA BIT(9) -#define HINFC504_INTCLR_UE BIT(6) -#define HINFC504_INTCLR_CE BIT(5) - -#define HINFC504_ECC_STATUS 0x5C -#define HINFC504_ECC_16_BIT_SHIFT 12 - -#define HINFC504_DMA_CTRL 0x60 -#define HINFC504_DMA_CTRL_DMA_START BIT(0) -#define HINFC504_DMA_CTRL_WE BIT(1) -#define HINFC504_DMA_CTRL_DATA_AREA_EN BIT(2) -#define HINFC504_DMA_CTRL_OOB_AREA_EN BIT(3) -#define HINFC504_DMA_CTRL_BURST4_EN BIT(4) -#define HINFC504_DMA_CTRL_BURST8_EN BIT(5) -#define HINFC504_DMA_CTRL_BURST16_EN BIT(6) -#define HINFC504_DMA_CTRL_ADDR_NUM_SHIFT (7) -#define HINFC504_DMA_CTRL_ADDR_NUM_MASK (1) -#define HINFC504_DMA_CTRL_CS_SHIFT (8) -#define HINFC504_DMA_CTRL_CS_MASK (0x03) - -#define HINFC504_DMA_ADDR_DATA 0x64 -#define HINFC504_DMA_ADDR_OOB 0x68 - -#define HINFC504_DMA_LEN 0x6C -#define HINFC504_DMA_LEN_OOB_SHIFT (16) -#define HINFC504_DMA_LEN_OOB_MASK (0xFFF) - -#define HINFC504_DMA_PARA 0x70 -#define HINFC504_DMA_PARA_DATA_RW_EN BIT(0) -#define HINFC504_DMA_PARA_OOB_RW_EN BIT(1) -#define HINFC504_DMA_PARA_DATA_EDC_EN BIT(2) -#define HINFC504_DMA_PARA_OOB_EDC_EN BIT(3) -#define HINFC504_DMA_PARA_DATA_ECC_EN BIT(4) -#define HINFC504_DMA_PARA_OOB_ECC_EN BIT(5) - -#define HINFC_VERSION 0x74 -#define HINFC504_LOG_READ_ADDR 0x7C -#define HINFC504_LOG_READ_LEN 0x80 - -#define HINFC504_NANDINFO_LEN 0x10 - -struct hinfc_host { - struct nand_chip chip; - struct device *dev; - void __iomem *iobase; - void __iomem *mmio; - struct completion cmd_complete; - unsigned int offset; - unsigned int command; - int chipselect; - unsigned int addr_cycle; - u32 addr_value[2]; - u32 cache_addr_value[2]; - char *buffer; - dma_addr_t dma_buffer; - dma_addr_t dma_oob; - int version; - unsigned int irq_status; /* interrupt status */ -}; - -static inline unsigned int hinfc_read(struct hinfc_host *host, unsigned int reg) -{ - return readl(host->iobase + reg); -} - -static inline void hinfc_write(struct hinfc_host *host, unsigned int value, - unsigned int reg) -{ - writel(value, host->iobase + reg); -} - -static void wait_controller_finished(struct hinfc_host *host) -{ - unsigned long timeout = jiffies + HINFC504_NFC_TIMEOUT; - int val; - - while (time_before(jiffies, timeout)) { - val = hinfc_read(host, HINFC504_STATUS); - if (host->command == NAND_CMD_ERASE2) { - /* nfc is ready */ - while (!(val & HINFC504_READY)) { - usleep_range(500, 1000); - val = hinfc_read(host, HINFC504_STATUS); - } - return; - } - - if (val & HINFC504_READY) - return; - } - - /* wait cmd timeout */ - dev_err(host->dev, "Wait NAND controller exec cmd timeout.\n"); -} - -static void hisi_nfc_dma_transfer(struct hinfc_host *host, int todev) -{ - struct nand_chip *chip = &host->chip; - struct mtd_info *mtd = nand_to_mtd(chip); - unsigned long val; - int ret; - - hinfc_write(host, host->dma_buffer, HINFC504_DMA_ADDR_DATA); - hinfc_write(host, host->dma_oob, HINFC504_DMA_ADDR_OOB); - - if (chip->ecc.mode == NAND_ECC_NONE) { - hinfc_write(host, ((mtd->oobsize & HINFC504_DMA_LEN_OOB_MASK) - << HINFC504_DMA_LEN_OOB_SHIFT), HINFC504_DMA_LEN); - - hinfc_write(host, HINFC504_DMA_PARA_DATA_RW_EN - | HINFC504_DMA_PARA_OOB_RW_EN, HINFC504_DMA_PARA); - } else { - if (host->command == NAND_CMD_READOOB) - hinfc_write(host, HINFC504_DMA_PARA_OOB_RW_EN - | HINFC504_DMA_PARA_OOB_EDC_EN - | HINFC504_DMA_PARA_OOB_ECC_EN, HINFC504_DMA_PARA); - else - hinfc_write(host, HINFC504_DMA_PARA_DATA_RW_EN - | HINFC504_DMA_PARA_OOB_RW_EN - | HINFC504_DMA_PARA_DATA_EDC_EN - | HINFC504_DMA_PARA_OOB_EDC_EN - | HINFC504_DMA_PARA_DATA_ECC_EN - | HINFC504_DMA_PARA_OOB_ECC_EN, HINFC504_DMA_PARA); - - } - - val = (HINFC504_DMA_CTRL_DMA_START | HINFC504_DMA_CTRL_BURST4_EN - | HINFC504_DMA_CTRL_BURST8_EN | HINFC504_DMA_CTRL_BURST16_EN - | HINFC504_DMA_CTRL_DATA_AREA_EN | HINFC504_DMA_CTRL_OOB_AREA_EN - | ((host->addr_cycle == 4 ? 1 : 0) - << HINFC504_DMA_CTRL_ADDR_NUM_SHIFT) - | ((host->chipselect & HINFC504_DMA_CTRL_CS_MASK) - << HINFC504_DMA_CTRL_CS_SHIFT)); - - if (todev) - val |= HINFC504_DMA_CTRL_WE; - - init_completion(&host->cmd_complete); - - hinfc_write(host, val, HINFC504_DMA_CTRL); - ret = wait_for_completion_timeout(&host->cmd_complete, - HINFC504_NFC_DMA_TIMEOUT); - - if (!ret) { - dev_err(host->dev, "DMA operation(irq) timeout!\n"); - /* sanity check */ - val = hinfc_read(host, HINFC504_DMA_CTRL); - if (!(val & HINFC504_DMA_CTRL_DMA_START)) - dev_err(host->dev, "DMA is already done but without irq ACK!\n"); - else - dev_err(host->dev, "DMA is really timeout!\n"); - } -} - -static int hisi_nfc_send_cmd_pageprog(struct hinfc_host *host) -{ - host->addr_value[0] &= 0xffff0000; - - hinfc_write(host, host->addr_value[0], HINFC504_ADDRL); - hinfc_write(host, host->addr_value[1], HINFC504_ADDRH); - hinfc_write(host, NAND_CMD_PAGEPROG << 8 | NAND_CMD_SEQIN, - HINFC504_CMD); - - hisi_nfc_dma_transfer(host, 1); - - return 0; -} - -static int hisi_nfc_send_cmd_readstart(struct hinfc_host *host) -{ - struct mtd_info *mtd = nand_to_mtd(&host->chip); - - if ((host->addr_value[0] == host->cache_addr_value[0]) && - (host->addr_value[1] == host->cache_addr_value[1])) - return 0; - - host->addr_value[0] &= 0xffff0000; - - hinfc_write(host, host->addr_value[0], HINFC504_ADDRL); - hinfc_write(host, host->addr_value[1], HINFC504_ADDRH); - hinfc_write(host, NAND_CMD_READSTART << 8 | NAND_CMD_READ0, - HINFC504_CMD); - - hinfc_write(host, 0, HINFC504_LOG_READ_ADDR); - hinfc_write(host, mtd->writesize + mtd->oobsize, - HINFC504_LOG_READ_LEN); - - hisi_nfc_dma_transfer(host, 0); - - host->cache_addr_value[0] = host->addr_value[0]; - host->cache_addr_value[1] = host->addr_value[1]; - - return 0; -} - -static int hisi_nfc_send_cmd_erase(struct hinfc_host *host) -{ - hinfc_write(host, host->addr_value[0], HINFC504_ADDRL); - hinfc_write(host, (NAND_CMD_ERASE2 << 8) | NAND_CMD_ERASE1, - HINFC504_CMD); - - hinfc_write(host, HINFC504_OP_WAIT_READY_EN - | HINFC504_OP_CMD2_EN - | HINFC504_OP_CMD1_EN - | HINFC504_OP_ADDR_EN - | ((host->chipselect & HINFC504_OP_NF_CS_MASK) - << HINFC504_OP_NF_CS_SHIFT) - | ((host->addr_cycle & HINFC504_OP_ADDR_CYCLE_MASK) - << HINFC504_OP_ADDR_CYCLE_SHIFT), - HINFC504_OP); - - wait_controller_finished(host); - - return 0; -} - -static int hisi_nfc_send_cmd_readid(struct hinfc_host *host) -{ - hinfc_write(host, HINFC504_NANDINFO_LEN, HINFC504_DATA_NUM); - hinfc_write(host, NAND_CMD_READID, HINFC504_CMD); - hinfc_write(host, 0, HINFC504_ADDRL); - - hinfc_write(host, HINFC504_OP_CMD1_EN | HINFC504_OP_ADDR_EN - | HINFC504_OP_READ_DATA_EN - | ((host->chipselect & HINFC504_OP_NF_CS_MASK) - << HINFC504_OP_NF_CS_SHIFT) - | 1 << HINFC504_OP_ADDR_CYCLE_SHIFT, HINFC504_OP); - - wait_controller_finished(host); - - return 0; -} - -static int hisi_nfc_send_cmd_status(struct hinfc_host *host) -{ - hinfc_write(host, HINFC504_NANDINFO_LEN, HINFC504_DATA_NUM); - hinfc_write(host, NAND_CMD_STATUS, HINFC504_CMD); - hinfc_write(host, HINFC504_OP_CMD1_EN - | HINFC504_OP_READ_DATA_EN - | ((host->chipselect & HINFC504_OP_NF_CS_MASK) - << HINFC504_OP_NF_CS_SHIFT), - HINFC504_OP); - - wait_controller_finished(host); - - return 0; -} - -static int hisi_nfc_send_cmd_reset(struct hinfc_host *host, int chipselect) -{ - hinfc_write(host, NAND_CMD_RESET, HINFC504_CMD); - - hinfc_write(host, HINFC504_OP_CMD1_EN - | ((chipselect & HINFC504_OP_NF_CS_MASK) - << HINFC504_OP_NF_CS_SHIFT) - | HINFC504_OP_WAIT_READY_EN, - HINFC504_OP); - - wait_controller_finished(host); - - return 0; -} - -static void hisi_nfc_select_chip(struct mtd_info *mtd, int chipselect) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct hinfc_host *host = nand_get_controller_data(chip); - - if (chipselect < 0) - return; - - host->chipselect = chipselect; -} - -static uint8_t hisi_nfc_read_byte(struct mtd_info *mtd) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct hinfc_host *host = nand_get_controller_data(chip); - - if (host->command == NAND_CMD_STATUS) - return *(uint8_t *)(host->mmio); - - host->offset++; - - if (host->command == NAND_CMD_READID) - return *(uint8_t *)(host->mmio + host->offset - 1); - - return *(uint8_t *)(host->buffer + host->offset - 1); -} - -static u16 hisi_nfc_read_word(struct mtd_info *mtd) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct hinfc_host *host = nand_get_controller_data(chip); - - host->offset += 2; - return *(u16 *)(host->buffer + host->offset - 2); -} - -static void -hisi_nfc_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct hinfc_host *host = nand_get_controller_data(chip); - - memcpy(host->buffer + host->offset, buf, len); - host->offset += len; -} - -static void hisi_nfc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct hinfc_host *host = nand_get_controller_data(chip); - - memcpy(buf, host->buffer + host->offset, len); - host->offset += len; -} - -static void set_addr(struct mtd_info *mtd, int column, int page_addr) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct hinfc_host *host = nand_get_controller_data(chip); - unsigned int command = host->command; - - host->addr_cycle = 0; - host->addr_value[0] = 0; - host->addr_value[1] = 0; - - /* Serially input address */ - if (column != -1) { - /* Adjust columns for 16 bit buswidth */ - if (chip->options & NAND_BUSWIDTH_16 && - !nand_opcode_8bits(command)) - column >>= 1; - - host->addr_value[0] = column & 0xffff; - host->addr_cycle = 2; - } - if (page_addr != -1) { - host->addr_value[0] |= (page_addr & 0xffff) - << (host->addr_cycle * 8); - host->addr_cycle += 2; - if (chip->options & NAND_ROW_ADDR_3) { - host->addr_cycle += 1; - if (host->command == NAND_CMD_ERASE1) - host->addr_value[0] |= ((page_addr >> 16) & 0xff) << 16; - else - host->addr_value[1] |= ((page_addr >> 16) & 0xff); - } - } -} - -static void hisi_nfc_cmdfunc(struct mtd_info *mtd, unsigned command, int column, - int page_addr) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct hinfc_host *host = nand_get_controller_data(chip); - int is_cache_invalid = 1; - unsigned int flag = 0; - - host->command = command; - - switch (command) { - case NAND_CMD_READ0: - case NAND_CMD_READOOB: - if (command == NAND_CMD_READ0) - host->offset = column; - else - host->offset = column + mtd->writesize; - - is_cache_invalid = 0; - set_addr(mtd, column, page_addr); - hisi_nfc_send_cmd_readstart(host); - break; - - case NAND_CMD_SEQIN: - host->offset = column; - set_addr(mtd, column, page_addr); - break; - - case NAND_CMD_ERASE1: - set_addr(mtd, column, page_addr); - break; - - case NAND_CMD_PAGEPROG: - hisi_nfc_send_cmd_pageprog(host); - break; - - case NAND_CMD_ERASE2: - hisi_nfc_send_cmd_erase(host); - break; - - case NAND_CMD_READID: - host->offset = column; - memset(host->mmio, 0, 0x10); - hisi_nfc_send_cmd_readid(host); - break; - - case NAND_CMD_STATUS: - flag = hinfc_read(host, HINFC504_CON); - if (chip->ecc.mode == NAND_ECC_HW) - hinfc_write(host, - flag & ~(HINFC504_CON_ECCTYPE_MASK << - HINFC504_CON_ECCTYPE_SHIFT), HINFC504_CON); - - host->offset = 0; - memset(host->mmio, 0, 0x10); - hisi_nfc_send_cmd_status(host); - hinfc_write(host, flag, HINFC504_CON); - break; - - case NAND_CMD_RESET: - hisi_nfc_send_cmd_reset(host, host->chipselect); - break; - - default: - dev_err(host->dev, "Error: unsupported cmd(cmd=%x, col=%x, page=%x)\n", - command, column, page_addr); - } - - if (is_cache_invalid) { - host->cache_addr_value[0] = ~0; - host->cache_addr_value[1] = ~0; - } -} - -static irqreturn_t hinfc_irq_handle(int irq, void *devid) -{ - struct hinfc_host *host = devid; - unsigned int flag; - - flag = hinfc_read(host, HINFC504_INTS); - /* store interrupts state */ - host->irq_status |= flag; - - if (flag & HINFC504_INTS_DMA) { - hinfc_write(host, HINFC504_INTCLR_DMA, HINFC504_INTCLR); - complete(&host->cmd_complete); - } else if (flag & HINFC504_INTS_CE) { - hinfc_write(host, HINFC504_INTCLR_CE, HINFC504_INTCLR); - } else if (flag & HINFC504_INTS_UE) { - hinfc_write(host, HINFC504_INTCLR_UE, HINFC504_INTCLR); - } - - return IRQ_HANDLED; -} - -static int hisi_nand_read_page_hwecc(struct mtd_info *mtd, - struct nand_chip *chip, uint8_t *buf, int oob_required, int page) -{ - struct hinfc_host *host = nand_get_controller_data(chip); - int max_bitflips = 0, stat = 0, stat_max = 0, status_ecc; - int stat_1, stat_2; - - nand_read_page_op(chip, page, 0, buf, mtd->writesize); - chip->read_buf(mtd, chip->oob_poi, mtd->oobsize); - - /* errors which can not be corrected by ECC */ - if (host->irq_status & HINFC504_INTS_UE) { - mtd->ecc_stats.failed++; - } else if (host->irq_status & HINFC504_INTS_CE) { - /* TODO: need add other ECC modes! */ - switch (chip->ecc.strength) { - case 16: - status_ecc = hinfc_read(host, HINFC504_ECC_STATUS) >> - HINFC504_ECC_16_BIT_SHIFT & 0x0fff; - stat_2 = status_ecc & 0x3f; - stat_1 = status_ecc >> 6 & 0x3f; - stat = stat_1 + stat_2; - stat_max = max_t(int, stat_1, stat_2); - } - mtd->ecc_stats.corrected += stat; - max_bitflips = max_t(int, max_bitflips, stat_max); - } - host->irq_status = 0; - - return max_bitflips; -} - -static int hisi_nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip, - int page) -{ - struct hinfc_host *host = nand_get_controller_data(chip); - - nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize); - - if (host->irq_status & HINFC504_INTS_UE) { - host->irq_status = 0; - return -EBADMSG; - } - - host->irq_status = 0; - return 0; -} - -static int hisi_nand_write_page_hwecc(struct mtd_info *mtd, - struct nand_chip *chip, const uint8_t *buf, int oob_required, - int page) -{ - nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize); - if (oob_required) - chip->write_buf(mtd, chip->oob_poi, mtd->oobsize); - - return nand_prog_page_end_op(chip); -} - -static void hisi_nfc_host_init(struct hinfc_host *host) -{ - struct nand_chip *chip = &host->chip; - unsigned int flag = 0; - - host->version = hinfc_read(host, HINFC_VERSION); - host->addr_cycle = 0; - host->addr_value[0] = 0; - host->addr_value[1] = 0; - host->cache_addr_value[0] = ~0; - host->cache_addr_value[1] = ~0; - host->chipselect = 0; - - /* default page size: 2K, ecc_none. need modify */ - flag = HINFC504_CON_OP_MODE_NORMAL | HINFC504_CON_READY_BUSY_SEL - | ((0x001 & HINFC504_CON_PAGESIZE_MASK) - << HINFC504_CON_PAGEISZE_SHIFT) - | ((0x0 & HINFC504_CON_ECCTYPE_MASK) - << HINFC504_CON_ECCTYPE_SHIFT) - | ((chip->options & NAND_BUSWIDTH_16) ? - HINFC504_CON_BUS_WIDTH : 0); - hinfc_write(host, flag, HINFC504_CON); - - memset(host->mmio, 0xff, HINFC504_BUFFER_BASE_ADDRESS_LEN); - - hinfc_write(host, SET_HINFC504_PWIDTH(HINFC504_W_LATCH, - HINFC504_R_LATCH, HINFC504_RW_LATCH), HINFC504_PWIDTH); - - /* enable DMA irq */ - hinfc_write(host, HINFC504_INTEN_DMA, HINFC504_INTEN); -} - -static int hisi_ooblayout_ecc(struct mtd_info *mtd, int section, - struct mtd_oob_region *oobregion) -{ - /* FIXME: add ECC bytes position */ - return -ENOTSUPP; -} - -static int hisi_ooblayout_free(struct mtd_info *mtd, int section, - struct mtd_oob_region *oobregion) -{ - if (section) - return -ERANGE; - - oobregion->offset = 2; - oobregion->length = 6; - - return 0; -} - -static const struct mtd_ooblayout_ops hisi_ooblayout_ops = { - .ecc = hisi_ooblayout_ecc, - .free = hisi_ooblayout_free, -}; - -static int hisi_nfc_ecc_probe(struct hinfc_host *host) -{ - unsigned int flag; - int size, strength, ecc_bits; - struct device *dev = host->dev; - struct nand_chip *chip = &host->chip; - struct mtd_info *mtd = nand_to_mtd(chip); - - size = chip->ecc.size; - strength = chip->ecc.strength; - if (size != 1024) { - dev_err(dev, "error ecc size: %d\n", size); - return -EINVAL; - } - - if ((size == 1024) && ((strength != 8) && (strength != 16) && - (strength != 24) && (strength != 40))) { - dev_err(dev, "ecc size and strength do not match\n"); - return -EINVAL; - } - - chip->ecc.size = size; - chip->ecc.strength = strength; - - chip->ecc.read_page = hisi_nand_read_page_hwecc; - chip->ecc.read_oob = hisi_nand_read_oob; - chip->ecc.write_page = hisi_nand_write_page_hwecc; - - switch (chip->ecc.strength) { - case 16: - ecc_bits = 6; - if (mtd->writesize == 2048) - mtd_set_ooblayout(mtd, &hisi_ooblayout_ops); - - /* TODO: add more page size support */ - break; - - /* TODO: add more ecc strength support */ - default: - dev_err(dev, "not support strength: %d\n", chip->ecc.strength); - return -EINVAL; - } - - flag = hinfc_read(host, HINFC504_CON); - /* add ecc type configure */ - flag |= ((ecc_bits & HINFC504_CON_ECCTYPE_MASK) - << HINFC504_CON_ECCTYPE_SHIFT); - hinfc_write(host, flag, HINFC504_CON); - - /* enable ecc irq */ - flag = hinfc_read(host, HINFC504_INTEN) & 0xfff; - hinfc_write(host, flag | HINFC504_INTEN_UE | HINFC504_INTEN_CE, - HINFC504_INTEN); - - return 0; -} - -static int hisi_nfc_probe(struct platform_device *pdev) -{ - int ret = 0, irq, flag, max_chips = HINFC504_MAX_CHIP; - struct device *dev = &pdev->dev; - struct hinfc_host *host; - struct nand_chip *chip; - struct mtd_info *mtd; - struct resource *res; - struct device_node *np = dev->of_node; - - host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL); - if (!host) - return -ENOMEM; - host->dev = dev; - - platform_set_drvdata(pdev, host); - chip = &host->chip; - mtd = nand_to_mtd(chip); - - irq = platform_get_irq(pdev, 0); - if (irq < 0) { - dev_err(dev, "no IRQ resource defined\n"); - ret = -ENXIO; - goto err_res; - } - - res = platform_get_resource(pdev, IORESOURCE_MEM, 0); - host->iobase = devm_ioremap_resource(dev, res); - if (IS_ERR(host->iobase)) { - ret = PTR_ERR(host->iobase); - goto err_res; - } - - res = platform_get_resource(pdev, IORESOURCE_MEM, 1); - host->mmio = devm_ioremap_resource(dev, res); - if (IS_ERR(host->mmio)) { - ret = PTR_ERR(host->mmio); - dev_err(dev, "devm_ioremap_resource[1] fail\n"); - goto err_res; - } - - mtd->name = "hisi_nand"; - mtd->dev.parent = &pdev->dev; - - nand_set_controller_data(chip, host); - nand_set_flash_node(chip, np); - chip->cmdfunc = hisi_nfc_cmdfunc; - chip->select_chip = hisi_nfc_select_chip; - chip->read_byte = hisi_nfc_read_byte; - chip->read_word = hisi_nfc_read_word; - chip->write_buf = hisi_nfc_write_buf; - chip->read_buf = hisi_nfc_read_buf; - chip->chip_delay = HINFC504_CHIP_DELAY; - chip->onfi_set_features = nand_onfi_get_set_features_notsupp; - chip->onfi_get_features = nand_onfi_get_set_features_notsupp; - - hisi_nfc_host_init(host); - - ret = devm_request_irq(dev, irq, hinfc_irq_handle, 0x0, "nandc", host); - if (ret) { - dev_err(dev, "failed to request IRQ\n"); - goto err_res; - } - - ret = nand_scan_ident(mtd, max_chips, NULL); - if (ret) - goto err_res; - - host->buffer = dmam_alloc_coherent(dev, mtd->writesize + mtd->oobsize, - &host->dma_buffer, GFP_KERNEL); - if (!host->buffer) { - ret = -ENOMEM; - goto err_res; - } - - host->dma_oob = host->dma_buffer + mtd->writesize; - memset(host->buffer, 0xff, mtd->writesize + mtd->oobsize); - - flag = hinfc_read(host, HINFC504_CON); - flag &= ~(HINFC504_CON_PAGESIZE_MASK << HINFC504_CON_PAGEISZE_SHIFT); - switch (mtd->writesize) { - case 2048: - flag |= (0x001 << HINFC504_CON_PAGEISZE_SHIFT); break; - /* - * TODO: add more pagesize support, - * default pagesize has been set in hisi_nfc_host_init - */ - default: - dev_err(dev, "NON-2KB page size nand flash\n"); - ret = -EINVAL; - goto err_res; - } - hinfc_write(host, flag, HINFC504_CON); - - if (chip->ecc.mode == NAND_ECC_HW) - hisi_nfc_ecc_probe(host); - - ret = nand_scan_tail(mtd); - if (ret) { - dev_err(dev, "nand_scan_tail failed: %d\n", ret); - goto err_res; - } - - ret = mtd_device_register(mtd, NULL, 0); - if (ret) { - dev_err(dev, "Err MTD partition=%d\n", ret); - goto err_mtd; - } - - return 0; - -err_mtd: - nand_release(mtd); -err_res: - return ret; -} - -static int hisi_nfc_remove(struct platform_device *pdev) -{ - struct hinfc_host *host = platform_get_drvdata(pdev); - struct mtd_info *mtd = nand_to_mtd(&host->chip); - - nand_release(mtd); - - return 0; -} - -#ifdef CONFIG_PM_SLEEP -static int hisi_nfc_suspend(struct device *dev) -{ - struct hinfc_host *host = dev_get_drvdata(dev); - unsigned long timeout = jiffies + HINFC504_NFC_PM_TIMEOUT; - - while (time_before(jiffies, timeout)) { - if (((hinfc_read(host, HINFC504_STATUS) & 0x1) == 0x0) && - (hinfc_read(host, HINFC504_DMA_CTRL) & - HINFC504_DMA_CTRL_DMA_START)) { - cond_resched(); - return 0; - } - } - - dev_err(host->dev, "nand controller suspend timeout.\n"); - - return -EAGAIN; -} - -static int hisi_nfc_resume(struct device *dev) -{ - int cs; - struct hinfc_host *host = dev_get_drvdata(dev); - struct nand_chip *chip = &host->chip; - - for (cs = 0; cs < chip->numchips; cs++) - hisi_nfc_send_cmd_reset(host, cs); - hinfc_write(host, SET_HINFC504_PWIDTH(HINFC504_W_LATCH, - HINFC504_R_LATCH, HINFC504_RW_LATCH), HINFC504_PWIDTH); - - return 0; -} -#endif -static SIMPLE_DEV_PM_OPS(hisi_nfc_pm_ops, hisi_nfc_suspend, hisi_nfc_resume); - -static const struct of_device_id nfc_id_table[] = { - { .compatible = "hisilicon,504-nfc" }, - {} -}; -MODULE_DEVICE_TABLE(of, nfc_id_table); - -static struct platform_driver hisi_nfc_driver = { - .driver = { - .name = "hisi_nand", - .of_match_table = nfc_id_table, - .pm = &hisi_nfc_pm_ops, - }, - .probe = hisi_nfc_probe, - .remove = hisi_nfc_remove, -}; - -module_platform_driver(hisi_nfc_driver); - -MODULE_LICENSE("GPL"); -MODULE_AUTHOR("Zhou Wang"); -MODULE_AUTHOR("Zhiyong Cai"); -MODULE_DESCRIPTION("Hisilicon Nand Flash Controller Driver"); diff --git a/drivers/mtd/nand/jz4740_nand.c b/drivers/mtd/nand/jz4740_nand.c deleted file mode 100644 index 613b00a9604b..000000000000 --- a/drivers/mtd/nand/jz4740_nand.c +++ /dev/null @@ -1,536 +0,0 @@ -/* - * Copyright (C) 2009-2010, Lars-Peter Clausen - * JZ4740 SoC NAND controller driver - * - * This program is free software; you can redistribute it and/or modify it - * under the terms of the GNU General Public License as published by the - * Free Software Foundation; either version 2 of the License, or (at your - * option) any later version. - * - * You should have received a copy of the GNU General Public License along - * with this program; if not, write to the Free Software Foundation, Inc., - * 675 Mass Ave, Cambridge, MA 02139, USA. - * - */ - -#include -#include -#include -#include -#include - -#include -#include -#include - -#include - -#include - -#define JZ_REG_NAND_CTRL 0x50 -#define JZ_REG_NAND_ECC_CTRL 0x100 -#define JZ_REG_NAND_DATA 0x104 -#define JZ_REG_NAND_PAR0 0x108 -#define JZ_REG_NAND_PAR1 0x10C -#define JZ_REG_NAND_PAR2 0x110 -#define JZ_REG_NAND_IRQ_STAT 0x114 -#define JZ_REG_NAND_IRQ_CTRL 0x118 -#define JZ_REG_NAND_ERR(x) (0x11C + ((x) << 2)) - -#define JZ_NAND_ECC_CTRL_PAR_READY BIT(4) -#define JZ_NAND_ECC_CTRL_ENCODING BIT(3) -#define JZ_NAND_ECC_CTRL_RS BIT(2) -#define JZ_NAND_ECC_CTRL_RESET BIT(1) -#define JZ_NAND_ECC_CTRL_ENABLE BIT(0) - -#define JZ_NAND_STATUS_ERR_COUNT (BIT(31) | BIT(30) | BIT(29)) -#define JZ_NAND_STATUS_PAD_FINISH BIT(4) -#define JZ_NAND_STATUS_DEC_FINISH BIT(3) -#define JZ_NAND_STATUS_ENC_FINISH BIT(2) -#define JZ_NAND_STATUS_UNCOR_ERROR BIT(1) -#define JZ_NAND_STATUS_ERROR BIT(0) - -#define JZ_NAND_CTRL_ENABLE_CHIP(x) BIT((x) << 1) -#define JZ_NAND_CTRL_ASSERT_CHIP(x) BIT(((x) << 1) + 1) -#define JZ_NAND_CTRL_ASSERT_CHIP_MASK 0xaa - -#define JZ_NAND_MEM_CMD_OFFSET 0x08000 -#define JZ_NAND_MEM_ADDR_OFFSET 0x10000 - -struct jz_nand { - struct nand_chip chip; - void __iomem *base; - struct resource *mem; - - unsigned char banks[JZ_NAND_NUM_BANKS]; - void __iomem *bank_base[JZ_NAND_NUM_BANKS]; - struct resource *bank_mem[JZ_NAND_NUM_BANKS]; - - int selected_bank; - - struct gpio_desc *busy_gpio; - bool is_reading; -}; - -static inline struct jz_nand *mtd_to_jz_nand(struct mtd_info *mtd) -{ - return container_of(mtd_to_nand(mtd), struct jz_nand, chip); -} - -static void jz_nand_select_chip(struct mtd_info *mtd, int chipnr) -{ - struct jz_nand *nand = mtd_to_jz_nand(mtd); - struct nand_chip *chip = mtd_to_nand(mtd); - uint32_t ctrl; - int banknr; - - ctrl = readl(nand->base + JZ_REG_NAND_CTRL); - ctrl &= ~JZ_NAND_CTRL_ASSERT_CHIP_MASK; - - if (chipnr == -1) { - banknr = -1; - } else { - banknr = nand->banks[chipnr] - 1; - chip->IO_ADDR_R = nand->bank_base[banknr]; - chip->IO_ADDR_W = nand->bank_base[banknr]; - } - writel(ctrl, nand->base + JZ_REG_NAND_CTRL); - - nand->selected_bank = banknr; -} - -static void jz_nand_cmd_ctrl(struct mtd_info *mtd, int dat, unsigned int ctrl) -{ - struct jz_nand *nand = mtd_to_jz_nand(mtd); - struct nand_chip *chip = mtd_to_nand(mtd); - uint32_t reg; - void __iomem *bank_base = nand->bank_base[nand->selected_bank]; - - BUG_ON(nand->selected_bank < 0); - - if (ctrl & NAND_CTRL_CHANGE) { - BUG_ON((ctrl & NAND_ALE) && (ctrl & NAND_CLE)); - if (ctrl & NAND_ALE) - bank_base += JZ_NAND_MEM_ADDR_OFFSET; - else if (ctrl & NAND_CLE) - bank_base += JZ_NAND_MEM_CMD_OFFSET; - chip->IO_ADDR_W = bank_base; - - reg = readl(nand->base + JZ_REG_NAND_CTRL); - if (ctrl & NAND_NCE) - reg |= JZ_NAND_CTRL_ASSERT_CHIP(nand->selected_bank); - else - reg &= ~JZ_NAND_CTRL_ASSERT_CHIP(nand->selected_bank); - writel(reg, nand->base + JZ_REG_NAND_CTRL); - } - if (dat != NAND_CMD_NONE) - writeb(dat, chip->IO_ADDR_W); -} - -static int jz_nand_dev_ready(struct mtd_info *mtd) -{ - struct jz_nand *nand = mtd_to_jz_nand(mtd); - return gpiod_get_value_cansleep(nand->busy_gpio); -} - -static void jz_nand_hwctl(struct mtd_info *mtd, int mode) -{ - struct jz_nand *nand = mtd_to_jz_nand(mtd); - uint32_t reg; - - writel(0, nand->base + JZ_REG_NAND_IRQ_STAT); - reg = readl(nand->base + JZ_REG_NAND_ECC_CTRL); - - reg |= JZ_NAND_ECC_CTRL_RESET; - reg |= JZ_NAND_ECC_CTRL_ENABLE; - reg |= JZ_NAND_ECC_CTRL_RS; - - switch (mode) { - case NAND_ECC_READ: - reg &= ~JZ_NAND_ECC_CTRL_ENCODING; - nand->is_reading = true; - break; - case NAND_ECC_WRITE: - reg |= JZ_NAND_ECC_CTRL_ENCODING; - nand->is_reading = false; - break; - default: - break; - } - - writel(reg, nand->base + JZ_REG_NAND_ECC_CTRL); -} - -static int jz_nand_calculate_ecc_rs(struct mtd_info *mtd, const uint8_t *dat, - uint8_t *ecc_code) -{ - struct jz_nand *nand = mtd_to_jz_nand(mtd); - uint32_t reg, status; - int i; - unsigned int timeout = 1000; - static uint8_t empty_block_ecc[] = {0xcd, 0x9d, 0x90, 0x58, 0xf4, - 0x8b, 0xff, 0xb7, 0x6f}; - - if (nand->is_reading) - return 0; - - do { - status = readl(nand->base + JZ_REG_NAND_IRQ_STAT); - } while (!(status & JZ_NAND_STATUS_ENC_FINISH) && --timeout); - - if (timeout == 0) - return -1; - - reg = readl(nand->base + JZ_REG_NAND_ECC_CTRL); - reg &= ~JZ_NAND_ECC_CTRL_ENABLE; - writel(reg, nand->base + JZ_REG_NAND_ECC_CTRL); - - for (i = 0; i < 9; ++i) - ecc_code[i] = readb(nand->base + JZ_REG_NAND_PAR0 + i); - - /* If the written data is completly 0xff, we also want to write 0xff as - * ecc, otherwise we will get in trouble when doing subpage writes. */ - if (memcmp(ecc_code, empty_block_ecc, 9) == 0) - memset(ecc_code, 0xff, 9); - - return 0; -} - -static void jz_nand_correct_data(uint8_t *dat, int index, int mask) -{ - int offset = index & 0x7; - uint16_t data; - - index += (index >> 3); - - data = dat[index]; - data |= dat[index+1] << 8; - - mask ^= (data >> offset) & 0x1ff; - data &= ~(0x1ff << offset); - data |= (mask << offset); - - dat[index] = data & 0xff; - dat[index+1] = (data >> 8) & 0xff; -} - -static int jz_nand_correct_ecc_rs(struct mtd_info *mtd, uint8_t *dat, - uint8_t *read_ecc, uint8_t *calc_ecc) -{ - struct jz_nand *nand = mtd_to_jz_nand(mtd); - int i, error_count, index; - uint32_t reg, status, error; - unsigned int timeout = 1000; - - for (i = 0; i < 9; ++i) - writeb(read_ecc[i], nand->base + JZ_REG_NAND_PAR0 + i); - - reg = readl(nand->base + JZ_REG_NAND_ECC_CTRL); - reg |= JZ_NAND_ECC_CTRL_PAR_READY; - writel(reg, nand->base + JZ_REG_NAND_ECC_CTRL); - - do { - status = readl(nand->base + JZ_REG_NAND_IRQ_STAT); - } while (!(status & JZ_NAND_STATUS_DEC_FINISH) && --timeout); - - if (timeout == 0) - return -ETIMEDOUT; - - reg = readl(nand->base + JZ_REG_NAND_ECC_CTRL); - reg &= ~JZ_NAND_ECC_CTRL_ENABLE; - writel(reg, nand->base + JZ_REG_NAND_ECC_CTRL); - - if (status & JZ_NAND_STATUS_ERROR) { - if (status & JZ_NAND_STATUS_UNCOR_ERROR) - return -EBADMSG; - - error_count = (status & JZ_NAND_STATUS_ERR_COUNT) >> 29; - - for (i = 0; i < error_count; ++i) { - error = readl(nand->base + JZ_REG_NAND_ERR(i)); - index = ((error >> 16) & 0x1ff) - 1; - if (index >= 0 && index < 512) - jz_nand_correct_data(dat, index, error & 0x1ff); - } - - return error_count; - } - - return 0; -} - -static int jz_nand_ioremap_resource(struct platform_device *pdev, - const char *name, struct resource **res, void *__iomem *base) -{ - int ret; - - *res = platform_get_resource_byname(pdev, IORESOURCE_MEM, name); - if (!*res) { - dev_err(&pdev->dev, "Failed to get platform %s memory\n", name); - ret = -ENXIO; - goto err; - } - - *res = request_mem_region((*res)->start, resource_size(*res), - pdev->name); - if (!*res) { - dev_err(&pdev->dev, "Failed to request %s memory region\n", name); - ret = -EBUSY; - goto err; - } - - *base = ioremap((*res)->start, resource_size(*res)); - if (!*base) { - dev_err(&pdev->dev, "Failed to ioremap %s memory region\n", name); - ret = -EBUSY; - goto err_release_mem; - } - - return 0; - -err_release_mem: - release_mem_region((*res)->start, resource_size(*res)); -err: - *res = NULL; - *base = NULL; - return ret; -} - -static inline void jz_nand_iounmap_resource(struct resource *res, - void __iomem *base) -{ - iounmap(base); - release_mem_region(res->start, resource_size(res)); -} - -static int jz_nand_detect_bank(struct platform_device *pdev, - struct jz_nand *nand, unsigned char bank, - size_t chipnr, uint8_t *nand_maf_id, - uint8_t *nand_dev_id) -{ - int ret; - char res_name[6]; - uint32_t ctrl; - struct nand_chip *chip = &nand->chip; - struct mtd_info *mtd = nand_to_mtd(chip); - u8 id[2]; - - /* Request I/O resource. */ - sprintf(res_name, "bank%d", bank); - ret = jz_nand_ioremap_resource(pdev, res_name, - &nand->bank_mem[bank - 1], - &nand->bank_base[bank - 1]); - if (ret) - return ret; - - /* Enable chip in bank. */ - ctrl = readl(nand->base + JZ_REG_NAND_CTRL); - ctrl |= JZ_NAND_CTRL_ENABLE_CHIP(bank - 1); - writel(ctrl, nand->base + JZ_REG_NAND_CTRL); - - if (chipnr == 0) { - /* Detect first chip. */ - ret = nand_scan_ident(mtd, 1, NULL); - if (ret) - goto notfound_id; - - /* Retrieve the IDs from the first chip. */ - chip->select_chip(mtd, 0); - nand_reset_op(chip); - nand_readid_op(chip, 0, id, sizeof(id)); - *nand_maf_id = id[0]; - *nand_dev_id = id[1]; - } else { - /* Detect additional chip. */ - chip->select_chip(mtd, chipnr); - nand_reset_op(chip); - nand_readid_op(chip, 0, id, sizeof(id)); - if (*nand_maf_id != id[0] || *nand_dev_id != id[1]) { - ret = -ENODEV; - goto notfound_id; - } - - /* Update size of the MTD. */ - chip->numchips++; - mtd->size += chip->chipsize; - } - - dev_info(&pdev->dev, "Found chip %i on bank %i\n", chipnr, bank); - return 0; - -notfound_id: - dev_info(&pdev->dev, "No chip found on bank %i\n", bank); - ctrl &= ~(JZ_NAND_CTRL_ENABLE_CHIP(bank - 1)); - writel(ctrl, nand->base + JZ_REG_NAND_CTRL); - jz_nand_iounmap_resource(nand->bank_mem[bank - 1], - nand->bank_base[bank - 1]); - return ret; -} - -static int jz_nand_probe(struct platform_device *pdev) -{ - int ret; - struct jz_nand *nand; - struct nand_chip *chip; - struct mtd_info *mtd; - struct jz_nand_platform_data *pdata = dev_get_platdata(&pdev->dev); - size_t chipnr, bank_idx; - uint8_t nand_maf_id = 0, nand_dev_id = 0; - - nand = kzalloc(sizeof(*nand), GFP_KERNEL); - if (!nand) - return -ENOMEM; - - ret = jz_nand_ioremap_resource(pdev, "mmio", &nand->mem, &nand->base); - if (ret) - goto err_free; - - nand->busy_gpio = devm_gpiod_get_optional(&pdev->dev, "busy", GPIOD_IN); - if (IS_ERR(nand->busy_gpio)) { - ret = PTR_ERR(nand->busy_gpio); - dev_err(&pdev->dev, "Failed to request busy gpio %d\n", - ret); - goto err_iounmap_mmio; - } - - chip = &nand->chip; - mtd = nand_to_mtd(chip); - mtd->dev.parent = &pdev->dev; - mtd->name = "jz4740-nand"; - - chip->ecc.hwctl = jz_nand_hwctl; - chip->ecc.calculate = jz_nand_calculate_ecc_rs; - chip->ecc.correct = jz_nand_correct_ecc_rs; - chip->ecc.mode = NAND_ECC_HW_OOB_FIRST; - chip->ecc.size = 512; - chip->ecc.bytes = 9; - chip->ecc.strength = 4; - chip->ecc.options = NAND_ECC_GENERIC_ERASED_CHECK; - - chip->chip_delay = 50; - chip->cmd_ctrl = jz_nand_cmd_ctrl; - chip->select_chip = jz_nand_select_chip; - - if (nand->busy_gpio) - chip->dev_ready = jz_nand_dev_ready; - - platform_set_drvdata(pdev, nand); - - /* We are going to autodetect NAND chips in the banks specified in the - * platform data. Although nand_scan_ident() can detect multiple chips, - * it requires those chips to be numbered consecuitively, which is not - * always the case for external memory banks. And a fixed chip-to-bank - * mapping is not practical either, since for example Dingoo units - * produced at different times have NAND chips in different banks. - */ - chipnr = 0; - for (bank_idx = 0; bank_idx < JZ_NAND_NUM_BANKS; bank_idx++) { - unsigned char bank; - - /* If there is no platform data, look for NAND in bank 1, - * which is the most likely bank since it is the only one - * that can be booted from. - */ - bank = pdata ? pdata->banks[bank_idx] : bank_idx ^ 1; - if (bank == 0) - break; - if (bank > JZ_NAND_NUM_BANKS) { - dev_warn(&pdev->dev, - "Skipping non-existing bank: %d\n", bank); - continue; - } - /* The detection routine will directly or indirectly call - * jz_nand_select_chip(), so nand->banks has to contain the - * bank we're checking. - */ - nand->banks[chipnr] = bank; - if (jz_nand_detect_bank(pdev, nand, bank, chipnr, - &nand_maf_id, &nand_dev_id) == 0) - chipnr++; - else - nand->banks[chipnr] = 0; - } - if (chipnr == 0) { - dev_err(&pdev->dev, "No NAND chips found\n"); - goto err_iounmap_mmio; - } - - if (pdata && pdata->ident_callback) { - pdata->ident_callback(pdev, mtd, &pdata->partitions, - &pdata->num_partitions); - } - - ret = nand_scan_tail(mtd); - if (ret) { - dev_err(&pdev->dev, "Failed to scan NAND\n"); - goto err_unclaim_banks; - } - - ret = mtd_device_parse_register(mtd, NULL, NULL, - pdata ? pdata->partitions : NULL, - pdata ? pdata->num_partitions : 0); - - if (ret) { - dev_err(&pdev->dev, "Failed to add mtd device\n"); - goto err_nand_release; - } - - dev_info(&pdev->dev, "Successfully registered JZ4740 NAND driver\n"); - - return 0; - -err_nand_release: - nand_release(mtd); -err_unclaim_banks: - while (chipnr--) { - unsigned char bank = nand->banks[chipnr]; - jz_nand_iounmap_resource(nand->bank_mem[bank - 1], - nand->bank_base[bank - 1]); - } - writel(0, nand->base + JZ_REG_NAND_CTRL); -err_iounmap_mmio: - jz_nand_iounmap_resource(nand->mem, nand->base); -err_free: - kfree(nand); - return ret; -} - -static int jz_nand_remove(struct platform_device *pdev) -{ - struct jz_nand *nand = platform_get_drvdata(pdev); - size_t i; - - nand_release(nand_to_mtd(&nand->chip)); - - /* Deassert and disable all chips */ - writel(0, nand->base + JZ_REG_NAND_CTRL); - - for (i = 0; i < JZ_NAND_NUM_BANKS; ++i) { - unsigned char bank = nand->banks[i]; - if (bank != 0) { - jz_nand_iounmap_resource(nand->bank_mem[bank - 1], - nand->bank_base[bank - 1]); - } - } - - jz_nand_iounmap_resource(nand->mem, nand->base); - - kfree(nand); - - return 0; -} - -static struct platform_driver jz_nand_driver = { - .probe = jz_nand_probe, - .remove = jz_nand_remove, - .driver = { - .name = "jz4740-nand", - }, -}; - -module_platform_driver(jz_nand_driver); - -MODULE_LICENSE("GPL"); -MODULE_AUTHOR("Lars-Peter Clausen "); -MODULE_DESCRIPTION("NAND controller driver for JZ4740 SoC"); -MODULE_ALIAS("platform:jz4740-nand"); diff --git a/drivers/mtd/nand/jz4780_bch.c b/drivers/mtd/nand/jz4780_bch.c deleted file mode 100644 index 731c6051d91e..000000000000 --- a/drivers/mtd/nand/jz4780_bch.c +++ /dev/null @@ -1,380 +0,0 @@ -/* - * JZ4780 BCH controller - * - * Copyright (c) 2015 Imagination Technologies - * Author: Alex Smith - * - * This program is free software; you can redistribute it and/or modify it - * under the terms of the GNU General Public License version 2 as published - * by the Free Software Foundation. - */ - -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include - -#include "jz4780_bch.h" - -#define BCH_BHCR 0x0 -#define BCH_BHCCR 0x8 -#define BCH_BHCNT 0xc -#define BCH_BHDR 0x10 -#define BCH_BHPAR0 0x14 -#define BCH_BHERR0 0x84 -#define BCH_BHINT 0x184 -#define BCH_BHINTES 0x188 -#define BCH_BHINTEC 0x18c -#define BCH_BHINTE 0x190 - -#define BCH_BHCR_BSEL_SHIFT 4 -#define BCH_BHCR_BSEL_MASK (0x7f << BCH_BHCR_BSEL_SHIFT) -#define BCH_BHCR_ENCE BIT(2) -#define BCH_BHCR_INIT BIT(1) -#define BCH_BHCR_BCHE BIT(0) - -#define BCH_BHCNT_PARITYSIZE_SHIFT 16 -#define BCH_BHCNT_PARITYSIZE_MASK (0x7f << BCH_BHCNT_PARITYSIZE_SHIFT) -#define BCH_BHCNT_BLOCKSIZE_SHIFT 0 -#define BCH_BHCNT_BLOCKSIZE_MASK (0x7ff << BCH_BHCNT_BLOCKSIZE_SHIFT) - -#define BCH_BHERR_MASK_SHIFT 16 -#define BCH_BHERR_MASK_MASK (0xffff << BCH_BHERR_MASK_SHIFT) -#define BCH_BHERR_INDEX_SHIFT 0 -#define BCH_BHERR_INDEX_MASK (0x7ff << BCH_BHERR_INDEX_SHIFT) - -#define BCH_BHINT_ERRC_SHIFT 24 -#define BCH_BHINT_ERRC_MASK (0x7f << BCH_BHINT_ERRC_SHIFT) -#define BCH_BHINT_TERRC_SHIFT 16 -#define BCH_BHINT_TERRC_MASK (0x7f << BCH_BHINT_TERRC_SHIFT) -#define BCH_BHINT_DECF BIT(3) -#define BCH_BHINT_ENCF BIT(2) -#define BCH_BHINT_UNCOR BIT(1) -#define BCH_BHINT_ERR BIT(0) - -#define BCH_CLK_RATE (200 * 1000 * 1000) - -/* Timeout for BCH calculation/correction. */ -#define BCH_TIMEOUT_US 100000 - -struct jz4780_bch { - struct device *dev; - void __iomem *base; - struct clk *clk; - struct mutex lock; -}; - -static void jz4780_bch_init(struct jz4780_bch *bch, - struct jz4780_bch_params *params, bool encode) -{ - u32 reg; - - /* Clear interrupt status. */ - writel(readl(bch->base + BCH_BHINT), bch->base + BCH_BHINT); - - /* Set up BCH count register. */ - reg = params->size << BCH_BHCNT_BLOCKSIZE_SHIFT; - reg |= params->bytes << BCH_BHCNT_PARITYSIZE_SHIFT; - writel(reg, bch->base + BCH_BHCNT); - - /* Initialise and enable BCH. */ - reg = BCH_BHCR_BCHE | BCH_BHCR_INIT; - reg |= params->strength << BCH_BHCR_BSEL_SHIFT; - if (encode) - reg |= BCH_BHCR_ENCE; - writel(reg, bch->base + BCH_BHCR); -} - -static void jz4780_bch_disable(struct jz4780_bch *bch) -{ - writel(readl(bch->base + BCH_BHINT), bch->base + BCH_BHINT); - writel(BCH_BHCR_BCHE, bch->base + BCH_BHCCR); -} - -static void jz4780_bch_write_data(struct jz4780_bch *bch, const void *buf, - size_t size) -{ - size_t size32 = size / sizeof(u32); - size_t size8 = size % sizeof(u32); - const u32 *src32; - const u8 *src8; - - src32 = (const u32 *)buf; - while (size32--) - writel(*src32++, bch->base + BCH_BHDR); - - src8 = (const u8 *)src32; - while (size8--) - writeb(*src8++, bch->base + BCH_BHDR); -} - -static void jz4780_bch_read_parity(struct jz4780_bch *bch, void *buf, - size_t size) -{ - size_t size32 = size / sizeof(u32); - size_t size8 = size % sizeof(u32); - u32 *dest32; - u8 *dest8; - u32 val, offset = 0; - - dest32 = (u32 *)buf; - while (size32--) { - *dest32++ = readl(bch->base + BCH_BHPAR0 + offset); - offset += sizeof(u32); - } - - dest8 = (u8 *)dest32; - val = readl(bch->base + BCH_BHPAR0 + offset); - switch (size8) { - case 3: - dest8[2] = (val >> 16) & 0xff; - case 2: - dest8[1] = (val >> 8) & 0xff; - case 1: - dest8[0] = val & 0xff; - break; - } -} - -static bool jz4780_bch_wait_complete(struct jz4780_bch *bch, unsigned int irq, - u32 *status) -{ - u32 reg; - int ret; - - /* - * While we could use interrupts here and sleep until the operation - * completes, the controller works fairly quickly (usually a few - * microseconds) and so the overhead of sleeping until we get an - * interrupt quite noticeably decreases performance. - */ - ret = readl_poll_timeout(bch->base + BCH_BHINT, reg, - (reg & irq) == irq, 0, BCH_TIMEOUT_US); - if (ret) - return false; - - if (status) - *status = reg; - - writel(reg, bch->base + BCH_BHINT); - return true; -} - -/** - * jz4780_bch_calculate() - calculate ECC for a data buffer - * @bch: BCH device. - * @params: BCH parameters. - * @buf: input buffer with raw data. - * @ecc_code: output buffer with ECC. - * - * Return: 0 on success, -ETIMEDOUT if timed out while waiting for BCH - * controller. - */ -int jz4780_bch_calculate(struct jz4780_bch *bch, struct jz4780_bch_params *params, - const u8 *buf, u8 *ecc_code) -{ - int ret = 0; - - mutex_lock(&bch->lock); - jz4780_bch_init(bch, params, true); - jz4780_bch_write_data(bch, buf, params->size); - - if (jz4780_bch_wait_complete(bch, BCH_BHINT_ENCF, NULL)) { - jz4780_bch_read_parity(bch, ecc_code, params->bytes); - } else { - dev_err(bch->dev, "timed out while calculating ECC\n"); - ret = -ETIMEDOUT; - } - - jz4780_bch_disable(bch); - mutex_unlock(&bch->lock); - return ret; -} -EXPORT_SYMBOL(jz4780_bch_calculate); - -/** - * jz4780_bch_correct() - detect and correct bit errors - * @bch: BCH device. - * @params: BCH parameters. - * @buf: raw data read from the chip. - * @ecc_code: ECC read from the chip. - * - * Given the raw data and the ECC read from the NAND device, detects and - * corrects errors in the data. - * - * Return: the number of bit errors corrected, -EBADMSG if there are too many - * errors to correct or -ETIMEDOUT if we timed out waiting for the controller. - */ -int jz4780_bch_correct(struct jz4780_bch *bch, struct jz4780_bch_params *params, - u8 *buf, u8 *ecc_code) -{ - u32 reg, mask, index; - int i, ret, count; - - mutex_lock(&bch->lock); - - jz4780_bch_init(bch, params, false); - jz4780_bch_write_data(bch, buf, params->size); - jz4780_bch_write_data(bch, ecc_code, params->bytes); - - if (!jz4780_bch_wait_complete(bch, BCH_BHINT_DECF, ®)) { - dev_err(bch->dev, "timed out while correcting data\n"); - ret = -ETIMEDOUT; - goto out; - } - - if (reg & BCH_BHINT_UNCOR) { - dev_warn(bch->dev, "uncorrectable ECC error\n"); - ret = -EBADMSG; - goto out; - } - - /* Correct any detected errors. */ - if (reg & BCH_BHINT_ERR) { - count = (reg & BCH_BHINT_ERRC_MASK) >> BCH_BHINT_ERRC_SHIFT; - ret = (reg & BCH_BHINT_TERRC_MASK) >> BCH_BHINT_TERRC_SHIFT; - - for (i = 0; i < count; i++) { - reg = readl(bch->base + BCH_BHERR0 + (i * 4)); - mask = (reg & BCH_BHERR_MASK_MASK) >> - BCH_BHERR_MASK_SHIFT; - index = (reg & BCH_BHERR_INDEX_MASK) >> - BCH_BHERR_INDEX_SHIFT; - buf[(index * 2) + 0] ^= mask; - buf[(index * 2) + 1] ^= mask >> 8; - } - } else { - ret = 0; - } - -out: - jz4780_bch_disable(bch); - mutex_unlock(&bch->lock); - return ret; -} -EXPORT_SYMBOL(jz4780_bch_correct); - -/** - * jz4780_bch_get() - get the BCH controller device - * @np: BCH device tree node. - * - * Gets the BCH controller device from the specified device tree node. The - * device must be released with jz4780_bch_release() when it is no longer being - * used. - * - * Return: a pointer to jz4780_bch, errors are encoded into the pointer. - * PTR_ERR(-EPROBE_DEFER) if the device hasn't been initialised yet. - */ -static struct jz4780_bch *jz4780_bch_get(struct device_node *np) -{ - struct platform_device *pdev; - struct jz4780_bch *bch; - - pdev = of_find_device_by_node(np); - if (!pdev || !platform_get_drvdata(pdev)) - return ERR_PTR(-EPROBE_DEFER); - - get_device(&pdev->dev); - - bch = platform_get_drvdata(pdev); - clk_prepare_enable(bch->clk); - - return bch; -} - -/** - * of_jz4780_bch_get() - get the BCH controller from a DT node - * @of_node: the node that contains a bch-controller property. - * - * Get the bch-controller property from the given device tree - * node and pass it to jz4780_bch_get to do the work. - * - * Return: a pointer to jz4780_bch, errors are encoded into the pointer. - * PTR_ERR(-EPROBE_DEFER) if the device hasn't been initialised yet. - */ -struct jz4780_bch *of_jz4780_bch_get(struct device_node *of_node) -{ - struct jz4780_bch *bch = NULL; - struct device_node *np; - - np = of_parse_phandle(of_node, "ingenic,bch-controller", 0); - - if (np) { - bch = jz4780_bch_get(np); - of_node_put(np); - } - return bch; -} -EXPORT_SYMBOL(of_jz4780_bch_get); - -/** - * jz4780_bch_release() - release the BCH controller device - * @bch: BCH device. - */ -void jz4780_bch_release(struct jz4780_bch *bch) -{ - clk_disable_unprepare(bch->clk); - put_device(bch->dev); -} -EXPORT_SYMBOL(jz4780_bch_release); - -static int jz4780_bch_probe(struct platform_device *pdev) -{ - struct device *dev = &pdev->dev; - struct jz4780_bch *bch; - struct resource *res; - - bch = devm_kzalloc(dev, sizeof(*bch), GFP_KERNEL); - if (!bch) - return -ENOMEM; - - res = platform_get_resource(pdev, IORESOURCE_MEM, 0); - bch->base = devm_ioremap_resource(dev, res); - if (IS_ERR(bch->base)) - return PTR_ERR(bch->base); - - jz4780_bch_disable(bch); - - bch->clk = devm_clk_get(dev, NULL); - if (IS_ERR(bch->clk)) { - dev_err(dev, "failed to get clock: %ld\n", PTR_ERR(bch->clk)); - return PTR_ERR(bch->clk); - } - - clk_set_rate(bch->clk, BCH_CLK_RATE); - - mutex_init(&bch->lock); - - bch->dev = dev; - platform_set_drvdata(pdev, bch); - - return 0; -} - -static const struct of_device_id jz4780_bch_dt_match[] = { - { .compatible = "ingenic,jz4780-bch" }, - {}, -}; -MODULE_DEVICE_TABLE(of, jz4780_bch_dt_match); - -static struct platform_driver jz4780_bch_driver = { - .probe = jz4780_bch_probe, - .driver = { - .name = "jz4780-bch", - .of_match_table = of_match_ptr(jz4780_bch_dt_match), - }, -}; -module_platform_driver(jz4780_bch_driver); - -MODULE_AUTHOR("Alex Smith "); -MODULE_AUTHOR("Harvey Hunt "); -MODULE_DESCRIPTION("Ingenic JZ4780 BCH error correction driver"); -MODULE_LICENSE("GPL v2"); diff --git a/drivers/mtd/nand/jz4780_bch.h b/drivers/mtd/nand/jz4780_bch.h deleted file mode 100644 index bf4718088a3a..000000000000 --- a/drivers/mtd/nand/jz4780_bch.h +++ /dev/null @@ -1,43 +0,0 @@ -/* - * JZ4780 BCH controller - * - * Copyright (c) 2015 Imagination Technologies - * Author: Alex Smith - * - * This program is free software; you can redistribute it and/or modify it - * under the terms of the GNU General Public License version 2 as published - * by the Free Software Foundation. - */ - -#ifndef __DRIVERS_MTD_NAND_JZ4780_BCH_H__ -#define __DRIVERS_MTD_NAND_JZ4780_BCH_H__ - -#include - -struct device; -struct device_node; -struct jz4780_bch; - -/** - * struct jz4780_bch_params - BCH parameters - * @size: data bytes per ECC step. - * @bytes: ECC bytes per step. - * @strength: number of correctable bits per ECC step. - */ -struct jz4780_bch_params { - int size; - int bytes; - int strength; -}; - -int jz4780_bch_calculate(struct jz4780_bch *bch, - struct jz4780_bch_params *params, - const u8 *buf, u8 *ecc_code); -int jz4780_bch_correct(struct jz4780_bch *bch, - struct jz4780_bch_params *params, u8 *buf, - u8 *ecc_code); - -void jz4780_bch_release(struct jz4780_bch *bch); -struct jz4780_bch *of_jz4780_bch_get(struct device_node *np); - -#endif /* __DRIVERS_MTD_NAND_JZ4780_BCH_H__ */ diff --git a/drivers/mtd/nand/jz4780_nand.c b/drivers/mtd/nand/jz4780_nand.c deleted file mode 100644 index e69f6ae4c539..000000000000 --- a/drivers/mtd/nand/jz4780_nand.c +++ /dev/null @@ -1,416 +0,0 @@ -/* - * JZ4780 NAND driver - * - * Copyright (c) 2015 Imagination Technologies - * Author: Alex Smith - * - * This program is free software; you can redistribute it and/or modify it - * under the terms of the GNU General Public License version 2 as published - * by the Free Software Foundation. - */ - -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include - -#include - -#include "jz4780_bch.h" - -#define DRV_NAME "jz4780-nand" - -#define OFFSET_DATA 0x00000000 -#define OFFSET_CMD 0x00400000 -#define OFFSET_ADDR 0x00800000 - -/* Command delay when there is no R/B pin. */ -#define RB_DELAY_US 100 - -struct jz4780_nand_cs { - unsigned int bank; - void __iomem *base; -}; - -struct jz4780_nand_controller { - struct device *dev; - struct jz4780_bch *bch; - struct nand_hw_control controller; - unsigned int num_banks; - struct list_head chips; - int selected; - struct jz4780_nand_cs cs[]; -}; - -struct jz4780_nand_chip { - struct nand_chip chip; - struct list_head chip_list; - - struct gpio_desc *busy_gpio; - struct gpio_desc *wp_gpio; - unsigned int reading: 1; -}; - -static inline struct jz4780_nand_chip *to_jz4780_nand_chip(struct mtd_info *mtd) -{ - return container_of(mtd_to_nand(mtd), struct jz4780_nand_chip, chip); -} - -static inline struct jz4780_nand_controller *to_jz4780_nand_controller(struct nand_hw_control *ctrl) -{ - return container_of(ctrl, struct jz4780_nand_controller, controller); -} - -static void jz4780_nand_select_chip(struct mtd_info *mtd, int chipnr) -{ - struct jz4780_nand_chip *nand = to_jz4780_nand_chip(mtd); - struct jz4780_nand_controller *nfc = to_jz4780_nand_controller(nand->chip.controller); - struct jz4780_nand_cs *cs; - - /* Ensure the currently selected chip is deasserted. */ - if (chipnr == -1 && nfc->selected >= 0) { - cs = &nfc->cs[nfc->selected]; - jz4780_nemc_assert(nfc->dev, cs->bank, false); - } - - nfc->selected = chipnr; -} - -static void jz4780_nand_cmd_ctrl(struct mtd_info *mtd, int cmd, - unsigned int ctrl) -{ - struct jz4780_nand_chip *nand = to_jz4780_nand_chip(mtd); - struct jz4780_nand_controller *nfc = to_jz4780_nand_controller(nand->chip.controller); - struct jz4780_nand_cs *cs; - - if (WARN_ON(nfc->selected < 0)) - return; - - cs = &nfc->cs[nfc->selected]; - - jz4780_nemc_assert(nfc->dev, cs->bank, ctrl & NAND_NCE); - - if (cmd == NAND_CMD_NONE) - return; - - if (ctrl & NAND_ALE) - writeb(cmd, cs->base + OFFSET_ADDR); - else if (ctrl & NAND_CLE) - writeb(cmd, cs->base + OFFSET_CMD); -} - -static int jz4780_nand_dev_ready(struct mtd_info *mtd) -{ - struct jz4780_nand_chip *nand = to_jz4780_nand_chip(mtd); - - return !gpiod_get_value_cansleep(nand->busy_gpio); -} - -static void jz4780_nand_ecc_hwctl(struct mtd_info *mtd, int mode) -{ - struct jz4780_nand_chip *nand = to_jz4780_nand_chip(mtd); - - nand->reading = (mode == NAND_ECC_READ); -} - -static int jz4780_nand_ecc_calculate(struct mtd_info *mtd, const u8 *dat, - u8 *ecc_code) -{ - struct jz4780_nand_chip *nand = to_jz4780_nand_chip(mtd); - struct jz4780_nand_controller *nfc = to_jz4780_nand_controller(nand->chip.controller); - struct jz4780_bch_params params; - - /* - * Don't need to generate the ECC when reading, BCH does it for us as - * part of decoding/correction. - */ - if (nand->reading) - return 0; - - params.size = nand->chip.ecc.size; - params.bytes = nand->chip.ecc.bytes; - params.strength = nand->chip.ecc.strength; - - return jz4780_bch_calculate(nfc->bch, ¶ms, dat, ecc_code); -} - -static int jz4780_nand_ecc_correct(struct mtd_info *mtd, u8 *dat, - u8 *read_ecc, u8 *calc_ecc) -{ - struct jz4780_nand_chip *nand = to_jz4780_nand_chip(mtd); - struct jz4780_nand_controller *nfc = to_jz4780_nand_controller(nand->chip.controller); - struct jz4780_bch_params params; - - params.size = nand->chip.ecc.size; - params.bytes = nand->chip.ecc.bytes; - params.strength = nand->chip.ecc.strength; - - return jz4780_bch_correct(nfc->bch, ¶ms, dat, read_ecc); -} - -static int jz4780_nand_init_ecc(struct jz4780_nand_chip *nand, struct device *dev) -{ - struct nand_chip *chip = &nand->chip; - struct mtd_info *mtd = nand_to_mtd(chip); - struct jz4780_nand_controller *nfc = to_jz4780_nand_controller(chip->controller); - int eccbytes; - - chip->ecc.bytes = fls((1 + 8) * chip->ecc.size) * - (chip->ecc.strength / 8); - - switch (chip->ecc.mode) { - case NAND_ECC_HW: - if (!nfc->bch) { - dev_err(dev, "HW BCH selected, but BCH controller not found\n"); - return -ENODEV; - } - - chip->ecc.hwctl = jz4780_nand_ecc_hwctl; - chip->ecc.calculate = jz4780_nand_ecc_calculate; - chip->ecc.correct = jz4780_nand_ecc_correct; - /* fall through */ - case NAND_ECC_SOFT: - dev_info(dev, "using %s (strength %d, size %d, bytes %d)\n", - (nfc->bch) ? "hardware BCH" : "software ECC", - chip->ecc.strength, chip->ecc.size, chip->ecc.bytes); - break; - case NAND_ECC_NONE: - dev_info(dev, "not using ECC\n"); - break; - default: - dev_err(dev, "ECC mode %d not supported\n", chip->ecc.mode); - return -EINVAL; - } - - /* The NAND core will generate the ECC layout for SW ECC */ - if (chip->ecc.mode != NAND_ECC_HW) - return 0; - - /* Generate ECC layout. ECC codes are right aligned in the OOB area. */ - eccbytes = mtd->writesize / chip->ecc.size * chip->ecc.bytes; - - if (eccbytes > mtd->oobsize - 2) { - dev_err(dev, - "invalid ECC config: required %d ECC bytes, but only %d are available", - eccbytes, mtd->oobsize - 2); - return -EINVAL; - } - - mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops); - - return 0; -} - -static int jz4780_nand_init_chip(struct platform_device *pdev, - struct jz4780_nand_controller *nfc, - struct device_node *np, - unsigned int chipnr) -{ - struct device *dev = &pdev->dev; - struct jz4780_nand_chip *nand; - struct jz4780_nand_cs *cs; - struct resource *res; - struct nand_chip *chip; - struct mtd_info *mtd; - const __be32 *reg; - int ret = 0; - - cs = &nfc->cs[chipnr]; - - reg = of_get_property(np, "reg", NULL); - if (!reg) - return -EINVAL; - - cs->bank = be32_to_cpu(*reg); - - jz4780_nemc_set_type(nfc->dev, cs->bank, JZ4780_NEMC_BANK_NAND); - - res = platform_get_resource(pdev, IORESOURCE_MEM, chipnr); - cs->base = devm_ioremap_resource(dev, res); - if (IS_ERR(cs->base)) - return PTR_ERR(cs->base); - - nand = devm_kzalloc(dev, sizeof(*nand), GFP_KERNEL); - if (!nand) - return -ENOMEM; - - nand->busy_gpio = devm_gpiod_get_optional(dev, "rb", GPIOD_IN); - - if (IS_ERR(nand->busy_gpio)) { - ret = PTR_ERR(nand->busy_gpio); - dev_err(dev, "failed to request busy GPIO: %d\n", ret); - return ret; - } else if (nand->busy_gpio) { - nand->chip.dev_ready = jz4780_nand_dev_ready; - } - - nand->wp_gpio = devm_gpiod_get_optional(dev, "wp", GPIOD_OUT_LOW); - - if (IS_ERR(nand->wp_gpio)) { - ret = PTR_ERR(nand->wp_gpio); - dev_err(dev, "failed to request WP GPIO: %d\n", ret); - return ret; - } - - chip = &nand->chip; - mtd = nand_to_mtd(chip); - mtd->name = devm_kasprintf(dev, GFP_KERNEL, "%s.%d", dev_name(dev), - cs->bank); - if (!mtd->name) - return -ENOMEM; - mtd->dev.parent = dev; - - chip->IO_ADDR_R = cs->base + OFFSET_DATA; - chip->IO_ADDR_W = cs->base + OFFSET_DATA; - chip->chip_delay = RB_DELAY_US; - chip->options = NAND_NO_SUBPAGE_WRITE; - chip->select_chip = jz4780_nand_select_chip; - chip->cmd_ctrl = jz4780_nand_cmd_ctrl; - chip->ecc.mode = NAND_ECC_HW; - chip->controller = &nfc->controller; - nand_set_flash_node(chip, np); - - ret = nand_scan_ident(mtd, 1, NULL); - if (ret) - return ret; - - ret = jz4780_nand_init_ecc(nand, dev); - if (ret) - return ret; - - ret = nand_scan_tail(mtd); - if (ret) - return ret; - - ret = mtd_device_register(mtd, NULL, 0); - if (ret) { - nand_release(mtd); - return ret; - } - - list_add_tail(&nand->chip_list, &nfc->chips); - - return 0; -} - -static void jz4780_nand_cleanup_chips(struct jz4780_nand_controller *nfc) -{ - struct jz4780_nand_chip *chip; - - while (!list_empty(&nfc->chips)) { - chip = list_first_entry(&nfc->chips, struct jz4780_nand_chip, chip_list); - nand_release(nand_to_mtd(&chip->chip)); - list_del(&chip->chip_list); - } -} - -static int jz4780_nand_init_chips(struct jz4780_nand_controller *nfc, - struct platform_device *pdev) -{ - struct device *dev = &pdev->dev; - struct device_node *np; - int i = 0; - int ret; - int num_chips = of_get_child_count(dev->of_node); - - if (num_chips > nfc->num_banks) { - dev_err(dev, "found %d chips but only %d banks\n", num_chips, nfc->num_banks); - return -EINVAL; - } - - for_each_child_of_node(dev->of_node, np) { - ret = jz4780_nand_init_chip(pdev, nfc, np, i); - if (ret) { - jz4780_nand_cleanup_chips(nfc); - return ret; - } - - i++; - } - - return 0; -} - -static int jz4780_nand_probe(struct platform_device *pdev) -{ - struct device *dev = &pdev->dev; - unsigned int num_banks; - struct jz4780_nand_controller *nfc; - int ret; - - num_banks = jz4780_nemc_num_banks(dev); - if (num_banks == 0) { - dev_err(dev, "no banks found\n"); - return -ENODEV; - } - - nfc = devm_kzalloc(dev, sizeof(*nfc) + (sizeof(nfc->cs[0]) * num_banks), GFP_KERNEL); - if (!nfc) - return -ENOMEM; - - /* - * Check for BCH HW before we call nand_scan_ident, to prevent us from - * having to call it again if the BCH driver returns -EPROBE_DEFER. - */ - nfc->bch = of_jz4780_bch_get(dev->of_node); - if (IS_ERR(nfc->bch)) - return PTR_ERR(nfc->bch); - - nfc->dev = dev; - nfc->num_banks = num_banks; - - nand_hw_control_init(&nfc->controller); - INIT_LIST_HEAD(&nfc->chips); - - ret = jz4780_nand_init_chips(nfc, pdev); - if (ret) { - if (nfc->bch) - jz4780_bch_release(nfc->bch); - return ret; - } - - platform_set_drvdata(pdev, nfc); - return 0; -} - -static int jz4780_nand_remove(struct platform_device *pdev) -{ - struct jz4780_nand_controller *nfc = platform_get_drvdata(pdev); - - if (nfc->bch) - jz4780_bch_release(nfc->bch); - - jz4780_nand_cleanup_chips(nfc); - - return 0; -} - -static const struct of_device_id jz4780_nand_dt_match[] = { - { .compatible = "ingenic,jz4780-nand" }, - {}, -}; -MODULE_DEVICE_TABLE(of, jz4780_nand_dt_match); - -static struct platform_driver jz4780_nand_driver = { - .probe = jz4780_nand_probe, - .remove = jz4780_nand_remove, - .driver = { - .name = DRV_NAME, - .of_match_table = of_match_ptr(jz4780_nand_dt_match), - }, -}; -module_platform_driver(jz4780_nand_driver); - -MODULE_AUTHOR("Alex Smith "); -MODULE_AUTHOR("Harvey Hunt "); -MODULE_DESCRIPTION("Ingenic JZ4780 NAND driver"); -MODULE_LICENSE("GPL v2"); diff --git a/drivers/mtd/nand/lpc32xx_mlc.c b/drivers/mtd/nand/lpc32xx_mlc.c deleted file mode 100644 index e357948a7505..000000000000 --- a/drivers/mtd/nand/lpc32xx_mlc.c +++ /dev/null @@ -1,909 +0,0 @@ -/* - * Driver for NAND MLC Controller in LPC32xx - * - * Author: Roland Stigge - * - * Copyright © 2011 WORK Microwave GmbH - * Copyright © 2011, 2012 Roland Stigge - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation; either version 2 of the License, or - * (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - * - * - * NAND Flash Controller Operation: - * - Read: Auto Decode - * - Write: Auto Encode - * - Tested Page Sizes: 2048, 4096 - */ - -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include - -#define DRV_NAME "lpc32xx_mlc" - -/********************************************************************** -* MLC NAND controller register offsets -**********************************************************************/ - -#define MLC_BUFF(x) (x + 0x00000) -#define MLC_DATA(x) (x + 0x08000) -#define MLC_CMD(x) (x + 0x10000) -#define MLC_ADDR(x) (x + 0x10004) -#define MLC_ECC_ENC_REG(x) (x + 0x10008) -#define MLC_ECC_DEC_REG(x) (x + 0x1000C) -#define MLC_ECC_AUTO_ENC_REG(x) (x + 0x10010) -#define MLC_ECC_AUTO_DEC_REG(x) (x + 0x10014) -#define MLC_RPR(x) (x + 0x10018) -#define MLC_WPR(x) (x + 0x1001C) -#define MLC_RUBP(x) (x + 0x10020) -#define MLC_ROBP(x) (x + 0x10024) -#define MLC_SW_WP_ADD_LOW(x) (x + 0x10028) -#define MLC_SW_WP_ADD_HIG(x) (x + 0x1002C) -#define MLC_ICR(x) (x + 0x10030) -#define MLC_TIME_REG(x) (x + 0x10034) -#define MLC_IRQ_MR(x) (x + 0x10038) -#define MLC_IRQ_SR(x) (x + 0x1003C) -#define MLC_LOCK_PR(x) (x + 0x10044) -#define MLC_ISR(x) (x + 0x10048) -#define MLC_CEH(x) (x + 0x1004C) - -/********************************************************************** -* MLC_CMD bit definitions -**********************************************************************/ -#define MLCCMD_RESET 0xFF - -/********************************************************************** -* MLC_ICR bit definitions -**********************************************************************/ -#define MLCICR_WPROT (1 << 3) -#define MLCICR_LARGEBLOCK (1 << 2) -#define MLCICR_LONGADDR (1 << 1) -#define MLCICR_16BIT (1 << 0) /* unsupported by LPC32x0! */ - -/********************************************************************** -* MLC_TIME_REG bit definitions -**********************************************************************/ -#define MLCTIMEREG_TCEA_DELAY(n) (((n) & 0x03) << 24) -#define MLCTIMEREG_BUSY_DELAY(n) (((n) & 0x1F) << 19) -#define MLCTIMEREG_NAND_TA(n) (((n) & 0x07) << 16) -#define MLCTIMEREG_RD_HIGH(n) (((n) & 0x0F) << 12) -#define MLCTIMEREG_RD_LOW(n) (((n) & 0x0F) << 8) -#define MLCTIMEREG_WR_HIGH(n) (((n) & 0x0F) << 4) -#define MLCTIMEREG_WR_LOW(n) (((n) & 0x0F) << 0) - -/********************************************************************** -* MLC_IRQ_MR and MLC_IRQ_SR bit definitions -**********************************************************************/ -#define MLCIRQ_NAND_READY (1 << 5) -#define MLCIRQ_CONTROLLER_READY (1 << 4) -#define MLCIRQ_DECODE_FAILURE (1 << 3) -#define MLCIRQ_DECODE_ERROR (1 << 2) -#define MLCIRQ_ECC_READY (1 << 1) -#define MLCIRQ_WRPROT_FAULT (1 << 0) - -/********************************************************************** -* MLC_LOCK_PR bit definitions -**********************************************************************/ -#define MLCLOCKPR_MAGIC 0xA25E - -/********************************************************************** -* MLC_ISR bit definitions -**********************************************************************/ -#define MLCISR_DECODER_FAILURE (1 << 6) -#define MLCISR_ERRORS ((1 << 4) | (1 << 5)) -#define MLCISR_ERRORS_DETECTED (1 << 3) -#define MLCISR_ECC_READY (1 << 2) -#define MLCISR_CONTROLLER_READY (1 << 1) -#define MLCISR_NAND_READY (1 << 0) - -/********************************************************************** -* MLC_CEH bit definitions -**********************************************************************/ -#define MLCCEH_NORMAL (1 << 0) - -struct lpc32xx_nand_cfg_mlc { - uint32_t tcea_delay; - uint32_t busy_delay; - uint32_t nand_ta; - uint32_t rd_high; - uint32_t rd_low; - uint32_t wr_high; - uint32_t wr_low; - int wp_gpio; - struct mtd_partition *parts; - unsigned num_parts; -}; - -static int lpc32xx_ooblayout_ecc(struct mtd_info *mtd, int section, - struct mtd_oob_region *oobregion) -{ - struct nand_chip *nand_chip = mtd_to_nand(mtd); - - if (section >= nand_chip->ecc.steps) - return -ERANGE; - - oobregion->offset = ((section + 1) * 16) - nand_chip->ecc.bytes; - oobregion->length = nand_chip->ecc.bytes; - - return 0; -} - -static int lpc32xx_ooblayout_free(struct mtd_info *mtd, int section, - struct mtd_oob_region *oobregion) -{ - struct nand_chip *nand_chip = mtd_to_nand(mtd); - - if (section >= nand_chip->ecc.steps) - return -ERANGE; - - oobregion->offset = 16 * section; - oobregion->length = 16 - nand_chip->ecc.bytes; - - return 0; -} - -static const struct mtd_ooblayout_ops lpc32xx_ooblayout_ops = { - .ecc = lpc32xx_ooblayout_ecc, - .free = lpc32xx_ooblayout_free, -}; - -static struct nand_bbt_descr lpc32xx_nand_bbt = { - .options = NAND_BBT_ABSPAGE | NAND_BBT_2BIT | NAND_BBT_NO_OOB | - NAND_BBT_WRITE, - .pages = { 524224, 0, 0, 0, 0, 0, 0, 0 }, -}; - -static struct nand_bbt_descr lpc32xx_nand_bbt_mirror = { - .options = NAND_BBT_ABSPAGE | NAND_BBT_2BIT | NAND_BBT_NO_OOB | - NAND_BBT_WRITE, - .pages = { 524160, 0, 0, 0, 0, 0, 0, 0 }, -}; - -struct lpc32xx_nand_host { - struct nand_chip nand_chip; - struct lpc32xx_mlc_platform_data *pdata; - struct clk *clk; - void __iomem *io_base; - int irq; - struct lpc32xx_nand_cfg_mlc *ncfg; - struct completion comp_nand; - struct completion comp_controller; - uint32_t llptr; - /* - * Physical addresses of ECC buffer, DMA data buffers, OOB data buffer - */ - dma_addr_t oob_buf_phy; - /* - * Virtual addresses of ECC buffer, DMA data buffers, OOB data buffer - */ - uint8_t *oob_buf; - /* Physical address of DMA base address */ - dma_addr_t io_base_phy; - - struct completion comp_dma; - struct dma_chan *dma_chan; - struct dma_slave_config dma_slave_config; - struct scatterlist sgl; - uint8_t *dma_buf; - uint8_t *dummy_buf; - int mlcsubpages; /* number of 512bytes-subpages */ -}; - -/* - * Activate/Deactivate DMA Operation: - * - * Using the PL080 DMA Controller for transferring the 512 byte subpages - * instead of doing readl() / writel() in a loop slows it down significantly. - * Measurements via getnstimeofday() upon 512 byte subpage reads reveal: - * - * - readl() of 128 x 32 bits in a loop: ~20us - * - DMA read of 512 bytes (32 bit, 4...128 words bursts): ~60us - * - DMA read of 512 bytes (32 bit, no bursts): ~100us - * - * This applies to the transfer itself. In the DMA case: only the - * wait_for_completion() (DMA setup _not_ included). - * - * Note that the 512 bytes subpage transfer is done directly from/to a - * FIFO/buffer inside the NAND controller. Most of the time (~400-800us for a - * 2048 bytes page) is spent waiting for the NAND IRQ, anyway. (The NAND - * controller transferring data between its internal buffer to/from the NAND - * chip.) - * - * Therefore, using the PL080 DMA is disabled by default, for now. - * - */ -static int use_dma; - -static void lpc32xx_nand_setup(struct lpc32xx_nand_host *host) -{ - uint32_t clkrate, tmp; - - /* Reset MLC controller */ - writel(MLCCMD_RESET, MLC_CMD(host->io_base)); - udelay(1000); - - /* Get base clock for MLC block */ - clkrate = clk_get_rate(host->clk); - if (clkrate == 0) - clkrate = 104000000; - - /* Unlock MLC_ICR - * (among others, will be locked again automatically) */ - writew(MLCLOCKPR_MAGIC, MLC_LOCK_PR(host->io_base)); - - /* Configure MLC Controller: Large Block, 5 Byte Address */ - tmp = MLCICR_LARGEBLOCK | MLCICR_LONGADDR; - writel(tmp, MLC_ICR(host->io_base)); - - /* Unlock MLC_TIME_REG - * (among others, will be locked again automatically) */ - writew(MLCLOCKPR_MAGIC, MLC_LOCK_PR(host->io_base)); - - /* Compute clock setup values, see LPC and NAND manual */ - tmp = 0; - tmp |= MLCTIMEREG_TCEA_DELAY(clkrate / host->ncfg->tcea_delay + 1); - tmp |= MLCTIMEREG_BUSY_DELAY(clkrate / host->ncfg->busy_delay + 1); - tmp |= MLCTIMEREG_NAND_TA(clkrate / host->ncfg->nand_ta + 1); - tmp |= MLCTIMEREG_RD_HIGH(clkrate / host->ncfg->rd_high + 1); - tmp |= MLCTIMEREG_RD_LOW(clkrate / host->ncfg->rd_low); - tmp |= MLCTIMEREG_WR_HIGH(clkrate / host->ncfg->wr_high + 1); - tmp |= MLCTIMEREG_WR_LOW(clkrate / host->ncfg->wr_low); - writel(tmp, MLC_TIME_REG(host->io_base)); - - /* Enable IRQ for CONTROLLER_READY and NAND_READY */ - writeb(MLCIRQ_CONTROLLER_READY | MLCIRQ_NAND_READY, - MLC_IRQ_MR(host->io_base)); - - /* Normal nCE operation: nCE controlled by controller */ - writel(MLCCEH_NORMAL, MLC_CEH(host->io_base)); -} - -/* - * Hardware specific access to control lines - */ -static void lpc32xx_nand_cmd_ctrl(struct mtd_info *mtd, int cmd, - unsigned int ctrl) -{ - struct nand_chip *nand_chip = mtd_to_nand(mtd); - struct lpc32xx_nand_host *host = nand_get_controller_data(nand_chip); - - if (cmd != NAND_CMD_NONE) { - if (ctrl & NAND_CLE) - writel(cmd, MLC_CMD(host->io_base)); - else - writel(cmd, MLC_ADDR(host->io_base)); - } -} - -/* - * Read Device Ready (NAND device _and_ controller ready) - */ -static int lpc32xx_nand_device_ready(struct mtd_info *mtd) -{ - struct nand_chip *nand_chip = mtd_to_nand(mtd); - struct lpc32xx_nand_host *host = nand_get_controller_data(nand_chip); - - if ((readb(MLC_ISR(host->io_base)) & - (MLCISR_CONTROLLER_READY | MLCISR_NAND_READY)) == - (MLCISR_CONTROLLER_READY | MLCISR_NAND_READY)) - return 1; - - return 0; -} - -static irqreturn_t lpc3xxx_nand_irq(int irq, struct lpc32xx_nand_host *host) -{ - uint8_t sr; - - /* Clear interrupt flag by reading status */ - sr = readb(MLC_IRQ_SR(host->io_base)); - if (sr & MLCIRQ_NAND_READY) - complete(&host->comp_nand); - if (sr & MLCIRQ_CONTROLLER_READY) - complete(&host->comp_controller); - - return IRQ_HANDLED; -} - -static int lpc32xx_waitfunc_nand(struct mtd_info *mtd, struct nand_chip *chip) -{ - struct lpc32xx_nand_host *host = nand_get_controller_data(chip); - - if (readb(MLC_ISR(host->io_base)) & MLCISR_NAND_READY) - goto exit; - - wait_for_completion(&host->comp_nand); - - while (!(readb(MLC_ISR(host->io_base)) & MLCISR_NAND_READY)) { - /* Seems to be delayed sometimes by controller */ - dev_dbg(&mtd->dev, "Warning: NAND not ready.\n"); - cpu_relax(); - } - -exit: - return NAND_STATUS_READY; -} - -static int lpc32xx_waitfunc_controller(struct mtd_info *mtd, - struct nand_chip *chip) -{ - struct lpc32xx_nand_host *host = nand_get_controller_data(chip); - - if (readb(MLC_ISR(host->io_base)) & MLCISR_CONTROLLER_READY) - goto exit; - - wait_for_completion(&host->comp_controller); - - while (!(readb(MLC_ISR(host->io_base)) & - MLCISR_CONTROLLER_READY)) { - dev_dbg(&mtd->dev, "Warning: Controller not ready.\n"); - cpu_relax(); - } - -exit: - return NAND_STATUS_READY; -} - -static int lpc32xx_waitfunc(struct mtd_info *mtd, struct nand_chip *chip) -{ - lpc32xx_waitfunc_nand(mtd, chip); - lpc32xx_waitfunc_controller(mtd, chip); - - return NAND_STATUS_READY; -} - -/* - * Enable NAND write protect - */ -static void lpc32xx_wp_enable(struct lpc32xx_nand_host *host) -{ - if (gpio_is_valid(host->ncfg->wp_gpio)) - gpio_set_value(host->ncfg->wp_gpio, 0); -} - -/* - * Disable NAND write protect - */ -static void lpc32xx_wp_disable(struct lpc32xx_nand_host *host) -{ - if (gpio_is_valid(host->ncfg->wp_gpio)) - gpio_set_value(host->ncfg->wp_gpio, 1); -} - -static void lpc32xx_dma_complete_func(void *completion) -{ - complete(completion); -} - -static int lpc32xx_xmit_dma(struct mtd_info *mtd, void *mem, int len, - enum dma_transfer_direction dir) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct lpc32xx_nand_host *host = nand_get_controller_data(chip); - struct dma_async_tx_descriptor *desc; - int flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT; - int res; - - sg_init_one(&host->sgl, mem, len); - - res = dma_map_sg(host->dma_chan->device->dev, &host->sgl, 1, - DMA_BIDIRECTIONAL); - if (res != 1) { - dev_err(mtd->dev.parent, "Failed to map sg list\n"); - return -ENXIO; - } - desc = dmaengine_prep_slave_sg(host->dma_chan, &host->sgl, 1, dir, - flags); - if (!desc) { - dev_err(mtd->dev.parent, "Failed to prepare slave sg\n"); - goto out1; - } - - init_completion(&host->comp_dma); - desc->callback = lpc32xx_dma_complete_func; - desc->callback_param = &host->comp_dma; - - dmaengine_submit(desc); - dma_async_issue_pending(host->dma_chan); - - wait_for_completion_timeout(&host->comp_dma, msecs_to_jiffies(1000)); - - dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1, - DMA_BIDIRECTIONAL); - return 0; -out1: - dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1, - DMA_BIDIRECTIONAL); - return -ENXIO; -} - -static int lpc32xx_read_page(struct mtd_info *mtd, struct nand_chip *chip, - uint8_t *buf, int oob_required, int page) -{ - struct lpc32xx_nand_host *host = nand_get_controller_data(chip); - int i, j; - uint8_t *oobbuf = chip->oob_poi; - uint32_t mlc_isr; - int res; - uint8_t *dma_buf; - bool dma_mapped; - - if ((void *)buf <= high_memory) { - dma_buf = buf; - dma_mapped = true; - } else { - dma_buf = host->dma_buf; - dma_mapped = false; - } - - /* Writing Command and Address */ - nand_read_page_op(chip, page, 0, NULL, 0); - - /* For all sub-pages */ - for (i = 0; i < host->mlcsubpages; i++) { - /* Start Auto Decode Command */ - writeb(0x00, MLC_ECC_AUTO_DEC_REG(host->io_base)); - - /* Wait for Controller Ready */ - lpc32xx_waitfunc_controller(mtd, chip); - - /* Check ECC Error status */ - mlc_isr = readl(MLC_ISR(host->io_base)); - if (mlc_isr & MLCISR_DECODER_FAILURE) { - mtd->ecc_stats.failed++; - dev_warn(&mtd->dev, "%s: DECODER_FAILURE\n", __func__); - } else if (mlc_isr & MLCISR_ERRORS_DETECTED) { - mtd->ecc_stats.corrected += ((mlc_isr >> 4) & 0x3) + 1; - } - - /* Read 512 + 16 Bytes */ - if (use_dma) { - res = lpc32xx_xmit_dma(mtd, dma_buf + i * 512, 512, - DMA_DEV_TO_MEM); - if (res) - return res; - } else { - for (j = 0; j < (512 >> 2); j++) { - *((uint32_t *)(buf)) = - readl(MLC_BUFF(host->io_base)); - buf += 4; - } - } - for (j = 0; j < (16 >> 2); j++) { - *((uint32_t *)(oobbuf)) = - readl(MLC_BUFF(host->io_base)); - oobbuf += 4; - } - } - - if (use_dma && !dma_mapped) - memcpy(buf, dma_buf, mtd->writesize); - - return 0; -} - -static int lpc32xx_write_page_lowlevel(struct mtd_info *mtd, - struct nand_chip *chip, - const uint8_t *buf, int oob_required, - int page) -{ - struct lpc32xx_nand_host *host = nand_get_controller_data(chip); - const uint8_t *oobbuf = chip->oob_poi; - uint8_t *dma_buf = (uint8_t *)buf; - int res; - int i, j; - - if (use_dma && (void *)buf >= high_memory) { - dma_buf = host->dma_buf; - memcpy(dma_buf, buf, mtd->writesize); - } - - nand_prog_page_begin_op(chip, page, 0, NULL, 0); - - for (i = 0; i < host->mlcsubpages; i++) { - /* Start Encode */ - writeb(0x00, MLC_ECC_ENC_REG(host->io_base)); - - /* Write 512 + 6 Bytes to Buffer */ - if (use_dma) { - res = lpc32xx_xmit_dma(mtd, dma_buf + i * 512, 512, - DMA_MEM_TO_DEV); - if (res) - return res; - } else { - for (j = 0; j < (512 >> 2); j++) { - writel(*((uint32_t *)(buf)), - MLC_BUFF(host->io_base)); - buf += 4; - } - } - writel(*((uint32_t *)(oobbuf)), MLC_BUFF(host->io_base)); - oobbuf += 4; - writew(*((uint16_t *)(oobbuf)), MLC_BUFF(host->io_base)); - oobbuf += 12; - - /* Auto Encode w/ Bit 8 = 0 (see LPC MLC Controller manual) */ - writeb(0x00, MLC_ECC_AUTO_ENC_REG(host->io_base)); - - /* Wait for Controller Ready */ - lpc32xx_waitfunc_controller(mtd, chip); - } - - return nand_prog_page_end_op(chip); -} - -static int lpc32xx_read_oob(struct mtd_info *mtd, struct nand_chip *chip, - int page) -{ - struct lpc32xx_nand_host *host = nand_get_controller_data(chip); - - /* Read whole page - necessary with MLC controller! */ - lpc32xx_read_page(mtd, chip, host->dummy_buf, 1, page); - - return 0; -} - -static int lpc32xx_write_oob(struct mtd_info *mtd, struct nand_chip *chip, - int page) -{ - /* None, write_oob conflicts with the automatic LPC MLC ECC decoder! */ - return 0; -} - -/* Prepares MLC for transfers with H/W ECC enabled: always enabled anyway */ -static void lpc32xx_ecc_enable(struct mtd_info *mtd, int mode) -{ - /* Always enabled! */ -} - -static int lpc32xx_dma_setup(struct lpc32xx_nand_host *host) -{ - struct mtd_info *mtd = nand_to_mtd(&host->nand_chip); - dma_cap_mask_t mask; - - if (!host->pdata || !host->pdata->dma_filter) { - dev_err(mtd->dev.parent, "no DMA platform data\n"); - return -ENOENT; - } - - dma_cap_zero(mask); - dma_cap_set(DMA_SLAVE, mask); - host->dma_chan = dma_request_channel(mask, host->pdata->dma_filter, - "nand-mlc"); - if (!host->dma_chan) { - dev_err(mtd->dev.parent, "Failed to request DMA channel\n"); - return -EBUSY; - } - - /* - * Set direction to a sensible value even if the dmaengine driver - * should ignore it. With the default (DMA_MEM_TO_MEM), the amba-pl08x - * driver criticizes it as "alien transfer direction". - */ - host->dma_slave_config.direction = DMA_DEV_TO_MEM; - host->dma_slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; - host->dma_slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; - host->dma_slave_config.src_maxburst = 128; - host->dma_slave_config.dst_maxburst = 128; - /* DMA controller does flow control: */ - host->dma_slave_config.device_fc = false; - host->dma_slave_config.src_addr = MLC_BUFF(host->io_base_phy); - host->dma_slave_config.dst_addr = MLC_BUFF(host->io_base_phy); - if (dmaengine_slave_config(host->dma_chan, &host->dma_slave_config)) { - dev_err(mtd->dev.parent, "Failed to setup DMA slave\n"); - goto out1; - } - - return 0; -out1: - dma_release_channel(host->dma_chan); - return -ENXIO; -} - -static struct lpc32xx_nand_cfg_mlc *lpc32xx_parse_dt(struct device *dev) -{ - struct lpc32xx_nand_cfg_mlc *ncfg; - struct device_node *np = dev->of_node; - - ncfg = devm_kzalloc(dev, sizeof(*ncfg), GFP_KERNEL); - if (!ncfg) - return NULL; - - of_property_read_u32(np, "nxp,tcea-delay", &ncfg->tcea_delay); - of_property_read_u32(np, "nxp,busy-delay", &ncfg->busy_delay); - of_property_read_u32(np, "nxp,nand-ta", &ncfg->nand_ta); - of_property_read_u32(np, "nxp,rd-high", &ncfg->rd_high); - of_property_read_u32(np, "nxp,rd-low", &ncfg->rd_low); - of_property_read_u32(np, "nxp,wr-high", &ncfg->wr_high); - of_property_read_u32(np, "nxp,wr-low", &ncfg->wr_low); - - if (!ncfg->tcea_delay || !ncfg->busy_delay || !ncfg->nand_ta || - !ncfg->rd_high || !ncfg->rd_low || !ncfg->wr_high || - !ncfg->wr_low) { - dev_err(dev, "chip parameters not specified correctly\n"); - return NULL; - } - - ncfg->wp_gpio = of_get_named_gpio(np, "gpios", 0); - - return ncfg; -} - -/* - * Probe for NAND controller - */ -static int lpc32xx_nand_probe(struct platform_device *pdev) -{ - struct lpc32xx_nand_host *host; - struct mtd_info *mtd; - struct nand_chip *nand_chip; - struct resource *rc; - int res; - - /* Allocate memory for the device structure (and zero it) */ - host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL); - if (!host) - return -ENOMEM; - - rc = platform_get_resource(pdev, IORESOURCE_MEM, 0); - host->io_base = devm_ioremap_resource(&pdev->dev, rc); - if (IS_ERR(host->io_base)) - return PTR_ERR(host->io_base); - - host->io_base_phy = rc->start; - - nand_chip = &host->nand_chip; - mtd = nand_to_mtd(nand_chip); - if (pdev->dev.of_node) - host->ncfg = lpc32xx_parse_dt(&pdev->dev); - if (!host->ncfg) { - dev_err(&pdev->dev, - "Missing or bad NAND config from device tree\n"); - return -ENOENT; - } - if (host->ncfg->wp_gpio == -EPROBE_DEFER) - return -EPROBE_DEFER; - if (gpio_is_valid(host->ncfg->wp_gpio) && - gpio_request(host->ncfg->wp_gpio, "NAND WP")) { - dev_err(&pdev->dev, "GPIO not available\n"); - return -EBUSY; - } - lpc32xx_wp_disable(host); - - host->pdata = dev_get_platdata(&pdev->dev); - - /* link the private data structures */ - nand_set_controller_data(nand_chip, host); - nand_set_flash_node(nand_chip, pdev->dev.of_node); - mtd->dev.parent = &pdev->dev; - - /* Get NAND clock */ - host->clk = clk_get(&pdev->dev, NULL); - if (IS_ERR(host->clk)) { - dev_err(&pdev->dev, "Clock initialization failure\n"); - res = -ENOENT; - goto err_exit1; - } - res = clk_prepare_enable(host->clk); - if (res) - goto err_put_clk; - - nand_chip->cmd_ctrl = lpc32xx_nand_cmd_ctrl; - nand_chip->dev_ready = lpc32xx_nand_device_ready; - nand_chip->chip_delay = 25; /* us */ - nand_chip->IO_ADDR_R = MLC_DATA(host->io_base); - nand_chip->IO_ADDR_W = MLC_DATA(host->io_base); - - /* Init NAND controller */ - lpc32xx_nand_setup(host); - - platform_set_drvdata(pdev, host); - - /* Initialize function pointers */ - nand_chip->ecc.hwctl = lpc32xx_ecc_enable; - nand_chip->ecc.read_page_raw = lpc32xx_read_page; - nand_chip->ecc.read_page = lpc32xx_read_page; - nand_chip->ecc.write_page_raw = lpc32xx_write_page_lowlevel; - nand_chip->ecc.write_page = lpc32xx_write_page_lowlevel; - nand_chip->ecc.write_oob = lpc32xx_write_oob; - nand_chip->ecc.read_oob = lpc32xx_read_oob; - nand_chip->ecc.strength = 4; - nand_chip->ecc.bytes = 10; - nand_chip->waitfunc = lpc32xx_waitfunc; - - nand_chip->options = NAND_NO_SUBPAGE_WRITE; - nand_chip->bbt_options = NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB; - nand_chip->bbt_td = &lpc32xx_nand_bbt; - nand_chip->bbt_md = &lpc32xx_nand_bbt_mirror; - - if (use_dma) { - res = lpc32xx_dma_setup(host); - if (res) { - res = -EIO; - goto err_exit2; - } - } - - /* - * Scan to find existance of the device and - * Get the type of NAND device SMALL block or LARGE block - */ - res = nand_scan_ident(mtd, 1, NULL); - if (res) - goto err_exit3; - - host->dma_buf = devm_kzalloc(&pdev->dev, mtd->writesize, GFP_KERNEL); - if (!host->dma_buf) { - res = -ENOMEM; - goto err_exit3; - } - - host->dummy_buf = devm_kzalloc(&pdev->dev, mtd->writesize, GFP_KERNEL); - if (!host->dummy_buf) { - res = -ENOMEM; - goto err_exit3; - } - - nand_chip->ecc.mode = NAND_ECC_HW; - nand_chip->ecc.size = 512; - mtd_set_ooblayout(mtd, &lpc32xx_ooblayout_ops); - host->mlcsubpages = mtd->writesize / 512; - - /* initially clear interrupt status */ - readb(MLC_IRQ_SR(host->io_base)); - - init_completion(&host->comp_nand); - init_completion(&host->comp_controller); - - host->irq = platform_get_irq(pdev, 0); - if (host->irq < 0) { - dev_err(&pdev->dev, "failed to get platform irq\n"); - res = -EINVAL; - goto err_exit3; - } - - if (request_irq(host->irq, (irq_handler_t)&lpc3xxx_nand_irq, - IRQF_TRIGGER_HIGH, DRV_NAME, host)) { - dev_err(&pdev->dev, "Error requesting NAND IRQ\n"); - res = -ENXIO; - goto err_exit3; - } - - /* - * Fills out all the uninitialized function pointers with the defaults - * And scans for a bad block table if appropriate. - */ - res = nand_scan_tail(mtd); - if (res) - goto err_exit4; - - mtd->name = DRV_NAME; - - res = mtd_device_register(mtd, host->ncfg->parts, - host->ncfg->num_parts); - if (!res) - return res; - - nand_release(mtd); - -err_exit4: - free_irq(host->irq, host); -err_exit3: - if (use_dma) - dma_release_channel(host->dma_chan); -err_exit2: - clk_disable_unprepare(host->clk); -err_put_clk: - clk_put(host->clk); -err_exit1: - lpc32xx_wp_enable(host); - gpio_free(host->ncfg->wp_gpio); - - return res; -} - -/* - * Remove NAND device - */ -static int lpc32xx_nand_remove(struct platform_device *pdev) -{ - struct lpc32xx_nand_host *host = platform_get_drvdata(pdev); - struct mtd_info *mtd = nand_to_mtd(&host->nand_chip); - - nand_release(mtd); - free_irq(host->irq, host); - if (use_dma) - dma_release_channel(host->dma_chan); - - clk_disable_unprepare(host->clk); - clk_put(host->clk); - - lpc32xx_wp_enable(host); - gpio_free(host->ncfg->wp_gpio); - - return 0; -} - -#ifdef CONFIG_PM -static int lpc32xx_nand_resume(struct platform_device *pdev) -{ - struct lpc32xx_nand_host *host = platform_get_drvdata(pdev); - int ret; - - /* Re-enable NAND clock */ - ret = clk_prepare_enable(host->clk); - if (ret) - return ret; - - /* Fresh init of NAND controller */ - lpc32xx_nand_setup(host); - - /* Disable write protect */ - lpc32xx_wp_disable(host); - - return 0; -} - -static int lpc32xx_nand_suspend(struct platform_device *pdev, pm_message_t pm) -{ - struct lpc32xx_nand_host *host = platform_get_drvdata(pdev); - - /* Enable write protect for safety */ - lpc32xx_wp_enable(host); - - /* Disable clock */ - clk_disable_unprepare(host->clk); - return 0; -} - -#else -#define lpc32xx_nand_resume NULL -#define lpc32xx_nand_suspend NULL -#endif - -static const struct of_device_id lpc32xx_nand_match[] = { - { .compatible = "nxp,lpc3220-mlc" }, - { /* sentinel */ }, -}; -MODULE_DEVICE_TABLE(of, lpc32xx_nand_match); - -static struct platform_driver lpc32xx_nand_driver = { - .probe = lpc32xx_nand_probe, - .remove = lpc32xx_nand_remove, - .resume = lpc32xx_nand_resume, - .suspend = lpc32xx_nand_suspend, - .driver = { - .name = DRV_NAME, - .of_match_table = lpc32xx_nand_match, - }, -}; - -module_platform_driver(lpc32xx_nand_driver); - -MODULE_LICENSE("GPL"); -MODULE_AUTHOR("Roland Stigge "); -MODULE_DESCRIPTION("NAND driver for the NXP LPC32XX MLC controller"); diff --git a/drivers/mtd/nand/lpc32xx_slc.c b/drivers/mtd/nand/lpc32xx_slc.c deleted file mode 100644 index 5f7cc6da0a7f..000000000000 --- a/drivers/mtd/nand/lpc32xx_slc.c +++ /dev/null @@ -1,1032 +0,0 @@ -/* - * NXP LPC32XX NAND SLC driver - * - * Authors: - * Kevin Wells - * Roland Stigge - * - * Copyright © 2011 NXP Semiconductors - * Copyright © 2012 Roland Stigge - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation; either version 2 of the License, or - * (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - */ - -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include - -#define LPC32XX_MODNAME "lpc32xx-nand" - -/********************************************************************** -* SLC NAND controller register offsets -**********************************************************************/ - -#define SLC_DATA(x) (x + 0x000) -#define SLC_ADDR(x) (x + 0x004) -#define SLC_CMD(x) (x + 0x008) -#define SLC_STOP(x) (x + 0x00C) -#define SLC_CTRL(x) (x + 0x010) -#define SLC_CFG(x) (x + 0x014) -#define SLC_STAT(x) (x + 0x018) -#define SLC_INT_STAT(x) (x + 0x01C) -#define SLC_IEN(x) (x + 0x020) -#define SLC_ISR(x) (x + 0x024) -#define SLC_ICR(x) (x + 0x028) -#define SLC_TAC(x) (x + 0x02C) -#define SLC_TC(x) (x + 0x030) -#define SLC_ECC(x) (x + 0x034) -#define SLC_DMA_DATA(x) (x + 0x038) - -/********************************************************************** -* slc_ctrl register definitions -**********************************************************************/ -#define SLCCTRL_SW_RESET (1 << 2) /* Reset the NAND controller bit */ -#define SLCCTRL_ECC_CLEAR (1 << 1) /* Reset ECC bit */ -#define SLCCTRL_DMA_START (1 << 0) /* Start DMA channel bit */ - -/********************************************************************** -* slc_cfg register definitions -**********************************************************************/ -#define SLCCFG_CE_LOW (1 << 5) /* Force CE low bit */ -#define SLCCFG_DMA_ECC (1 << 4) /* Enable DMA ECC bit */ -#define SLCCFG_ECC_EN (1 << 3) /* ECC enable bit */ -#define SLCCFG_DMA_BURST (1 << 2) /* DMA burst bit */ -#define SLCCFG_DMA_DIR (1 << 1) /* DMA write(0)/read(1) bit */ -#define SLCCFG_WIDTH (1 << 0) /* External device width, 0=8bit */ - -/********************************************************************** -* slc_stat register definitions -**********************************************************************/ -#define SLCSTAT_DMA_FIFO (1 << 2) /* DMA FIFO has data bit */ -#define SLCSTAT_SLC_FIFO (1 << 1) /* SLC FIFO has data bit */ -#define SLCSTAT_NAND_READY (1 << 0) /* NAND device is ready bit */ - -/********************************************************************** -* slc_int_stat, slc_ien, slc_isr, and slc_icr register definitions -**********************************************************************/ -#define SLCSTAT_INT_TC (1 << 1) /* Transfer count bit */ -#define SLCSTAT_INT_RDY_EN (1 << 0) /* Ready interrupt bit */ - -/********************************************************************** -* slc_tac register definitions -**********************************************************************/ -/* Computation of clock cycles on basis of controller and device clock rates */ -#define SLCTAC_CLOCKS(c, n, s) (min_t(u32, DIV_ROUND_UP(c, n) - 1, 0xF) << s) - -/* Clock setting for RDY write sample wait time in 2*n clocks */ -#define SLCTAC_WDR(n) (((n) & 0xF) << 28) -/* Write pulse width in clock cycles, 1 to 16 clocks */ -#define SLCTAC_WWIDTH(c, n) (SLCTAC_CLOCKS(c, n, 24)) -/* Write hold time of control and data signals, 1 to 16 clocks */ -#define SLCTAC_WHOLD(c, n) (SLCTAC_CLOCKS(c, n, 20)) -/* Write setup time of control and data signals, 1 to 16 clocks */ -#define SLCTAC_WSETUP(c, n) (SLCTAC_CLOCKS(c, n, 16)) -/* Clock setting for RDY read sample wait time in 2*n clocks */ -#define SLCTAC_RDR(n) (((n) & 0xF) << 12) -/* Read pulse width in clock cycles, 1 to 16 clocks */ -#define SLCTAC_RWIDTH(c, n) (SLCTAC_CLOCKS(c, n, 8)) -/* Read hold time of control and data signals, 1 to 16 clocks */ -#define SLCTAC_RHOLD(c, n) (SLCTAC_CLOCKS(c, n, 4)) -/* Read setup time of control and data signals, 1 to 16 clocks */ -#define SLCTAC_RSETUP(c, n) (SLCTAC_CLOCKS(c, n, 0)) - -/********************************************************************** -* slc_ecc register definitions -**********************************************************************/ -/* ECC line party fetch macro */ -#define SLCECC_TO_LINEPAR(n) (((n) >> 6) & 0x7FFF) -#define SLCECC_TO_COLPAR(n) ((n) & 0x3F) - -/* - * DMA requires storage space for the DMA local buffer and the hardware ECC - * storage area. The DMA local buffer is only used if DMA mapping fails - * during runtime. - */ -#define LPC32XX_DMA_DATA_SIZE 4096 -#define LPC32XX_ECC_SAVE_SIZE ((4096 / 256) * 4) - -/* Number of bytes used for ECC stored in NAND per 256 bytes */ -#define LPC32XX_SLC_DEV_ECC_BYTES 3 - -/* - * If the NAND base clock frequency can't be fetched, this frequency will be - * used instead as the base. This rate is used to setup the timing registers - * used for NAND accesses. - */ -#define LPC32XX_DEF_BUS_RATE 133250000 - -/* Milliseconds for DMA FIFO timeout (unlikely anyway) */ -#define LPC32XX_DMA_TIMEOUT 100 - -/* - * NAND ECC Layout for small page NAND devices - * Note: For large and huge page devices, the default layouts are used - */ -static int lpc32xx_ooblayout_ecc(struct mtd_info *mtd, int section, - struct mtd_oob_region *oobregion) -{ - if (section) - return -ERANGE; - - oobregion->length = 6; - oobregion->offset = 10; - - return 0; -} - -static int lpc32xx_ooblayout_free(struct mtd_info *mtd, int section, - struct mtd_oob_region *oobregion) -{ - if (section > 1) - return -ERANGE; - - if (!section) { - oobregion->offset = 0; - oobregion->length = 4; - } else { - oobregion->offset = 6; - oobregion->length = 4; - } - - return 0; -} - -static const struct mtd_ooblayout_ops lpc32xx_ooblayout_ops = { - .ecc = lpc32xx_ooblayout_ecc, - .free = lpc32xx_ooblayout_free, -}; - -static u8 bbt_pattern[] = {'B', 'b', 't', '0' }; -static u8 mirror_pattern[] = {'1', 't', 'b', 'B' }; - -/* - * Small page FLASH BBT descriptors, marker at offset 0, version at offset 6 - * Note: Large page devices used the default layout - */ -static struct nand_bbt_descr bbt_smallpage_main_descr = { - .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE - | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, - .offs = 0, - .len = 4, - .veroffs = 6, - .maxblocks = 4, - .pattern = bbt_pattern -}; - -static struct nand_bbt_descr bbt_smallpage_mirror_descr = { - .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE - | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, - .offs = 0, - .len = 4, - .veroffs = 6, - .maxblocks = 4, - .pattern = mirror_pattern -}; - -/* - * NAND platform configuration structure - */ -struct lpc32xx_nand_cfg_slc { - uint32_t wdr_clks; - uint32_t wwidth; - uint32_t whold; - uint32_t wsetup; - uint32_t rdr_clks; - uint32_t rwidth; - uint32_t rhold; - uint32_t rsetup; - int wp_gpio; - struct mtd_partition *parts; - unsigned num_parts; -}; - -struct lpc32xx_nand_host { - struct nand_chip nand_chip; - struct lpc32xx_slc_platform_data *pdata; - struct clk *clk; - void __iomem *io_base; - struct lpc32xx_nand_cfg_slc *ncfg; - - struct completion comp; - struct dma_chan *dma_chan; - uint32_t dma_buf_len; - struct dma_slave_config dma_slave_config; - struct scatterlist sgl; - - /* - * DMA and CPU addresses of ECC work area and data buffer - */ - uint32_t *ecc_buf; - uint8_t *data_buf; - dma_addr_t io_base_dma; -}; - -static void lpc32xx_nand_setup(struct lpc32xx_nand_host *host) -{ - uint32_t clkrate, tmp; - - /* Reset SLC controller */ - writel(SLCCTRL_SW_RESET, SLC_CTRL(host->io_base)); - udelay(1000); - - /* Basic setup */ - writel(0, SLC_CFG(host->io_base)); - writel(0, SLC_IEN(host->io_base)); - writel((SLCSTAT_INT_TC | SLCSTAT_INT_RDY_EN), - SLC_ICR(host->io_base)); - - /* Get base clock for SLC block */ - clkrate = clk_get_rate(host->clk); - if (clkrate == 0) - clkrate = LPC32XX_DEF_BUS_RATE; - - /* Compute clock setup values */ - tmp = SLCTAC_WDR(host->ncfg->wdr_clks) | - SLCTAC_WWIDTH(clkrate, host->ncfg->wwidth) | - SLCTAC_WHOLD(clkrate, host->ncfg->whold) | - SLCTAC_WSETUP(clkrate, host->ncfg->wsetup) | - SLCTAC_RDR(host->ncfg->rdr_clks) | - SLCTAC_RWIDTH(clkrate, host->ncfg->rwidth) | - SLCTAC_RHOLD(clkrate, host->ncfg->rhold) | - SLCTAC_RSETUP(clkrate, host->ncfg->rsetup); - writel(tmp, SLC_TAC(host->io_base)); -} - -/* - * Hardware specific access to control lines - */ -static void lpc32xx_nand_cmd_ctrl(struct mtd_info *mtd, int cmd, - unsigned int ctrl) -{ - uint32_t tmp; - struct nand_chip *chip = mtd_to_nand(mtd); - struct lpc32xx_nand_host *host = nand_get_controller_data(chip); - - /* Does CE state need to be changed? */ - tmp = readl(SLC_CFG(host->io_base)); - if (ctrl & NAND_NCE) - tmp |= SLCCFG_CE_LOW; - else - tmp &= ~SLCCFG_CE_LOW; - writel(tmp, SLC_CFG(host->io_base)); - - if (cmd != NAND_CMD_NONE) { - if (ctrl & NAND_CLE) - writel(cmd, SLC_CMD(host->io_base)); - else - writel(cmd, SLC_ADDR(host->io_base)); - } -} - -/* - * Read the Device Ready pin - */ -static int lpc32xx_nand_device_ready(struct mtd_info *mtd) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct lpc32xx_nand_host *host = nand_get_controller_data(chip); - int rdy = 0; - - if ((readl(SLC_STAT(host->io_base)) & SLCSTAT_NAND_READY) != 0) - rdy = 1; - - return rdy; -} - -/* - * Enable NAND write protect - */ -static void lpc32xx_wp_enable(struct lpc32xx_nand_host *host) -{ - if (gpio_is_valid(host->ncfg->wp_gpio)) - gpio_set_value(host->ncfg->wp_gpio, 0); -} - -/* - * Disable NAND write protect - */ -static void lpc32xx_wp_disable(struct lpc32xx_nand_host *host) -{ - if (gpio_is_valid(host->ncfg->wp_gpio)) - gpio_set_value(host->ncfg->wp_gpio, 1); -} - -/* - * Prepares SLC for transfers with H/W ECC enabled - */ -static void lpc32xx_nand_ecc_enable(struct mtd_info *mtd, int mode) -{ - /* Hardware ECC is enabled automatically in hardware as needed */ -} - -/* - * Calculates the ECC for the data - */ -static int lpc32xx_nand_ecc_calculate(struct mtd_info *mtd, - const unsigned char *buf, - unsigned char *code) -{ - /* - * ECC is calculated automatically in hardware during syndrome read - * and write operations, so it doesn't need to be calculated here. - */ - return 0; -} - -/* - * Read a single byte from NAND device - */ -static uint8_t lpc32xx_nand_read_byte(struct mtd_info *mtd) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct lpc32xx_nand_host *host = nand_get_controller_data(chip); - - return (uint8_t)readl(SLC_DATA(host->io_base)); -} - -/* - * Simple device read without ECC - */ -static void lpc32xx_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct lpc32xx_nand_host *host = nand_get_controller_data(chip); - - /* Direct device read with no ECC */ - while (len-- > 0) - *buf++ = (uint8_t)readl(SLC_DATA(host->io_base)); -} - -/* - * Simple device write without ECC - */ -static void lpc32xx_nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct lpc32xx_nand_host *host = nand_get_controller_data(chip); - - /* Direct device write with no ECC */ - while (len-- > 0) - writel((uint32_t)*buf++, SLC_DATA(host->io_base)); -} - -/* - * Read the OOB data from the device without ECC using FIFO method - */ -static int lpc32xx_nand_read_oob_syndrome(struct mtd_info *mtd, - struct nand_chip *chip, int page) -{ - return nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize); -} - -/* - * Write the OOB data to the device without ECC using FIFO method - */ -static int lpc32xx_nand_write_oob_syndrome(struct mtd_info *mtd, - struct nand_chip *chip, int page) -{ - return nand_prog_page_op(chip, page, mtd->writesize, chip->oob_poi, - mtd->oobsize); -} - -/* - * Fills in the ECC fields in the OOB buffer with the hardware generated ECC - */ -static void lpc32xx_slc_ecc_copy(uint8_t *spare, const uint32_t *ecc, int count) -{ - int i; - - for (i = 0; i < (count * 3); i += 3) { - uint32_t ce = ecc[i / 3]; - ce = ~(ce << 2) & 0xFFFFFF; - spare[i + 2] = (uint8_t)(ce & 0xFF); - ce >>= 8; - spare[i + 1] = (uint8_t)(ce & 0xFF); - ce >>= 8; - spare[i] = (uint8_t)(ce & 0xFF); - } -} - -static void lpc32xx_dma_complete_func(void *completion) -{ - complete(completion); -} - -static int lpc32xx_xmit_dma(struct mtd_info *mtd, dma_addr_t dma, - void *mem, int len, enum dma_transfer_direction dir) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct lpc32xx_nand_host *host = nand_get_controller_data(chip); - struct dma_async_tx_descriptor *desc; - int flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT; - int res; - - host->dma_slave_config.direction = dir; - host->dma_slave_config.src_addr = dma; - host->dma_slave_config.dst_addr = dma; - host->dma_slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; - host->dma_slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; - host->dma_slave_config.src_maxburst = 4; - host->dma_slave_config.dst_maxburst = 4; - /* DMA controller does flow control: */ - host->dma_slave_config.device_fc = false; - if (dmaengine_slave_config(host->dma_chan, &host->dma_slave_config)) { - dev_err(mtd->dev.parent, "Failed to setup DMA slave\n"); - return -ENXIO; - } - - sg_init_one(&host->sgl, mem, len); - - res = dma_map_sg(host->dma_chan->device->dev, &host->sgl, 1, - DMA_BIDIRECTIONAL); - if (res != 1) { - dev_err(mtd->dev.parent, "Failed to map sg list\n"); - return -ENXIO; - } - desc = dmaengine_prep_slave_sg(host->dma_chan, &host->sgl, 1, dir, - flags); - if (!desc) { - dev_err(mtd->dev.parent, "Failed to prepare slave sg\n"); - goto out1; - } - - init_completion(&host->comp); - desc->callback = lpc32xx_dma_complete_func; - desc->callback_param = &host->comp; - - dmaengine_submit(desc); - dma_async_issue_pending(host->dma_chan); - - wait_for_completion_timeout(&host->comp, msecs_to_jiffies(1000)); - - dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1, - DMA_BIDIRECTIONAL); - - return 0; -out1: - dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1, - DMA_BIDIRECTIONAL); - return -ENXIO; -} - -/* - * DMA read/write transfers with ECC support - */ -static int lpc32xx_xfer(struct mtd_info *mtd, uint8_t *buf, int eccsubpages, - int read) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct lpc32xx_nand_host *host = nand_get_controller_data(chip); - int i, status = 0; - unsigned long timeout; - int res; - enum dma_transfer_direction dir = - read ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV; - uint8_t *dma_buf; - bool dma_mapped; - - if ((void *)buf <= high_memory) { - dma_buf = buf; - dma_mapped = true; - } else { - dma_buf = host->data_buf; - dma_mapped = false; - if (!read) - memcpy(host->data_buf, buf, mtd->writesize); - } - - if (read) { - writel(readl(SLC_CFG(host->io_base)) | - SLCCFG_DMA_DIR | SLCCFG_ECC_EN | SLCCFG_DMA_ECC | - SLCCFG_DMA_BURST, SLC_CFG(host->io_base)); - } else { - writel((readl(SLC_CFG(host->io_base)) | - SLCCFG_ECC_EN | SLCCFG_DMA_ECC | SLCCFG_DMA_BURST) & - ~SLCCFG_DMA_DIR, - SLC_CFG(host->io_base)); - } - - /* Clear initial ECC */ - writel(SLCCTRL_ECC_CLEAR, SLC_CTRL(host->io_base)); - - /* Transfer size is data area only */ - writel(mtd->writesize, SLC_TC(host->io_base)); - - /* Start transfer in the NAND controller */ - writel(readl(SLC_CTRL(host->io_base)) | SLCCTRL_DMA_START, - SLC_CTRL(host->io_base)); - - for (i = 0; i < chip->ecc.steps; i++) { - /* Data */ - res = lpc32xx_xmit_dma(mtd, SLC_DMA_DATA(host->io_base_dma), - dma_buf + i * chip->ecc.size, - mtd->writesize / chip->ecc.steps, dir); - if (res) - return res; - - /* Always _read_ ECC */ - if (i == chip->ecc.steps - 1) - break; - if (!read) /* ECC availability delayed on write */ - udelay(10); - res = lpc32xx_xmit_dma(mtd, SLC_ECC(host->io_base_dma), - &host->ecc_buf[i], 4, DMA_DEV_TO_MEM); - if (res) - return res; - } - - /* - * According to NXP, the DMA can be finished here, but the NAND - * controller may still have buffered data. After porting to using the - * dmaengine DMA driver (amba-pl080), the condition (DMA_FIFO empty) - * appears to be always true, according to tests. Keeping the check for - * safety reasons for now. - */ - if (readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO) { - dev_warn(mtd->dev.parent, "FIFO not empty!\n"); - timeout = jiffies + msecs_to_jiffies(LPC32XX_DMA_TIMEOUT); - while ((readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO) && - time_before(jiffies, timeout)) - cpu_relax(); - if (!time_before(jiffies, timeout)) { - dev_err(mtd->dev.parent, "FIFO held data too long\n"); - status = -EIO; - } - } - - /* Read last calculated ECC value */ - if (!read) - udelay(10); - host->ecc_buf[chip->ecc.steps - 1] = - readl(SLC_ECC(host->io_base)); - - /* Flush DMA */ - dmaengine_terminate_all(host->dma_chan); - - if (readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO || - readl(SLC_TC(host->io_base))) { - /* Something is left in the FIFO, something is wrong */ - dev_err(mtd->dev.parent, "DMA FIFO failure\n"); - status = -EIO; - } - - /* Stop DMA & HW ECC */ - writel(readl(SLC_CTRL(host->io_base)) & ~SLCCTRL_DMA_START, - SLC_CTRL(host->io_base)); - writel(readl(SLC_CFG(host->io_base)) & - ~(SLCCFG_DMA_DIR | SLCCFG_ECC_EN | SLCCFG_DMA_ECC | - SLCCFG_DMA_BURST), SLC_CFG(host->io_base)); - - if (!dma_mapped && read) - memcpy(buf, host->data_buf, mtd->writesize); - - return status; -} - -/* - * Read the data and OOB data from the device, use ECC correction with the - * data, disable ECC for the OOB data - */ -static int lpc32xx_nand_read_page_syndrome(struct mtd_info *mtd, - struct nand_chip *chip, uint8_t *buf, - int oob_required, int page) -{ - struct lpc32xx_nand_host *host = nand_get_controller_data(chip); - struct mtd_oob_region oobregion = { }; - int stat, i, status, error; - uint8_t *oobecc, tmpecc[LPC32XX_ECC_SAVE_SIZE]; - - /* Issue read command */ - nand_read_page_op(chip, page, 0, NULL, 0); - - /* Read data and oob, calculate ECC */ - status = lpc32xx_xfer(mtd, buf, chip->ecc.steps, 1); - - /* Get OOB data */ - chip->read_buf(mtd, chip->oob_poi, mtd->oobsize); - - /* Convert to stored ECC format */ - lpc32xx_slc_ecc_copy(tmpecc, (uint32_t *) host->ecc_buf, chip->ecc.steps); - - /* Pointer to ECC data retrieved from NAND spare area */ - error = mtd_ooblayout_ecc(mtd, 0, &oobregion); - if (error) - return error; - - oobecc = chip->oob_poi + oobregion.offset; - - for (i = 0; i < chip->ecc.steps; i++) { - stat = chip->ecc.correct(mtd, buf, oobecc, - &tmpecc[i * chip->ecc.bytes]); - if (stat < 0) - mtd->ecc_stats.failed++; - else - mtd->ecc_stats.corrected += stat; - - buf += chip->ecc.size; - oobecc += chip->ecc.bytes; - } - - return status; -} - -/* - * Read the data and OOB data from the device, no ECC correction with the - * data or OOB data - */ -static int lpc32xx_nand_read_page_raw_syndrome(struct mtd_info *mtd, - struct nand_chip *chip, - uint8_t *buf, int oob_required, - int page) -{ - /* Issue read command */ - nand_read_page_op(chip, page, 0, NULL, 0); - - /* Raw reads can just use the FIFO interface */ - chip->read_buf(mtd, buf, chip->ecc.size * chip->ecc.steps); - chip->read_buf(mtd, chip->oob_poi, mtd->oobsize); - - return 0; -} - -/* - * Write the data and OOB data to the device, use ECC with the data, - * disable ECC for the OOB data - */ -static int lpc32xx_nand_write_page_syndrome(struct mtd_info *mtd, - struct nand_chip *chip, - const uint8_t *buf, - int oob_required, int page) -{ - struct lpc32xx_nand_host *host = nand_get_controller_data(chip); - struct mtd_oob_region oobregion = { }; - uint8_t *pb; - int error; - - nand_prog_page_begin_op(chip, page, 0, NULL, 0); - - /* Write data, calculate ECC on outbound data */ - error = lpc32xx_xfer(mtd, (uint8_t *)buf, chip->ecc.steps, 0); - if (error) - return error; - - /* - * The calculated ECC needs some manual work done to it before - * committing it to NAND. Process the calculated ECC and place - * the resultant values directly into the OOB buffer. */ - error = mtd_ooblayout_ecc(mtd, 0, &oobregion); - if (error) - return error; - - pb = chip->oob_poi + oobregion.offset; - lpc32xx_slc_ecc_copy(pb, (uint32_t *)host->ecc_buf, chip->ecc.steps); - - /* Write ECC data to device */ - chip->write_buf(mtd, chip->oob_poi, mtd->oobsize); - - return nand_prog_page_end_op(chip); -} - -/* - * Write the data and OOB data to the device, no ECC correction with the - * data or OOB data - */ -static int lpc32xx_nand_write_page_raw_syndrome(struct mtd_info *mtd, - struct nand_chip *chip, - const uint8_t *buf, - int oob_required, int page) -{ - /* Raw writes can just use the FIFO interface */ - nand_prog_page_begin_op(chip, page, 0, buf, - chip->ecc.size * chip->ecc.steps); - chip->write_buf(mtd, chip->oob_poi, mtd->oobsize); - - return nand_prog_page_end_op(chip); -} - -static int lpc32xx_nand_dma_setup(struct lpc32xx_nand_host *host) -{ - struct mtd_info *mtd = nand_to_mtd(&host->nand_chip); - dma_cap_mask_t mask; - - if (!host->pdata || !host->pdata->dma_filter) { - dev_err(mtd->dev.parent, "no DMA platform data\n"); - return -ENOENT; - } - - dma_cap_zero(mask); - dma_cap_set(DMA_SLAVE, mask); - host->dma_chan = dma_request_channel(mask, host->pdata->dma_filter, - "nand-slc"); - if (!host->dma_chan) { - dev_err(mtd->dev.parent, "Failed to request DMA channel\n"); - return -EBUSY; - } - - return 0; -} - -static struct lpc32xx_nand_cfg_slc *lpc32xx_parse_dt(struct device *dev) -{ - struct lpc32xx_nand_cfg_slc *ncfg; - struct device_node *np = dev->of_node; - - ncfg = devm_kzalloc(dev, sizeof(*ncfg), GFP_KERNEL); - if (!ncfg) - return NULL; - - of_property_read_u32(np, "nxp,wdr-clks", &ncfg->wdr_clks); - of_property_read_u32(np, "nxp,wwidth", &ncfg->wwidth); - of_property_read_u32(np, "nxp,whold", &ncfg->whold); - of_property_read_u32(np, "nxp,wsetup", &ncfg->wsetup); - of_property_read_u32(np, "nxp,rdr-clks", &ncfg->rdr_clks); - of_property_read_u32(np, "nxp,rwidth", &ncfg->rwidth); - of_property_read_u32(np, "nxp,rhold", &ncfg->rhold); - of_property_read_u32(np, "nxp,rsetup", &ncfg->rsetup); - - if (!ncfg->wdr_clks || !ncfg->wwidth || !ncfg->whold || - !ncfg->wsetup || !ncfg->rdr_clks || !ncfg->rwidth || - !ncfg->rhold || !ncfg->rsetup) { - dev_err(dev, "chip parameters not specified correctly\n"); - return NULL; - } - - ncfg->wp_gpio = of_get_named_gpio(np, "gpios", 0); - - return ncfg; -} - -/* - * Probe for NAND controller - */ -static int lpc32xx_nand_probe(struct platform_device *pdev) -{ - struct lpc32xx_nand_host *host; - struct mtd_info *mtd; - struct nand_chip *chip; - struct resource *rc; - int res; - - /* Allocate memory for the device structure (and zero it) */ - host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL); - if (!host) - return -ENOMEM; - - rc = platform_get_resource(pdev, IORESOURCE_MEM, 0); - host->io_base = devm_ioremap_resource(&pdev->dev, rc); - if (IS_ERR(host->io_base)) - return PTR_ERR(host->io_base); - - host->io_base_dma = rc->start; - if (pdev->dev.of_node) - host->ncfg = lpc32xx_parse_dt(&pdev->dev); - if (!host->ncfg) { - dev_err(&pdev->dev, - "Missing or bad NAND config from device tree\n"); - return -ENOENT; - } - if (host->ncfg->wp_gpio == -EPROBE_DEFER) - return -EPROBE_DEFER; - if (gpio_is_valid(host->ncfg->wp_gpio) && devm_gpio_request(&pdev->dev, - host->ncfg->wp_gpio, "NAND WP")) { - dev_err(&pdev->dev, "GPIO not available\n"); - return -EBUSY; - } - lpc32xx_wp_disable(host); - - host->pdata = dev_get_platdata(&pdev->dev); - - chip = &host->nand_chip; - mtd = nand_to_mtd(chip); - nand_set_controller_data(chip, host); - nand_set_flash_node(chip, pdev->dev.of_node); - mtd->owner = THIS_MODULE; - mtd->dev.parent = &pdev->dev; - - /* Get NAND clock */ - host->clk = devm_clk_get(&pdev->dev, NULL); - if (IS_ERR(host->clk)) { - dev_err(&pdev->dev, "Clock failure\n"); - res = -ENOENT; - goto err_exit1; - } - res = clk_prepare_enable(host->clk); - if (res) - goto err_exit1; - - /* Set NAND IO addresses and command/ready functions */ - chip->IO_ADDR_R = SLC_DATA(host->io_base); - chip->IO_ADDR_W = SLC_DATA(host->io_base); - chip->cmd_ctrl = lpc32xx_nand_cmd_ctrl; - chip->dev_ready = lpc32xx_nand_device_ready; - chip->chip_delay = 20; /* 20us command delay time */ - - /* Init NAND controller */ - lpc32xx_nand_setup(host); - - platform_set_drvdata(pdev, host); - - /* NAND callbacks for LPC32xx SLC hardware */ - chip->ecc.mode = NAND_ECC_HW_SYNDROME; - chip->read_byte = lpc32xx_nand_read_byte; - chip->read_buf = lpc32xx_nand_read_buf; - chip->write_buf = lpc32xx_nand_write_buf; - chip->ecc.read_page_raw = lpc32xx_nand_read_page_raw_syndrome; - chip->ecc.read_page = lpc32xx_nand_read_page_syndrome; - chip->ecc.write_page_raw = lpc32xx_nand_write_page_raw_syndrome; - chip->ecc.write_page = lpc32xx_nand_write_page_syndrome; - chip->ecc.write_oob = lpc32xx_nand_write_oob_syndrome; - chip->ecc.read_oob = lpc32xx_nand_read_oob_syndrome; - chip->ecc.calculate = lpc32xx_nand_ecc_calculate; - chip->ecc.correct = nand_correct_data; - chip->ecc.strength = 1; - chip->ecc.hwctl = lpc32xx_nand_ecc_enable; - - /* - * Allocate a large enough buffer for a single huge page plus - * extra space for the spare area and ECC storage area - */ - host->dma_buf_len = LPC32XX_DMA_DATA_SIZE + LPC32XX_ECC_SAVE_SIZE; - host->data_buf = devm_kzalloc(&pdev->dev, host->dma_buf_len, - GFP_KERNEL); - if (host->data_buf == NULL) { - res = -ENOMEM; - goto err_exit2; - } - - res = lpc32xx_nand_dma_setup(host); - if (res) { - res = -EIO; - goto err_exit2; - } - - /* Find NAND device */ - res = nand_scan_ident(mtd, 1, NULL); - if (res) - goto err_exit3; - - /* OOB and ECC CPU and DMA work areas */ - host->ecc_buf = (uint32_t *)(host->data_buf + LPC32XX_DMA_DATA_SIZE); - - /* - * Small page FLASH has a unique OOB layout, but large and huge - * page FLASH use the standard layout. Small page FLASH uses a - * custom BBT marker layout. - */ - if (mtd->writesize <= 512) - mtd_set_ooblayout(mtd, &lpc32xx_ooblayout_ops); - - /* These sizes remain the same regardless of page size */ - chip->ecc.size = 256; - chip->ecc.bytes = LPC32XX_SLC_DEV_ECC_BYTES; - chip->ecc.prepad = chip->ecc.postpad = 0; - - /* - * Use a custom BBT marker setup for small page FLASH that - * won't interfere with the ECC layout. Large and huge page - * FLASH use the standard layout. - */ - if ((chip->bbt_options & NAND_BBT_USE_FLASH) && - mtd->writesize <= 512) { - chip->bbt_td = &bbt_smallpage_main_descr; - chip->bbt_md = &bbt_smallpage_mirror_descr; - } - - /* - * Fills out all the uninitialized function pointers with the defaults - */ - res = nand_scan_tail(mtd); - if (res) - goto err_exit3; - - mtd->name = "nxp_lpc3220_slc"; - res = mtd_device_register(mtd, host->ncfg->parts, - host->ncfg->num_parts); - if (!res) - return res; - - nand_release(mtd); - -err_exit3: - dma_release_channel(host->dma_chan); -err_exit2: - clk_disable_unprepare(host->clk); -err_exit1: - lpc32xx_wp_enable(host); - - return res; -} - -/* - * Remove NAND device. - */ -static int lpc32xx_nand_remove(struct platform_device *pdev) -{ - uint32_t tmp; - struct lpc32xx_nand_host *host = platform_get_drvdata(pdev); - struct mtd_info *mtd = nand_to_mtd(&host->nand_chip); - - nand_release(mtd); - dma_release_channel(host->dma_chan); - - /* Force CE high */ - tmp = readl(SLC_CTRL(host->io_base)); - tmp &= ~SLCCFG_CE_LOW; - writel(tmp, SLC_CTRL(host->io_base)); - - clk_disable_unprepare(host->clk); - lpc32xx_wp_enable(host); - - return 0; -} - -#ifdef CONFIG_PM -static int lpc32xx_nand_resume(struct platform_device *pdev) -{ - struct lpc32xx_nand_host *host = platform_get_drvdata(pdev); - int ret; - - /* Re-enable NAND clock */ - ret = clk_prepare_enable(host->clk); - if (ret) - return ret; - - /* Fresh init of NAND controller */ - lpc32xx_nand_setup(host); - - /* Disable write protect */ - lpc32xx_wp_disable(host); - - return 0; -} - -static int lpc32xx_nand_suspend(struct platform_device *pdev, pm_message_t pm) -{ - uint32_t tmp; - struct lpc32xx_nand_host *host = platform_get_drvdata(pdev); - - /* Force CE high */ - tmp = readl(SLC_CTRL(host->io_base)); - tmp &= ~SLCCFG_CE_LOW; - writel(tmp, SLC_CTRL(host->io_base)); - - /* Enable write protect for safety */ - lpc32xx_wp_enable(host); - - /* Disable clock */ - clk_disable_unprepare(host->clk); - - return 0; -} - -#else -#define lpc32xx_nand_resume NULL -#define lpc32xx_nand_suspend NULL -#endif - -static const struct of_device_id lpc32xx_nand_match[] = { - { .compatible = "nxp,lpc3220-slc" }, - { /* sentinel */ }, -}; -MODULE_DEVICE_TABLE(of, lpc32xx_nand_match); - -static struct platform_driver lpc32xx_nand_driver = { - .probe = lpc32xx_nand_probe, - .remove = lpc32xx_nand_remove, - .resume = lpc32xx_nand_resume, - .suspend = lpc32xx_nand_suspend, - .driver = { - .name = LPC32XX_MODNAME, - .of_match_table = lpc32xx_nand_match, - }, -}; - -module_platform_driver(lpc32xx_nand_driver); - -MODULE_LICENSE("GPL"); -MODULE_AUTHOR("Kevin Wells "); -MODULE_AUTHOR("Roland Stigge "); -MODULE_DESCRIPTION("NAND driver for the NXP LPC32XX SLC controller"); diff --git a/drivers/mtd/nand/marvell_nand.c b/drivers/mtd/nand/marvell_nand.c deleted file mode 100644 index cc21f9633edd..000000000000 --- a/drivers/mtd/nand/marvell_nand.c +++ /dev/null @@ -1,2915 +0,0 @@ -// SPDX-License-Identifier: GPL-2.0 -/* - * Marvell NAND flash controller driver - * - * Copyright (C) 2017 Marvell - * Author: Miquel RAYNAL - * - */ - -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include - -#include -#include -#include -#include - -/* Data FIFO granularity, FIFO reads/writes must be a multiple of this length */ -#define FIFO_DEPTH 8 -#define FIFO_REP(x) (x / sizeof(u32)) -#define BCH_SEQ_READS (32 / FIFO_DEPTH) -/* NFC does not support transfers of larger chunks at a time */ -#define MAX_CHUNK_SIZE 2112 -/* NFCv1 cannot read more that 7 bytes of ID */ -#define NFCV1_READID_LEN 7 -/* Polling is done at a pace of POLL_PERIOD us until POLL_TIMEOUT is reached */ -#define POLL_PERIOD 0 -#define POLL_TIMEOUT 100000 -/* Interrupt maximum wait period in ms */ -#define IRQ_TIMEOUT 1000 -/* Latency in clock cycles between SoC pins and NFC logic */ -#define MIN_RD_DEL_CNT 3 -/* Maximum number of contiguous address cycles */ -#define MAX_ADDRESS_CYC_NFCV1 5 -#define MAX_ADDRESS_CYC_NFCV2 7 -/* System control registers/bits to enable the NAND controller on some SoCs */ -#define GENCONF_SOC_DEVICE_MUX 0x208 -#define GENCONF_SOC_DEVICE_MUX_NFC_EN BIT(0) -#define GENCONF_SOC_DEVICE_MUX_ECC_CLK_RST BIT(20) -#define GENCONF_SOC_DEVICE_MUX_ECC_CORE_RST BIT(21) -#define GENCONF_SOC_DEVICE_MUX_NFC_INT_EN BIT(25) -#define GENCONF_CLK_GATING_CTRL 0x220 -#define GENCONF_CLK_GATING_CTRL_ND_GATE BIT(2) -#define GENCONF_ND_CLK_CTRL 0x700 -#define GENCONF_ND_CLK_CTRL_EN BIT(0) - -/* NAND controller data flash control register */ -#define NDCR 0x00 -#define NDCR_ALL_INT GENMASK(11, 0) -#define NDCR_CS1_CMDDM BIT(7) -#define NDCR_CS0_CMDDM BIT(8) -#define NDCR_RDYM BIT(11) -#define NDCR_ND_ARB_EN BIT(12) -#define NDCR_RA_START BIT(15) -#define NDCR_RD_ID_CNT(x) (min_t(unsigned int, x, 0x7) << 16) -#define NDCR_PAGE_SZ(x) (x >= 2048 ? BIT(24) : 0) -#define NDCR_DWIDTH_M BIT(26) -#define NDCR_DWIDTH_C BIT(27) -#define NDCR_ND_RUN BIT(28) -#define NDCR_DMA_EN BIT(29) -#define NDCR_ECC_EN BIT(30) -#define NDCR_SPARE_EN BIT(31) -#define NDCR_GENERIC_FIELDS_MASK (~(NDCR_RA_START | NDCR_PAGE_SZ(2048) | \ - NDCR_DWIDTH_M | NDCR_DWIDTH_C)) - -/* NAND interface timing parameter 0 register */ -#define NDTR0 0x04 -#define NDTR0_TRP(x) ((min_t(unsigned int, x, 0xF) & 0x7) << 0) -#define NDTR0_TRH(x) (min_t(unsigned int, x, 0x7) << 3) -#define NDTR0_ETRP(x) ((min_t(unsigned int, x, 0xF) & 0x8) << 3) -#define NDTR0_SEL_NRE_EDGE BIT(7) -#define NDTR0_TWP(x) (min_t(unsigned int, x, 0x7) << 8) -#define NDTR0_TWH(x) (min_t(unsigned int, x, 0x7) << 11) -#define NDTR0_TCS(x) (min_t(unsigned int, x, 0x7) << 16) -#define NDTR0_TCH(x) (min_t(unsigned int, x, 0x7) << 19) -#define NDTR0_RD_CNT_DEL(x) (min_t(unsigned int, x, 0xF) << 22) -#define NDTR0_SELCNTR BIT(26) -#define NDTR0_TADL(x) (min_t(unsigned int, x, 0x1F) << 27) - -/* NAND interface timing parameter 1 register */ -#define NDTR1 0x0C -#define NDTR1_TAR(x) (min_t(unsigned int, x, 0xF) << 0) -#define NDTR1_TWHR(x) (min_t(unsigned int, x, 0xF) << 4) -#define NDTR1_TRHW(x) (min_t(unsigned int, x / 16, 0x3) << 8) -#define NDTR1_PRESCALE BIT(14) -#define NDTR1_WAIT_MODE BIT(15) -#define NDTR1_TR(x) (min_t(unsigned int, x, 0xFFFF) << 16) - -/* NAND controller status register */ -#define NDSR 0x14 -#define NDSR_WRCMDREQ BIT(0) -#define NDSR_RDDREQ BIT(1) -#define NDSR_WRDREQ BIT(2) -#define NDSR_CORERR BIT(3) -#define NDSR_UNCERR BIT(4) -#define NDSR_CMDD(cs) BIT(8 - cs) -#define NDSR_RDY(rb) BIT(11 + rb) -#define NDSR_ERRCNT(x) ((x >> 16) & 0x1F) - -/* NAND ECC control register */ -#define NDECCCTRL 0x28 -#define NDECCCTRL_BCH_EN BIT(0) - -/* NAND controller data buffer register */ -#define NDDB 0x40 - -/* NAND controller command buffer 0 register */ -#define NDCB0 0x48 -#define NDCB0_CMD1(x) ((x & 0xFF) << 0) -#define NDCB0_CMD2(x) ((x & 0xFF) << 8) -#define NDCB0_ADDR_CYC(x) ((x & 0x7) << 16) -#define NDCB0_ADDR_GET_NUM_CYC(x) (((x) >> 16) & 0x7) -#define NDCB0_DBC BIT(19) -#define NDCB0_CMD_TYPE(x) ((x & 0x7) << 21) -#define NDCB0_CSEL BIT(24) -#define NDCB0_RDY_BYP BIT(27) -#define NDCB0_LEN_OVRD BIT(28) -#define NDCB0_CMD_XTYPE(x) ((x & 0x7) << 29) - -/* NAND controller command buffer 1 register */ -#define NDCB1 0x4C -#define NDCB1_COLS(x) ((x & 0xFFFF) << 0) -#define NDCB1_ADDRS_PAGE(x) (x << 16) - -/* NAND controller command buffer 2 register */ -#define NDCB2 0x50 -#define NDCB2_ADDR5_PAGE(x) (((x >> 16) & 0xFF) << 0) -#define NDCB2_ADDR5_CYC(x) ((x & 0xFF) << 0) - -/* NAND controller command buffer 3 register */ -#define NDCB3 0x54 -#define NDCB3_ADDR6_CYC(x) ((x & 0xFF) << 16) -#define NDCB3_ADDR7_CYC(x) ((x & 0xFF) << 24) - -/* NAND controller command buffer 0 register 'type' and 'xtype' fields */ -#define TYPE_READ 0 -#define TYPE_WRITE 1 -#define TYPE_ERASE 2 -#define TYPE_READ_ID 3 -#define TYPE_STATUS 4 -#define TYPE_RESET 5 -#define TYPE_NAKED_CMD 6 -#define TYPE_NAKED_ADDR 7 -#define TYPE_MASK 7 -#define XTYPE_MONOLITHIC_RW 0 -#define XTYPE_LAST_NAKED_RW 1 -#define XTYPE_FINAL_COMMAND 3 -#define XTYPE_READ 4 -#define XTYPE_WRITE_DISPATCH 4 -#define XTYPE_NAKED_RW 5 -#define XTYPE_COMMAND_DISPATCH 6 -#define XTYPE_MASK 7 - -/** - * Marvell ECC engine works differently than the others, in order to limit the - * size of the IP, hardware engineers chose to set a fixed strength at 16 bits - * per subpage, and depending on a the desired strength needed by the NAND chip, - * a particular layout mixing data/spare/ecc is defined, with a possible last - * chunk smaller that the others. - * - * @writesize: Full page size on which the layout applies - * @chunk: Desired ECC chunk size on which the layout applies - * @strength: Desired ECC strength (per chunk size bytes) on which the - * layout applies - * @nchunks: Total number of chunks - * @full_chunk_cnt: Number of full-sized chunks, which is the number of - * repetitions of the pattern: - * (data_bytes + spare_bytes + ecc_bytes). - * @data_bytes: Number of data bytes per chunk - * @spare_bytes: Number of spare bytes per chunk - * @ecc_bytes: Number of ecc bytes per chunk - * @last_data_bytes: Number of data bytes in the last chunk - * @last_spare_bytes: Number of spare bytes in the last chunk - * @last_ecc_bytes: Number of ecc bytes in the last chunk - */ -struct marvell_hw_ecc_layout { - /* Constraints */ - int writesize; - int chunk; - int strength; - /* Corresponding layout */ - int nchunks; - int full_chunk_cnt; - int data_bytes; - int spare_bytes; - int ecc_bytes; - int last_data_bytes; - int last_spare_bytes; - int last_ecc_bytes; -}; - -#define MARVELL_LAYOUT(ws, dc, ds, nc, fcc, db, sb, eb, ldb, lsb, leb) \ - { \ - .writesize = ws, \ - .chunk = dc, \ - .strength = ds, \ - .nchunks = nc, \ - .full_chunk_cnt = fcc, \ - .data_bytes = db, \ - .spare_bytes = sb, \ - .ecc_bytes = eb, \ - .last_data_bytes = ldb, \ - .last_spare_bytes = lsb, \ - .last_ecc_bytes = leb, \ - } - -/* Layouts explained in AN-379_Marvell_SoC_NFC_ECC */ -static const struct marvell_hw_ecc_layout marvell_nfc_layouts[] = { - MARVELL_LAYOUT( 512, 512, 1, 1, 1, 512, 8, 8, 0, 0, 0), - MARVELL_LAYOUT( 2048, 512, 1, 1, 1, 2048, 40, 24, 0, 0, 0), - MARVELL_LAYOUT( 2048, 512, 4, 1, 1, 2048, 32, 30, 0, 0, 0), - MARVELL_LAYOUT( 4096, 512, 4, 2, 2, 2048, 32, 30, 0, 0, 0), - MARVELL_LAYOUT( 4096, 512, 8, 5, 4, 1024, 0, 30, 0, 64, 30), -}; - -/** - * The Nand Flash Controller has up to 4 CE and 2 RB pins. The CE selection - * is made by a field in NDCB0 register, and in another field in NDCB2 register. - * The datasheet describes the logic with an error: ADDR5 field is once - * declared at the beginning of NDCB2, and another time at its end. Because the - * ADDR5 field of NDCB2 may be used by other bytes, it would be more logical - * to use the last bit of this field instead of the first ones. - * - * @cs: Wanted CE lane. - * @ndcb0_csel: Value of the NDCB0 register with or without the flag - * selecting the wanted CE lane. This is set once when - * the Device Tree is probed. - * @rb: Ready/Busy pin for the flash chip - */ -struct marvell_nand_chip_sel { - unsigned int cs; - u32 ndcb0_csel; - unsigned int rb; -}; - -/** - * NAND chip structure: stores NAND chip device related information - * - * @chip: Base NAND chip structure - * @node: Used to store NAND chips into a list - * @layout NAND layout when using hardware ECC - * @ndcr: Controller register value for this NAND chip - * @ndtr0: Timing registers 0 value for this NAND chip - * @ndtr1: Timing registers 1 value for this NAND chip - * @selected_die: Current active CS - * @nsels: Number of CS lines required by the NAND chip - * @sels: Array of CS lines descriptions - */ -struct marvell_nand_chip { - struct nand_chip chip; - struct list_head node; - const struct marvell_hw_ecc_layout *layout; - u32 ndcr; - u32 ndtr0; - u32 ndtr1; - int addr_cyc; - int selected_die; - unsigned int nsels; - struct marvell_nand_chip_sel sels[0]; -}; - -static inline struct marvell_nand_chip *to_marvell_nand(struct nand_chip *chip) -{ - return container_of(chip, struct marvell_nand_chip, chip); -} - -static inline struct marvell_nand_chip_sel *to_nand_sel(struct marvell_nand_chip - *nand) -{ - return &nand->sels[nand->selected_die]; -} - -/** - * NAND controller capabilities for distinction between compatible strings - * - * @max_cs_nb: Number of Chip Select lines available - * @max_rb_nb: Number of Ready/Busy lines available - * @need_system_controller: Indicates if the SoC needs to have access to the - * system controller (ie. to enable the NAND controller) - * @legacy_of_bindings: Indicates if DT parsing must be done using the old - * fashion way - * @is_nfcv2: NFCv2 has numerous enhancements compared to NFCv1, ie. - * BCH error detection and correction algorithm, - * NDCB3 register has been added - * @use_dma: Use dma for data transfers - */ -struct marvell_nfc_caps { - unsigned int max_cs_nb; - unsigned int max_rb_nb; - bool need_system_controller; - bool legacy_of_bindings; - bool is_nfcv2; - bool use_dma; -}; - -/** - * NAND controller structure: stores Marvell NAND controller information - * - * @controller: Base controller structure - * @dev: Parent device (used to print error messages) - * @regs: NAND controller registers - * @ecc_clk: ECC block clock, two times the NAND controller clock - * @complete: Completion object to wait for NAND controller events - * @assigned_cs: Bitmask describing already assigned CS lines - * @chips: List containing all the NAND chips attached to - * this NAND controller - * @caps: NAND controller capabilities for each compatible string - * @dma_chan: DMA channel (NFCv1 only) - * @dma_buf: 32-bit aligned buffer for DMA transfers (NFCv1 only) - */ -struct marvell_nfc { - struct nand_hw_control controller; - struct device *dev; - void __iomem *regs; - struct clk *ecc_clk; - struct completion complete; - unsigned long assigned_cs; - struct list_head chips; - struct nand_chip *selected_chip; - const struct marvell_nfc_caps *caps; - - /* DMA (NFCv1 only) */ - bool use_dma; - struct dma_chan *dma_chan; - u8 *dma_buf; -}; - -static inline struct marvell_nfc *to_marvell_nfc(struct nand_hw_control *ctrl) -{ - return container_of(ctrl, struct marvell_nfc, controller); -} - -/** - * NAND controller timings expressed in NAND Controller clock cycles - * - * @tRP: ND_nRE pulse width - * @tRH: ND_nRE high duration - * @tWP: ND_nWE pulse time - * @tWH: ND_nWE high duration - * @tCS: Enable signal setup time - * @tCH: Enable signal hold time - * @tADL: Address to write data delay - * @tAR: ND_ALE low to ND_nRE low delay - * @tWHR: ND_nWE high to ND_nRE low for status read - * @tRHW: ND_nRE high duration, read to write delay - * @tR: ND_nWE high to ND_nRE low for read - */ -struct marvell_nfc_timings { - /* NDTR0 fields */ - unsigned int tRP; - unsigned int tRH; - unsigned int tWP; - unsigned int tWH; - unsigned int tCS; - unsigned int tCH; - unsigned int tADL; - /* NDTR1 fields */ - unsigned int tAR; - unsigned int tWHR; - unsigned int tRHW; - unsigned int tR; -}; - -/** - * Derives a duration in numbers of clock cycles. - * - * @ps: Duration in pico-seconds - * @period_ns: Clock period in nano-seconds - * - * Convert the duration in nano-seconds, then divide by the period and - * return the number of clock periods. - */ -#define TO_CYCLES(ps, period_ns) (DIV_ROUND_UP(ps / 1000, period_ns)) -#define TO_CYCLES64(ps, period_ns) (DIV_ROUND_UP_ULL(div_u64(ps, 1000), \ - period_ns)) - -/** - * NAND driver structure filled during the parsing of the ->exec_op() subop - * subset of instructions. - * - * @ndcb: Array of values written to NDCBx registers - * @cle_ale_delay_ns: Optional delay after the last CMD or ADDR cycle - * @rdy_timeout_ms: Timeout for waits on Ready/Busy pin - * @rdy_delay_ns: Optional delay after waiting for the RB pin - * @data_delay_ns: Optional delay after the data xfer - * @data_instr_idx: Index of the data instruction in the subop - * @data_instr: Pointer to the data instruction in the subop - */ -struct marvell_nfc_op { - u32 ndcb[4]; - unsigned int cle_ale_delay_ns; - unsigned int rdy_timeout_ms; - unsigned int rdy_delay_ns; - unsigned int data_delay_ns; - unsigned int data_instr_idx; - const struct nand_op_instr *data_instr; -}; - -/* - * Internal helper to conditionnally apply a delay (from the above structure, - * most of the time). - */ -static void cond_delay(unsigned int ns) -{ - if (!ns) - return; - - if (ns < 10000) - ndelay(ns); - else - udelay(DIV_ROUND_UP(ns, 1000)); -} - -/* - * The controller has many flags that could generate interrupts, most of them - * are disabled and polling is used. For the very slow signals, using interrupts - * may relax the CPU charge. - */ -static void marvell_nfc_disable_int(struct marvell_nfc *nfc, u32 int_mask) -{ - u32 reg; - - /* Writing 1 disables the interrupt */ - reg = readl_relaxed(nfc->regs + NDCR); - writel_relaxed(reg | int_mask, nfc->regs + NDCR); -} - -static void marvell_nfc_enable_int(struct marvell_nfc *nfc, u32 int_mask) -{ - u32 reg; - - /* Writing 0 enables the interrupt */ - reg = readl_relaxed(nfc->regs + NDCR); - writel_relaxed(reg & ~int_mask, nfc->regs + NDCR); -} - -static void marvell_nfc_clear_int(struct marvell_nfc *nfc, u32 int_mask) -{ - writel_relaxed(int_mask, nfc->regs + NDSR); -} - -static void marvell_nfc_force_byte_access(struct nand_chip *chip, - bool force_8bit) -{ - struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); - u32 ndcr; - - /* - * Callers of this function do not verify if the NAND is using a 16-bit - * an 8-bit bus for normal operations, so we need to take care of that - * here by leaving the configuration unchanged if the NAND does not have - * the NAND_BUSWIDTH_16 flag set. - */ - if (!(chip->options & NAND_BUSWIDTH_16)) - return; - - ndcr = readl_relaxed(nfc->regs + NDCR); - - if (force_8bit) - ndcr &= ~(NDCR_DWIDTH_M | NDCR_DWIDTH_C); - else - ndcr |= NDCR_DWIDTH_M | NDCR_DWIDTH_C; - - writel_relaxed(ndcr, nfc->regs + NDCR); -} - -static int marvell_nfc_wait_ndrun(struct nand_chip *chip) -{ - struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); - u32 val; - int ret; - - /* - * The command is being processed, wait for the ND_RUN bit to be - * cleared by the NFC. If not, we must clear it by hand. - */ - ret = readl_relaxed_poll_timeout(nfc->regs + NDCR, val, - (val & NDCR_ND_RUN) == 0, - POLL_PERIOD, POLL_TIMEOUT); - if (ret) { - dev_err(nfc->dev, "Timeout on NAND controller run mode\n"); - writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN, - nfc->regs + NDCR); - return ret; - } - - return 0; -} - -/* - * Any time a command has to be sent to the controller, the following sequence - * has to be followed: - * - call marvell_nfc_prepare_cmd() - * -> activate the ND_RUN bit that will kind of 'start a job' - * -> wait the signal indicating the NFC is waiting for a command - * - send the command (cmd and address cycles) - * - enventually send or receive the data - * - call marvell_nfc_end_cmd() with the corresponding flag - * -> wait the flag to be triggered or cancel the job with a timeout - * - * The following helpers are here to factorize the code a bit so that - * specialized functions responsible for executing the actual NAND - * operations do not have to replicate the same code blocks. - */ -static int marvell_nfc_prepare_cmd(struct nand_chip *chip) -{ - struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); - u32 ndcr, val; - int ret; - - /* Poll ND_RUN and clear NDSR before issuing any command */ - ret = marvell_nfc_wait_ndrun(chip); - if (ret) { - dev_err(nfc->dev, "Last operation did not succeed\n"); - return ret; - } - - ndcr = readl_relaxed(nfc->regs + NDCR); - writel_relaxed(readl(nfc->regs + NDSR), nfc->regs + NDSR); - - /* Assert ND_RUN bit and wait the NFC to be ready */ - writel_relaxed(ndcr | NDCR_ND_RUN, nfc->regs + NDCR); - ret = readl_relaxed_poll_timeout(nfc->regs + NDSR, val, - val & NDSR_WRCMDREQ, - POLL_PERIOD, POLL_TIMEOUT); - if (ret) { - dev_err(nfc->dev, "Timeout on WRCMDRE\n"); - return -ETIMEDOUT; - } - - /* Command may be written, clear WRCMDREQ status bit */ - writel_relaxed(NDSR_WRCMDREQ, nfc->regs + NDSR); - - return 0; -} - -static void marvell_nfc_send_cmd(struct nand_chip *chip, - struct marvell_nfc_op *nfc_op) -{ - struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); - struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); - - dev_dbg(nfc->dev, "\nNDCR: 0x%08x\n" - "NDCB0: 0x%08x\nNDCB1: 0x%08x\nNDCB2: 0x%08x\nNDCB3: 0x%08x\n", - (u32)readl_relaxed(nfc->regs + NDCR), nfc_op->ndcb[0], - nfc_op->ndcb[1], nfc_op->ndcb[2], nfc_op->ndcb[3]); - - writel_relaxed(to_nand_sel(marvell_nand)->ndcb0_csel | nfc_op->ndcb[0], - nfc->regs + NDCB0); - writel_relaxed(nfc_op->ndcb[1], nfc->regs + NDCB0); - writel(nfc_op->ndcb[2], nfc->regs + NDCB0); - - /* - * Write NDCB0 four times only if LEN_OVRD is set or if ADDR6 or ADDR7 - * fields are used (only available on NFCv2). - */ - if (nfc_op->ndcb[0] & NDCB0_LEN_OVRD || - NDCB0_ADDR_GET_NUM_CYC(nfc_op->ndcb[0]) >= 6) { - if (!WARN_ON_ONCE(!nfc->caps->is_nfcv2)) - writel(nfc_op->ndcb[3], nfc->regs + NDCB0); - } -} - -static int marvell_nfc_end_cmd(struct nand_chip *chip, int flag, - const char *label) -{ - struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); - u32 val; - int ret; - - ret = readl_relaxed_poll_timeout(nfc->regs + NDSR, val, - val & flag, - POLL_PERIOD, POLL_TIMEOUT); - - if (ret) { - dev_err(nfc->dev, "Timeout on %s (NDSR: 0x%08x)\n", - label, val); - if (nfc->dma_chan) - dmaengine_terminate_all(nfc->dma_chan); - return ret; - } - - /* - * DMA function uses this helper to poll on CMDD bits without wanting - * them to be cleared. - */ - if (nfc->use_dma && (readl_relaxed(nfc->regs + NDCR) & NDCR_DMA_EN)) - return 0; - - writel_relaxed(flag, nfc->regs + NDSR); - - return 0; -} - -static int marvell_nfc_wait_cmdd(struct nand_chip *chip) -{ - struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); - int cs_flag = NDSR_CMDD(to_nand_sel(marvell_nand)->ndcb0_csel); - - return marvell_nfc_end_cmd(chip, cs_flag, "CMDD"); -} - -static int marvell_nfc_wait_op(struct nand_chip *chip, unsigned int timeout_ms) -{ - struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); - int ret; - - /* Timeout is expressed in ms */ - if (!timeout_ms) - timeout_ms = IRQ_TIMEOUT; - - init_completion(&nfc->complete); - - marvell_nfc_enable_int(nfc, NDCR_RDYM); - ret = wait_for_completion_timeout(&nfc->complete, - msecs_to_jiffies(timeout_ms)); - marvell_nfc_disable_int(nfc, NDCR_RDYM); - marvell_nfc_clear_int(nfc, NDSR_RDY(0) | NDSR_RDY(1)); - if (!ret) { - dev_err(nfc->dev, "Timeout waiting for RB signal\n"); - return -ETIMEDOUT; - } - - return 0; -} - -static void marvell_nfc_select_chip(struct mtd_info *mtd, int die_nr) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); - struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); - u32 ndcr_generic; - - if (chip == nfc->selected_chip && die_nr == marvell_nand->selected_die) - return; - - if (die_nr < 0 || die_nr >= marvell_nand->nsels) { - nfc->selected_chip = NULL; - marvell_nand->selected_die = -1; - return; - } - - /* - * Do not change the timing registers when using the DT property - * marvell,nand-keep-config; in that case ->ndtr0 and ->ndtr1 from the - * marvell_nand structure are supposedly empty. - */ - writel_relaxed(marvell_nand->ndtr0, nfc->regs + NDTR0); - writel_relaxed(marvell_nand->ndtr1, nfc->regs + NDTR1); - - /* - * Reset the NDCR register to a clean state for this particular chip, - * also clear ND_RUN bit. - */ - ndcr_generic = readl_relaxed(nfc->regs + NDCR) & - NDCR_GENERIC_FIELDS_MASK & ~NDCR_ND_RUN; - writel_relaxed(ndcr_generic | marvell_nand->ndcr, nfc->regs + NDCR); - - /* Also reset the interrupt status register */ - marvell_nfc_clear_int(nfc, NDCR_ALL_INT); - - nfc->selected_chip = chip; - marvell_nand->selected_die = die_nr; -} - -static irqreturn_t marvell_nfc_isr(int irq, void *dev_id) -{ - struct marvell_nfc *nfc = dev_id; - u32 st = readl_relaxed(nfc->regs + NDSR); - u32 ien = (~readl_relaxed(nfc->regs + NDCR)) & NDCR_ALL_INT; - - /* - * RDY interrupt mask is one bit in NDCR while there are two status - * bit in NDSR (RDY[cs0/cs2] and RDY[cs1/cs3]). - */ - if (st & NDSR_RDY(1)) - st |= NDSR_RDY(0); - - if (!(st & ien)) - return IRQ_NONE; - - marvell_nfc_disable_int(nfc, st & NDCR_ALL_INT); - - if (!(st & (NDSR_RDDREQ | NDSR_WRDREQ | NDSR_WRCMDREQ))) - complete(&nfc->complete); - - return IRQ_HANDLED; -} - -/* HW ECC related functions */ -static void marvell_nfc_enable_hw_ecc(struct nand_chip *chip) -{ - struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); - u32 ndcr = readl_relaxed(nfc->regs + NDCR); - - if (!(ndcr & NDCR_ECC_EN)) { - writel_relaxed(ndcr | NDCR_ECC_EN, nfc->regs + NDCR); - - /* - * When enabling BCH, set threshold to 0 to always know the - * number of corrected bitflips. - */ - if (chip->ecc.algo == NAND_ECC_BCH) - writel_relaxed(NDECCCTRL_BCH_EN, nfc->regs + NDECCCTRL); - } -} - -static void marvell_nfc_disable_hw_ecc(struct nand_chip *chip) -{ - struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); - u32 ndcr = readl_relaxed(nfc->regs + NDCR); - - if (ndcr & NDCR_ECC_EN) { - writel_relaxed(ndcr & ~NDCR_ECC_EN, nfc->regs + NDCR); - if (chip->ecc.algo == NAND_ECC_BCH) - writel_relaxed(0, nfc->regs + NDECCCTRL); - } -} - -/* DMA related helpers */ -static void marvell_nfc_enable_dma(struct marvell_nfc *nfc) -{ - u32 reg; - - reg = readl_relaxed(nfc->regs + NDCR); - writel_relaxed(reg | NDCR_DMA_EN, nfc->regs + NDCR); -} - -static void marvell_nfc_disable_dma(struct marvell_nfc *nfc) -{ - u32 reg; - - reg = readl_relaxed(nfc->regs + NDCR); - writel_relaxed(reg & ~NDCR_DMA_EN, nfc->regs + NDCR); -} - -/* Read/write PIO/DMA accessors */ -static int marvell_nfc_xfer_data_dma(struct marvell_nfc *nfc, - enum dma_data_direction direction, - unsigned int len) -{ - unsigned int dma_len = min_t(int, ALIGN(len, 32), MAX_CHUNK_SIZE); - struct dma_async_tx_descriptor *tx; - struct scatterlist sg; - dma_cookie_t cookie; - int ret; - - marvell_nfc_enable_dma(nfc); - /* Prepare the DMA transfer */ - sg_init_one(&sg, nfc->dma_buf, dma_len); - dma_map_sg(nfc->dma_chan->device->dev, &sg, 1, direction); - tx = dmaengine_prep_slave_sg(nfc->dma_chan, &sg, 1, - direction == DMA_FROM_DEVICE ? - DMA_DEV_TO_MEM : DMA_MEM_TO_DEV, - DMA_PREP_INTERRUPT); - if (!tx) { - dev_err(nfc->dev, "Could not prepare DMA S/G list\n"); - return -ENXIO; - } - - /* Do the task and wait for it to finish */ - cookie = dmaengine_submit(tx); - ret = dma_submit_error(cookie); - if (ret) - return -EIO; - - dma_async_issue_pending(nfc->dma_chan); - ret = marvell_nfc_wait_cmdd(nfc->selected_chip); - dma_unmap_sg(nfc->dma_chan->device->dev, &sg, 1, direction); - marvell_nfc_disable_dma(nfc); - if (ret) { - dev_err(nfc->dev, "Timeout waiting for DMA (status: %d)\n", - dmaengine_tx_status(nfc->dma_chan, cookie, NULL)); - dmaengine_terminate_all(nfc->dma_chan); - return -ETIMEDOUT; - } - - return 0; -} - -static int marvell_nfc_xfer_data_in_pio(struct marvell_nfc *nfc, u8 *in, - unsigned int len) -{ - unsigned int last_len = len % FIFO_DEPTH; - unsigned int last_full_offset = round_down(len, FIFO_DEPTH); - int i; - - for (i = 0; i < last_full_offset; i += FIFO_DEPTH) - ioread32_rep(nfc->regs + NDDB, in + i, FIFO_REP(FIFO_DEPTH)); - - if (last_len) { - u8 tmp_buf[FIFO_DEPTH]; - - ioread32_rep(nfc->regs + NDDB, tmp_buf, FIFO_REP(FIFO_DEPTH)); - memcpy(in + last_full_offset, tmp_buf, last_len); - } - - return 0; -} - -static int marvell_nfc_xfer_data_out_pio(struct marvell_nfc *nfc, const u8 *out, - unsigned int len) -{ - unsigned int last_len = len % FIFO_DEPTH; - unsigned int last_full_offset = round_down(len, FIFO_DEPTH); - int i; - - for (i = 0; i < last_full_offset; i += FIFO_DEPTH) - iowrite32_rep(nfc->regs + NDDB, out + i, FIFO_REP(FIFO_DEPTH)); - - if (last_len) { - u8 tmp_buf[FIFO_DEPTH]; - - memcpy(tmp_buf, out + last_full_offset, last_len); - iowrite32_rep(nfc->regs + NDDB, tmp_buf, FIFO_REP(FIFO_DEPTH)); - } - - return 0; -} - -static void marvell_nfc_check_empty_chunk(struct nand_chip *chip, - u8 *data, int data_len, - u8 *spare, int spare_len, - u8 *ecc, int ecc_len, - unsigned int *max_bitflips) -{ - struct mtd_info *mtd = nand_to_mtd(chip); - int bf; - - /* - * Blank pages (all 0xFF) that have not been written may be recognized - * as bad if bitflips occur, so whenever an uncorrectable error occurs, - * check if the entire page (with ECC bytes) is actually blank or not. - */ - if (!data) - data_len = 0; - if (!spare) - spare_len = 0; - if (!ecc) - ecc_len = 0; - - bf = nand_check_erased_ecc_chunk(data, data_len, ecc, ecc_len, - spare, spare_len, chip->ecc.strength); - if (bf < 0) { - mtd->ecc_stats.failed++; - return; - } - - /* Update the stats and max_bitflips */ - mtd->ecc_stats.corrected += bf; - *max_bitflips = max_t(unsigned int, *max_bitflips, bf); -} - -/* - * Check a chunk is correct or not according to hardware ECC engine. - * mtd->ecc_stats.corrected is updated, as well as max_bitflips, however - * mtd->ecc_stats.failure is not, the function will instead return a non-zero - * value indicating that a check on the emptyness of the subpage must be - * performed before declaring the subpage corrupted. - */ -static int marvell_nfc_hw_ecc_correct(struct nand_chip *chip, - unsigned int *max_bitflips) -{ - struct mtd_info *mtd = nand_to_mtd(chip); - struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); - int bf = 0; - u32 ndsr; - - ndsr = readl_relaxed(nfc->regs + NDSR); - - /* Check uncorrectable error flag */ - if (ndsr & NDSR_UNCERR) { - writel_relaxed(ndsr, nfc->regs + NDSR); - - /* - * Do not increment ->ecc_stats.failed now, instead, return a - * non-zero value to indicate that this chunk was apparently - * bad, and it should be check to see if it empty or not. If - * the chunk (with ECC bytes) is not declared empty, the calling - * function must increment the failure count. - */ - return -EBADMSG; - } - - /* Check correctable error flag */ - if (ndsr & NDSR_CORERR) { - writel_relaxed(ndsr, nfc->regs + NDSR); - - if (chip->ecc.algo == NAND_ECC_BCH) - bf = NDSR_ERRCNT(ndsr); - else - bf = 1; - } - - /* Update the stats and max_bitflips */ - mtd->ecc_stats.corrected += bf; - *max_bitflips = max_t(unsigned int, *max_bitflips, bf); - - return 0; -} - -/* Hamming read helpers */ -static int marvell_nfc_hw_ecc_hmg_do_read_page(struct nand_chip *chip, - u8 *data_buf, u8 *oob_buf, - bool raw, int page) -{ - struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); - struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); - const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; - struct marvell_nfc_op nfc_op = { - .ndcb[0] = NDCB0_CMD_TYPE(TYPE_READ) | - NDCB0_ADDR_CYC(marvell_nand->addr_cyc) | - NDCB0_DBC | - NDCB0_CMD1(NAND_CMD_READ0) | - NDCB0_CMD2(NAND_CMD_READSTART), - .ndcb[1] = NDCB1_ADDRS_PAGE(page), - .ndcb[2] = NDCB2_ADDR5_PAGE(page), - }; - unsigned int oob_bytes = lt->spare_bytes + (raw ? lt->ecc_bytes : 0); - int ret; - - /* NFCv2 needs more information about the operation being executed */ - if (nfc->caps->is_nfcv2) - nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW); - - ret = marvell_nfc_prepare_cmd(chip); - if (ret) - return ret; - - marvell_nfc_send_cmd(chip, &nfc_op); - ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ, - "RDDREQ while draining FIFO (data/oob)"); - if (ret) - return ret; - - /* - * Read the page then the OOB area. Unlike what is shown in current - * documentation, spare bytes are protected by the ECC engine, and must - * be at the beginning of the OOB area or running this driver on legacy - * systems will prevent the discovery of the BBM/BBT. - */ - if (nfc->use_dma) { - marvell_nfc_xfer_data_dma(nfc, DMA_FROM_DEVICE, - lt->data_bytes + oob_bytes); - memcpy(data_buf, nfc->dma_buf, lt->data_bytes); - memcpy(oob_buf, nfc->dma_buf + lt->data_bytes, oob_bytes); - } else { - marvell_nfc_xfer_data_in_pio(nfc, data_buf, lt->data_bytes); - marvell_nfc_xfer_data_in_pio(nfc, oob_buf, oob_bytes); - } - - ret = marvell_nfc_wait_cmdd(chip); - - return ret; -} - -static int marvell_nfc_hw_ecc_hmg_read_page_raw(struct mtd_info *mtd, - struct nand_chip *chip, u8 *buf, - int oob_required, int page) -{ - return marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi, - true, page); -} - -static int marvell_nfc_hw_ecc_hmg_read_page(struct mtd_info *mtd, - struct nand_chip *chip, - u8 *buf, int oob_required, - int page) -{ - const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; - unsigned int full_sz = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes; - int max_bitflips = 0, ret; - u8 *raw_buf; - - marvell_nfc_enable_hw_ecc(chip); - marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi, false, - page); - ret = marvell_nfc_hw_ecc_correct(chip, &max_bitflips); - marvell_nfc_disable_hw_ecc(chip); - - if (!ret) - return max_bitflips; - - /* - * When ECC failures are detected, check if the full page has been - * written or not. Ignore the failure if it is actually empty. - */ - raw_buf = kmalloc(full_sz, GFP_KERNEL); - if (!raw_buf) - return -ENOMEM; - - marvell_nfc_hw_ecc_hmg_do_read_page(chip, raw_buf, raw_buf + - lt->data_bytes, true, page); - marvell_nfc_check_empty_chunk(chip, raw_buf, full_sz, NULL, 0, NULL, 0, - &max_bitflips); - kfree(raw_buf); - - return max_bitflips; -} - -/* - * Spare area in Hamming layouts is not protected by the ECC engine (even if - * it appears before the ECC bytes when reading), the ->read_oob_raw() function - * also stands for ->read_oob(). - */ -static int marvell_nfc_hw_ecc_hmg_read_oob_raw(struct mtd_info *mtd, - struct nand_chip *chip, int page) -{ - /* Invalidate page cache */ - chip->pagebuf = -1; - - return marvell_nfc_hw_ecc_hmg_do_read_page(chip, chip->data_buf, - chip->oob_poi, true, page); -} - -/* Hamming write helpers */ -static int marvell_nfc_hw_ecc_hmg_do_write_page(struct nand_chip *chip, - const u8 *data_buf, - const u8 *oob_buf, bool raw, - int page) -{ - struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); - struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); - const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; - struct marvell_nfc_op nfc_op = { - .ndcb[0] = NDCB0_CMD_TYPE(TYPE_WRITE) | - NDCB0_ADDR_CYC(marvell_nand->addr_cyc) | - NDCB0_CMD1(NAND_CMD_SEQIN) | - NDCB0_CMD2(NAND_CMD_PAGEPROG) | - NDCB0_DBC, - .ndcb[1] = NDCB1_ADDRS_PAGE(page), - .ndcb[2] = NDCB2_ADDR5_PAGE(page), - }; - unsigned int oob_bytes = lt->spare_bytes + (raw ? lt->ecc_bytes : 0); - int ret; - - /* NFCv2 needs more information about the operation being executed */ - if (nfc->caps->is_nfcv2) - nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW); - - ret = marvell_nfc_prepare_cmd(chip); - if (ret) - return ret; - - marvell_nfc_send_cmd(chip, &nfc_op); - ret = marvell_nfc_end_cmd(chip, NDSR_WRDREQ, - "WRDREQ while loading FIFO (data)"); - if (ret) - return ret; - - /* Write the page then the OOB area */ - if (nfc->use_dma) { - memcpy(nfc->dma_buf, data_buf, lt->data_bytes); - memcpy(nfc->dma_buf + lt->data_bytes, oob_buf, oob_bytes); - marvell_nfc_xfer_data_dma(nfc, DMA_TO_DEVICE, lt->data_bytes + - lt->ecc_bytes + lt->spare_bytes); - } else { - marvell_nfc_xfer_data_out_pio(nfc, data_buf, lt->data_bytes); - marvell_nfc_xfer_data_out_pio(nfc, oob_buf, oob_bytes); - } - - ret = marvell_nfc_wait_cmdd(chip); - if (ret) - return ret; - - ret = marvell_nfc_wait_op(chip, - chip->data_interface.timings.sdr.tPROG_max); - return ret; -} - -static int marvell_nfc_hw_ecc_hmg_write_page_raw(struct mtd_info *mtd, - struct nand_chip *chip, - const u8 *buf, - int oob_required, int page) -{ - return marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi, - true, page); -} - -static int marvell_nfc_hw_ecc_hmg_write_page(struct mtd_info *mtd, - struct nand_chip *chip, - const u8 *buf, - int oob_required, int page) -{ - int ret; - - marvell_nfc_enable_hw_ecc(chip); - ret = marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi, - false, page); - marvell_nfc_disable_hw_ecc(chip); - - return ret; -} - -/* - * Spare area in Hamming layouts is not protected by the ECC engine (even if - * it appears before the ECC bytes when reading), the ->write_oob_raw() function - * also stands for ->write_oob(). - */ -static int marvell_nfc_hw_ecc_hmg_write_oob_raw(struct mtd_info *mtd, - struct nand_chip *chip, - int page) -{ - /* Invalidate page cache */ - chip->pagebuf = -1; - - memset(chip->data_buf, 0xFF, mtd->writesize); - - return marvell_nfc_hw_ecc_hmg_do_write_page(chip, chip->data_buf, - chip->oob_poi, true, page); -} - -/* BCH read helpers */ -static int marvell_nfc_hw_ecc_bch_read_page_raw(struct mtd_info *mtd, - struct nand_chip *chip, u8 *buf, - int oob_required, int page) -{ - const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; - u8 *oob = chip->oob_poi; - int chunk_size = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes; - int ecc_offset = (lt->full_chunk_cnt * lt->spare_bytes) + - lt->last_spare_bytes; - int data_len = lt->data_bytes; - int spare_len = lt->spare_bytes; - int ecc_len = lt->ecc_bytes; - int chunk; - - if (oob_required) - memset(chip->oob_poi, 0xFF, mtd->oobsize); - - nand_read_page_op(chip, page, 0, NULL, 0); - - for (chunk = 0; chunk < lt->nchunks; chunk++) { - /* Update last chunk length */ - if (chunk >= lt->full_chunk_cnt) { - data_len = lt->last_data_bytes; - spare_len = lt->last_spare_bytes; - ecc_len = lt->last_ecc_bytes; - } - - /* Read data bytes*/ - nand_change_read_column_op(chip, chunk * chunk_size, - buf + (lt->data_bytes * chunk), - data_len, false); - - /* Read spare bytes */ - nand_read_data_op(chip, oob + (lt->spare_bytes * chunk), - spare_len, false); - - /* Read ECC bytes */ - nand_read_data_op(chip, oob + ecc_offset + - (ALIGN(lt->ecc_bytes, 32) * chunk), - ecc_len, false); - } - - return 0; -} - -static void marvell_nfc_hw_ecc_bch_read_chunk(struct nand_chip *chip, int chunk, - u8 *data, unsigned int data_len, - u8 *spare, unsigned int spare_len, - int page) -{ - struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); - struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); - const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; - int i, ret; - struct marvell_nfc_op nfc_op = { - .ndcb[0] = NDCB0_CMD_TYPE(TYPE_READ) | - NDCB0_ADDR_CYC(marvell_nand->addr_cyc) | - NDCB0_LEN_OVRD, - .ndcb[1] = NDCB1_ADDRS_PAGE(page), - .ndcb[2] = NDCB2_ADDR5_PAGE(page), - .ndcb[3] = data_len + spare_len, - }; - - ret = marvell_nfc_prepare_cmd(chip); - if (ret) - return; - - if (chunk == 0) - nfc_op.ndcb[0] |= NDCB0_DBC | - NDCB0_CMD1(NAND_CMD_READ0) | - NDCB0_CMD2(NAND_CMD_READSTART); - - /* - * Trigger the naked read operation only on the last chunk. - * Otherwise, use monolithic read. - */ - if (lt->nchunks == 1 || (chunk < lt->nchunks - 1)) - nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW); - else - nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW); - - marvell_nfc_send_cmd(chip, &nfc_op); - - /* - * According to the datasheet, when reading from NDDB - * with BCH enabled, after each 32 bytes reads, we - * have to make sure that the NDSR.RDDREQ bit is set. - * - * Drain the FIFO, 8 32-bit reads at a time, and skip - * the polling on the last read. - * - * Length is a multiple of 32 bytes, hence it is a multiple of 8 too. - */ - for (i = 0; i < data_len; i += FIFO_DEPTH * BCH_SEQ_READS) { - marvell_nfc_end_cmd(chip, NDSR_RDDREQ, - "RDDREQ while draining FIFO (data)"); - marvell_nfc_xfer_data_in_pio(nfc, data, - FIFO_DEPTH * BCH_SEQ_READS); - data += FIFO_DEPTH * BCH_SEQ_READS; - } - - for (i = 0; i < spare_len; i += FIFO_DEPTH * BCH_SEQ_READS) { - marvell_nfc_end_cmd(chip, NDSR_RDDREQ, - "RDDREQ while draining FIFO (OOB)"); - marvell_nfc_xfer_data_in_pio(nfc, spare, - FIFO_DEPTH * BCH_SEQ_READS); - spare += FIFO_DEPTH * BCH_SEQ_READS; - } -} - -static int marvell_nfc_hw_ecc_bch_read_page(struct mtd_info *mtd, - struct nand_chip *chip, - u8 *buf, int oob_required, - int page) -{ - const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; - int data_len = lt->data_bytes, spare_len = lt->spare_bytes, ecc_len; - u8 *data = buf, *spare = chip->oob_poi, *ecc; - int max_bitflips = 0; - u32 failure_mask = 0; - int chunk, ecc_offset_in_page, ret; - - /* - * With BCH, OOB is not fully used (and thus not read entirely), not - * expected bytes could show up at the end of the OOB buffer if not - * explicitly erased. - */ - if (oob_required) - memset(chip->oob_poi, 0xFF, mtd->oobsize); - - marvell_nfc_enable_hw_ecc(chip); - - for (chunk = 0; chunk < lt->nchunks; chunk++) { - /* Update length for the last chunk */ - if (chunk >= lt->full_chunk_cnt) { - data_len = lt->last_data_bytes; - spare_len = lt->last_spare_bytes; - } - - /* Read the chunk and detect number of bitflips */ - marvell_nfc_hw_ecc_bch_read_chunk(chip, chunk, data, data_len, - spare, spare_len, page); - ret = marvell_nfc_hw_ecc_correct(chip, &max_bitflips); - if (ret) - failure_mask |= BIT(chunk); - - data += data_len; - spare += spare_len; - } - - marvell_nfc_disable_hw_ecc(chip); - - if (!failure_mask) - return max_bitflips; - - /* - * Please note that dumping the ECC bytes during a normal read with OOB - * area would add a significant overhead as ECC bytes are "consumed" by - * the controller in normal mode and must be re-read in raw mode. To - * avoid dropping the performances, we prefer not to include them. The - * user should re-read the page in raw mode if ECC bytes are required. - * - * However, for any subpage read error reported by ->correct(), the ECC - * bytes must be read in raw mode and the full subpage must be checked - * to see if it is entirely empty of if there was an actual error. - */ - for (chunk = 0; chunk < lt->nchunks; chunk++) { - /* No failure reported for this chunk, move to the next one */ - if (!(failure_mask & BIT(chunk))) - continue; - - /* Derive ECC bytes positions (in page/buffer) and length */ - ecc = chip->oob_poi + - (lt->full_chunk_cnt * lt->spare_bytes) + - lt->last_spare_bytes + - (chunk * ALIGN(lt->ecc_bytes, 32)); - ecc_offset_in_page = - (chunk * (lt->data_bytes + lt->spare_bytes + - lt->ecc_bytes)) + - (chunk < lt->full_chunk_cnt ? - lt->data_bytes + lt->spare_bytes : - lt->last_data_bytes + lt->last_spare_bytes); - ecc_len = chunk < lt->full_chunk_cnt ? - lt->ecc_bytes : lt->last_ecc_bytes; - - /* Do the actual raw read of the ECC bytes */ - nand_change_read_column_op(chip, ecc_offset_in_page, - ecc, ecc_len, false); - - /* Derive data/spare bytes positions (in buffer) and length */ - data = buf + (chunk * lt->data_bytes); - data_len = chunk < lt->full_chunk_cnt ? - lt->data_bytes : lt->last_data_bytes; - spare = chip->oob_poi + (chunk * (lt->spare_bytes + - lt->ecc_bytes)); - spare_len = chunk < lt->full_chunk_cnt ? - lt->spare_bytes : lt->last_spare_bytes; - - /* Check the entire chunk (data + spare + ecc) for emptyness */ - marvell_nfc_check_empty_chunk(chip, data, data_len, spare, - spare_len, ecc, ecc_len, - &max_bitflips); - } - - return max_bitflips; -} - -static int marvell_nfc_hw_ecc_bch_read_oob_raw(struct mtd_info *mtd, - struct nand_chip *chip, int page) -{ - /* Invalidate page cache */ - chip->pagebuf = -1; - - return chip->ecc.read_page_raw(mtd, chip, chip->data_buf, true, page); -} - -static int marvell_nfc_hw_ecc_bch_read_oob(struct mtd_info *mtd, - struct nand_chip *chip, int page) -{ - /* Invalidate page cache */ - chip->pagebuf = -1; - - return chip->ecc.read_page(mtd, chip, chip->data_buf, true, page); -} - -/* BCH write helpers */ -static int marvell_nfc_hw_ecc_bch_write_page_raw(struct mtd_info *mtd, - struct nand_chip *chip, - const u8 *buf, - int oob_required, int page) -{ - const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; - int full_chunk_size = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes; - int data_len = lt->data_bytes; - int spare_len = lt->spare_bytes; - int ecc_len = lt->ecc_bytes; - int spare_offset = 0; - int ecc_offset = (lt->full_chunk_cnt * lt->spare_bytes) + - lt->last_spare_bytes; - int chunk; - - nand_prog_page_begin_op(chip, page, 0, NULL, 0); - - for (chunk = 0; chunk < lt->nchunks; chunk++) { - if (chunk >= lt->full_chunk_cnt) { - data_len = lt->last_data_bytes; - spare_len = lt->last_spare_bytes; - ecc_len = lt->last_ecc_bytes; - } - - /* Point to the column of the next chunk */ - nand_change_write_column_op(chip, chunk * full_chunk_size, - NULL, 0, false); - - /* Write the data */ - nand_write_data_op(chip, buf + (chunk * lt->data_bytes), - data_len, false); - - if (!oob_required) - continue; - - /* Write the spare bytes */ - if (spare_len) - nand_write_data_op(chip, chip->oob_poi + spare_offset, - spare_len, false); - - /* Write the ECC bytes */ - if (ecc_len) - nand_write_data_op(chip, chip->oob_poi + ecc_offset, - ecc_len, false); - - spare_offset += spare_len; - ecc_offset += ALIGN(ecc_len, 32); - } - - return nand_prog_page_end_op(chip); -} - -static int -marvell_nfc_hw_ecc_bch_write_chunk(struct nand_chip *chip, int chunk, - const u8 *data, unsigned int data_len, - const u8 *spare, unsigned int spare_len, - int page) -{ - struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); - struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); - const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; - int ret; - struct marvell_nfc_op nfc_op = { - .ndcb[0] = NDCB0_CMD_TYPE(TYPE_WRITE) | NDCB0_LEN_OVRD, - .ndcb[3] = data_len + spare_len, - }; - - /* - * First operation dispatches the CMD_SEQIN command, issue the address - * cycles and asks for the first chunk of data. - * All operations in the middle (if any) will issue a naked write and - * also ask for data. - * Last operation (if any) asks for the last chunk of data through a - * last naked write. - */ - if (chunk == 0) { - nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_WRITE_DISPATCH) | - NDCB0_ADDR_CYC(marvell_nand->addr_cyc) | - NDCB0_CMD1(NAND_CMD_SEQIN); - nfc_op.ndcb[1] |= NDCB1_ADDRS_PAGE(page); - nfc_op.ndcb[2] |= NDCB2_ADDR5_PAGE(page); - } else if (chunk < lt->nchunks - 1) { - nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_NAKED_RW); - } else { - nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW); - } - - /* Always dispatch the PAGEPROG command on the last chunk */ - if (chunk == lt->nchunks - 1) - nfc_op.ndcb[0] |= NDCB0_CMD2(NAND_CMD_PAGEPROG) | NDCB0_DBC; - - ret = marvell_nfc_prepare_cmd(chip); - if (ret) - return ret; - - marvell_nfc_send_cmd(chip, &nfc_op); - ret = marvell_nfc_end_cmd(chip, NDSR_WRDREQ, - "WRDREQ while loading FIFO (data)"); - if (ret) - return ret; - - /* Transfer the contents */ - iowrite32_rep(nfc->regs + NDDB, data, FIFO_REP(data_len)); - iowrite32_rep(nfc->regs + NDDB, spare, FIFO_REP(spare_len)); - - return 0; -} - -static int marvell_nfc_hw_ecc_bch_write_page(struct mtd_info *mtd, - struct nand_chip *chip, - const u8 *buf, - int oob_required, int page) -{ - const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; - const u8 *data = buf; - const u8 *spare = chip->oob_poi; - int data_len = lt->data_bytes; - int spare_len = lt->spare_bytes; - int chunk, ret; - - /* Spare data will be written anyway, so clear it to avoid garbage */ - if (!oob_required) - memset(chip->oob_poi, 0xFF, mtd->oobsize); - - marvell_nfc_enable_hw_ecc(chip); - - for (chunk = 0; chunk < lt->nchunks; chunk++) { - if (chunk >= lt->full_chunk_cnt) { - data_len = lt->last_data_bytes; - spare_len = lt->last_spare_bytes; - } - - marvell_nfc_hw_ecc_bch_write_chunk(chip, chunk, data, data_len, - spare, spare_len, page); - data += data_len; - spare += spare_len; - - /* - * Waiting only for CMDD or PAGED is not enough, ECC are - * partially written. No flag is set once the operation is - * really finished but the ND_RUN bit is cleared, so wait for it - * before stepping into the next command. - */ - marvell_nfc_wait_ndrun(chip); - } - - ret = marvell_nfc_wait_op(chip, - chip->data_interface.timings.sdr.tPROG_max); - - marvell_nfc_disable_hw_ecc(chip); - - if (ret) - return ret; - - return 0; -} - -static int marvell_nfc_hw_ecc_bch_write_oob_raw(struct mtd_info *mtd, - struct nand_chip *chip, - int page) -{ - /* Invalidate page cache */ - chip->pagebuf = -1; - - memset(chip->data_buf, 0xFF, mtd->writesize); - - return chip->ecc.write_page_raw(mtd, chip, chip->data_buf, true, page); -} - -static int marvell_nfc_hw_ecc_bch_write_oob(struct mtd_info *mtd, - struct nand_chip *chip, int page) -{ - /* Invalidate page cache */ - chip->pagebuf = -1; - - memset(chip->data_buf, 0xFF, mtd->writesize); - - return chip->ecc.write_page(mtd, chip, chip->data_buf, true, page); -} - -/* NAND framework ->exec_op() hooks and related helpers */ -static void marvell_nfc_parse_instructions(struct nand_chip *chip, - const struct nand_subop *subop, - struct marvell_nfc_op *nfc_op) -{ - const struct nand_op_instr *instr = NULL; - struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); - bool first_cmd = true; - unsigned int op_id; - int i; - - /* Reset the input structure as most of its fields will be OR'ed */ - memset(nfc_op, 0, sizeof(struct marvell_nfc_op)); - - for (op_id = 0; op_id < subop->ninstrs; op_id++) { - unsigned int offset, naddrs; - const u8 *addrs; - int len = nand_subop_get_data_len(subop, op_id); - - instr = &subop->instrs[op_id]; - - switch (instr->type) { - case NAND_OP_CMD_INSTR: - if (first_cmd) - nfc_op->ndcb[0] |= - NDCB0_CMD1(instr->ctx.cmd.opcode); - else - nfc_op->ndcb[0] |= - NDCB0_CMD2(instr->ctx.cmd.opcode) | - NDCB0_DBC; - - nfc_op->cle_ale_delay_ns = instr->delay_ns; - first_cmd = false; - break; - - case NAND_OP_ADDR_INSTR: - offset = nand_subop_get_addr_start_off(subop, op_id); - naddrs = nand_subop_get_num_addr_cyc(subop, op_id); - addrs = &instr->ctx.addr.addrs[offset]; - - nfc_op->ndcb[0] |= NDCB0_ADDR_CYC(naddrs); - - for (i = 0; i < min_t(unsigned int, 4, naddrs); i++) - nfc_op->ndcb[1] |= addrs[i] << (8 * i); - - if (naddrs >= 5) - nfc_op->ndcb[2] |= NDCB2_ADDR5_CYC(addrs[4]); - if (naddrs >= 6) - nfc_op->ndcb[3] |= NDCB3_ADDR6_CYC(addrs[5]); - if (naddrs == 7) - nfc_op->ndcb[3] |= NDCB3_ADDR7_CYC(addrs[6]); - - nfc_op->cle_ale_delay_ns = instr->delay_ns; - break; - - case NAND_OP_DATA_IN_INSTR: - nfc_op->data_instr = instr; - nfc_op->data_instr_idx = op_id; - nfc_op->ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ); - if (nfc->caps->is_nfcv2) { - nfc_op->ndcb[0] |= - NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW) | - NDCB0_LEN_OVRD; - nfc_op->ndcb[3] |= round_up(len, FIFO_DEPTH); - } - nfc_op->data_delay_ns = instr->delay_ns; - break; - - case NAND_OP_DATA_OUT_INSTR: - nfc_op->data_instr = instr; - nfc_op->data_instr_idx = op_id; - nfc_op->ndcb[0] |= NDCB0_CMD_TYPE(TYPE_WRITE); - if (nfc->caps->is_nfcv2) { - nfc_op->ndcb[0] |= - NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW) | - NDCB0_LEN_OVRD; - nfc_op->ndcb[3] |= round_up(len, FIFO_DEPTH); - } - nfc_op->data_delay_ns = instr->delay_ns; - break; - - case NAND_OP_WAITRDY_INSTR: - nfc_op->rdy_timeout_ms = instr->ctx.waitrdy.timeout_ms; - nfc_op->rdy_delay_ns = instr->delay_ns; - break; - } - } -} - -static int marvell_nfc_xfer_data_pio(struct nand_chip *chip, - const struct nand_subop *subop, - struct marvell_nfc_op *nfc_op) -{ - struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); - const struct nand_op_instr *instr = nfc_op->data_instr; - unsigned int op_id = nfc_op->data_instr_idx; - unsigned int len = nand_subop_get_data_len(subop, op_id); - unsigned int offset = nand_subop_get_data_start_off(subop, op_id); - bool reading = (instr->type == NAND_OP_DATA_IN_INSTR); - int ret; - - if (instr->ctx.data.force_8bit) - marvell_nfc_force_byte_access(chip, true); - - if (reading) { - u8 *in = instr->ctx.data.buf.in + offset; - - ret = marvell_nfc_xfer_data_in_pio(nfc, in, len); - } else { - const u8 *out = instr->ctx.data.buf.out + offset; - - ret = marvell_nfc_xfer_data_out_pio(nfc, out, len); - } - - if (instr->ctx.data.force_8bit) - marvell_nfc_force_byte_access(chip, false); - - return ret; -} - -static int marvell_nfc_monolithic_access_exec(struct nand_chip *chip, - const struct nand_subop *subop) -{ - struct marvell_nfc_op nfc_op; - bool reading; - int ret; - - marvell_nfc_parse_instructions(chip, subop, &nfc_op); - reading = (nfc_op.data_instr->type == NAND_OP_DATA_IN_INSTR); - - ret = marvell_nfc_prepare_cmd(chip); - if (ret) - return ret; - - marvell_nfc_send_cmd(chip, &nfc_op); - ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ | NDSR_WRDREQ, - "RDDREQ/WRDREQ while draining raw data"); - if (ret) - return ret; - - cond_delay(nfc_op.cle_ale_delay_ns); - - if (reading) { - if (nfc_op.rdy_timeout_ms) { - ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); - if (ret) - return ret; - } - - cond_delay(nfc_op.rdy_delay_ns); - } - - marvell_nfc_xfer_data_pio(chip, subop, &nfc_op); - ret = marvell_nfc_wait_cmdd(chip); - if (ret) - return ret; - - cond_delay(nfc_op.data_delay_ns); - - if (!reading) { - if (nfc_op.rdy_timeout_ms) { - ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); - if (ret) - return ret; - } - - cond_delay(nfc_op.rdy_delay_ns); - } - - /* - * NDCR ND_RUN bit should be cleared automatically at the end of each - * operation but experience shows that the behavior is buggy when it - * comes to writes (with LEN_OVRD). Clear it by hand in this case. - */ - if (!reading) { - struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); - - writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN, - nfc->regs + NDCR); - } - - return 0; -} - -static int marvell_nfc_naked_access_exec(struct nand_chip *chip, - const struct nand_subop *subop) -{ - struct marvell_nfc_op nfc_op; - int ret; - - marvell_nfc_parse_instructions(chip, subop, &nfc_op); - - /* - * Naked access are different in that they need to be flagged as naked - * by the controller. Reset the controller registers fields that inform - * on the type and refill them according to the ongoing operation. - */ - nfc_op.ndcb[0] &= ~(NDCB0_CMD_TYPE(TYPE_MASK) | - NDCB0_CMD_XTYPE(XTYPE_MASK)); - switch (subop->instrs[0].type) { - case NAND_OP_CMD_INSTR: - nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_NAKED_CMD); - break; - case NAND_OP_ADDR_INSTR: - nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_NAKED_ADDR); - break; - case NAND_OP_DATA_IN_INSTR: - nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ) | - NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW); - break; - case NAND_OP_DATA_OUT_INSTR: - nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_WRITE) | - NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW); - break; - default: - /* This should never happen */ - break; - } - - ret = marvell_nfc_prepare_cmd(chip); - if (ret) - return ret; - - marvell_nfc_send_cmd(chip, &nfc_op); - - if (!nfc_op.data_instr) { - ret = marvell_nfc_wait_cmdd(chip); - cond_delay(nfc_op.cle_ale_delay_ns); - return ret; - } - - ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ | NDSR_WRDREQ, - "RDDREQ/WRDREQ while draining raw data"); - if (ret) - return ret; - - marvell_nfc_xfer_data_pio(chip, subop, &nfc_op); - ret = marvell_nfc_wait_cmdd(chip); - if (ret) - return ret; - - /* - * NDCR ND_RUN bit should be cleared automatically at the end of each - * operation but experience shows that the behavior is buggy when it - * comes to writes (with LEN_OVRD). Clear it by hand in this case. - */ - if (subop->instrs[0].type == NAND_OP_DATA_OUT_INSTR) { - struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); - - writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN, - nfc->regs + NDCR); - } - - return 0; -} - -static int marvell_nfc_naked_waitrdy_exec(struct nand_chip *chip, - const struct nand_subop *subop) -{ - struct marvell_nfc_op nfc_op; - int ret; - - marvell_nfc_parse_instructions(chip, subop, &nfc_op); - - ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); - cond_delay(nfc_op.rdy_delay_ns); - - return ret; -} - -static int marvell_nfc_read_id_type_exec(struct nand_chip *chip, - const struct nand_subop *subop) -{ - struct marvell_nfc_op nfc_op; - int ret; - - marvell_nfc_parse_instructions(chip, subop, &nfc_op); - nfc_op.ndcb[0] &= ~NDCB0_CMD_TYPE(TYPE_READ); - nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ_ID); - - ret = marvell_nfc_prepare_cmd(chip); - if (ret) - return ret; - - marvell_nfc_send_cmd(chip, &nfc_op); - ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ, - "RDDREQ while reading ID"); - if (ret) - return ret; - - cond_delay(nfc_op.cle_ale_delay_ns); - - if (nfc_op.rdy_timeout_ms) { - ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); - if (ret) - return ret; - } - - cond_delay(nfc_op.rdy_delay_ns); - - marvell_nfc_xfer_data_pio(chip, subop, &nfc_op); - ret = marvell_nfc_wait_cmdd(chip); - if (ret) - return ret; - - cond_delay(nfc_op.data_delay_ns); - - return 0; -} - -static int marvell_nfc_read_status_exec(struct nand_chip *chip, - const struct nand_subop *subop) -{ - struct marvell_nfc_op nfc_op; - int ret; - - marvell_nfc_parse_instructions(chip, subop, &nfc_op); - nfc_op.ndcb[0] &= ~NDCB0_CMD_TYPE(TYPE_READ); - nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_STATUS); - - ret = marvell_nfc_prepare_cmd(chip); - if (ret) - return ret; - - marvell_nfc_send_cmd(chip, &nfc_op); - ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ, - "RDDREQ while reading status"); - if (ret) - return ret; - - cond_delay(nfc_op.cle_ale_delay_ns); - - if (nfc_op.rdy_timeout_ms) { - ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); - if (ret) - return ret; - } - - cond_delay(nfc_op.rdy_delay_ns); - - marvell_nfc_xfer_data_pio(chip, subop, &nfc_op); - ret = marvell_nfc_wait_cmdd(chip); - if (ret) - return ret; - - cond_delay(nfc_op.data_delay_ns); - - return 0; -} - -static int marvell_nfc_reset_cmd_type_exec(struct nand_chip *chip, - const struct nand_subop *subop) -{ - struct marvell_nfc_op nfc_op; - int ret; - - marvell_nfc_parse_instructions(chip, subop, &nfc_op); - nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_RESET); - - ret = marvell_nfc_prepare_cmd(chip); - if (ret) - return ret; - - marvell_nfc_send_cmd(chip, &nfc_op); - ret = marvell_nfc_wait_cmdd(chip); - if (ret) - return ret; - - cond_delay(nfc_op.cle_ale_delay_ns); - - ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); - if (ret) - return ret; - - cond_delay(nfc_op.rdy_delay_ns); - - return 0; -} - -static int marvell_nfc_erase_cmd_type_exec(struct nand_chip *chip, - const struct nand_subop *subop) -{ - struct marvell_nfc_op nfc_op; - int ret; - - marvell_nfc_parse_instructions(chip, subop, &nfc_op); - nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_ERASE); - - ret = marvell_nfc_prepare_cmd(chip); - if (ret) - return ret; - - marvell_nfc_send_cmd(chip, &nfc_op); - ret = marvell_nfc_wait_cmdd(chip); - if (ret) - return ret; - - cond_delay(nfc_op.cle_ale_delay_ns); - - ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); - if (ret) - return ret; - - cond_delay(nfc_op.rdy_delay_ns); - - return 0; -} - -static const struct nand_op_parser marvell_nfcv2_op_parser = NAND_OP_PARSER( - /* Monolithic reads/writes */ - NAND_OP_PARSER_PATTERN( - marvell_nfc_monolithic_access_exec, - NAND_OP_PARSER_PAT_CMD_ELEM(false), - NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC_NFCV2), - NAND_OP_PARSER_PAT_CMD_ELEM(true), - NAND_OP_PARSER_PAT_WAITRDY_ELEM(true), - NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_CHUNK_SIZE)), - NAND_OP_PARSER_PATTERN( - marvell_nfc_monolithic_access_exec, - NAND_OP_PARSER_PAT_CMD_ELEM(false), - NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV2), - NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_CHUNK_SIZE), - NAND_OP_PARSER_PAT_CMD_ELEM(true), - NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)), - /* Naked commands */ - NAND_OP_PARSER_PATTERN( - marvell_nfc_naked_access_exec, - NAND_OP_PARSER_PAT_CMD_ELEM(false)), - NAND_OP_PARSER_PATTERN( - marvell_nfc_naked_access_exec, - NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV2)), - NAND_OP_PARSER_PATTERN( - marvell_nfc_naked_access_exec, - NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_CHUNK_SIZE)), - NAND_OP_PARSER_PATTERN( - marvell_nfc_naked_access_exec, - NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_CHUNK_SIZE)), - NAND_OP_PARSER_PATTERN( - marvell_nfc_naked_waitrdy_exec, - NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), - ); - -static const struct nand_op_parser marvell_nfcv1_op_parser = NAND_OP_PARSER( - /* Naked commands not supported, use a function for each pattern */ - NAND_OP_PARSER_PATTERN( - marvell_nfc_read_id_type_exec, - NAND_OP_PARSER_PAT_CMD_ELEM(false), - NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV1), - NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 8)), - NAND_OP_PARSER_PATTERN( - marvell_nfc_erase_cmd_type_exec, - NAND_OP_PARSER_PAT_CMD_ELEM(false), - NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV1), - NAND_OP_PARSER_PAT_CMD_ELEM(false), - NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), - NAND_OP_PARSER_PATTERN( - marvell_nfc_read_status_exec, - NAND_OP_PARSER_PAT_CMD_ELEM(false), - NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 1)), - NAND_OP_PARSER_PATTERN( - marvell_nfc_reset_cmd_type_exec, - NAND_OP_PARSER_PAT_CMD_ELEM(false), - NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), - NAND_OP_PARSER_PATTERN( - marvell_nfc_naked_waitrdy_exec, - NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), - ); - -static int marvell_nfc_exec_op(struct nand_chip *chip, - const struct nand_operation *op, - bool check_only) -{ - struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); - - if (nfc->caps->is_nfcv2) - return nand_op_parser_exec_op(chip, &marvell_nfcv2_op_parser, - op, check_only); - else - return nand_op_parser_exec_op(chip, &marvell_nfcv1_op_parser, - op, check_only); -} - -/* - * Layouts were broken in old pxa3xx_nand driver, these are supposed to be - * usable. - */ -static int marvell_nand_ooblayout_ecc(struct mtd_info *mtd, int section, - struct mtd_oob_region *oobregion) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; - - if (section) - return -ERANGE; - - oobregion->length = (lt->full_chunk_cnt * lt->ecc_bytes) + - lt->last_ecc_bytes; - oobregion->offset = mtd->oobsize - oobregion->length; - - return 0; -} - -static int marvell_nand_ooblayout_free(struct mtd_info *mtd, int section, - struct mtd_oob_region *oobregion) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; - - if (section) - return -ERANGE; - - /* - * Bootrom looks in bytes 0 & 5 for bad blocks for the - * 4KB page / 4bit BCH combination. - */ - if (mtd->writesize == SZ_4K && lt->data_bytes == SZ_2K) - oobregion->offset = 6; - else - oobregion->offset = 2; - - oobregion->length = (lt->full_chunk_cnt * lt->spare_bytes) + - lt->last_spare_bytes - oobregion->offset; - - return 0; -} - -static const struct mtd_ooblayout_ops marvell_nand_ooblayout_ops = { - .ecc = marvell_nand_ooblayout_ecc, - .free = marvell_nand_ooblayout_free, -}; - -static int marvell_nand_hw_ecc_ctrl_init(struct mtd_info *mtd, - struct nand_ecc_ctrl *ecc) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); - const struct marvell_hw_ecc_layout *l; - int i; - - if (!nfc->caps->is_nfcv2 && - (mtd->writesize + mtd->oobsize > MAX_CHUNK_SIZE)) { - dev_err(nfc->dev, - "NFCv1: writesize (%d) cannot be bigger than a chunk (%d)\n", - mtd->writesize, MAX_CHUNK_SIZE - mtd->oobsize); - return -ENOTSUPP; - } - - to_marvell_nand(chip)->layout = NULL; - for (i = 0; i < ARRAY_SIZE(marvell_nfc_layouts); i++) { - l = &marvell_nfc_layouts[i]; - if (mtd->writesize == l->writesize && - ecc->size == l->chunk && ecc->strength == l->strength) { - to_marvell_nand(chip)->layout = l; - break; - } - } - - if (!to_marvell_nand(chip)->layout || - (!nfc->caps->is_nfcv2 && ecc->strength > 1)) { - dev_err(nfc->dev, - "ECC strength %d at page size %d is not supported\n", - ecc->strength, mtd->writesize); - return -ENOTSUPP; - } - - mtd_set_ooblayout(mtd, &marvell_nand_ooblayout_ops); - ecc->steps = l->nchunks; - ecc->size = l->data_bytes; - - if (ecc->strength == 1) { - chip->ecc.algo = NAND_ECC_HAMMING; - ecc->read_page_raw = marvell_nfc_hw_ecc_hmg_read_page_raw; - ecc->read_page = marvell_nfc_hw_ecc_hmg_read_page; - ecc->read_oob_raw = marvell_nfc_hw_ecc_hmg_read_oob_raw; - ecc->read_oob = ecc->read_oob_raw; - ecc->write_page_raw = marvell_nfc_hw_ecc_hmg_write_page_raw; - ecc->write_page = marvell_nfc_hw_ecc_hmg_write_page; - ecc->write_oob_raw = marvell_nfc_hw_ecc_hmg_write_oob_raw; - ecc->write_oob = ecc->write_oob_raw; - } else { - chip->ecc.algo = NAND_ECC_BCH; - ecc->strength = 16; - ecc->read_page_raw = marvell_nfc_hw_ecc_bch_read_page_raw; - ecc->read_page = marvell_nfc_hw_ecc_bch_read_page; - ecc->read_oob_raw = marvell_nfc_hw_ecc_bch_read_oob_raw; - ecc->read_oob = marvell_nfc_hw_ecc_bch_read_oob; - ecc->write_page_raw = marvell_nfc_hw_ecc_bch_write_page_raw; - ecc->write_page = marvell_nfc_hw_ecc_bch_write_page; - ecc->write_oob_raw = marvell_nfc_hw_ecc_bch_write_oob_raw; - ecc->write_oob = marvell_nfc_hw_ecc_bch_write_oob; - } - - return 0; -} - -static int marvell_nand_ecc_init(struct mtd_info *mtd, - struct nand_ecc_ctrl *ecc) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); - int ret; - - if (ecc->mode != NAND_ECC_NONE && (!ecc->size || !ecc->strength)) { - if (chip->ecc_step_ds && chip->ecc_strength_ds) { - ecc->size = chip->ecc_step_ds; - ecc->strength = chip->ecc_strength_ds; - } else { - dev_info(nfc->dev, - "No minimum ECC strength, using 1b/512B\n"); - ecc->size = 512; - ecc->strength = 1; - } - } - - switch (ecc->mode) { - case NAND_ECC_HW: - ret = marvell_nand_hw_ecc_ctrl_init(mtd, ecc); - if (ret) - return ret; - break; - case NAND_ECC_NONE: - case NAND_ECC_SOFT: - if (!nfc->caps->is_nfcv2 && mtd->writesize != SZ_512 && - mtd->writesize != SZ_2K) { - dev_err(nfc->dev, "NFCv1 cannot write %d bytes pages\n", - mtd->writesize); - return -EINVAL; - } - break; - default: - return -EINVAL; - } - - return 0; -} - -static u8 bbt_pattern[] = {'M', 'V', 'B', 'b', 't', '0' }; -static u8 bbt_mirror_pattern[] = {'1', 't', 'b', 'B', 'V', 'M' }; - -static struct nand_bbt_descr bbt_main_descr = { - .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | - NAND_BBT_2BIT | NAND_BBT_VERSION, - .offs = 8, - .len = 6, - .veroffs = 14, - .maxblocks = 8, /* Last 8 blocks in each chip */ - .pattern = bbt_pattern -}; - -static struct nand_bbt_descr bbt_mirror_descr = { - .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | - NAND_BBT_2BIT | NAND_BBT_VERSION, - .offs = 8, - .len = 6, - .veroffs = 14, - .maxblocks = 8, /* Last 8 blocks in each chip */ - .pattern = bbt_mirror_pattern -}; - -static int marvell_nfc_setup_data_interface(struct mtd_info *mtd, int chipnr, - const struct nand_data_interface - *conf) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); - struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); - unsigned int period_ns = 1000000000 / clk_get_rate(nfc->ecc_clk) * 2; - const struct nand_sdr_timings *sdr; - struct marvell_nfc_timings nfc_tmg; - int read_delay; - - sdr = nand_get_sdr_timings(conf); - if (IS_ERR(sdr)) - return PTR_ERR(sdr); - - /* - * SDR timings are given in pico-seconds while NFC timings must be - * expressed in NAND controller clock cycles, which is half of the - * frequency of the accessible ECC clock retrieved by clk_get_rate(). - * This is not written anywhere in the datasheet but was observed - * with an oscilloscope. - * - * NFC datasheet gives equations from which thoses calculations - * are derived, they tend to be slightly more restrictives than the - * given core timings and may improve the overall speed. - */ - nfc_tmg.tRP = TO_CYCLES(DIV_ROUND_UP(sdr->tRC_min, 2), period_ns) - 1; - nfc_tmg.tRH = nfc_tmg.tRP; - nfc_tmg.tWP = TO_CYCLES(DIV_ROUND_UP(sdr->tWC_min, 2), period_ns) - 1; - nfc_tmg.tWH = nfc_tmg.tWP; - nfc_tmg.tCS = TO_CYCLES(sdr->tCS_min, period_ns); - nfc_tmg.tCH = TO_CYCLES(sdr->tCH_min, period_ns) - 1; - nfc_tmg.tADL = TO_CYCLES(sdr->tADL_min, period_ns); - /* - * Read delay is the time of propagation from SoC pins to NFC internal - * logic. With non-EDO timings, this is MIN_RD_DEL_CNT clock cycles. In - * EDO mode, an additional delay of tRH must be taken into account so - * the data is sampled on the falling edge instead of the rising edge. - */ - read_delay = sdr->tRC_min >= 30000 ? - MIN_RD_DEL_CNT : MIN_RD_DEL_CNT + nfc_tmg.tRH; - - nfc_tmg.tAR = TO_CYCLES(sdr->tAR_min, period_ns); - /* - * tWHR and tRHW are supposed to be read to write delays (and vice - * versa) but in some cases, ie. when doing a change column, they must - * be greater than that to be sure tCCS delay is respected. - */ - nfc_tmg.tWHR = TO_CYCLES(max_t(int, sdr->tWHR_min, sdr->tCCS_min), - period_ns) - 2, - nfc_tmg.tRHW = TO_CYCLES(max_t(int, sdr->tRHW_min, sdr->tCCS_min), - period_ns); - - /* - * NFCv2: Use WAIT_MODE (wait for RB line), do not rely only on delays. - * NFCv1: No WAIT_MODE, tR must be maximal. - */ - if (nfc->caps->is_nfcv2) { - nfc_tmg.tR = TO_CYCLES(sdr->tWB_max, period_ns); - } else { - nfc_tmg.tR = TO_CYCLES64(sdr->tWB_max + sdr->tR_max, - period_ns); - if (nfc_tmg.tR + 3 > nfc_tmg.tCH) - nfc_tmg.tR = nfc_tmg.tCH - 3; - else - nfc_tmg.tR = 0; - } - - if (chipnr < 0) - return 0; - - marvell_nand->ndtr0 = - NDTR0_TRP(nfc_tmg.tRP) | - NDTR0_TRH(nfc_tmg.tRH) | - NDTR0_ETRP(nfc_tmg.tRP) | - NDTR0_TWP(nfc_tmg.tWP) | - NDTR0_TWH(nfc_tmg.tWH) | - NDTR0_TCS(nfc_tmg.tCS) | - NDTR0_TCH(nfc_tmg.tCH); - - marvell_nand->ndtr1 = - NDTR1_TAR(nfc_tmg.tAR) | - NDTR1_TWHR(nfc_tmg.tWHR) | - NDTR1_TR(nfc_tmg.tR); - - if (nfc->caps->is_nfcv2) { - marvell_nand->ndtr0 |= - NDTR0_RD_CNT_DEL(read_delay) | - NDTR0_SELCNTR | - NDTR0_TADL(nfc_tmg.tADL); - - marvell_nand->ndtr1 |= - NDTR1_TRHW(nfc_tmg.tRHW) | - NDTR1_WAIT_MODE; - } - - return 0; -} - -static int marvell_nand_chip_init(struct device *dev, struct marvell_nfc *nfc, - struct device_node *np) -{ - struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(dev); - struct marvell_nand_chip *marvell_nand; - struct mtd_info *mtd; - struct nand_chip *chip; - int nsels, ret, i; - u32 cs, rb; - - /* - * The legacy "num-cs" property indicates the number of CS on the only - * chip connected to the controller (legacy bindings does not support - * more than one chip). CS are only incremented one by one while the RB - * pin is always the #0. - * - * When not using legacy bindings, a couple of "reg" and "nand-rb" - * properties must be filled. For each chip, expressed as a subnode, - * "reg" points to the CS lines and "nand-rb" to the RB line. - */ - if (pdata) { - nsels = 1; - } else if (nfc->caps->legacy_of_bindings && - !of_get_property(np, "num-cs", &nsels)) { - dev_err(dev, "missing num-cs property\n"); - return -EINVAL; - } else if (!of_get_property(np, "reg", &nsels)) { - dev_err(dev, "missing reg property\n"); - return -EINVAL; - } - - if (!pdata) - nsels /= sizeof(u32); - if (!nsels) { - dev_err(dev, "invalid reg property size\n"); - return -EINVAL; - } - - /* Alloc the nand chip structure */ - marvell_nand = devm_kzalloc(dev, sizeof(*marvell_nand) + - (nsels * - sizeof(struct marvell_nand_chip_sel)), - GFP_KERNEL); - if (!marvell_nand) { - dev_err(dev, "could not allocate chip structure\n"); - return -ENOMEM; - } - - marvell_nand->nsels = nsels; - marvell_nand->selected_die = -1; - - for (i = 0; i < nsels; i++) { - if (pdata || nfc->caps->legacy_of_bindings) { - /* - * Legacy bindings use the CS lines in natural - * order (0, 1, ...) - */ - cs = i; - } else { - /* Retrieve CS id */ - ret = of_property_read_u32_index(np, "reg", i, &cs); - if (ret) { - dev_err(dev, "could not retrieve reg property: %d\n", - ret); - return ret; - } - } - - if (cs >= nfc->caps->max_cs_nb) { - dev_err(dev, "invalid reg value: %u (max CS = %d)\n", - cs, nfc->caps->max_cs_nb); - return -EINVAL; - } - - if (test_and_set_bit(cs, &nfc->assigned_cs)) { - dev_err(dev, "CS %d already assigned\n", cs); - return -EINVAL; - } - - /* - * The cs variable represents the chip select id, which must be - * converted in bit fields for NDCB0 and NDCB2 to select the - * right chip. Unfortunately, due to a lack of information on - * the subject and incoherent documentation, the user should not - * use CS1 and CS3 at all as asserting them is not supported in - * a reliable way (due to multiplexing inside ADDR5 field). - */ - marvell_nand->sels[i].cs = cs; - switch (cs) { - case 0: - case 2: - marvell_nand->sels[i].ndcb0_csel = 0; - break; - case 1: - case 3: - marvell_nand->sels[i].ndcb0_csel = NDCB0_CSEL; - break; - default: - return -EINVAL; - } - - /* Retrieve RB id */ - if (pdata || nfc->caps->legacy_of_bindings) { - /* Legacy bindings always use RB #0 */ - rb = 0; - } else { - ret = of_property_read_u32_index(np, "nand-rb", i, - &rb); - if (ret) { - dev_err(dev, - "could not retrieve RB property: %d\n", - ret); - return ret; - } - } - - if (rb >= nfc->caps->max_rb_nb) { - dev_err(dev, "invalid reg value: %u (max RB = %d)\n", - rb, nfc->caps->max_rb_nb); - return -EINVAL; - } - - marvell_nand->sels[i].rb = rb; - } - - chip = &marvell_nand->chip; - chip->controller = &nfc->controller; - nand_set_flash_node(chip, np); - - chip->exec_op = marvell_nfc_exec_op; - chip->select_chip = marvell_nfc_select_chip; - if (!of_property_read_bool(np, "marvell,nand-keep-config")) - chip->setup_data_interface = marvell_nfc_setup_data_interface; - - mtd = nand_to_mtd(chip); - mtd->dev.parent = dev; - - /* - * Default to HW ECC engine mode. If the nand-ecc-mode property is given - * in the DT node, this entry will be overwritten in nand_scan_ident(). - */ - chip->ecc.mode = NAND_ECC_HW; - - /* - * Save a reference value for timing registers before - * ->setup_data_interface() is called. - */ - marvell_nand->ndtr0 = readl_relaxed(nfc->regs + NDTR0); - marvell_nand->ndtr1 = readl_relaxed(nfc->regs + NDTR1); - - chip->options |= NAND_BUSWIDTH_AUTO; - ret = nand_scan_ident(mtd, marvell_nand->nsels, NULL); - if (ret) { - dev_err(dev, "could not identify the nand chip\n"); - return ret; - } - - if (pdata && pdata->flash_bbt) - chip->bbt_options |= NAND_BBT_USE_FLASH; - - if (chip->bbt_options & NAND_BBT_USE_FLASH) { - /* - * We'll use a bad block table stored in-flash and don't - * allow writing the bad block marker to the flash. - */ - chip->bbt_options |= NAND_BBT_NO_OOB_BBM; - chip->bbt_td = &bbt_main_descr; - chip->bbt_md = &bbt_mirror_descr; - } - - /* Save the chip-specific fields of NDCR */ - marvell_nand->ndcr = NDCR_PAGE_SZ(mtd->writesize); - if (chip->options & NAND_BUSWIDTH_16) - marvell_nand->ndcr |= NDCR_DWIDTH_M | NDCR_DWIDTH_C; - - /* - * On small page NANDs, only one cycle is needed to pass the - * column address. - */ - if (mtd->writesize <= 512) { - marvell_nand->addr_cyc = 1; - } else { - marvell_nand->addr_cyc = 2; - marvell_nand->ndcr |= NDCR_RA_START; - } - - /* - * Now add the number of cycles needed to pass the row - * address. - * - * Addressing a chip using CS 2 or 3 should also need the third row - * cycle but due to inconsistance in the documentation and lack of - * hardware to test this situation, this case is not supported. - */ - if (chip->options & NAND_ROW_ADDR_3) - marvell_nand->addr_cyc += 3; - else - marvell_nand->addr_cyc += 2; - - if (pdata) { - chip->ecc.size = pdata->ecc_step_size; - chip->ecc.strength = pdata->ecc_strength; - } - - ret = marvell_nand_ecc_init(mtd, &chip->ecc); - if (ret) { - dev_err(dev, "ECC init failed: %d\n", ret); - return ret; - } - - if (chip->ecc.mode == NAND_ECC_HW) { - /* - * Subpage write not available with hardware ECC, prohibit also - * subpage read as in userspace subpage access would still be - * allowed and subpage write, if used, would lead to numerous - * uncorrectable ECC errors. - */ - chip->options |= NAND_NO_SUBPAGE_WRITE; - } - - if (pdata || nfc->caps->legacy_of_bindings) { - /* - * We keep the MTD name unchanged to avoid breaking platforms - * where the MTD cmdline parser is used and the bootloader - * has not been updated to use the new naming scheme. - */ - mtd->name = "pxa3xx_nand-0"; - } else if (!mtd->name) { - /* - * If the new bindings are used and the bootloader has not been - * updated to pass a new mtdparts parameter on the cmdline, you - * should define the following property in your NAND node, ie: - * - * label = "main-storage"; - * - * This way, mtd->name will be set by the core when - * nand_set_flash_node() is called. - */ - mtd->name = devm_kasprintf(nfc->dev, GFP_KERNEL, - "%s:nand.%d", dev_name(nfc->dev), - marvell_nand->sels[0].cs); - if (!mtd->name) { - dev_err(nfc->dev, "Failed to allocate mtd->name\n"); - return -ENOMEM; - } - } - - ret = nand_scan_tail(mtd); - if (ret) { - dev_err(dev, "nand_scan_tail failed: %d\n", ret); - return ret; - } - - if (pdata) - /* Legacy bindings support only one chip */ - ret = mtd_device_register(mtd, pdata->parts[0], - pdata->nr_parts[0]); - else - ret = mtd_device_register(mtd, NULL, 0); - if (ret) { - dev_err(dev, "failed to register mtd device: %d\n", ret); - nand_release(mtd); - return ret; - } - - list_add_tail(&marvell_nand->node, &nfc->chips); - - return 0; -} - -static int marvell_nand_chips_init(struct device *dev, struct marvell_nfc *nfc) -{ - struct device_node *np = dev->of_node; - struct device_node *nand_np; - int max_cs = nfc->caps->max_cs_nb; - int nchips; - int ret; - - if (!np) - nchips = 1; - else - nchips = of_get_child_count(np); - - if (nchips > max_cs) { - dev_err(dev, "too many NAND chips: %d (max = %d CS)\n", nchips, - max_cs); - return -EINVAL; - } - - /* - * Legacy bindings do not use child nodes to exhibit NAND chip - * properties and layout. Instead, NAND properties are mixed with the - * controller ones, and partitions are defined as direct subnodes of the - * NAND controller node. - */ - if (nfc->caps->legacy_of_bindings) { - ret = marvell_nand_chip_init(dev, nfc, np); - return ret; - } - - for_each_child_of_node(np, nand_np) { - ret = marvell_nand_chip_init(dev, nfc, nand_np); - if (ret) { - of_node_put(nand_np); - return ret; - } - } - - return 0; -} - -static void marvell_nand_chips_cleanup(struct marvell_nfc *nfc) -{ - struct marvell_nand_chip *entry, *temp; - - list_for_each_entry_safe(entry, temp, &nfc->chips, node) { - nand_release(nand_to_mtd(&entry->chip)); - list_del(&entry->node); - } -} - -static int marvell_nfc_init_dma(struct marvell_nfc *nfc) -{ - struct platform_device *pdev = container_of(nfc->dev, - struct platform_device, - dev); - struct dma_slave_config config = {}; - struct resource *r; - dma_cap_mask_t mask; - struct pxad_param param; - int ret; - - if (!IS_ENABLED(CONFIG_PXA_DMA)) { - dev_warn(nfc->dev, - "DMA not enabled in configuration\n"); - return -ENOTSUPP; - } - - ret = dma_set_mask_and_coherent(nfc->dev, DMA_BIT_MASK(32)); - if (ret) - return ret; - - r = platform_get_resource(pdev, IORESOURCE_DMA, 0); - if (!r) { - dev_err(nfc->dev, "No resource defined for data DMA\n"); - return -ENXIO; - } - - param.drcmr = r->start; - param.prio = PXAD_PRIO_LOWEST; - dma_cap_zero(mask); - dma_cap_set(DMA_SLAVE, mask); - nfc->dma_chan = - dma_request_slave_channel_compat(mask, pxad_filter_fn, - ¶m, nfc->dev, - "data"); - if (!nfc->dma_chan) { - dev_err(nfc->dev, - "Unable to request data DMA channel\n"); - return -ENODEV; - } - - r = platform_get_resource(pdev, IORESOURCE_MEM, 0); - if (!r) - return -ENXIO; - - config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; - config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; - config.src_addr = r->start + NDDB; - config.dst_addr = r->start + NDDB; - config.src_maxburst = 32; - config.dst_maxburst = 32; - ret = dmaengine_slave_config(nfc->dma_chan, &config); - if (ret < 0) { - dev_err(nfc->dev, "Failed to configure DMA channel\n"); - return ret; - } - - /* - * DMA must act on length multiple of 32 and this length may be - * bigger than the destination buffer. Use this buffer instead - * for DMA transfers and then copy the desired amount of data to - * the provided buffer. - */ - nfc->dma_buf = kmalloc(MAX_CHUNK_SIZE, GFP_KERNEL | GFP_DMA); - if (!nfc->dma_buf) - return -ENOMEM; - - nfc->use_dma = true; - - return 0; -} - -static int marvell_nfc_init(struct marvell_nfc *nfc) -{ - struct device_node *np = nfc->dev->of_node; - - /* - * Some SoCs like A7k/A8k need to enable manually the NAND - * controller, gated clocks and reset bits to avoid being bootloader - * dependent. This is done through the use of the System Functions - * registers. - */ - if (nfc->caps->need_system_controller) { - struct regmap *sysctrl_base = - syscon_regmap_lookup_by_phandle(np, - "marvell,system-controller"); - u32 reg; - - if (IS_ERR(sysctrl_base)) - return PTR_ERR(sysctrl_base); - - reg = GENCONF_SOC_DEVICE_MUX_NFC_EN | - GENCONF_SOC_DEVICE_MUX_ECC_CLK_RST | - GENCONF_SOC_DEVICE_MUX_ECC_CORE_RST | - GENCONF_SOC_DEVICE_MUX_NFC_INT_EN; - regmap_write(sysctrl_base, GENCONF_SOC_DEVICE_MUX, reg); - - regmap_read(sysctrl_base, GENCONF_CLK_GATING_CTRL, ®); - reg |= GENCONF_CLK_GATING_CTRL_ND_GATE; - regmap_write(sysctrl_base, GENCONF_CLK_GATING_CTRL, reg); - - regmap_read(sysctrl_base, GENCONF_ND_CLK_CTRL, ®); - reg |= GENCONF_ND_CLK_CTRL_EN; - regmap_write(sysctrl_base, GENCONF_ND_CLK_CTRL, reg); - } - - /* Configure the DMA if appropriate */ - if (!nfc->caps->is_nfcv2) - marvell_nfc_init_dma(nfc); - - /* - * ECC operations and interruptions are only enabled when specifically - * needed. ECC shall not be activated in the early stages (fails probe). - * Arbiter flag, even if marked as "reserved", must be set (empirical). - * SPARE_EN bit must always be set or ECC bytes will not be at the same - * offset in the read page and this will fail the protection. - */ - writel_relaxed(NDCR_ALL_INT | NDCR_ND_ARB_EN | NDCR_SPARE_EN | - NDCR_RD_ID_CNT(NFCV1_READID_LEN), nfc->regs + NDCR); - writel_relaxed(0xFFFFFFFF, nfc->regs + NDSR); - writel_relaxed(0, nfc->regs + NDECCCTRL); - - return 0; -} - -static int marvell_nfc_probe(struct platform_device *pdev) -{ - struct device *dev = &pdev->dev; - struct resource *r; - struct marvell_nfc *nfc; - int ret; - int irq; - - nfc = devm_kzalloc(&pdev->dev, sizeof(struct marvell_nfc), - GFP_KERNEL); - if (!nfc) - return -ENOMEM; - - nfc->dev = dev; - nand_hw_control_init(&nfc->controller); - INIT_LIST_HEAD(&nfc->chips); - - r = platform_get_resource(pdev, IORESOURCE_MEM, 0); - nfc->regs = devm_ioremap_resource(dev, r); - if (IS_ERR(nfc->regs)) - return PTR_ERR(nfc->regs); - - irq = platform_get_irq(pdev, 0); - if (irq < 0) { - dev_err(dev, "failed to retrieve irq\n"); - return irq; - } - - nfc->ecc_clk = devm_clk_get(&pdev->dev, NULL); - if (IS_ERR(nfc->ecc_clk)) - return PTR_ERR(nfc->ecc_clk); - - ret = clk_prepare_enable(nfc->ecc_clk); - if (ret) - return ret; - - marvell_nfc_disable_int(nfc, NDCR_ALL_INT); - marvell_nfc_clear_int(nfc, NDCR_ALL_INT); - ret = devm_request_irq(dev, irq, marvell_nfc_isr, - 0, "marvell-nfc", nfc); - if (ret) - goto unprepare_clk; - - /* Get NAND controller capabilities */ - if (pdev->id_entry) - nfc->caps = (void *)pdev->id_entry->driver_data; - else - nfc->caps = of_device_get_match_data(&pdev->dev); - - if (!nfc->caps) { - dev_err(dev, "Could not retrieve NFC caps\n"); - ret = -EINVAL; - goto unprepare_clk; - } - - /* Init the controller and then probe the chips */ - ret = marvell_nfc_init(nfc); - if (ret) - goto unprepare_clk; - - platform_set_drvdata(pdev, nfc); - - ret = marvell_nand_chips_init(dev, nfc); - if (ret) - goto unprepare_clk; - - return 0; - -unprepare_clk: - clk_disable_unprepare(nfc->ecc_clk); - - return ret; -} - -static int marvell_nfc_remove(struct platform_device *pdev) -{ - struct marvell_nfc *nfc = platform_get_drvdata(pdev); - - marvell_nand_chips_cleanup(nfc); - - if (nfc->use_dma) { - dmaengine_terminate_all(nfc->dma_chan); - dma_release_channel(nfc->dma_chan); - } - - clk_disable_unprepare(nfc->ecc_clk); - - return 0; -} - -static const struct marvell_nfc_caps marvell_armada_8k_nfc_caps = { - .max_cs_nb = 4, - .max_rb_nb = 2, - .need_system_controller = true, - .is_nfcv2 = true, -}; - -static const struct marvell_nfc_caps marvell_armada370_nfc_caps = { - .max_cs_nb = 4, - .max_rb_nb = 2, - .is_nfcv2 = true, -}; - -static const struct marvell_nfc_caps marvell_pxa3xx_nfc_caps = { - .max_cs_nb = 2, - .max_rb_nb = 1, - .use_dma = true, -}; - -static const struct marvell_nfc_caps marvell_armada_8k_nfc_legacy_caps = { - .max_cs_nb = 4, - .max_rb_nb = 2, - .need_system_controller = true, - .legacy_of_bindings = true, - .is_nfcv2 = true, -}; - -static const struct marvell_nfc_caps marvell_armada370_nfc_legacy_caps = { - .max_cs_nb = 4, - .max_rb_nb = 2, - .legacy_of_bindings = true, - .is_nfcv2 = true, -}; - -static const struct marvell_nfc_caps marvell_pxa3xx_nfc_legacy_caps = { - .max_cs_nb = 2, - .max_rb_nb = 1, - .legacy_of_bindings = true, - .use_dma = true, -}; - -static const struct platform_device_id marvell_nfc_platform_ids[] = { - { - .name = "pxa3xx-nand", - .driver_data = (kernel_ulong_t)&marvell_pxa3xx_nfc_legacy_caps, - }, - { /* sentinel */ }, -}; -MODULE_DEVICE_TABLE(platform, marvell_nfc_platform_ids); - -static const struct of_device_id marvell_nfc_of_ids[] = { - { - .compatible = "marvell,armada-8k-nand-controller", - .data = &marvell_armada_8k_nfc_caps, - }, - { - .compatible = "marvell,armada370-nand-controller", - .data = &marvell_armada370_nfc_caps, - }, - { - .compatible = "marvell,pxa3xx-nand-controller", - .data = &marvell_pxa3xx_nfc_caps, - }, - /* Support for old/deprecated bindings: */ - { - .compatible = "marvell,armada-8k-nand", - .data = &marvell_armada_8k_nfc_legacy_caps, - }, - { - .compatible = "marvell,armada370-nand", - .data = &marvell_armada370_nfc_legacy_caps, - }, - { - .compatible = "marvell,pxa3xx-nand", - .data = &marvell_pxa3xx_nfc_legacy_caps, - }, - { /* sentinel */ }, -}; -MODULE_DEVICE_TABLE(of, marvell_nfc_of_ids); - -static struct platform_driver marvell_nfc_driver = { - .driver = { - .name = "marvell-nfc", - .of_match_table = marvell_nfc_of_ids, - }, - .id_table = marvell_nfc_platform_ids, - .probe = marvell_nfc_probe, - .remove = marvell_nfc_remove, -}; -module_platform_driver(marvell_nfc_driver); - -MODULE_LICENSE("GPL"); -MODULE_DESCRIPTION("Marvell NAND controller driver"); diff --git a/drivers/mtd/nand/mpc5121_nfc.c b/drivers/mtd/nand/mpc5121_nfc.c deleted file mode 100644 index 913b9d1225c6..000000000000 --- a/drivers/mtd/nand/mpc5121_nfc.c +++ /dev/null @@ -1,856 +0,0 @@ -/* - * Copyright 2004-2008 Freescale Semiconductor, Inc. - * Copyright 2009 Semihalf. - * - * Approved as OSADL project by a majority of OSADL members and funded - * by OSADL membership fees in 2009; for details see www.osadl.org. - * - * Based on original driver from Freescale Semiconductor - * written by John Rigby on basis of mxc_nand.c. - * Reworked and extended by Piotr Ziecik . - * - * This program is free software; you can redistribute it and/or - * modify it under the terms of the GNU General Public License - * as published by the Free Software Foundation; either version 2 - * of the License, or (at your option) any later version. - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License - * along with this program; if not, write to the Free Software - * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, - * MA 02110-1301, USA. - */ - -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include - -#include - -/* Addresses for NFC MAIN RAM BUFFER areas */ -#define NFC_MAIN_AREA(n) ((n) * 0x200) - -/* Addresses for NFC SPARE BUFFER areas */ -#define NFC_SPARE_BUFFERS 8 -#define NFC_SPARE_LEN 0x40 -#define NFC_SPARE_AREA(n) (0x1000 + ((n) * NFC_SPARE_LEN)) - -/* MPC5121 NFC registers */ -#define NFC_BUF_ADDR 0x1E04 -#define NFC_FLASH_ADDR 0x1E06 -#define NFC_FLASH_CMD 0x1E08 -#define NFC_CONFIG 0x1E0A -#define NFC_ECC_STATUS1 0x1E0C -#define NFC_ECC_STATUS2 0x1E0E -#define NFC_SPAS 0x1E10 -#define NFC_WRPROT 0x1E12 -#define NFC_NF_WRPRST 0x1E18 -#define NFC_CONFIG1 0x1E1A -#define NFC_CONFIG2 0x1E1C -#define NFC_UNLOCKSTART_BLK0 0x1E20 -#define NFC_UNLOCKEND_BLK0 0x1E22 -#define NFC_UNLOCKSTART_BLK1 0x1E24 -#define NFC_UNLOCKEND_BLK1 0x1E26 -#define NFC_UNLOCKSTART_BLK2 0x1E28 -#define NFC_UNLOCKEND_BLK2 0x1E2A -#define NFC_UNLOCKSTART_BLK3 0x1E2C -#define NFC_UNLOCKEND_BLK3 0x1E2E - -/* Bit Definitions: NFC_BUF_ADDR */ -#define NFC_RBA_MASK (7 << 0) -#define NFC_ACTIVE_CS_SHIFT 5 -#define NFC_ACTIVE_CS_MASK (3 << NFC_ACTIVE_CS_SHIFT) - -/* Bit Definitions: NFC_CONFIG */ -#define NFC_BLS_UNLOCKED (1 << 1) - -/* Bit Definitions: NFC_CONFIG1 */ -#define NFC_ECC_4BIT (1 << 0) -#define NFC_FULL_PAGE_DMA (1 << 1) -#define NFC_SPARE_ONLY (1 << 2) -#define NFC_ECC_ENABLE (1 << 3) -#define NFC_INT_MASK (1 << 4) -#define NFC_BIG_ENDIAN (1 << 5) -#define NFC_RESET (1 << 6) -#define NFC_CE (1 << 7) -#define NFC_ONE_CYCLE (1 << 8) -#define NFC_PPB_32 (0 << 9) -#define NFC_PPB_64 (1 << 9) -#define NFC_PPB_128 (2 << 9) -#define NFC_PPB_256 (3 << 9) -#define NFC_PPB_MASK (3 << 9) -#define NFC_FULL_PAGE_INT (1 << 11) - -/* Bit Definitions: NFC_CONFIG2 */ -#define NFC_COMMAND (1 << 0) -#define NFC_ADDRESS (1 << 1) -#define NFC_INPUT (1 << 2) -#define NFC_OUTPUT (1 << 3) -#define NFC_ID (1 << 4) -#define NFC_STATUS (1 << 5) -#define NFC_CMD_FAIL (1 << 15) -#define NFC_INT (1 << 15) - -/* Bit Definitions: NFC_WRPROT */ -#define NFC_WPC_LOCK_TIGHT (1 << 0) -#define NFC_WPC_LOCK (1 << 1) -#define NFC_WPC_UNLOCK (1 << 2) - -#define DRV_NAME "mpc5121_nfc" - -/* Timeouts */ -#define NFC_RESET_TIMEOUT 1000 /* 1 ms */ -#define NFC_TIMEOUT (HZ / 10) /* 1/10 s */ - -struct mpc5121_nfc_prv { - struct nand_chip chip; - int irq; - void __iomem *regs; - struct clk *clk; - wait_queue_head_t irq_waitq; - uint column; - int spareonly; - void __iomem *csreg; - struct device *dev; -}; - -static void mpc5121_nfc_done(struct mtd_info *mtd); - -/* Read NFC register */ -static inline u16 nfc_read(struct mtd_info *mtd, uint reg) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct mpc5121_nfc_prv *prv = nand_get_controller_data(chip); - - return in_be16(prv->regs + reg); -} - -/* Write NFC register */ -static inline void nfc_write(struct mtd_info *mtd, uint reg, u16 val) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct mpc5121_nfc_prv *prv = nand_get_controller_data(chip); - - out_be16(prv->regs + reg, val); -} - -/* Set bits in NFC register */ -static inline void nfc_set(struct mtd_info *mtd, uint reg, u16 bits) -{ - nfc_write(mtd, reg, nfc_read(mtd, reg) | bits); -} - -/* Clear bits in NFC register */ -static inline void nfc_clear(struct mtd_info *mtd, uint reg, u16 bits) -{ - nfc_write(mtd, reg, nfc_read(mtd, reg) & ~bits); -} - -/* Invoke address cycle */ -static inline void mpc5121_nfc_send_addr(struct mtd_info *mtd, u16 addr) -{ - nfc_write(mtd, NFC_FLASH_ADDR, addr); - nfc_write(mtd, NFC_CONFIG2, NFC_ADDRESS); - mpc5121_nfc_done(mtd); -} - -/* Invoke command cycle */ -static inline void mpc5121_nfc_send_cmd(struct mtd_info *mtd, u16 cmd) -{ - nfc_write(mtd, NFC_FLASH_CMD, cmd); - nfc_write(mtd, NFC_CONFIG2, NFC_COMMAND); - mpc5121_nfc_done(mtd); -} - -/* Send data from NFC buffers to NAND flash */ -static inline void mpc5121_nfc_send_prog_page(struct mtd_info *mtd) -{ - nfc_clear(mtd, NFC_BUF_ADDR, NFC_RBA_MASK); - nfc_write(mtd, NFC_CONFIG2, NFC_INPUT); - mpc5121_nfc_done(mtd); -} - -/* Receive data from NAND flash */ -static inline void mpc5121_nfc_send_read_page(struct mtd_info *mtd) -{ - nfc_clear(mtd, NFC_BUF_ADDR, NFC_RBA_MASK); - nfc_write(mtd, NFC_CONFIG2, NFC_OUTPUT); - mpc5121_nfc_done(mtd); -} - -/* Receive ID from NAND flash */ -static inline void mpc5121_nfc_send_read_id(struct mtd_info *mtd) -{ - nfc_clear(mtd, NFC_BUF_ADDR, NFC_RBA_MASK); - nfc_write(mtd, NFC_CONFIG2, NFC_ID); - mpc5121_nfc_done(mtd); -} - -/* Receive status from NAND flash */ -static inline void mpc5121_nfc_send_read_status(struct mtd_info *mtd) -{ - nfc_clear(mtd, NFC_BUF_ADDR, NFC_RBA_MASK); - nfc_write(mtd, NFC_CONFIG2, NFC_STATUS); - mpc5121_nfc_done(mtd); -} - -/* NFC interrupt handler */ -static irqreturn_t mpc5121_nfc_irq(int irq, void *data) -{ - struct mtd_info *mtd = data; - struct nand_chip *chip = mtd_to_nand(mtd); - struct mpc5121_nfc_prv *prv = nand_get_controller_data(chip); - - nfc_set(mtd, NFC_CONFIG1, NFC_INT_MASK); - wake_up(&prv->irq_waitq); - - return IRQ_HANDLED; -} - -/* Wait for operation complete */ -static void mpc5121_nfc_done(struct mtd_info *mtd) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct mpc5121_nfc_prv *prv = nand_get_controller_data(chip); - int rv; - - if ((nfc_read(mtd, NFC_CONFIG2) & NFC_INT) == 0) { - nfc_clear(mtd, NFC_CONFIG1, NFC_INT_MASK); - rv = wait_event_timeout(prv->irq_waitq, - (nfc_read(mtd, NFC_CONFIG2) & NFC_INT), NFC_TIMEOUT); - - if (!rv) - dev_warn(prv->dev, - "Timeout while waiting for interrupt.\n"); - } - - nfc_clear(mtd, NFC_CONFIG2, NFC_INT); -} - -/* Do address cycle(s) */ -static void mpc5121_nfc_addr_cycle(struct mtd_info *mtd, int column, int page) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - u32 pagemask = chip->pagemask; - - if (column != -1) { - mpc5121_nfc_send_addr(mtd, column); - if (mtd->writesize > 512) - mpc5121_nfc_send_addr(mtd, column >> 8); - } - - if (page != -1) { - do { - mpc5121_nfc_send_addr(mtd, page & 0xFF); - page >>= 8; - pagemask >>= 8; - } while (pagemask); - } -} - -/* Control chip select signals */ -static void mpc5121_nfc_select_chip(struct mtd_info *mtd, int chip) -{ - if (chip < 0) { - nfc_clear(mtd, NFC_CONFIG1, NFC_CE); - return; - } - - nfc_clear(mtd, NFC_BUF_ADDR, NFC_ACTIVE_CS_MASK); - nfc_set(mtd, NFC_BUF_ADDR, (chip << NFC_ACTIVE_CS_SHIFT) & - NFC_ACTIVE_CS_MASK); - nfc_set(mtd, NFC_CONFIG1, NFC_CE); -} - -/* Init external chip select logic on ADS5121 board */ -static int ads5121_chipselect_init(struct mtd_info *mtd) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct mpc5121_nfc_prv *prv = nand_get_controller_data(chip); - struct device_node *dn; - - dn = of_find_compatible_node(NULL, NULL, "fsl,mpc5121ads-cpld"); - if (dn) { - prv->csreg = of_iomap(dn, 0); - of_node_put(dn); - if (!prv->csreg) - return -ENOMEM; - - /* CPLD Register 9 controls NAND /CE Lines */ - prv->csreg += 9; - return 0; - } - - return -EINVAL; -} - -/* Control chips select signal on ADS5121 board */ -static void ads5121_select_chip(struct mtd_info *mtd, int chip) -{ - struct nand_chip *nand = mtd_to_nand(mtd); - struct mpc5121_nfc_prv *prv = nand_get_controller_data(nand); - u8 v; - - v = in_8(prv->csreg); - v |= 0x0F; - - if (chip >= 0) { - mpc5121_nfc_select_chip(mtd, 0); - v &= ~(1 << chip); - } else - mpc5121_nfc_select_chip(mtd, -1); - - out_8(prv->csreg, v); -} - -/* Read NAND Ready/Busy signal */ -static int mpc5121_nfc_dev_ready(struct mtd_info *mtd) -{ - /* - * NFC handles ready/busy signal internally. Therefore, this function - * always returns status as ready. - */ - return 1; -} - -/* Write command to NAND flash */ -static void mpc5121_nfc_command(struct mtd_info *mtd, unsigned command, - int column, int page) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct mpc5121_nfc_prv *prv = nand_get_controller_data(chip); - - prv->column = (column >= 0) ? column : 0; - prv->spareonly = 0; - - switch (command) { - case NAND_CMD_PAGEPROG: - mpc5121_nfc_send_prog_page(mtd); - break; - /* - * NFC does not support sub-page reads and writes, - * so emulate them using full page transfers. - */ - case NAND_CMD_READ0: - column = 0; - break; - - case NAND_CMD_READ1: - prv->column += 256; - command = NAND_CMD_READ0; - column = 0; - break; - - case NAND_CMD_READOOB: - prv->spareonly = 1; - command = NAND_CMD_READ0; - column = 0; - break; - - case NAND_CMD_SEQIN: - mpc5121_nfc_command(mtd, NAND_CMD_READ0, column, page); - column = 0; - break; - - case NAND_CMD_ERASE1: - case NAND_CMD_ERASE2: - case NAND_CMD_READID: - case NAND_CMD_STATUS: - break; - - default: - return; - } - - mpc5121_nfc_send_cmd(mtd, command); - mpc5121_nfc_addr_cycle(mtd, column, page); - - switch (command) { - case NAND_CMD_READ0: - if (mtd->writesize > 512) - mpc5121_nfc_send_cmd(mtd, NAND_CMD_READSTART); - mpc5121_nfc_send_read_page(mtd); - break; - - case NAND_CMD_READID: - mpc5121_nfc_send_read_id(mtd); - break; - - case NAND_CMD_STATUS: - mpc5121_nfc_send_read_status(mtd); - if (chip->options & NAND_BUSWIDTH_16) - prv->column = 1; - else - prv->column = 0; - break; - } -} - -/* Copy data from/to NFC spare buffers. */ -static void mpc5121_nfc_copy_spare(struct mtd_info *mtd, uint offset, - u8 *buffer, uint size, int wr) -{ - struct nand_chip *nand = mtd_to_nand(mtd); - struct mpc5121_nfc_prv *prv = nand_get_controller_data(nand); - uint o, s, sbsize, blksize; - - /* - * NAND spare area is available through NFC spare buffers. - * The NFC divides spare area into (page_size / 512) chunks. - * Each chunk is placed into separate spare memory area, using - * first (spare_size / num_of_chunks) bytes of the buffer. - * - * For NAND device in which the spare area is not divided fully - * by the number of chunks, number of used bytes in each spare - * buffer is rounded down to the nearest even number of bytes, - * and all remaining bytes are added to the last used spare area. - * - * For more information read section 26.6.10 of MPC5121e - * Microcontroller Reference Manual, Rev. 3. - */ - - /* Calculate number of valid bytes in each spare buffer */ - sbsize = (mtd->oobsize / (mtd->writesize / 512)) & ~1; - - while (size) { - /* Calculate spare buffer number */ - s = offset / sbsize; - if (s > NFC_SPARE_BUFFERS - 1) - s = NFC_SPARE_BUFFERS - 1; - - /* - * Calculate offset to requested data block in selected spare - * buffer and its size. - */ - o = offset - (s * sbsize); - blksize = min(sbsize - o, size); - - if (wr) - memcpy_toio(prv->regs + NFC_SPARE_AREA(s) + o, - buffer, blksize); - else - memcpy_fromio(buffer, - prv->regs + NFC_SPARE_AREA(s) + o, blksize); - - buffer += blksize; - offset += blksize; - size -= blksize; - }; -} - -/* Copy data from/to NFC main and spare buffers */ -static void mpc5121_nfc_buf_copy(struct mtd_info *mtd, u_char *buf, int len, - int wr) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct mpc5121_nfc_prv *prv = nand_get_controller_data(chip); - uint c = prv->column; - uint l; - - /* Handle spare area access */ - if (prv->spareonly || c >= mtd->writesize) { - /* Calculate offset from beginning of spare area */ - if (c >= mtd->writesize) - c -= mtd->writesize; - - prv->column += len; - mpc5121_nfc_copy_spare(mtd, c, buf, len, wr); - return; - } - - /* - * Handle main area access - limit copy length to prevent - * crossing main/spare boundary. - */ - l = min((uint)len, mtd->writesize - c); - prv->column += l; - - if (wr) - memcpy_toio(prv->regs + NFC_MAIN_AREA(0) + c, buf, l); - else - memcpy_fromio(buf, prv->regs + NFC_MAIN_AREA(0) + c, l); - - /* Handle crossing main/spare boundary */ - if (l != len) { - buf += l; - len -= l; - mpc5121_nfc_buf_copy(mtd, buf, len, wr); - } -} - -/* Read data from NFC buffers */ -static void mpc5121_nfc_read_buf(struct mtd_info *mtd, u_char *buf, int len) -{ - mpc5121_nfc_buf_copy(mtd, buf, len, 0); -} - -/* Write data to NFC buffers */ -static void mpc5121_nfc_write_buf(struct mtd_info *mtd, - const u_char *buf, int len) -{ - mpc5121_nfc_buf_copy(mtd, (u_char *)buf, len, 1); -} - -/* Read byte from NFC buffers */ -static u8 mpc5121_nfc_read_byte(struct mtd_info *mtd) -{ - u8 tmp; - - mpc5121_nfc_read_buf(mtd, &tmp, sizeof(tmp)); - - return tmp; -} - -/* Read word from NFC buffers */ -static u16 mpc5121_nfc_read_word(struct mtd_info *mtd) -{ - u16 tmp; - - mpc5121_nfc_read_buf(mtd, (u_char *)&tmp, sizeof(tmp)); - - return tmp; -} - -/* - * Read NFC configuration from Reset Config Word - * - * NFC is configured during reset in basis of information stored - * in Reset Config Word. There is no other way to set NAND block - * size, spare size and bus width. - */ -static int mpc5121_nfc_read_hw_config(struct mtd_info *mtd) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct mpc5121_nfc_prv *prv = nand_get_controller_data(chip); - struct mpc512x_reset_module *rm; - struct device_node *rmnode; - uint rcw_pagesize = 0; - uint rcw_sparesize = 0; - uint rcw_width; - uint rcwh; - uint romloc, ps; - int ret = 0; - - rmnode = of_find_compatible_node(NULL, NULL, "fsl,mpc5121-reset"); - if (!rmnode) { - dev_err(prv->dev, "Missing 'fsl,mpc5121-reset' " - "node in device tree!\n"); - return -ENODEV; - } - - rm = of_iomap(rmnode, 0); - if (!rm) { - dev_err(prv->dev, "Error mapping reset module node!\n"); - ret = -EBUSY; - goto out; - } - - rcwh = in_be32(&rm->rcwhr); - - /* Bit 6: NFC bus width */ - rcw_width = ((rcwh >> 6) & 0x1) ? 2 : 1; - - /* Bit 7: NFC Page/Spare size */ - ps = (rcwh >> 7) & 0x1; - - /* Bits [22:21]: ROM Location */ - romloc = (rcwh >> 21) & 0x3; - - /* Decode RCW bits */ - switch ((ps << 2) | romloc) { - case 0x00: - case 0x01: - rcw_pagesize = 512; - rcw_sparesize = 16; - break; - case 0x02: - case 0x03: - rcw_pagesize = 4096; - rcw_sparesize = 128; - break; - case 0x04: - case 0x05: - rcw_pagesize = 2048; - rcw_sparesize = 64; - break; - case 0x06: - case 0x07: - rcw_pagesize = 4096; - rcw_sparesize = 218; - break; - } - - mtd->writesize = rcw_pagesize; - mtd->oobsize = rcw_sparesize; - if (rcw_width == 2) - chip->options |= NAND_BUSWIDTH_16; - - dev_notice(prv->dev, "Configured for " - "%u-bit NAND, page size %u " - "with %u spare.\n", - rcw_width * 8, rcw_pagesize, - rcw_sparesize); - iounmap(rm); -out: - of_node_put(rmnode); - return ret; -} - -/* Free driver resources */ -static void mpc5121_nfc_free(struct device *dev, struct mtd_info *mtd) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct mpc5121_nfc_prv *prv = nand_get_controller_data(chip); - - if (prv->clk) - clk_disable_unprepare(prv->clk); - - if (prv->csreg) - iounmap(prv->csreg); -} - -static int mpc5121_nfc_probe(struct platform_device *op) -{ - struct device_node *dn = op->dev.of_node; - struct clk *clk; - struct device *dev = &op->dev; - struct mpc5121_nfc_prv *prv; - struct resource res; - struct mtd_info *mtd; - struct nand_chip *chip; - unsigned long regs_paddr, regs_size; - const __be32 *chips_no; - int resettime = 0; - int retval = 0; - int rev, len; - - /* - * Check SoC revision. This driver supports only NFC - * in MPC5121 revision 2 and MPC5123 revision 3. - */ - rev = (mfspr(SPRN_SVR) >> 4) & 0xF; - if ((rev != 2) && (rev != 3)) { - dev_err(dev, "SoC revision %u is not supported!\n", rev); - return -ENXIO; - } - - prv = devm_kzalloc(dev, sizeof(*prv), GFP_KERNEL); - if (!prv) - return -ENOMEM; - - chip = &prv->chip; - mtd = nand_to_mtd(chip); - - mtd->dev.parent = dev; - nand_set_controller_data(chip, prv); - nand_set_flash_node(chip, dn); - prv->dev = dev; - - /* Read NFC configuration from Reset Config Word */ - retval = mpc5121_nfc_read_hw_config(mtd); - if (retval) { - dev_err(dev, "Unable to read NFC config!\n"); - return retval; - } - - prv->irq = irq_of_parse_and_map(dn, 0); - if (prv->irq == NO_IRQ) { - dev_err(dev, "Error mapping IRQ!\n"); - return -EINVAL; - } - - retval = of_address_to_resource(dn, 0, &res); - if (retval) { - dev_err(dev, "Error parsing memory region!\n"); - return retval; - } - - chips_no = of_get_property(dn, "chips", &len); - if (!chips_no || len != sizeof(*chips_no)) { - dev_err(dev, "Invalid/missing 'chips' property!\n"); - return -EINVAL; - } - - regs_paddr = res.start; - regs_size = resource_size(&res); - - if (!devm_request_mem_region(dev, regs_paddr, regs_size, DRV_NAME)) { - dev_err(dev, "Error requesting memory region!\n"); - return -EBUSY; - } - - prv->regs = devm_ioremap(dev, regs_paddr, regs_size); - if (!prv->regs) { - dev_err(dev, "Error mapping memory region!\n"); - return -ENOMEM; - } - - mtd->name = "MPC5121 NAND"; - chip->dev_ready = mpc5121_nfc_dev_ready; - chip->cmdfunc = mpc5121_nfc_command; - chip->read_byte = mpc5121_nfc_read_byte; - chip->read_word = mpc5121_nfc_read_word; - chip->read_buf = mpc5121_nfc_read_buf; - chip->write_buf = mpc5121_nfc_write_buf; - chip->select_chip = mpc5121_nfc_select_chip; - chip->onfi_set_features = nand_onfi_get_set_features_notsupp; - chip->onfi_get_features = nand_onfi_get_set_features_notsupp; - chip->bbt_options = NAND_BBT_USE_FLASH; - chip->ecc.mode = NAND_ECC_SOFT; - chip->ecc.algo = NAND_ECC_HAMMING; - - /* Support external chip-select logic on ADS5121 board */ - if (of_machine_is_compatible("fsl,mpc5121ads")) { - retval = ads5121_chipselect_init(mtd); - if (retval) { - dev_err(dev, "Chipselect init error!\n"); - return retval; - } - - chip->select_chip = ads5121_select_chip; - } - - /* Enable NFC clock */ - clk = devm_clk_get(dev, "ipg"); - if (IS_ERR(clk)) { - dev_err(dev, "Unable to acquire NFC clock!\n"); - retval = PTR_ERR(clk); - goto error; - } - retval = clk_prepare_enable(clk); - if (retval) { - dev_err(dev, "Unable to enable NFC clock!\n"); - goto error; - } - prv->clk = clk; - - /* Reset NAND Flash controller */ - nfc_set(mtd, NFC_CONFIG1, NFC_RESET); - while (nfc_read(mtd, NFC_CONFIG1) & NFC_RESET) { - if (resettime++ >= NFC_RESET_TIMEOUT) { - dev_err(dev, "Timeout while resetting NFC!\n"); - retval = -EINVAL; - goto error; - } - - udelay(1); - } - - /* Enable write to NFC memory */ - nfc_write(mtd, NFC_CONFIG, NFC_BLS_UNLOCKED); - - /* Enable write to all NAND pages */ - nfc_write(mtd, NFC_UNLOCKSTART_BLK0, 0x0000); - nfc_write(mtd, NFC_UNLOCKEND_BLK0, 0xFFFF); - nfc_write(mtd, NFC_WRPROT, NFC_WPC_UNLOCK); - - /* - * Setup NFC: - * - Big Endian transfers, - * - Interrupt after full page read/write. - */ - nfc_write(mtd, NFC_CONFIG1, NFC_BIG_ENDIAN | NFC_INT_MASK | - NFC_FULL_PAGE_INT); - - /* Set spare area size */ - nfc_write(mtd, NFC_SPAS, mtd->oobsize >> 1); - - init_waitqueue_head(&prv->irq_waitq); - retval = devm_request_irq(dev, prv->irq, &mpc5121_nfc_irq, 0, DRV_NAME, - mtd); - if (retval) { - dev_err(dev, "Error requesting IRQ!\n"); - goto error; - } - - /* Detect NAND chips */ - retval = nand_scan(mtd, be32_to_cpup(chips_no)); - if (retval) { - dev_err(dev, "NAND Flash not found !\n"); - goto error; - } - - /* Set erase block size */ - switch (mtd->erasesize / mtd->writesize) { - case 32: - nfc_set(mtd, NFC_CONFIG1, NFC_PPB_32); - break; - - case 64: - nfc_set(mtd, NFC_CONFIG1, NFC_PPB_64); - break; - - case 128: - nfc_set(mtd, NFC_CONFIG1, NFC_PPB_128); - break; - - case 256: - nfc_set(mtd, NFC_CONFIG1, NFC_PPB_256); - break; - - default: - dev_err(dev, "Unsupported NAND flash!\n"); - retval = -ENXIO; - goto error; - } - - dev_set_drvdata(dev, mtd); - - /* Register device in MTD */ - retval = mtd_device_register(mtd, NULL, 0); - if (retval) { - dev_err(dev, "Error adding MTD device!\n"); - goto error; - } - - return 0; -error: - mpc5121_nfc_free(dev, mtd); - return retval; -} - -static int mpc5121_nfc_remove(struct platform_device *op) -{ - struct device *dev = &op->dev; - struct mtd_info *mtd = dev_get_drvdata(dev); - - nand_release(mtd); - mpc5121_nfc_free(dev, mtd); - - return 0; -} - -static const struct of_device_id mpc5121_nfc_match[] = { - { .compatible = "fsl,mpc5121-nfc", }, - {}, -}; -MODULE_DEVICE_TABLE(of, mpc5121_nfc_match); - -static struct platform_driver mpc5121_nfc_driver = { - .probe = mpc5121_nfc_probe, - .remove = mpc5121_nfc_remove, - .driver = { - .name = DRV_NAME, - .of_match_table = mpc5121_nfc_match, - }, -}; - -module_platform_driver(mpc5121_nfc_driver); - -MODULE_AUTHOR("Freescale Semiconductor, Inc."); -MODULE_DESCRIPTION("MPC5121 NAND MTD driver"); -MODULE_LICENSE("GPL"); diff --git a/drivers/mtd/nand/mtk_ecc.c b/drivers/mtd/nand/mtk_ecc.c deleted file mode 100644 index 40d86a861a70..000000000000 --- a/drivers/mtd/nand/mtk_ecc.c +++ /dev/null @@ -1,608 +0,0 @@ -/* - * MTK ECC controller driver. - * Copyright (C) 2016 MediaTek Inc. - * Authors: Xiaolei Li - * Jorge Ramirez-Ortiz - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License version 2 as - * published by the Free Software Foundation. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - */ - -#include -#include -#include -#include -#include -#include -#include -#include -#include - -#include "mtk_ecc.h" - -#define ECC_IDLE_MASK BIT(0) -#define ECC_IRQ_EN BIT(0) -#define ECC_PG_IRQ_SEL BIT(1) -#define ECC_OP_ENABLE (1) -#define ECC_OP_DISABLE (0) - -#define ECC_ENCCON (0x00) -#define ECC_ENCCNFG (0x04) -#define ECC_MS_SHIFT (16) -#define ECC_ENCDIADDR (0x08) -#define ECC_ENCIDLE (0x0C) -#define ECC_DECCON (0x100) -#define ECC_DECCNFG (0x104) -#define DEC_EMPTY_EN BIT(31) -#define DEC_CNFG_CORRECT (0x3 << 12) -#define ECC_DECIDLE (0x10C) -#define ECC_DECENUM0 (0x114) - -#define ECC_TIMEOUT (500000) - -#define ECC_IDLE_REG(op) ((op) == ECC_ENCODE ? ECC_ENCIDLE : ECC_DECIDLE) -#define ECC_CTL_REG(op) ((op) == ECC_ENCODE ? ECC_ENCCON : ECC_DECCON) - -struct mtk_ecc_caps { - u32 err_mask; - const u8 *ecc_strength; - const u32 *ecc_regs; - u8 num_ecc_strength; - u8 ecc_mode_shift; - u32 parity_bits; - int pg_irq_sel; -}; - -struct mtk_ecc { - struct device *dev; - const struct mtk_ecc_caps *caps; - void __iomem *regs; - struct clk *clk; - - struct completion done; - struct mutex lock; - u32 sectors; - - u8 *eccdata; -}; - -/* ecc strength that each IP supports */ -static const u8 ecc_strength_mt2701[] = { - 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 28, 32, 36, - 40, 44, 48, 52, 56, 60 -}; - -static const u8 ecc_strength_mt2712[] = { - 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 28, 32, 36, - 40, 44, 48, 52, 56, 60, 68, 72, 80 -}; - -static const u8 ecc_strength_mt7622[] = { - 4, 6, 8, 10, 12, 14, 16 -}; - -enum mtk_ecc_regs { - ECC_ENCPAR00, - ECC_ENCIRQ_EN, - ECC_ENCIRQ_STA, - ECC_DECDONE, - ECC_DECIRQ_EN, - ECC_DECIRQ_STA, -}; - -static int mt2701_ecc_regs[] = { - [ECC_ENCPAR00] = 0x10, - [ECC_ENCIRQ_EN] = 0x80, - [ECC_ENCIRQ_STA] = 0x84, - [ECC_DECDONE] = 0x124, - [ECC_DECIRQ_EN] = 0x200, - [ECC_DECIRQ_STA] = 0x204, -}; - -static int mt2712_ecc_regs[] = { - [ECC_ENCPAR00] = 0x300, - [ECC_ENCIRQ_EN] = 0x80, - [ECC_ENCIRQ_STA] = 0x84, - [ECC_DECDONE] = 0x124, - [ECC_DECIRQ_EN] = 0x200, - [ECC_DECIRQ_STA] = 0x204, -}; - -static int mt7622_ecc_regs[] = { - [ECC_ENCPAR00] = 0x10, - [ECC_ENCIRQ_EN] = 0x30, - [ECC_ENCIRQ_STA] = 0x34, - [ECC_DECDONE] = 0x11c, - [ECC_DECIRQ_EN] = 0x140, - [ECC_DECIRQ_STA] = 0x144, -}; - -static inline void mtk_ecc_wait_idle(struct mtk_ecc *ecc, - enum mtk_ecc_operation op) -{ - struct device *dev = ecc->dev; - u32 val; - int ret; - - ret = readl_poll_timeout_atomic(ecc->regs + ECC_IDLE_REG(op), val, - val & ECC_IDLE_MASK, - 10, ECC_TIMEOUT); - if (ret) - dev_warn(dev, "%s NOT idle\n", - op == ECC_ENCODE ? "encoder" : "decoder"); -} - -static irqreturn_t mtk_ecc_irq(int irq, void *id) -{ - struct mtk_ecc *ecc = id; - u32 dec, enc; - - dec = readw(ecc->regs + ecc->caps->ecc_regs[ECC_DECIRQ_STA]) - & ECC_IRQ_EN; - if (dec) { - dec = readw(ecc->regs + ecc->caps->ecc_regs[ECC_DECDONE]); - if (dec & ecc->sectors) { - /* - * Clear decode IRQ status once again to ensure that - * there will be no extra IRQ. - */ - readw(ecc->regs + ecc->caps->ecc_regs[ECC_DECIRQ_STA]); - ecc->sectors = 0; - complete(&ecc->done); - } else { - return IRQ_HANDLED; - } - } else { - enc = readl(ecc->regs + ecc->caps->ecc_regs[ECC_ENCIRQ_STA]) - & ECC_IRQ_EN; - if (enc) - complete(&ecc->done); - else - return IRQ_NONE; - } - - return IRQ_HANDLED; -} - -static int mtk_ecc_config(struct mtk_ecc *ecc, struct mtk_ecc_config *config) -{ - u32 ecc_bit, dec_sz, enc_sz; - u32 reg, i; - - for (i = 0; i < ecc->caps->num_ecc_strength; i++) { - if (ecc->caps->ecc_strength[i] == config->strength) - break; - } - - if (i == ecc->caps->num_ecc_strength) { - dev_err(ecc->dev, "invalid ecc strength %d\n", - config->strength); - return -EINVAL; - } - - ecc_bit = i; - - if (config->op == ECC_ENCODE) { - /* configure ECC encoder (in bits) */ - enc_sz = config->len << 3; - - reg = ecc_bit | (config->mode << ecc->caps->ecc_mode_shift); - reg |= (enc_sz << ECC_MS_SHIFT); - writel(reg, ecc->regs + ECC_ENCCNFG); - - if (config->mode != ECC_NFI_MODE) - writel(lower_32_bits(config->addr), - ecc->regs + ECC_ENCDIADDR); - - } else { - /* configure ECC decoder (in bits) */ - dec_sz = (config->len << 3) + - config->strength * ecc->caps->parity_bits; - - reg = ecc_bit | (config->mode << ecc->caps->ecc_mode_shift); - reg |= (dec_sz << ECC_MS_SHIFT) | DEC_CNFG_CORRECT; - reg |= DEC_EMPTY_EN; - writel(reg, ecc->regs + ECC_DECCNFG); - - if (config->sectors) - ecc->sectors = 1 << (config->sectors - 1); - } - - return 0; -} - -void mtk_ecc_get_stats(struct mtk_ecc *ecc, struct mtk_ecc_stats *stats, - int sectors) -{ - u32 offset, i, err; - u32 bitflips = 0; - - stats->corrected = 0; - stats->failed = 0; - - for (i = 0; i < sectors; i++) { - offset = (i >> 2) << 2; - err = readl(ecc->regs + ECC_DECENUM0 + offset); - err = err >> ((i % 4) * 8); - err &= ecc->caps->err_mask; - if (err == ecc->caps->err_mask) { - /* uncorrectable errors */ - stats->failed++; - continue; - } - - stats->corrected += err; - bitflips = max_t(u32, bitflips, err); - } - - stats->bitflips = bitflips; -} -EXPORT_SYMBOL(mtk_ecc_get_stats); - -void mtk_ecc_release(struct mtk_ecc *ecc) -{ - clk_disable_unprepare(ecc->clk); - put_device(ecc->dev); -} -EXPORT_SYMBOL(mtk_ecc_release); - -static void mtk_ecc_hw_init(struct mtk_ecc *ecc) -{ - mtk_ecc_wait_idle(ecc, ECC_ENCODE); - writew(ECC_OP_DISABLE, ecc->regs + ECC_ENCCON); - - mtk_ecc_wait_idle(ecc, ECC_DECODE); - writel(ECC_OP_DISABLE, ecc->regs + ECC_DECCON); -} - -static struct mtk_ecc *mtk_ecc_get(struct device_node *np) -{ - struct platform_device *pdev; - struct mtk_ecc *ecc; - - pdev = of_find_device_by_node(np); - if (!pdev || !platform_get_drvdata(pdev)) - return ERR_PTR(-EPROBE_DEFER); - - get_device(&pdev->dev); - ecc = platform_get_drvdata(pdev); - clk_prepare_enable(ecc->clk); - mtk_ecc_hw_init(ecc); - - return ecc; -} - -struct mtk_ecc *of_mtk_ecc_get(struct device_node *of_node) -{ - struct mtk_ecc *ecc = NULL; - struct device_node *np; - - np = of_parse_phandle(of_node, "ecc-engine", 0); - if (np) { - ecc = mtk_ecc_get(np); - of_node_put(np); - } - - return ecc; -} -EXPORT_SYMBOL(of_mtk_ecc_get); - -int mtk_ecc_enable(struct mtk_ecc *ecc, struct mtk_ecc_config *config) -{ - enum mtk_ecc_operation op = config->op; - u16 reg_val; - int ret; - - ret = mutex_lock_interruptible(&ecc->lock); - if (ret) { - dev_err(ecc->dev, "interrupted when attempting to lock\n"); - return ret; - } - - mtk_ecc_wait_idle(ecc, op); - - ret = mtk_ecc_config(ecc, config); - if (ret) { - mutex_unlock(&ecc->lock); - return ret; - } - - if (config->mode != ECC_NFI_MODE || op != ECC_ENCODE) { - init_completion(&ecc->done); - reg_val = ECC_IRQ_EN; - /* - * For ECC_NFI_MODE, if ecc->caps->pg_irq_sel is 1, then it - * means this chip can only generate one ecc irq during page - * read / write. If is 0, generate one ecc irq each ecc step. - */ - if (ecc->caps->pg_irq_sel && config->mode == ECC_NFI_MODE) - reg_val |= ECC_PG_IRQ_SEL; - if (op == ECC_ENCODE) - writew(reg_val, ecc->regs + - ecc->caps->ecc_regs[ECC_ENCIRQ_EN]); - else - writew(reg_val, ecc->regs + - ecc->caps->ecc_regs[ECC_DECIRQ_EN]); - } - - writew(ECC_OP_ENABLE, ecc->regs + ECC_CTL_REG(op)); - - return 0; -} -EXPORT_SYMBOL(mtk_ecc_enable); - -void mtk_ecc_disable(struct mtk_ecc *ecc) -{ - enum mtk_ecc_operation op = ECC_ENCODE; - - /* find out the running operation */ - if (readw(ecc->regs + ECC_CTL_REG(op)) != ECC_OP_ENABLE) - op = ECC_DECODE; - - /* disable it */ - mtk_ecc_wait_idle(ecc, op); - if (op == ECC_DECODE) { - /* - * Clear decode IRQ status in case there is a timeout to wait - * decode IRQ. - */ - readw(ecc->regs + ecc->caps->ecc_regs[ECC_DECDONE]); - writew(0, ecc->regs + ecc->caps->ecc_regs[ECC_DECIRQ_EN]); - } else { - writew(0, ecc->regs + ecc->caps->ecc_regs[ECC_ENCIRQ_EN]); - } - - writew(ECC_OP_DISABLE, ecc->regs + ECC_CTL_REG(op)); - - mutex_unlock(&ecc->lock); -} -EXPORT_SYMBOL(mtk_ecc_disable); - -int mtk_ecc_wait_done(struct mtk_ecc *ecc, enum mtk_ecc_operation op) -{ - int ret; - - ret = wait_for_completion_timeout(&ecc->done, msecs_to_jiffies(500)); - if (!ret) { - dev_err(ecc->dev, "%s timeout - interrupt did not arrive)\n", - (op == ECC_ENCODE) ? "encoder" : "decoder"); - return -ETIMEDOUT; - } - - return 0; -} -EXPORT_SYMBOL(mtk_ecc_wait_done); - -int mtk_ecc_encode(struct mtk_ecc *ecc, struct mtk_ecc_config *config, - u8 *data, u32 bytes) -{ - dma_addr_t addr; - u32 len; - int ret; - - addr = dma_map_single(ecc->dev, data, bytes, DMA_TO_DEVICE); - ret = dma_mapping_error(ecc->dev, addr); - if (ret) { - dev_err(ecc->dev, "dma mapping error\n"); - return -EINVAL; - } - - config->op = ECC_ENCODE; - config->addr = addr; - ret = mtk_ecc_enable(ecc, config); - if (ret) { - dma_unmap_single(ecc->dev, addr, bytes, DMA_TO_DEVICE); - return ret; - } - - ret = mtk_ecc_wait_done(ecc, ECC_ENCODE); - if (ret) - goto timeout; - - mtk_ecc_wait_idle(ecc, ECC_ENCODE); - - /* Program ECC bytes to OOB: per sector oob = FDM + ECC + SPARE */ - len = (config->strength * ecc->caps->parity_bits + 7) >> 3; - - /* write the parity bytes generated by the ECC back to temp buffer */ - __ioread32_copy(ecc->eccdata, - ecc->regs + ecc->caps->ecc_regs[ECC_ENCPAR00], - round_up(len, 4)); - - /* copy into possibly unaligned OOB region with actual length */ - memcpy(data + bytes, ecc->eccdata, len); -timeout: - - dma_unmap_single(ecc->dev, addr, bytes, DMA_TO_DEVICE); - mtk_ecc_disable(ecc); - - return ret; -} -EXPORT_SYMBOL(mtk_ecc_encode); - -void mtk_ecc_adjust_strength(struct mtk_ecc *ecc, u32 *p) -{ - const u8 *ecc_strength = ecc->caps->ecc_strength; - int i; - - for (i = 0; i < ecc->caps->num_ecc_strength; i++) { - if (*p <= ecc_strength[i]) { - if (!i) - *p = ecc_strength[i]; - else if (*p != ecc_strength[i]) - *p = ecc_strength[i - 1]; - return; - } - } - - *p = ecc_strength[ecc->caps->num_ecc_strength - 1]; -} -EXPORT_SYMBOL(mtk_ecc_adjust_strength); - -unsigned int mtk_ecc_get_parity_bits(struct mtk_ecc *ecc) -{ - return ecc->caps->parity_bits; -} -EXPORT_SYMBOL(mtk_ecc_get_parity_bits); - -static const struct mtk_ecc_caps mtk_ecc_caps_mt2701 = { - .err_mask = 0x3f, - .ecc_strength = ecc_strength_mt2701, - .ecc_regs = mt2701_ecc_regs, - .num_ecc_strength = 20, - .ecc_mode_shift = 5, - .parity_bits = 14, - .pg_irq_sel = 0, -}; - -static const struct mtk_ecc_caps mtk_ecc_caps_mt2712 = { - .err_mask = 0x7f, - .ecc_strength = ecc_strength_mt2712, - .ecc_regs = mt2712_ecc_regs, - .num_ecc_strength = 23, - .ecc_mode_shift = 5, - .parity_bits = 14, - .pg_irq_sel = 1, -}; - -static const struct mtk_ecc_caps mtk_ecc_caps_mt7622 = { - .err_mask = 0x3f, - .ecc_strength = ecc_strength_mt7622, - .ecc_regs = mt7622_ecc_regs, - .num_ecc_strength = 7, - .ecc_mode_shift = 4, - .parity_bits = 13, - .pg_irq_sel = 0, -}; - -static const struct of_device_id mtk_ecc_dt_match[] = { - { - .compatible = "mediatek,mt2701-ecc", - .data = &mtk_ecc_caps_mt2701, - }, { - .compatible = "mediatek,mt2712-ecc", - .data = &mtk_ecc_caps_mt2712, - }, { - .compatible = "mediatek,mt7622-ecc", - .data = &mtk_ecc_caps_mt7622, - }, - {}, -}; - -static int mtk_ecc_probe(struct platform_device *pdev) -{ - struct device *dev = &pdev->dev; - struct mtk_ecc *ecc; - struct resource *res; - const struct of_device_id *of_ecc_id = NULL; - u32 max_eccdata_size; - int irq, ret; - - ecc = devm_kzalloc(dev, sizeof(*ecc), GFP_KERNEL); - if (!ecc) - return -ENOMEM; - - of_ecc_id = of_match_device(mtk_ecc_dt_match, &pdev->dev); - if (!of_ecc_id) - return -ENODEV; - - ecc->caps = of_ecc_id->data; - - max_eccdata_size = ecc->caps->num_ecc_strength - 1; - max_eccdata_size = ecc->caps->ecc_strength[max_eccdata_size]; - max_eccdata_size = (max_eccdata_size * ecc->caps->parity_bits + 7) >> 3; - max_eccdata_size = round_up(max_eccdata_size, 4); - ecc->eccdata = devm_kzalloc(dev, max_eccdata_size, GFP_KERNEL); - if (!ecc->eccdata) - return -ENOMEM; - - res = platform_get_resource(pdev, IORESOURCE_MEM, 0); - ecc->regs = devm_ioremap_resource(dev, res); - if (IS_ERR(ecc->regs)) { - dev_err(dev, "failed to map regs: %ld\n", PTR_ERR(ecc->regs)); - return PTR_ERR(ecc->regs); - } - - ecc->clk = devm_clk_get(dev, NULL); - if (IS_ERR(ecc->clk)) { - dev_err(dev, "failed to get clock: %ld\n", PTR_ERR(ecc->clk)); - return PTR_ERR(ecc->clk); - } - - irq = platform_get_irq(pdev, 0); - if (irq < 0) { - dev_err(dev, "failed to get irq: %d\n", irq); - return irq; - } - - ret = dma_set_mask(dev, DMA_BIT_MASK(32)); - if (ret) { - dev_err(dev, "failed to set DMA mask\n"); - return ret; - } - - ret = devm_request_irq(dev, irq, mtk_ecc_irq, 0x0, "mtk-ecc", ecc); - if (ret) { - dev_err(dev, "failed to request irq\n"); - return -EINVAL; - } - - ecc->dev = dev; - mutex_init(&ecc->lock); - platform_set_drvdata(pdev, ecc); - dev_info(dev, "probed\n"); - - return 0; -} - -#ifdef CONFIG_PM_SLEEP -static int mtk_ecc_suspend(struct device *dev) -{ - struct mtk_ecc *ecc = dev_get_drvdata(dev); - - clk_disable_unprepare(ecc->clk); - - return 0; -} - -static int mtk_ecc_resume(struct device *dev) -{ - struct mtk_ecc *ecc = dev_get_drvdata(dev); - int ret; - - ret = clk_prepare_enable(ecc->clk); - if (ret) { - dev_err(dev, "failed to enable clk\n"); - return ret; - } - - return 0; -} - -static SIMPLE_DEV_PM_OPS(mtk_ecc_pm_ops, mtk_ecc_suspend, mtk_ecc_resume); -#endif - -MODULE_DEVICE_TABLE(of, mtk_ecc_dt_match); - -static struct platform_driver mtk_ecc_driver = { - .probe = mtk_ecc_probe, - .driver = { - .name = "mtk-ecc", - .of_match_table = of_match_ptr(mtk_ecc_dt_match), -#ifdef CONFIG_PM_SLEEP - .pm = &mtk_ecc_pm_ops, -#endif - }, -}; - -module_platform_driver(mtk_ecc_driver); - -MODULE_AUTHOR("Xiaolei Li "); -MODULE_DESCRIPTION("MTK Nand ECC Driver"); -MODULE_LICENSE("GPL"); diff --git a/drivers/mtd/nand/mtk_ecc.h b/drivers/mtd/nand/mtk_ecc.h deleted file mode 100644 index a455df080952..000000000000 --- a/drivers/mtd/nand/mtk_ecc.h +++ /dev/null @@ -1,49 +0,0 @@ -/* - * MTK SDG1 ECC controller - * - * Copyright (c) 2016 Mediatek - * Authors: Xiaolei Li - * Jorge Ramirez-Ortiz - * This program is free software; you can redistribute it and/or modify it - * under the terms of the GNU General Public License version 2 as published - * by the Free Software Foundation. - */ - -#ifndef __DRIVERS_MTD_NAND_MTK_ECC_H__ -#define __DRIVERS_MTD_NAND_MTK_ECC_H__ - -#include - -enum mtk_ecc_mode {ECC_DMA_MODE = 0, ECC_NFI_MODE = 1}; -enum mtk_ecc_operation {ECC_ENCODE, ECC_DECODE}; - -struct device_node; -struct mtk_ecc; - -struct mtk_ecc_stats { - u32 corrected; - u32 bitflips; - u32 failed; -}; - -struct mtk_ecc_config { - enum mtk_ecc_operation op; - enum mtk_ecc_mode mode; - dma_addr_t addr; - u32 strength; - u32 sectors; - u32 len; -}; - -int mtk_ecc_encode(struct mtk_ecc *, struct mtk_ecc_config *, u8 *, u32); -void mtk_ecc_get_stats(struct mtk_ecc *, struct mtk_ecc_stats *, int); -int mtk_ecc_wait_done(struct mtk_ecc *, enum mtk_ecc_operation); -int mtk_ecc_enable(struct mtk_ecc *, struct mtk_ecc_config *); -void mtk_ecc_disable(struct mtk_ecc *); -void mtk_ecc_adjust_strength(struct mtk_ecc *ecc, u32 *p); -unsigned int mtk_ecc_get_parity_bits(struct mtk_ecc *ecc); - -struct mtk_ecc *of_mtk_ecc_get(struct device_node *); -void mtk_ecc_release(struct mtk_ecc *); - -#endif diff --git a/drivers/mtd/nand/mtk_nand.c b/drivers/mtd/nand/mtk_nand.c deleted file mode 100644 index 6977da3a26aa..000000000000 --- a/drivers/mtd/nand/mtk_nand.c +++ /dev/null @@ -1,1599 +0,0 @@ -/* - * MTK NAND Flash controller driver. - * Copyright (C) 2016 MediaTek Inc. - * Authors: Xiaolei Li - * Jorge Ramirez-Ortiz - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License version 2 as - * published by the Free Software Foundation. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - */ - -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include "mtk_ecc.h" - -/* NAND controller register definition */ -#define NFI_CNFG (0x00) -#define CNFG_AHB BIT(0) -#define CNFG_READ_EN BIT(1) -#define CNFG_DMA_BURST_EN BIT(2) -#define CNFG_BYTE_RW BIT(6) -#define CNFG_HW_ECC_EN BIT(8) -#define CNFG_AUTO_FMT_EN BIT(9) -#define CNFG_OP_CUST (6 << 12) -#define NFI_PAGEFMT (0x04) -#define PAGEFMT_FDM_ECC_SHIFT (12) -#define PAGEFMT_FDM_SHIFT (8) -#define PAGEFMT_SEC_SEL_512 BIT(2) -#define PAGEFMT_512_2K (0) -#define PAGEFMT_2K_4K (1) -#define PAGEFMT_4K_8K (2) -#define PAGEFMT_8K_16K (3) -/* NFI control */ -#define NFI_CON (0x08) -#define CON_FIFO_FLUSH BIT(0) -#define CON_NFI_RST BIT(1) -#define CON_BRD BIT(8) /* burst read */ -#define CON_BWR BIT(9) /* burst write */ -#define CON_SEC_SHIFT (12) -/* Timming control register */ -#define NFI_ACCCON (0x0C) -#define NFI_INTR_EN (0x10) -#define INTR_AHB_DONE_EN BIT(6) -#define NFI_INTR_STA (0x14) -#define NFI_CMD (0x20) -#define NFI_ADDRNOB (0x30) -#define NFI_COLADDR (0x34) -#define NFI_ROWADDR (0x38) -#define NFI_STRDATA (0x40) -#define STAR_EN (1) -#define STAR_DE (0) -#define NFI_CNRNB (0x44) -#define NFI_DATAW (0x50) -#define NFI_DATAR (0x54) -#define NFI_PIO_DIRDY (0x58) -#define PIO_DI_RDY (0x01) -#define NFI_STA (0x60) -#define STA_CMD BIT(0) -#define STA_ADDR BIT(1) -#define STA_BUSY BIT(8) -#define STA_EMP_PAGE BIT(12) -#define NFI_FSM_CUSTDATA (0xe << 16) -#define NFI_FSM_MASK (0xf << 16) -#define NFI_ADDRCNTR (0x70) -#define CNTR_MASK GENMASK(16, 12) -#define ADDRCNTR_SEC_SHIFT (12) -#define ADDRCNTR_SEC(val) \ - (((val) & CNTR_MASK) >> ADDRCNTR_SEC_SHIFT) -#define NFI_STRADDR (0x80) -#define NFI_BYTELEN (0x84) -#define NFI_CSEL (0x90) -#define NFI_FDML(x) (0xA0 + (x) * sizeof(u32) * 2) -#define NFI_FDMM(x) (0xA4 + (x) * sizeof(u32) * 2) -#define NFI_FDM_MAX_SIZE (8) -#define NFI_FDM_MIN_SIZE (1) -#define NFI_MASTER_STA (0x224) -#define MASTER_STA_MASK (0x0FFF) -#define NFI_EMPTY_THRESH (0x23C) - -#define MTK_NAME "mtk-nand" -#define KB(x) ((x) * 1024UL) -#define MB(x) (KB(x) * 1024UL) - -#define MTK_TIMEOUT (500000) -#define MTK_RESET_TIMEOUT (1000000) -#define MTK_NAND_MAX_NSELS (2) -#define MTK_NFC_MIN_SPARE (16) -#define ACCTIMING(tpoecs, tprecs, tc2r, tw2r, twh, twst, trlt) \ - ((tpoecs) << 28 | (tprecs) << 22 | (tc2r) << 16 | \ - (tw2r) << 12 | (twh) << 8 | (twst) << 4 | (trlt)) - -struct mtk_nfc_caps { - const u8 *spare_size; - u8 num_spare_size; - u8 pageformat_spare_shift; - u8 nfi_clk_div; - u8 max_sector; - u32 max_sector_size; -}; - -struct mtk_nfc_bad_mark_ctl { - void (*bm_swap)(struct mtd_info *, u8 *buf, int raw); - u32 sec; - u32 pos; -}; - -/* - * FDM: region used to store free OOB data - */ -struct mtk_nfc_fdm { - u32 reg_size; - u32 ecc_size; -}; - -struct mtk_nfc_nand_chip { - struct list_head node; - struct nand_chip nand; - - struct mtk_nfc_bad_mark_ctl bad_mark; - struct mtk_nfc_fdm fdm; - u32 spare_per_sector; - - int nsels; - u8 sels[0]; - /* nothing after this field */ -}; - -struct mtk_nfc_clk { - struct clk *nfi_clk; - struct clk *pad_clk; -}; - -struct mtk_nfc { - struct nand_hw_control controller; - struct mtk_ecc_config ecc_cfg; - struct mtk_nfc_clk clk; - struct mtk_ecc *ecc; - - struct device *dev; - const struct mtk_nfc_caps *caps; - void __iomem *regs; - - struct completion done; - struct list_head chips; - - u8 *buffer; -}; - -/* - * supported spare size of each IP. - * order should be the same with the spare size bitfiled defination of - * register NFI_PAGEFMT. - */ -static const u8 spare_size_mt2701[] = { - 16, 26, 27, 28, 32, 36, 40, 44, 48, 49, 50, 51, 52, 62, 63, 64 -}; - -static const u8 spare_size_mt2712[] = { - 16, 26, 27, 28, 32, 36, 40, 44, 48, 49, 50, 51, 52, 62, 61, 63, 64, 67, - 74 -}; - -static const u8 spare_size_mt7622[] = { - 16, 26, 27, 28 -}; - -static inline struct mtk_nfc_nand_chip *to_mtk_nand(struct nand_chip *nand) -{ - return container_of(nand, struct mtk_nfc_nand_chip, nand); -} - -static inline u8 *data_ptr(struct nand_chip *chip, const u8 *p, int i) -{ - return (u8 *)p + i * chip->ecc.size; -} - -static inline u8 *oob_ptr(struct nand_chip *chip, int i) -{ - struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip); - u8 *poi; - - /* map the sector's FDM data to free oob: - * the beginning of the oob area stores the FDM data of bad mark sectors - */ - - if (i < mtk_nand->bad_mark.sec) - poi = chip->oob_poi + (i + 1) * mtk_nand->fdm.reg_size; - else if (i == mtk_nand->bad_mark.sec) - poi = chip->oob_poi; - else - poi = chip->oob_poi + i * mtk_nand->fdm.reg_size; - - return poi; -} - -static inline int mtk_data_len(struct nand_chip *chip) -{ - struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip); - - return chip->ecc.size + mtk_nand->spare_per_sector; -} - -static inline u8 *mtk_data_ptr(struct nand_chip *chip, int i) -{ - struct mtk_nfc *nfc = nand_get_controller_data(chip); - - return nfc->buffer + i * mtk_data_len(chip); -} - -static inline u8 *mtk_oob_ptr(struct nand_chip *chip, int i) -{ - struct mtk_nfc *nfc = nand_get_controller_data(chip); - - return nfc->buffer + i * mtk_data_len(chip) + chip->ecc.size; -} - -static inline void nfi_writel(struct mtk_nfc *nfc, u32 val, u32 reg) -{ - writel(val, nfc->regs + reg); -} - -static inline void nfi_writew(struct mtk_nfc *nfc, u16 val, u32 reg) -{ - writew(val, nfc->regs + reg); -} - -static inline void nfi_writeb(struct mtk_nfc *nfc, u8 val, u32 reg) -{ - writeb(val, nfc->regs + reg); -} - -static inline u32 nfi_readl(struct mtk_nfc *nfc, u32 reg) -{ - return readl_relaxed(nfc->regs + reg); -} - -static inline u16 nfi_readw(struct mtk_nfc *nfc, u32 reg) -{ - return readw_relaxed(nfc->regs + reg); -} - -static inline u8 nfi_readb(struct mtk_nfc *nfc, u32 reg) -{ - return readb_relaxed(nfc->regs + reg); -} - -static void mtk_nfc_hw_reset(struct mtk_nfc *nfc) -{ - struct device *dev = nfc->dev; - u32 val; - int ret; - - /* reset all registers and force the NFI master to terminate */ - nfi_writel(nfc, CON_FIFO_FLUSH | CON_NFI_RST, NFI_CON); - - /* wait for the master to finish the last transaction */ - ret = readl_poll_timeout(nfc->regs + NFI_MASTER_STA, val, - !(val & MASTER_STA_MASK), 50, - MTK_RESET_TIMEOUT); - if (ret) - dev_warn(dev, "master active in reset [0x%x] = 0x%x\n", - NFI_MASTER_STA, val); - - /* ensure any status register affected by the NFI master is reset */ - nfi_writel(nfc, CON_FIFO_FLUSH | CON_NFI_RST, NFI_CON); - nfi_writew(nfc, STAR_DE, NFI_STRDATA); -} - -static int mtk_nfc_send_command(struct mtk_nfc *nfc, u8 command) -{ - struct device *dev = nfc->dev; - u32 val; - int ret; - - nfi_writel(nfc, command, NFI_CMD); - - ret = readl_poll_timeout_atomic(nfc->regs + NFI_STA, val, - !(val & STA_CMD), 10, MTK_TIMEOUT); - if (ret) { - dev_warn(dev, "nfi core timed out entering command mode\n"); - return -EIO; - } - - return 0; -} - -static int mtk_nfc_send_address(struct mtk_nfc *nfc, int addr) -{ - struct device *dev = nfc->dev; - u32 val; - int ret; - - nfi_writel(nfc, addr, NFI_COLADDR); - nfi_writel(nfc, 0, NFI_ROWADDR); - nfi_writew(nfc, 1, NFI_ADDRNOB); - - ret = readl_poll_timeout_atomic(nfc->regs + NFI_STA, val, - !(val & STA_ADDR), 10, MTK_TIMEOUT); - if (ret) { - dev_warn(dev, "nfi core timed out entering address mode\n"); - return -EIO; - } - - return 0; -} - -static int mtk_nfc_hw_runtime_config(struct mtd_info *mtd) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip); - struct mtk_nfc *nfc = nand_get_controller_data(chip); - u32 fmt, spare, i; - - if (!mtd->writesize) - return 0; - - spare = mtk_nand->spare_per_sector; - - switch (mtd->writesize) { - case 512: - fmt = PAGEFMT_512_2K | PAGEFMT_SEC_SEL_512; - break; - case KB(2): - if (chip->ecc.size == 512) - fmt = PAGEFMT_2K_4K | PAGEFMT_SEC_SEL_512; - else - fmt = PAGEFMT_512_2K; - break; - case KB(4): - if (chip->ecc.size == 512) - fmt = PAGEFMT_4K_8K | PAGEFMT_SEC_SEL_512; - else - fmt = PAGEFMT_2K_4K; - break; - case KB(8): - if (chip->ecc.size == 512) - fmt = PAGEFMT_8K_16K | PAGEFMT_SEC_SEL_512; - else - fmt = PAGEFMT_4K_8K; - break; - case KB(16): - fmt = PAGEFMT_8K_16K; - break; - default: - dev_err(nfc->dev, "invalid page len: %d\n", mtd->writesize); - return -EINVAL; - } - - /* - * the hardware will double the value for this eccsize, so we need to - * halve it - */ - if (chip->ecc.size == 1024) - spare >>= 1; - - for (i = 0; i < nfc->caps->num_spare_size; i++) { - if (nfc->caps->spare_size[i] == spare) - break; - } - - if (i == nfc->caps->num_spare_size) { - dev_err(nfc->dev, "invalid spare size %d\n", spare); - return -EINVAL; - } - - fmt |= i << nfc->caps->pageformat_spare_shift; - - fmt |= mtk_nand->fdm.reg_size << PAGEFMT_FDM_SHIFT; - fmt |= mtk_nand->fdm.ecc_size << PAGEFMT_FDM_ECC_SHIFT; - nfi_writel(nfc, fmt, NFI_PAGEFMT); - - nfc->ecc_cfg.strength = chip->ecc.strength; - nfc->ecc_cfg.len = chip->ecc.size + mtk_nand->fdm.ecc_size; - - return 0; -} - -static void mtk_nfc_select_chip(struct mtd_info *mtd, int chip) -{ - struct nand_chip *nand = mtd_to_nand(mtd); - struct mtk_nfc *nfc = nand_get_controller_data(nand); - struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(nand); - - if (chip < 0) - return; - - mtk_nfc_hw_runtime_config(mtd); - - nfi_writel(nfc, mtk_nand->sels[chip], NFI_CSEL); -} - -static int mtk_nfc_dev_ready(struct mtd_info *mtd) -{ - struct mtk_nfc *nfc = nand_get_controller_data(mtd_to_nand(mtd)); - - if (nfi_readl(nfc, NFI_STA) & STA_BUSY) - return 0; - - return 1; -} - -static void mtk_nfc_cmd_ctrl(struct mtd_info *mtd, int dat, unsigned int ctrl) -{ - struct mtk_nfc *nfc = nand_get_controller_data(mtd_to_nand(mtd)); - - if (ctrl & NAND_ALE) { - mtk_nfc_send_address(nfc, dat); - } else if (ctrl & NAND_CLE) { - mtk_nfc_hw_reset(nfc); - - nfi_writew(nfc, CNFG_OP_CUST, NFI_CNFG); - mtk_nfc_send_command(nfc, dat); - } -} - -static inline void mtk_nfc_wait_ioready(struct mtk_nfc *nfc) -{ - int rc; - u8 val; - - rc = readb_poll_timeout_atomic(nfc->regs + NFI_PIO_DIRDY, val, - val & PIO_DI_RDY, 10, MTK_TIMEOUT); - if (rc < 0) - dev_err(nfc->dev, "data not ready\n"); -} - -static inline u8 mtk_nfc_read_byte(struct mtd_info *mtd) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct mtk_nfc *nfc = nand_get_controller_data(chip); - u32 reg; - - /* after each byte read, the NFI_STA reg is reset by the hardware */ - reg = nfi_readl(nfc, NFI_STA) & NFI_FSM_MASK; - if (reg != NFI_FSM_CUSTDATA) { - reg = nfi_readw(nfc, NFI_CNFG); - reg |= CNFG_BYTE_RW | CNFG_READ_EN; - nfi_writew(nfc, reg, NFI_CNFG); - - /* - * set to max sector to allow the HW to continue reading over - * unaligned accesses - */ - reg = (nfc->caps->max_sector << CON_SEC_SHIFT) | CON_BRD; - nfi_writel(nfc, reg, NFI_CON); - - /* trigger to fetch data */ - nfi_writew(nfc, STAR_EN, NFI_STRDATA); - } - - mtk_nfc_wait_ioready(nfc); - - return nfi_readb(nfc, NFI_DATAR); -} - -static void mtk_nfc_read_buf(struct mtd_info *mtd, u8 *buf, int len) -{ - int i; - - for (i = 0; i < len; i++) - buf[i] = mtk_nfc_read_byte(mtd); -} - -static void mtk_nfc_write_byte(struct mtd_info *mtd, u8 byte) -{ - struct mtk_nfc *nfc = nand_get_controller_data(mtd_to_nand(mtd)); - u32 reg; - - reg = nfi_readl(nfc, NFI_STA) & NFI_FSM_MASK; - - if (reg != NFI_FSM_CUSTDATA) { - reg = nfi_readw(nfc, NFI_CNFG) | CNFG_BYTE_RW; - nfi_writew(nfc, reg, NFI_CNFG); - - reg = nfc->caps->max_sector << CON_SEC_SHIFT | CON_BWR; - nfi_writel(nfc, reg, NFI_CON); - - nfi_writew(nfc, STAR_EN, NFI_STRDATA); - } - - mtk_nfc_wait_ioready(nfc); - nfi_writeb(nfc, byte, NFI_DATAW); -} - -static void mtk_nfc_write_buf(struct mtd_info *mtd, const u8 *buf, int len) -{ - int i; - - for (i = 0; i < len; i++) - mtk_nfc_write_byte(mtd, buf[i]); -} - -static int mtk_nfc_setup_data_interface(struct mtd_info *mtd, int csline, - const struct nand_data_interface *conf) -{ - struct mtk_nfc *nfc = nand_get_controller_data(mtd_to_nand(mtd)); - const struct nand_sdr_timings *timings; - u32 rate, tpoecs, tprecs, tc2r, tw2r, twh, twst, trlt; - - timings = nand_get_sdr_timings(conf); - if (IS_ERR(timings)) - return -ENOTSUPP; - - if (csline == NAND_DATA_IFACE_CHECK_ONLY) - return 0; - - rate = clk_get_rate(nfc->clk.nfi_clk); - /* There is a frequency divider in some IPs */ - rate /= nfc->caps->nfi_clk_div; - - /* turn clock rate into KHZ */ - rate /= 1000; - - tpoecs = max(timings->tALH_min, timings->tCLH_min) / 1000; - tpoecs = DIV_ROUND_UP(tpoecs * rate, 1000000); - tpoecs &= 0xf; - - tprecs = max(timings->tCLS_min, timings->tALS_min) / 1000; - tprecs = DIV_ROUND_UP(tprecs * rate, 1000000); - tprecs &= 0x3f; - - /* sdr interface has no tCR which means CE# low to RE# low */ - tc2r = 0; - - tw2r = timings->tWHR_min / 1000; - tw2r = DIV_ROUND_UP(tw2r * rate, 1000000); - tw2r = DIV_ROUND_UP(tw2r - 1, 2); - tw2r &= 0xf; - - twh = max(timings->tREH_min, timings->tWH_min) / 1000; - twh = DIV_ROUND_UP(twh * rate, 1000000) - 1; - twh &= 0xf; - - twst = timings->tWP_min / 1000; - twst = DIV_ROUND_UP(twst * rate, 1000000) - 1; - twst &= 0xf; - - trlt = max(timings->tREA_max, timings->tRP_min) / 1000; - trlt = DIV_ROUND_UP(trlt * rate, 1000000) - 1; - trlt &= 0xf; - - /* - * ACCON: access timing control register - * ------------------------------------- - * 31:28: tpoecs, minimum required time for CS post pulling down after - * accessing the device - * 27:22: tprecs, minimum required time for CS pre pulling down before - * accessing the device - * 21:16: tc2r, minimum required time from NCEB low to NREB low - * 15:12: tw2r, minimum required time from NWEB high to NREB low. - * 11:08: twh, write enable hold time - * 07:04: twst, write wait states - * 03:00: trlt, read wait states - */ - trlt = ACCTIMING(tpoecs, tprecs, tc2r, tw2r, twh, twst, trlt); - nfi_writel(nfc, trlt, NFI_ACCCON); - - return 0; -} - -static int mtk_nfc_sector_encode(struct nand_chip *chip, u8 *data) -{ - struct mtk_nfc *nfc = nand_get_controller_data(chip); - struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip); - int size = chip->ecc.size + mtk_nand->fdm.reg_size; - - nfc->ecc_cfg.mode = ECC_DMA_MODE; - nfc->ecc_cfg.op = ECC_ENCODE; - - return mtk_ecc_encode(nfc->ecc, &nfc->ecc_cfg, data, size); -} - -static void mtk_nfc_no_bad_mark_swap(struct mtd_info *a, u8 *b, int c) -{ - /* nop */ -} - -static void mtk_nfc_bad_mark_swap(struct mtd_info *mtd, u8 *buf, int raw) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct mtk_nfc_nand_chip *nand = to_mtk_nand(chip); - u32 bad_pos = nand->bad_mark.pos; - - if (raw) - bad_pos += nand->bad_mark.sec * mtk_data_len(chip); - else - bad_pos += nand->bad_mark.sec * chip->ecc.size; - - swap(chip->oob_poi[0], buf[bad_pos]); -} - -static int mtk_nfc_format_subpage(struct mtd_info *mtd, u32 offset, - u32 len, const u8 *buf) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip); - struct mtk_nfc *nfc = nand_get_controller_data(chip); - struct mtk_nfc_fdm *fdm = &mtk_nand->fdm; - u32 start, end; - int i, ret; - - start = offset / chip->ecc.size; - end = DIV_ROUND_UP(offset + len, chip->ecc.size); - - memset(nfc->buffer, 0xff, mtd->writesize + mtd->oobsize); - for (i = 0; i < chip->ecc.steps; i++) { - memcpy(mtk_data_ptr(chip, i), data_ptr(chip, buf, i), - chip->ecc.size); - - if (start > i || i >= end) - continue; - - if (i == mtk_nand->bad_mark.sec) - mtk_nand->bad_mark.bm_swap(mtd, nfc->buffer, 1); - - memcpy(mtk_oob_ptr(chip, i), oob_ptr(chip, i), fdm->reg_size); - - /* program the CRC back to the OOB */ - ret = mtk_nfc_sector_encode(chip, mtk_data_ptr(chip, i)); - if (ret < 0) - return ret; - } - - return 0; -} - -static void mtk_nfc_format_page(struct mtd_info *mtd, const u8 *buf) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip); - struct mtk_nfc *nfc = nand_get_controller_data(chip); - struct mtk_nfc_fdm *fdm = &mtk_nand->fdm; - u32 i; - - memset(nfc->buffer, 0xff, mtd->writesize + mtd->oobsize); - for (i = 0; i < chip->ecc.steps; i++) { - if (buf) - memcpy(mtk_data_ptr(chip, i), data_ptr(chip, buf, i), - chip->ecc.size); - - if (i == mtk_nand->bad_mark.sec) - mtk_nand->bad_mark.bm_swap(mtd, nfc->buffer, 1); - - memcpy(mtk_oob_ptr(chip, i), oob_ptr(chip, i), fdm->reg_size); - } -} - -static inline void mtk_nfc_read_fdm(struct nand_chip *chip, u32 start, - u32 sectors) -{ - struct mtk_nfc *nfc = nand_get_controller_data(chip); - struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip); - struct mtk_nfc_fdm *fdm = &mtk_nand->fdm; - u32 vall, valm; - u8 *oobptr; - int i, j; - - for (i = 0; i < sectors; i++) { - oobptr = oob_ptr(chip, start + i); - vall = nfi_readl(nfc, NFI_FDML(i)); - valm = nfi_readl(nfc, NFI_FDMM(i)); - - for (j = 0; j < fdm->reg_size; j++) - oobptr[j] = (j >= 4 ? valm : vall) >> ((j % 4) * 8); - } -} - -static inline void mtk_nfc_write_fdm(struct nand_chip *chip) -{ - struct mtk_nfc *nfc = nand_get_controller_data(chip); - struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip); - struct mtk_nfc_fdm *fdm = &mtk_nand->fdm; - u32 vall, valm; - u8 *oobptr; - int i, j; - - for (i = 0; i < chip->ecc.steps; i++) { - oobptr = oob_ptr(chip, i); - vall = 0; - valm = 0; - for (j = 0; j < 8; j++) { - if (j < 4) - vall |= (j < fdm->reg_size ? oobptr[j] : 0xff) - << (j * 8); - else - valm |= (j < fdm->reg_size ? oobptr[j] : 0xff) - << ((j - 4) * 8); - } - nfi_writel(nfc, vall, NFI_FDML(i)); - nfi_writel(nfc, valm, NFI_FDMM(i)); - } -} - -static int mtk_nfc_do_write_page(struct mtd_info *mtd, struct nand_chip *chip, - const u8 *buf, int page, int len) -{ - struct mtk_nfc *nfc = nand_get_controller_data(chip); - struct device *dev = nfc->dev; - dma_addr_t addr; - u32 reg; - int ret; - - addr = dma_map_single(dev, (void *)buf, len, DMA_TO_DEVICE); - ret = dma_mapping_error(nfc->dev, addr); - if (ret) { - dev_err(nfc->dev, "dma mapping error\n"); - return -EINVAL; - } - - reg = nfi_readw(nfc, NFI_CNFG) | CNFG_AHB | CNFG_DMA_BURST_EN; - nfi_writew(nfc, reg, NFI_CNFG); - - nfi_writel(nfc, chip->ecc.steps << CON_SEC_SHIFT, NFI_CON); - nfi_writel(nfc, lower_32_bits(addr), NFI_STRADDR); - nfi_writew(nfc, INTR_AHB_DONE_EN, NFI_INTR_EN); - - init_completion(&nfc->done); - - reg = nfi_readl(nfc, NFI_CON) | CON_BWR; - nfi_writel(nfc, reg, NFI_CON); - nfi_writew(nfc, STAR_EN, NFI_STRDATA); - - ret = wait_for_completion_timeout(&nfc->done, msecs_to_jiffies(500)); - if (!ret) { - dev_err(dev, "program ahb done timeout\n"); - nfi_writew(nfc, 0, NFI_INTR_EN); - ret = -ETIMEDOUT; - goto timeout; - } - - ret = readl_poll_timeout_atomic(nfc->regs + NFI_ADDRCNTR, reg, - ADDRCNTR_SEC(reg) >= chip->ecc.steps, - 10, MTK_TIMEOUT); - if (ret) - dev_err(dev, "hwecc write timeout\n"); - -timeout: - - dma_unmap_single(nfc->dev, addr, len, DMA_TO_DEVICE); - nfi_writel(nfc, 0, NFI_CON); - - return ret; -} - -static int mtk_nfc_write_page(struct mtd_info *mtd, struct nand_chip *chip, - const u8 *buf, int page, int raw) -{ - struct mtk_nfc *nfc = nand_get_controller_data(chip); - struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip); - size_t len; - const u8 *bufpoi; - u32 reg; - int ret; - - nand_prog_page_begin_op(chip, page, 0, NULL, 0); - - if (!raw) { - /* OOB => FDM: from register, ECC: from HW */ - reg = nfi_readw(nfc, NFI_CNFG) | CNFG_AUTO_FMT_EN; - nfi_writew(nfc, reg | CNFG_HW_ECC_EN, NFI_CNFG); - - nfc->ecc_cfg.op = ECC_ENCODE; - nfc->ecc_cfg.mode = ECC_NFI_MODE; - ret = mtk_ecc_enable(nfc->ecc, &nfc->ecc_cfg); - if (ret) { - /* clear NFI config */ - reg = nfi_readw(nfc, NFI_CNFG); - reg &= ~(CNFG_AUTO_FMT_EN | CNFG_HW_ECC_EN); - nfi_writew(nfc, reg, NFI_CNFG); - - return ret; - } - - memcpy(nfc->buffer, buf, mtd->writesize); - mtk_nand->bad_mark.bm_swap(mtd, nfc->buffer, raw); - bufpoi = nfc->buffer; - - /* write OOB into the FDM registers (OOB area in MTK NAND) */ - mtk_nfc_write_fdm(chip); - } else { - bufpoi = buf; - } - - len = mtd->writesize + (raw ? mtd->oobsize : 0); - ret = mtk_nfc_do_write_page(mtd, chip, bufpoi, page, len); - - if (!raw) - mtk_ecc_disable(nfc->ecc); - - if (ret) - return ret; - - return nand_prog_page_end_op(chip); -} - -static int mtk_nfc_write_page_hwecc(struct mtd_info *mtd, - struct nand_chip *chip, const u8 *buf, - int oob_on, int page) -{ - return mtk_nfc_write_page(mtd, chip, buf, page, 0); -} - -static int mtk_nfc_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip, - const u8 *buf, int oob_on, int pg) -{ - struct mtk_nfc *nfc = nand_get_controller_data(chip); - - mtk_nfc_format_page(mtd, buf); - return mtk_nfc_write_page(mtd, chip, nfc->buffer, pg, 1); -} - -static int mtk_nfc_write_subpage_hwecc(struct mtd_info *mtd, - struct nand_chip *chip, u32 offset, - u32 data_len, const u8 *buf, - int oob_on, int page) -{ - struct mtk_nfc *nfc = nand_get_controller_data(chip); - int ret; - - ret = mtk_nfc_format_subpage(mtd, offset, data_len, buf); - if (ret < 0) - return ret; - - /* use the data in the private buffer (now with FDM and CRC) */ - return mtk_nfc_write_page(mtd, chip, nfc->buffer, page, 1); -} - -static int mtk_nfc_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip, - int page) -{ - return mtk_nfc_write_page_raw(mtd, chip, NULL, 1, page); -} - -static int mtk_nfc_update_ecc_stats(struct mtd_info *mtd, u8 *buf, u32 sectors) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct mtk_nfc *nfc = nand_get_controller_data(chip); - struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip); - struct mtk_ecc_stats stats; - int rc, i; - - rc = nfi_readl(nfc, NFI_STA) & STA_EMP_PAGE; - if (rc) { - memset(buf, 0xff, sectors * chip->ecc.size); - for (i = 0; i < sectors; i++) - memset(oob_ptr(chip, i), 0xff, mtk_nand->fdm.reg_size); - return 0; - } - - mtk_ecc_get_stats(nfc->ecc, &stats, sectors); - mtd->ecc_stats.corrected += stats.corrected; - mtd->ecc_stats.failed += stats.failed; - - return stats.bitflips; -} - -static int mtk_nfc_read_subpage(struct mtd_info *mtd, struct nand_chip *chip, - u32 data_offs, u32 readlen, - u8 *bufpoi, int page, int raw) -{ - struct mtk_nfc *nfc = nand_get_controller_data(chip); - struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip); - u32 spare = mtk_nand->spare_per_sector; - u32 column, sectors, start, end, reg; - dma_addr_t addr; - int bitflips; - size_t len; - u8 *buf; - int rc; - - start = data_offs / chip->ecc.size; - end = DIV_ROUND_UP(data_offs + readlen, chip->ecc.size); - - sectors = end - start; - column = start * (chip->ecc.size + spare); - - len = sectors * chip->ecc.size + (raw ? sectors * spare : 0); - buf = bufpoi + start * chip->ecc.size; - - nand_read_page_op(chip, page, column, NULL, 0); - - addr = dma_map_single(nfc->dev, buf, len, DMA_FROM_DEVICE); - rc = dma_mapping_error(nfc->dev, addr); - if (rc) { - dev_err(nfc->dev, "dma mapping error\n"); - - return -EINVAL; - } - - reg = nfi_readw(nfc, NFI_CNFG); - reg |= CNFG_READ_EN | CNFG_DMA_BURST_EN | CNFG_AHB; - if (!raw) { - reg |= CNFG_AUTO_FMT_EN | CNFG_HW_ECC_EN; - nfi_writew(nfc, reg, NFI_CNFG); - - nfc->ecc_cfg.mode = ECC_NFI_MODE; - nfc->ecc_cfg.sectors = sectors; - nfc->ecc_cfg.op = ECC_DECODE; - rc = mtk_ecc_enable(nfc->ecc, &nfc->ecc_cfg); - if (rc) { - dev_err(nfc->dev, "ecc enable\n"); - /* clear NFI_CNFG */ - reg &= ~(CNFG_DMA_BURST_EN | CNFG_AHB | CNFG_READ_EN | - CNFG_AUTO_FMT_EN | CNFG_HW_ECC_EN); - nfi_writew(nfc, reg, NFI_CNFG); - dma_unmap_single(nfc->dev, addr, len, DMA_FROM_DEVICE); - - return rc; - } - } else { - nfi_writew(nfc, reg, NFI_CNFG); - } - - nfi_writel(nfc, sectors << CON_SEC_SHIFT, NFI_CON); - nfi_writew(nfc, INTR_AHB_DONE_EN, NFI_INTR_EN); - nfi_writel(nfc, lower_32_bits(addr), NFI_STRADDR); - - init_completion(&nfc->done); - reg = nfi_readl(nfc, NFI_CON) | CON_BRD; - nfi_writel(nfc, reg, NFI_CON); - nfi_writew(nfc, STAR_EN, NFI_STRDATA); - - rc = wait_for_completion_timeout(&nfc->done, msecs_to_jiffies(500)); - if (!rc) - dev_warn(nfc->dev, "read ahb/dma done timeout\n"); - - rc = readl_poll_timeout_atomic(nfc->regs + NFI_BYTELEN, reg, - ADDRCNTR_SEC(reg) >= sectors, 10, - MTK_TIMEOUT); - if (rc < 0) { - dev_err(nfc->dev, "subpage done timeout\n"); - bitflips = -EIO; - } else { - bitflips = 0; - if (!raw) { - rc = mtk_ecc_wait_done(nfc->ecc, ECC_DECODE); - bitflips = rc < 0 ? -ETIMEDOUT : - mtk_nfc_update_ecc_stats(mtd, buf, sectors); - mtk_nfc_read_fdm(chip, start, sectors); - } - } - - dma_unmap_single(nfc->dev, addr, len, DMA_FROM_DEVICE); - - if (raw) - goto done; - - mtk_ecc_disable(nfc->ecc); - - if (clamp(mtk_nand->bad_mark.sec, start, end) == mtk_nand->bad_mark.sec) - mtk_nand->bad_mark.bm_swap(mtd, bufpoi, raw); -done: - nfi_writel(nfc, 0, NFI_CON); - - return bitflips; -} - -static int mtk_nfc_read_subpage_hwecc(struct mtd_info *mtd, - struct nand_chip *chip, u32 off, - u32 len, u8 *p, int pg) -{ - return mtk_nfc_read_subpage(mtd, chip, off, len, p, pg, 0); -} - -static int mtk_nfc_read_page_hwecc(struct mtd_info *mtd, - struct nand_chip *chip, u8 *p, - int oob_on, int pg) -{ - return mtk_nfc_read_subpage(mtd, chip, 0, mtd->writesize, p, pg, 0); -} - -static int mtk_nfc_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip, - u8 *buf, int oob_on, int page) -{ - struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip); - struct mtk_nfc *nfc = nand_get_controller_data(chip); - struct mtk_nfc_fdm *fdm = &mtk_nand->fdm; - int i, ret; - - memset(nfc->buffer, 0xff, mtd->writesize + mtd->oobsize); - ret = mtk_nfc_read_subpage(mtd, chip, 0, mtd->writesize, nfc->buffer, - page, 1); - if (ret < 0) - return ret; - - for (i = 0; i < chip->ecc.steps; i++) { - memcpy(oob_ptr(chip, i), mtk_oob_ptr(chip, i), fdm->reg_size); - - if (i == mtk_nand->bad_mark.sec) - mtk_nand->bad_mark.bm_swap(mtd, nfc->buffer, 1); - - if (buf) - memcpy(data_ptr(chip, buf, i), mtk_data_ptr(chip, i), - chip->ecc.size); - } - - return ret; -} - -static int mtk_nfc_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip, - int page) -{ - return mtk_nfc_read_page_raw(mtd, chip, NULL, 1, page); -} - -static inline void mtk_nfc_hw_init(struct mtk_nfc *nfc) -{ - /* - * CNRNB: nand ready/busy register - * ------------------------------- - * 7:4: timeout register for polling the NAND busy/ready signal - * 0 : poll the status of the busy/ready signal after [7:4]*16 cycles. - */ - nfi_writew(nfc, 0xf1, NFI_CNRNB); - nfi_writel(nfc, PAGEFMT_8K_16K, NFI_PAGEFMT); - - mtk_nfc_hw_reset(nfc); - - nfi_readl(nfc, NFI_INTR_STA); - nfi_writel(nfc, 0, NFI_INTR_EN); -} - -static irqreturn_t mtk_nfc_irq(int irq, void *id) -{ - struct mtk_nfc *nfc = id; - u16 sta, ien; - - sta = nfi_readw(nfc, NFI_INTR_STA); - ien = nfi_readw(nfc, NFI_INTR_EN); - - if (!(sta & ien)) - return IRQ_NONE; - - nfi_writew(nfc, ~sta & ien, NFI_INTR_EN); - complete(&nfc->done); - - return IRQ_HANDLED; -} - -static int mtk_nfc_enable_clk(struct device *dev, struct mtk_nfc_clk *clk) -{ - int ret; - - ret = clk_prepare_enable(clk->nfi_clk); - if (ret) { - dev_err(dev, "failed to enable nfi clk\n"); - return ret; - } - - ret = clk_prepare_enable(clk->pad_clk); - if (ret) { - dev_err(dev, "failed to enable pad clk\n"); - clk_disable_unprepare(clk->nfi_clk); - return ret; - } - - return 0; -} - -static void mtk_nfc_disable_clk(struct mtk_nfc_clk *clk) -{ - clk_disable_unprepare(clk->nfi_clk); - clk_disable_unprepare(clk->pad_clk); -} - -static int mtk_nfc_ooblayout_free(struct mtd_info *mtd, int section, - struct mtd_oob_region *oob_region) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip); - struct mtk_nfc_fdm *fdm = &mtk_nand->fdm; - u32 eccsteps; - - eccsteps = mtd->writesize / chip->ecc.size; - - if (section >= eccsteps) - return -ERANGE; - - oob_region->length = fdm->reg_size - fdm->ecc_size; - oob_region->offset = section * fdm->reg_size + fdm->ecc_size; - - return 0; -} - -static int mtk_nfc_ooblayout_ecc(struct mtd_info *mtd, int section, - struct mtd_oob_region *oob_region) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip); - u32 eccsteps; - - if (section) - return -ERANGE; - - eccsteps = mtd->writesize / chip->ecc.size; - oob_region->offset = mtk_nand->fdm.reg_size * eccsteps; - oob_region->length = mtd->oobsize - oob_region->offset; - - return 0; -} - -static const struct mtd_ooblayout_ops mtk_nfc_ooblayout_ops = { - .free = mtk_nfc_ooblayout_free, - .ecc = mtk_nfc_ooblayout_ecc, -}; - -static void mtk_nfc_set_fdm(struct mtk_nfc_fdm *fdm, struct mtd_info *mtd) -{ - struct nand_chip *nand = mtd_to_nand(mtd); - struct mtk_nfc_nand_chip *chip = to_mtk_nand(nand); - struct mtk_nfc *nfc = nand_get_controller_data(nand); - u32 ecc_bytes; - - ecc_bytes = DIV_ROUND_UP(nand->ecc.strength * - mtk_ecc_get_parity_bits(nfc->ecc), 8); - - fdm->reg_size = chip->spare_per_sector - ecc_bytes; - if (fdm->reg_size > NFI_FDM_MAX_SIZE) - fdm->reg_size = NFI_FDM_MAX_SIZE; - - /* bad block mark storage */ - fdm->ecc_size = 1; -} - -static void mtk_nfc_set_bad_mark_ctl(struct mtk_nfc_bad_mark_ctl *bm_ctl, - struct mtd_info *mtd) -{ - struct nand_chip *nand = mtd_to_nand(mtd); - - if (mtd->writesize == 512) { - bm_ctl->bm_swap = mtk_nfc_no_bad_mark_swap; - } else { - bm_ctl->bm_swap = mtk_nfc_bad_mark_swap; - bm_ctl->sec = mtd->writesize / mtk_data_len(nand); - bm_ctl->pos = mtd->writesize % mtk_data_len(nand); - } -} - -static int mtk_nfc_set_spare_per_sector(u32 *sps, struct mtd_info *mtd) -{ - struct nand_chip *nand = mtd_to_nand(mtd); - struct mtk_nfc *nfc = nand_get_controller_data(nand); - const u8 *spare = nfc->caps->spare_size; - u32 eccsteps, i, closest_spare = 0; - - eccsteps = mtd->writesize / nand->ecc.size; - *sps = mtd->oobsize / eccsteps; - - if (nand->ecc.size == 1024) - *sps >>= 1; - - if (*sps < MTK_NFC_MIN_SPARE) - return -EINVAL; - - for (i = 0; i < nfc->caps->num_spare_size; i++) { - if (*sps >= spare[i] && spare[i] >= spare[closest_spare]) { - closest_spare = i; - if (*sps == spare[i]) - break; - } - } - - *sps = spare[closest_spare]; - - if (nand->ecc.size == 1024) - *sps <<= 1; - - return 0; -} - -static int mtk_nfc_ecc_init(struct device *dev, struct mtd_info *mtd) -{ - struct nand_chip *nand = mtd_to_nand(mtd); - struct mtk_nfc *nfc = nand_get_controller_data(nand); - u32 spare; - int free, ret; - - /* support only ecc hw mode */ - if (nand->ecc.mode != NAND_ECC_HW) { - dev_err(dev, "ecc.mode not supported\n"); - return -EINVAL; - } - - /* if optional dt settings not present */ - if (!nand->ecc.size || !nand->ecc.strength) { - /* use datasheet requirements */ - nand->ecc.strength = nand->ecc_strength_ds; - nand->ecc.size = nand->ecc_step_ds; - - /* - * align eccstrength and eccsize - * this controller only supports 512 and 1024 sizes - */ - if (nand->ecc.size < 1024) { - if (mtd->writesize > 512 && - nfc->caps->max_sector_size > 512) { - nand->ecc.size = 1024; - nand->ecc.strength <<= 1; - } else { - nand->ecc.size = 512; - } - } else { - nand->ecc.size = 1024; - } - - ret = mtk_nfc_set_spare_per_sector(&spare, mtd); - if (ret) - return ret; - - /* calculate oob bytes except ecc parity data */ - free = (nand->ecc.strength * mtk_ecc_get_parity_bits(nfc->ecc) - + 7) >> 3; - free = spare - free; - - /* - * enhance ecc strength if oob left is bigger than max FDM size - * or reduce ecc strength if oob size is not enough for ecc - * parity data. - */ - if (free > NFI_FDM_MAX_SIZE) { - spare -= NFI_FDM_MAX_SIZE; - nand->ecc.strength = (spare << 3) / - mtk_ecc_get_parity_bits(nfc->ecc); - } else if (free < 0) { - spare -= NFI_FDM_MIN_SIZE; - nand->ecc.strength = (spare << 3) / - mtk_ecc_get_parity_bits(nfc->ecc); - } - } - - mtk_ecc_adjust_strength(nfc->ecc, &nand->ecc.strength); - - dev_info(dev, "eccsize %d eccstrength %d\n", - nand->ecc.size, nand->ecc.strength); - - return 0; -} - -static int mtk_nfc_nand_chip_init(struct device *dev, struct mtk_nfc *nfc, - struct device_node *np) -{ - struct mtk_nfc_nand_chip *chip; - struct nand_chip *nand; - struct mtd_info *mtd; - int nsels, len; - u32 tmp; - int ret; - int i; - - if (!of_get_property(np, "reg", &nsels)) - return -ENODEV; - - nsels /= sizeof(u32); - if (!nsels || nsels > MTK_NAND_MAX_NSELS) { - dev_err(dev, "invalid reg property size %d\n", nsels); - return -EINVAL; - } - - chip = devm_kzalloc(dev, sizeof(*chip) + nsels * sizeof(u8), - GFP_KERNEL); - if (!chip) - return -ENOMEM; - - chip->nsels = nsels; - for (i = 0; i < nsels; i++) { - ret = of_property_read_u32_index(np, "reg", i, &tmp); - if (ret) { - dev_err(dev, "reg property failure : %d\n", ret); - return ret; - } - chip->sels[i] = tmp; - } - - nand = &chip->nand; - nand->controller = &nfc->controller; - - nand_set_flash_node(nand, np); - nand_set_controller_data(nand, nfc); - - nand->options |= NAND_USE_BOUNCE_BUFFER | NAND_SUBPAGE_READ; - nand->dev_ready = mtk_nfc_dev_ready; - nand->select_chip = mtk_nfc_select_chip; - nand->write_byte = mtk_nfc_write_byte; - nand->write_buf = mtk_nfc_write_buf; - nand->read_byte = mtk_nfc_read_byte; - nand->read_buf = mtk_nfc_read_buf; - nand->cmd_ctrl = mtk_nfc_cmd_ctrl; - nand->setup_data_interface = mtk_nfc_setup_data_interface; - - /* set default mode in case dt entry is missing */ - nand->ecc.mode = NAND_ECC_HW; - - nand->ecc.write_subpage = mtk_nfc_write_subpage_hwecc; - nand->ecc.write_page_raw = mtk_nfc_write_page_raw; - nand->ecc.write_page = mtk_nfc_write_page_hwecc; - nand->ecc.write_oob_raw = mtk_nfc_write_oob_std; - nand->ecc.write_oob = mtk_nfc_write_oob_std; - - nand->ecc.read_subpage = mtk_nfc_read_subpage_hwecc; - nand->ecc.read_page_raw = mtk_nfc_read_page_raw; - nand->ecc.read_page = mtk_nfc_read_page_hwecc; - nand->ecc.read_oob_raw = mtk_nfc_read_oob_std; - nand->ecc.read_oob = mtk_nfc_read_oob_std; - - mtd = nand_to_mtd(nand); - mtd->owner = THIS_MODULE; - mtd->dev.parent = dev; - mtd->name = MTK_NAME; - mtd_set_ooblayout(mtd, &mtk_nfc_ooblayout_ops); - - mtk_nfc_hw_init(nfc); - - ret = nand_scan_ident(mtd, nsels, NULL); - if (ret) - return ret; - - /* store bbt magic in page, cause OOB is not protected */ - if (nand->bbt_options & NAND_BBT_USE_FLASH) - nand->bbt_options |= NAND_BBT_NO_OOB; - - ret = mtk_nfc_ecc_init(dev, mtd); - if (ret) - return -EINVAL; - - if (nand->options & NAND_BUSWIDTH_16) { - dev_err(dev, "16bits buswidth not supported"); - return -EINVAL; - } - - ret = mtk_nfc_set_spare_per_sector(&chip->spare_per_sector, mtd); - if (ret) - return ret; - - mtk_nfc_set_fdm(&chip->fdm, mtd); - mtk_nfc_set_bad_mark_ctl(&chip->bad_mark, mtd); - - len = mtd->writesize + mtd->oobsize; - nfc->buffer = devm_kzalloc(dev, len, GFP_KERNEL); - if (!nfc->buffer) - return -ENOMEM; - - ret = nand_scan_tail(mtd); - if (ret) - return ret; - - ret = mtd_device_parse_register(mtd, NULL, NULL, NULL, 0); - if (ret) { - dev_err(dev, "mtd parse partition error\n"); - nand_release(mtd); - return ret; - } - - list_add_tail(&chip->node, &nfc->chips); - - return 0; -} - -static int mtk_nfc_nand_chips_init(struct device *dev, struct mtk_nfc *nfc) -{ - struct device_node *np = dev->of_node; - struct device_node *nand_np; - int ret; - - for_each_child_of_node(np, nand_np) { - ret = mtk_nfc_nand_chip_init(dev, nfc, nand_np); - if (ret) { - of_node_put(nand_np); - return ret; - } - } - - return 0; -} - -static const struct mtk_nfc_caps mtk_nfc_caps_mt2701 = { - .spare_size = spare_size_mt2701, - .num_spare_size = 16, - .pageformat_spare_shift = 4, - .nfi_clk_div = 1, - .max_sector = 16, - .max_sector_size = 1024, -}; - -static const struct mtk_nfc_caps mtk_nfc_caps_mt2712 = { - .spare_size = spare_size_mt2712, - .num_spare_size = 19, - .pageformat_spare_shift = 16, - .nfi_clk_div = 2, - .max_sector = 16, - .max_sector_size = 1024, -}; - -static const struct mtk_nfc_caps mtk_nfc_caps_mt7622 = { - .spare_size = spare_size_mt7622, - .num_spare_size = 4, - .pageformat_spare_shift = 4, - .nfi_clk_div = 1, - .max_sector = 8, - .max_sector_size = 512, -}; - -static const struct of_device_id mtk_nfc_id_table[] = { - { - .compatible = "mediatek,mt2701-nfc", - .data = &mtk_nfc_caps_mt2701, - }, { - .compatible = "mediatek,mt2712-nfc", - .data = &mtk_nfc_caps_mt2712, - }, { - .compatible = "mediatek,mt7622-nfc", - .data = &mtk_nfc_caps_mt7622, - }, - {} -}; -MODULE_DEVICE_TABLE(of, mtk_nfc_id_table); - -static int mtk_nfc_probe(struct platform_device *pdev) -{ - struct device *dev = &pdev->dev; - struct device_node *np = dev->of_node; - struct mtk_nfc *nfc; - struct resource *res; - const struct of_device_id *of_nfc_id = NULL; - int ret, irq; - - nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL); - if (!nfc) - return -ENOMEM; - - spin_lock_init(&nfc->controller.lock); - init_waitqueue_head(&nfc->controller.wq); - INIT_LIST_HEAD(&nfc->chips); - - /* probe defer if not ready */ - nfc->ecc = of_mtk_ecc_get(np); - if (IS_ERR(nfc->ecc)) - return PTR_ERR(nfc->ecc); - else if (!nfc->ecc) - return -ENODEV; - - nfc->dev = dev; - - res = platform_get_resource(pdev, IORESOURCE_MEM, 0); - nfc->regs = devm_ioremap_resource(dev, res); - if (IS_ERR(nfc->regs)) { - ret = PTR_ERR(nfc->regs); - goto release_ecc; - } - - nfc->clk.nfi_clk = devm_clk_get(dev, "nfi_clk"); - if (IS_ERR(nfc->clk.nfi_clk)) { - dev_err(dev, "no clk\n"); - ret = PTR_ERR(nfc->clk.nfi_clk); - goto release_ecc; - } - - nfc->clk.pad_clk = devm_clk_get(dev, "pad_clk"); - if (IS_ERR(nfc->clk.pad_clk)) { - dev_err(dev, "no pad clk\n"); - ret = PTR_ERR(nfc->clk.pad_clk); - goto release_ecc; - } - - ret = mtk_nfc_enable_clk(dev, &nfc->clk); - if (ret) - goto release_ecc; - - irq = platform_get_irq(pdev, 0); - if (irq < 0) { - dev_err(dev, "no nfi irq resource\n"); - ret = -EINVAL; - goto clk_disable; - } - - ret = devm_request_irq(dev, irq, mtk_nfc_irq, 0x0, "mtk-nand", nfc); - if (ret) { - dev_err(dev, "failed to request nfi irq\n"); - goto clk_disable; - } - - ret = dma_set_mask(dev, DMA_BIT_MASK(32)); - if (ret) { - dev_err(dev, "failed to set dma mask\n"); - goto clk_disable; - } - - of_nfc_id = of_match_device(mtk_nfc_id_table, &pdev->dev); - if (!of_nfc_id) { - ret = -ENODEV; - goto clk_disable; - } - - nfc->caps = of_nfc_id->data; - - platform_set_drvdata(pdev, nfc); - - ret = mtk_nfc_nand_chips_init(dev, nfc); - if (ret) { - dev_err(dev, "failed to init nand chips\n"); - goto clk_disable; - } - - return 0; - -clk_disable: - mtk_nfc_disable_clk(&nfc->clk); - -release_ecc: - mtk_ecc_release(nfc->ecc); - - return ret; -} - -static int mtk_nfc_remove(struct platform_device *pdev) -{ - struct mtk_nfc *nfc = platform_get_drvdata(pdev); - struct mtk_nfc_nand_chip *chip; - - while (!list_empty(&nfc->chips)) { - chip = list_first_entry(&nfc->chips, struct mtk_nfc_nand_chip, - node); - nand_release(nand_to_mtd(&chip->nand)); - list_del(&chip->node); - } - - mtk_ecc_release(nfc->ecc); - mtk_nfc_disable_clk(&nfc->clk); - - return 0; -} - -#ifdef CONFIG_PM_SLEEP -static int mtk_nfc_suspend(struct device *dev) -{ - struct mtk_nfc *nfc = dev_get_drvdata(dev); - - mtk_nfc_disable_clk(&nfc->clk); - - return 0; -} - -static int mtk_nfc_resume(struct device *dev) -{ - struct mtk_nfc *nfc = dev_get_drvdata(dev); - struct mtk_nfc_nand_chip *chip; - struct nand_chip *nand; - int ret; - u32 i; - - udelay(200); - - ret = mtk_nfc_enable_clk(dev, &nfc->clk); - if (ret) - return ret; - - /* reset NAND chip if VCC was powered off */ - list_for_each_entry(chip, &nfc->chips, node) { - nand = &chip->nand; - for (i = 0; i < chip->nsels; i++) - nand_reset(nand, i); - } - - return 0; -} - -static SIMPLE_DEV_PM_OPS(mtk_nfc_pm_ops, mtk_nfc_suspend, mtk_nfc_resume); -#endif - -static struct platform_driver mtk_nfc_driver = { - .probe = mtk_nfc_probe, - .remove = mtk_nfc_remove, - .driver = { - .name = MTK_NAME, - .of_match_table = mtk_nfc_id_table, -#ifdef CONFIG_PM_SLEEP - .pm = &mtk_nfc_pm_ops, -#endif - }, -}; - -module_platform_driver(mtk_nfc_driver); - -MODULE_LICENSE("GPL"); -MODULE_AUTHOR("Xiaolei Li "); -MODULE_DESCRIPTION("MTK Nand Flash Controller Driver"); diff --git a/drivers/mtd/nand/mxc_nand.c b/drivers/mtd/nand/mxc_nand.c deleted file mode 100644 index 87b5ee66e501..000000000000 --- a/drivers/mtd/nand/mxc_nand.c +++ /dev/null @@ -1,1966 +0,0 @@ -/* - * Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved. - * Copyright 2008 Sascha Hauer, kernel@pengutronix.de - * - * This program is free software; you can redistribute it and/or - * modify it under the terms of the GNU General Public License - * as published by the Free Software Foundation; either version 2 - * of the License, or (at your option) any later version. - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License - * along with this program; if not, write to the Free Software - * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, - * MA 02110-1301, USA. - */ - -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include - -#include -#include - -#define DRIVER_NAME "mxc_nand" - -/* Addresses for NFC registers */ -#define NFC_V1_V2_BUF_SIZE (host->regs + 0x00) -#define NFC_V1_V2_BUF_ADDR (host->regs + 0x04) -#define NFC_V1_V2_FLASH_ADDR (host->regs + 0x06) -#define NFC_V1_V2_FLASH_CMD (host->regs + 0x08) -#define NFC_V1_V2_CONFIG (host->regs + 0x0a) -#define NFC_V1_V2_ECC_STATUS_RESULT (host->regs + 0x0c) -#define NFC_V1_V2_RSLTMAIN_AREA (host->regs + 0x0e) -#define NFC_V1_V2_RSLTSPARE_AREA (host->regs + 0x10) -#define NFC_V1_V2_WRPROT (host->regs + 0x12) -#define NFC_V1_UNLOCKSTART_BLKADDR (host->regs + 0x14) -#define NFC_V1_UNLOCKEND_BLKADDR (host->regs + 0x16) -#define NFC_V21_UNLOCKSTART_BLKADDR0 (host->regs + 0x20) -#define NFC_V21_UNLOCKSTART_BLKADDR1 (host->regs + 0x24) -#define NFC_V21_UNLOCKSTART_BLKADDR2 (host->regs + 0x28) -#define NFC_V21_UNLOCKSTART_BLKADDR3 (host->regs + 0x2c) -#define NFC_V21_UNLOCKEND_BLKADDR0 (host->regs + 0x22) -#define NFC_V21_UNLOCKEND_BLKADDR1 (host->regs + 0x26) -#define NFC_V21_UNLOCKEND_BLKADDR2 (host->regs + 0x2a) -#define NFC_V21_UNLOCKEND_BLKADDR3 (host->regs + 0x2e) -#define NFC_V1_V2_NF_WRPRST (host->regs + 0x18) -#define NFC_V1_V2_CONFIG1 (host->regs + 0x1a) -#define NFC_V1_V2_CONFIG2 (host->regs + 0x1c) - -#define NFC_V2_CONFIG1_ECC_MODE_4 (1 << 0) -#define NFC_V1_V2_CONFIG1_SP_EN (1 << 2) -#define NFC_V1_V2_CONFIG1_ECC_EN (1 << 3) -#define NFC_V1_V2_CONFIG1_INT_MSK (1 << 4) -#define NFC_V1_V2_CONFIG1_BIG (1 << 5) -#define NFC_V1_V2_CONFIG1_RST (1 << 6) -#define NFC_V1_V2_CONFIG1_CE (1 << 7) -#define NFC_V2_CONFIG1_ONE_CYCLE (1 << 8) -#define NFC_V2_CONFIG1_PPB(x) (((x) & 0x3) << 9) -#define NFC_V2_CONFIG1_FP_INT (1 << 11) - -#define NFC_V1_V2_CONFIG2_INT (1 << 15) - -/* - * Operation modes for the NFC. Valid for v1, v2 and v3 - * type controllers. - */ -#define NFC_CMD (1 << 0) -#define NFC_ADDR (1 << 1) -#define NFC_INPUT (1 << 2) -#define NFC_OUTPUT (1 << 3) -#define NFC_ID (1 << 4) -#define NFC_STATUS (1 << 5) - -#define NFC_V3_FLASH_CMD (host->regs_axi + 0x00) -#define NFC_V3_FLASH_ADDR0 (host->regs_axi + 0x04) - -#define NFC_V3_CONFIG1 (host->regs_axi + 0x34) -#define NFC_V3_CONFIG1_SP_EN (1 << 0) -#define NFC_V3_CONFIG1_RBA(x) (((x) & 0x7 ) << 4) - -#define NFC_V3_ECC_STATUS_RESULT (host->regs_axi + 0x38) - -#define NFC_V3_LAUNCH (host->regs_axi + 0x40) - -#define NFC_V3_WRPROT (host->regs_ip + 0x0) -#define NFC_V3_WRPROT_LOCK_TIGHT (1 << 0) -#define NFC_V3_WRPROT_LOCK (1 << 1) -#define NFC_V3_WRPROT_UNLOCK (1 << 2) -#define NFC_V3_WRPROT_BLS_UNLOCK (2 << 6) - -#define NFC_V3_WRPROT_UNLOCK_BLK_ADD0 (host->regs_ip + 0x04) - -#define NFC_V3_CONFIG2 (host->regs_ip + 0x24) -#define NFC_V3_CONFIG2_PS_512 (0 << 0) -#define NFC_V3_CONFIG2_PS_2048 (1 << 0) -#define NFC_V3_CONFIG2_PS_4096 (2 << 0) -#define NFC_V3_CONFIG2_ONE_CYCLE (1 << 2) -#define NFC_V3_CONFIG2_ECC_EN (1 << 3) -#define NFC_V3_CONFIG2_2CMD_PHASES (1 << 4) -#define NFC_V3_CONFIG2_NUM_ADDR_PHASE0 (1 << 5) -#define NFC_V3_CONFIG2_ECC_MODE_8 (1 << 6) -#define NFC_V3_CONFIG2_PPB(x, shift) (((x) & 0x3) << shift) -#define NFC_V3_CONFIG2_NUM_ADDR_PHASE1(x) (((x) & 0x3) << 12) -#define NFC_V3_CONFIG2_INT_MSK (1 << 15) -#define NFC_V3_CONFIG2_ST_CMD(x) (((x) & 0xff) << 24) -#define NFC_V3_CONFIG2_SPAS(x) (((x) & 0xff) << 16) - -#define NFC_V3_CONFIG3 (host->regs_ip + 0x28) -#define NFC_V3_CONFIG3_ADD_OP(x) (((x) & 0x3) << 0) -#define NFC_V3_CONFIG3_FW8 (1 << 3) -#define NFC_V3_CONFIG3_SBB(x) (((x) & 0x7) << 8) -#define NFC_V3_CONFIG3_NUM_OF_DEVICES(x) (((x) & 0x7) << 12) -#define NFC_V3_CONFIG3_RBB_MODE (1 << 15) -#define NFC_V3_CONFIG3_NO_SDMA (1 << 20) - -#define NFC_V3_IPC (host->regs_ip + 0x2C) -#define NFC_V3_IPC_CREQ (1 << 0) -#define NFC_V3_IPC_INT (1 << 31) - -#define NFC_V3_DELAY_LINE (host->regs_ip + 0x34) - -struct mxc_nand_host; - -struct mxc_nand_devtype_data { - void (*preset)(struct mtd_info *); - int (*read_page)(struct nand_chip *chip, void *buf, void *oob, bool ecc, - int page); - void (*send_cmd)(struct mxc_nand_host *, uint16_t, int); - void (*send_addr)(struct mxc_nand_host *, uint16_t, int); - void (*send_page)(struct mtd_info *, unsigned int); - void (*send_read_id)(struct mxc_nand_host *); - uint16_t (*get_dev_status)(struct mxc_nand_host *); - int (*check_int)(struct mxc_nand_host *); - void (*irq_control)(struct mxc_nand_host *, int); - u32 (*get_ecc_status)(struct mxc_nand_host *); - const struct mtd_ooblayout_ops *ooblayout; - void (*select_chip)(struct mtd_info *mtd, int chip); - int (*setup_data_interface)(struct mtd_info *mtd, int csline, - const struct nand_data_interface *conf); - void (*enable_hwecc)(struct nand_chip *chip, bool enable); - - /* - * On i.MX21 the CONFIG2:INT bit cannot be read if interrupts are masked - * (CONFIG1:INT_MSK is set). To handle this the driver uses - * enable_irq/disable_irq_nosync instead of CONFIG1:INT_MSK - */ - int irqpending_quirk; - int needs_ip; - - size_t regs_offset; - size_t spare0_offset; - size_t axi_offset; - - int spare_len; - int eccbytes; - int eccsize; - int ppb_shift; -}; - -struct mxc_nand_host { - struct nand_chip nand; - struct device *dev; - - void __iomem *spare0; - void __iomem *main_area0; - - void __iomem *base; - void __iomem *regs; - void __iomem *regs_axi; - void __iomem *regs_ip; - int status_request; - struct clk *clk; - int clk_act; - int irq; - int eccsize; - int used_oobsize; - int active_cs; - - struct completion op_completion; - - uint8_t *data_buf; - unsigned int buf_start; - - const struct mxc_nand_devtype_data *devtype_data; - struct mxc_nand_platform_data pdata; -}; - -static const char * const part_probes[] = { - "cmdlinepart", "RedBoot", "ofpart", NULL }; - -static void memcpy32_fromio(void *trg, const void __iomem *src, size_t size) -{ - int i; - u32 *t = trg; - const __iomem u32 *s = src; - - for (i = 0; i < (size >> 2); i++) - *t++ = __raw_readl(s++); -} - -static void memcpy16_fromio(void *trg, const void __iomem *src, size_t size) -{ - int i; - u16 *t = trg; - const __iomem u16 *s = src; - - /* We assume that src (IO) is always 32bit aligned */ - if (PTR_ALIGN(trg, 4) == trg && IS_ALIGNED(size, 4)) { - memcpy32_fromio(trg, src, size); - return; - } - - for (i = 0; i < (size >> 1); i++) - *t++ = __raw_readw(s++); -} - -static inline void memcpy32_toio(void __iomem *trg, const void *src, int size) -{ - /* __iowrite32_copy use 32bit size values so divide by 4 */ - __iowrite32_copy(trg, src, size / 4); -} - -static void memcpy16_toio(void __iomem *trg, const void *src, int size) -{ - int i; - __iomem u16 *t = trg; - const u16 *s = src; - - /* We assume that trg (IO) is always 32bit aligned */ - if (PTR_ALIGN(src, 4) == src && IS_ALIGNED(size, 4)) { - memcpy32_toio(trg, src, size); - return; - } - - for (i = 0; i < (size >> 1); i++) - __raw_writew(*s++, t++); -} - -/* - * The controller splits a page into data chunks of 512 bytes + partial oob. - * There are writesize / 512 such chunks, the size of the partial oob parts is - * oobsize / #chunks rounded down to a multiple of 2. The last oob chunk then - * contains additionally the byte lost by rounding (if any). - * This function handles the needed shuffling between host->data_buf (which - * holds a page in natural order, i.e. writesize bytes data + oobsize bytes - * spare) and the NFC buffer. - */ -static void copy_spare(struct mtd_info *mtd, bool bfrom, void *buf) -{ - struct nand_chip *this = mtd_to_nand(mtd); - struct mxc_nand_host *host = nand_get_controller_data(this); - u16 i, oob_chunk_size; - u16 num_chunks = mtd->writesize / 512; - - u8 *d = buf; - u8 __iomem *s = host->spare0; - u16 sparebuf_size = host->devtype_data->spare_len; - - /* size of oob chunk for all but possibly the last one */ - oob_chunk_size = (host->used_oobsize / num_chunks) & ~1; - - if (bfrom) { - for (i = 0; i < num_chunks - 1; i++) - memcpy16_fromio(d + i * oob_chunk_size, - s + i * sparebuf_size, - oob_chunk_size); - - /* the last chunk */ - memcpy16_fromio(d + i * oob_chunk_size, - s + i * sparebuf_size, - host->used_oobsize - i * oob_chunk_size); - } else { - for (i = 0; i < num_chunks - 1; i++) - memcpy16_toio(&s[i * sparebuf_size], - &d[i * oob_chunk_size], - oob_chunk_size); - - /* the last chunk */ - memcpy16_toio(&s[i * sparebuf_size], - &d[i * oob_chunk_size], - host->used_oobsize - i * oob_chunk_size); - } -} - -/* - * MXC NANDFC can only perform full page+spare or spare-only read/write. When - * the upper layers perform a read/write buf operation, the saved column address - * is used to index into the full page. So usually this function is called with - * column == 0 (unless no column cycle is needed indicated by column == -1) - */ -static void mxc_do_addr_cycle(struct mtd_info *mtd, int column, int page_addr) -{ - struct nand_chip *nand_chip = mtd_to_nand(mtd); - struct mxc_nand_host *host = nand_get_controller_data(nand_chip); - - /* Write out column address, if necessary */ - if (column != -1) { - host->devtype_data->send_addr(host, column & 0xff, - page_addr == -1); - if (mtd->writesize > 512) - /* another col addr cycle for 2k page */ - host->devtype_data->send_addr(host, - (column >> 8) & 0xff, - false); - } - - /* Write out page address, if necessary */ - if (page_addr != -1) { - /* paddr_0 - p_addr_7 */ - host->devtype_data->send_addr(host, (page_addr & 0xff), false); - - if (mtd->writesize > 512) { - if (mtd->size >= 0x10000000) { - /* paddr_8 - paddr_15 */ - host->devtype_data->send_addr(host, - (page_addr >> 8) & 0xff, - false); - host->devtype_data->send_addr(host, - (page_addr >> 16) & 0xff, - true); - } else - /* paddr_8 - paddr_15 */ - host->devtype_data->send_addr(host, - (page_addr >> 8) & 0xff, true); - } else { - if (nand_chip->options & NAND_ROW_ADDR_3) { - /* paddr_8 - paddr_15 */ - host->devtype_data->send_addr(host, - (page_addr >> 8) & 0xff, - false); - host->devtype_data->send_addr(host, - (page_addr >> 16) & 0xff, - true); - } else - /* paddr_8 - paddr_15 */ - host->devtype_data->send_addr(host, - (page_addr >> 8) & 0xff, true); - } - } -} - -static int check_int_v3(struct mxc_nand_host *host) -{ - uint32_t tmp; - - tmp = readl(NFC_V3_IPC); - if (!(tmp & NFC_V3_IPC_INT)) - return 0; - - tmp &= ~NFC_V3_IPC_INT; - writel(tmp, NFC_V3_IPC); - - return 1; -} - -static int check_int_v1_v2(struct mxc_nand_host *host) -{ - uint32_t tmp; - - tmp = readw(NFC_V1_V2_CONFIG2); - if (!(tmp & NFC_V1_V2_CONFIG2_INT)) - return 0; - - if (!host->devtype_data->irqpending_quirk) - writew(tmp & ~NFC_V1_V2_CONFIG2_INT, NFC_V1_V2_CONFIG2); - - return 1; -} - -static void irq_control_v1_v2(struct mxc_nand_host *host, int activate) -{ - uint16_t tmp; - - tmp = readw(NFC_V1_V2_CONFIG1); - - if (activate) - tmp &= ~NFC_V1_V2_CONFIG1_INT_MSK; - else - tmp |= NFC_V1_V2_CONFIG1_INT_MSK; - - writew(tmp, NFC_V1_V2_CONFIG1); -} - -static void irq_control_v3(struct mxc_nand_host *host, int activate) -{ - uint32_t tmp; - - tmp = readl(NFC_V3_CONFIG2); - - if (activate) - tmp &= ~NFC_V3_CONFIG2_INT_MSK; - else - tmp |= NFC_V3_CONFIG2_INT_MSK; - - writel(tmp, NFC_V3_CONFIG2); -} - -static void irq_control(struct mxc_nand_host *host, int activate) -{ - if (host->devtype_data->irqpending_quirk) { - if (activate) - enable_irq(host->irq); - else - disable_irq_nosync(host->irq); - } else { - host->devtype_data->irq_control(host, activate); - } -} - -static u32 get_ecc_status_v1(struct mxc_nand_host *host) -{ - return readw(NFC_V1_V2_ECC_STATUS_RESULT); -} - -static u32 get_ecc_status_v2(struct mxc_nand_host *host) -{ - return readl(NFC_V1_V2_ECC_STATUS_RESULT); -} - -static u32 get_ecc_status_v3(struct mxc_nand_host *host) -{ - return readl(NFC_V3_ECC_STATUS_RESULT); -} - -static irqreturn_t mxc_nfc_irq(int irq, void *dev_id) -{ - struct mxc_nand_host *host = dev_id; - - if (!host->devtype_data->check_int(host)) - return IRQ_NONE; - - irq_control(host, 0); - - complete(&host->op_completion); - - return IRQ_HANDLED; -} - -/* This function polls the NANDFC to wait for the basic operation to - * complete by checking the INT bit of config2 register. - */ -static int wait_op_done(struct mxc_nand_host *host, int useirq) -{ - int ret = 0; - - /* - * If operation is already complete, don't bother to setup an irq or a - * loop. - */ - if (host->devtype_data->check_int(host)) - return 0; - - if (useirq) { - unsigned long timeout; - - reinit_completion(&host->op_completion); - - irq_control(host, 1); - - timeout = wait_for_completion_timeout(&host->op_completion, HZ); - if (!timeout && !host->devtype_data->check_int(host)) { - dev_dbg(host->dev, "timeout waiting for irq\n"); - ret = -ETIMEDOUT; - } - } else { - int max_retries = 8000; - int done; - - do { - udelay(1); - - done = host->devtype_data->check_int(host); - if (done) - break; - - } while (--max_retries); - - if (!done) { - dev_dbg(host->dev, "timeout polling for completion\n"); - ret = -ETIMEDOUT; - } - } - - WARN_ONCE(ret < 0, "timeout! useirq=%d\n", useirq); - - return ret; -} - -static void send_cmd_v3(struct mxc_nand_host *host, uint16_t cmd, int useirq) -{ - /* fill command */ - writel(cmd, NFC_V3_FLASH_CMD); - - /* send out command */ - writel(NFC_CMD, NFC_V3_LAUNCH); - - /* Wait for operation to complete */ - wait_op_done(host, useirq); -} - -/* This function issues the specified command to the NAND device and - * waits for completion. */ -static void send_cmd_v1_v2(struct mxc_nand_host *host, uint16_t cmd, int useirq) -{ - dev_dbg(host->dev, "send_cmd(host, 0x%x, %d)\n", cmd, useirq); - - writew(cmd, NFC_V1_V2_FLASH_CMD); - writew(NFC_CMD, NFC_V1_V2_CONFIG2); - - if (host->devtype_data->irqpending_quirk && (cmd == NAND_CMD_RESET)) { - int max_retries = 100; - /* Reset completion is indicated by NFC_CONFIG2 */ - /* being set to 0 */ - while (max_retries-- > 0) { - if (readw(NFC_V1_V2_CONFIG2) == 0) { - break; - } - udelay(1); - } - if (max_retries < 0) - dev_dbg(host->dev, "%s: RESET failed\n", __func__); - } else { - /* Wait for operation to complete */ - wait_op_done(host, useirq); - } -} - -static void send_addr_v3(struct mxc_nand_host *host, uint16_t addr, int islast) -{ - /* fill address */ - writel(addr, NFC_V3_FLASH_ADDR0); - - /* send out address */ - writel(NFC_ADDR, NFC_V3_LAUNCH); - - wait_op_done(host, 0); -} - -/* This function sends an address (or partial address) to the - * NAND device. The address is used to select the source/destination for - * a NAND command. */ -static void send_addr_v1_v2(struct mxc_nand_host *host, uint16_t addr, int islast) -{ - dev_dbg(host->dev, "send_addr(host, 0x%x %d)\n", addr, islast); - - writew(addr, NFC_V1_V2_FLASH_ADDR); - writew(NFC_ADDR, NFC_V1_V2_CONFIG2); - - /* Wait for operation to complete */ - wait_op_done(host, islast); -} - -static void send_page_v3(struct mtd_info *mtd, unsigned int ops) -{ - struct nand_chip *nand_chip = mtd_to_nand(mtd); - struct mxc_nand_host *host = nand_get_controller_data(nand_chip); - uint32_t tmp; - - tmp = readl(NFC_V3_CONFIG1); - tmp &= ~(7 << 4); - writel(tmp, NFC_V3_CONFIG1); - - /* transfer data from NFC ram to nand */ - writel(ops, NFC_V3_LAUNCH); - - wait_op_done(host, false); -} - -static void send_page_v2(struct mtd_info *mtd, unsigned int ops) -{ - struct nand_chip *nand_chip = mtd_to_nand(mtd); - struct mxc_nand_host *host = nand_get_controller_data(nand_chip); - - /* NANDFC buffer 0 is used for page read/write */ - writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR); - - writew(ops, NFC_V1_V2_CONFIG2); - - /* Wait for operation to complete */ - wait_op_done(host, true); -} - -static void send_page_v1(struct mtd_info *mtd, unsigned int ops) -{ - struct nand_chip *nand_chip = mtd_to_nand(mtd); - struct mxc_nand_host *host = nand_get_controller_data(nand_chip); - int bufs, i; - - if (mtd->writesize > 512) - bufs = 4; - else - bufs = 1; - - for (i = 0; i < bufs; i++) { - - /* NANDFC buffer 0 is used for page read/write */ - writew((host->active_cs << 4) | i, NFC_V1_V2_BUF_ADDR); - - writew(ops, NFC_V1_V2_CONFIG2); - - /* Wait for operation to complete */ - wait_op_done(host, true); - } -} - -static void send_read_id_v3(struct mxc_nand_host *host) -{ - /* Read ID into main buffer */ - writel(NFC_ID, NFC_V3_LAUNCH); - - wait_op_done(host, true); - - memcpy32_fromio(host->data_buf, host->main_area0, 16); -} - -/* Request the NANDFC to perform a read of the NAND device ID. */ -static void send_read_id_v1_v2(struct mxc_nand_host *host) -{ - /* NANDFC buffer 0 is used for device ID output */ - writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR); - - writew(NFC_ID, NFC_V1_V2_CONFIG2); - - /* Wait for operation to complete */ - wait_op_done(host, true); - - memcpy32_fromio(host->data_buf, host->main_area0, 16); -} - -static uint16_t get_dev_status_v3(struct mxc_nand_host *host) -{ - writew(NFC_STATUS, NFC_V3_LAUNCH); - wait_op_done(host, true); - - return readl(NFC_V3_CONFIG1) >> 16; -} - -/* This function requests the NANDFC to perform a read of the - * NAND device status and returns the current status. */ -static uint16_t get_dev_status_v1_v2(struct mxc_nand_host *host) -{ - void __iomem *main_buf = host->main_area0; - uint32_t store; - uint16_t ret; - - writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR); - - /* - * The device status is stored in main_area0. To - * prevent corruption of the buffer save the value - * and restore it afterwards. - */ - store = readl(main_buf); - - writew(NFC_STATUS, NFC_V1_V2_CONFIG2); - wait_op_done(host, true); - - ret = readw(main_buf); - - writel(store, main_buf); - - return ret; -} - -static void mxc_nand_enable_hwecc_v1_v2(struct nand_chip *chip, bool enable) -{ - struct mxc_nand_host *host = nand_get_controller_data(chip); - uint16_t config1; - - if (chip->ecc.mode != NAND_ECC_HW) - return; - - config1 = readw(NFC_V1_V2_CONFIG1); - - if (enable) - config1 |= NFC_V1_V2_CONFIG1_ECC_EN; - else - config1 &= ~NFC_V1_V2_CONFIG1_ECC_EN; - - writew(config1, NFC_V1_V2_CONFIG1); -} - -static void mxc_nand_enable_hwecc_v3(struct nand_chip *chip, bool enable) -{ - struct mxc_nand_host *host = nand_get_controller_data(chip); - uint32_t config2; - - if (chip->ecc.mode != NAND_ECC_HW) - return; - - config2 = readl(NFC_V3_CONFIG2); - - if (enable) - config2 |= NFC_V3_CONFIG2_ECC_EN; - else - config2 &= ~NFC_V3_CONFIG2_ECC_EN; - - writel(config2, NFC_V3_CONFIG2); -} - -/* This functions is used by upper layer to checks if device is ready */ -static int mxc_nand_dev_ready(struct mtd_info *mtd) -{ - /* - * NFC handles R/B internally. Therefore, this function - * always returns status as ready. - */ - return 1; -} - -static int mxc_nand_read_page_v1(struct nand_chip *chip, void *buf, void *oob, - bool ecc, int page) -{ - struct mtd_info *mtd = nand_to_mtd(chip); - struct mxc_nand_host *host = nand_get_controller_data(chip); - unsigned int bitflips_corrected = 0; - int no_subpages; - int i; - - host->devtype_data->enable_hwecc(chip, ecc); - - host->devtype_data->send_cmd(host, NAND_CMD_READ0, false); - mxc_do_addr_cycle(mtd, 0, page); - - if (mtd->writesize > 512) - host->devtype_data->send_cmd(host, NAND_CMD_READSTART, true); - - no_subpages = mtd->writesize >> 9; - - for (i = 0; i < no_subpages; i++) { - uint16_t ecc_stats; - - /* NANDFC buffer 0 is used for page read/write */ - writew((host->active_cs << 4) | i, NFC_V1_V2_BUF_ADDR); - - writew(NFC_OUTPUT, NFC_V1_V2_CONFIG2); - - /* Wait for operation to complete */ - wait_op_done(host, true); - - ecc_stats = get_ecc_status_v1(host); - - ecc_stats >>= 2; - - if (buf && ecc) { - switch (ecc_stats & 0x3) { - case 0: - default: - break; - case 1: - mtd->ecc_stats.corrected++; - bitflips_corrected = 1; - break; - case 2: - mtd->ecc_stats.failed++; - break; - } - } - } - - if (buf) - memcpy32_fromio(buf, host->main_area0, mtd->writesize); - if (oob) - copy_spare(mtd, true, oob); - - return bitflips_corrected; -} - -static int mxc_nand_read_page_v2_v3(struct nand_chip *chip, void *buf, - void *oob, bool ecc, int page) -{ - struct mtd_info *mtd = nand_to_mtd(chip); - struct mxc_nand_host *host = nand_get_controller_data(chip); - unsigned int max_bitflips = 0; - u32 ecc_stat, err; - int no_subpages; - u8 ecc_bit_mask, err_limit; - - host->devtype_data->enable_hwecc(chip, ecc); - - host->devtype_data->send_cmd(host, NAND_CMD_READ0, false); - mxc_do_addr_cycle(mtd, 0, page); - - if (mtd->writesize > 512) - host->devtype_data->send_cmd(host, - NAND_CMD_READSTART, true); - - host->devtype_data->send_page(mtd, NFC_OUTPUT); - - if (buf) - memcpy32_fromio(buf, host->main_area0, mtd->writesize); - if (oob) - copy_spare(mtd, true, oob); - - ecc_bit_mask = (host->eccsize == 4) ? 0x7 : 0xf; - err_limit = (host->eccsize == 4) ? 0x4 : 0x8; - - no_subpages = mtd->writesize >> 9; - - ecc_stat = host->devtype_data->get_ecc_status(host); - - do { - err = ecc_stat & ecc_bit_mask; - if (err > err_limit) { - mtd->ecc_stats.failed++; - } else { - mtd->ecc_stats.corrected += err; - max_bitflips = max_t(unsigned int, max_bitflips, err); - } - - ecc_stat >>= 4; - } while (--no_subpages); - - return max_bitflips; -} - -static int mxc_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip, - uint8_t *buf, int oob_required, int page) -{ - struct mxc_nand_host *host = nand_get_controller_data(chip); - void *oob_buf; - - if (oob_required) - oob_buf = chip->oob_poi; - else - oob_buf = NULL; - - return host->devtype_data->read_page(chip, buf, oob_buf, 1, page); -} - -static int mxc_nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip, - uint8_t *buf, int oob_required, int page) -{ - struct mxc_nand_host *host = nand_get_controller_data(chip); - void *oob_buf; - - if (oob_required) - oob_buf = chip->oob_poi; - else - oob_buf = NULL; - - return host->devtype_data->read_page(chip, buf, oob_buf, 0, page); -} - -static int mxc_nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip, - int page) -{ - struct mxc_nand_host *host = nand_get_controller_data(chip); - - return host->devtype_data->read_page(chip, NULL, chip->oob_poi, 0, - page); -} - -static int mxc_nand_write_page(struct nand_chip *chip, const uint8_t *buf, - bool ecc, int page) -{ - struct mtd_info *mtd = nand_to_mtd(chip); - struct mxc_nand_host *host = nand_get_controller_data(chip); - - host->devtype_data->enable_hwecc(chip, ecc); - - host->devtype_data->send_cmd(host, NAND_CMD_SEQIN, false); - mxc_do_addr_cycle(mtd, 0, page); - - memcpy32_toio(host->main_area0, buf, mtd->writesize); - copy_spare(mtd, false, chip->oob_poi); - - host->devtype_data->send_page(mtd, NFC_INPUT); - host->devtype_data->send_cmd(host, NAND_CMD_PAGEPROG, true); - mxc_do_addr_cycle(mtd, 0, page); - - return 0; -} - -static int mxc_nand_write_page_ecc(struct mtd_info *mtd, struct nand_chip *chip, - const uint8_t *buf, int oob_required, - int page) -{ - return mxc_nand_write_page(chip, buf, true, page); -} - -static int mxc_nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip, - const uint8_t *buf, int oob_required, int page) -{ - return mxc_nand_write_page(chip, buf, false, page); -} - -static int mxc_nand_write_oob(struct mtd_info *mtd, struct nand_chip *chip, - int page) -{ - struct mxc_nand_host *host = nand_get_controller_data(chip); - - memset(host->data_buf, 0xff, mtd->writesize); - - return mxc_nand_write_page(chip, host->data_buf, false, page); -} - -static u_char mxc_nand_read_byte(struct mtd_info *mtd) -{ - struct nand_chip *nand_chip = mtd_to_nand(mtd); - struct mxc_nand_host *host = nand_get_controller_data(nand_chip); - uint8_t ret; - - /* Check for status request */ - if (host->status_request) - return host->devtype_data->get_dev_status(host) & 0xFF; - - if (nand_chip->options & NAND_BUSWIDTH_16) { - /* only take the lower byte of each word */ - ret = *(uint16_t *)(host->data_buf + host->buf_start); - - host->buf_start += 2; - } else { - ret = *(uint8_t *)(host->data_buf + host->buf_start); - host->buf_start++; - } - - dev_dbg(host->dev, "%s: ret=0x%hhx (start=%u)\n", __func__, ret, host->buf_start); - return ret; -} - -static uint16_t mxc_nand_read_word(struct mtd_info *mtd) -{ - struct nand_chip *nand_chip = mtd_to_nand(mtd); - struct mxc_nand_host *host = nand_get_controller_data(nand_chip); - uint16_t ret; - - ret = *(uint16_t *)(host->data_buf + host->buf_start); - host->buf_start += 2; - - return ret; -} - -/* Write data of length len to buffer buf. The data to be - * written on NAND Flash is first copied to RAMbuffer. After the Data Input - * Operation by the NFC, the data is written to NAND Flash */ -static void mxc_nand_write_buf(struct mtd_info *mtd, - const u_char *buf, int len) -{ - struct nand_chip *nand_chip = mtd_to_nand(mtd); - struct mxc_nand_host *host = nand_get_controller_data(nand_chip); - u16 col = host->buf_start; - int n = mtd->oobsize + mtd->writesize - col; - - n = min(n, len); - - memcpy(host->data_buf + col, buf, n); - - host->buf_start += n; -} - -/* Read the data buffer from the NAND Flash. To read the data from NAND - * Flash first the data output cycle is initiated by the NFC, which copies - * the data to RAMbuffer. This data of length len is then copied to buffer buf. - */ -static void mxc_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len) -{ - struct nand_chip *nand_chip = mtd_to_nand(mtd); - struct mxc_nand_host *host = nand_get_controller_data(nand_chip); - u16 col = host->buf_start; - int n = mtd->oobsize + mtd->writesize - col; - - n = min(n, len); - - memcpy(buf, host->data_buf + col, n); - - host->buf_start += n; -} - -/* This function is used by upper layer for select and - * deselect of the NAND chip */ -static void mxc_nand_select_chip_v1_v3(struct mtd_info *mtd, int chip) -{ - struct nand_chip *nand_chip = mtd_to_nand(mtd); - struct mxc_nand_host *host = nand_get_controller_data(nand_chip); - - if (chip == -1) { - /* Disable the NFC clock */ - if (host->clk_act) { - clk_disable_unprepare(host->clk); - host->clk_act = 0; - } - return; - } - - if (!host->clk_act) { - /* Enable the NFC clock */ - clk_prepare_enable(host->clk); - host->clk_act = 1; - } -} - -static void mxc_nand_select_chip_v2(struct mtd_info *mtd, int chip) -{ - struct nand_chip *nand_chip = mtd_to_nand(mtd); - struct mxc_nand_host *host = nand_get_controller_data(nand_chip); - - if (chip == -1) { - /* Disable the NFC clock */ - if (host->clk_act) { - clk_disable_unprepare(host->clk); - host->clk_act = 0; - } - return; - } - - if (!host->clk_act) { - /* Enable the NFC clock */ - clk_prepare_enable(host->clk); - host->clk_act = 1; - } - - host->active_cs = chip; - writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR); -} - -#define MXC_V1_ECCBYTES 5 - -static int mxc_v1_ooblayout_ecc(struct mtd_info *mtd, int section, - struct mtd_oob_region *oobregion) -{ - struct nand_chip *nand_chip = mtd_to_nand(mtd); - - if (section >= nand_chip->ecc.steps) - return -ERANGE; - - oobregion->offset = (section * 16) + 6; - oobregion->length = MXC_V1_ECCBYTES; - - return 0; -} - -static int mxc_v1_ooblayout_free(struct mtd_info *mtd, int section, - struct mtd_oob_region *oobregion) -{ - struct nand_chip *nand_chip = mtd_to_nand(mtd); - - if (section > nand_chip->ecc.steps) - return -ERANGE; - - if (!section) { - if (mtd->writesize <= 512) { - oobregion->offset = 0; - oobregion->length = 5; - } else { - oobregion->offset = 2; - oobregion->length = 4; - } - } else { - oobregion->offset = ((section - 1) * 16) + MXC_V1_ECCBYTES + 6; - if (section < nand_chip->ecc.steps) - oobregion->length = (section * 16) + 6 - - oobregion->offset; - else - oobregion->length = mtd->oobsize - oobregion->offset; - } - - return 0; -} - -static const struct mtd_ooblayout_ops mxc_v1_ooblayout_ops = { - .ecc = mxc_v1_ooblayout_ecc, - .free = mxc_v1_ooblayout_free, -}; - -static int mxc_v2_ooblayout_ecc(struct mtd_info *mtd, int section, - struct mtd_oob_region *oobregion) -{ - struct nand_chip *nand_chip = mtd_to_nand(mtd); - int stepsize = nand_chip->ecc.bytes == 9 ? 16 : 26; - - if (section >= nand_chip->ecc.steps) - return -ERANGE; - - oobregion->offset = (section * stepsize) + 7; - oobregion->length = nand_chip->ecc.bytes; - - return 0; -} - -static int mxc_v2_ooblayout_free(struct mtd_info *mtd, int section, - struct mtd_oob_region *oobregion) -{ - struct nand_chip *nand_chip = mtd_to_nand(mtd); - int stepsize = nand_chip->ecc.bytes == 9 ? 16 : 26; - - if (section >= nand_chip->ecc.steps) - return -ERANGE; - - if (!section) { - if (mtd->writesize <= 512) { - oobregion->offset = 0; - oobregion->length = 5; - } else { - oobregion->offset = 2; - oobregion->length = 4; - } - } else { - oobregion->offset = section * stepsize; - oobregion->length = 7; - } - - return 0; -} - -static const struct mtd_ooblayout_ops mxc_v2_ooblayout_ops = { - .ecc = mxc_v2_ooblayout_ecc, - .free = mxc_v2_ooblayout_free, -}; - -/* - * v2 and v3 type controllers can do 4bit or 8bit ecc depending - * on how much oob the nand chip has. For 8bit ecc we need at least - * 26 bytes of oob data per 512 byte block. - */ -static int get_eccsize(struct mtd_info *mtd) -{ - int oobbytes_per_512 = 0; - - oobbytes_per_512 = mtd->oobsize * 512 / mtd->writesize; - - if (oobbytes_per_512 < 26) - return 4; - else - return 8; -} - -static void preset_v1(struct mtd_info *mtd) -{ - struct nand_chip *nand_chip = mtd_to_nand(mtd); - struct mxc_nand_host *host = nand_get_controller_data(nand_chip); - uint16_t config1 = 0; - - if (nand_chip->ecc.mode == NAND_ECC_HW && mtd->writesize) - config1 |= NFC_V1_V2_CONFIG1_ECC_EN; - - if (!host->devtype_data->irqpending_quirk) - config1 |= NFC_V1_V2_CONFIG1_INT_MSK; - - host->eccsize = 1; - - writew(config1, NFC_V1_V2_CONFIG1); - /* preset operation */ - - /* Unlock the internal RAM Buffer */ - writew(0x2, NFC_V1_V2_CONFIG); - - /* Blocks to be unlocked */ - writew(0x0, NFC_V1_UNLOCKSTART_BLKADDR); - writew(0xffff, NFC_V1_UNLOCKEND_BLKADDR); - - /* Unlock Block Command for given address range */ - writew(0x4, NFC_V1_V2_WRPROT); -} - -static int mxc_nand_v2_setup_data_interface(struct mtd_info *mtd, int csline, - const struct nand_data_interface *conf) -{ - struct nand_chip *nand_chip = mtd_to_nand(mtd); - struct mxc_nand_host *host = nand_get_controller_data(nand_chip); - int tRC_min_ns, tRC_ps, ret; - unsigned long rate, rate_round; - const struct nand_sdr_timings *timings; - u16 config1; - - timings = nand_get_sdr_timings(conf); - if (IS_ERR(timings)) - return -ENOTSUPP; - - config1 = readw(NFC_V1_V2_CONFIG1); - - tRC_min_ns = timings->tRC_min / 1000; - rate = 1000000000 / tRC_min_ns; - - /* - * For tRC < 30ns we have to use EDO mode. In this case the controller - * does one access per clock cycle. Otherwise the controller does one - * access in two clock cycles, thus we have to double the rate to the - * controller. - */ - if (tRC_min_ns < 30) { - rate_round = clk_round_rate(host->clk, rate); - config1 |= NFC_V2_CONFIG1_ONE_CYCLE; - tRC_ps = 1000000000 / (rate_round / 1000); - } else { - rate *= 2; - rate_round = clk_round_rate(host->clk, rate); - config1 &= ~NFC_V2_CONFIG1_ONE_CYCLE; - tRC_ps = 1000000000 / (rate_round / 1000 / 2); - } - - /* - * The timing values compared against are from the i.MX25 Automotive - * datasheet, Table 50. NFC Timing Parameters - */ - if (timings->tCLS_min > tRC_ps - 1000 || - timings->tCLH_min > tRC_ps - 2000 || - timings->tCS_min > tRC_ps - 1000 || - timings->tCH_min > tRC_ps - 2000 || - timings->tWP_min > tRC_ps - 1500 || - timings->tALS_min > tRC_ps || - timings->tALH_min > tRC_ps - 3000 || - timings->tDS_min > tRC_ps || - timings->tDH_min > tRC_ps - 5000 || - timings->tWC_min > 2 * tRC_ps || - timings->tWH_min > tRC_ps - 2500 || - timings->tRR_min > 6 * tRC_ps || - timings->tRP_min > 3 * tRC_ps / 2 || - timings->tRC_min > 2 * tRC_ps || - timings->tREH_min > (tRC_ps / 2) - 2500) { - dev_dbg(host->dev, "Timing out of bounds\n"); - return -EINVAL; - } - - if (csline == NAND_DATA_IFACE_CHECK_ONLY) - return 0; - - ret = clk_set_rate(host->clk, rate); - if (ret) - return ret; - - writew(config1, NFC_V1_V2_CONFIG1); - - dev_dbg(host->dev, "Setting rate to %ldHz, %s mode\n", rate_round, - config1 & NFC_V2_CONFIG1_ONE_CYCLE ? "One cycle (EDO)" : - "normal"); - - return 0; -} - -static void preset_v2(struct mtd_info *mtd) -{ - struct nand_chip *nand_chip = mtd_to_nand(mtd); - struct mxc_nand_host *host = nand_get_controller_data(nand_chip); - uint16_t config1 = 0; - - config1 |= NFC_V2_CONFIG1_FP_INT; - - if (!host->devtype_data->irqpending_quirk) - config1 |= NFC_V1_V2_CONFIG1_INT_MSK; - - if (mtd->writesize) { - uint16_t pages_per_block = mtd->erasesize / mtd->writesize; - - if (nand_chip->ecc.mode == NAND_ECC_HW) - config1 |= NFC_V1_V2_CONFIG1_ECC_EN; - - host->eccsize = get_eccsize(mtd); - if (host->eccsize == 4) - config1 |= NFC_V2_CONFIG1_ECC_MODE_4; - - config1 |= NFC_V2_CONFIG1_PPB(ffs(pages_per_block) - 6); - } else { - host->eccsize = 1; - } - - writew(config1, NFC_V1_V2_CONFIG1); - /* preset operation */ - - /* Unlock the internal RAM Buffer */ - writew(0x2, NFC_V1_V2_CONFIG); - - /* Blocks to be unlocked */ - writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR0); - writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR1); - writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR2); - writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR3); - writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR0); - writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR1); - writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR2); - writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR3); - - /* Unlock Block Command for given address range */ - writew(0x4, NFC_V1_V2_WRPROT); -} - -static void preset_v3(struct mtd_info *mtd) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct mxc_nand_host *host = nand_get_controller_data(chip); - uint32_t config2, config3; - int i, addr_phases; - - writel(NFC_V3_CONFIG1_RBA(0), NFC_V3_CONFIG1); - writel(NFC_V3_IPC_CREQ, NFC_V3_IPC); - - /* Unlock the internal RAM Buffer */ - writel(NFC_V3_WRPROT_BLS_UNLOCK | NFC_V3_WRPROT_UNLOCK, - NFC_V3_WRPROT); - - /* Blocks to be unlocked */ - for (i = 0; i < NAND_MAX_CHIPS; i++) - writel(0xffff << 16, NFC_V3_WRPROT_UNLOCK_BLK_ADD0 + (i << 2)); - - writel(0, NFC_V3_IPC); - - config2 = NFC_V3_CONFIG2_ONE_CYCLE | - NFC_V3_CONFIG2_2CMD_PHASES | - NFC_V3_CONFIG2_SPAS(mtd->oobsize >> 1) | - NFC_V3_CONFIG2_ST_CMD(0x70) | - NFC_V3_CONFIG2_INT_MSK | - NFC_V3_CONFIG2_NUM_ADDR_PHASE0; - - addr_phases = fls(chip->pagemask) >> 3; - - if (mtd->writesize == 2048) { - config2 |= NFC_V3_CONFIG2_PS_2048; - config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases); - } else if (mtd->writesize == 4096) { - config2 |= NFC_V3_CONFIG2_PS_4096; - config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases); - } else { - config2 |= NFC_V3_CONFIG2_PS_512; - config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases - 1); - } - - if (mtd->writesize) { - if (chip->ecc.mode == NAND_ECC_HW) - config2 |= NFC_V3_CONFIG2_ECC_EN; - - config2 |= NFC_V3_CONFIG2_PPB( - ffs(mtd->erasesize / mtd->writesize) - 6, - host->devtype_data->ppb_shift); - host->eccsize = get_eccsize(mtd); - if (host->eccsize == 8) - config2 |= NFC_V3_CONFIG2_ECC_MODE_8; - } - - writel(config2, NFC_V3_CONFIG2); - - config3 = NFC_V3_CONFIG3_NUM_OF_DEVICES(0) | - NFC_V3_CONFIG3_NO_SDMA | - NFC_V3_CONFIG3_RBB_MODE | - NFC_V3_CONFIG3_SBB(6) | /* Reset default */ - NFC_V3_CONFIG3_ADD_OP(0); - - if (!(chip->options & NAND_BUSWIDTH_16)) - config3 |= NFC_V3_CONFIG3_FW8; - - writel(config3, NFC_V3_CONFIG3); - - writel(0, NFC_V3_DELAY_LINE); -} - -/* Used by the upper layer to write command to NAND Flash for - * different operations to be carried out on NAND Flash */ -static void mxc_nand_command(struct mtd_info *mtd, unsigned command, - int column, int page_addr) -{ - struct nand_chip *nand_chip = mtd_to_nand(mtd); - struct mxc_nand_host *host = nand_get_controller_data(nand_chip); - - dev_dbg(host->dev, "mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n", - command, column, page_addr); - - /* Reset command state information */ - host->status_request = false; - - /* Command pre-processing step */ - switch (command) { - case NAND_CMD_RESET: - host->devtype_data->preset(mtd); - host->devtype_data->send_cmd(host, command, false); - break; - - case NAND_CMD_STATUS: - host->buf_start = 0; - host->status_request = true; - - host->devtype_data->send_cmd(host, command, true); - WARN_ONCE(column != -1 || page_addr != -1, - "Unexpected column/row value (cmd=%u, col=%d, row=%d)\n", - command, column, page_addr); - mxc_do_addr_cycle(mtd, column, page_addr); - break; - - case NAND_CMD_READID: - host->devtype_data->send_cmd(host, command, true); - mxc_do_addr_cycle(mtd, column, page_addr); - host->devtype_data->send_read_id(host); - host->buf_start = 0; - break; - - case NAND_CMD_ERASE1: - case NAND_CMD_ERASE2: - host->devtype_data->send_cmd(host, command, false); - WARN_ONCE(column != -1, - "Unexpected column value (cmd=%u, col=%d)\n", - command, column); - mxc_do_addr_cycle(mtd, column, page_addr); - - break; - case NAND_CMD_PARAM: - host->devtype_data->send_cmd(host, command, false); - mxc_do_addr_cycle(mtd, column, page_addr); - host->devtype_data->send_page(mtd, NFC_OUTPUT); - memcpy32_fromio(host->data_buf, host->main_area0, 512); - host->buf_start = 0; - break; - default: - WARN_ONCE(1, "Unimplemented command (cmd=%u)\n", - command); - break; - } -} - -static int mxc_nand_onfi_set_features(struct mtd_info *mtd, - struct nand_chip *chip, int addr, - u8 *subfeature_param) -{ - struct nand_chip *nand_chip = mtd_to_nand(mtd); - struct mxc_nand_host *host = nand_get_controller_data(nand_chip); - int i; - - if (!chip->onfi_version || - !(le16_to_cpu(chip->onfi_params.opt_cmd) - & ONFI_OPT_CMD_SET_GET_FEATURES)) - return -EINVAL; - - host->buf_start = 0; - - for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i) - chip->write_byte(mtd, subfeature_param[i]); - - memcpy32_toio(host->main_area0, host->data_buf, mtd->writesize); - host->devtype_data->send_cmd(host, NAND_CMD_SET_FEATURES, false); - mxc_do_addr_cycle(mtd, addr, -1); - host->devtype_data->send_page(mtd, NFC_INPUT); - - return 0; -} - -static int mxc_nand_onfi_get_features(struct mtd_info *mtd, - struct nand_chip *chip, int addr, - u8 *subfeature_param) -{ - struct nand_chip *nand_chip = mtd_to_nand(mtd); - struct mxc_nand_host *host = nand_get_controller_data(nand_chip); - int i; - - if (!chip->onfi_version || - !(le16_to_cpu(chip->onfi_params.opt_cmd) - & ONFI_OPT_CMD_SET_GET_FEATURES)) - return -EINVAL; - - host->devtype_data->send_cmd(host, NAND_CMD_GET_FEATURES, false); - mxc_do_addr_cycle(mtd, addr, -1); - host->devtype_data->send_page(mtd, NFC_OUTPUT); - memcpy32_fromio(host->data_buf, host->main_area0, 512); - host->buf_start = 0; - - for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i) - *subfeature_param++ = chip->read_byte(mtd); - - return 0; -} - -/* - * The generic flash bbt decriptors overlap with our ecc - * hardware, so define some i.MX specific ones. - */ -static uint8_t bbt_pattern[] = { 'B', 'b', 't', '0' }; -static uint8_t mirror_pattern[] = { '1', 't', 'b', 'B' }; - -static struct nand_bbt_descr bbt_main_descr = { - .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE - | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, - .offs = 0, - .len = 4, - .veroffs = 4, - .maxblocks = 4, - .pattern = bbt_pattern, -}; - -static struct nand_bbt_descr bbt_mirror_descr = { - .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE - | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, - .offs = 0, - .len = 4, - .veroffs = 4, - .maxblocks = 4, - .pattern = mirror_pattern, -}; - -/* v1 + irqpending_quirk: i.MX21 */ -static const struct mxc_nand_devtype_data imx21_nand_devtype_data = { - .preset = preset_v1, - .read_page = mxc_nand_read_page_v1, - .send_cmd = send_cmd_v1_v2, - .send_addr = send_addr_v1_v2, - .send_page = send_page_v1, - .send_read_id = send_read_id_v1_v2, - .get_dev_status = get_dev_status_v1_v2, - .check_int = check_int_v1_v2, - .irq_control = irq_control_v1_v2, - .get_ecc_status = get_ecc_status_v1, - .ooblayout = &mxc_v1_ooblayout_ops, - .select_chip = mxc_nand_select_chip_v1_v3, - .enable_hwecc = mxc_nand_enable_hwecc_v1_v2, - .irqpending_quirk = 1, - .needs_ip = 0, - .regs_offset = 0xe00, - .spare0_offset = 0x800, - .spare_len = 16, - .eccbytes = 3, - .eccsize = 1, -}; - -/* v1 + !irqpending_quirk: i.MX27, i.MX31 */ -static const struct mxc_nand_devtype_data imx27_nand_devtype_data = { - .preset = preset_v1, - .read_page = mxc_nand_read_page_v1, - .send_cmd = send_cmd_v1_v2, - .send_addr = send_addr_v1_v2, - .send_page = send_page_v1, - .send_read_id = send_read_id_v1_v2, - .get_dev_status = get_dev_status_v1_v2, - .check_int = check_int_v1_v2, - .irq_control = irq_control_v1_v2, - .get_ecc_status = get_ecc_status_v1, - .ooblayout = &mxc_v1_ooblayout_ops, - .select_chip = mxc_nand_select_chip_v1_v3, - .enable_hwecc = mxc_nand_enable_hwecc_v1_v2, - .irqpending_quirk = 0, - .needs_ip = 0, - .regs_offset = 0xe00, - .spare0_offset = 0x800, - .axi_offset = 0, - .spare_len = 16, - .eccbytes = 3, - .eccsize = 1, -}; - -/* v21: i.MX25, i.MX35 */ -static const struct mxc_nand_devtype_data imx25_nand_devtype_data = { - .preset = preset_v2, - .read_page = mxc_nand_read_page_v2_v3, - .send_cmd = send_cmd_v1_v2, - .send_addr = send_addr_v1_v2, - .send_page = send_page_v2, - .send_read_id = send_read_id_v1_v2, - .get_dev_status = get_dev_status_v1_v2, - .check_int = check_int_v1_v2, - .irq_control = irq_control_v1_v2, - .get_ecc_status = get_ecc_status_v2, - .ooblayout = &mxc_v2_ooblayout_ops, - .select_chip = mxc_nand_select_chip_v2, - .setup_data_interface = mxc_nand_v2_setup_data_interface, - .enable_hwecc = mxc_nand_enable_hwecc_v1_v2, - .irqpending_quirk = 0, - .needs_ip = 0, - .regs_offset = 0x1e00, - .spare0_offset = 0x1000, - .axi_offset = 0, - .spare_len = 64, - .eccbytes = 9, - .eccsize = 0, -}; - -/* v3.2a: i.MX51 */ -static const struct mxc_nand_devtype_data imx51_nand_devtype_data = { - .preset = preset_v3, - .read_page = mxc_nand_read_page_v2_v3, - .send_cmd = send_cmd_v3, - .send_addr = send_addr_v3, - .send_page = send_page_v3, - .send_read_id = send_read_id_v3, - .get_dev_status = get_dev_status_v3, - .check_int = check_int_v3, - .irq_control = irq_control_v3, - .get_ecc_status = get_ecc_status_v3, - .ooblayout = &mxc_v2_ooblayout_ops, - .select_chip = mxc_nand_select_chip_v1_v3, - .enable_hwecc = mxc_nand_enable_hwecc_v3, - .irqpending_quirk = 0, - .needs_ip = 1, - .regs_offset = 0, - .spare0_offset = 0x1000, - .axi_offset = 0x1e00, - .spare_len = 64, - .eccbytes = 0, - .eccsize = 0, - .ppb_shift = 7, -}; - -/* v3.2b: i.MX53 */ -static const struct mxc_nand_devtype_data imx53_nand_devtype_data = { - .preset = preset_v3, - .read_page = mxc_nand_read_page_v2_v3, - .send_cmd = send_cmd_v3, - .send_addr = send_addr_v3, - .send_page = send_page_v3, - .send_read_id = send_read_id_v3, - .get_dev_status = get_dev_status_v3, - .check_int = check_int_v3, - .irq_control = irq_control_v3, - .get_ecc_status = get_ecc_status_v3, - .ooblayout = &mxc_v2_ooblayout_ops, - .select_chip = mxc_nand_select_chip_v1_v3, - .enable_hwecc = mxc_nand_enable_hwecc_v3, - .irqpending_quirk = 0, - .needs_ip = 1, - .regs_offset = 0, - .spare0_offset = 0x1000, - .axi_offset = 0x1e00, - .spare_len = 64, - .eccbytes = 0, - .eccsize = 0, - .ppb_shift = 8, -}; - -static inline int is_imx21_nfc(struct mxc_nand_host *host) -{ - return host->devtype_data == &imx21_nand_devtype_data; -} - -static inline int is_imx27_nfc(struct mxc_nand_host *host) -{ - return host->devtype_data == &imx27_nand_devtype_data; -} - -static inline int is_imx25_nfc(struct mxc_nand_host *host) -{ - return host->devtype_data == &imx25_nand_devtype_data; -} - -static inline int is_imx51_nfc(struct mxc_nand_host *host) -{ - return host->devtype_data == &imx51_nand_devtype_data; -} - -static inline int is_imx53_nfc(struct mxc_nand_host *host) -{ - return host->devtype_data == &imx53_nand_devtype_data; -} - -static const struct platform_device_id mxcnd_devtype[] = { - { - .name = "imx21-nand", - .driver_data = (kernel_ulong_t) &imx21_nand_devtype_data, - }, { - .name = "imx27-nand", - .driver_data = (kernel_ulong_t) &imx27_nand_devtype_data, - }, { - .name = "imx25-nand", - .driver_data = (kernel_ulong_t) &imx25_nand_devtype_data, - }, { - .name = "imx51-nand", - .driver_data = (kernel_ulong_t) &imx51_nand_devtype_data, - }, { - .name = "imx53-nand", - .driver_data = (kernel_ulong_t) &imx53_nand_devtype_data, - }, { - /* sentinel */ - } -}; -MODULE_DEVICE_TABLE(platform, mxcnd_devtype); - -#ifdef CONFIG_OF -static const struct of_device_id mxcnd_dt_ids[] = { - { - .compatible = "fsl,imx21-nand", - .data = &imx21_nand_devtype_data, - }, { - .compatible = "fsl,imx27-nand", - .data = &imx27_nand_devtype_data, - }, { - .compatible = "fsl,imx25-nand", - .data = &imx25_nand_devtype_data, - }, { - .compatible = "fsl,imx51-nand", - .data = &imx51_nand_devtype_data, - }, { - .compatible = "fsl,imx53-nand", - .data = &imx53_nand_devtype_data, - }, - { /* sentinel */ } -}; -MODULE_DEVICE_TABLE(of, mxcnd_dt_ids); - -static int __init mxcnd_probe_dt(struct mxc_nand_host *host) -{ - struct device_node *np = host->dev->of_node; - const struct of_device_id *of_id = - of_match_device(mxcnd_dt_ids, host->dev); - - if (!np) - return 1; - - host->devtype_data = of_id->data; - - return 0; -} -#else -static int __init mxcnd_probe_dt(struct mxc_nand_host *host) -{ - return 1; -} -#endif - -static int mxcnd_probe(struct platform_device *pdev) -{ - struct nand_chip *this; - struct mtd_info *mtd; - struct mxc_nand_host *host; - struct resource *res; - int err = 0; - - /* Allocate memory for MTD device structure and private data */ - host = devm_kzalloc(&pdev->dev, sizeof(struct mxc_nand_host), - GFP_KERNEL); - if (!host) - return -ENOMEM; - - /* allocate a temporary buffer for the nand_scan_ident() */ - host->data_buf = devm_kzalloc(&pdev->dev, PAGE_SIZE, GFP_KERNEL); - if (!host->data_buf) - return -ENOMEM; - - host->dev = &pdev->dev; - /* structures must be linked */ - this = &host->nand; - mtd = nand_to_mtd(this); - mtd->dev.parent = &pdev->dev; - mtd->name = DRIVER_NAME; - - /* 50 us command delay time */ - this->chip_delay = 5; - - nand_set_controller_data(this, host); - nand_set_flash_node(this, pdev->dev.of_node), - this->dev_ready = mxc_nand_dev_ready; - this->cmdfunc = mxc_nand_command; - this->read_byte = mxc_nand_read_byte; - this->read_word = mxc_nand_read_word; - this->write_buf = mxc_nand_write_buf; - this->read_buf = mxc_nand_read_buf; - this->onfi_set_features = mxc_nand_onfi_set_features; - this->onfi_get_features = mxc_nand_onfi_get_features; - - host->clk = devm_clk_get(&pdev->dev, NULL); - if (IS_ERR(host->clk)) - return PTR_ERR(host->clk); - - err = mxcnd_probe_dt(host); - if (err > 0) { - struct mxc_nand_platform_data *pdata = - dev_get_platdata(&pdev->dev); - if (pdata) { - host->pdata = *pdata; - host->devtype_data = (struct mxc_nand_devtype_data *) - pdev->id_entry->driver_data; - } else { - err = -ENODEV; - } - } - if (err < 0) - return err; - - this->setup_data_interface = host->devtype_data->setup_data_interface; - - if (host->devtype_data->needs_ip) { - res = platform_get_resource(pdev, IORESOURCE_MEM, 0); - host->regs_ip = devm_ioremap_resource(&pdev->dev, res); - if (IS_ERR(host->regs_ip)) - return PTR_ERR(host->regs_ip); - - res = platform_get_resource(pdev, IORESOURCE_MEM, 1); - } else { - res = platform_get_resource(pdev, IORESOURCE_MEM, 0); - } - - host->base = devm_ioremap_resource(&pdev->dev, res); - if (IS_ERR(host->base)) - return PTR_ERR(host->base); - - host->main_area0 = host->base; - - if (host->devtype_data->regs_offset) - host->regs = host->base + host->devtype_data->regs_offset; - host->spare0 = host->base + host->devtype_data->spare0_offset; - if (host->devtype_data->axi_offset) - host->regs_axi = host->base + host->devtype_data->axi_offset; - - this->ecc.bytes = host->devtype_data->eccbytes; - host->eccsize = host->devtype_data->eccsize; - - this->select_chip = host->devtype_data->select_chip; - this->ecc.size = 512; - mtd_set_ooblayout(mtd, host->devtype_data->ooblayout); - - if (host->pdata.hw_ecc) { - this->ecc.mode = NAND_ECC_HW; - } else { - this->ecc.mode = NAND_ECC_SOFT; - this->ecc.algo = NAND_ECC_HAMMING; - } - - /* NAND bus width determines access functions used by upper layer */ - if (host->pdata.width == 2) - this->options |= NAND_BUSWIDTH_16; - - /* update flash based bbt */ - if (host->pdata.flash_bbt) - this->bbt_options |= NAND_BBT_USE_FLASH; - - init_completion(&host->op_completion); - - host->irq = platform_get_irq(pdev, 0); - if (host->irq < 0) - return host->irq; - - /* - * Use host->devtype_data->irq_control() here instead of irq_control() - * because we must not disable_irq_nosync without having requested the - * irq. - */ - host->devtype_data->irq_control(host, 0); - - err = devm_request_irq(&pdev->dev, host->irq, mxc_nfc_irq, - 0, DRIVER_NAME, host); - if (err) - return err; - - err = clk_prepare_enable(host->clk); - if (err) - return err; - host->clk_act = 1; - - /* - * Now that we "own" the interrupt make sure the interrupt mask bit is - * cleared on i.MX21. Otherwise we can't read the interrupt status bit - * on this machine. - */ - if (host->devtype_data->irqpending_quirk) { - disable_irq_nosync(host->irq); - host->devtype_data->irq_control(host, 1); - } - - /* first scan to find the device and get the page size */ - err = nand_scan_ident(mtd, is_imx25_nfc(host) ? 4 : 1, NULL); - if (err) - goto escan; - - switch (this->ecc.mode) { - case NAND_ECC_HW: - this->ecc.read_page = mxc_nand_read_page; - this->ecc.read_page_raw = mxc_nand_read_page_raw; - this->ecc.read_oob = mxc_nand_read_oob; - this->ecc.write_page = mxc_nand_write_page_ecc; - this->ecc.write_page_raw = mxc_nand_write_page_raw; - this->ecc.write_oob = mxc_nand_write_oob; - break; - - case NAND_ECC_SOFT: - break; - - default: - err = -EINVAL; - goto escan; - } - - if (this->bbt_options & NAND_BBT_USE_FLASH) { - this->bbt_td = &bbt_main_descr; - this->bbt_md = &bbt_mirror_descr; - } - - /* allocate the right size buffer now */ - devm_kfree(&pdev->dev, (void *)host->data_buf); - host->data_buf = devm_kzalloc(&pdev->dev, mtd->writesize + mtd->oobsize, - GFP_KERNEL); - if (!host->data_buf) { - err = -ENOMEM; - goto escan; - } - - /* Call preset again, with correct writesize this time */ - host->devtype_data->preset(mtd); - - if (!this->ecc.bytes) { - if (host->eccsize == 8) - this->ecc.bytes = 18; - else if (host->eccsize == 4) - this->ecc.bytes = 9; - } - - /* - * Experimentation shows that i.MX NFC can only handle up to 218 oob - * bytes. Limit used_oobsize to 218 so as to not confuse copy_spare() - * into copying invalid data to/from the spare IO buffer, as this - * might cause ECC data corruption when doing sub-page write to a - * partially written page. - */ - host->used_oobsize = min(mtd->oobsize, 218U); - - if (this->ecc.mode == NAND_ECC_HW) { - if (is_imx21_nfc(host) || is_imx27_nfc(host)) - this->ecc.strength = 1; - else - this->ecc.strength = (host->eccsize == 4) ? 4 : 8; - } - - /* second phase scan */ - err = nand_scan_tail(mtd); - if (err) - goto escan; - - /* Register the partitions */ - mtd_device_parse_register(mtd, part_probes, - NULL, - host->pdata.parts, - host->pdata.nr_parts); - - platform_set_drvdata(pdev, host); - - return 0; - -escan: - if (host->clk_act) - clk_disable_unprepare(host->clk); - - return err; -} - -static int mxcnd_remove(struct platform_device *pdev) -{ - struct mxc_nand_host *host = platform_get_drvdata(pdev); - - nand_release(nand_to_mtd(&host->nand)); - if (host->clk_act) - clk_disable_unprepare(host->clk); - - return 0; -} - -static struct platform_driver mxcnd_driver = { - .driver = { - .name = DRIVER_NAME, - .of_match_table = of_match_ptr(mxcnd_dt_ids), - }, - .id_table = mxcnd_devtype, - .probe = mxcnd_probe, - .remove = mxcnd_remove, -}; -module_platform_driver(mxcnd_driver); - -MODULE_AUTHOR("Freescale Semiconductor, Inc."); -MODULE_DESCRIPTION("MXC NAND MTD driver"); -MODULE_LICENSE("GPL"); diff --git a/drivers/mtd/nand/nand_amd.c b/drivers/mtd/nand/nand_amd.c deleted file mode 100644 index 22f060f38123..000000000000 --- a/drivers/mtd/nand/nand_amd.c +++ /dev/null @@ -1,51 +0,0 @@ -/* - * Copyright (C) 2017 Free Electrons - * Copyright (C) 2017 NextThing Co - * - * Author: Boris Brezillon - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation; either version 2 of the License, or - * (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - */ - -#include - -static void amd_nand_decode_id(struct nand_chip *chip) -{ - struct mtd_info *mtd = nand_to_mtd(chip); - - nand_decode_ext_id(chip); - - /* - * Check for Spansion/AMD ID + repeating 5th, 6th byte since - * some Spansion chips have erasesize that conflicts with size - * listed in nand_ids table. - * Data sheet (5 byte ID): Spansion S30ML-P ORNAND (p.39) - */ - if (chip->id.data[4] != 0x00 && chip->id.data[5] == 0x00 && - chip->id.data[6] == 0x00 && chip->id.data[7] == 0x00 && - mtd->writesize == 512) { - mtd->erasesize = 128 * 1024; - mtd->erasesize <<= ((chip->id.data[3] & 0x03) << 1); - } -} - -static int amd_nand_init(struct nand_chip *chip) -{ - if (nand_is_slc(chip)) - chip->bbt_options |= NAND_BBT_SCAN2NDPAGE; - - return 0; -} - -const struct nand_manufacturer_ops amd_nand_manuf_ops = { - .detect = amd_nand_decode_id, - .init = amd_nand_init, -}; diff --git a/drivers/mtd/nand/nand_base.c b/drivers/mtd/nand/nand_base.c deleted file mode 100644 index e70ca16a5118..000000000000 --- a/drivers/mtd/nand/nand_base.c +++ /dev/null @@ -1,6582 +0,0 @@ -/* - * Overview: - * This is the generic MTD driver for NAND flash devices. It should be - * capable of working with almost all NAND chips currently available. - * - * Additional technical information is available on - * http://www.linux-mtd.infradead.org/doc/nand.html - * - * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com) - * 2002-2006 Thomas Gleixner (tglx@linutronix.de) - * - * Credits: - * David Woodhouse for adding multichip support - * - * Aleph One Ltd. and Toby Churchill Ltd. for supporting the - * rework for 2K page size chips - * - * TODO: - * Enable cached programming for 2k page size chips - * Check, if mtd->ecctype should be set to MTD_ECC_HW - * if we have HW ECC support. - * BBT table is not serialized, has to be fixed - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License version 2 as - * published by the Free Software Foundation. - * - */ - -#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt - -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include - -static int nand_get_device(struct mtd_info *mtd, int new_state); - -static int nand_do_write_oob(struct mtd_info *mtd, loff_t to, - struct mtd_oob_ops *ops); - -/* Define default oob placement schemes for large and small page devices */ -static int nand_ooblayout_ecc_sp(struct mtd_info *mtd, int section, - struct mtd_oob_region *oobregion) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct nand_ecc_ctrl *ecc = &chip->ecc; - - if (section > 1) - return -ERANGE; - - if (!section) { - oobregion->offset = 0; - if (mtd->oobsize == 16) - oobregion->length = 4; - else - oobregion->length = 3; - } else { - if (mtd->oobsize == 8) - return -ERANGE; - - oobregion->offset = 6; - oobregion->length = ecc->total - 4; - } - - return 0; -} - -static int nand_ooblayout_free_sp(struct mtd_info *mtd, int section, - struct mtd_oob_region *oobregion) -{ - if (section > 1) - return -ERANGE; - - if (mtd->oobsize == 16) { - if (section) - return -ERANGE; - - oobregion->length = 8; - oobregion->offset = 8; - } else { - oobregion->length = 2; - if (!section) - oobregion->offset = 3; - else - oobregion->offset = 6; - } - - return 0; -} - -const struct mtd_ooblayout_ops nand_ooblayout_sp_ops = { - .ecc = nand_ooblayout_ecc_sp, - .free = nand_ooblayout_free_sp, -}; -EXPORT_SYMBOL_GPL(nand_ooblayout_sp_ops); - -static int nand_ooblayout_ecc_lp(struct mtd_info *mtd, int section, - struct mtd_oob_region *oobregion) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct nand_ecc_ctrl *ecc = &chip->ecc; - - if (section || !ecc->total) - return -ERANGE; - - oobregion->length = ecc->total; - oobregion->offset = mtd->oobsize - oobregion->length; - - return 0; -} - -static int nand_ooblayout_free_lp(struct mtd_info *mtd, int section, - struct mtd_oob_region *oobregion) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct nand_ecc_ctrl *ecc = &chip->ecc; - - if (section) - return -ERANGE; - - oobregion->length = mtd->oobsize - ecc->total - 2; - oobregion->offset = 2; - - return 0; -} - -const struct mtd_ooblayout_ops nand_ooblayout_lp_ops = { - .ecc = nand_ooblayout_ecc_lp, - .free = nand_ooblayout_free_lp, -}; -EXPORT_SYMBOL_GPL(nand_ooblayout_lp_ops); - -/* - * Support the old "large page" layout used for 1-bit Hamming ECC where ECC - * are placed at a fixed offset. - */ -static int nand_ooblayout_ecc_lp_hamming(struct mtd_info *mtd, int section, - struct mtd_oob_region *oobregion) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct nand_ecc_ctrl *ecc = &chip->ecc; - - if (section) - return -ERANGE; - - switch (mtd->oobsize) { - case 64: - oobregion->offset = 40; - break; - case 128: - oobregion->offset = 80; - break; - default: - return -EINVAL; - } - - oobregion->length = ecc->total; - if (oobregion->offset + oobregion->length > mtd->oobsize) - return -ERANGE; - - return 0; -} - -static int nand_ooblayout_free_lp_hamming(struct mtd_info *mtd, int section, - struct mtd_oob_region *oobregion) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct nand_ecc_ctrl *ecc = &chip->ecc; - int ecc_offset = 0; - - if (section < 0 || section > 1) - return -ERANGE; - - switch (mtd->oobsize) { - case 64: - ecc_offset = 40; - break; - case 128: - ecc_offset = 80; - break; - default: - return -EINVAL; - } - - if (section == 0) { - oobregion->offset = 2; - oobregion->length = ecc_offset - 2; - } else { - oobregion->offset = ecc_offset + ecc->total; - oobregion->length = mtd->oobsize - oobregion->offset; - } - - return 0; -} - -static const struct mtd_ooblayout_ops nand_ooblayout_lp_hamming_ops = { - .ecc = nand_ooblayout_ecc_lp_hamming, - .free = nand_ooblayout_free_lp_hamming, -}; - -static int check_offs_len(struct mtd_info *mtd, - loff_t ofs, uint64_t len) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - int ret = 0; - - /* Start address must align on block boundary */ - if (ofs & ((1ULL << chip->phys_erase_shift) - 1)) { - pr_debug("%s: unaligned address\n", __func__); - ret = -EINVAL; - } - - /* Length must align on block boundary */ - if (len & ((1ULL << chip->phys_erase_shift) - 1)) { - pr_debug("%s: length not block aligned\n", __func__); - ret = -EINVAL; - } - - return ret; -} - -/** - * nand_release_device - [GENERIC] release chip - * @mtd: MTD device structure - * - * Release chip lock and wake up anyone waiting on the device. - */ -static void nand_release_device(struct mtd_info *mtd) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - - /* Release the controller and the chip */ - spin_lock(&chip->controller->lock); - chip->controller->active = NULL; - chip->state = FL_READY; - wake_up(&chip->controller->wq); - spin_unlock(&chip->controller->lock); -} - -/** - * nand_read_byte - [DEFAULT] read one byte from the chip - * @mtd: MTD device structure - * - * Default read function for 8bit buswidth - */ -static uint8_t nand_read_byte(struct mtd_info *mtd) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - return readb(chip->IO_ADDR_R); -} - -/** - * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip - * @mtd: MTD device structure - * - * Default read function for 16bit buswidth with endianness conversion. - * - */ -static uint8_t nand_read_byte16(struct mtd_info *mtd) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R)); -} - -/** - * nand_read_word - [DEFAULT] read one word from the chip - * @mtd: MTD device structure - * - * Default read function for 16bit buswidth without endianness conversion. - */ -static u16 nand_read_word(struct mtd_info *mtd) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - return readw(chip->IO_ADDR_R); -} - -/** - * nand_select_chip - [DEFAULT] control CE line - * @mtd: MTD device structure - * @chipnr: chipnumber to select, -1 for deselect - * - * Default select function for 1 chip devices. - */ -static void nand_select_chip(struct mtd_info *mtd, int chipnr) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - - switch (chipnr) { - case -1: - chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE); - break; - case 0: - break; - - default: - BUG(); - } -} - -/** - * nand_write_byte - [DEFAULT] write single byte to chip - * @mtd: MTD device structure - * @byte: value to write - * - * Default function to write a byte to I/O[7:0] - */ -static void nand_write_byte(struct mtd_info *mtd, uint8_t byte) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - - chip->write_buf(mtd, &byte, 1); -} - -/** - * nand_write_byte16 - [DEFAULT] write single byte to a chip with width 16 - * @mtd: MTD device structure - * @byte: value to write - * - * Default function to write a byte to I/O[7:0] on a 16-bit wide chip. - */ -static void nand_write_byte16(struct mtd_info *mtd, uint8_t byte) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - uint16_t word = byte; - - /* - * It's not entirely clear what should happen to I/O[15:8] when writing - * a byte. The ONFi spec (Revision 3.1; 2012-09-19, Section 2.16) reads: - * - * When the host supports a 16-bit bus width, only data is - * transferred at the 16-bit width. All address and command line - * transfers shall use only the lower 8-bits of the data bus. During - * command transfers, the host may place any value on the upper - * 8-bits of the data bus. During address transfers, the host shall - * set the upper 8-bits of the data bus to 00h. - * - * One user of the write_byte callback is nand_onfi_set_features. The - * four parameters are specified to be written to I/O[7:0], but this is - * neither an address nor a command transfer. Let's assume a 0 on the - * upper I/O lines is OK. - */ - chip->write_buf(mtd, (uint8_t *)&word, 2); -} - -/** - * nand_write_buf - [DEFAULT] write buffer to chip - * @mtd: MTD device structure - * @buf: data buffer - * @len: number of bytes to write - * - * Default write function for 8bit buswidth. - */ -static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - - iowrite8_rep(chip->IO_ADDR_W, buf, len); -} - -/** - * nand_read_buf - [DEFAULT] read chip data into buffer - * @mtd: MTD device structure - * @buf: buffer to store date - * @len: number of bytes to read - * - * Default read function for 8bit buswidth. - */ -static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - - ioread8_rep(chip->IO_ADDR_R, buf, len); -} - -/** - * nand_write_buf16 - [DEFAULT] write buffer to chip - * @mtd: MTD device structure - * @buf: data buffer - * @len: number of bytes to write - * - * Default write function for 16bit buswidth. - */ -static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - u16 *p = (u16 *) buf; - - iowrite16_rep(chip->IO_ADDR_W, p, len >> 1); -} - -/** - * nand_read_buf16 - [DEFAULT] read chip data into buffer - * @mtd: MTD device structure - * @buf: buffer to store date - * @len: number of bytes to read - * - * Default read function for 16bit buswidth. - */ -static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - u16 *p = (u16 *) buf; - - ioread16_rep(chip->IO_ADDR_R, p, len >> 1); -} - -/** - * nand_block_bad - [DEFAULT] Read bad block marker from the chip - * @mtd: MTD device structure - * @ofs: offset from device start - * - * Check, if the block is bad. - */ -static int nand_block_bad(struct mtd_info *mtd, loff_t ofs) -{ - int page, page_end, res; - struct nand_chip *chip = mtd_to_nand(mtd); - u8 bad; - - if (chip->bbt_options & NAND_BBT_SCANLASTPAGE) - ofs += mtd->erasesize - mtd->writesize; - - page = (int)(ofs >> chip->page_shift) & chip->pagemask; - page_end = page + (chip->bbt_options & NAND_BBT_SCAN2NDPAGE ? 2 : 1); - - for (; page < page_end; page++) { - res = chip->ecc.read_oob(mtd, chip, page); - if (res) - return res; - - bad = chip->oob_poi[chip->badblockpos]; - - if (likely(chip->badblockbits == 8)) - res = bad != 0xFF; - else - res = hweight8(bad) < chip->badblockbits; - if (res) - return res; - } - - return 0; -} - -/** - * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker - * @mtd: MTD device structure - * @ofs: offset from device start - * - * This is the default implementation, which can be overridden by a hardware - * specific driver. It provides the details for writing a bad block marker to a - * block. - */ -static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct mtd_oob_ops ops; - uint8_t buf[2] = { 0, 0 }; - int ret = 0, res, i = 0; - - memset(&ops, 0, sizeof(ops)); - ops.oobbuf = buf; - ops.ooboffs = chip->badblockpos; - if (chip->options & NAND_BUSWIDTH_16) { - ops.ooboffs &= ~0x01; - ops.len = ops.ooblen = 2; - } else { - ops.len = ops.ooblen = 1; - } - ops.mode = MTD_OPS_PLACE_OOB; - - /* Write to first/last page(s) if necessary */ - if (chip->bbt_options & NAND_BBT_SCANLASTPAGE) - ofs += mtd->erasesize - mtd->writesize; - do { - res = nand_do_write_oob(mtd, ofs, &ops); - if (!ret) - ret = res; - - i++; - ofs += mtd->writesize; - } while ((chip->bbt_options & NAND_BBT_SCAN2NDPAGE) && i < 2); - - return ret; -} - -/** - * nand_block_markbad_lowlevel - mark a block bad - * @mtd: MTD device structure - * @ofs: offset from device start - * - * This function performs the generic NAND bad block marking steps (i.e., bad - * block table(s) and/or marker(s)). We only allow the hardware driver to - * specify how to write bad block markers to OOB (chip->block_markbad). - * - * We try operations in the following order: - * - * (1) erase the affected block, to allow OOB marker to be written cleanly - * (2) write bad block marker to OOB area of affected block (unless flag - * NAND_BBT_NO_OOB_BBM is present) - * (3) update the BBT - * - * Note that we retain the first error encountered in (2) or (3), finish the - * procedures, and dump the error in the end. -*/ -static int nand_block_markbad_lowlevel(struct mtd_info *mtd, loff_t ofs) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - int res, ret = 0; - - if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) { - struct erase_info einfo; - - /* Attempt erase before marking OOB */ - memset(&einfo, 0, sizeof(einfo)); - einfo.mtd = mtd; - einfo.addr = ofs; - einfo.len = 1ULL << chip->phys_erase_shift; - nand_erase_nand(mtd, &einfo, 0); - - /* Write bad block marker to OOB */ - nand_get_device(mtd, FL_WRITING); - ret = chip->block_markbad(mtd, ofs); - nand_release_device(mtd); - } - - /* Mark block bad in BBT */ - if (chip->bbt) { - res = nand_markbad_bbt(mtd, ofs); - if (!ret) - ret = res; - } - - if (!ret) - mtd->ecc_stats.badblocks++; - - return ret; -} - -/** - * nand_check_wp - [GENERIC] check if the chip is write protected - * @mtd: MTD device structure - * - * Check, if the device is write protected. The function expects, that the - * device is already selected. - */ -static int nand_check_wp(struct mtd_info *mtd) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - u8 status; - int ret; - - /* Broken xD cards report WP despite being writable */ - if (chip->options & NAND_BROKEN_XD) - return 0; - - /* Check the WP bit */ - ret = nand_status_op(chip, &status); - if (ret) - return ret; - - return status & NAND_STATUS_WP ? 0 : 1; -} - -/** - * nand_block_isreserved - [GENERIC] Check if a block is marked reserved. - * @mtd: MTD device structure - * @ofs: offset from device start - * - * Check if the block is marked as reserved. - */ -static int nand_block_isreserved(struct mtd_info *mtd, loff_t ofs) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - - if (!chip->bbt) - return 0; - /* Return info from the table */ - return nand_isreserved_bbt(mtd, ofs); -} - -/** - * nand_block_checkbad - [GENERIC] Check if a block is marked bad - * @mtd: MTD device structure - * @ofs: offset from device start - * @allowbbt: 1, if its allowed to access the bbt area - * - * Check, if the block is bad. Either by reading the bad block table or - * calling of the scan function. - */ -static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int allowbbt) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - - if (!chip->bbt) - return chip->block_bad(mtd, ofs); - - /* Return info from the table */ - return nand_isbad_bbt(mtd, ofs, allowbbt); -} - -/** - * panic_nand_wait_ready - [GENERIC] Wait for the ready pin after commands. - * @mtd: MTD device structure - * @timeo: Timeout - * - * Helper function for nand_wait_ready used when needing to wait in interrupt - * context. - */ -static void panic_nand_wait_ready(struct mtd_info *mtd, unsigned long timeo) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - int i; - - /* Wait for the device to get ready */ - for (i = 0; i < timeo; i++) { - if (chip->dev_ready(mtd)) - break; - touch_softlockup_watchdog(); - mdelay(1); - } -} - -/** - * nand_wait_ready - [GENERIC] Wait for the ready pin after commands. - * @mtd: MTD device structure - * - * Wait for the ready pin after a command, and warn if a timeout occurs. - */ -void nand_wait_ready(struct mtd_info *mtd) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - unsigned long timeo = 400; - - if (in_interrupt() || oops_in_progress) - return panic_nand_wait_ready(mtd, timeo); - - /* Wait until command is processed or timeout occurs */ - timeo = jiffies + msecs_to_jiffies(timeo); - do { - if (chip->dev_ready(mtd)) - return; - cond_resched(); - } while (time_before(jiffies, timeo)); - - if (!chip->dev_ready(mtd)) - pr_warn_ratelimited("timeout while waiting for chip to become ready\n"); -} -EXPORT_SYMBOL_GPL(nand_wait_ready); - -/** - * nand_wait_status_ready - [GENERIC] Wait for the ready status after commands. - * @mtd: MTD device structure - * @timeo: Timeout in ms - * - * Wait for status ready (i.e. command done) or timeout. - */ -static void nand_wait_status_ready(struct mtd_info *mtd, unsigned long timeo) -{ - register struct nand_chip *chip = mtd_to_nand(mtd); - int ret; - - timeo = jiffies + msecs_to_jiffies(timeo); - do { - u8 status; - - ret = nand_read_data_op(chip, &status, sizeof(status), true); - if (ret) - return; - - if (status & NAND_STATUS_READY) - break; - touch_softlockup_watchdog(); - } while (time_before(jiffies, timeo)); -}; - -/** - * nand_soft_waitrdy - Poll STATUS reg until RDY bit is set to 1 - * @chip: NAND chip structure - * @timeout_ms: Timeout in ms - * - * Poll the STATUS register using ->exec_op() until the RDY bit becomes 1. - * If that does not happen whitin the specified timeout, -ETIMEDOUT is - * returned. - * - * This helper is intended to be used when the controller does not have access - * to the NAND R/B pin. - * - * Be aware that calling this helper from an ->exec_op() implementation means - * ->exec_op() must be re-entrant. - * - * Return 0 if the NAND chip is ready, a negative error otherwise. - */ -int nand_soft_waitrdy(struct nand_chip *chip, unsigned long timeout_ms) -{ - u8 status = 0; - int ret; - - if (!chip->exec_op) - return -ENOTSUPP; - - ret = nand_status_op(chip, NULL); - if (ret) - return ret; - - timeout_ms = jiffies + msecs_to_jiffies(timeout_ms); - do { - ret = nand_read_data_op(chip, &status, sizeof(status), true); - if (ret) - break; - - if (status & NAND_STATUS_READY) - break; - - /* - * Typical lowest execution time for a tR on most NANDs is 10us, - * use this as polling delay before doing something smarter (ie. - * deriving a delay from the timeout value, timeout_ms/ratio). - */ - udelay(10); - } while (time_before(jiffies, timeout_ms)); - - /* - * We have to exit READ_STATUS mode in order to read real data on the - * bus in case the WAITRDY instruction is preceding a DATA_IN - * instruction. - */ - nand_exit_status_op(chip); - - if (ret) - return ret; - - return status & NAND_STATUS_READY ? 0 : -ETIMEDOUT; -}; -EXPORT_SYMBOL_GPL(nand_soft_waitrdy); - -/** - * nand_command - [DEFAULT] Send command to NAND device - * @mtd: MTD device structure - * @command: the command to be sent - * @column: the column address for this command, -1 if none - * @page_addr: the page address for this command, -1 if none - * - * Send command to NAND device. This function is used for small page devices - * (512 Bytes per page). - */ -static void nand_command(struct mtd_info *mtd, unsigned int command, - int column, int page_addr) -{ - register struct nand_chip *chip = mtd_to_nand(mtd); - int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE; - - /* Write out the command to the device */ - if (command == NAND_CMD_SEQIN) { - int readcmd; - - if (column >= mtd->writesize) { - /* OOB area */ - column -= mtd->writesize; - readcmd = NAND_CMD_READOOB; - } else if (column < 256) { - /* First 256 bytes --> READ0 */ - readcmd = NAND_CMD_READ0; - } else { - column -= 256; - readcmd = NAND_CMD_READ1; - } - chip->cmd_ctrl(mtd, readcmd, ctrl); - ctrl &= ~NAND_CTRL_CHANGE; - } - if (command != NAND_CMD_NONE) - chip->cmd_ctrl(mtd, command, ctrl); - - /* Address cycle, when necessary */ - ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE; - /* Serially input address */ - if (column != -1) { - /* Adjust columns for 16 bit buswidth */ - if (chip->options & NAND_BUSWIDTH_16 && - !nand_opcode_8bits(command)) - column >>= 1; - chip->cmd_ctrl(mtd, column, ctrl); - ctrl &= ~NAND_CTRL_CHANGE; - } - if (page_addr != -1) { - chip->cmd_ctrl(mtd, page_addr, ctrl); - ctrl &= ~NAND_CTRL_CHANGE; - chip->cmd_ctrl(mtd, page_addr >> 8, ctrl); - if (chip->options & NAND_ROW_ADDR_3) - chip->cmd_ctrl(mtd, page_addr >> 16, ctrl); - } - chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE); - - /* - * Program and erase have their own busy handlers status and sequential - * in needs no delay - */ - switch (command) { - - case NAND_CMD_NONE: - case NAND_CMD_PAGEPROG: - case NAND_CMD_ERASE1: - case NAND_CMD_ERASE2: - case NAND_CMD_SEQIN: - case NAND_CMD_STATUS: - case NAND_CMD_READID: - case NAND_CMD_SET_FEATURES: - return; - - case NAND_CMD_RESET: - if (chip->dev_ready) - break; - udelay(chip->chip_delay); - chip->cmd_ctrl(mtd, NAND_CMD_STATUS, - NAND_CTRL_CLE | NAND_CTRL_CHANGE); - chip->cmd_ctrl(mtd, - NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE); - /* EZ-NAND can take upto 250ms as per ONFi v4.0 */ - nand_wait_status_ready(mtd, 250); - return; - - /* This applies to read commands */ - case NAND_CMD_READ0: - /* - * READ0 is sometimes used to exit GET STATUS mode. When this - * is the case no address cycles are requested, and we can use - * this information to detect that we should not wait for the - * device to be ready. - */ - if (column == -1 && page_addr == -1) - return; - - default: - /* - * If we don't have access to the busy pin, we apply the given - * command delay - */ - if (!chip->dev_ready) { - udelay(chip->chip_delay); - return; - } - } - /* - * Apply this short delay always to ensure that we do wait tWB in - * any case on any machine. - */ - ndelay(100); - - nand_wait_ready(mtd); -} - -static void nand_ccs_delay(struct nand_chip *chip) -{ - /* - * The controller already takes care of waiting for tCCS when the RNDIN - * or RNDOUT command is sent, return directly. - */ - if (!(chip->options & NAND_WAIT_TCCS)) - return; - - /* - * Wait tCCS_min if it is correctly defined, otherwise wait 500ns - * (which should be safe for all NANDs). - */ - if (chip->setup_data_interface) - ndelay(chip->data_interface.timings.sdr.tCCS_min / 1000); - else - ndelay(500); -} - -/** - * nand_command_lp - [DEFAULT] Send command to NAND large page device - * @mtd: MTD device structure - * @command: the command to be sent - * @column: the column address for this command, -1 if none - * @page_addr: the page address for this command, -1 if none - * - * Send command to NAND device. This is the version for the new large page - * devices. We don't have the separate regions as we have in the small page - * devices. We must emulate NAND_CMD_READOOB to keep the code compatible. - */ -static void nand_command_lp(struct mtd_info *mtd, unsigned int command, - int column, int page_addr) -{ - register struct nand_chip *chip = mtd_to_nand(mtd); - - /* Emulate NAND_CMD_READOOB */ - if (command == NAND_CMD_READOOB) { - column += mtd->writesize; - command = NAND_CMD_READ0; - } - - /* Command latch cycle */ - if (command != NAND_CMD_NONE) - chip->cmd_ctrl(mtd, command, - NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE); - - if (column != -1 || page_addr != -1) { - int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE; - - /* Serially input address */ - if (column != -1) { - /* Adjust columns for 16 bit buswidth */ - if (chip->options & NAND_BUSWIDTH_16 && - !nand_opcode_8bits(command)) - column >>= 1; - chip->cmd_ctrl(mtd, column, ctrl); - ctrl &= ~NAND_CTRL_CHANGE; - - /* Only output a single addr cycle for 8bits opcodes. */ - if (!nand_opcode_8bits(command)) - chip->cmd_ctrl(mtd, column >> 8, ctrl); - } - if (page_addr != -1) { - chip->cmd_ctrl(mtd, page_addr, ctrl); - chip->cmd_ctrl(mtd, page_addr >> 8, - NAND_NCE | NAND_ALE); - if (chip->options & NAND_ROW_ADDR_3) - chip->cmd_ctrl(mtd, page_addr >> 16, - NAND_NCE | NAND_ALE); - } - } - chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE); - - /* - * Program and erase have their own busy handlers status, sequential - * in and status need no delay. - */ - switch (command) { - - case NAND_CMD_NONE: - case NAND_CMD_CACHEDPROG: - case NAND_CMD_PAGEPROG: - case NAND_CMD_ERASE1: - case NAND_CMD_ERASE2: - case NAND_CMD_SEQIN: - case NAND_CMD_STATUS: - case NAND_CMD_READID: - case NAND_CMD_SET_FEATURES: - return; - - case NAND_CMD_RNDIN: - nand_ccs_delay(chip); - return; - - case NAND_CMD_RESET: - if (chip->dev_ready) - break; - udelay(chip->chip_delay); - chip->cmd_ctrl(mtd, NAND_CMD_STATUS, - NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE); - chip->cmd_ctrl(mtd, NAND_CMD_NONE, - NAND_NCE | NAND_CTRL_CHANGE); - /* EZ-NAND can take upto 250ms as per ONFi v4.0 */ - nand_wait_status_ready(mtd, 250); - return; - - case NAND_CMD_RNDOUT: - /* No ready / busy check necessary */ - chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART, - NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE); - chip->cmd_ctrl(mtd, NAND_CMD_NONE, - NAND_NCE | NAND_CTRL_CHANGE); - - nand_ccs_delay(chip); - return; - - case NAND_CMD_READ0: - /* - * READ0 is sometimes used to exit GET STATUS mode. When this - * is the case no address cycles are requested, and we can use - * this information to detect that READSTART should not be - * issued. - */ - if (column == -1 && page_addr == -1) - return; - - chip->cmd_ctrl(mtd, NAND_CMD_READSTART, - NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE); - chip->cmd_ctrl(mtd, NAND_CMD_NONE, - NAND_NCE | NAND_CTRL_CHANGE); - - /* This applies to read commands */ - default: - /* - * If we don't have access to the busy pin, we apply the given - * command delay. - */ - if (!chip->dev_ready) { - udelay(chip->chip_delay); - return; - } - } - - /* - * Apply this short delay always to ensure that we do wait tWB in - * any case on any machine. - */ - ndelay(100); - - nand_wait_ready(mtd); -} - -/** - * panic_nand_get_device - [GENERIC] Get chip for selected access - * @chip: the nand chip descriptor - * @mtd: MTD device structure - * @new_state: the state which is requested - * - * Used when in panic, no locks are taken. - */ -static void panic_nand_get_device(struct nand_chip *chip, - struct mtd_info *mtd, int new_state) -{ - /* Hardware controller shared among independent devices */ - chip->controller->active = chip; - chip->state = new_state; -} - -/** - * nand_get_device - [GENERIC] Get chip for selected access - * @mtd: MTD device structure - * @new_state: the state which is requested - * - * Get the device and lock it for exclusive access - */ -static int -nand_get_device(struct mtd_info *mtd, int new_state) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - spinlock_t *lock = &chip->controller->lock; - wait_queue_head_t *wq = &chip->controller->wq; - DECLARE_WAITQUEUE(wait, current); -retry: - spin_lock(lock); - - /* Hardware controller shared among independent devices */ - if (!chip->controller->active) - chip->controller->active = chip; - - if (chip->controller->active == chip && chip->state == FL_READY) { - chip->state = new_state; - spin_unlock(lock); - return 0; - } - if (new_state == FL_PM_SUSPENDED) { - if (chip->controller->active->state == FL_PM_SUSPENDED) { - chip->state = FL_PM_SUSPENDED; - spin_unlock(lock); - return 0; - } - } - set_current_state(TASK_UNINTERRUPTIBLE); - add_wait_queue(wq, &wait); - spin_unlock(lock); - schedule(); - remove_wait_queue(wq, &wait); - goto retry; -} - -/** - * panic_nand_wait - [GENERIC] wait until the command is done - * @mtd: MTD device structure - * @chip: NAND chip structure - * @timeo: timeout - * - * Wait for command done. This is a helper function for nand_wait used when - * we are in interrupt context. May happen when in panic and trying to write - * an oops through mtdoops. - */ -static void panic_nand_wait(struct mtd_info *mtd, struct nand_chip *chip, - unsigned long timeo) -{ - int i; - for (i = 0; i < timeo; i++) { - if (chip->dev_ready) { - if (chip->dev_ready(mtd)) - break; - } else { - int ret; - u8 status; - - ret = nand_read_data_op(chip, &status, sizeof(status), - true); - if (ret) - return; - - if (status & NAND_STATUS_READY) - break; - } - mdelay(1); - } -} - -/** - * nand_wait - [DEFAULT] wait until the command is done - * @mtd: MTD device structure - * @chip: NAND chip structure - * - * Wait for command done. This applies to erase and program only. - */ -static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip) -{ - - unsigned long timeo = 400; - u8 status; - int ret; - - /* - * Apply this short delay always to ensure that we do wait tWB in any - * case on any machine. - */ - ndelay(100); - - ret = nand_status_op(chip, NULL); - if (ret) - return ret; - - if (in_interrupt() || oops_in_progress) - panic_nand_wait(mtd, chip, timeo); - else { - timeo = jiffies + msecs_to_jiffies(timeo); - do { - if (chip->dev_ready) { - if (chip->dev_ready(mtd)) - break; - } else { - ret = nand_read_data_op(chip, &status, - sizeof(status), true); - if (ret) - return ret; - - if (status & NAND_STATUS_READY) - break; - } - cond_resched(); - } while (time_before(jiffies, timeo)); - } - - ret = nand_read_data_op(chip, &status, sizeof(status), true); - if (ret) - return ret; - - /* This can happen if in case of timeout or buggy dev_ready */ - WARN_ON(!(status & NAND_STATUS_READY)); - return status; -} - -/** - * nand_reset_data_interface - Reset data interface and timings - * @chip: The NAND chip - * @chipnr: Internal die id - * - * Reset the Data interface and timings to ONFI mode 0. - * - * Returns 0 for success or negative error code otherwise. - */ -static int nand_reset_data_interface(struct nand_chip *chip, int chipnr) -{ - struct mtd_info *mtd = nand_to_mtd(chip); - int ret; - - if (!chip->setup_data_interface) - return 0; - - /* - * The ONFI specification says: - * " - * To transition from NV-DDR or NV-DDR2 to the SDR data - * interface, the host shall use the Reset (FFh) command - * using SDR timing mode 0. A device in any timing mode is - * required to recognize Reset (FFh) command issued in SDR - * timing mode 0. - * " - * - * Configure the data interface in SDR mode and set the - * timings to timing mode 0. - */ - - onfi_fill_data_interface(chip, NAND_SDR_IFACE, 0); - ret = chip->setup_data_interface(mtd, chipnr, &chip->data_interface); - if (ret) - pr_err("Failed to configure data interface to SDR timing mode 0\n"); - - return ret; -} - -/** - * nand_setup_data_interface - Setup the best data interface and timings - * @chip: The NAND chip - * @chipnr: Internal die id - * - * Find and configure the best data interface and NAND timings supported by - * the chip and the driver. - * First tries to retrieve supported timing modes from ONFI information, - * and if the NAND chip does not support ONFI, relies on the - * ->onfi_timing_mode_default specified in the nand_ids table. - * - * Returns 0 for success or negative error code otherwise. - */ -static int nand_setup_data_interface(struct nand_chip *chip, int chipnr) -{ - struct mtd_info *mtd = nand_to_mtd(chip); - int ret; - - if (!chip->setup_data_interface) - return 0; - - /* - * Ensure the timing mode has been changed on the chip side - * before changing timings on the controller side. - */ - if (chip->onfi_version && - (le16_to_cpu(chip->onfi_params.opt_cmd) & - ONFI_OPT_CMD_SET_GET_FEATURES)) { - u8 tmode_param[ONFI_SUBFEATURE_PARAM_LEN] = { - chip->onfi_timing_mode_default, - }; - - ret = chip->onfi_set_features(mtd, chip, - ONFI_FEATURE_ADDR_TIMING_MODE, - tmode_param); - if (ret) - goto err; - } - - ret = chip->setup_data_interface(mtd, chipnr, &chip->data_interface); -err: - return ret; -} - -/** - * nand_init_data_interface - find the best data interface and timings - * @chip: The NAND chip - * - * Find the best data interface and NAND timings supported by the chip - * and the driver. - * First tries to retrieve supported timing modes from ONFI information, - * and if the NAND chip does not support ONFI, relies on the - * ->onfi_timing_mode_default specified in the nand_ids table. After this - * function nand_chip->data_interface is initialized with the best timing mode - * available. - * - * Returns 0 for success or negative error code otherwise. - */ -static int nand_init_data_interface(struct nand_chip *chip) -{ - struct mtd_info *mtd = nand_to_mtd(chip); - int modes, mode, ret; - - if (!chip->setup_data_interface) - return 0; - - /* - * First try to identify the best timings from ONFI parameters and - * if the NAND does not support ONFI, fallback to the default ONFI - * timing mode. - */ - modes = onfi_get_async_timing_mode(chip); - if (modes == ONFI_TIMING_MODE_UNKNOWN) { - if (!chip->onfi_timing_mode_default) - return 0; - - modes = GENMASK(chip->onfi_timing_mode_default, 0); - } - - - for (mode = fls(modes) - 1; mode >= 0; mode--) { - ret = onfi_fill_data_interface(chip, NAND_SDR_IFACE, mode); - if (ret) - continue; - - /* - * Pass NAND_DATA_IFACE_CHECK_ONLY to only check if the - * controller supports the requested timings. - */ - ret = chip->setup_data_interface(mtd, - NAND_DATA_IFACE_CHECK_ONLY, - &chip->data_interface); - if (!ret) { - chip->onfi_timing_mode_default = mode; - break; - } - } - - return 0; -} - -/** - * nand_fill_column_cycles - fill the column cycles of an address - * @chip: The NAND chip - * @addrs: Array of address cycles to fill - * @offset_in_page: The offset in the page - * - * Fills the first or the first two bytes of the @addrs field depending - * on the NAND bus width and the page size. - * - * Returns the number of cycles needed to encode the column, or a negative - * error code in case one of the arguments is invalid. - */ -static int nand_fill_column_cycles(struct nand_chip *chip, u8 *addrs, - unsigned int offset_in_page) -{ - struct mtd_info *mtd = nand_to_mtd(chip); - - /* Make sure the offset is less than the actual page size. */ - if (offset_in_page > mtd->writesize + mtd->oobsize) - return -EINVAL; - - /* - * On small page NANDs, there's a dedicated command to access the OOB - * area, and the column address is relative to the start of the OOB - * area, not the start of the page. Asjust the address accordingly. - */ - if (mtd->writesize <= 512 && offset_in_page >= mtd->writesize) - offset_in_page -= mtd->writesize; - - /* - * The offset in page is expressed in bytes, if the NAND bus is 16-bit - * wide, then it must be divided by 2. - */ - if (chip->options & NAND_BUSWIDTH_16) { - if (WARN_ON(offset_in_page % 2)) - return -EINVAL; - - offset_in_page /= 2; - } - - addrs[0] = offset_in_page; - - /* - * Small page NANDs use 1 cycle for the columns, while large page NANDs - * need 2 - */ - if (mtd->writesize <= 512) - return 1; - - addrs[1] = offset_in_page >> 8; - - return 2; -} - -static int nand_sp_exec_read_page_op(struct nand_chip *chip, unsigned int page, - unsigned int offset_in_page, void *buf, - unsigned int len) -{ - struct mtd_info *mtd = nand_to_mtd(chip); - const struct nand_sdr_timings *sdr = - nand_get_sdr_timings(&chip->data_interface); - u8 addrs[4]; - struct nand_op_instr instrs[] = { - NAND_OP_CMD(NAND_CMD_READ0, 0), - NAND_OP_ADDR(3, addrs, PSEC_TO_NSEC(sdr->tWB_max)), - NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tR_max), - PSEC_TO_NSEC(sdr->tRR_min)), - NAND_OP_DATA_IN(len, buf, 0), - }; - struct nand_operation op = NAND_OPERATION(instrs); - int ret; - - /* Drop the DATA_IN instruction if len is set to 0. */ - if (!len) - op.ninstrs--; - - if (offset_in_page >= mtd->writesize) - instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB; - else if (offset_in_page >= 256 && - !(chip->options & NAND_BUSWIDTH_16)) - instrs[0].ctx.cmd.opcode = NAND_CMD_READ1; - - ret = nand_fill_column_cycles(chip, addrs, offset_in_page); - if (ret < 0) - return ret; - - addrs[1] = page; - addrs[2] = page >> 8; - - if (chip->options & NAND_ROW_ADDR_3) { - addrs[3] = page >> 16; - instrs[1].ctx.addr.naddrs++; - } - - return nand_exec_op(chip, &op); -} - -static int nand_lp_exec_read_page_op(struct nand_chip *chip, unsigned int page, - unsigned int offset_in_page, void *buf, - unsigned int len) -{ - const struct nand_sdr_timings *sdr = - nand_get_sdr_timings(&chip->data_interface); - u8 addrs[5]; - struct nand_op_instr instrs[] = { - NAND_OP_CMD(NAND_CMD_READ0, 0), - NAND_OP_ADDR(4, addrs, 0), - NAND_OP_CMD(NAND_CMD_READSTART, PSEC_TO_NSEC(sdr->tWB_max)), - NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tR_max), - PSEC_TO_NSEC(sdr->tRR_min)), - NAND_OP_DATA_IN(len, buf, 0), - }; - struct nand_operation op = NAND_OPERATION(instrs); - int ret; - - /* Drop the DATA_IN instruction if len is set to 0. */ - if (!len) - op.ninstrs--; - - ret = nand_fill_column_cycles(chip, addrs, offset_in_page); - if (ret < 0) - return ret; - - addrs[2] = page; - addrs[3] = page >> 8; - - if (chip->options & NAND_ROW_ADDR_3) { - addrs[4] = page >> 16; - instrs[1].ctx.addr.naddrs++; - } - - return nand_exec_op(chip, &op); -} - -/** - * nand_read_page_op - Do a READ PAGE operation - * @chip: The NAND chip - * @page: page to read - * @offset_in_page: offset within the page - * @buf: buffer used to store the data - * @len: length of the buffer - * - * This function issues a READ PAGE operation. - * This function does not select/unselect the CS line. - * - * Returns 0 on success, a negative error code otherwise. - */ -int nand_read_page_op(struct nand_chip *chip, unsigned int page, - unsigned int offset_in_page, void *buf, unsigned int len) -{ - struct mtd_info *mtd = nand_to_mtd(chip); - - if (len && !buf) - return -EINVAL; - - if (offset_in_page + len > mtd->writesize + mtd->oobsize) - return -EINVAL; - - if (chip->exec_op) { - if (mtd->writesize > 512) - return nand_lp_exec_read_page_op(chip, page, - offset_in_page, buf, - len); - - return nand_sp_exec_read_page_op(chip, page, offset_in_page, - buf, len); - } - - chip->cmdfunc(mtd, NAND_CMD_READ0, offset_in_page, page); - if (len) - chip->read_buf(mtd, buf, len); - - return 0; -} -EXPORT_SYMBOL_GPL(nand_read_page_op); - -/** - * nand_read_param_page_op - Do a READ PARAMETER PAGE operation - * @chip: The NAND chip - * @page: parameter page to read - * @buf: buffer used to store the data - * @len: length of the buffer - * - * This function issues a READ PARAMETER PAGE operation. - * This function does not select/unselect the CS line. - * - * Returns 0 on success, a negative error code otherwise. - */ -static int nand_read_param_page_op(struct nand_chip *chip, u8 page, void *buf, - unsigned int len) -{ - struct mtd_info *mtd = nand_to_mtd(chip); - unsigned int i; - u8 *p = buf; - - if (len && !buf) - return -EINVAL; - - if (chip->exec_op) { - const struct nand_sdr_timings *sdr = - nand_get_sdr_timings(&chip->data_interface); - struct nand_op_instr instrs[] = { - NAND_OP_CMD(NAND_CMD_PARAM, 0), - NAND_OP_ADDR(1, &page, PSEC_TO_NSEC(sdr->tWB_max)), - NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tR_max), - PSEC_TO_NSEC(sdr->tRR_min)), - NAND_OP_8BIT_DATA_IN(len, buf, 0), - }; - struct nand_operation op = NAND_OPERATION(instrs); - - /* Drop the DATA_IN instruction if len is set to 0. */ - if (!len) - op.ninstrs--; - - return nand_exec_op(chip, &op); - } - - chip->cmdfunc(mtd, NAND_CMD_PARAM, page, -1); - for (i = 0; i < len; i++) - p[i] = chip->read_byte(mtd); - - return 0; -} - -/** - * nand_change_read_column_op - Do a CHANGE READ COLUMN operation - * @chip: The NAND chip - * @offset_in_page: offset within the page - * @buf: buffer used to store the data - * @len: length of the buffer - * @force_8bit: force 8-bit bus access - * - * This function issues a CHANGE READ COLUMN operation. - * This function does not select/unselect the CS line. - * - * Returns 0 on success, a negative error code otherwise. - */ -int nand_change_read_column_op(struct nand_chip *chip, - unsigned int offset_in_page, void *buf, - unsigned int len, bool force_8bit) -{ - struct mtd_info *mtd = nand_to_mtd(chip); - - if (len && !buf) - return -EINVAL; - - if (offset_in_page + len > mtd->writesize + mtd->oobsize) - return -EINVAL; - - /* Small page NANDs do not support column change. */ - if (mtd->writesize <= 512) - return -ENOTSUPP; - - if (chip->exec_op) { - const struct nand_sdr_timings *sdr = - nand_get_sdr_timings(&chip->data_interface); - u8 addrs[2] = {}; - struct nand_op_instr instrs[] = { - NAND_OP_CMD(NAND_CMD_RNDOUT, 0), - NAND_OP_ADDR(2, addrs, 0), - NAND_OP_CMD(NAND_CMD_RNDOUTSTART, - PSEC_TO_NSEC(sdr->tCCS_min)), - NAND_OP_DATA_IN(len, buf, 0), - }; - struct nand_operation op = NAND_OPERATION(instrs); - int ret; - - ret = nand_fill_column_cycles(chip, addrs, offset_in_page); - if (ret < 0) - return ret; - - /* Drop the DATA_IN instruction if len is set to 0. */ - if (!len) - op.ninstrs--; - - instrs[3].ctx.data.force_8bit = force_8bit; - - return nand_exec_op(chip, &op); - } - - chip->cmdfunc(mtd, NAND_CMD_RNDOUT, offset_in_page, -1); - if (len) - chip->read_buf(mtd, buf, len); - - return 0; -} -EXPORT_SYMBOL_GPL(nand_change_read_column_op); - -/** - * nand_read_oob_op - Do a READ OOB operation - * @chip: The NAND chip - * @page: page to read - * @offset_in_oob: offset within the OOB area - * @buf: buffer used to store the data - * @len: length of the buffer - * - * This function issues a READ OOB operation. - * This function does not select/unselect the CS line. - * - * Returns 0 on success, a negative error code otherwise. - */ -int nand_read_oob_op(struct nand_chip *chip, unsigned int page, - unsigned int offset_in_oob, void *buf, unsigned int len) -{ - struct mtd_info *mtd = nand_to_mtd(chip); - - if (len && !buf) - return -EINVAL; - - if (offset_in_oob + len > mtd->oobsize) - return -EINVAL; - - if (chip->exec_op) - return nand_read_page_op(chip, page, - mtd->writesize + offset_in_oob, - buf, len); - - chip->cmdfunc(mtd, NAND_CMD_READOOB, offset_in_oob, page); - if (len) - chip->read_buf(mtd, buf, len); - - return 0; -} -EXPORT_SYMBOL_GPL(nand_read_oob_op); - -static int nand_exec_prog_page_op(struct nand_chip *chip, unsigned int page, - unsigned int offset_in_page, const void *buf, - unsigned int len, bool prog) -{ - struct mtd_info *mtd = nand_to_mtd(chip); - const struct nand_sdr_timings *sdr = - nand_get_sdr_timings(&chip->data_interface); - u8 addrs[5] = {}; - struct nand_op_instr instrs[] = { - /* - * The first instruction will be dropped if we're dealing - * with a large page NAND and adjusted if we're dealing - * with a small page NAND and the page offset is > 255. - */ - NAND_OP_CMD(NAND_CMD_READ0, 0), - NAND_OP_CMD(NAND_CMD_SEQIN, 0), - NAND_OP_ADDR(0, addrs, PSEC_TO_NSEC(sdr->tADL_min)), - NAND_OP_DATA_OUT(len, buf, 0), - NAND_OP_CMD(NAND_CMD_PAGEPROG, PSEC_TO_NSEC(sdr->tWB_max)), - NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tPROG_max), 0), - }; - struct nand_operation op = NAND_OPERATION(instrs); - int naddrs = nand_fill_column_cycles(chip, addrs, offset_in_page); - int ret; - u8 status; - - if (naddrs < 0) - return naddrs; - - addrs[naddrs++] = page; - addrs[naddrs++] = page >> 8; - if (chip->options & NAND_ROW_ADDR_3) - addrs[naddrs++] = page >> 16; - - instrs[2].ctx.addr.naddrs = naddrs; - - /* Drop the last two instructions if we're not programming the page. */ - if (!prog) { - op.ninstrs -= 2; - /* Also drop the DATA_OUT instruction if empty. */ - if (!len) - op.ninstrs--; - } - - if (mtd->writesize <= 512) { - /* - * Small pages need some more tweaking: we have to adjust the - * first instruction depending on the page offset we're trying - * to access. - */ - if (offset_in_page >= mtd->writesize) - instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB; - else if (offset_in_page >= 256 && - !(chip->options & NAND_BUSWIDTH_16)) - instrs[0].ctx.cmd.opcode = NAND_CMD_READ1; - } else { - /* - * Drop the first command if we're dealing with a large page - * NAND. - */ - op.instrs++; - op.ninstrs--; - } - - ret = nand_exec_op(chip, &op); - if (!prog || ret) - return ret; - - ret = nand_status_op(chip, &status); - if (ret) - return ret; - - return status; -} - -/** - * nand_prog_page_begin_op - starts a PROG PAGE operation - * @chip: The NAND chip - * @page: page to write - * @offset_in_page: offset within the page - * @buf: buffer containing the data to write to the page - * @len: length of the buffer - * - * This function issues the first half of a PROG PAGE operation. - * This function does not select/unselect the CS line. - * - * Returns 0 on success, a negative error code otherwise. - */ -int nand_prog_page_begin_op(struct nand_chip *chip, unsigned int page, - unsigned int offset_in_page, const void *buf, - unsigned int len) -{ - struct mtd_info *mtd = nand_to_mtd(chip); - - if (len && !buf) - return -EINVAL; - - if (offset_in_page + len > mtd->writesize + mtd->oobsize) - return -EINVAL; - - if (chip->exec_op) - return nand_exec_prog_page_op(chip, page, offset_in_page, buf, - len, false); - - chip->cmdfunc(mtd, NAND_CMD_SEQIN, offset_in_page, page); - - if (buf) - chip->write_buf(mtd, buf, len); - - return 0; -} -EXPORT_SYMBOL_GPL(nand_prog_page_begin_op); - -/** - * nand_prog_page_end_op - ends a PROG PAGE operation - * @chip: The NAND chip - * - * This function issues the second half of a PROG PAGE operation. - * This function does not select/unselect the CS line. - * - * Returns 0 on success, a negative error code otherwise. - */ -int nand_prog_page_end_op(struct nand_chip *chip) -{ - struct mtd_info *mtd = nand_to_mtd(chip); - int ret; - u8 status; - - if (chip->exec_op) { - const struct nand_sdr_timings *sdr = - nand_get_sdr_timings(&chip->data_interface); - struct nand_op_instr instrs[] = { - NAND_OP_CMD(NAND_CMD_PAGEPROG, - PSEC_TO_NSEC(sdr->tWB_max)), - NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tPROG_max), 0), - }; - struct nand_operation op = NAND_OPERATION(instrs); - - ret = nand_exec_op(chip, &op); - if (ret) - return ret; - - ret = nand_status_op(chip, &status); - if (ret) - return ret; - } else { - chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); - ret = chip->waitfunc(mtd, chip); - if (ret < 0) - return ret; - - status = ret; - } - - if (status & NAND_STATUS_FAIL) - return -EIO; - - return 0; -} -EXPORT_SYMBOL_GPL(nand_prog_page_end_op); - -/** - * nand_prog_page_op - Do a full PROG PAGE operation - * @chip: The NAND chip - * @page: page to write - * @offset_in_page: offset within the page - * @buf: buffer containing the data to write to the page - * @len: length of the buffer - * - * This function issues a full PROG PAGE operation. - * This function does not select/unselect the CS line. - * - * Returns 0 on success, a negative error code otherwise. - */ -int nand_prog_page_op(struct nand_chip *chip, unsigned int page, - unsigned int offset_in_page, const void *buf, - unsigned int len) -{ - struct mtd_info *mtd = nand_to_mtd(chip); - int status; - - if (!len || !buf) - return -EINVAL; - - if (offset_in_page + len > mtd->writesize + mtd->oobsize) - return -EINVAL; - - if (chip->exec_op) { - status = nand_exec_prog_page_op(chip, page, offset_in_page, buf, - len, true); - } else { - chip->cmdfunc(mtd, NAND_CMD_SEQIN, offset_in_page, page); - chip->write_buf(mtd, buf, len); - chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); - status = chip->waitfunc(mtd, chip); - } - - if (status & NAND_STATUS_FAIL) - return -EIO; - - return 0; -} -EXPORT_SYMBOL_GPL(nand_prog_page_op); - -/** - * nand_change_write_column_op - Do a CHANGE WRITE COLUMN operation - * @chip: The NAND chip - * @offset_in_page: offset within the page - * @buf: buffer containing the data to send to the NAND - * @len: length of the buffer - * @force_8bit: force 8-bit bus access - * - * This function issues a CHANGE WRITE COLUMN operation. - * This function does not select/unselect the CS line. - * - * Returns 0 on success, a negative error code otherwise. - */ -int nand_change_write_column_op(struct nand_chip *chip, - unsigned int offset_in_page, - const void *buf, unsigned int len, - bool force_8bit) -{ - struct mtd_info *mtd = nand_to_mtd(chip); - - if (len && !buf) - return -EINVAL; - - if (offset_in_page + len > mtd->writesize + mtd->oobsize) - return -EINVAL; - - /* Small page NANDs do not support column change. */ - if (mtd->writesize <= 512) - return -ENOTSUPP; - - if (chip->exec_op) { - const struct nand_sdr_timings *sdr = - nand_get_sdr_timings(&chip->data_interface); - u8 addrs[2]; - struct nand_op_instr instrs[] = { - NAND_OP_CMD(NAND_CMD_RNDIN, 0), - NAND_OP_ADDR(2, addrs, PSEC_TO_NSEC(sdr->tCCS_min)), - NAND_OP_DATA_OUT(len, buf, 0), - }; - struct nand_operation op = NAND_OPERATION(instrs); - int ret; - - ret = nand_fill_column_cycles(chip, addrs, offset_in_page); - if (ret < 0) - return ret; - - instrs[2].ctx.data.force_8bit = force_8bit; - - /* Drop the DATA_OUT instruction if len is set to 0. */ - if (!len) - op.ninstrs--; - - return nand_exec_op(chip, &op); - } - - chip->cmdfunc(mtd, NAND_CMD_RNDIN, offset_in_page, -1); - if (len) - chip->write_buf(mtd, buf, len); - - return 0; -} -EXPORT_SYMBOL_GPL(nand_change_write_column_op); - -/** - * nand_readid_op - Do a READID operation - * @chip: The NAND chip - * @addr: address cycle to pass after the READID command - * @buf: buffer used to store the ID - * @len: length of the buffer - * - * This function sends a READID command and reads back the ID returned by the - * NAND. - * This function does not select/unselect the CS line. - * - * Returns 0 on success, a negative error code otherwise. - */ -int nand_readid_op(struct nand_chip *chip, u8 addr, void *buf, - unsigned int len) -{ - struct mtd_info *mtd = nand_to_mtd(chip); - unsigned int i; - u8 *id = buf; - - if (len && !buf) - return -EINVAL; - - if (chip->exec_op) { - const struct nand_sdr_timings *sdr = - nand_get_sdr_timings(&chip->data_interface); - struct nand_op_instr instrs[] = { - NAND_OP_CMD(NAND_CMD_READID, 0), - NAND_OP_ADDR(1, &addr, PSEC_TO_NSEC(sdr->tADL_min)), - NAND_OP_8BIT_DATA_IN(len, buf, 0), - }; - struct nand_operation op = NAND_OPERATION(instrs); - - /* Drop the DATA_IN instruction if len is set to 0. */ - if (!len) - op.ninstrs--; - - return nand_exec_op(chip, &op); - } - - chip->cmdfunc(mtd, NAND_CMD_READID, addr, -1); - - for (i = 0; i < len; i++) - id[i] = chip->read_byte(mtd); - - return 0; -} -EXPORT_SYMBOL_GPL(nand_readid_op); - -/** - * nand_status_op - Do a STATUS operation - * @chip: The NAND chip - * @status: out variable to store the NAND status - * - * This function sends a STATUS command and reads back the status returned by - * the NAND. - * This function does not select/unselect the CS line. - * - * Returns 0 on success, a negative error code otherwise. - */ -int nand_status_op(struct nand_chip *chip, u8 *status) -{ - struct mtd_info *mtd = nand_to_mtd(chip); - - if (chip->exec_op) { - const struct nand_sdr_timings *sdr = - nand_get_sdr_timings(&chip->data_interface); - struct nand_op_instr instrs[] = { - NAND_OP_CMD(NAND_CMD_STATUS, - PSEC_TO_NSEC(sdr->tADL_min)), - NAND_OP_8BIT_DATA_IN(1, status, 0), - }; - struct nand_operation op = NAND_OPERATION(instrs); - - if (!status) - op.ninstrs--; - - return nand_exec_op(chip, &op); - } - - chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1); - if (status) - *status = chip->read_byte(mtd); - - return 0; -} -EXPORT_SYMBOL_GPL(nand_status_op); - -/** - * nand_exit_status_op - Exit a STATUS operation - * @chip: The NAND chip - * - * This function sends a READ0 command to cancel the effect of the STATUS - * command to avoid reading only the status until a new read command is sent. - * - * This function does not select/unselect the CS line. - * - * Returns 0 on success, a negative error code otherwise. - */ -int nand_exit_status_op(struct nand_chip *chip) -{ - struct mtd_info *mtd = nand_to_mtd(chip); - - if (chip->exec_op) { - struct nand_op_instr instrs[] = { - NAND_OP_CMD(NAND_CMD_READ0, 0), - }; - struct nand_operation op = NAND_OPERATION(instrs); - - return nand_exec_op(chip, &op); - } - - chip->cmdfunc(mtd, NAND_CMD_READ0, -1, -1); - - return 0; -} -EXPORT_SYMBOL_GPL(nand_exit_status_op); - -/** - * nand_erase_op - Do an erase operation - * @chip: The NAND chip - * @eraseblock: block to erase - * - * This function sends an ERASE command and waits for the NAND to be ready - * before returning. - * This function does not select/unselect the CS line. - * - * Returns 0 on success, a negative error code otherwise. - */ -int nand_erase_op(struct nand_chip *chip, unsigned int eraseblock) -{ - struct mtd_info *mtd = nand_to_mtd(chip); - unsigned int page = eraseblock << - (chip->phys_erase_shift - chip->page_shift); - int ret; - u8 status; - - if (chip->exec_op) { - const struct nand_sdr_timings *sdr = - nand_get_sdr_timings(&chip->data_interface); - u8 addrs[3] = { page, page >> 8, page >> 16 }; - struct nand_op_instr instrs[] = { - NAND_OP_CMD(NAND_CMD_ERASE1, 0), - NAND_OP_ADDR(2, addrs, 0), - NAND_OP_CMD(NAND_CMD_ERASE2, - PSEC_TO_MSEC(sdr->tWB_max)), - NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tBERS_max), 0), - }; - struct nand_operation op = NAND_OPERATION(instrs); - - if (chip->options & NAND_ROW_ADDR_3) - instrs[1].ctx.addr.naddrs++; - - ret = nand_exec_op(chip, &op); - if (ret) - return ret; - - ret = nand_status_op(chip, &status); - if (ret) - return ret; - } else { - chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page); - chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1); - - ret = chip->waitfunc(mtd, chip); - if (ret < 0) - return ret; - - status = ret; - } - - if (status & NAND_STATUS_FAIL) - return -EIO; - - return 0; -} -EXPORT_SYMBOL_GPL(nand_erase_op); - -/** - * nand_set_features_op - Do a SET FEATURES operation - * @chip: The NAND chip - * @feature: feature id - * @data: 4 bytes of data - * - * This function sends a SET FEATURES command and waits for the NAND to be - * ready before returning. - * This function does not select/unselect the CS line. - * - * Returns 0 on success, a negative error code otherwise. - */ -static int nand_set_features_op(struct nand_chip *chip, u8 feature, - const void *data) -{ - struct mtd_info *mtd = nand_to_mtd(chip); - const u8 *params = data; - int i, ret; - u8 status; - - if (chip->exec_op) { - const struct nand_sdr_timings *sdr = - nand_get_sdr_timings(&chip->data_interface); - struct nand_op_instr instrs[] = { - NAND_OP_CMD(NAND_CMD_SET_FEATURES, 0), - NAND_OP_ADDR(1, &feature, PSEC_TO_NSEC(sdr->tADL_min)), - NAND_OP_8BIT_DATA_OUT(ONFI_SUBFEATURE_PARAM_LEN, data, - PSEC_TO_NSEC(sdr->tWB_max)), - NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tFEAT_max), 0), - }; - struct nand_operation op = NAND_OPERATION(instrs); - - ret = nand_exec_op(chip, &op); - if (ret) - return ret; - - ret = nand_status_op(chip, &status); - if (ret) - return ret; - } else { - chip->cmdfunc(mtd, NAND_CMD_SET_FEATURES, feature, -1); - for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i) - chip->write_byte(mtd, params[i]); - - ret = chip->waitfunc(mtd, chip); - if (ret < 0) - return ret; - - status = ret; - } - - if (status & NAND_STATUS_FAIL) - return -EIO; - - return 0; -} - -/** - * nand_get_features_op - Do a GET FEATURES operation - * @chip: The NAND chip - * @feature: feature id - * @data: 4 bytes of data - * - * This function sends a GET FEATURES command and waits for the NAND to be - * ready before returning. - * This function does not select/unselect the CS line. - * - * Returns 0 on success, a negative error code otherwise. - */ -static int nand_get_features_op(struct nand_chip *chip, u8 feature, - void *data) -{ - struct mtd_info *mtd = nand_to_mtd(chip); - u8 *params = data; - int i; - - if (chip->exec_op) { - const struct nand_sdr_timings *sdr = - nand_get_sdr_timings(&chip->data_interface); - struct nand_op_instr instrs[] = { - NAND_OP_CMD(NAND_CMD_GET_FEATURES, 0), - NAND_OP_ADDR(1, &feature, PSEC_TO_NSEC(sdr->tWB_max)), - NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tFEAT_max), - PSEC_TO_NSEC(sdr->tRR_min)), - NAND_OP_8BIT_DATA_IN(ONFI_SUBFEATURE_PARAM_LEN, - data, 0), - }; - struct nand_operation op = NAND_OPERATION(instrs); - - return nand_exec_op(chip, &op); - } - - chip->cmdfunc(mtd, NAND_CMD_GET_FEATURES, feature, -1); - for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i) - params[i] = chip->read_byte(mtd); - - return 0; -} - -/** - * nand_reset_op - Do a reset operation - * @chip: The NAND chip - * - * This function sends a RESET command and waits for the NAND to be ready - * before returning. - * This function does not select/unselect the CS line. - * - * Returns 0 on success, a negative error code otherwise. - */ -int nand_reset_op(struct nand_chip *chip) -{ - struct mtd_info *mtd = nand_to_mtd(chip); - - if (chip->exec_op) { - const struct nand_sdr_timings *sdr = - nand_get_sdr_timings(&chip->data_interface); - struct nand_op_instr instrs[] = { - NAND_OP_CMD(NAND_CMD_RESET, PSEC_TO_NSEC(sdr->tWB_max)), - NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tRST_max), 0), - }; - struct nand_operation op = NAND_OPERATION(instrs); - - return nand_exec_op(chip, &op); - } - - chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1); - - return 0; -} -EXPORT_SYMBOL_GPL(nand_reset_op); - -/** - * nand_read_data_op - Read data from the NAND - * @chip: The NAND chip - * @buf: buffer used to store the data - * @len: length of the buffer - * @force_8bit: force 8-bit bus access - * - * This function does a raw data read on the bus. Usually used after launching - * another NAND operation like nand_read_page_op(). - * This function does not select/unselect the CS line. - * - * Returns 0 on success, a negative error code otherwise. - */ -int nand_read_data_op(struct nand_chip *chip, void *buf, unsigned int len, - bool force_8bit) -{ - struct mtd_info *mtd = nand_to_mtd(chip); - - if (!len || !buf) - return -EINVAL; - - if (chip->exec_op) { - struct nand_op_instr instrs[] = { - NAND_OP_DATA_IN(len, buf, 0), - }; - struct nand_operation op = NAND_OPERATION(instrs); - - instrs[0].ctx.data.force_8bit = force_8bit; - - return nand_exec_op(chip, &op); - } - - if (force_8bit) { - u8 *p = buf; - unsigned int i; - - for (i = 0; i < len; i++) - p[i] = chip->read_byte(mtd); - } else { - chip->read_buf(mtd, buf, len); - } - - return 0; -} -EXPORT_SYMBOL_GPL(nand_read_data_op); - -/** - * nand_write_data_op - Write data from the NAND - * @chip: The NAND chip - * @buf: buffer containing the data to send on the bus - * @len: length of the buffer - * @force_8bit: force 8-bit bus access - * - * This function does a raw data write on the bus. Usually used after launching - * another NAND operation like nand_write_page_begin_op(). - * This function does not select/unselect the CS line. - * - * Returns 0 on success, a negative error code otherwise. - */ -int nand_write_data_op(struct nand_chip *chip, const void *buf, - unsigned int len, bool force_8bit) -{ - struct mtd_info *mtd = nand_to_mtd(chip); - - if (!len || !buf) - return -EINVAL; - - if (chip->exec_op) { - struct nand_op_instr instrs[] = { - NAND_OP_DATA_OUT(len, buf, 0), - }; - struct nand_operation op = NAND_OPERATION(instrs); - - instrs[0].ctx.data.force_8bit = force_8bit; - - return nand_exec_op(chip, &op); - } - - if (force_8bit) { - const u8 *p = buf; - unsigned int i; - - for (i = 0; i < len; i++) - chip->write_byte(mtd, p[i]); - } else { - chip->write_buf(mtd, buf, len); - } - - return 0; -} -EXPORT_SYMBOL_GPL(nand_write_data_op); - -/** - * struct nand_op_parser_ctx - Context used by the parser - * @instrs: array of all the instructions that must be addressed - * @ninstrs: length of the @instrs array - * @subop: Sub-operation to be passed to the NAND controller - * - * This structure is used by the core to split NAND operations into - * sub-operations that can be handled by the NAND controller. - */ -struct nand_op_parser_ctx { - const struct nand_op_instr *instrs; - unsigned int ninstrs; - struct nand_subop subop; -}; - -/** - * nand_op_parser_must_split_instr - Checks if an instruction must be split - * @pat: the parser pattern element that matches @instr - * @instr: pointer to the instruction to check - * @start_offset: this is an in/out parameter. If @instr has already been - * split, then @start_offset is the offset from which to start - * (either an address cycle or an offset in the data buffer). - * Conversely, if the function returns true (ie. instr must be - * split), this parameter is updated to point to the first - * data/address cycle that has not been taken care of. - * - * Some NAND controllers are limited and cannot send X address cycles with a - * unique operation, or cannot read/write more than Y bytes at the same time. - * In this case, split the instruction that does not fit in a single - * controller-operation into two or more chunks. - * - * Returns true if the instruction must be split, false otherwise. - * The @start_offset parameter is also updated to the offset at which the next - * bundle of instruction must start (if an address or a data instruction). - */ -static bool -nand_op_parser_must_split_instr(const struct nand_op_parser_pattern_elem *pat, - const struct nand_op_instr *instr, - unsigned int *start_offset) -{ - switch (pat->type) { - case NAND_OP_ADDR_INSTR: - if (!pat->ctx.addr.maxcycles) - break; - - if (instr->ctx.addr.naddrs - *start_offset > - pat->ctx.addr.maxcycles) { - *start_offset += pat->ctx.addr.maxcycles; - return true; - } - break; - - case NAND_OP_DATA_IN_INSTR: - case NAND_OP_DATA_OUT_INSTR: - if (!pat->ctx.data.maxlen) - break; - - if (instr->ctx.data.len - *start_offset > - pat->ctx.data.maxlen) { - *start_offset += pat->ctx.data.maxlen; - return true; - } - break; - - default: - break; - } - - return false; -} - -/** - * nand_op_parser_match_pat - Checks if a pattern matches the instructions - * remaining in the parser context - * @pat: the pattern to test - * @ctx: the parser context structure to match with the pattern @pat - * - * Check if @pat matches the set or a sub-set of instructions remaining in @ctx. - * Returns true if this is the case, false ortherwise. When true is returned, - * @ctx->subop is updated with the set of instructions to be passed to the - * controller driver. - */ -static bool -nand_op_parser_match_pat(const struct nand_op_parser_pattern *pat, - struct nand_op_parser_ctx *ctx) -{ - unsigned int instr_offset = ctx->subop.first_instr_start_off; - const struct nand_op_instr *end = ctx->instrs + ctx->ninstrs; - const struct nand_op_instr *instr = ctx->subop.instrs; - unsigned int i, ninstrs; - - for (i = 0, ninstrs = 0; i < pat->nelems && instr < end; i++) { - /* - * The pattern instruction does not match the operation - * instruction. If the instruction is marked optional in the - * pattern definition, we skip the pattern element and continue - * to the next one. If the element is mandatory, there's no - * match and we can return false directly. - */ - if (instr->type != pat->elems[i].type) { - if (!pat->elems[i].optional) - return false; - - continue; - } - - /* - * Now check the pattern element constraints. If the pattern is - * not able to handle the whole instruction in a single step, - * we have to split it. - * The last_instr_end_off value comes back updated to point to - * the position where we have to split the instruction (the - * start of the next subop chunk). - */ - if (nand_op_parser_must_split_instr(&pat->elems[i], instr, - &instr_offset)) { - ninstrs++; - i++; - break; - } - - instr++; - ninstrs++; - instr_offset = 0; - } - - /* - * This can happen if all instructions of a pattern are optional. - * Still, if there's not at least one instruction handled by this - * pattern, this is not a match, and we should try the next one (if - * any). - */ - if (!ninstrs) - return false; - - /* - * We had a match on the pattern head, but the pattern may be longer - * than the instructions we're asked to execute. We need to make sure - * there's no mandatory elements in the pattern tail. - */ - for (; i < pat->nelems; i++) { - if (!pat->elems[i].optional) - return false; - } - - /* - * We have a match: update the subop structure accordingly and return - * true. - */ - ctx->subop.ninstrs = ninstrs; - ctx->subop.last_instr_end_off = instr_offset; - - return true; -} - -#if IS_ENABLED(CONFIG_DYNAMIC_DEBUG) || defined(DEBUG) -static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx) -{ - const struct nand_op_instr *instr; - char *prefix = " "; - unsigned int i; - - pr_debug("executing subop:\n"); - - for (i = 0; i < ctx->ninstrs; i++) { - instr = &ctx->instrs[i]; - - if (instr == &ctx->subop.instrs[0]) - prefix = " ->"; - - switch (instr->type) { - case NAND_OP_CMD_INSTR: - pr_debug("%sCMD [0x%02x]\n", prefix, - instr->ctx.cmd.opcode); - break; - case NAND_OP_ADDR_INSTR: - pr_debug("%sADDR [%d cyc: %*ph]\n", prefix, - instr->ctx.addr.naddrs, - instr->ctx.addr.naddrs < 64 ? - instr->ctx.addr.naddrs : 64, - instr->ctx.addr.addrs); - break; - case NAND_OP_DATA_IN_INSTR: - pr_debug("%sDATA_IN [%d B%s]\n", prefix, - instr->ctx.data.len, - instr->ctx.data.force_8bit ? - ", force 8-bit" : ""); - break; - case NAND_OP_DATA_OUT_INSTR: - pr_debug("%sDATA_OUT [%d B%s]\n", prefix, - instr->ctx.data.len, - instr->ctx.data.force_8bit ? - ", force 8-bit" : ""); - break; - case NAND_OP_WAITRDY_INSTR: - pr_debug("%sWAITRDY [max %d ms]\n", prefix, - instr->ctx.waitrdy.timeout_ms); - break; - } - - if (instr == &ctx->subop.instrs[ctx->subop.ninstrs - 1]) - prefix = " "; - } -} -#else -static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx) -{ - /* NOP */ -} -#endif - -/** - * nand_op_parser_exec_op - exec_op parser - * @chip: the NAND chip - * @parser: patterns description provided by the controller driver - * @op: the NAND operation to address - * @check_only: when true, the function only checks if @op can be handled but - * does not execute the operation - * - * Helper function designed to ease integration of NAND controller drivers that - * only support a limited set of instruction sequences. The supported sequences - * are described in @parser, and the framework takes care of splitting @op into - * multiple sub-operations (if required) and pass them back to the ->exec() - * callback of the matching pattern if @check_only is set to false. - * - * NAND controller drivers should call this function from their own ->exec_op() - * implementation. - * - * Returns 0 on success, a negative error code otherwise. A failure can be - * caused by an unsupported operation (none of the supported patterns is able - * to handle the requested operation), or an error returned by one of the - * matching pattern->exec() hook. - */ -int nand_op_parser_exec_op(struct nand_chip *chip, - const struct nand_op_parser *parser, - const struct nand_operation *op, bool check_only) -{ - struct nand_op_parser_ctx ctx = { - .subop.instrs = op->instrs, - .instrs = op->instrs, - .ninstrs = op->ninstrs, - }; - unsigned int i; - - while (ctx.subop.instrs < op->instrs + op->ninstrs) { - int ret; - - for (i = 0; i < parser->npatterns; i++) { - const struct nand_op_parser_pattern *pattern; - - pattern = &parser->patterns[i]; - if (!nand_op_parser_match_pat(pattern, &ctx)) - continue; - - nand_op_parser_trace(&ctx); - - if (check_only) - break; - - ret = pattern->exec(chip, &ctx.subop); - if (ret) - return ret; - - break; - } - - if (i == parser->npatterns) { - pr_debug("->exec_op() parser: pattern not found!\n"); - return -ENOTSUPP; - } - - /* - * Update the context structure by pointing to the start of the - * next subop. - */ - ctx.subop.instrs = ctx.subop.instrs + ctx.subop.ninstrs; - if (ctx.subop.last_instr_end_off) - ctx.subop.instrs -= 1; - - ctx.subop.first_instr_start_off = ctx.subop.last_instr_end_off; - } - - return 0; -} -EXPORT_SYMBOL_GPL(nand_op_parser_exec_op); - -static bool nand_instr_is_data(const struct nand_op_instr *instr) -{ - return instr && (instr->type == NAND_OP_DATA_IN_INSTR || - instr->type == NAND_OP_DATA_OUT_INSTR); -} - -static bool nand_subop_instr_is_valid(const struct nand_subop *subop, - unsigned int instr_idx) -{ - return subop && instr_idx < subop->ninstrs; -} - -static int nand_subop_get_start_off(const struct nand_subop *subop, - unsigned int instr_idx) -{ - if (instr_idx) - return 0; - - return subop->first_instr_start_off; -} - -/** - * nand_subop_get_addr_start_off - Get the start offset in an address array - * @subop: The entire sub-operation - * @instr_idx: Index of the instruction inside the sub-operation - * - * During driver development, one could be tempted to directly use the - * ->addr.addrs field of address instructions. This is wrong as address - * instructions might be split. - * - * Given an address instruction, returns the offset of the first cycle to issue. - */ -int nand_subop_get_addr_start_off(const struct nand_subop *subop, - unsigned int instr_idx) -{ - if (!nand_subop_instr_is_valid(subop, instr_idx) || - subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR) - return -EINVAL; - - return nand_subop_get_start_off(subop, instr_idx); -} -EXPORT_SYMBOL_GPL(nand_subop_get_addr_start_off); - -/** - * nand_subop_get_num_addr_cyc - Get the remaining address cycles to assert - * @subop: The entire sub-operation - * @instr_idx: Index of the instruction inside the sub-operation - * - * During driver development, one could be tempted to directly use the - * ->addr->naddrs field of a data instruction. This is wrong as instructions - * might be split. - * - * Given an address instruction, returns the number of address cycle to issue. - */ -int nand_subop_get_num_addr_cyc(const struct nand_subop *subop, - unsigned int instr_idx) -{ - int start_off, end_off; - - if (!nand_subop_instr_is_valid(subop, instr_idx) || - subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR) - return -EINVAL; - - start_off = nand_subop_get_addr_start_off(subop, instr_idx); - - if (instr_idx == subop->ninstrs - 1 && - subop->last_instr_end_off) - end_off = subop->last_instr_end_off; - else - end_off = subop->instrs[instr_idx].ctx.addr.naddrs; - - return end_off - start_off; -} -EXPORT_SYMBOL_GPL(nand_subop_get_num_addr_cyc); - -/** - * nand_subop_get_data_start_off - Get the start offset in a data array - * @subop: The entire sub-operation - * @instr_idx: Index of the instruction inside the sub-operation - * - * During driver development, one could be tempted to directly use the - * ->data->buf.{in,out} field of data instructions. This is wrong as data - * instructions might be split. - * - * Given a data instruction, returns the offset to start from. - */ -int nand_subop_get_data_start_off(const struct nand_subop *subop, - unsigned int instr_idx) -{ - if (!nand_subop_instr_is_valid(subop, instr_idx) || - !nand_instr_is_data(&subop->instrs[instr_idx])) - return -EINVAL; - - return nand_subop_get_start_off(subop, instr_idx); -} -EXPORT_SYMBOL_GPL(nand_subop_get_data_start_off); - -/** - * nand_subop_get_data_len - Get the number of bytes to retrieve - * @subop: The entire sub-operation - * @instr_idx: Index of the instruction inside the sub-operation - * - * During driver development, one could be tempted to directly use the - * ->data->len field of a data instruction. This is wrong as data instructions - * might be split. - * - * Returns the length of the chunk of data to send/receive. - */ -int nand_subop_get_data_len(const struct nand_subop *subop, - unsigned int instr_idx) -{ - int start_off = 0, end_off; - - if (!nand_subop_instr_is_valid(subop, instr_idx) || - !nand_instr_is_data(&subop->instrs[instr_idx])) - return -EINVAL; - - start_off = nand_subop_get_data_start_off(subop, instr_idx); - - if (instr_idx == subop->ninstrs - 1 && - subop->last_instr_end_off) - end_off = subop->last_instr_end_off; - else - end_off = subop->instrs[instr_idx].ctx.data.len; - - return end_off - start_off; -} -EXPORT_SYMBOL_GPL(nand_subop_get_data_len); - -/** - * nand_reset - Reset and initialize a NAND device - * @chip: The NAND chip - * @chipnr: Internal die id - * - * Save the timings data structure, then apply SDR timings mode 0 (see - * nand_reset_data_interface for details), do the reset operation, and - * apply back the previous timings. - * - * Returns 0 on success, a negative error code otherwise. - */ -int nand_reset(struct nand_chip *chip, int chipnr) -{ - struct mtd_info *mtd = nand_to_mtd(chip); - struct nand_data_interface saved_data_intf = chip->data_interface; - int ret; - - ret = nand_reset_data_interface(chip, chipnr); - if (ret) - return ret; - - /* - * The CS line has to be released before we can apply the new NAND - * interface settings, hence this weird ->select_chip() dance. - */ - chip->select_chip(mtd, chipnr); - ret = nand_reset_op(chip); - chip->select_chip(mtd, -1); - if (ret) - return ret; - - chip->select_chip(mtd, chipnr); - chip->data_interface = saved_data_intf; - ret = nand_setup_data_interface(chip, chipnr); - chip->select_chip(mtd, -1); - if (ret) - return ret; - - return 0; -} -EXPORT_SYMBOL_GPL(nand_reset); - -/** - * nand_check_erased_buf - check if a buffer contains (almost) only 0xff data - * @buf: buffer to test - * @len: buffer length - * @bitflips_threshold: maximum number of bitflips - * - * Check if a buffer contains only 0xff, which means the underlying region - * has been erased and is ready to be programmed. - * The bitflips_threshold specify the maximum number of bitflips before - * considering the region is not erased. - * Note: The logic of this function has been extracted from the memweight - * implementation, except that nand_check_erased_buf function exit before - * testing the whole buffer if the number of bitflips exceed the - * bitflips_threshold value. - * - * Returns a positive number of bitflips less than or equal to - * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the - * threshold. - */ -static int nand_check_erased_buf(void *buf, int len, int bitflips_threshold) -{ - const unsigned char *bitmap = buf; - int bitflips = 0; - int weight; - - for (; len && ((uintptr_t)bitmap) % sizeof(long); - len--, bitmap++) { - weight = hweight8(*bitmap); - bitflips += BITS_PER_BYTE - weight; - if (unlikely(bitflips > bitflips_threshold)) - return -EBADMSG; - } - - for (; len >= sizeof(long); - len -= sizeof(long), bitmap += sizeof(long)) { - unsigned long d = *((unsigned long *)bitmap); - if (d == ~0UL) - continue; - weight = hweight_long(d); - bitflips += BITS_PER_LONG - weight; - if (unlikely(bitflips > bitflips_threshold)) - return -EBADMSG; - } - - for (; len > 0; len--, bitmap++) { - weight = hweight8(*bitmap); - bitflips += BITS_PER_BYTE - weight; - if (unlikely(bitflips > bitflips_threshold)) - return -EBADMSG; - } - - return bitflips; -} - -/** - * nand_check_erased_ecc_chunk - check if an ECC chunk contains (almost) only - * 0xff data - * @data: data buffer to test - * @datalen: data length - * @ecc: ECC buffer - * @ecclen: ECC length - * @extraoob: extra OOB buffer - * @extraooblen: extra OOB length - * @bitflips_threshold: maximum number of bitflips - * - * Check if a data buffer and its associated ECC and OOB data contains only - * 0xff pattern, which means the underlying region has been erased and is - * ready to be programmed. - * The bitflips_threshold specify the maximum number of bitflips before - * considering the region as not erased. - * - * Note: - * 1/ ECC algorithms are working on pre-defined block sizes which are usually - * different from the NAND page size. When fixing bitflips, ECC engines will - * report the number of errors per chunk, and the NAND core infrastructure - * expect you to return the maximum number of bitflips for the whole page. - * This is why you should always use this function on a single chunk and - * not on the whole page. After checking each chunk you should update your - * max_bitflips value accordingly. - * 2/ When checking for bitflips in erased pages you should not only check - * the payload data but also their associated ECC data, because a user might - * have programmed almost all bits to 1 but a few. In this case, we - * shouldn't consider the chunk as erased, and checking ECC bytes prevent - * this case. - * 3/ The extraoob argument is optional, and should be used if some of your OOB - * data are protected by the ECC engine. - * It could also be used if you support subpages and want to attach some - * extra OOB data to an ECC chunk. - * - * Returns a positive number of bitflips less than or equal to - * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the - * threshold. In case of success, the passed buffers are filled with 0xff. - */ -int nand_check_erased_ecc_chunk(void *data, int datalen, - void *ecc, int ecclen, - void *extraoob, int extraooblen, - int bitflips_threshold) -{ - int data_bitflips = 0, ecc_bitflips = 0, extraoob_bitflips = 0; - - data_bitflips = nand_check_erased_buf(data, datalen, - bitflips_threshold); - if (data_bitflips < 0) - return data_bitflips; - - bitflips_threshold -= data_bitflips; - - ecc_bitflips = nand_check_erased_buf(ecc, ecclen, bitflips_threshold); - if (ecc_bitflips < 0) - return ecc_bitflips; - - bitflips_threshold -= ecc_bitflips; - - extraoob_bitflips = nand_check_erased_buf(extraoob, extraooblen, - bitflips_threshold); - if (extraoob_bitflips < 0) - return extraoob_bitflips; - - if (data_bitflips) - memset(data, 0xff, datalen); - - if (ecc_bitflips) - memset(ecc, 0xff, ecclen); - - if (extraoob_bitflips) - memset(extraoob, 0xff, extraooblen); - - return data_bitflips + ecc_bitflips + extraoob_bitflips; -} -EXPORT_SYMBOL(nand_check_erased_ecc_chunk); - -/** - * nand_read_page_raw - [INTERN] read raw page data without ecc - * @mtd: mtd info structure - * @chip: nand chip info structure - * @buf: buffer to store read data - * @oob_required: caller requires OOB data read to chip->oob_poi - * @page: page number to read - * - * Not for syndrome calculating ECC controllers, which use a special oob layout. - */ -int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip, - uint8_t *buf, int oob_required, int page) -{ - int ret; - - ret = nand_read_page_op(chip, page, 0, buf, mtd->writesize); - if (ret) - return ret; - - if (oob_required) { - ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, - false); - if (ret) - return ret; - } - - return 0; -} -EXPORT_SYMBOL(nand_read_page_raw); - -/** - * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc - * @mtd: mtd info structure - * @chip: nand chip info structure - * @buf: buffer to store read data - * @oob_required: caller requires OOB data read to chip->oob_poi - * @page: page number to read - * - * We need a special oob layout and handling even when OOB isn't used. - */ -static int nand_read_page_raw_syndrome(struct mtd_info *mtd, - struct nand_chip *chip, uint8_t *buf, - int oob_required, int page) -{ - int eccsize = chip->ecc.size; - int eccbytes = chip->ecc.bytes; - uint8_t *oob = chip->oob_poi; - int steps, size, ret; - - ret = nand_read_page_op(chip, page, 0, NULL, 0); - if (ret) - return ret; - - for (steps = chip->ecc.steps; steps > 0; steps--) { - ret = nand_read_data_op(chip, buf, eccsize, false); - if (ret) - return ret; - - buf += eccsize; - - if (chip->ecc.prepad) { - ret = nand_read_data_op(chip, oob, chip->ecc.prepad, - false); - if (ret) - return ret; - - oob += chip->ecc.prepad; - } - - ret = nand_read_data_op(chip, oob, eccbytes, false); - if (ret) - return ret; - - oob += eccbytes; - - if (chip->ecc.postpad) { - ret = nand_read_data_op(chip, oob, chip->ecc.postpad, - false); - if (ret) - return ret; - - oob += chip->ecc.postpad; - } - } - - size = mtd->oobsize - (oob - chip->oob_poi); - if (size) { - ret = nand_read_data_op(chip, oob, size, false); - if (ret) - return ret; - } - - return 0; -} - -/** - * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function - * @mtd: mtd info structure - * @chip: nand chip info structure - * @buf: buffer to store read data - * @oob_required: caller requires OOB data read to chip->oob_poi - * @page: page number to read - */ -static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip, - uint8_t *buf, int oob_required, int page) -{ - int i, eccsize = chip->ecc.size, ret; - int eccbytes = chip->ecc.bytes; - int eccsteps = chip->ecc.steps; - uint8_t *p = buf; - uint8_t *ecc_calc = chip->ecc.calc_buf; - uint8_t *ecc_code = chip->ecc.code_buf; - unsigned int max_bitflips = 0; - - chip->ecc.read_page_raw(mtd, chip, buf, 1, page); - - for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) - chip->ecc.calculate(mtd, p, &ecc_calc[i]); - - ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0, - chip->ecc.total); - if (ret) - return ret; - - eccsteps = chip->ecc.steps; - p = buf; - - for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { - int stat; - - stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]); - if (stat < 0) { - mtd->ecc_stats.failed++; - } else { - mtd->ecc_stats.corrected += stat; - max_bitflips = max_t(unsigned int, max_bitflips, stat); - } - } - return max_bitflips; -} - -/** - * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function - * @mtd: mtd info structure - * @chip: nand chip info structure - * @data_offs: offset of requested data within the page - * @readlen: data length - * @bufpoi: buffer to store read data - * @page: page number to read - */ -static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip, - uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi, - int page) -{ - int start_step, end_step, num_steps, ret; - uint8_t *p; - int data_col_addr, i, gaps = 0; - int datafrag_len, eccfrag_len, aligned_len, aligned_pos; - int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1; - int index, section = 0; - unsigned int max_bitflips = 0; - struct mtd_oob_region oobregion = { }; - - /* Column address within the page aligned to ECC size (256bytes) */ - start_step = data_offs / chip->ecc.size; - end_step = (data_offs + readlen - 1) / chip->ecc.size; - num_steps = end_step - start_step + 1; - index = start_step * chip->ecc.bytes; - - /* Data size aligned to ECC ecc.size */ - datafrag_len = num_steps * chip->ecc.size; - eccfrag_len = num_steps * chip->ecc.bytes; - - data_col_addr = start_step * chip->ecc.size; - /* If we read not a page aligned data */ - p = bufpoi + data_col_addr; - ret = nand_read_page_op(chip, page, data_col_addr, p, datafrag_len); - if (ret) - return ret; - - /* Calculate ECC */ - for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) - chip->ecc.calculate(mtd, p, &chip->ecc.calc_buf[i]); - - /* - * The performance is faster if we position offsets according to - * ecc.pos. Let's make sure that there are no gaps in ECC positions. - */ - ret = mtd_ooblayout_find_eccregion(mtd, index, §ion, &oobregion); - if (ret) - return ret; - - if (oobregion.length < eccfrag_len) - gaps = 1; - - if (gaps) { - ret = nand_change_read_column_op(chip, mtd->writesize, - chip->oob_poi, mtd->oobsize, - false); - if (ret) - return ret; - } else { - /* - * Send the command to read the particular ECC bytes take care - * about buswidth alignment in read_buf. - */ - aligned_pos = oobregion.offset & ~(busw - 1); - aligned_len = eccfrag_len; - if (oobregion.offset & (busw - 1)) - aligned_len++; - if ((oobregion.offset + (num_steps * chip->ecc.bytes)) & - (busw - 1)) - aligned_len++; - - ret = nand_change_read_column_op(chip, - mtd->writesize + aligned_pos, - &chip->oob_poi[aligned_pos], - aligned_len, false); - if (ret) - return ret; - } - - ret = mtd_ooblayout_get_eccbytes(mtd, chip->ecc.code_buf, - chip->oob_poi, index, eccfrag_len); - if (ret) - return ret; - - p = bufpoi + data_col_addr; - for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) { - int stat; - - stat = chip->ecc.correct(mtd, p, &chip->ecc.code_buf[i], - &chip->ecc.calc_buf[i]); - if (stat == -EBADMSG && - (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) { - /* check for empty pages with bitflips */ - stat = nand_check_erased_ecc_chunk(p, chip->ecc.size, - &chip->ecc.code_buf[i], - chip->ecc.bytes, - NULL, 0, - chip->ecc.strength); - } - - if (stat < 0) { - mtd->ecc_stats.failed++; - } else { - mtd->ecc_stats.corrected += stat; - max_bitflips = max_t(unsigned int, max_bitflips, stat); - } - } - return max_bitflips; -} - -/** - * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function - * @mtd: mtd info structure - * @chip: nand chip info structure - * @buf: buffer to store read data - * @oob_required: caller requires OOB data read to chip->oob_poi - * @page: page number to read - * - * Not for syndrome calculating ECC controllers which need a special oob layout. - */ -static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip, - uint8_t *buf, int oob_required, int page) -{ - int i, eccsize = chip->ecc.size, ret; - int eccbytes = chip->ecc.bytes; - int eccsteps = chip->ecc.steps; - uint8_t *p = buf; - uint8_t *ecc_calc = chip->ecc.calc_buf; - uint8_t *ecc_code = chip->ecc.code_buf; - unsigned int max_bitflips = 0; - - ret = nand_read_page_op(chip, page, 0, NULL, 0); - if (ret) - return ret; - - for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { - chip->ecc.hwctl(mtd, NAND_ECC_READ); - - ret = nand_read_data_op(chip, p, eccsize, false); - if (ret) - return ret; - - chip->ecc.calculate(mtd, p, &ecc_calc[i]); - } - - ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, false); - if (ret) - return ret; - - ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0, - chip->ecc.total); - if (ret) - return ret; - - eccsteps = chip->ecc.steps; - p = buf; - - for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { - int stat; - - stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]); - if (stat == -EBADMSG && - (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) { - /* check for empty pages with bitflips */ - stat = nand_check_erased_ecc_chunk(p, eccsize, - &ecc_code[i], eccbytes, - NULL, 0, - chip->ecc.strength); - } - - if (stat < 0) { - mtd->ecc_stats.failed++; - } else { - mtd->ecc_stats.corrected += stat; - max_bitflips = max_t(unsigned int, max_bitflips, stat); - } - } - return max_bitflips; -} - -/** - * nand_read_page_hwecc_oob_first - [REPLACEABLE] hw ecc, read oob first - * @mtd: mtd info structure - * @chip: nand chip info structure - * @buf: buffer to store read data - * @oob_required: caller requires OOB data read to chip->oob_poi - * @page: page number to read - * - * Hardware ECC for large page chips, require OOB to be read first. For this - * ECC mode, the write_page method is re-used from ECC_HW. These methods - * read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with - * multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from - * the data area, by overwriting the NAND manufacturer bad block markings. - */ -static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd, - struct nand_chip *chip, uint8_t *buf, int oob_required, int page) -{ - int i, eccsize = chip->ecc.size, ret; - int eccbytes = chip->ecc.bytes; - int eccsteps = chip->ecc.steps; - uint8_t *p = buf; - uint8_t *ecc_code = chip->ecc.code_buf; - uint8_t *ecc_calc = chip->ecc.calc_buf; - unsigned int max_bitflips = 0; - - /* Read the OOB area first */ - ret = nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize); - if (ret) - return ret; - - ret = nand_read_page_op(chip, page, 0, NULL, 0); - if (ret) - return ret; - - ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0, - chip->ecc.total); - if (ret) - return ret; - - for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { - int stat; - - chip->ecc.hwctl(mtd, NAND_ECC_READ); - - ret = nand_read_data_op(chip, p, eccsize, false); - if (ret) - return ret; - - chip->ecc.calculate(mtd, p, &ecc_calc[i]); - - stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL); - if (stat == -EBADMSG && - (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) { - /* check for empty pages with bitflips */ - stat = nand_check_erased_ecc_chunk(p, eccsize, - &ecc_code[i], eccbytes, - NULL, 0, - chip->ecc.strength); - } - - if (stat < 0) { - mtd->ecc_stats.failed++; - } else { - mtd->ecc_stats.corrected += stat; - max_bitflips = max_t(unsigned int, max_bitflips, stat); - } - } - return max_bitflips; -} - -/** - * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read - * @mtd: mtd info structure - * @chip: nand chip info structure - * @buf: buffer to store read data - * @oob_required: caller requires OOB data read to chip->oob_poi - * @page: page number to read - * - * The hw generator calculates the error syndrome automatically. Therefore we - * need a special oob layout and handling. - */ -static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip, - uint8_t *buf, int oob_required, int page) -{ - int ret, i, eccsize = chip->ecc.size; - int eccbytes = chip->ecc.bytes; - int eccsteps = chip->ecc.steps; - int eccpadbytes = eccbytes + chip->ecc.prepad + chip->ecc.postpad; - uint8_t *p = buf; - uint8_t *oob = chip->oob_poi; - unsigned int max_bitflips = 0; - - ret = nand_read_page_op(chip, page, 0, NULL, 0); - if (ret) - return ret; - - for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { - int stat; - - chip->ecc.hwctl(mtd, NAND_ECC_READ); - - ret = nand_read_data_op(chip, p, eccsize, false); - if (ret) - return ret; - - if (chip->ecc.prepad) { - ret = nand_read_data_op(chip, oob, chip->ecc.prepad, - false); - if (ret) - return ret; - - oob += chip->ecc.prepad; - } - - chip->ecc.hwctl(mtd, NAND_ECC_READSYN); - - ret = nand_read_data_op(chip, oob, eccbytes, false); - if (ret) - return ret; - - stat = chip->ecc.correct(mtd, p, oob, NULL); - - oob += eccbytes; - - if (chip->ecc.postpad) { - ret = nand_read_data_op(chip, oob, chip->ecc.postpad, - false); - if (ret) - return ret; - - oob += chip->ecc.postpad; - } - - if (stat == -EBADMSG && - (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) { - /* check for empty pages with bitflips */ - stat = nand_check_erased_ecc_chunk(p, chip->ecc.size, - oob - eccpadbytes, - eccpadbytes, - NULL, 0, - chip->ecc.strength); - } - - if (stat < 0) { - mtd->ecc_stats.failed++; - } else { - mtd->ecc_stats.corrected += stat; - max_bitflips = max_t(unsigned int, max_bitflips, stat); - } - } - - /* Calculate remaining oob bytes */ - i = mtd->oobsize - (oob - chip->oob_poi); - if (i) { - ret = nand_read_data_op(chip, oob, i, false); - if (ret) - return ret; - } - - return max_bitflips; -} - -/** - * nand_transfer_oob - [INTERN] Transfer oob to client buffer - * @mtd: mtd info structure - * @oob: oob destination address - * @ops: oob ops structure - * @len: size of oob to transfer - */ -static uint8_t *nand_transfer_oob(struct mtd_info *mtd, uint8_t *oob, - struct mtd_oob_ops *ops, size_t len) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - int ret; - - switch (ops->mode) { - - case MTD_OPS_PLACE_OOB: - case MTD_OPS_RAW: - memcpy(oob, chip->oob_poi + ops->ooboffs, len); - return oob + len; - - case MTD_OPS_AUTO_OOB: - ret = mtd_ooblayout_get_databytes(mtd, oob, chip->oob_poi, - ops->ooboffs, len); - BUG_ON(ret); - return oob + len; - - default: - BUG(); - } - return NULL; -} - -/** - * nand_setup_read_retry - [INTERN] Set the READ RETRY mode - * @mtd: MTD device structure - * @retry_mode: the retry mode to use - * - * Some vendors supply a special command to shift the Vt threshold, to be used - * when there are too many bitflips in a page (i.e., ECC error). After setting - * a new threshold, the host should retry reading the page. - */ -static int nand_setup_read_retry(struct mtd_info *mtd, int retry_mode) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - - pr_debug("setting READ RETRY mode %d\n", retry_mode); - - if (retry_mode >= chip->read_retries) - return -EINVAL; - - if (!chip->setup_read_retry) - return -EOPNOTSUPP; - - return chip->setup_read_retry(mtd, retry_mode); -} - -/** - * nand_do_read_ops - [INTERN] Read data with ECC - * @mtd: MTD device structure - * @from: offset to read from - * @ops: oob ops structure - * - * Internal function. Called with chip held. - */ -static int nand_do_read_ops(struct mtd_info *mtd, loff_t from, - struct mtd_oob_ops *ops) -{ - int chipnr, page, realpage, col, bytes, aligned, oob_required; - struct nand_chip *chip = mtd_to_nand(mtd); - int ret = 0; - uint32_t readlen = ops->len; - uint32_t oobreadlen = ops->ooblen; - uint32_t max_oobsize = mtd_oobavail(mtd, ops); - - uint8_t *bufpoi, *oob, *buf; - int use_bufpoi; - unsigned int max_bitflips = 0; - int retry_mode = 0; - bool ecc_fail = false; - - chipnr = (int)(from >> chip->chip_shift); - chip->select_chip(mtd, chipnr); - - realpage = (int)(from >> chip->page_shift); - page = realpage & chip->pagemask; - - col = (int)(from & (mtd->writesize - 1)); - - buf = ops->datbuf; - oob = ops->oobbuf; - oob_required = oob ? 1 : 0; - - while (1) { - unsigned int ecc_failures = mtd->ecc_stats.failed; - - bytes = min(mtd->writesize - col, readlen); - aligned = (bytes == mtd->writesize); - - if (!aligned) - use_bufpoi = 1; - else if (chip->options & NAND_USE_BOUNCE_BUFFER) - use_bufpoi = !virt_addr_valid(buf) || - !IS_ALIGNED((unsigned long)buf, - chip->buf_align); - else - use_bufpoi = 0; - - /* Is the current page in the buffer? */ - if (realpage != chip->pagebuf || oob) { - bufpoi = use_bufpoi ? chip->data_buf : buf; - - if (use_bufpoi && aligned) - pr_debug("%s: using read bounce buffer for buf@%p\n", - __func__, buf); - -read_retry: - /* - * Now read the page into the buffer. Absent an error, - * the read methods return max bitflips per ecc step. - */ - if (unlikely(ops->mode == MTD_OPS_RAW)) - ret = chip->ecc.read_page_raw(mtd, chip, bufpoi, - oob_required, - page); - else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) && - !oob) - ret = chip->ecc.read_subpage(mtd, chip, - col, bytes, bufpoi, - page); - else - ret = chip->ecc.read_page(mtd, chip, bufpoi, - oob_required, page); - if (ret < 0) { - if (use_bufpoi) - /* Invalidate page cache */ - chip->pagebuf = -1; - break; - } - - /* Transfer not aligned data */ - if (use_bufpoi) { - if (!NAND_HAS_SUBPAGE_READ(chip) && !oob && - !(mtd->ecc_stats.failed - ecc_failures) && - (ops->mode != MTD_OPS_RAW)) { - chip->pagebuf = realpage; - chip->pagebuf_bitflips = ret; - } else { - /* Invalidate page cache */ - chip->pagebuf = -1; - } - memcpy(buf, chip->data_buf + col, bytes); - } - - if (unlikely(oob)) { - int toread = min(oobreadlen, max_oobsize); - - if (toread) { - oob = nand_transfer_oob(mtd, - oob, ops, toread); - oobreadlen -= toread; - } - } - - if (chip->options & NAND_NEED_READRDY) { - /* Apply delay or wait for ready/busy pin */ - if (!chip->dev_ready) - udelay(chip->chip_delay); - else - nand_wait_ready(mtd); - } - - if (mtd->ecc_stats.failed - ecc_failures) { - if (retry_mode + 1 < chip->read_retries) { - retry_mode++; - ret = nand_setup_read_retry(mtd, - retry_mode); - if (ret < 0) - break; - - /* Reset failures; retry */ - mtd->ecc_stats.failed = ecc_failures; - goto read_retry; - } else { - /* No more retry modes; real failure */ - ecc_fail = true; - } - } - - buf += bytes; - max_bitflips = max_t(unsigned int, max_bitflips, ret); - } else { - memcpy(buf, chip->data_buf + col, bytes); - buf += bytes; - max_bitflips = max_t(unsigned int, max_bitflips, - chip->pagebuf_bitflips); - } - - readlen -= bytes; - - /* Reset to retry mode 0 */ - if (retry_mode) { - ret = nand_setup_read_retry(mtd, 0); - if (ret < 0) - break; - retry_mode = 0; - } - - if (!readlen) - break; - - /* For subsequent reads align to page boundary */ - col = 0; - /* Increment page address */ - realpage++; - - page = realpage & chip->pagemask; - /* Check, if we cross a chip boundary */ - if (!page) { - chipnr++; - chip->select_chip(mtd, -1); - chip->select_chip(mtd, chipnr); - } - } - chip->select_chip(mtd, -1); - - ops->retlen = ops->len - (size_t) readlen; - if (oob) - ops->oobretlen = ops->ooblen - oobreadlen; - - if (ret < 0) - return ret; - - if (ecc_fail) - return -EBADMSG; - - return max_bitflips; -} - -/** - * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function - * @mtd: mtd info structure - * @chip: nand chip info structure - * @page: page number to read - */ -int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip, int page) -{ - return nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize); -} -EXPORT_SYMBOL(nand_read_oob_std); - -/** - * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC - * with syndromes - * @mtd: mtd info structure - * @chip: nand chip info structure - * @page: page number to read - */ -int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip, - int page) -{ - int length = mtd->oobsize; - int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad; - int eccsize = chip->ecc.size; - uint8_t *bufpoi = chip->oob_poi; - int i, toread, sndrnd = 0, pos, ret; - - ret = nand_read_page_op(chip, page, chip->ecc.size, NULL, 0); - if (ret) - return ret; - - for (i = 0; i < chip->ecc.steps; i++) { - if (sndrnd) { - int ret; - - pos = eccsize + i * (eccsize + chunk); - if (mtd->writesize > 512) - ret = nand_change_read_column_op(chip, pos, - NULL, 0, - false); - else - ret = nand_read_page_op(chip, page, pos, NULL, - 0); - - if (ret) - return ret; - } else - sndrnd = 1; - toread = min_t(int, length, chunk); - - ret = nand_read_data_op(chip, bufpoi, toread, false); - if (ret) - return ret; - - bufpoi += toread; - length -= toread; - } - if (length > 0) { - ret = nand_read_data_op(chip, bufpoi, length, false); - if (ret) - return ret; - } - - return 0; -} -EXPORT_SYMBOL(nand_read_oob_syndrome); - -/** - * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function - * @mtd: mtd info structure - * @chip: nand chip info structure - * @page: page number to write - */ -int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip, int page) -{ - return nand_prog_page_op(chip, page, mtd->writesize, chip->oob_poi, - mtd->oobsize); -} -EXPORT_SYMBOL(nand_write_oob_std); - -/** - * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC - * with syndrome - only for large page flash - * @mtd: mtd info structure - * @chip: nand chip info structure - * @page: page number to write - */ -int nand_write_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip, - int page) -{ - int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad; - int eccsize = chip->ecc.size, length = mtd->oobsize; - int ret, i, len, pos, sndcmd = 0, steps = chip->ecc.steps; - const uint8_t *bufpoi = chip->oob_poi; - - /* - * data-ecc-data-ecc ... ecc-oob - * or - * data-pad-ecc-pad-data-pad .... ecc-pad-oob - */ - if (!chip->ecc.prepad && !chip->ecc.postpad) { - pos = steps * (eccsize + chunk); - steps = 0; - } else - pos = eccsize; - - ret = nand_prog_page_begin_op(chip, page, pos, NULL, 0); - if (ret) - return ret; - - for (i = 0; i < steps; i++) { - if (sndcmd) { - if (mtd->writesize <= 512) { - uint32_t fill = 0xFFFFFFFF; - - len = eccsize; - while (len > 0) { - int num = min_t(int, len, 4); - - ret = nand_write_data_op(chip, &fill, - num, false); - if (ret) - return ret; - - len -= num; - } - } else { - pos = eccsize + i * (eccsize + chunk); - ret = nand_change_write_column_op(chip, pos, - NULL, 0, - false); - if (ret) - return ret; - } - } else - sndcmd = 1; - len = min_t(int, length, chunk); - - ret = nand_write_data_op(chip, bufpoi, len, false); - if (ret) - return ret; - - bufpoi += len; - length -= len; - } - if (length > 0) { - ret = nand_write_data_op(chip, bufpoi, length, false); - if (ret) - return ret; - } - - return nand_prog_page_end_op(chip); -} -EXPORT_SYMBOL(nand_write_oob_syndrome); - -/** - * nand_do_read_oob - [INTERN] NAND read out-of-band - * @mtd: MTD device structure - * @from: offset to read from - * @ops: oob operations description structure - * - * NAND read out-of-band data from the spare area. - */ -static int nand_do_read_oob(struct mtd_info *mtd, loff_t from, - struct mtd_oob_ops *ops) -{ - unsigned int max_bitflips = 0; - int page, realpage, chipnr; - struct nand_chip *chip = mtd_to_nand(mtd); - struct mtd_ecc_stats stats; - int readlen = ops->ooblen; - int len; - uint8_t *buf = ops->oobbuf; - int ret = 0; - - pr_debug("%s: from = 0x%08Lx, len = %i\n", - __func__, (unsigned long long)from, readlen); - - stats = mtd->ecc_stats; - - len = mtd_oobavail(mtd, ops); - - chipnr = (int)(from >> chip->chip_shift); - chip->select_chip(mtd, chipnr); - - /* Shift to get page */ - realpage = (int)(from >> chip->page_shift); - page = realpage & chip->pagemask; - - while (1) { - if (ops->mode == MTD_OPS_RAW) - ret = chip->ecc.read_oob_raw(mtd, chip, page); - else - ret = chip->ecc.read_oob(mtd, chip, page); - - if (ret < 0) - break; - - len = min(len, readlen); - buf = nand_transfer_oob(mtd, buf, ops, len); - - if (chip->options & NAND_NEED_READRDY) { - /* Apply delay or wait for ready/busy pin */ - if (!chip->dev_ready) - udelay(chip->chip_delay); - else - nand_wait_ready(mtd); - } - - max_bitflips = max_t(unsigned int, max_bitflips, ret); - - readlen -= len; - if (!readlen) - break; - - /* Increment page address */ - realpage++; - - page = realpage & chip->pagemask; - /* Check, if we cross a chip boundary */ - if (!page) { - chipnr++; - chip->select_chip(mtd, -1); - chip->select_chip(mtd, chipnr); - } - } - chip->select_chip(mtd, -1); - - ops->oobretlen = ops->ooblen - readlen; - - if (ret < 0) - return ret; - - if (mtd->ecc_stats.failed - stats.failed) - return -EBADMSG; - - return max_bitflips; -} - -/** - * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band - * @mtd: MTD device structure - * @from: offset to read from - * @ops: oob operation description structure - * - * NAND read data and/or out-of-band data. - */ -static int nand_read_oob(struct mtd_info *mtd, loff_t from, - struct mtd_oob_ops *ops) -{ - int ret; - - ops->retlen = 0; - - if (ops->mode != MTD_OPS_PLACE_OOB && - ops->mode != MTD_OPS_AUTO_OOB && - ops->mode != MTD_OPS_RAW) - return -ENOTSUPP; - - nand_get_device(mtd, FL_READING); - - if (!ops->datbuf) - ret = nand_do_read_oob(mtd, from, ops); - else - ret = nand_do_read_ops(mtd, from, ops); - - nand_release_device(mtd); - return ret; -} - - -/** - * nand_write_page_raw - [INTERN] raw page write function - * @mtd: mtd info structure - * @chip: nand chip info structure - * @buf: data buffer - * @oob_required: must write chip->oob_poi to OOB - * @page: page number to write - * - * Not for syndrome calculating ECC controllers, which use a special oob layout. - */ -int nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip, - const uint8_t *buf, int oob_required, int page) -{ - int ret; - - ret = nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize); - if (ret) - return ret; - - if (oob_required) { - ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, - false); - if (ret) - return ret; - } - - return nand_prog_page_end_op(chip); -} -EXPORT_SYMBOL(nand_write_page_raw); - -/** - * nand_write_page_raw_syndrome - [INTERN] raw page write function - * @mtd: mtd info structure - * @chip: nand chip info structure - * @buf: data buffer - * @oob_required: must write chip->oob_poi to OOB - * @page: page number to write - * - * We need a special oob layout and handling even when ECC isn't checked. - */ -static int nand_write_page_raw_syndrome(struct mtd_info *mtd, - struct nand_chip *chip, - const uint8_t *buf, int oob_required, - int page) -{ - int eccsize = chip->ecc.size; - int eccbytes = chip->ecc.bytes; - uint8_t *oob = chip->oob_poi; - int steps, size, ret; - - ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0); - if (ret) - return ret; - - for (steps = chip->ecc.steps; steps > 0; steps--) { - ret = nand_write_data_op(chip, buf, eccsize, false); - if (ret) - return ret; - - buf += eccsize; - - if (chip->ecc.prepad) { - ret = nand_write_data_op(chip, oob, chip->ecc.prepad, - false); - if (ret) - return ret; - - oob += chip->ecc.prepad; - } - - ret = nand_write_data_op(chip, oob, eccbytes, false); - if (ret) - return ret; - - oob += eccbytes; - - if (chip->ecc.postpad) { - ret = nand_write_data_op(chip, oob, chip->ecc.postpad, - false); - if (ret) - return ret; - - oob += chip->ecc.postpad; - } - } - - size = mtd->oobsize - (oob - chip->oob_poi); - if (size) { - ret = nand_write_data_op(chip, oob, size, false); - if (ret) - return ret; - } - - return nand_prog_page_end_op(chip); -} -/** - * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function - * @mtd: mtd info structure - * @chip: nand chip info structure - * @buf: data buffer - * @oob_required: must write chip->oob_poi to OOB - * @page: page number to write - */ -static int nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip, - const uint8_t *buf, int oob_required, - int page) -{ - int i, eccsize = chip->ecc.size, ret; - int eccbytes = chip->ecc.bytes; - int eccsteps = chip->ecc.steps; - uint8_t *ecc_calc = chip->ecc.calc_buf; - const uint8_t *p = buf; - - /* Software ECC calculation */ - for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) - chip->ecc.calculate(mtd, p, &ecc_calc[i]); - - ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0, - chip->ecc.total); - if (ret) - return ret; - - return chip->ecc.write_page_raw(mtd, chip, buf, 1, page); -} - -/** - * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function - * @mtd: mtd info structure - * @chip: nand chip info structure - * @buf: data buffer - * @oob_required: must write chip->oob_poi to OOB - * @page: page number to write - */ -static int nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip, - const uint8_t *buf, int oob_required, - int page) -{ - int i, eccsize = chip->ecc.size, ret; - int eccbytes = chip->ecc.bytes; - int eccsteps = chip->ecc.steps; - uint8_t *ecc_calc = chip->ecc.calc_buf; - const uint8_t *p = buf; - - ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0); - if (ret) - return ret; - - for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { - chip->ecc.hwctl(mtd, NAND_ECC_WRITE); - - ret = nand_write_data_op(chip, p, eccsize, false); - if (ret) - return ret; - - chip->ecc.calculate(mtd, p, &ecc_calc[i]); - } - - ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0, - chip->ecc.total); - if (ret) - return ret; - - ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false); - if (ret) - return ret; - - return nand_prog_page_end_op(chip); -} - - -/** - * nand_write_subpage_hwecc - [REPLACEABLE] hardware ECC based subpage write - * @mtd: mtd info structure - * @chip: nand chip info structure - * @offset: column address of subpage within the page - * @data_len: data length - * @buf: data buffer - * @oob_required: must write chip->oob_poi to OOB - * @page: page number to write - */ -static int nand_write_subpage_hwecc(struct mtd_info *mtd, - struct nand_chip *chip, uint32_t offset, - uint32_t data_len, const uint8_t *buf, - int oob_required, int page) -{ - uint8_t *oob_buf = chip->oob_poi; - uint8_t *ecc_calc = chip->ecc.calc_buf; - int ecc_size = chip->ecc.size; - int ecc_bytes = chip->ecc.bytes; - int ecc_steps = chip->ecc.steps; - uint32_t start_step = offset / ecc_size; - uint32_t end_step = (offset + data_len - 1) / ecc_size; - int oob_bytes = mtd->oobsize / ecc_steps; - int step, ret; - - ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0); - if (ret) - return ret; - - for (step = 0; step < ecc_steps; step++) { - /* configure controller for WRITE access */ - chip->ecc.hwctl(mtd, NAND_ECC_WRITE); - - /* write data (untouched subpages already masked by 0xFF) */ - ret = nand_write_data_op(chip, buf, ecc_size, false); - if (ret) - return ret; - - /* mask ECC of un-touched subpages by padding 0xFF */ - if ((step < start_step) || (step > end_step)) - memset(ecc_calc, 0xff, ecc_bytes); - else - chip->ecc.calculate(mtd, buf, ecc_calc); - - /* mask OOB of un-touched subpages by padding 0xFF */ - /* if oob_required, preserve OOB metadata of written subpage */ - if (!oob_required || (step < start_step) || (step > end_step)) - memset(oob_buf, 0xff, oob_bytes); - - buf += ecc_size; - ecc_calc += ecc_bytes; - oob_buf += oob_bytes; - } - - /* copy calculated ECC for whole page to chip->buffer->oob */ - /* this include masked-value(0xFF) for unwritten subpages */ - ecc_calc = chip->ecc.calc_buf; - ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0, - chip->ecc.total); - if (ret) - return ret; - - /* write OOB buffer to NAND device */ - ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false); - if (ret) - return ret; - - return nand_prog_page_end_op(chip); -} - - -/** - * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write - * @mtd: mtd info structure - * @chip: nand chip info structure - * @buf: data buffer - * @oob_required: must write chip->oob_poi to OOB - * @page: page number to write - * - * The hw generator calculates the error syndrome automatically. Therefore we - * need a special oob layout and handling. - */ -static int nand_write_page_syndrome(struct mtd_info *mtd, - struct nand_chip *chip, - const uint8_t *buf, int oob_required, - int page) -{ - int i, eccsize = chip->ecc.size; - int eccbytes = chip->ecc.bytes; - int eccsteps = chip->ecc.steps; - const uint8_t *p = buf; - uint8_t *oob = chip->oob_poi; - int ret; - - ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0); - if (ret) - return ret; - - for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { - chip->ecc.hwctl(mtd, NAND_ECC_WRITE); - - ret = nand_write_data_op(chip, p, eccsize, false); - if (ret) - return ret; - - if (chip->ecc.prepad) { - ret = nand_write_data_op(chip, oob, chip->ecc.prepad, - false); - if (ret) - return ret; - - oob += chip->ecc.prepad; - } - - chip->ecc.calculate(mtd, p, oob); - - ret = nand_write_data_op(chip, oob, eccbytes, false); - if (ret) - return ret; - - oob += eccbytes; - - if (chip->ecc.postpad) { - ret = nand_write_data_op(chip, oob, chip->ecc.postpad, - false); - if (ret) - return ret; - - oob += chip->ecc.postpad; - } - } - - /* Calculate remaining oob bytes */ - i = mtd->oobsize - (oob - chip->oob_poi); - if (i) { - ret = nand_write_data_op(chip, oob, i, false); - if (ret) - return ret; - } - - return nand_prog_page_end_op(chip); -} - -/** - * nand_write_page - write one page - * @mtd: MTD device structure - * @chip: NAND chip descriptor - * @offset: address offset within the page - * @data_len: length of actual data to be written - * @buf: the data to write - * @oob_required: must write chip->oob_poi to OOB - * @page: page number to write - * @raw: use _raw version of write_page - */ -static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip, - uint32_t offset, int data_len, const uint8_t *buf, - int oob_required, int page, int raw) -{ - int status, subpage; - - if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && - chip->ecc.write_subpage) - subpage = offset || (data_len < mtd->writesize); - else - subpage = 0; - - if (unlikely(raw)) - status = chip->ecc.write_page_raw(mtd, chip, buf, - oob_required, page); - else if (subpage) - status = chip->ecc.write_subpage(mtd, chip, offset, data_len, - buf, oob_required, page); - else - status = chip->ecc.write_page(mtd, chip, buf, oob_required, - page); - - if (status < 0) - return status; - - return 0; -} - -/** - * nand_fill_oob - [INTERN] Transfer client buffer to oob - * @mtd: MTD device structure - * @oob: oob data buffer - * @len: oob data write length - * @ops: oob ops structure - */ -static uint8_t *nand_fill_oob(struct mtd_info *mtd, uint8_t *oob, size_t len, - struct mtd_oob_ops *ops) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - int ret; - - /* - * Initialise to all 0xFF, to avoid the possibility of left over OOB - * data from a previous OOB read. - */ - memset(chip->oob_poi, 0xff, mtd->oobsize); - - switch (ops->mode) { - - case MTD_OPS_PLACE_OOB: - case MTD_OPS_RAW: - memcpy(chip->oob_poi + ops->ooboffs, oob, len); - return oob + len; - - case MTD_OPS_AUTO_OOB: - ret = mtd_ooblayout_set_databytes(mtd, oob, chip->oob_poi, - ops->ooboffs, len); - BUG_ON(ret); - return oob + len; - - default: - BUG(); - } - return NULL; -} - -#define NOTALIGNED(x) ((x & (chip->subpagesize - 1)) != 0) - -/** - * nand_do_write_ops - [INTERN] NAND write with ECC - * @mtd: MTD device structure - * @to: offset to write to - * @ops: oob operations description structure - * - * NAND write with ECC. - */ -static int nand_do_write_ops(struct mtd_info *mtd, loff_t to, - struct mtd_oob_ops *ops) -{ - int chipnr, realpage, page, column; - struct nand_chip *chip = mtd_to_nand(mtd); - uint32_t writelen = ops->len; - - uint32_t oobwritelen = ops->ooblen; - uint32_t oobmaxlen = mtd_oobavail(mtd, ops); - - uint8_t *oob = ops->oobbuf; - uint8_t *buf = ops->datbuf; - int ret; - int oob_required = oob ? 1 : 0; - - ops->retlen = 0; - if (!writelen) - return 0; - - /* Reject writes, which are not page aligned */ - if (NOTALIGNED(to) || NOTALIGNED(ops->len)) { - pr_notice("%s: attempt to write non page aligned data\n", - __func__); - return -EINVAL; - } - - column = to & (mtd->writesize - 1); - - chipnr = (int)(to >> chip->chip_shift); - chip->select_chip(mtd, chipnr); - - /* Check, if it is write protected */ - if (nand_check_wp(mtd)) { - ret = -EIO; - goto err_out; - } - - realpage = (int)(to >> chip->page_shift); - page = realpage & chip->pagemask; - - /* Invalidate the page cache, when we write to the cached page */ - if (to <= ((loff_t)chip->pagebuf << chip->page_shift) && - ((loff_t)chip->pagebuf << chip->page_shift) < (to + ops->len)) - chip->pagebuf = -1; - - /* Don't allow multipage oob writes with offset */ - if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) { - ret = -EINVAL; - goto err_out; - } - - while (1) { - int bytes = mtd->writesize; - uint8_t *wbuf = buf; - int use_bufpoi; - int part_pagewr = (column || writelen < mtd->writesize); - - if (part_pagewr) - use_bufpoi = 1; - else if (chip->options & NAND_USE_BOUNCE_BUFFER) - use_bufpoi = !virt_addr_valid(buf) || - !IS_ALIGNED((unsigned long)buf, - chip->buf_align); - else - use_bufpoi = 0; - - /* Partial page write?, or need to use bounce buffer */ - if (use_bufpoi) { - pr_debug("%s: using write bounce buffer for buf@%p\n", - __func__, buf); - if (part_pagewr) - bytes = min_t(int, bytes - column, writelen); - chip->pagebuf = -1; - memset(chip->data_buf, 0xff, mtd->writesize); - memcpy(&chip->data_buf[column], buf, bytes); - wbuf = chip->data_buf; - } - - if (unlikely(oob)) { - size_t len = min(oobwritelen, oobmaxlen); - oob = nand_fill_oob(mtd, oob, len, ops); - oobwritelen -= len; - } else { - /* We still need to erase leftover OOB data */ - memset(chip->oob_poi, 0xff, mtd->oobsize); - } - - ret = nand_write_page(mtd, chip, column, bytes, wbuf, - oob_required, page, - (ops->mode == MTD_OPS_RAW)); - if (ret) - break; - - writelen -= bytes; - if (!writelen) - break; - - column = 0; - buf += bytes; - realpage++; - - page = realpage & chip->pagemask; - /* Check, if we cross a chip boundary */ - if (!page) { - chipnr++; - chip->select_chip(mtd, -1); - chip->select_chip(mtd, chipnr); - } - } - - ops->retlen = ops->len - writelen; - if (unlikely(oob)) - ops->oobretlen = ops->ooblen; - -err_out: - chip->select_chip(mtd, -1); - return ret; -} - -/** - * panic_nand_write - [MTD Interface] NAND write with ECC - * @mtd: MTD device structure - * @to: offset to write to - * @len: number of bytes to write - * @retlen: pointer to variable to store the number of written bytes - * @buf: the data to write - * - * NAND write with ECC. Used when performing writes in interrupt context, this - * may for example be called by mtdoops when writing an oops while in panic. - */ -static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len, - size_t *retlen, const uint8_t *buf) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - int chipnr = (int)(to >> chip->chip_shift); - struct mtd_oob_ops ops; - int ret; - - /* Grab the device */ - panic_nand_get_device(chip, mtd, FL_WRITING); - - chip->select_chip(mtd, chipnr); - - /* Wait for the device to get ready */ - panic_nand_wait(mtd, chip, 400); - - memset(&ops, 0, sizeof(ops)); - ops.len = len; - ops.datbuf = (uint8_t *)buf; - ops.mode = MTD_OPS_PLACE_OOB; - - ret = nand_do_write_ops(mtd, to, &ops); - - *retlen = ops.retlen; - return ret; -} - -/** - * nand_do_write_oob - [MTD Interface] NAND write out-of-band - * @mtd: MTD device structure - * @to: offset to write to - * @ops: oob operation description structure - * - * NAND write out-of-band. - */ -static int nand_do_write_oob(struct mtd_info *mtd, loff_t to, - struct mtd_oob_ops *ops) -{ - int chipnr, page, status, len; - struct nand_chip *chip = mtd_to_nand(mtd); - - pr_debug("%s: to = 0x%08x, len = %i\n", - __func__, (unsigned int)to, (int)ops->ooblen); - - len = mtd_oobavail(mtd, ops); - - /* Do not allow write past end of page */ - if ((ops->ooboffs + ops->ooblen) > len) { - pr_debug("%s: attempt to write past end of page\n", - __func__); - return -EINVAL; - } - - chipnr = (int)(to >> chip->chip_shift); - - /* - * Reset the chip. Some chips (like the Toshiba TC5832DC found in one - * of my DiskOnChip 2000 test units) will clear the whole data page too - * if we don't do this. I have no clue why, but I seem to have 'fixed' - * it in the doc2000 driver in August 1999. dwmw2. - */ - nand_reset(chip, chipnr); - - chip->select_chip(mtd, chipnr); - - /* Shift to get page */ - page = (int)(to >> chip->page_shift); - - /* Check, if it is write protected */ - if (nand_check_wp(mtd)) { - chip->select_chip(mtd, -1); - return -EROFS; - } - - /* Invalidate the page cache, if we write to the cached page */ - if (page == chip->pagebuf) - chip->pagebuf = -1; - - nand_fill_oob(mtd, ops->oobbuf, ops->ooblen, ops); - - if (ops->mode == MTD_OPS_RAW) - status = chip->ecc.write_oob_raw(mtd, chip, page & chip->pagemask); - else - status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask); - - chip->select_chip(mtd, -1); - - if (status) - return status; - - ops->oobretlen = ops->ooblen; - - return 0; -} - -/** - * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band - * @mtd: MTD device structure - * @to: offset to write to - * @ops: oob operation description structure - */ -static int nand_write_oob(struct mtd_info *mtd, loff_t to, - struct mtd_oob_ops *ops) -{ - int ret = -ENOTSUPP; - - ops->retlen = 0; - - nand_get_device(mtd, FL_WRITING); - - switch (ops->mode) { - case MTD_OPS_PLACE_OOB: - case MTD_OPS_AUTO_OOB: - case MTD_OPS_RAW: - break; - - default: - goto out; - } - - if (!ops->datbuf) - ret = nand_do_write_oob(mtd, to, ops); - else - ret = nand_do_write_ops(mtd, to, ops); - -out: - nand_release_device(mtd); - return ret; -} - -/** - * single_erase - [GENERIC] NAND standard block erase command function - * @mtd: MTD device structure - * @page: the page address of the block which will be erased - * - * Standard erase command for NAND chips. Returns NAND status. - */ -static int single_erase(struct mtd_info *mtd, int page) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - unsigned int eraseblock; - - /* Send commands to erase a block */ - eraseblock = page >> (chip->phys_erase_shift - chip->page_shift); - - return nand_erase_op(chip, eraseblock); -} - -/** - * nand_erase - [MTD Interface] erase block(s) - * @mtd: MTD device structure - * @instr: erase instruction - * - * Erase one ore more blocks. - */ -static int nand_erase(struct mtd_info *mtd, struct erase_info *instr) -{ - return nand_erase_nand(mtd, instr, 0); -} - -/** - * nand_erase_nand - [INTERN] erase block(s) - * @mtd: MTD device structure - * @instr: erase instruction - * @allowbbt: allow erasing the bbt area - * - * Erase one ore more blocks. - */ -int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr, - int allowbbt) -{ - int page, status, pages_per_block, ret, chipnr; - struct nand_chip *chip = mtd_to_nand(mtd); - loff_t len; - - pr_debug("%s: start = 0x%012llx, len = %llu\n", - __func__, (unsigned long long)instr->addr, - (unsigned long long)instr->len); - - if (check_offs_len(mtd, instr->addr, instr->len)) - return -EINVAL; - - /* Grab the lock and see if the device is available */ - nand_get_device(mtd, FL_ERASING); - - /* Shift to get first page */ - page = (int)(instr->addr >> chip->page_shift); - chipnr = (int)(instr->addr >> chip->chip_shift); - - /* Calculate pages in each block */ - pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift); - - /* Select the NAND device */ - chip->select_chip(mtd, chipnr); - - /* Check, if it is write protected */ - if (nand_check_wp(mtd)) { - pr_debug("%s: device is write protected!\n", - __func__); - instr->state = MTD_ERASE_FAILED; - goto erase_exit; - } - - /* Loop through the pages */ - len = instr->len; - - instr->state = MTD_ERASING; - - while (len) { - /* Check if we have a bad block, we do not erase bad blocks! */ - if (nand_block_checkbad(mtd, ((loff_t) page) << - chip->page_shift, allowbbt)) { - pr_warn("%s: attempt to erase a bad block at page 0x%08x\n", - __func__, page); - instr->state = MTD_ERASE_FAILED; - goto erase_exit; - } - - /* - * Invalidate the page cache, if we erase the block which - * contains the current cached page. - */ - if (page <= chip->pagebuf && chip->pagebuf < - (page + pages_per_block)) - chip->pagebuf = -1; - - status = chip->erase(mtd, page & chip->pagemask); - - /* See if block erase succeeded */ - if (status) { - pr_debug("%s: failed erase, page 0x%08x\n", - __func__, page); - instr->state = MTD_ERASE_FAILED; - instr->fail_addr = - ((loff_t)page << chip->page_shift); - goto erase_exit; - } - - /* Increment page address and decrement length */ - len -= (1ULL << chip->phys_erase_shift); - page += pages_per_block; - - /* Check, if we cross a chip boundary */ - if (len && !(page & chip->pagemask)) { - chipnr++; - chip->select_chip(mtd, -1); - chip->select_chip(mtd, chipnr); - } - } - instr->state = MTD_ERASE_DONE; - -erase_exit: - - ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO; - - /* Deselect and wake up anyone waiting on the device */ - chip->select_chip(mtd, -1); - nand_release_device(mtd); - - /* Do call back function */ - if (!ret) - mtd_erase_callback(instr); - - /* Return more or less happy */ - return ret; -} - -/** - * nand_sync - [MTD Interface] sync - * @mtd: MTD device structure - * - * Sync is actually a wait for chip ready function. - */ -static void nand_sync(struct mtd_info *mtd) -{ - pr_debug("%s: called\n", __func__); - - /* Grab the lock and see if the device is available */ - nand_get_device(mtd, FL_SYNCING); - /* Release it and go back */ - nand_release_device(mtd); -} - -/** - * nand_block_isbad - [MTD Interface] Check if block at offset is bad - * @mtd: MTD device structure - * @offs: offset relative to mtd start - */ -static int nand_block_isbad(struct mtd_info *mtd, loff_t offs) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - int chipnr = (int)(offs >> chip->chip_shift); - int ret; - - /* Select the NAND device */ - nand_get_device(mtd, FL_READING); - chip->select_chip(mtd, chipnr); - - ret = nand_block_checkbad(mtd, offs, 0); - - chip->select_chip(mtd, -1); - nand_release_device(mtd); - - return ret; -} - -/** - * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad - * @mtd: MTD device structure - * @ofs: offset relative to mtd start - */ -static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs) -{ - int ret; - - ret = nand_block_isbad(mtd, ofs); - if (ret) { - /* If it was bad already, return success and do nothing */ - if (ret > 0) - return 0; - return ret; - } - - return nand_block_markbad_lowlevel(mtd, ofs); -} - -/** - * nand_max_bad_blocks - [MTD Interface] Max number of bad blocks for an mtd - * @mtd: MTD device structure - * @ofs: offset relative to mtd start - * @len: length of mtd - */ -static int nand_max_bad_blocks(struct mtd_info *mtd, loff_t ofs, size_t len) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - u32 part_start_block; - u32 part_end_block; - u32 part_start_die; - u32 part_end_die; - - /* - * max_bb_per_die and blocks_per_die used to determine - * the maximum bad block count. - */ - if (!chip->max_bb_per_die || !chip->blocks_per_die) - return -ENOTSUPP; - - /* Get the start and end of the partition in erase blocks. */ - part_start_block = mtd_div_by_eb(ofs, mtd); - part_end_block = mtd_div_by_eb(len, mtd) + part_start_block - 1; - - /* Get the start and end LUNs of the partition. */ - part_start_die = part_start_block / chip->blocks_per_die; - part_end_die = part_end_block / chip->blocks_per_die; - - /* - * Look up the bad blocks per unit and multiply by the number of units - * that the partition spans. - */ - return chip->max_bb_per_die * (part_end_die - part_start_die + 1); -} - -/** - * nand_onfi_set_features- [REPLACEABLE] set features for ONFI nand - * @mtd: MTD device structure - * @chip: nand chip info structure - * @addr: feature address. - * @subfeature_param: the subfeature parameters, a four bytes array. - */ -static int nand_onfi_set_features(struct mtd_info *mtd, struct nand_chip *chip, - int addr, uint8_t *subfeature_param) -{ - if (!chip->onfi_version || - !(le16_to_cpu(chip->onfi_params.opt_cmd) - & ONFI_OPT_CMD_SET_GET_FEATURES)) - return -EINVAL; - - return nand_set_features_op(chip, addr, subfeature_param); -} - -/** - * nand_onfi_get_features- [REPLACEABLE] get features for ONFI nand - * @mtd: MTD device structure - * @chip: nand chip info structure - * @addr: feature address. - * @subfeature_param: the subfeature parameters, a four bytes array. - */ -static int nand_onfi_get_features(struct mtd_info *mtd, struct nand_chip *chip, - int addr, uint8_t *subfeature_param) -{ - if (!chip->onfi_version || - !(le16_to_cpu(chip->onfi_params.opt_cmd) - & ONFI_OPT_CMD_SET_GET_FEATURES)) - return -EINVAL; - - return nand_get_features_op(chip, addr, subfeature_param); -} - -/** - * nand_onfi_get_set_features_notsupp - set/get features stub returning - * -ENOTSUPP - * @mtd: MTD device structure - * @chip: nand chip info structure - * @addr: feature address. - * @subfeature_param: the subfeature parameters, a four bytes array. - * - * Should be used by NAND controller drivers that do not support the SET/GET - * FEATURES operations. - */ -int nand_onfi_get_set_features_notsupp(struct mtd_info *mtd, - struct nand_chip *chip, int addr, - u8 *subfeature_param) -{ - return -ENOTSUPP; -} -EXPORT_SYMBOL(nand_onfi_get_set_features_notsupp); - -/** - * nand_suspend - [MTD Interface] Suspend the NAND flash - * @mtd: MTD device structure - */ -static int nand_suspend(struct mtd_info *mtd) -{ - return nand_get_device(mtd, FL_PM_SUSPENDED); -} - -/** - * nand_resume - [MTD Interface] Resume the NAND flash - * @mtd: MTD device structure - */ -static void nand_resume(struct mtd_info *mtd) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - - if (chip->state == FL_PM_SUSPENDED) - nand_release_device(mtd); - else - pr_err("%s called for a chip which is not in suspended state\n", - __func__); -} - -/** - * nand_shutdown - [MTD Interface] Finish the current NAND operation and - * prevent further operations - * @mtd: MTD device structure - */ -static void nand_shutdown(struct mtd_info *mtd) -{ - nand_get_device(mtd, FL_PM_SUSPENDED); -} - -/* Set default functions */ -static void nand_set_defaults(struct nand_chip *chip) -{ - unsigned int busw = chip->options & NAND_BUSWIDTH_16; - - /* check for proper chip_delay setup, set 20us if not */ - if (!chip->chip_delay) - chip->chip_delay = 20; - - /* check, if a user supplied command function given */ - if (!chip->cmdfunc && !chip->exec_op) - chip->cmdfunc = nand_command; - - /* check, if a user supplied wait function given */ - if (chip->waitfunc == NULL) - chip->waitfunc = nand_wait; - - if (!chip->select_chip) - chip->select_chip = nand_select_chip; - - /* set for ONFI nand */ - if (!chip->onfi_set_features) - chip->onfi_set_features = nand_onfi_set_features; - if (!chip->onfi_get_features) - chip->onfi_get_features = nand_onfi_get_features; - - /* If called twice, pointers that depend on busw may need to be reset */ - if (!chip->read_byte || chip->read_byte == nand_read_byte) - chip->read_byte = busw ? nand_read_byte16 : nand_read_byte; - if (!chip->read_word) - chip->read_word = nand_read_word; - if (!chip->block_bad) - chip->block_bad = nand_block_bad; - if (!chip->block_markbad) - chip->block_markbad = nand_default_block_markbad; - if (!chip->write_buf || chip->write_buf == nand_write_buf) - chip->write_buf = busw ? nand_write_buf16 : nand_write_buf; - if (!chip->write_byte || chip->write_byte == nand_write_byte) - chip->write_byte = busw ? nand_write_byte16 : nand_write_byte; - if (!chip->read_buf || chip->read_buf == nand_read_buf) - chip->read_buf = busw ? nand_read_buf16 : nand_read_buf; - if (!chip->scan_bbt) - chip->scan_bbt = nand_default_bbt; - - if (!chip->controller) { - chip->controller = &chip->hwcontrol; - nand_hw_control_init(chip->controller); - } - - if (!chip->buf_align) - chip->buf_align = 1; -} - -/* Sanitize ONFI strings so we can safely print them */ -static void sanitize_string(uint8_t *s, size_t len) -{ - ssize_t i; - - /* Null terminate */ - s[len - 1] = 0; - - /* Remove non printable chars */ - for (i = 0; i < len - 1; i++) { - if (s[i] < ' ' || s[i] > 127) - s[i] = '?'; - } - - /* Remove trailing spaces */ - strim(s); -} - -static u16 onfi_crc16(u16 crc, u8 const *p, size_t len) -{ - int i; - while (len--) { - crc ^= *p++ << 8; - for (i = 0; i < 8; i++) - crc = (crc << 1) ^ ((crc & 0x8000) ? 0x8005 : 0); - } - - return crc; -} - -/* Parse the Extended Parameter Page. */ -static int nand_flash_detect_ext_param_page(struct nand_chip *chip, - struct nand_onfi_params *p) -{ - struct onfi_ext_param_page *ep; - struct onfi_ext_section *s; - struct onfi_ext_ecc_info *ecc; - uint8_t *cursor; - int ret; - int len; - int i; - - len = le16_to_cpu(p->ext_param_page_length) * 16; - ep = kmalloc(len, GFP_KERNEL); - if (!ep) - return -ENOMEM; - - /* Send our own NAND_CMD_PARAM. */ - ret = nand_read_param_page_op(chip, 0, NULL, 0); - if (ret) - goto ext_out; - - /* Use the Change Read Column command to skip the ONFI param pages. */ - ret = nand_change_read_column_op(chip, - sizeof(*p) * p->num_of_param_pages, - ep, len, true); - if (ret) - goto ext_out; - - ret = -EINVAL; - if ((onfi_crc16(ONFI_CRC_BASE, ((uint8_t *)ep) + 2, len - 2) - != le16_to_cpu(ep->crc))) { - pr_debug("fail in the CRC.\n"); - goto ext_out; - } - - /* - * Check the signature. - * Do not strictly follow the ONFI spec, maybe changed in future. - */ - if (strncmp(ep->sig, "EPPS", 4)) { - pr_debug("The signature is invalid.\n"); - goto ext_out; - } - - /* find the ECC section. */ - cursor = (uint8_t *)(ep + 1); - for (i = 0; i < ONFI_EXT_SECTION_MAX; i++) { - s = ep->sections + i; - if (s->type == ONFI_SECTION_TYPE_2) - break; - cursor += s->length * 16; - } - if (i == ONFI_EXT_SECTION_MAX) { - pr_debug("We can not find the ECC section.\n"); - goto ext_out; - } - - /* get the info we want. */ - ecc = (struct onfi_ext_ecc_info *)cursor; - - if (!ecc->codeword_size) { - pr_debug("Invalid codeword size\n"); - goto ext_out; - } - - chip->ecc_strength_ds = ecc->ecc_bits; - chip->ecc_step_ds = 1 << ecc->codeword_size; - ret = 0; - -ext_out: - kfree(ep); - return ret; -} - -/* - * Check if the NAND chip is ONFI compliant, returns 1 if it is, 0 otherwise. - */ -static int nand_flash_detect_onfi(struct nand_chip *chip) -{ - struct mtd_info *mtd = nand_to_mtd(chip); - struct nand_onfi_params *p = &chip->onfi_params; - char id[4]; - int i, ret, val; - - /* Try ONFI for unknown chip or LP */ - ret = nand_readid_op(chip, 0x20, id, sizeof(id)); - if (ret || strncmp(id, "ONFI", 4)) - return 0; - - ret = nand_read_param_page_op(chip, 0, NULL, 0); - if (ret) - return 0; - - for (i = 0; i < 3; i++) { - ret = nand_read_data_op(chip, p, sizeof(*p), true); - if (ret) - return 0; - - if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 254) == - le16_to_cpu(p->crc)) { - break; - } - } - - if (i == 3) { - pr_err("Could not find valid ONFI parameter page; aborting\n"); - return 0; - } - - /* Check version */ - val = le16_to_cpu(p->revision); - if (val & (1 << 5)) - chip->onfi_version = 23; - else if (val & (1 << 4)) - chip->onfi_version = 22; - else if (val & (1 << 3)) - chip->onfi_version = 21; - else if (val & (1 << 2)) - chip->onfi_version = 20; - else if (val & (1 << 1)) - chip->onfi_version = 10; - - if (!chip->onfi_version) { - pr_info("unsupported ONFI version: %d\n", val); - return 0; - } - - sanitize_string(p->manufacturer, sizeof(p->manufacturer)); - sanitize_string(p->model, sizeof(p->model)); - if (!mtd->name) - mtd->name = p->model; - - mtd->writesize = le32_to_cpu(p->byte_per_page); - - /* - * pages_per_block and blocks_per_lun may not be a power-of-2 size - * (don't ask me who thought of this...). MTD assumes that these - * dimensions will be power-of-2, so just truncate the remaining area. - */ - mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1); - mtd->erasesize *= mtd->writesize; - - mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page); - - /* See erasesize comment */ - chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1); - chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count; - chip->bits_per_cell = p->bits_per_cell; - - chip->max_bb_per_die = le16_to_cpu(p->bb_per_lun); - chip->blocks_per_die = le32_to_cpu(p->blocks_per_lun); - - if (onfi_feature(chip) & ONFI_FEATURE_16_BIT_BUS) - chip->options |= NAND_BUSWIDTH_16; - - if (p->ecc_bits != 0xff) { - chip->ecc_strength_ds = p->ecc_bits; - chip->ecc_step_ds = 512; - } else if (chip->onfi_version >= 21 && - (onfi_feature(chip) & ONFI_FEATURE_EXT_PARAM_PAGE)) { - - /* - * The nand_flash_detect_ext_param_page() uses the - * Change Read Column command which maybe not supported - * by the chip->cmdfunc. So try to update the chip->cmdfunc - * now. We do not replace user supplied command function. - */ - if (mtd->writesize > 512 && chip->cmdfunc == nand_command) - chip->cmdfunc = nand_command_lp; - - /* The Extended Parameter Page is supported since ONFI 2.1. */ - if (nand_flash_detect_ext_param_page(chip, p)) - pr_warn("Failed to detect ONFI extended param page\n"); - } else { - pr_warn("Could not retrieve ONFI ECC requirements\n"); - } - - return 1; -} - -/* - * Check if the NAND chip is JEDEC compliant, returns 1 if it is, 0 otherwise. - */ -static int nand_flash_detect_jedec(struct nand_chip *chip) -{ - struct mtd_info *mtd = nand_to_mtd(chip); - struct nand_jedec_params *p = &chip->jedec_params; - struct jedec_ecc_info *ecc; - char id[5]; - int i, val, ret; - - /* Try JEDEC for unknown chip or LP */ - ret = nand_readid_op(chip, 0x40, id, sizeof(id)); - if (ret || strncmp(id, "JEDEC", sizeof(id))) - return 0; - - ret = nand_read_param_page_op(chip, 0x40, NULL, 0); - if (ret) - return 0; - - for (i = 0; i < 3; i++) { - ret = nand_read_data_op(chip, p, sizeof(*p), true); - if (ret) - return 0; - - if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 510) == - le16_to_cpu(p->crc)) - break; - } - - if (i == 3) { - pr_err("Could not find valid JEDEC parameter page; aborting\n"); - return 0; - } - - /* Check version */ - val = le16_to_cpu(p->revision); - if (val & (1 << 2)) - chip->jedec_version = 10; - else if (val & (1 << 1)) - chip->jedec_version = 1; /* vendor specific version */ - - if (!chip->jedec_version) { - pr_info("unsupported JEDEC version: %d\n", val); - return 0; - } - - sanitize_string(p->manufacturer, sizeof(p->manufacturer)); - sanitize_string(p->model, sizeof(p->model)); - if (!mtd->name) - mtd->name = p->model; - - mtd->writesize = le32_to_cpu(p->byte_per_page); - - /* Please reference to the comment for nand_flash_detect_onfi. */ - mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1); - mtd->erasesize *= mtd->writesize; - - mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page); - - /* Please reference to the comment for nand_flash_detect_onfi. */ - chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1); - chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count; - chip->bits_per_cell = p->bits_per_cell; - - if (jedec_feature(chip) & JEDEC_FEATURE_16_BIT_BUS) - chip->options |= NAND_BUSWIDTH_16; - - /* ECC info */ - ecc = &p->ecc_info[0]; - - if (ecc->codeword_size >= 9) { - chip->ecc_strength_ds = ecc->ecc_bits; - chip->ecc_step_ds = 1 << ecc->codeword_size; - } else { - pr_warn("Invalid codeword size\n"); - } - - return 1; -} - -/* - * nand_id_has_period - Check if an ID string has a given wraparound period - * @id_data: the ID string - * @arrlen: the length of the @id_data array - * @period: the period of repitition - * - * Check if an ID string is repeated within a given sequence of bytes at - * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a - * period of 3). This is a helper function for nand_id_len(). Returns non-zero - * if the repetition has a period of @period; otherwise, returns zero. - */ -static int nand_id_has_period(u8 *id_data, int arrlen, int period) -{ - int i, j; - for (i = 0; i < period; i++) - for (j = i + period; j < arrlen; j += period) - if (id_data[i] != id_data[j]) - return 0; - return 1; -} - -/* - * nand_id_len - Get the length of an ID string returned by CMD_READID - * @id_data: the ID string - * @arrlen: the length of the @id_data array - - * Returns the length of the ID string, according to known wraparound/trailing - * zero patterns. If no pattern exists, returns the length of the array. - */ -static int nand_id_len(u8 *id_data, int arrlen) -{ - int last_nonzero, period; - - /* Find last non-zero byte */ - for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--) - if (id_data[last_nonzero]) - break; - - /* All zeros */ - if (last_nonzero < 0) - return 0; - - /* Calculate wraparound period */ - for (period = 1; period < arrlen; period++) - if (nand_id_has_period(id_data, arrlen, period)) - break; - - /* There's a repeated pattern */ - if (period < arrlen) - return period; - - /* There are trailing zeros */ - if (last_nonzero < arrlen - 1) - return last_nonzero + 1; - - /* No pattern detected */ - return arrlen; -} - -/* Extract the bits of per cell from the 3rd byte of the extended ID */ -static int nand_get_bits_per_cell(u8 cellinfo) -{ - int bits; - - bits = cellinfo & NAND_CI_CELLTYPE_MSK; - bits >>= NAND_CI_CELLTYPE_SHIFT; - return bits + 1; -} - -/* - * Many new NAND share similar device ID codes, which represent the size of the - * chip. The rest of the parameters must be decoded according to generic or - * manufacturer-specific "extended ID" decoding patterns. - */ -void nand_decode_ext_id(struct nand_chip *chip) -{ - struct mtd_info *mtd = nand_to_mtd(chip); - int extid; - u8 *id_data = chip->id.data; - /* The 3rd id byte holds MLC / multichip data */ - chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]); - /* The 4th id byte is the important one */ - extid = id_data[3]; - - /* Calc pagesize */ - mtd->writesize = 1024 << (extid & 0x03); - extid >>= 2; - /* Calc oobsize */ - mtd->oobsize = (8 << (extid & 0x01)) * (mtd->writesize >> 9); - extid >>= 2; - /* Calc blocksize. Blocksize is multiples of 64KiB */ - mtd->erasesize = (64 * 1024) << (extid & 0x03); - extid >>= 2; - /* Get buswidth information */ - if (extid & 0x1) - chip->options |= NAND_BUSWIDTH_16; -} -EXPORT_SYMBOL_GPL(nand_decode_ext_id); - -/* - * Old devices have chip data hardcoded in the device ID table. nand_decode_id - * decodes a matching ID table entry and assigns the MTD size parameters for - * the chip. - */ -static void nand_decode_id(struct nand_chip *chip, struct nand_flash_dev *type) -{ - struct mtd_info *mtd = nand_to_mtd(chip); - - mtd->erasesize = type->erasesize; - mtd->writesize = type->pagesize; - mtd->oobsize = mtd->writesize / 32; - - /* All legacy ID NAND are small-page, SLC */ - chip->bits_per_cell = 1; -} - -/* - * Set the bad block marker/indicator (BBM/BBI) patterns according to some - * heuristic patterns using various detected parameters (e.g., manufacturer, - * page size, cell-type information). - */ -static void nand_decode_bbm_options(struct nand_chip *chip) -{ - struct mtd_info *mtd = nand_to_mtd(chip); - - /* Set the bad block position */ - if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16)) - chip->badblockpos = NAND_LARGE_BADBLOCK_POS; - else - chip->badblockpos = NAND_SMALL_BADBLOCK_POS; -} - -static inline bool is_full_id_nand(struct nand_flash_dev *type) -{ - return type->id_len; -} - -static bool find_full_id_nand(struct nand_chip *chip, - struct nand_flash_dev *type) -{ - struct mtd_info *mtd = nand_to_mtd(chip); - u8 *id_data = chip->id.data; - - if (!strncmp(type->id, id_data, type->id_len)) { - mtd->writesize = type->pagesize; - mtd->erasesize = type->erasesize; - mtd->oobsize = type->oobsize; - - chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]); - chip->chipsize = (uint64_t)type->chipsize << 20; - chip->options |= type->options; - chip->ecc_strength_ds = NAND_ECC_STRENGTH(type); - chip->ecc_step_ds = NAND_ECC_STEP(type); - chip->onfi_timing_mode_default = - type->onfi_timing_mode_default; - - if (!mtd->name) - mtd->name = type->name; - - return true; - } - return false; -} - -/* - * Manufacturer detection. Only used when the NAND is not ONFI or JEDEC - * compliant and does not have a full-id or legacy-id entry in the nand_ids - * table. - */ -static void nand_manufacturer_detect(struct nand_chip *chip) -{ - /* - * Try manufacturer detection if available and use - * nand_decode_ext_id() otherwise. - */ - if (chip->manufacturer.desc && chip->manufacturer.desc->ops && - chip->manufacturer.desc->ops->detect) { - /* The 3rd id byte holds MLC / multichip data */ - chip->bits_per_cell = nand_get_bits_per_cell(chip->id.data[2]); - chip->manufacturer.desc->ops->detect(chip); - } else { - nand_decode_ext_id(chip); - } -} - -/* - * Manufacturer initialization. This function is called for all NANDs including - * ONFI and JEDEC compliant ones. - * Manufacturer drivers should put all their specific initialization code in - * their ->init() hook. - */ -static int nand_manufacturer_init(struct nand_chip *chip) -{ - if (!chip->manufacturer.desc || !chip->manufacturer.desc->ops || - !chip->manufacturer.desc->ops->init) - return 0; - - return chip->manufacturer.desc->ops->init(chip); -} - -/* - * Manufacturer cleanup. This function is called for all NANDs including - * ONFI and JEDEC compliant ones. - * Manufacturer drivers should put all their specific cleanup code in their - * ->cleanup() hook. - */ -static void nand_manufacturer_cleanup(struct nand_chip *chip) -{ - /* Release manufacturer private data */ - if (chip->manufacturer.desc && chip->manufacturer.desc->ops && - chip->manufacturer.desc->ops->cleanup) - chip->manufacturer.desc->ops->cleanup(chip); -} - -/* - * Get the flash and manufacturer id and lookup if the type is supported. - */ -static int nand_detect(struct nand_chip *chip, struct nand_flash_dev *type) -{ - const struct nand_manufacturer *manufacturer; - struct mtd_info *mtd = nand_to_mtd(chip); - int busw, ret; - u8 *id_data = chip->id.data; - u8 maf_id, dev_id; - - /* - * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx) - * after power-up. - */ - ret = nand_reset(chip, 0); - if (ret) - return ret; - - /* Select the device */ - chip->select_chip(mtd, 0); - - /* Send the command for reading device ID */ - ret = nand_readid_op(chip, 0, id_data, 2); - if (ret) - return ret; - - /* Read manufacturer and device IDs */ - maf_id = id_data[0]; - dev_id = id_data[1]; - - /* - * Try again to make sure, as some systems the bus-hold or other - * interface concerns can cause random data which looks like a - * possibly credible NAND flash to appear. If the two results do - * not match, ignore the device completely. - */ - - /* Read entire ID string */ - ret = nand_readid_op(chip, 0, id_data, sizeof(chip->id.data)); - if (ret) - return ret; - - if (id_data[0] != maf_id || id_data[1] != dev_id) { - pr_info("second ID read did not match %02x,%02x against %02x,%02x\n", - maf_id, dev_id, id_data[0], id_data[1]); - return -ENODEV; - } - - chip->id.len = nand_id_len(id_data, ARRAY_SIZE(chip->id.data)); - - /* Try to identify manufacturer */ - manufacturer = nand_get_manufacturer(maf_id); - chip->manufacturer.desc = manufacturer; - - if (!type) - type = nand_flash_ids; - - /* - * Save the NAND_BUSWIDTH_16 flag before letting auto-detection logic - * override it. - * This is required to make sure initial NAND bus width set by the - * NAND controller driver is coherent with the real NAND bus width - * (extracted by auto-detection code). - */ - busw = chip->options & NAND_BUSWIDTH_16; - - /* - * The flag is only set (never cleared), reset it to its default value - * before starting auto-detection. - */ - chip->options &= ~NAND_BUSWIDTH_16; - - for (; type->name != NULL; type++) { - if (is_full_id_nand(type)) { - if (find_full_id_nand(chip, type)) - goto ident_done; - } else if (dev_id == type->dev_id) { - break; - } - } - - chip->onfi_version = 0; - if (!type->name || !type->pagesize) { - /* Check if the chip is ONFI compliant */ - if (nand_flash_detect_onfi(chip)) - goto ident_done; - - /* Check if the chip is JEDEC compliant */ - if (nand_flash_detect_jedec(chip)) - goto ident_done; - } - - if (!type->name) - return -ENODEV; - - if (!mtd->name) - mtd->name = type->name; - - chip->chipsize = (uint64_t)type->chipsize << 20; - - if (!type->pagesize) - nand_manufacturer_detect(chip); - else - nand_decode_id(chip, type); - - /* Get chip options */ - chip->options |= type->options; - -ident_done: - - if (chip->options & NAND_BUSWIDTH_AUTO) { - WARN_ON(busw & NAND_BUSWIDTH_16); - nand_set_defaults(chip); - } else if (busw != (chip->options & NAND_BUSWIDTH_16)) { - /* - * Check, if buswidth is correct. Hardware drivers should set - * chip correct! - */ - pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n", - maf_id, dev_id); - pr_info("%s %s\n", nand_manufacturer_name(manufacturer), - mtd->name); - pr_warn("bus width %d instead of %d bits\n", busw ? 16 : 8, - (chip->options & NAND_BUSWIDTH_16) ? 16 : 8); - return -EINVAL; - } - - nand_decode_bbm_options(chip); - - /* Calculate the address shift from the page size */ - chip->page_shift = ffs(mtd->writesize) - 1; - /* Convert chipsize to number of pages per chip -1 */ - chip->pagemask = (chip->chipsize >> chip->page_shift) - 1; - - chip->bbt_erase_shift = chip->phys_erase_shift = - ffs(mtd->erasesize) - 1; - if (chip->chipsize & 0xffffffff) - chip->chip_shift = ffs((unsigned)chip->chipsize) - 1; - else { - chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32)); - chip->chip_shift += 32 - 1; - } - - if (chip->chip_shift - chip->page_shift > 16) - chip->options |= NAND_ROW_ADDR_3; - - chip->badblockbits = 8; - chip->erase = single_erase; - - /* Do not replace user supplied command function! */ - if (mtd->writesize > 512 && chip->cmdfunc == nand_command) - chip->cmdfunc = nand_command_lp; - - pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n", - maf_id, dev_id); - - if (chip->onfi_version) - pr_info("%s %s\n", nand_manufacturer_name(manufacturer), - chip->onfi_params.model); - else if (chip->jedec_version) - pr_info("%s %s\n", nand_manufacturer_name(manufacturer), - chip->jedec_params.model); - else - pr_info("%s %s\n", nand_manufacturer_name(manufacturer), - type->name); - - pr_info("%d MiB, %s, erase size: %d KiB, page size: %d, OOB size: %d\n", - (int)(chip->chipsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC", - mtd->erasesize >> 10, mtd->writesize, mtd->oobsize); - return 0; -} - -static const char * const nand_ecc_modes[] = { - [NAND_ECC_NONE] = "none", - [NAND_ECC_SOFT] = "soft", - [NAND_ECC_HW] = "hw", - [NAND_ECC_HW_SYNDROME] = "hw_syndrome", - [NAND_ECC_HW_OOB_FIRST] = "hw_oob_first", - [NAND_ECC_ON_DIE] = "on-die", -}; - -static int of_get_nand_ecc_mode(struct device_node *np) -{ - const char *pm; - int err, i; - - err = of_property_read_string(np, "nand-ecc-mode", &pm); - if (err < 0) - return err; - - for (i = 0; i < ARRAY_SIZE(nand_ecc_modes); i++) - if (!strcasecmp(pm, nand_ecc_modes[i])) - return i; - - /* - * For backward compatibility we support few obsoleted values that don't - * have their mappings into nand_ecc_modes_t anymore (they were merged - * with other enums). - */ - if (!strcasecmp(pm, "soft_bch")) - return NAND_ECC_SOFT; - - return -ENODEV; -} - -static const char * const nand_ecc_algos[] = { - [NAND_ECC_HAMMING] = "hamming", - [NAND_ECC_BCH] = "bch", -}; - -static int of_get_nand_ecc_algo(struct device_node *np) -{ - const char *pm; - int err, i; - - err = of_property_read_string(np, "nand-ecc-algo", &pm); - if (!err) { - for (i = NAND_ECC_HAMMING; i < ARRAY_SIZE(nand_ecc_algos); i++) - if (!strcasecmp(pm, nand_ecc_algos[i])) - return i; - return -ENODEV; - } - - /* - * For backward compatibility we also read "nand-ecc-mode" checking - * for some obsoleted values that were specifying ECC algorithm. - */ - err = of_property_read_string(np, "nand-ecc-mode", &pm); - if (err < 0) - return err; - - if (!strcasecmp(pm, "soft")) - return NAND_ECC_HAMMING; - else if (!strcasecmp(pm, "soft_bch")) - return NAND_ECC_BCH; - - return -ENODEV; -} - -static int of_get_nand_ecc_step_size(struct device_node *np) -{ - int ret; - u32 val; - - ret = of_property_read_u32(np, "nand-ecc-step-size", &val); - return ret ? ret : val; -} - -static int of_get_nand_ecc_strength(struct device_node *np) -{ - int ret; - u32 val; - - ret = of_property_read_u32(np, "nand-ecc-strength", &val); - return ret ? ret : val; -} - -static int of_get_nand_bus_width(struct device_node *np) -{ - u32 val; - - if (of_property_read_u32(np, "nand-bus-width", &val)) - return 8; - - switch (val) { - case 8: - case 16: - return val; - default: - return -EIO; - } -} - -static bool of_get_nand_on_flash_bbt(struct device_node *np) -{ - return of_property_read_bool(np, "nand-on-flash-bbt"); -} - -static int nand_dt_init(struct nand_chip *chip) -{ - struct device_node *dn = nand_get_flash_node(chip); - int ecc_mode, ecc_algo, ecc_strength, ecc_step; - - if (!dn) - return 0; - - if (of_get_nand_bus_width(dn) == 16) - chip->options |= NAND_BUSWIDTH_16; - - if (of_get_nand_on_flash_bbt(dn)) - chip->bbt_options |= NAND_BBT_USE_FLASH; - - ecc_mode = of_get_nand_ecc_mode(dn); - ecc_algo = of_get_nand_ecc_algo(dn); - ecc_strength = of_get_nand_ecc_strength(dn); - ecc_step = of_get_nand_ecc_step_size(dn); - - if (ecc_mode >= 0) - chip->ecc.mode = ecc_mode; - - if (ecc_algo >= 0) - chip->ecc.algo = ecc_algo; - - if (ecc_strength >= 0) - chip->ecc.strength = ecc_strength; - - if (ecc_step > 0) - chip->ecc.size = ecc_step; - - if (of_property_read_bool(dn, "nand-ecc-maximize")) - chip->ecc.options |= NAND_ECC_MAXIMIZE; - - return 0; -} - -/** - * nand_scan_ident - [NAND Interface] Scan for the NAND device - * @mtd: MTD device structure - * @maxchips: number of chips to scan for - * @table: alternative NAND ID table - * - * This is the first phase of the normal nand_scan() function. It reads the - * flash ID and sets up MTD fields accordingly. - * - */ -int nand_scan_ident(struct mtd_info *mtd, int maxchips, - struct nand_flash_dev *table) -{ - int i, nand_maf_id, nand_dev_id; - struct nand_chip *chip = mtd_to_nand(mtd); - int ret; - - /* Enforce the right timings for reset/detection */ - onfi_fill_data_interface(chip, NAND_SDR_IFACE, 0); - - ret = nand_dt_init(chip); - if (ret) - return ret; - - if (!mtd->name && mtd->dev.parent) - mtd->name = dev_name(mtd->dev.parent); - - /* - * ->cmdfunc() is legacy and will only be used if ->exec_op() is not - * populated. - */ - if (!chip->exec_op) { - /* - * Default functions assigned for ->cmdfunc() and - * ->select_chip() both expect ->cmd_ctrl() to be populated. - */ - if ((!chip->cmdfunc || !chip->select_chip) && !chip->cmd_ctrl) { - pr_err("->cmd_ctrl() should be provided\n"); - return -EINVAL; - } - } - - /* Set the default functions */ - nand_set_defaults(chip); - - /* Read the flash type */ - ret = nand_detect(chip, table); - if (ret) { - if (!(chip->options & NAND_SCAN_SILENT_NODEV)) - pr_warn("No NAND device found\n"); - chip->select_chip(mtd, -1); - return ret; - } - - nand_maf_id = chip->id.data[0]; - nand_dev_id = chip->id.data[1]; - - chip->select_chip(mtd, -1); - - /* Check for a chip array */ - for (i = 1; i < maxchips; i++) { - u8 id[2]; - - /* See comment in nand_get_flash_type for reset */ - nand_reset(chip, i); - - chip->select_chip(mtd, i); - /* Send the command for reading device ID */ - nand_readid_op(chip, 0, id, sizeof(id)); - /* Read manufacturer and device IDs */ - if (nand_maf_id != id[0] || nand_dev_id != id[1]) { - chip->select_chip(mtd, -1); - break; - } - chip->select_chip(mtd, -1); - } - if (i > 1) - pr_info("%d chips detected\n", i); - - /* Store the number of chips and calc total size for mtd */ - chip->numchips = i; - mtd->size = i * chip->chipsize; - - return 0; -} -EXPORT_SYMBOL(nand_scan_ident); - -static int nand_set_ecc_soft_ops(struct mtd_info *mtd) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct nand_ecc_ctrl *ecc = &chip->ecc; - - if (WARN_ON(ecc->mode != NAND_ECC_SOFT)) - return -EINVAL; - - switch (ecc->algo) { - case NAND_ECC_HAMMING: - ecc->calculate = nand_calculate_ecc; - ecc->correct = nand_correct_data; - ecc->read_page = nand_read_page_swecc; - ecc->read_subpage = nand_read_subpage; - ecc->write_page = nand_write_page_swecc; - ecc->read_page_raw = nand_read_page_raw; - ecc->write_page_raw = nand_write_page_raw; - ecc->read_oob = nand_read_oob_std; - ecc->write_oob = nand_write_oob_std; - if (!ecc->size) - ecc->size = 256; - ecc->bytes = 3; - ecc->strength = 1; - return 0; - case NAND_ECC_BCH: - if (!mtd_nand_has_bch()) { - WARN(1, "CONFIG_MTD_NAND_ECC_BCH not enabled\n"); - return -EINVAL; - } - ecc->calculate = nand_bch_calculate_ecc; - ecc->correct = nand_bch_correct_data; - ecc->read_page = nand_read_page_swecc; - ecc->read_subpage = nand_read_subpage; - ecc->write_page = nand_write_page_swecc; - ecc->read_page_raw = nand_read_page_raw; - ecc->write_page_raw = nand_write_page_raw; - ecc->read_oob = nand_read_oob_std; - ecc->write_oob = nand_write_oob_std; - - /* - * Board driver should supply ecc.size and ecc.strength - * values to select how many bits are correctable. - * Otherwise, default to 4 bits for large page devices. - */ - if (!ecc->size && (mtd->oobsize >= 64)) { - ecc->size = 512; - ecc->strength = 4; - } - - /* - * if no ecc placement scheme was provided pickup the default - * large page one. - */ - if (!mtd->ooblayout) { - /* handle large page devices only */ - if (mtd->oobsize < 64) { - WARN(1, "OOB layout is required when using software BCH on small pages\n"); - return -EINVAL; - } - - mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops); - - } - - /* - * We can only maximize ECC config when the default layout is - * used, otherwise we don't know how many bytes can really be - * used. - */ - if (mtd->ooblayout == &nand_ooblayout_lp_ops && - ecc->options & NAND_ECC_MAXIMIZE) { - int steps, bytes; - - /* Always prefer 1k blocks over 512bytes ones */ - ecc->size = 1024; - steps = mtd->writesize / ecc->size; - - /* Reserve 2 bytes for the BBM */ - bytes = (mtd->oobsize - 2) / steps; - ecc->strength = bytes * 8 / fls(8 * ecc->size); - } - - /* See nand_bch_init() for details. */ - ecc->bytes = 0; - ecc->priv = nand_bch_init(mtd); - if (!ecc->priv) { - WARN(1, "BCH ECC initialization failed!\n"); - return -EINVAL; - } - return 0; - default: - WARN(1, "Unsupported ECC algorithm!\n"); - return -EINVAL; - } -} - -/** - * nand_check_ecc_caps - check the sanity of preset ECC settings - * @chip: nand chip info structure - * @caps: ECC caps info structure - * @oobavail: OOB size that the ECC engine can use - * - * When ECC step size and strength are already set, check if they are supported - * by the controller and the calculated ECC bytes fit within the chip's OOB. - * On success, the calculated ECC bytes is set. - */ -int nand_check_ecc_caps(struct nand_chip *chip, - const struct nand_ecc_caps *caps, int oobavail) -{ - struct mtd_info *mtd = nand_to_mtd(chip); - const struct nand_ecc_step_info *stepinfo; - int preset_step = chip->ecc.size; - int preset_strength = chip->ecc.strength; - int nsteps, ecc_bytes; - int i, j; - - if (WARN_ON(oobavail < 0)) - return -EINVAL; - - if (!preset_step || !preset_strength) - return -ENODATA; - - nsteps = mtd->writesize / preset_step; - - for (i = 0; i < caps->nstepinfos; i++) { - stepinfo = &caps->stepinfos[i]; - - if (stepinfo->stepsize != preset_step) - continue; - - for (j = 0; j < stepinfo->nstrengths; j++) { - if (stepinfo->strengths[j] != preset_strength) - continue; - - ecc_bytes = caps->calc_ecc_bytes(preset_step, - preset_strength); - if (WARN_ON_ONCE(ecc_bytes < 0)) - return ecc_bytes; - - if (ecc_bytes * nsteps > oobavail) { - pr_err("ECC (step, strength) = (%d, %d) does not fit in OOB", - preset_step, preset_strength); - return -ENOSPC; - } - - chip->ecc.bytes = ecc_bytes; - - return 0; - } - } - - pr_err("ECC (step, strength) = (%d, %d) not supported on this controller", - preset_step, preset_strength); - - return -ENOTSUPP; -} -EXPORT_SYMBOL_GPL(nand_check_ecc_caps); - -/** - * nand_match_ecc_req - meet the chip's requirement with least ECC bytes - * @chip: nand chip info structure - * @caps: ECC engine caps info structure - * @oobavail: OOB size that the ECC engine can use - * - * If a chip's ECC requirement is provided, try to meet it with the least - * number of ECC bytes (i.e. with the largest number of OOB-free bytes). - * On success, the chosen ECC settings are set. - */ -int nand_match_ecc_req(struct nand_chip *chip, - const struct nand_ecc_caps *caps, int oobavail) -{ - struct mtd_info *mtd = nand_to_mtd(chip); - const struct nand_ecc_step_info *stepinfo; - int req_step = chip->ecc_step_ds; - int req_strength = chip->ecc_strength_ds; - int req_corr, step_size, strength, nsteps, ecc_bytes, ecc_bytes_total; - int best_step, best_strength, best_ecc_bytes; - int best_ecc_bytes_total = INT_MAX; - int i, j; - - if (WARN_ON(oobavail < 0)) - return -EINVAL; - - /* No information provided by the NAND chip */ - if (!req_step || !req_strength) - return -ENOTSUPP; - - /* number of correctable bits the chip requires in a page */ - req_corr = mtd->writesize / req_step * req_strength; - - for (i = 0; i < caps->nstepinfos; i++) { - stepinfo = &caps->stepinfos[i]; - step_size = stepinfo->stepsize; - - for (j = 0; j < stepinfo->nstrengths; j++) { - strength = stepinfo->strengths[j]; - - /* - * If both step size and strength are smaller than the - * chip's requirement, it is not easy to compare the - * resulted reliability. - */ - if (step_size < req_step && strength < req_strength) - continue; - - if (mtd->writesize % step_size) - continue; - - nsteps = mtd->writesize / step_size; - - ecc_bytes = caps->calc_ecc_bytes(step_size, strength); - if (WARN_ON_ONCE(ecc_bytes < 0)) - continue; - ecc_bytes_total = ecc_bytes * nsteps; - - if (ecc_bytes_total > oobavail || - strength * nsteps < req_corr) - continue; - - /* - * We assume the best is to meet the chip's requrement - * with the least number of ECC bytes. - */ - if (ecc_bytes_total < best_ecc_bytes_total) { - best_ecc_bytes_total = ecc_bytes_total; - best_step = step_size; - best_strength = strength; - best_ecc_bytes = ecc_bytes; - } - } - } - - if (best_ecc_bytes_total == INT_MAX) - return -ENOTSUPP; - - chip->ecc.size = best_step; - chip->ecc.strength = best_strength; - chip->ecc.bytes = best_ecc_bytes; - - return 0; -} -EXPORT_SYMBOL_GPL(nand_match_ecc_req); - -/** - * nand_maximize_ecc - choose the max ECC strength available - * @chip: nand chip info structure - * @caps: ECC engine caps info structure - * @oobavail: OOB size that the ECC engine can use - * - * Choose the max ECC strength that is supported on the controller, and can fit - * within the chip's OOB. On success, the chosen ECC settings are set. - */ -int nand_maximize_ecc(struct nand_chip *chip, - const struct nand_ecc_caps *caps, int oobavail) -{ - struct mtd_info *mtd = nand_to_mtd(chip); - const struct nand_ecc_step_info *stepinfo; - int step_size, strength, nsteps, ecc_bytes, corr; - int best_corr = 0; - int best_step = 0; - int best_strength, best_ecc_bytes; - int i, j; - - if (WARN_ON(oobavail < 0)) - return -EINVAL; - - for (i = 0; i < caps->nstepinfos; i++) { - stepinfo = &caps->stepinfos[i]; - step_size = stepinfo->stepsize; - - /* If chip->ecc.size is already set, respect it */ - if (chip->ecc.size && step_size != chip->ecc.size) - continue; - - for (j = 0; j < stepinfo->nstrengths; j++) { - strength = stepinfo->strengths[j]; - - if (mtd->writesize % step_size) - continue; - - nsteps = mtd->writesize / step_size; - - ecc_bytes = caps->calc_ecc_bytes(step_size, strength); - if (WARN_ON_ONCE(ecc_bytes < 0)) - continue; - - if (ecc_bytes * nsteps > oobavail) - continue; - - corr = strength * nsteps; - - /* - * If the number of correctable bits is the same, - * bigger step_size has more reliability. - */ - if (corr > best_corr || - (corr == best_corr && step_size > best_step)) { - best_corr = corr; - best_step = step_size; - best_strength = strength; - best_ecc_bytes = ecc_bytes; - } - } - } - - if (!best_corr) - return -ENOTSUPP; - - chip->ecc.size = best_step; - chip->ecc.strength = best_strength; - chip->ecc.bytes = best_ecc_bytes; - - return 0; -} -EXPORT_SYMBOL_GPL(nand_maximize_ecc); - -/* - * Check if the chip configuration meet the datasheet requirements. - - * If our configuration corrects A bits per B bytes and the minimum - * required correction level is X bits per Y bytes, then we must ensure - * both of the following are true: - * - * (1) A / B >= X / Y - * (2) A >= X - * - * Requirement (1) ensures we can correct for the required bitflip density. - * Requirement (2) ensures we can correct even when all bitflips are clumped - * in the same sector. - */ -static bool nand_ecc_strength_good(struct mtd_info *mtd) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct nand_ecc_ctrl *ecc = &chip->ecc; - int corr, ds_corr; - - if (ecc->size == 0 || chip->ecc_step_ds == 0) - /* Not enough information */ - return true; - - /* - * We get the number of corrected bits per page to compare - * the correction density. - */ - corr = (mtd->writesize * ecc->strength) / ecc->size; - ds_corr = (mtd->writesize * chip->ecc_strength_ds) / chip->ecc_step_ds; - - return corr >= ds_corr && ecc->strength >= chip->ecc_strength_ds; -} - -/** - * nand_scan_tail - [NAND Interface] Scan for the NAND device - * @mtd: MTD device structure - * - * This is the second phase of the normal nand_scan() function. It fills out - * all the uninitialized function pointers with the defaults and scans for a - * bad block table if appropriate. - */ -int nand_scan_tail(struct mtd_info *mtd) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct nand_ecc_ctrl *ecc = &chip->ecc; - int ret, i; - - /* New bad blocks should be marked in OOB, flash-based BBT, or both */ - if (WARN_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) && - !(chip->bbt_options & NAND_BBT_USE_FLASH))) { - return -EINVAL; - } - - chip->data_buf = kmalloc(mtd->writesize + mtd->oobsize, GFP_KERNEL); - if (!chip->data_buf) - return -ENOMEM; - - /* - * FIXME: some NAND manufacturer drivers expect the first die to be - * selected when manufacturer->init() is called. They should be fixed - * to explictly select the relevant die when interacting with the NAND - * chip. - */ - chip->select_chip(mtd, 0); - ret = nand_manufacturer_init(chip); - chip->select_chip(mtd, -1); - if (ret) - goto err_free_buf; - - /* Set the internal oob buffer location, just after the page data */ - chip->oob_poi = chip->data_buf + mtd->writesize; - - /* - * If no default placement scheme is given, select an appropriate one. - */ - if (!mtd->ooblayout && - !(ecc->mode == NAND_ECC_SOFT && ecc->algo == NAND_ECC_BCH)) { - switch (mtd->oobsize) { - case 8: - case 16: - mtd_set_ooblayout(mtd, &nand_ooblayout_sp_ops); - break; - case 64: - case 128: - mtd_set_ooblayout(mtd, &nand_ooblayout_lp_hamming_ops); - break; - default: - /* - * Expose the whole OOB area to users if ECC_NONE - * is passed. We could do that for all kind of - * ->oobsize, but we must keep the old large/small - * page with ECC layout when ->oobsize <= 128 for - * compatibility reasons. - */ - if (ecc->mode == NAND_ECC_NONE) { - mtd_set_ooblayout(mtd, - &nand_ooblayout_lp_ops); - break; - } - - WARN(1, "No oob scheme defined for oobsize %d\n", - mtd->oobsize); - ret = -EINVAL; - goto err_nand_manuf_cleanup; - } - } - - /* - * Check ECC mode, default to software if 3byte/512byte hardware ECC is - * selected and we have 256 byte pagesize fallback to software ECC - */ - - switch (ecc->mode) { - case NAND_ECC_HW_OOB_FIRST: - /* Similar to NAND_ECC_HW, but a separate read_page handle */ - if (!ecc->calculate || !ecc->correct || !ecc->hwctl) { - WARN(1, "No ECC functions supplied; hardware ECC not possible\n"); - ret = -EINVAL; - goto err_nand_manuf_cleanup; - } - if (!ecc->read_page) - ecc->read_page = nand_read_page_hwecc_oob_first; - - case NAND_ECC_HW: - /* Use standard hwecc read page function? */ - if (!ecc->read_page) - ecc->read_page = nand_read_page_hwecc; - if (!ecc->write_page) - ecc->write_page = nand_write_page_hwecc; - if (!ecc->read_page_raw) - ecc->read_page_raw = nand_read_page_raw; - if (!ecc->write_page_raw) - ecc->write_page_raw = nand_write_page_raw; - if (!ecc->read_oob) - ecc->read_oob = nand_read_oob_std; - if (!ecc->write_oob) - ecc->write_oob = nand_write_oob_std; - if (!ecc->read_subpage) - ecc->read_subpage = nand_read_subpage; - if (!ecc->write_subpage && ecc->hwctl && ecc->calculate) - ecc->write_subpage = nand_write_subpage_hwecc; - - case NAND_ECC_HW_SYNDROME: - if ((!ecc->calculate || !ecc->correct || !ecc->hwctl) && - (!ecc->read_page || - ecc->read_page == nand_read_page_hwecc || - !ecc->write_page || - ecc->write_page == nand_write_page_hwecc)) { - WARN(1, "No ECC functions supplied; hardware ECC not possible\n"); - ret = -EINVAL; - goto err_nand_manuf_cleanup; - } - /* Use standard syndrome read/write page function? */ - if (!ecc->read_page) - ecc->read_page = nand_read_page_syndrome; - if (!ecc->write_page) - ecc->write_page = nand_write_page_syndrome; - if (!ecc->read_page_raw) - ecc->read_page_raw = nand_read_page_raw_syndrome; - if (!ecc->write_page_raw) - ecc->write_page_raw = nand_write_page_raw_syndrome; - if (!ecc->read_oob) - ecc->read_oob = nand_read_oob_syndrome; - if (!ecc->write_oob) - ecc->write_oob = nand_write_oob_syndrome; - - if (mtd->writesize >= ecc->size) { - if (!ecc->strength) { - WARN(1, "Driver must set ecc.strength when using hardware ECC\n"); - ret = -EINVAL; - goto err_nand_manuf_cleanup; - } - break; - } - pr_warn("%d byte HW ECC not possible on %d byte page size, fallback to SW ECC\n", - ecc->size, mtd->writesize); - ecc->mode = NAND_ECC_SOFT; - ecc->algo = NAND_ECC_HAMMING; - - case NAND_ECC_SOFT: - ret = nand_set_ecc_soft_ops(mtd); - if (ret) { - ret = -EINVAL; - goto err_nand_manuf_cleanup; - } - break; - - case NAND_ECC_ON_DIE: - if (!ecc->read_page || !ecc->write_page) { - WARN(1, "No ECC functions supplied; on-die ECC not possible\n"); - ret = -EINVAL; - goto err_nand_manuf_cleanup; - } - if (!ecc->read_oob) - ecc->read_oob = nand_read_oob_std; - if (!ecc->write_oob) - ecc->write_oob = nand_write_oob_std; - break; - - case NAND_ECC_NONE: - pr_warn("NAND_ECC_NONE selected by board driver. This is not recommended!\n"); - ecc->read_page = nand_read_page_raw; - ecc->write_page = nand_write_page_raw; - ecc->read_oob = nand_read_oob_std; - ecc->read_page_raw = nand_read_page_raw; - ecc->write_page_raw = nand_write_page_raw; - ecc->write_oob = nand_write_oob_std; - ecc->size = mtd->writesize; - ecc->bytes = 0; - ecc->strength = 0; - break; - - default: - WARN(1, "Invalid NAND_ECC_MODE %d\n", ecc->mode); - ret = -EINVAL; - goto err_nand_manuf_cleanup; - } - - if (ecc->correct || ecc->calculate) { - ecc->calc_buf = kmalloc(mtd->oobsize, GFP_KERNEL); - ecc->code_buf = kmalloc(mtd->oobsize, GFP_KERNEL); - if (!ecc->calc_buf || !ecc->code_buf) { - ret = -ENOMEM; - goto err_nand_manuf_cleanup; - } - } - - /* For many systems, the standard OOB write also works for raw */ - if (!ecc->read_oob_raw) - ecc->read_oob_raw = ecc->read_oob; - if (!ecc->write_oob_raw) - ecc->write_oob_raw = ecc->write_oob; - - /* propagate ecc info to mtd_info */ - mtd->ecc_strength = ecc->strength; - mtd->ecc_step_size = ecc->size; - - /* - * Set the number of read / write steps for one page depending on ECC - * mode. - */ - ecc->steps = mtd->writesize / ecc->size; - if (ecc->steps * ecc->size != mtd->writesize) { - WARN(1, "Invalid ECC parameters\n"); - ret = -EINVAL; - goto err_nand_manuf_cleanup; - } - ecc->total = ecc->steps * ecc->bytes; - if (ecc->total > mtd->oobsize) { - WARN(1, "Total number of ECC bytes exceeded oobsize\n"); - ret = -EINVAL; - goto err_nand_manuf_cleanup; - } - - /* - * The number of bytes available for a client to place data into - * the out of band area. - */ - ret = mtd_ooblayout_count_freebytes(mtd); - if (ret < 0) - ret = 0; - - mtd->oobavail = ret; - - /* ECC sanity check: warn if it's too weak */ - if (!nand_ecc_strength_good(mtd)) - pr_warn("WARNING: %s: the ECC used on your system is too weak compared to the one required by the NAND chip\n", - mtd->name); - - /* Allow subpage writes up to ecc.steps. Not possible for MLC flash */ - if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && nand_is_slc(chip)) { - switch (ecc->steps) { - case 2: - mtd->subpage_sft = 1; - break; - case 4: - case 8: - case 16: - mtd->subpage_sft = 2; - break; - } - } - chip->subpagesize = mtd->writesize >> mtd->subpage_sft; - - /* Initialize state */ - chip->state = FL_READY; - - /* Invalidate the pagebuffer reference */ - chip->pagebuf = -1; - - /* Large page NAND with SOFT_ECC should support subpage reads */ - switch (ecc->mode) { - case NAND_ECC_SOFT: - if (chip->page_shift > 9) - chip->options |= NAND_SUBPAGE_READ; - break; - - default: - break; - } - - /* Fill in remaining MTD driver data */ - mtd->type = nand_is_slc(chip) ? MTD_NANDFLASH : MTD_MLCNANDFLASH; - mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM : - MTD_CAP_NANDFLASH; - mtd->_erase = nand_erase; - mtd->_point = NULL; - mtd->_unpoint = NULL; - mtd->_panic_write = panic_nand_write; - mtd->_read_oob = nand_read_oob; - mtd->_write_oob = nand_write_oob; - mtd->_sync = nand_sync; - mtd->_lock = NULL; - mtd->_unlock = NULL; - mtd->_suspend = nand_suspend; - mtd->_resume = nand_resume; - mtd->_reboot = nand_shutdown; - mtd->_block_isreserved = nand_block_isreserved; - mtd->_block_isbad = nand_block_isbad; - mtd->_block_markbad = nand_block_markbad; - mtd->_max_bad_blocks = nand_max_bad_blocks; - mtd->writebufsize = mtd->writesize; - - /* - * Initialize bitflip_threshold to its default prior scan_bbt() call. - * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be - * properly set. - */ - if (!mtd->bitflip_threshold) - mtd->bitflip_threshold = DIV_ROUND_UP(mtd->ecc_strength * 3, 4); - - /* Initialize the ->data_interface field. */ - ret = nand_init_data_interface(chip); - if (ret) - goto err_nand_manuf_cleanup; - - /* Enter fastest possible mode on all dies. */ - for (i = 0; i < chip->numchips; i++) { - chip->select_chip(mtd, i); - ret = nand_setup_data_interface(chip, i); - chip->select_chip(mtd, -1); - - if (ret) - goto err_nand_manuf_cleanup; - } - - /* Check, if we should skip the bad block table scan */ - if (chip->options & NAND_SKIP_BBTSCAN) - return 0; - - /* Build bad block table */ - ret = chip->scan_bbt(mtd); - if (ret) - goto err_nand_manuf_cleanup; - - return 0; - - -err_nand_manuf_cleanup: - nand_manufacturer_cleanup(chip); - -err_free_buf: - kfree(chip->data_buf); - kfree(ecc->code_buf); - kfree(ecc->calc_buf); - - return ret; -} -EXPORT_SYMBOL(nand_scan_tail); - -/* - * is_module_text_address() isn't exported, and it's mostly a pointless - * test if this is a module _anyway_ -- they'd have to try _really_ hard - * to call us from in-kernel code if the core NAND support is modular. - */ -#ifdef MODULE -#define caller_is_module() (1) -#else -#define caller_is_module() \ - is_module_text_address((unsigned long)__builtin_return_address(0)) -#endif - -/** - * nand_scan - [NAND Interface] Scan for the NAND device - * @mtd: MTD device structure - * @maxchips: number of chips to scan for - * - * This fills out all the uninitialized function pointers with the defaults. - * The flash ID is read and the mtd/chip structures are filled with the - * appropriate values. - */ -int nand_scan(struct mtd_info *mtd, int maxchips) -{ - int ret; - - ret = nand_scan_ident(mtd, maxchips, NULL); - if (!ret) - ret = nand_scan_tail(mtd); - return ret; -} -EXPORT_SYMBOL(nand_scan); - -/** - * nand_cleanup - [NAND Interface] Free resources held by the NAND device - * @chip: NAND chip object - */ -void nand_cleanup(struct nand_chip *chip) -{ - if (chip->ecc.mode == NAND_ECC_SOFT && - chip->ecc.algo == NAND_ECC_BCH) - nand_bch_free((struct nand_bch_control *)chip->ecc.priv); - - /* Free bad block table memory */ - kfree(chip->bbt); - kfree(chip->data_buf); - kfree(chip->ecc.code_buf); - kfree(chip->ecc.calc_buf); - - /* Free bad block descriptor memory */ - if (chip->badblock_pattern && chip->badblock_pattern->options - & NAND_BBT_DYNAMICSTRUCT) - kfree(chip->badblock_pattern); - - /* Free manufacturer priv data. */ - nand_manufacturer_cleanup(chip); -} -EXPORT_SYMBOL_GPL(nand_cleanup); - -/** - * nand_release - [NAND Interface] Unregister the MTD device and free resources - * held by the NAND device - * @mtd: MTD device structure - */ -void nand_release(struct mtd_info *mtd) -{ - mtd_device_unregister(mtd); - nand_cleanup(mtd_to_nand(mtd)); -} -EXPORT_SYMBOL_GPL(nand_release); - -MODULE_LICENSE("GPL"); -MODULE_AUTHOR("Steven J. Hill "); -MODULE_AUTHOR("Thomas Gleixner "); -MODULE_DESCRIPTION("Generic NAND flash driver code"); diff --git a/drivers/mtd/nand/nand_bbt.c b/drivers/mtd/nand/nand_bbt.c deleted file mode 100644 index 36092850be2c..000000000000 --- a/drivers/mtd/nand/nand_bbt.c +++ /dev/null @@ -1,1452 +0,0 @@ -/* - * Overview: - * Bad block table support for the NAND driver - * - * Copyright © 2004 Thomas Gleixner (tglx@linutronix.de) - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License version 2 as - * published by the Free Software Foundation. - * - * Description: - * - * When nand_scan_bbt is called, then it tries to find the bad block table - * depending on the options in the BBT descriptor(s). If no flash based BBT - * (NAND_BBT_USE_FLASH) is specified then the device is scanned for factory - * marked good / bad blocks. This information is used to create a memory BBT. - * Once a new bad block is discovered then the "factory" information is updated - * on the device. - * If a flash based BBT is specified then the function first tries to find the - * BBT on flash. If a BBT is found then the contents are read and the memory - * based BBT is created. If a mirrored BBT is selected then the mirror is - * searched too and the versions are compared. If the mirror has a greater - * version number, then the mirror BBT is used to build the memory based BBT. - * If the tables are not versioned, then we "or" the bad block information. - * If one of the BBTs is out of date or does not exist it is (re)created. - * If no BBT exists at all then the device is scanned for factory marked - * good / bad blocks and the bad block tables are created. - * - * For manufacturer created BBTs like the one found on M-SYS DOC devices - * the BBT is searched and read but never created - * - * The auto generated bad block table is located in the last good blocks - * of the device. The table is mirrored, so it can be updated eventually. - * The table is marked in the OOB area with an ident pattern and a version - * number which indicates which of both tables is more up to date. If the NAND - * controller needs the complete OOB area for the ECC information then the - * option NAND_BBT_NO_OOB should be used (along with NAND_BBT_USE_FLASH, of - * course): it moves the ident pattern and the version byte into the data area - * and the OOB area will remain untouched. - * - * The table uses 2 bits per block - * 11b: block is good - * 00b: block is factory marked bad - * 01b, 10b: block is marked bad due to wear - * - * The memory bad block table uses the following scheme: - * 00b: block is good - * 01b: block is marked bad due to wear - * 10b: block is reserved (to protect the bbt area) - * 11b: block is factory marked bad - * - * Multichip devices like DOC store the bad block info per floor. - * - * Following assumptions are made: - * - bbts start at a page boundary, if autolocated on a block boundary - * - the space necessary for a bbt in FLASH does not exceed a block boundary - * - */ - -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include - -#define BBT_BLOCK_GOOD 0x00 -#define BBT_BLOCK_WORN 0x01 -#define BBT_BLOCK_RESERVED 0x02 -#define BBT_BLOCK_FACTORY_BAD 0x03 - -#define BBT_ENTRY_MASK 0x03 -#define BBT_ENTRY_SHIFT 2 - -static int nand_update_bbt(struct mtd_info *mtd, loff_t offs); - -static inline uint8_t bbt_get_entry(struct nand_chip *chip, int block) -{ - uint8_t entry = chip->bbt[block >> BBT_ENTRY_SHIFT]; - entry >>= (block & BBT_ENTRY_MASK) * 2; - return entry & BBT_ENTRY_MASK; -} - -static inline void bbt_mark_entry(struct nand_chip *chip, int block, - uint8_t mark) -{ - uint8_t msk = (mark & BBT_ENTRY_MASK) << ((block & BBT_ENTRY_MASK) * 2); - chip->bbt[block >> BBT_ENTRY_SHIFT] |= msk; -} - -static int check_pattern_no_oob(uint8_t *buf, struct nand_bbt_descr *td) -{ - if (memcmp(buf, td->pattern, td->len)) - return -1; - return 0; -} - -/** - * check_pattern - [GENERIC] check if a pattern is in the buffer - * @buf: the buffer to search - * @len: the length of buffer to search - * @paglen: the pagelength - * @td: search pattern descriptor - * - * Check for a pattern at the given place. Used to search bad block tables and - * good / bad block identifiers. - */ -static int check_pattern(uint8_t *buf, int len, int paglen, struct nand_bbt_descr *td) -{ - if (td->options & NAND_BBT_NO_OOB) - return check_pattern_no_oob(buf, td); - - /* Compare the pattern */ - if (memcmp(buf + paglen + td->offs, td->pattern, td->len)) - return -1; - - return 0; -} - -/** - * check_short_pattern - [GENERIC] check if a pattern is in the buffer - * @buf: the buffer to search - * @td: search pattern descriptor - * - * Check for a pattern at the given place. Used to search bad block tables and - * good / bad block identifiers. Same as check_pattern, but no optional empty - * check. - */ -static int check_short_pattern(uint8_t *buf, struct nand_bbt_descr *td) -{ - /* Compare the pattern */ - if (memcmp(buf + td->offs, td->pattern, td->len)) - return -1; - return 0; -} - -/** - * add_marker_len - compute the length of the marker in data area - * @td: BBT descriptor used for computation - * - * The length will be 0 if the marker is located in OOB area. - */ -static u32 add_marker_len(struct nand_bbt_descr *td) -{ - u32 len; - - if (!(td->options & NAND_BBT_NO_OOB)) - return 0; - - len = td->len; - if (td->options & NAND_BBT_VERSION) - len++; - return len; -} - -/** - * read_bbt - [GENERIC] Read the bad block table starting from page - * @mtd: MTD device structure - * @buf: temporary buffer - * @page: the starting page - * @num: the number of bbt descriptors to read - * @td: the bbt describtion table - * @offs: block number offset in the table - * - * Read the bad block table starting from page. - */ -static int read_bbt(struct mtd_info *mtd, uint8_t *buf, int page, int num, - struct nand_bbt_descr *td, int offs) -{ - int res, ret = 0, i, j, act = 0; - struct nand_chip *this = mtd_to_nand(mtd); - size_t retlen, len, totlen; - loff_t from; - int bits = td->options & NAND_BBT_NRBITS_MSK; - uint8_t msk = (uint8_t)((1 << bits) - 1); - u32 marker_len; - int reserved_block_code = td->reserved_block_code; - - totlen = (num * bits) >> 3; - marker_len = add_marker_len(td); - from = ((loff_t)page) << this->page_shift; - - while (totlen) { - len = min(totlen, (size_t)(1 << this->bbt_erase_shift)); - if (marker_len) { - /* - * In case the BBT marker is not in the OOB area it - * will be just in the first page. - */ - len -= marker_len; - from += marker_len; - marker_len = 0; - } - res = mtd_read(mtd, from, len, &retlen, buf); - if (res < 0) { - if (mtd_is_eccerr(res)) { - pr_info("nand_bbt: ECC error in BBT at 0x%012llx\n", - from & ~mtd->writesize); - return res; - } else if (mtd_is_bitflip(res)) { - pr_info("nand_bbt: corrected error in BBT at 0x%012llx\n", - from & ~mtd->writesize); - ret = res; - } else { - pr_info("nand_bbt: error reading BBT\n"); - return res; - } - } - - /* Analyse data */ - for (i = 0; i < len; i++) { - uint8_t dat = buf[i]; - for (j = 0; j < 8; j += bits, act++) { - uint8_t tmp = (dat >> j) & msk; - if (tmp == msk) - continue; - if (reserved_block_code && (tmp == reserved_block_code)) { - pr_info("nand_read_bbt: reserved block at 0x%012llx\n", - (loff_t)(offs + act) << - this->bbt_erase_shift); - bbt_mark_entry(this, offs + act, - BBT_BLOCK_RESERVED); - mtd->ecc_stats.bbtblocks++; - continue; - } - /* - * Leave it for now, if it's matured we can - * move this message to pr_debug. - */ - pr_info("nand_read_bbt: bad block at 0x%012llx\n", - (loff_t)(offs + act) << - this->bbt_erase_shift); - /* Factory marked bad or worn out? */ - if (tmp == 0) - bbt_mark_entry(this, offs + act, - BBT_BLOCK_FACTORY_BAD); - else - bbt_mark_entry(this, offs + act, - BBT_BLOCK_WORN); - mtd->ecc_stats.badblocks++; - } - } - totlen -= len; - from += len; - } - return ret; -} - -/** - * read_abs_bbt - [GENERIC] Read the bad block table starting at a given page - * @mtd: MTD device structure - * @buf: temporary buffer - * @td: descriptor for the bad block table - * @chip: read the table for a specific chip, -1 read all chips; applies only if - * NAND_BBT_PERCHIP option is set - * - * Read the bad block table for all chips starting at a given page. We assume - * that the bbt bits are in consecutive order. - */ -static int read_abs_bbt(struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *td, int chip) -{ - struct nand_chip *this = mtd_to_nand(mtd); - int res = 0, i; - - if (td->options & NAND_BBT_PERCHIP) { - int offs = 0; - for (i = 0; i < this->numchips; i++) { - if (chip == -1 || chip == i) - res = read_bbt(mtd, buf, td->pages[i], - this->chipsize >> this->bbt_erase_shift, - td, offs); - if (res) - return res; - offs += this->chipsize >> this->bbt_erase_shift; - } - } else { - res = read_bbt(mtd, buf, td->pages[0], - mtd->size >> this->bbt_erase_shift, td, 0); - if (res) - return res; - } - return 0; -} - -/* BBT marker is in the first page, no OOB */ -static int scan_read_data(struct mtd_info *mtd, uint8_t *buf, loff_t offs, - struct nand_bbt_descr *td) -{ - size_t retlen; - size_t len; - - len = td->len; - if (td->options & NAND_BBT_VERSION) - len++; - - return mtd_read(mtd, offs, len, &retlen, buf); -} - -/** - * scan_read_oob - [GENERIC] Scan data+OOB region to buffer - * @mtd: MTD device structure - * @buf: temporary buffer - * @offs: offset at which to scan - * @len: length of data region to read - * - * Scan read data from data+OOB. May traverse multiple pages, interleaving - * page,OOB,page,OOB,... in buf. Completes transfer and returns the "strongest" - * ECC condition (error or bitflip). May quit on the first (non-ECC) error. - */ -static int scan_read_oob(struct mtd_info *mtd, uint8_t *buf, loff_t offs, - size_t len) -{ - struct mtd_oob_ops ops; - int res, ret = 0; - - ops.mode = MTD_OPS_PLACE_OOB; - ops.ooboffs = 0; - ops.ooblen = mtd->oobsize; - - while (len > 0) { - ops.datbuf = buf; - ops.len = min(len, (size_t)mtd->writesize); - ops.oobbuf = buf + ops.len; - - res = mtd_read_oob(mtd, offs, &ops); - if (res) { - if (!mtd_is_bitflip_or_eccerr(res)) - return res; - else if (mtd_is_eccerr(res) || !ret) - ret = res; - } - - buf += mtd->oobsize + mtd->writesize; - len -= mtd->writesize; - offs += mtd->writesize; - } - return ret; -} - -static int scan_read(struct mtd_info *mtd, uint8_t *buf, loff_t offs, - size_t len, struct nand_bbt_descr *td) -{ - if (td->options & NAND_BBT_NO_OOB) - return scan_read_data(mtd, buf, offs, td); - else - return scan_read_oob(mtd, buf, offs, len); -} - -/* Scan write data with oob to flash */ -static int scan_write_bbt(struct mtd_info *mtd, loff_t offs, size_t len, - uint8_t *buf, uint8_t *oob) -{ - struct mtd_oob_ops ops; - - ops.mode = MTD_OPS_PLACE_OOB; - ops.ooboffs = 0; - ops.ooblen = mtd->oobsize; - ops.datbuf = buf; - ops.oobbuf = oob; - ops.len = len; - - return mtd_write_oob(mtd, offs, &ops); -} - -static u32 bbt_get_ver_offs(struct mtd_info *mtd, struct nand_bbt_descr *td) -{ - u32 ver_offs = td->veroffs; - - if (!(td->options & NAND_BBT_NO_OOB)) - ver_offs += mtd->writesize; - return ver_offs; -} - -/** - * read_abs_bbts - [GENERIC] Read the bad block table(s) for all chips starting at a given page - * @mtd: MTD device structure - * @buf: temporary buffer - * @td: descriptor for the bad block table - * @md: descriptor for the bad block table mirror - * - * Read the bad block table(s) for all chips starting at a given page. We - * assume that the bbt bits are in consecutive order. - */ -static void read_abs_bbts(struct mtd_info *mtd, uint8_t *buf, - struct nand_bbt_descr *td, struct nand_bbt_descr *md) -{ - struct nand_chip *this = mtd_to_nand(mtd); - - /* Read the primary version, if available */ - if (td->options & NAND_BBT_VERSION) { - scan_read(mtd, buf, (loff_t)td->pages[0] << this->page_shift, - mtd->writesize, td); - td->version[0] = buf[bbt_get_ver_offs(mtd, td)]; - pr_info("Bad block table at page %d, version 0x%02X\n", - td->pages[0], td->version[0]); - } - - /* Read the mirror version, if available */ - if (md && (md->options & NAND_BBT_VERSION)) { - scan_read(mtd, buf, (loff_t)md->pages[0] << this->page_shift, - mtd->writesize, md); - md->version[0] = buf[bbt_get_ver_offs(mtd, md)]; - pr_info("Bad block table at page %d, version 0x%02X\n", - md->pages[0], md->version[0]); - } -} - -/* Scan a given block partially */ -static int scan_block_fast(struct mtd_info *mtd, struct nand_bbt_descr *bd, - loff_t offs, uint8_t *buf, int numpages) -{ - struct mtd_oob_ops ops; - int j, ret; - - ops.ooblen = mtd->oobsize; - ops.oobbuf = buf; - ops.ooboffs = 0; - ops.datbuf = NULL; - ops.mode = MTD_OPS_PLACE_OOB; - - for (j = 0; j < numpages; j++) { - /* - * Read the full oob until read_oob is fixed to handle single - * byte reads for 16 bit buswidth. - */ - ret = mtd_read_oob(mtd, offs, &ops); - /* Ignore ECC errors when checking for BBM */ - if (ret && !mtd_is_bitflip_or_eccerr(ret)) - return ret; - - if (check_short_pattern(buf, bd)) - return 1; - - offs += mtd->writesize; - } - return 0; -} - -/** - * create_bbt - [GENERIC] Create a bad block table by scanning the device - * @mtd: MTD device structure - * @buf: temporary buffer - * @bd: descriptor for the good/bad block search pattern - * @chip: create the table for a specific chip, -1 read all chips; applies only - * if NAND_BBT_PERCHIP option is set - * - * Create a bad block table by scanning the device for the given good/bad block - * identify pattern. - */ -static int create_bbt(struct mtd_info *mtd, uint8_t *buf, - struct nand_bbt_descr *bd, int chip) -{ - struct nand_chip *this = mtd_to_nand(mtd); - int i, numblocks, numpages; - int startblock; - loff_t from; - - pr_info("Scanning device for bad blocks\n"); - - if (bd->options & NAND_BBT_SCAN2NDPAGE) - numpages = 2; - else - numpages = 1; - - if (chip == -1) { - numblocks = mtd->size >> this->bbt_erase_shift; - startblock = 0; - from = 0; - } else { - if (chip >= this->numchips) { - pr_warn("create_bbt(): chipnr (%d) > available chips (%d)\n", - chip + 1, this->numchips); - return -EINVAL; - } - numblocks = this->chipsize >> this->bbt_erase_shift; - startblock = chip * numblocks; - numblocks += startblock; - from = (loff_t)startblock << this->bbt_erase_shift; - } - - if (this->bbt_options & NAND_BBT_SCANLASTPAGE) - from += mtd->erasesize - (mtd->writesize * numpages); - - for (i = startblock; i < numblocks; i++) { - int ret; - - BUG_ON(bd->options & NAND_BBT_NO_OOB); - - ret = scan_block_fast(mtd, bd, from, buf, numpages); - if (ret < 0) - return ret; - - if (ret) { - bbt_mark_entry(this, i, BBT_BLOCK_FACTORY_BAD); - pr_warn("Bad eraseblock %d at 0x%012llx\n", - i, (unsigned long long)from); - mtd->ecc_stats.badblocks++; - } - - from += (1 << this->bbt_erase_shift); - } - return 0; -} - -/** - * search_bbt - [GENERIC] scan the device for a specific bad block table - * @mtd: MTD device structure - * @buf: temporary buffer - * @td: descriptor for the bad block table - * - * Read the bad block table by searching for a given ident pattern. Search is - * preformed either from the beginning up or from the end of the device - * downwards. The search starts always at the start of a block. If the option - * NAND_BBT_PERCHIP is given, each chip is searched for a bbt, which contains - * the bad block information of this chip. This is necessary to provide support - * for certain DOC devices. - * - * The bbt ident pattern resides in the oob area of the first page in a block. - */ -static int search_bbt(struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *td) -{ - struct nand_chip *this = mtd_to_nand(mtd); - int i, chips; - int startblock, block, dir; - int scanlen = mtd->writesize + mtd->oobsize; - int bbtblocks; - int blocktopage = this->bbt_erase_shift - this->page_shift; - - /* Search direction top -> down? */ - if (td->options & NAND_BBT_LASTBLOCK) { - startblock = (mtd->size >> this->bbt_erase_shift) - 1; - dir = -1; - } else { - startblock = 0; - dir = 1; - } - - /* Do we have a bbt per chip? */ - if (td->options & NAND_BBT_PERCHIP) { - chips = this->numchips; - bbtblocks = this->chipsize >> this->bbt_erase_shift; - startblock &= bbtblocks - 1; - } else { - chips = 1; - bbtblocks = mtd->size >> this->bbt_erase_shift; - } - - for (i = 0; i < chips; i++) { - /* Reset version information */ - td->version[i] = 0; - td->pages[i] = -1; - /* Scan the maximum number of blocks */ - for (block = 0; block < td->maxblocks; block++) { - - int actblock = startblock + dir * block; - loff_t offs = (loff_t)actblock << this->bbt_erase_shift; - - /* Read first page */ - scan_read(mtd, buf, offs, mtd->writesize, td); - if (!check_pattern(buf, scanlen, mtd->writesize, td)) { - td->pages[i] = actblock << blocktopage; - if (td->options & NAND_BBT_VERSION) { - offs = bbt_get_ver_offs(mtd, td); - td->version[i] = buf[offs]; - } - break; - } - } - startblock += this->chipsize >> this->bbt_erase_shift; - } - /* Check, if we found a bbt for each requested chip */ - for (i = 0; i < chips; i++) { - if (td->pages[i] == -1) - pr_warn("Bad block table not found for chip %d\n", i); - else - pr_info("Bad block table found at page %d, version 0x%02X\n", - td->pages[i], td->version[i]); - } - return 0; -} - -/** - * search_read_bbts - [GENERIC] scan the device for bad block table(s) - * @mtd: MTD device structure - * @buf: temporary buffer - * @td: descriptor for the bad block table - * @md: descriptor for the bad block table mirror - * - * Search and read the bad block table(s). - */ -static void search_read_bbts(struct mtd_info *mtd, uint8_t *buf, - struct nand_bbt_descr *td, - struct nand_bbt_descr *md) -{ - /* Search the primary table */ - search_bbt(mtd, buf, td); - - /* Search the mirror table */ - if (md) - search_bbt(mtd, buf, md); -} - -/** - * get_bbt_block - Get the first valid eraseblock suitable to store a BBT - * @this: the NAND device - * @td: the BBT description - * @md: the mirror BBT descriptor - * @chip: the CHIP selector - * - * This functions returns a positive block number pointing a valid eraseblock - * suitable to store a BBT (i.e. in the range reserved for BBT), or -ENOSPC if - * all blocks are already used of marked bad. If td->pages[chip] was already - * pointing to a valid block we re-use it, otherwise we search for the next - * valid one. - */ -static int get_bbt_block(struct nand_chip *this, struct nand_bbt_descr *td, - struct nand_bbt_descr *md, int chip) -{ - int startblock, dir, page, numblocks, i; - - /* - * There was already a version of the table, reuse the page. This - * applies for absolute placement too, as we have the page number in - * td->pages. - */ - if (td->pages[chip] != -1) - return td->pages[chip] >> - (this->bbt_erase_shift - this->page_shift); - - numblocks = (int)(this->chipsize >> this->bbt_erase_shift); - if (!(td->options & NAND_BBT_PERCHIP)) - numblocks *= this->numchips; - - /* - * Automatic placement of the bad block table. Search direction - * top -> down? - */ - if (td->options & NAND_BBT_LASTBLOCK) { - startblock = numblocks * (chip + 1) - 1; - dir = -1; - } else { - startblock = chip * numblocks; - dir = 1; - } - - for (i = 0; i < td->maxblocks; i++) { - int block = startblock + dir * i; - - /* Check, if the block is bad */ - switch (bbt_get_entry(this, block)) { - case BBT_BLOCK_WORN: - case BBT_BLOCK_FACTORY_BAD: - continue; - } - - page = block << (this->bbt_erase_shift - this->page_shift); - - /* Check, if the block is used by the mirror table */ - if (!md || md->pages[chip] != page) - return block; - } - - return -ENOSPC; -} - -/** - * mark_bbt_block_bad - Mark one of the block reserved for BBT bad - * @this: the NAND device - * @td: the BBT description - * @chip: the CHIP selector - * @block: the BBT block to mark - * - * Blocks reserved for BBT can become bad. This functions is an helper to mark - * such blocks as bad. It takes care of updating the in-memory BBT, marking the - * block as bad using a bad block marker and invalidating the associated - * td->pages[] entry. - */ -static void mark_bbt_block_bad(struct nand_chip *this, - struct nand_bbt_descr *td, - int chip, int block) -{ - struct mtd_info *mtd = nand_to_mtd(this); - loff_t to; - int res; - - bbt_mark_entry(this, block, BBT_BLOCK_WORN); - - to = (loff_t)block << this->bbt_erase_shift; - res = this->block_markbad(mtd, to); - if (res) - pr_warn("nand_bbt: error %d while marking block %d bad\n", - res, block); - - td->pages[chip] = -1; -} - -/** - * write_bbt - [GENERIC] (Re)write the bad block table - * @mtd: MTD device structure - * @buf: temporary buffer - * @td: descriptor for the bad block table - * @md: descriptor for the bad block table mirror - * @chipsel: selector for a specific chip, -1 for all - * - * (Re)write the bad block table. - */ -static int write_bbt(struct mtd_info *mtd, uint8_t *buf, - struct nand_bbt_descr *td, struct nand_bbt_descr *md, - int chipsel) -{ - struct nand_chip *this = mtd_to_nand(mtd); - struct erase_info einfo; - int i, res, chip = 0; - int bits, page, offs, numblocks, sft, sftmsk; - int nrchips, pageoffs, ooboffs; - uint8_t msk[4]; - uint8_t rcode = td->reserved_block_code; - size_t retlen, len = 0; - loff_t to; - struct mtd_oob_ops ops; - - ops.ooblen = mtd->oobsize; - ops.ooboffs = 0; - ops.datbuf = NULL; - ops.mode = MTD_OPS_PLACE_OOB; - - if (!rcode) - rcode = 0xff; - /* Write bad block table per chip rather than per device? */ - if (td->options & NAND_BBT_PERCHIP) { - numblocks = (int)(this->chipsize >> this->bbt_erase_shift); - /* Full device write or specific chip? */ - if (chipsel == -1) { - nrchips = this->numchips; - } else { - nrchips = chipsel + 1; - chip = chipsel; - } - } else { - numblocks = (int)(mtd->size >> this->bbt_erase_shift); - nrchips = 1; - } - - /* Loop through the chips */ - while (chip < nrchips) { - int block; - - block = get_bbt_block(this, td, md, chip); - if (block < 0) { - pr_err("No space left to write bad block table\n"); - res = block; - goto outerr; - } - - /* - * get_bbt_block() returns a block number, shift the value to - * get a page number. - */ - page = block << (this->bbt_erase_shift - this->page_shift); - - /* Set up shift count and masks for the flash table */ - bits = td->options & NAND_BBT_NRBITS_MSK; - msk[2] = ~rcode; - switch (bits) { - case 1: sft = 3; sftmsk = 0x07; msk[0] = 0x00; msk[1] = 0x01; - msk[3] = 0x01; - break; - case 2: sft = 2; sftmsk = 0x06; msk[0] = 0x00; msk[1] = 0x01; - msk[3] = 0x03; - break; - case 4: sft = 1; sftmsk = 0x04; msk[0] = 0x00; msk[1] = 0x0C; - msk[3] = 0x0f; - break; - case 8: sft = 0; sftmsk = 0x00; msk[0] = 0x00; msk[1] = 0x0F; - msk[3] = 0xff; - break; - default: return -EINVAL; - } - - to = ((loff_t)page) << this->page_shift; - - /* Must we save the block contents? */ - if (td->options & NAND_BBT_SAVECONTENT) { - /* Make it block aligned */ - to &= ~(((loff_t)1 << this->bbt_erase_shift) - 1); - len = 1 << this->bbt_erase_shift; - res = mtd_read(mtd, to, len, &retlen, buf); - if (res < 0) { - if (retlen != len) { - pr_info("nand_bbt: error reading block for writing the bad block table\n"); - return res; - } - pr_warn("nand_bbt: ECC error while reading block for writing bad block table\n"); - } - /* Read oob data */ - ops.ooblen = (len >> this->page_shift) * mtd->oobsize; - ops.oobbuf = &buf[len]; - res = mtd_read_oob(mtd, to + mtd->writesize, &ops); - if (res < 0 || ops.oobretlen != ops.ooblen) - goto outerr; - - /* Calc the byte offset in the buffer */ - pageoffs = page - (int)(to >> this->page_shift); - offs = pageoffs << this->page_shift; - /* Preset the bbt area with 0xff */ - memset(&buf[offs], 0xff, (size_t)(numblocks >> sft)); - ooboffs = len + (pageoffs * mtd->oobsize); - - } else if (td->options & NAND_BBT_NO_OOB) { - ooboffs = 0; - offs = td->len; - /* The version byte */ - if (td->options & NAND_BBT_VERSION) - offs++; - /* Calc length */ - len = (size_t)(numblocks >> sft); - len += offs; - /* Make it page aligned! */ - len = ALIGN(len, mtd->writesize); - /* Preset the buffer with 0xff */ - memset(buf, 0xff, len); - /* Pattern is located at the begin of first page */ - memcpy(buf, td->pattern, td->len); - } else { - /* Calc length */ - len = (size_t)(numblocks >> sft); - /* Make it page aligned! */ - len = ALIGN(len, mtd->writesize); - /* Preset the buffer with 0xff */ - memset(buf, 0xff, len + - (len >> this->page_shift)* mtd->oobsize); - offs = 0; - ooboffs = len; - /* Pattern is located in oob area of first page */ - memcpy(&buf[ooboffs + td->offs], td->pattern, td->len); - } - - if (td->options & NAND_BBT_VERSION) - buf[ooboffs + td->veroffs] = td->version[chip]; - - /* Walk through the memory table */ - for (i = 0; i < numblocks; i++) { - uint8_t dat; - int sftcnt = (i << (3 - sft)) & sftmsk; - dat = bbt_get_entry(this, chip * numblocks + i); - /* Do not store the reserved bbt blocks! */ - buf[offs + (i >> sft)] &= ~(msk[dat] << sftcnt); - } - - memset(&einfo, 0, sizeof(einfo)); - einfo.mtd = mtd; - einfo.addr = to; - einfo.len = 1 << this->bbt_erase_shift; - res = nand_erase_nand(mtd, &einfo, 1); - if (res < 0) { - pr_warn("nand_bbt: error while erasing BBT block %d\n", - res); - mark_bbt_block_bad(this, td, chip, block); - continue; - } - - res = scan_write_bbt(mtd, to, len, buf, - td->options & NAND_BBT_NO_OOB ? NULL : - &buf[len]); - if (res < 0) { - pr_warn("nand_bbt: error while writing BBT block %d\n", - res); - mark_bbt_block_bad(this, td, chip, block); - continue; - } - - pr_info("Bad block table written to 0x%012llx, version 0x%02X\n", - (unsigned long long)to, td->version[chip]); - - /* Mark it as used */ - td->pages[chip++] = page; - } - return 0; - - outerr: - pr_warn("nand_bbt: error while writing bad block table %d\n", res); - return res; -} - -/** - * nand_memory_bbt - [GENERIC] create a memory based bad block table - * @mtd: MTD device structure - * @bd: descriptor for the good/bad block search pattern - * - * The function creates a memory based bbt by scanning the device for - * manufacturer / software marked good / bad blocks. - */ -static inline int nand_memory_bbt(struct mtd_info *mtd, struct nand_bbt_descr *bd) -{ - struct nand_chip *this = mtd_to_nand(mtd); - - return create_bbt(mtd, this->data_buf, bd, -1); -} - -/** - * check_create - [GENERIC] create and write bbt(s) if necessary - * @mtd: MTD device structure - * @buf: temporary buffer - * @bd: descriptor for the good/bad block search pattern - * - * The function checks the results of the previous call to read_bbt and creates - * / updates the bbt(s) if necessary. Creation is necessary if no bbt was found - * for the chip/device. Update is necessary if one of the tables is missing or - * the version nr. of one table is less than the other. - */ -static int check_create(struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *bd) -{ - int i, chips, writeops, create, chipsel, res, res2; - struct nand_chip *this = mtd_to_nand(mtd); - struct nand_bbt_descr *td = this->bbt_td; - struct nand_bbt_descr *md = this->bbt_md; - struct nand_bbt_descr *rd, *rd2; - - /* Do we have a bbt per chip? */ - if (td->options & NAND_BBT_PERCHIP) - chips = this->numchips; - else - chips = 1; - - for (i = 0; i < chips; i++) { - writeops = 0; - create = 0; - rd = NULL; - rd2 = NULL; - res = res2 = 0; - /* Per chip or per device? */ - chipsel = (td->options & NAND_BBT_PERCHIP) ? i : -1; - /* Mirrored table available? */ - if (md) { - if (td->pages[i] == -1 && md->pages[i] == -1) { - create = 1; - writeops = 0x03; - } else if (td->pages[i] == -1) { - rd = md; - writeops = 0x01; - } else if (md->pages[i] == -1) { - rd = td; - writeops = 0x02; - } else if (td->version[i] == md->version[i]) { - rd = td; - if (!(td->options & NAND_BBT_VERSION)) - rd2 = md; - } else if (((int8_t)(td->version[i] - md->version[i])) > 0) { - rd = td; - writeops = 0x02; - } else { - rd = md; - writeops = 0x01; - } - } else { - if (td->pages[i] == -1) { - create = 1; - writeops = 0x01; - } else { - rd = td; - } - } - - if (create) { - /* Create the bad block table by scanning the device? */ - if (!(td->options & NAND_BBT_CREATE)) - continue; - - /* Create the table in memory by scanning the chip(s) */ - if (!(this->bbt_options & NAND_BBT_CREATE_EMPTY)) - create_bbt(mtd, buf, bd, chipsel); - - td->version[i] = 1; - if (md) - md->version[i] = 1; - } - - /* Read back first? */ - if (rd) { - res = read_abs_bbt(mtd, buf, rd, chipsel); - if (mtd_is_eccerr(res)) { - /* Mark table as invalid */ - rd->pages[i] = -1; - rd->version[i] = 0; - i--; - continue; - } - } - /* If they weren't versioned, read both */ - if (rd2) { - res2 = read_abs_bbt(mtd, buf, rd2, chipsel); - if (mtd_is_eccerr(res2)) { - /* Mark table as invalid */ - rd2->pages[i] = -1; - rd2->version[i] = 0; - i--; - continue; - } - } - - /* Scrub the flash table(s)? */ - if (mtd_is_bitflip(res) || mtd_is_bitflip(res2)) - writeops = 0x03; - - /* Update version numbers before writing */ - if (md) { - td->version[i] = max(td->version[i], md->version[i]); - md->version[i] = td->version[i]; - } - - /* Write the bad block table to the device? */ - if ((writeops & 0x01) && (td->options & NAND_BBT_WRITE)) { - res = write_bbt(mtd, buf, td, md, chipsel); - if (res < 0) - return res; - } - - /* Write the mirror bad block table to the device? */ - if ((writeops & 0x02) && md && (md->options & NAND_BBT_WRITE)) { - res = write_bbt(mtd, buf, md, td, chipsel); - if (res < 0) - return res; - } - } - return 0; -} - -/** - * mark_bbt_regions - [GENERIC] mark the bad block table regions - * @mtd: MTD device structure - * @td: bad block table descriptor - * - * The bad block table regions are marked as "bad" to prevent accidental - * erasures / writes. The regions are identified by the mark 0x02. - */ -static void mark_bbt_region(struct mtd_info *mtd, struct nand_bbt_descr *td) -{ - struct nand_chip *this = mtd_to_nand(mtd); - int i, j, chips, block, nrblocks, update; - uint8_t oldval; - - /* Do we have a bbt per chip? */ - if (td->options & NAND_BBT_PERCHIP) { - chips = this->numchips; - nrblocks = (int)(this->chipsize >> this->bbt_erase_shift); - } else { - chips = 1; - nrblocks = (int)(mtd->size >> this->bbt_erase_shift); - } - - for (i = 0; i < chips; i++) { - if ((td->options & NAND_BBT_ABSPAGE) || - !(td->options & NAND_BBT_WRITE)) { - if (td->pages[i] == -1) - continue; - block = td->pages[i] >> (this->bbt_erase_shift - this->page_shift); - oldval = bbt_get_entry(this, block); - bbt_mark_entry(this, block, BBT_BLOCK_RESERVED); - if ((oldval != BBT_BLOCK_RESERVED) && - td->reserved_block_code) - nand_update_bbt(mtd, (loff_t)block << - this->bbt_erase_shift); - continue; - } - update = 0; - if (td->options & NAND_BBT_LASTBLOCK) - block = ((i + 1) * nrblocks) - td->maxblocks; - else - block = i * nrblocks; - for (j = 0; j < td->maxblocks; j++) { - oldval = bbt_get_entry(this, block); - bbt_mark_entry(this, block, BBT_BLOCK_RESERVED); - if (oldval != BBT_BLOCK_RESERVED) - update = 1; - block++; - } - /* - * If we want reserved blocks to be recorded to flash, and some - * new ones have been marked, then we need to update the stored - * bbts. This should only happen once. - */ - if (update && td->reserved_block_code) - nand_update_bbt(mtd, (loff_t)(block - 1) << - this->bbt_erase_shift); - } -} - -/** - * verify_bbt_descr - verify the bad block description - * @mtd: MTD device structure - * @bd: the table to verify - * - * This functions performs a few sanity checks on the bad block description - * table. - */ -static void verify_bbt_descr(struct mtd_info *mtd, struct nand_bbt_descr *bd) -{ - struct nand_chip *this = mtd_to_nand(mtd); - u32 pattern_len; - u32 bits; - u32 table_size; - - if (!bd) - return; - - pattern_len = bd->len; - bits = bd->options & NAND_BBT_NRBITS_MSK; - - BUG_ON((this->bbt_options & NAND_BBT_NO_OOB) && - !(this->bbt_options & NAND_BBT_USE_FLASH)); - BUG_ON(!bits); - - if (bd->options & NAND_BBT_VERSION) - pattern_len++; - - if (bd->options & NAND_BBT_NO_OOB) { - BUG_ON(!(this->bbt_options & NAND_BBT_USE_FLASH)); - BUG_ON(!(this->bbt_options & NAND_BBT_NO_OOB)); - BUG_ON(bd->offs); - if (bd->options & NAND_BBT_VERSION) - BUG_ON(bd->veroffs != bd->len); - BUG_ON(bd->options & NAND_BBT_SAVECONTENT); - } - - if (bd->options & NAND_BBT_PERCHIP) - table_size = this->chipsize >> this->bbt_erase_shift; - else - table_size = mtd->size >> this->bbt_erase_shift; - table_size >>= 3; - table_size *= bits; - if (bd->options & NAND_BBT_NO_OOB) - table_size += pattern_len; - BUG_ON(table_size > (1 << this->bbt_erase_shift)); -} - -/** - * nand_scan_bbt - [NAND Interface] scan, find, read and maybe create bad block table(s) - * @mtd: MTD device structure - * @bd: descriptor for the good/bad block search pattern - * - * The function checks, if a bad block table(s) is/are already available. If - * not it scans the device for manufacturer marked good / bad blocks and writes - * the bad block table(s) to the selected place. - * - * The bad block table memory is allocated here. It must be freed by calling - * the nand_free_bbt function. - */ -static int nand_scan_bbt(struct mtd_info *mtd, struct nand_bbt_descr *bd) -{ - struct nand_chip *this = mtd_to_nand(mtd); - int len, res; - uint8_t *buf; - struct nand_bbt_descr *td = this->bbt_td; - struct nand_bbt_descr *md = this->bbt_md; - - len = (mtd->size >> (this->bbt_erase_shift + 2)) ? : 1; - /* - * Allocate memory (2bit per block) and clear the memory bad block - * table. - */ - this->bbt = kzalloc(len, GFP_KERNEL); - if (!this->bbt) - return -ENOMEM; - - /* - * If no primary table decriptor is given, scan the device to build a - * memory based bad block table. - */ - if (!td) { - if ((res = nand_memory_bbt(mtd, bd))) { - pr_err("nand_bbt: can't scan flash and build the RAM-based BBT\n"); - goto err; - } - return 0; - } - verify_bbt_descr(mtd, td); - verify_bbt_descr(mtd, md); - - /* Allocate a temporary buffer for one eraseblock incl. oob */ - len = (1 << this->bbt_erase_shift); - len += (len >> this->page_shift) * mtd->oobsize; - buf = vmalloc(len); - if (!buf) { - res = -ENOMEM; - goto err; - } - - /* Is the bbt at a given page? */ - if (td->options & NAND_BBT_ABSPAGE) { - read_abs_bbts(mtd, buf, td, md); - } else { - /* Search the bad block table using a pattern in oob */ - search_read_bbts(mtd, buf, td, md); - } - - res = check_create(mtd, buf, bd); - if (res) - goto err; - - /* Prevent the bbt regions from erasing / writing */ - mark_bbt_region(mtd, td); - if (md) - mark_bbt_region(mtd, md); - - vfree(buf); - return 0; - -err: - kfree(this->bbt); - this->bbt = NULL; - return res; -} - -/** - * nand_update_bbt - update bad block table(s) - * @mtd: MTD device structure - * @offs: the offset of the newly marked block - * - * The function updates the bad block table(s). - */ -static int nand_update_bbt(struct mtd_info *mtd, loff_t offs) -{ - struct nand_chip *this = mtd_to_nand(mtd); - int len, res = 0; - int chip, chipsel; - uint8_t *buf; - struct nand_bbt_descr *td = this->bbt_td; - struct nand_bbt_descr *md = this->bbt_md; - - if (!this->bbt || !td) - return -EINVAL; - - /* Allocate a temporary buffer for one eraseblock incl. oob */ - len = (1 << this->bbt_erase_shift); - len += (len >> this->page_shift) * mtd->oobsize; - buf = kmalloc(len, GFP_KERNEL); - if (!buf) - return -ENOMEM; - - /* Do we have a bbt per chip? */ - if (td->options & NAND_BBT_PERCHIP) { - chip = (int)(offs >> this->chip_shift); - chipsel = chip; - } else { - chip = 0; - chipsel = -1; - } - - td->version[chip]++; - if (md) - md->version[chip]++; - - /* Write the bad block table to the device? */ - if (td->options & NAND_BBT_WRITE) { - res = write_bbt(mtd, buf, td, md, chipsel); - if (res < 0) - goto out; - } - /* Write the mirror bad block table to the device? */ - if (md && (md->options & NAND_BBT_WRITE)) { - res = write_bbt(mtd, buf, md, td, chipsel); - } - - out: - kfree(buf); - return res; -} - -/* - * Define some generic bad / good block scan pattern which are used - * while scanning a device for factory marked good / bad blocks. - */ -static uint8_t scan_ff_pattern[] = { 0xff, 0xff }; - -/* Generic flash bbt descriptors */ -static uint8_t bbt_pattern[] = {'B', 'b', 't', '0' }; -static uint8_t mirror_pattern[] = {'1', 't', 'b', 'B' }; - -static struct nand_bbt_descr bbt_main_descr = { - .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE - | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, - .offs = 8, - .len = 4, - .veroffs = 12, - .maxblocks = NAND_BBT_SCAN_MAXBLOCKS, - .pattern = bbt_pattern -}; - -static struct nand_bbt_descr bbt_mirror_descr = { - .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE - | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, - .offs = 8, - .len = 4, - .veroffs = 12, - .maxblocks = NAND_BBT_SCAN_MAXBLOCKS, - .pattern = mirror_pattern -}; - -static struct nand_bbt_descr bbt_main_no_oob_descr = { - .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE - | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP - | NAND_BBT_NO_OOB, - .len = 4, - .veroffs = 4, - .maxblocks = NAND_BBT_SCAN_MAXBLOCKS, - .pattern = bbt_pattern -}; - -static struct nand_bbt_descr bbt_mirror_no_oob_descr = { - .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE - | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP - | NAND_BBT_NO_OOB, - .len = 4, - .veroffs = 4, - .maxblocks = NAND_BBT_SCAN_MAXBLOCKS, - .pattern = mirror_pattern -}; - -#define BADBLOCK_SCAN_MASK (~NAND_BBT_NO_OOB) -/** - * nand_create_badblock_pattern - [INTERN] Creates a BBT descriptor structure - * @this: NAND chip to create descriptor for - * - * This function allocates and initializes a nand_bbt_descr for BBM detection - * based on the properties of @this. The new descriptor is stored in - * this->badblock_pattern. Thus, this->badblock_pattern should be NULL when - * passed to this function. - */ -static int nand_create_badblock_pattern(struct nand_chip *this) -{ - struct nand_bbt_descr *bd; - if (this->badblock_pattern) { - pr_warn("Bad block pattern already allocated; not replacing\n"); - return -EINVAL; - } - bd = kzalloc(sizeof(*bd), GFP_KERNEL); - if (!bd) - return -ENOMEM; - bd->options = this->bbt_options & BADBLOCK_SCAN_MASK; - bd->offs = this->badblockpos; - bd->len = (this->options & NAND_BUSWIDTH_16) ? 2 : 1; - bd->pattern = scan_ff_pattern; - bd->options |= NAND_BBT_DYNAMICSTRUCT; - this->badblock_pattern = bd; - return 0; -} - -/** - * nand_default_bbt - [NAND Interface] Select a default bad block table for the device - * @mtd: MTD device structure - * - * This function selects the default bad block table support for the device and - * calls the nand_scan_bbt function. - */ -int nand_default_bbt(struct mtd_info *mtd) -{ - struct nand_chip *this = mtd_to_nand(mtd); - int ret; - - /* Is a flash based bad block table requested? */ - if (this->bbt_options & NAND_BBT_USE_FLASH) { - /* Use the default pattern descriptors */ - if (!this->bbt_td) { - if (this->bbt_options & NAND_BBT_NO_OOB) { - this->bbt_td = &bbt_main_no_oob_descr; - this->bbt_md = &bbt_mirror_no_oob_descr; - } else { - this->bbt_td = &bbt_main_descr; - this->bbt_md = &bbt_mirror_descr; - } - } - } else { - this->bbt_td = NULL; - this->bbt_md = NULL; - } - - if (!this->badblock_pattern) { - ret = nand_create_badblock_pattern(this); - if (ret) - return ret; - } - - return nand_scan_bbt(mtd, this->badblock_pattern); -} - -/** - * nand_isreserved_bbt - [NAND Interface] Check if a block is reserved - * @mtd: MTD device structure - * @offs: offset in the device - */ -int nand_isreserved_bbt(struct mtd_info *mtd, loff_t offs) -{ - struct nand_chip *this = mtd_to_nand(mtd); - int block; - - block = (int)(offs >> this->bbt_erase_shift); - return bbt_get_entry(this, block) == BBT_BLOCK_RESERVED; -} - -/** - * nand_isbad_bbt - [NAND Interface] Check if a block is bad - * @mtd: MTD device structure - * @offs: offset in the device - * @allowbbt: allow access to bad block table region - */ -int nand_isbad_bbt(struct mtd_info *mtd, loff_t offs, int allowbbt) -{ - struct nand_chip *this = mtd_to_nand(mtd); - int block, res; - - block = (int)(offs >> this->bbt_erase_shift); - res = bbt_get_entry(this, block); - - pr_debug("nand_isbad_bbt(): bbt info for offs 0x%08x: (block %d) 0x%02x\n", - (unsigned int)offs, block, res); - - switch (res) { - case BBT_BLOCK_GOOD: - return 0; - case BBT_BLOCK_WORN: - return 1; - case BBT_BLOCK_RESERVED: - return allowbbt ? 0 : 1; - } - return 1; -} - -/** - * nand_markbad_bbt - [NAND Interface] Mark a block bad in the BBT - * @mtd: MTD device structure - * @offs: offset of the bad block - */ -int nand_markbad_bbt(struct mtd_info *mtd, loff_t offs) -{ - struct nand_chip *this = mtd_to_nand(mtd); - int block, ret = 0; - - block = (int)(offs >> this->bbt_erase_shift); - - /* Mark bad block in memory */ - bbt_mark_entry(this, block, BBT_BLOCK_WORN); - - /* Update flash-based bad block table */ - if (this->bbt_options & NAND_BBT_USE_FLASH) - ret = nand_update_bbt(mtd, offs); - - return ret; -} diff --git a/drivers/mtd/nand/nand_bch.c b/drivers/mtd/nand/nand_bch.c deleted file mode 100644 index 505441c9373b..000000000000 --- a/drivers/mtd/nand/nand_bch.c +++ /dev/null @@ -1,234 +0,0 @@ -/* - * This file provides ECC correction for more than 1 bit per block of data, - * using binary BCH codes. It relies on the generic BCH library lib/bch.c. - * - * Copyright © 2011 Ivan Djelic - * - * This file is free software; you can redistribute it and/or modify it - * under the terms of the GNU General Public License as published by the - * Free Software Foundation; either version 2 or (at your option) any - * later version. - * - * This file is distributed in the hope that it will be useful, but WITHOUT - * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or - * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License - * for more details. - * - * You should have received a copy of the GNU General Public License along - * with this file; if not, write to the Free Software Foundation, Inc., - * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. - */ - -#include -#include -#include -#include -#include -#include -#include -#include -#include - -/** - * struct nand_bch_control - private NAND BCH control structure - * @bch: BCH control structure - * @errloc: error location array - * @eccmask: XOR ecc mask, allows erased pages to be decoded as valid - */ -struct nand_bch_control { - struct bch_control *bch; - unsigned int *errloc; - unsigned char *eccmask; -}; - -/** - * nand_bch_calculate_ecc - [NAND Interface] Calculate ECC for data block - * @mtd: MTD block structure - * @buf: input buffer with raw data - * @code: output buffer with ECC - */ -int nand_bch_calculate_ecc(struct mtd_info *mtd, const unsigned char *buf, - unsigned char *code) -{ - const struct nand_chip *chip = mtd_to_nand(mtd); - struct nand_bch_control *nbc = chip->ecc.priv; - unsigned int i; - - memset(code, 0, chip->ecc.bytes); - encode_bch(nbc->bch, buf, chip->ecc.size, code); - - /* apply mask so that an erased page is a valid codeword */ - for (i = 0; i < chip->ecc.bytes; i++) - code[i] ^= nbc->eccmask[i]; - - return 0; -} -EXPORT_SYMBOL(nand_bch_calculate_ecc); - -/** - * nand_bch_correct_data - [NAND Interface] Detect and correct bit error(s) - * @mtd: MTD block structure - * @buf: raw data read from the chip - * @read_ecc: ECC from the chip - * @calc_ecc: the ECC calculated from raw data - * - * Detect and correct bit errors for a data byte block - */ -int nand_bch_correct_data(struct mtd_info *mtd, unsigned char *buf, - unsigned char *read_ecc, unsigned char *calc_ecc) -{ - const struct nand_chip *chip = mtd_to_nand(mtd); - struct nand_bch_control *nbc = chip->ecc.priv; - unsigned int *errloc = nbc->errloc; - int i, count; - - count = decode_bch(nbc->bch, NULL, chip->ecc.size, read_ecc, calc_ecc, - NULL, errloc); - if (count > 0) { - for (i = 0; i < count; i++) { - if (errloc[i] < (chip->ecc.size*8)) - /* error is located in data, correct it */ - buf[errloc[i] >> 3] ^= (1 << (errloc[i] & 7)); - /* else error in ecc, no action needed */ - - pr_debug("%s: corrected bitflip %u\n", __func__, - errloc[i]); - } - } else if (count < 0) { - printk(KERN_ERR "ecc unrecoverable error\n"); - count = -EBADMSG; - } - return count; -} -EXPORT_SYMBOL(nand_bch_correct_data); - -/** - * nand_bch_init - [NAND Interface] Initialize NAND BCH error correction - * @mtd: MTD block structure - * - * Returns: - * a pointer to a new NAND BCH control structure, or NULL upon failure - * - * Initialize NAND BCH error correction. Parameters @eccsize and @eccbytes - * are used to compute BCH parameters m (Galois field order) and t (error - * correction capability). @eccbytes should be equal to the number of bytes - * required to store m*t bits, where m is such that 2^m-1 > @eccsize*8. - * - * Example: to configure 4 bit correction per 512 bytes, you should pass - * @eccsize = 512 (thus, m=13 is the smallest integer such that 2^m-1 > 512*8) - * @eccbytes = 7 (7 bytes are required to store m*t = 13*4 = 52 bits) - */ -struct nand_bch_control *nand_bch_init(struct mtd_info *mtd) -{ - struct nand_chip *nand = mtd_to_nand(mtd); - unsigned int m, t, eccsteps, i; - struct nand_bch_control *nbc = NULL; - unsigned char *erased_page; - unsigned int eccsize = nand->ecc.size; - unsigned int eccbytes = nand->ecc.bytes; - unsigned int eccstrength = nand->ecc.strength; - - if (!eccbytes && eccstrength) { - eccbytes = DIV_ROUND_UP(eccstrength * fls(8 * eccsize), 8); - nand->ecc.bytes = eccbytes; - } - - if (!eccsize || !eccbytes) { - printk(KERN_WARNING "ecc parameters not supplied\n"); - goto fail; - } - - m = fls(1+8*eccsize); - t = (eccbytes*8)/m; - - nbc = kzalloc(sizeof(*nbc), GFP_KERNEL); - if (!nbc) - goto fail; - - nbc->bch = init_bch(m, t, 0); - if (!nbc->bch) - goto fail; - - /* verify that eccbytes has the expected value */ - if (nbc->bch->ecc_bytes != eccbytes) { - printk(KERN_WARNING "invalid eccbytes %u, should be %u\n", - eccbytes, nbc->bch->ecc_bytes); - goto fail; - } - - eccsteps = mtd->writesize/eccsize; - - /* Check that we have an oob layout description. */ - if (!mtd->ooblayout) { - pr_warn("missing oob scheme"); - goto fail; - } - - /* sanity checks */ - if (8*(eccsize+eccbytes) >= (1 << m)) { - printk(KERN_WARNING "eccsize %u is too large\n", eccsize); - goto fail; - } - - /* - * ecc->steps and ecc->total might be used by mtd->ooblayout->ecc(), - * which is called by mtd_ooblayout_count_eccbytes(). - * Make sure they are properly initialized before calling - * mtd_ooblayout_count_eccbytes(). - * FIXME: we should probably rework the sequencing in nand_scan_tail() - * to avoid setting those fields twice. - */ - nand->ecc.steps = eccsteps; - nand->ecc.total = eccsteps * eccbytes; - if (mtd_ooblayout_count_eccbytes(mtd) != (eccsteps*eccbytes)) { - printk(KERN_WARNING "invalid ecc layout\n"); - goto fail; - } - - nbc->eccmask = kmalloc(eccbytes, GFP_KERNEL); - nbc->errloc = kmalloc(t*sizeof(*nbc->errloc), GFP_KERNEL); - if (!nbc->eccmask || !nbc->errloc) - goto fail; - /* - * compute and store the inverted ecc of an erased ecc block - */ - erased_page = kmalloc(eccsize, GFP_KERNEL); - if (!erased_page) - goto fail; - - memset(erased_page, 0xff, eccsize); - memset(nbc->eccmask, 0, eccbytes); - encode_bch(nbc->bch, erased_page, eccsize, nbc->eccmask); - kfree(erased_page); - - for (i = 0; i < eccbytes; i++) - nbc->eccmask[i] ^= 0xff; - - if (!eccstrength) - nand->ecc.strength = (eccbytes * 8) / fls(8 * eccsize); - - return nbc; -fail: - nand_bch_free(nbc); - return NULL; -} -EXPORT_SYMBOL(nand_bch_init); - -/** - * nand_bch_free - [NAND Interface] Release NAND BCH ECC resources - * @nbc: NAND BCH control structure - */ -void nand_bch_free(struct nand_bch_control *nbc) -{ - if (nbc) { - free_bch(nbc->bch); - kfree(nbc->errloc); - kfree(nbc->eccmask); - kfree(nbc); - } -} -EXPORT_SYMBOL(nand_bch_free); - -MODULE_LICENSE("GPL"); -MODULE_AUTHOR("Ivan Djelic "); -MODULE_DESCRIPTION("NAND software BCH ECC support"); diff --git a/drivers/mtd/nand/nand_ecc.c b/drivers/mtd/nand/nand_ecc.c deleted file mode 100644 index 3630f0fe8fa4..000000000000 --- a/drivers/mtd/nand/nand_ecc.c +++ /dev/null @@ -1,531 +0,0 @@ -/* - * This file contains an ECC algorithm that detects and corrects 1 bit - * errors in a 256 byte block of data. - * - * Copyright © 2008 Koninklijke Philips Electronics NV. - * Author: Frans Meulenbroeks - * - * Completely replaces the previous ECC implementation which was written by: - * Steven J. Hill (sjhill@realitydiluted.com) - * Thomas Gleixner (tglx@linutronix.de) - * - * Information on how this algorithm works and how it was developed - * can be found in Documentation/mtd/nand_ecc.txt - * - * This file is free software; you can redistribute it and/or modify it - * under the terms of the GNU General Public License as published by the - * Free Software Foundation; either version 2 or (at your option) any - * later version. - * - * This file is distributed in the hope that it will be useful, but WITHOUT - * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or - * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License - * for more details. - * - * You should have received a copy of the GNU General Public License along - * with this file; if not, write to the Free Software Foundation, Inc., - * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. - * - */ - -/* - * The STANDALONE macro is useful when running the code outside the kernel - * e.g. when running the code in a testbed or a benchmark program. - * When STANDALONE is used, the module related macros are commented out - * as well as the linux include files. - * Instead a private definition of mtd_info is given to satisfy the compiler - * (the code does not use mtd_info, so the code does not care) - */ -#ifndef STANDALONE -#include -#include -#include -#include -#include -#include -#include -#else -#include -struct mtd_info; -#define EXPORT_SYMBOL(x) /* x */ - -#define MODULE_LICENSE(x) /* x */ -#define MODULE_AUTHOR(x) /* x */ -#define MODULE_DESCRIPTION(x) /* x */ - -#define pr_err printf -#endif - -/* - * invparity is a 256 byte table that contains the odd parity - * for each byte. So if the number of bits in a byte is even, - * the array element is 1, and when the number of bits is odd - * the array eleemnt is 0. - */ -static const char invparity[256] = { - 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, - 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, - 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, - 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, - 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, - 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, - 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, - 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, - 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, - 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, - 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, - 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, - 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, - 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, - 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, - 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1 -}; - -/* - * bitsperbyte contains the number of bits per byte - * this is only used for testing and repairing parity - * (a precalculated value slightly improves performance) - */ -static const char bitsperbyte[256] = { - 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, - 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, - 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, - 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, - 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, - 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, - 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, - 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, - 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, - 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, - 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, - 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, - 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, - 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, - 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, - 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8, -}; - -/* - * addressbits is a lookup table to filter out the bits from the xor-ed - * ECC data that identify the faulty location. - * this is only used for repairing parity - * see the comments in nand_correct_data for more details - */ -static const char addressbits[256] = { - 0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01, - 0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03, - 0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01, - 0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03, - 0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05, - 0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07, - 0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05, - 0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07, - 0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01, - 0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03, - 0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01, - 0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03, - 0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05, - 0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07, - 0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05, - 0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07, - 0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09, - 0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b, - 0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09, - 0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b, - 0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d, - 0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f, - 0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d, - 0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f, - 0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09, - 0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b, - 0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09, - 0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b, - 0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d, - 0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f, - 0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d, - 0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f -}; - -/** - * __nand_calculate_ecc - [NAND Interface] Calculate 3-byte ECC for 256/512-byte - * block - * @buf: input buffer with raw data - * @eccsize: data bytes per ECC step (256 or 512) - * @code: output buffer with ECC - */ -void __nand_calculate_ecc(const unsigned char *buf, unsigned int eccsize, - unsigned char *code) -{ - int i; - const uint32_t *bp = (uint32_t *)buf; - /* 256 or 512 bytes/ecc */ - const uint32_t eccsize_mult = eccsize >> 8; - uint32_t cur; /* current value in buffer */ - /* rp0..rp15..rp17 are the various accumulated parities (per byte) */ - uint32_t rp0, rp1, rp2, rp3, rp4, rp5, rp6, rp7; - uint32_t rp8, rp9, rp10, rp11, rp12, rp13, rp14, rp15, rp16; - uint32_t uninitialized_var(rp17); /* to make compiler happy */ - uint32_t par; /* the cumulative parity for all data */ - uint32_t tmppar; /* the cumulative parity for this iteration; - for rp12, rp14 and rp16 at the end of the - loop */ - - par = 0; - rp4 = 0; - rp6 = 0; - rp8 = 0; - rp10 = 0; - rp12 = 0; - rp14 = 0; - rp16 = 0; - - /* - * The loop is unrolled a number of times; - * This avoids if statements to decide on which rp value to update - * Also we process the data by longwords. - * Note: passing unaligned data might give a performance penalty. - * It is assumed that the buffers are aligned. - * tmppar is the cumulative sum of this iteration. - * needed for calculating rp12, rp14, rp16 and par - * also used as a performance improvement for rp6, rp8 and rp10 - */ - for (i = 0; i < eccsize_mult << 2; i++) { - cur = *bp++; - tmppar = cur; - rp4 ^= cur; - cur = *bp++; - tmppar ^= cur; - rp6 ^= tmppar; - cur = *bp++; - tmppar ^= cur; - rp4 ^= cur; - cur = *bp++; - tmppar ^= cur; - rp8 ^= tmppar; - - cur = *bp++; - tmppar ^= cur; - rp4 ^= cur; - rp6 ^= cur; - cur = *bp++; - tmppar ^= cur; - rp6 ^= cur; - cur = *bp++; - tmppar ^= cur; - rp4 ^= cur; - cur = *bp++; - tmppar ^= cur; - rp10 ^= tmppar; - - cur = *bp++; - tmppar ^= cur; - rp4 ^= cur; - rp6 ^= cur; - rp8 ^= cur; - cur = *bp++; - tmppar ^= cur; - rp6 ^= cur; - rp8 ^= cur; - cur = *bp++; - tmppar ^= cur; - rp4 ^= cur; - rp8 ^= cur; - cur = *bp++; - tmppar ^= cur; - rp8 ^= cur; - - cur = *bp++; - tmppar ^= cur; - rp4 ^= cur; - rp6 ^= cur; - cur = *bp++; - tmppar ^= cur; - rp6 ^= cur; - cur = *bp++; - tmppar ^= cur; - rp4 ^= cur; - cur = *bp++; - tmppar ^= cur; - - par ^= tmppar; - if ((i & 0x1) == 0) - rp12 ^= tmppar; - if ((i & 0x2) == 0) - rp14 ^= tmppar; - if (eccsize_mult == 2 && (i & 0x4) == 0) - rp16 ^= tmppar; - } - - /* - * handle the fact that we use longword operations - * we'll bring rp4..rp14..rp16 back to single byte entities by - * shifting and xoring first fold the upper and lower 16 bits, - * then the upper and lower 8 bits. - */ - rp4 ^= (rp4 >> 16); - rp4 ^= (rp4 >> 8); - rp4 &= 0xff; - rp6 ^= (rp6 >> 16); - rp6 ^= (rp6 >> 8); - rp6 &= 0xff; - rp8 ^= (rp8 >> 16); - rp8 ^= (rp8 >> 8); - rp8 &= 0xff; - rp10 ^= (rp10 >> 16); - rp10 ^= (rp10 >> 8); - rp10 &= 0xff; - rp12 ^= (rp12 >> 16); - rp12 ^= (rp12 >> 8); - rp12 &= 0xff; - rp14 ^= (rp14 >> 16); - rp14 ^= (rp14 >> 8); - rp14 &= 0xff; - if (eccsize_mult == 2) { - rp16 ^= (rp16 >> 16); - rp16 ^= (rp16 >> 8); - rp16 &= 0xff; - } - - /* - * we also need to calculate the row parity for rp0..rp3 - * This is present in par, because par is now - * rp3 rp3 rp2 rp2 in little endian and - * rp2 rp2 rp3 rp3 in big endian - * as well as - * rp1 rp0 rp1 rp0 in little endian and - * rp0 rp1 rp0 rp1 in big endian - * First calculate rp2 and rp3 - */ -#ifdef __BIG_ENDIAN - rp2 = (par >> 16); - rp2 ^= (rp2 >> 8); - rp2 &= 0xff; - rp3 = par & 0xffff; - rp3 ^= (rp3 >> 8); - rp3 &= 0xff; -#else - rp3 = (par >> 16); - rp3 ^= (rp3 >> 8); - rp3 &= 0xff; - rp2 = par & 0xffff; - rp2 ^= (rp2 >> 8); - rp2 &= 0xff; -#endif - - /* reduce par to 16 bits then calculate rp1 and rp0 */ - par ^= (par >> 16); -#ifdef __BIG_ENDIAN - rp0 = (par >> 8) & 0xff; - rp1 = (par & 0xff); -#else - rp1 = (par >> 8) & 0xff; - rp0 = (par & 0xff); -#endif - - /* finally reduce par to 8 bits */ - par ^= (par >> 8); - par &= 0xff; - - /* - * and calculate rp5..rp15..rp17 - * note that par = rp4 ^ rp5 and due to the commutative property - * of the ^ operator we can say: - * rp5 = (par ^ rp4); - * The & 0xff seems superfluous, but benchmarking learned that - * leaving it out gives slightly worse results. No idea why, probably - * it has to do with the way the pipeline in pentium is organized. - */ - rp5 = (par ^ rp4) & 0xff; - rp7 = (par ^ rp6) & 0xff; - rp9 = (par ^ rp8) & 0xff; - rp11 = (par ^ rp10) & 0xff; - rp13 = (par ^ rp12) & 0xff; - rp15 = (par ^ rp14) & 0xff; - if (eccsize_mult == 2) - rp17 = (par ^ rp16) & 0xff; - - /* - * Finally calculate the ECC bits. - * Again here it might seem that there are performance optimisations - * possible, but benchmarks showed that on the system this is developed - * the code below is the fastest - */ -#ifdef CONFIG_MTD_NAND_ECC_SMC - code[0] = - (invparity[rp7] << 7) | - (invparity[rp6] << 6) | - (invparity[rp5] << 5) | - (invparity[rp4] << 4) | - (invparity[rp3] << 3) | - (invparity[rp2] << 2) | - (invparity[rp1] << 1) | - (invparity[rp0]); - code[1] = - (invparity[rp15] << 7) | - (invparity[rp14] << 6) | - (invparity[rp13] << 5) | - (invparity[rp12] << 4) | - (invparity[rp11] << 3) | - (invparity[rp10] << 2) | - (invparity[rp9] << 1) | - (invparity[rp8]); -#else - code[1] = - (invparity[rp7] << 7) | - (invparity[rp6] << 6) | - (invparity[rp5] << 5) | - (invparity[rp4] << 4) | - (invparity[rp3] << 3) | - (invparity[rp2] << 2) | - (invparity[rp1] << 1) | - (invparity[rp0]); - code[0] = - (invparity[rp15] << 7) | - (invparity[rp14] << 6) | - (invparity[rp13] << 5) | - (invparity[rp12] << 4) | - (invparity[rp11] << 3) | - (invparity[rp10] << 2) | - (invparity[rp9] << 1) | - (invparity[rp8]); -#endif - if (eccsize_mult == 1) - code[2] = - (invparity[par & 0xf0] << 7) | - (invparity[par & 0x0f] << 6) | - (invparity[par & 0xcc] << 5) | - (invparity[par & 0x33] << 4) | - (invparity[par & 0xaa] << 3) | - (invparity[par & 0x55] << 2) | - 3; - else - code[2] = - (invparity[par & 0xf0] << 7) | - (invparity[par & 0x0f] << 6) | - (invparity[par & 0xcc] << 5) | - (invparity[par & 0x33] << 4) | - (invparity[par & 0xaa] << 3) | - (invparity[par & 0x55] << 2) | - (invparity[rp17] << 1) | - (invparity[rp16] << 0); -} -EXPORT_SYMBOL(__nand_calculate_ecc); - -/** - * nand_calculate_ecc - [NAND Interface] Calculate 3-byte ECC for 256/512-byte - * block - * @mtd: MTD block structure - * @buf: input buffer with raw data - * @code: output buffer with ECC - */ -int nand_calculate_ecc(struct mtd_info *mtd, const unsigned char *buf, - unsigned char *code) -{ - __nand_calculate_ecc(buf, - mtd_to_nand(mtd)->ecc.size, code); - - return 0; -} -EXPORT_SYMBOL(nand_calculate_ecc); - -/** - * __nand_correct_data - [NAND Interface] Detect and correct bit error(s) - * @buf: raw data read from the chip - * @read_ecc: ECC from the chip - * @calc_ecc: the ECC calculated from raw data - * @eccsize: data bytes per ECC step (256 or 512) - * - * Detect and correct a 1 bit error for eccsize byte block - */ -int __nand_correct_data(unsigned char *buf, - unsigned char *read_ecc, unsigned char *calc_ecc, - unsigned int eccsize) -{ - unsigned char b0, b1, b2, bit_addr; - unsigned int byte_addr; - /* 256 or 512 bytes/ecc */ - const uint32_t eccsize_mult = eccsize >> 8; - - /* - * b0 to b2 indicate which bit is faulty (if any) - * we might need the xor result more than once, - * so keep them in a local var - */ -#ifdef CONFIG_MTD_NAND_ECC_SMC - b0 = read_ecc[0] ^ calc_ecc[0]; - b1 = read_ecc[1] ^ calc_ecc[1]; -#else - b0 = read_ecc[1] ^ calc_ecc[1]; - b1 = read_ecc[0] ^ calc_ecc[0]; -#endif - b2 = read_ecc[2] ^ calc_ecc[2]; - - /* check if there are any bitfaults */ - - /* repeated if statements are slightly more efficient than switch ... */ - /* ordered in order of likelihood */ - - if ((b0 | b1 | b2) == 0) - return 0; /* no error */ - - if ((((b0 ^ (b0 >> 1)) & 0x55) == 0x55) && - (((b1 ^ (b1 >> 1)) & 0x55) == 0x55) && - ((eccsize_mult == 1 && ((b2 ^ (b2 >> 1)) & 0x54) == 0x54) || - (eccsize_mult == 2 && ((b2 ^ (b2 >> 1)) & 0x55) == 0x55))) { - /* single bit error */ - /* - * rp17/rp15/13/11/9/7/5/3/1 indicate which byte is the faulty - * byte, cp 5/3/1 indicate the faulty bit. - * A lookup table (called addressbits) is used to filter - * the bits from the byte they are in. - * A marginal optimisation is possible by having three - * different lookup tables. - * One as we have now (for b0), one for b2 - * (that would avoid the >> 1), and one for b1 (with all values - * << 4). However it was felt that introducing two more tables - * hardly justify the gain. - * - * The b2 shift is there to get rid of the lowest two bits. - * We could also do addressbits[b2] >> 1 but for the - * performance it does not make any difference - */ - if (eccsize_mult == 1) - byte_addr = (addressbits[b1] << 4) + addressbits[b0]; - else - byte_addr = (addressbits[b2 & 0x3] << 8) + - (addressbits[b1] << 4) + addressbits[b0]; - bit_addr = addressbits[b2 >> 2]; - /* flip the bit */ - buf[byte_addr] ^= (1 << bit_addr); - return 1; - - } - /* count nr of bits; use table lookup, faster than calculating it */ - if ((bitsperbyte[b0] + bitsperbyte[b1] + bitsperbyte[b2]) == 1) - return 1; /* error in ECC data; no action needed */ - - pr_err("%s: uncorrectable ECC error\n", __func__); - return -EBADMSG; -} -EXPORT_SYMBOL(__nand_correct_data); - -/** - * nand_correct_data - [NAND Interface] Detect and correct bit error(s) - * @mtd: MTD block structure - * @buf: raw data read from the chip - * @read_ecc: ECC from the chip - * @calc_ecc: the ECC calculated from raw data - * - * Detect and correct a 1 bit error for 256/512 byte block - */ -int nand_correct_data(struct mtd_info *mtd, unsigned char *buf, - unsigned char *read_ecc, unsigned char *calc_ecc) -{ - return __nand_correct_data(buf, read_ecc, calc_ecc, - mtd_to_nand(mtd)->ecc.size); -} -EXPORT_SYMBOL(nand_correct_data); - -MODULE_LICENSE("GPL"); -MODULE_AUTHOR("Frans Meulenbroeks "); -MODULE_DESCRIPTION("Generic NAND ECC support"); diff --git a/drivers/mtd/nand/nand_hynix.c b/drivers/mtd/nand/nand_hynix.c deleted file mode 100644 index d542908a0ebb..000000000000 --- a/drivers/mtd/nand/nand_hynix.c +++ /dev/null @@ -1,676 +0,0 @@ -/* - * Copyright (C) 2017 Free Electrons - * Copyright (C) 2017 NextThing Co - * - * Author: Boris Brezillon - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation; either version 2 of the License, or - * (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - */ - -#include -#include -#include - -#define NAND_HYNIX_CMD_SET_PARAMS 0x36 -#define NAND_HYNIX_CMD_APPLY_PARAMS 0x16 - -#define NAND_HYNIX_1XNM_RR_REPEAT 8 - -/** - * struct hynix_read_retry - read-retry data - * @nregs: number of register to set when applying a new read-retry mode - * @regs: register offsets (NAND chip dependent) - * @values: array of values to set in registers. The array size is equal to - * (nregs * nmodes) - */ -struct hynix_read_retry { - int nregs; - const u8 *regs; - u8 values[0]; -}; - -/** - * struct hynix_nand - private Hynix NAND struct - * @nand_technology: manufacturing process expressed in picometer - * @read_retry: read-retry information - */ -struct hynix_nand { - const struct hynix_read_retry *read_retry; -}; - -/** - * struct hynix_read_retry_otp - structure describing how the read-retry OTP - * area - * @nregs: number of hynix private registers to set before reading the reading - * the OTP area - * @regs: registers that should be configured - * @values: values that should be set in regs - * @page: the address to pass to the READ_PAGE command. Depends on the NAND - * chip - * @size: size of the read-retry OTP section - */ -struct hynix_read_retry_otp { - int nregs; - const u8 *regs; - const u8 *values; - int page; - int size; -}; - -static bool hynix_nand_has_valid_jedecid(struct nand_chip *chip) -{ - u8 jedecid[5] = { }; - int ret; - - ret = nand_readid_op(chip, 0x40, jedecid, sizeof(jedecid)); - if (ret) - return false; - - return !strncmp("JEDEC", jedecid, sizeof(jedecid)); -} - -static int hynix_nand_cmd_op(struct nand_chip *chip, u8 cmd) -{ - struct mtd_info *mtd = nand_to_mtd(chip); - - if (chip->exec_op) { - struct nand_op_instr instrs[] = { - NAND_OP_CMD(cmd, 0), - }; - struct nand_operation op = NAND_OPERATION(instrs); - - return nand_exec_op(chip, &op); - } - - chip->cmdfunc(mtd, cmd, -1, -1); - - return 0; -} - -static int hynix_nand_reg_write_op(struct nand_chip *chip, u8 addr, u8 val) -{ - struct mtd_info *mtd = nand_to_mtd(chip); - u16 column = ((u16)addr << 8) | addr; - - chip->cmdfunc(mtd, NAND_CMD_NONE, column, -1); - chip->write_byte(mtd, val); - - return 0; -} - -static int hynix_nand_setup_read_retry(struct mtd_info *mtd, int retry_mode) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct hynix_nand *hynix = nand_get_manufacturer_data(chip); - const u8 *values; - int i, ret; - - values = hynix->read_retry->values + - (retry_mode * hynix->read_retry->nregs); - - /* Enter 'Set Hynix Parameters' mode */ - ret = hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_SET_PARAMS); - if (ret) - return ret; - - /* - * Configure the NAND in the requested read-retry mode. - * This is done by setting pre-defined values in internal NAND - * registers. - * - * The set of registers is NAND specific, and the values are either - * predefined or extracted from an OTP area on the NAND (values are - * probably tweaked at production in this case). - */ - for (i = 0; i < hynix->read_retry->nregs; i++) { - ret = hynix_nand_reg_write_op(chip, hynix->read_retry->regs[i], - values[i]); - if (ret) - return ret; - } - - /* Apply the new settings. */ - return hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_APPLY_PARAMS); -} - -/** - * hynix_get_majority - get the value that is occurring the most in a given - * set of values - * @in: the array of values to test - * @repeat: the size of the in array - * @out: pointer used to store the output value - * - * This function implements the 'majority check' logic that is supposed to - * overcome the unreliability of MLC NANDs when reading the OTP area storing - * the read-retry parameters. - * - * It's based on a pretty simple assumption: if we repeat the same value - * several times and then take the one that is occurring the most, we should - * find the correct value. - * Let's hope this dummy algorithm prevents us from losing the read-retry - * parameters. - */ -static int hynix_get_majority(const u8 *in, int repeat, u8 *out) -{ - int i, j, half = repeat / 2; - - /* - * We only test the first half of the in array because we must ensure - * that the value is at least occurring repeat / 2 times. - * - * This loop is suboptimal since we may count the occurrences of the - * same value several time, but we are doing that on small sets, which - * makes it acceptable. - */ - for (i = 0; i < half; i++) { - int cnt = 0; - u8 val = in[i]; - - /* Count all values that are matching the one at index i. */ - for (j = i + 1; j < repeat; j++) { - if (in[j] == val) - cnt++; - } - - /* We found a value occurring more than repeat / 2. */ - if (cnt > half) { - *out = val; - return 0; - } - } - - return -EIO; -} - -static int hynix_read_rr_otp(struct nand_chip *chip, - const struct hynix_read_retry_otp *info, - void *buf) -{ - int i, ret; - - ret = nand_reset_op(chip); - if (ret) - return ret; - - ret = hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_SET_PARAMS); - if (ret) - return ret; - - for (i = 0; i < info->nregs; i++) { - ret = hynix_nand_reg_write_op(chip, info->regs[i], - info->values[i]); - if (ret) - return ret; - } - - ret = hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_APPLY_PARAMS); - if (ret) - return ret; - - /* Sequence to enter OTP mode? */ - ret = hynix_nand_cmd_op(chip, 0x17); - if (ret) - return ret; - - ret = hynix_nand_cmd_op(chip, 0x4); - if (ret) - return ret; - - ret = hynix_nand_cmd_op(chip, 0x19); - if (ret) - return ret; - - /* Now read the page */ - ret = nand_read_page_op(chip, info->page, 0, buf, info->size); - if (ret) - return ret; - - /* Put everything back to normal */ - ret = nand_reset_op(chip); - if (ret) - return ret; - - ret = hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_SET_PARAMS); - if (ret) - return ret; - - ret = hynix_nand_reg_write_op(chip, 0x38, 0); - if (ret) - return ret; - - ret = hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_APPLY_PARAMS); - if (ret) - return ret; - - return nand_read_page_op(chip, 0, 0, NULL, 0); -} - -#define NAND_HYNIX_1XNM_RR_COUNT_OFFS 0 -#define NAND_HYNIX_1XNM_RR_REG_COUNT_OFFS 8 -#define NAND_HYNIX_1XNM_RR_SET_OFFS(x, setsize, inv) \ - (16 + ((((x) * 2) + ((inv) ? 1 : 0)) * (setsize))) - -static int hynix_mlc_1xnm_rr_value(const u8 *buf, int nmodes, int nregs, - int mode, int reg, bool inv, u8 *val) -{ - u8 tmp[NAND_HYNIX_1XNM_RR_REPEAT]; - int val_offs = (mode * nregs) + reg; - int set_size = nmodes * nregs; - int i, ret; - - for (i = 0; i < NAND_HYNIX_1XNM_RR_REPEAT; i++) { - int set_offs = NAND_HYNIX_1XNM_RR_SET_OFFS(i, set_size, inv); - - tmp[i] = buf[val_offs + set_offs]; - } - - ret = hynix_get_majority(tmp, NAND_HYNIX_1XNM_RR_REPEAT, val); - if (ret) - return ret; - - if (inv) - *val = ~*val; - - return 0; -} - -static u8 hynix_1xnm_mlc_read_retry_regs[] = { - 0xcc, 0xbf, 0xaa, 0xab, 0xcd, 0xad, 0xae, 0xaf -}; - -static int hynix_mlc_1xnm_rr_init(struct nand_chip *chip, - const struct hynix_read_retry_otp *info) -{ - struct hynix_nand *hynix = nand_get_manufacturer_data(chip); - struct hynix_read_retry *rr = NULL; - int ret, i, j; - u8 nregs, nmodes; - u8 *buf; - - buf = kmalloc(info->size, GFP_KERNEL); - if (!buf) - return -ENOMEM; - - ret = hynix_read_rr_otp(chip, info, buf); - if (ret) - goto out; - - ret = hynix_get_majority(buf, NAND_HYNIX_1XNM_RR_REPEAT, - &nmodes); - if (ret) - goto out; - - ret = hynix_get_majority(buf + NAND_HYNIX_1XNM_RR_REPEAT, - NAND_HYNIX_1XNM_RR_REPEAT, - &nregs); - if (ret) - goto out; - - rr = kzalloc(sizeof(*rr) + (nregs * nmodes), GFP_KERNEL); - if (!rr) { - ret = -ENOMEM; - goto out; - } - - for (i = 0; i < nmodes; i++) { - for (j = 0; j < nregs; j++) { - u8 *val = rr->values + (i * nregs); - - ret = hynix_mlc_1xnm_rr_value(buf, nmodes, nregs, i, j, - false, val); - if (!ret) - continue; - - ret = hynix_mlc_1xnm_rr_value(buf, nmodes, nregs, i, j, - true, val); - if (ret) - goto out; - } - } - - rr->nregs = nregs; - rr->regs = hynix_1xnm_mlc_read_retry_regs; - hynix->read_retry = rr; - chip->setup_read_retry = hynix_nand_setup_read_retry; - chip->read_retries = nmodes; - -out: - kfree(buf); - - if (ret) - kfree(rr); - - return ret; -} - -static const u8 hynix_mlc_1xnm_rr_otp_regs[] = { 0x38 }; -static const u8 hynix_mlc_1xnm_rr_otp_values[] = { 0x52 }; - -static const struct hynix_read_retry_otp hynix_mlc_1xnm_rr_otps[] = { - { - .nregs = ARRAY_SIZE(hynix_mlc_1xnm_rr_otp_regs), - .regs = hynix_mlc_1xnm_rr_otp_regs, - .values = hynix_mlc_1xnm_rr_otp_values, - .page = 0x21f, - .size = 784 - }, - { - .nregs = ARRAY_SIZE(hynix_mlc_1xnm_rr_otp_regs), - .regs = hynix_mlc_1xnm_rr_otp_regs, - .values = hynix_mlc_1xnm_rr_otp_values, - .page = 0x200, - .size = 528, - }, -}; - -static int hynix_nand_rr_init(struct nand_chip *chip) -{ - int i, ret = 0; - bool valid_jedecid; - - valid_jedecid = hynix_nand_has_valid_jedecid(chip); - - /* - * We only support read-retry for 1xnm NANDs, and those NANDs all - * expose a valid JEDEC ID. - */ - if (valid_jedecid) { - u8 nand_tech = chip->id.data[5] >> 4; - - /* 1xnm technology */ - if (nand_tech == 4) { - for (i = 0; i < ARRAY_SIZE(hynix_mlc_1xnm_rr_otps); - i++) { - /* - * FIXME: Hynix recommend to copy the - * read-retry OTP area into a normal page. - */ - ret = hynix_mlc_1xnm_rr_init(chip, - hynix_mlc_1xnm_rr_otps); - if (!ret) - break; - } - } - } - - if (ret) - pr_warn("failed to initialize read-retry infrastructure"); - - return 0; -} - -static void hynix_nand_extract_oobsize(struct nand_chip *chip, - bool valid_jedecid) -{ - struct mtd_info *mtd = nand_to_mtd(chip); - u8 oobsize; - - oobsize = ((chip->id.data[3] >> 2) & 0x3) | - ((chip->id.data[3] >> 4) & 0x4); - - if (valid_jedecid) { - switch (oobsize) { - case 0: - mtd->oobsize = 2048; - break; - case 1: - mtd->oobsize = 1664; - break; - case 2: - mtd->oobsize = 1024; - break; - case 3: - mtd->oobsize = 640; - break; - default: - /* - * We should never reach this case, but if that - * happens, this probably means Hynix decided to use - * a different extended ID format, and we should find - * a way to support it. - */ - WARN(1, "Invalid OOB size"); - break; - } - } else { - switch (oobsize) { - case 0: - mtd->oobsize = 128; - break; - case 1: - mtd->oobsize = 224; - break; - case 2: - mtd->oobsize = 448; - break; - case 3: - mtd->oobsize = 64; - break; - case 4: - mtd->oobsize = 32; - break; - case 5: - mtd->oobsize = 16; - break; - case 6: - mtd->oobsize = 640; - break; - default: - /* - * We should never reach this case, but if that - * happens, this probably means Hynix decided to use - * a different extended ID format, and we should find - * a way to support it. - */ - WARN(1, "Invalid OOB size"); - break; - } - } -} - -static void hynix_nand_extract_ecc_requirements(struct nand_chip *chip, - bool valid_jedecid) -{ - u8 ecc_level = (chip->id.data[4] >> 4) & 0x7; - - if (valid_jedecid) { - /* Reference: H27UCG8T2E datasheet */ - chip->ecc_step_ds = 1024; - - switch (ecc_level) { - case 0: - chip->ecc_step_ds = 0; - chip->ecc_strength_ds = 0; - break; - case 1: - chip->ecc_strength_ds = 4; - break; - case 2: - chip->ecc_strength_ds = 24; - break; - case 3: - chip->ecc_strength_ds = 32; - break; - case 4: - chip->ecc_strength_ds = 40; - break; - case 5: - chip->ecc_strength_ds = 50; - break; - case 6: - chip->ecc_strength_ds = 60; - break; - default: - /* - * We should never reach this case, but if that - * happens, this probably means Hynix decided to use - * a different extended ID format, and we should find - * a way to support it. - */ - WARN(1, "Invalid ECC requirements"); - } - } else { - /* - * The ECC requirements field meaning depends on the - * NAND technology. - */ - u8 nand_tech = chip->id.data[5] & 0x7; - - if (nand_tech < 3) { - /* > 26nm, reference: H27UBG8T2A datasheet */ - if (ecc_level < 5) { - chip->ecc_step_ds = 512; - chip->ecc_strength_ds = 1 << ecc_level; - } else if (ecc_level < 7) { - if (ecc_level == 5) - chip->ecc_step_ds = 2048; - else - chip->ecc_step_ds = 1024; - chip->ecc_strength_ds = 24; - } else { - /* - * We should never reach this case, but if that - * happens, this probably means Hynix decided - * to use a different extended ID format, and - * we should find a way to support it. - */ - WARN(1, "Invalid ECC requirements"); - } - } else { - /* <= 26nm, reference: H27UBG8T2B datasheet */ - if (!ecc_level) { - chip->ecc_step_ds = 0; - chip->ecc_strength_ds = 0; - } else if (ecc_level < 5) { - chip->ecc_step_ds = 512; - chip->ecc_strength_ds = 1 << (ecc_level - 1); - } else { - chip->ecc_step_ds = 1024; - chip->ecc_strength_ds = 24 + - (8 * (ecc_level - 5)); - } - } - } -} - -static void hynix_nand_extract_scrambling_requirements(struct nand_chip *chip, - bool valid_jedecid) -{ - u8 nand_tech; - - /* We need scrambling on all TLC NANDs*/ - if (chip->bits_per_cell > 2) - chip->options |= NAND_NEED_SCRAMBLING; - - /* And on MLC NANDs with sub-3xnm process */ - if (valid_jedecid) { - nand_tech = chip->id.data[5] >> 4; - - /* < 3xnm */ - if (nand_tech > 0) - chip->options |= NAND_NEED_SCRAMBLING; - } else { - nand_tech = chip->id.data[5] & 0x7; - - /* < 32nm */ - if (nand_tech > 2) - chip->options |= NAND_NEED_SCRAMBLING; - } -} - -static void hynix_nand_decode_id(struct nand_chip *chip) -{ - struct mtd_info *mtd = nand_to_mtd(chip); - bool valid_jedecid; - u8 tmp; - - /* - * Exclude all SLC NANDs from this advanced detection scheme. - * According to the ranges defined in several datasheets, it might - * appear that even SLC NANDs could fall in this extended ID scheme. - * If that the case rework the test to let SLC NANDs go through the - * detection process. - */ - if (chip->id.len < 6 || nand_is_slc(chip)) { - nand_decode_ext_id(chip); - return; - } - - /* Extract pagesize */ - mtd->writesize = 2048 << (chip->id.data[3] & 0x03); - - tmp = (chip->id.data[3] >> 4) & 0x3; - /* - * When bit7 is set that means we start counting at 1MiB, otherwise - * we start counting at 128KiB and shift this value the content of - * ID[3][4:5]. - * The only exception is when ID[3][4:5] == 3 and ID[3][7] == 0, in - * this case the erasesize is set to 768KiB. - */ - if (chip->id.data[3] & 0x80) - mtd->erasesize = SZ_1M << tmp; - else if (tmp == 3) - mtd->erasesize = SZ_512K + SZ_256K; - else - mtd->erasesize = SZ_128K << tmp; - - /* - * Modern Toggle DDR NANDs have a valid JEDECID even though they are - * not exposing a valid JEDEC parameter table. - * These NANDs use a different NAND ID scheme. - */ - valid_jedecid = hynix_nand_has_valid_jedecid(chip); - - hynix_nand_extract_oobsize(chip, valid_jedecid); - hynix_nand_extract_ecc_requirements(chip, valid_jedecid); - hynix_nand_extract_scrambling_requirements(chip, valid_jedecid); -} - -static void hynix_nand_cleanup(struct nand_chip *chip) -{ - struct hynix_nand *hynix = nand_get_manufacturer_data(chip); - - if (!hynix) - return; - - kfree(hynix->read_retry); - kfree(hynix); - nand_set_manufacturer_data(chip, NULL); -} - -static int hynix_nand_init(struct nand_chip *chip) -{ - struct hynix_nand *hynix; - int ret; - - if (!nand_is_slc(chip)) - chip->bbt_options |= NAND_BBT_SCANLASTPAGE; - else - chip->bbt_options |= NAND_BBT_SCAN2NDPAGE; - - hynix = kzalloc(sizeof(*hynix), GFP_KERNEL); - if (!hynix) - return -ENOMEM; - - nand_set_manufacturer_data(chip, hynix); - - ret = hynix_nand_rr_init(chip); - if (ret) - hynix_nand_cleanup(chip); - - return ret; -} - -const struct nand_manufacturer_ops hynix_nand_manuf_ops = { - .detect = hynix_nand_decode_id, - .init = hynix_nand_init, - .cleanup = hynix_nand_cleanup, -}; diff --git a/drivers/mtd/nand/nand_ids.c b/drivers/mtd/nand/nand_ids.c deleted file mode 100644 index 5423c3bb388e..000000000000 --- a/drivers/mtd/nand/nand_ids.c +++ /dev/null @@ -1,207 +0,0 @@ -/* - * Copyright (C) 2002 Thomas Gleixner (tglx@linutronix.de) - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License version 2 as - * published by the Free Software Foundation. - * - */ -#include -#include - -#define LP_OPTIONS 0 -#define LP_OPTIONS16 (LP_OPTIONS | NAND_BUSWIDTH_16) - -#define SP_OPTIONS NAND_NEED_READRDY -#define SP_OPTIONS16 (SP_OPTIONS | NAND_BUSWIDTH_16) - -/* - * The chip ID list: - * name, device ID, page size, chip size in MiB, eraseblock size, options - * - * If page size and eraseblock size are 0, the sizes are taken from the - * extended chip ID. - */ -struct nand_flash_dev nand_flash_ids[] = { - /* - * Some incompatible NAND chips share device ID's and so must be - * listed by full ID. We list them first so that we can easily identify - * the most specific match. - */ - {"TC58NVG0S3E 1G 3.3V 8-bit", - { .id = {0x98, 0xd1, 0x90, 0x15, 0x76, 0x14, 0x01, 0x00} }, - SZ_2K, SZ_128, SZ_128K, 0, 8, 64, NAND_ECC_INFO(1, SZ_512), - 2 }, - {"TC58NVG2S0F 4G 3.3V 8-bit", - { .id = {0x98, 0xdc, 0x90, 0x26, 0x76, 0x15, 0x01, 0x08} }, - SZ_4K, SZ_512, SZ_256K, 0, 8, 224, NAND_ECC_INFO(4, SZ_512) }, - {"TC58NVG2S0H 4G 3.3V 8-bit", - { .id = {0x98, 0xdc, 0x90, 0x26, 0x76, 0x16, 0x08, 0x00} }, - SZ_4K, SZ_512, SZ_256K, 0, 8, 256, NAND_ECC_INFO(8, SZ_512) }, - {"TC58NVG3S0F 8G 3.3V 8-bit", - { .id = {0x98, 0xd3, 0x90, 0x26, 0x76, 0x15, 0x02, 0x08} }, - SZ_4K, SZ_1K, SZ_256K, 0, 8, 232, NAND_ECC_INFO(4, SZ_512) }, - {"TC58NVG5D2 32G 3.3V 8-bit", - { .id = {0x98, 0xd7, 0x94, 0x32, 0x76, 0x56, 0x09, 0x00} }, - SZ_8K, SZ_4K, SZ_1M, 0, 8, 640, NAND_ECC_INFO(40, SZ_1K) }, - {"TC58NVG6D2 64G 3.3V 8-bit", - { .id = {0x98, 0xde, 0x94, 0x82, 0x76, 0x56, 0x04, 0x20} }, - SZ_8K, SZ_8K, SZ_2M, 0, 8, 640, NAND_ECC_INFO(40, SZ_1K) }, - {"SDTNRGAMA 64G 3.3V 8-bit", - { .id = {0x45, 0xde, 0x94, 0x93, 0x76, 0x50} }, - SZ_16K, SZ_8K, SZ_4M, 0, 6, 1280, NAND_ECC_INFO(40, SZ_1K) }, - {"H27UCG8T2ATR-BC 64G 3.3V 8-bit", - { .id = {0xad, 0xde, 0x94, 0xda, 0x74, 0xc4} }, - SZ_8K, SZ_8K, SZ_2M, NAND_NEED_SCRAMBLING, 6, 640, - NAND_ECC_INFO(40, SZ_1K), 4 }, - - LEGACY_ID_NAND("NAND 4MiB 5V 8-bit", 0x6B, 4, SZ_8K, SP_OPTIONS), - LEGACY_ID_NAND("NAND 4MiB 3,3V 8-bit", 0xE3, 4, SZ_8K, SP_OPTIONS), - LEGACY_ID_NAND("NAND 4MiB 3,3V 8-bit", 0xE5, 4, SZ_8K, SP_OPTIONS), - LEGACY_ID_NAND("NAND 8MiB 3,3V 8-bit", 0xD6, 8, SZ_8K, SP_OPTIONS), - LEGACY_ID_NAND("NAND 8MiB 3,3V 8-bit", 0xE6, 8, SZ_8K, SP_OPTIONS), - - LEGACY_ID_NAND("NAND 16MiB 1,8V 8-bit", 0x33, 16, SZ_16K, SP_OPTIONS), - LEGACY_ID_NAND("NAND 16MiB 3,3V 8-bit", 0x73, 16, SZ_16K, SP_OPTIONS), - LEGACY_ID_NAND("NAND 16MiB 1,8V 16-bit", 0x43, 16, SZ_16K, SP_OPTIONS16), - LEGACY_ID_NAND("NAND 16MiB 3,3V 16-bit", 0x53, 16, SZ_16K, SP_OPTIONS16), - - LEGACY_ID_NAND("NAND 32MiB 1,8V 8-bit", 0x35, 32, SZ_16K, SP_OPTIONS), - LEGACY_ID_NAND("NAND 32MiB 3,3V 8-bit", 0x75, 32, SZ_16K, SP_OPTIONS), - LEGACY_ID_NAND("NAND 32MiB 1,8V 16-bit", 0x45, 32, SZ_16K, SP_OPTIONS16), - LEGACY_ID_NAND("NAND 32MiB 3,3V 16-bit", 0x55, 32, SZ_16K, SP_OPTIONS16), - - LEGACY_ID_NAND("NAND 64MiB 1,8V 8-bit", 0x36, 64, SZ_16K, SP_OPTIONS), - LEGACY_ID_NAND("NAND 64MiB 3,3V 8-bit", 0x76, 64, SZ_16K, SP_OPTIONS), - LEGACY_ID_NAND("NAND 64MiB 1,8V 16-bit", 0x46, 64, SZ_16K, SP_OPTIONS16), - LEGACY_ID_NAND("NAND 64MiB 3,3V 16-bit", 0x56, 64, SZ_16K, SP_OPTIONS16), - - LEGACY_ID_NAND("NAND 128MiB 1,8V 8-bit", 0x78, 128, SZ_16K, SP_OPTIONS), - LEGACY_ID_NAND("NAND 128MiB 1,8V 8-bit", 0x39, 128, SZ_16K, SP_OPTIONS), - LEGACY_ID_NAND("NAND 128MiB 3,3V 8-bit", 0x79, 128, SZ_16K, SP_OPTIONS), - LEGACY_ID_NAND("NAND 128MiB 1,8V 16-bit", 0x72, 128, SZ_16K, SP_OPTIONS16), - LEGACY_ID_NAND("NAND 128MiB 1,8V 16-bit", 0x49, 128, SZ_16K, SP_OPTIONS16), - LEGACY_ID_NAND("NAND 128MiB 3,3V 16-bit", 0x74, 128, SZ_16K, SP_OPTIONS16), - LEGACY_ID_NAND("NAND 128MiB 3,3V 16-bit", 0x59, 128, SZ_16K, SP_OPTIONS16), - - LEGACY_ID_NAND("NAND 256MiB 3,3V 8-bit", 0x71, 256, SZ_16K, SP_OPTIONS), - - /* - * These are the new chips with large page size. Their page size and - * eraseblock size are determined from the extended ID bytes. - */ - - /* 512 Megabit */ - EXTENDED_ID_NAND("NAND 64MiB 1,8V 8-bit", 0xA2, 64, LP_OPTIONS), - EXTENDED_ID_NAND("NAND 64MiB 1,8V 8-bit", 0xA0, 64, LP_OPTIONS), - EXTENDED_ID_NAND("NAND 64MiB 3,3V 8-bit", 0xF2, 64, LP_OPTIONS), - EXTENDED_ID_NAND("NAND 64MiB 3,3V 8-bit", 0xD0, 64, LP_OPTIONS), - EXTENDED_ID_NAND("NAND 64MiB 3,3V 8-bit", 0xF0, 64, LP_OPTIONS), - EXTENDED_ID_NAND("NAND 64MiB 1,8V 16-bit", 0xB2, 64, LP_OPTIONS16), - EXTENDED_ID_NAND("NAND 64MiB 1,8V 16-bit", 0xB0, 64, LP_OPTIONS16), - EXTENDED_ID_NAND("NAND 64MiB 3,3V 16-bit", 0xC2, 64, LP_OPTIONS16), - EXTENDED_ID_NAND("NAND 64MiB 3,3V 16-bit", 0xC0, 64, LP_OPTIONS16), - - /* 1 Gigabit */ - EXTENDED_ID_NAND("NAND 128MiB 1,8V 8-bit", 0xA1, 128, LP_OPTIONS), - EXTENDED_ID_NAND("NAND 128MiB 3,3V 8-bit", 0xF1, 128, LP_OPTIONS), - EXTENDED_ID_NAND("NAND 128MiB 3,3V 8-bit", 0xD1, 128, LP_OPTIONS), - EXTENDED_ID_NAND("NAND 128MiB 1,8V 16-bit", 0xB1, 128, LP_OPTIONS16), - EXTENDED_ID_NAND("NAND 128MiB 3,3V 16-bit", 0xC1, 128, LP_OPTIONS16), - EXTENDED_ID_NAND("NAND 128MiB 1,8V 16-bit", 0xAD, 128, LP_OPTIONS16), - - /* 2 Gigabit */ - EXTENDED_ID_NAND("NAND 256MiB 1,8V 8-bit", 0xAA, 256, LP_OPTIONS), - EXTENDED_ID_NAND("NAND 256MiB 3,3V 8-bit", 0xDA, 256, LP_OPTIONS), - EXTENDED_ID_NAND("NAND 256MiB 1,8V 16-bit", 0xBA, 256, LP_OPTIONS16), - EXTENDED_ID_NAND("NAND 256MiB 3,3V 16-bit", 0xCA, 256, LP_OPTIONS16), - - /* 4 Gigabit */ - EXTENDED_ID_NAND("NAND 512MiB 1,8V 8-bit", 0xAC, 512, LP_OPTIONS), - EXTENDED_ID_NAND("NAND 512MiB 3,3V 8-bit", 0xDC, 512, LP_OPTIONS), - EXTENDED_ID_NAND("NAND 512MiB 1,8V 16-bit", 0xBC, 512, LP_OPTIONS16), - EXTENDED_ID_NAND("NAND 512MiB 3,3V 16-bit", 0xCC, 512, LP_OPTIONS16), - - /* 8 Gigabit */ - EXTENDED_ID_NAND("NAND 1GiB 1,8V 8-bit", 0xA3, 1024, LP_OPTIONS), - EXTENDED_ID_NAND("NAND 1GiB 3,3V 8-bit", 0xD3, 1024, LP_OPTIONS), - EXTENDED_ID_NAND("NAND 1GiB 1,8V 16-bit", 0xB3, 1024, LP_OPTIONS16), - EXTENDED_ID_NAND("NAND 1GiB 3,3V 16-bit", 0xC3, 1024, LP_OPTIONS16), - - /* 16 Gigabit */ - EXTENDED_ID_NAND("NAND 2GiB 1,8V 8-bit", 0xA5, 2048, LP_OPTIONS), - EXTENDED_ID_NAND("NAND 2GiB 3,3V 8-bit", 0xD5, 2048, LP_OPTIONS), - EXTENDED_ID_NAND("NAND 2GiB 1,8V 16-bit", 0xB5, 2048, LP_OPTIONS16), - EXTENDED_ID_NAND("NAND 2GiB 3,3V 16-bit", 0xC5, 2048, LP_OPTIONS16), - - /* 32 Gigabit */ - EXTENDED_ID_NAND("NAND 4GiB 1,8V 8-bit", 0xA7, 4096, LP_OPTIONS), - EXTENDED_ID_NAND("NAND 4GiB 3,3V 8-bit", 0xD7, 4096, LP_OPTIONS), - EXTENDED_ID_NAND("NAND 4GiB 1,8V 16-bit", 0xB7, 4096, LP_OPTIONS16), - EXTENDED_ID_NAND("NAND 4GiB 3,3V 16-bit", 0xC7, 4096, LP_OPTIONS16), - - /* 64 Gigabit */ - EXTENDED_ID_NAND("NAND 8GiB 1,8V 8-bit", 0xAE, 8192, LP_OPTIONS), - EXTENDED_ID_NAND("NAND 8GiB 3,3V 8-bit", 0xDE, 8192, LP_OPTIONS), - EXTENDED_ID_NAND("NAND 8GiB 1,8V 16-bit", 0xBE, 8192, LP_OPTIONS16), - EXTENDED_ID_NAND("NAND 8GiB 3,3V 16-bit", 0xCE, 8192, LP_OPTIONS16), - - /* 128 Gigabit */ - EXTENDED_ID_NAND("NAND 16GiB 1,8V 8-bit", 0x1A, 16384, LP_OPTIONS), - EXTENDED_ID_NAND("NAND 16GiB 3,3V 8-bit", 0x3A, 16384, LP_OPTIONS), - EXTENDED_ID_NAND("NAND 16GiB 1,8V 16-bit", 0x2A, 16384, LP_OPTIONS16), - EXTENDED_ID_NAND("NAND 16GiB 3,3V 16-bit", 0x4A, 16384, LP_OPTIONS16), - - /* 256 Gigabit */ - EXTENDED_ID_NAND("NAND 32GiB 1,8V 8-bit", 0x1C, 32768, LP_OPTIONS), - EXTENDED_ID_NAND("NAND 32GiB 3,3V 8-bit", 0x3C, 32768, LP_OPTIONS), - EXTENDED_ID_NAND("NAND 32GiB 1,8V 16-bit", 0x2C, 32768, LP_OPTIONS16), - EXTENDED_ID_NAND("NAND 32GiB 3,3V 16-bit", 0x4C, 32768, LP_OPTIONS16), - - /* 512 Gigabit */ - EXTENDED_ID_NAND("NAND 64GiB 1,8V 8-bit", 0x1E, 65536, LP_OPTIONS), - EXTENDED_ID_NAND("NAND 64GiB 3,3V 8-bit", 0x3E, 65536, LP_OPTIONS), - EXTENDED_ID_NAND("NAND 64GiB 1,8V 16-bit", 0x2E, 65536, LP_OPTIONS16), - EXTENDED_ID_NAND("NAND 64GiB 3,3V 16-bit", 0x4E, 65536, LP_OPTIONS16), - - {NULL} -}; - -/* Manufacturer IDs */ -static const struct nand_manufacturer nand_manufacturers[] = { - {NAND_MFR_TOSHIBA, "Toshiba", &toshiba_nand_manuf_ops}, - {NAND_MFR_ESMT, "ESMT"}, - {NAND_MFR_SAMSUNG, "Samsung", &samsung_nand_manuf_ops}, - {NAND_MFR_FUJITSU, "Fujitsu"}, - {NAND_MFR_NATIONAL, "National"}, - {NAND_MFR_RENESAS, "Renesas"}, - {NAND_MFR_STMICRO, "ST Micro"}, - {NAND_MFR_HYNIX, "Hynix", &hynix_nand_manuf_ops}, - {NAND_MFR_MICRON, "Micron", µn_nand_manuf_ops}, - {NAND_MFR_AMD, "AMD/Spansion", &amd_nand_manuf_ops}, - {NAND_MFR_MACRONIX, "Macronix", ¯onix_nand_manuf_ops}, - {NAND_MFR_EON, "Eon"}, - {NAND_MFR_SANDISK, "SanDisk"}, - {NAND_MFR_INTEL, "Intel"}, - {NAND_MFR_ATO, "ATO"}, - {NAND_MFR_WINBOND, "Winbond"}, -}; - -/** - * nand_get_manufacturer - Get manufacturer information from the manufacturer - * ID - * @id: manufacturer ID - * - * Returns a pointer a nand_manufacturer object if the manufacturer is defined - * in the NAND manufacturers database, NULL otherwise. - */ -const struct nand_manufacturer *nand_get_manufacturer(u8 id) -{ - int i; - - for (i = 0; i < ARRAY_SIZE(nand_manufacturers); i++) - if (nand_manufacturers[i].id == id) - return &nand_manufacturers[i]; - - return NULL; -} diff --git a/drivers/mtd/nand/nand_macronix.c b/drivers/mtd/nand/nand_macronix.c deleted file mode 100644 index d290ff2a6d2f..000000000000 --- a/drivers/mtd/nand/nand_macronix.c +++ /dev/null @@ -1,30 +0,0 @@ -/* - * Copyright (C) 2017 Free Electrons - * Copyright (C) 2017 NextThing Co - * - * Author: Boris Brezillon - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation; either version 2 of the License, or - * (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - */ - -#include - -static int macronix_nand_init(struct nand_chip *chip) -{ - if (nand_is_slc(chip)) - chip->bbt_options |= NAND_BBT_SCAN2NDPAGE; - - return 0; -} - -const struct nand_manufacturer_ops macronix_nand_manuf_ops = { - .init = macronix_nand_init, -}; diff --git a/drivers/mtd/nand/nand_micron.c b/drivers/mtd/nand/nand_micron.c deleted file mode 100644 index 02e109ae73f1..000000000000 --- a/drivers/mtd/nand/nand_micron.c +++ /dev/null @@ -1,289 +0,0 @@ -/* - * Copyright (C) 2017 Free Electrons - * Copyright (C) 2017 NextThing Co - * - * Author: Boris Brezillon - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation; either version 2 of the License, or - * (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - */ - -#include - -/* - * Special Micron status bit that indicates when the block has been - * corrected by on-die ECC and should be rewritten - */ -#define NAND_STATUS_WRITE_RECOMMENDED BIT(3) - -struct nand_onfi_vendor_micron { - u8 two_plane_read; - u8 read_cache; - u8 read_unique_id; - u8 dq_imped; - u8 dq_imped_num_settings; - u8 dq_imped_feat_addr; - u8 rb_pulldown_strength; - u8 rb_pulldown_strength_feat_addr; - u8 rb_pulldown_strength_num_settings; - u8 otp_mode; - u8 otp_page_start; - u8 otp_data_prot_addr; - u8 otp_num_pages; - u8 otp_feat_addr; - u8 read_retry_options; - u8 reserved[72]; - u8 param_revision; -} __packed; - -static int micron_nand_setup_read_retry(struct mtd_info *mtd, int retry_mode) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - u8 feature[ONFI_SUBFEATURE_PARAM_LEN] = {retry_mode}; - - return chip->onfi_set_features(mtd, chip, ONFI_FEATURE_ADDR_READ_RETRY, - feature); -} - -/* - * Configure chip properties from Micron vendor-specific ONFI table - */ -static int micron_nand_onfi_init(struct nand_chip *chip) -{ - struct nand_onfi_params *p = &chip->onfi_params; - struct nand_onfi_vendor_micron *micron = (void *)p->vendor; - - if (!chip->onfi_version) - return 0; - - if (le16_to_cpu(p->vendor_revision) < 1) - return 0; - - chip->read_retries = micron->read_retry_options; - chip->setup_read_retry = micron_nand_setup_read_retry; - - return 0; -} - -static int micron_nand_on_die_ooblayout_ecc(struct mtd_info *mtd, int section, - struct mtd_oob_region *oobregion) -{ - if (section >= 4) - return -ERANGE; - - oobregion->offset = (section * 16) + 8; - oobregion->length = 8; - - return 0; -} - -static int micron_nand_on_die_ooblayout_free(struct mtd_info *mtd, int section, - struct mtd_oob_region *oobregion) -{ - if (section >= 4) - return -ERANGE; - - oobregion->offset = (section * 16) + 2; - oobregion->length = 6; - - return 0; -} - -static const struct mtd_ooblayout_ops micron_nand_on_die_ooblayout_ops = { - .ecc = micron_nand_on_die_ooblayout_ecc, - .free = micron_nand_on_die_ooblayout_free, -}; - -static int micron_nand_on_die_ecc_setup(struct nand_chip *chip, bool enable) -{ - u8 feature[ONFI_SUBFEATURE_PARAM_LEN] = { 0, }; - - if (enable) - feature[0] |= ONFI_FEATURE_ON_DIE_ECC_EN; - - return chip->onfi_set_features(nand_to_mtd(chip), chip, - ONFI_FEATURE_ON_DIE_ECC, feature); -} - -static int -micron_nand_read_page_on_die_ecc(struct mtd_info *mtd, struct nand_chip *chip, - uint8_t *buf, int oob_required, - int page) -{ - u8 status; - int ret, max_bitflips = 0; - - ret = micron_nand_on_die_ecc_setup(chip, true); - if (ret) - return ret; - - ret = nand_read_page_op(chip, page, 0, NULL, 0); - if (ret) - goto out; - - ret = nand_status_op(chip, &status); - if (ret) - goto out; - - ret = nand_exit_status_op(chip); - if (ret) - goto out; - - if (status & NAND_STATUS_FAIL) - mtd->ecc_stats.failed++; - - /* - * The internal ECC doesn't tell us the number of bitflips - * that have been corrected, but tells us if it recommends to - * rewrite the block. If it's the case, then we pretend we had - * a number of bitflips equal to the ECC strength, which will - * hint the NAND core to rewrite the block. - */ - else if (status & NAND_STATUS_WRITE_RECOMMENDED) - max_bitflips = chip->ecc.strength; - - ret = nand_read_data_op(chip, buf, mtd->writesize, false); - if (!ret && oob_required) - ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, - false); - -out: - micron_nand_on_die_ecc_setup(chip, false); - - return ret ? ret : max_bitflips; -} - -static int -micron_nand_write_page_on_die_ecc(struct mtd_info *mtd, struct nand_chip *chip, - const uint8_t *buf, int oob_required, - int page) -{ - int ret; - - ret = micron_nand_on_die_ecc_setup(chip, true); - if (ret) - return ret; - - ret = nand_write_page_raw(mtd, chip, buf, oob_required, page); - micron_nand_on_die_ecc_setup(chip, false); - - return ret; -} - -enum { - /* The NAND flash doesn't support on-die ECC */ - MICRON_ON_DIE_UNSUPPORTED, - - /* - * The NAND flash supports on-die ECC and it can be - * enabled/disabled by a set features command. - */ - MICRON_ON_DIE_SUPPORTED, - - /* - * The NAND flash supports on-die ECC, and it cannot be - * disabled. - */ - MICRON_ON_DIE_MANDATORY, -}; - -/* - * Try to detect if the NAND support on-die ECC. To do this, we enable - * the feature, and read back if it has been enabled as expected. We - * also check if it can be disabled, because some Micron NANDs do not - * allow disabling the on-die ECC and we don't support such NANDs for - * now. - * - * This function also has the side effect of disabling on-die ECC if - * it had been left enabled by the firmware/bootloader. - */ -static int micron_supports_on_die_ecc(struct nand_chip *chip) -{ - u8 feature[ONFI_SUBFEATURE_PARAM_LEN] = { 0, }; - int ret; - - if (chip->onfi_version == 0) - return MICRON_ON_DIE_UNSUPPORTED; - - if (chip->bits_per_cell != 1) - return MICRON_ON_DIE_UNSUPPORTED; - - ret = micron_nand_on_die_ecc_setup(chip, true); - if (ret) - return MICRON_ON_DIE_UNSUPPORTED; - - chip->onfi_get_features(nand_to_mtd(chip), chip, - ONFI_FEATURE_ON_DIE_ECC, feature); - if ((feature[0] & ONFI_FEATURE_ON_DIE_ECC_EN) == 0) - return MICRON_ON_DIE_UNSUPPORTED; - - ret = micron_nand_on_die_ecc_setup(chip, false); - if (ret) - return MICRON_ON_DIE_UNSUPPORTED; - - chip->onfi_get_features(nand_to_mtd(chip), chip, - ONFI_FEATURE_ON_DIE_ECC, feature); - if (feature[0] & ONFI_FEATURE_ON_DIE_ECC_EN) - return MICRON_ON_DIE_MANDATORY; - - /* - * Some Micron NANDs have an on-die ECC of 4/512, some other - * 8/512. We only support the former. - */ - if (chip->onfi_params.ecc_bits != 4) - return MICRON_ON_DIE_UNSUPPORTED; - - return MICRON_ON_DIE_SUPPORTED; -} - -static int micron_nand_init(struct nand_chip *chip) -{ - struct mtd_info *mtd = nand_to_mtd(chip); - int ondie; - int ret; - - ret = micron_nand_onfi_init(chip); - if (ret) - return ret; - - if (mtd->writesize == 2048) - chip->bbt_options |= NAND_BBT_SCAN2NDPAGE; - - ondie = micron_supports_on_die_ecc(chip); - - if (ondie == MICRON_ON_DIE_MANDATORY) { - pr_err("On-die ECC forcefully enabled, not supported\n"); - return -EINVAL; - } - - if (chip->ecc.mode == NAND_ECC_ON_DIE) { - if (ondie == MICRON_ON_DIE_UNSUPPORTED) { - pr_err("On-die ECC selected but not supported\n"); - return -EINVAL; - } - - chip->ecc.bytes = 8; - chip->ecc.size = 512; - chip->ecc.strength = 4; - chip->ecc.algo = NAND_ECC_BCH; - chip->ecc.read_page = micron_nand_read_page_on_die_ecc; - chip->ecc.write_page = micron_nand_write_page_on_die_ecc; - chip->ecc.read_page_raw = nand_read_page_raw; - chip->ecc.write_page_raw = nand_write_page_raw; - - mtd_set_ooblayout(mtd, µn_nand_on_die_ooblayout_ops); - } - - return 0; -} - -const struct nand_manufacturer_ops micron_nand_manuf_ops = { - .init = micron_nand_init, -}; diff --git a/drivers/mtd/nand/nand_samsung.c b/drivers/mtd/nand/nand_samsung.c deleted file mode 100644 index ef022f62f74c..000000000000 --- a/drivers/mtd/nand/nand_samsung.c +++ /dev/null @@ -1,134 +0,0 @@ -/* - * Copyright (C) 2017 Free Electrons - * Copyright (C) 2017 NextThing Co - * - * Author: Boris Brezillon - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation; either version 2 of the License, or - * (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - */ - -#include - -static void samsung_nand_decode_id(struct nand_chip *chip) -{ - struct mtd_info *mtd = nand_to_mtd(chip); - - /* New Samsung (6 byte ID): Samsung K9GAG08U0F (p.44) */ - if (chip->id.len == 6 && !nand_is_slc(chip) && - chip->id.data[5] != 0x00) { - u8 extid = chip->id.data[3]; - - /* Get pagesize */ - mtd->writesize = 2048 << (extid & 0x03); - - extid >>= 2; - - /* Get oobsize */ - switch (((extid >> 2) & 0x4) | (extid & 0x3)) { - case 1: - mtd->oobsize = 128; - break; - case 2: - mtd->oobsize = 218; - break; - case 3: - mtd->oobsize = 400; - break; - case 4: - mtd->oobsize = 436; - break; - case 5: - mtd->oobsize = 512; - break; - case 6: - mtd->oobsize = 640; - break; - default: - /* - * We should never reach this case, but if that - * happens, this probably means Samsung decided to use - * a different extended ID format, and we should find - * a way to support it. - */ - WARN(1, "Invalid OOB size value"); - break; - } - - /* Get blocksize */ - extid >>= 2; - mtd->erasesize = (128 * 1024) << - (((extid >> 1) & 0x04) | (extid & 0x03)); - - /* Extract ECC requirements from 5th id byte*/ - extid = (chip->id.data[4] >> 4) & 0x07; - if (extid < 5) { - chip->ecc_step_ds = 512; - chip->ecc_strength_ds = 1 << extid; - } else { - chip->ecc_step_ds = 1024; - switch (extid) { - case 5: - chip->ecc_strength_ds = 24; - break; - case 6: - chip->ecc_strength_ds = 40; - break; - case 7: - chip->ecc_strength_ds = 60; - break; - default: - WARN(1, "Could not decode ECC info"); - chip->ecc_step_ds = 0; - } - } - } else { - nand_decode_ext_id(chip); - - if (nand_is_slc(chip)) { - switch (chip->id.data[1]) { - /* K9F4G08U0D-S[I|C]B0(T00) */ - case 0xDC: - chip->ecc_step_ds = 512; - chip->ecc_strength_ds = 1; - break; - - /* K9F1G08U0E 21nm chips do not support subpage write */ - case 0xF1: - if (chip->id.len > 4 && - (chip->id.data[4] & GENMASK(1, 0)) == 0x1) - chip->options |= NAND_NO_SUBPAGE_WRITE; - break; - default: - break; - } - } - } -} - -static int samsung_nand_init(struct nand_chip *chip) -{ - struct mtd_info *mtd = nand_to_mtd(chip); - - if (mtd->writesize > 512) - chip->options |= NAND_SAMSUNG_LP_OPTIONS; - - if (!nand_is_slc(chip)) - chip->bbt_options |= NAND_BBT_SCANLASTPAGE; - else - chip->bbt_options |= NAND_BBT_SCAN2NDPAGE; - - return 0; -} - -const struct nand_manufacturer_ops samsung_nand_manuf_ops = { - .detect = samsung_nand_decode_id, - .init = samsung_nand_init, -}; diff --git a/drivers/mtd/nand/nand_timings.c b/drivers/mtd/nand/nand_timings.c deleted file mode 100644 index 9400d039ddbd..000000000000 --- a/drivers/mtd/nand/nand_timings.c +++ /dev/null @@ -1,324 +0,0 @@ -/* - * Copyright (C) 2014 Free Electrons - * - * Author: Boris BREZILLON - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License version 2 as - * published by the Free Software Foundation. - * - */ -#include -#include -#include -#include - -static const struct nand_data_interface onfi_sdr_timings[] = { - /* Mode 0 */ - { - .type = NAND_SDR_IFACE, - .timings.sdr = { - .tCCS_min = 500000, - .tR_max = 200000000, - .tADL_min = 400000, - .tALH_min = 20000, - .tALS_min = 50000, - .tAR_min = 25000, - .tCEA_max = 100000, - .tCEH_min = 20000, - .tCH_min = 20000, - .tCHZ_max = 100000, - .tCLH_min = 20000, - .tCLR_min = 20000, - .tCLS_min = 50000, - .tCOH_min = 0, - .tCS_min = 70000, - .tDH_min = 20000, - .tDS_min = 40000, - .tFEAT_max = 1000000, - .tIR_min = 10000, - .tITC_max = 1000000, - .tRC_min = 100000, - .tREA_max = 40000, - .tREH_min = 30000, - .tRHOH_min = 0, - .tRHW_min = 200000, - .tRHZ_max = 200000, - .tRLOH_min = 0, - .tRP_min = 50000, - .tRR_min = 40000, - .tRST_max = 250000000000ULL, - .tWB_max = 200000, - .tWC_min = 100000, - .tWH_min = 30000, - .tWHR_min = 120000, - .tWP_min = 50000, - .tWW_min = 100000, - }, - }, - /* Mode 1 */ - { - .type = NAND_SDR_IFACE, - .timings.sdr = { - .tCCS_min = 500000, - .tR_max = 200000000, - .tADL_min = 400000, - .tALH_min = 10000, - .tALS_min = 25000, - .tAR_min = 10000, - .tCEA_max = 45000, - .tCEH_min = 20000, - .tCH_min = 10000, - .tCHZ_max = 50000, - .tCLH_min = 10000, - .tCLR_min = 10000, - .tCLS_min = 25000, - .tCOH_min = 15000, - .tCS_min = 35000, - .tDH_min = 10000, - .tDS_min = 20000, - .tFEAT_max = 1000000, - .tIR_min = 0, - .tITC_max = 1000000, - .tRC_min = 50000, - .tREA_max = 30000, - .tREH_min = 15000, - .tRHOH_min = 15000, - .tRHW_min = 100000, - .tRHZ_max = 100000, - .tRLOH_min = 0, - .tRP_min = 25000, - .tRR_min = 20000, - .tRST_max = 500000000, - .tWB_max = 100000, - .tWC_min = 45000, - .tWH_min = 15000, - .tWHR_min = 80000, - .tWP_min = 25000, - .tWW_min = 100000, - }, - }, - /* Mode 2 */ - { - .type = NAND_SDR_IFACE, - .timings.sdr = { - .tCCS_min = 500000, - .tR_max = 200000000, - .tADL_min = 400000, - .tALH_min = 10000, - .tALS_min = 15000, - .tAR_min = 10000, - .tCEA_max = 30000, - .tCEH_min = 20000, - .tCH_min = 10000, - .tCHZ_max = 50000, - .tCLH_min = 10000, - .tCLR_min = 10000, - .tCLS_min = 15000, - .tCOH_min = 15000, - .tCS_min = 25000, - .tDH_min = 5000, - .tDS_min = 15000, - .tFEAT_max = 1000000, - .tIR_min = 0, - .tITC_max = 1000000, - .tRC_min = 35000, - .tREA_max = 25000, - .tREH_min = 15000, - .tRHOH_min = 15000, - .tRHW_min = 100000, - .tRHZ_max = 100000, - .tRLOH_min = 0, - .tRR_min = 20000, - .tRST_max = 500000000, - .tWB_max = 100000, - .tRP_min = 17000, - .tWC_min = 35000, - .tWH_min = 15000, - .tWHR_min = 80000, - .tWP_min = 17000, - .tWW_min = 100000, - }, - }, - /* Mode 3 */ - { - .type = NAND_SDR_IFACE, - .timings.sdr = { - .tCCS_min = 500000, - .tR_max = 200000000, - .tADL_min = 400000, - .tALH_min = 5000, - .tALS_min = 10000, - .tAR_min = 10000, - .tCEA_max = 25000, - .tCEH_min = 20000, - .tCH_min = 5000, - .tCHZ_max = 50000, - .tCLH_min = 5000, - .tCLR_min = 10000, - .tCLS_min = 10000, - .tCOH_min = 15000, - .tCS_min = 25000, - .tDH_min = 5000, - .tDS_min = 10000, - .tFEAT_max = 1000000, - .tIR_min = 0, - .tITC_max = 1000000, - .tRC_min = 30000, - .tREA_max = 20000, - .tREH_min = 10000, - .tRHOH_min = 15000, - .tRHW_min = 100000, - .tRHZ_max = 100000, - .tRLOH_min = 0, - .tRP_min = 15000, - .tRR_min = 20000, - .tRST_max = 500000000, - .tWB_max = 100000, - .tWC_min = 30000, - .tWH_min = 10000, - .tWHR_min = 80000, - .tWP_min = 15000, - .tWW_min = 100000, - }, - }, - /* Mode 4 */ - { - .type = NAND_SDR_IFACE, - .timings.sdr = { - .tCCS_min = 500000, - .tR_max = 200000000, - .tADL_min = 400000, - .tALH_min = 5000, - .tALS_min = 10000, - .tAR_min = 10000, - .tCEA_max = 25000, - .tCEH_min = 20000, - .tCH_min = 5000, - .tCHZ_max = 30000, - .tCLH_min = 5000, - .tCLR_min = 10000, - .tCLS_min = 10000, - .tCOH_min = 15000, - .tCS_min = 20000, - .tDH_min = 5000, - .tDS_min = 10000, - .tFEAT_max = 1000000, - .tIR_min = 0, - .tITC_max = 1000000, - .tRC_min = 25000, - .tREA_max = 20000, - .tREH_min = 10000, - .tRHOH_min = 15000, - .tRHW_min = 100000, - .tRHZ_max = 100000, - .tRLOH_min = 5000, - .tRP_min = 12000, - .tRR_min = 20000, - .tRST_max = 500000000, - .tWB_max = 100000, - .tWC_min = 25000, - .tWH_min = 10000, - .tWHR_min = 80000, - .tWP_min = 12000, - .tWW_min = 100000, - }, - }, - /* Mode 5 */ - { - .type = NAND_SDR_IFACE, - .timings.sdr = { - .tCCS_min = 500000, - .tR_max = 200000000, - .tADL_min = 400000, - .tALH_min = 5000, - .tALS_min = 10000, - .tAR_min = 10000, - .tCEA_max = 25000, - .tCEH_min = 20000, - .tCH_min = 5000, - .tCHZ_max = 30000, - .tCLH_min = 5000, - .tCLR_min = 10000, - .tCLS_min = 10000, - .tCOH_min = 15000, - .tCS_min = 15000, - .tDH_min = 5000, - .tDS_min = 7000, - .tFEAT_max = 1000000, - .tIR_min = 0, - .tITC_max = 1000000, - .tRC_min = 20000, - .tREA_max = 16000, - .tREH_min = 7000, - .tRHOH_min = 15000, - .tRHW_min = 100000, - .tRHZ_max = 100000, - .tRLOH_min = 5000, - .tRP_min = 10000, - .tRR_min = 20000, - .tRST_max = 500000000, - .tWB_max = 100000, - .tWC_min = 20000, - .tWH_min = 7000, - .tWHR_min = 80000, - .tWP_min = 10000, - .tWW_min = 100000, - }, - }, -}; - -/** - * onfi_async_timing_mode_to_sdr_timings - [NAND Interface] Retrieve NAND - * timings according to the given ONFI timing mode - * @mode: ONFI timing mode - */ -const struct nand_sdr_timings *onfi_async_timing_mode_to_sdr_timings(int mode) -{ - if (mode < 0 || mode >= ARRAY_SIZE(onfi_sdr_timings)) - return ERR_PTR(-EINVAL); - - return &onfi_sdr_timings[mode].timings.sdr; -} -EXPORT_SYMBOL(onfi_async_timing_mode_to_sdr_timings); - -/** - * onfi_fill_data_interface - [NAND Interface] Initialize a data interface from - * given ONFI mode - * @mode: The ONFI timing mode - */ -int onfi_fill_data_interface(struct nand_chip *chip, - enum nand_data_interface_type type, - int timing_mode) -{ - struct nand_data_interface *iface = &chip->data_interface; - - if (type != NAND_SDR_IFACE) - return -EINVAL; - - if (timing_mode < 0 || timing_mode >= ARRAY_SIZE(onfi_sdr_timings)) - return -EINVAL; - - *iface = onfi_sdr_timings[timing_mode]; - - /* - * Initialize timings that cannot be deduced from timing mode: - * tR, tPROG, tCCS, ... - * These information are part of the ONFI parameter page. - */ - if (chip->onfi_version) { - struct nand_onfi_params *params = &chip->onfi_params; - struct nand_sdr_timings *timings = &iface->timings.sdr; - - /* microseconds -> picoseconds */ - timings->tPROG_max = 1000000ULL * le16_to_cpu(params->t_prog); - timings->tBERS_max = 1000000ULL * le16_to_cpu(params->t_bers); - timings->tR_max = 1000000ULL * le16_to_cpu(params->t_r); - - /* nanoseconds -> picoseconds */ - timings->tCCS_min = 1000UL * le16_to_cpu(params->t_ccs); - } - - return 0; -} -EXPORT_SYMBOL(onfi_fill_data_interface); diff --git a/drivers/mtd/nand/nand_toshiba.c b/drivers/mtd/nand/nand_toshiba.c deleted file mode 100644 index ab43f027cd23..000000000000 --- a/drivers/mtd/nand/nand_toshiba.c +++ /dev/null @@ -1,77 +0,0 @@ -/* - * Copyright (C) 2017 Free Electrons - * Copyright (C) 2017 NextThing Co - * - * Author: Boris Brezillon - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation; either version 2 of the License, or - * (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - */ - -#include - -static void toshiba_nand_decode_id(struct nand_chip *chip) -{ - struct mtd_info *mtd = nand_to_mtd(chip); - - nand_decode_ext_id(chip); - - /* - * Toshiba 24nm raw SLC (i.e., not BENAND) have 32B OOB per - * 512B page. For Toshiba SLC, we decode the 5th/6th byte as - * follows: - * - ID byte 6, bits[2:0]: 100b -> 43nm, 101b -> 32nm, - * 110b -> 24nm - * - ID byte 5, bit[7]: 1 -> BENAND, 0 -> raw SLC - */ - if (chip->id.len >= 6 && nand_is_slc(chip) && - (chip->id.data[5] & 0x7) == 0x6 /* 24nm */ && - !(chip->id.data[4] & 0x80) /* !BENAND */) - mtd->oobsize = 32 * mtd->writesize >> 9; - - /* - * Extract ECC requirements from 6th id byte. - * For Toshiba SLC, ecc requrements are as follows: - * - 43nm: 1 bit ECC for each 512Byte is required. - * - 32nm: 4 bit ECC for each 512Byte is required. - * - 24nm: 8 bit ECC for each 512Byte is required. - */ - if (chip->id.len >= 6 && nand_is_slc(chip)) { - chip->ecc_step_ds = 512; - switch (chip->id.data[5] & 0x7) { - case 0x4: - chip->ecc_strength_ds = 1; - break; - case 0x5: - chip->ecc_strength_ds = 4; - break; - case 0x6: - chip->ecc_strength_ds = 8; - break; - default: - WARN(1, "Could not get ECC info"); - chip->ecc_step_ds = 0; - break; - } - } -} - -static int toshiba_nand_init(struct nand_chip *chip) -{ - if (nand_is_slc(chip)) - chip->bbt_options |= NAND_BBT_SCAN2NDPAGE; - - return 0; -} - -const struct nand_manufacturer_ops toshiba_nand_manuf_ops = { - .detect = toshiba_nand_decode_id, - .init = toshiba_nand_init, -}; diff --git a/drivers/mtd/nand/nandsim.c b/drivers/mtd/nand/nandsim.c deleted file mode 100644 index 44322a363ba5..000000000000 --- a/drivers/mtd/nand/nandsim.c +++ /dev/null @@ -1,2392 +0,0 @@ -/* - * NAND flash simulator. - * - * Author: Artem B. Bityuckiy , - * - * Copyright (C) 2004 Nokia Corporation - * - * Note: NS means "NAND Simulator". - * Note: Input means input TO flash chip, output means output FROM chip. - * - * This program is free software; you can redistribute it and/or modify it - * under the terms of the GNU General Public License as published by the - * Free Software Foundation; either version 2, or (at your option) any later - * version. - * - * This program is distributed in the hope that it will be useful, but - * WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General - * Public License for more details. - * - * You should have received a copy of the GNU General Public License - * along with this program; if not, write to the Free Software - * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA - */ - -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include - -/* Default simulator parameters values */ -#if !defined(CONFIG_NANDSIM_FIRST_ID_BYTE) || \ - !defined(CONFIG_NANDSIM_SECOND_ID_BYTE) || \ - !defined(CONFIG_NANDSIM_THIRD_ID_BYTE) || \ - !defined(CONFIG_NANDSIM_FOURTH_ID_BYTE) -#define CONFIG_NANDSIM_FIRST_ID_BYTE 0x98 -#define CONFIG_NANDSIM_SECOND_ID_BYTE 0x39 -#define CONFIG_NANDSIM_THIRD_ID_BYTE 0xFF /* No byte */ -#define CONFIG_NANDSIM_FOURTH_ID_BYTE 0xFF /* No byte */ -#endif - -#ifndef CONFIG_NANDSIM_ACCESS_DELAY -#define CONFIG_NANDSIM_ACCESS_DELAY 25 -#endif -#ifndef CONFIG_NANDSIM_PROGRAMM_DELAY -#define CONFIG_NANDSIM_PROGRAMM_DELAY 200 -#endif -#ifndef CONFIG_NANDSIM_ERASE_DELAY -#define CONFIG_NANDSIM_ERASE_DELAY 2 -#endif -#ifndef CONFIG_NANDSIM_OUTPUT_CYCLE -#define CONFIG_NANDSIM_OUTPUT_CYCLE 40 -#endif -#ifndef CONFIG_NANDSIM_INPUT_CYCLE -#define CONFIG_NANDSIM_INPUT_CYCLE 50 -#endif -#ifndef CONFIG_NANDSIM_BUS_WIDTH -#define CONFIG_NANDSIM_BUS_WIDTH 8 -#endif -#ifndef CONFIG_NANDSIM_DO_DELAYS -#define CONFIG_NANDSIM_DO_DELAYS 0 -#endif -#ifndef CONFIG_NANDSIM_LOG -#define CONFIG_NANDSIM_LOG 0 -#endif -#ifndef CONFIG_NANDSIM_DBG -#define CONFIG_NANDSIM_DBG 0 -#endif -#ifndef CONFIG_NANDSIM_MAX_PARTS -#define CONFIG_NANDSIM_MAX_PARTS 32 -#endif - -static uint access_delay = CONFIG_NANDSIM_ACCESS_DELAY; -static uint programm_delay = CONFIG_NANDSIM_PROGRAMM_DELAY; -static uint erase_delay = CONFIG_NANDSIM_ERASE_DELAY; -static uint output_cycle = CONFIG_NANDSIM_OUTPUT_CYCLE; -static uint input_cycle = CONFIG_NANDSIM_INPUT_CYCLE; -static uint bus_width = CONFIG_NANDSIM_BUS_WIDTH; -static uint do_delays = CONFIG_NANDSIM_DO_DELAYS; -static uint log = CONFIG_NANDSIM_LOG; -static uint dbg = CONFIG_NANDSIM_DBG; -static unsigned long parts[CONFIG_NANDSIM_MAX_PARTS]; -static unsigned int parts_num; -static char *badblocks = NULL; -static char *weakblocks = NULL; -static char *weakpages = NULL; -static unsigned int bitflips = 0; -static char *gravepages = NULL; -static unsigned int overridesize = 0; -static char *cache_file = NULL; -static unsigned int bbt; -static unsigned int bch; -static u_char id_bytes[8] = { - [0] = CONFIG_NANDSIM_FIRST_ID_BYTE, - [1] = CONFIG_NANDSIM_SECOND_ID_BYTE, - [2] = CONFIG_NANDSIM_THIRD_ID_BYTE, - [3] = CONFIG_NANDSIM_FOURTH_ID_BYTE, - [4 ... 7] = 0xFF, -}; - -module_param_array(id_bytes, byte, NULL, 0400); -module_param_named(first_id_byte, id_bytes[0], byte, 0400); -module_param_named(second_id_byte, id_bytes[1], byte, 0400); -module_param_named(third_id_byte, id_bytes[2], byte, 0400); -module_param_named(fourth_id_byte, id_bytes[3], byte, 0400); -module_param(access_delay, uint, 0400); -module_param(programm_delay, uint, 0400); -module_param(erase_delay, uint, 0400); -module_param(output_cycle, uint, 0400); -module_param(input_cycle, uint, 0400); -module_param(bus_width, uint, 0400); -module_param(do_delays, uint, 0400); -module_param(log, uint, 0400); -module_param(dbg, uint, 0400); -module_param_array(parts, ulong, &parts_num, 0400); -module_param(badblocks, charp, 0400); -module_param(weakblocks, charp, 0400); -module_param(weakpages, charp, 0400); -module_param(bitflips, uint, 0400); -module_param(gravepages, charp, 0400); -module_param(overridesize, uint, 0400); -module_param(cache_file, charp, 0400); -module_param(bbt, uint, 0400); -module_param(bch, uint, 0400); - -MODULE_PARM_DESC(id_bytes, "The ID bytes returned by NAND Flash 'read ID' command"); -MODULE_PARM_DESC(first_id_byte, "The first byte returned by NAND Flash 'read ID' command (manufacturer ID) (obsolete)"); -MODULE_PARM_DESC(second_id_byte, "The second byte returned by NAND Flash 'read ID' command (chip ID) (obsolete)"); -MODULE_PARM_DESC(third_id_byte, "The third byte returned by NAND Flash 'read ID' command (obsolete)"); -MODULE_PARM_DESC(fourth_id_byte, "The fourth byte returned by NAND Flash 'read ID' command (obsolete)"); -MODULE_PARM_DESC(access_delay, "Initial page access delay (microseconds)"); -MODULE_PARM_DESC(programm_delay, "Page programm delay (microseconds"); -MODULE_PARM_DESC(erase_delay, "Sector erase delay (milliseconds)"); -MODULE_PARM_DESC(output_cycle, "Word output (from flash) time (nanoseconds)"); -MODULE_PARM_DESC(input_cycle, "Word input (to flash) time (nanoseconds)"); -MODULE_PARM_DESC(bus_width, "Chip's bus width (8- or 16-bit)"); -MODULE_PARM_DESC(do_delays, "Simulate NAND delays using busy-waits if not zero"); -MODULE_PARM_DESC(log, "Perform logging if not zero"); -MODULE_PARM_DESC(dbg, "Output debug information if not zero"); -MODULE_PARM_DESC(parts, "Partition sizes (in erase blocks) separated by commas"); -/* Page and erase block positions for the following parameters are independent of any partitions */ -MODULE_PARM_DESC(badblocks, "Erase blocks that are initially marked bad, separated by commas"); -MODULE_PARM_DESC(weakblocks, "Weak erase blocks [: remaining erase cycles (defaults to 3)]" - " separated by commas e.g. 113:2 means eb 113" - " can be erased only twice before failing"); -MODULE_PARM_DESC(weakpages, "Weak pages [: maximum writes (defaults to 3)]" - " separated by commas e.g. 1401:2 means page 1401" - " can be written only twice before failing"); -MODULE_PARM_DESC(bitflips, "Maximum number of random bit flips per page (zero by default)"); -MODULE_PARM_DESC(gravepages, "Pages that lose data [: maximum reads (defaults to 3)]" - " separated by commas e.g. 1401:2 means page 1401" - " can be read only twice before failing"); -MODULE_PARM_DESC(overridesize, "Specifies the NAND Flash size overriding the ID bytes. " - "The size is specified in erase blocks and as the exponent of a power of two" - " e.g. 5 means a size of 32 erase blocks"); -MODULE_PARM_DESC(cache_file, "File to use to cache nand pages instead of memory"); -MODULE_PARM_DESC(bbt, "0 OOB, 1 BBT with marker in OOB, 2 BBT with marker in data area"); -MODULE_PARM_DESC(bch, "Enable BCH ecc and set how many bits should " - "be correctable in 512-byte blocks"); - -/* The largest possible page size */ -#define NS_LARGEST_PAGE_SIZE 4096 - -/* The prefix for simulator output */ -#define NS_OUTPUT_PREFIX "[nandsim]" - -/* Simulator's output macros (logging, debugging, warning, error) */ -#define NS_LOG(args...) \ - do { if (log) printk(KERN_DEBUG NS_OUTPUT_PREFIX " log: " args); } while(0) -#define NS_DBG(args...) \ - do { if (dbg) printk(KERN_DEBUG NS_OUTPUT_PREFIX " debug: " args); } while(0) -#define NS_WARN(args...) \ - do { printk(KERN_WARNING NS_OUTPUT_PREFIX " warning: " args); } while(0) -#define NS_ERR(args...) \ - do { printk(KERN_ERR NS_OUTPUT_PREFIX " error: " args); } while(0) -#define NS_INFO(args...) \ - do { printk(KERN_INFO NS_OUTPUT_PREFIX " " args); } while(0) - -/* Busy-wait delay macros (microseconds, milliseconds) */ -#define NS_UDELAY(us) \ - do { if (do_delays) udelay(us); } while(0) -#define NS_MDELAY(us) \ - do { if (do_delays) mdelay(us); } while(0) - -/* Is the nandsim structure initialized ? */ -#define NS_IS_INITIALIZED(ns) ((ns)->geom.totsz != 0) - -/* Good operation completion status */ -#define NS_STATUS_OK(ns) (NAND_STATUS_READY | (NAND_STATUS_WP * ((ns)->lines.wp == 0))) - -/* Operation failed completion status */ -#define NS_STATUS_FAILED(ns) (NAND_STATUS_FAIL | NS_STATUS_OK(ns)) - -/* Calculate the page offset in flash RAM image by (row, column) address */ -#define NS_RAW_OFFSET(ns) \ - (((ns)->regs.row * (ns)->geom.pgszoob) + (ns)->regs.column) - -/* Calculate the OOB offset in flash RAM image by (row, column) address */ -#define NS_RAW_OFFSET_OOB(ns) (NS_RAW_OFFSET(ns) + ns->geom.pgsz) - -/* After a command is input, the simulator goes to one of the following states */ -#define STATE_CMD_READ0 0x00000001 /* read data from the beginning of page */ -#define STATE_CMD_READ1 0x00000002 /* read data from the second half of page */ -#define STATE_CMD_READSTART 0x00000003 /* read data second command (large page devices) */ -#define STATE_CMD_PAGEPROG 0x00000004 /* start page program */ -#define STATE_CMD_READOOB 0x00000005 /* read OOB area */ -#define STATE_CMD_ERASE1 0x00000006 /* sector erase first command */ -#define STATE_CMD_STATUS 0x00000007 /* read status */ -#define STATE_CMD_SEQIN 0x00000009 /* sequential data input */ -#define STATE_CMD_READID 0x0000000A /* read ID */ -#define STATE_CMD_ERASE2 0x0000000B /* sector erase second command */ -#define STATE_CMD_RESET 0x0000000C /* reset */ -#define STATE_CMD_RNDOUT 0x0000000D /* random output command */ -#define STATE_CMD_RNDOUTSTART 0x0000000E /* random output start command */ -#define STATE_CMD_MASK 0x0000000F /* command states mask */ - -/* After an address is input, the simulator goes to one of these states */ -#define STATE_ADDR_PAGE 0x00000010 /* full (row, column) address is accepted */ -#define STATE_ADDR_SEC 0x00000020 /* sector address was accepted */ -#define STATE_ADDR_COLUMN 0x00000030 /* column address was accepted */ -#define STATE_ADDR_ZERO 0x00000040 /* one byte zero address was accepted */ -#define STATE_ADDR_MASK 0x00000070 /* address states mask */ - -/* During data input/output the simulator is in these states */ -#define STATE_DATAIN 0x00000100 /* waiting for data input */ -#define STATE_DATAIN_MASK 0x00000100 /* data input states mask */ - -#define STATE_DATAOUT 0x00001000 /* waiting for page data output */ -#define STATE_DATAOUT_ID 0x00002000 /* waiting for ID bytes output */ -#define STATE_DATAOUT_STATUS 0x00003000 /* waiting for status output */ -#define STATE_DATAOUT_MASK 0x00007000 /* data output states mask */ - -/* Previous operation is done, ready to accept new requests */ -#define STATE_READY 0x00000000 - -/* This state is used to mark that the next state isn't known yet */ -#define STATE_UNKNOWN 0x10000000 - -/* Simulator's actions bit masks */ -#define ACTION_CPY 0x00100000 /* copy page/OOB to the internal buffer */ -#define ACTION_PRGPAGE 0x00200000 /* program the internal buffer to flash */ -#define ACTION_SECERASE 0x00300000 /* erase sector */ -#define ACTION_ZEROOFF 0x00400000 /* don't add any offset to address */ -#define ACTION_HALFOFF 0x00500000 /* add to address half of page */ -#define ACTION_OOBOFF 0x00600000 /* add to address OOB offset */ -#define ACTION_MASK 0x00700000 /* action mask */ - -#define NS_OPER_NUM 13 /* Number of operations supported by the simulator */ -#define NS_OPER_STATES 6 /* Maximum number of states in operation */ - -#define OPT_ANY 0xFFFFFFFF /* any chip supports this operation */ -#define OPT_PAGE512 0x00000002 /* 512-byte page chips */ -#define OPT_PAGE2048 0x00000008 /* 2048-byte page chips */ -#define OPT_PAGE512_8BIT 0x00000040 /* 512-byte page chips with 8-bit bus width */ -#define OPT_PAGE4096 0x00000080 /* 4096-byte page chips */ -#define OPT_LARGEPAGE (OPT_PAGE2048 | OPT_PAGE4096) /* 2048 & 4096-byte page chips */ -#define OPT_SMALLPAGE (OPT_PAGE512) /* 512-byte page chips */ - -/* Remove action bits from state */ -#define NS_STATE(x) ((x) & ~ACTION_MASK) - -/* - * Maximum previous states which need to be saved. Currently saving is - * only needed for page program operation with preceded read command - * (which is only valid for 512-byte pages). - */ -#define NS_MAX_PREVSTATES 1 - -/* Maximum page cache pages needed to read or write a NAND page to the cache_file */ -#define NS_MAX_HELD_PAGES 16 - -/* - * A union to represent flash memory contents and flash buffer. - */ -union ns_mem { - u_char *byte; /* for byte access */ - uint16_t *word; /* for 16-bit word access */ -}; - -/* - * The structure which describes all the internal simulator data. - */ -struct nandsim { - struct mtd_partition partitions[CONFIG_NANDSIM_MAX_PARTS]; - unsigned int nbparts; - - uint busw; /* flash chip bus width (8 or 16) */ - u_char ids[8]; /* chip's ID bytes */ - uint32_t options; /* chip's characteristic bits */ - uint32_t state; /* current chip state */ - uint32_t nxstate; /* next expected state */ - - uint32_t *op; /* current operation, NULL operations isn't known yet */ - uint32_t pstates[NS_MAX_PREVSTATES]; /* previous states */ - uint16_t npstates; /* number of previous states saved */ - uint16_t stateidx; /* current state index */ - - /* The simulated NAND flash pages array */ - union ns_mem *pages; - - /* Slab allocator for nand pages */ - struct kmem_cache *nand_pages_slab; - - /* Internal buffer of page + OOB size bytes */ - union ns_mem buf; - - /* NAND flash "geometry" */ - struct { - uint64_t totsz; /* total flash size, bytes */ - uint32_t secsz; /* flash sector (erase block) size, bytes */ - uint pgsz; /* NAND flash page size, bytes */ - uint oobsz; /* page OOB area size, bytes */ - uint64_t totszoob; /* total flash size including OOB, bytes */ - uint pgszoob; /* page size including OOB , bytes*/ - uint secszoob; /* sector size including OOB, bytes */ - uint pgnum; /* total number of pages */ - uint pgsec; /* number of pages per sector */ - uint secshift; /* bits number in sector size */ - uint pgshift; /* bits number in page size */ - uint pgaddrbytes; /* bytes per page address */ - uint secaddrbytes; /* bytes per sector address */ - uint idbytes; /* the number ID bytes that this chip outputs */ - } geom; - - /* NAND flash internal registers */ - struct { - unsigned command; /* the command register */ - u_char status; /* the status register */ - uint row; /* the page number */ - uint column; /* the offset within page */ - uint count; /* internal counter */ - uint num; /* number of bytes which must be processed */ - uint off; /* fixed page offset */ - } regs; - - /* NAND flash lines state */ - struct { - int ce; /* chip Enable */ - int cle; /* command Latch Enable */ - int ale; /* address Latch Enable */ - int wp; /* write Protect */ - } lines; - - /* Fields needed when using a cache file */ - struct file *cfile; /* Open file */ - unsigned long *pages_written; /* Which pages have been written */ - void *file_buf; - struct page *held_pages[NS_MAX_HELD_PAGES]; - int held_cnt; -}; - -/* - * Operations array. To perform any operation the simulator must pass - * through the correspondent states chain. - */ -static struct nandsim_operations { - uint32_t reqopts; /* options which are required to perform the operation */ - uint32_t states[NS_OPER_STATES]; /* operation's states */ -} ops[NS_OPER_NUM] = { - /* Read page + OOB from the beginning */ - {OPT_SMALLPAGE, {STATE_CMD_READ0 | ACTION_ZEROOFF, STATE_ADDR_PAGE | ACTION_CPY, - STATE_DATAOUT, STATE_READY}}, - /* Read page + OOB from the second half */ - {OPT_PAGE512_8BIT, {STATE_CMD_READ1 | ACTION_HALFOFF, STATE_ADDR_PAGE | ACTION_CPY, - STATE_DATAOUT, STATE_READY}}, - /* Read OOB */ - {OPT_SMALLPAGE, {STATE_CMD_READOOB | ACTION_OOBOFF, STATE_ADDR_PAGE | ACTION_CPY, - STATE_DATAOUT, STATE_READY}}, - /* Program page starting from the beginning */ - {OPT_ANY, {STATE_CMD_SEQIN, STATE_ADDR_PAGE, STATE_DATAIN, - STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}}, - /* Program page starting from the beginning */ - {OPT_SMALLPAGE, {STATE_CMD_READ0, STATE_CMD_SEQIN | ACTION_ZEROOFF, STATE_ADDR_PAGE, - STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}}, - /* Program page starting from the second half */ - {OPT_PAGE512, {STATE_CMD_READ1, STATE_CMD_SEQIN | ACTION_HALFOFF, STATE_ADDR_PAGE, - STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}}, - /* Program OOB */ - {OPT_SMALLPAGE, {STATE_CMD_READOOB, STATE_CMD_SEQIN | ACTION_OOBOFF, STATE_ADDR_PAGE, - STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}}, - /* Erase sector */ - {OPT_ANY, {STATE_CMD_ERASE1, STATE_ADDR_SEC, STATE_CMD_ERASE2 | ACTION_SECERASE, STATE_READY}}, - /* Read status */ - {OPT_ANY, {STATE_CMD_STATUS, STATE_DATAOUT_STATUS, STATE_READY}}, - /* Read ID */ - {OPT_ANY, {STATE_CMD_READID, STATE_ADDR_ZERO, STATE_DATAOUT_ID, STATE_READY}}, - /* Large page devices read page */ - {OPT_LARGEPAGE, {STATE_CMD_READ0, STATE_ADDR_PAGE, STATE_CMD_READSTART | ACTION_CPY, - STATE_DATAOUT, STATE_READY}}, - /* Large page devices random page read */ - {OPT_LARGEPAGE, {STATE_CMD_RNDOUT, STATE_ADDR_COLUMN, STATE_CMD_RNDOUTSTART | ACTION_CPY, - STATE_DATAOUT, STATE_READY}}, -}; - -struct weak_block { - struct list_head list; - unsigned int erase_block_no; - unsigned int max_erases; - unsigned int erases_done; -}; - -static LIST_HEAD(weak_blocks); - -struct weak_page { - struct list_head list; - unsigned int page_no; - unsigned int max_writes; - unsigned int writes_done; -}; - -static LIST_HEAD(weak_pages); - -struct grave_page { - struct list_head list; - unsigned int page_no; - unsigned int max_reads; - unsigned int reads_done; -}; - -static LIST_HEAD(grave_pages); - -static unsigned long *erase_block_wear = NULL; -static unsigned int wear_eb_count = 0; -static unsigned long total_wear = 0; - -/* MTD structure for NAND controller */ -static struct mtd_info *nsmtd; - -static int nandsim_debugfs_show(struct seq_file *m, void *private) -{ - unsigned long wmin = -1, wmax = 0, avg; - unsigned long deciles[10], decile_max[10], tot = 0; - unsigned int i; - - /* Calc wear stats */ - for (i = 0; i < wear_eb_count; ++i) { - unsigned long wear = erase_block_wear[i]; - if (wear < wmin) - wmin = wear; - if (wear > wmax) - wmax = wear; - tot += wear; - } - - for (i = 0; i < 9; ++i) { - deciles[i] = 0; - decile_max[i] = (wmax * (i + 1) + 5) / 10; - } - deciles[9] = 0; - decile_max[9] = wmax; - for (i = 0; i < wear_eb_count; ++i) { - int d; - unsigned long wear = erase_block_wear[i]; - for (d = 0; d < 10; ++d) - if (wear <= decile_max[d]) { - deciles[d] += 1; - break; - } - } - avg = tot / wear_eb_count; - - /* Output wear report */ - seq_printf(m, "Total numbers of erases: %lu\n", tot); - seq_printf(m, "Number of erase blocks: %u\n", wear_eb_count); - seq_printf(m, "Average number of erases: %lu\n", avg); - seq_printf(m, "Maximum number of erases: %lu\n", wmax); - seq_printf(m, "Minimum number of erases: %lu\n", wmin); - for (i = 0; i < 10; ++i) { - unsigned long from = (i ? decile_max[i - 1] + 1 : 0); - if (from > decile_max[i]) - continue; - seq_printf(m, "Number of ebs with erase counts from %lu to %lu : %lu\n", - from, - decile_max[i], - deciles[i]); - } - - return 0; -} - -static int nandsim_debugfs_open(struct inode *inode, struct file *file) -{ - return single_open(file, nandsim_debugfs_show, inode->i_private); -} - -static const struct file_operations dfs_fops = { - .open = nandsim_debugfs_open, - .read = seq_read, - .llseek = seq_lseek, - .release = single_release, -}; - -/** - * nandsim_debugfs_create - initialize debugfs - * @dev: nandsim device description object - * - * This function creates all debugfs files for UBI device @ubi. Returns zero in - * case of success and a negative error code in case of failure. - */ -static int nandsim_debugfs_create(struct nandsim *dev) -{ - struct dentry *root = nsmtd->dbg.dfs_dir; - struct dentry *dent; - - /* - * Just skip debugfs initialization when the debugfs directory is - * missing. - */ - if (IS_ERR_OR_NULL(root)) { - if (IS_ENABLED(CONFIG_DEBUG_FS) && - !IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) - NS_WARN("CONFIG_MTD_PARTITIONED_MASTER must be enabled to expose debugfs stuff\n"); - return 0; - } - - dent = debugfs_create_file("nandsim_wear_report", S_IRUSR, - root, dev, &dfs_fops); - if (IS_ERR_OR_NULL(dent)) { - NS_ERR("cannot create \"nandsim_wear_report\" debugfs entry\n"); - return -1; - } - - return 0; -} - -/* - * Allocate array of page pointers, create slab allocation for an array - * and initialize the array by NULL pointers. - * - * RETURNS: 0 if success, -ENOMEM if memory alloc fails. - */ -static int __init alloc_device(struct nandsim *ns) -{ - struct file *cfile; - int i, err; - - if (cache_file) { - cfile = filp_open(cache_file, O_CREAT | O_RDWR | O_LARGEFILE, 0600); - if (IS_ERR(cfile)) - return PTR_ERR(cfile); - if (!(cfile->f_mode & FMODE_CAN_READ)) { - NS_ERR("alloc_device: cache file not readable\n"); - err = -EINVAL; - goto err_close; - } - if (!(cfile->f_mode & FMODE_CAN_WRITE)) { - NS_ERR("alloc_device: cache file not writeable\n"); - err = -EINVAL; - goto err_close; - } - ns->pages_written = vzalloc(BITS_TO_LONGS(ns->geom.pgnum) * - sizeof(unsigned long)); - if (!ns->pages_written) { - NS_ERR("alloc_device: unable to allocate pages written array\n"); - err = -ENOMEM; - goto err_close; - } - ns->file_buf = kmalloc(ns->geom.pgszoob, GFP_KERNEL); - if (!ns->file_buf) { - NS_ERR("alloc_device: unable to allocate file buf\n"); - err = -ENOMEM; - goto err_free; - } - ns->cfile = cfile; - return 0; - } - - ns->pages = vmalloc(ns->geom.pgnum * sizeof(union ns_mem)); - if (!ns->pages) { - NS_ERR("alloc_device: unable to allocate page array\n"); - return -ENOMEM; - } - for (i = 0; i < ns->geom.pgnum; i++) { - ns->pages[i].byte = NULL; - } - ns->nand_pages_slab = kmem_cache_create("nandsim", - ns->geom.pgszoob, 0, 0, NULL); - if (!ns->nand_pages_slab) { - NS_ERR("cache_create: unable to create kmem_cache\n"); - return -ENOMEM; - } - - return 0; - -err_free: - vfree(ns->pages_written); -err_close: - filp_close(cfile, NULL); - return err; -} - -/* - * Free any allocated pages, and free the array of page pointers. - */ -static void free_device(struct nandsim *ns) -{ - int i; - - if (ns->cfile) { - kfree(ns->file_buf); - vfree(ns->pages_written); - filp_close(ns->cfile, NULL); - return; - } - - if (ns->pages) { - for (i = 0; i < ns->geom.pgnum; i++) { - if (ns->pages[i].byte) - kmem_cache_free(ns->nand_pages_slab, - ns->pages[i].byte); - } - kmem_cache_destroy(ns->nand_pages_slab); - vfree(ns->pages); - } -} - -static char __init *get_partition_name(int i) -{ - return kasprintf(GFP_KERNEL, "NAND simulator partition %d", i); -} - -/* - * Initialize the nandsim structure. - * - * RETURNS: 0 if success, -ERRNO if failure. - */ -static int __init init_nandsim(struct mtd_info *mtd) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct nandsim *ns = nand_get_controller_data(chip); - int i, ret = 0; - uint64_t remains; - uint64_t next_offset; - - if (NS_IS_INITIALIZED(ns)) { - NS_ERR("init_nandsim: nandsim is already initialized\n"); - return -EIO; - } - - /* Force mtd to not do delays */ - chip->chip_delay = 0; - - /* Initialize the NAND flash parameters */ - ns->busw = chip->options & NAND_BUSWIDTH_16 ? 16 : 8; - ns->geom.totsz = mtd->size; - ns->geom.pgsz = mtd->writesize; - ns->geom.oobsz = mtd->oobsize; - ns->geom.secsz = mtd->erasesize; - ns->geom.pgszoob = ns->geom.pgsz + ns->geom.oobsz; - ns->geom.pgnum = div_u64(ns->geom.totsz, ns->geom.pgsz); - ns->geom.totszoob = ns->geom.totsz + (uint64_t)ns->geom.pgnum * ns->geom.oobsz; - ns->geom.secshift = ffs(ns->geom.secsz) - 1; - ns->geom.pgshift = chip->page_shift; - ns->geom.pgsec = ns->geom.secsz / ns->geom.pgsz; - ns->geom.secszoob = ns->geom.secsz + ns->geom.oobsz * ns->geom.pgsec; - ns->options = 0; - - if (ns->geom.pgsz == 512) { - ns->options |= OPT_PAGE512; - if (ns->busw == 8) - ns->options |= OPT_PAGE512_8BIT; - } else if (ns->geom.pgsz == 2048) { - ns->options |= OPT_PAGE2048; - } else if (ns->geom.pgsz == 4096) { - ns->options |= OPT_PAGE4096; - } else { - NS_ERR("init_nandsim: unknown page size %u\n", ns->geom.pgsz); - return -EIO; - } - - if (ns->options & OPT_SMALLPAGE) { - if (ns->geom.totsz <= (32 << 20)) { - ns->geom.pgaddrbytes = 3; - ns->geom.secaddrbytes = 2; - } else { - ns->geom.pgaddrbytes = 4; - ns->geom.secaddrbytes = 3; - } - } else { - if (ns->geom.totsz <= (128 << 20)) { - ns->geom.pgaddrbytes = 4; - ns->geom.secaddrbytes = 2; - } else { - ns->geom.pgaddrbytes = 5; - ns->geom.secaddrbytes = 3; - } - } - - /* Fill the partition_info structure */ - if (parts_num > ARRAY_SIZE(ns->partitions)) { - NS_ERR("too many partitions.\n"); - return -EINVAL; - } - remains = ns->geom.totsz; - next_offset = 0; - for (i = 0; i < parts_num; ++i) { - uint64_t part_sz = (uint64_t)parts[i] * ns->geom.secsz; - - if (!part_sz || part_sz > remains) { - NS_ERR("bad partition size.\n"); - return -EINVAL; - } - ns->partitions[i].name = get_partition_name(i); - if (!ns->partitions[i].name) { - NS_ERR("unable to allocate memory.\n"); - return -ENOMEM; - } - ns->partitions[i].offset = next_offset; - ns->partitions[i].size = part_sz; - next_offset += ns->partitions[i].size; - remains -= ns->partitions[i].size; - } - ns->nbparts = parts_num; - if (remains) { - if (parts_num + 1 > ARRAY_SIZE(ns->partitions)) { - NS_ERR("too many partitions.\n"); - return -EINVAL; - } - ns->partitions[i].name = get_partition_name(i); - if (!ns->partitions[i].name) { - NS_ERR("unable to allocate memory.\n"); - return -ENOMEM; - } - ns->partitions[i].offset = next_offset; - ns->partitions[i].size = remains; - ns->nbparts += 1; - } - - if (ns->busw == 16) - NS_WARN("16-bit flashes support wasn't tested\n"); - - printk("flash size: %llu MiB\n", - (unsigned long long)ns->geom.totsz >> 20); - printk("page size: %u bytes\n", ns->geom.pgsz); - printk("OOB area size: %u bytes\n", ns->geom.oobsz); - printk("sector size: %u KiB\n", ns->geom.secsz >> 10); - printk("pages number: %u\n", ns->geom.pgnum); - printk("pages per sector: %u\n", ns->geom.pgsec); - printk("bus width: %u\n", ns->busw); - printk("bits in sector size: %u\n", ns->geom.secshift); - printk("bits in page size: %u\n", ns->geom.pgshift); - printk("bits in OOB size: %u\n", ffs(ns->geom.oobsz) - 1); - printk("flash size with OOB: %llu KiB\n", - (unsigned long long)ns->geom.totszoob >> 10); - printk("page address bytes: %u\n", ns->geom.pgaddrbytes); - printk("sector address bytes: %u\n", ns->geom.secaddrbytes); - printk("options: %#x\n", ns->options); - - if ((ret = alloc_device(ns)) != 0) - return ret; - - /* Allocate / initialize the internal buffer */ - ns->buf.byte = kmalloc(ns->geom.pgszoob, GFP_KERNEL); - if (!ns->buf.byte) { - NS_ERR("init_nandsim: unable to allocate %u bytes for the internal buffer\n", - ns->geom.pgszoob); - return -ENOMEM; - } - memset(ns->buf.byte, 0xFF, ns->geom.pgszoob); - - return 0; -} - -/* - * Free the nandsim structure. - */ -static void free_nandsim(struct nandsim *ns) -{ - kfree(ns->buf.byte); - free_device(ns); - - return; -} - -static int parse_badblocks(struct nandsim *ns, struct mtd_info *mtd) -{ - char *w; - int zero_ok; - unsigned int erase_block_no; - loff_t offset; - - if (!badblocks) - return 0; - w = badblocks; - do { - zero_ok = (*w == '0' ? 1 : 0); - erase_block_no = simple_strtoul(w, &w, 0); - if (!zero_ok && !erase_block_no) { - NS_ERR("invalid badblocks.\n"); - return -EINVAL; - } - offset = (loff_t)erase_block_no * ns->geom.secsz; - if (mtd_block_markbad(mtd, offset)) { - NS_ERR("invalid badblocks.\n"); - return -EINVAL; - } - if (*w == ',') - w += 1; - } while (*w); - return 0; -} - -static int parse_weakblocks(void) -{ - char *w; - int zero_ok; - unsigned int erase_block_no; - unsigned int max_erases; - struct weak_block *wb; - - if (!weakblocks) - return 0; - w = weakblocks; - do { - zero_ok = (*w == '0' ? 1 : 0); - erase_block_no = simple_strtoul(w, &w, 0); - if (!zero_ok && !erase_block_no) { - NS_ERR("invalid weakblocks.\n"); - return -EINVAL; - } - max_erases = 3; - if (*w == ':') { - w += 1; - max_erases = simple_strtoul(w, &w, 0); - } - if (*w == ',') - w += 1; - wb = kzalloc(sizeof(*wb), GFP_KERNEL); - if (!wb) { - NS_ERR("unable to allocate memory.\n"); - return -ENOMEM; - } - wb->erase_block_no = erase_block_no; - wb->max_erases = max_erases; - list_add(&wb->list, &weak_blocks); - } while (*w); - return 0; -} - -static int erase_error(unsigned int erase_block_no) -{ - struct weak_block *wb; - - list_for_each_entry(wb, &weak_blocks, list) - if (wb->erase_block_no == erase_block_no) { - if (wb->erases_done >= wb->max_erases) - return 1; - wb->erases_done += 1; - return 0; - } - return 0; -} - -static int parse_weakpages(void) -{ - char *w; - int zero_ok; - unsigned int page_no; - unsigned int max_writes; - struct weak_page *wp; - - if (!weakpages) - return 0; - w = weakpages; - do { - zero_ok = (*w == '0' ? 1 : 0); - page_no = simple_strtoul(w, &w, 0); - if (!zero_ok && !page_no) { - NS_ERR("invalid weakpages.\n"); - return -EINVAL; - } - max_writes = 3; - if (*w == ':') { - w += 1; - max_writes = simple_strtoul(w, &w, 0); - } - if (*w == ',') - w += 1; - wp = kzalloc(sizeof(*wp), GFP_KERNEL); - if (!wp) { - NS_ERR("unable to allocate memory.\n"); - return -ENOMEM; - } - wp->page_no = page_no; - wp->max_writes = max_writes; - list_add(&wp->list, &weak_pages); - } while (*w); - return 0; -} - -static int write_error(unsigned int page_no) -{ - struct weak_page *wp; - - list_for_each_entry(wp, &weak_pages, list) - if (wp->page_no == page_no) { - if (wp->writes_done >= wp->max_writes) - return 1; - wp->writes_done += 1; - return 0; - } - return 0; -} - -static int parse_gravepages(void) -{ - char *g; - int zero_ok; - unsigned int page_no; - unsigned int max_reads; - struct grave_page *gp; - - if (!gravepages) - return 0; - g = gravepages; - do { - zero_ok = (*g == '0' ? 1 : 0); - page_no = simple_strtoul(g, &g, 0); - if (!zero_ok && !page_no) { - NS_ERR("invalid gravepagess.\n"); - return -EINVAL; - } - max_reads = 3; - if (*g == ':') { - g += 1; - max_reads = simple_strtoul(g, &g, 0); - } - if (*g == ',') - g += 1; - gp = kzalloc(sizeof(*gp), GFP_KERNEL); - if (!gp) { - NS_ERR("unable to allocate memory.\n"); - return -ENOMEM; - } - gp->page_no = page_no; - gp->max_reads = max_reads; - list_add(&gp->list, &grave_pages); - } while (*g); - return 0; -} - -static int read_error(unsigned int page_no) -{ - struct grave_page *gp; - - list_for_each_entry(gp, &grave_pages, list) - if (gp->page_no == page_no) { - if (gp->reads_done >= gp->max_reads) - return 1; - gp->reads_done += 1; - return 0; - } - return 0; -} - -static void free_lists(void) -{ - struct list_head *pos, *n; - list_for_each_safe(pos, n, &weak_blocks) { - list_del(pos); - kfree(list_entry(pos, struct weak_block, list)); - } - list_for_each_safe(pos, n, &weak_pages) { - list_del(pos); - kfree(list_entry(pos, struct weak_page, list)); - } - list_for_each_safe(pos, n, &grave_pages) { - list_del(pos); - kfree(list_entry(pos, struct grave_page, list)); - } - kfree(erase_block_wear); -} - -static int setup_wear_reporting(struct mtd_info *mtd) -{ - size_t mem; - - wear_eb_count = div_u64(mtd->size, mtd->erasesize); - mem = wear_eb_count * sizeof(unsigned long); - if (mem / sizeof(unsigned long) != wear_eb_count) { - NS_ERR("Too many erase blocks for wear reporting\n"); - return -ENOMEM; - } - erase_block_wear = kzalloc(mem, GFP_KERNEL); - if (!erase_block_wear) { - NS_ERR("Too many erase blocks for wear reporting\n"); - return -ENOMEM; - } - return 0; -} - -static void update_wear(unsigned int erase_block_no) -{ - if (!erase_block_wear) - return; - total_wear += 1; - /* - * TODO: Notify this through a debugfs entry, - * instead of showing an error message. - */ - if (total_wear == 0) - NS_ERR("Erase counter total overflow\n"); - erase_block_wear[erase_block_no] += 1; - if (erase_block_wear[erase_block_no] == 0) - NS_ERR("Erase counter overflow for erase block %u\n", erase_block_no); -} - -/* - * Returns the string representation of 'state' state. - */ -static char *get_state_name(uint32_t state) -{ - switch (NS_STATE(state)) { - case STATE_CMD_READ0: - return "STATE_CMD_READ0"; - case STATE_CMD_READ1: - return "STATE_CMD_READ1"; - case STATE_CMD_PAGEPROG: - return "STATE_CMD_PAGEPROG"; - case STATE_CMD_READOOB: - return "STATE_CMD_READOOB"; - case STATE_CMD_READSTART: - return "STATE_CMD_READSTART"; - case STATE_CMD_ERASE1: - return "STATE_CMD_ERASE1"; - case STATE_CMD_STATUS: - return "STATE_CMD_STATUS"; - case STATE_CMD_SEQIN: - return "STATE_CMD_SEQIN"; - case STATE_CMD_READID: - return "STATE_CMD_READID"; - case STATE_CMD_ERASE2: - return "STATE_CMD_ERASE2"; - case STATE_CMD_RESET: - return "STATE_CMD_RESET"; - case STATE_CMD_RNDOUT: - return "STATE_CMD_RNDOUT"; - case STATE_CMD_RNDOUTSTART: - return "STATE_CMD_RNDOUTSTART"; - case STATE_ADDR_PAGE: - return "STATE_ADDR_PAGE"; - case STATE_ADDR_SEC: - return "STATE_ADDR_SEC"; - case STATE_ADDR_ZERO: - return "STATE_ADDR_ZERO"; - case STATE_ADDR_COLUMN: - return "STATE_ADDR_COLUMN"; - case STATE_DATAIN: - return "STATE_DATAIN"; - case STATE_DATAOUT: - return "STATE_DATAOUT"; - case STATE_DATAOUT_ID: - return "STATE_DATAOUT_ID"; - case STATE_DATAOUT_STATUS: - return "STATE_DATAOUT_STATUS"; - case STATE_READY: - return "STATE_READY"; - case STATE_UNKNOWN: - return "STATE_UNKNOWN"; - } - - NS_ERR("get_state_name: unknown state, BUG\n"); - return NULL; -} - -/* - * Check if command is valid. - * - * RETURNS: 1 if wrong command, 0 if right. - */ -static int check_command(int cmd) -{ - switch (cmd) { - - case NAND_CMD_READ0: - case NAND_CMD_READ1: - case NAND_CMD_READSTART: - case NAND_CMD_PAGEPROG: - case NAND_CMD_READOOB: - case NAND_CMD_ERASE1: - case NAND_CMD_STATUS: - case NAND_CMD_SEQIN: - case NAND_CMD_READID: - case NAND_CMD_ERASE2: - case NAND_CMD_RESET: - case NAND_CMD_RNDOUT: - case NAND_CMD_RNDOUTSTART: - return 0; - - default: - return 1; - } -} - -/* - * Returns state after command is accepted by command number. - */ -static uint32_t get_state_by_command(unsigned command) -{ - switch (command) { - case NAND_CMD_READ0: - return STATE_CMD_READ0; - case NAND_CMD_READ1: - return STATE_CMD_READ1; - case NAND_CMD_PAGEPROG: - return STATE_CMD_PAGEPROG; - case NAND_CMD_READSTART: - return STATE_CMD_READSTART; - case NAND_CMD_READOOB: - return STATE_CMD_READOOB; - case NAND_CMD_ERASE1: - return STATE_CMD_ERASE1; - case NAND_CMD_STATUS: - return STATE_CMD_STATUS; - case NAND_CMD_SEQIN: - return STATE_CMD_SEQIN; - case NAND_CMD_READID: - return STATE_CMD_READID; - case NAND_CMD_ERASE2: - return STATE_CMD_ERASE2; - case NAND_CMD_RESET: - return STATE_CMD_RESET; - case NAND_CMD_RNDOUT: - return STATE_CMD_RNDOUT; - case NAND_CMD_RNDOUTSTART: - return STATE_CMD_RNDOUTSTART; - } - - NS_ERR("get_state_by_command: unknown command, BUG\n"); - return 0; -} - -/* - * Move an address byte to the correspondent internal register. - */ -static inline void accept_addr_byte(struct nandsim *ns, u_char bt) -{ - uint byte = (uint)bt; - - if (ns->regs.count < (ns->geom.pgaddrbytes - ns->geom.secaddrbytes)) - ns->regs.column |= (byte << 8 * ns->regs.count); - else { - ns->regs.row |= (byte << 8 * (ns->regs.count - - ns->geom.pgaddrbytes + - ns->geom.secaddrbytes)); - } - - return; -} - -/* - * Switch to STATE_READY state. - */ -static inline void switch_to_ready_state(struct nandsim *ns, u_char status) -{ - NS_DBG("switch_to_ready_state: switch to %s state\n", get_state_name(STATE_READY)); - - ns->state = STATE_READY; - ns->nxstate = STATE_UNKNOWN; - ns->op = NULL; - ns->npstates = 0; - ns->stateidx = 0; - ns->regs.num = 0; - ns->regs.count = 0; - ns->regs.off = 0; - ns->regs.row = 0; - ns->regs.column = 0; - ns->regs.status = status; -} - -/* - * If the operation isn't known yet, try to find it in the global array - * of supported operations. - * - * Operation can be unknown because of the following. - * 1. New command was accepted and this is the first call to find the - * correspondent states chain. In this case ns->npstates = 0; - * 2. There are several operations which begin with the same command(s) - * (for example program from the second half and read from the - * second half operations both begin with the READ1 command). In this - * case the ns->pstates[] array contains previous states. - * - * Thus, the function tries to find operation containing the following - * states (if the 'flag' parameter is 0): - * ns->pstates[0], ... ns->pstates[ns->npstates], ns->state - * - * If (one and only one) matching operation is found, it is accepted ( - * ns->ops, ns->state, ns->nxstate are initialized, ns->npstate is - * zeroed). - * - * If there are several matches, the current state is pushed to the - * ns->pstates. - * - * The operation can be unknown only while commands are input to the chip. - * As soon as address command is accepted, the operation must be known. - * In such situation the function is called with 'flag' != 0, and the - * operation is searched using the following pattern: - * ns->pstates[0], ... ns->pstates[ns->npstates],
- * - * It is supposed that this pattern must either match one operation or - * none. There can't be ambiguity in that case. - * - * If no matches found, the function does the following: - * 1. if there are saved states present, try to ignore them and search - * again only using the last command. If nothing was found, switch - * to the STATE_READY state. - * 2. if there are no saved states, switch to the STATE_READY state. - * - * RETURNS: -2 - no matched operations found. - * -1 - several matches. - * 0 - operation is found. - */ -static int find_operation(struct nandsim *ns, uint32_t flag) -{ - int opsfound = 0; - int i, j, idx = 0; - - for (i = 0; i < NS_OPER_NUM; i++) { - - int found = 1; - - if (!(ns->options & ops[i].reqopts)) - /* Ignore operations we can't perform */ - continue; - - if (flag) { - if (!(ops[i].states[ns->npstates] & STATE_ADDR_MASK)) - continue; - } else { - if (NS_STATE(ns->state) != NS_STATE(ops[i].states[ns->npstates])) - continue; - } - - for (j = 0; j < ns->npstates; j++) - if (NS_STATE(ops[i].states[j]) != NS_STATE(ns->pstates[j]) - && (ns->options & ops[idx].reqopts)) { - found = 0; - break; - } - - if (found) { - idx = i; - opsfound += 1; - } - } - - if (opsfound == 1) { - /* Exact match */ - ns->op = &ops[idx].states[0]; - if (flag) { - /* - * In this case the find_operation function was - * called when address has just began input. But it isn't - * yet fully input and the current state must - * not be one of STATE_ADDR_*, but the STATE_ADDR_* - * state must be the next state (ns->nxstate). - */ - ns->stateidx = ns->npstates - 1; - } else { - ns->stateidx = ns->npstates; - } - ns->npstates = 0; - ns->state = ns->op[ns->stateidx]; - ns->nxstate = ns->op[ns->stateidx + 1]; - NS_DBG("find_operation: operation found, index: %d, state: %s, nxstate %s\n", - idx, get_state_name(ns->state), get_state_name(ns->nxstate)); - return 0; - } - - if (opsfound == 0) { - /* Nothing was found. Try to ignore previous commands (if any) and search again */ - if (ns->npstates != 0) { - NS_DBG("find_operation: no operation found, try again with state %s\n", - get_state_name(ns->state)); - ns->npstates = 0; - return find_operation(ns, 0); - - } - NS_DBG("find_operation: no operations found\n"); - switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); - return -2; - } - - if (flag) { - /* This shouldn't happen */ - NS_DBG("find_operation: BUG, operation must be known if address is input\n"); - return -2; - } - - NS_DBG("find_operation: there is still ambiguity\n"); - - ns->pstates[ns->npstates++] = ns->state; - - return -1; -} - -static void put_pages(struct nandsim *ns) -{ - int i; - - for (i = 0; i < ns->held_cnt; i++) - put_page(ns->held_pages[i]); -} - -/* Get page cache pages in advance to provide NOFS memory allocation */ -static int get_pages(struct nandsim *ns, struct file *file, size_t count, loff_t pos) -{ - pgoff_t index, start_index, end_index; - struct page *page; - struct address_space *mapping = file->f_mapping; - - start_index = pos >> PAGE_SHIFT; - end_index = (pos + count - 1) >> PAGE_SHIFT; - if (end_index - start_index + 1 > NS_MAX_HELD_PAGES) - return -EINVAL; - ns->held_cnt = 0; - for (index = start_index; index <= end_index; index++) { - page = find_get_page(mapping, index); - if (page == NULL) { - page = find_or_create_page(mapping, index, GFP_NOFS); - if (page == NULL) { - write_inode_now(mapping->host, 1); - page = find_or_create_page(mapping, index, GFP_NOFS); - } - if (page == NULL) { - put_pages(ns); - return -ENOMEM; - } - unlock_page(page); - } - ns->held_pages[ns->held_cnt++] = page; - } - return 0; -} - -static ssize_t read_file(struct nandsim *ns, struct file *file, void *buf, size_t count, loff_t pos) -{ - ssize_t tx; - int err; - unsigned int noreclaim_flag; - - err = get_pages(ns, file, count, pos); - if (err) - return err; - noreclaim_flag = memalloc_noreclaim_save(); - tx = kernel_read(file, buf, count, &pos); - memalloc_noreclaim_restore(noreclaim_flag); - put_pages(ns); - return tx; -} - -static ssize_t write_file(struct nandsim *ns, struct file *file, void *buf, size_t count, loff_t pos) -{ - ssize_t tx; - int err; - unsigned int noreclaim_flag; - - err = get_pages(ns, file, count, pos); - if (err) - return err; - noreclaim_flag = memalloc_noreclaim_save(); - tx = kernel_write(file, buf, count, &pos); - memalloc_noreclaim_restore(noreclaim_flag); - put_pages(ns); - return tx; -} - -/* - * Returns a pointer to the current page. - */ -static inline union ns_mem *NS_GET_PAGE(struct nandsim *ns) -{ - return &(ns->pages[ns->regs.row]); -} - -/* - * Retuns a pointer to the current byte, within the current page. - */ -static inline u_char *NS_PAGE_BYTE_OFF(struct nandsim *ns) -{ - return NS_GET_PAGE(ns)->byte + ns->regs.column + ns->regs.off; -} - -static int do_read_error(struct nandsim *ns, int num) -{ - unsigned int page_no = ns->regs.row; - - if (read_error(page_no)) { - prandom_bytes(ns->buf.byte, num); - NS_WARN("simulating read error in page %u\n", page_no); - return 1; - } - return 0; -} - -static void do_bit_flips(struct nandsim *ns, int num) -{ - if (bitflips && prandom_u32() < (1 << 22)) { - int flips = 1; - if (bitflips > 1) - flips = (prandom_u32() % (int) bitflips) + 1; - while (flips--) { - int pos = prandom_u32() % (num * 8); - ns->buf.byte[pos / 8] ^= (1 << (pos % 8)); - NS_WARN("read_page: flipping bit %d in page %d " - "reading from %d ecc: corrected=%u failed=%u\n", - pos, ns->regs.row, ns->regs.column + ns->regs.off, - nsmtd->ecc_stats.corrected, nsmtd->ecc_stats.failed); - } - } -} - -/* - * Fill the NAND buffer with data read from the specified page. - */ -static void read_page(struct nandsim *ns, int num) -{ - union ns_mem *mypage; - - if (ns->cfile) { - if (!test_bit(ns->regs.row, ns->pages_written)) { - NS_DBG("read_page: page %d not written\n", ns->regs.row); - memset(ns->buf.byte, 0xFF, num); - } else { - loff_t pos; - ssize_t tx; - - NS_DBG("read_page: page %d written, reading from %d\n", - ns->regs.row, ns->regs.column + ns->regs.off); - if (do_read_error(ns, num)) - return; - pos = (loff_t)NS_RAW_OFFSET(ns) + ns->regs.off; - tx = read_file(ns, ns->cfile, ns->buf.byte, num, pos); - if (tx != num) { - NS_ERR("read_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx); - return; - } - do_bit_flips(ns, num); - } - return; - } - - mypage = NS_GET_PAGE(ns); - if (mypage->byte == NULL) { - NS_DBG("read_page: page %d not allocated\n", ns->regs.row); - memset(ns->buf.byte, 0xFF, num); - } else { - NS_DBG("read_page: page %d allocated, reading from %d\n", - ns->regs.row, ns->regs.column + ns->regs.off); - if (do_read_error(ns, num)) - return; - memcpy(ns->buf.byte, NS_PAGE_BYTE_OFF(ns), num); - do_bit_flips(ns, num); - } -} - -/* - * Erase all pages in the specified sector. - */ -static void erase_sector(struct nandsim *ns) -{ - union ns_mem *mypage; - int i; - - if (ns->cfile) { - for (i = 0; i < ns->geom.pgsec; i++) - if (__test_and_clear_bit(ns->regs.row + i, - ns->pages_written)) { - NS_DBG("erase_sector: freeing page %d\n", ns->regs.row + i); - } - return; - } - - mypage = NS_GET_PAGE(ns); - for (i = 0; i < ns->geom.pgsec; i++) { - if (mypage->byte != NULL) { - NS_DBG("erase_sector: freeing page %d\n", ns->regs.row+i); - kmem_cache_free(ns->nand_pages_slab, mypage->byte); - mypage->byte = NULL; - } - mypage++; - } -} - -/* - * Program the specified page with the contents from the NAND buffer. - */ -static int prog_page(struct nandsim *ns, int num) -{ - int i; - union ns_mem *mypage; - u_char *pg_off; - - if (ns->cfile) { - loff_t off; - ssize_t tx; - int all; - - NS_DBG("prog_page: writing page %d\n", ns->regs.row); - pg_off = ns->file_buf + ns->regs.column + ns->regs.off; - off = (loff_t)NS_RAW_OFFSET(ns) + ns->regs.off; - if (!test_bit(ns->regs.row, ns->pages_written)) { - all = 1; - memset(ns->file_buf, 0xff, ns->geom.pgszoob); - } else { - all = 0; - tx = read_file(ns, ns->cfile, pg_off, num, off); - if (tx != num) { - NS_ERR("prog_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx); - return -1; - } - } - for (i = 0; i < num; i++) - pg_off[i] &= ns->buf.byte[i]; - if (all) { - loff_t pos = (loff_t)ns->regs.row * ns->geom.pgszoob; - tx = write_file(ns, ns->cfile, ns->file_buf, ns->geom.pgszoob, pos); - if (tx != ns->geom.pgszoob) { - NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx); - return -1; - } - __set_bit(ns->regs.row, ns->pages_written); - } else { - tx = write_file(ns, ns->cfile, pg_off, num, off); - if (tx != num) { - NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx); - return -1; - } - } - return 0; - } - - mypage = NS_GET_PAGE(ns); - if (mypage->byte == NULL) { - NS_DBG("prog_page: allocating page %d\n", ns->regs.row); - /* - * We allocate memory with GFP_NOFS because a flash FS may - * utilize this. If it is holding an FS lock, then gets here, - * then kernel memory alloc runs writeback which goes to the FS - * again and deadlocks. This was seen in practice. - */ - mypage->byte = kmem_cache_alloc(ns->nand_pages_slab, GFP_NOFS); - if (mypage->byte == NULL) { - NS_ERR("prog_page: error allocating memory for page %d\n", ns->regs.row); - return -1; - } - memset(mypage->byte, 0xFF, ns->geom.pgszoob); - } - - pg_off = NS_PAGE_BYTE_OFF(ns); - for (i = 0; i < num; i++) - pg_off[i] &= ns->buf.byte[i]; - - return 0; -} - -/* - * If state has any action bit, perform this action. - * - * RETURNS: 0 if success, -1 if error. - */ -static int do_state_action(struct nandsim *ns, uint32_t action) -{ - int num; - int busdiv = ns->busw == 8 ? 1 : 2; - unsigned int erase_block_no, page_no; - - action &= ACTION_MASK; - - /* Check that page address input is correct */ - if (action != ACTION_SECERASE && ns->regs.row >= ns->geom.pgnum) { - NS_WARN("do_state_action: wrong page number (%#x)\n", ns->regs.row); - return -1; - } - - switch (action) { - - case ACTION_CPY: - /* - * Copy page data to the internal buffer. - */ - - /* Column shouldn't be very large */ - if (ns->regs.column >= (ns->geom.pgszoob - ns->regs.off)) { - NS_ERR("do_state_action: column number is too large\n"); - break; - } - num = ns->geom.pgszoob - ns->regs.off - ns->regs.column; - read_page(ns, num); - - NS_DBG("do_state_action: (ACTION_CPY:) copy %d bytes to int buf, raw offset %d\n", - num, NS_RAW_OFFSET(ns) + ns->regs.off); - - if (ns->regs.off == 0) - NS_LOG("read page %d\n", ns->regs.row); - else if (ns->regs.off < ns->geom.pgsz) - NS_LOG("read page %d (second half)\n", ns->regs.row); - else - NS_LOG("read OOB of page %d\n", ns->regs.row); - - NS_UDELAY(access_delay); - NS_UDELAY(input_cycle * ns->geom.pgsz / 1000 / busdiv); - - break; - - case ACTION_SECERASE: - /* - * Erase sector. - */ - - if (ns->lines.wp) { - NS_ERR("do_state_action: device is write-protected, ignore sector erase\n"); - return -1; - } - - if (ns->regs.row >= ns->geom.pgnum - ns->geom.pgsec - || (ns->regs.row & ~(ns->geom.secsz - 1))) { - NS_ERR("do_state_action: wrong sector address (%#x)\n", ns->regs.row); - return -1; - } - - ns->regs.row = (ns->regs.row << - 8 * (ns->geom.pgaddrbytes - ns->geom.secaddrbytes)) | ns->regs.column; - ns->regs.column = 0; - - erase_block_no = ns->regs.row >> (ns->geom.secshift - ns->geom.pgshift); - - NS_DBG("do_state_action: erase sector at address %#x, off = %d\n", - ns->regs.row, NS_RAW_OFFSET(ns)); - NS_LOG("erase sector %u\n", erase_block_no); - - erase_sector(ns); - - NS_MDELAY(erase_delay); - - if (erase_block_wear) - update_wear(erase_block_no); - - if (erase_error(erase_block_no)) { - NS_WARN("simulating erase failure in erase block %u\n", erase_block_no); - return -1; - } - - break; - - case ACTION_PRGPAGE: - /* - * Program page - move internal buffer data to the page. - */ - - if (ns->lines.wp) { - NS_WARN("do_state_action: device is write-protected, programm\n"); - return -1; - } - - num = ns->geom.pgszoob - ns->regs.off - ns->regs.column; - if (num != ns->regs.count) { - NS_ERR("do_state_action: too few bytes were input (%d instead of %d)\n", - ns->regs.count, num); - return -1; - } - - if (prog_page(ns, num) == -1) - return -1; - - page_no = ns->regs.row; - - NS_DBG("do_state_action: copy %d bytes from int buf to (%#x, %#x), raw off = %d\n", - num, ns->regs.row, ns->regs.column, NS_RAW_OFFSET(ns) + ns->regs.off); - NS_LOG("programm page %d\n", ns->regs.row); - - NS_UDELAY(programm_delay); - NS_UDELAY(output_cycle * ns->geom.pgsz / 1000 / busdiv); - - if (write_error(page_no)) { - NS_WARN("simulating write failure in page %u\n", page_no); - return -1; - } - - break; - - case ACTION_ZEROOFF: - NS_DBG("do_state_action: set internal offset to 0\n"); - ns->regs.off = 0; - break; - - case ACTION_HALFOFF: - if (!(ns->options & OPT_PAGE512_8BIT)) { - NS_ERR("do_state_action: BUG! can't skip half of page for non-512" - "byte page size 8x chips\n"); - return -1; - } - NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz/2); - ns->regs.off = ns->geom.pgsz/2; - break; - - case ACTION_OOBOFF: - NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz); - ns->regs.off = ns->geom.pgsz; - break; - - default: - NS_DBG("do_state_action: BUG! unknown action\n"); - } - - return 0; -} - -/* - * Switch simulator's state. - */ -static void switch_state(struct nandsim *ns) -{ - if (ns->op) { - /* - * The current operation have already been identified. - * Just follow the states chain. - */ - - ns->stateidx += 1; - ns->state = ns->nxstate; - ns->nxstate = ns->op[ns->stateidx + 1]; - - NS_DBG("switch_state: operation is known, switch to the next state, " - "state: %s, nxstate: %s\n", - get_state_name(ns->state), get_state_name(ns->nxstate)); - - /* See, whether we need to do some action */ - if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) { - switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); - return; - } - - } else { - /* - * We don't yet know which operation we perform. - * Try to identify it. - */ - - /* - * The only event causing the switch_state function to - * be called with yet unknown operation is new command. - */ - ns->state = get_state_by_command(ns->regs.command); - - NS_DBG("switch_state: operation is unknown, try to find it\n"); - - if (find_operation(ns, 0) != 0) - return; - - if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) { - switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); - return; - } - } - - /* For 16x devices column means the page offset in words */ - if ((ns->nxstate & STATE_ADDR_MASK) && ns->busw == 16) { - NS_DBG("switch_state: double the column number for 16x device\n"); - ns->regs.column <<= 1; - } - - if (NS_STATE(ns->nxstate) == STATE_READY) { - /* - * The current state is the last. Return to STATE_READY - */ - - u_char status = NS_STATUS_OK(ns); - - /* In case of data states, see if all bytes were input/output */ - if ((ns->state & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK)) - && ns->regs.count != ns->regs.num) { - NS_WARN("switch_state: not all bytes were processed, %d left\n", - ns->regs.num - ns->regs.count); - status = NS_STATUS_FAILED(ns); - } - - NS_DBG("switch_state: operation complete, switch to STATE_READY state\n"); - - switch_to_ready_state(ns, status); - - return; - } else if (ns->nxstate & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK)) { - /* - * If the next state is data input/output, switch to it now - */ - - ns->state = ns->nxstate; - ns->nxstate = ns->op[++ns->stateidx + 1]; - ns->regs.num = ns->regs.count = 0; - - NS_DBG("switch_state: the next state is data I/O, switch, " - "state: %s, nxstate: %s\n", - get_state_name(ns->state), get_state_name(ns->nxstate)); - - /* - * Set the internal register to the count of bytes which - * are expected to be input or output - */ - switch (NS_STATE(ns->state)) { - case STATE_DATAIN: - case STATE_DATAOUT: - ns->regs.num = ns->geom.pgszoob - ns->regs.off - ns->regs.column; - break; - - case STATE_DATAOUT_ID: - ns->regs.num = ns->geom.idbytes; - break; - - case STATE_DATAOUT_STATUS: - ns->regs.count = ns->regs.num = 0; - break; - - default: - NS_ERR("switch_state: BUG! unknown data state\n"); - } - - } else if (ns->nxstate & STATE_ADDR_MASK) { - /* - * If the next state is address input, set the internal - * register to the number of expected address bytes - */ - - ns->regs.count = 0; - - switch (NS_STATE(ns->nxstate)) { - case STATE_ADDR_PAGE: - ns->regs.num = ns->geom.pgaddrbytes; - - break; - case STATE_ADDR_SEC: - ns->regs.num = ns->geom.secaddrbytes; - break; - - case STATE_ADDR_ZERO: - ns->regs.num = 1; - break; - - case STATE_ADDR_COLUMN: - /* Column address is always 2 bytes */ - ns->regs.num = ns->geom.pgaddrbytes - ns->geom.secaddrbytes; - break; - - default: - NS_ERR("switch_state: BUG! unknown address state\n"); - } - } else { - /* - * Just reset internal counters. - */ - - ns->regs.num = 0; - ns->regs.count = 0; - } -} - -static u_char ns_nand_read_byte(struct mtd_info *mtd) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct nandsim *ns = nand_get_controller_data(chip); - u_char outb = 0x00; - - /* Sanity and correctness checks */ - if (!ns->lines.ce) { - NS_ERR("read_byte: chip is disabled, return %#x\n", (uint)outb); - return outb; - } - if (ns->lines.ale || ns->lines.cle) { - NS_ERR("read_byte: ALE or CLE pin is high, return %#x\n", (uint)outb); - return outb; - } - if (!(ns->state & STATE_DATAOUT_MASK)) { - NS_WARN("read_byte: unexpected data output cycle, state is %s " - "return %#x\n", get_state_name(ns->state), (uint)outb); - return outb; - } - - /* Status register may be read as many times as it is wanted */ - if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS) { - NS_DBG("read_byte: return %#x status\n", ns->regs.status); - return ns->regs.status; - } - - /* Check if there is any data in the internal buffer which may be read */ - if (ns->regs.count == ns->regs.num) { - NS_WARN("read_byte: no more data to output, return %#x\n", (uint)outb); - return outb; - } - - switch (NS_STATE(ns->state)) { - case STATE_DATAOUT: - if (ns->busw == 8) { - outb = ns->buf.byte[ns->regs.count]; - ns->regs.count += 1; - } else { - outb = (u_char)cpu_to_le16(ns->buf.word[ns->regs.count >> 1]); - ns->regs.count += 2; - } - break; - case STATE_DATAOUT_ID: - NS_DBG("read_byte: read ID byte %d, total = %d\n", ns->regs.count, ns->regs.num); - outb = ns->ids[ns->regs.count]; - ns->regs.count += 1; - break; - default: - BUG(); - } - - if (ns->regs.count == ns->regs.num) { - NS_DBG("read_byte: all bytes were read\n"); - - if (NS_STATE(ns->nxstate) == STATE_READY) - switch_state(ns); - } - - return outb; -} - -static void ns_nand_write_byte(struct mtd_info *mtd, u_char byte) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct nandsim *ns = nand_get_controller_data(chip); - - /* Sanity and correctness checks */ - if (!ns->lines.ce) { - NS_ERR("write_byte: chip is disabled, ignore write\n"); - return; - } - if (ns->lines.ale && ns->lines.cle) { - NS_ERR("write_byte: ALE and CLE pins are high simultaneously, ignore write\n"); - return; - } - - if (ns->lines.cle == 1) { - /* - * The byte written is a command. - */ - - if (byte == NAND_CMD_RESET) { - NS_LOG("reset chip\n"); - switch_to_ready_state(ns, NS_STATUS_OK(ns)); - return; - } - - /* Check that the command byte is correct */ - if (check_command(byte)) { - NS_ERR("write_byte: unknown command %#x\n", (uint)byte); - return; - } - - if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS - || NS_STATE(ns->state) == STATE_DATAOUT) { - int row = ns->regs.row; - - switch_state(ns); - if (byte == NAND_CMD_RNDOUT) - ns->regs.row = row; - } - - /* Check if chip is expecting command */ - if (NS_STATE(ns->nxstate) != STATE_UNKNOWN && !(ns->nxstate & STATE_CMD_MASK)) { - /* Do not warn if only 2 id bytes are read */ - if (!(ns->regs.command == NAND_CMD_READID && - NS_STATE(ns->state) == STATE_DATAOUT_ID && ns->regs.count == 2)) { - /* - * We are in situation when something else (not command) - * was expected but command was input. In this case ignore - * previous command(s)/state(s) and accept the last one. - */ - NS_WARN("write_byte: command (%#x) wasn't expected, expected state is %s, " - "ignore previous states\n", (uint)byte, get_state_name(ns->nxstate)); - } - switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); - } - - NS_DBG("command byte corresponding to %s state accepted\n", - get_state_name(get_state_by_command(byte))); - ns->regs.command = byte; - switch_state(ns); - - } else if (ns->lines.ale == 1) { - /* - * The byte written is an address. - */ - - if (NS_STATE(ns->nxstate) == STATE_UNKNOWN) { - - NS_DBG("write_byte: operation isn't known yet, identify it\n"); - - if (find_operation(ns, 1) < 0) - return; - - if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) { - switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); - return; - } - - ns->regs.count = 0; - switch (NS_STATE(ns->nxstate)) { - case STATE_ADDR_PAGE: - ns->regs.num = ns->geom.pgaddrbytes; - break; - case STATE_ADDR_SEC: - ns->regs.num = ns->geom.secaddrbytes; - break; - case STATE_ADDR_ZERO: - ns->regs.num = 1; - break; - default: - BUG(); - } - } - - /* Check that chip is expecting address */ - if (!(ns->nxstate & STATE_ADDR_MASK)) { - NS_ERR("write_byte: address (%#x) isn't expected, expected state is %s, " - "switch to STATE_READY\n", (uint)byte, get_state_name(ns->nxstate)); - switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); - return; - } - - /* Check if this is expected byte */ - if (ns->regs.count == ns->regs.num) { - NS_ERR("write_byte: no more address bytes expected\n"); - switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); - return; - } - - accept_addr_byte(ns, byte); - - ns->regs.count += 1; - - NS_DBG("write_byte: address byte %#x was accepted (%d bytes input, %d expected)\n", - (uint)byte, ns->regs.count, ns->regs.num); - - if (ns->regs.count == ns->regs.num) { - NS_DBG("address (%#x, %#x) is accepted\n", ns->regs.row, ns->regs.column); - switch_state(ns); - } - - } else { - /* - * The byte written is an input data. - */ - - /* Check that chip is expecting data input */ - if (!(ns->state & STATE_DATAIN_MASK)) { - NS_ERR("write_byte: data input (%#x) isn't expected, state is %s, " - "switch to %s\n", (uint)byte, - get_state_name(ns->state), get_state_name(STATE_READY)); - switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); - return; - } - - /* Check if this is expected byte */ - if (ns->regs.count == ns->regs.num) { - NS_WARN("write_byte: %u input bytes has already been accepted, ignore write\n", - ns->regs.num); - return; - } - - if (ns->busw == 8) { - ns->buf.byte[ns->regs.count] = byte; - ns->regs.count += 1; - } else { - ns->buf.word[ns->regs.count >> 1] = cpu_to_le16((uint16_t)byte); - ns->regs.count += 2; - } - } - - return; -} - -static void ns_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int bitmask) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct nandsim *ns = nand_get_controller_data(chip); - - ns->lines.cle = bitmask & NAND_CLE ? 1 : 0; - ns->lines.ale = bitmask & NAND_ALE ? 1 : 0; - ns->lines.ce = bitmask & NAND_NCE ? 1 : 0; - - if (cmd != NAND_CMD_NONE) - ns_nand_write_byte(mtd, cmd); -} - -static int ns_device_ready(struct mtd_info *mtd) -{ - NS_DBG("device_ready\n"); - return 1; -} - -static uint16_t ns_nand_read_word(struct mtd_info *mtd) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - - NS_DBG("read_word\n"); - - return chip->read_byte(mtd) | (chip->read_byte(mtd) << 8); -} - -static void ns_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct nandsim *ns = nand_get_controller_data(chip); - - /* Check that chip is expecting data input */ - if (!(ns->state & STATE_DATAIN_MASK)) { - NS_ERR("write_buf: data input isn't expected, state is %s, " - "switch to STATE_READY\n", get_state_name(ns->state)); - switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); - return; - } - - /* Check if these are expected bytes */ - if (ns->regs.count + len > ns->regs.num) { - NS_ERR("write_buf: too many input bytes\n"); - switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); - return; - } - - memcpy(ns->buf.byte + ns->regs.count, buf, len); - ns->regs.count += len; - - if (ns->regs.count == ns->regs.num) { - NS_DBG("write_buf: %d bytes were written\n", ns->regs.count); - } -} - -static void ns_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct nandsim *ns = nand_get_controller_data(chip); - - /* Sanity and correctness checks */ - if (!ns->lines.ce) { - NS_ERR("read_buf: chip is disabled\n"); - return; - } - if (ns->lines.ale || ns->lines.cle) { - NS_ERR("read_buf: ALE or CLE pin is high\n"); - return; - } - if (!(ns->state & STATE_DATAOUT_MASK)) { - NS_WARN("read_buf: unexpected data output cycle, current state is %s\n", - get_state_name(ns->state)); - return; - } - - if (NS_STATE(ns->state) != STATE_DATAOUT) { - int i; - - for (i = 0; i < len; i++) - buf[i] = mtd_to_nand(mtd)->read_byte(mtd); - - return; - } - - /* Check if these are expected bytes */ - if (ns->regs.count + len > ns->regs.num) { - NS_ERR("read_buf: too many bytes to read\n"); - switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); - return; - } - - memcpy(buf, ns->buf.byte + ns->regs.count, len); - ns->regs.count += len; - - if (ns->regs.count == ns->regs.num) { - if (NS_STATE(ns->nxstate) == STATE_READY) - switch_state(ns); - } - - return; -} - -/* - * Module initialization function - */ -static int __init ns_init_module(void) -{ - struct nand_chip *chip; - struct nandsim *nand; - int retval = -ENOMEM, i; - - if (bus_width != 8 && bus_width != 16) { - NS_ERR("wrong bus width (%d), use only 8 or 16\n", bus_width); - return -EINVAL; - } - - /* Allocate and initialize mtd_info, nand_chip and nandsim structures */ - chip = kzalloc(sizeof(struct nand_chip) + sizeof(struct nandsim), - GFP_KERNEL); - if (!chip) { - NS_ERR("unable to allocate core structures.\n"); - return -ENOMEM; - } - nsmtd = nand_to_mtd(chip); - nand = (struct nandsim *)(chip + 1); - nand_set_controller_data(chip, (void *)nand); - - /* - * Register simulator's callbacks. - */ - chip->cmd_ctrl = ns_hwcontrol; - chip->read_byte = ns_nand_read_byte; - chip->dev_ready = ns_device_ready; - chip->write_buf = ns_nand_write_buf; - chip->read_buf = ns_nand_read_buf; - chip->read_word = ns_nand_read_word; - chip->ecc.mode = NAND_ECC_SOFT; - chip->ecc.algo = NAND_ECC_HAMMING; - /* The NAND_SKIP_BBTSCAN option is necessary for 'overridesize' */ - /* and 'badblocks' parameters to work */ - chip->options |= NAND_SKIP_BBTSCAN; - - switch (bbt) { - case 2: - chip->bbt_options |= NAND_BBT_NO_OOB; - case 1: - chip->bbt_options |= NAND_BBT_USE_FLASH; - case 0: - break; - default: - NS_ERR("bbt has to be 0..2\n"); - retval = -EINVAL; - goto error; - } - /* - * Perform minimum nandsim structure initialization to handle - * the initial ID read command correctly - */ - if (id_bytes[6] != 0xFF || id_bytes[7] != 0xFF) - nand->geom.idbytes = 8; - else if (id_bytes[4] != 0xFF || id_bytes[5] != 0xFF) - nand->geom.idbytes = 6; - else if (id_bytes[2] != 0xFF || id_bytes[3] != 0xFF) - nand->geom.idbytes = 4; - else - nand->geom.idbytes = 2; - nand->regs.status = NS_STATUS_OK(nand); - nand->nxstate = STATE_UNKNOWN; - nand->options |= OPT_PAGE512; /* temporary value */ - memcpy(nand->ids, id_bytes, sizeof(nand->ids)); - if (bus_width == 16) { - nand->busw = 16; - chip->options |= NAND_BUSWIDTH_16; - } - - nsmtd->owner = THIS_MODULE; - - if ((retval = parse_weakblocks()) != 0) - goto error; - - if ((retval = parse_weakpages()) != 0) - goto error; - - if ((retval = parse_gravepages()) != 0) - goto error; - - retval = nand_scan_ident(nsmtd, 1, NULL); - if (retval) { - NS_ERR("cannot scan NAND Simulator device\n"); - goto error; - } - - if (bch) { - unsigned int eccsteps, eccbytes; - if (!mtd_nand_has_bch()) { - NS_ERR("BCH ECC support is disabled\n"); - retval = -EINVAL; - goto error; - } - /* use 512-byte ecc blocks */ - eccsteps = nsmtd->writesize/512; - eccbytes = (bch*13+7)/8; - /* do not bother supporting small page devices */ - if ((nsmtd->oobsize < 64) || !eccsteps) { - NS_ERR("bch not available on small page devices\n"); - retval = -EINVAL; - goto error; - } - if ((eccbytes*eccsteps+2) > nsmtd->oobsize) { - NS_ERR("invalid bch value %u\n", bch); - retval = -EINVAL; - goto error; - } - chip->ecc.mode = NAND_ECC_SOFT; - chip->ecc.algo = NAND_ECC_BCH; - chip->ecc.size = 512; - chip->ecc.strength = bch; - chip->ecc.bytes = eccbytes; - NS_INFO("using %u-bit/%u bytes BCH ECC\n", bch, chip->ecc.size); - } - - retval = nand_scan_tail(nsmtd); - if (retval) { - NS_ERR("can't register NAND Simulator\n"); - goto error; - } - - if (overridesize) { - uint64_t new_size = (uint64_t)nsmtd->erasesize << overridesize; - if (new_size >> overridesize != nsmtd->erasesize) { - NS_ERR("overridesize is too big\n"); - retval = -EINVAL; - goto err_exit; - } - /* N.B. This relies on nand_scan not doing anything with the size before we change it */ - nsmtd->size = new_size; - chip->chipsize = new_size; - chip->chip_shift = ffs(nsmtd->erasesize) + overridesize - 1; - chip->pagemask = (chip->chipsize >> chip->page_shift) - 1; - } - - if ((retval = setup_wear_reporting(nsmtd)) != 0) - goto err_exit; - - if ((retval = init_nandsim(nsmtd)) != 0) - goto err_exit; - - if ((retval = chip->scan_bbt(nsmtd)) != 0) - goto err_exit; - - if ((retval = parse_badblocks(nand, nsmtd)) != 0) - goto err_exit; - - /* Register NAND partitions */ - retval = mtd_device_register(nsmtd, &nand->partitions[0], - nand->nbparts); - if (retval != 0) - goto err_exit; - - if ((retval = nandsim_debugfs_create(nand)) != 0) - goto err_exit; - - return 0; - -err_exit: - free_nandsim(nand); - nand_release(nsmtd); - for (i = 0;i < ARRAY_SIZE(nand->partitions); ++i) - kfree(nand->partitions[i].name); -error: - kfree(chip); - free_lists(); - - return retval; -} - -module_init(ns_init_module); - -/* - * Module clean-up function - */ -static void __exit ns_cleanup_module(void) -{ - struct nand_chip *chip = mtd_to_nand(nsmtd); - struct nandsim *ns = nand_get_controller_data(chip); - int i; - - free_nandsim(ns); /* Free nandsim private resources */ - nand_release(nsmtd); /* Unregister driver */ - for (i = 0;i < ARRAY_SIZE(ns->partitions); ++i) - kfree(ns->partitions[i].name); - kfree(mtd_to_nand(nsmtd)); /* Free other structures */ - free_lists(); -} - -module_exit(ns_cleanup_module); - -MODULE_LICENSE ("GPL"); -MODULE_AUTHOR ("Artem B. Bityuckiy"); -MODULE_DESCRIPTION ("The NAND flash simulator"); diff --git a/drivers/mtd/nand/ndfc.c b/drivers/mtd/nand/ndfc.c deleted file mode 100644 index d8a806894937..000000000000 --- a/drivers/mtd/nand/ndfc.c +++ /dev/null @@ -1,286 +0,0 @@ -/* - * Overview: - * Platform independent driver for NDFC (NanD Flash Controller) - * integrated into EP440 cores - * - * Ported to an OF platform driver by Sean MacLennan - * - * The NDFC supports multiple chips, but this driver only supports a - * single chip since I do not have access to any boards with - * multiple chips. - * - * Author: Thomas Gleixner - * - * Copyright 2006 IBM - * Copyright 2008 PIKA Technologies - * Sean MacLennan - * - * This program is free software; you can redistribute it and/or modify it - * under the terms of the GNU General Public License as published by the - * Free Software Foundation; either version 2 of the License, or (at your - * option) any later version. - * - */ -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include - -#define NDFC_MAX_CS 4 - -struct ndfc_controller { - struct platform_device *ofdev; - void __iomem *ndfcbase; - struct nand_chip chip; - int chip_select; - struct nand_hw_control ndfc_control; -}; - -static struct ndfc_controller ndfc_ctrl[NDFC_MAX_CS]; - -static void ndfc_select_chip(struct mtd_info *mtd, int chip) -{ - uint32_t ccr; - struct nand_chip *nchip = mtd_to_nand(mtd); - struct ndfc_controller *ndfc = nand_get_controller_data(nchip); - - ccr = in_be32(ndfc->ndfcbase + NDFC_CCR); - if (chip >= 0) { - ccr &= ~NDFC_CCR_BS_MASK; - ccr |= NDFC_CCR_BS(chip + ndfc->chip_select); - } else - ccr |= NDFC_CCR_RESET_CE; - out_be32(ndfc->ndfcbase + NDFC_CCR, ccr); -} - -static void ndfc_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct ndfc_controller *ndfc = nand_get_controller_data(chip); - - if (cmd == NAND_CMD_NONE) - return; - - if (ctrl & NAND_CLE) - writel(cmd & 0xFF, ndfc->ndfcbase + NDFC_CMD); - else - writel(cmd & 0xFF, ndfc->ndfcbase + NDFC_ALE); -} - -static int ndfc_ready(struct mtd_info *mtd) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct ndfc_controller *ndfc = nand_get_controller_data(chip); - - return in_be32(ndfc->ndfcbase + NDFC_STAT) & NDFC_STAT_IS_READY; -} - -static void ndfc_enable_hwecc(struct mtd_info *mtd, int mode) -{ - uint32_t ccr; - struct nand_chip *chip = mtd_to_nand(mtd); - struct ndfc_controller *ndfc = nand_get_controller_data(chip); - - ccr = in_be32(ndfc->ndfcbase + NDFC_CCR); - ccr |= NDFC_CCR_RESET_ECC; - out_be32(ndfc->ndfcbase + NDFC_CCR, ccr); - wmb(); -} - -static int ndfc_calculate_ecc(struct mtd_info *mtd, - const u_char *dat, u_char *ecc_code) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct ndfc_controller *ndfc = nand_get_controller_data(chip); - uint32_t ecc; - uint8_t *p = (uint8_t *)&ecc; - - wmb(); - ecc = in_be32(ndfc->ndfcbase + NDFC_ECC); - /* The NDFC uses Smart Media (SMC) bytes order */ - ecc_code[0] = p[1]; - ecc_code[1] = p[2]; - ecc_code[2] = p[3]; - - return 0; -} - -/* - * Speedups for buffer read/write/verify - * - * NDFC allows 32bit read/write of data. So we can speed up the buffer - * functions. No further checking, as nand_base will always read/write - * page aligned. - */ -static void ndfc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct ndfc_controller *ndfc = nand_get_controller_data(chip); - uint32_t *p = (uint32_t *) buf; - - for(;len > 0; len -= 4) - *p++ = in_be32(ndfc->ndfcbase + NDFC_DATA); -} - -static void ndfc_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct ndfc_controller *ndfc = nand_get_controller_data(chip); - uint32_t *p = (uint32_t *) buf; - - for(;len > 0; len -= 4) - out_be32(ndfc->ndfcbase + NDFC_DATA, *p++); -} - -/* - * Initialize chip structure - */ -static int ndfc_chip_init(struct ndfc_controller *ndfc, - struct device_node *node) -{ - struct device_node *flash_np; - struct nand_chip *chip = &ndfc->chip; - struct mtd_info *mtd = nand_to_mtd(chip); - int ret; - - chip->IO_ADDR_R = ndfc->ndfcbase + NDFC_DATA; - chip->IO_ADDR_W = ndfc->ndfcbase + NDFC_DATA; - chip->cmd_ctrl = ndfc_hwcontrol; - chip->dev_ready = ndfc_ready; - chip->select_chip = ndfc_select_chip; - chip->chip_delay = 50; - chip->controller = &ndfc->ndfc_control; - chip->read_buf = ndfc_read_buf; - chip->write_buf = ndfc_write_buf; - chip->ecc.correct = nand_correct_data; - chip->ecc.hwctl = ndfc_enable_hwecc; - chip->ecc.calculate = ndfc_calculate_ecc; - chip->ecc.mode = NAND_ECC_HW; - chip->ecc.size = 256; - chip->ecc.bytes = 3; - chip->ecc.strength = 1; - nand_set_controller_data(chip, ndfc); - - mtd->dev.parent = &ndfc->ofdev->dev; - - flash_np = of_get_next_child(node, NULL); - if (!flash_np) - return -ENODEV; - nand_set_flash_node(chip, flash_np); - - mtd->name = kasprintf(GFP_KERNEL, "%s.%s", dev_name(&ndfc->ofdev->dev), - flash_np->name); - if (!mtd->name) { - ret = -ENOMEM; - goto err; - } - - ret = nand_scan(mtd, 1); - if (ret) - goto err; - - ret = mtd_device_register(mtd, NULL, 0); - -err: - of_node_put(flash_np); - if (ret) - kfree(mtd->name); - return ret; -} - -static int ndfc_probe(struct platform_device *ofdev) -{ - struct ndfc_controller *ndfc; - const __be32 *reg; - u32 ccr; - u32 cs; - int err, len; - - /* Read the reg property to get the chip select */ - reg = of_get_property(ofdev->dev.of_node, "reg", &len); - if (reg == NULL || len != 12) { - dev_err(&ofdev->dev, "unable read reg property (%d)\n", len); - return -ENOENT; - } - - cs = be32_to_cpu(reg[0]); - if (cs >= NDFC_MAX_CS) { - dev_err(&ofdev->dev, "invalid CS number (%d)\n", cs); - return -EINVAL; - } - - ndfc = &ndfc_ctrl[cs]; - ndfc->chip_select = cs; - - nand_hw_control_init(&ndfc->ndfc_control); - ndfc->ofdev = ofdev; - dev_set_drvdata(&ofdev->dev, ndfc); - - ndfc->ndfcbase = of_iomap(ofdev->dev.of_node, 0); - if (!ndfc->ndfcbase) { - dev_err(&ofdev->dev, "failed to get memory\n"); - return -EIO; - } - - ccr = NDFC_CCR_BS(ndfc->chip_select); - - /* It is ok if ccr does not exist - just default to 0 */ - reg = of_get_property(ofdev->dev.of_node, "ccr", NULL); - if (reg) - ccr |= be32_to_cpup(reg); - - out_be32(ndfc->ndfcbase + NDFC_CCR, ccr); - - /* Set the bank settings if given */ - reg = of_get_property(ofdev->dev.of_node, "bank-settings", NULL); - if (reg) { - int offset = NDFC_BCFG0 + (ndfc->chip_select << 2); - out_be32(ndfc->ndfcbase + offset, be32_to_cpup(reg)); - } - - err = ndfc_chip_init(ndfc, ofdev->dev.of_node); - if (err) { - iounmap(ndfc->ndfcbase); - return err; - } - - return 0; -} - -static int ndfc_remove(struct platform_device *ofdev) -{ - struct ndfc_controller *ndfc = dev_get_drvdata(&ofdev->dev); - struct mtd_info *mtd = nand_to_mtd(&ndfc->chip); - - nand_release(mtd); - kfree(mtd->name); - - return 0; -} - -static const struct of_device_id ndfc_match[] = { - { .compatible = "ibm,ndfc", }, - {} -}; -MODULE_DEVICE_TABLE(of, ndfc_match); - -static struct platform_driver ndfc_driver = { - .driver = { - .name = "ndfc", - .of_match_table = ndfc_match, - }, - .probe = ndfc_probe, - .remove = ndfc_remove, -}; - -module_platform_driver(ndfc_driver); - -MODULE_LICENSE("GPL"); -MODULE_AUTHOR("Thomas Gleixner "); -MODULE_DESCRIPTION("OF Platform driver for NDFC"); diff --git a/drivers/mtd/nand/nuc900_nand.c b/drivers/mtd/nand/nuc900_nand.c deleted file mode 100644 index af5b32c9a791..000000000000 --- a/drivers/mtd/nand/nuc900_nand.c +++ /dev/null @@ -1,306 +0,0 @@ -/* - * Copyright © 2009 Nuvoton technology corporation. - * - * Wan ZongShun - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation;version 2 of the License. - * - */ - -#include -#include -#include -#include -#include -#include -#include -#include - -#include -#include -#include - -#define REG_FMICSR 0x00 -#define REG_SMCSR 0xa0 -#define REG_SMISR 0xac -#define REG_SMCMD 0xb0 -#define REG_SMADDR 0xb4 -#define REG_SMDATA 0xb8 - -#define RESET_FMI 0x01 -#define NAND_EN 0x08 -#define READYBUSY (0x01 << 18) - -#define SWRST 0x01 -#define PSIZE (0x01 << 3) -#define DMARWEN (0x03 << 1) -#define BUSWID (0x01 << 4) -#define ECC4EN (0x01 << 5) -#define WP (0x01 << 24) -#define NANDCS (0x01 << 25) -#define ENDADDR (0x01 << 31) - -#define read_data_reg(dev) \ - __raw_readl((dev)->reg + REG_SMDATA) - -#define write_data_reg(dev, val) \ - __raw_writel((val), (dev)->reg + REG_SMDATA) - -#define write_cmd_reg(dev, val) \ - __raw_writel((val), (dev)->reg + REG_SMCMD) - -#define write_addr_reg(dev, val) \ - __raw_writel((val), (dev)->reg + REG_SMADDR) - -struct nuc900_nand { - struct nand_chip chip; - void __iomem *reg; - struct clk *clk; - spinlock_t lock; -}; - -static inline struct nuc900_nand *mtd_to_nuc900(struct mtd_info *mtd) -{ - return container_of(mtd_to_nand(mtd), struct nuc900_nand, chip); -} - -static const struct mtd_partition partitions[] = { - { - .name = "NAND FS 0", - .offset = 0, - .size = 8 * 1024 * 1024 - }, - { - .name = "NAND FS 1", - .offset = MTDPART_OFS_APPEND, - .size = MTDPART_SIZ_FULL - } -}; - -static unsigned char nuc900_nand_read_byte(struct mtd_info *mtd) -{ - unsigned char ret; - struct nuc900_nand *nand = mtd_to_nuc900(mtd); - - ret = (unsigned char)read_data_reg(nand); - - return ret; -} - -static void nuc900_nand_read_buf(struct mtd_info *mtd, - unsigned char *buf, int len) -{ - int i; - struct nuc900_nand *nand = mtd_to_nuc900(mtd); - - for (i = 0; i < len; i++) - buf[i] = (unsigned char)read_data_reg(nand); -} - -static void nuc900_nand_write_buf(struct mtd_info *mtd, - const unsigned char *buf, int len) -{ - int i; - struct nuc900_nand *nand = mtd_to_nuc900(mtd); - - for (i = 0; i < len; i++) - write_data_reg(nand, buf[i]); -} - -static int nuc900_check_rb(struct nuc900_nand *nand) -{ - unsigned int val; - spin_lock(&nand->lock); - val = __raw_readl(nand->reg + REG_SMISR); - val &= READYBUSY; - spin_unlock(&nand->lock); - - return val; -} - -static int nuc900_nand_devready(struct mtd_info *mtd) -{ - struct nuc900_nand *nand = mtd_to_nuc900(mtd); - int ready; - - ready = (nuc900_check_rb(nand)) ? 1 : 0; - return ready; -} - -static void nuc900_nand_command_lp(struct mtd_info *mtd, unsigned int command, - int column, int page_addr) -{ - register struct nand_chip *chip = mtd_to_nand(mtd); - struct nuc900_nand *nand = mtd_to_nuc900(mtd); - - if (command == NAND_CMD_READOOB) { - column += mtd->writesize; - command = NAND_CMD_READ0; - } - - write_cmd_reg(nand, command & 0xff); - - if (column != -1 || page_addr != -1) { - - if (column != -1) { - if (chip->options & NAND_BUSWIDTH_16 && - !nand_opcode_8bits(command)) - column >>= 1; - write_addr_reg(nand, column); - write_addr_reg(nand, column >> 8 | ENDADDR); - } - if (page_addr != -1) { - write_addr_reg(nand, page_addr); - - if (chip->options & NAND_ROW_ADDR_3) { - write_addr_reg(nand, page_addr >> 8); - write_addr_reg(nand, page_addr >> 16 | ENDADDR); - } else { - write_addr_reg(nand, page_addr >> 8 | ENDADDR); - } - } - } - - switch (command) { - case NAND_CMD_CACHEDPROG: - case NAND_CMD_PAGEPROG: - case NAND_CMD_ERASE1: - case NAND_CMD_ERASE2: - case NAND_CMD_SEQIN: - case NAND_CMD_RNDIN: - case NAND_CMD_STATUS: - return; - - case NAND_CMD_RESET: - if (chip->dev_ready) - break; - udelay(chip->chip_delay); - - write_cmd_reg(nand, NAND_CMD_STATUS); - write_cmd_reg(nand, command); - - while (!nuc900_check_rb(nand)) - ; - - return; - - case NAND_CMD_RNDOUT: - write_cmd_reg(nand, NAND_CMD_RNDOUTSTART); - return; - - case NAND_CMD_READ0: - - write_cmd_reg(nand, NAND_CMD_READSTART); - default: - - if (!chip->dev_ready) { - udelay(chip->chip_delay); - return; - } - } - - /* Apply this short delay always to ensure that we do wait tWB in - * any case on any machine. */ - ndelay(100); - - while (!chip->dev_ready(mtd)) - ; -} - - -static void nuc900_nand_enable(struct nuc900_nand *nand) -{ - unsigned int val; - spin_lock(&nand->lock); - __raw_writel(RESET_FMI, (nand->reg + REG_FMICSR)); - - val = __raw_readl(nand->reg + REG_FMICSR); - - if (!(val & NAND_EN)) - __raw_writel(val | NAND_EN, nand->reg + REG_FMICSR); - - val = __raw_readl(nand->reg + REG_SMCSR); - - val &= ~(SWRST|PSIZE|DMARWEN|BUSWID|ECC4EN|NANDCS); - val |= WP; - - __raw_writel(val, nand->reg + REG_SMCSR); - - spin_unlock(&nand->lock); -} - -static int nuc900_nand_probe(struct platform_device *pdev) -{ - struct nuc900_nand *nuc900_nand; - struct nand_chip *chip; - struct mtd_info *mtd; - struct resource *res; - - nuc900_nand = devm_kzalloc(&pdev->dev, sizeof(struct nuc900_nand), - GFP_KERNEL); - if (!nuc900_nand) - return -ENOMEM; - chip = &(nuc900_nand->chip); - mtd = nand_to_mtd(chip); - - mtd->dev.parent = &pdev->dev; - spin_lock_init(&nuc900_nand->lock); - - nuc900_nand->clk = devm_clk_get(&pdev->dev, NULL); - if (IS_ERR(nuc900_nand->clk)) - return -ENOENT; - clk_enable(nuc900_nand->clk); - - chip->cmdfunc = nuc900_nand_command_lp; - chip->dev_ready = nuc900_nand_devready; - chip->read_byte = nuc900_nand_read_byte; - chip->write_buf = nuc900_nand_write_buf; - chip->read_buf = nuc900_nand_read_buf; - chip->chip_delay = 50; - chip->options = 0; - chip->ecc.mode = NAND_ECC_SOFT; - chip->ecc.algo = NAND_ECC_HAMMING; - - res = platform_get_resource(pdev, IORESOURCE_MEM, 0); - nuc900_nand->reg = devm_ioremap_resource(&pdev->dev, res); - if (IS_ERR(nuc900_nand->reg)) - return PTR_ERR(nuc900_nand->reg); - - nuc900_nand_enable(nuc900_nand); - - if (nand_scan(mtd, 1)) - return -ENXIO; - - mtd_device_register(mtd, partitions, ARRAY_SIZE(partitions)); - - platform_set_drvdata(pdev, nuc900_nand); - - return 0; -} - -static int nuc900_nand_remove(struct platform_device *pdev) -{ - struct nuc900_nand *nuc900_nand = platform_get_drvdata(pdev); - - nand_release(nand_to_mtd(&nuc900_nand->chip)); - clk_disable(nuc900_nand->clk); - - return 0; -} - -static struct platform_driver nuc900_nand_driver = { - .probe = nuc900_nand_probe, - .remove = nuc900_nand_remove, - .driver = { - .name = "nuc900-fmi", - }, -}; - -module_platform_driver(nuc900_nand_driver); - -MODULE_AUTHOR("Wan ZongShun "); -MODULE_DESCRIPTION("w90p910/NUC9xx nand driver!"); -MODULE_LICENSE("GPL"); -MODULE_ALIAS("platform:nuc900-fmi"); diff --git a/drivers/mtd/nand/omap2.c b/drivers/mtd/nand/omap2.c deleted file mode 100644 index 8cdf7d3d8fa7..000000000000 --- a/drivers/mtd/nand/omap2.c +++ /dev/null @@ -1,2316 +0,0 @@ -/* - * Copyright © 2004 Texas Instruments, Jian Zhang - * Copyright © 2004 Micron Technology Inc. - * Copyright © 2004 David Brownell - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License version 2 as - * published by the Free Software Foundation. - */ - -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include - -#include -#include - -#include -#include - -#define DRIVER_NAME "omap2-nand" -#define OMAP_NAND_TIMEOUT_MS 5000 - -#define NAND_Ecc_P1e (1 << 0) -#define NAND_Ecc_P2e (1 << 1) -#define NAND_Ecc_P4e (1 << 2) -#define NAND_Ecc_P8e (1 << 3) -#define NAND_Ecc_P16e (1 << 4) -#define NAND_Ecc_P32e (1 << 5) -#define NAND_Ecc_P64e (1 << 6) -#define NAND_Ecc_P128e (1 << 7) -#define NAND_Ecc_P256e (1 << 8) -#define NAND_Ecc_P512e (1 << 9) -#define NAND_Ecc_P1024e (1 << 10) -#define NAND_Ecc_P2048e (1 << 11) - -#define NAND_Ecc_P1o (1 << 16) -#define NAND_Ecc_P2o (1 << 17) -#define NAND_Ecc_P4o (1 << 18) -#define NAND_Ecc_P8o (1 << 19) -#define NAND_Ecc_P16o (1 << 20) -#define NAND_Ecc_P32o (1 << 21) -#define NAND_Ecc_P64o (1 << 22) -#define NAND_Ecc_P128o (1 << 23) -#define NAND_Ecc_P256o (1 << 24) -#define NAND_Ecc_P512o (1 << 25) -#define NAND_Ecc_P1024o (1 << 26) -#define NAND_Ecc_P2048o (1 << 27) - -#define TF(value) (value ? 1 : 0) - -#define P2048e(a) (TF(a & NAND_Ecc_P2048e) << 0) -#define P2048o(a) (TF(a & NAND_Ecc_P2048o) << 1) -#define P1e(a) (TF(a & NAND_Ecc_P1e) << 2) -#define P1o(a) (TF(a & NAND_Ecc_P1o) << 3) -#define P2e(a) (TF(a & NAND_Ecc_P2e) << 4) -#define P2o(a) (TF(a & NAND_Ecc_P2o) << 5) -#define P4e(a) (TF(a & NAND_Ecc_P4e) << 6) -#define P4o(a) (TF(a & NAND_Ecc_P4o) << 7) - -#define P8e(a) (TF(a & NAND_Ecc_P8e) << 0) -#define P8o(a) (TF(a & NAND_Ecc_P8o) << 1) -#define P16e(a) (TF(a & NAND_Ecc_P16e) << 2) -#define P16o(a) (TF(a & NAND_Ecc_P16o) << 3) -#define P32e(a) (TF(a & NAND_Ecc_P32e) << 4) -#define P32o(a) (TF(a & NAND_Ecc_P32o) << 5) -#define P64e(a) (TF(a & NAND_Ecc_P64e) << 6) -#define P64o(a) (TF(a & NAND_Ecc_P64o) << 7) - -#define P128e(a) (TF(a & NAND_Ecc_P128e) << 0) -#define P128o(a) (TF(a & NAND_Ecc_P128o) << 1) -#define P256e(a) (TF(a & NAND_Ecc_P256e) << 2) -#define P256o(a) (TF(a & NAND_Ecc_P256o) << 3) -#define P512e(a) (TF(a & NAND_Ecc_P512e) << 4) -#define P512o(a) (TF(a & NAND_Ecc_P512o) << 5) -#define P1024e(a) (TF(a & NAND_Ecc_P1024e) << 6) -#define P1024o(a) (TF(a & NAND_Ecc_P1024o) << 7) - -#define P8e_s(a) (TF(a & NAND_Ecc_P8e) << 0) -#define P8o_s(a) (TF(a & NAND_Ecc_P8o) << 1) -#define P16e_s(a) (TF(a & NAND_Ecc_P16e) << 2) -#define P16o_s(a) (TF(a & NAND_Ecc_P16o) << 3) -#define P1e_s(a) (TF(a & NAND_Ecc_P1e) << 4) -#define P1o_s(a) (TF(a & NAND_Ecc_P1o) << 5) -#define P2e_s(a) (TF(a & NAND_Ecc_P2e) << 6) -#define P2o_s(a) (TF(a & NAND_Ecc_P2o) << 7) - -#define P4e_s(a) (TF(a & NAND_Ecc_P4e) << 0) -#define P4o_s(a) (TF(a & NAND_Ecc_P4o) << 1) - -#define PREFETCH_CONFIG1_CS_SHIFT 24 -#define ECC_CONFIG_CS_SHIFT 1 -#define CS_MASK 0x7 -#define ENABLE_PREFETCH (0x1 << 7) -#define DMA_MPU_MODE_SHIFT 2 -#define ECCSIZE0_SHIFT 12 -#define ECCSIZE1_SHIFT 22 -#define ECC1RESULTSIZE 0x1 -#define ECCCLEAR 0x100 -#define ECC1 0x1 -#define PREFETCH_FIFOTHRESHOLD_MAX 0x40 -#define PREFETCH_FIFOTHRESHOLD(val) ((val) << 8) -#define PREFETCH_STATUS_COUNT(val) (val & 0x00003fff) -#define PREFETCH_STATUS_FIFO_CNT(val) ((val >> 24) & 0x7F) -#define STATUS_BUFF_EMPTY 0x00000001 - -#define SECTOR_BYTES 512 -/* 4 bit padding to make byte aligned, 56 = 52 + 4 */ -#define BCH4_BIT_PAD 4 - -/* GPMC ecc engine settings for read */ -#define BCH_WRAPMODE_1 1 /* BCH wrap mode 1 */ -#define BCH8R_ECC_SIZE0 0x1a /* ecc_size0 = 26 */ -#define BCH8R_ECC_SIZE1 0x2 /* ecc_size1 = 2 */ -#define BCH4R_ECC_SIZE0 0xd /* ecc_size0 = 13 */ -#define BCH4R_ECC_SIZE1 0x3 /* ecc_size1 = 3 */ - -/* GPMC ecc engine settings for write */ -#define BCH_WRAPMODE_6 6 /* BCH wrap mode 6 */ -#define BCH_ECC_SIZE0 0x0 /* ecc_size0 = 0, no oob protection */ -#define BCH_ECC_SIZE1 0x20 /* ecc_size1 = 32 */ - -#define BADBLOCK_MARKER_LENGTH 2 - -static u_char bch16_vector[] = {0xf5, 0x24, 0x1c, 0xd0, 0x61, 0xb3, 0xf1, 0x55, - 0x2e, 0x2c, 0x86, 0xa3, 0xed, 0x36, 0x1b, 0x78, - 0x48, 0x76, 0xa9, 0x3b, 0x97, 0xd1, 0x7a, 0x93, - 0x07, 0x0e}; -static u_char bch8_vector[] = {0xf3, 0xdb, 0x14, 0x16, 0x8b, 0xd2, 0xbe, 0xcc, - 0xac, 0x6b, 0xff, 0x99, 0x7b}; -static u_char bch4_vector[] = {0x00, 0x6b, 0x31, 0xdd, 0x41, 0xbc, 0x10}; - -/* Shared among all NAND instances to synchronize access to the ECC Engine */ -static struct nand_hw_control omap_gpmc_controller = { - .lock = __SPIN_LOCK_UNLOCKED(omap_gpmc_controller.lock), - .wq = __WAIT_QUEUE_HEAD_INITIALIZER(omap_gpmc_controller.wq), -}; - -struct omap_nand_info { - struct nand_chip nand; - struct platform_device *pdev; - - int gpmc_cs; - bool dev_ready; - enum nand_io xfer_type; - int devsize; - enum omap_ecc ecc_opt; - struct device_node *elm_of_node; - - unsigned long phys_base; - struct completion comp; - struct dma_chan *dma; - int gpmc_irq_fifo; - int gpmc_irq_count; - enum { - OMAP_NAND_IO_READ = 0, /* read */ - OMAP_NAND_IO_WRITE, /* write */ - } iomode; - u_char *buf; - int buf_len; - /* Interface to GPMC */ - struct gpmc_nand_regs reg; - struct gpmc_nand_ops *ops; - bool flash_bbt; - /* fields specific for BCHx_HW ECC scheme */ - struct device *elm_dev; - /* NAND ready gpio */ - struct gpio_desc *ready_gpiod; -}; - -static inline struct omap_nand_info *mtd_to_omap(struct mtd_info *mtd) -{ - return container_of(mtd_to_nand(mtd), struct omap_nand_info, nand); -} - -/** - * omap_prefetch_enable - configures and starts prefetch transfer - * @cs: cs (chip select) number - * @fifo_th: fifo threshold to be used for read/ write - * @dma_mode: dma mode enable (1) or disable (0) - * @u32_count: number of bytes to be transferred - * @is_write: prefetch read(0) or write post(1) mode - */ -static int omap_prefetch_enable(int cs, int fifo_th, int dma_mode, - unsigned int u32_count, int is_write, struct omap_nand_info *info) -{ - u32 val; - - if (fifo_th > PREFETCH_FIFOTHRESHOLD_MAX) - return -1; - - if (readl(info->reg.gpmc_prefetch_control)) - return -EBUSY; - - /* Set the amount of bytes to be prefetched */ - writel(u32_count, info->reg.gpmc_prefetch_config2); - - /* Set dma/mpu mode, the prefetch read / post write and - * enable the engine. Set which cs is has requested for. - */ - val = ((cs << PREFETCH_CONFIG1_CS_SHIFT) | - PREFETCH_FIFOTHRESHOLD(fifo_th) | ENABLE_PREFETCH | - (dma_mode << DMA_MPU_MODE_SHIFT) | (is_write & 0x1)); - writel(val, info->reg.gpmc_prefetch_config1); - - /* Start the prefetch engine */ - writel(0x1, info->reg.gpmc_prefetch_control); - - return 0; -} - -/** - * omap_prefetch_reset - disables and stops the prefetch engine - */ -static int omap_prefetch_reset(int cs, struct omap_nand_info *info) -{ - u32 config1; - - /* check if the same module/cs is trying to reset */ - config1 = readl(info->reg.gpmc_prefetch_config1); - if (((config1 >> PREFETCH_CONFIG1_CS_SHIFT) & CS_MASK) != cs) - return -EINVAL; - - /* Stop the PFPW engine */ - writel(0x0, info->reg.gpmc_prefetch_control); - - /* Reset/disable the PFPW engine */ - writel(0x0, info->reg.gpmc_prefetch_config1); - - return 0; -} - -/** - * omap_hwcontrol - hardware specific access to control-lines - * @mtd: MTD device structure - * @cmd: command to device - * @ctrl: - * NAND_NCE: bit 0 -> don't care - * NAND_CLE: bit 1 -> Command Latch - * NAND_ALE: bit 2 -> Address Latch - * - * NOTE: boards may use different bits for these!! - */ -static void omap_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl) -{ - struct omap_nand_info *info = mtd_to_omap(mtd); - - if (cmd != NAND_CMD_NONE) { - if (ctrl & NAND_CLE) - writeb(cmd, info->reg.gpmc_nand_command); - - else if (ctrl & NAND_ALE) - writeb(cmd, info->reg.gpmc_nand_address); - - else /* NAND_NCE */ - writeb(cmd, info->reg.gpmc_nand_data); - } -} - -/** - * omap_read_buf8 - read data from NAND controller into buffer - * @mtd: MTD device structure - * @buf: buffer to store date - * @len: number of bytes to read - */ -static void omap_read_buf8(struct mtd_info *mtd, u_char *buf, int len) -{ - struct nand_chip *nand = mtd_to_nand(mtd); - - ioread8_rep(nand->IO_ADDR_R, buf, len); -} - -/** - * omap_write_buf8 - write buffer to NAND controller - * @mtd: MTD device structure - * @buf: data buffer - * @len: number of bytes to write - */ -static void omap_write_buf8(struct mtd_info *mtd, const u_char *buf, int len) -{ - struct omap_nand_info *info = mtd_to_omap(mtd); - u_char *p = (u_char *)buf; - bool status; - - while (len--) { - iowrite8(*p++, info->nand.IO_ADDR_W); - /* wait until buffer is available for write */ - do { - status = info->ops->nand_writebuffer_empty(); - } while (!status); - } -} - -/** - * omap_read_buf16 - read data from NAND controller into buffer - * @mtd: MTD device structure - * @buf: buffer to store date - * @len: number of bytes to read - */ -static void omap_read_buf16(struct mtd_info *mtd, u_char *buf, int len) -{ - struct nand_chip *nand = mtd_to_nand(mtd); - - ioread16_rep(nand->IO_ADDR_R, buf, len / 2); -} - -/** - * omap_write_buf16 - write buffer to NAND controller - * @mtd: MTD device structure - * @buf: data buffer - * @len: number of bytes to write - */ -static void omap_write_buf16(struct mtd_info *mtd, const u_char * buf, int len) -{ - struct omap_nand_info *info = mtd_to_omap(mtd); - u16 *p = (u16 *) buf; - bool status; - /* FIXME try bursts of writesw() or DMA ... */ - len >>= 1; - - while (len--) { - iowrite16(*p++, info->nand.IO_ADDR_W); - /* wait until buffer is available for write */ - do { - status = info->ops->nand_writebuffer_empty(); - } while (!status); - } -} - -/** - * omap_read_buf_pref - read data from NAND controller into buffer - * @mtd: MTD device structure - * @buf: buffer to store date - * @len: number of bytes to read - */ -static void omap_read_buf_pref(struct mtd_info *mtd, u_char *buf, int len) -{ - struct omap_nand_info *info = mtd_to_omap(mtd); - uint32_t r_count = 0; - int ret = 0; - u32 *p = (u32 *)buf; - - /* take care of subpage reads */ - if (len % 4) { - if (info->nand.options & NAND_BUSWIDTH_16) - omap_read_buf16(mtd, buf, len % 4); - else - omap_read_buf8(mtd, buf, len % 4); - p = (u32 *) (buf + len % 4); - len -= len % 4; - } - - /* configure and start prefetch transfer */ - ret = omap_prefetch_enable(info->gpmc_cs, - PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x0, info); - if (ret) { - /* PFPW engine is busy, use cpu copy method */ - if (info->nand.options & NAND_BUSWIDTH_16) - omap_read_buf16(mtd, (u_char *)p, len); - else - omap_read_buf8(mtd, (u_char *)p, len); - } else { - do { - r_count = readl(info->reg.gpmc_prefetch_status); - r_count = PREFETCH_STATUS_FIFO_CNT(r_count); - r_count = r_count >> 2; - ioread32_rep(info->nand.IO_ADDR_R, p, r_count); - p += r_count; - len -= r_count << 2; - } while (len); - /* disable and stop the PFPW engine */ - omap_prefetch_reset(info->gpmc_cs, info); - } -} - -/** - * omap_write_buf_pref - write buffer to NAND controller - * @mtd: MTD device structure - * @buf: data buffer - * @len: number of bytes to write - */ -static void omap_write_buf_pref(struct mtd_info *mtd, - const u_char *buf, int len) -{ - struct omap_nand_info *info = mtd_to_omap(mtd); - uint32_t w_count = 0; - int i = 0, ret = 0; - u16 *p = (u16 *)buf; - unsigned long tim, limit; - u32 val; - - /* take care of subpage writes */ - if (len % 2 != 0) { - writeb(*buf, info->nand.IO_ADDR_W); - p = (u16 *)(buf + 1); - len--; - } - - /* configure and start prefetch transfer */ - ret = omap_prefetch_enable(info->gpmc_cs, - PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x1, info); - if (ret) { - /* PFPW engine is busy, use cpu copy method */ - if (info->nand.options & NAND_BUSWIDTH_16) - omap_write_buf16(mtd, (u_char *)p, len); - else - omap_write_buf8(mtd, (u_char *)p, len); - } else { - while (len) { - w_count = readl(info->reg.gpmc_prefetch_status); - w_count = PREFETCH_STATUS_FIFO_CNT(w_count); - w_count = w_count >> 1; - for (i = 0; (i < w_count) && len; i++, len -= 2) - iowrite16(*p++, info->nand.IO_ADDR_W); - } - /* wait for data to flushed-out before reset the prefetch */ - tim = 0; - limit = (loops_per_jiffy * - msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS)); - do { - cpu_relax(); - val = readl(info->reg.gpmc_prefetch_status); - val = PREFETCH_STATUS_COUNT(val); - } while (val && (tim++ < limit)); - - /* disable and stop the PFPW engine */ - omap_prefetch_reset(info->gpmc_cs, info); - } -} - -/* - * omap_nand_dma_callback: callback on the completion of dma transfer - * @data: pointer to completion data structure - */ -static void omap_nand_dma_callback(void *data) -{ - complete((struct completion *) data); -} - -/* - * omap_nand_dma_transfer: configure and start dma transfer - * @mtd: MTD device structure - * @addr: virtual address in RAM of source/destination - * @len: number of data bytes to be transferred - * @is_write: flag for read/write operation - */ -static inline int omap_nand_dma_transfer(struct mtd_info *mtd, void *addr, - unsigned int len, int is_write) -{ - struct omap_nand_info *info = mtd_to_omap(mtd); - struct dma_async_tx_descriptor *tx; - enum dma_data_direction dir = is_write ? DMA_TO_DEVICE : - DMA_FROM_DEVICE; - struct scatterlist sg; - unsigned long tim, limit; - unsigned n; - int ret; - u32 val; - - if (!virt_addr_valid(addr)) - goto out_copy; - - sg_init_one(&sg, addr, len); - n = dma_map_sg(info->dma->device->dev, &sg, 1, dir); - if (n == 0) { - dev_err(&info->pdev->dev, - "Couldn't DMA map a %d byte buffer\n", len); - goto out_copy; - } - - tx = dmaengine_prep_slave_sg(info->dma, &sg, n, - is_write ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM, - DMA_PREP_INTERRUPT | DMA_CTRL_ACK); - if (!tx) - goto out_copy_unmap; - - tx->callback = omap_nand_dma_callback; - tx->callback_param = &info->comp; - dmaengine_submit(tx); - - init_completion(&info->comp); - - /* setup and start DMA using dma_addr */ - dma_async_issue_pending(info->dma); - - /* configure and start prefetch transfer */ - ret = omap_prefetch_enable(info->gpmc_cs, - PREFETCH_FIFOTHRESHOLD_MAX, 0x1, len, is_write, info); - if (ret) - /* PFPW engine is busy, use cpu copy method */ - goto out_copy_unmap; - - wait_for_completion(&info->comp); - tim = 0; - limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS)); - - do { - cpu_relax(); - val = readl(info->reg.gpmc_prefetch_status); - val = PREFETCH_STATUS_COUNT(val); - } while (val && (tim++ < limit)); - - /* disable and stop the PFPW engine */ - omap_prefetch_reset(info->gpmc_cs, info); - - dma_unmap_sg(info->dma->device->dev, &sg, 1, dir); - return 0; - -out_copy_unmap: - dma_unmap_sg(info->dma->device->dev, &sg, 1, dir); -out_copy: - if (info->nand.options & NAND_BUSWIDTH_16) - is_write == 0 ? omap_read_buf16(mtd, (u_char *) addr, len) - : omap_write_buf16(mtd, (u_char *) addr, len); - else - is_write == 0 ? omap_read_buf8(mtd, (u_char *) addr, len) - : omap_write_buf8(mtd, (u_char *) addr, len); - return 0; -} - -/** - * omap_read_buf_dma_pref - read data from NAND controller into buffer - * @mtd: MTD device structure - * @buf: buffer to store date - * @len: number of bytes to read - */ -static void omap_read_buf_dma_pref(struct mtd_info *mtd, u_char *buf, int len) -{ - if (len <= mtd->oobsize) - omap_read_buf_pref(mtd, buf, len); - else - /* start transfer in DMA mode */ - omap_nand_dma_transfer(mtd, buf, len, 0x0); -} - -/** - * omap_write_buf_dma_pref - write buffer to NAND controller - * @mtd: MTD device structure - * @buf: data buffer - * @len: number of bytes to write - */ -static void omap_write_buf_dma_pref(struct mtd_info *mtd, - const u_char *buf, int len) -{ - if (len <= mtd->oobsize) - omap_write_buf_pref(mtd, buf, len); - else - /* start transfer in DMA mode */ - omap_nand_dma_transfer(mtd, (u_char *) buf, len, 0x1); -} - -/* - * omap_nand_irq - GPMC irq handler - * @this_irq: gpmc irq number - * @dev: omap_nand_info structure pointer is passed here - */ -static irqreturn_t omap_nand_irq(int this_irq, void *dev) -{ - struct omap_nand_info *info = (struct omap_nand_info *) dev; - u32 bytes; - - bytes = readl(info->reg.gpmc_prefetch_status); - bytes = PREFETCH_STATUS_FIFO_CNT(bytes); - bytes = bytes & 0xFFFC; /* io in multiple of 4 bytes */ - if (info->iomode == OMAP_NAND_IO_WRITE) { /* checks for write io */ - if (this_irq == info->gpmc_irq_count) - goto done; - - if (info->buf_len && (info->buf_len < bytes)) - bytes = info->buf_len; - else if (!info->buf_len) - bytes = 0; - iowrite32_rep(info->nand.IO_ADDR_W, - (u32 *)info->buf, bytes >> 2); - info->buf = info->buf + bytes; - info->buf_len -= bytes; - - } else { - ioread32_rep(info->nand.IO_ADDR_R, - (u32 *)info->buf, bytes >> 2); - info->buf = info->buf + bytes; - - if (this_irq == info->gpmc_irq_count) - goto done; - } - - return IRQ_HANDLED; - -done: - complete(&info->comp); - - disable_irq_nosync(info->gpmc_irq_fifo); - disable_irq_nosync(info->gpmc_irq_count); - - return IRQ_HANDLED; -} - -/* - * omap_read_buf_irq_pref - read data from NAND controller into buffer - * @mtd: MTD device structure - * @buf: buffer to store date - * @len: number of bytes to read - */ -static void omap_read_buf_irq_pref(struct mtd_info *mtd, u_char *buf, int len) -{ - struct omap_nand_info *info = mtd_to_omap(mtd); - int ret = 0; - - if (len <= mtd->oobsize) { - omap_read_buf_pref(mtd, buf, len); - return; - } - - info->iomode = OMAP_NAND_IO_READ; - info->buf = buf; - init_completion(&info->comp); - - /* configure and start prefetch transfer */ - ret = omap_prefetch_enable(info->gpmc_cs, - PREFETCH_FIFOTHRESHOLD_MAX/2, 0x0, len, 0x0, info); - if (ret) - /* PFPW engine is busy, use cpu copy method */ - goto out_copy; - - info->buf_len = len; - - enable_irq(info->gpmc_irq_count); - enable_irq(info->gpmc_irq_fifo); - - /* waiting for read to complete */ - wait_for_completion(&info->comp); - - /* disable and stop the PFPW engine */ - omap_prefetch_reset(info->gpmc_cs, info); - return; - -out_copy: - if (info->nand.options & NAND_BUSWIDTH_16) - omap_read_buf16(mtd, buf, len); - else - omap_read_buf8(mtd, buf, len); -} - -/* - * omap_write_buf_irq_pref - write buffer to NAND controller - * @mtd: MTD device structure - * @buf: data buffer - * @len: number of bytes to write - */ -static void omap_write_buf_irq_pref(struct mtd_info *mtd, - const u_char *buf, int len) -{ - struct omap_nand_info *info = mtd_to_omap(mtd); - int ret = 0; - unsigned long tim, limit; - u32 val; - - if (len <= mtd->oobsize) { - omap_write_buf_pref(mtd, buf, len); - return; - } - - info->iomode = OMAP_NAND_IO_WRITE; - info->buf = (u_char *) buf; - init_completion(&info->comp); - - /* configure and start prefetch transfer : size=24 */ - ret = omap_prefetch_enable(info->gpmc_cs, - (PREFETCH_FIFOTHRESHOLD_MAX * 3) / 8, 0x0, len, 0x1, info); - if (ret) - /* PFPW engine is busy, use cpu copy method */ - goto out_copy; - - info->buf_len = len; - - enable_irq(info->gpmc_irq_count); - enable_irq(info->gpmc_irq_fifo); - - /* waiting for write to complete */ - wait_for_completion(&info->comp); - - /* wait for data to flushed-out before reset the prefetch */ - tim = 0; - limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS)); - do { - val = readl(info->reg.gpmc_prefetch_status); - val = PREFETCH_STATUS_COUNT(val); - cpu_relax(); - } while (val && (tim++ < limit)); - - /* disable and stop the PFPW engine */ - omap_prefetch_reset(info->gpmc_cs, info); - return; - -out_copy: - if (info->nand.options & NAND_BUSWIDTH_16) - omap_write_buf16(mtd, buf, len); - else - omap_write_buf8(mtd, buf, len); -} - -/** - * gen_true_ecc - This function will generate true ECC value - * @ecc_buf: buffer to store ecc code - * - * This generated true ECC value can be used when correcting - * data read from NAND flash memory core - */ -static void gen_true_ecc(u8 *ecc_buf) -{ - u32 tmp = ecc_buf[0] | (ecc_buf[1] << 16) | - ((ecc_buf[2] & 0xF0) << 20) | ((ecc_buf[2] & 0x0F) << 8); - - ecc_buf[0] = ~(P64o(tmp) | P64e(tmp) | P32o(tmp) | P32e(tmp) | - P16o(tmp) | P16e(tmp) | P8o(tmp) | P8e(tmp)); - ecc_buf[1] = ~(P1024o(tmp) | P1024e(tmp) | P512o(tmp) | P512e(tmp) | - P256o(tmp) | P256e(tmp) | P128o(tmp) | P128e(tmp)); - ecc_buf[2] = ~(P4o(tmp) | P4e(tmp) | P2o(tmp) | P2e(tmp) | P1o(tmp) | - P1e(tmp) | P2048o(tmp) | P2048e(tmp)); -} - -/** - * omap_compare_ecc - Detect (2 bits) and correct (1 bit) error in data - * @ecc_data1: ecc code from nand spare area - * @ecc_data2: ecc code from hardware register obtained from hardware ecc - * @page_data: page data - * - * This function compares two ECC's and indicates if there is an error. - * If the error can be corrected it will be corrected to the buffer. - * If there is no error, %0 is returned. If there is an error but it - * was corrected, %1 is returned. Otherwise, %-1 is returned. - */ -static int omap_compare_ecc(u8 *ecc_data1, /* read from NAND memory */ - u8 *ecc_data2, /* read from register */ - u8 *page_data) -{ - uint i; - u8 tmp0_bit[8], tmp1_bit[8], tmp2_bit[8]; - u8 comp0_bit[8], comp1_bit[8], comp2_bit[8]; - u8 ecc_bit[24]; - u8 ecc_sum = 0; - u8 find_bit = 0; - uint find_byte = 0; - int isEccFF; - - isEccFF = ((*(u32 *)ecc_data1 & 0xFFFFFF) == 0xFFFFFF); - - gen_true_ecc(ecc_data1); - gen_true_ecc(ecc_data2); - - for (i = 0; i <= 2; i++) { - *(ecc_data1 + i) = ~(*(ecc_data1 + i)); - *(ecc_data2 + i) = ~(*(ecc_data2 + i)); - } - - for (i = 0; i < 8; i++) { - tmp0_bit[i] = *ecc_data1 % 2; - *ecc_data1 = *ecc_data1 / 2; - } - - for (i = 0; i < 8; i++) { - tmp1_bit[i] = *(ecc_data1 + 1) % 2; - *(ecc_data1 + 1) = *(ecc_data1 + 1) / 2; - } - - for (i = 0; i < 8; i++) { - tmp2_bit[i] = *(ecc_data1 + 2) % 2; - *(ecc_data1 + 2) = *(ecc_data1 + 2) / 2; - } - - for (i = 0; i < 8; i++) { - comp0_bit[i] = *ecc_data2 % 2; - *ecc_data2 = *ecc_data2 / 2; - } - - for (i = 0; i < 8; i++) { - comp1_bit[i] = *(ecc_data2 + 1) % 2; - *(ecc_data2 + 1) = *(ecc_data2 + 1) / 2; - } - - for (i = 0; i < 8; i++) { - comp2_bit[i] = *(ecc_data2 + 2) % 2; - *(ecc_data2 + 2) = *(ecc_data2 + 2) / 2; - } - - for (i = 0; i < 6; i++) - ecc_bit[i] = tmp2_bit[i + 2] ^ comp2_bit[i + 2]; - - for (i = 0; i < 8; i++) - ecc_bit[i + 6] = tmp0_bit[i] ^ comp0_bit[i]; - - for (i = 0; i < 8; i++) - ecc_bit[i + 14] = tmp1_bit[i] ^ comp1_bit[i]; - - ecc_bit[22] = tmp2_bit[0] ^ comp2_bit[0]; - ecc_bit[23] = tmp2_bit[1] ^ comp2_bit[1]; - - for (i = 0; i < 24; i++) - ecc_sum += ecc_bit[i]; - - switch (ecc_sum) { - case 0: - /* Not reached because this function is not called if - * ECC values are equal - */ - return 0; - - case 1: - /* Uncorrectable error */ - pr_debug("ECC UNCORRECTED_ERROR 1\n"); - return -EBADMSG; - - case 11: - /* UN-Correctable error */ - pr_debug("ECC UNCORRECTED_ERROR B\n"); - return -EBADMSG; - - case 12: - /* Correctable error */ - find_byte = (ecc_bit[23] << 8) + - (ecc_bit[21] << 7) + - (ecc_bit[19] << 6) + - (ecc_bit[17] << 5) + - (ecc_bit[15] << 4) + - (ecc_bit[13] << 3) + - (ecc_bit[11] << 2) + - (ecc_bit[9] << 1) + - ecc_bit[7]; - - find_bit = (ecc_bit[5] << 2) + (ecc_bit[3] << 1) + ecc_bit[1]; - - pr_debug("Correcting single bit ECC error at offset: " - "%d, bit: %d\n", find_byte, find_bit); - - page_data[find_byte] ^= (1 << find_bit); - - return 1; - default: - if (isEccFF) { - if (ecc_data2[0] == 0 && - ecc_data2[1] == 0 && - ecc_data2[2] == 0) - return 0; - } - pr_debug("UNCORRECTED_ERROR default\n"); - return -EBADMSG; - } -} - -/** - * omap_correct_data - Compares the ECC read with HW generated ECC - * @mtd: MTD device structure - * @dat: page data - * @read_ecc: ecc read from nand flash - * @calc_ecc: ecc read from HW ECC registers - * - * Compares the ecc read from nand spare area with ECC registers values - * and if ECC's mismatched, it will call 'omap_compare_ecc' for error - * detection and correction. If there are no errors, %0 is returned. If - * there were errors and all of the errors were corrected, the number of - * corrected errors is returned. If uncorrectable errors exist, %-1 is - * returned. - */ -static int omap_correct_data(struct mtd_info *mtd, u_char *dat, - u_char *read_ecc, u_char *calc_ecc) -{ - struct omap_nand_info *info = mtd_to_omap(mtd); - int blockCnt = 0, i = 0, ret = 0; - int stat = 0; - - /* Ex NAND_ECC_HW12_2048 */ - if ((info->nand.ecc.mode == NAND_ECC_HW) && - (info->nand.ecc.size == 2048)) - blockCnt = 4; - else - blockCnt = 1; - - for (i = 0; i < blockCnt; i++) { - if (memcmp(read_ecc, calc_ecc, 3) != 0) { - ret = omap_compare_ecc(read_ecc, calc_ecc, dat); - if (ret < 0) - return ret; - /* keep track of the number of corrected errors */ - stat += ret; - } - read_ecc += 3; - calc_ecc += 3; - dat += 512; - } - return stat; -} - -/** - * omap_calcuate_ecc - Generate non-inverted ECC bytes. - * @mtd: MTD device structure - * @dat: The pointer to data on which ecc is computed - * @ecc_code: The ecc_code buffer - * - * Using noninverted ECC can be considered ugly since writing a blank - * page ie. padding will clear the ECC bytes. This is no problem as long - * nobody is trying to write data on the seemingly unused page. Reading - * an erased page will produce an ECC mismatch between generated and read - * ECC bytes that has to be dealt with separately. - */ -static int omap_calculate_ecc(struct mtd_info *mtd, const u_char *dat, - u_char *ecc_code) -{ - struct omap_nand_info *info = mtd_to_omap(mtd); - u32 val; - - val = readl(info->reg.gpmc_ecc_config); - if (((val >> ECC_CONFIG_CS_SHIFT) & CS_MASK) != info->gpmc_cs) - return -EINVAL; - - /* read ecc result */ - val = readl(info->reg.gpmc_ecc1_result); - *ecc_code++ = val; /* P128e, ..., P1e */ - *ecc_code++ = val >> 16; /* P128o, ..., P1o */ - /* P2048o, P1024o, P512o, P256o, P2048e, P1024e, P512e, P256e */ - *ecc_code++ = ((val >> 8) & 0x0f) | ((val >> 20) & 0xf0); - - return 0; -} - -/** - * omap_enable_hwecc - This function enables the hardware ecc functionality - * @mtd: MTD device structure - * @mode: Read/Write mode - */ -static void omap_enable_hwecc(struct mtd_info *mtd, int mode) -{ - struct omap_nand_info *info = mtd_to_omap(mtd); - struct nand_chip *chip = mtd_to_nand(mtd); - unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0; - u32 val; - - /* clear ecc and enable bits */ - val = ECCCLEAR | ECC1; - writel(val, info->reg.gpmc_ecc_control); - - /* program ecc and result sizes */ - val = ((((info->nand.ecc.size >> 1) - 1) << ECCSIZE1_SHIFT) | - ECC1RESULTSIZE); - writel(val, info->reg.gpmc_ecc_size_config); - - switch (mode) { - case NAND_ECC_READ: - case NAND_ECC_WRITE: - writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control); - break; - case NAND_ECC_READSYN: - writel(ECCCLEAR, info->reg.gpmc_ecc_control); - break; - default: - dev_info(&info->pdev->dev, - "error: unrecognized Mode[%d]!\n", mode); - break; - } - - /* (ECC 16 or 8 bit col) | ( CS ) | ECC Enable */ - val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1); - writel(val, info->reg.gpmc_ecc_config); -} - -/** - * omap_wait - wait until the command is done - * @mtd: MTD device structure - * @chip: NAND Chip structure - * - * Wait function is called during Program and erase operations and - * the way it is called from MTD layer, we should wait till the NAND - * chip is ready after the programming/erase operation has completed. - * - * Erase can take up to 400ms and program up to 20ms according to - * general NAND and SmartMedia specs - */ -static int omap_wait(struct mtd_info *mtd, struct nand_chip *chip) -{ - struct nand_chip *this = mtd_to_nand(mtd); - struct omap_nand_info *info = mtd_to_omap(mtd); - unsigned long timeo = jiffies; - int status, state = this->state; - - if (state == FL_ERASING) - timeo += msecs_to_jiffies(400); - else - timeo += msecs_to_jiffies(20); - - writeb(NAND_CMD_STATUS & 0xFF, info->reg.gpmc_nand_command); - while (time_before(jiffies, timeo)) { - status = readb(info->reg.gpmc_nand_data); - if (status & NAND_STATUS_READY) - break; - cond_resched(); - } - - status = readb(info->reg.gpmc_nand_data); - return status; -} - -/** - * omap_dev_ready - checks the NAND Ready GPIO line - * @mtd: MTD device structure - * - * Returns true if ready and false if busy. - */ -static int omap_dev_ready(struct mtd_info *mtd) -{ - struct omap_nand_info *info = mtd_to_omap(mtd); - - return gpiod_get_value(info->ready_gpiod); -} - -/** - * omap_enable_hwecc_bch - Program GPMC to perform BCH ECC calculation - * @mtd: MTD device structure - * @mode: Read/Write mode - * - * When using BCH with SW correction (i.e. no ELM), sector size is set - * to 512 bytes and we use BCH_WRAPMODE_6 wrapping mode - * for both reading and writing with: - * eccsize0 = 0 (no additional protected byte in spare area) - * eccsize1 = 32 (skip 32 nibbles = 16 bytes per sector in spare area) - */ -static void __maybe_unused omap_enable_hwecc_bch(struct mtd_info *mtd, int mode) -{ - unsigned int bch_type; - unsigned int dev_width, nsectors; - struct omap_nand_info *info = mtd_to_omap(mtd); - enum omap_ecc ecc_opt = info->ecc_opt; - struct nand_chip *chip = mtd_to_nand(mtd); - u32 val, wr_mode; - unsigned int ecc_size1, ecc_size0; - - /* GPMC configurations for calculating ECC */ - switch (ecc_opt) { - case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW: - bch_type = 0; - nsectors = 1; - wr_mode = BCH_WRAPMODE_6; - ecc_size0 = BCH_ECC_SIZE0; - ecc_size1 = BCH_ECC_SIZE1; - break; - case OMAP_ECC_BCH4_CODE_HW: - bch_type = 0; - nsectors = chip->ecc.steps; - if (mode == NAND_ECC_READ) { - wr_mode = BCH_WRAPMODE_1; - ecc_size0 = BCH4R_ECC_SIZE0; - ecc_size1 = BCH4R_ECC_SIZE1; - } else { - wr_mode = BCH_WRAPMODE_6; - ecc_size0 = BCH_ECC_SIZE0; - ecc_size1 = BCH_ECC_SIZE1; - } - break; - case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW: - bch_type = 1; - nsectors = 1; - wr_mode = BCH_WRAPMODE_6; - ecc_size0 = BCH_ECC_SIZE0; - ecc_size1 = BCH_ECC_SIZE1; - break; - case OMAP_ECC_BCH8_CODE_HW: - bch_type = 1; - nsectors = chip->ecc.steps; - if (mode == NAND_ECC_READ) { - wr_mode = BCH_WRAPMODE_1; - ecc_size0 = BCH8R_ECC_SIZE0; - ecc_size1 = BCH8R_ECC_SIZE1; - } else { - wr_mode = BCH_WRAPMODE_6; - ecc_size0 = BCH_ECC_SIZE0; - ecc_size1 = BCH_ECC_SIZE1; - } - break; - case OMAP_ECC_BCH16_CODE_HW: - bch_type = 0x2; - nsectors = chip->ecc.steps; - if (mode == NAND_ECC_READ) { - wr_mode = 0x01; - ecc_size0 = 52; /* ECC bits in nibbles per sector */ - ecc_size1 = 0; /* non-ECC bits in nibbles per sector */ - } else { - wr_mode = 0x01; - ecc_size0 = 0; /* extra bits in nibbles per sector */ - ecc_size1 = 52; /* OOB bits in nibbles per sector */ - } - break; - default: - return; - } - - writel(ECC1, info->reg.gpmc_ecc_control); - - /* Configure ecc size for BCH */ - val = (ecc_size1 << ECCSIZE1_SHIFT) | (ecc_size0 << ECCSIZE0_SHIFT); - writel(val, info->reg.gpmc_ecc_size_config); - - dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0; - - /* BCH configuration */ - val = ((1 << 16) | /* enable BCH */ - (bch_type << 12) | /* BCH4/BCH8/BCH16 */ - (wr_mode << 8) | /* wrap mode */ - (dev_width << 7) | /* bus width */ - (((nsectors-1) & 0x7) << 4) | /* number of sectors */ - (info->gpmc_cs << 1) | /* ECC CS */ - (0x1)); /* enable ECC */ - - writel(val, info->reg.gpmc_ecc_config); - - /* Clear ecc and enable bits */ - writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control); -} - -static u8 bch4_polynomial[] = {0x28, 0x13, 0xcc, 0x39, 0x96, 0xac, 0x7f}; -static u8 bch8_polynomial[] = {0xef, 0x51, 0x2e, 0x09, 0xed, 0x93, 0x9a, 0xc2, - 0x97, 0x79, 0xe5, 0x24, 0xb5}; - -/** - * _omap_calculate_ecc_bch - Generate ECC bytes for one sector - * @mtd: MTD device structure - * @dat: The pointer to data on which ecc is computed - * @ecc_code: The ecc_code buffer - * @i: The sector number (for a multi sector page) - * - * Support calculating of BCH4/8/16 ECC vectors for one sector - * within a page. Sector number is in @i. - */ -static int _omap_calculate_ecc_bch(struct mtd_info *mtd, - const u_char *dat, u_char *ecc_calc, int i) -{ - struct omap_nand_info *info = mtd_to_omap(mtd); - int eccbytes = info->nand.ecc.bytes; - struct gpmc_nand_regs *gpmc_regs = &info->reg; - u8 *ecc_code; - unsigned long bch_val1, bch_val2, bch_val3, bch_val4; - u32 val; - int j; - - ecc_code = ecc_calc; - switch (info->ecc_opt) { - case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW: - case OMAP_ECC_BCH8_CODE_HW: - bch_val1 = readl(gpmc_regs->gpmc_bch_result0[i]); - bch_val2 = readl(gpmc_regs->gpmc_bch_result1[i]); - bch_val3 = readl(gpmc_regs->gpmc_bch_result2[i]); - bch_val4 = readl(gpmc_regs->gpmc_bch_result3[i]); - *ecc_code++ = (bch_val4 & 0xFF); - *ecc_code++ = ((bch_val3 >> 24) & 0xFF); - *ecc_code++ = ((bch_val3 >> 16) & 0xFF); - *ecc_code++ = ((bch_val3 >> 8) & 0xFF); - *ecc_code++ = (bch_val3 & 0xFF); - *ecc_code++ = ((bch_val2 >> 24) & 0xFF); - *ecc_code++ = ((bch_val2 >> 16) & 0xFF); - *ecc_code++ = ((bch_val2 >> 8) & 0xFF); - *ecc_code++ = (bch_val2 & 0xFF); - *ecc_code++ = ((bch_val1 >> 24) & 0xFF); - *ecc_code++ = ((bch_val1 >> 16) & 0xFF); - *ecc_code++ = ((bch_val1 >> 8) & 0xFF); - *ecc_code++ = (bch_val1 & 0xFF); - break; - case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW: - case OMAP_ECC_BCH4_CODE_HW: - bch_val1 = readl(gpmc_regs->gpmc_bch_result0[i]); - bch_val2 = readl(gpmc_regs->gpmc_bch_result1[i]); - *ecc_code++ = ((bch_val2 >> 12) & 0xFF); - *ecc_code++ = ((bch_val2 >> 4) & 0xFF); - *ecc_code++ = ((bch_val2 & 0xF) << 4) | - ((bch_val1 >> 28) & 0xF); - *ecc_code++ = ((bch_val1 >> 20) & 0xFF); - *ecc_code++ = ((bch_val1 >> 12) & 0xFF); - *ecc_code++ = ((bch_val1 >> 4) & 0xFF); - *ecc_code++ = ((bch_val1 & 0xF) << 4); - break; - case OMAP_ECC_BCH16_CODE_HW: - val = readl(gpmc_regs->gpmc_bch_result6[i]); - ecc_code[0] = ((val >> 8) & 0xFF); - ecc_code[1] = ((val >> 0) & 0xFF); - val = readl(gpmc_regs->gpmc_bch_result5[i]); - ecc_code[2] = ((val >> 24) & 0xFF); - ecc_code[3] = ((val >> 16) & 0xFF); - ecc_code[4] = ((val >> 8) & 0xFF); - ecc_code[5] = ((val >> 0) & 0xFF); - val = readl(gpmc_regs->gpmc_bch_result4[i]); - ecc_code[6] = ((val >> 24) & 0xFF); - ecc_code[7] = ((val >> 16) & 0xFF); - ecc_code[8] = ((val >> 8) & 0xFF); - ecc_code[9] = ((val >> 0) & 0xFF); - val = readl(gpmc_regs->gpmc_bch_result3[i]); - ecc_code[10] = ((val >> 24) & 0xFF); - ecc_code[11] = ((val >> 16) & 0xFF); - ecc_code[12] = ((val >> 8) & 0xFF); - ecc_code[13] = ((val >> 0) & 0xFF); - val = readl(gpmc_regs->gpmc_bch_result2[i]); - ecc_code[14] = ((val >> 24) & 0xFF); - ecc_code[15] = ((val >> 16) & 0xFF); - ecc_code[16] = ((val >> 8) & 0xFF); - ecc_code[17] = ((val >> 0) & 0xFF); - val = readl(gpmc_regs->gpmc_bch_result1[i]); - ecc_code[18] = ((val >> 24) & 0xFF); - ecc_code[19] = ((val >> 16) & 0xFF); - ecc_code[20] = ((val >> 8) & 0xFF); - ecc_code[21] = ((val >> 0) & 0xFF); - val = readl(gpmc_regs->gpmc_bch_result0[i]); - ecc_code[22] = ((val >> 24) & 0xFF); - ecc_code[23] = ((val >> 16) & 0xFF); - ecc_code[24] = ((val >> 8) & 0xFF); - ecc_code[25] = ((val >> 0) & 0xFF); - break; - default: - return -EINVAL; - } - - /* ECC scheme specific syndrome customizations */ - switch (info->ecc_opt) { - case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW: - /* Add constant polynomial to remainder, so that - * ECC of blank pages results in 0x0 on reading back - */ - for (j = 0; j < eccbytes; j++) - ecc_calc[j] ^= bch4_polynomial[j]; - break; - case OMAP_ECC_BCH4_CODE_HW: - /* Set 8th ECC byte as 0x0 for ROM compatibility */ - ecc_calc[eccbytes - 1] = 0x0; - break; - case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW: - /* Add constant polynomial to remainder, so that - * ECC of blank pages results in 0x0 on reading back - */ - for (j = 0; j < eccbytes; j++) - ecc_calc[j] ^= bch8_polynomial[j]; - break; - case OMAP_ECC_BCH8_CODE_HW: - /* Set 14th ECC byte as 0x0 for ROM compatibility */ - ecc_calc[eccbytes - 1] = 0x0; - break; - case OMAP_ECC_BCH16_CODE_HW: - break; - default: - return -EINVAL; - } - - return 0; -} - -/** - * omap_calculate_ecc_bch_sw - ECC generator for sector for SW based correction - * @mtd: MTD device structure - * @dat: The pointer to data on which ecc is computed - * @ecc_code: The ecc_code buffer - * - * Support calculating of BCH4/8/16 ECC vectors for one sector. This is used - * when SW based correction is required as ECC is required for one sector - * at a time. - */ -static int omap_calculate_ecc_bch_sw(struct mtd_info *mtd, - const u_char *dat, u_char *ecc_calc) -{ - return _omap_calculate_ecc_bch(mtd, dat, ecc_calc, 0); -} - -/** - * omap_calculate_ecc_bch_multi - Generate ECC for multiple sectors - * @mtd: MTD device structure - * @dat: The pointer to data on which ecc is computed - * @ecc_code: The ecc_code buffer - * - * Support calculating of BCH4/8/16 ecc vectors for the entire page in one go. - */ -static int omap_calculate_ecc_bch_multi(struct mtd_info *mtd, - const u_char *dat, u_char *ecc_calc) -{ - struct omap_nand_info *info = mtd_to_omap(mtd); - int eccbytes = info->nand.ecc.bytes; - unsigned long nsectors; - int i, ret; - - nsectors = ((readl(info->reg.gpmc_ecc_config) >> 4) & 0x7) + 1; - for (i = 0; i < nsectors; i++) { - ret = _omap_calculate_ecc_bch(mtd, dat, ecc_calc, i); - if (ret) - return ret; - - ecc_calc += eccbytes; - } - - return 0; -} - -/** - * erased_sector_bitflips - count bit flips - * @data: data sector buffer - * @oob: oob buffer - * @info: omap_nand_info - * - * Check the bit flips in erased page falls below correctable level. - * If falls below, report the page as erased with correctable bit - * flip, else report as uncorrectable page. - */ -static int erased_sector_bitflips(u_char *data, u_char *oob, - struct omap_nand_info *info) -{ - int flip_bits = 0, i; - - for (i = 0; i < info->nand.ecc.size; i++) { - flip_bits += hweight8(~data[i]); - if (flip_bits > info->nand.ecc.strength) - return 0; - } - - for (i = 0; i < info->nand.ecc.bytes - 1; i++) { - flip_bits += hweight8(~oob[i]); - if (flip_bits > info->nand.ecc.strength) - return 0; - } - - /* - * Bit flips falls in correctable level. - * Fill data area with 0xFF - */ - if (flip_bits) { - memset(data, 0xFF, info->nand.ecc.size); - memset(oob, 0xFF, info->nand.ecc.bytes); - } - - return flip_bits; -} - -/** - * omap_elm_correct_data - corrects page data area in case error reported - * @mtd: MTD device structure - * @data: page data - * @read_ecc: ecc read from nand flash - * @calc_ecc: ecc read from HW ECC registers - * - * Calculated ecc vector reported as zero in case of non-error pages. - * In case of non-zero ecc vector, first filter out erased-pages, and - * then process data via ELM to detect bit-flips. - */ -static int omap_elm_correct_data(struct mtd_info *mtd, u_char *data, - u_char *read_ecc, u_char *calc_ecc) -{ - struct omap_nand_info *info = mtd_to_omap(mtd); - struct nand_ecc_ctrl *ecc = &info->nand.ecc; - int eccsteps = info->nand.ecc.steps; - int i , j, stat = 0; - int eccflag, actual_eccbytes; - struct elm_errorvec err_vec[ERROR_VECTOR_MAX]; - u_char *ecc_vec = calc_ecc; - u_char *spare_ecc = read_ecc; - u_char *erased_ecc_vec; - u_char *buf; - int bitflip_count; - bool is_error_reported = false; - u32 bit_pos, byte_pos, error_max, pos; - int err; - - switch (info->ecc_opt) { - case OMAP_ECC_BCH4_CODE_HW: - /* omit 7th ECC byte reserved for ROM code compatibility */ - actual_eccbytes = ecc->bytes - 1; - erased_ecc_vec = bch4_vector; - break; - case OMAP_ECC_BCH8_CODE_HW: - /* omit 14th ECC byte reserved for ROM code compatibility */ - actual_eccbytes = ecc->bytes - 1; - erased_ecc_vec = bch8_vector; - break; - case OMAP_ECC_BCH16_CODE_HW: - actual_eccbytes = ecc->bytes; - erased_ecc_vec = bch16_vector; - break; - default: - dev_err(&info->pdev->dev, "invalid driver configuration\n"); - return -EINVAL; - } - - /* Initialize elm error vector to zero */ - memset(err_vec, 0, sizeof(err_vec)); - - for (i = 0; i < eccsteps ; i++) { - eccflag = 0; /* initialize eccflag */ - - /* - * Check any error reported, - * In case of error, non zero ecc reported. - */ - for (j = 0; j < actual_eccbytes; j++) { - if (calc_ecc[j] != 0) { - eccflag = 1; /* non zero ecc, error present */ - break; - } - } - - if (eccflag == 1) { - if (memcmp(calc_ecc, erased_ecc_vec, - actual_eccbytes) == 0) { - /* - * calc_ecc[] matches pattern for ECC(all 0xff) - * so this is definitely an erased-page - */ - } else { - buf = &data[info->nand.ecc.size * i]; - /* - * count number of 0-bits in read_buf. - * This check can be removed once a similar - * check is introduced in generic NAND driver - */ - bitflip_count = erased_sector_bitflips( - buf, read_ecc, info); - if (bitflip_count) { - /* - * number of 0-bits within ECC limits - * So this may be an erased-page - */ - stat += bitflip_count; - } else { - /* - * Too many 0-bits. It may be a - * - programmed-page, OR - * - erased-page with many bit-flips - * So this page requires check by ELM - */ - err_vec[i].error_reported = true; - is_error_reported = true; - } - } - } - - /* Update the ecc vector */ - calc_ecc += ecc->bytes; - read_ecc += ecc->bytes; - } - - /* Check if any error reported */ - if (!is_error_reported) - return stat; - - /* Decode BCH error using ELM module */ - elm_decode_bch_error_page(info->elm_dev, ecc_vec, err_vec); - - err = 0; - for (i = 0; i < eccsteps; i++) { - if (err_vec[i].error_uncorrectable) { - dev_err(&info->pdev->dev, - "uncorrectable bit-flips found\n"); - err = -EBADMSG; - } else if (err_vec[i].error_reported) { - for (j = 0; j < err_vec[i].error_count; j++) { - switch (info->ecc_opt) { - case OMAP_ECC_BCH4_CODE_HW: - /* Add 4 bits to take care of padding */ - pos = err_vec[i].error_loc[j] + - BCH4_BIT_PAD; - break; - case OMAP_ECC_BCH8_CODE_HW: - case OMAP_ECC_BCH16_CODE_HW: - pos = err_vec[i].error_loc[j]; - break; - default: - return -EINVAL; - } - error_max = (ecc->size + actual_eccbytes) * 8; - /* Calculate bit position of error */ - bit_pos = pos % 8; - - /* Calculate byte position of error */ - byte_pos = (error_max - pos - 1) / 8; - - if (pos < error_max) { - if (byte_pos < 512) { - pr_debug("bitflip@dat[%d]=%x\n", - byte_pos, data[byte_pos]); - data[byte_pos] ^= 1 << bit_pos; - } else { - pr_debug("bitflip@oob[%d]=%x\n", - (byte_pos - 512), - spare_ecc[byte_pos - 512]); - spare_ecc[byte_pos - 512] ^= - 1 << bit_pos; - } - } else { - dev_err(&info->pdev->dev, - "invalid bit-flip @ %d:%d\n", - byte_pos, bit_pos); - err = -EBADMSG; - } - } - } - - /* Update number of correctable errors */ - stat += err_vec[i].error_count; - - /* Update page data with sector size */ - data += ecc->size; - spare_ecc += ecc->bytes; - } - - return (err) ? err : stat; -} - -/** - * omap_write_page_bch - BCH ecc based write page function for entire page - * @mtd: mtd info structure - * @chip: nand chip info structure - * @buf: data buffer - * @oob_required: must write chip->oob_poi to OOB - * @page: page - * - * Custom write page method evolved to support multi sector writing in one shot - */ -static int omap_write_page_bch(struct mtd_info *mtd, struct nand_chip *chip, - const uint8_t *buf, int oob_required, int page) -{ - int ret; - uint8_t *ecc_calc = chip->ecc.calc_buf; - - nand_prog_page_begin_op(chip, page, 0, NULL, 0); - - /* Enable GPMC ecc engine */ - chip->ecc.hwctl(mtd, NAND_ECC_WRITE); - - /* Write data */ - chip->write_buf(mtd, buf, mtd->writesize); - - /* Update ecc vector from GPMC result registers */ - omap_calculate_ecc_bch_multi(mtd, buf, &ecc_calc[0]); - - ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0, - chip->ecc.total); - if (ret) - return ret; - - /* Write ecc vector to OOB area */ - chip->write_buf(mtd, chip->oob_poi, mtd->oobsize); - - return nand_prog_page_end_op(chip); -} - -/** - * omap_write_subpage_bch - BCH hardware ECC based subpage write - * @mtd: mtd info structure - * @chip: nand chip info structure - * @offset: column address of subpage within the page - * @data_len: data length - * @buf: data buffer - * @oob_required: must write chip->oob_poi to OOB - * @page: page number to write - * - * OMAP optimized subpage write method. - */ -static int omap_write_subpage_bch(struct mtd_info *mtd, - struct nand_chip *chip, u32 offset, - u32 data_len, const u8 *buf, - int oob_required, int page) -{ - u8 *ecc_calc = chip->ecc.calc_buf; - int ecc_size = chip->ecc.size; - int ecc_bytes = chip->ecc.bytes; - int ecc_steps = chip->ecc.steps; - u32 start_step = offset / ecc_size; - u32 end_step = (offset + data_len - 1) / ecc_size; - int step, ret = 0; - - /* - * Write entire page at one go as it would be optimal - * as ECC is calculated by hardware. - * ECC is calculated for all subpages but we choose - * only what we want. - */ - nand_prog_page_begin_op(chip, page, 0, NULL, 0); - - /* Enable GPMC ECC engine */ - chip->ecc.hwctl(mtd, NAND_ECC_WRITE); - - /* Write data */ - chip->write_buf(mtd, buf, mtd->writesize); - - for (step = 0; step < ecc_steps; step++) { - /* mask ECC of un-touched subpages by padding 0xFF */ - if (step < start_step || step > end_step) - memset(ecc_calc, 0xff, ecc_bytes); - else - ret = _omap_calculate_ecc_bch(mtd, buf, ecc_calc, step); - - if (ret) - return ret; - - buf += ecc_size; - ecc_calc += ecc_bytes; - } - - /* copy calculated ECC for whole page to chip->buffer->oob */ - /* this include masked-value(0xFF) for unwritten subpages */ - ecc_calc = chip->ecc.calc_buf; - ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0, - chip->ecc.total); - if (ret) - return ret; - - /* write OOB buffer to NAND device */ - chip->write_buf(mtd, chip->oob_poi, mtd->oobsize); - - return nand_prog_page_end_op(chip); -} - -/** - * omap_read_page_bch - BCH ecc based page read function for entire page - * @mtd: mtd info structure - * @chip: nand chip info structure - * @buf: buffer to store read data - * @oob_required: caller requires OOB data read to chip->oob_poi - * @page: page number to read - * - * For BCH ecc scheme, GPMC used for syndrome calculation and ELM module - * used for error correction. - * Custom method evolved to support ELM error correction & multi sector - * reading. On reading page data area is read along with OOB data with - * ecc engine enabled. ecc vector updated after read of OOB data. - * For non error pages ecc vector reported as zero. - */ -static int omap_read_page_bch(struct mtd_info *mtd, struct nand_chip *chip, - uint8_t *buf, int oob_required, int page) -{ - uint8_t *ecc_calc = chip->ecc.calc_buf; - uint8_t *ecc_code = chip->ecc.code_buf; - int stat, ret; - unsigned int max_bitflips = 0; - - nand_read_page_op(chip, page, 0, NULL, 0); - - /* Enable GPMC ecc engine */ - chip->ecc.hwctl(mtd, NAND_ECC_READ); - - /* Read data */ - chip->read_buf(mtd, buf, mtd->writesize); - - /* Read oob bytes */ - nand_change_read_column_op(chip, - mtd->writesize + BADBLOCK_MARKER_LENGTH, - chip->oob_poi + BADBLOCK_MARKER_LENGTH, - chip->ecc.total, false); - - /* Calculate ecc bytes */ - omap_calculate_ecc_bch_multi(mtd, buf, ecc_calc); - - ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0, - chip->ecc.total); - if (ret) - return ret; - - stat = chip->ecc.correct(mtd, buf, ecc_code, ecc_calc); - - if (stat < 0) { - mtd->ecc_stats.failed++; - } else { - mtd->ecc_stats.corrected += stat; - max_bitflips = max_t(unsigned int, max_bitflips, stat); - } - - return max_bitflips; -} - -/** - * is_elm_present - checks for presence of ELM module by scanning DT nodes - * @omap_nand_info: NAND device structure containing platform data - */ -static bool is_elm_present(struct omap_nand_info *info, - struct device_node *elm_node) -{ - struct platform_device *pdev; - - /* check whether elm-id is passed via DT */ - if (!elm_node) { - dev_err(&info->pdev->dev, "ELM devicetree node not found\n"); - return false; - } - pdev = of_find_device_by_node(elm_node); - /* check whether ELM device is registered */ - if (!pdev) { - dev_err(&info->pdev->dev, "ELM device not found\n"); - return false; - } - /* ELM module available, now configure it */ - info->elm_dev = &pdev->dev; - return true; -} - -static bool omap2_nand_ecc_check(struct omap_nand_info *info) -{ - bool ecc_needs_bch, ecc_needs_omap_bch, ecc_needs_elm; - - switch (info->ecc_opt) { - case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW: - case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW: - ecc_needs_omap_bch = false; - ecc_needs_bch = true; - ecc_needs_elm = false; - break; - case OMAP_ECC_BCH4_CODE_HW: - case OMAP_ECC_BCH8_CODE_HW: - case OMAP_ECC_BCH16_CODE_HW: - ecc_needs_omap_bch = true; - ecc_needs_bch = false; - ecc_needs_elm = true; - break; - default: - ecc_needs_omap_bch = false; - ecc_needs_bch = false; - ecc_needs_elm = false; - break; - } - - if (ecc_needs_bch && !IS_ENABLED(CONFIG_MTD_NAND_ECC_BCH)) { - dev_err(&info->pdev->dev, - "CONFIG_MTD_NAND_ECC_BCH not enabled\n"); - return false; - } - if (ecc_needs_omap_bch && !IS_ENABLED(CONFIG_MTD_NAND_OMAP_BCH)) { - dev_err(&info->pdev->dev, - "CONFIG_MTD_NAND_OMAP_BCH not enabled\n"); - return false; - } - if (ecc_needs_elm && !is_elm_present(info, info->elm_of_node)) { - dev_err(&info->pdev->dev, "ELM not available\n"); - return false; - } - - return true; -} - -static const char * const nand_xfer_types[] = { - [NAND_OMAP_PREFETCH_POLLED] = "prefetch-polled", - [NAND_OMAP_POLLED] = "polled", - [NAND_OMAP_PREFETCH_DMA] = "prefetch-dma", - [NAND_OMAP_PREFETCH_IRQ] = "prefetch-irq", -}; - -static int omap_get_dt_info(struct device *dev, struct omap_nand_info *info) -{ - struct device_node *child = dev->of_node; - int i; - const char *s; - u32 cs; - - if (of_property_read_u32(child, "reg", &cs) < 0) { - dev_err(dev, "reg not found in DT\n"); - return -EINVAL; - } - - info->gpmc_cs = cs; - - /* detect availability of ELM module. Won't be present pre-OMAP4 */ - info->elm_of_node = of_parse_phandle(child, "ti,elm-id", 0); - if (!info->elm_of_node) { - info->elm_of_node = of_parse_phandle(child, "elm_id", 0); - if (!info->elm_of_node) - dev_dbg(dev, "ti,elm-id not in DT\n"); - } - - /* select ecc-scheme for NAND */ - if (of_property_read_string(child, "ti,nand-ecc-opt", &s)) { - dev_err(dev, "ti,nand-ecc-opt not found\n"); - return -EINVAL; - } - - if (!strcmp(s, "sw")) { - info->ecc_opt = OMAP_ECC_HAM1_CODE_SW; - } else if (!strcmp(s, "ham1") || - !strcmp(s, "hw") || !strcmp(s, "hw-romcode")) { - info->ecc_opt = OMAP_ECC_HAM1_CODE_HW; - } else if (!strcmp(s, "bch4")) { - if (info->elm_of_node) - info->ecc_opt = OMAP_ECC_BCH4_CODE_HW; - else - info->ecc_opt = OMAP_ECC_BCH4_CODE_HW_DETECTION_SW; - } else if (!strcmp(s, "bch8")) { - if (info->elm_of_node) - info->ecc_opt = OMAP_ECC_BCH8_CODE_HW; - else - info->ecc_opt = OMAP_ECC_BCH8_CODE_HW_DETECTION_SW; - } else if (!strcmp(s, "bch16")) { - info->ecc_opt = OMAP_ECC_BCH16_CODE_HW; - } else { - dev_err(dev, "unrecognized value for ti,nand-ecc-opt\n"); - return -EINVAL; - } - - /* select data transfer mode */ - if (!of_property_read_string(child, "ti,nand-xfer-type", &s)) { - for (i = 0; i < ARRAY_SIZE(nand_xfer_types); i++) { - if (!strcasecmp(s, nand_xfer_types[i])) { - info->xfer_type = i; - return 0; - } - } - - dev_err(dev, "unrecognized value for ti,nand-xfer-type\n"); - return -EINVAL; - } - - return 0; -} - -static int omap_ooblayout_ecc(struct mtd_info *mtd, int section, - struct mtd_oob_region *oobregion) -{ - struct omap_nand_info *info = mtd_to_omap(mtd); - struct nand_chip *chip = &info->nand; - int off = BADBLOCK_MARKER_LENGTH; - - if (info->ecc_opt == OMAP_ECC_HAM1_CODE_HW && - !(chip->options & NAND_BUSWIDTH_16)) - off = 1; - - if (section) - return -ERANGE; - - oobregion->offset = off; - oobregion->length = chip->ecc.total; - - return 0; -} - -static int omap_ooblayout_free(struct mtd_info *mtd, int section, - struct mtd_oob_region *oobregion) -{ - struct omap_nand_info *info = mtd_to_omap(mtd); - struct nand_chip *chip = &info->nand; - int off = BADBLOCK_MARKER_LENGTH; - - if (info->ecc_opt == OMAP_ECC_HAM1_CODE_HW && - !(chip->options & NAND_BUSWIDTH_16)) - off = 1; - - if (section) - return -ERANGE; - - off += chip->ecc.total; - if (off >= mtd->oobsize) - return -ERANGE; - - oobregion->offset = off; - oobregion->length = mtd->oobsize - off; - - return 0; -} - -static const struct mtd_ooblayout_ops omap_ooblayout_ops = { - .ecc = omap_ooblayout_ecc, - .free = omap_ooblayout_free, -}; - -static int omap_sw_ooblayout_ecc(struct mtd_info *mtd, int section, - struct mtd_oob_region *oobregion) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - int off = BADBLOCK_MARKER_LENGTH; - - if (section >= chip->ecc.steps) - return -ERANGE; - - /* - * When SW correction is employed, one OMAP specific marker byte is - * reserved after each ECC step. - */ - oobregion->offset = off + (section * (chip->ecc.bytes + 1)); - oobregion->length = chip->ecc.bytes; - - return 0; -} - -static int omap_sw_ooblayout_free(struct mtd_info *mtd, int section, - struct mtd_oob_region *oobregion) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - int off = BADBLOCK_MARKER_LENGTH; - - if (section) - return -ERANGE; - - /* - * When SW correction is employed, one OMAP specific marker byte is - * reserved after each ECC step. - */ - off += ((chip->ecc.bytes + 1) * chip->ecc.steps); - if (off >= mtd->oobsize) - return -ERANGE; - - oobregion->offset = off; - oobregion->length = mtd->oobsize - off; - - return 0; -} - -static const struct mtd_ooblayout_ops omap_sw_ooblayout_ops = { - .ecc = omap_sw_ooblayout_ecc, - .free = omap_sw_ooblayout_free, -}; - -static int omap_nand_probe(struct platform_device *pdev) -{ - struct omap_nand_info *info; - struct mtd_info *mtd; - struct nand_chip *nand_chip; - int err; - dma_cap_mask_t mask; - struct resource *res; - struct device *dev = &pdev->dev; - int min_oobbytes = BADBLOCK_MARKER_LENGTH; - int oobbytes_per_step; - - info = devm_kzalloc(&pdev->dev, sizeof(struct omap_nand_info), - GFP_KERNEL); - if (!info) - return -ENOMEM; - - info->pdev = pdev; - - err = omap_get_dt_info(dev, info); - if (err) - return err; - - info->ops = gpmc_omap_get_nand_ops(&info->reg, info->gpmc_cs); - if (!info->ops) { - dev_err(&pdev->dev, "Failed to get GPMC->NAND interface\n"); - return -ENODEV; - } - - nand_chip = &info->nand; - mtd = nand_to_mtd(nand_chip); - mtd->dev.parent = &pdev->dev; - nand_chip->ecc.priv = NULL; - nand_set_flash_node(nand_chip, dev->of_node); - - if (!mtd->name) { - mtd->name = devm_kasprintf(&pdev->dev, GFP_KERNEL, - "omap2-nand.%d", info->gpmc_cs); - if (!mtd->name) { - dev_err(&pdev->dev, "Failed to set MTD name\n"); - return -ENOMEM; - } - } - - res = platform_get_resource(pdev, IORESOURCE_MEM, 0); - nand_chip->IO_ADDR_R = devm_ioremap_resource(&pdev->dev, res); - if (IS_ERR(nand_chip->IO_ADDR_R)) - return PTR_ERR(nand_chip->IO_ADDR_R); - - info->phys_base = res->start; - - nand_chip->controller = &omap_gpmc_controller; - - nand_chip->IO_ADDR_W = nand_chip->IO_ADDR_R; - nand_chip->cmd_ctrl = omap_hwcontrol; - - info->ready_gpiod = devm_gpiod_get_optional(&pdev->dev, "rb", - GPIOD_IN); - if (IS_ERR(info->ready_gpiod)) { - dev_err(dev, "failed to get ready gpio\n"); - return PTR_ERR(info->ready_gpiod); - } - - /* - * If RDY/BSY line is connected to OMAP then use the omap ready - * function and the generic nand_wait function which reads the status - * register after monitoring the RDY/BSY line. Otherwise use a standard - * chip delay which is slightly more than tR (AC Timing) of the NAND - * device and read status register until you get a failure or success - */ - if (info->ready_gpiod) { - nand_chip->dev_ready = omap_dev_ready; - nand_chip->chip_delay = 0; - } else { - nand_chip->waitfunc = omap_wait; - nand_chip->chip_delay = 50; - } - - if (info->flash_bbt) - nand_chip->bbt_options |= NAND_BBT_USE_FLASH; - - /* scan NAND device connected to chip controller */ - nand_chip->options |= info->devsize & NAND_BUSWIDTH_16; - err = nand_scan_ident(mtd, 1, NULL); - if (err) { - dev_err(&info->pdev->dev, - "scan failed, may be bus-width mismatch\n"); - goto return_error; - } - - if (nand_chip->bbt_options & NAND_BBT_USE_FLASH) - nand_chip->bbt_options |= NAND_BBT_NO_OOB; - else - nand_chip->options |= NAND_SKIP_BBTSCAN; - - /* re-populate low-level callbacks based on xfer modes */ - switch (info->xfer_type) { - case NAND_OMAP_PREFETCH_POLLED: - nand_chip->read_buf = omap_read_buf_pref; - nand_chip->write_buf = omap_write_buf_pref; - break; - - case NAND_OMAP_POLLED: - /* Use nand_base defaults for {read,write}_buf */ - break; - - case NAND_OMAP_PREFETCH_DMA: - dma_cap_zero(mask); - dma_cap_set(DMA_SLAVE, mask); - info->dma = dma_request_chan(pdev->dev.parent, "rxtx"); - - if (IS_ERR(info->dma)) { - dev_err(&pdev->dev, "DMA engine request failed\n"); - err = PTR_ERR(info->dma); - goto return_error; - } else { - struct dma_slave_config cfg; - - memset(&cfg, 0, sizeof(cfg)); - cfg.src_addr = info->phys_base; - cfg.dst_addr = info->phys_base; - cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; - cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; - cfg.src_maxburst = 16; - cfg.dst_maxburst = 16; - err = dmaengine_slave_config(info->dma, &cfg); - if (err) { - dev_err(&pdev->dev, "DMA engine slave config failed: %d\n", - err); - goto return_error; - } - nand_chip->read_buf = omap_read_buf_dma_pref; - nand_chip->write_buf = omap_write_buf_dma_pref; - } - break; - - case NAND_OMAP_PREFETCH_IRQ: - info->gpmc_irq_fifo = platform_get_irq(pdev, 0); - if (info->gpmc_irq_fifo <= 0) { - dev_err(&pdev->dev, "error getting fifo irq\n"); - err = -ENODEV; - goto return_error; - } - err = devm_request_irq(&pdev->dev, info->gpmc_irq_fifo, - omap_nand_irq, IRQF_SHARED, - "gpmc-nand-fifo", info); - if (err) { - dev_err(&pdev->dev, "requesting irq(%d) error:%d", - info->gpmc_irq_fifo, err); - info->gpmc_irq_fifo = 0; - goto return_error; - } - - info->gpmc_irq_count = platform_get_irq(pdev, 1); - if (info->gpmc_irq_count <= 0) { - dev_err(&pdev->dev, "error getting count irq\n"); - err = -ENODEV; - goto return_error; - } - err = devm_request_irq(&pdev->dev, info->gpmc_irq_count, - omap_nand_irq, IRQF_SHARED, - "gpmc-nand-count", info); - if (err) { - dev_err(&pdev->dev, "requesting irq(%d) error:%d", - info->gpmc_irq_count, err); - info->gpmc_irq_count = 0; - goto return_error; - } - - nand_chip->read_buf = omap_read_buf_irq_pref; - nand_chip->write_buf = omap_write_buf_irq_pref; - - break; - - default: - dev_err(&pdev->dev, - "xfer_type(%d) not supported!\n", info->xfer_type); - err = -EINVAL; - goto return_error; - } - - if (!omap2_nand_ecc_check(info)) { - err = -EINVAL; - goto return_error; - } - - /* - * Bail out earlier to let NAND_ECC_SOFT code create its own - * ooblayout instead of using ours. - */ - if (info->ecc_opt == OMAP_ECC_HAM1_CODE_SW) { - nand_chip->ecc.mode = NAND_ECC_SOFT; - nand_chip->ecc.algo = NAND_ECC_HAMMING; - goto scan_tail; - } - - /* populate MTD interface based on ECC scheme */ - switch (info->ecc_opt) { - case OMAP_ECC_HAM1_CODE_HW: - pr_info("nand: using OMAP_ECC_HAM1_CODE_HW\n"); - nand_chip->ecc.mode = NAND_ECC_HW; - nand_chip->ecc.bytes = 3; - nand_chip->ecc.size = 512; - nand_chip->ecc.strength = 1; - nand_chip->ecc.calculate = omap_calculate_ecc; - nand_chip->ecc.hwctl = omap_enable_hwecc; - nand_chip->ecc.correct = omap_correct_data; - mtd_set_ooblayout(mtd, &omap_ooblayout_ops); - oobbytes_per_step = nand_chip->ecc.bytes; - - if (!(nand_chip->options & NAND_BUSWIDTH_16)) - min_oobbytes = 1; - - break; - - case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW: - pr_info("nand: using OMAP_ECC_BCH4_CODE_HW_DETECTION_SW\n"); - nand_chip->ecc.mode = NAND_ECC_HW; - nand_chip->ecc.size = 512; - nand_chip->ecc.bytes = 7; - nand_chip->ecc.strength = 4; - nand_chip->ecc.hwctl = omap_enable_hwecc_bch; - nand_chip->ecc.correct = nand_bch_correct_data; - nand_chip->ecc.calculate = omap_calculate_ecc_bch_sw; - mtd_set_ooblayout(mtd, &omap_sw_ooblayout_ops); - /* Reserve one byte for the OMAP marker */ - oobbytes_per_step = nand_chip->ecc.bytes + 1; - /* software bch library is used for locating errors */ - nand_chip->ecc.priv = nand_bch_init(mtd); - if (!nand_chip->ecc.priv) { - dev_err(&info->pdev->dev, "unable to use BCH library\n"); - err = -EINVAL; - goto return_error; - } - break; - - case OMAP_ECC_BCH4_CODE_HW: - pr_info("nand: using OMAP_ECC_BCH4_CODE_HW ECC scheme\n"); - nand_chip->ecc.mode = NAND_ECC_HW; - nand_chip->ecc.size = 512; - /* 14th bit is kept reserved for ROM-code compatibility */ - nand_chip->ecc.bytes = 7 + 1; - nand_chip->ecc.strength = 4; - nand_chip->ecc.hwctl = omap_enable_hwecc_bch; - nand_chip->ecc.correct = omap_elm_correct_data; - nand_chip->ecc.read_page = omap_read_page_bch; - nand_chip->ecc.write_page = omap_write_page_bch; - nand_chip->ecc.write_subpage = omap_write_subpage_bch; - mtd_set_ooblayout(mtd, &omap_ooblayout_ops); - oobbytes_per_step = nand_chip->ecc.bytes; - - err = elm_config(info->elm_dev, BCH4_ECC, - mtd->writesize / nand_chip->ecc.size, - nand_chip->ecc.size, nand_chip->ecc.bytes); - if (err < 0) - goto return_error; - break; - - case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW: - pr_info("nand: using OMAP_ECC_BCH8_CODE_HW_DETECTION_SW\n"); - nand_chip->ecc.mode = NAND_ECC_HW; - nand_chip->ecc.size = 512; - nand_chip->ecc.bytes = 13; - nand_chip->ecc.strength = 8; - nand_chip->ecc.hwctl = omap_enable_hwecc_bch; - nand_chip->ecc.correct = nand_bch_correct_data; - nand_chip->ecc.calculate = omap_calculate_ecc_bch_sw; - mtd_set_ooblayout(mtd, &omap_sw_ooblayout_ops); - /* Reserve one byte for the OMAP marker */ - oobbytes_per_step = nand_chip->ecc.bytes + 1; - /* software bch library is used for locating errors */ - nand_chip->ecc.priv = nand_bch_init(mtd); - if (!nand_chip->ecc.priv) { - dev_err(&info->pdev->dev, "unable to use BCH library\n"); - err = -EINVAL; - goto return_error; - } - break; - - case OMAP_ECC_BCH8_CODE_HW: - pr_info("nand: using OMAP_ECC_BCH8_CODE_HW ECC scheme\n"); - nand_chip->ecc.mode = NAND_ECC_HW; - nand_chip->ecc.size = 512; - /* 14th bit is kept reserved for ROM-code compatibility */ - nand_chip->ecc.bytes = 13 + 1; - nand_chip->ecc.strength = 8; - nand_chip->ecc.hwctl = omap_enable_hwecc_bch; - nand_chip->ecc.correct = omap_elm_correct_data; - nand_chip->ecc.read_page = omap_read_page_bch; - nand_chip->ecc.write_page = omap_write_page_bch; - nand_chip->ecc.write_subpage = omap_write_subpage_bch; - mtd_set_ooblayout(mtd, &omap_ooblayout_ops); - oobbytes_per_step = nand_chip->ecc.bytes; - - err = elm_config(info->elm_dev, BCH8_ECC, - mtd->writesize / nand_chip->ecc.size, - nand_chip->ecc.size, nand_chip->ecc.bytes); - if (err < 0) - goto return_error; - - break; - - case OMAP_ECC_BCH16_CODE_HW: - pr_info("using OMAP_ECC_BCH16_CODE_HW ECC scheme\n"); - nand_chip->ecc.mode = NAND_ECC_HW; - nand_chip->ecc.size = 512; - nand_chip->ecc.bytes = 26; - nand_chip->ecc.strength = 16; - nand_chip->ecc.hwctl = omap_enable_hwecc_bch; - nand_chip->ecc.correct = omap_elm_correct_data; - nand_chip->ecc.read_page = omap_read_page_bch; - nand_chip->ecc.write_page = omap_write_page_bch; - nand_chip->ecc.write_subpage = omap_write_subpage_bch; - mtd_set_ooblayout(mtd, &omap_ooblayout_ops); - oobbytes_per_step = nand_chip->ecc.bytes; - - err = elm_config(info->elm_dev, BCH16_ECC, - mtd->writesize / nand_chip->ecc.size, - nand_chip->ecc.size, nand_chip->ecc.bytes); - if (err < 0) - goto return_error; - - break; - default: - dev_err(&info->pdev->dev, "invalid or unsupported ECC scheme\n"); - err = -EINVAL; - goto return_error; - } - - /* check if NAND device's OOB is enough to store ECC signatures */ - min_oobbytes += (oobbytes_per_step * - (mtd->writesize / nand_chip->ecc.size)); - if (mtd->oobsize < min_oobbytes) { - dev_err(&info->pdev->dev, - "not enough OOB bytes required = %d, available=%d\n", - min_oobbytes, mtd->oobsize); - err = -EINVAL; - goto return_error; - } - -scan_tail: - /* second phase scan */ - err = nand_scan_tail(mtd); - if (err) - goto return_error; - - err = mtd_device_register(mtd, NULL, 0); - if (err) - goto return_error; - - platform_set_drvdata(pdev, mtd); - - return 0; - -return_error: - if (!IS_ERR_OR_NULL(info->dma)) - dma_release_channel(info->dma); - if (nand_chip->ecc.priv) { - nand_bch_free(nand_chip->ecc.priv); - nand_chip->ecc.priv = NULL; - } - return err; -} - -static int omap_nand_remove(struct platform_device *pdev) -{ - struct mtd_info *mtd = platform_get_drvdata(pdev); - struct nand_chip *nand_chip = mtd_to_nand(mtd); - struct omap_nand_info *info = mtd_to_omap(mtd); - if (nand_chip->ecc.priv) { - nand_bch_free(nand_chip->ecc.priv); - nand_chip->ecc.priv = NULL; - } - if (info->dma) - dma_release_channel(info->dma); - nand_release(mtd); - return 0; -} - -static const struct of_device_id omap_nand_ids[] = { - { .compatible = "ti,omap2-nand", }, - {}, -}; -MODULE_DEVICE_TABLE(of, omap_nand_ids); - -static struct platform_driver omap_nand_driver = { - .probe = omap_nand_probe, - .remove = omap_nand_remove, - .driver = { - .name = DRIVER_NAME, - .of_match_table = of_match_ptr(omap_nand_ids), - }, -}; - -module_platform_driver(omap_nand_driver); - -MODULE_ALIAS("platform:" DRIVER_NAME); -MODULE_LICENSE("GPL"); -MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards"); diff --git a/drivers/mtd/nand/omap_elm.c b/drivers/mtd/nand/omap_elm.c deleted file mode 100644 index a3f32f939cc1..000000000000 --- a/drivers/mtd/nand/omap_elm.c +++ /dev/null @@ -1,578 +0,0 @@ -/* - * Error Location Module - * - * Copyright (C) 2012 Texas Instruments Incorporated - http://www.ti.com/ - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation; either version 2 of the License, or - * (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - * - */ - -#define DRIVER_NAME "omap-elm" - -#include -#include -#include -#include -#include -#include -#include -#include - -#define ELM_SYSCONFIG 0x010 -#define ELM_IRQSTATUS 0x018 -#define ELM_IRQENABLE 0x01c -#define ELM_LOCATION_CONFIG 0x020 -#define ELM_PAGE_CTRL 0x080 -#define ELM_SYNDROME_FRAGMENT_0 0x400 -#define ELM_SYNDROME_FRAGMENT_1 0x404 -#define ELM_SYNDROME_FRAGMENT_2 0x408 -#define ELM_SYNDROME_FRAGMENT_3 0x40c -#define ELM_SYNDROME_FRAGMENT_4 0x410 -#define ELM_SYNDROME_FRAGMENT_5 0x414 -#define ELM_SYNDROME_FRAGMENT_6 0x418 -#define ELM_LOCATION_STATUS 0x800 -#define ELM_ERROR_LOCATION_0 0x880 - -/* ELM Interrupt Status Register */ -#define INTR_STATUS_PAGE_VALID BIT(8) - -/* ELM Interrupt Enable Register */ -#define INTR_EN_PAGE_MASK BIT(8) - -/* ELM Location Configuration Register */ -#define ECC_BCH_LEVEL_MASK 0x3 - -/* ELM syndrome */ -#define ELM_SYNDROME_VALID BIT(16) - -/* ELM_LOCATION_STATUS Register */ -#define ECC_CORRECTABLE_MASK BIT(8) -#define ECC_NB_ERRORS_MASK 0x1f - -/* ELM_ERROR_LOCATION_0-15 Registers */ -#define ECC_ERROR_LOCATION_MASK 0x1fff - -#define ELM_ECC_SIZE 0x7ff - -#define SYNDROME_FRAGMENT_REG_SIZE 0x40 -#define ERROR_LOCATION_SIZE 0x100 - -struct elm_registers { - u32 elm_irqenable; - u32 elm_sysconfig; - u32 elm_location_config; - u32 elm_page_ctrl; - u32 elm_syndrome_fragment_6[ERROR_VECTOR_MAX]; - u32 elm_syndrome_fragment_5[ERROR_VECTOR_MAX]; - u32 elm_syndrome_fragment_4[ERROR_VECTOR_MAX]; - u32 elm_syndrome_fragment_3[ERROR_VECTOR_MAX]; - u32 elm_syndrome_fragment_2[ERROR_VECTOR_MAX]; - u32 elm_syndrome_fragment_1[ERROR_VECTOR_MAX]; - u32 elm_syndrome_fragment_0[ERROR_VECTOR_MAX]; -}; - -struct elm_info { - struct device *dev; - void __iomem *elm_base; - struct completion elm_completion; - struct list_head list; - enum bch_ecc bch_type; - struct elm_registers elm_regs; - int ecc_steps; - int ecc_syndrome_size; -}; - -static LIST_HEAD(elm_devices); - -static void elm_write_reg(struct elm_info *info, int offset, u32 val) -{ - writel(val, info->elm_base + offset); -} - -static u32 elm_read_reg(struct elm_info *info, int offset) -{ - return readl(info->elm_base + offset); -} - -/** - * elm_config - Configure ELM module - * @dev: ELM device - * @bch_type: Type of BCH ecc - */ -int elm_config(struct device *dev, enum bch_ecc bch_type, - int ecc_steps, int ecc_step_size, int ecc_syndrome_size) -{ - u32 reg_val; - struct elm_info *info = dev_get_drvdata(dev); - - if (!info) { - dev_err(dev, "Unable to configure elm - device not probed?\n"); - return -EPROBE_DEFER; - } - /* ELM cannot detect ECC errors for chunks > 1KB */ - if (ecc_step_size > ((ELM_ECC_SIZE + 1) / 2)) { - dev_err(dev, "unsupported config ecc-size=%d\n", ecc_step_size); - return -EINVAL; - } - /* ELM support 8 error syndrome process */ - if (ecc_steps > ERROR_VECTOR_MAX) { - dev_err(dev, "unsupported config ecc-step=%d\n", ecc_steps); - return -EINVAL; - } - - reg_val = (bch_type & ECC_BCH_LEVEL_MASK) | (ELM_ECC_SIZE << 16); - elm_write_reg(info, ELM_LOCATION_CONFIG, reg_val); - info->bch_type = bch_type; - info->ecc_steps = ecc_steps; - info->ecc_syndrome_size = ecc_syndrome_size; - - return 0; -} -EXPORT_SYMBOL(elm_config); - -/** - * elm_configure_page_mode - Enable/Disable page mode - * @info: elm info - * @index: index number of syndrome fragment vector - * @enable: enable/disable flag for page mode - * - * Enable page mode for syndrome fragment index - */ -static void elm_configure_page_mode(struct elm_info *info, int index, - bool enable) -{ - u32 reg_val; - - reg_val = elm_read_reg(info, ELM_PAGE_CTRL); - if (enable) - reg_val |= BIT(index); /* enable page mode */ - else - reg_val &= ~BIT(index); /* disable page mode */ - - elm_write_reg(info, ELM_PAGE_CTRL, reg_val); -} - -/** - * elm_load_syndrome - Load ELM syndrome reg - * @info: elm info - * @err_vec: elm error vectors - * @ecc: buffer with calculated ecc - * - * Load syndrome fragment registers with calculated ecc in reverse order. - */ -static void elm_load_syndrome(struct elm_info *info, - struct elm_errorvec *err_vec, u8 *ecc) -{ - int i, offset; - u32 val; - - for (i = 0; i < info->ecc_steps; i++) { - - /* Check error reported */ - if (err_vec[i].error_reported) { - elm_configure_page_mode(info, i, true); - offset = ELM_SYNDROME_FRAGMENT_0 + - SYNDROME_FRAGMENT_REG_SIZE * i; - switch (info->bch_type) { - case BCH8_ECC: - /* syndrome fragment 0 = ecc[9-12B] */ - val = cpu_to_be32(*(u32 *) &ecc[9]); - elm_write_reg(info, offset, val); - - /* syndrome fragment 1 = ecc[5-8B] */ - offset += 4; - val = cpu_to_be32(*(u32 *) &ecc[5]); - elm_write_reg(info, offset, val); - - /* syndrome fragment 2 = ecc[1-4B] */ - offset += 4; - val = cpu_to_be32(*(u32 *) &ecc[1]); - elm_write_reg(info, offset, val); - - /* syndrome fragment 3 = ecc[0B] */ - offset += 4; - val = ecc[0]; - elm_write_reg(info, offset, val); - break; - case BCH4_ECC: - /* syndrome fragment 0 = ecc[20-52b] bits */ - val = (cpu_to_be32(*(u32 *) &ecc[3]) >> 4) | - ((ecc[2] & 0xf) << 28); - elm_write_reg(info, offset, val); - - /* syndrome fragment 1 = ecc[0-20b] bits */ - offset += 4; - val = cpu_to_be32(*(u32 *) &ecc[0]) >> 12; - elm_write_reg(info, offset, val); - break; - case BCH16_ECC: - val = cpu_to_be32(*(u32 *) &ecc[22]); - elm_write_reg(info, offset, val); - offset += 4; - val = cpu_to_be32(*(u32 *) &ecc[18]); - elm_write_reg(info, offset, val); - offset += 4; - val = cpu_to_be32(*(u32 *) &ecc[14]); - elm_write_reg(info, offset, val); - offset += 4; - val = cpu_to_be32(*(u32 *) &ecc[10]); - elm_write_reg(info, offset, val); - offset += 4; - val = cpu_to_be32(*(u32 *) &ecc[6]); - elm_write_reg(info, offset, val); - offset += 4; - val = cpu_to_be32(*(u32 *) &ecc[2]); - elm_write_reg(info, offset, val); - offset += 4; - val = cpu_to_be32(*(u32 *) &ecc[0]) >> 16; - elm_write_reg(info, offset, val); - break; - default: - pr_err("invalid config bch_type\n"); - } - } - - /* Update ecc pointer with ecc byte size */ - ecc += info->ecc_syndrome_size; - } -} - -/** - * elm_start_processing - start elm syndrome processing - * @info: elm info - * @err_vec: elm error vectors - * - * Set syndrome valid bit for syndrome fragment registers for which - * elm syndrome fragment registers are loaded. This enables elm module - * to start processing syndrome vectors. - */ -static void elm_start_processing(struct elm_info *info, - struct elm_errorvec *err_vec) -{ - int i, offset; - u32 reg_val; - - /* - * Set syndrome vector valid, so that ELM module - * will process it for vectors error is reported - */ - for (i = 0; i < info->ecc_steps; i++) { - if (err_vec[i].error_reported) { - offset = ELM_SYNDROME_FRAGMENT_6 + - SYNDROME_FRAGMENT_REG_SIZE * i; - reg_val = elm_read_reg(info, offset); - reg_val |= ELM_SYNDROME_VALID; - elm_write_reg(info, offset, reg_val); - } - } -} - -/** - * elm_error_correction - locate correctable error position - * @info: elm info - * @err_vec: elm error vectors - * - * On completion of processing by elm module, error location status - * register updated with correctable/uncorrectable error information. - * In case of correctable errors, number of errors located from - * elm location status register & read the positions from - * elm error location register. - */ -static void elm_error_correction(struct elm_info *info, - struct elm_errorvec *err_vec) -{ - int i, j, errors = 0; - int offset; - u32 reg_val; - - for (i = 0; i < info->ecc_steps; i++) { - - /* Check error reported */ - if (err_vec[i].error_reported) { - offset = ELM_LOCATION_STATUS + ERROR_LOCATION_SIZE * i; - reg_val = elm_read_reg(info, offset); - - /* Check correctable error or not */ - if (reg_val & ECC_CORRECTABLE_MASK) { - offset = ELM_ERROR_LOCATION_0 + - ERROR_LOCATION_SIZE * i; - - /* Read count of correctable errors */ - err_vec[i].error_count = reg_val & - ECC_NB_ERRORS_MASK; - - /* Update the error locations in error vector */ - for (j = 0; j < err_vec[i].error_count; j++) { - - reg_val = elm_read_reg(info, offset); - err_vec[i].error_loc[j] = reg_val & - ECC_ERROR_LOCATION_MASK; - - /* Update error location register */ - offset += 4; - } - - errors += err_vec[i].error_count; - } else { - err_vec[i].error_uncorrectable = true; - } - - /* Clearing interrupts for processed error vectors */ - elm_write_reg(info, ELM_IRQSTATUS, BIT(i)); - - /* Disable page mode */ - elm_configure_page_mode(info, i, false); - } - } -} - -/** - * elm_decode_bch_error_page - Locate error position - * @dev: device pointer - * @ecc_calc: calculated ECC bytes from GPMC - * @err_vec: elm error vectors - * - * Called with one or more error reported vectors & vectors with - * error reported is updated in err_vec[].error_reported - */ -void elm_decode_bch_error_page(struct device *dev, u8 *ecc_calc, - struct elm_errorvec *err_vec) -{ - struct elm_info *info = dev_get_drvdata(dev); - u32 reg_val; - - /* Enable page mode interrupt */ - reg_val = elm_read_reg(info, ELM_IRQSTATUS); - elm_write_reg(info, ELM_IRQSTATUS, reg_val & INTR_STATUS_PAGE_VALID); - elm_write_reg(info, ELM_IRQENABLE, INTR_EN_PAGE_MASK); - - /* Load valid ecc byte to syndrome fragment register */ - elm_load_syndrome(info, err_vec, ecc_calc); - - /* Enable syndrome processing for which syndrome fragment is updated */ - elm_start_processing(info, err_vec); - - /* Wait for ELM module to finish locating error correction */ - wait_for_completion(&info->elm_completion); - - /* Disable page mode interrupt */ - reg_val = elm_read_reg(info, ELM_IRQENABLE); - elm_write_reg(info, ELM_IRQENABLE, reg_val & ~INTR_EN_PAGE_MASK); - elm_error_correction(info, err_vec); -} -EXPORT_SYMBOL(elm_decode_bch_error_page); - -static irqreturn_t elm_isr(int this_irq, void *dev_id) -{ - u32 reg_val; - struct elm_info *info = dev_id; - - reg_val = elm_read_reg(info, ELM_IRQSTATUS); - - /* All error vectors processed */ - if (reg_val & INTR_STATUS_PAGE_VALID) { - elm_write_reg(info, ELM_IRQSTATUS, - reg_val & INTR_STATUS_PAGE_VALID); - complete(&info->elm_completion); - return IRQ_HANDLED; - } - - return IRQ_NONE; -} - -static int elm_probe(struct platform_device *pdev) -{ - int ret = 0; - struct resource *res, *irq; - struct elm_info *info; - - info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL); - if (!info) - return -ENOMEM; - - info->dev = &pdev->dev; - - irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0); - if (!irq) { - dev_err(&pdev->dev, "no irq resource defined\n"); - return -ENODEV; - } - - res = platform_get_resource(pdev, IORESOURCE_MEM, 0); - info->elm_base = devm_ioremap_resource(&pdev->dev, res); - if (IS_ERR(info->elm_base)) - return PTR_ERR(info->elm_base); - - ret = devm_request_irq(&pdev->dev, irq->start, elm_isr, 0, - pdev->name, info); - if (ret) { - dev_err(&pdev->dev, "failure requesting %pr\n", irq); - return ret; - } - - pm_runtime_enable(&pdev->dev); - if (pm_runtime_get_sync(&pdev->dev) < 0) { - ret = -EINVAL; - pm_runtime_disable(&pdev->dev); - dev_err(&pdev->dev, "can't enable clock\n"); - return ret; - } - - init_completion(&info->elm_completion); - INIT_LIST_HEAD(&info->list); - list_add(&info->list, &elm_devices); - platform_set_drvdata(pdev, info); - return ret; -} - -static int elm_remove(struct platform_device *pdev) -{ - pm_runtime_put_sync(&pdev->dev); - pm_runtime_disable(&pdev->dev); - return 0; -} - -#ifdef CONFIG_PM_SLEEP -/** - * elm_context_save - * saves ELM configurations to preserve them across Hardware powered-down - */ -static int elm_context_save(struct elm_info *info) -{ - struct elm_registers *regs = &info->elm_regs; - enum bch_ecc bch_type = info->bch_type; - u32 offset = 0, i; - - regs->elm_irqenable = elm_read_reg(info, ELM_IRQENABLE); - regs->elm_sysconfig = elm_read_reg(info, ELM_SYSCONFIG); - regs->elm_location_config = elm_read_reg(info, ELM_LOCATION_CONFIG); - regs->elm_page_ctrl = elm_read_reg(info, ELM_PAGE_CTRL); - for (i = 0; i < ERROR_VECTOR_MAX; i++) { - offset = i * SYNDROME_FRAGMENT_REG_SIZE; - switch (bch_type) { - case BCH16_ECC: - regs->elm_syndrome_fragment_6[i] = elm_read_reg(info, - ELM_SYNDROME_FRAGMENT_6 + offset); - regs->elm_syndrome_fragment_5[i] = elm_read_reg(info, - ELM_SYNDROME_FRAGMENT_5 + offset); - regs->elm_syndrome_fragment_4[i] = elm_read_reg(info, - ELM_SYNDROME_FRAGMENT_4 + offset); - case BCH8_ECC: - regs->elm_syndrome_fragment_3[i] = elm_read_reg(info, - ELM_SYNDROME_FRAGMENT_3 + offset); - regs->elm_syndrome_fragment_2[i] = elm_read_reg(info, - ELM_SYNDROME_FRAGMENT_2 + offset); - case BCH4_ECC: - regs->elm_syndrome_fragment_1[i] = elm_read_reg(info, - ELM_SYNDROME_FRAGMENT_1 + offset); - regs->elm_syndrome_fragment_0[i] = elm_read_reg(info, - ELM_SYNDROME_FRAGMENT_0 + offset); - break; - default: - return -EINVAL; - } - /* ELM SYNDROME_VALID bit in SYNDROME_FRAGMENT_6[] needs - * to be saved for all BCH schemes*/ - regs->elm_syndrome_fragment_6[i] = elm_read_reg(info, - ELM_SYNDROME_FRAGMENT_6 + offset); - } - return 0; -} - -/** - * elm_context_restore - * writes configurations saved duing power-down back into ELM registers - */ -static int elm_context_restore(struct elm_info *info) -{ - struct elm_registers *regs = &info->elm_regs; - enum bch_ecc bch_type = info->bch_type; - u32 offset = 0, i; - - elm_write_reg(info, ELM_IRQENABLE, regs->elm_irqenable); - elm_write_reg(info, ELM_SYSCONFIG, regs->elm_sysconfig); - elm_write_reg(info, ELM_LOCATION_CONFIG, regs->elm_location_config); - elm_write_reg(info, ELM_PAGE_CTRL, regs->elm_page_ctrl); - for (i = 0; i < ERROR_VECTOR_MAX; i++) { - offset = i * SYNDROME_FRAGMENT_REG_SIZE; - switch (bch_type) { - case BCH16_ECC: - elm_write_reg(info, ELM_SYNDROME_FRAGMENT_6 + offset, - regs->elm_syndrome_fragment_6[i]); - elm_write_reg(info, ELM_SYNDROME_FRAGMENT_5 + offset, - regs->elm_syndrome_fragment_5[i]); - elm_write_reg(info, ELM_SYNDROME_FRAGMENT_4 + offset, - regs->elm_syndrome_fragment_4[i]); - case BCH8_ECC: - elm_write_reg(info, ELM_SYNDROME_FRAGMENT_3 + offset, - regs->elm_syndrome_fragment_3[i]); - elm_write_reg(info, ELM_SYNDROME_FRAGMENT_2 + offset, - regs->elm_syndrome_fragment_2[i]); - case BCH4_ECC: - elm_write_reg(info, ELM_SYNDROME_FRAGMENT_1 + offset, - regs->elm_syndrome_fragment_1[i]); - elm_write_reg(info, ELM_SYNDROME_FRAGMENT_0 + offset, - regs->elm_syndrome_fragment_0[i]); - break; - default: - return -EINVAL; - } - /* ELM_SYNDROME_VALID bit to be set in last to trigger FSM */ - elm_write_reg(info, ELM_SYNDROME_FRAGMENT_6 + offset, - regs->elm_syndrome_fragment_6[i] & - ELM_SYNDROME_VALID); - } - return 0; -} - -static int elm_suspend(struct device *dev) -{ - struct elm_info *info = dev_get_drvdata(dev); - elm_context_save(info); - pm_runtime_put_sync(dev); - return 0; -} - -static int elm_resume(struct device *dev) -{ - struct elm_info *info = dev_get_drvdata(dev); - pm_runtime_get_sync(dev); - elm_context_restore(info); - return 0; -} -#endif - -static SIMPLE_DEV_PM_OPS(elm_pm_ops, elm_suspend, elm_resume); - -#ifdef CONFIG_OF -static const struct of_device_id elm_of_match[] = { - { .compatible = "ti,am3352-elm" }, - {}, -}; -MODULE_DEVICE_TABLE(of, elm_of_match); -#endif - -static struct platform_driver elm_driver = { - .driver = { - .name = DRIVER_NAME, - .of_match_table = of_match_ptr(elm_of_match), - .pm = &elm_pm_ops, - }, - .probe = elm_probe, - .remove = elm_remove, -}; - -module_platform_driver(elm_driver); - -MODULE_DESCRIPTION("ELM driver for BCH error correction"); -MODULE_AUTHOR("Texas Instruments"); -MODULE_ALIAS("platform:" DRIVER_NAME); -MODULE_LICENSE("GPL v2"); diff --git a/drivers/mtd/nand/orion_nand.c b/drivers/mtd/nand/orion_nand.c deleted file mode 100644 index 7825fd3ce66b..000000000000 --- a/drivers/mtd/nand/orion_nand.c +++ /dev/null @@ -1,232 +0,0 @@ -/* - * NAND support for Marvell Orion SoC platforms - * - * Tzachi Perelstein - * - * This file is licensed under the terms of the GNU General Public - * License version 2. This program is licensed "as is" without any - * warranty of any kind, whether express or implied. - */ - -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include - -struct orion_nand_info { - struct nand_chip chip; - struct clk *clk; -}; - -static void orion_nand_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl) -{ - struct nand_chip *nc = mtd_to_nand(mtd); - struct orion_nand_data *board = nand_get_controller_data(nc); - u32 offs; - - if (cmd == NAND_CMD_NONE) - return; - - if (ctrl & NAND_CLE) - offs = (1 << board->cle); - else if (ctrl & NAND_ALE) - offs = (1 << board->ale); - else - return; - - if (nc->options & NAND_BUSWIDTH_16) - offs <<= 1; - - writeb(cmd, nc->IO_ADDR_W + offs); -} - -static void orion_nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - void __iomem *io_base = chip->IO_ADDR_R; -#if __LINUX_ARM_ARCH__ >= 5 - uint64_t *buf64; -#endif - int i = 0; - - while (len && (unsigned long)buf & 7) { - *buf++ = readb(io_base); - len--; - } -#if __LINUX_ARM_ARCH__ >= 5 - buf64 = (uint64_t *)buf; - while (i < len/8) { - /* - * Since GCC has no proper constraint (PR 43518) - * force x variable to r2/r3 registers as ldrd instruction - * requires first register to be even. - */ - register uint64_t x asm ("r2"); - - asm volatile ("ldrd\t%0, [%1]" : "=&r" (x) : "r" (io_base)); - buf64[i++] = x; - } - i *= 8; -#else - readsl(io_base, buf, len/4); - i = len / 4 * 4; -#endif - while (i < len) - buf[i++] = readb(io_base); -} - -static int __init orion_nand_probe(struct platform_device *pdev) -{ - struct orion_nand_info *info; - struct mtd_info *mtd; - struct nand_chip *nc; - struct orion_nand_data *board; - struct resource *res; - void __iomem *io_base; - int ret = 0; - u32 val = 0; - - info = devm_kzalloc(&pdev->dev, - sizeof(struct orion_nand_info), - GFP_KERNEL); - if (!info) - return -ENOMEM; - nc = &info->chip; - mtd = nand_to_mtd(nc); - - res = platform_get_resource(pdev, IORESOURCE_MEM, 0); - io_base = devm_ioremap_resource(&pdev->dev, res); - - if (IS_ERR(io_base)) - return PTR_ERR(io_base); - - if (pdev->dev.of_node) { - board = devm_kzalloc(&pdev->dev, sizeof(struct orion_nand_data), - GFP_KERNEL); - if (!board) - return -ENOMEM; - if (!of_property_read_u32(pdev->dev.of_node, "cle", &val)) - board->cle = (u8)val; - else - board->cle = 0; - if (!of_property_read_u32(pdev->dev.of_node, "ale", &val)) - board->ale = (u8)val; - else - board->ale = 1; - if (!of_property_read_u32(pdev->dev.of_node, - "bank-width", &val)) - board->width = (u8)val * 8; - else - board->width = 8; - if (!of_property_read_u32(pdev->dev.of_node, - "chip-delay", &val)) - board->chip_delay = (u8)val; - } else { - board = dev_get_platdata(&pdev->dev); - } - - mtd->dev.parent = &pdev->dev; - - nand_set_controller_data(nc, board); - nand_set_flash_node(nc, pdev->dev.of_node); - nc->IO_ADDR_R = nc->IO_ADDR_W = io_base; - nc->cmd_ctrl = orion_nand_cmd_ctrl; - nc->read_buf = orion_nand_read_buf; - nc->ecc.mode = NAND_ECC_SOFT; - nc->ecc.algo = NAND_ECC_HAMMING; - - if (board->chip_delay) - nc->chip_delay = board->chip_delay; - - WARN(board->width > 16, - "%d bit bus width out of range", - board->width); - - if (board->width == 16) - nc->options |= NAND_BUSWIDTH_16; - - if (board->dev_ready) - nc->dev_ready = board->dev_ready; - - platform_set_drvdata(pdev, info); - - /* Not all platforms can gate the clock, so it is not - an error if the clock does not exists. */ - info->clk = devm_clk_get(&pdev->dev, NULL); - if (IS_ERR(info->clk)) { - ret = PTR_ERR(info->clk); - if (ret == -ENOENT) { - info->clk = NULL; - } else { - dev_err(&pdev->dev, "failed to get clock!\n"); - return ret; - } - } - - ret = clk_prepare_enable(info->clk); - if (ret) { - dev_err(&pdev->dev, "failed to prepare clock!\n"); - return ret; - } - - ret = nand_scan(mtd, 1); - if (ret) - goto no_dev; - - mtd->name = "orion_nand"; - ret = mtd_device_register(mtd, board->parts, board->nr_parts); - if (ret) { - nand_release(mtd); - goto no_dev; - } - - return 0; - -no_dev: - clk_disable_unprepare(info->clk); - return ret; -} - -static int orion_nand_remove(struct platform_device *pdev) -{ - struct orion_nand_info *info = platform_get_drvdata(pdev); - struct nand_chip *chip = &info->chip; - struct mtd_info *mtd = nand_to_mtd(chip); - - nand_release(mtd); - - clk_disable_unprepare(info->clk); - - return 0; -} - -#ifdef CONFIG_OF -static const struct of_device_id orion_nand_of_match_table[] = { - { .compatible = "marvell,orion-nand", }, - {}, -}; -MODULE_DEVICE_TABLE(of, orion_nand_of_match_table); -#endif - -static struct platform_driver orion_nand_driver = { - .remove = orion_nand_remove, - .driver = { - .name = "orion_nand", - .of_match_table = of_match_ptr(orion_nand_of_match_table), - }, -}; - -module_platform_driver_probe(orion_nand_driver, orion_nand_probe); - -MODULE_LICENSE("GPL"); -MODULE_AUTHOR("Tzachi Perelstein"); -MODULE_DESCRIPTION("NAND glue for Orion platforms"); -MODULE_ALIAS("platform:orion_nand"); diff --git a/drivers/mtd/nand/oxnas_nand.c b/drivers/mtd/nand/oxnas_nand.c deleted file mode 100644 index d649d5944826..000000000000 --- a/drivers/mtd/nand/oxnas_nand.c +++ /dev/null @@ -1,206 +0,0 @@ -/* - * Oxford Semiconductor OXNAS NAND driver - - * Copyright (C) 2016 Neil Armstrong - * Heavily based on plat_nand.c : - * Author: Vitaly Wool - * Copyright (C) 2013 Ma Haijun - * Copyright (C) 2012 John Crispin - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License version 2 as - * published by the Free Software Foundation. - * - */ - -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include - -/* Nand commands */ -#define OXNAS_NAND_CMD_ALE BIT(18) -#define OXNAS_NAND_CMD_CLE BIT(19) - -#define OXNAS_NAND_MAX_CHIPS 1 - -struct oxnas_nand_ctrl { - struct nand_hw_control base; - void __iomem *io_base; - struct clk *clk; - struct nand_chip *chips[OXNAS_NAND_MAX_CHIPS]; -}; - -static uint8_t oxnas_nand_read_byte(struct mtd_info *mtd) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct oxnas_nand_ctrl *oxnas = nand_get_controller_data(chip); - - return readb(oxnas->io_base); -} - -static void oxnas_nand_read_buf(struct mtd_info *mtd, u8 *buf, int len) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct oxnas_nand_ctrl *oxnas = nand_get_controller_data(chip); - - ioread8_rep(oxnas->io_base, buf, len); -} - -static void oxnas_nand_write_buf(struct mtd_info *mtd, const u8 *buf, int len) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct oxnas_nand_ctrl *oxnas = nand_get_controller_data(chip); - - iowrite8_rep(oxnas->io_base, buf, len); -} - -/* Single CS command control */ -static void oxnas_nand_cmd_ctrl(struct mtd_info *mtd, int cmd, - unsigned int ctrl) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct oxnas_nand_ctrl *oxnas = nand_get_controller_data(chip); - - if (ctrl & NAND_CLE) - writeb(cmd, oxnas->io_base + OXNAS_NAND_CMD_CLE); - else if (ctrl & NAND_ALE) - writeb(cmd, oxnas->io_base + OXNAS_NAND_CMD_ALE); -} - -/* - * Probe for the NAND device. - */ -static int oxnas_nand_probe(struct platform_device *pdev) -{ - struct device_node *np = pdev->dev.of_node; - struct device_node *nand_np; - struct oxnas_nand_ctrl *oxnas; - struct nand_chip *chip; - struct mtd_info *mtd; - struct resource *res; - int nchips = 0; - int count = 0; - int err = 0; - - /* Allocate memory for the device structure (and zero it) */ - oxnas = devm_kzalloc(&pdev->dev, sizeof(*oxnas), - GFP_KERNEL); - if (!oxnas) - return -ENOMEM; - - nand_hw_control_init(&oxnas->base); - - res = platform_get_resource(pdev, IORESOURCE_MEM, 0); - oxnas->io_base = devm_ioremap_resource(&pdev->dev, res); - if (IS_ERR(oxnas->io_base)) - return PTR_ERR(oxnas->io_base); - - oxnas->clk = devm_clk_get(&pdev->dev, NULL); - if (IS_ERR(oxnas->clk)) - oxnas->clk = NULL; - - /* Only a single chip node is supported */ - count = of_get_child_count(np); - if (count > 1) - return -EINVAL; - - err = clk_prepare_enable(oxnas->clk); - if (err) - return err; - - device_reset_optional(&pdev->dev); - - for_each_child_of_node(np, nand_np) { - chip = devm_kzalloc(&pdev->dev, sizeof(struct nand_chip), - GFP_KERNEL); - if (!chip) { - err = -ENOMEM; - goto err_clk_unprepare; - } - - chip->controller = &oxnas->base; - - nand_set_flash_node(chip, nand_np); - nand_set_controller_data(chip, oxnas); - - mtd = nand_to_mtd(chip); - mtd->dev.parent = &pdev->dev; - mtd->priv = chip; - - chip->cmd_ctrl = oxnas_nand_cmd_ctrl; - chip->read_buf = oxnas_nand_read_buf; - chip->read_byte = oxnas_nand_read_byte; - chip->write_buf = oxnas_nand_write_buf; - chip->chip_delay = 30; - - /* Scan to find existence of the device */ - err = nand_scan(mtd, 1); - if (err) - goto err_clk_unprepare; - - err = mtd_device_register(mtd, NULL, 0); - if (err) { - nand_release(mtd); - goto err_clk_unprepare; - } - - oxnas->chips[nchips] = chip; - ++nchips; - } - - /* Exit if no chips found */ - if (!nchips) { - err = -ENODEV; - goto err_clk_unprepare; - } - - platform_set_drvdata(pdev, oxnas); - - return 0; - -err_clk_unprepare: - clk_disable_unprepare(oxnas->clk); - return err; -} - -static int oxnas_nand_remove(struct platform_device *pdev) -{ - struct oxnas_nand_ctrl *oxnas = platform_get_drvdata(pdev); - - if (oxnas->chips[0]) - nand_release(nand_to_mtd(oxnas->chips[0])); - - clk_disable_unprepare(oxnas->clk); - - return 0; -} - -static const struct of_device_id oxnas_nand_match[] = { - { .compatible = "oxsemi,ox820-nand" }, - {}, -}; -MODULE_DEVICE_TABLE(of, oxnas_nand_match); - -static struct platform_driver oxnas_nand_driver = { - .probe = oxnas_nand_probe, - .remove = oxnas_nand_remove, - .driver = { - .name = "oxnas_nand", - .of_match_table = oxnas_nand_match, - }, -}; - -module_platform_driver(oxnas_nand_driver); - -MODULE_LICENSE("GPL"); -MODULE_AUTHOR("Neil Armstrong "); -MODULE_DESCRIPTION("Oxnas NAND driver"); -MODULE_ALIAS("platform:oxnas_nand"); diff --git a/drivers/mtd/nand/pasemi_nand.c b/drivers/mtd/nand/pasemi_nand.c deleted file mode 100644 index a47a7e4bd25a..000000000000 --- a/drivers/mtd/nand/pasemi_nand.c +++ /dev/null @@ -1,232 +0,0 @@ -/* - * Copyright (C) 2006-2007 PA Semi, Inc - * - * Author: Egor Martovetsky - * Maintained by: Olof Johansson - * - * Driver for the PWRficient onchip NAND flash interface - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License version 2 as - * published by the Free Software Foundation. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License - * along with this program; if not, write to the Free Software - * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA - */ - -#undef DEBUG - -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include - -#include - -#define LBICTRL_LPCCTL_NR 0x00004000 -#define CLE_PIN_CTL 15 -#define ALE_PIN_CTL 14 - -static unsigned int lpcctl; -static struct mtd_info *pasemi_nand_mtd; -static const char driver_name[] = "pasemi-nand"; - -static void pasemi_read_buf(struct mtd_info *mtd, u_char *buf, int len) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - - while (len > 0x800) { - memcpy_fromio(buf, chip->IO_ADDR_R, 0x800); - buf += 0x800; - len -= 0x800; - } - memcpy_fromio(buf, chip->IO_ADDR_R, len); -} - -static void pasemi_write_buf(struct mtd_info *mtd, const u_char *buf, int len) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - - while (len > 0x800) { - memcpy_toio(chip->IO_ADDR_R, buf, 0x800); - buf += 0x800; - len -= 0x800; - } - memcpy_toio(chip->IO_ADDR_R, buf, len); -} - -static void pasemi_hwcontrol(struct mtd_info *mtd, int cmd, - unsigned int ctrl) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - - if (cmd == NAND_CMD_NONE) - return; - - if (ctrl & NAND_CLE) - out_8(chip->IO_ADDR_W + (1 << CLE_PIN_CTL), cmd); - else - out_8(chip->IO_ADDR_W + (1 << ALE_PIN_CTL), cmd); - - /* Push out posted writes */ - eieio(); - inl(lpcctl); -} - -int pasemi_device_ready(struct mtd_info *mtd) -{ - return !!(inl(lpcctl) & LBICTRL_LPCCTL_NR); -} - -static int pasemi_nand_probe(struct platform_device *ofdev) -{ - struct device *dev = &ofdev->dev; - struct pci_dev *pdev; - struct device_node *np = dev->of_node; - struct resource res; - struct nand_chip *chip; - int err = 0; - - err = of_address_to_resource(np, 0, &res); - - if (err) - return -EINVAL; - - /* We only support one device at the moment */ - if (pasemi_nand_mtd) - return -ENODEV; - - dev_dbg(dev, "pasemi_nand at %pR\n", &res); - - /* Allocate memory for MTD device structure and private data */ - chip = kzalloc(sizeof(struct nand_chip), GFP_KERNEL); - if (!chip) { - err = -ENOMEM; - goto out; - } - - pasemi_nand_mtd = nand_to_mtd(chip); - - /* Link the private data with the MTD structure */ - pasemi_nand_mtd->dev.parent = dev; - - chip->IO_ADDR_R = of_iomap(np, 0); - chip->IO_ADDR_W = chip->IO_ADDR_R; - - if (!chip->IO_ADDR_R) { - err = -EIO; - goto out_mtd; - } - - pdev = pci_get_device(PCI_VENDOR_ID_PASEMI, 0xa008, NULL); - if (!pdev) { - err = -ENODEV; - goto out_ior; - } - - lpcctl = pci_resource_start(pdev, 0); - pci_dev_put(pdev); - - if (!request_region(lpcctl, 4, driver_name)) { - err = -EBUSY; - goto out_ior; - } - - chip->cmd_ctrl = pasemi_hwcontrol; - chip->dev_ready = pasemi_device_ready; - chip->read_buf = pasemi_read_buf; - chip->write_buf = pasemi_write_buf; - chip->chip_delay = 0; - chip->ecc.mode = NAND_ECC_SOFT; - chip->ecc.algo = NAND_ECC_HAMMING; - - /* Enable the following for a flash based bad block table */ - chip->bbt_options = NAND_BBT_USE_FLASH; - - /* Scan to find existence of the device */ - err = nand_scan(pasemi_nand_mtd, 1); - if (err) - goto out_lpc; - - if (mtd_device_register(pasemi_nand_mtd, NULL, 0)) { - dev_err(dev, "Unable to register MTD device\n"); - err = -ENODEV; - goto out_lpc; - } - - dev_info(dev, "PA Semi NAND flash at %pR, control at I/O %x\n", &res, - lpcctl); - - return 0; - - out_lpc: - release_region(lpcctl, 4); - out_ior: - iounmap(chip->IO_ADDR_R); - out_mtd: - kfree(chip); - out: - return err; -} - -static int pasemi_nand_remove(struct platform_device *ofdev) -{ - struct nand_chip *chip; - - if (!pasemi_nand_mtd) - return 0; - - chip = mtd_to_nand(pasemi_nand_mtd); - - /* Release resources, unregister device */ - nand_release(pasemi_nand_mtd); - - release_region(lpcctl, 4); - - iounmap(chip->IO_ADDR_R); - - /* Free the MTD device structure */ - kfree(chip); - - pasemi_nand_mtd = NULL; - - return 0; -} - -static const struct of_device_id pasemi_nand_match[] = -{ - { - .compatible = "pasemi,localbus-nand", - }, - {}, -}; - -MODULE_DEVICE_TABLE(of, pasemi_nand_match); - -static struct platform_driver pasemi_nand_driver = -{ - .driver = { - .name = driver_name, - .of_match_table = pasemi_nand_match, - }, - .probe = pasemi_nand_probe, - .remove = pasemi_nand_remove, -}; - -module_platform_driver(pasemi_nand_driver); - -MODULE_LICENSE("GPL"); -MODULE_AUTHOR("Egor Martovetsky "); -MODULE_DESCRIPTION("NAND flash interface driver for PA Semi PWRficient"); diff --git a/drivers/mtd/nand/plat_nand.c b/drivers/mtd/nand/plat_nand.c deleted file mode 100644 index 925a1323604d..000000000000 --- a/drivers/mtd/nand/plat_nand.c +++ /dev/null @@ -1,144 +0,0 @@ -/* - * Generic NAND driver - * - * Author: Vitaly Wool - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License version 2 as - * published by the Free Software Foundation. - * - */ - -#include -#include -#include -#include -#include -#include -#include -#include - -struct plat_nand_data { - struct nand_chip chip; - void __iomem *io_base; -}; - -/* - * Probe for the NAND device. - */ -static int plat_nand_probe(struct platform_device *pdev) -{ - struct platform_nand_data *pdata = dev_get_platdata(&pdev->dev); - struct plat_nand_data *data; - struct mtd_info *mtd; - struct resource *res; - const char **part_types; - int err = 0; - - if (!pdata) { - dev_err(&pdev->dev, "platform_nand_data is missing\n"); - return -EINVAL; - } - - if (pdata->chip.nr_chips < 1) { - dev_err(&pdev->dev, "invalid number of chips specified\n"); - return -EINVAL; - } - - /* Allocate memory for the device structure (and zero it) */ - data = devm_kzalloc(&pdev->dev, sizeof(struct plat_nand_data), - GFP_KERNEL); - if (!data) - return -ENOMEM; - - res = platform_get_resource(pdev, IORESOURCE_MEM, 0); - data->io_base = devm_ioremap_resource(&pdev->dev, res); - if (IS_ERR(data->io_base)) - return PTR_ERR(data->io_base); - - nand_set_flash_node(&data->chip, pdev->dev.of_node); - mtd = nand_to_mtd(&data->chip); - mtd->dev.parent = &pdev->dev; - - data->chip.IO_ADDR_R = data->io_base; - data->chip.IO_ADDR_W = data->io_base; - data->chip.cmd_ctrl = pdata->ctrl.cmd_ctrl; - data->chip.dev_ready = pdata->ctrl.dev_ready; - data->chip.select_chip = pdata->ctrl.select_chip; - data->chip.write_buf = pdata->ctrl.write_buf; - data->chip.read_buf = pdata->ctrl.read_buf; - data->chip.read_byte = pdata->ctrl.read_byte; - data->chip.chip_delay = pdata->chip.chip_delay; - data->chip.options |= pdata->chip.options; - data->chip.bbt_options |= pdata->chip.bbt_options; - - data->chip.ecc.hwctl = pdata->ctrl.hwcontrol; - data->chip.ecc.mode = NAND_ECC_SOFT; - data->chip.ecc.algo = NAND_ECC_HAMMING; - - platform_set_drvdata(pdev, data); - - /* Handle any platform specific setup */ - if (pdata->ctrl.probe) { - err = pdata->ctrl.probe(pdev); - if (err) - goto out; - } - - /* Scan to find existence of the device */ - err = nand_scan(mtd, pdata->chip.nr_chips); - if (err) - goto out; - - part_types = pdata->chip.part_probe_types; - - err = mtd_device_parse_register(mtd, part_types, NULL, - pdata->chip.partitions, - pdata->chip.nr_partitions); - - if (!err) - return err; - - nand_release(mtd); -out: - if (pdata->ctrl.remove) - pdata->ctrl.remove(pdev); - return err; -} - -/* - * Remove a NAND device. - */ -static int plat_nand_remove(struct platform_device *pdev) -{ - struct plat_nand_data *data = platform_get_drvdata(pdev); - struct platform_nand_data *pdata = dev_get_platdata(&pdev->dev); - - nand_release(nand_to_mtd(&data->chip)); - if (pdata->ctrl.remove) - pdata->ctrl.remove(pdev); - - return 0; -} - -static const struct of_device_id plat_nand_match[] = { - { .compatible = "gen_nand" }, - {}, -}; -MODULE_DEVICE_TABLE(of, plat_nand_match); - -static struct platform_driver plat_nand_driver = { - .probe = plat_nand_probe, - .remove = plat_nand_remove, - .driver = { - .name = "gen_nand", - .of_match_table = plat_nand_match, - }, -}; - -module_platform_driver(plat_nand_driver); - -MODULE_LICENSE("GPL"); -MODULE_AUTHOR("Vitaly Wool"); -MODULE_DESCRIPTION("Simple generic NAND driver"); -MODULE_ALIAS("platform:gen_nand"); diff --git a/drivers/mtd/nand/pxa3xx_nand.c b/drivers/mtd/nand/pxa3xx_nand.c deleted file mode 100644 index d75f30263d21..000000000000 --- a/drivers/mtd/nand/pxa3xx_nand.c +++ /dev/null @@ -1,2103 +0,0 @@ -/* - * Copyright © 2005 Intel Corporation - * Copyright © 2006 Marvell International Ltd. - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License version 2 as - * published by the Free Software Foundation. - * - * See Documentation/mtd/nand/pxa3xx-nand.txt for more details. - */ - -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include - -#define CHIP_DELAY_TIMEOUT msecs_to_jiffies(200) -#define NAND_STOP_DELAY msecs_to_jiffies(40) -#define PAGE_CHUNK_SIZE (2048) - -/* - * Define a buffer size for the initial command that detects the flash device: - * STATUS, READID and PARAM. - * ONFI param page is 256 bytes, and there are three redundant copies - * to be read. JEDEC param page is 512 bytes, and there are also three - * redundant copies to be read. - * Hence this buffer should be at least 512 x 3. Let's pick 2048. - */ -#define INIT_BUFFER_SIZE 2048 - -/* System control register and bit to enable NAND on some SoCs */ -#define GENCONF_SOC_DEVICE_MUX 0x208 -#define GENCONF_SOC_DEVICE_MUX_NFC_EN BIT(0) - -/* registers and bit definitions */ -#define NDCR (0x00) /* Control register */ -#define NDTR0CS0 (0x04) /* Timing Parameter 0 for CS0 */ -#define NDTR1CS0 (0x0C) /* Timing Parameter 1 for CS0 */ -#define NDSR (0x14) /* Status Register */ -#define NDPCR (0x18) /* Page Count Register */ -#define NDBDR0 (0x1C) /* Bad Block Register 0 */ -#define NDBDR1 (0x20) /* Bad Block Register 1 */ -#define NDECCCTRL (0x28) /* ECC control */ -#define NDDB (0x40) /* Data Buffer */ -#define NDCB0 (0x48) /* Command Buffer0 */ -#define NDCB1 (0x4C) /* Command Buffer1 */ -#define NDCB2 (0x50) /* Command Buffer2 */ - -#define NDCR_SPARE_EN (0x1 << 31) -#define NDCR_ECC_EN (0x1 << 30) -#define NDCR_DMA_EN (0x1 << 29) -#define NDCR_ND_RUN (0x1 << 28) -#define NDCR_DWIDTH_C (0x1 << 27) -#define NDCR_DWIDTH_M (0x1 << 26) -#define NDCR_PAGE_SZ (0x1 << 24) -#define NDCR_NCSX (0x1 << 23) -#define NDCR_ND_MODE (0x3 << 21) -#define NDCR_NAND_MODE (0x0) -#define NDCR_CLR_PG_CNT (0x1 << 20) -#define NFCV1_NDCR_ARB_CNTL (0x1 << 19) -#define NFCV2_NDCR_STOP_ON_UNCOR (0x1 << 19) -#define NDCR_RD_ID_CNT_MASK (0x7 << 16) -#define NDCR_RD_ID_CNT(x) (((x) << 16) & NDCR_RD_ID_CNT_MASK) - -#define NDCR_RA_START (0x1 << 15) -#define NDCR_PG_PER_BLK (0x1 << 14) -#define NDCR_ND_ARB_EN (0x1 << 12) -#define NDCR_INT_MASK (0xFFF) - -#define NDSR_MASK (0xfff) -#define NDSR_ERR_CNT_OFF (16) -#define NDSR_ERR_CNT_MASK (0x1f) -#define NDSR_ERR_CNT(sr) ((sr >> NDSR_ERR_CNT_OFF) & NDSR_ERR_CNT_MASK) -#define NDSR_RDY (0x1 << 12) -#define NDSR_FLASH_RDY (0x1 << 11) -#define NDSR_CS0_PAGED (0x1 << 10) -#define NDSR_CS1_PAGED (0x1 << 9) -#define NDSR_CS0_CMDD (0x1 << 8) -#define NDSR_CS1_CMDD (0x1 << 7) -#define NDSR_CS0_BBD (0x1 << 6) -#define NDSR_CS1_BBD (0x1 << 5) -#define NDSR_UNCORERR (0x1 << 4) -#define NDSR_CORERR (0x1 << 3) -#define NDSR_WRDREQ (0x1 << 2) -#define NDSR_RDDREQ (0x1 << 1) -#define NDSR_WRCMDREQ (0x1) - -#define NDCB0_LEN_OVRD (0x1 << 28) -#define NDCB0_ST_ROW_EN (0x1 << 26) -#define NDCB0_AUTO_RS (0x1 << 25) -#define NDCB0_CSEL (0x1 << 24) -#define NDCB0_EXT_CMD_TYPE_MASK (0x7 << 29) -#define NDCB0_EXT_CMD_TYPE(x) (((x) << 29) & NDCB0_EXT_CMD_TYPE_MASK) -#define NDCB0_CMD_TYPE_MASK (0x7 << 21) -#define NDCB0_CMD_TYPE(x) (((x) << 21) & NDCB0_CMD_TYPE_MASK) -#define NDCB0_NC (0x1 << 20) -#define NDCB0_DBC (0x1 << 19) -#define NDCB0_ADDR_CYC_MASK (0x7 << 16) -#define NDCB0_ADDR_CYC(x) (((x) << 16) & NDCB0_ADDR_CYC_MASK) -#define NDCB0_CMD2_MASK (0xff << 8) -#define NDCB0_CMD1_MASK (0xff) -#define NDCB0_ADDR_CYC_SHIFT (16) - -#define EXT_CMD_TYPE_DISPATCH 6 /* Command dispatch */ -#define EXT_CMD_TYPE_NAKED_RW 5 /* Naked read or Naked write */ -#define EXT_CMD_TYPE_READ 4 /* Read */ -#define EXT_CMD_TYPE_DISP_WR 4 /* Command dispatch with write */ -#define EXT_CMD_TYPE_FINAL 3 /* Final command */ -#define EXT_CMD_TYPE_LAST_RW 1 /* Last naked read/write */ -#define EXT_CMD_TYPE_MONO 0 /* Monolithic read/write */ - -/* - * This should be large enough to read 'ONFI' and 'JEDEC'. - * Let's use 7 bytes, which is the maximum ID count supported - * by the controller (see NDCR_RD_ID_CNT_MASK). - */ -#define READ_ID_BYTES 7 - -/* macros for registers read/write */ -#define nand_writel(info, off, val) \ - do { \ - dev_vdbg(&info->pdev->dev, \ - "%s():%d nand_writel(0x%x, 0x%04x)\n", \ - __func__, __LINE__, (val), (off)); \ - writel_relaxed((val), (info)->mmio_base + (off)); \ - } while (0) - -#define nand_readl(info, off) \ - ({ \ - unsigned int _v; \ - _v = readl_relaxed((info)->mmio_base + (off)); \ - dev_vdbg(&info->pdev->dev, \ - "%s():%d nand_readl(0x%04x) = 0x%x\n", \ - __func__, __LINE__, (off), _v); \ - _v; \ - }) - -/* error code and state */ -enum { - ERR_NONE = 0, - ERR_DMABUSERR = -1, - ERR_SENDCMD = -2, - ERR_UNCORERR = -3, - ERR_BBERR = -4, - ERR_CORERR = -5, -}; - -enum { - STATE_IDLE = 0, - STATE_PREPARED, - STATE_CMD_HANDLE, - STATE_DMA_READING, - STATE_DMA_WRITING, - STATE_DMA_DONE, - STATE_PIO_READING, - STATE_PIO_WRITING, - STATE_CMD_DONE, - STATE_READY, -}; - -enum pxa3xx_nand_variant { - PXA3XX_NAND_VARIANT_PXA, - PXA3XX_NAND_VARIANT_ARMADA370, - PXA3XX_NAND_VARIANT_ARMADA_8K, -}; - -struct pxa3xx_nand_host { - struct nand_chip chip; - void *info_data; - - /* page size of attached chip */ - int use_ecc; - int cs; - - /* calculated from pxa3xx_nand_flash data */ - unsigned int col_addr_cycles; - unsigned int row_addr_cycles; -}; - -struct pxa3xx_nand_info { - struct nand_hw_control controller; - struct platform_device *pdev; - - struct clk *clk; - void __iomem *mmio_base; - unsigned long mmio_phys; - struct completion cmd_complete, dev_ready; - - unsigned int buf_start; - unsigned int buf_count; - unsigned int buf_size; - unsigned int data_buff_pos; - unsigned int oob_buff_pos; - - /* DMA information */ - struct scatterlist sg; - enum dma_data_direction dma_dir; - struct dma_chan *dma_chan; - dma_cookie_t dma_cookie; - int drcmr_dat; - - unsigned char *data_buff; - unsigned char *oob_buff; - dma_addr_t data_buff_phys; - int data_dma_ch; - - struct pxa3xx_nand_host *host[NUM_CHIP_SELECT]; - unsigned int state; - - /* - * This driver supports NFCv1 (as found in PXA SoC) - * and NFCv2 (as found in Armada 370/XP SoC). - */ - enum pxa3xx_nand_variant variant; - - int cs; - int use_ecc; /* use HW ECC ? */ - int ecc_bch; /* using BCH ECC? */ - int use_dma; /* use DMA ? */ - int use_spare; /* use spare ? */ - int need_wait; - - /* Amount of real data per full chunk */ - unsigned int chunk_size; - - /* Amount of spare data per full chunk */ - unsigned int spare_size; - - /* Number of full chunks (i.e chunk_size + spare_size) */ - unsigned int nfullchunks; - - /* - * Total number of chunks. If equal to nfullchunks, then there - * are only full chunks. Otherwise, there is one last chunk of - * size (last_chunk_size + last_spare_size) - */ - unsigned int ntotalchunks; - - /* Amount of real data in the last chunk */ - unsigned int last_chunk_size; - - /* Amount of spare data in the last chunk */ - unsigned int last_spare_size; - - unsigned int ecc_size; - unsigned int ecc_err_cnt; - unsigned int max_bitflips; - int retcode; - - /* - * Variables only valid during command - * execution. step_chunk_size and step_spare_size is the - * amount of real data and spare data in the current - * chunk. cur_chunk is the current chunk being - * read/programmed. - */ - unsigned int step_chunk_size; - unsigned int step_spare_size; - unsigned int cur_chunk; - - /* cached register value */ - uint32_t reg_ndcr; - uint32_t ndtr0cs0; - uint32_t ndtr1cs0; - - /* generated NDCBx register values */ - uint32_t ndcb0; - uint32_t ndcb1; - uint32_t ndcb2; - uint32_t ndcb3; -}; - -static bool use_dma = 1; -module_param(use_dma, bool, 0444); -MODULE_PARM_DESC(use_dma, "enable DMA for data transferring to/from NAND HW"); - -struct pxa3xx_nand_timing { - unsigned int tCH; /* Enable signal hold time */ - unsigned int tCS; /* Enable signal setup time */ - unsigned int tWH; /* ND_nWE high duration */ - unsigned int tWP; /* ND_nWE pulse time */ - unsigned int tRH; /* ND_nRE high duration */ - unsigned int tRP; /* ND_nRE pulse width */ - unsigned int tR; /* ND_nWE high to ND_nRE low for read */ - unsigned int tWHR; /* ND_nWE high to ND_nRE low for status read */ - unsigned int tAR; /* ND_ALE low to ND_nRE low delay */ -}; - -struct pxa3xx_nand_flash { - uint32_t chip_id; - unsigned int flash_width; /* Width of Flash memory (DWIDTH_M) */ - unsigned int dfc_width; /* Width of flash controller(DWIDTH_C) */ - struct pxa3xx_nand_timing *timing; /* NAND Flash timing */ -}; - -static struct pxa3xx_nand_timing timing[] = { - { 40, 80, 60, 100, 80, 100, 90000, 400, 40, }, - { 10, 0, 20, 40, 30, 40, 11123, 110, 10, }, - { 10, 25, 15, 25, 15, 30, 25000, 60, 10, }, - { 10, 35, 15, 25, 15, 25, 25000, 60, 10, }, -}; - -static struct pxa3xx_nand_flash builtin_flash_types[] = { - { 0x46ec, 16, 16, &timing[1] }, - { 0xdaec, 8, 8, &timing[1] }, - { 0xd7ec, 8, 8, &timing[1] }, - { 0xa12c, 8, 8, &timing[2] }, - { 0xb12c, 16, 16, &timing[2] }, - { 0xdc2c, 8, 8, &timing[2] }, - { 0xcc2c, 16, 16, &timing[2] }, - { 0xba20, 16, 16, &timing[3] }, -}; - -static int pxa3xx_ooblayout_ecc(struct mtd_info *mtd, int section, - struct mtd_oob_region *oobregion) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct pxa3xx_nand_host *host = nand_get_controller_data(chip); - struct pxa3xx_nand_info *info = host->info_data; - int nchunks = mtd->writesize / info->chunk_size; - - if (section >= nchunks) - return -ERANGE; - - oobregion->offset = ((info->ecc_size + info->spare_size) * section) + - info->spare_size; - oobregion->length = info->ecc_size; - - return 0; -} - -static int pxa3xx_ooblayout_free(struct mtd_info *mtd, int section, - struct mtd_oob_region *oobregion) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct pxa3xx_nand_host *host = nand_get_controller_data(chip); - struct pxa3xx_nand_info *info = host->info_data; - int nchunks = mtd->writesize / info->chunk_size; - - if (section >= nchunks) - return -ERANGE; - - if (!info->spare_size) - return 0; - - oobregion->offset = section * (info->ecc_size + info->spare_size); - oobregion->length = info->spare_size; - if (!section) { - /* - * Bootrom looks in bytes 0 & 5 for bad blocks for the - * 4KB page / 4bit BCH combination. - */ - if (mtd->writesize == 4096 && info->chunk_size == 2048) { - oobregion->offset += 6; - oobregion->length -= 6; - } else { - oobregion->offset += 2; - oobregion->length -= 2; - } - } - - return 0; -} - -static const struct mtd_ooblayout_ops pxa3xx_ooblayout_ops = { - .ecc = pxa3xx_ooblayout_ecc, - .free = pxa3xx_ooblayout_free, -}; - -static u8 bbt_pattern[] = {'M', 'V', 'B', 'b', 't', '0' }; -static u8 bbt_mirror_pattern[] = {'1', 't', 'b', 'B', 'V', 'M' }; - -static struct nand_bbt_descr bbt_main_descr = { - .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE - | NAND_BBT_2BIT | NAND_BBT_VERSION, - .offs = 8, - .len = 6, - .veroffs = 14, - .maxblocks = 8, /* Last 8 blocks in each chip */ - .pattern = bbt_pattern -}; - -static struct nand_bbt_descr bbt_mirror_descr = { - .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE - | NAND_BBT_2BIT | NAND_BBT_VERSION, - .offs = 8, - .len = 6, - .veroffs = 14, - .maxblocks = 8, /* Last 8 blocks in each chip */ - .pattern = bbt_mirror_pattern -}; - -#define NDTR0_tCH(c) (min((c), 7) << 19) -#define NDTR0_tCS(c) (min((c), 7) << 16) -#define NDTR0_tWH(c) (min((c), 7) << 11) -#define NDTR0_tWP(c) (min((c), 7) << 8) -#define NDTR0_tRH(c) (min((c), 7) << 3) -#define NDTR0_tRP(c) (min((c), 7) << 0) - -#define NDTR1_tR(c) (min((c), 65535) << 16) -#define NDTR1_tWHR(c) (min((c), 15) << 4) -#define NDTR1_tAR(c) (min((c), 15) << 0) - -/* convert nano-seconds to nand flash controller clock cycles */ -#define ns2cycle(ns, clk) (int)((ns) * (clk / 1000000) / 1000) - -static const struct of_device_id pxa3xx_nand_dt_ids[] = { - { - .compatible = "marvell,pxa3xx-nand", - .data = (void *)PXA3XX_NAND_VARIANT_PXA, - }, - { - .compatible = "marvell,armada370-nand", - .data = (void *)PXA3XX_NAND_VARIANT_ARMADA370, - }, - { - .compatible = "marvell,armada-8k-nand", - .data = (void *)PXA3XX_NAND_VARIANT_ARMADA_8K, - }, - {} -}; -MODULE_DEVICE_TABLE(of, pxa3xx_nand_dt_ids); - -static enum pxa3xx_nand_variant -pxa3xx_nand_get_variant(struct platform_device *pdev) -{ - const struct of_device_id *of_id = - of_match_device(pxa3xx_nand_dt_ids, &pdev->dev); - if (!of_id) - return PXA3XX_NAND_VARIANT_PXA; - return (enum pxa3xx_nand_variant)of_id->data; -} - -static void pxa3xx_nand_set_timing(struct pxa3xx_nand_host *host, - const struct pxa3xx_nand_timing *t) -{ - struct pxa3xx_nand_info *info = host->info_data; - unsigned long nand_clk = clk_get_rate(info->clk); - uint32_t ndtr0, ndtr1; - - ndtr0 = NDTR0_tCH(ns2cycle(t->tCH, nand_clk)) | - NDTR0_tCS(ns2cycle(t->tCS, nand_clk)) | - NDTR0_tWH(ns2cycle(t->tWH, nand_clk)) | - NDTR0_tWP(ns2cycle(t->tWP, nand_clk)) | - NDTR0_tRH(ns2cycle(t->tRH, nand_clk)) | - NDTR0_tRP(ns2cycle(t->tRP, nand_clk)); - - ndtr1 = NDTR1_tR(ns2cycle(t->tR, nand_clk)) | - NDTR1_tWHR(ns2cycle(t->tWHR, nand_clk)) | - NDTR1_tAR(ns2cycle(t->tAR, nand_clk)); - - info->ndtr0cs0 = ndtr0; - info->ndtr1cs0 = ndtr1; - nand_writel(info, NDTR0CS0, ndtr0); - nand_writel(info, NDTR1CS0, ndtr1); -} - -static void pxa3xx_nand_set_sdr_timing(struct pxa3xx_nand_host *host, - const struct nand_sdr_timings *t) -{ - struct pxa3xx_nand_info *info = host->info_data; - struct nand_chip *chip = &host->chip; - unsigned long nand_clk = clk_get_rate(info->clk); - uint32_t ndtr0, ndtr1; - - u32 tCH_min = DIV_ROUND_UP(t->tCH_min, 1000); - u32 tCS_min = DIV_ROUND_UP(t->tCS_min, 1000); - u32 tWH_min = DIV_ROUND_UP(t->tWH_min, 1000); - u32 tWP_min = DIV_ROUND_UP(t->tWC_min - t->tWH_min, 1000); - u32 tREH_min = DIV_ROUND_UP(t->tREH_min, 1000); - u32 tRP_min = DIV_ROUND_UP(t->tRC_min - t->tREH_min, 1000); - u32 tR = chip->chip_delay * 1000; - u32 tWHR_min = DIV_ROUND_UP(t->tWHR_min, 1000); - u32 tAR_min = DIV_ROUND_UP(t->tAR_min, 1000); - - /* fallback to a default value if tR = 0 */ - if (!tR) - tR = 20000; - - ndtr0 = NDTR0_tCH(ns2cycle(tCH_min, nand_clk)) | - NDTR0_tCS(ns2cycle(tCS_min, nand_clk)) | - NDTR0_tWH(ns2cycle(tWH_min, nand_clk)) | - NDTR0_tWP(ns2cycle(tWP_min, nand_clk)) | - NDTR0_tRH(ns2cycle(tREH_min, nand_clk)) | - NDTR0_tRP(ns2cycle(tRP_min, nand_clk)); - - ndtr1 = NDTR1_tR(ns2cycle(tR, nand_clk)) | - NDTR1_tWHR(ns2cycle(tWHR_min, nand_clk)) | - NDTR1_tAR(ns2cycle(tAR_min, nand_clk)); - - info->ndtr0cs0 = ndtr0; - info->ndtr1cs0 = ndtr1; - nand_writel(info, NDTR0CS0, ndtr0); - nand_writel(info, NDTR1CS0, ndtr1); -} - -static int pxa3xx_nand_init_timings_compat(struct pxa3xx_nand_host *host, - unsigned int *flash_width, - unsigned int *dfc_width) -{ - struct nand_chip *chip = &host->chip; - struct pxa3xx_nand_info *info = host->info_data; - const struct pxa3xx_nand_flash *f = NULL; - int i, id, ntypes; - u8 idbuf[2]; - - ntypes = ARRAY_SIZE(builtin_flash_types); - - nand_readid_op(chip, 0, idbuf, sizeof(idbuf)); - id = idbuf[0] | (idbuf[1] << 8); - - for (i = 0; i < ntypes; i++) { - f = &builtin_flash_types[i]; - - if (f->chip_id == id) - break; - } - - if (i == ntypes) { - dev_err(&info->pdev->dev, "Error: timings not found\n"); - return -EINVAL; - } - - pxa3xx_nand_set_timing(host, f->timing); - - *flash_width = f->flash_width; - *dfc_width = f->dfc_width; - - return 0; -} - -static int pxa3xx_nand_init_timings_onfi(struct pxa3xx_nand_host *host, - int mode) -{ - const struct nand_sdr_timings *timings; - - mode = fls(mode) - 1; - if (mode < 0) - mode = 0; - - timings = onfi_async_timing_mode_to_sdr_timings(mode); - if (IS_ERR(timings)) - return PTR_ERR(timings); - - pxa3xx_nand_set_sdr_timing(host, timings); - - return 0; -} - -static int pxa3xx_nand_init(struct pxa3xx_nand_host *host) -{ - struct nand_chip *chip = &host->chip; - struct pxa3xx_nand_info *info = host->info_data; - unsigned int flash_width = 0, dfc_width = 0; - int mode, err; - - mode = onfi_get_async_timing_mode(chip); - if (mode == ONFI_TIMING_MODE_UNKNOWN) { - err = pxa3xx_nand_init_timings_compat(host, &flash_width, - &dfc_width); - if (err) - return err; - - if (flash_width == 16) { - info->reg_ndcr |= NDCR_DWIDTH_M; - chip->options |= NAND_BUSWIDTH_16; - } - - info->reg_ndcr |= (dfc_width == 16) ? NDCR_DWIDTH_C : 0; - } else { - err = pxa3xx_nand_init_timings_onfi(host, mode); - if (err) - return err; - } - - return 0; -} - -/** - * NOTE: it is a must to set ND_RUN firstly, then write - * command buffer, otherwise, it does not work. - * We enable all the interrupt at the same time, and - * let pxa3xx_nand_irq to handle all logic. - */ -static void pxa3xx_nand_start(struct pxa3xx_nand_info *info) -{ - uint32_t ndcr; - - ndcr = info->reg_ndcr; - - if (info->use_ecc) { - ndcr |= NDCR_ECC_EN; - if (info->ecc_bch) - nand_writel(info, NDECCCTRL, 0x1); - } else { - ndcr &= ~NDCR_ECC_EN; - if (info->ecc_bch) - nand_writel(info, NDECCCTRL, 0x0); - } - - if (info->use_dma) - ndcr |= NDCR_DMA_EN; - else - ndcr &= ~NDCR_DMA_EN; - - if (info->use_spare) - ndcr |= NDCR_SPARE_EN; - else - ndcr &= ~NDCR_SPARE_EN; - - ndcr |= NDCR_ND_RUN; - - /* clear status bits and run */ - nand_writel(info, NDSR, NDSR_MASK); - nand_writel(info, NDCR, 0); - nand_writel(info, NDCR, ndcr); -} - -static void pxa3xx_nand_stop(struct pxa3xx_nand_info *info) -{ - uint32_t ndcr; - int timeout = NAND_STOP_DELAY; - - /* wait RUN bit in NDCR become 0 */ - ndcr = nand_readl(info, NDCR); - while ((ndcr & NDCR_ND_RUN) && (timeout-- > 0)) { - ndcr = nand_readl(info, NDCR); - udelay(1); - } - - if (timeout <= 0) { - ndcr &= ~NDCR_ND_RUN; - nand_writel(info, NDCR, ndcr); - } - if (info->dma_chan) - dmaengine_terminate_all(info->dma_chan); - - /* clear status bits */ - nand_writel(info, NDSR, NDSR_MASK); -} - -static void __maybe_unused -enable_int(struct pxa3xx_nand_info *info, uint32_t int_mask) -{ - uint32_t ndcr; - - ndcr = nand_readl(info, NDCR); - nand_writel(info, NDCR, ndcr & ~int_mask); -} - -static void disable_int(struct pxa3xx_nand_info *info, uint32_t int_mask) -{ - uint32_t ndcr; - - ndcr = nand_readl(info, NDCR); - nand_writel(info, NDCR, ndcr | int_mask); -} - -static void drain_fifo(struct pxa3xx_nand_info *info, void *data, int len) -{ - if (info->ecc_bch) { - u32 val; - int ret; - - /* - * According to the datasheet, when reading from NDDB - * with BCH enabled, after each 32 bytes reads, we - * have to make sure that the NDSR.RDDREQ bit is set. - * - * Drain the FIFO 8 32 bits reads at a time, and skip - * the polling on the last read. - */ - while (len > 8) { - ioread32_rep(info->mmio_base + NDDB, data, 8); - - ret = readl_relaxed_poll_timeout(info->mmio_base + NDSR, val, - val & NDSR_RDDREQ, 1000, 5000); - if (ret) { - dev_err(&info->pdev->dev, - "Timeout on RDDREQ while draining the FIFO\n"); - return; - } - - data += 32; - len -= 8; - } - } - - ioread32_rep(info->mmio_base + NDDB, data, len); -} - -static void handle_data_pio(struct pxa3xx_nand_info *info) -{ - switch (info->state) { - case STATE_PIO_WRITING: - if (info->step_chunk_size) - writesl(info->mmio_base + NDDB, - info->data_buff + info->data_buff_pos, - DIV_ROUND_UP(info->step_chunk_size, 4)); - - if (info->step_spare_size) - writesl(info->mmio_base + NDDB, - info->oob_buff + info->oob_buff_pos, - DIV_ROUND_UP(info->step_spare_size, 4)); - break; - case STATE_PIO_READING: - if (info->step_chunk_size) - drain_fifo(info, - info->data_buff + info->data_buff_pos, - DIV_ROUND_UP(info->step_chunk_size, 4)); - - if (info->step_spare_size) - drain_fifo(info, - info->oob_buff + info->oob_buff_pos, - DIV_ROUND_UP(info->step_spare_size, 4)); - break; - default: - dev_err(&info->pdev->dev, "%s: invalid state %d\n", __func__, - info->state); - BUG(); - } - - /* Update buffer pointers for multi-page read/write */ - info->data_buff_pos += info->step_chunk_size; - info->oob_buff_pos += info->step_spare_size; -} - -static void pxa3xx_nand_data_dma_irq(void *data) -{ - struct pxa3xx_nand_info *info = data; - struct dma_tx_state state; - enum dma_status status; - - status = dmaengine_tx_status(info->dma_chan, info->dma_cookie, &state); - if (likely(status == DMA_COMPLETE)) { - info->state = STATE_DMA_DONE; - } else { - dev_err(&info->pdev->dev, "DMA error on data channel\n"); - info->retcode = ERR_DMABUSERR; - } - dma_unmap_sg(info->dma_chan->device->dev, &info->sg, 1, info->dma_dir); - - nand_writel(info, NDSR, NDSR_WRDREQ | NDSR_RDDREQ); - enable_int(info, NDCR_INT_MASK); -} - -static void start_data_dma(struct pxa3xx_nand_info *info) -{ - enum dma_transfer_direction direction; - struct dma_async_tx_descriptor *tx; - - switch (info->state) { - case STATE_DMA_WRITING: - info->dma_dir = DMA_TO_DEVICE; - direction = DMA_MEM_TO_DEV; - break; - case STATE_DMA_READING: - info->dma_dir = DMA_FROM_DEVICE; - direction = DMA_DEV_TO_MEM; - break; - default: - dev_err(&info->pdev->dev, "%s: invalid state %d\n", __func__, - info->state); - BUG(); - } - info->sg.length = info->chunk_size; - if (info->use_spare) - info->sg.length += info->spare_size + info->ecc_size; - dma_map_sg(info->dma_chan->device->dev, &info->sg, 1, info->dma_dir); - - tx = dmaengine_prep_slave_sg(info->dma_chan, &info->sg, 1, direction, - DMA_PREP_INTERRUPT); - if (!tx) { - dev_err(&info->pdev->dev, "prep_slave_sg() failed\n"); - return; - } - tx->callback = pxa3xx_nand_data_dma_irq; - tx->callback_param = info; - info->dma_cookie = dmaengine_submit(tx); - dma_async_issue_pending(info->dma_chan); - dev_dbg(&info->pdev->dev, "%s(dir=%d cookie=%x size=%u)\n", - __func__, direction, info->dma_cookie, info->sg.length); -} - -static irqreturn_t pxa3xx_nand_irq_thread(int irq, void *data) -{ - struct pxa3xx_nand_info *info = data; - - handle_data_pio(info); - - info->state = STATE_CMD_DONE; - nand_writel(info, NDSR, NDSR_WRDREQ | NDSR_RDDREQ); - - return IRQ_HANDLED; -} - -static irqreturn_t pxa3xx_nand_irq(int irq, void *devid) -{ - struct pxa3xx_nand_info *info = devid; - unsigned int status, is_completed = 0, is_ready = 0; - unsigned int ready, cmd_done; - irqreturn_t ret = IRQ_HANDLED; - - if (info->cs == 0) { - ready = NDSR_FLASH_RDY; - cmd_done = NDSR_CS0_CMDD; - } else { - ready = NDSR_RDY; - cmd_done = NDSR_CS1_CMDD; - } - - status = nand_readl(info, NDSR); - - if (status & NDSR_UNCORERR) - info->retcode = ERR_UNCORERR; - if (status & NDSR_CORERR) { - info->retcode = ERR_CORERR; - if ((info->variant == PXA3XX_NAND_VARIANT_ARMADA370 || - info->variant == PXA3XX_NAND_VARIANT_ARMADA_8K) && - info->ecc_bch) - info->ecc_err_cnt = NDSR_ERR_CNT(status); - else - info->ecc_err_cnt = 1; - - /* - * Each chunk composing a page is corrected independently, - * and we need to store maximum number of corrected bitflips - * to return it to the MTD layer in ecc.read_page(). - */ - info->max_bitflips = max_t(unsigned int, - info->max_bitflips, - info->ecc_err_cnt); - } - if (status & (NDSR_RDDREQ | NDSR_WRDREQ)) { - /* whether use dma to transfer data */ - if (info->use_dma) { - disable_int(info, NDCR_INT_MASK); - info->state = (status & NDSR_RDDREQ) ? - STATE_DMA_READING : STATE_DMA_WRITING; - start_data_dma(info); - goto NORMAL_IRQ_EXIT; - } else { - info->state = (status & NDSR_RDDREQ) ? - STATE_PIO_READING : STATE_PIO_WRITING; - ret = IRQ_WAKE_THREAD; - goto NORMAL_IRQ_EXIT; - } - } - if (status & cmd_done) { - info->state = STATE_CMD_DONE; - is_completed = 1; - } - if (status & ready) { - info->state = STATE_READY; - is_ready = 1; - } - - /* - * Clear all status bit before issuing the next command, which - * can and will alter the status bits and will deserve a new - * interrupt on its own. This lets the controller exit the IRQ - */ - nand_writel(info, NDSR, status); - - if (status & NDSR_WRCMDREQ) { - status &= ~NDSR_WRCMDREQ; - info->state = STATE_CMD_HANDLE; - - /* - * Command buffer registers NDCB{0-2} (and optionally NDCB3) - * must be loaded by writing directly either 12 or 16 - * bytes directly to NDCB0, four bytes at a time. - * - * Direct write access to NDCB1, NDCB2 and NDCB3 is ignored - * but each NDCBx register can be read. - */ - nand_writel(info, NDCB0, info->ndcb0); - nand_writel(info, NDCB0, info->ndcb1); - nand_writel(info, NDCB0, info->ndcb2); - - /* NDCB3 register is available in NFCv2 (Armada 370/XP SoC) */ - if (info->variant == PXA3XX_NAND_VARIANT_ARMADA370 || - info->variant == PXA3XX_NAND_VARIANT_ARMADA_8K) - nand_writel(info, NDCB0, info->ndcb3); - } - - if (is_completed) - complete(&info->cmd_complete); - if (is_ready) - complete(&info->dev_ready); -NORMAL_IRQ_EXIT: - return ret; -} - -static inline int is_buf_blank(uint8_t *buf, size_t len) -{ - for (; len > 0; len--) - if (*buf++ != 0xff) - return 0; - return 1; -} - -static void set_command_address(struct pxa3xx_nand_info *info, - unsigned int page_size, uint16_t column, int page_addr) -{ - /* small page addr setting */ - if (page_size < PAGE_CHUNK_SIZE) { - info->ndcb1 = ((page_addr & 0xFFFFFF) << 8) - | (column & 0xFF); - - info->ndcb2 = 0; - } else { - info->ndcb1 = ((page_addr & 0xFFFF) << 16) - | (column & 0xFFFF); - - if (page_addr & 0xFF0000) - info->ndcb2 = (page_addr & 0xFF0000) >> 16; - else - info->ndcb2 = 0; - } -} - -static void prepare_start_command(struct pxa3xx_nand_info *info, int command) -{ - struct pxa3xx_nand_host *host = info->host[info->cs]; - struct mtd_info *mtd = nand_to_mtd(&host->chip); - - /* reset data and oob column point to handle data */ - info->buf_start = 0; - info->buf_count = 0; - info->data_buff_pos = 0; - info->oob_buff_pos = 0; - info->step_chunk_size = 0; - info->step_spare_size = 0; - info->cur_chunk = 0; - info->use_ecc = 0; - info->use_spare = 1; - info->retcode = ERR_NONE; - info->ecc_err_cnt = 0; - info->ndcb3 = 0; - info->need_wait = 0; - - switch (command) { - case NAND_CMD_READ0: - case NAND_CMD_READOOB: - case NAND_CMD_PAGEPROG: - info->use_ecc = 1; - break; - case NAND_CMD_PARAM: - info->use_spare = 0; - break; - default: - info->ndcb1 = 0; - info->ndcb2 = 0; - break; - } - - /* - * If we are about to issue a read command, or about to set - * the write address, then clean the data buffer. - */ - if (command == NAND_CMD_READ0 || - command == NAND_CMD_READOOB || - command == NAND_CMD_SEQIN) { - - info->buf_count = mtd->writesize + mtd->oobsize; - memset(info->data_buff, 0xFF, info->buf_count); - } - -} - -static int prepare_set_command(struct pxa3xx_nand_info *info, int command, - int ext_cmd_type, uint16_t column, int page_addr) -{ - int addr_cycle, exec_cmd; - struct pxa3xx_nand_host *host; - struct mtd_info *mtd; - - host = info->host[info->cs]; - mtd = nand_to_mtd(&host->chip); - addr_cycle = 0; - exec_cmd = 1; - - if (info->cs != 0) - info->ndcb0 = NDCB0_CSEL; - else - info->ndcb0 = 0; - - if (command == NAND_CMD_SEQIN) - exec_cmd = 0; - - addr_cycle = NDCB0_ADDR_CYC(host->row_addr_cycles - + host->col_addr_cycles); - - switch (command) { - case NAND_CMD_READOOB: - case NAND_CMD_READ0: - info->buf_start = column; - info->ndcb0 |= NDCB0_CMD_TYPE(0) - | addr_cycle - | NAND_CMD_READ0; - - if (command == NAND_CMD_READOOB) - info->buf_start += mtd->writesize; - - if (info->cur_chunk < info->nfullchunks) { - info->step_chunk_size = info->chunk_size; - info->step_spare_size = info->spare_size; - } else { - info->step_chunk_size = info->last_chunk_size; - info->step_spare_size = info->last_spare_size; - } - - /* - * Multiple page read needs an 'extended command type' field, - * which is either naked-read or last-read according to the - * state. - */ - if (mtd->writesize == PAGE_CHUNK_SIZE) { - info->ndcb0 |= NDCB0_DBC | (NAND_CMD_READSTART << 8); - } else if (mtd->writesize > PAGE_CHUNK_SIZE) { - info->ndcb0 |= NDCB0_DBC | (NAND_CMD_READSTART << 8) - | NDCB0_LEN_OVRD - | NDCB0_EXT_CMD_TYPE(ext_cmd_type); - info->ndcb3 = info->step_chunk_size + - info->step_spare_size; - } - - set_command_address(info, mtd->writesize, column, page_addr); - break; - - case NAND_CMD_SEQIN: - - info->buf_start = column; - set_command_address(info, mtd->writesize, 0, page_addr); - - /* - * Multiple page programming needs to execute the initial - * SEQIN command that sets the page address. - */ - if (mtd->writesize > PAGE_CHUNK_SIZE) { - info->ndcb0 |= NDCB0_CMD_TYPE(0x1) - | NDCB0_EXT_CMD_TYPE(ext_cmd_type) - | addr_cycle - | command; - exec_cmd = 1; - } - break; - - case NAND_CMD_PAGEPROG: - if (is_buf_blank(info->data_buff, - (mtd->writesize + mtd->oobsize))) { - exec_cmd = 0; - break; - } - - if (info->cur_chunk < info->nfullchunks) { - info->step_chunk_size = info->chunk_size; - info->step_spare_size = info->spare_size; - } else { - info->step_chunk_size = info->last_chunk_size; - info->step_spare_size = info->last_spare_size; - } - - /* Second command setting for large pages */ - if (mtd->writesize > PAGE_CHUNK_SIZE) { - /* - * Multiple page write uses the 'extended command' - * field. This can be used to issue a command dispatch - * or a naked-write depending on the current stage. - */ - info->ndcb0 |= NDCB0_CMD_TYPE(0x1) - | NDCB0_LEN_OVRD - | NDCB0_EXT_CMD_TYPE(ext_cmd_type); - info->ndcb3 = info->step_chunk_size + - info->step_spare_size; - - /* - * This is the command dispatch that completes a chunked - * page program operation. - */ - if (info->cur_chunk == info->ntotalchunks) { - info->ndcb0 = NDCB0_CMD_TYPE(0x1) - | NDCB0_EXT_CMD_TYPE(ext_cmd_type) - | command; - info->ndcb1 = 0; - info->ndcb2 = 0; - info->ndcb3 = 0; - } - } else { - info->ndcb0 |= NDCB0_CMD_TYPE(0x1) - | NDCB0_AUTO_RS - | NDCB0_ST_ROW_EN - | NDCB0_DBC - | (NAND_CMD_PAGEPROG << 8) - | NAND_CMD_SEQIN - | addr_cycle; - } - break; - - case NAND_CMD_PARAM: - info->buf_count = INIT_BUFFER_SIZE; - info->ndcb0 |= NDCB0_CMD_TYPE(0) - | NDCB0_ADDR_CYC(1) - | NDCB0_LEN_OVRD - | command; - info->ndcb1 = (column & 0xFF); - info->ndcb3 = INIT_BUFFER_SIZE; - info->step_chunk_size = INIT_BUFFER_SIZE; - break; - - case NAND_CMD_READID: - info->buf_count = READ_ID_BYTES; - info->ndcb0 |= NDCB0_CMD_TYPE(3) - | NDCB0_ADDR_CYC(1) - | command; - info->ndcb1 = (column & 0xFF); - - info->step_chunk_size = 8; - break; - case NAND_CMD_STATUS: - info->buf_count = 1; - info->ndcb0 |= NDCB0_CMD_TYPE(4) - | NDCB0_ADDR_CYC(1) - | command; - - info->step_chunk_size = 8; - break; - - case NAND_CMD_ERASE1: - info->ndcb0 |= NDCB0_CMD_TYPE(2) - | NDCB0_AUTO_RS - | NDCB0_ADDR_CYC(3) - | NDCB0_DBC - | (NAND_CMD_ERASE2 << 8) - | NAND_CMD_ERASE1; - info->ndcb1 = page_addr; - info->ndcb2 = 0; - - break; - case NAND_CMD_RESET: - info->ndcb0 |= NDCB0_CMD_TYPE(5) - | command; - - break; - - case NAND_CMD_ERASE2: - exec_cmd = 0; - break; - - default: - exec_cmd = 0; - dev_err(&info->pdev->dev, "non-supported command %x\n", - command); - break; - } - - return exec_cmd; -} - -static void nand_cmdfunc(struct mtd_info *mtd, unsigned command, - int column, int page_addr) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct pxa3xx_nand_host *host = nand_get_controller_data(chip); - struct pxa3xx_nand_info *info = host->info_data; - int exec_cmd; - - /* - * if this is a x16 device ,then convert the input - * "byte" address into a "word" address appropriate - * for indexing a word-oriented device - */ - if (info->reg_ndcr & NDCR_DWIDTH_M) - column /= 2; - - /* - * There may be different NAND chip hooked to - * different chip select, so check whether - * chip select has been changed, if yes, reset the timing - */ - if (info->cs != host->cs) { - info->cs = host->cs; - nand_writel(info, NDTR0CS0, info->ndtr0cs0); - nand_writel(info, NDTR1CS0, info->ndtr1cs0); - } - - prepare_start_command(info, command); - - info->state = STATE_PREPARED; - exec_cmd = prepare_set_command(info, command, 0, column, page_addr); - - if (exec_cmd) { - init_completion(&info->cmd_complete); - init_completion(&info->dev_ready); - info->need_wait = 1; - pxa3xx_nand_start(info); - - if (!wait_for_completion_timeout(&info->cmd_complete, - CHIP_DELAY_TIMEOUT)) { - dev_err(&info->pdev->dev, "Wait time out!!!\n"); - /* Stop State Machine for next command cycle */ - pxa3xx_nand_stop(info); - } - } - info->state = STATE_IDLE; -} - -static void nand_cmdfunc_extended(struct mtd_info *mtd, - const unsigned command, - int column, int page_addr) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct pxa3xx_nand_host *host = nand_get_controller_data(chip); - struct pxa3xx_nand_info *info = host->info_data; - int exec_cmd, ext_cmd_type; - - /* - * if this is a x16 device then convert the input - * "byte" address into a "word" address appropriate - * for indexing a word-oriented device - */ - if (info->reg_ndcr & NDCR_DWIDTH_M) - column /= 2; - - /* - * There may be different NAND chip hooked to - * different chip select, so check whether - * chip select has been changed, if yes, reset the timing - */ - if (info->cs != host->cs) { - info->cs = host->cs; - nand_writel(info, NDTR0CS0, info->ndtr0cs0); - nand_writel(info, NDTR1CS0, info->ndtr1cs0); - } - - /* Select the extended command for the first command */ - switch (command) { - case NAND_CMD_READ0: - case NAND_CMD_READOOB: - ext_cmd_type = EXT_CMD_TYPE_MONO; - break; - case NAND_CMD_SEQIN: - ext_cmd_type = EXT_CMD_TYPE_DISPATCH; - break; - case NAND_CMD_PAGEPROG: - ext_cmd_type = EXT_CMD_TYPE_NAKED_RW; - break; - default: - ext_cmd_type = 0; - break; - } - - prepare_start_command(info, command); - - /* - * Prepare the "is ready" completion before starting a command - * transaction sequence. If the command is not executed the - * completion will be completed, see below. - * - * We can do that inside the loop because the command variable - * is invariant and thus so is the exec_cmd. - */ - info->need_wait = 1; - init_completion(&info->dev_ready); - do { - info->state = STATE_PREPARED; - - exec_cmd = prepare_set_command(info, command, ext_cmd_type, - column, page_addr); - if (!exec_cmd) { - info->need_wait = 0; - complete(&info->dev_ready); - break; - } - - init_completion(&info->cmd_complete); - pxa3xx_nand_start(info); - - if (!wait_for_completion_timeout(&info->cmd_complete, - CHIP_DELAY_TIMEOUT)) { - dev_err(&info->pdev->dev, "Wait time out!!!\n"); - /* Stop State Machine for next command cycle */ - pxa3xx_nand_stop(info); - break; - } - - /* Only a few commands need several steps */ - if (command != NAND_CMD_PAGEPROG && - command != NAND_CMD_READ0 && - command != NAND_CMD_READOOB) - break; - - info->cur_chunk++; - - /* Check if the sequence is complete */ - if (info->cur_chunk == info->ntotalchunks && command != NAND_CMD_PAGEPROG) - break; - - /* - * After a splitted program command sequence has issued - * the command dispatch, the command sequence is complete. - */ - if (info->cur_chunk == (info->ntotalchunks + 1) && - command == NAND_CMD_PAGEPROG && - ext_cmd_type == EXT_CMD_TYPE_DISPATCH) - break; - - if (command == NAND_CMD_READ0 || command == NAND_CMD_READOOB) { - /* Last read: issue a 'last naked read' */ - if (info->cur_chunk == info->ntotalchunks - 1) - ext_cmd_type = EXT_CMD_TYPE_LAST_RW; - else - ext_cmd_type = EXT_CMD_TYPE_NAKED_RW; - - /* - * If a splitted program command has no more data to transfer, - * the command dispatch must be issued to complete. - */ - } else if (command == NAND_CMD_PAGEPROG && - info->cur_chunk == info->ntotalchunks) { - ext_cmd_type = EXT_CMD_TYPE_DISPATCH; - } - } while (1); - - info->state = STATE_IDLE; -} - -static int pxa3xx_nand_write_page_hwecc(struct mtd_info *mtd, - struct nand_chip *chip, const uint8_t *buf, int oob_required, - int page) -{ - nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize); - chip->write_buf(mtd, chip->oob_poi, mtd->oobsize); - - return nand_prog_page_end_op(chip); -} - -static int pxa3xx_nand_read_page_hwecc(struct mtd_info *mtd, - struct nand_chip *chip, uint8_t *buf, int oob_required, - int page) -{ - struct pxa3xx_nand_host *host = nand_get_controller_data(chip); - struct pxa3xx_nand_info *info = host->info_data; - - nand_read_page_op(chip, page, 0, buf, mtd->writesize); - chip->read_buf(mtd, chip->oob_poi, mtd->oobsize); - - if (info->retcode == ERR_CORERR && info->use_ecc) { - mtd->ecc_stats.corrected += info->ecc_err_cnt; - - } else if (info->retcode == ERR_UNCORERR) { - /* - * for blank page (all 0xff), HW will calculate its ECC as - * 0, which is different from the ECC information within - * OOB, ignore such uncorrectable errors - */ - if (is_buf_blank(buf, mtd->writesize)) - info->retcode = ERR_NONE; - else - mtd->ecc_stats.failed++; - } - - return info->max_bitflips; -} - -static uint8_t pxa3xx_nand_read_byte(struct mtd_info *mtd) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct pxa3xx_nand_host *host = nand_get_controller_data(chip); - struct pxa3xx_nand_info *info = host->info_data; - char retval = 0xFF; - - if (info->buf_start < info->buf_count) - /* Has just send a new command? */ - retval = info->data_buff[info->buf_start++]; - - return retval; -} - -static u16 pxa3xx_nand_read_word(struct mtd_info *mtd) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct pxa3xx_nand_host *host = nand_get_controller_data(chip); - struct pxa3xx_nand_info *info = host->info_data; - u16 retval = 0xFFFF; - - if (!(info->buf_start & 0x01) && info->buf_start < info->buf_count) { - retval = *((u16 *)(info->data_buff+info->buf_start)); - info->buf_start += 2; - } - return retval; -} - -static void pxa3xx_nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct pxa3xx_nand_host *host = nand_get_controller_data(chip); - struct pxa3xx_nand_info *info = host->info_data; - int real_len = min_t(size_t, len, info->buf_count - info->buf_start); - - memcpy(buf, info->data_buff + info->buf_start, real_len); - info->buf_start += real_len; -} - -static void pxa3xx_nand_write_buf(struct mtd_info *mtd, - const uint8_t *buf, int len) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct pxa3xx_nand_host *host = nand_get_controller_data(chip); - struct pxa3xx_nand_info *info = host->info_data; - int real_len = min_t(size_t, len, info->buf_count - info->buf_start); - - memcpy(info->data_buff + info->buf_start, buf, real_len); - info->buf_start += real_len; -} - -static void pxa3xx_nand_select_chip(struct mtd_info *mtd, int chip) -{ - return; -} - -static int pxa3xx_nand_waitfunc(struct mtd_info *mtd, struct nand_chip *this) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct pxa3xx_nand_host *host = nand_get_controller_data(chip); - struct pxa3xx_nand_info *info = host->info_data; - - if (info->need_wait) { - info->need_wait = 0; - if (!wait_for_completion_timeout(&info->dev_ready, - CHIP_DELAY_TIMEOUT)) { - dev_err(&info->pdev->dev, "Ready time out!!!\n"); - return NAND_STATUS_FAIL; - } - } - - /* pxa3xx_nand_send_command has waited for command complete */ - if (this->state == FL_WRITING || this->state == FL_ERASING) { - if (info->retcode == ERR_NONE) - return 0; - else - return NAND_STATUS_FAIL; - } - - return NAND_STATUS_READY; -} - -static int pxa3xx_nand_config_ident(struct pxa3xx_nand_info *info) -{ - struct pxa3xx_nand_host *host = info->host[info->cs]; - struct platform_device *pdev = info->pdev; - struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(&pdev->dev); - const struct nand_sdr_timings *timings; - - /* Configure default flash values */ - info->chunk_size = PAGE_CHUNK_SIZE; - info->reg_ndcr = 0x0; /* enable all interrupts */ - info->reg_ndcr |= (pdata->enable_arbiter) ? NDCR_ND_ARB_EN : 0; - info->reg_ndcr |= NDCR_RD_ID_CNT(READ_ID_BYTES); - info->reg_ndcr |= NDCR_SPARE_EN; - - /* use the common timing to make a try */ - timings = onfi_async_timing_mode_to_sdr_timings(0); - if (IS_ERR(timings)) - return PTR_ERR(timings); - - pxa3xx_nand_set_sdr_timing(host, timings); - return 0; -} - -static void pxa3xx_nand_config_tail(struct pxa3xx_nand_info *info) -{ - struct pxa3xx_nand_host *host = info->host[info->cs]; - struct nand_chip *chip = &host->chip; - struct mtd_info *mtd = nand_to_mtd(chip); - - info->reg_ndcr |= (host->col_addr_cycles == 2) ? NDCR_RA_START : 0; - info->reg_ndcr |= (chip->page_shift == 6) ? NDCR_PG_PER_BLK : 0; - info->reg_ndcr |= (mtd->writesize == 2048) ? NDCR_PAGE_SZ : 0; -} - -static void pxa3xx_nand_detect_config(struct pxa3xx_nand_info *info) -{ - struct platform_device *pdev = info->pdev; - struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(&pdev->dev); - uint32_t ndcr = nand_readl(info, NDCR); - - /* Set an initial chunk size */ - info->chunk_size = ndcr & NDCR_PAGE_SZ ? 2048 : 512; - info->reg_ndcr = ndcr & - ~(NDCR_INT_MASK | NDCR_ND_ARB_EN | NFCV1_NDCR_ARB_CNTL); - info->reg_ndcr |= (pdata->enable_arbiter) ? NDCR_ND_ARB_EN : 0; - info->ndtr0cs0 = nand_readl(info, NDTR0CS0); - info->ndtr1cs0 = nand_readl(info, NDTR1CS0); -} - -static int pxa3xx_nand_init_buff(struct pxa3xx_nand_info *info) -{ - struct platform_device *pdev = info->pdev; - struct dma_slave_config config; - dma_cap_mask_t mask; - struct pxad_param param; - int ret; - - info->data_buff = kmalloc(info->buf_size, GFP_KERNEL); - if (info->data_buff == NULL) - return -ENOMEM; - if (use_dma == 0) - return 0; - - ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); - if (ret) - return ret; - - sg_init_one(&info->sg, info->data_buff, info->buf_size); - dma_cap_zero(mask); - dma_cap_set(DMA_SLAVE, mask); - param.prio = PXAD_PRIO_LOWEST; - param.drcmr = info->drcmr_dat; - info->dma_chan = dma_request_slave_channel_compat(mask, pxad_filter_fn, - ¶m, &pdev->dev, - "data"); - if (!info->dma_chan) { - dev_err(&pdev->dev, "unable to request data dma channel\n"); - return -ENODEV; - } - - memset(&config, 0, sizeof(config)); - config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; - config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; - config.src_addr = info->mmio_phys + NDDB; - config.dst_addr = info->mmio_phys + NDDB; - config.src_maxburst = 32; - config.dst_maxburst = 32; - ret = dmaengine_slave_config(info->dma_chan, &config); - if (ret < 0) { - dev_err(&info->pdev->dev, - "dma channel configuration failed: %d\n", - ret); - return ret; - } - - /* - * Now that DMA buffers are allocated we turn on - * DMA proper for I/O operations. - */ - info->use_dma = 1; - return 0; -} - -static void pxa3xx_nand_free_buff(struct pxa3xx_nand_info *info) -{ - if (info->use_dma) { - dmaengine_terminate_all(info->dma_chan); - dma_release_channel(info->dma_chan); - } - kfree(info->data_buff); -} - -static int pxa_ecc_init(struct pxa3xx_nand_info *info, - struct mtd_info *mtd, - int strength, int ecc_stepsize, int page_size) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct nand_ecc_ctrl *ecc = &chip->ecc; - - if (strength == 1 && ecc_stepsize == 512 && page_size == 2048) { - info->nfullchunks = 1; - info->ntotalchunks = 1; - info->chunk_size = 2048; - info->spare_size = 40; - info->ecc_size = 24; - ecc->mode = NAND_ECC_HW; - ecc->size = 512; - ecc->strength = 1; - - } else if (strength == 1 && ecc_stepsize == 512 && page_size == 512) { - info->nfullchunks = 1; - info->ntotalchunks = 1; - info->chunk_size = 512; - info->spare_size = 8; - info->ecc_size = 8; - ecc->mode = NAND_ECC_HW; - ecc->size = 512; - ecc->strength = 1; - - /* - * Required ECC: 4-bit correction per 512 bytes - * Select: 16-bit correction per 2048 bytes - */ - } else if (strength == 4 && ecc_stepsize == 512 && page_size == 2048) { - info->ecc_bch = 1; - info->nfullchunks = 1; - info->ntotalchunks = 1; - info->chunk_size = 2048; - info->spare_size = 32; - info->ecc_size = 32; - ecc->mode = NAND_ECC_HW; - ecc->size = info->chunk_size; - mtd_set_ooblayout(mtd, &pxa3xx_ooblayout_ops); - ecc->strength = 16; - - } else if (strength == 4 && ecc_stepsize == 512 && page_size == 4096) { - info->ecc_bch = 1; - info->nfullchunks = 2; - info->ntotalchunks = 2; - info->chunk_size = 2048; - info->spare_size = 32; - info->ecc_size = 32; - ecc->mode = NAND_ECC_HW; - ecc->size = info->chunk_size; - mtd_set_ooblayout(mtd, &pxa3xx_ooblayout_ops); - ecc->strength = 16; - - /* - * Required ECC: 8-bit correction per 512 bytes - * Select: 16-bit correction per 1024 bytes - */ - } else if (strength == 8 && ecc_stepsize == 512 && page_size == 4096) { - info->ecc_bch = 1; - info->nfullchunks = 4; - info->ntotalchunks = 5; - info->chunk_size = 1024; - info->spare_size = 0; - info->last_chunk_size = 0; - info->last_spare_size = 64; - info->ecc_size = 32; - ecc->mode = NAND_ECC_HW; - ecc->size = info->chunk_size; - mtd_set_ooblayout(mtd, &pxa3xx_ooblayout_ops); - ecc->strength = 16; - } else { - dev_err(&info->pdev->dev, - "ECC strength %d at page size %d is not supported\n", - strength, page_size); - return -ENODEV; - } - - dev_info(&info->pdev->dev, "ECC strength %d, ECC step size %d\n", - ecc->strength, ecc->size); - return 0; -} - -static int pxa3xx_nand_scan(struct mtd_info *mtd) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct pxa3xx_nand_host *host = nand_get_controller_data(chip); - struct pxa3xx_nand_info *info = host->info_data; - struct platform_device *pdev = info->pdev; - struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(&pdev->dev); - int ret; - uint16_t ecc_strength, ecc_step; - - if (pdata->keep_config) { - pxa3xx_nand_detect_config(info); - } else { - ret = pxa3xx_nand_config_ident(info); - if (ret) - return ret; - } - - if (info->reg_ndcr & NDCR_DWIDTH_M) - chip->options |= NAND_BUSWIDTH_16; - - /* Device detection must be done with ECC disabled */ - if (info->variant == PXA3XX_NAND_VARIANT_ARMADA370 || - info->variant == PXA3XX_NAND_VARIANT_ARMADA_8K) - nand_writel(info, NDECCCTRL, 0x0); - - if (pdata->flash_bbt) - chip->bbt_options |= NAND_BBT_USE_FLASH; - - chip->ecc.strength = pdata->ecc_strength; - chip->ecc.size = pdata->ecc_step_size; - - ret = nand_scan_ident(mtd, 1, NULL); - if (ret) - return ret; - - if (!pdata->keep_config) { - ret = pxa3xx_nand_init(host); - if (ret) { - dev_err(&info->pdev->dev, "Failed to init nand: %d\n", - ret); - return ret; - } - } - - if (chip->bbt_options & NAND_BBT_USE_FLASH) { - /* - * We'll use a bad block table stored in-flash and don't - * allow writing the bad block marker to the flash. - */ - chip->bbt_options |= NAND_BBT_NO_OOB_BBM; - chip->bbt_td = &bbt_main_descr; - chip->bbt_md = &bbt_mirror_descr; - } - - /* - * If the page size is bigger than the FIFO size, let's check - * we are given the right variant and then switch to the extended - * (aka splitted) command handling, - */ - if (mtd->writesize > PAGE_CHUNK_SIZE) { - if (info->variant == PXA3XX_NAND_VARIANT_ARMADA370 || - info->variant == PXA3XX_NAND_VARIANT_ARMADA_8K) { - chip->cmdfunc = nand_cmdfunc_extended; - } else { - dev_err(&info->pdev->dev, - "unsupported page size on this variant\n"); - return -ENODEV; - } - } - - ecc_strength = chip->ecc.strength; - ecc_step = chip->ecc.size; - if (!ecc_strength || !ecc_step) { - ecc_strength = chip->ecc_strength_ds; - ecc_step = chip->ecc_step_ds; - } - - /* Set default ECC strength requirements on non-ONFI devices */ - if (ecc_strength < 1 && ecc_step < 1) { - ecc_strength = 1; - ecc_step = 512; - } - - ret = pxa_ecc_init(info, mtd, ecc_strength, - ecc_step, mtd->writesize); - if (ret) - return ret; - - /* calculate addressing information */ - if (mtd->writesize >= 2048) - host->col_addr_cycles = 2; - else - host->col_addr_cycles = 1; - - /* release the initial buffer */ - kfree(info->data_buff); - - /* allocate the real data + oob buffer */ - info->buf_size = mtd->writesize + mtd->oobsize; - ret = pxa3xx_nand_init_buff(info); - if (ret) - return ret; - info->oob_buff = info->data_buff + mtd->writesize; - - if ((mtd->size >> chip->page_shift) > 65536) - host->row_addr_cycles = 3; - else - host->row_addr_cycles = 2; - - if (!pdata->keep_config) - pxa3xx_nand_config_tail(info); - - return nand_scan_tail(mtd); -} - -static int alloc_nand_resource(struct platform_device *pdev) -{ - struct device_node *np = pdev->dev.of_node; - struct pxa3xx_nand_platform_data *pdata; - struct pxa3xx_nand_info *info; - struct pxa3xx_nand_host *host; - struct nand_chip *chip = NULL; - struct mtd_info *mtd; - struct resource *r; - int ret, irq, cs; - - pdata = dev_get_platdata(&pdev->dev); - if (pdata->num_cs <= 0) { - dev_err(&pdev->dev, "invalid number of chip selects\n"); - return -ENODEV; - } - - info = devm_kzalloc(&pdev->dev, - sizeof(*info) + sizeof(*host) * pdata->num_cs, - GFP_KERNEL); - if (!info) - return -ENOMEM; - - info->pdev = pdev; - info->variant = pxa3xx_nand_get_variant(pdev); - for (cs = 0; cs < pdata->num_cs; cs++) { - host = (void *)&info[1] + sizeof(*host) * cs; - chip = &host->chip; - nand_set_controller_data(chip, host); - mtd = nand_to_mtd(chip); - info->host[cs] = host; - host->cs = cs; - host->info_data = info; - mtd->dev.parent = &pdev->dev; - /* FIXME: all chips use the same device tree partitions */ - nand_set_flash_node(chip, np); - - nand_set_controller_data(chip, host); - chip->ecc.read_page = pxa3xx_nand_read_page_hwecc; - chip->ecc.write_page = pxa3xx_nand_write_page_hwecc; - chip->controller = &info->controller; - chip->waitfunc = pxa3xx_nand_waitfunc; - chip->select_chip = pxa3xx_nand_select_chip; - chip->read_word = pxa3xx_nand_read_word; - chip->read_byte = pxa3xx_nand_read_byte; - chip->read_buf = pxa3xx_nand_read_buf; - chip->write_buf = pxa3xx_nand_write_buf; - chip->options |= NAND_NO_SUBPAGE_WRITE; - chip->cmdfunc = nand_cmdfunc; - chip->onfi_set_features = nand_onfi_get_set_features_notsupp; - chip->onfi_get_features = nand_onfi_get_set_features_notsupp; - } - - nand_hw_control_init(chip->controller); - info->clk = devm_clk_get(&pdev->dev, NULL); - if (IS_ERR(info->clk)) { - ret = PTR_ERR(info->clk); - dev_err(&pdev->dev, "failed to get nand clock: %d\n", ret); - return ret; - } - ret = clk_prepare_enable(info->clk); - if (ret < 0) - return ret; - - if (!np && use_dma) { - r = platform_get_resource(pdev, IORESOURCE_DMA, 0); - if (r == NULL) { - dev_err(&pdev->dev, - "no resource defined for data DMA\n"); - ret = -ENXIO; - goto fail_disable_clk; - } - info->drcmr_dat = r->start; - } - - irq = platform_get_irq(pdev, 0); - if (irq < 0) { - dev_err(&pdev->dev, "no IRQ resource defined\n"); - ret = -ENXIO; - goto fail_disable_clk; - } - - r = platform_get_resource(pdev, IORESOURCE_MEM, 0); - info->mmio_base = devm_ioremap_resource(&pdev->dev, r); - if (IS_ERR(info->mmio_base)) { - ret = PTR_ERR(info->mmio_base); - dev_err(&pdev->dev, "failed to map register space: %d\n", ret); - goto fail_disable_clk; - } - info->mmio_phys = r->start; - - /* Allocate a buffer to allow flash detection */ - info->buf_size = INIT_BUFFER_SIZE; - info->data_buff = kmalloc(info->buf_size, GFP_KERNEL); - if (info->data_buff == NULL) { - ret = -ENOMEM; - goto fail_disable_clk; - } - - /* initialize all interrupts to be disabled */ - disable_int(info, NDSR_MASK); - - ret = request_threaded_irq(irq, pxa3xx_nand_irq, - pxa3xx_nand_irq_thread, IRQF_ONESHOT, - pdev->name, info); - if (ret < 0) { - dev_err(&pdev->dev, "failed to request IRQ: %d\n", ret); - goto fail_free_buf; - } - - platform_set_drvdata(pdev, info); - - return 0; - -fail_free_buf: - free_irq(irq, info); - kfree(info->data_buff); -fail_disable_clk: - clk_disable_unprepare(info->clk); - return ret; -} - -static int pxa3xx_nand_remove(struct platform_device *pdev) -{ - struct pxa3xx_nand_info *info = platform_get_drvdata(pdev); - struct pxa3xx_nand_platform_data *pdata; - int irq, cs; - - if (!info) - return 0; - - pdata = dev_get_platdata(&pdev->dev); - - irq = platform_get_irq(pdev, 0); - if (irq >= 0) - free_irq(irq, info); - pxa3xx_nand_free_buff(info); - - /* - * In the pxa3xx case, the DFI bus is shared between the SMC and NFC. - * In order to prevent a lockup of the system bus, the DFI bus - * arbitration is granted to SMC upon driver removal. This is done by - * setting the x_ARB_CNTL bit, which also prevents the NAND to have - * access to the bus anymore. - */ - nand_writel(info, NDCR, - (nand_readl(info, NDCR) & ~NDCR_ND_ARB_EN) | - NFCV1_NDCR_ARB_CNTL); - clk_disable_unprepare(info->clk); - - for (cs = 0; cs < pdata->num_cs; cs++) - nand_release(nand_to_mtd(&info->host[cs]->chip)); - return 0; -} - -static int pxa3xx_nand_probe_dt(struct platform_device *pdev) -{ - struct pxa3xx_nand_platform_data *pdata; - struct device_node *np = pdev->dev.of_node; - const struct of_device_id *of_id = - of_match_device(pxa3xx_nand_dt_ids, &pdev->dev); - - if (!of_id) - return 0; - - /* - * Some SoCs like A7k/A8k need to enable manually the NAND - * controller to avoid being bootloader dependent. This is done - * through the use of a single bit in the System Functions registers. - */ - if (pxa3xx_nand_get_variant(pdev) == PXA3XX_NAND_VARIANT_ARMADA_8K) { - struct regmap *sysctrl_base = syscon_regmap_lookup_by_phandle( - pdev->dev.of_node, "marvell,system-controller"); - u32 reg; - - if (IS_ERR(sysctrl_base)) - return PTR_ERR(sysctrl_base); - - regmap_read(sysctrl_base, GENCONF_SOC_DEVICE_MUX, ®); - reg |= GENCONF_SOC_DEVICE_MUX_NFC_EN; - regmap_write(sysctrl_base, GENCONF_SOC_DEVICE_MUX, reg); - } - - pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL); - if (!pdata) - return -ENOMEM; - - if (of_get_property(np, "marvell,nand-enable-arbiter", NULL)) - pdata->enable_arbiter = 1; - if (of_get_property(np, "marvell,nand-keep-config", NULL)) - pdata->keep_config = 1; - of_property_read_u32(np, "num-cs", &pdata->num_cs); - - pdev->dev.platform_data = pdata; - - return 0; -} - -static int pxa3xx_nand_probe(struct platform_device *pdev) -{ - struct pxa3xx_nand_platform_data *pdata; - struct pxa3xx_nand_info *info; - int ret, cs, probe_success, dma_available; - - dma_available = IS_ENABLED(CONFIG_ARM) && - (IS_ENABLED(CONFIG_ARCH_PXA) || IS_ENABLED(CONFIG_ARCH_MMP)); - if (use_dma && !dma_available) { - use_dma = 0; - dev_warn(&pdev->dev, - "This platform can't do DMA on this device\n"); - } - - ret = pxa3xx_nand_probe_dt(pdev); - if (ret) - return ret; - - pdata = dev_get_platdata(&pdev->dev); - if (!pdata) { - dev_err(&pdev->dev, "no platform data defined\n"); - return -ENODEV; - } - - ret = alloc_nand_resource(pdev); - if (ret) - return ret; - - info = platform_get_drvdata(pdev); - probe_success = 0; - for (cs = 0; cs < pdata->num_cs; cs++) { - struct mtd_info *mtd = nand_to_mtd(&info->host[cs]->chip); - - /* - * The mtd name matches the one used in 'mtdparts' kernel - * parameter. This name cannot be changed or otherwise - * user's mtd partitions configuration would get broken. - */ - mtd->name = "pxa3xx_nand-0"; - info->cs = cs; - ret = pxa3xx_nand_scan(mtd); - if (ret) { - dev_warn(&pdev->dev, "failed to scan nand at cs %d\n", - cs); - continue; - } - - ret = mtd_device_register(mtd, pdata->parts[cs], - pdata->nr_parts[cs]); - if (!ret) - probe_success = 1; - } - - if (!probe_success) { - pxa3xx_nand_remove(pdev); - return -ENODEV; - } - - return 0; -} - -#ifdef CONFIG_PM -static int pxa3xx_nand_suspend(struct device *dev) -{ - struct pxa3xx_nand_info *info = dev_get_drvdata(dev); - - if (info->state) { - dev_err(dev, "driver busy, state = %d\n", info->state); - return -EAGAIN; - } - - clk_disable(info->clk); - return 0; -} - -static int pxa3xx_nand_resume(struct device *dev) -{ - struct pxa3xx_nand_info *info = dev_get_drvdata(dev); - int ret; - - ret = clk_enable(info->clk); - if (ret < 0) - return ret; - - /* We don't want to handle interrupt without calling mtd routine */ - disable_int(info, NDCR_INT_MASK); - - /* - * Directly set the chip select to a invalid value, - * then the driver would reset the timing according - * to current chip select at the beginning of cmdfunc - */ - info->cs = 0xff; - - /* - * As the spec says, the NDSR would be updated to 0x1800 when - * doing the nand_clk disable/enable. - * To prevent it damaging state machine of the driver, clear - * all status before resume - */ - nand_writel(info, NDSR, NDSR_MASK); - - return 0; -} -#else -#define pxa3xx_nand_suspend NULL -#define pxa3xx_nand_resume NULL -#endif - -static const struct dev_pm_ops pxa3xx_nand_pm_ops = { - .suspend = pxa3xx_nand_suspend, - .resume = pxa3xx_nand_resume, -}; - -static struct platform_driver pxa3xx_nand_driver = { - .driver = { - .name = "pxa3xx-nand", - .of_match_table = pxa3xx_nand_dt_ids, - .pm = &pxa3xx_nand_pm_ops, - }, - .probe = pxa3xx_nand_probe, - .remove = pxa3xx_nand_remove, -}; - -module_platform_driver(pxa3xx_nand_driver); - -MODULE_LICENSE("GPL"); -MODULE_DESCRIPTION("PXA3xx NAND controller driver"); diff --git a/drivers/mtd/nand/qcom_nandc.c b/drivers/mtd/nand/qcom_nandc.c deleted file mode 100644 index 563b759ffca6..000000000000 --- a/drivers/mtd/nand/qcom_nandc.c +++ /dev/null @@ -1,2921 +0,0 @@ -/* - * Copyright (c) 2016, The Linux Foundation. All rights reserved. - * - * This software is licensed under the terms of the GNU General Public - * License version 2, as published by the Free Software Foundation, and - * may be copied, distributed, and modified under those terms. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - */ - -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include /* XXX: drivers shall never use this directly! */ - -/* NANDc reg offsets */ -#define NAND_FLASH_CMD 0x00 -#define NAND_ADDR0 0x04 -#define NAND_ADDR1 0x08 -#define NAND_FLASH_CHIP_SELECT 0x0c -#define NAND_EXEC_CMD 0x10 -#define NAND_FLASH_STATUS 0x14 -#define NAND_BUFFER_STATUS 0x18 -#define NAND_DEV0_CFG0 0x20 -#define NAND_DEV0_CFG1 0x24 -#define NAND_DEV0_ECC_CFG 0x28 -#define NAND_DEV1_ECC_CFG 0x2c -#define NAND_DEV1_CFG0 0x30 -#define NAND_DEV1_CFG1 0x34 -#define NAND_READ_ID 0x40 -#define NAND_READ_STATUS 0x44 -#define NAND_DEV_CMD0 0xa0 -#define NAND_DEV_CMD1 0xa4 -#define NAND_DEV_CMD2 0xa8 -#define NAND_DEV_CMD_VLD 0xac -#define SFLASHC_BURST_CFG 0xe0 -#define NAND_ERASED_CW_DETECT_CFG 0xe8 -#define NAND_ERASED_CW_DETECT_STATUS 0xec -#define NAND_EBI2_ECC_BUF_CFG 0xf0 -#define FLASH_BUF_ACC 0x100 - -#define NAND_CTRL 0xf00 -#define NAND_VERSION 0xf08 -#define NAND_READ_LOCATION_0 0xf20 -#define NAND_READ_LOCATION_1 0xf24 -#define NAND_READ_LOCATION_2 0xf28 -#define NAND_READ_LOCATION_3 0xf2c - -/* dummy register offsets, used by write_reg_dma */ -#define NAND_DEV_CMD1_RESTORE 0xdead -#define NAND_DEV_CMD_VLD_RESTORE 0xbeef - -/* NAND_FLASH_CMD bits */ -#define PAGE_ACC BIT(4) -#define LAST_PAGE BIT(5) - -/* NAND_FLASH_CHIP_SELECT bits */ -#define NAND_DEV_SEL 0 -#define DM_EN BIT(2) - -/* NAND_FLASH_STATUS bits */ -#define FS_OP_ERR BIT(4) -#define FS_READY_BSY_N BIT(5) -#define FS_MPU_ERR BIT(8) -#define FS_DEVICE_STS_ERR BIT(16) -#define FS_DEVICE_WP BIT(23) - -/* NAND_BUFFER_STATUS bits */ -#define BS_UNCORRECTABLE_BIT BIT(8) -#define BS_CORRECTABLE_ERR_MSK 0x1f - -/* NAND_DEVn_CFG0 bits */ -#define DISABLE_STATUS_AFTER_WRITE 4 -#define CW_PER_PAGE 6 -#define UD_SIZE_BYTES 9 -#define ECC_PARITY_SIZE_BYTES_RS 19 -#define SPARE_SIZE_BYTES 23 -#define NUM_ADDR_CYCLES 27 -#define STATUS_BFR_READ 30 -#define SET_RD_MODE_AFTER_STATUS 31 - -/* NAND_DEVn_CFG0 bits */ -#define DEV0_CFG1_ECC_DISABLE 0 -#define WIDE_FLASH 1 -#define NAND_RECOVERY_CYCLES 2 -#define CS_ACTIVE_BSY 5 -#define BAD_BLOCK_BYTE_NUM 6 -#define BAD_BLOCK_IN_SPARE_AREA 16 -#define WR_RD_BSY_GAP 17 -#define ENABLE_BCH_ECC 27 - -/* NAND_DEV0_ECC_CFG bits */ -#define ECC_CFG_ECC_DISABLE 0 -#define ECC_SW_RESET 1 -#define ECC_MODE 4 -#define ECC_PARITY_SIZE_BYTES_BCH 8 -#define ECC_NUM_DATA_BYTES 16 -#define ECC_FORCE_CLK_OPEN 30 - -/* NAND_DEV_CMD1 bits */ -#define READ_ADDR 0 - -/* NAND_DEV_CMD_VLD bits */ -#define READ_START_VLD BIT(0) -#define READ_STOP_VLD BIT(1) -#define WRITE_START_VLD BIT(2) -#define ERASE_START_VLD BIT(3) -#define SEQ_READ_START_VLD BIT(4) - -/* NAND_EBI2_ECC_BUF_CFG bits */ -#define NUM_STEPS 0 - -/* NAND_ERASED_CW_DETECT_CFG bits */ -#define ERASED_CW_ECC_MASK 1 -#define AUTO_DETECT_RES 0 -#define MASK_ECC (1 << ERASED_CW_ECC_MASK) -#define RESET_ERASED_DET (1 << AUTO_DETECT_RES) -#define ACTIVE_ERASED_DET (0 << AUTO_DETECT_RES) -#define CLR_ERASED_PAGE_DET (RESET_ERASED_DET | MASK_ECC) -#define SET_ERASED_PAGE_DET (ACTIVE_ERASED_DET | MASK_ECC) - -/* NAND_ERASED_CW_DETECT_STATUS bits */ -#define PAGE_ALL_ERASED BIT(7) -#define CODEWORD_ALL_ERASED BIT(6) -#define PAGE_ERASED BIT(5) -#define CODEWORD_ERASED BIT(4) -#define ERASED_PAGE (PAGE_ALL_ERASED | PAGE_ERASED) -#define ERASED_CW (CODEWORD_ALL_ERASED | CODEWORD_ERASED) - -/* NAND_READ_LOCATION_n bits */ -#define READ_LOCATION_OFFSET 0 -#define READ_LOCATION_SIZE 16 -#define READ_LOCATION_LAST 31 - -/* Version Mask */ -#define NAND_VERSION_MAJOR_MASK 0xf0000000 -#define NAND_VERSION_MAJOR_SHIFT 28 -#define NAND_VERSION_MINOR_MASK 0x0fff0000 -#define NAND_VERSION_MINOR_SHIFT 16 - -/* NAND OP_CMDs */ -#define PAGE_READ 0x2 -#define PAGE_READ_WITH_ECC 0x3 -#define PAGE_READ_WITH_ECC_SPARE 0x4 -#define PROGRAM_PAGE 0x6 -#define PAGE_PROGRAM_WITH_ECC 0x7 -#define PROGRAM_PAGE_SPARE 0x9 -#define BLOCK_ERASE 0xa -#define FETCH_ID 0xb -#define RESET_DEVICE 0xd - -/* Default Value for NAND_DEV_CMD_VLD */ -#define NAND_DEV_CMD_VLD_VAL (READ_START_VLD | WRITE_START_VLD | \ - ERASE_START_VLD | SEQ_READ_START_VLD) - -/* NAND_CTRL bits */ -#define BAM_MODE_EN BIT(0) - -/* - * the NAND controller performs reads/writes with ECC in 516 byte chunks. - * the driver calls the chunks 'step' or 'codeword' interchangeably - */ -#define NANDC_STEP_SIZE 512 - -/* - * the largest page size we support is 8K, this will have 16 steps/codewords - * of 512 bytes each - */ -#define MAX_NUM_STEPS (SZ_8K / NANDC_STEP_SIZE) - -/* we read at most 3 registers per codeword scan */ -#define MAX_REG_RD (3 * MAX_NUM_STEPS) - -/* ECC modes supported by the controller */ -#define ECC_NONE BIT(0) -#define ECC_RS_4BIT BIT(1) -#define ECC_BCH_4BIT BIT(2) -#define ECC_BCH_8BIT BIT(3) - -#define nandc_set_read_loc(nandc, reg, offset, size, is_last) \ -nandc_set_reg(nandc, NAND_READ_LOCATION_##reg, \ - ((offset) << READ_LOCATION_OFFSET) | \ - ((size) << READ_LOCATION_SIZE) | \ - ((is_last) << READ_LOCATION_LAST)) - -/* - * Returns the actual register address for all NAND_DEV_ registers - * (i.e. NAND_DEV_CMD0, NAND_DEV_CMD1, NAND_DEV_CMD2 and NAND_DEV_CMD_VLD) - */ -#define dev_cmd_reg_addr(nandc, reg) ((nandc)->props->dev_cmd_reg_start + (reg)) - -/* Returns the NAND register physical address */ -#define nandc_reg_phys(chip, offset) ((chip)->base_phys + (offset)) - -/* Returns the dma address for reg read buffer */ -#define reg_buf_dma_addr(chip, vaddr) \ - ((chip)->reg_read_dma + \ - ((uint8_t *)(vaddr) - (uint8_t *)(chip)->reg_read_buf)) - -#define QPIC_PER_CW_CMD_ELEMENTS 32 -#define QPIC_PER_CW_CMD_SGL 32 -#define QPIC_PER_CW_DATA_SGL 8 - -/* - * Flags used in DMA descriptor preparation helper functions - * (i.e. read_reg_dma/write_reg_dma/read_data_dma/write_data_dma) - */ -/* Don't set the EOT in current tx BAM sgl */ -#define NAND_BAM_NO_EOT BIT(0) -/* Set the NWD flag in current BAM sgl */ -#define NAND_BAM_NWD BIT(1) -/* Finish writing in the current BAM sgl and start writing in another BAM sgl */ -#define NAND_BAM_NEXT_SGL BIT(2) -/* - * Erased codeword status is being used two times in single transfer so this - * flag will determine the current value of erased codeword status register - */ -#define NAND_ERASED_CW_SET BIT(4) - -/* - * This data type corresponds to the BAM transaction which will be used for all - * NAND transfers. - * @bam_ce - the array of BAM command elements - * @cmd_sgl - sgl for NAND BAM command pipe - * @data_sgl - sgl for NAND BAM consumer/producer pipe - * @bam_ce_pos - the index in bam_ce which is available for next sgl - * @bam_ce_start - the index in bam_ce which marks the start position ce - * for current sgl. It will be used for size calculation - * for current sgl - * @cmd_sgl_pos - current index in command sgl. - * @cmd_sgl_start - start index in command sgl. - * @tx_sgl_pos - current index in data sgl for tx. - * @tx_sgl_start - start index in data sgl for tx. - * @rx_sgl_pos - current index in data sgl for rx. - * @rx_sgl_start - start index in data sgl for rx. - */ -struct bam_transaction { - struct bam_cmd_element *bam_ce; - struct scatterlist *cmd_sgl; - struct scatterlist *data_sgl; - u32 bam_ce_pos; - u32 bam_ce_start; - u32 cmd_sgl_pos; - u32 cmd_sgl_start; - u32 tx_sgl_pos; - u32 tx_sgl_start; - u32 rx_sgl_pos; - u32 rx_sgl_start; -}; - -/* - * This data type corresponds to the nand dma descriptor - * @list - list for desc_info - * @dir - DMA transfer direction - * @adm_sgl - sgl which will be used for single sgl dma descriptor. Only used by - * ADM - * @bam_sgl - sgl which will be used for dma descriptor. Only used by BAM - * @sgl_cnt - number of SGL in bam_sgl. Only used by BAM - * @dma_desc - low level DMA engine descriptor - */ -struct desc_info { - struct list_head node; - - enum dma_data_direction dir; - union { - struct scatterlist adm_sgl; - struct { - struct scatterlist *bam_sgl; - int sgl_cnt; - }; - }; - struct dma_async_tx_descriptor *dma_desc; -}; - -/* - * holds the current register values that we want to write. acts as a contiguous - * chunk of memory which we use to write the controller registers through DMA. - */ -struct nandc_regs { - __le32 cmd; - __le32 addr0; - __le32 addr1; - __le32 chip_sel; - __le32 exec; - - __le32 cfg0; - __le32 cfg1; - __le32 ecc_bch_cfg; - - __le32 clrflashstatus; - __le32 clrreadstatus; - - __le32 cmd1; - __le32 vld; - - __le32 orig_cmd1; - __le32 orig_vld; - - __le32 ecc_buf_cfg; - __le32 read_location0; - __le32 read_location1; - __le32 read_location2; - __le32 read_location3; - - __le32 erased_cw_detect_cfg_clr; - __le32 erased_cw_detect_cfg_set; -}; - -/* - * NAND controller data struct - * - * @controller: base controller structure - * @host_list: list containing all the chips attached to the - * controller - * @dev: parent device - * @base: MMIO base - * @base_phys: physical base address of controller registers - * @base_dma: dma base address of controller registers - * @core_clk: controller clock - * @aon_clk: another controller clock - * - * @chan: dma channel - * @cmd_crci: ADM DMA CRCI for command flow control - * @data_crci: ADM DMA CRCI for data flow control - * @desc_list: DMA descriptor list (list of desc_infos) - * - * @data_buffer: our local DMA buffer for page read/writes, - * used when we can't use the buffer provided - * by upper layers directly - * @buf_size/count/start: markers for chip->read_buf/write_buf functions - * @reg_read_buf: local buffer for reading back registers via DMA - * @reg_read_dma: contains dma address for register read buffer - * @reg_read_pos: marker for data read in reg_read_buf - * - * @regs: a contiguous chunk of memory for DMA register - * writes. contains the register values to be - * written to controller - * @cmd1/vld: some fixed controller register values - * @props: properties of current NAND controller, - * initialized via DT match data - * @max_cwperpage: maximum QPIC codewords required. calculated - * from all connected NAND devices pagesize - */ -struct qcom_nand_controller { - struct nand_hw_control controller; - struct list_head host_list; - - struct device *dev; - - void __iomem *base; - phys_addr_t base_phys; - dma_addr_t base_dma; - - struct clk *core_clk; - struct clk *aon_clk; - - union { - /* will be used only by QPIC for BAM DMA */ - struct { - struct dma_chan *tx_chan; - struct dma_chan *rx_chan; - struct dma_chan *cmd_chan; - }; - - /* will be used only by EBI2 for ADM DMA */ - struct { - struct dma_chan *chan; - unsigned int cmd_crci; - unsigned int data_crci; - }; - }; - - struct list_head desc_list; - struct bam_transaction *bam_txn; - - u8 *data_buffer; - int buf_size; - int buf_count; - int buf_start; - unsigned int max_cwperpage; - - __le32 *reg_read_buf; - dma_addr_t reg_read_dma; - int reg_read_pos; - - struct nandc_regs *regs; - - u32 cmd1, vld; - const struct qcom_nandc_props *props; -}; - -/* - * NAND chip structure - * - * @chip: base NAND chip structure - * @node: list node to add itself to host_list in - * qcom_nand_controller - * - * @cs: chip select value for this chip - * @cw_size: the number of bytes in a single step/codeword - * of a page, consisting of all data, ecc, spare - * and reserved bytes - * @cw_data: the number of bytes within a codeword protected - * by ECC - * @use_ecc: request the controller to use ECC for the - * upcoming read/write - * @bch_enabled: flag to tell whether BCH ECC mode is used - * @ecc_bytes_hw: ECC bytes used by controller hardware for this - * chip - * @status: value to be returned if NAND_CMD_STATUS command - * is executed - * @last_command: keeps track of last command on this chip. used - * for reading correct status - * - * @cfg0, cfg1, cfg0_raw..: NANDc register configurations needed for - * ecc/non-ecc mode for the current nand flash - * device - */ -struct qcom_nand_host { - struct nand_chip chip; - struct list_head node; - - int cs; - int cw_size; - int cw_data; - bool use_ecc; - bool bch_enabled; - int ecc_bytes_hw; - int spare_bytes; - int bbm_size; - u8 status; - int last_command; - - u32 cfg0, cfg1; - u32 cfg0_raw, cfg1_raw; - u32 ecc_buf_cfg; - u32 ecc_bch_cfg; - u32 clrflashstatus; - u32 clrreadstatus; -}; - -/* - * This data type corresponds to the NAND controller properties which varies - * among different NAND controllers. - * @ecc_modes - ecc mode for NAND - * @is_bam - whether NAND controller is using BAM - * @dev_cmd_reg_start - NAND_DEV_CMD_* registers starting offset - */ -struct qcom_nandc_props { - u32 ecc_modes; - bool is_bam; - u32 dev_cmd_reg_start; -}; - -/* Frees the BAM transaction memory */ -static void free_bam_transaction(struct qcom_nand_controller *nandc) -{ - struct bam_transaction *bam_txn = nandc->bam_txn; - - devm_kfree(nandc->dev, bam_txn); -} - -/* Allocates and Initializes the BAM transaction */ -static struct bam_transaction * -alloc_bam_transaction(struct qcom_nand_controller *nandc) -{ - struct bam_transaction *bam_txn; - size_t bam_txn_size; - unsigned int num_cw = nandc->max_cwperpage; - void *bam_txn_buf; - - bam_txn_size = - sizeof(*bam_txn) + num_cw * - ((sizeof(*bam_txn->bam_ce) * QPIC_PER_CW_CMD_ELEMENTS) + - (sizeof(*bam_txn->cmd_sgl) * QPIC_PER_CW_CMD_SGL) + - (sizeof(*bam_txn->data_sgl) * QPIC_PER_CW_DATA_SGL)); - - bam_txn_buf = devm_kzalloc(nandc->dev, bam_txn_size, GFP_KERNEL); - if (!bam_txn_buf) - return NULL; - - bam_txn = bam_txn_buf; - bam_txn_buf += sizeof(*bam_txn); - - bam_txn->bam_ce = bam_txn_buf; - bam_txn_buf += - sizeof(*bam_txn->bam_ce) * QPIC_PER_CW_CMD_ELEMENTS * num_cw; - - bam_txn->cmd_sgl = bam_txn_buf; - bam_txn_buf += - sizeof(*bam_txn->cmd_sgl) * QPIC_PER_CW_CMD_SGL * num_cw; - - bam_txn->data_sgl = bam_txn_buf; - - return bam_txn; -} - -/* Clears the BAM transaction indexes */ -static void clear_bam_transaction(struct qcom_nand_controller *nandc) -{ - struct bam_transaction *bam_txn = nandc->bam_txn; - - if (!nandc->props->is_bam) - return; - - bam_txn->bam_ce_pos = 0; - bam_txn->bam_ce_start = 0; - bam_txn->cmd_sgl_pos = 0; - bam_txn->cmd_sgl_start = 0; - bam_txn->tx_sgl_pos = 0; - bam_txn->tx_sgl_start = 0; - bam_txn->rx_sgl_pos = 0; - bam_txn->rx_sgl_start = 0; - - sg_init_table(bam_txn->cmd_sgl, nandc->max_cwperpage * - QPIC_PER_CW_CMD_SGL); - sg_init_table(bam_txn->data_sgl, nandc->max_cwperpage * - QPIC_PER_CW_DATA_SGL); -} - -static inline struct qcom_nand_host *to_qcom_nand_host(struct nand_chip *chip) -{ - return container_of(chip, struct qcom_nand_host, chip); -} - -static inline struct qcom_nand_controller * -get_qcom_nand_controller(struct nand_chip *chip) -{ - return container_of(chip->controller, struct qcom_nand_controller, - controller); -} - -static inline u32 nandc_read(struct qcom_nand_controller *nandc, int offset) -{ - return ioread32(nandc->base + offset); -} - -static inline void nandc_write(struct qcom_nand_controller *nandc, int offset, - u32 val) -{ - iowrite32(val, nandc->base + offset); -} - -static inline void nandc_read_buffer_sync(struct qcom_nand_controller *nandc, - bool is_cpu) -{ - if (!nandc->props->is_bam) - return; - - if (is_cpu) - dma_sync_single_for_cpu(nandc->dev, nandc->reg_read_dma, - MAX_REG_RD * - sizeof(*nandc->reg_read_buf), - DMA_FROM_DEVICE); - else - dma_sync_single_for_device(nandc->dev, nandc->reg_read_dma, - MAX_REG_RD * - sizeof(*nandc->reg_read_buf), - DMA_FROM_DEVICE); -} - -static __le32 *offset_to_nandc_reg(struct nandc_regs *regs, int offset) -{ - switch (offset) { - case NAND_FLASH_CMD: - return ®s->cmd; - case NAND_ADDR0: - return ®s->addr0; - case NAND_ADDR1: - return ®s->addr1; - case NAND_FLASH_CHIP_SELECT: - return ®s->chip_sel; - case NAND_EXEC_CMD: - return ®s->exec; - case NAND_FLASH_STATUS: - return ®s->clrflashstatus; - case NAND_DEV0_CFG0: - return ®s->cfg0; - case NAND_DEV0_CFG1: - return ®s->cfg1; - case NAND_DEV0_ECC_CFG: - return ®s->ecc_bch_cfg; - case NAND_READ_STATUS: - return ®s->clrreadstatus; - case NAND_DEV_CMD1: - return ®s->cmd1; - case NAND_DEV_CMD1_RESTORE: - return ®s->orig_cmd1; - case NAND_DEV_CMD_VLD: - return ®s->vld; - case NAND_DEV_CMD_VLD_RESTORE: - return ®s->orig_vld; - case NAND_EBI2_ECC_BUF_CFG: - return ®s->ecc_buf_cfg; - case NAND_READ_LOCATION_0: - return ®s->read_location0; - case NAND_READ_LOCATION_1: - return ®s->read_location1; - case NAND_READ_LOCATION_2: - return ®s->read_location2; - case NAND_READ_LOCATION_3: - return ®s->read_location3; - default: - return NULL; - } -} - -static void nandc_set_reg(struct qcom_nand_controller *nandc, int offset, - u32 val) -{ - struct nandc_regs *regs = nandc->regs; - __le32 *reg; - - reg = offset_to_nandc_reg(regs, offset); - - if (reg) - *reg = cpu_to_le32(val); -} - -/* helper to configure address register values */ -static void set_address(struct qcom_nand_host *host, u16 column, int page) -{ - struct nand_chip *chip = &host->chip; - struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); - - if (chip->options & NAND_BUSWIDTH_16) - column >>= 1; - - nandc_set_reg(nandc, NAND_ADDR0, page << 16 | column); - nandc_set_reg(nandc, NAND_ADDR1, page >> 16 & 0xff); -} - -/* - * update_rw_regs: set up read/write register values, these will be - * written to the NAND controller registers via DMA - * - * @num_cw: number of steps for the read/write operation - * @read: read or write operation - */ -static void update_rw_regs(struct qcom_nand_host *host, int num_cw, bool read) -{ - struct nand_chip *chip = &host->chip; - struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); - u32 cmd, cfg0, cfg1, ecc_bch_cfg; - - if (read) { - if (host->use_ecc) - cmd = PAGE_READ_WITH_ECC | PAGE_ACC | LAST_PAGE; - else - cmd = PAGE_READ | PAGE_ACC | LAST_PAGE; - } else { - cmd = PROGRAM_PAGE | PAGE_ACC | LAST_PAGE; - } - - if (host->use_ecc) { - cfg0 = (host->cfg0 & ~(7U << CW_PER_PAGE)) | - (num_cw - 1) << CW_PER_PAGE; - - cfg1 = host->cfg1; - ecc_bch_cfg = host->ecc_bch_cfg; - } else { - cfg0 = (host->cfg0_raw & ~(7U << CW_PER_PAGE)) | - (num_cw - 1) << CW_PER_PAGE; - - cfg1 = host->cfg1_raw; - ecc_bch_cfg = 1 << ECC_CFG_ECC_DISABLE; - } - - nandc_set_reg(nandc, NAND_FLASH_CMD, cmd); - nandc_set_reg(nandc, NAND_DEV0_CFG0, cfg0); - nandc_set_reg(nandc, NAND_DEV0_CFG1, cfg1); - nandc_set_reg(nandc, NAND_DEV0_ECC_CFG, ecc_bch_cfg); - nandc_set_reg(nandc, NAND_EBI2_ECC_BUF_CFG, host->ecc_buf_cfg); - nandc_set_reg(nandc, NAND_FLASH_STATUS, host->clrflashstatus); - nandc_set_reg(nandc, NAND_READ_STATUS, host->clrreadstatus); - nandc_set_reg(nandc, NAND_EXEC_CMD, 1); - - if (read) - nandc_set_read_loc(nandc, 0, 0, host->use_ecc ? - host->cw_data : host->cw_size, 1); -} - -/* - * Maps the scatter gather list for DMA transfer and forms the DMA descriptor - * for BAM. This descriptor will be added in the NAND DMA descriptor queue - * which will be submitted to DMA engine. - */ -static int prepare_bam_async_desc(struct qcom_nand_controller *nandc, - struct dma_chan *chan, - unsigned long flags) -{ - struct desc_info *desc; - struct scatterlist *sgl; - unsigned int sgl_cnt; - int ret; - struct bam_transaction *bam_txn = nandc->bam_txn; - enum dma_transfer_direction dir_eng; - struct dma_async_tx_descriptor *dma_desc; - - desc = kzalloc(sizeof(*desc), GFP_KERNEL); - if (!desc) - return -ENOMEM; - - if (chan == nandc->cmd_chan) { - sgl = &bam_txn->cmd_sgl[bam_txn->cmd_sgl_start]; - sgl_cnt = bam_txn->cmd_sgl_pos - bam_txn->cmd_sgl_start; - bam_txn->cmd_sgl_start = bam_txn->cmd_sgl_pos; - dir_eng = DMA_MEM_TO_DEV; - desc->dir = DMA_TO_DEVICE; - } else if (chan == nandc->tx_chan) { - sgl = &bam_txn->data_sgl[bam_txn->tx_sgl_start]; - sgl_cnt = bam_txn->tx_sgl_pos - bam_txn->tx_sgl_start; - bam_txn->tx_sgl_start = bam_txn->tx_sgl_pos; - dir_eng = DMA_MEM_TO_DEV; - desc->dir = DMA_TO_DEVICE; - } else { - sgl = &bam_txn->data_sgl[bam_txn->rx_sgl_start]; - sgl_cnt = bam_txn->rx_sgl_pos - bam_txn->rx_sgl_start; - bam_txn->rx_sgl_start = bam_txn->rx_sgl_pos; - dir_eng = DMA_DEV_TO_MEM; - desc->dir = DMA_FROM_DEVICE; - } - - sg_mark_end(sgl + sgl_cnt - 1); - ret = dma_map_sg(nandc->dev, sgl, sgl_cnt, desc->dir); - if (ret == 0) { - dev_err(nandc->dev, "failure in mapping desc\n"); - kfree(desc); - return -ENOMEM; - } - - desc->sgl_cnt = sgl_cnt; - desc->bam_sgl = sgl; - - dma_desc = dmaengine_prep_slave_sg(chan, sgl, sgl_cnt, dir_eng, - flags); - - if (!dma_desc) { - dev_err(nandc->dev, "failure in prep desc\n"); - dma_unmap_sg(nandc->dev, sgl, sgl_cnt, desc->dir); - kfree(desc); - return -EINVAL; - } - - desc->dma_desc = dma_desc; - - list_add_tail(&desc->node, &nandc->desc_list); - - return 0; -} - -/* - * Prepares the command descriptor for BAM DMA which will be used for NAND - * register reads and writes. The command descriptor requires the command - * to be formed in command element type so this function uses the command - * element from bam transaction ce array and fills the same with required - * data. A single SGL can contain multiple command elements so - * NAND_BAM_NEXT_SGL will be used for starting the separate SGL - * after the current command element. - */ -static int prep_bam_dma_desc_cmd(struct qcom_nand_controller *nandc, bool read, - int reg_off, const void *vaddr, - int size, unsigned int flags) -{ - int bam_ce_size; - int i, ret; - struct bam_cmd_element *bam_ce_buffer; - struct bam_transaction *bam_txn = nandc->bam_txn; - - bam_ce_buffer = &bam_txn->bam_ce[bam_txn->bam_ce_pos]; - - /* fill the command desc */ - for (i = 0; i < size; i++) { - if (read) - bam_prep_ce(&bam_ce_buffer[i], - nandc_reg_phys(nandc, reg_off + 4 * i), - BAM_READ_COMMAND, - reg_buf_dma_addr(nandc, - (__le32 *)vaddr + i)); - else - bam_prep_ce_le32(&bam_ce_buffer[i], - nandc_reg_phys(nandc, reg_off + 4 * i), - BAM_WRITE_COMMAND, - *((__le32 *)vaddr + i)); - } - - bam_txn->bam_ce_pos += size; - - /* use the separate sgl after this command */ - if (flags & NAND_BAM_NEXT_SGL) { - bam_ce_buffer = &bam_txn->bam_ce[bam_txn->bam_ce_start]; - bam_ce_size = (bam_txn->bam_ce_pos - - bam_txn->bam_ce_start) * - sizeof(struct bam_cmd_element); - sg_set_buf(&bam_txn->cmd_sgl[bam_txn->cmd_sgl_pos], - bam_ce_buffer, bam_ce_size); - bam_txn->cmd_sgl_pos++; - bam_txn->bam_ce_start = bam_txn->bam_ce_pos; - - if (flags & NAND_BAM_NWD) { - ret = prepare_bam_async_desc(nandc, nandc->cmd_chan, - DMA_PREP_FENCE | - DMA_PREP_CMD); - if (ret) - return ret; - } - } - - return 0; -} - -/* - * Prepares the data descriptor for BAM DMA which will be used for NAND - * data reads and writes. - */ -static int prep_bam_dma_desc_data(struct qcom_nand_controller *nandc, bool read, - const void *vaddr, - int size, unsigned int flags) -{ - int ret; - struct bam_transaction *bam_txn = nandc->bam_txn; - - if (read) { - sg_set_buf(&bam_txn->data_sgl[bam_txn->rx_sgl_pos], - vaddr, size); - bam_txn->rx_sgl_pos++; - } else { - sg_set_buf(&bam_txn->data_sgl[bam_txn->tx_sgl_pos], - vaddr, size); - bam_txn->tx_sgl_pos++; - - /* - * BAM will only set EOT for DMA_PREP_INTERRUPT so if this flag - * is not set, form the DMA descriptor - */ - if (!(flags & NAND_BAM_NO_EOT)) { - ret = prepare_bam_async_desc(nandc, nandc->tx_chan, - DMA_PREP_INTERRUPT); - if (ret) - return ret; - } - } - - return 0; -} - -static int prep_adm_dma_desc(struct qcom_nand_controller *nandc, bool read, - int reg_off, const void *vaddr, int size, - bool flow_control) -{ - struct desc_info *desc; - struct dma_async_tx_descriptor *dma_desc; - struct scatterlist *sgl; - struct dma_slave_config slave_conf; - enum dma_transfer_direction dir_eng; - int ret; - - desc = kzalloc(sizeof(*desc), GFP_KERNEL); - if (!desc) - return -ENOMEM; - - sgl = &desc->adm_sgl; - - sg_init_one(sgl, vaddr, size); - - if (read) { - dir_eng = DMA_DEV_TO_MEM; - desc->dir = DMA_FROM_DEVICE; - } else { - dir_eng = DMA_MEM_TO_DEV; - desc->dir = DMA_TO_DEVICE; - } - - ret = dma_map_sg(nandc->dev, sgl, 1, desc->dir); - if (ret == 0) { - ret = -ENOMEM; - goto err; - } - - memset(&slave_conf, 0x00, sizeof(slave_conf)); - - slave_conf.device_fc = flow_control; - if (read) { - slave_conf.src_maxburst = 16; - slave_conf.src_addr = nandc->base_dma + reg_off; - slave_conf.slave_id = nandc->data_crci; - } else { - slave_conf.dst_maxburst = 16; - slave_conf.dst_addr = nandc->base_dma + reg_off; - slave_conf.slave_id = nandc->cmd_crci; - } - - ret = dmaengine_slave_config(nandc->chan, &slave_conf); - if (ret) { - dev_err(nandc->dev, "failed to configure dma channel\n"); - goto err; - } - - dma_desc = dmaengine_prep_slave_sg(nandc->chan, sgl, 1, dir_eng, 0); - if (!dma_desc) { - dev_err(nandc->dev, "failed to prepare desc\n"); - ret = -EINVAL; - goto err; - } - - desc->dma_desc = dma_desc; - - list_add_tail(&desc->node, &nandc->desc_list); - - return 0; -err: - kfree(desc); - - return ret; -} - -/* - * read_reg_dma: prepares a descriptor to read a given number of - * contiguous registers to the reg_read_buf pointer - * - * @first: offset of the first register in the contiguous block - * @num_regs: number of registers to read - * @flags: flags to control DMA descriptor preparation - */ -static int read_reg_dma(struct qcom_nand_controller *nandc, int first, - int num_regs, unsigned int flags) -{ - bool flow_control = false; - void *vaddr; - - vaddr = nandc->reg_read_buf + nandc->reg_read_pos; - nandc->reg_read_pos += num_regs; - - if (first == NAND_DEV_CMD_VLD || first == NAND_DEV_CMD1) - first = dev_cmd_reg_addr(nandc, first); - - if (nandc->props->is_bam) - return prep_bam_dma_desc_cmd(nandc, true, first, vaddr, - num_regs, flags); - - if (first == NAND_READ_ID || first == NAND_FLASH_STATUS) - flow_control = true; - - return prep_adm_dma_desc(nandc, true, first, vaddr, - num_regs * sizeof(u32), flow_control); -} - -/* - * write_reg_dma: prepares a descriptor to write a given number of - * contiguous registers - * - * @first: offset of the first register in the contiguous block - * @num_regs: number of registers to write - * @flags: flags to control DMA descriptor preparation - */ -static int write_reg_dma(struct qcom_nand_controller *nandc, int first, - int num_regs, unsigned int flags) -{ - bool flow_control = false; - struct nandc_regs *regs = nandc->regs; - void *vaddr; - - vaddr = offset_to_nandc_reg(regs, first); - - if (first == NAND_ERASED_CW_DETECT_CFG) { - if (flags & NAND_ERASED_CW_SET) - vaddr = ®s->erased_cw_detect_cfg_set; - else - vaddr = ®s->erased_cw_detect_cfg_clr; - } - - if (first == NAND_EXEC_CMD) - flags |= NAND_BAM_NWD; - - if (first == NAND_DEV_CMD1_RESTORE || first == NAND_DEV_CMD1) - first = dev_cmd_reg_addr(nandc, NAND_DEV_CMD1); - - if (first == NAND_DEV_CMD_VLD_RESTORE || first == NAND_DEV_CMD_VLD) - first = dev_cmd_reg_addr(nandc, NAND_DEV_CMD_VLD); - - if (nandc->props->is_bam) - return prep_bam_dma_desc_cmd(nandc, false, first, vaddr, - num_regs, flags); - - if (first == NAND_FLASH_CMD) - flow_control = true; - - return prep_adm_dma_desc(nandc, false, first, vaddr, - num_regs * sizeof(u32), flow_control); -} - -/* - * read_data_dma: prepares a DMA descriptor to transfer data from the - * controller's internal buffer to the buffer 'vaddr' - * - * @reg_off: offset within the controller's data buffer - * @vaddr: virtual address of the buffer we want to write to - * @size: DMA transaction size in bytes - * @flags: flags to control DMA descriptor preparation - */ -static int read_data_dma(struct qcom_nand_controller *nandc, int reg_off, - const u8 *vaddr, int size, unsigned int flags) -{ - if (nandc->props->is_bam) - return prep_bam_dma_desc_data(nandc, true, vaddr, size, flags); - - return prep_adm_dma_desc(nandc, true, reg_off, vaddr, size, false); -} - -/* - * write_data_dma: prepares a DMA descriptor to transfer data from - * 'vaddr' to the controller's internal buffer - * - * @reg_off: offset within the controller's data buffer - * @vaddr: virtual address of the buffer we want to read from - * @size: DMA transaction size in bytes - * @flags: flags to control DMA descriptor preparation - */ -static int write_data_dma(struct qcom_nand_controller *nandc, int reg_off, - const u8 *vaddr, int size, unsigned int flags) -{ - if (nandc->props->is_bam) - return prep_bam_dma_desc_data(nandc, false, vaddr, size, flags); - - return prep_adm_dma_desc(nandc, false, reg_off, vaddr, size, false); -} - -/* - * Helper to prepare DMA descriptors for configuring registers - * before reading a NAND page. - */ -static void config_nand_page_read(struct qcom_nand_controller *nandc) -{ - write_reg_dma(nandc, NAND_ADDR0, 2, 0); - write_reg_dma(nandc, NAND_DEV0_CFG0, 3, 0); - write_reg_dma(nandc, NAND_EBI2_ECC_BUF_CFG, 1, 0); - write_reg_dma(nandc, NAND_ERASED_CW_DETECT_CFG, 1, 0); - write_reg_dma(nandc, NAND_ERASED_CW_DETECT_CFG, 1, - NAND_ERASED_CW_SET | NAND_BAM_NEXT_SGL); -} - -/* - * Helper to prepare DMA descriptors for configuring registers - * before reading each codeword in NAND page. - */ -static void config_nand_cw_read(struct qcom_nand_controller *nandc) -{ - if (nandc->props->is_bam) - write_reg_dma(nandc, NAND_READ_LOCATION_0, 4, - NAND_BAM_NEXT_SGL); - - write_reg_dma(nandc, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL); - write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL); - - read_reg_dma(nandc, NAND_FLASH_STATUS, 2, 0); - read_reg_dma(nandc, NAND_ERASED_CW_DETECT_STATUS, 1, - NAND_BAM_NEXT_SGL); -} - -/* - * Helper to prepare dma descriptors to configure registers needed for reading a - * single codeword in page - */ -static void config_nand_single_cw_page_read(struct qcom_nand_controller *nandc) -{ - config_nand_page_read(nandc); - config_nand_cw_read(nandc); -} - -/* - * Helper to prepare DMA descriptors used to configure registers needed for - * before writing a NAND page. - */ -static void config_nand_page_write(struct qcom_nand_controller *nandc) -{ - write_reg_dma(nandc, NAND_ADDR0, 2, 0); - write_reg_dma(nandc, NAND_DEV0_CFG0, 3, 0); - write_reg_dma(nandc, NAND_EBI2_ECC_BUF_CFG, 1, - NAND_BAM_NEXT_SGL); -} - -/* - * Helper to prepare DMA descriptors for configuring registers - * before writing each codeword in NAND page. - */ -static void config_nand_cw_write(struct qcom_nand_controller *nandc) -{ - write_reg_dma(nandc, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL); - write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL); - - read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL); - - write_reg_dma(nandc, NAND_FLASH_STATUS, 1, 0); - write_reg_dma(nandc, NAND_READ_STATUS, 1, NAND_BAM_NEXT_SGL); -} - -/* - * the following functions are used within chip->cmdfunc() to perform different - * NAND_CMD_* commands - */ - -/* sets up descriptors for NAND_CMD_PARAM */ -static int nandc_param(struct qcom_nand_host *host) -{ - struct nand_chip *chip = &host->chip; - struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); - - /* - * NAND_CMD_PARAM is called before we know much about the FLASH chip - * in use. we configure the controller to perform a raw read of 512 - * bytes to read onfi params - */ - nandc_set_reg(nandc, NAND_FLASH_CMD, PAGE_READ | PAGE_ACC | LAST_PAGE); - nandc_set_reg(nandc, NAND_ADDR0, 0); - nandc_set_reg(nandc, NAND_ADDR1, 0); - nandc_set_reg(nandc, NAND_DEV0_CFG0, 0 << CW_PER_PAGE - | 512 << UD_SIZE_BYTES - | 5 << NUM_ADDR_CYCLES - | 0 << SPARE_SIZE_BYTES); - nandc_set_reg(nandc, NAND_DEV0_CFG1, 7 << NAND_RECOVERY_CYCLES - | 0 << CS_ACTIVE_BSY - | 17 << BAD_BLOCK_BYTE_NUM - | 1 << BAD_BLOCK_IN_SPARE_AREA - | 2 << WR_RD_BSY_GAP - | 0 << WIDE_FLASH - | 1 << DEV0_CFG1_ECC_DISABLE); - nandc_set_reg(nandc, NAND_EBI2_ECC_BUF_CFG, 1 << ECC_CFG_ECC_DISABLE); - - /* configure CMD1 and VLD for ONFI param probing */ - nandc_set_reg(nandc, NAND_DEV_CMD_VLD, - (nandc->vld & ~READ_START_VLD)); - nandc_set_reg(nandc, NAND_DEV_CMD1, - (nandc->cmd1 & ~(0xFF << READ_ADDR)) - | NAND_CMD_PARAM << READ_ADDR); - - nandc_set_reg(nandc, NAND_EXEC_CMD, 1); - - nandc_set_reg(nandc, NAND_DEV_CMD1_RESTORE, nandc->cmd1); - nandc_set_reg(nandc, NAND_DEV_CMD_VLD_RESTORE, nandc->vld); - nandc_set_read_loc(nandc, 0, 0, 512, 1); - - write_reg_dma(nandc, NAND_DEV_CMD_VLD, 1, 0); - write_reg_dma(nandc, NAND_DEV_CMD1, 1, NAND_BAM_NEXT_SGL); - - nandc->buf_count = 512; - memset(nandc->data_buffer, 0xff, nandc->buf_count); - - config_nand_single_cw_page_read(nandc); - - read_data_dma(nandc, FLASH_BUF_ACC, nandc->data_buffer, - nandc->buf_count, 0); - - /* restore CMD1 and VLD regs */ - write_reg_dma(nandc, NAND_DEV_CMD1_RESTORE, 1, 0); - write_reg_dma(nandc, NAND_DEV_CMD_VLD_RESTORE, 1, NAND_BAM_NEXT_SGL); - - return 0; -} - -/* sets up descriptors for NAND_CMD_ERASE1 */ -static int erase_block(struct qcom_nand_host *host, int page_addr) -{ - struct nand_chip *chip = &host->chip; - struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); - - nandc_set_reg(nandc, NAND_FLASH_CMD, - BLOCK_ERASE | PAGE_ACC | LAST_PAGE); - nandc_set_reg(nandc, NAND_ADDR0, page_addr); - nandc_set_reg(nandc, NAND_ADDR1, 0); - nandc_set_reg(nandc, NAND_DEV0_CFG0, - host->cfg0_raw & ~(7 << CW_PER_PAGE)); - nandc_set_reg(nandc, NAND_DEV0_CFG1, host->cfg1_raw); - nandc_set_reg(nandc, NAND_EXEC_CMD, 1); - nandc_set_reg(nandc, NAND_FLASH_STATUS, host->clrflashstatus); - nandc_set_reg(nandc, NAND_READ_STATUS, host->clrreadstatus); - - write_reg_dma(nandc, NAND_FLASH_CMD, 3, NAND_BAM_NEXT_SGL); - write_reg_dma(nandc, NAND_DEV0_CFG0, 2, NAND_BAM_NEXT_SGL); - write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL); - - read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL); - - write_reg_dma(nandc, NAND_FLASH_STATUS, 1, 0); - write_reg_dma(nandc, NAND_READ_STATUS, 1, NAND_BAM_NEXT_SGL); - - return 0; -} - -/* sets up descriptors for NAND_CMD_READID */ -static int read_id(struct qcom_nand_host *host, int column) -{ - struct nand_chip *chip = &host->chip; - struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); - - if (column == -1) - return 0; - - nandc_set_reg(nandc, NAND_FLASH_CMD, FETCH_ID); - nandc_set_reg(nandc, NAND_ADDR0, column); - nandc_set_reg(nandc, NAND_ADDR1, 0); - nandc_set_reg(nandc, NAND_FLASH_CHIP_SELECT, - nandc->props->is_bam ? 0 : DM_EN); - nandc_set_reg(nandc, NAND_EXEC_CMD, 1); - - write_reg_dma(nandc, NAND_FLASH_CMD, 4, NAND_BAM_NEXT_SGL); - write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL); - - read_reg_dma(nandc, NAND_READ_ID, 1, NAND_BAM_NEXT_SGL); - - return 0; -} - -/* sets up descriptors for NAND_CMD_RESET */ -static int reset(struct qcom_nand_host *host) -{ - struct nand_chip *chip = &host->chip; - struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); - - nandc_set_reg(nandc, NAND_FLASH_CMD, RESET_DEVICE); - nandc_set_reg(nandc, NAND_EXEC_CMD, 1); - - write_reg_dma(nandc, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL); - write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL); - - read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL); - - return 0; -} - -/* helpers to submit/free our list of dma descriptors */ -static int submit_descs(struct qcom_nand_controller *nandc) -{ - struct desc_info *desc; - dma_cookie_t cookie = 0; - struct bam_transaction *bam_txn = nandc->bam_txn; - int r; - - if (nandc->props->is_bam) { - if (bam_txn->rx_sgl_pos > bam_txn->rx_sgl_start) { - r = prepare_bam_async_desc(nandc, nandc->rx_chan, 0); - if (r) - return r; - } - - if (bam_txn->tx_sgl_pos > bam_txn->tx_sgl_start) { - r = prepare_bam_async_desc(nandc, nandc->tx_chan, - DMA_PREP_INTERRUPT); - if (r) - return r; - } - - if (bam_txn->cmd_sgl_pos > bam_txn->cmd_sgl_start) { - r = prepare_bam_async_desc(nandc, nandc->cmd_chan, - DMA_PREP_CMD); - if (r) - return r; - } - } - - list_for_each_entry(desc, &nandc->desc_list, node) - cookie = dmaengine_submit(desc->dma_desc); - - if (nandc->props->is_bam) { - dma_async_issue_pending(nandc->tx_chan); - dma_async_issue_pending(nandc->rx_chan); - - if (dma_sync_wait(nandc->cmd_chan, cookie) != DMA_COMPLETE) - return -ETIMEDOUT; - } else { - if (dma_sync_wait(nandc->chan, cookie) != DMA_COMPLETE) - return -ETIMEDOUT; - } - - return 0; -} - -static void free_descs(struct qcom_nand_controller *nandc) -{ - struct desc_info *desc, *n; - - list_for_each_entry_safe(desc, n, &nandc->desc_list, node) { - list_del(&desc->node); - - if (nandc->props->is_bam) - dma_unmap_sg(nandc->dev, desc->bam_sgl, - desc->sgl_cnt, desc->dir); - else - dma_unmap_sg(nandc->dev, &desc->adm_sgl, 1, - desc->dir); - - kfree(desc); - } -} - -/* reset the register read buffer for next NAND operation */ -static void clear_read_regs(struct qcom_nand_controller *nandc) -{ - nandc->reg_read_pos = 0; - nandc_read_buffer_sync(nandc, false); -} - -static void pre_command(struct qcom_nand_host *host, int command) -{ - struct nand_chip *chip = &host->chip; - struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); - - nandc->buf_count = 0; - nandc->buf_start = 0; - host->use_ecc = false; - host->last_command = command; - - clear_read_regs(nandc); - - if (command == NAND_CMD_RESET || command == NAND_CMD_READID || - command == NAND_CMD_PARAM || command == NAND_CMD_ERASE1) - clear_bam_transaction(nandc); -} - -/* - * this is called after NAND_CMD_PAGEPROG and NAND_CMD_ERASE1 to set our - * privately maintained status byte, this status byte can be read after - * NAND_CMD_STATUS is called - */ -static void parse_erase_write_errors(struct qcom_nand_host *host, int command) -{ - struct nand_chip *chip = &host->chip; - struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); - struct nand_ecc_ctrl *ecc = &chip->ecc; - int num_cw; - int i; - - num_cw = command == NAND_CMD_PAGEPROG ? ecc->steps : 1; - nandc_read_buffer_sync(nandc, true); - - for (i = 0; i < num_cw; i++) { - u32 flash_status = le32_to_cpu(nandc->reg_read_buf[i]); - - if (flash_status & FS_MPU_ERR) - host->status &= ~NAND_STATUS_WP; - - if (flash_status & FS_OP_ERR || (i == (num_cw - 1) && - (flash_status & - FS_DEVICE_STS_ERR))) - host->status |= NAND_STATUS_FAIL; - } -} - -static void post_command(struct qcom_nand_host *host, int command) -{ - struct nand_chip *chip = &host->chip; - struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); - - switch (command) { - case NAND_CMD_READID: - nandc_read_buffer_sync(nandc, true); - memcpy(nandc->data_buffer, nandc->reg_read_buf, - nandc->buf_count); - break; - case NAND_CMD_PAGEPROG: - case NAND_CMD_ERASE1: - parse_erase_write_errors(host, command); - break; - default: - break; - } -} - -/* - * Implements chip->cmdfunc. It's only used for a limited set of commands. - * The rest of the commands wouldn't be called by upper layers. For example, - * NAND_CMD_READOOB would never be called because we have our own versions - * of read_oob ops for nand_ecc_ctrl. - */ -static void qcom_nandc_command(struct mtd_info *mtd, unsigned int command, - int column, int page_addr) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct qcom_nand_host *host = to_qcom_nand_host(chip); - struct nand_ecc_ctrl *ecc = &chip->ecc; - struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); - bool wait = false; - int ret = 0; - - pre_command(host, command); - - switch (command) { - case NAND_CMD_RESET: - ret = reset(host); - wait = true; - break; - - case NAND_CMD_READID: - nandc->buf_count = 4; - ret = read_id(host, column); - wait = true; - break; - - case NAND_CMD_PARAM: - ret = nandc_param(host); - wait = true; - break; - - case NAND_CMD_ERASE1: - ret = erase_block(host, page_addr); - wait = true; - break; - - case NAND_CMD_READ0: - /* we read the entire page for now */ - WARN_ON(column != 0); - - host->use_ecc = true; - set_address(host, 0, page_addr); - update_rw_regs(host, ecc->steps, true); - break; - - case NAND_CMD_SEQIN: - WARN_ON(column != 0); - set_address(host, 0, page_addr); - break; - - case NAND_CMD_PAGEPROG: - case NAND_CMD_STATUS: - case NAND_CMD_NONE: - default: - break; - } - - if (ret) { - dev_err(nandc->dev, "failure executing command %d\n", - command); - free_descs(nandc); - return; - } - - if (wait) { - ret = submit_descs(nandc); - if (ret) - dev_err(nandc->dev, - "failure submitting descs for command %d\n", - command); - } - - free_descs(nandc); - - post_command(host, command); -} - -/* - * when using BCH ECC, the HW flags an error in NAND_FLASH_STATUS if it read - * an erased CW, and reports an erased CW in NAND_ERASED_CW_DETECT_STATUS. - * - * when using RS ECC, the HW reports the same erros when reading an erased CW, - * but it notifies that it is an erased CW by placing special characters at - * certain offsets in the buffer. - * - * verify if the page is erased or not, and fix up the page for RS ECC by - * replacing the special characters with 0xff. - */ -static bool erased_chunk_check_and_fixup(u8 *data_buf, int data_len) -{ - u8 empty1, empty2; - - /* - * an erased page flags an error in NAND_FLASH_STATUS, check if the page - * is erased by looking for 0x54s at offsets 3 and 175 from the - * beginning of each codeword - */ - - empty1 = data_buf[3]; - empty2 = data_buf[175]; - - /* - * if the erased codework markers, if they exist override them with - * 0xffs - */ - if ((empty1 == 0x54 && empty2 == 0xff) || - (empty1 == 0xff && empty2 == 0x54)) { - data_buf[3] = 0xff; - data_buf[175] = 0xff; - } - - /* - * check if the entire chunk contains 0xffs or not. if it doesn't, then - * restore the original values at the special offsets - */ - if (memchr_inv(data_buf, 0xff, data_len)) { - data_buf[3] = empty1; - data_buf[175] = empty2; - - return false; - } - - return true; -} - -struct read_stats { - __le32 flash; - __le32 buffer; - __le32 erased_cw; -}; - -/* - * reads back status registers set by the controller to notify page read - * errors. this is equivalent to what 'ecc->correct()' would do. - */ -static int parse_read_errors(struct qcom_nand_host *host, u8 *data_buf, - u8 *oob_buf) -{ - struct nand_chip *chip = &host->chip; - struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); - struct mtd_info *mtd = nand_to_mtd(chip); - struct nand_ecc_ctrl *ecc = &chip->ecc; - unsigned int max_bitflips = 0; - struct read_stats *buf; - int i; - - buf = (struct read_stats *)nandc->reg_read_buf; - nandc_read_buffer_sync(nandc, true); - - for (i = 0; i < ecc->steps; i++, buf++) { - u32 flash, buffer, erased_cw; - int data_len, oob_len; - - if (i == (ecc->steps - 1)) { - data_len = ecc->size - ((ecc->steps - 1) << 2); - oob_len = ecc->steps << 2; - } else { - data_len = host->cw_data; - oob_len = 0; - } - - flash = le32_to_cpu(buf->flash); - buffer = le32_to_cpu(buf->buffer); - erased_cw = le32_to_cpu(buf->erased_cw); - - if (flash & (FS_OP_ERR | FS_MPU_ERR)) { - bool erased; - - /* ignore erased codeword errors */ - if (host->bch_enabled) { - erased = (erased_cw & ERASED_CW) == ERASED_CW ? - true : false; - } else { - erased = erased_chunk_check_and_fixup(data_buf, - data_len); - } - - if (erased) { - data_buf += data_len; - if (oob_buf) - oob_buf += oob_len + ecc->bytes; - continue; - } - - if (buffer & BS_UNCORRECTABLE_BIT) { - int ret, ecclen, extraooblen; - void *eccbuf; - - eccbuf = oob_buf ? oob_buf + oob_len : NULL; - ecclen = oob_buf ? host->ecc_bytes_hw : 0; - extraooblen = oob_buf ? oob_len : 0; - - /* - * make sure it isn't an erased page reported - * as not-erased by HW because of a few bitflips - */ - ret = nand_check_erased_ecc_chunk(data_buf, - data_len, eccbuf, ecclen, oob_buf, - extraooblen, ecc->strength); - if (ret < 0) { - mtd->ecc_stats.failed++; - } else { - mtd->ecc_stats.corrected += ret; - max_bitflips = - max_t(unsigned int, max_bitflips, ret); - } - } - } else { - unsigned int stat; - - stat = buffer & BS_CORRECTABLE_ERR_MSK; - mtd->ecc_stats.corrected += stat; - max_bitflips = max(max_bitflips, stat); - } - - data_buf += data_len; - if (oob_buf) - oob_buf += oob_len + ecc->bytes; - } - - return max_bitflips; -} - -/* - * helper to perform the actual page read operation, used by ecc->read_page(), - * ecc->read_oob() - */ -static int read_page_ecc(struct qcom_nand_host *host, u8 *data_buf, - u8 *oob_buf) -{ - struct nand_chip *chip = &host->chip; - struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); - struct nand_ecc_ctrl *ecc = &chip->ecc; - int i, ret; - - config_nand_page_read(nandc); - - /* queue cmd descs for each codeword */ - for (i = 0; i < ecc->steps; i++) { - int data_size, oob_size; - - if (i == (ecc->steps - 1)) { - data_size = ecc->size - ((ecc->steps - 1) << 2); - oob_size = (ecc->steps << 2) + host->ecc_bytes_hw + - host->spare_bytes; - } else { - data_size = host->cw_data; - oob_size = host->ecc_bytes_hw + host->spare_bytes; - } - - if (nandc->props->is_bam) { - if (data_buf && oob_buf) { - nandc_set_read_loc(nandc, 0, 0, data_size, 0); - nandc_set_read_loc(nandc, 1, data_size, - oob_size, 1); - } else if (data_buf) { - nandc_set_read_loc(nandc, 0, 0, data_size, 1); - } else { - nandc_set_read_loc(nandc, 0, data_size, - oob_size, 1); - } - } - - config_nand_cw_read(nandc); - - if (data_buf) - read_data_dma(nandc, FLASH_BUF_ACC, data_buf, - data_size, 0); - - /* - * when ecc is enabled, the controller doesn't read the real - * or dummy bad block markers in each chunk. To maintain a - * consistent layout across RAW and ECC reads, we just - * leave the real/dummy BBM offsets empty (i.e, filled with - * 0xffs) - */ - if (oob_buf) { - int j; - - for (j = 0; j < host->bbm_size; j++) - *oob_buf++ = 0xff; - - read_data_dma(nandc, FLASH_BUF_ACC + data_size, - oob_buf, oob_size, 0); - } - - if (data_buf) - data_buf += data_size; - if (oob_buf) - oob_buf += oob_size; - } - - ret = submit_descs(nandc); - if (ret) - dev_err(nandc->dev, "failure to read page/oob\n"); - - free_descs(nandc); - - return ret; -} - -/* - * a helper that copies the last step/codeword of a page (containing free oob) - * into our local buffer - */ -static int copy_last_cw(struct qcom_nand_host *host, int page) -{ - struct nand_chip *chip = &host->chip; - struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); - struct nand_ecc_ctrl *ecc = &chip->ecc; - int size; - int ret; - - clear_read_regs(nandc); - - size = host->use_ecc ? host->cw_data : host->cw_size; - - /* prepare a clean read buffer */ - memset(nandc->data_buffer, 0xff, size); - - set_address(host, host->cw_size * (ecc->steps - 1), page); - update_rw_regs(host, 1, true); - - config_nand_single_cw_page_read(nandc); - - read_data_dma(nandc, FLASH_BUF_ACC, nandc->data_buffer, size, 0); - - ret = submit_descs(nandc); - if (ret) - dev_err(nandc->dev, "failed to copy last codeword\n"); - - free_descs(nandc); - - return ret; -} - -/* implements ecc->read_page() */ -static int qcom_nandc_read_page(struct mtd_info *mtd, struct nand_chip *chip, - uint8_t *buf, int oob_required, int page) -{ - struct qcom_nand_host *host = to_qcom_nand_host(chip); - struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); - u8 *data_buf, *oob_buf = NULL; - int ret; - - nand_read_page_op(chip, page, 0, NULL, 0); - data_buf = buf; - oob_buf = oob_required ? chip->oob_poi : NULL; - - clear_bam_transaction(nandc); - ret = read_page_ecc(host, data_buf, oob_buf); - if (ret) { - dev_err(nandc->dev, "failure to read page\n"); - return ret; - } - - return parse_read_errors(host, data_buf, oob_buf); -} - -/* implements ecc->read_page_raw() */ -static int qcom_nandc_read_page_raw(struct mtd_info *mtd, - struct nand_chip *chip, uint8_t *buf, - int oob_required, int page) -{ - struct qcom_nand_host *host = to_qcom_nand_host(chip); - struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); - u8 *data_buf, *oob_buf; - struct nand_ecc_ctrl *ecc = &chip->ecc; - int i, ret; - int read_loc; - - nand_read_page_op(chip, page, 0, NULL, 0); - data_buf = buf; - oob_buf = chip->oob_poi; - - host->use_ecc = false; - - clear_bam_transaction(nandc); - update_rw_regs(host, ecc->steps, true); - config_nand_page_read(nandc); - - for (i = 0; i < ecc->steps; i++) { - int data_size1, data_size2, oob_size1, oob_size2; - int reg_off = FLASH_BUF_ACC; - - data_size1 = mtd->writesize - host->cw_size * (ecc->steps - 1); - oob_size1 = host->bbm_size; - - if (i == (ecc->steps - 1)) { - data_size2 = ecc->size - data_size1 - - ((ecc->steps - 1) << 2); - oob_size2 = (ecc->steps << 2) + host->ecc_bytes_hw + - host->spare_bytes; - } else { - data_size2 = host->cw_data - data_size1; - oob_size2 = host->ecc_bytes_hw + host->spare_bytes; - } - - if (nandc->props->is_bam) { - read_loc = 0; - nandc_set_read_loc(nandc, 0, read_loc, data_size1, 0); - read_loc += data_size1; - - nandc_set_read_loc(nandc, 1, read_loc, oob_size1, 0); - read_loc += oob_size1; - - nandc_set_read_loc(nandc, 2, read_loc, data_size2, 0); - read_loc += data_size2; - - nandc_set_read_loc(nandc, 3, read_loc, oob_size2, 1); - } - - config_nand_cw_read(nandc); - - read_data_dma(nandc, reg_off, data_buf, data_size1, 0); - reg_off += data_size1; - data_buf += data_size1; - - read_data_dma(nandc, reg_off, oob_buf, oob_size1, 0); - reg_off += oob_size1; - oob_buf += oob_size1; - - read_data_dma(nandc, reg_off, data_buf, data_size2, 0); - reg_off += data_size2; - data_buf += data_size2; - - read_data_dma(nandc, reg_off, oob_buf, oob_size2, 0); - oob_buf += oob_size2; - } - - ret = submit_descs(nandc); - if (ret) - dev_err(nandc->dev, "failure to read raw page\n"); - - free_descs(nandc); - - return 0; -} - -/* implements ecc->read_oob() */ -static int qcom_nandc_read_oob(struct mtd_info *mtd, struct nand_chip *chip, - int page) -{ - struct qcom_nand_host *host = to_qcom_nand_host(chip); - struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); - struct nand_ecc_ctrl *ecc = &chip->ecc; - int ret; - - clear_read_regs(nandc); - clear_bam_transaction(nandc); - - host->use_ecc = true; - set_address(host, 0, page); - update_rw_regs(host, ecc->steps, true); - - ret = read_page_ecc(host, NULL, chip->oob_poi); - if (ret) - dev_err(nandc->dev, "failure to read oob\n"); - - return ret; -} - -/* implements ecc->write_page() */ -static int qcom_nandc_write_page(struct mtd_info *mtd, struct nand_chip *chip, - const uint8_t *buf, int oob_required, int page) -{ - struct qcom_nand_host *host = to_qcom_nand_host(chip); - struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); - struct nand_ecc_ctrl *ecc = &chip->ecc; - u8 *data_buf, *oob_buf; - int i, ret; - - nand_prog_page_begin_op(chip, page, 0, NULL, 0); - - clear_read_regs(nandc); - clear_bam_transaction(nandc); - - data_buf = (u8 *)buf; - oob_buf = chip->oob_poi; - - host->use_ecc = true; - update_rw_regs(host, ecc->steps, false); - config_nand_page_write(nandc); - - for (i = 0; i < ecc->steps; i++) { - int data_size, oob_size; - - if (i == (ecc->steps - 1)) { - data_size = ecc->size - ((ecc->steps - 1) << 2); - oob_size = (ecc->steps << 2) + host->ecc_bytes_hw + - host->spare_bytes; - } else { - data_size = host->cw_data; - oob_size = ecc->bytes; - } - - - write_data_dma(nandc, FLASH_BUF_ACC, data_buf, data_size, - i == (ecc->steps - 1) ? NAND_BAM_NO_EOT : 0); - - /* - * when ECC is enabled, we don't really need to write anything - * to oob for the first n - 1 codewords since these oob regions - * just contain ECC bytes that's written by the controller - * itself. For the last codeword, we skip the bbm positions and - * write to the free oob area. - */ - if (i == (ecc->steps - 1)) { - oob_buf += host->bbm_size; - - write_data_dma(nandc, FLASH_BUF_ACC + data_size, - oob_buf, oob_size, 0); - } - - config_nand_cw_write(nandc); - - data_buf += data_size; - oob_buf += oob_size; - } - - ret = submit_descs(nandc); - if (ret) - dev_err(nandc->dev, "failure to write page\n"); - - free_descs(nandc); - - if (!ret) - ret = nand_prog_page_end_op(chip); - - return ret; -} - -/* implements ecc->write_page_raw() */ -static int qcom_nandc_write_page_raw(struct mtd_info *mtd, - struct nand_chip *chip, const uint8_t *buf, - int oob_required, int page) -{ - struct qcom_nand_host *host = to_qcom_nand_host(chip); - struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); - struct nand_ecc_ctrl *ecc = &chip->ecc; - u8 *data_buf, *oob_buf; - int i, ret; - - nand_prog_page_begin_op(chip, page, 0, NULL, 0); - clear_read_regs(nandc); - clear_bam_transaction(nandc); - - data_buf = (u8 *)buf; - oob_buf = chip->oob_poi; - - host->use_ecc = false; - update_rw_regs(host, ecc->steps, false); - config_nand_page_write(nandc); - - for (i = 0; i < ecc->steps; i++) { - int data_size1, data_size2, oob_size1, oob_size2; - int reg_off = FLASH_BUF_ACC; - - data_size1 = mtd->writesize - host->cw_size * (ecc->steps - 1); - oob_size1 = host->bbm_size; - - if (i == (ecc->steps - 1)) { - data_size2 = ecc->size - data_size1 - - ((ecc->steps - 1) << 2); - oob_size2 = (ecc->steps << 2) + host->ecc_bytes_hw + - host->spare_bytes; - } else { - data_size2 = host->cw_data - data_size1; - oob_size2 = host->ecc_bytes_hw + host->spare_bytes; - } - - write_data_dma(nandc, reg_off, data_buf, data_size1, - NAND_BAM_NO_EOT); - reg_off += data_size1; - data_buf += data_size1; - - write_data_dma(nandc, reg_off, oob_buf, oob_size1, - NAND_BAM_NO_EOT); - reg_off += oob_size1; - oob_buf += oob_size1; - - write_data_dma(nandc, reg_off, data_buf, data_size2, - NAND_BAM_NO_EOT); - reg_off += data_size2; - data_buf += data_size2; - - write_data_dma(nandc, reg_off, oob_buf, oob_size2, 0); - oob_buf += oob_size2; - - config_nand_cw_write(nandc); - } - - ret = submit_descs(nandc); - if (ret) - dev_err(nandc->dev, "failure to write raw page\n"); - - free_descs(nandc); - - if (!ret) - ret = nand_prog_page_end_op(chip); - - return ret; -} - -/* - * implements ecc->write_oob() - * - * the NAND controller cannot write only data or only oob within a codeword, - * since ecc is calculated for the combined codeword. we first copy the - * entire contents for the last codeword(data + oob), replace the old oob - * with the new one in chip->oob_poi, and then write the entire codeword. - * this read-copy-write operation results in a slight performance loss. - */ -static int qcom_nandc_write_oob(struct mtd_info *mtd, struct nand_chip *chip, - int page) -{ - struct qcom_nand_host *host = to_qcom_nand_host(chip); - struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); - struct nand_ecc_ctrl *ecc = &chip->ecc; - u8 *oob = chip->oob_poi; - int data_size, oob_size; - int ret; - - host->use_ecc = true; - - clear_bam_transaction(nandc); - ret = copy_last_cw(host, page); - if (ret) - return ret; - - clear_read_regs(nandc); - clear_bam_transaction(nandc); - - /* calculate the data and oob size for the last codeword/step */ - data_size = ecc->size - ((ecc->steps - 1) << 2); - oob_size = mtd->oobavail; - - /* override new oob content to last codeword */ - mtd_ooblayout_get_databytes(mtd, nandc->data_buffer + data_size, oob, - 0, mtd->oobavail); - - set_address(host, host->cw_size * (ecc->steps - 1), page); - update_rw_regs(host, 1, false); - - config_nand_page_write(nandc); - write_data_dma(nandc, FLASH_BUF_ACC, - nandc->data_buffer, data_size + oob_size, 0); - config_nand_cw_write(nandc); - - ret = submit_descs(nandc); - - free_descs(nandc); - - if (ret) { - dev_err(nandc->dev, "failure to write oob\n"); - return -EIO; - } - - return nand_prog_page_end_op(chip); -} - -static int qcom_nandc_block_bad(struct mtd_info *mtd, loff_t ofs) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct qcom_nand_host *host = to_qcom_nand_host(chip); - struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); - struct nand_ecc_ctrl *ecc = &chip->ecc; - int page, ret, bbpos, bad = 0; - u32 flash_status; - - page = (int)(ofs >> chip->page_shift) & chip->pagemask; - - /* - * configure registers for a raw sub page read, the address is set to - * the beginning of the last codeword, we don't care about reading ecc - * portion of oob. we just want the first few bytes from this codeword - * that contains the BBM - */ - host->use_ecc = false; - - clear_bam_transaction(nandc); - ret = copy_last_cw(host, page); - if (ret) - goto err; - - flash_status = le32_to_cpu(nandc->reg_read_buf[0]); - - if (flash_status & (FS_OP_ERR | FS_MPU_ERR)) { - dev_warn(nandc->dev, "error when trying to read BBM\n"); - goto err; - } - - bbpos = mtd->writesize - host->cw_size * (ecc->steps - 1); - - bad = nandc->data_buffer[bbpos] != 0xff; - - if (chip->options & NAND_BUSWIDTH_16) - bad = bad || (nandc->data_buffer[bbpos + 1] != 0xff); -err: - return bad; -} - -static int qcom_nandc_block_markbad(struct mtd_info *mtd, loff_t ofs) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct qcom_nand_host *host = to_qcom_nand_host(chip); - struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); - struct nand_ecc_ctrl *ecc = &chip->ecc; - int page, ret; - - clear_read_regs(nandc); - clear_bam_transaction(nandc); - - /* - * to mark the BBM as bad, we flash the entire last codeword with 0s. - * we don't care about the rest of the content in the codeword since - * we aren't going to use this block again - */ - memset(nandc->data_buffer, 0x00, host->cw_size); - - page = (int)(ofs >> chip->page_shift) & chip->pagemask; - - /* prepare write */ - host->use_ecc = false; - set_address(host, host->cw_size * (ecc->steps - 1), page); - update_rw_regs(host, 1, false); - - config_nand_page_write(nandc); - write_data_dma(nandc, FLASH_BUF_ACC, - nandc->data_buffer, host->cw_size, 0); - config_nand_cw_write(nandc); - - ret = submit_descs(nandc); - - free_descs(nandc); - - if (ret) { - dev_err(nandc->dev, "failure to update BBM\n"); - return -EIO; - } - - return nand_prog_page_end_op(chip); -} - -/* - * the three functions below implement chip->read_byte(), chip->read_buf() - * and chip->write_buf() respectively. these aren't used for - * reading/writing page data, they are used for smaller data like reading - * id, status etc - */ -static uint8_t qcom_nandc_read_byte(struct mtd_info *mtd) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct qcom_nand_host *host = to_qcom_nand_host(chip); - struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); - u8 *buf = nandc->data_buffer; - u8 ret = 0x0; - - if (host->last_command == NAND_CMD_STATUS) { - ret = host->status; - - host->status = NAND_STATUS_READY | NAND_STATUS_WP; - - return ret; - } - - if (nandc->buf_start < nandc->buf_count) - ret = buf[nandc->buf_start++]; - - return ret; -} - -static void qcom_nandc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); - int real_len = min_t(size_t, len, nandc->buf_count - nandc->buf_start); - - memcpy(buf, nandc->data_buffer + nandc->buf_start, real_len); - nandc->buf_start += real_len; -} - -static void qcom_nandc_write_buf(struct mtd_info *mtd, const uint8_t *buf, - int len) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); - int real_len = min_t(size_t, len, nandc->buf_count - nandc->buf_start); - - memcpy(nandc->data_buffer + nandc->buf_start, buf, real_len); - - nandc->buf_start += real_len; -} - -/* we support only one external chip for now */ -static void qcom_nandc_select_chip(struct mtd_info *mtd, int chipnr) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); - - if (chipnr <= 0) - return; - - dev_warn(nandc->dev, "invalid chip select\n"); -} - -/* - * NAND controller page layout info - * - * Layout with ECC enabled: - * - * |----------------------| |---------------------------------| - * | xx.......yy| | *********xx.......yy| - * | DATA xx..ECC..yy| | DATA **SPARE**xx..ECC..yy| - * | (516) xx.......yy| | (516-n*4) **(n*4)**xx.......yy| - * | xx.......yy| | *********xx.......yy| - * |----------------------| |---------------------------------| - * codeword 1,2..n-1 codeword n - * <---(528/532 Bytes)--> <-------(528/532 Bytes)---------> - * - * n = Number of codewords in the page - * . = ECC bytes - * * = Spare/free bytes - * x = Unused byte(s) - * y = Reserved byte(s) - * - * 2K page: n = 4, spare = 16 bytes - * 4K page: n = 8, spare = 32 bytes - * 8K page: n = 16, spare = 64 bytes - * - * the qcom nand controller operates at a sub page/codeword level. each - * codeword is 528 and 532 bytes for 4 bit and 8 bit ECC modes respectively. - * the number of ECC bytes vary based on the ECC strength and the bus width. - * - * the first n - 1 codewords contains 516 bytes of user data, the remaining - * 12/16 bytes consist of ECC and reserved data. The nth codeword contains - * both user data and spare(oobavail) bytes that sum up to 516 bytes. - * - * When we access a page with ECC enabled, the reserved bytes(s) are not - * accessible at all. When reading, we fill up these unreadable positions - * with 0xffs. When writing, the controller skips writing the inaccessible - * bytes. - * - * Layout with ECC disabled: - * - * |------------------------------| |---------------------------------------| - * | yy xx.......| | bb *********xx.......| - * | DATA1 yy DATA2 xx..ECC..| | DATA1 bb DATA2 **SPARE**xx..ECC..| - * | (size1) yy (size2) xx.......| | (size1) bb (size2) **(n*4)**xx.......| - * | yy xx.......| | bb *********xx.......| - * |------------------------------| |---------------------------------------| - * codeword 1,2..n-1 codeword n - * <-------(528/532 Bytes)------> <-----------(528/532 Bytes)-----------> - * - * n = Number of codewords in the page - * . = ECC bytes - * * = Spare/free bytes - * x = Unused byte(s) - * y = Dummy Bad Bock byte(s) - * b = Real Bad Block byte(s) - * size1/size2 = function of codeword size and 'n' - * - * when the ECC block is disabled, one reserved byte (or two for 16 bit bus - * width) is now accessible. For the first n - 1 codewords, these are dummy Bad - * Block Markers. In the last codeword, this position contains the real BBM - * - * In order to have a consistent layout between RAW and ECC modes, we assume - * the following OOB layout arrangement: - * - * |-----------| |--------------------| - * |yyxx.......| |bb*********xx.......| - * |yyxx..ECC..| |bb*FREEOOB*xx..ECC..| - * |yyxx.......| |bb*********xx.......| - * |yyxx.......| |bb*********xx.......| - * |-----------| |--------------------| - * first n - 1 nth OOB region - * OOB regions - * - * n = Number of codewords in the page - * . = ECC bytes - * * = FREE OOB bytes - * y = Dummy bad block byte(s) (inaccessible when ECC enabled) - * x = Unused byte(s) - * b = Real bad block byte(s) (inaccessible when ECC enabled) - * - * This layout is read as is when ECC is disabled. When ECC is enabled, the - * inaccessible Bad Block byte(s) are ignored when we write to a page/oob, - * and assumed as 0xffs when we read a page/oob. The ECC, unused and - * dummy/real bad block bytes are grouped as ecc bytes (i.e, ecc->bytes is - * the sum of the three). - */ -static int qcom_nand_ooblayout_ecc(struct mtd_info *mtd, int section, - struct mtd_oob_region *oobregion) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct qcom_nand_host *host = to_qcom_nand_host(chip); - struct nand_ecc_ctrl *ecc = &chip->ecc; - - if (section > 1) - return -ERANGE; - - if (!section) { - oobregion->length = (ecc->bytes * (ecc->steps - 1)) + - host->bbm_size; - oobregion->offset = 0; - } else { - oobregion->length = host->ecc_bytes_hw + host->spare_bytes; - oobregion->offset = mtd->oobsize - oobregion->length; - } - - return 0; -} - -static int qcom_nand_ooblayout_free(struct mtd_info *mtd, int section, - struct mtd_oob_region *oobregion) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct qcom_nand_host *host = to_qcom_nand_host(chip); - struct nand_ecc_ctrl *ecc = &chip->ecc; - - if (section) - return -ERANGE; - - oobregion->length = ecc->steps * 4; - oobregion->offset = ((ecc->steps - 1) * ecc->bytes) + host->bbm_size; - - return 0; -} - -static const struct mtd_ooblayout_ops qcom_nand_ooblayout_ops = { - .ecc = qcom_nand_ooblayout_ecc, - .free = qcom_nand_ooblayout_free, -}; - -static int qcom_nand_host_setup(struct qcom_nand_host *host) -{ - struct nand_chip *chip = &host->chip; - struct mtd_info *mtd = nand_to_mtd(chip); - struct nand_ecc_ctrl *ecc = &chip->ecc; - struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); - int cwperpage, bad_block_byte; - bool wide_bus; - int ecc_mode = 1; - - /* - * the controller requires each step consists of 512 bytes of data. - * bail out if DT has populated a wrong step size. - */ - if (ecc->size != NANDC_STEP_SIZE) { - dev_err(nandc->dev, "invalid ecc size\n"); - return -EINVAL; - } - - wide_bus = chip->options & NAND_BUSWIDTH_16 ? true : false; - - if (ecc->strength >= 8) { - /* 8 bit ECC defaults to BCH ECC on all platforms */ - host->bch_enabled = true; - ecc_mode = 1; - - if (wide_bus) { - host->ecc_bytes_hw = 14; - host->spare_bytes = 0; - host->bbm_size = 2; - } else { - host->ecc_bytes_hw = 13; - host->spare_bytes = 2; - host->bbm_size = 1; - } - } else { - /* - * if the controller supports BCH for 4 bit ECC, the controller - * uses lesser bytes for ECC. If RS is used, the ECC bytes is - * always 10 bytes - */ - if (nandc->props->ecc_modes & ECC_BCH_4BIT) { - /* BCH */ - host->bch_enabled = true; - ecc_mode = 0; - - if (wide_bus) { - host->ecc_bytes_hw = 8; - host->spare_bytes = 2; - host->bbm_size = 2; - } else { - host->ecc_bytes_hw = 7; - host->spare_bytes = 4; - host->bbm_size = 1; - } - } else { - /* RS */ - host->ecc_bytes_hw = 10; - - if (wide_bus) { - host->spare_bytes = 0; - host->bbm_size = 2; - } else { - host->spare_bytes = 1; - host->bbm_size = 1; - } - } - } - - /* - * we consider ecc->bytes as the sum of all the non-data content in a - * step. It gives us a clean representation of the oob area (even if - * all the bytes aren't used for ECC).It is always 16 bytes for 8 bit - * ECC and 12 bytes for 4 bit ECC - */ - ecc->bytes = host->ecc_bytes_hw + host->spare_bytes + host->bbm_size; - - ecc->read_page = qcom_nandc_read_page; - ecc->read_page_raw = qcom_nandc_read_page_raw; - ecc->read_oob = qcom_nandc_read_oob; - ecc->write_page = qcom_nandc_write_page; - ecc->write_page_raw = qcom_nandc_write_page_raw; - ecc->write_oob = qcom_nandc_write_oob; - - ecc->mode = NAND_ECC_HW; - - mtd_set_ooblayout(mtd, &qcom_nand_ooblayout_ops); - - cwperpage = mtd->writesize / ecc->size; - nandc->max_cwperpage = max_t(unsigned int, nandc->max_cwperpage, - cwperpage); - - /* - * DATA_UD_BYTES varies based on whether the read/write command protects - * spare data with ECC too. We protect spare data by default, so we set - * it to main + spare data, which are 512 and 4 bytes respectively. - */ - host->cw_data = 516; - - /* - * total bytes in a step, either 528 bytes for 4 bit ECC, or 532 bytes - * for 8 bit ECC - */ - host->cw_size = host->cw_data + ecc->bytes; - - if (ecc->bytes * (mtd->writesize / ecc->size) > mtd->oobsize) { - dev_err(nandc->dev, "ecc data doesn't fit in OOB area\n"); - return -EINVAL; - } - - bad_block_byte = mtd->writesize - host->cw_size * (cwperpage - 1) + 1; - - host->cfg0 = (cwperpage - 1) << CW_PER_PAGE - | host->cw_data << UD_SIZE_BYTES - | 0 << DISABLE_STATUS_AFTER_WRITE - | 5 << NUM_ADDR_CYCLES - | host->ecc_bytes_hw << ECC_PARITY_SIZE_BYTES_RS - | 0 << STATUS_BFR_READ - | 1 << SET_RD_MODE_AFTER_STATUS - | host->spare_bytes << SPARE_SIZE_BYTES; - - host->cfg1 = 7 << NAND_RECOVERY_CYCLES - | 0 << CS_ACTIVE_BSY - | bad_block_byte << BAD_BLOCK_BYTE_NUM - | 0 << BAD_BLOCK_IN_SPARE_AREA - | 2 << WR_RD_BSY_GAP - | wide_bus << WIDE_FLASH - | host->bch_enabled << ENABLE_BCH_ECC; - - host->cfg0_raw = (cwperpage - 1) << CW_PER_PAGE - | host->cw_size << UD_SIZE_BYTES - | 5 << NUM_ADDR_CYCLES - | 0 << SPARE_SIZE_BYTES; - - host->cfg1_raw = 7 << NAND_RECOVERY_CYCLES - | 0 << CS_ACTIVE_BSY - | 17 << BAD_BLOCK_BYTE_NUM - | 1 << BAD_BLOCK_IN_SPARE_AREA - | 2 << WR_RD_BSY_GAP - | wide_bus << WIDE_FLASH - | 1 << DEV0_CFG1_ECC_DISABLE; - - host->ecc_bch_cfg = !host->bch_enabled << ECC_CFG_ECC_DISABLE - | 0 << ECC_SW_RESET - | host->cw_data << ECC_NUM_DATA_BYTES - | 1 << ECC_FORCE_CLK_OPEN - | ecc_mode << ECC_MODE - | host->ecc_bytes_hw << ECC_PARITY_SIZE_BYTES_BCH; - - host->ecc_buf_cfg = 0x203 << NUM_STEPS; - - host->clrflashstatus = FS_READY_BSY_N; - host->clrreadstatus = 0xc0; - nandc->regs->erased_cw_detect_cfg_clr = - cpu_to_le32(CLR_ERASED_PAGE_DET); - nandc->regs->erased_cw_detect_cfg_set = - cpu_to_le32(SET_ERASED_PAGE_DET); - - dev_dbg(nandc->dev, - "cfg0 %x cfg1 %x ecc_buf_cfg %x ecc_bch cfg %x cw_size %d cw_data %d strength %d parity_bytes %d steps %d\n", - host->cfg0, host->cfg1, host->ecc_buf_cfg, host->ecc_bch_cfg, - host->cw_size, host->cw_data, ecc->strength, ecc->bytes, - cwperpage); - - return 0; -} - -static int qcom_nandc_alloc(struct qcom_nand_controller *nandc) -{ - int ret; - - ret = dma_set_coherent_mask(nandc->dev, DMA_BIT_MASK(32)); - if (ret) { - dev_err(nandc->dev, "failed to set DMA mask\n"); - return ret; - } - - /* - * we use the internal buffer for reading ONFI params, reading small - * data like ID and status, and preforming read-copy-write operations - * when writing to a codeword partially. 532 is the maximum possible - * size of a codeword for our nand controller - */ - nandc->buf_size = 532; - - nandc->data_buffer = devm_kzalloc(nandc->dev, nandc->buf_size, - GFP_KERNEL); - if (!nandc->data_buffer) - return -ENOMEM; - - nandc->regs = devm_kzalloc(nandc->dev, sizeof(*nandc->regs), - GFP_KERNEL); - if (!nandc->regs) - return -ENOMEM; - - nandc->reg_read_buf = devm_kzalloc(nandc->dev, - MAX_REG_RD * sizeof(*nandc->reg_read_buf), - GFP_KERNEL); - if (!nandc->reg_read_buf) - return -ENOMEM; - - if (nandc->props->is_bam) { - nandc->reg_read_dma = - dma_map_single(nandc->dev, nandc->reg_read_buf, - MAX_REG_RD * - sizeof(*nandc->reg_read_buf), - DMA_FROM_DEVICE); - if (dma_mapping_error(nandc->dev, nandc->reg_read_dma)) { - dev_err(nandc->dev, "failed to DMA MAP reg buffer\n"); - return -EIO; - } - - nandc->tx_chan = dma_request_slave_channel(nandc->dev, "tx"); - if (!nandc->tx_chan) { - dev_err(nandc->dev, "failed to request tx channel\n"); - return -ENODEV; - } - - nandc->rx_chan = dma_request_slave_channel(nandc->dev, "rx"); - if (!nandc->rx_chan) { - dev_err(nandc->dev, "failed to request rx channel\n"); - return -ENODEV; - } - - nandc->cmd_chan = dma_request_slave_channel(nandc->dev, "cmd"); - if (!nandc->cmd_chan) { - dev_err(nandc->dev, "failed to request cmd channel\n"); - return -ENODEV; - } - - /* - * Initially allocate BAM transaction to read ONFI param page. - * After detecting all the devices, this BAM transaction will - * be freed and the next BAM tranasction will be allocated with - * maximum codeword size - */ - nandc->max_cwperpage = 1; - nandc->bam_txn = alloc_bam_transaction(nandc); - if (!nandc->bam_txn) { - dev_err(nandc->dev, - "failed to allocate bam transaction\n"); - return -ENOMEM; - } - } else { - nandc->chan = dma_request_slave_channel(nandc->dev, "rxtx"); - if (!nandc->chan) { - dev_err(nandc->dev, - "failed to request slave channel\n"); - return -ENODEV; - } - } - - INIT_LIST_HEAD(&nandc->desc_list); - INIT_LIST_HEAD(&nandc->host_list); - - nand_hw_control_init(&nandc->controller); - - return 0; -} - -static void qcom_nandc_unalloc(struct qcom_nand_controller *nandc) -{ - if (nandc->props->is_bam) { - if (!dma_mapping_error(nandc->dev, nandc->reg_read_dma)) - dma_unmap_single(nandc->dev, nandc->reg_read_dma, - MAX_REG_RD * - sizeof(*nandc->reg_read_buf), - DMA_FROM_DEVICE); - - if (nandc->tx_chan) - dma_release_channel(nandc->tx_chan); - - if (nandc->rx_chan) - dma_release_channel(nandc->rx_chan); - - if (nandc->cmd_chan) - dma_release_channel(nandc->cmd_chan); - } else { - if (nandc->chan) - dma_release_channel(nandc->chan); - } -} - -/* one time setup of a few nand controller registers */ -static int qcom_nandc_setup(struct qcom_nand_controller *nandc) -{ - u32 nand_ctrl; - - /* kill onenand */ - nandc_write(nandc, SFLASHC_BURST_CFG, 0); - nandc_write(nandc, dev_cmd_reg_addr(nandc, NAND_DEV_CMD_VLD), - NAND_DEV_CMD_VLD_VAL); - - /* enable ADM or BAM DMA */ - if (nandc->props->is_bam) { - nand_ctrl = nandc_read(nandc, NAND_CTRL); - nandc_write(nandc, NAND_CTRL, nand_ctrl | BAM_MODE_EN); - } else { - nandc_write(nandc, NAND_FLASH_CHIP_SELECT, DM_EN); - } - - /* save the original values of these registers */ - nandc->cmd1 = nandc_read(nandc, dev_cmd_reg_addr(nandc, NAND_DEV_CMD1)); - nandc->vld = NAND_DEV_CMD_VLD_VAL; - - return 0; -} - -static int qcom_nand_host_init(struct qcom_nand_controller *nandc, - struct qcom_nand_host *host, - struct device_node *dn) -{ - struct nand_chip *chip = &host->chip; - struct mtd_info *mtd = nand_to_mtd(chip); - struct device *dev = nandc->dev; - int ret; - - ret = of_property_read_u32(dn, "reg", &host->cs); - if (ret) { - dev_err(dev, "can't get chip-select\n"); - return -ENXIO; - } - - nand_set_flash_node(chip, dn); - mtd->name = devm_kasprintf(dev, GFP_KERNEL, "qcom_nand.%d", host->cs); - if (!mtd->name) - return -ENOMEM; - - mtd->owner = THIS_MODULE; - mtd->dev.parent = dev; - - chip->cmdfunc = qcom_nandc_command; - chip->select_chip = qcom_nandc_select_chip; - chip->read_byte = qcom_nandc_read_byte; - chip->read_buf = qcom_nandc_read_buf; - chip->write_buf = qcom_nandc_write_buf; - chip->onfi_set_features = nand_onfi_get_set_features_notsupp; - chip->onfi_get_features = nand_onfi_get_set_features_notsupp; - - /* - * the bad block marker is readable only when we read the last codeword - * of a page with ECC disabled. currently, the nand_base and nand_bbt - * helpers don't allow us to read BB from a nand chip with ECC - * disabled (MTD_OPS_PLACE_OOB is set by default). use the block_bad - * and block_markbad helpers until we permanently switch to using - * MTD_OPS_RAW for all drivers (with the help of badblockbits) - */ - chip->block_bad = qcom_nandc_block_bad; - chip->block_markbad = qcom_nandc_block_markbad; - - chip->controller = &nandc->controller; - chip->options |= NAND_NO_SUBPAGE_WRITE | NAND_USE_BOUNCE_BUFFER | - NAND_SKIP_BBTSCAN; - - /* set up initial status value */ - host->status = NAND_STATUS_READY | NAND_STATUS_WP; - - ret = nand_scan_ident(mtd, 1, NULL); - if (ret) - return ret; - - ret = qcom_nand_host_setup(host); - - return ret; -} - -static int qcom_nand_mtd_register(struct qcom_nand_controller *nandc, - struct qcom_nand_host *host, - struct device_node *dn) -{ - struct nand_chip *chip = &host->chip; - struct mtd_info *mtd = nand_to_mtd(chip); - int ret; - - ret = nand_scan_tail(mtd); - if (ret) - return ret; - - ret = mtd_device_register(mtd, NULL, 0); - if (ret) - nand_cleanup(mtd_to_nand(mtd)); - - return ret; -} - -static int qcom_probe_nand_devices(struct qcom_nand_controller *nandc) -{ - struct device *dev = nandc->dev; - struct device_node *dn = dev->of_node, *child; - struct qcom_nand_host *host, *tmp; - int ret; - - for_each_available_child_of_node(dn, child) { - host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL); - if (!host) { - of_node_put(child); - return -ENOMEM; - } - - ret = qcom_nand_host_init(nandc, host, child); - if (ret) { - devm_kfree(dev, host); - continue; - } - - list_add_tail(&host->node, &nandc->host_list); - } - - if (list_empty(&nandc->host_list)) - return -ENODEV; - - if (nandc->props->is_bam) { - free_bam_transaction(nandc); - nandc->bam_txn = alloc_bam_transaction(nandc); - if (!nandc->bam_txn) { - dev_err(nandc->dev, - "failed to allocate bam transaction\n"); - return -ENOMEM; - } - } - - list_for_each_entry_safe(host, tmp, &nandc->host_list, node) { - ret = qcom_nand_mtd_register(nandc, host, child); - if (ret) { - list_del(&host->node); - devm_kfree(dev, host); - } - } - - if (list_empty(&nandc->host_list)) - return -ENODEV; - - return 0; -} - -/* parse custom DT properties here */ -static int qcom_nandc_parse_dt(struct platform_device *pdev) -{ - struct qcom_nand_controller *nandc = platform_get_drvdata(pdev); - struct device_node *np = nandc->dev->of_node; - int ret; - - if (!nandc->props->is_bam) { - ret = of_property_read_u32(np, "qcom,cmd-crci", - &nandc->cmd_crci); - if (ret) { - dev_err(nandc->dev, "command CRCI unspecified\n"); - return ret; - } - - ret = of_property_read_u32(np, "qcom,data-crci", - &nandc->data_crci); - if (ret) { - dev_err(nandc->dev, "data CRCI unspecified\n"); - return ret; - } - } - - return 0; -} - -static int qcom_nandc_probe(struct platform_device *pdev) -{ - struct qcom_nand_controller *nandc; - const void *dev_data; - struct device *dev = &pdev->dev; - struct resource *res; - int ret; - - nandc = devm_kzalloc(&pdev->dev, sizeof(*nandc), GFP_KERNEL); - if (!nandc) - return -ENOMEM; - - platform_set_drvdata(pdev, nandc); - nandc->dev = dev; - - dev_data = of_device_get_match_data(dev); - if (!dev_data) { - dev_err(&pdev->dev, "failed to get device data\n"); - return -ENODEV; - } - - nandc->props = dev_data; - - res = platform_get_resource(pdev, IORESOURCE_MEM, 0); - nandc->base = devm_ioremap_resource(dev, res); - if (IS_ERR(nandc->base)) - return PTR_ERR(nandc->base); - - nandc->base_phys = res->start; - nandc->base_dma = phys_to_dma(dev, (phys_addr_t)res->start); - - nandc->core_clk = devm_clk_get(dev, "core"); - if (IS_ERR(nandc->core_clk)) - return PTR_ERR(nandc->core_clk); - - nandc->aon_clk = devm_clk_get(dev, "aon"); - if (IS_ERR(nandc->aon_clk)) - return PTR_ERR(nandc->aon_clk); - - ret = qcom_nandc_parse_dt(pdev); - if (ret) - return ret; - - ret = qcom_nandc_alloc(nandc); - if (ret) - goto err_core_clk; - - ret = clk_prepare_enable(nandc->core_clk); - if (ret) - goto err_core_clk; - - ret = clk_prepare_enable(nandc->aon_clk); - if (ret) - goto err_aon_clk; - - ret = qcom_nandc_setup(nandc); - if (ret) - goto err_setup; - - ret = qcom_probe_nand_devices(nandc); - if (ret) - goto err_setup; - - return 0; - -err_setup: - clk_disable_unprepare(nandc->aon_clk); -err_aon_clk: - clk_disable_unprepare(nandc->core_clk); -err_core_clk: - qcom_nandc_unalloc(nandc); - - return ret; -} - -static int qcom_nandc_remove(struct platform_device *pdev) -{ - struct qcom_nand_controller *nandc = platform_get_drvdata(pdev); - struct qcom_nand_host *host; - - list_for_each_entry(host, &nandc->host_list, node) - nand_release(nand_to_mtd(&host->chip)); - - qcom_nandc_unalloc(nandc); - - clk_disable_unprepare(nandc->aon_clk); - clk_disable_unprepare(nandc->core_clk); - - return 0; -} - -static const struct qcom_nandc_props ipq806x_nandc_props = { - .ecc_modes = (ECC_RS_4BIT | ECC_BCH_8BIT), - .is_bam = false, - .dev_cmd_reg_start = 0x0, -}; - -static const struct qcom_nandc_props ipq4019_nandc_props = { - .ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT), - .is_bam = true, - .dev_cmd_reg_start = 0x0, -}; - -static const struct qcom_nandc_props ipq8074_nandc_props = { - .ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT), - .is_bam = true, - .dev_cmd_reg_start = 0x7000, -}; - -/* - * data will hold a struct pointer containing more differences once we support - * more controller variants - */ -static const struct of_device_id qcom_nandc_of_match[] = { - { - .compatible = "qcom,ipq806x-nand", - .data = &ipq806x_nandc_props, - }, - { - .compatible = "qcom,ipq4019-nand", - .data = &ipq4019_nandc_props, - }, - { - .compatible = "qcom,ipq8074-nand", - .data = &ipq8074_nandc_props, - }, - {} -}; -MODULE_DEVICE_TABLE(of, qcom_nandc_of_match); - -static struct platform_driver qcom_nandc_driver = { - .driver = { - .name = "qcom-nandc", - .of_match_table = qcom_nandc_of_match, - }, - .probe = qcom_nandc_probe, - .remove = qcom_nandc_remove, -}; -module_platform_driver(qcom_nandc_driver); - -MODULE_AUTHOR("Archit Taneja "); -MODULE_DESCRIPTION("Qualcomm NAND Controller driver"); -MODULE_LICENSE("GPL v2"); diff --git a/drivers/mtd/nand/r852.c b/drivers/mtd/nand/r852.c deleted file mode 100644 index 595635b9e9de..000000000000 --- a/drivers/mtd/nand/r852.c +++ /dev/null @@ -1,1079 +0,0 @@ -/* - * Copyright © 2009 - Maxim Levitsky - * driver for Ricoh xD readers - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License version 2 as - * published by the Free Software Foundation. - */ - -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include "sm_common.h" -#include "r852.h" - - -static bool r852_enable_dma = 1; -module_param(r852_enable_dma, bool, S_IRUGO); -MODULE_PARM_DESC(r852_enable_dma, "Enable usage of the DMA (default)"); - -static int debug; -module_param(debug, int, S_IRUGO | S_IWUSR); -MODULE_PARM_DESC(debug, "Debug level (0-2)"); - -/* read register */ -static inline uint8_t r852_read_reg(struct r852_device *dev, int address) -{ - uint8_t reg = readb(dev->mmio + address); - return reg; -} - -/* write register */ -static inline void r852_write_reg(struct r852_device *dev, - int address, uint8_t value) -{ - writeb(value, dev->mmio + address); - mmiowb(); -} - - -/* read dword sized register */ -static inline uint32_t r852_read_reg_dword(struct r852_device *dev, int address) -{ - uint32_t reg = le32_to_cpu(readl(dev->mmio + address)); - return reg; -} - -/* write dword sized register */ -static inline void r852_write_reg_dword(struct r852_device *dev, - int address, uint32_t value) -{ - writel(cpu_to_le32(value), dev->mmio + address); - mmiowb(); -} - -/* returns pointer to our private structure */ -static inline struct r852_device *r852_get_dev(struct mtd_info *mtd) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - return nand_get_controller_data(chip); -} - - -/* check if controller supports dma */ -static void r852_dma_test(struct r852_device *dev) -{ - dev->dma_usable = (r852_read_reg(dev, R852_DMA_CAP) & - (R852_DMA1 | R852_DMA2)) == (R852_DMA1 | R852_DMA2); - - if (!dev->dma_usable) - message("Non dma capable device detected, dma disabled"); - - if (!r852_enable_dma) { - message("disabling dma on user request"); - dev->dma_usable = 0; - } -} - -/* - * Enable dma. Enables ether first or second stage of the DMA, - * Expects dev->dma_dir and dev->dma_state be set - */ -static void r852_dma_enable(struct r852_device *dev) -{ - uint8_t dma_reg, dma_irq_reg; - - /* Set up dma settings */ - dma_reg = r852_read_reg_dword(dev, R852_DMA_SETTINGS); - dma_reg &= ~(R852_DMA_READ | R852_DMA_INTERNAL | R852_DMA_MEMORY); - - if (dev->dma_dir) - dma_reg |= R852_DMA_READ; - - if (dev->dma_state == DMA_INTERNAL) { - dma_reg |= R852_DMA_INTERNAL; - /* Precaution to make sure HW doesn't write */ - /* to random kernel memory */ - r852_write_reg_dword(dev, R852_DMA_ADDR, - cpu_to_le32(dev->phys_bounce_buffer)); - } else { - dma_reg |= R852_DMA_MEMORY; - r852_write_reg_dword(dev, R852_DMA_ADDR, - cpu_to_le32(dev->phys_dma_addr)); - } - - /* Precaution: make sure write reached the device */ - r852_read_reg_dword(dev, R852_DMA_ADDR); - - r852_write_reg_dword(dev, R852_DMA_SETTINGS, dma_reg); - - /* Set dma irq */ - dma_irq_reg = r852_read_reg_dword(dev, R852_DMA_IRQ_ENABLE); - r852_write_reg_dword(dev, R852_DMA_IRQ_ENABLE, - dma_irq_reg | - R852_DMA_IRQ_INTERNAL | - R852_DMA_IRQ_ERROR | - R852_DMA_IRQ_MEMORY); -} - -/* - * Disable dma, called from the interrupt handler, which specifies - * success of the operation via 'error' argument - */ -static void r852_dma_done(struct r852_device *dev, int error) -{ - WARN_ON(dev->dma_stage == 0); - - r852_write_reg_dword(dev, R852_DMA_IRQ_STA, - r852_read_reg_dword(dev, R852_DMA_IRQ_STA)); - - r852_write_reg_dword(dev, R852_DMA_SETTINGS, 0); - r852_write_reg_dword(dev, R852_DMA_IRQ_ENABLE, 0); - - /* Precaution to make sure HW doesn't write to random kernel memory */ - r852_write_reg_dword(dev, R852_DMA_ADDR, - cpu_to_le32(dev->phys_bounce_buffer)); - r852_read_reg_dword(dev, R852_DMA_ADDR); - - dev->dma_error = error; - dev->dma_stage = 0; - - if (dev->phys_dma_addr && dev->phys_dma_addr != dev->phys_bounce_buffer) - pci_unmap_single(dev->pci_dev, dev->phys_dma_addr, R852_DMA_LEN, - dev->dma_dir ? PCI_DMA_FROMDEVICE : PCI_DMA_TODEVICE); -} - -/* - * Wait, till dma is done, which includes both phases of it - */ -static int r852_dma_wait(struct r852_device *dev) -{ - long timeout = wait_for_completion_timeout(&dev->dma_done, - msecs_to_jiffies(1000)); - if (!timeout) { - dbg("timeout waiting for DMA interrupt"); - return -ETIMEDOUT; - } - - return 0; -} - -/* - * Read/Write one page using dma. Only pages can be read (512 bytes) -*/ -static void r852_do_dma(struct r852_device *dev, uint8_t *buf, int do_read) -{ - int bounce = 0; - unsigned long flags; - int error; - - dev->dma_error = 0; - - /* Set dma direction */ - dev->dma_dir = do_read; - dev->dma_stage = 1; - reinit_completion(&dev->dma_done); - - dbg_verbose("doing dma %s ", do_read ? "read" : "write"); - - /* Set initial dma state: for reading first fill on board buffer, - from device, for writes first fill the buffer from memory*/ - dev->dma_state = do_read ? DMA_INTERNAL : DMA_MEMORY; - - /* if incoming buffer is not page aligned, we should do bounce */ - if ((unsigned long)buf & (R852_DMA_LEN-1)) - bounce = 1; - - if (!bounce) { - dev->phys_dma_addr = pci_map_single(dev->pci_dev, (void *)buf, - R852_DMA_LEN, - (do_read ? PCI_DMA_FROMDEVICE : PCI_DMA_TODEVICE)); - - if (pci_dma_mapping_error(dev->pci_dev, dev->phys_dma_addr)) - bounce = 1; - } - - if (bounce) { - dbg_verbose("dma: using bounce buffer"); - dev->phys_dma_addr = dev->phys_bounce_buffer; - if (!do_read) - memcpy(dev->bounce_buffer, buf, R852_DMA_LEN); - } - - /* Enable DMA */ - spin_lock_irqsave(&dev->irqlock, flags); - r852_dma_enable(dev); - spin_unlock_irqrestore(&dev->irqlock, flags); - - /* Wait till complete */ - error = r852_dma_wait(dev); - - if (error) { - r852_dma_done(dev, error); - return; - } - - if (do_read && bounce) - memcpy((void *)buf, dev->bounce_buffer, R852_DMA_LEN); -} - -/* - * Program data lines of the nand chip to send data to it - */ -static void r852_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) -{ - struct r852_device *dev = r852_get_dev(mtd); - uint32_t reg; - - /* Don't allow any access to hardware if we suspect card removal */ - if (dev->card_unstable) - return; - - /* Special case for whole sector read */ - if (len == R852_DMA_LEN && dev->dma_usable) { - r852_do_dma(dev, (uint8_t *)buf, 0); - return; - } - - /* write DWORD chinks - faster */ - while (len >= 4) { - reg = buf[0] | buf[1] << 8 | buf[2] << 16 | buf[3] << 24; - r852_write_reg_dword(dev, R852_DATALINE, reg); - buf += 4; - len -= 4; - - } - - /* write rest */ - while (len > 0) { - r852_write_reg(dev, R852_DATALINE, *buf++); - len--; - } -} - -/* - * Read data lines of the nand chip to retrieve data - */ -static void r852_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) -{ - struct r852_device *dev = r852_get_dev(mtd); - uint32_t reg; - - if (dev->card_unstable) { - /* since we can't signal error here, at least, return - predictable buffer */ - memset(buf, 0, len); - return; - } - - /* special case for whole sector read */ - if (len == R852_DMA_LEN && dev->dma_usable) { - r852_do_dma(dev, buf, 1); - return; - } - - /* read in dword sized chunks */ - while (len >= 4) { - - reg = r852_read_reg_dword(dev, R852_DATALINE); - *buf++ = reg & 0xFF; - *buf++ = (reg >> 8) & 0xFF; - *buf++ = (reg >> 16) & 0xFF; - *buf++ = (reg >> 24) & 0xFF; - len -= 4; - } - - /* read the reset by bytes */ - while (len--) - *buf++ = r852_read_reg(dev, R852_DATALINE); -} - -/* - * Read one byte from nand chip - */ -static uint8_t r852_read_byte(struct mtd_info *mtd) -{ - struct r852_device *dev = r852_get_dev(mtd); - - /* Same problem as in r852_read_buf.... */ - if (dev->card_unstable) - return 0; - - return r852_read_reg(dev, R852_DATALINE); -} - -/* - * Control several chip lines & send commands - */ -static void r852_cmdctl(struct mtd_info *mtd, int dat, unsigned int ctrl) -{ - struct r852_device *dev = r852_get_dev(mtd); - - if (dev->card_unstable) - return; - - if (ctrl & NAND_CTRL_CHANGE) { - - dev->ctlreg &= ~(R852_CTL_DATA | R852_CTL_COMMAND | - R852_CTL_ON | R852_CTL_CARDENABLE); - - if (ctrl & NAND_ALE) - dev->ctlreg |= R852_CTL_DATA; - - if (ctrl & NAND_CLE) - dev->ctlreg |= R852_CTL_COMMAND; - - if (ctrl & NAND_NCE) - dev->ctlreg |= (R852_CTL_CARDENABLE | R852_CTL_ON); - else - dev->ctlreg &= ~R852_CTL_WRITE; - - /* when write is stareted, enable write access */ - if (dat == NAND_CMD_ERASE1) - dev->ctlreg |= R852_CTL_WRITE; - - r852_write_reg(dev, R852_CTL, dev->ctlreg); - } - - /* HACK: NAND_CMD_SEQIN is called without NAND_CTRL_CHANGE, but we need - to set write mode */ - if (dat == NAND_CMD_SEQIN && (dev->ctlreg & R852_CTL_COMMAND)) { - dev->ctlreg |= R852_CTL_WRITE; - r852_write_reg(dev, R852_CTL, dev->ctlreg); - } - - if (dat != NAND_CMD_NONE) - r852_write_reg(dev, R852_DATALINE, dat); -} - -/* - * Wait till card is ready. - * based on nand_wait, but returns errors on DMA error - */ -static int r852_wait(struct mtd_info *mtd, struct nand_chip *chip) -{ - struct r852_device *dev = nand_get_controller_data(chip); - - unsigned long timeout; - u8 status; - - timeout = jiffies + (chip->state == FL_ERASING ? - msecs_to_jiffies(400) : msecs_to_jiffies(20)); - - while (time_before(jiffies, timeout)) - if (chip->dev_ready(mtd)) - break; - - nand_status_op(chip, &status); - - /* Unfortunelly, no way to send detailed error status... */ - if (dev->dma_error) { - status |= NAND_STATUS_FAIL; - dev->dma_error = 0; - } - return status; -} - -/* - * Check if card is ready - */ - -static int r852_ready(struct mtd_info *mtd) -{ - struct r852_device *dev = r852_get_dev(mtd); - return !(r852_read_reg(dev, R852_CARD_STA) & R852_CARD_STA_BUSY); -} - - -/* - * Set ECC engine mode -*/ - -static void r852_ecc_hwctl(struct mtd_info *mtd, int mode) -{ - struct r852_device *dev = r852_get_dev(mtd); - - if (dev->card_unstable) - return; - - switch (mode) { - case NAND_ECC_READ: - case NAND_ECC_WRITE: - /* enable ecc generation/check*/ - dev->ctlreg |= R852_CTL_ECC_ENABLE; - - /* flush ecc buffer */ - r852_write_reg(dev, R852_CTL, - dev->ctlreg | R852_CTL_ECC_ACCESS); - - r852_read_reg_dword(dev, R852_DATALINE); - r852_write_reg(dev, R852_CTL, dev->ctlreg); - return; - - case NAND_ECC_READSYN: - /* disable ecc generation */ - dev->ctlreg &= ~R852_CTL_ECC_ENABLE; - r852_write_reg(dev, R852_CTL, dev->ctlreg); - } -} - -/* - * Calculate ECC, only used for writes - */ - -static int r852_ecc_calculate(struct mtd_info *mtd, const uint8_t *dat, - uint8_t *ecc_code) -{ - struct r852_device *dev = r852_get_dev(mtd); - struct sm_oob *oob = (struct sm_oob *)ecc_code; - uint32_t ecc1, ecc2; - - if (dev->card_unstable) - return 0; - - dev->ctlreg &= ~R852_CTL_ECC_ENABLE; - r852_write_reg(dev, R852_CTL, dev->ctlreg | R852_CTL_ECC_ACCESS); - - ecc1 = r852_read_reg_dword(dev, R852_DATALINE); - ecc2 = r852_read_reg_dword(dev, R852_DATALINE); - - oob->ecc1[0] = (ecc1) & 0xFF; - oob->ecc1[1] = (ecc1 >> 8) & 0xFF; - oob->ecc1[2] = (ecc1 >> 16) & 0xFF; - - oob->ecc2[0] = (ecc2) & 0xFF; - oob->ecc2[1] = (ecc2 >> 8) & 0xFF; - oob->ecc2[2] = (ecc2 >> 16) & 0xFF; - - r852_write_reg(dev, R852_CTL, dev->ctlreg); - return 0; -} - -/* - * Correct the data using ECC, hw did almost everything for us - */ - -static int r852_ecc_correct(struct mtd_info *mtd, uint8_t *dat, - uint8_t *read_ecc, uint8_t *calc_ecc) -{ - uint32_t ecc_reg; - uint8_t ecc_status, err_byte; - int i, error = 0; - - struct r852_device *dev = r852_get_dev(mtd); - - if (dev->card_unstable) - return 0; - - if (dev->dma_error) { - dev->dma_error = 0; - return -EIO; - } - - r852_write_reg(dev, R852_CTL, dev->ctlreg | R852_CTL_ECC_ACCESS); - ecc_reg = r852_read_reg_dword(dev, R852_DATALINE); - r852_write_reg(dev, R852_CTL, dev->ctlreg); - - for (i = 0 ; i <= 1 ; i++) { - - ecc_status = (ecc_reg >> 8) & 0xFF; - - /* ecc uncorrectable error */ - if (ecc_status & R852_ECC_FAIL) { - dbg("ecc: unrecoverable error, in half %d", i); - error = -EBADMSG; - goto exit; - } - - /* correctable error */ - if (ecc_status & R852_ECC_CORRECTABLE) { - - err_byte = ecc_reg & 0xFF; - dbg("ecc: recoverable error, " - "in half %d, byte %d, bit %d", i, - err_byte, ecc_status & R852_ECC_ERR_BIT_MSK); - - dat[err_byte] ^= - 1 << (ecc_status & R852_ECC_ERR_BIT_MSK); - error++; - } - - dat += 256; - ecc_reg >>= 16; - } -exit: - return error; -} - -/* - * This is copy of nand_read_oob_std - * nand_read_oob_syndrome assumes we can send column address - we can't - */ -static int r852_read_oob(struct mtd_info *mtd, struct nand_chip *chip, - int page) -{ - return nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize); -} - -/* - * Start the nand engine - */ - -static void r852_engine_enable(struct r852_device *dev) -{ - if (r852_read_reg_dword(dev, R852_HW) & R852_HW_UNKNOWN) { - r852_write_reg(dev, R852_CTL, R852_CTL_RESET | R852_CTL_ON); - r852_write_reg_dword(dev, R852_HW, R852_HW_ENABLED); - } else { - r852_write_reg_dword(dev, R852_HW, R852_HW_ENABLED); - r852_write_reg(dev, R852_CTL, R852_CTL_RESET | R852_CTL_ON); - } - msleep(300); - r852_write_reg(dev, R852_CTL, 0); -} - - -/* - * Stop the nand engine - */ - -static void r852_engine_disable(struct r852_device *dev) -{ - r852_write_reg_dword(dev, R852_HW, 0); - r852_write_reg(dev, R852_CTL, R852_CTL_RESET); -} - -/* - * Test if card is present - */ - -static void r852_card_update_present(struct r852_device *dev) -{ - unsigned long flags; - uint8_t reg; - - spin_lock_irqsave(&dev->irqlock, flags); - reg = r852_read_reg(dev, R852_CARD_STA); - dev->card_detected = !!(reg & R852_CARD_STA_PRESENT); - spin_unlock_irqrestore(&dev->irqlock, flags); -} - -/* - * Update card detection IRQ state according to current card state - * which is read in r852_card_update_present - */ -static void r852_update_card_detect(struct r852_device *dev) -{ - int card_detect_reg = r852_read_reg(dev, R852_CARD_IRQ_ENABLE); - dev->card_unstable = 0; - - card_detect_reg &= ~(R852_CARD_IRQ_REMOVE | R852_CARD_IRQ_INSERT); - card_detect_reg |= R852_CARD_IRQ_GENABLE; - - card_detect_reg |= dev->card_detected ? - R852_CARD_IRQ_REMOVE : R852_CARD_IRQ_INSERT; - - r852_write_reg(dev, R852_CARD_IRQ_ENABLE, card_detect_reg); -} - -static ssize_t r852_media_type_show(struct device *sys_dev, - struct device_attribute *attr, char *buf) -{ - struct mtd_info *mtd = container_of(sys_dev, struct mtd_info, dev); - struct r852_device *dev = r852_get_dev(mtd); - char *data = dev->sm ? "smartmedia" : "xd"; - - strcpy(buf, data); - return strlen(data); -} - -static DEVICE_ATTR(media_type, S_IRUGO, r852_media_type_show, NULL); - - -/* Detect properties of card in slot */ -static void r852_update_media_status(struct r852_device *dev) -{ - uint8_t reg; - unsigned long flags; - int readonly; - - spin_lock_irqsave(&dev->irqlock, flags); - if (!dev->card_detected) { - message("card removed"); - spin_unlock_irqrestore(&dev->irqlock, flags); - return ; - } - - readonly = r852_read_reg(dev, R852_CARD_STA) & R852_CARD_STA_RO; - reg = r852_read_reg(dev, R852_DMA_CAP); - dev->sm = (reg & (R852_DMA1 | R852_DMA2)) && (reg & R852_SMBIT); - - message("detected %s %s card in slot", - dev->sm ? "SmartMedia" : "xD", - readonly ? "readonly" : "writeable"); - - dev->readonly = readonly; - spin_unlock_irqrestore(&dev->irqlock, flags); -} - -/* - * Register the nand device - * Called when the card is detected - */ -static int r852_register_nand_device(struct r852_device *dev) -{ - struct mtd_info *mtd = nand_to_mtd(dev->chip); - - WARN_ON(dev->card_registred); - - mtd->dev.parent = &dev->pci_dev->dev; - - if (dev->readonly) - dev->chip->options |= NAND_ROM; - - r852_engine_enable(dev); - - if (sm_register_device(mtd, dev->sm)) - goto error1; - - if (device_create_file(&mtd->dev, &dev_attr_media_type)) { - message("can't create media type sysfs attribute"); - goto error3; - } - - dev->card_registred = 1; - return 0; -error3: - nand_release(mtd); -error1: - /* Force card redetect */ - dev->card_detected = 0; - return -1; -} - -/* - * Unregister the card - */ - -static void r852_unregister_nand_device(struct r852_device *dev) -{ - struct mtd_info *mtd = nand_to_mtd(dev->chip); - - if (!dev->card_registred) - return; - - device_remove_file(&mtd->dev, &dev_attr_media_type); - nand_release(mtd); - r852_engine_disable(dev); - dev->card_registred = 0; -} - -/* Card state updater */ -static void r852_card_detect_work(struct work_struct *work) -{ - struct r852_device *dev = - container_of(work, struct r852_device, card_detect_work.work); - - r852_card_update_present(dev); - r852_update_card_detect(dev); - dev->card_unstable = 0; - - /* False alarm */ - if (dev->card_detected == dev->card_registred) - goto exit; - - /* Read media properties */ - r852_update_media_status(dev); - - /* Register the card */ - if (dev->card_detected) - r852_register_nand_device(dev); - else - r852_unregister_nand_device(dev); -exit: - r852_update_card_detect(dev); -} - -/* Ack + disable IRQ generation */ -static void r852_disable_irqs(struct r852_device *dev) -{ - uint8_t reg; - reg = r852_read_reg(dev, R852_CARD_IRQ_ENABLE); - r852_write_reg(dev, R852_CARD_IRQ_ENABLE, reg & ~R852_CARD_IRQ_MASK); - - reg = r852_read_reg_dword(dev, R852_DMA_IRQ_ENABLE); - r852_write_reg_dword(dev, R852_DMA_IRQ_ENABLE, - reg & ~R852_DMA_IRQ_MASK); - - r852_write_reg(dev, R852_CARD_IRQ_STA, R852_CARD_IRQ_MASK); - r852_write_reg_dword(dev, R852_DMA_IRQ_STA, R852_DMA_IRQ_MASK); -} - -/* Interrupt handler */ -static irqreturn_t r852_irq(int irq, void *data) -{ - struct r852_device *dev = (struct r852_device *)data; - - uint8_t card_status, dma_status; - unsigned long flags; - irqreturn_t ret = IRQ_NONE; - - spin_lock_irqsave(&dev->irqlock, flags); - - /* handle card detection interrupts first */ - card_status = r852_read_reg(dev, R852_CARD_IRQ_STA); - r852_write_reg(dev, R852_CARD_IRQ_STA, card_status); - - if (card_status & (R852_CARD_IRQ_INSERT|R852_CARD_IRQ_REMOVE)) { - - ret = IRQ_HANDLED; - dev->card_detected = !!(card_status & R852_CARD_IRQ_INSERT); - - /* we shouldn't receive any interrupts if we wait for card - to settle */ - WARN_ON(dev->card_unstable); - - /* disable irqs while card is unstable */ - /* this will timeout DMA if active, but better that garbage */ - r852_disable_irqs(dev); - - if (dev->card_unstable) - goto out; - - /* let, card state to settle a bit, and then do the work */ - dev->card_unstable = 1; - queue_delayed_work(dev->card_workqueue, - &dev->card_detect_work, msecs_to_jiffies(100)); - goto out; - } - - - /* Handle dma interrupts */ - dma_status = r852_read_reg_dword(dev, R852_DMA_IRQ_STA); - r852_write_reg_dword(dev, R852_DMA_IRQ_STA, dma_status); - - if (dma_status & R852_DMA_IRQ_MASK) { - - ret = IRQ_HANDLED; - - if (dma_status & R852_DMA_IRQ_ERROR) { - dbg("received dma error IRQ"); - r852_dma_done(dev, -EIO); - complete(&dev->dma_done); - goto out; - } - - /* received DMA interrupt out of nowhere? */ - WARN_ON_ONCE(dev->dma_stage == 0); - - if (dev->dma_stage == 0) - goto out; - - /* done device access */ - if (dev->dma_state == DMA_INTERNAL && - (dma_status & R852_DMA_IRQ_INTERNAL)) { - - dev->dma_state = DMA_MEMORY; - dev->dma_stage++; - } - - /* done memory DMA */ - if (dev->dma_state == DMA_MEMORY && - (dma_status & R852_DMA_IRQ_MEMORY)) { - dev->dma_state = DMA_INTERNAL; - dev->dma_stage++; - } - - /* Enable 2nd half of dma dance */ - if (dev->dma_stage == 2) - r852_dma_enable(dev); - - /* Operation done */ - if (dev->dma_stage == 3) { - r852_dma_done(dev, 0); - complete(&dev->dma_done); - } - goto out; - } - - /* Handle unknown interrupts */ - if (dma_status) - dbg("bad dma IRQ status = %x", dma_status); - - if (card_status & ~R852_CARD_STA_CD) - dbg("strange card status = %x", card_status); - -out: - spin_unlock_irqrestore(&dev->irqlock, flags); - return ret; -} - -static int r852_probe(struct pci_dev *pci_dev, const struct pci_device_id *id) -{ - int error; - struct nand_chip *chip; - struct r852_device *dev; - - /* pci initialization */ - error = pci_enable_device(pci_dev); - - if (error) - goto error1; - - pci_set_master(pci_dev); - - error = pci_set_dma_mask(pci_dev, DMA_BIT_MASK(32)); - if (error) - goto error2; - - error = pci_request_regions(pci_dev, DRV_NAME); - - if (error) - goto error3; - - error = -ENOMEM; - - /* init nand chip, but register it only on card insert */ - chip = kzalloc(sizeof(struct nand_chip), GFP_KERNEL); - - if (!chip) - goto error4; - - /* commands */ - chip->cmd_ctrl = r852_cmdctl; - chip->waitfunc = r852_wait; - chip->dev_ready = r852_ready; - - /* I/O */ - chip->read_byte = r852_read_byte; - chip->read_buf = r852_read_buf; - chip->write_buf = r852_write_buf; - - /* ecc */ - chip->ecc.mode = NAND_ECC_HW_SYNDROME; - chip->ecc.size = R852_DMA_LEN; - chip->ecc.bytes = SM_OOB_SIZE; - chip->ecc.strength = 2; - chip->ecc.hwctl = r852_ecc_hwctl; - chip->ecc.calculate = r852_ecc_calculate; - chip->ecc.correct = r852_ecc_correct; - - /* TODO: hack */ - chip->ecc.read_oob = r852_read_oob; - - /* init our device structure */ - dev = kzalloc(sizeof(struct r852_device), GFP_KERNEL); - - if (!dev) - goto error5; - - nand_set_controller_data(chip, dev); - dev->chip = chip; - dev->pci_dev = pci_dev; - pci_set_drvdata(pci_dev, dev); - - dev->bounce_buffer = pci_alloc_consistent(pci_dev, R852_DMA_LEN, - &dev->phys_bounce_buffer); - - if (!dev->bounce_buffer) - goto error6; - - - error = -ENODEV; - dev->mmio = pci_ioremap_bar(pci_dev, 0); - - if (!dev->mmio) - goto error7; - - error = -ENOMEM; - dev->tmp_buffer = kzalloc(SM_SECTOR_SIZE, GFP_KERNEL); - - if (!dev->tmp_buffer) - goto error8; - - init_completion(&dev->dma_done); - - dev->card_workqueue = create_freezable_workqueue(DRV_NAME); - - if (!dev->card_workqueue) - goto error9; - - INIT_DELAYED_WORK(&dev->card_detect_work, r852_card_detect_work); - - /* shutdown everything - precation */ - r852_engine_disable(dev); - r852_disable_irqs(dev); - - r852_dma_test(dev); - - dev->irq = pci_dev->irq; - spin_lock_init(&dev->irqlock); - - dev->card_detected = 0; - r852_card_update_present(dev); - - /*register irq handler*/ - error = -ENODEV; - if (request_irq(pci_dev->irq, &r852_irq, IRQF_SHARED, - DRV_NAME, dev)) - goto error10; - - /* kick initial present test */ - queue_delayed_work(dev->card_workqueue, - &dev->card_detect_work, 0); - - - printk(KERN_NOTICE DRV_NAME ": driver loaded successfully\n"); - return 0; - -error10: - destroy_workqueue(dev->card_workqueue); -error9: - kfree(dev->tmp_buffer); -error8: - pci_iounmap(pci_dev, dev->mmio); -error7: - pci_free_consistent(pci_dev, R852_DMA_LEN, - dev->bounce_buffer, dev->phys_bounce_buffer); -error6: - kfree(dev); -error5: - kfree(chip); -error4: - pci_release_regions(pci_dev); -error3: -error2: - pci_disable_device(pci_dev); -error1: - return error; -} - -static void r852_remove(struct pci_dev *pci_dev) -{ - struct r852_device *dev = pci_get_drvdata(pci_dev); - - /* Stop detect workqueue - - we are going to unregister the device anyway*/ - cancel_delayed_work_sync(&dev->card_detect_work); - destroy_workqueue(dev->card_workqueue); - - /* Unregister the device, this might make more IO */ - r852_unregister_nand_device(dev); - - /* Stop interrupts */ - r852_disable_irqs(dev); - free_irq(dev->irq, dev); - - /* Cleanup */ - kfree(dev->tmp_buffer); - pci_iounmap(pci_dev, dev->mmio); - pci_free_consistent(pci_dev, R852_DMA_LEN, - dev->bounce_buffer, dev->phys_bounce_buffer); - - kfree(dev->chip); - kfree(dev); - - /* Shutdown the PCI device */ - pci_release_regions(pci_dev); - pci_disable_device(pci_dev); -} - -static void r852_shutdown(struct pci_dev *pci_dev) -{ - struct r852_device *dev = pci_get_drvdata(pci_dev); - - cancel_delayed_work_sync(&dev->card_detect_work); - r852_disable_irqs(dev); - synchronize_irq(dev->irq); - pci_disable_device(pci_dev); -} - -#ifdef CONFIG_PM_SLEEP -static int r852_suspend(struct device *device) -{ - struct r852_device *dev = pci_get_drvdata(to_pci_dev(device)); - - if (dev->ctlreg & R852_CTL_CARDENABLE) - return -EBUSY; - - /* First make sure the detect work is gone */ - cancel_delayed_work_sync(&dev->card_detect_work); - - /* Turn off the interrupts and stop the device */ - r852_disable_irqs(dev); - r852_engine_disable(dev); - - /* If card was pulled off just during the suspend, which is very - unlikely, we will remove it on resume, it too late now - anyway... */ - dev->card_unstable = 0; - return 0; -} - -static int r852_resume(struct device *device) -{ - struct r852_device *dev = pci_get_drvdata(to_pci_dev(device)); - struct mtd_info *mtd = nand_to_mtd(dev->chip); - - r852_disable_irqs(dev); - r852_card_update_present(dev); - r852_engine_disable(dev); - - - /* If card status changed, just do the work */ - if (dev->card_detected != dev->card_registred) { - dbg("card was %s during low power state", - dev->card_detected ? "added" : "removed"); - - queue_delayed_work(dev->card_workqueue, - &dev->card_detect_work, msecs_to_jiffies(1000)); - return 0; - } - - /* Otherwise, initialize the card */ - if (dev->card_registred) { - r852_engine_enable(dev); - dev->chip->select_chip(mtd, 0); - nand_reset_op(dev->chip); - dev->chip->select_chip(mtd, -1); - } - - /* Program card detection IRQ */ - r852_update_card_detect(dev); - return 0; -} -#endif - -static const struct pci_device_id r852_pci_id_tbl[] = { - - { PCI_VDEVICE(RICOH, 0x0852), }, - { }, -}; - -MODULE_DEVICE_TABLE(pci, r852_pci_id_tbl); - -static SIMPLE_DEV_PM_OPS(r852_pm_ops, r852_suspend, r852_resume); - -static struct pci_driver r852_pci_driver = { - .name = DRV_NAME, - .id_table = r852_pci_id_tbl, - .probe = r852_probe, - .remove = r852_remove, - .shutdown = r852_shutdown, - .driver.pm = &r852_pm_ops, -}; - -module_pci_driver(r852_pci_driver); - -MODULE_LICENSE("GPL"); -MODULE_AUTHOR("Maxim Levitsky "); -MODULE_DESCRIPTION("Ricoh 85xx xD/smartmedia card reader driver"); diff --git a/drivers/mtd/nand/r852.h b/drivers/mtd/nand/r852.h deleted file mode 100644 index 8713c57f6207..000000000000 --- a/drivers/mtd/nand/r852.h +++ /dev/null @@ -1,160 +0,0 @@ -/* - * Copyright © 2009 - Maxim Levitsky - * driver for Ricoh xD readers - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License version 2 as - * published by the Free Software Foundation. - */ - -#include -#include -#include -#include -#include - - -/* nand interface + ecc - byte write/read does one cycle on nand data lines. - dword write/read does 4 cycles - if R852_CTL_ECC_ACCESS is set in R852_CTL, then dword read reads - results of ecc correction, if DMA read was done before. - If write was done two dword reads read generated ecc checksums -*/ -#define R852_DATALINE 0x00 - -/* control register */ -#define R852_CTL 0x04 -#define R852_CTL_COMMAND 0x01 /* send command (#CLE)*/ -#define R852_CTL_DATA 0x02 /* read/write data (#ALE)*/ -#define R852_CTL_ON 0x04 /* only seem to controls the hd led, */ - /* but has to be set on start...*/ -#define R852_CTL_RESET 0x08 /* unknown, set only on start once*/ -#define R852_CTL_CARDENABLE 0x10 /* probably (#CE) - always set*/ -#define R852_CTL_ECC_ENABLE 0x20 /* enable ecc engine */ -#define R852_CTL_ECC_ACCESS 0x40 /* read/write ecc via reg #0*/ -#define R852_CTL_WRITE 0x80 /* set when performing writes (#WP) */ - -/* card detection status */ -#define R852_CARD_STA 0x05 - -#define R852_CARD_STA_CD 0x01 /* state of #CD line, same as 0x04 */ -#define R852_CARD_STA_RO 0x02 /* card is readonly */ -#define R852_CARD_STA_PRESENT 0x04 /* card is present (#CD) */ -#define R852_CARD_STA_ABSENT 0x08 /* card is absent */ -#define R852_CARD_STA_BUSY 0x80 /* card is busy - (#R/B) */ - -/* card detection irq status & enable*/ -#define R852_CARD_IRQ_STA 0x06 /* IRQ status */ -#define R852_CARD_IRQ_ENABLE 0x07 /* IRQ enable */ - -#define R852_CARD_IRQ_CD 0x01 /* fire when #CD lights, same as 0x04*/ -#define R852_CARD_IRQ_REMOVE 0x04 /* detect card removal */ -#define R852_CARD_IRQ_INSERT 0x08 /* detect card insert */ -#define R852_CARD_IRQ_UNK1 0x10 /* unknown */ -#define R852_CARD_IRQ_GENABLE 0x80 /* general enable */ -#define R852_CARD_IRQ_MASK 0x1D - - - -/* hardware enable */ -#define R852_HW 0x08 -#define R852_HW_ENABLED 0x01 /* hw enabled */ -#define R852_HW_UNKNOWN 0x80 - - -/* dma capabilities */ -#define R852_DMA_CAP 0x09 -#define R852_SMBIT 0x20 /* if set with bit #6 or bit #7, then */ - /* hw is smartmedia */ -#define R852_DMA1 0x40 /* if set w/bit #7, dma is supported */ -#define R852_DMA2 0x80 /* if set w/bit #6, dma is supported */ - - -/* physical DMA address - 32 bit value*/ -#define R852_DMA_ADDR 0x0C - - -/* dma settings */ -#define R852_DMA_SETTINGS 0x10 -#define R852_DMA_MEMORY 0x01 /* (memory <-> internal hw buffer) */ -#define R852_DMA_READ 0x02 /* 0 = write, 1 = read */ -#define R852_DMA_INTERNAL 0x04 /* (internal hw buffer <-> card) */ - -/* dma IRQ status */ -#define R852_DMA_IRQ_STA 0x14 - -/* dma IRQ enable */ -#define R852_DMA_IRQ_ENABLE 0x18 - -#define R852_DMA_IRQ_MEMORY 0x01 /* (memory <-> internal hw buffer) */ -#define R852_DMA_IRQ_ERROR 0x02 /* error did happen */ -#define R852_DMA_IRQ_INTERNAL 0x04 /* (internal hw buffer <-> card) */ -#define R852_DMA_IRQ_MASK 0x07 /* mask of all IRQ bits */ - - -/* ECC syndrome format - read from reg #0 will return two copies of these for - each half of the page. - first byte is error byte location, and second, bit location + flags */ -#define R852_ECC_ERR_BIT_MSK 0x07 /* error bit location */ -#define R852_ECC_CORRECT 0x10 /* no errors - (guessed) */ -#define R852_ECC_CORRECTABLE 0x20 /* correctable error exist */ -#define R852_ECC_FAIL 0x40 /* non correctable error detected */ - -#define R852_DMA_LEN 512 - -#define DMA_INTERNAL 0 -#define DMA_MEMORY 1 - -struct r852_device { - void __iomem *mmio; /* mmio */ - struct nand_chip *chip; /* nand chip backpointer */ - struct pci_dev *pci_dev; /* pci backpointer */ - - /* dma area */ - dma_addr_t phys_dma_addr; /* bus address of buffer*/ - struct completion dma_done; /* data transfer done */ - - dma_addr_t phys_bounce_buffer; /* bus address of bounce buffer */ - uint8_t *bounce_buffer; /* virtual address of bounce buffer */ - - int dma_dir; /* 1 = read, 0 = write */ - int dma_stage; /* 0 - idle, 1 - first step, - 2 - second step */ - - int dma_state; /* 0 = internal, 1 = memory */ - int dma_error; /* dma errors */ - int dma_usable; /* is it possible to use dma */ - - /* card status area */ - struct delayed_work card_detect_work; - struct workqueue_struct *card_workqueue; - int card_registred; /* card registered with mtd */ - int card_detected; /* card detected in slot */ - int card_unstable; /* whenever the card is inserted, - is not known yet */ - int readonly; /* card is readonly */ - int sm; /* Is card smartmedia */ - - /* interrupt handling */ - spinlock_t irqlock; /* IRQ protecting lock */ - int irq; /* irq num */ - /* misc */ - void *tmp_buffer; /* temporary buffer */ - uint8_t ctlreg; /* cached contents of control reg */ -}; - -#define DRV_NAME "r852" - - -#define dbg(format, ...) \ - if (debug) \ - printk(KERN_DEBUG DRV_NAME ": " format "\n", ## __VA_ARGS__) - -#define dbg_verbose(format, ...) \ - if (debug > 1) \ - printk(KERN_DEBUG DRV_NAME ": " format "\n", ## __VA_ARGS__) - - -#define message(format, ...) \ - printk(KERN_INFO DRV_NAME ": " format "\n", ## __VA_ARGS__) diff --git a/drivers/mtd/nand/raw/Kconfig b/drivers/mtd/nand/raw/Kconfig new file mode 100644 index 000000000000..e6b8c59f2c0d --- /dev/null +++ b/drivers/mtd/nand/raw/Kconfig @@ -0,0 +1,580 @@ +config MTD_NAND_ECC + tristate + +config MTD_NAND_ECC_SMC + bool "NAND ECC Smart Media byte order" + depends on MTD_NAND_ECC + default n + help + Software ECC according to the Smart Media Specification. + The original Linux implementation had byte 0 and 1 swapped. + + +menuconfig MTD_NAND + tristate "NAND Device Support" + depends on MTD + select MTD_NAND_ECC + help + This enables support for accessing all type of NAND flash + devices. For further information see + . + +if MTD_NAND + +config MTD_NAND_BCH + tristate + select BCH + depends on MTD_NAND_ECC_BCH + default MTD_NAND + +config MTD_NAND_ECC_BCH + bool "Support software BCH ECC" + default n + help + This enables support for software BCH error correction. Binary BCH + codes are more powerful and cpu intensive than traditional Hamming + ECC codes. They are used with NAND devices requiring more than 1 bit + of error correction. + +config MTD_SM_COMMON + tristate + default n + +config MTD_NAND_DENALI + tristate + +config MTD_NAND_DENALI_PCI + tristate "Support Denali NAND controller on Intel Moorestown" + select MTD_NAND_DENALI + depends on HAS_DMA && PCI + help + Enable the driver for NAND flash on Intel Moorestown, using the + Denali NAND controller core. + +config MTD_NAND_DENALI_DT + tristate "Support Denali NAND controller as a DT device" + select MTD_NAND_DENALI + depends on HAS_DMA && HAVE_CLK && OF + help + Enable the driver for NAND flash on platforms using a Denali NAND + controller as a DT device. + +config MTD_NAND_GPIO + tristate "GPIO assisted NAND Flash driver" + depends on GPIOLIB || COMPILE_TEST + depends on HAS_IOMEM + help + This enables a NAND flash driver where control signals are + connected to GPIO pins, and commands and data are communicated + via a memory mapped interface. + +config MTD_NAND_AMS_DELTA + tristate "NAND Flash device on Amstrad E3" + depends on MACH_AMS_DELTA + default y + help + Support for NAND flash on Amstrad E3 (Delta). + +config MTD_NAND_OMAP2 + tristate "NAND Flash device on OMAP2, OMAP3, OMAP4 and Keystone" + depends on (ARCH_OMAP2PLUS || ARCH_KEYSTONE) + help + Support for NAND flash on Texas Instruments OMAP2, OMAP3, OMAP4 + and Keystone platforms. + +config MTD_NAND_OMAP_BCH + depends on MTD_NAND_OMAP2 + bool "Support hardware based BCH error correction" + default n + select BCH + help + This config enables the ELM hardware engine, which can be used to + locate and correct errors when using BCH ECC scheme. This offloads + the cpu from doing ECC error searching and correction. However some + legacy OMAP families like OMAP2xxx, OMAP3xxx do not have ELM engine + so this is optional for them. + +config MTD_NAND_OMAP_BCH_BUILD + def_tristate MTD_NAND_OMAP2 && MTD_NAND_OMAP_BCH + +config MTD_NAND_RICOH + tristate "Ricoh xD card reader" + default n + depends on PCI + select MTD_SM_COMMON + help + Enable support for Ricoh R5C852 xD card reader + You also need to enable ether + NAND SSFDC (SmartMedia) read only translation layer' or new + expermental, readwrite + 'SmartMedia/xD new translation layer' + +config MTD_NAND_AU1550 + tristate "Au1550/1200 NAND support" + depends on MIPS_ALCHEMY + help + This enables the driver for the NAND flash controller on the + AMD/Alchemy 1550 SOC. + +config MTD_NAND_BF5XX + tristate "Blackfin on-chip NAND Flash Controller driver" + depends on BF54x || BF52x + help + This enables the Blackfin on-chip NAND flash controller + + No board specific support is done by this driver, each board + must advertise a platform_device for the driver to attach. + + This driver can also be built as a module. If so, the module + will be called bf5xx-nand. + +config MTD_NAND_BF5XX_HWECC + bool "BF5XX NAND Hardware ECC" + default y + depends on MTD_NAND_BF5XX + help + Enable the use of the BF5XX's internal ECC generator when + using NAND. + +config MTD_NAND_BF5XX_BOOTROM_ECC + bool "Use Blackfin BootROM ECC Layout" + default n + depends on MTD_NAND_BF5XX_HWECC + help + If you wish to modify NAND pages and allow the Blackfin on-chip + BootROM to boot from them, say Y here. This is only necessary + if you are booting U-Boot out of NAND and you wish to update + U-Boot from Linux' userspace. Otherwise, you should say N here. + + If unsure, say N. + +config MTD_NAND_S3C2410 + tristate "NAND Flash support for Samsung S3C SoCs" + depends on ARCH_S3C24XX || ARCH_S3C64XX + help + This enables the NAND flash controller on the S3C24xx and S3C64xx + SoCs + + No board specific support is done by this driver, each board + must advertise a platform_device for the driver to attach. + +config MTD_NAND_S3C2410_DEBUG + bool "Samsung S3C NAND driver debug" + depends on MTD_NAND_S3C2410 + help + Enable debugging of the S3C NAND driver + +config MTD_NAND_NDFC + tristate "NDFC NanD Flash Controller" + depends on 4xx + select MTD_NAND_ECC_SMC + help + NDFC Nand Flash Controllers are integrated in IBM/AMCC's 4xx SoCs + +config MTD_NAND_S3C2410_CLKSTOP + bool "Samsung S3C NAND IDLE clock stop" + depends on MTD_NAND_S3C2410 + default n + help + Stop the clock to the NAND controller when there is no chip + selected to save power. This will mean there is a small delay + when the is NAND chip selected or released, but will save + approximately 5mA of power when there is nothing happening. + +config MTD_NAND_TANGO + tristate "NAND Flash support for Tango chips" + depends on ARCH_TANGO || COMPILE_TEST + depends on HAS_DMA + help + Enables the NAND Flash controller on Tango chips. + +config MTD_NAND_DISKONCHIP + tristate "DiskOnChip 2000, Millennium and Millennium Plus (NAND reimplementation)" + depends on HAS_IOMEM + select REED_SOLOMON + select REED_SOLOMON_DEC16 + help + This is a reimplementation of M-Systems DiskOnChip 2000, + Millennium and Millennium Plus as a standard NAND device driver, + as opposed to the earlier self-contained MTD device drivers. + This should enable, among other things, proper JFFS2 operation on + these devices. + +config MTD_NAND_DISKONCHIP_PROBE_ADVANCED + bool "Advanced detection options for DiskOnChip" + depends on MTD_NAND_DISKONCHIP + help + This option allows you to specify nonstandard address at which to + probe for a DiskOnChip, or to change the detection options. You + are unlikely to need any of this unless you are using LinuxBIOS. + Say 'N'. + +config MTD_NAND_DISKONCHIP_PROBE_ADDRESS + hex "Physical address of DiskOnChip" if MTD_NAND_DISKONCHIP_PROBE_ADVANCED + depends on MTD_NAND_DISKONCHIP + default "0" + ---help--- + By default, the probe for DiskOnChip devices will look for a + DiskOnChip at every multiple of 0x2000 between 0xC8000 and 0xEE000. + This option allows you to specify a single address at which to probe + for the device, which is useful if you have other devices in that + range which get upset when they are probed. + + (Note that on PowerPC, the normal probe will only check at + 0xE4000000.) + + Normally, you should leave this set to zero, to allow the probe at + the normal addresses. + +config MTD_NAND_DISKONCHIP_PROBE_HIGH + bool "Probe high addresses" + depends on MTD_NAND_DISKONCHIP_PROBE_ADVANCED + help + By default, the probe for DiskOnChip devices will look for a + DiskOnChip at every multiple of 0x2000 between 0xC8000 and 0xEE000. + This option changes to make it probe between 0xFFFC8000 and + 0xFFFEE000. Unless you are using LinuxBIOS, this is unlikely to be + useful to you. Say 'N'. + +config MTD_NAND_DISKONCHIP_BBTWRITE + bool "Allow BBT writes on DiskOnChip Millennium and 2000TSOP" + depends on MTD_NAND_DISKONCHIP + help + On DiskOnChip devices shipped with the INFTL filesystem (Millennium + and 2000 TSOP/Alon), Linux reserves some space at the end of the + device for the Bad Block Table (BBT). If you have existing INFTL + data on your device (created by non-Linux tools such as M-Systems' + DOS drivers), your data might overlap the area Linux wants to use for + the BBT. If this is a concern for you, leave this option disabled and + Linux will not write BBT data into this area. + The downside of leaving this option disabled is that if bad blocks + are detected by Linux, they will not be recorded in the BBT, which + could cause future problems. + Once you enable this option, new filesystems (INFTL or others, created + in Linux or other operating systems) will not use the reserved area. + The only reason not to enable this option is to prevent damage to + preexisting filesystems. + Even if you leave this disabled, you can enable BBT writes at module + load time (assuming you build diskonchip as a module) with the module + parameter "inftl_bbt_write=1". + +config MTD_NAND_DOCG4 + tristate "Support for DiskOnChip G4" + depends on HAS_IOMEM + select BCH + select BITREVERSE + help + Support for diskonchip G4 nand flash, found in various smartphones and + PDAs, among them the Palm Treo680, HTC Prophet and Wizard, Toshiba + Portege G900, Asus P526, and O2 XDA Zinc. + + With this driver you will be able to use UBI and create a ubifs on the + device, so you may wish to consider enabling UBI and UBIFS as well. + + These devices ship with the Mys/Sandisk SAFTL formatting, for which + there is currently no mtd parser, so you may want to use command line + partitioning to segregate write-protected blocks. On the Treo680, the + first five erase blocks (256KiB each) are write-protected, followed + by the block containing the saftl partition table. This is probably + typical. + +config MTD_NAND_SHARPSL + tristate "Support for NAND Flash on Sharp SL Series (C7xx + others)" + depends on ARCH_PXA + +config MTD_NAND_CAFE + tristate "NAND support for OLPC CAFÉ chip" + depends on PCI + select REED_SOLOMON + select REED_SOLOMON_DEC16 + help + Use NAND flash attached to the CAFÉ chip designed for the OLPC + laptop. + +config MTD_NAND_CS553X + tristate "NAND support for CS5535/CS5536 (AMD Geode companion chip)" + depends on X86_32 + depends on !UML && HAS_IOMEM + help + The CS553x companion chips for the AMD Geode processor + include NAND flash controllers with built-in hardware ECC + capabilities; enabling this option will allow you to use + these. The driver will check the MSRs to verify that the + controller is enabled for NAND, and currently requires that + the controller be in MMIO mode. + + If you say "m", the module will be called cs553x_nand. + +config MTD_NAND_ATMEL + tristate "Support for NAND Flash / SmartMedia on AT91" + depends on ARCH_AT91 + select MFD_ATMEL_SMC + help + Enables support for NAND Flash / Smart Media Card interface + on Atmel AT91 processors. + +config MTD_NAND_PXA3xx + tristate "NAND support on PXA3xx and Armada 370/XP" + depends on !MTD_NAND_MARVELL + depends on PXA3xx || ARCH_MMP || PLAT_ORION || ARCH_MVEBU + help + + This enables the driver for the NAND flash device found on + PXA3xx processors (NFCv1) and also on 32-bit Armada + platforms (XP, 370, 375, 38x, 39x) and 64-bit Armada + platforms (7K, 8K) (NFCv2). + +config MTD_NAND_MARVELL + tristate "NAND controller support on Marvell boards" + depends on PXA3xx || ARCH_MMP || PLAT_ORION || ARCH_MVEBU || \ + COMPILE_TEST + depends on HAS_IOMEM + help + This enables the NAND flash controller driver for Marvell boards, + including: + - PXA3xx processors (NFCv1) + - 32-bit Armada platforms (XP, 37x, 38x, 39x) (NFCv2) + - 64-bit Aramda platforms (7k, 8k) (NFCv2) + +config MTD_NAND_SLC_LPC32XX + tristate "NXP LPC32xx SLC Controller" + depends on ARCH_LPC32XX + help + Enables support for NXP's LPC32XX SLC (i.e. for Single Level Cell + chips) NAND controller. This is the default for the PHYTEC 3250 + reference board which contains a NAND256R3A2CZA6 chip. + + Please check the actual NAND chip connected and its support + by the SLC NAND controller. + +config MTD_NAND_MLC_LPC32XX + tristate "NXP LPC32xx MLC Controller" + depends on ARCH_LPC32XX + help + Uses the LPC32XX MLC (i.e. for Multi Level Cell chips) NAND + controller. This is the default for the WORK92105 controller + board. + + Please check the actual NAND chip connected and its support + by the MLC NAND controller. + +config MTD_NAND_CM_X270 + tristate "Support for NAND Flash on CM-X270 modules" + depends on MACH_ARMCORE + +config MTD_NAND_PASEMI + tristate "NAND support for PA Semi PWRficient" + depends on PPC_PASEMI + help + Enables support for NAND Flash interface on PA Semi PWRficient + based boards + +config MTD_NAND_TMIO + tristate "NAND Flash device on Toshiba Mobile IO Controller" + depends on MFD_TMIO + help + Support for NAND flash connected to a Toshiba Mobile IO + Controller in some PDAs, including the Sharp SL6000x. + +config MTD_NAND_NANDSIM + tristate "Support for NAND Flash Simulator" + help + The simulator may simulate various NAND flash chips for the + MTD nand layer. + +config MTD_NAND_GPMI_NAND + tristate "GPMI NAND Flash Controller driver" + depends on MTD_NAND && MXS_DMA + help + Enables NAND Flash support for IMX23, IMX28 or IMX6. + The GPMI controller is very powerful, with the help of BCH + module, it can do the hardware ECC. The GPMI supports several + NAND flashs at the same time. + +config MTD_NAND_BRCMNAND + tristate "Broadcom STB NAND controller" + depends on ARM || ARM64 || MIPS + help + Enables the Broadcom NAND controller driver. The controller was + originally designed for Set-Top Box but is used on various BCM7xxx, + BCM3xxx, BCM63xxx, iProc/Cygnus and more. + +config MTD_NAND_BCM47XXNFLASH + tristate "Support for NAND flash on BCM4706 BCMA bus" + depends on BCMA_NFLASH + help + BCMA bus can have various flash memories attached, they are + registered by bcma as platform devices. This enables driver for + NAND flash memories. For now only BCM4706 is supported. + +config MTD_NAND_PLATFORM + tristate "Support for generic platform NAND driver" + depends on HAS_IOMEM + help + This implements a generic NAND driver for on-SOC platform + devices. You will need to provide platform-specific functions + via platform_data. + +config MTD_NAND_ORION + tristate "NAND Flash support for Marvell Orion SoC" + depends on PLAT_ORION + help + This enables the NAND flash controller on Orion machines. + + No board specific support is done by this driver, each board + must advertise a platform_device for the driver to attach. + +config MTD_NAND_OXNAS + tristate "NAND Flash support for Oxford Semiconductor SoC" + depends on ARCH_OXNAS || COMPILE_TEST + depends on HAS_IOMEM + help + This enables the NAND flash controller on Oxford Semiconductor SoCs. + +config MTD_NAND_FSL_ELBC + tristate "NAND support for Freescale eLBC controllers" + depends on FSL_SOC + select FSL_LBC + help + Various Freescale chips, including the 8313, include a NAND Flash + Controller Module with built-in hardware ECC capabilities. + Enabling this option will enable you to use this to control + external NAND devices. + +config MTD_NAND_FSL_IFC + tristate "NAND support for Freescale IFC controller" + depends on FSL_SOC || ARCH_LAYERSCAPE || SOC_LS1021A + select FSL_IFC + select MEMORY + help + Various Freescale chips e.g P1010, include a NAND Flash machine + with built-in hardware ECC capabilities. + Enabling this option will enable you to use this to control + external NAND devices. + +config MTD_NAND_FSL_UPM + tristate "Support for NAND on Freescale UPM" + depends on PPC_83xx || PPC_85xx + select FSL_LBC + help + Enables support for NAND Flash chips wired onto Freescale PowerPC + processor localbus with User-Programmable Machine support. + +config MTD_NAND_MPC5121_NFC + tristate "MPC5121 built-in NAND Flash Controller support" + depends on PPC_MPC512x + help + This enables the driver for the NAND flash controller on the + MPC5121 SoC. + +config MTD_NAND_VF610_NFC + tristate "Support for Freescale NFC for VF610/MPC5125" + depends on (SOC_VF610 || COMPILE_TEST) + depends on HAS_IOMEM + help + Enables support for NAND Flash Controller on some Freescale + processors like the VF610, MPC5125, MCF54418 or Kinetis K70. + The driver supports a maximum 2k page size. With 2k pages and + 64 bytes or more of OOB, hardware ECC with up to 32-bit error + correction is supported. Hardware ECC is only enabled through + device tree. + +config MTD_NAND_MXC + tristate "MXC NAND support" + depends on ARCH_MXC + help + This enables the driver for the NAND flash controller on the + MXC processors. + +config MTD_NAND_SH_FLCTL + tristate "Support for NAND on Renesas SuperH FLCTL" + depends on SUPERH || COMPILE_TEST + depends on HAS_IOMEM + depends on HAS_DMA + help + Several Renesas SuperH CPU has FLCTL. This option enables support + for NAND Flash using FLCTL. + +config MTD_NAND_DAVINCI + tristate "Support NAND on DaVinci/Keystone SoC" + depends on ARCH_DAVINCI || (ARCH_KEYSTONE && TI_AEMIF) + help + Enable the driver for NAND flash chips on Texas Instruments + DaVinci/Keystone processors. + +config MTD_NAND_TXX9NDFMC + tristate "NAND Flash support for TXx9 SoC" + depends on SOC_TX4938 || SOC_TX4939 + help + This enables the NAND flash controller on the TXx9 SoCs. + +config MTD_NAND_SOCRATES + tristate "Support for NAND on Socrates board" + depends on SOCRATES + help + Enables support for NAND Flash chips wired onto Socrates board. + +config MTD_NAND_NUC900 + tristate "Support for NAND on Nuvoton NUC9xx/w90p910 evaluation boards." + depends on ARCH_W90X900 + help + This enables the driver for the NAND Flash on evaluation board based + on w90p910 / NUC9xx. + +config MTD_NAND_JZ4740 + tristate "Support for JZ4740 SoC NAND controller" + depends on MACH_JZ4740 + help + Enables support for NAND Flash on JZ4740 SoC based boards. + +config MTD_NAND_JZ4780 + tristate "Support for NAND on JZ4780 SoC" + depends on MACH_JZ4780 && JZ4780_NEMC + help + Enables support for NAND Flash connected to the NEMC on JZ4780 SoC + based boards, using the BCH controller for hardware error correction. + +config MTD_NAND_FSMC + tristate "Support for NAND on ST Micros FSMC" + depends on OF + depends on PLAT_SPEAR || ARCH_NOMADIK || ARCH_U8500 || MACH_U300 + help + Enables support for NAND Flash chips on the ST Microelectronics + Flexible Static Memory Controller (FSMC) + +config MTD_NAND_XWAY + bool "Support for NAND on Lantiq XWAY SoC" + depends on LANTIQ && SOC_TYPE_XWAY + help + Enables support for NAND Flash chips on Lantiq XWAY SoCs. NAND is attached + to the External Bus Unit (EBU). + +config MTD_NAND_SUNXI + tristate "Support for NAND on Allwinner SoCs" + depends on ARCH_SUNXI + help + Enables support for NAND Flash chips on Allwinner SoCs. + +config MTD_NAND_HISI504 + tristate "Support for NAND controller on Hisilicon SoC Hip04" + depends on ARCH_HISI || COMPILE_TEST + depends on HAS_DMA + help + Enables support for NAND controller on Hisilicon SoC Hip04. + +config MTD_NAND_QCOM + tristate "Support for NAND on QCOM SoCs" + depends on ARCH_QCOM + help + Enables support for NAND flash chips on SoCs containing the EBI2 NAND + controller. This controller is found on IPQ806x SoC. + +config MTD_NAND_MTK + tristate "Support for NAND controller on MTK SoCs" + depends on ARCH_MEDIATEK || COMPILE_TEST + depends on HAS_DMA + help + Enables support for NAND controller on MTK SoCs. + This controller is found on mt27xx, mt81xx, mt65xx SoCs. + +endif # MTD_NAND diff --git a/drivers/mtd/nand/raw/Makefile b/drivers/mtd/nand/raw/Makefile new file mode 100644 index 000000000000..4e0982476267 --- /dev/null +++ b/drivers/mtd/nand/raw/Makefile @@ -0,0 +1,68 @@ +# SPDX-License-Identifier: GPL-2.0 + +obj-$(CONFIG_MTD_NAND) += nand.o +obj-$(CONFIG_MTD_NAND_ECC) += nand_ecc.o +obj-$(CONFIG_MTD_NAND_BCH) += nand_bch.o +obj-$(CONFIG_MTD_SM_COMMON) += sm_common.o + +obj-$(CONFIG_MTD_NAND_CAFE) += cafe_nand.o +obj-$(CONFIG_MTD_NAND_AMS_DELTA) += ams-delta.o +obj-$(CONFIG_MTD_NAND_DENALI) += denali.o +obj-$(CONFIG_MTD_NAND_DENALI_PCI) += denali_pci.o +obj-$(CONFIG_MTD_NAND_DENALI_DT) += denali_dt.o +obj-$(CONFIG_MTD_NAND_AU1550) += au1550nd.o +obj-$(CONFIG_MTD_NAND_BF5XX) += bf5xx_nand.o +obj-$(CONFIG_MTD_NAND_S3C2410) += s3c2410.o +obj-$(CONFIG_MTD_NAND_TANGO) += tango_nand.o +obj-$(CONFIG_MTD_NAND_DAVINCI) += davinci_nand.o +obj-$(CONFIG_MTD_NAND_DISKONCHIP) += diskonchip.o +obj-$(CONFIG_MTD_NAND_DOCG4) += docg4.o +obj-$(CONFIG_MTD_NAND_FSMC) += fsmc_nand.o +obj-$(CONFIG_MTD_NAND_SHARPSL) += sharpsl.o +obj-$(CONFIG_MTD_NAND_NANDSIM) += nandsim.o +obj-$(CONFIG_MTD_NAND_CS553X) += cs553x_nand.o +obj-$(CONFIG_MTD_NAND_NDFC) += ndfc.o +obj-$(CONFIG_MTD_NAND_ATMEL) += atmel/ +obj-$(CONFIG_MTD_NAND_GPIO) += gpio.o +omap2_nand-objs := omap2.o +obj-$(CONFIG_MTD_NAND_OMAP2) += omap2_nand.o +obj-$(CONFIG_MTD_NAND_OMAP_BCH_BUILD) += omap_elm.o +obj-$(CONFIG_MTD_NAND_CM_X270) += cmx270_nand.o +obj-$(CONFIG_MTD_NAND_PXA3xx) += pxa3xx_nand.o +obj-$(CONFIG_MTD_NAND_MARVELL) += marvell_nand.o +obj-$(CONFIG_MTD_NAND_TMIO) += tmio_nand.o +obj-$(CONFIG_MTD_NAND_PLATFORM) += plat_nand.o +obj-$(CONFIG_MTD_NAND_PASEMI) += pasemi_nand.o +obj-$(CONFIG_MTD_NAND_ORION) += orion_nand.o +obj-$(CONFIG_MTD_NAND_OXNAS) += oxnas_nand.o +obj-$(CONFIG_MTD_NAND_FSL_ELBC) += fsl_elbc_nand.o +obj-$(CONFIG_MTD_NAND_FSL_IFC) += fsl_ifc_nand.o +obj-$(CONFIG_MTD_NAND_FSL_UPM) += fsl_upm.o +obj-$(CONFIG_MTD_NAND_SLC_LPC32XX) += lpc32xx_slc.o +obj-$(CONFIG_MTD_NAND_MLC_LPC32XX) += lpc32xx_mlc.o +obj-$(CONFIG_MTD_NAND_SH_FLCTL) += sh_flctl.o +obj-$(CONFIG_MTD_NAND_MXC) += mxc_nand.o +obj-$(CONFIG_MTD_NAND_SOCRATES) += socrates_nand.o +obj-$(CONFIG_MTD_NAND_TXX9NDFMC) += txx9ndfmc.o +obj-$(CONFIG_MTD_NAND_NUC900) += nuc900_nand.o +obj-$(CONFIG_MTD_NAND_MPC5121_NFC) += mpc5121_nfc.o +obj-$(CONFIG_MTD_NAND_VF610_NFC) += vf610_nfc.o +obj-$(CONFIG_MTD_NAND_RICOH) += r852.o +obj-$(CONFIG_MTD_NAND_JZ4740) += jz4740_nand.o +obj-$(CONFIG_MTD_NAND_JZ4780) += jz4780_nand.o jz4780_bch.o +obj-$(CONFIG_MTD_NAND_GPMI_NAND) += gpmi-nand/ +obj-$(CONFIG_MTD_NAND_XWAY) += xway_nand.o +obj-$(CONFIG_MTD_NAND_BCM47XXNFLASH) += bcm47xxnflash/ +obj-$(CONFIG_MTD_NAND_SUNXI) += sunxi_nand.o +obj-$(CONFIG_MTD_NAND_HISI504) += hisi504_nand.o +obj-$(CONFIG_MTD_NAND_BRCMNAND) += brcmnand/ +obj-$(CONFIG_MTD_NAND_QCOM) += qcom_nandc.o +obj-$(CONFIG_MTD_NAND_MTK) += mtk_ecc.o mtk_nand.o + +nand-objs := nand_base.o nand_bbt.o nand_timings.o nand_ids.o +nand-objs += nand_amd.o +nand-objs += nand_hynix.o +nand-objs += nand_macronix.o +nand-objs += nand_micron.o +nand-objs += nand_samsung.o +nand-objs += nand_toshiba.o diff --git a/drivers/mtd/nand/raw/ams-delta.c b/drivers/mtd/nand/raw/ams-delta.c new file mode 100644 index 000000000000..35f80523e52e --- /dev/null +++ b/drivers/mtd/nand/raw/ams-delta.c @@ -0,0 +1,291 @@ +/* + * Copyright (C) 2006 Jonathan McDowell + * + * Derived from drivers/mtd/nand/toto.c (removed in v2.6.28) + * Copyright (c) 2003 Texas Instruments + * Copyright (c) 2002 Thomas Gleixner + * + * Converted to platform driver by Janusz Krzysztofik + * Partially stolen from plat_nand.c + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + * + * Overview: + * This is a device driver for the NAND flash device found on the + * Amstrad E3 (Delta). + */ + +#include +#include +#include +#include +#include +#include +#include +#include + +#include +#include + +#include + +#include + +/* + * MTD structure for E3 (Delta) + */ +static struct mtd_info *ams_delta_mtd = NULL; + +/* + * Define partitions for flash devices + */ + +static const struct mtd_partition partition_info[] = { + { .name = "Kernel", + .offset = 0, + .size = 3 * SZ_1M + SZ_512K }, + { .name = "u-boot", + .offset = 3 * SZ_1M + SZ_512K, + .size = SZ_256K }, + { .name = "u-boot params", + .offset = 3 * SZ_1M + SZ_512K + SZ_256K, + .size = SZ_256K }, + { .name = "Amstrad LDR", + .offset = 4 * SZ_1M, + .size = SZ_256K }, + { .name = "File system", + .offset = 4 * SZ_1M + 1 * SZ_256K, + .size = 27 * SZ_1M }, + { .name = "PBL reserved", + .offset = 32 * SZ_1M - 3 * SZ_256K, + .size = 3 * SZ_256K }, +}; + +static void ams_delta_write_byte(struct mtd_info *mtd, u_char byte) +{ + struct nand_chip *this = mtd_to_nand(mtd); + void __iomem *io_base = (void __iomem *)nand_get_controller_data(this); + + writew(0, io_base + OMAP_MPUIO_IO_CNTL); + writew(byte, this->IO_ADDR_W); + gpio_set_value(AMS_DELTA_GPIO_PIN_NAND_NWE, 0); + ndelay(40); + gpio_set_value(AMS_DELTA_GPIO_PIN_NAND_NWE, 1); +} + +static u_char ams_delta_read_byte(struct mtd_info *mtd) +{ + u_char res; + struct nand_chip *this = mtd_to_nand(mtd); + void __iomem *io_base = (void __iomem *)nand_get_controller_data(this); + + gpio_set_value(AMS_DELTA_GPIO_PIN_NAND_NRE, 0); + ndelay(40); + writew(~0, io_base + OMAP_MPUIO_IO_CNTL); + res = readw(this->IO_ADDR_R); + gpio_set_value(AMS_DELTA_GPIO_PIN_NAND_NRE, 1); + + return res; +} + +static void ams_delta_write_buf(struct mtd_info *mtd, const u_char *buf, + int len) +{ + int i; + + for (i=0; i bit 2 + * NAND_CLE: bit 1 -> bit 7 + * NAND_ALE: bit 2 -> bit 6 + */ +static void ams_delta_hwcontrol(struct mtd_info *mtd, int cmd, + unsigned int ctrl) +{ + + if (ctrl & NAND_CTRL_CHANGE) { + gpio_set_value(AMS_DELTA_GPIO_PIN_NAND_NCE, + (ctrl & NAND_NCE) == 0); + gpio_set_value(AMS_DELTA_GPIO_PIN_NAND_CLE, + (ctrl & NAND_CLE) != 0); + gpio_set_value(AMS_DELTA_GPIO_PIN_NAND_ALE, + (ctrl & NAND_ALE) != 0); + } + + if (cmd != NAND_CMD_NONE) + ams_delta_write_byte(mtd, cmd); +} + +static int ams_delta_nand_ready(struct mtd_info *mtd) +{ + return gpio_get_value(AMS_DELTA_GPIO_PIN_NAND_RB); +} + +static const struct gpio _mandatory_gpio[] = { + { + .gpio = AMS_DELTA_GPIO_PIN_NAND_NCE, + .flags = GPIOF_OUT_INIT_HIGH, + .label = "nand_nce", + }, + { + .gpio = AMS_DELTA_GPIO_PIN_NAND_NRE, + .flags = GPIOF_OUT_INIT_HIGH, + .label = "nand_nre", + }, + { + .gpio = AMS_DELTA_GPIO_PIN_NAND_NWP, + .flags = GPIOF_OUT_INIT_HIGH, + .label = "nand_nwp", + }, + { + .gpio = AMS_DELTA_GPIO_PIN_NAND_NWE, + .flags = GPIOF_OUT_INIT_HIGH, + .label = "nand_nwe", + }, + { + .gpio = AMS_DELTA_GPIO_PIN_NAND_ALE, + .flags = GPIOF_OUT_INIT_LOW, + .label = "nand_ale", + }, + { + .gpio = AMS_DELTA_GPIO_PIN_NAND_CLE, + .flags = GPIOF_OUT_INIT_LOW, + .label = "nand_cle", + }, +}; + +/* + * Main initialization routine + */ +static int ams_delta_init(struct platform_device *pdev) +{ + struct nand_chip *this; + struct resource *res = platform_get_resource(pdev, IORESOURCE_MEM, 0); + void __iomem *io_base; + int err = 0; + + if (!res) + return -ENXIO; + + /* Allocate memory for MTD device structure and private data */ + this = kzalloc(sizeof(struct nand_chip), GFP_KERNEL); + if (!this) { + printk (KERN_WARNING "Unable to allocate E3 NAND MTD device structure.\n"); + err = -ENOMEM; + goto out; + } + + ams_delta_mtd = nand_to_mtd(this); + ams_delta_mtd->owner = THIS_MODULE; + + /* + * Don't try to request the memory region from here, + * it should have been already requested from the + * gpio-omap driver and requesting it again would fail. + */ + + io_base = ioremap(res->start, resource_size(res)); + if (io_base == NULL) { + dev_err(&pdev->dev, "ioremap failed\n"); + err = -EIO; + goto out_free; + } + + nand_set_controller_data(this, (void *)io_base); + + /* Set address of NAND IO lines */ + this->IO_ADDR_R = io_base + OMAP_MPUIO_INPUT_LATCH; + this->IO_ADDR_W = io_base + OMAP_MPUIO_OUTPUT; + this->read_byte = ams_delta_read_byte; + this->write_buf = ams_delta_write_buf; + this->read_buf = ams_delta_read_buf; + this->cmd_ctrl = ams_delta_hwcontrol; + if (gpio_request(AMS_DELTA_GPIO_PIN_NAND_RB, "nand_rdy") == 0) { + this->dev_ready = ams_delta_nand_ready; + } else { + this->dev_ready = NULL; + printk(KERN_NOTICE "Couldn't request gpio for Delta NAND ready.\n"); + } + /* 25 us command delay time */ + this->chip_delay = 30; + this->ecc.mode = NAND_ECC_SOFT; + this->ecc.algo = NAND_ECC_HAMMING; + + platform_set_drvdata(pdev, io_base); + + /* Set chip enabled, but */ + err = gpio_request_array(_mandatory_gpio, ARRAY_SIZE(_mandatory_gpio)); + if (err) + goto out_gpio; + + /* Scan to find existence of the device */ + err = nand_scan(ams_delta_mtd, 1); + if (err) + goto out_mtd; + + /* Register the partitions */ + mtd_device_register(ams_delta_mtd, partition_info, + ARRAY_SIZE(partition_info)); + + goto out; + + out_mtd: + gpio_free_array(_mandatory_gpio, ARRAY_SIZE(_mandatory_gpio)); +out_gpio: + gpio_free(AMS_DELTA_GPIO_PIN_NAND_RB); + iounmap(io_base); +out_free: + kfree(this); + out: + return err; +} + +/* + * Clean up routine + */ +static int ams_delta_cleanup(struct platform_device *pdev) +{ + void __iomem *io_base = platform_get_drvdata(pdev); + + /* Release resources, unregister device */ + nand_release(ams_delta_mtd); + + gpio_free_array(_mandatory_gpio, ARRAY_SIZE(_mandatory_gpio)); + gpio_free(AMS_DELTA_GPIO_PIN_NAND_RB); + iounmap(io_base); + + /* Free the MTD device structure */ + kfree(mtd_to_nand(ams_delta_mtd)); + + return 0; +} + +static struct platform_driver ams_delta_nand_driver = { + .probe = ams_delta_init, + .remove = ams_delta_cleanup, + .driver = { + .name = "ams-delta-nand", + }, +}; + +module_platform_driver(ams_delta_nand_driver); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Jonathan McDowell "); +MODULE_DESCRIPTION("Glue layer for NAND flash on Amstrad E3 (Delta)"); diff --git a/drivers/mtd/nand/raw/atmel/Makefile b/drivers/mtd/nand/raw/atmel/Makefile new file mode 100644 index 000000000000..288db4f38a8f --- /dev/null +++ b/drivers/mtd/nand/raw/atmel/Makefile @@ -0,0 +1,4 @@ +obj-$(CONFIG_MTD_NAND_ATMEL) += atmel-nand-controller.o atmel-pmecc.o + +atmel-nand-controller-objs := nand-controller.o +atmel-pmecc-objs := pmecc.o diff --git a/drivers/mtd/nand/raw/atmel/nand-controller.c b/drivers/mtd/nand/raw/atmel/nand-controller.c new file mode 100644 index 000000000000..12f6753d47ae --- /dev/null +++ b/drivers/mtd/nand/raw/atmel/nand-controller.c @@ -0,0 +1,2565 @@ +/* + * Copyright 2017 ATMEL + * Copyright 2017 Free Electrons + * + * Author: Boris Brezillon + * + * Derived from the atmel_nand.c driver which contained the following + * copyrights: + * + * Copyright 2003 Rick Bronson + * + * Derived from drivers/mtd/nand/autcpu12.c (removed in v3.8) + * Copyright 2001 Thomas Gleixner (gleixner@autronix.de) + * + * Derived from drivers/mtd/spia.c (removed in v3.8) + * Copyright 2000 Steven J. Hill (sjhill@cotw.com) + * + * + * Add Hardware ECC support for AT91SAM9260 / AT91SAM9263 + * Richard Genoud (richard.genoud@gmail.com), Adeneo Copyright 2007 + * + * Derived from Das U-Boot source code + * (u-boot-1.1.5/board/atmel/at91sam9263ek/nand.c) + * Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas + * + * Add Programmable Multibit ECC support for various AT91 SoC + * Copyright 2012 ATMEL, Hong Xu + * + * Add Nand Flash Controller support for SAMA5 SoC + * Copyright 2013 ATMEL, Josh Wu (josh.wu@atmel.com) + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + * + * A few words about the naming convention in this file. This convention + * applies to structure and function names. + * + * Prefixes: + * + * - atmel_nand_: all generic structures/functions + * - atmel_smc_nand_: all structures/functions specific to the SMC interface + * (at91sam9 and avr32 SoCs) + * - atmel_hsmc_nand_: all structures/functions specific to the HSMC interface + * (sama5 SoCs and later) + * - atmel_nfc_: all structures/functions used to manipulate the NFC sub-block + * that is available in the HSMC block + * - _nand_: all SoC specific structures/functions + */ + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#include "pmecc.h" + +#define ATMEL_HSMC_NFC_CFG 0x0 +#define ATMEL_HSMC_NFC_CFG_SPARESIZE(x) (((x) / 4) << 24) +#define ATMEL_HSMC_NFC_CFG_SPARESIZE_MASK GENMASK(30, 24) +#define ATMEL_HSMC_NFC_CFG_DTO(cyc, mul) (((cyc) << 16) | ((mul) << 20)) +#define ATMEL_HSMC_NFC_CFG_DTO_MAX GENMASK(22, 16) +#define ATMEL_HSMC_NFC_CFG_RBEDGE BIT(13) +#define ATMEL_HSMC_NFC_CFG_FALLING_EDGE BIT(12) +#define ATMEL_HSMC_NFC_CFG_RSPARE BIT(9) +#define ATMEL_HSMC_NFC_CFG_WSPARE BIT(8) +#define ATMEL_HSMC_NFC_CFG_PAGESIZE_MASK GENMASK(2, 0) +#define ATMEL_HSMC_NFC_CFG_PAGESIZE(x) (fls((x) / 512) - 1) + +#define ATMEL_HSMC_NFC_CTRL 0x4 +#define ATMEL_HSMC_NFC_CTRL_EN BIT(0) +#define ATMEL_HSMC_NFC_CTRL_DIS BIT(1) + +#define ATMEL_HSMC_NFC_SR 0x8 +#define ATMEL_HSMC_NFC_IER 0xc +#define ATMEL_HSMC_NFC_IDR 0x10 +#define ATMEL_HSMC_NFC_IMR 0x14 +#define ATMEL_HSMC_NFC_SR_ENABLED BIT(1) +#define ATMEL_HSMC_NFC_SR_RB_RISE BIT(4) +#define ATMEL_HSMC_NFC_SR_RB_FALL BIT(5) +#define ATMEL_HSMC_NFC_SR_BUSY BIT(8) +#define ATMEL_HSMC_NFC_SR_WR BIT(11) +#define ATMEL_HSMC_NFC_SR_CSID GENMASK(14, 12) +#define ATMEL_HSMC_NFC_SR_XFRDONE BIT(16) +#define ATMEL_HSMC_NFC_SR_CMDDONE BIT(17) +#define ATMEL_HSMC_NFC_SR_DTOE BIT(20) +#define ATMEL_HSMC_NFC_SR_UNDEF BIT(21) +#define ATMEL_HSMC_NFC_SR_AWB BIT(22) +#define ATMEL_HSMC_NFC_SR_NFCASE BIT(23) +#define ATMEL_HSMC_NFC_SR_ERRORS (ATMEL_HSMC_NFC_SR_DTOE | \ + ATMEL_HSMC_NFC_SR_UNDEF | \ + ATMEL_HSMC_NFC_SR_AWB | \ + ATMEL_HSMC_NFC_SR_NFCASE) +#define ATMEL_HSMC_NFC_SR_RBEDGE(x) BIT((x) + 24) + +#define ATMEL_HSMC_NFC_ADDR 0x18 +#define ATMEL_HSMC_NFC_BANK 0x1c + +#define ATMEL_NFC_MAX_RB_ID 7 + +#define ATMEL_NFC_SRAM_SIZE 0x2400 + +#define ATMEL_NFC_CMD(pos, cmd) ((cmd) << (((pos) * 8) + 2)) +#define ATMEL_NFC_VCMD2 BIT(18) +#define ATMEL_NFC_ACYCLE(naddrs) ((naddrs) << 19) +#define ATMEL_NFC_CSID(cs) ((cs) << 22) +#define ATMEL_NFC_DATAEN BIT(25) +#define ATMEL_NFC_NFCWR BIT(26) + +#define ATMEL_NFC_MAX_ADDR_CYCLES 5 + +#define ATMEL_NAND_ALE_OFFSET BIT(21) +#define ATMEL_NAND_CLE_OFFSET BIT(22) + +#define DEFAULT_TIMEOUT_MS 1000 +#define MIN_DMA_LEN 128 + +enum atmel_nand_rb_type { + ATMEL_NAND_NO_RB, + ATMEL_NAND_NATIVE_RB, + ATMEL_NAND_GPIO_RB, +}; + +struct atmel_nand_rb { + enum atmel_nand_rb_type type; + union { + struct gpio_desc *gpio; + int id; + }; +}; + +struct atmel_nand_cs { + int id; + struct atmel_nand_rb rb; + struct gpio_desc *csgpio; + struct { + void __iomem *virt; + dma_addr_t dma; + } io; + + struct atmel_smc_cs_conf smcconf; +}; + +struct atmel_nand { + struct list_head node; + struct device *dev; + struct nand_chip base; + struct atmel_nand_cs *activecs; + struct atmel_pmecc_user *pmecc; + struct gpio_desc *cdgpio; + int numcs; + struct atmel_nand_cs cs[]; +}; + +static inline struct atmel_nand *to_atmel_nand(struct nand_chip *chip) +{ + return container_of(chip, struct atmel_nand, base); +} + +enum atmel_nfc_data_xfer { + ATMEL_NFC_NO_DATA, + ATMEL_NFC_READ_DATA, + ATMEL_NFC_WRITE_DATA, +}; + +struct atmel_nfc_op { + u8 cs; + u8 ncmds; + u8 cmds[2]; + u8 naddrs; + u8 addrs[5]; + enum atmel_nfc_data_xfer data; + u32 wait; + u32 errors; +}; + +struct atmel_nand_controller; +struct atmel_nand_controller_caps; + +struct atmel_nand_controller_ops { + int (*probe)(struct platform_device *pdev, + const struct atmel_nand_controller_caps *caps); + int (*remove)(struct atmel_nand_controller *nc); + void (*nand_init)(struct atmel_nand_controller *nc, + struct atmel_nand *nand); + int (*ecc_init)(struct atmel_nand *nand); + int (*setup_data_interface)(struct atmel_nand *nand, int csline, + const struct nand_data_interface *conf); +}; + +struct atmel_nand_controller_caps { + bool has_dma; + bool legacy_of_bindings; + u32 ale_offs; + u32 cle_offs; + const struct atmel_nand_controller_ops *ops; +}; + +struct atmel_nand_controller { + struct nand_hw_control base; + const struct atmel_nand_controller_caps *caps; + struct device *dev; + struct regmap *smc; + struct dma_chan *dmac; + struct atmel_pmecc *pmecc; + struct list_head chips; + struct clk *mck; +}; + +static inline struct atmel_nand_controller * +to_nand_controller(struct nand_hw_control *ctl) +{ + return container_of(ctl, struct atmel_nand_controller, base); +} + +struct atmel_smc_nand_controller { + struct atmel_nand_controller base; + struct regmap *matrix; + unsigned int ebi_csa_offs; +}; + +static inline struct atmel_smc_nand_controller * +to_smc_nand_controller(struct nand_hw_control *ctl) +{ + return container_of(to_nand_controller(ctl), + struct atmel_smc_nand_controller, base); +} + +struct atmel_hsmc_nand_controller { + struct atmel_nand_controller base; + struct { + struct gen_pool *pool; + void __iomem *virt; + dma_addr_t dma; + } sram; + const struct atmel_hsmc_reg_layout *hsmc_layout; + struct regmap *io; + struct atmel_nfc_op op; + struct completion complete; + int irq; + + /* Only used when instantiating from legacy DT bindings. */ + struct clk *clk; +}; + +static inline struct atmel_hsmc_nand_controller * +to_hsmc_nand_controller(struct nand_hw_control *ctl) +{ + return container_of(to_nand_controller(ctl), + struct atmel_hsmc_nand_controller, base); +} + +static bool atmel_nfc_op_done(struct atmel_nfc_op *op, u32 status) +{ + op->errors |= status & ATMEL_HSMC_NFC_SR_ERRORS; + op->wait ^= status & op->wait; + + return !op->wait || op->errors; +} + +static irqreturn_t atmel_nfc_interrupt(int irq, void *data) +{ + struct atmel_hsmc_nand_controller *nc = data; + u32 sr, rcvd; + bool done; + + regmap_read(nc->base.smc, ATMEL_HSMC_NFC_SR, &sr); + + rcvd = sr & (nc->op.wait | ATMEL_HSMC_NFC_SR_ERRORS); + done = atmel_nfc_op_done(&nc->op, sr); + + if (rcvd) + regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, rcvd); + + if (done) + complete(&nc->complete); + + return rcvd ? IRQ_HANDLED : IRQ_NONE; +} + +static int atmel_nfc_wait(struct atmel_hsmc_nand_controller *nc, bool poll, + unsigned int timeout_ms) +{ + int ret; + + if (!timeout_ms) + timeout_ms = DEFAULT_TIMEOUT_MS; + + if (poll) { + u32 status; + + ret = regmap_read_poll_timeout(nc->base.smc, + ATMEL_HSMC_NFC_SR, status, + atmel_nfc_op_done(&nc->op, + status), + 0, timeout_ms * 1000); + } else { + init_completion(&nc->complete); + regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IER, + nc->op.wait | ATMEL_HSMC_NFC_SR_ERRORS); + ret = wait_for_completion_timeout(&nc->complete, + msecs_to_jiffies(timeout_ms)); + if (!ret) + ret = -ETIMEDOUT; + else + ret = 0; + + regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, 0xffffffff); + } + + if (nc->op.errors & ATMEL_HSMC_NFC_SR_DTOE) { + dev_err(nc->base.dev, "Waiting NAND R/B Timeout\n"); + ret = -ETIMEDOUT; + } + + if (nc->op.errors & ATMEL_HSMC_NFC_SR_UNDEF) { + dev_err(nc->base.dev, "Access to an undefined area\n"); + ret = -EIO; + } + + if (nc->op.errors & ATMEL_HSMC_NFC_SR_AWB) { + dev_err(nc->base.dev, "Access while busy\n"); + ret = -EIO; + } + + if (nc->op.errors & ATMEL_HSMC_NFC_SR_NFCASE) { + dev_err(nc->base.dev, "Wrong access size\n"); + ret = -EIO; + } + + return ret; +} + +static void atmel_nand_dma_transfer_finished(void *data) +{ + struct completion *finished = data; + + complete(finished); +} + +static int atmel_nand_dma_transfer(struct atmel_nand_controller *nc, + void *buf, dma_addr_t dev_dma, size_t len, + enum dma_data_direction dir) +{ + DECLARE_COMPLETION_ONSTACK(finished); + dma_addr_t src_dma, dst_dma, buf_dma; + struct dma_async_tx_descriptor *tx; + dma_cookie_t cookie; + + buf_dma = dma_map_single(nc->dev, buf, len, dir); + if (dma_mapping_error(nc->dev, dev_dma)) { + dev_err(nc->dev, + "Failed to prepare a buffer for DMA access\n"); + goto err; + } + + if (dir == DMA_FROM_DEVICE) { + src_dma = dev_dma; + dst_dma = buf_dma; + } else { + src_dma = buf_dma; + dst_dma = dev_dma; + } + + tx = dmaengine_prep_dma_memcpy(nc->dmac, dst_dma, src_dma, len, + DMA_CTRL_ACK | DMA_PREP_INTERRUPT); + if (!tx) { + dev_err(nc->dev, "Failed to prepare DMA memcpy\n"); + goto err_unmap; + } + + tx->callback = atmel_nand_dma_transfer_finished; + tx->callback_param = &finished; + + cookie = dmaengine_submit(tx); + if (dma_submit_error(cookie)) { + dev_err(nc->dev, "Failed to do DMA tx_submit\n"); + goto err_unmap; + } + + dma_async_issue_pending(nc->dmac); + wait_for_completion(&finished); + + return 0; + +err_unmap: + dma_unmap_single(nc->dev, buf_dma, len, dir); + +err: + dev_dbg(nc->dev, "Fall back to CPU I/O\n"); + + return -EIO; +} + +static u8 atmel_nand_read_byte(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct atmel_nand *nand = to_atmel_nand(chip); + + return ioread8(nand->activecs->io.virt); +} + +static u16 atmel_nand_read_word(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct atmel_nand *nand = to_atmel_nand(chip); + + return ioread16(nand->activecs->io.virt); +} + +static void atmel_nand_write_byte(struct mtd_info *mtd, u8 byte) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct atmel_nand *nand = to_atmel_nand(chip); + + if (chip->options & NAND_BUSWIDTH_16) + iowrite16(byte | (byte << 8), nand->activecs->io.virt); + else + iowrite8(byte, nand->activecs->io.virt); +} + +static void atmel_nand_read_buf(struct mtd_info *mtd, u8 *buf, int len) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct atmel_nand *nand = to_atmel_nand(chip); + struct atmel_nand_controller *nc; + + nc = to_nand_controller(chip->controller); + + /* + * If the controller supports DMA, the buffer address is DMA-able and + * len is long enough to make DMA transfers profitable, let's trigger + * a DMA transfer. If it fails, fallback to PIO mode. + */ + if (nc->dmac && virt_addr_valid(buf) && + len >= MIN_DMA_LEN && + !atmel_nand_dma_transfer(nc, buf, nand->activecs->io.dma, len, + DMA_FROM_DEVICE)) + return; + + if (chip->options & NAND_BUSWIDTH_16) + ioread16_rep(nand->activecs->io.virt, buf, len / 2); + else + ioread8_rep(nand->activecs->io.virt, buf, len); +} + +static void atmel_nand_write_buf(struct mtd_info *mtd, const u8 *buf, int len) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct atmel_nand *nand = to_atmel_nand(chip); + struct atmel_nand_controller *nc; + + nc = to_nand_controller(chip->controller); + + /* + * If the controller supports DMA, the buffer address is DMA-able and + * len is long enough to make DMA transfers profitable, let's trigger + * a DMA transfer. If it fails, fallback to PIO mode. + */ + if (nc->dmac && virt_addr_valid(buf) && + len >= MIN_DMA_LEN && + !atmel_nand_dma_transfer(nc, (void *)buf, nand->activecs->io.dma, + len, DMA_TO_DEVICE)) + return; + + if (chip->options & NAND_BUSWIDTH_16) + iowrite16_rep(nand->activecs->io.virt, buf, len / 2); + else + iowrite8_rep(nand->activecs->io.virt, buf, len); +} + +static int atmel_nand_dev_ready(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct atmel_nand *nand = to_atmel_nand(chip); + + return gpiod_get_value(nand->activecs->rb.gpio); +} + +static void atmel_nand_select_chip(struct mtd_info *mtd, int cs) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct atmel_nand *nand = to_atmel_nand(chip); + + if (cs < 0 || cs >= nand->numcs) { + nand->activecs = NULL; + chip->dev_ready = NULL; + return; + } + + nand->activecs = &nand->cs[cs]; + + if (nand->activecs->rb.type == ATMEL_NAND_GPIO_RB) + chip->dev_ready = atmel_nand_dev_ready; +} + +static int atmel_hsmc_nand_dev_ready(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct atmel_nand *nand = to_atmel_nand(chip); + struct atmel_hsmc_nand_controller *nc; + u32 status; + + nc = to_hsmc_nand_controller(chip->controller); + + regmap_read(nc->base.smc, ATMEL_HSMC_NFC_SR, &status); + + return status & ATMEL_HSMC_NFC_SR_RBEDGE(nand->activecs->rb.id); +} + +static void atmel_hsmc_nand_select_chip(struct mtd_info *mtd, int cs) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct atmel_nand *nand = to_atmel_nand(chip); + struct atmel_hsmc_nand_controller *nc; + + nc = to_hsmc_nand_controller(chip->controller); + + atmel_nand_select_chip(mtd, cs); + + if (!nand->activecs) { + regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CTRL, + ATMEL_HSMC_NFC_CTRL_DIS); + return; + } + + if (nand->activecs->rb.type == ATMEL_NAND_NATIVE_RB) + chip->dev_ready = atmel_hsmc_nand_dev_ready; + + regmap_update_bits(nc->base.smc, ATMEL_HSMC_NFC_CFG, + ATMEL_HSMC_NFC_CFG_PAGESIZE_MASK | + ATMEL_HSMC_NFC_CFG_SPARESIZE_MASK | + ATMEL_HSMC_NFC_CFG_RSPARE | + ATMEL_HSMC_NFC_CFG_WSPARE, + ATMEL_HSMC_NFC_CFG_PAGESIZE(mtd->writesize) | + ATMEL_HSMC_NFC_CFG_SPARESIZE(mtd->oobsize) | + ATMEL_HSMC_NFC_CFG_RSPARE); + regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CTRL, + ATMEL_HSMC_NFC_CTRL_EN); +} + +static int atmel_nfc_exec_op(struct atmel_hsmc_nand_controller *nc, bool poll) +{ + u8 *addrs = nc->op.addrs; + unsigned int op = 0; + u32 addr, val; + int i, ret; + + nc->op.wait = ATMEL_HSMC_NFC_SR_CMDDONE; + + for (i = 0; i < nc->op.ncmds; i++) + op |= ATMEL_NFC_CMD(i, nc->op.cmds[i]); + + if (nc->op.naddrs == ATMEL_NFC_MAX_ADDR_CYCLES) + regmap_write(nc->base.smc, ATMEL_HSMC_NFC_ADDR, *addrs++); + + op |= ATMEL_NFC_CSID(nc->op.cs) | + ATMEL_NFC_ACYCLE(nc->op.naddrs); + + if (nc->op.ncmds > 1) + op |= ATMEL_NFC_VCMD2; + + addr = addrs[0] | (addrs[1] << 8) | (addrs[2] << 16) | + (addrs[3] << 24); + + if (nc->op.data != ATMEL_NFC_NO_DATA) { + op |= ATMEL_NFC_DATAEN; + nc->op.wait |= ATMEL_HSMC_NFC_SR_XFRDONE; + + if (nc->op.data == ATMEL_NFC_WRITE_DATA) + op |= ATMEL_NFC_NFCWR; + } + + /* Clear all flags. */ + regmap_read(nc->base.smc, ATMEL_HSMC_NFC_SR, &val); + + /* Send the command. */ + regmap_write(nc->io, op, addr); + + ret = atmel_nfc_wait(nc, poll, 0); + if (ret) + dev_err(nc->base.dev, + "Failed to send NAND command (err = %d)!", + ret); + + /* Reset the op state. */ + memset(&nc->op, 0, sizeof(nc->op)); + + return ret; +} + +static void atmel_hsmc_nand_cmd_ctrl(struct mtd_info *mtd, int dat, + unsigned int ctrl) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct atmel_nand *nand = to_atmel_nand(chip); + struct atmel_hsmc_nand_controller *nc; + + nc = to_hsmc_nand_controller(chip->controller); + + if (ctrl & NAND_ALE) { + if (nc->op.naddrs == ATMEL_NFC_MAX_ADDR_CYCLES) + return; + + nc->op.addrs[nc->op.naddrs++] = dat; + } else if (ctrl & NAND_CLE) { + if (nc->op.ncmds > 1) + return; + + nc->op.cmds[nc->op.ncmds++] = dat; + } + + if (dat == NAND_CMD_NONE) { + nc->op.cs = nand->activecs->id; + atmel_nfc_exec_op(nc, true); + } +} + +static void atmel_nand_cmd_ctrl(struct mtd_info *mtd, int cmd, + unsigned int ctrl) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct atmel_nand *nand = to_atmel_nand(chip); + struct atmel_nand_controller *nc; + + nc = to_nand_controller(chip->controller); + + if ((ctrl & NAND_CTRL_CHANGE) && nand->activecs->csgpio) { + if (ctrl & NAND_NCE) + gpiod_set_value(nand->activecs->csgpio, 0); + else + gpiod_set_value(nand->activecs->csgpio, 1); + } + + if (ctrl & NAND_ALE) + writeb(cmd, nand->activecs->io.virt + nc->caps->ale_offs); + else if (ctrl & NAND_CLE) + writeb(cmd, nand->activecs->io.virt + nc->caps->cle_offs); +} + +static void atmel_nfc_copy_to_sram(struct nand_chip *chip, const u8 *buf, + bool oob_required) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct atmel_hsmc_nand_controller *nc; + int ret = -EIO; + + nc = to_hsmc_nand_controller(chip->controller); + + if (nc->base.dmac) + ret = atmel_nand_dma_transfer(&nc->base, (void *)buf, + nc->sram.dma, mtd->writesize, + DMA_TO_DEVICE); + + /* Falling back to CPU copy. */ + if (ret) + memcpy_toio(nc->sram.virt, buf, mtd->writesize); + + if (oob_required) + memcpy_toio(nc->sram.virt + mtd->writesize, chip->oob_poi, + mtd->oobsize); +} + +static void atmel_nfc_copy_from_sram(struct nand_chip *chip, u8 *buf, + bool oob_required) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct atmel_hsmc_nand_controller *nc; + int ret = -EIO; + + nc = to_hsmc_nand_controller(chip->controller); + + if (nc->base.dmac) + ret = atmel_nand_dma_transfer(&nc->base, buf, nc->sram.dma, + mtd->writesize, DMA_FROM_DEVICE); + + /* Falling back to CPU copy. */ + if (ret) + memcpy_fromio(buf, nc->sram.virt, mtd->writesize); + + if (oob_required) + memcpy_fromio(chip->oob_poi, nc->sram.virt + mtd->writesize, + mtd->oobsize); +} + +static void atmel_nfc_set_op_addr(struct nand_chip *chip, int page, int column) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct atmel_hsmc_nand_controller *nc; + + nc = to_hsmc_nand_controller(chip->controller); + + if (column >= 0) { + nc->op.addrs[nc->op.naddrs++] = column; + + /* + * 2 address cycles for the column offset on large page NANDs. + */ + if (mtd->writesize > 512) + nc->op.addrs[nc->op.naddrs++] = column >> 8; + } + + if (page >= 0) { + nc->op.addrs[nc->op.naddrs++] = page; + nc->op.addrs[nc->op.naddrs++] = page >> 8; + + if (chip->options & NAND_ROW_ADDR_3) + nc->op.addrs[nc->op.naddrs++] = page >> 16; + } +} + +static int atmel_nand_pmecc_enable(struct nand_chip *chip, int op, bool raw) +{ + struct atmel_nand *nand = to_atmel_nand(chip); + struct atmel_nand_controller *nc; + int ret; + + nc = to_nand_controller(chip->controller); + + if (raw) + return 0; + + ret = atmel_pmecc_enable(nand->pmecc, op); + if (ret) + dev_err(nc->dev, + "Failed to enable ECC engine (err = %d)\n", ret); + + return ret; +} + +static void atmel_nand_pmecc_disable(struct nand_chip *chip, bool raw) +{ + struct atmel_nand *nand = to_atmel_nand(chip); + + if (!raw) + atmel_pmecc_disable(nand->pmecc); +} + +static int atmel_nand_pmecc_generate_eccbytes(struct nand_chip *chip, bool raw) +{ + struct atmel_nand *nand = to_atmel_nand(chip); + struct mtd_info *mtd = nand_to_mtd(chip); + struct atmel_nand_controller *nc; + struct mtd_oob_region oobregion; + void *eccbuf; + int ret, i; + + nc = to_nand_controller(chip->controller); + + if (raw) + return 0; + + ret = atmel_pmecc_wait_rdy(nand->pmecc); + if (ret) { + dev_err(nc->dev, + "Failed to transfer NAND page data (err = %d)\n", + ret); + return ret; + } + + mtd_ooblayout_ecc(mtd, 0, &oobregion); + eccbuf = chip->oob_poi + oobregion.offset; + + for (i = 0; i < chip->ecc.steps; i++) { + atmel_pmecc_get_generated_eccbytes(nand->pmecc, i, + eccbuf); + eccbuf += chip->ecc.bytes; + } + + return 0; +} + +static int atmel_nand_pmecc_correct_data(struct nand_chip *chip, void *buf, + bool raw) +{ + struct atmel_nand *nand = to_atmel_nand(chip); + struct mtd_info *mtd = nand_to_mtd(chip); + struct atmel_nand_controller *nc; + struct mtd_oob_region oobregion; + int ret, i, max_bitflips = 0; + void *databuf, *eccbuf; + + nc = to_nand_controller(chip->controller); + + if (raw) + return 0; + + ret = atmel_pmecc_wait_rdy(nand->pmecc); + if (ret) { + dev_err(nc->dev, + "Failed to read NAND page data (err = %d)\n", + ret); + return ret; + } + + mtd_ooblayout_ecc(mtd, 0, &oobregion); + eccbuf = chip->oob_poi + oobregion.offset; + databuf = buf; + + for (i = 0; i < chip->ecc.steps; i++) { + ret = atmel_pmecc_correct_sector(nand->pmecc, i, databuf, + eccbuf); + if (ret < 0 && !atmel_pmecc_correct_erased_chunks(nand->pmecc)) + ret = nand_check_erased_ecc_chunk(databuf, + chip->ecc.size, + eccbuf, + chip->ecc.bytes, + NULL, 0, + chip->ecc.strength); + + if (ret >= 0) + max_bitflips = max(ret, max_bitflips); + else + mtd->ecc_stats.failed++; + + databuf += chip->ecc.size; + eccbuf += chip->ecc.bytes; + } + + return max_bitflips; +} + +static int atmel_nand_pmecc_write_pg(struct nand_chip *chip, const u8 *buf, + bool oob_required, int page, bool raw) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct atmel_nand *nand = to_atmel_nand(chip); + int ret; + + nand_prog_page_begin_op(chip, page, 0, NULL, 0); + + ret = atmel_nand_pmecc_enable(chip, NAND_ECC_WRITE, raw); + if (ret) + return ret; + + atmel_nand_write_buf(mtd, buf, mtd->writesize); + + ret = atmel_nand_pmecc_generate_eccbytes(chip, raw); + if (ret) { + atmel_pmecc_disable(nand->pmecc); + return ret; + } + + atmel_nand_pmecc_disable(chip, raw); + + atmel_nand_write_buf(mtd, chip->oob_poi, mtd->oobsize); + + return nand_prog_page_end_op(chip); +} + +static int atmel_nand_pmecc_write_page(struct mtd_info *mtd, + struct nand_chip *chip, const u8 *buf, + int oob_required, int page) +{ + return atmel_nand_pmecc_write_pg(chip, buf, oob_required, page, false); +} + +static int atmel_nand_pmecc_write_page_raw(struct mtd_info *mtd, + struct nand_chip *chip, + const u8 *buf, int oob_required, + int page) +{ + return atmel_nand_pmecc_write_pg(chip, buf, oob_required, page, true); +} + +static int atmel_nand_pmecc_read_pg(struct nand_chip *chip, u8 *buf, + bool oob_required, int page, bool raw) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + int ret; + + nand_read_page_op(chip, page, 0, NULL, 0); + + ret = atmel_nand_pmecc_enable(chip, NAND_ECC_READ, raw); + if (ret) + return ret; + + atmel_nand_read_buf(mtd, buf, mtd->writesize); + atmel_nand_read_buf(mtd, chip->oob_poi, mtd->oobsize); + + ret = atmel_nand_pmecc_correct_data(chip, buf, raw); + + atmel_nand_pmecc_disable(chip, raw); + + return ret; +} + +static int atmel_nand_pmecc_read_page(struct mtd_info *mtd, + struct nand_chip *chip, u8 *buf, + int oob_required, int page) +{ + return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page, false); +} + +static int atmel_nand_pmecc_read_page_raw(struct mtd_info *mtd, + struct nand_chip *chip, u8 *buf, + int oob_required, int page) +{ + return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page, true); +} + +static int atmel_hsmc_nand_pmecc_write_pg(struct nand_chip *chip, + const u8 *buf, bool oob_required, + int page, bool raw) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct atmel_nand *nand = to_atmel_nand(chip); + struct atmel_hsmc_nand_controller *nc; + int ret, status; + + nc = to_hsmc_nand_controller(chip->controller); + + atmel_nfc_copy_to_sram(chip, buf, false); + + nc->op.cmds[0] = NAND_CMD_SEQIN; + nc->op.ncmds = 1; + atmel_nfc_set_op_addr(chip, page, 0x0); + nc->op.cs = nand->activecs->id; + nc->op.data = ATMEL_NFC_WRITE_DATA; + + ret = atmel_nand_pmecc_enable(chip, NAND_ECC_WRITE, raw); + if (ret) + return ret; + + ret = atmel_nfc_exec_op(nc, false); + if (ret) { + atmel_nand_pmecc_disable(chip, raw); + dev_err(nc->base.dev, + "Failed to transfer NAND page data (err = %d)\n", + ret); + return ret; + } + + ret = atmel_nand_pmecc_generate_eccbytes(chip, raw); + + atmel_nand_pmecc_disable(chip, raw); + + if (ret) + return ret; + + atmel_nand_write_buf(mtd, chip->oob_poi, mtd->oobsize); + + nc->op.cmds[0] = NAND_CMD_PAGEPROG; + nc->op.ncmds = 1; + nc->op.cs = nand->activecs->id; + ret = atmel_nfc_exec_op(nc, false); + if (ret) + dev_err(nc->base.dev, "Failed to program NAND page (err = %d)\n", + ret); + + status = chip->waitfunc(mtd, chip); + if (status & NAND_STATUS_FAIL) + return -EIO; + + return ret; +} + +static int atmel_hsmc_nand_pmecc_write_page(struct mtd_info *mtd, + struct nand_chip *chip, + const u8 *buf, int oob_required, + int page) +{ + return atmel_hsmc_nand_pmecc_write_pg(chip, buf, oob_required, page, + false); +} + +static int atmel_hsmc_nand_pmecc_write_page_raw(struct mtd_info *mtd, + struct nand_chip *chip, + const u8 *buf, + int oob_required, int page) +{ + return atmel_hsmc_nand_pmecc_write_pg(chip, buf, oob_required, page, + true); +} + +static int atmel_hsmc_nand_pmecc_read_pg(struct nand_chip *chip, u8 *buf, + bool oob_required, int page, + bool raw) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct atmel_nand *nand = to_atmel_nand(chip); + struct atmel_hsmc_nand_controller *nc; + int ret; + + nc = to_hsmc_nand_controller(chip->controller); + + /* + * Optimized read page accessors only work when the NAND R/B pin is + * connected to a native SoC R/B pin. If that's not the case, fallback + * to the non-optimized one. + */ + if (nand->activecs->rb.type != ATMEL_NAND_NATIVE_RB) { + nand_read_page_op(chip, page, 0, NULL, 0); + + return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page, + raw); + } + + nc->op.cmds[nc->op.ncmds++] = NAND_CMD_READ0; + + if (mtd->writesize > 512) + nc->op.cmds[nc->op.ncmds++] = NAND_CMD_READSTART; + + atmel_nfc_set_op_addr(chip, page, 0x0); + nc->op.cs = nand->activecs->id; + nc->op.data = ATMEL_NFC_READ_DATA; + + ret = atmel_nand_pmecc_enable(chip, NAND_ECC_READ, raw); + if (ret) + return ret; + + ret = atmel_nfc_exec_op(nc, false); + if (ret) { + atmel_nand_pmecc_disable(chip, raw); + dev_err(nc->base.dev, + "Failed to load NAND page data (err = %d)\n", + ret); + return ret; + } + + atmel_nfc_copy_from_sram(chip, buf, true); + + ret = atmel_nand_pmecc_correct_data(chip, buf, raw); + + atmel_nand_pmecc_disable(chip, raw); + + return ret; +} + +static int atmel_hsmc_nand_pmecc_read_page(struct mtd_info *mtd, + struct nand_chip *chip, u8 *buf, + int oob_required, int page) +{ + return atmel_hsmc_nand_pmecc_read_pg(chip, buf, oob_required, page, + false); +} + +static int atmel_hsmc_nand_pmecc_read_page_raw(struct mtd_info *mtd, + struct nand_chip *chip, + u8 *buf, int oob_required, + int page) +{ + return atmel_hsmc_nand_pmecc_read_pg(chip, buf, oob_required, page, + true); +} + +static int atmel_nand_pmecc_init(struct nand_chip *chip) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct atmel_nand *nand = to_atmel_nand(chip); + struct atmel_nand_controller *nc; + struct atmel_pmecc_user_req req; + + nc = to_nand_controller(chip->controller); + + if (!nc->pmecc) { + dev_err(nc->dev, "HW ECC not supported\n"); + return -ENOTSUPP; + } + + if (nc->caps->legacy_of_bindings) { + u32 val; + + if (!of_property_read_u32(nc->dev->of_node, "atmel,pmecc-cap", + &val)) + chip->ecc.strength = val; + + if (!of_property_read_u32(nc->dev->of_node, + "atmel,pmecc-sector-size", + &val)) + chip->ecc.size = val; + } + + if (chip->ecc.options & NAND_ECC_MAXIMIZE) + req.ecc.strength = ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH; + else if (chip->ecc.strength) + req.ecc.strength = chip->ecc.strength; + else if (chip->ecc_strength_ds) + req.ecc.strength = chip->ecc_strength_ds; + else + req.ecc.strength = ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH; + + if (chip->ecc.size) + req.ecc.sectorsize = chip->ecc.size; + else if (chip->ecc_step_ds) + req.ecc.sectorsize = chip->ecc_step_ds; + else + req.ecc.sectorsize = ATMEL_PMECC_SECTOR_SIZE_AUTO; + + req.pagesize = mtd->writesize; + req.oobsize = mtd->oobsize; + + if (mtd->writesize <= 512) { + req.ecc.bytes = 4; + req.ecc.ooboffset = 0; + } else { + req.ecc.bytes = mtd->oobsize - 2; + req.ecc.ooboffset = ATMEL_PMECC_OOBOFFSET_AUTO; + } + + nand->pmecc = atmel_pmecc_create_user(nc->pmecc, &req); + if (IS_ERR(nand->pmecc)) + return PTR_ERR(nand->pmecc); + + chip->ecc.algo = NAND_ECC_BCH; + chip->ecc.size = req.ecc.sectorsize; + chip->ecc.bytes = req.ecc.bytes / req.ecc.nsectors; + chip->ecc.strength = req.ecc.strength; + + chip->options |= NAND_NO_SUBPAGE_WRITE; + + mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops); + + return 0; +} + +static int atmel_nand_ecc_init(struct atmel_nand *nand) +{ + struct nand_chip *chip = &nand->base; + struct atmel_nand_controller *nc; + int ret; + + nc = to_nand_controller(chip->controller); + + switch (chip->ecc.mode) { + case NAND_ECC_NONE: + case NAND_ECC_SOFT: + /* + * Nothing to do, the core will initialize everything for us. + */ + break; + + case NAND_ECC_HW: + ret = atmel_nand_pmecc_init(chip); + if (ret) + return ret; + + chip->ecc.read_page = atmel_nand_pmecc_read_page; + chip->ecc.write_page = atmel_nand_pmecc_write_page; + chip->ecc.read_page_raw = atmel_nand_pmecc_read_page_raw; + chip->ecc.write_page_raw = atmel_nand_pmecc_write_page_raw; + break; + + default: + /* Other modes are not supported. */ + dev_err(nc->dev, "Unsupported ECC mode: %d\n", + chip->ecc.mode); + return -ENOTSUPP; + } + + return 0; +} + +static int atmel_hsmc_nand_ecc_init(struct atmel_nand *nand) +{ + struct nand_chip *chip = &nand->base; + int ret; + + ret = atmel_nand_ecc_init(nand); + if (ret) + return ret; + + if (chip->ecc.mode != NAND_ECC_HW) + return 0; + + /* Adjust the ECC operations for the HSMC IP. */ + chip->ecc.read_page = atmel_hsmc_nand_pmecc_read_page; + chip->ecc.write_page = atmel_hsmc_nand_pmecc_write_page; + chip->ecc.read_page_raw = atmel_hsmc_nand_pmecc_read_page_raw; + chip->ecc.write_page_raw = atmel_hsmc_nand_pmecc_write_page_raw; + + return 0; +} + +static int atmel_smc_nand_prepare_smcconf(struct atmel_nand *nand, + const struct nand_data_interface *conf, + struct atmel_smc_cs_conf *smcconf) +{ + u32 ncycles, totalcycles, timeps, mckperiodps; + struct atmel_nand_controller *nc; + int ret; + + nc = to_nand_controller(nand->base.controller); + + /* DDR interface not supported. */ + if (conf->type != NAND_SDR_IFACE) + return -ENOTSUPP; + + /* + * tRC < 30ns implies EDO mode. This controller does not support this + * mode. + */ + if (conf->timings.sdr.tRC_min < 30000) + return -ENOTSUPP; + + atmel_smc_cs_conf_init(smcconf); + + mckperiodps = NSEC_PER_SEC / clk_get_rate(nc->mck); + mckperiodps *= 1000; + + /* + * Set write pulse timing. This one is easy to extract: + * + * NWE_PULSE = tWP + */ + ncycles = DIV_ROUND_UP(conf->timings.sdr.tWP_min, mckperiodps); + totalcycles = ncycles; + ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NWE_SHIFT, + ncycles); + if (ret) + return ret; + + /* + * The write setup timing depends on the operation done on the NAND. + * All operations goes through the same data bus, but the operation + * type depends on the address we are writing to (ALE/CLE address + * lines). + * Since we have no way to differentiate the different operations at + * the SMC level, we must consider the worst case (the biggest setup + * time among all operation types): + * + * NWE_SETUP = max(tCLS, tCS, tALS, tDS) - NWE_PULSE + */ + timeps = max3(conf->timings.sdr.tCLS_min, conf->timings.sdr.tCS_min, + conf->timings.sdr.tALS_min); + timeps = max(timeps, conf->timings.sdr.tDS_min); + ncycles = DIV_ROUND_UP(timeps, mckperiodps); + ncycles = ncycles > totalcycles ? ncycles - totalcycles : 0; + totalcycles += ncycles; + ret = atmel_smc_cs_conf_set_setup(smcconf, ATMEL_SMC_NWE_SHIFT, + ncycles); + if (ret) + return ret; + + /* + * As for the write setup timing, the write hold timing depends on the + * operation done on the NAND: + * + * NWE_HOLD = max(tCLH, tCH, tALH, tDH, tWH) + */ + timeps = max3(conf->timings.sdr.tCLH_min, conf->timings.sdr.tCH_min, + conf->timings.sdr.tALH_min); + timeps = max3(timeps, conf->timings.sdr.tDH_min, + conf->timings.sdr.tWH_min); + ncycles = DIV_ROUND_UP(timeps, mckperiodps); + totalcycles += ncycles; + + /* + * The write cycle timing is directly matching tWC, but is also + * dependent on the other timings on the setup and hold timings we + * calculated earlier, which gives: + * + * NWE_CYCLE = max(tWC, NWE_SETUP + NWE_PULSE + NWE_HOLD) + */ + ncycles = DIV_ROUND_UP(conf->timings.sdr.tWC_min, mckperiodps); + ncycles = max(totalcycles, ncycles); + ret = atmel_smc_cs_conf_set_cycle(smcconf, ATMEL_SMC_NWE_SHIFT, + ncycles); + if (ret) + return ret; + + /* + * We don't want the CS line to be toggled between each byte/word + * transfer to the NAND. The only way to guarantee that is to have the + * NCS_{WR,RD}_{SETUP,HOLD} timings set to 0, which in turn means: + * + * NCS_WR_PULSE = NWE_CYCLE + */ + ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NCS_WR_SHIFT, + ncycles); + if (ret) + return ret; + + /* + * As for the write setup timing, the read hold timing depends on the + * operation done on the NAND: + * + * NRD_HOLD = max(tREH, tRHOH) + */ + timeps = max(conf->timings.sdr.tREH_min, conf->timings.sdr.tRHOH_min); + ncycles = DIV_ROUND_UP(timeps, mckperiodps); + totalcycles = ncycles; + + /* + * TDF = tRHZ - NRD_HOLD + */ + ncycles = DIV_ROUND_UP(conf->timings.sdr.tRHZ_max, mckperiodps); + ncycles -= totalcycles; + + /* + * In ONFI 4.0 specs, tRHZ has been increased to support EDO NANDs and + * we might end up with a config that does not fit in the TDF field. + * Just take the max value in this case and hope that the NAND is more + * tolerant than advertised. + */ + if (ncycles > ATMEL_SMC_MODE_TDF_MAX) + ncycles = ATMEL_SMC_MODE_TDF_MAX; + else if (ncycles < ATMEL_SMC_MODE_TDF_MIN) + ncycles = ATMEL_SMC_MODE_TDF_MIN; + + smcconf->mode |= ATMEL_SMC_MODE_TDF(ncycles) | + ATMEL_SMC_MODE_TDFMODE_OPTIMIZED; + + /* + * Read pulse timing directly matches tRP: + * + * NRD_PULSE = tRP + */ + ncycles = DIV_ROUND_UP(conf->timings.sdr.tRP_min, mckperiodps); + totalcycles += ncycles; + ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NRD_SHIFT, + ncycles); + if (ret) + return ret; + + /* + * The write cycle timing is directly matching tWC, but is also + * dependent on the setup and hold timings we calculated earlier, + * which gives: + * + * NRD_CYCLE = max(tRC, NRD_PULSE + NRD_HOLD) + * + * NRD_SETUP is always 0. + */ + ncycles = DIV_ROUND_UP(conf->timings.sdr.tRC_min, mckperiodps); + ncycles = max(totalcycles, ncycles); + ret = atmel_smc_cs_conf_set_cycle(smcconf, ATMEL_SMC_NRD_SHIFT, + ncycles); + if (ret) + return ret; + + /* + * We don't want the CS line to be toggled between each byte/word + * transfer from the NAND. The only way to guarantee that is to have + * the NCS_{WR,RD}_{SETUP,HOLD} timings set to 0, which in turn means: + * + * NCS_RD_PULSE = NRD_CYCLE + */ + ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NCS_RD_SHIFT, + ncycles); + if (ret) + return ret; + + /* Txxx timings are directly matching tXXX ones. */ + ncycles = DIV_ROUND_UP(conf->timings.sdr.tCLR_min, mckperiodps); + ret = atmel_smc_cs_conf_set_timing(smcconf, + ATMEL_HSMC_TIMINGS_TCLR_SHIFT, + ncycles); + if (ret) + return ret; + + ncycles = DIV_ROUND_UP(conf->timings.sdr.tADL_min, mckperiodps); + ret = atmel_smc_cs_conf_set_timing(smcconf, + ATMEL_HSMC_TIMINGS_TADL_SHIFT, + ncycles); + /* + * Version 4 of the ONFI spec mandates that tADL be at least 400 + * nanoseconds, but, depending on the master clock rate, 400 ns may not + * fit in the tADL field of the SMC reg. We need to relax the check and + * accept the -ERANGE return code. + * + * Note that previous versions of the ONFI spec had a lower tADL_min + * (100 or 200 ns). It's not clear why this timing constraint got + * increased but it seems most NANDs are fine with values lower than + * 400ns, so we should be safe. + */ + if (ret && ret != -ERANGE) + return ret; + + ncycles = DIV_ROUND_UP(conf->timings.sdr.tAR_min, mckperiodps); + ret = atmel_smc_cs_conf_set_timing(smcconf, + ATMEL_HSMC_TIMINGS_TAR_SHIFT, + ncycles); + if (ret) + return ret; + + ncycles = DIV_ROUND_UP(conf->timings.sdr.tRR_min, mckperiodps); + ret = atmel_smc_cs_conf_set_timing(smcconf, + ATMEL_HSMC_TIMINGS_TRR_SHIFT, + ncycles); + if (ret) + return ret; + + ncycles = DIV_ROUND_UP(conf->timings.sdr.tWB_max, mckperiodps); + ret = atmel_smc_cs_conf_set_timing(smcconf, + ATMEL_HSMC_TIMINGS_TWB_SHIFT, + ncycles); + if (ret) + return ret; + + /* Attach the CS line to the NFC logic. */ + smcconf->timings |= ATMEL_HSMC_TIMINGS_NFSEL; + + /* Set the appropriate data bus width. */ + if (nand->base.options & NAND_BUSWIDTH_16) + smcconf->mode |= ATMEL_SMC_MODE_DBW_16; + + /* Operate in NRD/NWE READ/WRITEMODE. */ + smcconf->mode |= ATMEL_SMC_MODE_READMODE_NRD | + ATMEL_SMC_MODE_WRITEMODE_NWE; + + return 0; +} + +static int atmel_smc_nand_setup_data_interface(struct atmel_nand *nand, + int csline, + const struct nand_data_interface *conf) +{ + struct atmel_nand_controller *nc; + struct atmel_smc_cs_conf smcconf; + struct atmel_nand_cs *cs; + int ret; + + nc = to_nand_controller(nand->base.controller); + + ret = atmel_smc_nand_prepare_smcconf(nand, conf, &smcconf); + if (ret) + return ret; + + if (csline == NAND_DATA_IFACE_CHECK_ONLY) + return 0; + + cs = &nand->cs[csline]; + cs->smcconf = smcconf; + atmel_smc_cs_conf_apply(nc->smc, cs->id, &cs->smcconf); + + return 0; +} + +static int atmel_hsmc_nand_setup_data_interface(struct atmel_nand *nand, + int csline, + const struct nand_data_interface *conf) +{ + struct atmel_hsmc_nand_controller *nc; + struct atmel_smc_cs_conf smcconf; + struct atmel_nand_cs *cs; + int ret; + + nc = to_hsmc_nand_controller(nand->base.controller); + + ret = atmel_smc_nand_prepare_smcconf(nand, conf, &smcconf); + if (ret) + return ret; + + if (csline == NAND_DATA_IFACE_CHECK_ONLY) + return 0; + + cs = &nand->cs[csline]; + cs->smcconf = smcconf; + + if (cs->rb.type == ATMEL_NAND_NATIVE_RB) + cs->smcconf.timings |= ATMEL_HSMC_TIMINGS_RBNSEL(cs->rb.id); + + atmel_hsmc_cs_conf_apply(nc->base.smc, nc->hsmc_layout, cs->id, + &cs->smcconf); + + return 0; +} + +static int atmel_nand_setup_data_interface(struct mtd_info *mtd, int csline, + const struct nand_data_interface *conf) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct atmel_nand *nand = to_atmel_nand(chip); + struct atmel_nand_controller *nc; + + nc = to_nand_controller(nand->base.controller); + + if (csline >= nand->numcs || + (csline < 0 && csline != NAND_DATA_IFACE_CHECK_ONLY)) + return -EINVAL; + + return nc->caps->ops->setup_data_interface(nand, csline, conf); +} + +static void atmel_nand_init(struct atmel_nand_controller *nc, + struct atmel_nand *nand) +{ + struct nand_chip *chip = &nand->base; + struct mtd_info *mtd = nand_to_mtd(chip); + + mtd->dev.parent = nc->dev; + nand->base.controller = &nc->base; + + chip->cmd_ctrl = atmel_nand_cmd_ctrl; + chip->read_byte = atmel_nand_read_byte; + chip->read_word = atmel_nand_read_word; + chip->write_byte = atmel_nand_write_byte; + chip->read_buf = atmel_nand_read_buf; + chip->write_buf = atmel_nand_write_buf; + chip->select_chip = atmel_nand_select_chip; + + if (nc->mck && nc->caps->ops->setup_data_interface) + chip->setup_data_interface = atmel_nand_setup_data_interface; + + /* Some NANDs require a longer delay than the default one (20us). */ + chip->chip_delay = 40; + + /* + * Use a bounce buffer when the buffer passed by the MTD user is not + * suitable for DMA. + */ + if (nc->dmac) + chip->options |= NAND_USE_BOUNCE_BUFFER; + + /* Default to HW ECC if pmecc is available. */ + if (nc->pmecc) + chip->ecc.mode = NAND_ECC_HW; +} + +static void atmel_smc_nand_init(struct atmel_nand_controller *nc, + struct atmel_nand *nand) +{ + struct nand_chip *chip = &nand->base; + struct atmel_smc_nand_controller *smc_nc; + int i; + + atmel_nand_init(nc, nand); + + smc_nc = to_smc_nand_controller(chip->controller); + if (!smc_nc->matrix) + return; + + /* Attach the CS to the NAND Flash logic. */ + for (i = 0; i < nand->numcs; i++) + regmap_update_bits(smc_nc->matrix, smc_nc->ebi_csa_offs, + BIT(nand->cs[i].id), BIT(nand->cs[i].id)); +} + +static void atmel_hsmc_nand_init(struct atmel_nand_controller *nc, + struct atmel_nand *nand) +{ + struct nand_chip *chip = &nand->base; + + atmel_nand_init(nc, nand); + + /* Overload some methods for the HSMC controller. */ + chip->cmd_ctrl = atmel_hsmc_nand_cmd_ctrl; + chip->select_chip = atmel_hsmc_nand_select_chip; +} + +static int atmel_nand_detect(struct atmel_nand *nand) +{ + struct nand_chip *chip = &nand->base; + struct mtd_info *mtd = nand_to_mtd(chip); + struct atmel_nand_controller *nc; + int ret; + + nc = to_nand_controller(chip->controller); + + ret = nand_scan_ident(mtd, nand->numcs, NULL); + if (ret) + dev_err(nc->dev, "nand_scan_ident() failed: %d\n", ret); + + return ret; +} + +static int atmel_nand_unregister(struct atmel_nand *nand) +{ + struct nand_chip *chip = &nand->base; + struct mtd_info *mtd = nand_to_mtd(chip); + int ret; + + ret = mtd_device_unregister(mtd); + if (ret) + return ret; + + nand_cleanup(chip); + list_del(&nand->node); + + return 0; +} + +static int atmel_nand_register(struct atmel_nand *nand) +{ + struct nand_chip *chip = &nand->base; + struct mtd_info *mtd = nand_to_mtd(chip); + struct atmel_nand_controller *nc; + int ret; + + nc = to_nand_controller(chip->controller); + + if (nc->caps->legacy_of_bindings || !nc->dev->of_node) { + /* + * We keep the MTD name unchanged to avoid breaking platforms + * where the MTD cmdline parser is used and the bootloader + * has not been updated to use the new naming scheme. + */ + mtd->name = "atmel_nand"; + } else if (!mtd->name) { + /* + * If the new bindings are used and the bootloader has not been + * updated to pass a new mtdparts parameter on the cmdline, you + * should define the following property in your nand node: + * + * label = "atmel_nand"; + * + * This way, mtd->name will be set by the core when + * nand_set_flash_node() is called. + */ + mtd->name = devm_kasprintf(nc->dev, GFP_KERNEL, + "%s:nand.%d", dev_name(nc->dev), + nand->cs[0].id); + if (!mtd->name) { + dev_err(nc->dev, "Failed to allocate mtd->name\n"); + return -ENOMEM; + } + } + + ret = nand_scan_tail(mtd); + if (ret) { + dev_err(nc->dev, "nand_scan_tail() failed: %d\n", ret); + return ret; + } + + ret = mtd_device_register(mtd, NULL, 0); + if (ret) { + dev_err(nc->dev, "Failed to register mtd device: %d\n", ret); + nand_cleanup(chip); + return ret; + } + + list_add_tail(&nand->node, &nc->chips); + + return 0; +} + +static struct atmel_nand *atmel_nand_create(struct atmel_nand_controller *nc, + struct device_node *np, + int reg_cells) +{ + struct atmel_nand *nand; + struct gpio_desc *gpio; + int numcs, ret, i; + + numcs = of_property_count_elems_of_size(np, "reg", + reg_cells * sizeof(u32)); + if (numcs < 1) { + dev_err(nc->dev, "Missing or invalid reg property\n"); + return ERR_PTR(-EINVAL); + } + + nand = devm_kzalloc(nc->dev, + sizeof(*nand) + (numcs * sizeof(*nand->cs)), + GFP_KERNEL); + if (!nand) { + dev_err(nc->dev, "Failed to allocate NAND object\n"); + return ERR_PTR(-ENOMEM); + } + + nand->numcs = numcs; + + gpio = devm_fwnode_get_index_gpiod_from_child(nc->dev, "det", 0, + &np->fwnode, GPIOD_IN, + "nand-det"); + if (IS_ERR(gpio) && PTR_ERR(gpio) != -ENOENT) { + dev_err(nc->dev, + "Failed to get detect gpio (err = %ld)\n", + PTR_ERR(gpio)); + return ERR_CAST(gpio); + } + + if (!IS_ERR(gpio)) + nand->cdgpio = gpio; + + for (i = 0; i < numcs; i++) { + struct resource res; + u32 val; + + ret = of_address_to_resource(np, 0, &res); + if (ret) { + dev_err(nc->dev, "Invalid reg property (err = %d)\n", + ret); + return ERR_PTR(ret); + } + + ret = of_property_read_u32_index(np, "reg", i * reg_cells, + &val); + if (ret) { + dev_err(nc->dev, "Invalid reg property (err = %d)\n", + ret); + return ERR_PTR(ret); + } + + nand->cs[i].id = val; + + nand->cs[i].io.dma = res.start; + nand->cs[i].io.virt = devm_ioremap_resource(nc->dev, &res); + if (IS_ERR(nand->cs[i].io.virt)) + return ERR_CAST(nand->cs[i].io.virt); + + if (!of_property_read_u32(np, "atmel,rb", &val)) { + if (val > ATMEL_NFC_MAX_RB_ID) + return ERR_PTR(-EINVAL); + + nand->cs[i].rb.type = ATMEL_NAND_NATIVE_RB; + nand->cs[i].rb.id = val; + } else { + gpio = devm_fwnode_get_index_gpiod_from_child(nc->dev, + "rb", i, &np->fwnode, + GPIOD_IN, "nand-rb"); + if (IS_ERR(gpio) && PTR_ERR(gpio) != -ENOENT) { + dev_err(nc->dev, + "Failed to get R/B gpio (err = %ld)\n", + PTR_ERR(gpio)); + return ERR_CAST(gpio); + } + + if (!IS_ERR(gpio)) { + nand->cs[i].rb.type = ATMEL_NAND_GPIO_RB; + nand->cs[i].rb.gpio = gpio; + } + } + + gpio = devm_fwnode_get_index_gpiod_from_child(nc->dev, "cs", + i, &np->fwnode, + GPIOD_OUT_HIGH, + "nand-cs"); + if (IS_ERR(gpio) && PTR_ERR(gpio) != -ENOENT) { + dev_err(nc->dev, + "Failed to get CS gpio (err = %ld)\n", + PTR_ERR(gpio)); + return ERR_CAST(gpio); + } + + if (!IS_ERR(gpio)) + nand->cs[i].csgpio = gpio; + } + + nand_set_flash_node(&nand->base, np); + + return nand; +} + +static int +atmel_nand_controller_add_nand(struct atmel_nand_controller *nc, + struct atmel_nand *nand) +{ + int ret; + + /* No card inserted, skip this NAND. */ + if (nand->cdgpio && gpiod_get_value(nand->cdgpio)) { + dev_info(nc->dev, "No SmartMedia card inserted.\n"); + return 0; + } + + nc->caps->ops->nand_init(nc, nand); + + ret = atmel_nand_detect(nand); + if (ret) + return ret; + + ret = nc->caps->ops->ecc_init(nand); + if (ret) + return ret; + + return atmel_nand_register(nand); +} + +static int +atmel_nand_controller_remove_nands(struct atmel_nand_controller *nc) +{ + struct atmel_nand *nand, *tmp; + int ret; + + list_for_each_entry_safe(nand, tmp, &nc->chips, node) { + ret = atmel_nand_unregister(nand); + if (ret) + return ret; + } + + return 0; +} + +static int +atmel_nand_controller_legacy_add_nands(struct atmel_nand_controller *nc) +{ + struct device *dev = nc->dev; + struct platform_device *pdev = to_platform_device(dev); + struct atmel_nand *nand; + struct gpio_desc *gpio; + struct resource *res; + + /* + * Legacy bindings only allow connecting a single NAND with a unique CS + * line to the controller. + */ + nand = devm_kzalloc(nc->dev, sizeof(*nand) + sizeof(*nand->cs), + GFP_KERNEL); + if (!nand) + return -ENOMEM; + + nand->numcs = 1; + + res = platform_get_resource(pdev, IORESOURCE_MEM, 0); + nand->cs[0].io.virt = devm_ioremap_resource(dev, res); + if (IS_ERR(nand->cs[0].io.virt)) + return PTR_ERR(nand->cs[0].io.virt); + + nand->cs[0].io.dma = res->start; + + /* + * The old driver was hardcoding the CS id to 3 for all sama5 + * controllers. Since this id is only meaningful for the sama5 + * controller we can safely assign this id to 3 no matter the + * controller. + * If one wants to connect a NAND to a different CS line, he will + * have to use the new bindings. + */ + nand->cs[0].id = 3; + + /* R/B GPIO. */ + gpio = devm_gpiod_get_index_optional(dev, NULL, 0, GPIOD_IN); + if (IS_ERR(gpio)) { + dev_err(dev, "Failed to get R/B gpio (err = %ld)\n", + PTR_ERR(gpio)); + return PTR_ERR(gpio); + } + + if (gpio) { + nand->cs[0].rb.type = ATMEL_NAND_GPIO_RB; + nand->cs[0].rb.gpio = gpio; + } + + /* CS GPIO. */ + gpio = devm_gpiod_get_index_optional(dev, NULL, 1, GPIOD_OUT_HIGH); + if (IS_ERR(gpio)) { + dev_err(dev, "Failed to get CS gpio (err = %ld)\n", + PTR_ERR(gpio)); + return PTR_ERR(gpio); + } + + nand->cs[0].csgpio = gpio; + + /* Card detect GPIO. */ + gpio = devm_gpiod_get_index_optional(nc->dev, NULL, 2, GPIOD_IN); + if (IS_ERR(gpio)) { + dev_err(dev, + "Failed to get detect gpio (err = %ld)\n", + PTR_ERR(gpio)); + return PTR_ERR(gpio); + } + + nand->cdgpio = gpio; + + nand_set_flash_node(&nand->base, nc->dev->of_node); + + return atmel_nand_controller_add_nand(nc, nand); +} + +static int atmel_nand_controller_add_nands(struct atmel_nand_controller *nc) +{ + struct device_node *np, *nand_np; + struct device *dev = nc->dev; + int ret, reg_cells; + u32 val; + + /* We do not retrieve the SMC syscon when parsing old DTs. */ + if (nc->caps->legacy_of_bindings) + return atmel_nand_controller_legacy_add_nands(nc); + + np = dev->of_node; + + ret = of_property_read_u32(np, "#address-cells", &val); + if (ret) { + dev_err(dev, "missing #address-cells property\n"); + return ret; + } + + reg_cells = val; + + ret = of_property_read_u32(np, "#size-cells", &val); + if (ret) { + dev_err(dev, "missing #address-cells property\n"); + return ret; + } + + reg_cells += val; + + for_each_child_of_node(np, nand_np) { + struct atmel_nand *nand; + + nand = atmel_nand_create(nc, nand_np, reg_cells); + if (IS_ERR(nand)) { + ret = PTR_ERR(nand); + goto err; + } + + ret = atmel_nand_controller_add_nand(nc, nand); + if (ret) + goto err; + } + + return 0; + +err: + atmel_nand_controller_remove_nands(nc); + + return ret; +} + +static void atmel_nand_controller_cleanup(struct atmel_nand_controller *nc) +{ + if (nc->dmac) + dma_release_channel(nc->dmac); + + clk_put(nc->mck); +} + +static const struct of_device_id atmel_matrix_of_ids[] = { + { + .compatible = "atmel,at91sam9260-matrix", + .data = (void *)AT91SAM9260_MATRIX_EBICSA, + }, + { + .compatible = "atmel,at91sam9261-matrix", + .data = (void *)AT91SAM9261_MATRIX_EBICSA, + }, + { + .compatible = "atmel,at91sam9263-matrix", + .data = (void *)AT91SAM9263_MATRIX_EBI0CSA, + }, + { + .compatible = "atmel,at91sam9rl-matrix", + .data = (void *)AT91SAM9RL_MATRIX_EBICSA, + }, + { + .compatible = "atmel,at91sam9g45-matrix", + .data = (void *)AT91SAM9G45_MATRIX_EBICSA, + }, + { + .compatible = "atmel,at91sam9n12-matrix", + .data = (void *)AT91SAM9N12_MATRIX_EBICSA, + }, + { + .compatible = "atmel,at91sam9x5-matrix", + .data = (void *)AT91SAM9X5_MATRIX_EBICSA, + }, + { /* sentinel */ }, +}; + +static int atmel_nand_controller_init(struct atmel_nand_controller *nc, + struct platform_device *pdev, + const struct atmel_nand_controller_caps *caps) +{ + struct device *dev = &pdev->dev; + struct device_node *np = dev->of_node; + int ret; + + nand_hw_control_init(&nc->base); + INIT_LIST_HEAD(&nc->chips); + nc->dev = dev; + nc->caps = caps; + + platform_set_drvdata(pdev, nc); + + nc->pmecc = devm_atmel_pmecc_get(dev); + if (IS_ERR(nc->pmecc)) { + ret = PTR_ERR(nc->pmecc); + if (ret != -EPROBE_DEFER) + dev_err(dev, "Could not get PMECC object (err = %d)\n", + ret); + return ret; + } + + if (nc->caps->has_dma) { + dma_cap_mask_t mask; + + dma_cap_zero(mask); + dma_cap_set(DMA_MEMCPY, mask); + + nc->dmac = dma_request_channel(mask, NULL, NULL); + if (!nc->dmac) + dev_err(nc->dev, "Failed to request DMA channel\n"); + } + + /* We do not retrieve the SMC syscon when parsing old DTs. */ + if (nc->caps->legacy_of_bindings) + return 0; + + nc->mck = of_clk_get(dev->parent->of_node, 0); + if (IS_ERR(nc->mck)) { + dev_err(dev, "Failed to retrieve MCK clk\n"); + return PTR_ERR(nc->mck); + } + + np = of_parse_phandle(dev->parent->of_node, "atmel,smc", 0); + if (!np) { + dev_err(dev, "Missing or invalid atmel,smc property\n"); + return -EINVAL; + } + + nc->smc = syscon_node_to_regmap(np); + of_node_put(np); + if (IS_ERR(nc->smc)) { + ret = PTR_ERR(nc->smc); + dev_err(dev, "Could not get SMC regmap (err = %d)\n", ret); + return ret; + } + + return 0; +} + +static int +atmel_smc_nand_controller_init(struct atmel_smc_nand_controller *nc) +{ + struct device *dev = nc->base.dev; + const struct of_device_id *match; + struct device_node *np; + int ret; + + /* We do not retrieve the matrix syscon when parsing old DTs. */ + if (nc->base.caps->legacy_of_bindings) + return 0; + + np = of_parse_phandle(dev->parent->of_node, "atmel,matrix", 0); + if (!np) + return 0; + + match = of_match_node(atmel_matrix_of_ids, np); + if (!match) { + of_node_put(np); + return 0; + } + + nc->matrix = syscon_node_to_regmap(np); + of_node_put(np); + if (IS_ERR(nc->matrix)) { + ret = PTR_ERR(nc->matrix); + dev_err(dev, "Could not get Matrix regmap (err = %d)\n", ret); + return ret; + } + + nc->ebi_csa_offs = (unsigned int)match->data; + + /* + * The at91sam9263 has 2 EBIs, if the NAND controller is under EBI1 + * add 4 to ->ebi_csa_offs. + */ + if (of_device_is_compatible(dev->parent->of_node, + "atmel,at91sam9263-ebi1")) + nc->ebi_csa_offs += 4; + + return 0; +} + +static int +atmel_hsmc_nand_controller_legacy_init(struct atmel_hsmc_nand_controller *nc) +{ + struct regmap_config regmap_conf = { + .reg_bits = 32, + .val_bits = 32, + .reg_stride = 4, + }; + + struct device *dev = nc->base.dev; + struct device_node *nand_np, *nfc_np; + void __iomem *iomem; + struct resource res; + int ret; + + nand_np = dev->of_node; + nfc_np = of_find_compatible_node(dev->of_node, NULL, + "atmel,sama5d3-nfc"); + + nc->clk = of_clk_get(nfc_np, 0); + if (IS_ERR(nc->clk)) { + ret = PTR_ERR(nc->clk); + dev_err(dev, "Failed to retrieve HSMC clock (err = %d)\n", + ret); + goto out; + } + + ret = clk_prepare_enable(nc->clk); + if (ret) { + dev_err(dev, "Failed to enable the HSMC clock (err = %d)\n", + ret); + goto out; + } + + nc->irq = of_irq_get(nand_np, 0); + if (nc->irq <= 0) { + ret = nc->irq ?: -ENXIO; + if (ret != -EPROBE_DEFER) + dev_err(dev, "Failed to get IRQ number (err = %d)\n", + ret); + goto out; + } + + ret = of_address_to_resource(nfc_np, 0, &res); + if (ret) { + dev_err(dev, "Invalid or missing NFC IO resource (err = %d)\n", + ret); + goto out; + } + + iomem = devm_ioremap_resource(dev, &res); + if (IS_ERR(iomem)) { + ret = PTR_ERR(iomem); + goto out; + } + + regmap_conf.name = "nfc-io"; + regmap_conf.max_register = resource_size(&res) - 4; + nc->io = devm_regmap_init_mmio(dev, iomem, ®map_conf); + if (IS_ERR(nc->io)) { + ret = PTR_ERR(nc->io); + dev_err(dev, "Could not create NFC IO regmap (err = %d)\n", + ret); + goto out; + } + + ret = of_address_to_resource(nfc_np, 1, &res); + if (ret) { + dev_err(dev, "Invalid or missing HSMC resource (err = %d)\n", + ret); + goto out; + } + + iomem = devm_ioremap_resource(dev, &res); + if (IS_ERR(iomem)) { + ret = PTR_ERR(iomem); + goto out; + } + + regmap_conf.name = "smc"; + regmap_conf.max_register = resource_size(&res) - 4; + nc->base.smc = devm_regmap_init_mmio(dev, iomem, ®map_conf); + if (IS_ERR(nc->base.smc)) { + ret = PTR_ERR(nc->base.smc); + dev_err(dev, "Could not create NFC IO regmap (err = %d)\n", + ret); + goto out; + } + + ret = of_address_to_resource(nfc_np, 2, &res); + if (ret) { + dev_err(dev, "Invalid or missing SRAM resource (err = %d)\n", + ret); + goto out; + } + + nc->sram.virt = devm_ioremap_resource(dev, &res); + if (IS_ERR(nc->sram.virt)) { + ret = PTR_ERR(nc->sram.virt); + goto out; + } + + nc->sram.dma = res.start; + +out: + of_node_put(nfc_np); + + return ret; +} + +static int +atmel_hsmc_nand_controller_init(struct atmel_hsmc_nand_controller *nc) +{ + struct device *dev = nc->base.dev; + struct device_node *np; + int ret; + + np = of_parse_phandle(dev->parent->of_node, "atmel,smc", 0); + if (!np) { + dev_err(dev, "Missing or invalid atmel,smc property\n"); + return -EINVAL; + } + + nc->hsmc_layout = atmel_hsmc_get_reg_layout(np); + + nc->irq = of_irq_get(np, 0); + of_node_put(np); + if (nc->irq <= 0) { + ret = nc->irq ?: -ENXIO; + if (ret != -EPROBE_DEFER) + dev_err(dev, "Failed to get IRQ number (err = %d)\n", + ret); + return ret; + } + + np = of_parse_phandle(dev->of_node, "atmel,nfc-io", 0); + if (!np) { + dev_err(dev, "Missing or invalid atmel,nfc-io property\n"); + return -EINVAL; + } + + nc->io = syscon_node_to_regmap(np); + of_node_put(np); + if (IS_ERR(nc->io)) { + ret = PTR_ERR(nc->io); + dev_err(dev, "Could not get NFC IO regmap (err = %d)\n", ret); + return ret; + } + + nc->sram.pool = of_gen_pool_get(nc->base.dev->of_node, + "atmel,nfc-sram", 0); + if (!nc->sram.pool) { + dev_err(nc->base.dev, "Missing SRAM\n"); + return -ENOMEM; + } + + nc->sram.virt = gen_pool_dma_alloc(nc->sram.pool, + ATMEL_NFC_SRAM_SIZE, + &nc->sram.dma); + if (!nc->sram.virt) { + dev_err(nc->base.dev, + "Could not allocate memory from the NFC SRAM pool\n"); + return -ENOMEM; + } + + return 0; +} + +static int +atmel_hsmc_nand_controller_remove(struct atmel_nand_controller *nc) +{ + struct atmel_hsmc_nand_controller *hsmc_nc; + int ret; + + ret = atmel_nand_controller_remove_nands(nc); + if (ret) + return ret; + + hsmc_nc = container_of(nc, struct atmel_hsmc_nand_controller, base); + if (hsmc_nc->sram.pool) + gen_pool_free(hsmc_nc->sram.pool, + (unsigned long)hsmc_nc->sram.virt, + ATMEL_NFC_SRAM_SIZE); + + if (hsmc_nc->clk) { + clk_disable_unprepare(hsmc_nc->clk); + clk_put(hsmc_nc->clk); + } + + atmel_nand_controller_cleanup(nc); + + return 0; +} + +static int atmel_hsmc_nand_controller_probe(struct platform_device *pdev, + const struct atmel_nand_controller_caps *caps) +{ + struct device *dev = &pdev->dev; + struct atmel_hsmc_nand_controller *nc; + int ret; + + nc = devm_kzalloc(dev, sizeof(*nc), GFP_KERNEL); + if (!nc) + return -ENOMEM; + + ret = atmel_nand_controller_init(&nc->base, pdev, caps); + if (ret) + return ret; + + if (caps->legacy_of_bindings) + ret = atmel_hsmc_nand_controller_legacy_init(nc); + else + ret = atmel_hsmc_nand_controller_init(nc); + + if (ret) + return ret; + + /* Make sure all irqs are masked before registering our IRQ handler. */ + regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, 0xffffffff); + ret = devm_request_irq(dev, nc->irq, atmel_nfc_interrupt, + IRQF_SHARED, "nfc", nc); + if (ret) { + dev_err(dev, + "Could not get register NFC interrupt handler (err = %d)\n", + ret); + goto err; + } + + /* Initial NFC configuration. */ + regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CFG, + ATMEL_HSMC_NFC_CFG_DTO_MAX); + + ret = atmel_nand_controller_add_nands(&nc->base); + if (ret) + goto err; + + return 0; + +err: + atmel_hsmc_nand_controller_remove(&nc->base); + + return ret; +} + +static const struct atmel_nand_controller_ops atmel_hsmc_nc_ops = { + .probe = atmel_hsmc_nand_controller_probe, + .remove = atmel_hsmc_nand_controller_remove, + .ecc_init = atmel_hsmc_nand_ecc_init, + .nand_init = atmel_hsmc_nand_init, + .setup_data_interface = atmel_hsmc_nand_setup_data_interface, +}; + +static const struct atmel_nand_controller_caps atmel_sama5_nc_caps = { + .has_dma = true, + .ale_offs = BIT(21), + .cle_offs = BIT(22), + .ops = &atmel_hsmc_nc_ops, +}; + +/* Only used to parse old bindings. */ +static const struct atmel_nand_controller_caps atmel_sama5_nand_caps = { + .has_dma = true, + .ale_offs = BIT(21), + .cle_offs = BIT(22), + .ops = &atmel_hsmc_nc_ops, + .legacy_of_bindings = true, +}; + +static int atmel_smc_nand_controller_probe(struct platform_device *pdev, + const struct atmel_nand_controller_caps *caps) +{ + struct device *dev = &pdev->dev; + struct atmel_smc_nand_controller *nc; + int ret; + + nc = devm_kzalloc(dev, sizeof(*nc), GFP_KERNEL); + if (!nc) + return -ENOMEM; + + ret = atmel_nand_controller_init(&nc->base, pdev, caps); + if (ret) + return ret; + + ret = atmel_smc_nand_controller_init(nc); + if (ret) + return ret; + + return atmel_nand_controller_add_nands(&nc->base); +} + +static int +atmel_smc_nand_controller_remove(struct atmel_nand_controller *nc) +{ + int ret; + + ret = atmel_nand_controller_remove_nands(nc); + if (ret) + return ret; + + atmel_nand_controller_cleanup(nc); + + return 0; +} + +/* + * The SMC reg layout of at91rm9200 is completely different which prevents us + * from re-using atmel_smc_nand_setup_data_interface() for the + * ->setup_data_interface() hook. + * At this point, there's no support for the at91rm9200 SMC IP, so we leave + * ->setup_data_interface() unassigned. + */ +static const struct atmel_nand_controller_ops at91rm9200_nc_ops = { + .probe = atmel_smc_nand_controller_probe, + .remove = atmel_smc_nand_controller_remove, + .ecc_init = atmel_nand_ecc_init, + .nand_init = atmel_smc_nand_init, +}; + +static const struct atmel_nand_controller_caps atmel_rm9200_nc_caps = { + .ale_offs = BIT(21), + .cle_offs = BIT(22), + .ops = &at91rm9200_nc_ops, +}; + +static const struct atmel_nand_controller_ops atmel_smc_nc_ops = { + .probe = atmel_smc_nand_controller_probe, + .remove = atmel_smc_nand_controller_remove, + .ecc_init = atmel_nand_ecc_init, + .nand_init = atmel_smc_nand_init, + .setup_data_interface = atmel_smc_nand_setup_data_interface, +}; + +static const struct atmel_nand_controller_caps atmel_sam9260_nc_caps = { + .ale_offs = BIT(21), + .cle_offs = BIT(22), + .ops = &atmel_smc_nc_ops, +}; + +static const struct atmel_nand_controller_caps atmel_sam9261_nc_caps = { + .ale_offs = BIT(22), + .cle_offs = BIT(21), + .ops = &atmel_smc_nc_ops, +}; + +static const struct atmel_nand_controller_caps atmel_sam9g45_nc_caps = { + .has_dma = true, + .ale_offs = BIT(21), + .cle_offs = BIT(22), + .ops = &atmel_smc_nc_ops, +}; + +/* Only used to parse old bindings. */ +static const struct atmel_nand_controller_caps atmel_rm9200_nand_caps = { + .ale_offs = BIT(21), + .cle_offs = BIT(22), + .ops = &atmel_smc_nc_ops, + .legacy_of_bindings = true, +}; + +static const struct atmel_nand_controller_caps atmel_sam9261_nand_caps = { + .ale_offs = BIT(22), + .cle_offs = BIT(21), + .ops = &atmel_smc_nc_ops, + .legacy_of_bindings = true, +}; + +static const struct atmel_nand_controller_caps atmel_sam9g45_nand_caps = { + .has_dma = true, + .ale_offs = BIT(21), + .cle_offs = BIT(22), + .ops = &atmel_smc_nc_ops, + .legacy_of_bindings = true, +}; + +static const struct of_device_id atmel_nand_controller_of_ids[] = { + { + .compatible = "atmel,at91rm9200-nand-controller", + .data = &atmel_rm9200_nc_caps, + }, + { + .compatible = "atmel,at91sam9260-nand-controller", + .data = &atmel_sam9260_nc_caps, + }, + { + .compatible = "atmel,at91sam9261-nand-controller", + .data = &atmel_sam9261_nc_caps, + }, + { + .compatible = "atmel,at91sam9g45-nand-controller", + .data = &atmel_sam9g45_nc_caps, + }, + { + .compatible = "atmel,sama5d3-nand-controller", + .data = &atmel_sama5_nc_caps, + }, + /* Support for old/deprecated bindings: */ + { + .compatible = "atmel,at91rm9200-nand", + .data = &atmel_rm9200_nand_caps, + }, + { + .compatible = "atmel,sama5d4-nand", + .data = &atmel_rm9200_nand_caps, + }, + { + .compatible = "atmel,sama5d2-nand", + .data = &atmel_rm9200_nand_caps, + }, + { /* sentinel */ }, +}; +MODULE_DEVICE_TABLE(of, atmel_nand_controller_of_ids); + +static int atmel_nand_controller_probe(struct platform_device *pdev) +{ + const struct atmel_nand_controller_caps *caps; + + if (pdev->id_entry) + caps = (void *)pdev->id_entry->driver_data; + else + caps = of_device_get_match_data(&pdev->dev); + + if (!caps) { + dev_err(&pdev->dev, "Could not retrieve NFC caps\n"); + return -EINVAL; + } + + if (caps->legacy_of_bindings) { + u32 ale_offs = 21; + + /* + * If we are parsing legacy DT props and the DT contains a + * valid NFC node, forward the request to the sama5 logic. + */ + if (of_find_compatible_node(pdev->dev.of_node, NULL, + "atmel,sama5d3-nfc")) + caps = &atmel_sama5_nand_caps; + + /* + * Even if the compatible says we are dealing with an + * at91rm9200 controller, the atmel,nand-has-dma specify that + * this controller supports DMA, which means we are in fact + * dealing with an at91sam9g45+ controller. + */ + if (!caps->has_dma && + of_property_read_bool(pdev->dev.of_node, + "atmel,nand-has-dma")) + caps = &atmel_sam9g45_nand_caps; + + /* + * All SoCs except the at91sam9261 are assigning ALE to A21 and + * CLE to A22. If atmel,nand-addr-offset != 21 this means we're + * actually dealing with an at91sam9261 controller. + */ + of_property_read_u32(pdev->dev.of_node, + "atmel,nand-addr-offset", &ale_offs); + if (ale_offs != 21) + caps = &atmel_sam9261_nand_caps; + } + + return caps->ops->probe(pdev, caps); +} + +static int atmel_nand_controller_remove(struct platform_device *pdev) +{ + struct atmel_nand_controller *nc = platform_get_drvdata(pdev); + + return nc->caps->ops->remove(nc); +} + +static __maybe_unused int atmel_nand_controller_resume(struct device *dev) +{ + struct atmel_nand_controller *nc = dev_get_drvdata(dev); + struct atmel_nand *nand; + + if (nc->pmecc) + atmel_pmecc_reset(nc->pmecc); + + list_for_each_entry(nand, &nc->chips, node) { + int i; + + for (i = 0; i < nand->numcs; i++) + nand_reset(&nand->base, i); + } + + return 0; +} + +static SIMPLE_DEV_PM_OPS(atmel_nand_controller_pm_ops, NULL, + atmel_nand_controller_resume); + +static struct platform_driver atmel_nand_controller_driver = { + .driver = { + .name = "atmel-nand-controller", + .of_match_table = of_match_ptr(atmel_nand_controller_of_ids), + .pm = &atmel_nand_controller_pm_ops, + }, + .probe = atmel_nand_controller_probe, + .remove = atmel_nand_controller_remove, +}; +module_platform_driver(atmel_nand_controller_driver); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Boris Brezillon "); +MODULE_DESCRIPTION("NAND Flash Controller driver for Atmel SoCs"); +MODULE_ALIAS("platform:atmel-nand-controller"); diff --git a/drivers/mtd/nand/raw/atmel/pmecc.c b/drivers/mtd/nand/raw/atmel/pmecc.c new file mode 100644 index 000000000000..9de29c9afb0c --- /dev/null +++ b/drivers/mtd/nand/raw/atmel/pmecc.c @@ -0,0 +1,1012 @@ +/* + * Copyright 2017 ATMEL + * Copyright 2017 Free Electrons + * + * Author: Boris Brezillon + * + * Derived from the atmel_nand.c driver which contained the following + * copyrights: + * + * Copyright 2003 Rick Bronson + * + * Derived from drivers/mtd/nand/autcpu12.c (removed in v3.8) + * Copyright 2001 Thomas Gleixner (gleixner@autronix.de) + * + * Derived from drivers/mtd/spia.c (removed in v3.8) + * Copyright 2000 Steven J. Hill (sjhill@cotw.com) + * + * Add Hardware ECC support for AT91SAM9260 / AT91SAM9263 + * Richard Genoud (richard.genoud@gmail.com), Adeneo Copyright 2007 + * + * Derived from Das U-Boot source code + * (u-boot-1.1.5/board/atmel/at91sam9263ek/nand.c) + * Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas + * + * Add Programmable Multibit ECC support for various AT91 SoC + * Copyright 2012 ATMEL, Hong Xu + * + * Add Nand Flash Controller support for SAMA5 SoC + * Copyright 2013 ATMEL, Josh Wu (josh.wu@atmel.com) + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + * + * The PMECC is an hardware assisted BCH engine, which means part of the + * ECC algorithm is left to the software. The hardware/software repartition + * is explained in the "PMECC Controller Functional Description" chapter in + * Atmel datasheets, and some of the functions in this file are directly + * implementing the algorithms described in the "Software Implementation" + * sub-section. + * + * TODO: it seems that the software BCH implementation in lib/bch.c is already + * providing some of the logic we are implementing here. It would be smart + * to expose the needed lib/bch.c helpers/functions and re-use them here. + */ + +#include +#include +#include +#include +#include +#include +#include +#include + +#include "pmecc.h" + +/* Galois field dimension */ +#define PMECC_GF_DIMENSION_13 13 +#define PMECC_GF_DIMENSION_14 14 + +/* Primitive Polynomial used by PMECC */ +#define PMECC_GF_13_PRIMITIVE_POLY 0x201b +#define PMECC_GF_14_PRIMITIVE_POLY 0x4443 + +#define PMECC_LOOKUP_TABLE_SIZE_512 0x2000 +#define PMECC_LOOKUP_TABLE_SIZE_1024 0x4000 + +/* Time out value for reading PMECC status register */ +#define PMECC_MAX_TIMEOUT_MS 100 + +/* PMECC Register Definitions */ +#define ATMEL_PMECC_CFG 0x0 +#define PMECC_CFG_BCH_STRENGTH(x) (x) +#define PMECC_CFG_BCH_STRENGTH_MASK GENMASK(2, 0) +#define PMECC_CFG_SECTOR512 (0 << 4) +#define PMECC_CFG_SECTOR1024 (1 << 4) +#define PMECC_CFG_NSECTORS(x) ((fls(x) - 1) << 8) +#define PMECC_CFG_READ_OP (0 << 12) +#define PMECC_CFG_WRITE_OP (1 << 12) +#define PMECC_CFG_SPARE_ENABLE BIT(16) +#define PMECC_CFG_AUTO_ENABLE BIT(20) + +#define ATMEL_PMECC_SAREA 0x4 +#define ATMEL_PMECC_SADDR 0x8 +#define ATMEL_PMECC_EADDR 0xc + +#define ATMEL_PMECC_CLK 0x10 +#define PMECC_CLK_133MHZ (2 << 0) + +#define ATMEL_PMECC_CTRL 0x14 +#define PMECC_CTRL_RST BIT(0) +#define PMECC_CTRL_DATA BIT(1) +#define PMECC_CTRL_USER BIT(2) +#define PMECC_CTRL_ENABLE BIT(4) +#define PMECC_CTRL_DISABLE BIT(5) + +#define ATMEL_PMECC_SR 0x18 +#define PMECC_SR_BUSY BIT(0) +#define PMECC_SR_ENABLE BIT(4) + +#define ATMEL_PMECC_IER 0x1c +#define ATMEL_PMECC_IDR 0x20 +#define ATMEL_PMECC_IMR 0x24 +#define ATMEL_PMECC_ISR 0x28 +#define PMECC_ERROR_INT BIT(0) + +#define ATMEL_PMECC_ECC(sector, n) \ + ((((sector) + 1) * 0x40) + (n)) + +#define ATMEL_PMECC_REM(sector, n) \ + ((((sector) + 1) * 0x40) + ((n) * 4) + 0x200) + +/* PMERRLOC Register Definitions */ +#define ATMEL_PMERRLOC_ELCFG 0x0 +#define PMERRLOC_ELCFG_SECTOR_512 (0 << 0) +#define PMERRLOC_ELCFG_SECTOR_1024 (1 << 0) +#define PMERRLOC_ELCFG_NUM_ERRORS(n) ((n) << 16) + +#define ATMEL_PMERRLOC_ELPRIM 0x4 +#define ATMEL_PMERRLOC_ELEN 0x8 +#define ATMEL_PMERRLOC_ELDIS 0xc +#define PMERRLOC_DISABLE BIT(0) + +#define ATMEL_PMERRLOC_ELSR 0x10 +#define PMERRLOC_ELSR_BUSY BIT(0) + +#define ATMEL_PMERRLOC_ELIER 0x14 +#define ATMEL_PMERRLOC_ELIDR 0x18 +#define ATMEL_PMERRLOC_ELIMR 0x1c +#define ATMEL_PMERRLOC_ELISR 0x20 +#define PMERRLOC_ERR_NUM_MASK GENMASK(12, 8) +#define PMERRLOC_CALC_DONE BIT(0) + +#define ATMEL_PMERRLOC_SIGMA(x) (((x) * 0x4) + 0x28) + +#define ATMEL_PMERRLOC_EL(offs, x) (((x) * 0x4) + (offs)) + +struct atmel_pmecc_gf_tables { + u16 *alpha_to; + u16 *index_of; +}; + +struct atmel_pmecc_caps { + const int *strengths; + int nstrengths; + int el_offset; + bool correct_erased_chunks; +}; + +struct atmel_pmecc { + struct device *dev; + const struct atmel_pmecc_caps *caps; + + struct { + void __iomem *base; + void __iomem *errloc; + } regs; + + struct mutex lock; +}; + +struct atmel_pmecc_user_conf_cache { + u32 cfg; + u32 sarea; + u32 saddr; + u32 eaddr; +}; + +struct atmel_pmecc_user { + struct atmel_pmecc_user_conf_cache cache; + struct atmel_pmecc *pmecc; + const struct atmel_pmecc_gf_tables *gf_tables; + int eccbytes; + s16 *partial_syn; + s16 *si; + s16 *lmu; + s16 *smu; + s32 *mu; + s32 *dmu; + s32 *delta; + u32 isr; +}; + +static DEFINE_MUTEX(pmecc_gf_tables_lock); +static const struct atmel_pmecc_gf_tables *pmecc_gf_tables_512; +static const struct atmel_pmecc_gf_tables *pmecc_gf_tables_1024; + +static inline int deg(unsigned int poly) +{ + /* polynomial degree is the most-significant bit index */ + return fls(poly) - 1; +} + +static int atmel_pmecc_build_gf_tables(int mm, unsigned int poly, + struct atmel_pmecc_gf_tables *gf_tables) +{ + unsigned int i, x = 1; + const unsigned int k = BIT(deg(poly)); + unsigned int nn = BIT(mm) - 1; + + /* primitive polynomial must be of degree m */ + if (k != (1u << mm)) + return -EINVAL; + + for (i = 0; i < nn; i++) { + gf_tables->alpha_to[i] = x; + gf_tables->index_of[x] = i; + if (i && (x == 1)) + /* polynomial is not primitive (a^i=1 with 0alpha_to[nn] = 1; + gf_tables->index_of[0] = 0; + + return 0; +} + +static const struct atmel_pmecc_gf_tables * +atmel_pmecc_create_gf_tables(const struct atmel_pmecc_user_req *req) +{ + struct atmel_pmecc_gf_tables *gf_tables; + unsigned int poly, degree, table_size; + int ret; + + if (req->ecc.sectorsize == 512) { + degree = PMECC_GF_DIMENSION_13; + poly = PMECC_GF_13_PRIMITIVE_POLY; + table_size = PMECC_LOOKUP_TABLE_SIZE_512; + } else { + degree = PMECC_GF_DIMENSION_14; + poly = PMECC_GF_14_PRIMITIVE_POLY; + table_size = PMECC_LOOKUP_TABLE_SIZE_1024; + } + + gf_tables = kzalloc(sizeof(*gf_tables) + + (2 * table_size * sizeof(u16)), + GFP_KERNEL); + if (!gf_tables) + return ERR_PTR(-ENOMEM); + + gf_tables->alpha_to = (void *)(gf_tables + 1); + gf_tables->index_of = gf_tables->alpha_to + table_size; + + ret = atmel_pmecc_build_gf_tables(degree, poly, gf_tables); + if (ret) { + kfree(gf_tables); + return ERR_PTR(ret); + } + + return gf_tables; +} + +static const struct atmel_pmecc_gf_tables * +atmel_pmecc_get_gf_tables(const struct atmel_pmecc_user_req *req) +{ + const struct atmel_pmecc_gf_tables **gf_tables, *ret; + + mutex_lock(&pmecc_gf_tables_lock); + if (req->ecc.sectorsize == 512) + gf_tables = &pmecc_gf_tables_512; + else + gf_tables = &pmecc_gf_tables_1024; + + ret = *gf_tables; + + if (!ret) { + ret = atmel_pmecc_create_gf_tables(req); + if (!IS_ERR(ret)) + *gf_tables = ret; + } + mutex_unlock(&pmecc_gf_tables_lock); + + return ret; +} + +static int atmel_pmecc_prepare_user_req(struct atmel_pmecc *pmecc, + struct atmel_pmecc_user_req *req) +{ + int i, max_eccbytes, eccbytes = 0, eccstrength = 0; + + if (req->pagesize <= 0 || req->oobsize <= 0 || req->ecc.bytes <= 0) + return -EINVAL; + + if (req->ecc.ooboffset >= 0 && + req->ecc.ooboffset + req->ecc.bytes > req->oobsize) + return -EINVAL; + + if (req->ecc.sectorsize == ATMEL_PMECC_SECTOR_SIZE_AUTO) { + if (req->ecc.strength != ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH) + return -EINVAL; + + if (req->pagesize > 512) + req->ecc.sectorsize = 1024; + else + req->ecc.sectorsize = 512; + } + + if (req->ecc.sectorsize != 512 && req->ecc.sectorsize != 1024) + return -EINVAL; + + if (req->pagesize % req->ecc.sectorsize) + return -EINVAL; + + req->ecc.nsectors = req->pagesize / req->ecc.sectorsize; + + max_eccbytes = req->ecc.bytes; + + for (i = 0; i < pmecc->caps->nstrengths; i++) { + int nbytes, strength = pmecc->caps->strengths[i]; + + if (req->ecc.strength != ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH && + strength < req->ecc.strength) + continue; + + nbytes = DIV_ROUND_UP(strength * fls(8 * req->ecc.sectorsize), + 8); + nbytes *= req->ecc.nsectors; + + if (nbytes > max_eccbytes) + break; + + eccstrength = strength; + eccbytes = nbytes; + + if (req->ecc.strength != ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH) + break; + } + + if (!eccstrength) + return -EINVAL; + + req->ecc.bytes = eccbytes; + req->ecc.strength = eccstrength; + + if (req->ecc.ooboffset < 0) + req->ecc.ooboffset = req->oobsize - eccbytes; + + return 0; +} + +struct atmel_pmecc_user * +atmel_pmecc_create_user(struct atmel_pmecc *pmecc, + struct atmel_pmecc_user_req *req) +{ + struct atmel_pmecc_user *user; + const struct atmel_pmecc_gf_tables *gf_tables; + int strength, size, ret; + + ret = atmel_pmecc_prepare_user_req(pmecc, req); + if (ret) + return ERR_PTR(ret); + + size = sizeof(*user); + size = ALIGN(size, sizeof(u16)); + /* Reserve space for partial_syn, si and smu */ + size += ((2 * req->ecc.strength) + 1) * sizeof(u16) * + (2 + req->ecc.strength + 2); + /* Reserve space for lmu. */ + size += (req->ecc.strength + 1) * sizeof(u16); + /* Reserve space for mu, dmu and delta. */ + size = ALIGN(size, sizeof(s32)); + size += (req->ecc.strength + 1) * sizeof(s32) * 3; + + user = kzalloc(size, GFP_KERNEL); + if (!user) + return ERR_PTR(-ENOMEM); + + user->pmecc = pmecc; + + user->partial_syn = (s16 *)PTR_ALIGN(user + 1, sizeof(u16)); + user->si = user->partial_syn + ((2 * req->ecc.strength) + 1); + user->lmu = user->si + ((2 * req->ecc.strength) + 1); + user->smu = user->lmu + (req->ecc.strength + 1); + user->mu = (s32 *)PTR_ALIGN(user->smu + + (((2 * req->ecc.strength) + 1) * + (req->ecc.strength + 2)), + sizeof(s32)); + user->dmu = user->mu + req->ecc.strength + 1; + user->delta = user->dmu + req->ecc.strength + 1; + + gf_tables = atmel_pmecc_get_gf_tables(req); + if (IS_ERR(gf_tables)) { + kfree(user); + return ERR_CAST(gf_tables); + } + + user->gf_tables = gf_tables; + + user->eccbytes = req->ecc.bytes / req->ecc.nsectors; + + for (strength = 0; strength < pmecc->caps->nstrengths; strength++) { + if (pmecc->caps->strengths[strength] == req->ecc.strength) + break; + } + + user->cache.cfg = PMECC_CFG_BCH_STRENGTH(strength) | + PMECC_CFG_NSECTORS(req->ecc.nsectors); + + if (req->ecc.sectorsize == 1024) + user->cache.cfg |= PMECC_CFG_SECTOR1024; + + user->cache.sarea = req->oobsize - 1; + user->cache.saddr = req->ecc.ooboffset; + user->cache.eaddr = req->ecc.ooboffset + req->ecc.bytes - 1; + + return user; +} +EXPORT_SYMBOL_GPL(atmel_pmecc_create_user); + +void atmel_pmecc_destroy_user(struct atmel_pmecc_user *user) +{ + kfree(user); +} +EXPORT_SYMBOL_GPL(atmel_pmecc_destroy_user); + +static int get_strength(struct atmel_pmecc_user *user) +{ + const int *strengths = user->pmecc->caps->strengths; + + return strengths[user->cache.cfg & PMECC_CFG_BCH_STRENGTH_MASK]; +} + +static int get_sectorsize(struct atmel_pmecc_user *user) +{ + return user->cache.cfg & PMECC_LOOKUP_TABLE_SIZE_1024 ? 1024 : 512; +} + +static void atmel_pmecc_gen_syndrome(struct atmel_pmecc_user *user, int sector) +{ + int strength = get_strength(user); + u32 value; + int i; + + /* Fill odd syndromes */ + for (i = 0; i < strength; i++) { + value = readl_relaxed(user->pmecc->regs.base + + ATMEL_PMECC_REM(sector, i / 2)); + if (i & 1) + value >>= 16; + + user->partial_syn[(2 * i) + 1] = value; + } +} + +static void atmel_pmecc_substitute(struct atmel_pmecc_user *user) +{ + int degree = get_sectorsize(user) == 512 ? 13 : 14; + int cw_len = BIT(degree) - 1; + int strength = get_strength(user); + s16 *alpha_to = user->gf_tables->alpha_to; + s16 *index_of = user->gf_tables->index_of; + s16 *partial_syn = user->partial_syn; + s16 *si; + int i, j; + + /* + * si[] is a table that holds the current syndrome value, + * an element of that table belongs to the field + */ + si = user->si; + + memset(&si[1], 0, sizeof(s16) * ((2 * strength) - 1)); + + /* Computation 2t syndromes based on S(x) */ + /* Odd syndromes */ + for (i = 1; i < 2 * strength; i += 2) { + for (j = 0; j < degree; j++) { + if (partial_syn[i] & BIT(j)) + si[i] = alpha_to[i * j] ^ si[i]; + } + } + /* Even syndrome = (Odd syndrome) ** 2 */ + for (i = 2, j = 1; j <= strength; i = ++j << 1) { + if (si[j] == 0) { + si[i] = 0; + } else { + s16 tmp; + + tmp = index_of[si[j]]; + tmp = (tmp * 2) % cw_len; + si[i] = alpha_to[tmp]; + } + } +} + +static void atmel_pmecc_get_sigma(struct atmel_pmecc_user *user) +{ + s16 *lmu = user->lmu; + s16 *si = user->si; + s32 *mu = user->mu; + s32 *dmu = user->dmu; + s32 *delta = user->delta; + int degree = get_sectorsize(user) == 512 ? 13 : 14; + int cw_len = BIT(degree) - 1; + int strength = get_strength(user); + int num = 2 * strength + 1; + s16 *index_of = user->gf_tables->index_of; + s16 *alpha_to = user->gf_tables->alpha_to; + int i, j, k; + u32 dmu_0_count, tmp; + s16 *smu = user->smu; + + /* index of largest delta */ + int ro; + int largest; + int diff; + + dmu_0_count = 0; + + /* First Row */ + + /* Mu */ + mu[0] = -1; + + memset(smu, 0, sizeof(s16) * num); + smu[0] = 1; + + /* discrepancy set to 1 */ + dmu[0] = 1; + /* polynom order set to 0 */ + lmu[0] = 0; + delta[0] = (mu[0] * 2 - lmu[0]) >> 1; + + /* Second Row */ + + /* Mu */ + mu[1] = 0; + /* Sigma(x) set to 1 */ + memset(&smu[num], 0, sizeof(s16) * num); + smu[num] = 1; + + /* discrepancy set to S1 */ + dmu[1] = si[1]; + + /* polynom order set to 0 */ + lmu[1] = 0; + + delta[1] = (mu[1] * 2 - lmu[1]) >> 1; + + /* Init the Sigma(x) last row */ + memset(&smu[(strength + 1) * num], 0, sizeof(s16) * num); + + for (i = 1; i <= strength; i++) { + mu[i + 1] = i << 1; + /* Begin Computing Sigma (Mu+1) and L(mu) */ + /* check if discrepancy is set to 0 */ + if (dmu[i] == 0) { + dmu_0_count++; + + tmp = ((strength - (lmu[i] >> 1) - 1) / 2); + if ((strength - (lmu[i] >> 1) - 1) & 0x1) + tmp += 2; + else + tmp += 1; + + if (dmu_0_count == tmp) { + for (j = 0; j <= (lmu[i] >> 1) + 1; j++) + smu[(strength + 1) * num + j] = + smu[i * num + j]; + + lmu[strength + 1] = lmu[i]; + return; + } + + /* copy polynom */ + for (j = 0; j <= lmu[i] >> 1; j++) + smu[(i + 1) * num + j] = smu[i * num + j]; + + /* copy previous polynom order to the next */ + lmu[i + 1] = lmu[i]; + } else { + ro = 0; + largest = -1; + /* find largest delta with dmu != 0 */ + for (j = 0; j < i; j++) { + if ((dmu[j]) && (delta[j] > largest)) { + largest = delta[j]; + ro = j; + } + } + + /* compute difference */ + diff = (mu[i] - mu[ro]); + + /* Compute degree of the new smu polynomial */ + if ((lmu[i] >> 1) > ((lmu[ro] >> 1) + diff)) + lmu[i + 1] = lmu[i]; + else + lmu[i + 1] = ((lmu[ro] >> 1) + diff) * 2; + + /* Init smu[i+1] with 0 */ + for (k = 0; k < num; k++) + smu[(i + 1) * num + k] = 0; + + /* Compute smu[i+1] */ + for (k = 0; k <= lmu[ro] >> 1; k++) { + s16 a, b, c; + + if (!(smu[ro * num + k] && dmu[i])) + continue; + + a = index_of[dmu[i]]; + b = index_of[dmu[ro]]; + c = index_of[smu[ro * num + k]]; + tmp = a + (cw_len - b) + c; + a = alpha_to[tmp % cw_len]; + smu[(i + 1) * num + (k + diff)] = a; + } + + for (k = 0; k <= lmu[i] >> 1; k++) + smu[(i + 1) * num + k] ^= smu[i * num + k]; + } + + /* End Computing Sigma (Mu+1) and L(mu) */ + /* In either case compute delta */ + delta[i + 1] = (mu[i + 1] * 2 - lmu[i + 1]) >> 1; + + /* Do not compute discrepancy for the last iteration */ + if (i >= strength) + continue; + + for (k = 0; k <= (lmu[i + 1] >> 1); k++) { + tmp = 2 * (i - 1); + if (k == 0) { + dmu[i + 1] = si[tmp + 3]; + } else if (smu[(i + 1) * num + k] && si[tmp + 3 - k]) { + s16 a, b, c; + + a = index_of[smu[(i + 1) * num + k]]; + b = si[2 * (i - 1) + 3 - k]; + c = index_of[b]; + tmp = a + c; + tmp %= cw_len; + dmu[i + 1] = alpha_to[tmp] ^ dmu[i + 1]; + } + } + } +} + +static int atmel_pmecc_err_location(struct atmel_pmecc_user *user) +{ + int sector_size = get_sectorsize(user); + int degree = sector_size == 512 ? 13 : 14; + struct atmel_pmecc *pmecc = user->pmecc; + int strength = get_strength(user); + int ret, roots_nbr, i, err_nbr = 0; + int num = (2 * strength) + 1; + s16 *smu = user->smu; + u32 val; + + writel(PMERRLOC_DISABLE, pmecc->regs.errloc + ATMEL_PMERRLOC_ELDIS); + + for (i = 0; i <= user->lmu[strength + 1] >> 1; i++) { + writel_relaxed(smu[(strength + 1) * num + i], + pmecc->regs.errloc + ATMEL_PMERRLOC_SIGMA(i)); + err_nbr++; + } + + val = (err_nbr - 1) << 16; + if (sector_size == 1024) + val |= 1; + + writel(val, pmecc->regs.errloc + ATMEL_PMERRLOC_ELCFG); + writel((sector_size * 8) + (degree * strength), + pmecc->regs.errloc + ATMEL_PMERRLOC_ELEN); + + ret = readl_relaxed_poll_timeout(pmecc->regs.errloc + + ATMEL_PMERRLOC_ELISR, + val, val & PMERRLOC_CALC_DONE, 0, + PMECC_MAX_TIMEOUT_MS * 1000); + if (ret) { + dev_err(pmecc->dev, + "PMECC: Timeout to calculate error location.\n"); + return ret; + } + + roots_nbr = (val & PMERRLOC_ERR_NUM_MASK) >> 8; + /* Number of roots == degree of smu hence <= cap */ + if (roots_nbr == user->lmu[strength + 1] >> 1) + return err_nbr - 1; + + /* + * Number of roots does not match the degree of smu + * unable to correct error. + */ + return -EBADMSG; +} + +int atmel_pmecc_correct_sector(struct atmel_pmecc_user *user, int sector, + void *data, void *ecc) +{ + struct atmel_pmecc *pmecc = user->pmecc; + int sectorsize = get_sectorsize(user); + int eccbytes = user->eccbytes; + int i, nerrors; + + if (!(user->isr & BIT(sector))) + return 0; + + atmel_pmecc_gen_syndrome(user, sector); + atmel_pmecc_substitute(user); + atmel_pmecc_get_sigma(user); + + nerrors = atmel_pmecc_err_location(user); + if (nerrors < 0) + return nerrors; + + for (i = 0; i < nerrors; i++) { + const char *area; + int byte, bit; + u32 errpos; + u8 *ptr; + + errpos = readl_relaxed(pmecc->regs.errloc + + ATMEL_PMERRLOC_EL(pmecc->caps->el_offset, i)); + errpos--; + + byte = errpos / 8; + bit = errpos % 8; + + if (byte < sectorsize) { + ptr = data + byte; + area = "data"; + } else if (byte < sectorsize + eccbytes) { + ptr = ecc + byte - sectorsize; + area = "ECC"; + } else { + dev_dbg(pmecc->dev, + "Invalid errpos value (%d, max is %d)\n", + errpos, (sectorsize + eccbytes) * 8); + return -EINVAL; + } + + dev_dbg(pmecc->dev, + "Bit flip in %s area, byte %d: 0x%02x -> 0x%02x\n", + area, byte, *ptr, (unsigned int)(*ptr ^ BIT(bit))); + + *ptr ^= BIT(bit); + } + + return nerrors; +} +EXPORT_SYMBOL_GPL(atmel_pmecc_correct_sector); + +bool atmel_pmecc_correct_erased_chunks(struct atmel_pmecc_user *user) +{ + return user->pmecc->caps->correct_erased_chunks; +} +EXPORT_SYMBOL_GPL(atmel_pmecc_correct_erased_chunks); + +void atmel_pmecc_get_generated_eccbytes(struct atmel_pmecc_user *user, + int sector, void *ecc) +{ + struct atmel_pmecc *pmecc = user->pmecc; + u8 *ptr = ecc; + int i; + + for (i = 0; i < user->eccbytes; i++) + ptr[i] = readb_relaxed(pmecc->regs.base + + ATMEL_PMECC_ECC(sector, i)); +} +EXPORT_SYMBOL_GPL(atmel_pmecc_get_generated_eccbytes); + +void atmel_pmecc_reset(struct atmel_pmecc *pmecc) +{ + writel(PMECC_CTRL_RST, pmecc->regs.base + ATMEL_PMECC_CTRL); + writel(PMECC_CTRL_DISABLE, pmecc->regs.base + ATMEL_PMECC_CTRL); +} +EXPORT_SYMBOL_GPL(atmel_pmecc_reset); + +int atmel_pmecc_enable(struct atmel_pmecc_user *user, int op) +{ + struct atmel_pmecc *pmecc = user->pmecc; + u32 cfg; + + if (op != NAND_ECC_READ && op != NAND_ECC_WRITE) { + dev_err(pmecc->dev, "Bad ECC operation!"); + return -EINVAL; + } + + mutex_lock(&user->pmecc->lock); + + cfg = user->cache.cfg; + if (op == NAND_ECC_WRITE) + cfg |= PMECC_CFG_WRITE_OP; + else + cfg |= PMECC_CFG_AUTO_ENABLE; + + writel(cfg, pmecc->regs.base + ATMEL_PMECC_CFG); + writel(user->cache.sarea, pmecc->regs.base + ATMEL_PMECC_SAREA); + writel(user->cache.saddr, pmecc->regs.base + ATMEL_PMECC_SADDR); + writel(user->cache.eaddr, pmecc->regs.base + ATMEL_PMECC_EADDR); + + writel(PMECC_CTRL_ENABLE, pmecc->regs.base + ATMEL_PMECC_CTRL); + writel(PMECC_CTRL_DATA, pmecc->regs.base + ATMEL_PMECC_CTRL); + + return 0; +} +EXPORT_SYMBOL_GPL(atmel_pmecc_enable); + +void atmel_pmecc_disable(struct atmel_pmecc_user *user) +{ + atmel_pmecc_reset(user->pmecc); + mutex_unlock(&user->pmecc->lock); +} +EXPORT_SYMBOL_GPL(atmel_pmecc_disable); + +int atmel_pmecc_wait_rdy(struct atmel_pmecc_user *user) +{ + struct atmel_pmecc *pmecc = user->pmecc; + u32 status; + int ret; + + ret = readl_relaxed_poll_timeout(pmecc->regs.base + + ATMEL_PMECC_SR, + status, !(status & PMECC_SR_BUSY), 0, + PMECC_MAX_TIMEOUT_MS * 1000); + if (ret) { + dev_err(pmecc->dev, + "Timeout while waiting for PMECC ready.\n"); + return ret; + } + + user->isr = readl_relaxed(pmecc->regs.base + ATMEL_PMECC_ISR); + + return 0; +} +EXPORT_SYMBOL_GPL(atmel_pmecc_wait_rdy); + +static struct atmel_pmecc *atmel_pmecc_create(struct platform_device *pdev, + const struct atmel_pmecc_caps *caps, + int pmecc_res_idx, int errloc_res_idx) +{ + struct device *dev = &pdev->dev; + struct atmel_pmecc *pmecc; + struct resource *res; + + pmecc = devm_kzalloc(dev, sizeof(*pmecc), GFP_KERNEL); + if (!pmecc) + return ERR_PTR(-ENOMEM); + + pmecc->caps = caps; + pmecc->dev = dev; + mutex_init(&pmecc->lock); + + res = platform_get_resource(pdev, IORESOURCE_MEM, pmecc_res_idx); + pmecc->regs.base = devm_ioremap_resource(dev, res); + if (IS_ERR(pmecc->regs.base)) + return ERR_CAST(pmecc->regs.base); + + res = platform_get_resource(pdev, IORESOURCE_MEM, errloc_res_idx); + pmecc->regs.errloc = devm_ioremap_resource(dev, res); + if (IS_ERR(pmecc->regs.errloc)) + return ERR_CAST(pmecc->regs.errloc); + + /* Disable all interrupts before registering the PMECC handler. */ + writel(0xffffffff, pmecc->regs.base + ATMEL_PMECC_IDR); + atmel_pmecc_reset(pmecc); + + return pmecc; +} + +static void devm_atmel_pmecc_put(struct device *dev, void *res) +{ + struct atmel_pmecc **pmecc = res; + + put_device((*pmecc)->dev); +} + +static struct atmel_pmecc *atmel_pmecc_get_by_node(struct device *userdev, + struct device_node *np) +{ + struct platform_device *pdev; + struct atmel_pmecc *pmecc, **ptr; + + pdev = of_find_device_by_node(np); + if (!pdev || !platform_get_drvdata(pdev)) + return ERR_PTR(-EPROBE_DEFER); + + ptr = devres_alloc(devm_atmel_pmecc_put, sizeof(*ptr), GFP_KERNEL); + if (!ptr) + return ERR_PTR(-ENOMEM); + + get_device(&pdev->dev); + pmecc = platform_get_drvdata(pdev); + + *ptr = pmecc; + + devres_add(userdev, ptr); + + return pmecc; +} + +static const int atmel_pmecc_strengths[] = { 2, 4, 8, 12, 24, 32 }; + +static struct atmel_pmecc_caps at91sam9g45_caps = { + .strengths = atmel_pmecc_strengths, + .nstrengths = 5, + .el_offset = 0x8c, +}; + +static struct atmel_pmecc_caps sama5d4_caps = { + .strengths = atmel_pmecc_strengths, + .nstrengths = 5, + .el_offset = 0x8c, + .correct_erased_chunks = true, +}; + +static struct atmel_pmecc_caps sama5d2_caps = { + .strengths = atmel_pmecc_strengths, + .nstrengths = 6, + .el_offset = 0xac, + .correct_erased_chunks = true, +}; + +static const struct of_device_id atmel_pmecc_legacy_match[] = { + { .compatible = "atmel,sama5d4-nand", &sama5d4_caps }, + { .compatible = "atmel,sama5d2-nand", &sama5d2_caps }, + { /* sentinel */ } +}; + +struct atmel_pmecc *devm_atmel_pmecc_get(struct device *userdev) +{ + struct atmel_pmecc *pmecc; + struct device_node *np; + + if (!userdev) + return ERR_PTR(-EINVAL); + + if (!userdev->of_node) + return NULL; + + np = of_parse_phandle(userdev->of_node, "ecc-engine", 0); + if (np) { + pmecc = atmel_pmecc_get_by_node(userdev, np); + of_node_put(np); + } else { + /* + * Support old DT bindings: in this case the PMECC iomem + * resources are directly defined in the user pdev at position + * 1 and 2. Extract all relevant information from there. + */ + struct platform_device *pdev = to_platform_device(userdev); + const struct atmel_pmecc_caps *caps; + const struct of_device_id *match; + + /* No PMECC engine available. */ + if (!of_property_read_bool(userdev->of_node, + "atmel,has-pmecc")) + return NULL; + + caps = &at91sam9g45_caps; + + /* Find the caps associated to the NAND dev node. */ + match = of_match_node(atmel_pmecc_legacy_match, + userdev->of_node); + if (match && match->data) + caps = match->data; + + pmecc = atmel_pmecc_create(pdev, caps, 1, 2); + } + + return pmecc; +} +EXPORT_SYMBOL(devm_atmel_pmecc_get); + +static const struct of_device_id atmel_pmecc_match[] = { + { .compatible = "atmel,at91sam9g45-pmecc", &at91sam9g45_caps }, + { .compatible = "atmel,sama5d4-pmecc", &sama5d4_caps }, + { .compatible = "atmel,sama5d2-pmecc", &sama5d2_caps }, + { /* sentinel */ } +}; +MODULE_DEVICE_TABLE(of, atmel_pmecc_match); + +static int atmel_pmecc_probe(struct platform_device *pdev) +{ + struct device *dev = &pdev->dev; + const struct atmel_pmecc_caps *caps; + struct atmel_pmecc *pmecc; + + caps = of_device_get_match_data(&pdev->dev); + if (!caps) { + dev_err(dev, "Invalid caps\n"); + return -EINVAL; + } + + pmecc = atmel_pmecc_create(pdev, caps, 0, 1); + if (IS_ERR(pmecc)) + return PTR_ERR(pmecc); + + platform_set_drvdata(pdev, pmecc); + + return 0; +} + +static struct platform_driver atmel_pmecc_driver = { + .driver = { + .name = "atmel-pmecc", + .of_match_table = of_match_ptr(atmel_pmecc_match), + }, + .probe = atmel_pmecc_probe, +}; +module_platform_driver(atmel_pmecc_driver); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Boris Brezillon "); +MODULE_DESCRIPTION("PMECC engine driver"); +MODULE_ALIAS("platform:atmel_pmecc"); diff --git a/drivers/mtd/nand/raw/atmel/pmecc.h b/drivers/mtd/nand/raw/atmel/pmecc.h new file mode 100644 index 000000000000..808f1be0d6ad --- /dev/null +++ b/drivers/mtd/nand/raw/atmel/pmecc.h @@ -0,0 +1,74 @@ +/* + * © Copyright 2016 ATMEL + * © Copyright 2016 Free Electrons + * + * Author: Boris Brezillon + * + * Derived from the atmel_nand.c driver which contained the following + * copyrights: + * + * Copyright © 2003 Rick Bronson + * + * Derived from drivers/mtd/nand/autcpu12.c (removed in v3.8) + * Copyright © 2001 Thomas Gleixner (gleixner@autronix.de) + * + * Derived from drivers/mtd/spia.c (removed in v3.8) + * Copyright © 2000 Steven J. Hill (sjhill@cotw.com) + * + * + * Add Hardware ECC support for AT91SAM9260 / AT91SAM9263 + * Richard Genoud (richard.genoud@gmail.com), Adeneo Copyright © 2007 + * + * Derived from Das U-Boot source code + * (u-boot-1.1.5/board/atmel/at91sam9263ek/nand.c) + * © Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas + * + * Add Programmable Multibit ECC support for various AT91 SoC + * © Copyright 2012 ATMEL, Hong Xu + * + * Add Nand Flash Controller support for SAMA5 SoC + * © Copyright 2013 ATMEL, Josh Wu (josh.wu@atmel.com) + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + * + */ + +#ifndef ATMEL_PMECC_H +#define ATMEL_PMECC_H + +#define ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH 0 +#define ATMEL_PMECC_SECTOR_SIZE_AUTO 0 +#define ATMEL_PMECC_OOBOFFSET_AUTO -1 + +struct atmel_pmecc_user_req { + int pagesize; + int oobsize; + struct { + int strength; + int bytes; + int sectorsize; + int nsectors; + int ooboffset; + } ecc; +}; + +struct atmel_pmecc *devm_atmel_pmecc_get(struct device *dev); + +struct atmel_pmecc_user * +atmel_pmecc_create_user(struct atmel_pmecc *pmecc, + struct atmel_pmecc_user_req *req); +void atmel_pmecc_destroy_user(struct atmel_pmecc_user *user); + +void atmel_pmecc_reset(struct atmel_pmecc *pmecc); +int atmel_pmecc_enable(struct atmel_pmecc_user *user, int op); +void atmel_pmecc_disable(struct atmel_pmecc_user *user); +int atmel_pmecc_wait_rdy(struct atmel_pmecc_user *user); +int atmel_pmecc_correct_sector(struct atmel_pmecc_user *user, int sector, + void *data, void *ecc); +bool atmel_pmecc_correct_erased_chunks(struct atmel_pmecc_user *user); +void atmel_pmecc_get_generated_eccbytes(struct atmel_pmecc_user *user, + int sector, void *ecc); + +#endif /* ATMEL_PMECC_H */ diff --git a/drivers/mtd/nand/raw/au1550nd.c b/drivers/mtd/nand/raw/au1550nd.c new file mode 100644 index 000000000000..df0ef1f1e2f5 --- /dev/null +++ b/drivers/mtd/nand/raw/au1550nd.c @@ -0,0 +1,515 @@ +/* + * Copyright (C) 2004 Embedded Edge, LLC + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + * + */ + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + + +struct au1550nd_ctx { + struct nand_chip chip; + + int cs; + void __iomem *base; + void (*write_byte)(struct mtd_info *, u_char); +}; + +/** + * au_read_byte - read one byte from the chip + * @mtd: MTD device structure + * + * read function for 8bit buswidth + */ +static u_char au_read_byte(struct mtd_info *mtd) +{ + struct nand_chip *this = mtd_to_nand(mtd); + u_char ret = readb(this->IO_ADDR_R); + wmb(); /* drain writebuffer */ + return ret; +} + +/** + * au_write_byte - write one byte to the chip + * @mtd: MTD device structure + * @byte: pointer to data byte to write + * + * write function for 8it buswidth + */ +static void au_write_byte(struct mtd_info *mtd, u_char byte) +{ + struct nand_chip *this = mtd_to_nand(mtd); + writeb(byte, this->IO_ADDR_W); + wmb(); /* drain writebuffer */ +} + +/** + * au_read_byte16 - read one byte endianness aware from the chip + * @mtd: MTD device structure + * + * read function for 16bit buswidth with endianness conversion + */ +static u_char au_read_byte16(struct mtd_info *mtd) +{ + struct nand_chip *this = mtd_to_nand(mtd); + u_char ret = (u_char) cpu_to_le16(readw(this->IO_ADDR_R)); + wmb(); /* drain writebuffer */ + return ret; +} + +/** + * au_write_byte16 - write one byte endianness aware to the chip + * @mtd: MTD device structure + * @byte: pointer to data byte to write + * + * write function for 16bit buswidth with endianness conversion + */ +static void au_write_byte16(struct mtd_info *mtd, u_char byte) +{ + struct nand_chip *this = mtd_to_nand(mtd); + writew(le16_to_cpu((u16) byte), this->IO_ADDR_W); + wmb(); /* drain writebuffer */ +} + +/** + * au_read_word - read one word from the chip + * @mtd: MTD device structure + * + * read function for 16bit buswidth without endianness conversion + */ +static u16 au_read_word(struct mtd_info *mtd) +{ + struct nand_chip *this = mtd_to_nand(mtd); + u16 ret = readw(this->IO_ADDR_R); + wmb(); /* drain writebuffer */ + return ret; +} + +/** + * au_write_buf - write buffer to chip + * @mtd: MTD device structure + * @buf: data buffer + * @len: number of bytes to write + * + * write function for 8bit buswidth + */ +static void au_write_buf(struct mtd_info *mtd, const u_char *buf, int len) +{ + int i; + struct nand_chip *this = mtd_to_nand(mtd); + + for (i = 0; i < len; i++) { + writeb(buf[i], this->IO_ADDR_W); + wmb(); /* drain writebuffer */ + } +} + +/** + * au_read_buf - read chip data into buffer + * @mtd: MTD device structure + * @buf: buffer to store date + * @len: number of bytes to read + * + * read function for 8bit buswidth + */ +static void au_read_buf(struct mtd_info *mtd, u_char *buf, int len) +{ + int i; + struct nand_chip *this = mtd_to_nand(mtd); + + for (i = 0; i < len; i++) { + buf[i] = readb(this->IO_ADDR_R); + wmb(); /* drain writebuffer */ + } +} + +/** + * au_write_buf16 - write buffer to chip + * @mtd: MTD device structure + * @buf: data buffer + * @len: number of bytes to write + * + * write function for 16bit buswidth + */ +static void au_write_buf16(struct mtd_info *mtd, const u_char *buf, int len) +{ + int i; + struct nand_chip *this = mtd_to_nand(mtd); + u16 *p = (u16 *) buf; + len >>= 1; + + for (i = 0; i < len; i++) { + writew(p[i], this->IO_ADDR_W); + wmb(); /* drain writebuffer */ + } + +} + +/** + * au_read_buf16 - read chip data into buffer + * @mtd: MTD device structure + * @buf: buffer to store date + * @len: number of bytes to read + * + * read function for 16bit buswidth + */ +static void au_read_buf16(struct mtd_info *mtd, u_char *buf, int len) +{ + int i; + struct nand_chip *this = mtd_to_nand(mtd); + u16 *p = (u16 *) buf; + len >>= 1; + + for (i = 0; i < len; i++) { + p[i] = readw(this->IO_ADDR_R); + wmb(); /* drain writebuffer */ + } +} + +/* Select the chip by setting nCE to low */ +#define NAND_CTL_SETNCE 1 +/* Deselect the chip by setting nCE to high */ +#define NAND_CTL_CLRNCE 2 +/* Select the command latch by setting CLE to high */ +#define NAND_CTL_SETCLE 3 +/* Deselect the command latch by setting CLE to low */ +#define NAND_CTL_CLRCLE 4 +/* Select the address latch by setting ALE to high */ +#define NAND_CTL_SETALE 5 +/* Deselect the address latch by setting ALE to low */ +#define NAND_CTL_CLRALE 6 + +static void au1550_hwcontrol(struct mtd_info *mtd, int cmd) +{ + struct nand_chip *this = mtd_to_nand(mtd); + struct au1550nd_ctx *ctx = container_of(this, struct au1550nd_ctx, + chip); + + switch (cmd) { + + case NAND_CTL_SETCLE: + this->IO_ADDR_W = ctx->base + MEM_STNAND_CMD; + break; + + case NAND_CTL_CLRCLE: + this->IO_ADDR_W = ctx->base + MEM_STNAND_DATA; + break; + + case NAND_CTL_SETALE: + this->IO_ADDR_W = ctx->base + MEM_STNAND_ADDR; + break; + + case NAND_CTL_CLRALE: + this->IO_ADDR_W = ctx->base + MEM_STNAND_DATA; + /* FIXME: Nobody knows why this is necessary, + * but it works only that way */ + udelay(1); + break; + + case NAND_CTL_SETNCE: + /* assert (force assert) chip enable */ + alchemy_wrsmem((1 << (4 + ctx->cs)), AU1000_MEM_STNDCTL); + break; + + case NAND_CTL_CLRNCE: + /* deassert chip enable */ + alchemy_wrsmem(0, AU1000_MEM_STNDCTL); + break; + } + + this->IO_ADDR_R = this->IO_ADDR_W; + + wmb(); /* Drain the writebuffer */ +} + +int au1550_device_ready(struct mtd_info *mtd) +{ + return (alchemy_rdsmem(AU1000_MEM_STSTAT) & 0x1) ? 1 : 0; +} + +/** + * au1550_select_chip - control -CE line + * Forbid driving -CE manually permitting the NAND controller to do this. + * Keeping -CE asserted during the whole sector reads interferes with the + * NOR flash and PCMCIA drivers as it causes contention on the static bus. + * We only have to hold -CE low for the NAND read commands since the flash + * chip needs it to be asserted during chip not ready time but the NAND + * controller keeps it released. + * + * @mtd: MTD device structure + * @chip: chipnumber to select, -1 for deselect + */ +static void au1550_select_chip(struct mtd_info *mtd, int chip) +{ +} + +/** + * au1550_command - Send command to NAND device + * @mtd: MTD device structure + * @command: the command to be sent + * @column: the column address for this command, -1 if none + * @page_addr: the page address for this command, -1 if none + */ +static void au1550_command(struct mtd_info *mtd, unsigned command, int column, int page_addr) +{ + struct nand_chip *this = mtd_to_nand(mtd); + struct au1550nd_ctx *ctx = container_of(this, struct au1550nd_ctx, + chip); + int ce_override = 0, i; + unsigned long flags = 0; + + /* Begin command latch cycle */ + au1550_hwcontrol(mtd, NAND_CTL_SETCLE); + /* + * Write out the command to the device. + */ + if (command == NAND_CMD_SEQIN) { + int readcmd; + + if (column >= mtd->writesize) { + /* OOB area */ + column -= mtd->writesize; + readcmd = NAND_CMD_READOOB; + } else if (column < 256) { + /* First 256 bytes --> READ0 */ + readcmd = NAND_CMD_READ0; + } else { + column -= 256; + readcmd = NAND_CMD_READ1; + } + ctx->write_byte(mtd, readcmd); + } + ctx->write_byte(mtd, command); + + /* Set ALE and clear CLE to start address cycle */ + au1550_hwcontrol(mtd, NAND_CTL_CLRCLE); + + if (column != -1 || page_addr != -1) { + au1550_hwcontrol(mtd, NAND_CTL_SETALE); + + /* Serially input address */ + if (column != -1) { + /* Adjust columns for 16 bit buswidth */ + if (this->options & NAND_BUSWIDTH_16 && + !nand_opcode_8bits(command)) + column >>= 1; + ctx->write_byte(mtd, column); + } + if (page_addr != -1) { + ctx->write_byte(mtd, (u8)(page_addr & 0xff)); + + if (command == NAND_CMD_READ0 || + command == NAND_CMD_READ1 || + command == NAND_CMD_READOOB) { + /* + * NAND controller will release -CE after + * the last address byte is written, so we'll + * have to forcibly assert it. No interrupts + * are allowed while we do this as we don't + * want the NOR flash or PCMCIA drivers to + * steal our precious bytes of data... + */ + ce_override = 1; + local_irq_save(flags); + au1550_hwcontrol(mtd, NAND_CTL_SETNCE); + } + + ctx->write_byte(mtd, (u8)(page_addr >> 8)); + + if (this->options & NAND_ROW_ADDR_3) + ctx->write_byte(mtd, + ((page_addr >> 16) & 0x0f)); + } + /* Latch in address */ + au1550_hwcontrol(mtd, NAND_CTL_CLRALE); + } + + /* + * Program and erase have their own busy handlers. + * Status and sequential in need no delay. + */ + switch (command) { + + case NAND_CMD_PAGEPROG: + case NAND_CMD_ERASE1: + case NAND_CMD_ERASE2: + case NAND_CMD_SEQIN: + case NAND_CMD_STATUS: + return; + + case NAND_CMD_RESET: + break; + + case NAND_CMD_READ0: + case NAND_CMD_READ1: + case NAND_CMD_READOOB: + /* Check if we're really driving -CE low (just in case) */ + if (unlikely(!ce_override)) + break; + + /* Apply a short delay always to ensure that we do wait tWB. */ + ndelay(100); + /* Wait for a chip to become ready... */ + for (i = this->chip_delay; !this->dev_ready(mtd) && i > 0; --i) + udelay(1); + + /* Release -CE and re-enable interrupts. */ + au1550_hwcontrol(mtd, NAND_CTL_CLRNCE); + local_irq_restore(flags); + return; + } + /* Apply this short delay always to ensure that we do wait tWB. */ + ndelay(100); + + while(!this->dev_ready(mtd)); +} + +static int find_nand_cs(unsigned long nand_base) +{ + void __iomem *base = + (void __iomem *)KSEG1ADDR(AU1000_STATIC_MEM_PHYS_ADDR); + unsigned long addr, staddr, start, mask, end; + int i; + + for (i = 0; i < 4; i++) { + addr = 0x1000 + (i * 0x10); /* CSx */ + staddr = __raw_readl(base + addr + 0x08); /* STADDRx */ + /* figure out the decoded range of this CS */ + start = (staddr << 4) & 0xfffc0000; + mask = (staddr << 18) & 0xfffc0000; + end = (start | (start - 1)) & ~(start ^ mask); + if ((nand_base >= start) && (nand_base < end)) + return i; + } + + return -ENODEV; +} + +static int au1550nd_probe(struct platform_device *pdev) +{ + struct au1550nd_platdata *pd; + struct au1550nd_ctx *ctx; + struct nand_chip *this; + struct mtd_info *mtd; + struct resource *r; + int ret, cs; + + pd = dev_get_platdata(&pdev->dev); + if (!pd) { + dev_err(&pdev->dev, "missing platform data\n"); + return -ENODEV; + } + + ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); + if (!ctx) + return -ENOMEM; + + r = platform_get_resource(pdev, IORESOURCE_MEM, 0); + if (!r) { + dev_err(&pdev->dev, "no NAND memory resource\n"); + ret = -ENODEV; + goto out1; + } + if (request_mem_region(r->start, resource_size(r), "au1550-nand")) { + dev_err(&pdev->dev, "cannot claim NAND memory area\n"); + ret = -ENOMEM; + goto out1; + } + + ctx->base = ioremap_nocache(r->start, 0x1000); + if (!ctx->base) { + dev_err(&pdev->dev, "cannot remap NAND memory area\n"); + ret = -ENODEV; + goto out2; + } + + this = &ctx->chip; + mtd = nand_to_mtd(this); + mtd->dev.parent = &pdev->dev; + + /* figure out which CS# r->start belongs to */ + cs = find_nand_cs(r->start); + if (cs < 0) { + dev_err(&pdev->dev, "cannot detect NAND chipselect\n"); + ret = -ENODEV; + goto out3; + } + ctx->cs = cs; + + this->dev_ready = au1550_device_ready; + this->select_chip = au1550_select_chip; + this->cmdfunc = au1550_command; + + /* 30 us command delay time */ + this->chip_delay = 30; + this->ecc.mode = NAND_ECC_SOFT; + this->ecc.algo = NAND_ECC_HAMMING; + + if (pd->devwidth) + this->options |= NAND_BUSWIDTH_16; + + this->read_byte = (pd->devwidth) ? au_read_byte16 : au_read_byte; + ctx->write_byte = (pd->devwidth) ? au_write_byte16 : au_write_byte; + this->read_word = au_read_word; + this->write_buf = (pd->devwidth) ? au_write_buf16 : au_write_buf; + this->read_buf = (pd->devwidth) ? au_read_buf16 : au_read_buf; + + ret = nand_scan(mtd, 1); + if (ret) { + dev_err(&pdev->dev, "NAND scan failed with %d\n", ret); + goto out3; + } + + mtd_device_register(mtd, pd->parts, pd->num_parts); + + platform_set_drvdata(pdev, ctx); + + return 0; + +out3: + iounmap(ctx->base); +out2: + release_mem_region(r->start, resource_size(r)); +out1: + kfree(ctx); + return ret; +} + +static int au1550nd_remove(struct platform_device *pdev) +{ + struct au1550nd_ctx *ctx = platform_get_drvdata(pdev); + struct resource *r = platform_get_resource(pdev, IORESOURCE_MEM, 0); + + nand_release(nand_to_mtd(&ctx->chip)); + iounmap(ctx->base); + release_mem_region(r->start, 0x1000); + kfree(ctx); + return 0; +} + +static struct platform_driver au1550nd_driver = { + .driver = { + .name = "au1550-nand", + }, + .probe = au1550nd_probe, + .remove = au1550nd_remove, +}; + +module_platform_driver(au1550nd_driver); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Embedded Edge, LLC"); +MODULE_DESCRIPTION("Board-specific glue layer for NAND flash on Pb1550 board"); diff --git a/drivers/mtd/nand/raw/bcm47xxnflash/Makefile b/drivers/mtd/nand/raw/bcm47xxnflash/Makefile new file mode 100644 index 000000000000..f05b119e134b --- /dev/null +++ b/drivers/mtd/nand/raw/bcm47xxnflash/Makefile @@ -0,0 +1,4 @@ +bcm47xxnflash-y += main.o +bcm47xxnflash-y += ops_bcm4706.o + +obj-$(CONFIG_MTD_NAND_BCM47XXNFLASH) += bcm47xxnflash.o diff --git a/drivers/mtd/nand/raw/bcm47xxnflash/bcm47xxnflash.h b/drivers/mtd/nand/raw/bcm47xxnflash/bcm47xxnflash.h new file mode 100644 index 000000000000..201b9baa52a0 --- /dev/null +++ b/drivers/mtd/nand/raw/bcm47xxnflash/bcm47xxnflash.h @@ -0,0 +1,26 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +#ifndef __BCM47XXNFLASH_H +#define __BCM47XXNFLASH_H + +#ifndef pr_fmt +#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt +#endif + +#include +#include + +struct bcm47xxnflash { + struct bcma_drv_cc *cc; + + struct nand_chip nand_chip; + + unsigned curr_command; + int curr_page_addr; + int curr_column; + + u8 id_data[8]; +}; + +int bcm47xxnflash_ops_bcm4706_init(struct bcm47xxnflash *b47n); + +#endif /* BCM47XXNFLASH */ diff --git a/drivers/mtd/nand/raw/bcm47xxnflash/main.c b/drivers/mtd/nand/raw/bcm47xxnflash/main.c new file mode 100644 index 000000000000..fb31429b70a9 --- /dev/null +++ b/drivers/mtd/nand/raw/bcm47xxnflash/main.c @@ -0,0 +1,81 @@ +/* + * BCM47XX NAND flash driver + * + * Copyright (C) 2012 Rafał Miłecki + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + * + */ + +#include "bcm47xxnflash.h" + +#include +#include +#include +#include +#include + +MODULE_DESCRIPTION("NAND flash driver for BCMA bus"); +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Rafał Miłecki"); + +static const char *probes[] = { "bcm47xxpart", NULL }; + +static int bcm47xxnflash_probe(struct platform_device *pdev) +{ + struct bcma_nflash *nflash = dev_get_platdata(&pdev->dev); + struct bcm47xxnflash *b47n; + struct mtd_info *mtd; + int err = 0; + + b47n = devm_kzalloc(&pdev->dev, sizeof(*b47n), GFP_KERNEL); + if (!b47n) + return -ENOMEM; + + nand_set_controller_data(&b47n->nand_chip, b47n); + mtd = nand_to_mtd(&b47n->nand_chip); + mtd->dev.parent = &pdev->dev; + b47n->cc = container_of(nflash, struct bcma_drv_cc, nflash); + + if (b47n->cc->core->bus->chipinfo.id == BCMA_CHIP_ID_BCM4706) { + err = bcm47xxnflash_ops_bcm4706_init(b47n); + } else { + pr_err("Device not supported\n"); + err = -ENOTSUPP; + } + if (err) { + pr_err("Initialization failed: %d\n", err); + return err; + } + + platform_set_drvdata(pdev, b47n); + + err = mtd_device_parse_register(mtd, probes, NULL, NULL, 0); + if (err) { + pr_err("Failed to register MTD device: %d\n", err); + return err; + } + + return 0; +} + +static int bcm47xxnflash_remove(struct platform_device *pdev) +{ + struct bcm47xxnflash *nflash = platform_get_drvdata(pdev); + + nand_release(nand_to_mtd(&nflash->nand_chip)); + + return 0; +} + +static struct platform_driver bcm47xxnflash_driver = { + .probe = bcm47xxnflash_probe, + .remove = bcm47xxnflash_remove, + .driver = { + .name = "bcma_nflash", + }, +}; + +module_platform_driver(bcm47xxnflash_driver); diff --git a/drivers/mtd/nand/raw/bcm47xxnflash/ops_bcm4706.c b/drivers/mtd/nand/raw/bcm47xxnflash/ops_bcm4706.c new file mode 100644 index 000000000000..54bac5b73f0a --- /dev/null +++ b/drivers/mtd/nand/raw/bcm47xxnflash/ops_bcm4706.c @@ -0,0 +1,456 @@ +/* + * BCM47XX NAND flash driver + * + * Copyright (C) 2012 Rafał Miłecki + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + * + */ + +#include "bcm47xxnflash.h" + +#include +#include +#include +#include +#include + +/* Broadcom uses 1'000'000 but it seems to be too many. Tests on WNDR4500 has + * shown ~1000 retries as maxiumum. */ +#define NFLASH_READY_RETRIES 10000 + +#define NFLASH_SECTOR_SIZE 512 + +#define NCTL_CMD0 0x00010000 +#define NCTL_COL 0x00020000 /* Update column with value from BCMA_CC_NFLASH_COL_ADDR */ +#define NCTL_ROW 0x00040000 /* Update row (page) with value from BCMA_CC_NFLASH_ROW_ADDR */ +#define NCTL_CMD1W 0x00080000 +#define NCTL_READ 0x00100000 +#define NCTL_WRITE 0x00200000 +#define NCTL_SPECADDR 0x01000000 +#define NCTL_READY 0x04000000 +#define NCTL_ERR 0x08000000 +#define NCTL_CSA 0x40000000 +#define NCTL_START 0x80000000 + +/************************************************** + * Various helpers + **************************************************/ + +static inline u8 bcm47xxnflash_ops_bcm4706_ns_to_cycle(u16 ns, u16 clock) +{ + return ((ns * 1000 * clock) / 1000000) + 1; +} + +static int bcm47xxnflash_ops_bcm4706_ctl_cmd(struct bcma_drv_cc *cc, u32 code) +{ + int i = 0; + + bcma_cc_write32(cc, BCMA_CC_NFLASH_CTL, NCTL_START | code); + for (i = 0; i < NFLASH_READY_RETRIES; i++) { + if (!(bcma_cc_read32(cc, BCMA_CC_NFLASH_CTL) & NCTL_START)) { + i = 0; + break; + } + } + if (i) { + pr_err("NFLASH control command not ready!\n"); + return -EBUSY; + } + return 0; +} + +static int bcm47xxnflash_ops_bcm4706_poll(struct bcma_drv_cc *cc) +{ + int i; + + for (i = 0; i < NFLASH_READY_RETRIES; i++) { + if (bcma_cc_read32(cc, BCMA_CC_NFLASH_CTL) & NCTL_READY) { + if (bcma_cc_read32(cc, BCMA_CC_NFLASH_CTL) & + BCMA_CC_NFLASH_CTL_ERR) { + pr_err("Error on polling\n"); + return -EBUSY; + } else { + return 0; + } + } + } + + pr_err("Polling timeout!\n"); + return -EBUSY; +} + +/************************************************** + * R/W + **************************************************/ + +static void bcm47xxnflash_ops_bcm4706_read(struct mtd_info *mtd, uint8_t *buf, + int len) +{ + struct nand_chip *nand_chip = mtd_to_nand(mtd); + struct bcm47xxnflash *b47n = nand_get_controller_data(nand_chip); + + u32 ctlcode; + u32 *dest = (u32 *)buf; + int i; + int toread; + + BUG_ON(b47n->curr_page_addr & ~nand_chip->pagemask); + /* Don't validate column using nand_chip->page_shift, it may be bigger + * when accessing OOB */ + + while (len) { + /* We can read maximum of 0x200 bytes at once */ + toread = min(len, 0x200); + + /* Set page and column */ + bcma_cc_write32(b47n->cc, BCMA_CC_NFLASH_COL_ADDR, + b47n->curr_column); + bcma_cc_write32(b47n->cc, BCMA_CC_NFLASH_ROW_ADDR, + b47n->curr_page_addr); + + /* Prepare to read */ + ctlcode = NCTL_CSA | NCTL_CMD1W | NCTL_ROW | NCTL_COL | + NCTL_CMD0; + ctlcode |= NAND_CMD_READSTART << 8; + if (bcm47xxnflash_ops_bcm4706_ctl_cmd(b47n->cc, ctlcode)) + return; + if (bcm47xxnflash_ops_bcm4706_poll(b47n->cc)) + return; + + /* Eventually read some data :) */ + for (i = 0; i < toread; i += 4, dest++) { + ctlcode = NCTL_CSA | 0x30000000 | NCTL_READ; + if (i == toread - 4) /* Last read goes without that */ + ctlcode &= ~NCTL_CSA; + if (bcm47xxnflash_ops_bcm4706_ctl_cmd(b47n->cc, + ctlcode)) + return; + *dest = bcma_cc_read32(b47n->cc, BCMA_CC_NFLASH_DATA); + } + + b47n->curr_column += toread; + len -= toread; + } +} + +static void bcm47xxnflash_ops_bcm4706_write(struct mtd_info *mtd, + const uint8_t *buf, int len) +{ + struct nand_chip *nand_chip = mtd_to_nand(mtd); + struct bcm47xxnflash *b47n = nand_get_controller_data(nand_chip); + struct bcma_drv_cc *cc = b47n->cc; + + u32 ctlcode; + const u32 *data = (u32 *)buf; + int i; + + BUG_ON(b47n->curr_page_addr & ~nand_chip->pagemask); + /* Don't validate column using nand_chip->page_shift, it may be bigger + * when accessing OOB */ + + for (i = 0; i < len; i += 4, data++) { + bcma_cc_write32(cc, BCMA_CC_NFLASH_DATA, *data); + + ctlcode = NCTL_CSA | 0x30000000 | NCTL_WRITE; + if (i == len - 4) /* Last read goes without that */ + ctlcode &= ~NCTL_CSA; + if (bcm47xxnflash_ops_bcm4706_ctl_cmd(cc, ctlcode)) { + pr_err("%s ctl_cmd didn't work!\n", __func__); + return; + } + } + + b47n->curr_column += len; +} + +/************************************************** + * NAND chip ops + **************************************************/ + +static void bcm47xxnflash_ops_bcm4706_cmd_ctrl(struct mtd_info *mtd, int cmd, + unsigned int ctrl) +{ + struct nand_chip *nand_chip = mtd_to_nand(mtd); + struct bcm47xxnflash *b47n = nand_get_controller_data(nand_chip); + u32 code = 0; + + if (cmd == NAND_CMD_NONE) + return; + + if (cmd & NAND_CTRL_CLE) + code = cmd | NCTL_CMD0; + + /* nCS is not needed for reset command */ + if (cmd != NAND_CMD_RESET) + code |= NCTL_CSA; + + bcm47xxnflash_ops_bcm4706_ctl_cmd(b47n->cc, code); +} + +/* Default nand_select_chip calls cmd_ctrl, which is not used in BCM4706 */ +static void bcm47xxnflash_ops_bcm4706_select_chip(struct mtd_info *mtd, + int chip) +{ + return; +} + +static int bcm47xxnflash_ops_bcm4706_dev_ready(struct mtd_info *mtd) +{ + struct nand_chip *nand_chip = mtd_to_nand(mtd); + struct bcm47xxnflash *b47n = nand_get_controller_data(nand_chip); + + return !!(bcma_cc_read32(b47n->cc, BCMA_CC_NFLASH_CTL) & NCTL_READY); +} + +/* + * Default nand_command and nand_command_lp don't match BCM4706 hardware layout. + * For example, reading chip id is performed in a non-standard way. + * Setting column and page is also handled differently, we use a special + * registers of ChipCommon core. Hacking cmd_ctrl to understand and convert + * standard commands would be much more complicated. + */ +static void bcm47xxnflash_ops_bcm4706_cmdfunc(struct mtd_info *mtd, + unsigned command, int column, + int page_addr) +{ + struct nand_chip *nand_chip = mtd_to_nand(mtd); + struct bcm47xxnflash *b47n = nand_get_controller_data(nand_chip); + struct bcma_drv_cc *cc = b47n->cc; + u32 ctlcode; + int i; + + if (column != -1) + b47n->curr_column = column; + if (page_addr != -1) + b47n->curr_page_addr = page_addr; + + switch (command) { + case NAND_CMD_RESET: + nand_chip->cmd_ctrl(mtd, command, NAND_CTRL_CLE); + + ndelay(100); + nand_wait_ready(mtd); + break; + case NAND_CMD_READID: + ctlcode = NCTL_CSA | 0x01000000 | NCTL_CMD1W | NCTL_CMD0; + ctlcode |= NAND_CMD_READID; + if (bcm47xxnflash_ops_bcm4706_ctl_cmd(b47n->cc, ctlcode)) { + pr_err("READID error\n"); + break; + } + + /* + * Reading is specific, last one has to go without NCTL_CSA + * bit. We don't know how many reads NAND subsystem is going + * to perform, so cache everything. + */ + for (i = 0; i < ARRAY_SIZE(b47n->id_data); i++) { + ctlcode = NCTL_CSA | NCTL_READ; + if (i == ARRAY_SIZE(b47n->id_data) - 1) + ctlcode &= ~NCTL_CSA; + if (bcm47xxnflash_ops_bcm4706_ctl_cmd(b47n->cc, + ctlcode)) { + pr_err("READID error\n"); + break; + } + b47n->id_data[i] = + bcma_cc_read32(b47n->cc, BCMA_CC_NFLASH_DATA) + & 0xFF; + } + + break; + case NAND_CMD_STATUS: + ctlcode = NCTL_CSA | NCTL_CMD0 | NAND_CMD_STATUS; + if (bcm47xxnflash_ops_bcm4706_ctl_cmd(cc, ctlcode)) + pr_err("STATUS command error\n"); + break; + case NAND_CMD_READ0: + break; + case NAND_CMD_READOOB: + if (page_addr != -1) + b47n->curr_column += mtd->writesize; + break; + case NAND_CMD_ERASE1: + bcma_cc_write32(cc, BCMA_CC_NFLASH_ROW_ADDR, + b47n->curr_page_addr); + ctlcode = NCTL_ROW | NCTL_CMD1W | NCTL_CMD0 | + NAND_CMD_ERASE1 | (NAND_CMD_ERASE2 << 8); + if (bcm47xxnflash_ops_bcm4706_ctl_cmd(cc, ctlcode)) + pr_err("ERASE1 failed\n"); + break; + case NAND_CMD_ERASE2: + break; + case NAND_CMD_SEQIN: + /* Set page and column */ + bcma_cc_write32(cc, BCMA_CC_NFLASH_COL_ADDR, + b47n->curr_column); + bcma_cc_write32(cc, BCMA_CC_NFLASH_ROW_ADDR, + b47n->curr_page_addr); + + /* Prepare to write */ + ctlcode = 0x40000000 | NCTL_ROW | NCTL_COL | NCTL_CMD0; + ctlcode |= NAND_CMD_SEQIN; + if (bcm47xxnflash_ops_bcm4706_ctl_cmd(cc, ctlcode)) + pr_err("SEQIN failed\n"); + break; + case NAND_CMD_PAGEPROG: + if (bcm47xxnflash_ops_bcm4706_ctl_cmd(cc, NCTL_CMD0 | + NAND_CMD_PAGEPROG)) + pr_err("PAGEPROG failed\n"); + if (bcm47xxnflash_ops_bcm4706_poll(cc)) + pr_err("PAGEPROG not ready\n"); + break; + default: + pr_err("Command 0x%X unsupported\n", command); + break; + } + b47n->curr_command = command; +} + +static u8 bcm47xxnflash_ops_bcm4706_read_byte(struct mtd_info *mtd) +{ + struct nand_chip *nand_chip = mtd_to_nand(mtd); + struct bcm47xxnflash *b47n = nand_get_controller_data(nand_chip); + struct bcma_drv_cc *cc = b47n->cc; + u32 tmp = 0; + + switch (b47n->curr_command) { + case NAND_CMD_READID: + if (b47n->curr_column >= ARRAY_SIZE(b47n->id_data)) { + pr_err("Requested invalid id_data: %d\n", + b47n->curr_column); + return 0; + } + return b47n->id_data[b47n->curr_column++]; + case NAND_CMD_STATUS: + if (bcm47xxnflash_ops_bcm4706_ctl_cmd(cc, NCTL_READ)) + return 0; + return bcma_cc_read32(cc, BCMA_CC_NFLASH_DATA) & 0xff; + case NAND_CMD_READOOB: + bcm47xxnflash_ops_bcm4706_read(mtd, (u8 *)&tmp, 4); + return tmp & 0xFF; + } + + pr_err("Invalid command for byte read: 0x%X\n", b47n->curr_command); + return 0; +} + +static void bcm47xxnflash_ops_bcm4706_read_buf(struct mtd_info *mtd, + uint8_t *buf, int len) +{ + struct nand_chip *nand_chip = mtd_to_nand(mtd); + struct bcm47xxnflash *b47n = nand_get_controller_data(nand_chip); + + switch (b47n->curr_command) { + case NAND_CMD_READ0: + case NAND_CMD_READOOB: + bcm47xxnflash_ops_bcm4706_read(mtd, buf, len); + return; + } + + pr_err("Invalid command for buf read: 0x%X\n", b47n->curr_command); +} + +static void bcm47xxnflash_ops_bcm4706_write_buf(struct mtd_info *mtd, + const uint8_t *buf, int len) +{ + struct nand_chip *nand_chip = mtd_to_nand(mtd); + struct bcm47xxnflash *b47n = nand_get_controller_data(nand_chip); + + switch (b47n->curr_command) { + case NAND_CMD_SEQIN: + bcm47xxnflash_ops_bcm4706_write(mtd, buf, len); + return; + } + + pr_err("Invalid command for buf write: 0x%X\n", b47n->curr_command); +} + +/************************************************** + * Init + **************************************************/ + +int bcm47xxnflash_ops_bcm4706_init(struct bcm47xxnflash *b47n) +{ + struct nand_chip *nand_chip = (struct nand_chip *)&b47n->nand_chip; + int err; + u32 freq; + u16 clock; + u8 w0, w1, w2, w3, w4; + + unsigned long chipsize; /* MiB */ + u8 tbits, col_bits, col_size, row_bits, row_bsize; + u32 val; + + b47n->nand_chip.select_chip = bcm47xxnflash_ops_bcm4706_select_chip; + nand_chip->cmd_ctrl = bcm47xxnflash_ops_bcm4706_cmd_ctrl; + nand_chip->dev_ready = bcm47xxnflash_ops_bcm4706_dev_ready; + b47n->nand_chip.cmdfunc = bcm47xxnflash_ops_bcm4706_cmdfunc; + b47n->nand_chip.read_byte = bcm47xxnflash_ops_bcm4706_read_byte; + b47n->nand_chip.read_buf = bcm47xxnflash_ops_bcm4706_read_buf; + b47n->nand_chip.write_buf = bcm47xxnflash_ops_bcm4706_write_buf; + b47n->nand_chip.onfi_set_features = nand_onfi_get_set_features_notsupp; + b47n->nand_chip.onfi_get_features = nand_onfi_get_set_features_notsupp; + + nand_chip->chip_delay = 50; + b47n->nand_chip.bbt_options = NAND_BBT_USE_FLASH; + b47n->nand_chip.ecc.mode = NAND_ECC_NONE; /* TODO: implement ECC */ + + /* Enable NAND flash access */ + bcma_cc_set32(b47n->cc, BCMA_CC_4706_FLASHSCFG, + BCMA_CC_4706_FLASHSCFG_NF1); + + /* Configure wait counters */ + if (b47n->cc->status & BCMA_CC_CHIPST_4706_PKG_OPTION) { + /* 400 MHz */ + freq = 400000000 / 4; + } else { + freq = bcma_chipco_pll_read(b47n->cc, 4); + freq = (freq & 0xFFF) >> 3; + /* Fixed reference clock 25 MHz and m = 2 */ + freq = (freq * 25000000 / 2) / 4; + } + clock = freq / 1000000; + w0 = bcm47xxnflash_ops_bcm4706_ns_to_cycle(15, clock); + w1 = bcm47xxnflash_ops_bcm4706_ns_to_cycle(20, clock); + w2 = bcm47xxnflash_ops_bcm4706_ns_to_cycle(10, clock); + w3 = bcm47xxnflash_ops_bcm4706_ns_to_cycle(10, clock); + w4 = bcm47xxnflash_ops_bcm4706_ns_to_cycle(100, clock); + bcma_cc_write32(b47n->cc, BCMA_CC_NFLASH_WAITCNT0, + (w4 << 24 | w3 << 18 | w2 << 12 | w1 << 6 | w0)); + + /* Scan NAND */ + err = nand_scan(nand_to_mtd(&b47n->nand_chip), 1); + if (err) { + pr_err("Could not scan NAND flash: %d\n", err); + goto exit; + } + + /* Configure FLASH */ + chipsize = b47n->nand_chip.chipsize >> 20; + tbits = ffs(chipsize); /* find first bit set */ + if (!tbits || tbits != fls(chipsize)) { + pr_err("Invalid flash size: 0x%lX\n", chipsize); + err = -ENOTSUPP; + goto exit; + } + tbits += 19; /* Broadcom increases *index* by 20, we increase *pos* */ + + col_bits = b47n->nand_chip.page_shift + 1; + col_size = (col_bits + 7) / 8; + + row_bits = tbits - col_bits + 1; + row_bsize = (row_bits + 7) / 8; + + val = ((row_bsize - 1) << 6) | ((col_size - 1) << 4) | 2; + bcma_cc_write32(b47n->cc, BCMA_CC_NFLASH_CONF, val); + +exit: + if (err) + bcma_cc_mask32(b47n->cc, BCMA_CC_4706_FLASHSCFG, + ~BCMA_CC_4706_FLASHSCFG_NF1); + return err; +} diff --git a/drivers/mtd/nand/raw/bf5xx_nand.c b/drivers/mtd/nand/raw/bf5xx_nand.c new file mode 100644 index 000000000000..9a1d8d104570 --- /dev/null +++ b/drivers/mtd/nand/raw/bf5xx_nand.c @@ -0,0 +1,861 @@ +/* + * Copyright 2006-2008 Analog Devices Inc. + * http://blackfin.uclinux.org/ + * Bryan Wu + * + * Blackfin BF5xx on-chip NAND flash controller driver + * + * Derived from s3c2410.c + * Copyright (c) 2007 Ben Dooks + * + * Derived from cafe.c + * Copyright © 2006 Red Hat, Inc. + * Copyright © 2006 David Woodhouse + * + * Changelog: + * 12-Jun-2007 Bryan Wu: Initial version + * 18-Jul-2007 Bryan Wu: + * - ECC_HW and ECC_SW supported + * - DMA supported in ECC_HW + * - YAFFS tested as rootfs in both ECC_HW and ECC_SW + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA +*/ + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#include +#include +#include +#include + +#include +#include +#include +#include +#include + +#define DRV_NAME "bf5xx-nand" +#define DRV_VERSION "1.2" +#define DRV_AUTHOR "Bryan Wu " +#define DRV_DESC "BF5xx on-chip NAND FLash Controller Driver" + +/* NFC_STAT Masks */ +#define NBUSY 0x01 /* Not Busy */ +#define WB_FULL 0x02 /* Write Buffer Full */ +#define PG_WR_STAT 0x04 /* Page Write Pending */ +#define PG_RD_STAT 0x08 /* Page Read Pending */ +#define WB_EMPTY 0x10 /* Write Buffer Empty */ + +/* NFC_IRQSTAT Masks */ +#define NBUSYIRQ 0x01 /* Not Busy IRQ */ +#define WB_OVF 0x02 /* Write Buffer Overflow */ +#define WB_EDGE 0x04 /* Write Buffer Edge Detect */ +#define RD_RDY 0x08 /* Read Data Ready */ +#define WR_DONE 0x10 /* Page Write Done */ + +/* NFC_RST Masks */ +#define ECC_RST 0x01 /* ECC (and NFC counters) Reset */ + +/* NFC_PGCTL Masks */ +#define PG_RD_START 0x01 /* Page Read Start */ +#define PG_WR_START 0x02 /* Page Write Start */ + +#ifdef CONFIG_MTD_NAND_BF5XX_HWECC +static int hardware_ecc = 1; +#else +static int hardware_ecc; +#endif + +static const unsigned short bfin_nfc_pin_req[] = + {P_NAND_CE, + P_NAND_RB, + P_NAND_D0, + P_NAND_D1, + P_NAND_D2, + P_NAND_D3, + P_NAND_D4, + P_NAND_D5, + P_NAND_D6, + P_NAND_D7, + P_NAND_WE, + P_NAND_RE, + P_NAND_CLE, + P_NAND_ALE, + 0}; + +#ifdef CONFIG_MTD_NAND_BF5XX_BOOTROM_ECC +static int bootrom_ooblayout_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + if (section > 7) + return -ERANGE; + + oobregion->offset = section * 8; + oobregion->length = 3; + + return 0; +} + +static int bootrom_ooblayout_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + if (section > 7) + return -ERANGE; + + oobregion->offset = (section * 8) + 3; + oobregion->length = 5; + + return 0; +} + +static const struct mtd_ooblayout_ops bootrom_ooblayout_ops = { + .ecc = bootrom_ooblayout_ecc, + .free = bootrom_ooblayout_free, +}; +#endif + +/* + * Data structures for bf5xx nand flash controller driver + */ + +/* bf5xx nand info */ +struct bf5xx_nand_info { + /* mtd info */ + struct nand_hw_control controller; + struct nand_chip chip; + + /* platform info */ + struct bf5xx_nand_platform *platform; + + /* device info */ + struct device *device; + + /* DMA stuff */ + struct completion dma_completion; +}; + +/* + * Conversion functions + */ +static struct bf5xx_nand_info *mtd_to_nand_info(struct mtd_info *mtd) +{ + return container_of(mtd_to_nand(mtd), struct bf5xx_nand_info, + chip); +} + +static struct bf5xx_nand_info *to_nand_info(struct platform_device *pdev) +{ + return platform_get_drvdata(pdev); +} + +static struct bf5xx_nand_platform *to_nand_plat(struct platform_device *pdev) +{ + return dev_get_platdata(&pdev->dev); +} + +/* + * struct nand_chip interface function pointers + */ + +/* + * bf5xx_nand_hwcontrol + * + * Issue command and address cycles to the chip + */ +static void bf5xx_nand_hwcontrol(struct mtd_info *mtd, int cmd, + unsigned int ctrl) +{ + if (cmd == NAND_CMD_NONE) + return; + + while (bfin_read_NFC_STAT() & WB_FULL) + cpu_relax(); + + if (ctrl & NAND_CLE) + bfin_write_NFC_CMD(cmd); + else if (ctrl & NAND_ALE) + bfin_write_NFC_ADDR(cmd); + SSYNC(); +} + +/* + * bf5xx_nand_devready() + * + * returns 0 if the nand is busy, 1 if it is ready + */ +static int bf5xx_nand_devready(struct mtd_info *mtd) +{ + unsigned short val = bfin_read_NFC_STAT(); + + if ((val & NBUSY) == NBUSY) + return 1; + else + return 0; +} + +/* + * ECC functions + * These allow the bf5xx to use the controller's ECC + * generator block to ECC the data as it passes through + */ + +/* + * ECC error correction function + */ +static int bf5xx_nand_correct_data_256(struct mtd_info *mtd, u_char *dat, + u_char *read_ecc, u_char *calc_ecc) +{ + struct bf5xx_nand_info *info = mtd_to_nand_info(mtd); + u32 syndrome[5]; + u32 calced, stored; + int i; + unsigned short failing_bit, failing_byte; + u_char data; + + calced = calc_ecc[0] | (calc_ecc[1] << 8) | (calc_ecc[2] << 16); + stored = read_ecc[0] | (read_ecc[1] << 8) | (read_ecc[2] << 16); + + syndrome[0] = (calced ^ stored); + + /* + * syndrome 0: all zero + * No error in data + * No action + */ + if (!syndrome[0] || !calced || !stored) + return 0; + + /* + * sysdrome 0: only one bit is one + * ECC data was incorrect + * No action + */ + if (hweight32(syndrome[0]) == 1) { + dev_err(info->device, "ECC data was incorrect!\n"); + return -EBADMSG; + } + + syndrome[1] = (calced & 0x7FF) ^ (stored & 0x7FF); + syndrome[2] = (calced & 0x7FF) ^ ((calced >> 11) & 0x7FF); + syndrome[3] = (stored & 0x7FF) ^ ((stored >> 11) & 0x7FF); + syndrome[4] = syndrome[2] ^ syndrome[3]; + + for (i = 0; i < 5; i++) + dev_info(info->device, "syndrome[%d] 0x%08x\n", i, syndrome[i]); + + dev_info(info->device, + "calced[0x%08x], stored[0x%08x]\n", + calced, stored); + + /* + * sysdrome 0: exactly 11 bits are one, each parity + * and parity' pair is 1 & 0 or 0 & 1. + * 1-bit correctable error + * Correct the error + */ + if (hweight32(syndrome[0]) == 11 && syndrome[4] == 0x7FF) { + dev_info(info->device, + "1-bit correctable error, correct it.\n"); + dev_info(info->device, + "syndrome[1] 0x%08x\n", syndrome[1]); + + failing_bit = syndrome[1] & 0x7; + failing_byte = syndrome[1] >> 0x3; + data = *(dat + failing_byte); + data = data ^ (0x1 << failing_bit); + *(dat + failing_byte) = data; + + return 1; + } + + /* + * sysdrome 0: random data + * More than 1-bit error, non-correctable error + * Discard data, mark bad block + */ + dev_err(info->device, + "More than 1-bit error, non-correctable error.\n"); + dev_err(info->device, + "Please discard data, mark bad block\n"); + + return -EBADMSG; +} + +static int bf5xx_nand_correct_data(struct mtd_info *mtd, u_char *dat, + u_char *read_ecc, u_char *calc_ecc) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + int ret, bitflips = 0; + + ret = bf5xx_nand_correct_data_256(mtd, dat, read_ecc, calc_ecc); + if (ret < 0) + return ret; + + bitflips = ret; + + /* If ecc size is 512, correct second 256 bytes */ + if (chip->ecc.size == 512) { + dat += 256; + read_ecc += 3; + calc_ecc += 3; + ret = bf5xx_nand_correct_data_256(mtd, dat, read_ecc, calc_ecc); + if (ret < 0) + return ret; + + bitflips += ret; + } + + return bitflips; +} + +static void bf5xx_nand_enable_hwecc(struct mtd_info *mtd, int mode) +{ + return; +} + +static int bf5xx_nand_calculate_ecc(struct mtd_info *mtd, + const u_char *dat, u_char *ecc_code) +{ + struct bf5xx_nand_info *info = mtd_to_nand_info(mtd); + struct nand_chip *chip = mtd_to_nand(mtd); + u16 ecc0, ecc1; + u32 code[2]; + u8 *p; + + /* first 3 bytes ECC code for 256 page size */ + ecc0 = bfin_read_NFC_ECC0(); + ecc1 = bfin_read_NFC_ECC1(); + + code[0] = (ecc0 & 0x7ff) | ((ecc1 & 0x7ff) << 11); + + dev_dbg(info->device, "returning ecc 0x%08x\n", code[0]); + + p = (u8 *) code; + memcpy(ecc_code, p, 3); + + /* second 3 bytes ECC code for 512 ecc size */ + if (chip->ecc.size == 512) { + ecc0 = bfin_read_NFC_ECC2(); + ecc1 = bfin_read_NFC_ECC3(); + code[1] = (ecc0 & 0x7ff) | ((ecc1 & 0x7ff) << 11); + + /* second 3 bytes in ecc_code for second 256 + * bytes of 512 page size + */ + p = (u8 *) (code + 1); + memcpy((ecc_code + 3), p, 3); + dev_dbg(info->device, "returning ecc 0x%08x\n", code[1]); + } + + return 0; +} + +/* + * PIO mode for buffer writing and reading + */ +static void bf5xx_nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) +{ + int i; + unsigned short val; + + /* + * Data reads are requested by first writing to NFC_DATA_RD + * and then reading back from NFC_READ. + */ + for (i = 0; i < len; i++) { + while (bfin_read_NFC_STAT() & WB_FULL) + cpu_relax(); + + /* Contents do not matter */ + bfin_write_NFC_DATA_RD(0x0000); + SSYNC(); + + while ((bfin_read_NFC_IRQSTAT() & RD_RDY) != RD_RDY) + cpu_relax(); + + buf[i] = bfin_read_NFC_READ(); + + val = bfin_read_NFC_IRQSTAT(); + val |= RD_RDY; + bfin_write_NFC_IRQSTAT(val); + SSYNC(); + } +} + +static uint8_t bf5xx_nand_read_byte(struct mtd_info *mtd) +{ + uint8_t val; + + bf5xx_nand_read_buf(mtd, &val, 1); + + return val; +} + +static void bf5xx_nand_write_buf(struct mtd_info *mtd, + const uint8_t *buf, int len) +{ + int i; + + for (i = 0; i < len; i++) { + while (bfin_read_NFC_STAT() & WB_FULL) + cpu_relax(); + + bfin_write_NFC_DATA_WR(buf[i]); + SSYNC(); + } +} + +static void bf5xx_nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len) +{ + int i; + u16 *p = (u16 *) buf; + len >>= 1; + + /* + * Data reads are requested by first writing to NFC_DATA_RD + * and then reading back from NFC_READ. + */ + bfin_write_NFC_DATA_RD(0x5555); + + SSYNC(); + + for (i = 0; i < len; i++) + p[i] = bfin_read_NFC_READ(); +} + +static void bf5xx_nand_write_buf16(struct mtd_info *mtd, + const uint8_t *buf, int len) +{ + int i; + u16 *p = (u16 *) buf; + len >>= 1; + + for (i = 0; i < len; i++) + bfin_write_NFC_DATA_WR(p[i]); + + SSYNC(); +} + +/* + * DMA functions for buffer writing and reading + */ +static irqreturn_t bf5xx_nand_dma_irq(int irq, void *dev_id) +{ + struct bf5xx_nand_info *info = dev_id; + + clear_dma_irqstat(CH_NFC); + disable_dma(CH_NFC); + complete(&info->dma_completion); + + return IRQ_HANDLED; +} + +static void bf5xx_nand_dma_rw(struct mtd_info *mtd, + uint8_t *buf, int is_read) +{ + struct bf5xx_nand_info *info = mtd_to_nand_info(mtd); + struct nand_chip *chip = mtd_to_nand(mtd); + unsigned short val; + + dev_dbg(info->device, " mtd->%p, buf->%p, is_read %d\n", + mtd, buf, is_read); + + /* + * Before starting a dma transfer, be sure to invalidate/flush + * the cache over the address range of your DMA buffer to + * prevent cache coherency problems. Otherwise very subtle bugs + * can be introduced to your driver. + */ + if (is_read) + invalidate_dcache_range((unsigned int)buf, + (unsigned int)(buf + chip->ecc.size)); + else + flush_dcache_range((unsigned int)buf, + (unsigned int)(buf + chip->ecc.size)); + + /* + * This register must be written before each page is + * transferred to generate the correct ECC register + * values. + */ + bfin_write_NFC_RST(ECC_RST); + SSYNC(); + while (bfin_read_NFC_RST() & ECC_RST) + cpu_relax(); + + disable_dma(CH_NFC); + clear_dma_irqstat(CH_NFC); + + /* setup DMA register with Blackfin DMA API */ + set_dma_config(CH_NFC, 0x0); + set_dma_start_addr(CH_NFC, (unsigned long) buf); + + /* The DMAs have different size on BF52x and BF54x */ +#ifdef CONFIG_BF52x + set_dma_x_count(CH_NFC, (chip->ecc.size >> 1)); + set_dma_x_modify(CH_NFC, 2); + val = DI_EN | WDSIZE_16; +#endif + +#ifdef CONFIG_BF54x + set_dma_x_count(CH_NFC, (chip->ecc.size >> 2)); + set_dma_x_modify(CH_NFC, 4); + val = DI_EN | WDSIZE_32; +#endif + /* setup write or read operation */ + if (is_read) + val |= WNR; + set_dma_config(CH_NFC, val); + enable_dma(CH_NFC); + + /* Start PAGE read/write operation */ + if (is_read) + bfin_write_NFC_PGCTL(PG_RD_START); + else + bfin_write_NFC_PGCTL(PG_WR_START); + wait_for_completion(&info->dma_completion); +} + +static void bf5xx_nand_dma_read_buf(struct mtd_info *mtd, + uint8_t *buf, int len) +{ + struct bf5xx_nand_info *info = mtd_to_nand_info(mtd); + struct nand_chip *chip = mtd_to_nand(mtd); + + dev_dbg(info->device, "mtd->%p, buf->%p, int %d\n", mtd, buf, len); + + if (len == chip->ecc.size) + bf5xx_nand_dma_rw(mtd, buf, 1); + else + bf5xx_nand_read_buf(mtd, buf, len); +} + +static void bf5xx_nand_dma_write_buf(struct mtd_info *mtd, + const uint8_t *buf, int len) +{ + struct bf5xx_nand_info *info = mtd_to_nand_info(mtd); + struct nand_chip *chip = mtd_to_nand(mtd); + + dev_dbg(info->device, "mtd->%p, buf->%p, len %d\n", mtd, buf, len); + + if (len == chip->ecc.size) + bf5xx_nand_dma_rw(mtd, (uint8_t *)buf, 0); + else + bf5xx_nand_write_buf(mtd, buf, len); +} + +static int bf5xx_nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip, + uint8_t *buf, int oob_required, int page) +{ + nand_read_page_op(chip, page, 0, NULL, 0); + + bf5xx_nand_read_buf(mtd, buf, mtd->writesize); + bf5xx_nand_read_buf(mtd, chip->oob_poi, mtd->oobsize); + + return 0; +} + +static int bf5xx_nand_write_page_raw(struct mtd_info *mtd, + struct nand_chip *chip, const uint8_t *buf, int oob_required, + int page) +{ + nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize); + bf5xx_nand_write_buf(mtd, chip->oob_poi, mtd->oobsize); + + return nand_prog_page_end_op(chip); +} + +/* + * System initialization functions + */ +static int bf5xx_nand_dma_init(struct bf5xx_nand_info *info) +{ + int ret; + + /* Do not use dma */ + if (!hardware_ecc) + return 0; + + init_completion(&info->dma_completion); + + /* Request NFC DMA channel */ + ret = request_dma(CH_NFC, "BF5XX NFC driver"); + if (ret < 0) { + dev_err(info->device, " unable to get DMA channel\n"); + return ret; + } + +#ifdef CONFIG_BF54x + /* Setup DMAC1 channel mux for NFC which shared with SDH */ + bfin_write_DMAC1_PERIMUX(bfin_read_DMAC1_PERIMUX() & ~1); + SSYNC(); +#endif + + set_dma_callback(CH_NFC, bf5xx_nand_dma_irq, info); + + /* Turn off the DMA channel first */ + disable_dma(CH_NFC); + return 0; +} + +static void bf5xx_nand_dma_remove(struct bf5xx_nand_info *info) +{ + /* Free NFC DMA channel */ + if (hardware_ecc) + free_dma(CH_NFC); +} + +/* + * BF5XX NFC hardware initialization + * - pin mux setup + * - clear interrupt status + */ +static int bf5xx_nand_hw_init(struct bf5xx_nand_info *info) +{ + int err = 0; + unsigned short val; + struct bf5xx_nand_platform *plat = info->platform; + + /* setup NFC_CTL register */ + dev_info(info->device, + "data_width=%d, wr_dly=%d, rd_dly=%d\n", + (plat->data_width ? 16 : 8), + plat->wr_dly, plat->rd_dly); + + val = (1 << NFC_PG_SIZE_OFFSET) | + (plat->data_width << NFC_NWIDTH_OFFSET) | + (plat->rd_dly << NFC_RDDLY_OFFSET) | + (plat->wr_dly << NFC_WRDLY_OFFSET); + dev_dbg(info->device, "NFC_CTL is 0x%04x\n", val); + + bfin_write_NFC_CTL(val); + SSYNC(); + + /* clear interrupt status */ + bfin_write_NFC_IRQMASK(0x0); + SSYNC(); + val = bfin_read_NFC_IRQSTAT(); + bfin_write_NFC_IRQSTAT(val); + SSYNC(); + + /* DMA initialization */ + if (bf5xx_nand_dma_init(info)) + err = -ENXIO; + + return err; +} + +/* + * Device management interface + */ +static int bf5xx_nand_add_partition(struct bf5xx_nand_info *info) +{ + struct mtd_info *mtd = nand_to_mtd(&info->chip); + struct mtd_partition *parts = info->platform->partitions; + int nr = info->platform->nr_partitions; + + return mtd_device_register(mtd, parts, nr); +} + +static int bf5xx_nand_remove(struct platform_device *pdev) +{ + struct bf5xx_nand_info *info = to_nand_info(pdev); + + /* first thing we need to do is release all our mtds + * and their partitions, then go through freeing the + * resources used + */ + nand_release(nand_to_mtd(&info->chip)); + + peripheral_free_list(bfin_nfc_pin_req); + bf5xx_nand_dma_remove(info); + + return 0; +} + +static int bf5xx_nand_scan(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + int ret; + + ret = nand_scan_ident(mtd, 1, NULL); + if (ret) + return ret; + + if (hardware_ecc) { + /* + * for nand with page size > 512B, think it as several sections with 512B + */ + if (likely(mtd->writesize >= 512)) { + chip->ecc.size = 512; + chip->ecc.bytes = 6; + chip->ecc.strength = 2; + } else { + chip->ecc.size = 256; + chip->ecc.bytes = 3; + chip->ecc.strength = 1; + bfin_write_NFC_CTL(bfin_read_NFC_CTL() & ~(1 << NFC_PG_SIZE_OFFSET)); + SSYNC(); + } + } + + return nand_scan_tail(mtd); +} + +/* + * bf5xx_nand_probe + * + * called by device layer when it finds a device matching + * one our driver can handled. This code checks to see if + * it can allocate all necessary resources then calls the + * nand layer to look for devices + */ +static int bf5xx_nand_probe(struct platform_device *pdev) +{ + struct bf5xx_nand_platform *plat = to_nand_plat(pdev); + struct bf5xx_nand_info *info = NULL; + struct nand_chip *chip = NULL; + struct mtd_info *mtd = NULL; + int err = 0; + + dev_dbg(&pdev->dev, "(%p)\n", pdev); + + if (!plat) { + dev_err(&pdev->dev, "no platform specific information\n"); + return -EINVAL; + } + + if (peripheral_request_list(bfin_nfc_pin_req, DRV_NAME)) { + dev_err(&pdev->dev, "requesting Peripherals failed\n"); + return -EFAULT; + } + + info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL); + if (info == NULL) { + err = -ENOMEM; + goto out_err; + } + + platform_set_drvdata(pdev, info); + + nand_hw_control_init(&info->controller); + + info->device = &pdev->dev; + info->platform = plat; + + /* initialise chip data struct */ + chip = &info->chip; + mtd = nand_to_mtd(&info->chip); + + if (plat->data_width) + chip->options |= NAND_BUSWIDTH_16; + + chip->options |= NAND_CACHEPRG | NAND_SKIP_BBTSCAN; + + chip->read_buf = (plat->data_width) ? + bf5xx_nand_read_buf16 : bf5xx_nand_read_buf; + chip->write_buf = (plat->data_width) ? + bf5xx_nand_write_buf16 : bf5xx_nand_write_buf; + + chip->read_byte = bf5xx_nand_read_byte; + + chip->cmd_ctrl = bf5xx_nand_hwcontrol; + chip->dev_ready = bf5xx_nand_devready; + + nand_set_controller_data(chip, mtd); + chip->controller = &info->controller; + + chip->IO_ADDR_R = (void __iomem *) NFC_READ; + chip->IO_ADDR_W = (void __iomem *) NFC_DATA_WR; + + chip->chip_delay = 0; + + /* initialise mtd info data struct */ + mtd->dev.parent = &pdev->dev; + + /* initialise the hardware */ + err = bf5xx_nand_hw_init(info); + if (err) + goto out_err; + + /* setup hardware ECC data struct */ + if (hardware_ecc) { +#ifdef CONFIG_MTD_NAND_BF5XX_BOOTROM_ECC + mtd_set_ooblayout(mtd, &bootrom_ooblayout_ops); +#endif + chip->read_buf = bf5xx_nand_dma_read_buf; + chip->write_buf = bf5xx_nand_dma_write_buf; + chip->ecc.calculate = bf5xx_nand_calculate_ecc; + chip->ecc.correct = bf5xx_nand_correct_data; + chip->ecc.mode = NAND_ECC_HW; + chip->ecc.hwctl = bf5xx_nand_enable_hwecc; + chip->ecc.read_page_raw = bf5xx_nand_read_page_raw; + chip->ecc.write_page_raw = bf5xx_nand_write_page_raw; + } else { + chip->ecc.mode = NAND_ECC_SOFT; + chip->ecc.algo = NAND_ECC_HAMMING; + } + + /* scan hardware nand chip and setup mtd info data struct */ + if (bf5xx_nand_scan(mtd)) { + err = -ENXIO; + goto out_err_nand_scan; + } + +#ifdef CONFIG_MTD_NAND_BF5XX_BOOTROM_ECC + chip->badblockpos = 63; +#endif + + /* add NAND partition */ + bf5xx_nand_add_partition(info); + + dev_dbg(&pdev->dev, "initialised ok\n"); + return 0; + +out_err_nand_scan: + bf5xx_nand_dma_remove(info); +out_err: + peripheral_free_list(bfin_nfc_pin_req); + + return err; +} + +/* driver device registration */ +static struct platform_driver bf5xx_nand_driver = { + .probe = bf5xx_nand_probe, + .remove = bf5xx_nand_remove, + .driver = { + .name = DRV_NAME, + }, +}; + +module_platform_driver(bf5xx_nand_driver); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR(DRV_AUTHOR); +MODULE_DESCRIPTION(DRV_DESC); +MODULE_ALIAS("platform:" DRV_NAME); diff --git a/drivers/mtd/nand/raw/brcmnand/Makefile b/drivers/mtd/nand/raw/brcmnand/Makefile new file mode 100644 index 000000000000..195b845e48b8 --- /dev/null +++ b/drivers/mtd/nand/raw/brcmnand/Makefile @@ -0,0 +1,8 @@ +# SPDX-License-Identifier: GPL-2.0 +# link order matters; don't link the more generic brcmstb_nand.o before the +# more specific iproc_nand.o, for instance +obj-$(CONFIG_MTD_NAND_BRCMNAND) += iproc_nand.o +obj-$(CONFIG_MTD_NAND_BRCMNAND) += bcm63138_nand.o +obj-$(CONFIG_MTD_NAND_BRCMNAND) += bcm6368_nand.o +obj-$(CONFIG_MTD_NAND_BRCMNAND) += brcmstb_nand.o +obj-$(CONFIG_MTD_NAND_BRCMNAND) += brcmnand.o diff --git a/drivers/mtd/nand/raw/brcmnand/bcm63138_nand.c b/drivers/mtd/nand/raw/brcmnand/bcm63138_nand.c new file mode 100644 index 000000000000..59444b3a697d --- /dev/null +++ b/drivers/mtd/nand/raw/brcmnand/bcm63138_nand.c @@ -0,0 +1,109 @@ +/* + * Copyright © 2015 Broadcom Corporation + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + */ + +#include +#include +#include +#include +#include +#include +#include +#include + +#include "brcmnand.h" + +struct bcm63138_nand_soc { + struct brcmnand_soc soc; + void __iomem *base; +}; + +#define BCM63138_NAND_INT_STATUS 0x00 +#define BCM63138_NAND_INT_EN 0x04 + +enum { + BCM63138_CTLRDY = BIT(4), +}; + +static bool bcm63138_nand_intc_ack(struct brcmnand_soc *soc) +{ + struct bcm63138_nand_soc *priv = + container_of(soc, struct bcm63138_nand_soc, soc); + void __iomem *mmio = priv->base + BCM63138_NAND_INT_STATUS; + u32 val = brcmnand_readl(mmio); + + if (val & BCM63138_CTLRDY) { + brcmnand_writel(val & ~BCM63138_CTLRDY, mmio); + return true; + } + + return false; +} + +static void bcm63138_nand_intc_set(struct brcmnand_soc *soc, bool en) +{ + struct bcm63138_nand_soc *priv = + container_of(soc, struct bcm63138_nand_soc, soc); + void __iomem *mmio = priv->base + BCM63138_NAND_INT_EN; + u32 val = brcmnand_readl(mmio); + + if (en) + val |= BCM63138_CTLRDY; + else + val &= ~BCM63138_CTLRDY; + + brcmnand_writel(val, mmio); +} + +static int bcm63138_nand_probe(struct platform_device *pdev) +{ + struct device *dev = &pdev->dev; + struct bcm63138_nand_soc *priv; + struct brcmnand_soc *soc; + struct resource *res; + + priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); + if (!priv) + return -ENOMEM; + soc = &priv->soc; + + res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand-int-base"); + priv->base = devm_ioremap_resource(dev, res); + if (IS_ERR(priv->base)) + return PTR_ERR(priv->base); + + soc->ctlrdy_ack = bcm63138_nand_intc_ack; + soc->ctlrdy_set_enabled = bcm63138_nand_intc_set; + + return brcmnand_probe(pdev, soc); +} + +static const struct of_device_id bcm63138_nand_of_match[] = { + { .compatible = "brcm,nand-bcm63138" }, + {}, +}; +MODULE_DEVICE_TABLE(of, bcm63138_nand_of_match); + +static struct platform_driver bcm63138_nand_driver = { + .probe = bcm63138_nand_probe, + .remove = brcmnand_remove, + .driver = { + .name = "bcm63138_nand", + .pm = &brcmnand_pm_ops, + .of_match_table = bcm63138_nand_of_match, + } +}; +module_platform_driver(bcm63138_nand_driver); + +MODULE_LICENSE("GPL v2"); +MODULE_AUTHOR("Brian Norris"); +MODULE_DESCRIPTION("NAND driver for BCM63138"); diff --git a/drivers/mtd/nand/raw/brcmnand/bcm6368_nand.c b/drivers/mtd/nand/raw/brcmnand/bcm6368_nand.c new file mode 100644 index 000000000000..34c91b0e1e69 --- /dev/null +++ b/drivers/mtd/nand/raw/brcmnand/bcm6368_nand.c @@ -0,0 +1,142 @@ +/* + * Copyright 2015 Simon Arlott + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * Derived from bcm63138_nand.c: + * Copyright © 2015 Broadcom Corporation + * + * Derived from bcm963xx_4.12L.06B_consumer/shared/opensource/include/bcm963xx/63268_map_part.h: + * Copyright 2000-2010 Broadcom Corporation + * + * Derived from bcm963xx_4.12L.06B_consumer/shared/opensource/flash/nandflash.c: + * Copyright 2000-2010 Broadcom Corporation + */ + +#include +#include +#include +#include +#include +#include +#include +#include + +#include "brcmnand.h" + +struct bcm6368_nand_soc { + struct brcmnand_soc soc; + void __iomem *base; +}; + +#define BCM6368_NAND_INT 0x00 +#define BCM6368_NAND_STATUS_SHIFT 0 +#define BCM6368_NAND_STATUS_MASK (0xfff << BCM6368_NAND_STATUS_SHIFT) +#define BCM6368_NAND_ENABLE_SHIFT 16 +#define BCM6368_NAND_ENABLE_MASK (0xffff << BCM6368_NAND_ENABLE_SHIFT) +#define BCM6368_NAND_BASE_ADDR0 0x04 +#define BCM6368_NAND_BASE_ADDR1 0x0c + +enum { + BCM6368_NP_READ = BIT(0), + BCM6368_BLOCK_ERASE = BIT(1), + BCM6368_COPY_BACK = BIT(2), + BCM6368_PAGE_PGM = BIT(3), + BCM6368_CTRL_READY = BIT(4), + BCM6368_DEV_RBPIN = BIT(5), + BCM6368_ECC_ERR_UNC = BIT(6), + BCM6368_ECC_ERR_CORR = BIT(7), +}; + +static bool bcm6368_nand_intc_ack(struct brcmnand_soc *soc) +{ + struct bcm6368_nand_soc *priv = + container_of(soc, struct bcm6368_nand_soc, soc); + void __iomem *mmio = priv->base + BCM6368_NAND_INT; + u32 val = brcmnand_readl(mmio); + + if (val & (BCM6368_CTRL_READY << BCM6368_NAND_STATUS_SHIFT)) { + /* Ack interrupt */ + val &= ~BCM6368_NAND_STATUS_MASK; + val |= BCM6368_CTRL_READY << BCM6368_NAND_STATUS_SHIFT; + brcmnand_writel(val, mmio); + return true; + } + + return false; +} + +static void bcm6368_nand_intc_set(struct brcmnand_soc *soc, bool en) +{ + struct bcm6368_nand_soc *priv = + container_of(soc, struct bcm6368_nand_soc, soc); + void __iomem *mmio = priv->base + BCM6368_NAND_INT; + u32 val = brcmnand_readl(mmio); + + /* Don't ack any interrupts */ + val &= ~BCM6368_NAND_STATUS_MASK; + + if (en) + val |= BCM6368_CTRL_READY << BCM6368_NAND_ENABLE_SHIFT; + else + val &= ~(BCM6368_CTRL_READY << BCM6368_NAND_ENABLE_SHIFT); + + brcmnand_writel(val, mmio); +} + +static int bcm6368_nand_probe(struct platform_device *pdev) +{ + struct device *dev = &pdev->dev; + struct bcm6368_nand_soc *priv; + struct brcmnand_soc *soc; + struct resource *res; + + priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); + if (!priv) + return -ENOMEM; + soc = &priv->soc; + + res = platform_get_resource_byname(pdev, + IORESOURCE_MEM, "nand-int-base"); + priv->base = devm_ioremap_resource(dev, res); + if (IS_ERR(priv->base)) + return PTR_ERR(priv->base); + + soc->ctlrdy_ack = bcm6368_nand_intc_ack; + soc->ctlrdy_set_enabled = bcm6368_nand_intc_set; + + /* Disable and ack all interrupts */ + brcmnand_writel(0, priv->base + BCM6368_NAND_INT); + brcmnand_writel(BCM6368_NAND_STATUS_MASK, + priv->base + BCM6368_NAND_INT); + + return brcmnand_probe(pdev, soc); +} + +static const struct of_device_id bcm6368_nand_of_match[] = { + { .compatible = "brcm,nand-bcm6368" }, + {}, +}; +MODULE_DEVICE_TABLE(of, bcm6368_nand_of_match); + +static struct platform_driver bcm6368_nand_driver = { + .probe = bcm6368_nand_probe, + .remove = brcmnand_remove, + .driver = { + .name = "bcm6368_nand", + .pm = &brcmnand_pm_ops, + .of_match_table = bcm6368_nand_of_match, + } +}; +module_platform_driver(bcm6368_nand_driver); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Simon Arlott"); +MODULE_DESCRIPTION("NAND driver for BCM6368"); diff --git a/drivers/mtd/nand/raw/brcmnand/brcmnand.c b/drivers/mtd/nand/raw/brcmnand/brcmnand.c new file mode 100644 index 000000000000..c28fd2bc1a84 --- /dev/null +++ b/drivers/mtd/nand/raw/brcmnand/brcmnand.c @@ -0,0 +1,2620 @@ +/* + * Copyright © 2010-2015 Broadcom Corporation + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + */ + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#include "brcmnand.h" + +/* + * This flag controls if WP stays on between erase/write commands to mitigate + * flash corruption due to power glitches. Values: + * 0: NAND_WP is not used or not available + * 1: NAND_WP is set by default, cleared for erase/write operations + * 2: NAND_WP is always cleared + */ +static int wp_on = 1; +module_param(wp_on, int, 0444); + +/*********************************************************************** + * Definitions + ***********************************************************************/ + +#define DRV_NAME "brcmnand" + +#define CMD_NULL 0x00 +#define CMD_PAGE_READ 0x01 +#define CMD_SPARE_AREA_READ 0x02 +#define CMD_STATUS_READ 0x03 +#define CMD_PROGRAM_PAGE 0x04 +#define CMD_PROGRAM_SPARE_AREA 0x05 +#define CMD_COPY_BACK 0x06 +#define CMD_DEVICE_ID_READ 0x07 +#define CMD_BLOCK_ERASE 0x08 +#define CMD_FLASH_RESET 0x09 +#define CMD_BLOCKS_LOCK 0x0a +#define CMD_BLOCKS_LOCK_DOWN 0x0b +#define CMD_BLOCKS_UNLOCK 0x0c +#define CMD_READ_BLOCKS_LOCK_STATUS 0x0d +#define CMD_PARAMETER_READ 0x0e +#define CMD_PARAMETER_CHANGE_COL 0x0f +#define CMD_LOW_LEVEL_OP 0x10 + +struct brcm_nand_dma_desc { + u32 next_desc; + u32 next_desc_ext; + u32 cmd_irq; + u32 dram_addr; + u32 dram_addr_ext; + u32 tfr_len; + u32 total_len; + u32 flash_addr; + u32 flash_addr_ext; + u32 cs; + u32 pad2[5]; + u32 status_valid; +} __packed; + +/* Bitfields for brcm_nand_dma_desc::status_valid */ +#define FLASH_DMA_ECC_ERROR (1 << 8) +#define FLASH_DMA_CORR_ERROR (1 << 9) + +/* 512B flash cache in the NAND controller HW */ +#define FC_SHIFT 9U +#define FC_BYTES 512U +#define FC_WORDS (FC_BYTES >> 2) + +#define BRCMNAND_MIN_PAGESIZE 512 +#define BRCMNAND_MIN_BLOCKSIZE (8 * 1024) +#define BRCMNAND_MIN_DEVSIZE (4ULL * 1024 * 1024) + +#define NAND_CTRL_RDY (INTFC_CTLR_READY | INTFC_FLASH_READY) +#define NAND_POLL_STATUS_TIMEOUT_MS 100 + +/* Controller feature flags */ +enum { + BRCMNAND_HAS_1K_SECTORS = BIT(0), + BRCMNAND_HAS_PREFETCH = BIT(1), + BRCMNAND_HAS_CACHE_MODE = BIT(2), + BRCMNAND_HAS_WP = BIT(3), +}; + +struct brcmnand_controller { + struct device *dev; + struct nand_hw_control controller; + void __iomem *nand_base; + void __iomem *nand_fc; /* flash cache */ + void __iomem *flash_dma_base; + unsigned int irq; + unsigned int dma_irq; + int nand_version; + + /* Some SoCs provide custom interrupt status register(s) */ + struct brcmnand_soc *soc; + + /* Some SoCs have a gateable clock for the controller */ + struct clk *clk; + + int cmd_pending; + bool dma_pending; + struct completion done; + struct completion dma_done; + + /* List of NAND hosts (one for each chip-select) */ + struct list_head host_list; + + struct brcm_nand_dma_desc *dma_desc; + dma_addr_t dma_pa; + + /* in-memory cache of the FLASH_CACHE, used only for some commands */ + u8 flash_cache[FC_BYTES]; + + /* Controller revision details */ + const u16 *reg_offsets; + unsigned int reg_spacing; /* between CS1, CS2, ... regs */ + const u8 *cs_offsets; /* within each chip-select */ + const u8 *cs0_offsets; /* within CS0, if different */ + unsigned int max_block_size; + const unsigned int *block_sizes; + unsigned int max_page_size; + const unsigned int *page_sizes; + unsigned int max_oob; + u32 features; + + /* for low-power standby/resume only */ + u32 nand_cs_nand_select; + u32 nand_cs_nand_xor; + u32 corr_stat_threshold; + u32 flash_dma_mode; +}; + +struct brcmnand_cfg { + u64 device_size; + unsigned int block_size; + unsigned int page_size; + unsigned int spare_area_size; + unsigned int device_width; + unsigned int col_adr_bytes; + unsigned int blk_adr_bytes; + unsigned int ful_adr_bytes; + unsigned int sector_size_1k; + unsigned int ecc_level; + /* use for low-power standby/resume only */ + u32 acc_control; + u32 config; + u32 config_ext; + u32 timing_1; + u32 timing_2; +}; + +struct brcmnand_host { + struct list_head node; + + struct nand_chip chip; + struct platform_device *pdev; + int cs; + + unsigned int last_cmd; + unsigned int last_byte; + u64 last_addr; + struct brcmnand_cfg hwcfg; + struct brcmnand_controller *ctrl; +}; + +enum brcmnand_reg { + BRCMNAND_CMD_START = 0, + BRCMNAND_CMD_EXT_ADDRESS, + BRCMNAND_CMD_ADDRESS, + BRCMNAND_INTFC_STATUS, + BRCMNAND_CS_SELECT, + BRCMNAND_CS_XOR, + BRCMNAND_LL_OP, + BRCMNAND_CS0_BASE, + BRCMNAND_CS1_BASE, /* CS1 regs, if non-contiguous */ + BRCMNAND_CORR_THRESHOLD, + BRCMNAND_CORR_THRESHOLD_EXT, + BRCMNAND_UNCORR_COUNT, + BRCMNAND_CORR_COUNT, + BRCMNAND_CORR_EXT_ADDR, + BRCMNAND_CORR_ADDR, + BRCMNAND_UNCORR_EXT_ADDR, + BRCMNAND_UNCORR_ADDR, + BRCMNAND_SEMAPHORE, + BRCMNAND_ID, + BRCMNAND_ID_EXT, + BRCMNAND_LL_RDATA, + BRCMNAND_OOB_READ_BASE, + BRCMNAND_OOB_READ_10_BASE, /* offset 0x10, if non-contiguous */ + BRCMNAND_OOB_WRITE_BASE, + BRCMNAND_OOB_WRITE_10_BASE, /* offset 0x10, if non-contiguous */ + BRCMNAND_FC_BASE, +}; + +/* BRCMNAND v4.0 */ +static const u16 brcmnand_regs_v40[] = { + [BRCMNAND_CMD_START] = 0x04, + [BRCMNAND_CMD_EXT_ADDRESS] = 0x08, + [BRCMNAND_CMD_ADDRESS] = 0x0c, + [BRCMNAND_INTFC_STATUS] = 0x6c, + [BRCMNAND_CS_SELECT] = 0x14, + [BRCMNAND_CS_XOR] = 0x18, + [BRCMNAND_LL_OP] = 0x178, + [BRCMNAND_CS0_BASE] = 0x40, + [BRCMNAND_CS1_BASE] = 0xd0, + [BRCMNAND_CORR_THRESHOLD] = 0x84, + [BRCMNAND_CORR_THRESHOLD_EXT] = 0, + [BRCMNAND_UNCORR_COUNT] = 0, + [BRCMNAND_CORR_COUNT] = 0, + [BRCMNAND_CORR_EXT_ADDR] = 0x70, + [BRCMNAND_CORR_ADDR] = 0x74, + [BRCMNAND_UNCORR_EXT_ADDR] = 0x78, + [BRCMNAND_UNCORR_ADDR] = 0x7c, + [BRCMNAND_SEMAPHORE] = 0x58, + [BRCMNAND_ID] = 0x60, + [BRCMNAND_ID_EXT] = 0x64, + [BRCMNAND_LL_RDATA] = 0x17c, + [BRCMNAND_OOB_READ_BASE] = 0x20, + [BRCMNAND_OOB_READ_10_BASE] = 0x130, + [BRCMNAND_OOB_WRITE_BASE] = 0x30, + [BRCMNAND_OOB_WRITE_10_BASE] = 0, + [BRCMNAND_FC_BASE] = 0x200, +}; + +/* BRCMNAND v5.0 */ +static const u16 brcmnand_regs_v50[] = { + [BRCMNAND_CMD_START] = 0x04, + [BRCMNAND_CMD_EXT_ADDRESS] = 0x08, + [BRCMNAND_CMD_ADDRESS] = 0x0c, + [BRCMNAND_INTFC_STATUS] = 0x6c, + [BRCMNAND_CS_SELECT] = 0x14, + [BRCMNAND_CS_XOR] = 0x18, + [BRCMNAND_LL_OP] = 0x178, + [BRCMNAND_CS0_BASE] = 0x40, + [BRCMNAND_CS1_BASE] = 0xd0, + [BRCMNAND_CORR_THRESHOLD] = 0x84, + [BRCMNAND_CORR_THRESHOLD_EXT] = 0, + [BRCMNAND_UNCORR_COUNT] = 0, + [BRCMNAND_CORR_COUNT] = 0, + [BRCMNAND_CORR_EXT_ADDR] = 0x70, + [BRCMNAND_CORR_ADDR] = 0x74, + [BRCMNAND_UNCORR_EXT_ADDR] = 0x78, + [BRCMNAND_UNCORR_ADDR] = 0x7c, + [BRCMNAND_SEMAPHORE] = 0x58, + [BRCMNAND_ID] = 0x60, + [BRCMNAND_ID_EXT] = 0x64, + [BRCMNAND_LL_RDATA] = 0x17c, + [BRCMNAND_OOB_READ_BASE] = 0x20, + [BRCMNAND_OOB_READ_10_BASE] = 0x130, + [BRCMNAND_OOB_WRITE_BASE] = 0x30, + [BRCMNAND_OOB_WRITE_10_BASE] = 0x140, + [BRCMNAND_FC_BASE] = 0x200, +}; + +/* BRCMNAND v6.0 - v7.1 */ +static const u16 brcmnand_regs_v60[] = { + [BRCMNAND_CMD_START] = 0x04, + [BRCMNAND_CMD_EXT_ADDRESS] = 0x08, + [BRCMNAND_CMD_ADDRESS] = 0x0c, + [BRCMNAND_INTFC_STATUS] = 0x14, + [BRCMNAND_CS_SELECT] = 0x18, + [BRCMNAND_CS_XOR] = 0x1c, + [BRCMNAND_LL_OP] = 0x20, + [BRCMNAND_CS0_BASE] = 0x50, + [BRCMNAND_CS1_BASE] = 0, + [BRCMNAND_CORR_THRESHOLD] = 0xc0, + [BRCMNAND_CORR_THRESHOLD_EXT] = 0xc4, + [BRCMNAND_UNCORR_COUNT] = 0xfc, + [BRCMNAND_CORR_COUNT] = 0x100, + [BRCMNAND_CORR_EXT_ADDR] = 0x10c, + [BRCMNAND_CORR_ADDR] = 0x110, + [BRCMNAND_UNCORR_EXT_ADDR] = 0x114, + [BRCMNAND_UNCORR_ADDR] = 0x118, + [BRCMNAND_SEMAPHORE] = 0x150, + [BRCMNAND_ID] = 0x194, + [BRCMNAND_ID_EXT] = 0x198, + [BRCMNAND_LL_RDATA] = 0x19c, + [BRCMNAND_OOB_READ_BASE] = 0x200, + [BRCMNAND_OOB_READ_10_BASE] = 0, + [BRCMNAND_OOB_WRITE_BASE] = 0x280, + [BRCMNAND_OOB_WRITE_10_BASE] = 0, + [BRCMNAND_FC_BASE] = 0x400, +}; + +/* BRCMNAND v7.1 */ +static const u16 brcmnand_regs_v71[] = { + [BRCMNAND_CMD_START] = 0x04, + [BRCMNAND_CMD_EXT_ADDRESS] = 0x08, + [BRCMNAND_CMD_ADDRESS] = 0x0c, + [BRCMNAND_INTFC_STATUS] = 0x14, + [BRCMNAND_CS_SELECT] = 0x18, + [BRCMNAND_CS_XOR] = 0x1c, + [BRCMNAND_LL_OP] = 0x20, + [BRCMNAND_CS0_BASE] = 0x50, + [BRCMNAND_CS1_BASE] = 0, + [BRCMNAND_CORR_THRESHOLD] = 0xdc, + [BRCMNAND_CORR_THRESHOLD_EXT] = 0xe0, + [BRCMNAND_UNCORR_COUNT] = 0xfc, + [BRCMNAND_CORR_COUNT] = 0x100, + [BRCMNAND_CORR_EXT_ADDR] = 0x10c, + [BRCMNAND_CORR_ADDR] = 0x110, + [BRCMNAND_UNCORR_EXT_ADDR] = 0x114, + [BRCMNAND_UNCORR_ADDR] = 0x118, + [BRCMNAND_SEMAPHORE] = 0x150, + [BRCMNAND_ID] = 0x194, + [BRCMNAND_ID_EXT] = 0x198, + [BRCMNAND_LL_RDATA] = 0x19c, + [BRCMNAND_OOB_READ_BASE] = 0x200, + [BRCMNAND_OOB_READ_10_BASE] = 0, + [BRCMNAND_OOB_WRITE_BASE] = 0x280, + [BRCMNAND_OOB_WRITE_10_BASE] = 0, + [BRCMNAND_FC_BASE] = 0x400, +}; + +/* BRCMNAND v7.2 */ +static const u16 brcmnand_regs_v72[] = { + [BRCMNAND_CMD_START] = 0x04, + [BRCMNAND_CMD_EXT_ADDRESS] = 0x08, + [BRCMNAND_CMD_ADDRESS] = 0x0c, + [BRCMNAND_INTFC_STATUS] = 0x14, + [BRCMNAND_CS_SELECT] = 0x18, + [BRCMNAND_CS_XOR] = 0x1c, + [BRCMNAND_LL_OP] = 0x20, + [BRCMNAND_CS0_BASE] = 0x50, + [BRCMNAND_CS1_BASE] = 0, + [BRCMNAND_CORR_THRESHOLD] = 0xdc, + [BRCMNAND_CORR_THRESHOLD_EXT] = 0xe0, + [BRCMNAND_UNCORR_COUNT] = 0xfc, + [BRCMNAND_CORR_COUNT] = 0x100, + [BRCMNAND_CORR_EXT_ADDR] = 0x10c, + [BRCMNAND_CORR_ADDR] = 0x110, + [BRCMNAND_UNCORR_EXT_ADDR] = 0x114, + [BRCMNAND_UNCORR_ADDR] = 0x118, + [BRCMNAND_SEMAPHORE] = 0x150, + [BRCMNAND_ID] = 0x194, + [BRCMNAND_ID_EXT] = 0x198, + [BRCMNAND_LL_RDATA] = 0x19c, + [BRCMNAND_OOB_READ_BASE] = 0x200, + [BRCMNAND_OOB_READ_10_BASE] = 0, + [BRCMNAND_OOB_WRITE_BASE] = 0x400, + [BRCMNAND_OOB_WRITE_10_BASE] = 0, + [BRCMNAND_FC_BASE] = 0x600, +}; + +enum brcmnand_cs_reg { + BRCMNAND_CS_CFG_EXT = 0, + BRCMNAND_CS_CFG, + BRCMNAND_CS_ACC_CONTROL, + BRCMNAND_CS_TIMING1, + BRCMNAND_CS_TIMING2, +}; + +/* Per chip-select offsets for v7.1 */ +static const u8 brcmnand_cs_offsets_v71[] = { + [BRCMNAND_CS_ACC_CONTROL] = 0x00, + [BRCMNAND_CS_CFG_EXT] = 0x04, + [BRCMNAND_CS_CFG] = 0x08, + [BRCMNAND_CS_TIMING1] = 0x0c, + [BRCMNAND_CS_TIMING2] = 0x10, +}; + +/* Per chip-select offsets for pre v7.1, except CS0 on <= v5.0 */ +static const u8 brcmnand_cs_offsets[] = { + [BRCMNAND_CS_ACC_CONTROL] = 0x00, + [BRCMNAND_CS_CFG_EXT] = 0x04, + [BRCMNAND_CS_CFG] = 0x04, + [BRCMNAND_CS_TIMING1] = 0x08, + [BRCMNAND_CS_TIMING2] = 0x0c, +}; + +/* Per chip-select offset for <= v5.0 on CS0 only */ +static const u8 brcmnand_cs_offsets_cs0[] = { + [BRCMNAND_CS_ACC_CONTROL] = 0x00, + [BRCMNAND_CS_CFG_EXT] = 0x08, + [BRCMNAND_CS_CFG] = 0x08, + [BRCMNAND_CS_TIMING1] = 0x10, + [BRCMNAND_CS_TIMING2] = 0x14, +}; + +/* + * Bitfields for the CFG and CFG_EXT registers. Pre-v7.1 controllers only had + * one config register, but once the bitfields overflowed, newer controllers + * (v7.1 and newer) added a CFG_EXT register and shuffled a few fields around. + */ +enum { + CFG_BLK_ADR_BYTES_SHIFT = 8, + CFG_COL_ADR_BYTES_SHIFT = 12, + CFG_FUL_ADR_BYTES_SHIFT = 16, + CFG_BUS_WIDTH_SHIFT = 23, + CFG_BUS_WIDTH = BIT(CFG_BUS_WIDTH_SHIFT), + CFG_DEVICE_SIZE_SHIFT = 24, + + /* Only for pre-v7.1 (with no CFG_EXT register) */ + CFG_PAGE_SIZE_SHIFT = 20, + CFG_BLK_SIZE_SHIFT = 28, + + /* Only for v7.1+ (with CFG_EXT register) */ + CFG_EXT_PAGE_SIZE_SHIFT = 0, + CFG_EXT_BLK_SIZE_SHIFT = 4, +}; + +/* BRCMNAND_INTFC_STATUS */ +enum { + INTFC_FLASH_STATUS = GENMASK(7, 0), + + INTFC_ERASED = BIT(27), + INTFC_OOB_VALID = BIT(28), + INTFC_CACHE_VALID = BIT(29), + INTFC_FLASH_READY = BIT(30), + INTFC_CTLR_READY = BIT(31), +}; + +static inline u32 nand_readreg(struct brcmnand_controller *ctrl, u32 offs) +{ + return brcmnand_readl(ctrl->nand_base + offs); +} + +static inline void nand_writereg(struct brcmnand_controller *ctrl, u32 offs, + u32 val) +{ + brcmnand_writel(val, ctrl->nand_base + offs); +} + +static int brcmnand_revision_init(struct brcmnand_controller *ctrl) +{ + static const unsigned int block_sizes_v6[] = { 8, 16, 128, 256, 512, 1024, 2048, 0 }; + static const unsigned int block_sizes_v4[] = { 16, 128, 8, 512, 256, 1024, 2048, 0 }; + static const unsigned int page_sizes[] = { 512, 2048, 4096, 8192, 0 }; + + ctrl->nand_version = nand_readreg(ctrl, 0) & 0xffff; + + /* Only support v4.0+? */ + if (ctrl->nand_version < 0x0400) { + dev_err(ctrl->dev, "version %#x not supported\n", + ctrl->nand_version); + return -ENODEV; + } + + /* Register offsets */ + if (ctrl->nand_version >= 0x0702) + ctrl->reg_offsets = brcmnand_regs_v72; + else if (ctrl->nand_version >= 0x0701) + ctrl->reg_offsets = brcmnand_regs_v71; + else if (ctrl->nand_version >= 0x0600) + ctrl->reg_offsets = brcmnand_regs_v60; + else if (ctrl->nand_version >= 0x0500) + ctrl->reg_offsets = brcmnand_regs_v50; + else if (ctrl->nand_version >= 0x0400) + ctrl->reg_offsets = brcmnand_regs_v40; + + /* Chip-select stride */ + if (ctrl->nand_version >= 0x0701) + ctrl->reg_spacing = 0x14; + else + ctrl->reg_spacing = 0x10; + + /* Per chip-select registers */ + if (ctrl->nand_version >= 0x0701) { + ctrl->cs_offsets = brcmnand_cs_offsets_v71; + } else { + ctrl->cs_offsets = brcmnand_cs_offsets; + + /* v5.0 and earlier has a different CS0 offset layout */ + if (ctrl->nand_version <= 0x0500) + ctrl->cs0_offsets = brcmnand_cs_offsets_cs0; + } + + /* Page / block sizes */ + if (ctrl->nand_version >= 0x0701) { + /* >= v7.1 use nice power-of-2 values! */ + ctrl->max_page_size = 16 * 1024; + ctrl->max_block_size = 2 * 1024 * 1024; + } else { + ctrl->page_sizes = page_sizes; + if (ctrl->nand_version >= 0x0600) + ctrl->block_sizes = block_sizes_v6; + else + ctrl->block_sizes = block_sizes_v4; + + if (ctrl->nand_version < 0x0400) { + ctrl->max_page_size = 4096; + ctrl->max_block_size = 512 * 1024; + } + } + + /* Maximum spare area sector size (per 512B) */ + if (ctrl->nand_version >= 0x0702) + ctrl->max_oob = 128; + else if (ctrl->nand_version >= 0x0600) + ctrl->max_oob = 64; + else if (ctrl->nand_version >= 0x0500) + ctrl->max_oob = 32; + else + ctrl->max_oob = 16; + + /* v6.0 and newer (except v6.1) have prefetch support */ + if (ctrl->nand_version >= 0x0600 && ctrl->nand_version != 0x0601) + ctrl->features |= BRCMNAND_HAS_PREFETCH; + + /* + * v6.x has cache mode, but it's implemented differently. Ignore it for + * now. + */ + if (ctrl->nand_version >= 0x0700) + ctrl->features |= BRCMNAND_HAS_CACHE_MODE; + + if (ctrl->nand_version >= 0x0500) + ctrl->features |= BRCMNAND_HAS_1K_SECTORS; + + if (ctrl->nand_version >= 0x0700) + ctrl->features |= BRCMNAND_HAS_WP; + else if (of_property_read_bool(ctrl->dev->of_node, "brcm,nand-has-wp")) + ctrl->features |= BRCMNAND_HAS_WP; + + return 0; +} + +static inline u32 brcmnand_read_reg(struct brcmnand_controller *ctrl, + enum brcmnand_reg reg) +{ + u16 offs = ctrl->reg_offsets[reg]; + + if (offs) + return nand_readreg(ctrl, offs); + else + return 0; +} + +static inline void brcmnand_write_reg(struct brcmnand_controller *ctrl, + enum brcmnand_reg reg, u32 val) +{ + u16 offs = ctrl->reg_offsets[reg]; + + if (offs) + nand_writereg(ctrl, offs, val); +} + +static inline void brcmnand_rmw_reg(struct brcmnand_controller *ctrl, + enum brcmnand_reg reg, u32 mask, unsigned + int shift, u32 val) +{ + u32 tmp = brcmnand_read_reg(ctrl, reg); + + tmp &= ~mask; + tmp |= val << shift; + brcmnand_write_reg(ctrl, reg, tmp); +} + +static inline u32 brcmnand_read_fc(struct brcmnand_controller *ctrl, int word) +{ + return __raw_readl(ctrl->nand_fc + word * 4); +} + +static inline void brcmnand_write_fc(struct brcmnand_controller *ctrl, + int word, u32 val) +{ + __raw_writel(val, ctrl->nand_fc + word * 4); +} + +static inline u16 brcmnand_cs_offset(struct brcmnand_controller *ctrl, int cs, + enum brcmnand_cs_reg reg) +{ + u16 offs_cs0 = ctrl->reg_offsets[BRCMNAND_CS0_BASE]; + u16 offs_cs1 = ctrl->reg_offsets[BRCMNAND_CS1_BASE]; + u8 cs_offs; + + if (cs == 0 && ctrl->cs0_offsets) + cs_offs = ctrl->cs0_offsets[reg]; + else + cs_offs = ctrl->cs_offsets[reg]; + + if (cs && offs_cs1) + return offs_cs1 + (cs - 1) * ctrl->reg_spacing + cs_offs; + + return offs_cs0 + cs * ctrl->reg_spacing + cs_offs; +} + +static inline u32 brcmnand_count_corrected(struct brcmnand_controller *ctrl) +{ + if (ctrl->nand_version < 0x0600) + return 1; + return brcmnand_read_reg(ctrl, BRCMNAND_CORR_COUNT); +} + +static void brcmnand_wr_corr_thresh(struct brcmnand_host *host, u8 val) +{ + struct brcmnand_controller *ctrl = host->ctrl; + unsigned int shift = 0, bits; + enum brcmnand_reg reg = BRCMNAND_CORR_THRESHOLD; + int cs = host->cs; + + if (ctrl->nand_version >= 0x0702) + bits = 7; + else if (ctrl->nand_version >= 0x0600) + bits = 6; + else if (ctrl->nand_version >= 0x0500) + bits = 5; + else + bits = 4; + + if (ctrl->nand_version >= 0x0702) { + if (cs >= 4) + reg = BRCMNAND_CORR_THRESHOLD_EXT; + shift = (cs % 4) * bits; + } else if (ctrl->nand_version >= 0x0600) { + if (cs >= 5) + reg = BRCMNAND_CORR_THRESHOLD_EXT; + shift = (cs % 5) * bits; + } + brcmnand_rmw_reg(ctrl, reg, (bits - 1) << shift, shift, val); +} + +static inline int brcmnand_cmd_shift(struct brcmnand_controller *ctrl) +{ + if (ctrl->nand_version < 0x0602) + return 24; + return 0; +} + +/*********************************************************************** + * NAND ACC CONTROL bitfield + * + * Some bits have remained constant throughout hardware revision, while + * others have shifted around. + ***********************************************************************/ + +/* Constant for all versions (where supported) */ +enum { + /* See BRCMNAND_HAS_CACHE_MODE */ + ACC_CONTROL_CACHE_MODE = BIT(22), + + /* See BRCMNAND_HAS_PREFETCH */ + ACC_CONTROL_PREFETCH = BIT(23), + + ACC_CONTROL_PAGE_HIT = BIT(24), + ACC_CONTROL_WR_PREEMPT = BIT(25), + ACC_CONTROL_PARTIAL_PAGE = BIT(26), + ACC_CONTROL_RD_ERASED = BIT(27), + ACC_CONTROL_FAST_PGM_RDIN = BIT(28), + ACC_CONTROL_WR_ECC = BIT(30), + ACC_CONTROL_RD_ECC = BIT(31), +}; + +static inline u32 brcmnand_spare_area_mask(struct brcmnand_controller *ctrl) +{ + if (ctrl->nand_version >= 0x0702) + return GENMASK(7, 0); + else if (ctrl->nand_version >= 0x0600) + return GENMASK(6, 0); + else + return GENMASK(5, 0); +} + +#define NAND_ACC_CONTROL_ECC_SHIFT 16 +#define NAND_ACC_CONTROL_ECC_EXT_SHIFT 13 + +static inline u32 brcmnand_ecc_level_mask(struct brcmnand_controller *ctrl) +{ + u32 mask = (ctrl->nand_version >= 0x0600) ? 0x1f : 0x0f; + + mask <<= NAND_ACC_CONTROL_ECC_SHIFT; + + /* v7.2 includes additional ECC levels */ + if (ctrl->nand_version >= 0x0702) + mask |= 0x7 << NAND_ACC_CONTROL_ECC_EXT_SHIFT; + + return mask; +} + +static void brcmnand_set_ecc_enabled(struct brcmnand_host *host, int en) +{ + struct brcmnand_controller *ctrl = host->ctrl; + u16 offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_ACC_CONTROL); + u32 acc_control = nand_readreg(ctrl, offs); + u32 ecc_flags = ACC_CONTROL_WR_ECC | ACC_CONTROL_RD_ECC; + + if (en) { + acc_control |= ecc_flags; /* enable RD/WR ECC */ + acc_control |= host->hwcfg.ecc_level + << NAND_ACC_CONTROL_ECC_SHIFT; + } else { + acc_control &= ~ecc_flags; /* disable RD/WR ECC */ + acc_control &= ~brcmnand_ecc_level_mask(ctrl); + } + + nand_writereg(ctrl, offs, acc_control); +} + +static inline int brcmnand_sector_1k_shift(struct brcmnand_controller *ctrl) +{ + if (ctrl->nand_version >= 0x0702) + return 9; + else if (ctrl->nand_version >= 0x0600) + return 7; + else if (ctrl->nand_version >= 0x0500) + return 6; + else + return -1; +} + +static int brcmnand_get_sector_size_1k(struct brcmnand_host *host) +{ + struct brcmnand_controller *ctrl = host->ctrl; + int shift = brcmnand_sector_1k_shift(ctrl); + u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs, + BRCMNAND_CS_ACC_CONTROL); + + if (shift < 0) + return 0; + + return (nand_readreg(ctrl, acc_control_offs) >> shift) & 0x1; +} + +static void brcmnand_set_sector_size_1k(struct brcmnand_host *host, int val) +{ + struct brcmnand_controller *ctrl = host->ctrl; + int shift = brcmnand_sector_1k_shift(ctrl); + u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs, + BRCMNAND_CS_ACC_CONTROL); + u32 tmp; + + if (shift < 0) + return; + + tmp = nand_readreg(ctrl, acc_control_offs); + tmp &= ~(1 << shift); + tmp |= (!!val) << shift; + nand_writereg(ctrl, acc_control_offs, tmp); +} + +/*********************************************************************** + * CS_NAND_SELECT + ***********************************************************************/ + +enum { + CS_SELECT_NAND_WP = BIT(29), + CS_SELECT_AUTO_DEVICE_ID_CFG = BIT(30), +}; + +static int bcmnand_ctrl_poll_status(struct brcmnand_controller *ctrl, + u32 mask, u32 expected_val, + unsigned long timeout_ms) +{ + unsigned long limit; + u32 val; + + if (!timeout_ms) + timeout_ms = NAND_POLL_STATUS_TIMEOUT_MS; + + limit = jiffies + msecs_to_jiffies(timeout_ms); + do { + val = brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS); + if ((val & mask) == expected_val) + return 0; + + cpu_relax(); + } while (time_after(limit, jiffies)); + + dev_warn(ctrl->dev, "timeout on status poll (expected %x got %x)\n", + expected_val, val & mask); + + return -ETIMEDOUT; +} + +static inline void brcmnand_set_wp(struct brcmnand_controller *ctrl, bool en) +{ + u32 val = en ? CS_SELECT_NAND_WP : 0; + + brcmnand_rmw_reg(ctrl, BRCMNAND_CS_SELECT, CS_SELECT_NAND_WP, 0, val); +} + +/*********************************************************************** + * Flash DMA + ***********************************************************************/ + +enum flash_dma_reg { + FLASH_DMA_REVISION = 0x00, + FLASH_DMA_FIRST_DESC = 0x04, + FLASH_DMA_FIRST_DESC_EXT = 0x08, + FLASH_DMA_CTRL = 0x0c, + FLASH_DMA_MODE = 0x10, + FLASH_DMA_STATUS = 0x14, + FLASH_DMA_INTERRUPT_DESC = 0x18, + FLASH_DMA_INTERRUPT_DESC_EXT = 0x1c, + FLASH_DMA_ERROR_STATUS = 0x20, + FLASH_DMA_CURRENT_DESC = 0x24, + FLASH_DMA_CURRENT_DESC_EXT = 0x28, +}; + +static inline bool has_flash_dma(struct brcmnand_controller *ctrl) +{ + return ctrl->flash_dma_base; +} + +static inline bool flash_dma_buf_ok(const void *buf) +{ + return buf && !is_vmalloc_addr(buf) && + likely(IS_ALIGNED((uintptr_t)buf, 4)); +} + +static inline void flash_dma_writel(struct brcmnand_controller *ctrl, u8 offs, + u32 val) +{ + brcmnand_writel(val, ctrl->flash_dma_base + offs); +} + +static inline u32 flash_dma_readl(struct brcmnand_controller *ctrl, u8 offs) +{ + return brcmnand_readl(ctrl->flash_dma_base + offs); +} + +/* Low-level operation types: command, address, write, or read */ +enum brcmnand_llop_type { + LL_OP_CMD, + LL_OP_ADDR, + LL_OP_WR, + LL_OP_RD, +}; + +/*********************************************************************** + * Internal support functions + ***********************************************************************/ + +static inline bool is_hamming_ecc(struct brcmnand_controller *ctrl, + struct brcmnand_cfg *cfg) +{ + if (ctrl->nand_version <= 0x0701) + return cfg->sector_size_1k == 0 && cfg->spare_area_size == 16 && + cfg->ecc_level == 15; + else + return cfg->sector_size_1k == 0 && ((cfg->spare_area_size == 16 && + cfg->ecc_level == 15) || + (cfg->spare_area_size == 28 && cfg->ecc_level == 16)); +} + +/* + * Set mtd->ooblayout to the appropriate mtd_ooblayout_ops given + * the layout/configuration. + * Returns -ERRCODE on failure. + */ +static int brcmnand_hamming_ooblayout_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct brcmnand_host *host = nand_get_controller_data(chip); + struct brcmnand_cfg *cfg = &host->hwcfg; + int sas = cfg->spare_area_size << cfg->sector_size_1k; + int sectors = cfg->page_size / (512 << cfg->sector_size_1k); + + if (section >= sectors) + return -ERANGE; + + oobregion->offset = (section * sas) + 6; + oobregion->length = 3; + + return 0; +} + +static int brcmnand_hamming_ooblayout_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct brcmnand_host *host = nand_get_controller_data(chip); + struct brcmnand_cfg *cfg = &host->hwcfg; + int sas = cfg->spare_area_size << cfg->sector_size_1k; + int sectors = cfg->page_size / (512 << cfg->sector_size_1k); + + if (section >= sectors * 2) + return -ERANGE; + + oobregion->offset = (section / 2) * sas; + + if (section & 1) { + oobregion->offset += 9; + oobregion->length = 7; + } else { + oobregion->length = 6; + + /* First sector of each page may have BBI */ + if (!section) { + /* + * Small-page NAND use byte 6 for BBI while large-page + * NAND use byte 0. + */ + if (cfg->page_size > 512) + oobregion->offset++; + oobregion->length--; + } + } + + return 0; +} + +static const struct mtd_ooblayout_ops brcmnand_hamming_ooblayout_ops = { + .ecc = brcmnand_hamming_ooblayout_ecc, + .free = brcmnand_hamming_ooblayout_free, +}; + +static int brcmnand_bch_ooblayout_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct brcmnand_host *host = nand_get_controller_data(chip); + struct brcmnand_cfg *cfg = &host->hwcfg; + int sas = cfg->spare_area_size << cfg->sector_size_1k; + int sectors = cfg->page_size / (512 << cfg->sector_size_1k); + + if (section >= sectors) + return -ERANGE; + + oobregion->offset = (section * (sas + 1)) - chip->ecc.bytes; + oobregion->length = chip->ecc.bytes; + + return 0; +} + +static int brcmnand_bch_ooblayout_free_lp(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct brcmnand_host *host = nand_get_controller_data(chip); + struct brcmnand_cfg *cfg = &host->hwcfg; + int sas = cfg->spare_area_size << cfg->sector_size_1k; + int sectors = cfg->page_size / (512 << cfg->sector_size_1k); + + if (section >= sectors) + return -ERANGE; + + if (sas <= chip->ecc.bytes) + return 0; + + oobregion->offset = section * sas; + oobregion->length = sas - chip->ecc.bytes; + + if (!section) { + oobregion->offset++; + oobregion->length--; + } + + return 0; +} + +static int brcmnand_bch_ooblayout_free_sp(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct brcmnand_host *host = nand_get_controller_data(chip); + struct brcmnand_cfg *cfg = &host->hwcfg; + int sas = cfg->spare_area_size << cfg->sector_size_1k; + + if (section > 1 || sas - chip->ecc.bytes < 6 || + (section && sas - chip->ecc.bytes == 6)) + return -ERANGE; + + if (!section) { + oobregion->offset = 0; + oobregion->length = 5; + } else { + oobregion->offset = 6; + oobregion->length = sas - chip->ecc.bytes - 6; + } + + return 0; +} + +static const struct mtd_ooblayout_ops brcmnand_bch_lp_ooblayout_ops = { + .ecc = brcmnand_bch_ooblayout_ecc, + .free = brcmnand_bch_ooblayout_free_lp, +}; + +static const struct mtd_ooblayout_ops brcmnand_bch_sp_ooblayout_ops = { + .ecc = brcmnand_bch_ooblayout_ecc, + .free = brcmnand_bch_ooblayout_free_sp, +}; + +static int brcmstb_choose_ecc_layout(struct brcmnand_host *host) +{ + struct brcmnand_cfg *p = &host->hwcfg; + struct mtd_info *mtd = nand_to_mtd(&host->chip); + struct nand_ecc_ctrl *ecc = &host->chip.ecc; + unsigned int ecc_level = p->ecc_level; + int sas = p->spare_area_size << p->sector_size_1k; + int sectors = p->page_size / (512 << p->sector_size_1k); + + if (p->sector_size_1k) + ecc_level <<= 1; + + if (is_hamming_ecc(host->ctrl, p)) { + ecc->bytes = 3 * sectors; + mtd_set_ooblayout(mtd, &brcmnand_hamming_ooblayout_ops); + return 0; + } + + /* + * CONTROLLER_VERSION: + * < v5.0: ECC_REQ = ceil(BCH_T * 13/8) + * >= v5.0: ECC_REQ = ceil(BCH_T * 14/8) + * But we will just be conservative. + */ + ecc->bytes = DIV_ROUND_UP(ecc_level * 14, 8); + if (p->page_size == 512) + mtd_set_ooblayout(mtd, &brcmnand_bch_sp_ooblayout_ops); + else + mtd_set_ooblayout(mtd, &brcmnand_bch_lp_ooblayout_ops); + + if (ecc->bytes >= sas) { + dev_err(&host->pdev->dev, + "error: ECC too large for OOB (ECC bytes %d, spare sector %d)\n", + ecc->bytes, sas); + return -EINVAL; + } + + return 0; +} + +static void brcmnand_wp(struct mtd_info *mtd, int wp) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct brcmnand_host *host = nand_get_controller_data(chip); + struct brcmnand_controller *ctrl = host->ctrl; + + if ((ctrl->features & BRCMNAND_HAS_WP) && wp_on == 1) { + static int old_wp = -1; + int ret; + + if (old_wp != wp) { + dev_dbg(ctrl->dev, "WP %s\n", wp ? "on" : "off"); + old_wp = wp; + } + + /* + * make sure ctrl/flash ready before and after + * changing state of #WP pin + */ + ret = bcmnand_ctrl_poll_status(ctrl, NAND_CTRL_RDY | + NAND_STATUS_READY, + NAND_CTRL_RDY | + NAND_STATUS_READY, 0); + if (ret) + return; + + brcmnand_set_wp(ctrl, wp); + nand_status_op(chip, NULL); + /* NAND_STATUS_WP 0x00 = protected, 0x80 = not protected */ + ret = bcmnand_ctrl_poll_status(ctrl, + NAND_CTRL_RDY | + NAND_STATUS_READY | + NAND_STATUS_WP, + NAND_CTRL_RDY | + NAND_STATUS_READY | + (wp ? 0 : NAND_STATUS_WP), 0); + + if (ret) + dev_err_ratelimited(&host->pdev->dev, + "nand #WP expected %s\n", + wp ? "on" : "off"); + } +} + +/* Helper functions for reading and writing OOB registers */ +static inline u8 oob_reg_read(struct brcmnand_controller *ctrl, u32 offs) +{ + u16 offset0, offset10, reg_offs; + + offset0 = ctrl->reg_offsets[BRCMNAND_OOB_READ_BASE]; + offset10 = ctrl->reg_offsets[BRCMNAND_OOB_READ_10_BASE]; + + if (offs >= ctrl->max_oob) + return 0x77; + + if (offs >= 16 && offset10) + reg_offs = offset10 + ((offs - 0x10) & ~0x03); + else + reg_offs = offset0 + (offs & ~0x03); + + return nand_readreg(ctrl, reg_offs) >> (24 - ((offs & 0x03) << 3)); +} + +static inline void oob_reg_write(struct brcmnand_controller *ctrl, u32 offs, + u32 data) +{ + u16 offset0, offset10, reg_offs; + + offset0 = ctrl->reg_offsets[BRCMNAND_OOB_WRITE_BASE]; + offset10 = ctrl->reg_offsets[BRCMNAND_OOB_WRITE_10_BASE]; + + if (offs >= ctrl->max_oob) + return; + + if (offs >= 16 && offset10) + reg_offs = offset10 + ((offs - 0x10) & ~0x03); + else + reg_offs = offset0 + (offs & ~0x03); + + nand_writereg(ctrl, reg_offs, data); +} + +/* + * read_oob_from_regs - read data from OOB registers + * @ctrl: NAND controller + * @i: sub-page sector index + * @oob: buffer to read to + * @sas: spare area sector size (i.e., OOB size per FLASH_CACHE) + * @sector_1k: 1 for 1KiB sectors, 0 for 512B, other values are illegal + */ +static int read_oob_from_regs(struct brcmnand_controller *ctrl, int i, u8 *oob, + int sas, int sector_1k) +{ + int tbytes = sas << sector_1k; + int j; + + /* Adjust OOB values for 1K sector size */ + if (sector_1k && (i & 0x01)) + tbytes = max(0, tbytes - (int)ctrl->max_oob); + tbytes = min_t(int, tbytes, ctrl->max_oob); + + for (j = 0; j < tbytes; j++) + oob[j] = oob_reg_read(ctrl, j); + return tbytes; +} + +/* + * write_oob_to_regs - write data to OOB registers + * @i: sub-page sector index + * @oob: buffer to write from + * @sas: spare area sector size (i.e., OOB size per FLASH_CACHE) + * @sector_1k: 1 for 1KiB sectors, 0 for 512B, other values are illegal + */ +static int write_oob_to_regs(struct brcmnand_controller *ctrl, int i, + const u8 *oob, int sas, int sector_1k) +{ + int tbytes = sas << sector_1k; + int j; + + /* Adjust OOB values for 1K sector size */ + if (sector_1k && (i & 0x01)) + tbytes = max(0, tbytes - (int)ctrl->max_oob); + tbytes = min_t(int, tbytes, ctrl->max_oob); + + for (j = 0; j < tbytes; j += 4) + oob_reg_write(ctrl, j, + (oob[j + 0] << 24) | + (oob[j + 1] << 16) | + (oob[j + 2] << 8) | + (oob[j + 3] << 0)); + return tbytes; +} + +static irqreturn_t brcmnand_ctlrdy_irq(int irq, void *data) +{ + struct brcmnand_controller *ctrl = data; + + /* Discard all NAND_CTLRDY interrupts during DMA */ + if (ctrl->dma_pending) + return IRQ_HANDLED; + + complete(&ctrl->done); + return IRQ_HANDLED; +} + +/* Handle SoC-specific interrupt hardware */ +static irqreturn_t brcmnand_irq(int irq, void *data) +{ + struct brcmnand_controller *ctrl = data; + + if (ctrl->soc->ctlrdy_ack(ctrl->soc)) + return brcmnand_ctlrdy_irq(irq, data); + + return IRQ_NONE; +} + +static irqreturn_t brcmnand_dma_irq(int irq, void *data) +{ + struct brcmnand_controller *ctrl = data; + + complete(&ctrl->dma_done); + + return IRQ_HANDLED; +} + +static void brcmnand_send_cmd(struct brcmnand_host *host, int cmd) +{ + struct brcmnand_controller *ctrl = host->ctrl; + int ret; + + dev_dbg(ctrl->dev, "send native cmd %d addr_lo 0x%x\n", cmd, + brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS)); + BUG_ON(ctrl->cmd_pending != 0); + ctrl->cmd_pending = cmd; + + ret = bcmnand_ctrl_poll_status(ctrl, NAND_CTRL_RDY, NAND_CTRL_RDY, 0); + WARN_ON(ret); + + mb(); /* flush previous writes */ + brcmnand_write_reg(ctrl, BRCMNAND_CMD_START, + cmd << brcmnand_cmd_shift(ctrl)); +} + +/*********************************************************************** + * NAND MTD API: read/program/erase + ***********************************************************************/ + +static void brcmnand_cmd_ctrl(struct mtd_info *mtd, int dat, + unsigned int ctrl) +{ + /* intentionally left blank */ +} + +static int brcmnand_waitfunc(struct mtd_info *mtd, struct nand_chip *this) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct brcmnand_host *host = nand_get_controller_data(chip); + struct brcmnand_controller *ctrl = host->ctrl; + unsigned long timeo = msecs_to_jiffies(100); + + dev_dbg(ctrl->dev, "wait on native cmd %d\n", ctrl->cmd_pending); + if (ctrl->cmd_pending && + wait_for_completion_timeout(&ctrl->done, timeo) <= 0) { + u32 cmd = brcmnand_read_reg(ctrl, BRCMNAND_CMD_START) + >> brcmnand_cmd_shift(ctrl); + + dev_err_ratelimited(ctrl->dev, + "timeout waiting for command %#02x\n", cmd); + dev_err_ratelimited(ctrl->dev, "intfc status %08x\n", + brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS)); + } + ctrl->cmd_pending = 0; + return brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS) & + INTFC_FLASH_STATUS; +} + +enum { + LLOP_RE = BIT(16), + LLOP_WE = BIT(17), + LLOP_ALE = BIT(18), + LLOP_CLE = BIT(19), + LLOP_RETURN_IDLE = BIT(31), + + LLOP_DATA_MASK = GENMASK(15, 0), +}; + +static int brcmnand_low_level_op(struct brcmnand_host *host, + enum brcmnand_llop_type type, u32 data, + bool last_op) +{ + struct mtd_info *mtd = nand_to_mtd(&host->chip); + struct nand_chip *chip = &host->chip; + struct brcmnand_controller *ctrl = host->ctrl; + u32 tmp; + + tmp = data & LLOP_DATA_MASK; + switch (type) { + case LL_OP_CMD: + tmp |= LLOP_WE | LLOP_CLE; + break; + case LL_OP_ADDR: + /* WE | ALE */ + tmp |= LLOP_WE | LLOP_ALE; + break; + case LL_OP_WR: + /* WE */ + tmp |= LLOP_WE; + break; + case LL_OP_RD: + /* RE */ + tmp |= LLOP_RE; + break; + } + if (last_op) + /* RETURN_IDLE */ + tmp |= LLOP_RETURN_IDLE; + + dev_dbg(ctrl->dev, "ll_op cmd %#x\n", tmp); + + brcmnand_write_reg(ctrl, BRCMNAND_LL_OP, tmp); + (void)brcmnand_read_reg(ctrl, BRCMNAND_LL_OP); + + brcmnand_send_cmd(host, CMD_LOW_LEVEL_OP); + return brcmnand_waitfunc(mtd, chip); +} + +static void brcmnand_cmdfunc(struct mtd_info *mtd, unsigned command, + int column, int page_addr) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct brcmnand_host *host = nand_get_controller_data(chip); + struct brcmnand_controller *ctrl = host->ctrl; + u64 addr = (u64)page_addr << chip->page_shift; + int native_cmd = 0; + + if (command == NAND_CMD_READID || command == NAND_CMD_PARAM || + command == NAND_CMD_RNDOUT) + addr = (u64)column; + /* Avoid propagating a negative, don't-care address */ + else if (page_addr < 0) + addr = 0; + + dev_dbg(ctrl->dev, "cmd 0x%x addr 0x%llx\n", command, + (unsigned long long)addr); + + host->last_cmd = command; + host->last_byte = 0; + host->last_addr = addr; + + switch (command) { + case NAND_CMD_RESET: + native_cmd = CMD_FLASH_RESET; + break; + case NAND_CMD_STATUS: + native_cmd = CMD_STATUS_READ; + break; + case NAND_CMD_READID: + native_cmd = CMD_DEVICE_ID_READ; + break; + case NAND_CMD_READOOB: + native_cmd = CMD_SPARE_AREA_READ; + break; + case NAND_CMD_ERASE1: + native_cmd = CMD_BLOCK_ERASE; + brcmnand_wp(mtd, 0); + break; + case NAND_CMD_PARAM: + native_cmd = CMD_PARAMETER_READ; + break; + case NAND_CMD_SET_FEATURES: + case NAND_CMD_GET_FEATURES: + brcmnand_low_level_op(host, LL_OP_CMD, command, false); + brcmnand_low_level_op(host, LL_OP_ADDR, column, false); + break; + case NAND_CMD_RNDOUT: + native_cmd = CMD_PARAMETER_CHANGE_COL; + addr &= ~((u64)(FC_BYTES - 1)); + /* + * HW quirk: PARAMETER_CHANGE_COL requires SECTOR_SIZE_1K=0 + * NB: hwcfg.sector_size_1k may not be initialized yet + */ + if (brcmnand_get_sector_size_1k(host)) { + host->hwcfg.sector_size_1k = + brcmnand_get_sector_size_1k(host); + brcmnand_set_sector_size_1k(host, 0); + } + break; + } + + if (!native_cmd) + return; + + brcmnand_write_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS, + (host->cs << 16) | ((addr >> 32) & 0xffff)); + (void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS); + brcmnand_write_reg(ctrl, BRCMNAND_CMD_ADDRESS, lower_32_bits(addr)); + (void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS); + + brcmnand_send_cmd(host, native_cmd); + brcmnand_waitfunc(mtd, chip); + + if (native_cmd == CMD_PARAMETER_READ || + native_cmd == CMD_PARAMETER_CHANGE_COL) { + /* Copy flash cache word-wise */ + u32 *flash_cache = (u32 *)ctrl->flash_cache; + int i; + + brcmnand_soc_data_bus_prepare(ctrl->soc, true); + + /* + * Must cache the FLASH_CACHE now, since changes in + * SECTOR_SIZE_1K may invalidate it + */ + for (i = 0; i < FC_WORDS; i++) + /* + * Flash cache is big endian for parameter pages, at + * least on STB SoCs + */ + flash_cache[i] = be32_to_cpu(brcmnand_read_fc(ctrl, i)); + + brcmnand_soc_data_bus_unprepare(ctrl->soc, true); + + /* Cleanup from HW quirk: restore SECTOR_SIZE_1K */ + if (host->hwcfg.sector_size_1k) + brcmnand_set_sector_size_1k(host, + host->hwcfg.sector_size_1k); + } + + /* Re-enable protection is necessary only after erase */ + if (command == NAND_CMD_ERASE1) + brcmnand_wp(mtd, 1); +} + +static uint8_t brcmnand_read_byte(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct brcmnand_host *host = nand_get_controller_data(chip); + struct brcmnand_controller *ctrl = host->ctrl; + uint8_t ret = 0; + int addr, offs; + + switch (host->last_cmd) { + case NAND_CMD_READID: + if (host->last_byte < 4) + ret = brcmnand_read_reg(ctrl, BRCMNAND_ID) >> + (24 - (host->last_byte << 3)); + else if (host->last_byte < 8) + ret = brcmnand_read_reg(ctrl, BRCMNAND_ID_EXT) >> + (56 - (host->last_byte << 3)); + break; + + case NAND_CMD_READOOB: + ret = oob_reg_read(ctrl, host->last_byte); + break; + + case NAND_CMD_STATUS: + ret = brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS) & + INTFC_FLASH_STATUS; + if (wp_on) /* hide WP status */ + ret |= NAND_STATUS_WP; + break; + + case NAND_CMD_PARAM: + case NAND_CMD_RNDOUT: + addr = host->last_addr + host->last_byte; + offs = addr & (FC_BYTES - 1); + + /* At FC_BYTES boundary, switch to next column */ + if (host->last_byte > 0 && offs == 0) + nand_change_read_column_op(chip, addr, NULL, 0, false); + + ret = ctrl->flash_cache[offs]; + break; + case NAND_CMD_GET_FEATURES: + if (host->last_byte >= ONFI_SUBFEATURE_PARAM_LEN) { + ret = 0; + } else { + bool last = host->last_byte == + ONFI_SUBFEATURE_PARAM_LEN - 1; + brcmnand_low_level_op(host, LL_OP_RD, 0, last); + ret = brcmnand_read_reg(ctrl, BRCMNAND_LL_RDATA) & 0xff; + } + } + + dev_dbg(ctrl->dev, "read byte = 0x%02x\n", ret); + host->last_byte++; + + return ret; +} + +static void brcmnand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) +{ + int i; + + for (i = 0; i < len; i++, buf++) + *buf = brcmnand_read_byte(mtd); +} + +static void brcmnand_write_buf(struct mtd_info *mtd, const uint8_t *buf, + int len) +{ + int i; + struct nand_chip *chip = mtd_to_nand(mtd); + struct brcmnand_host *host = nand_get_controller_data(chip); + + switch (host->last_cmd) { + case NAND_CMD_SET_FEATURES: + for (i = 0; i < len; i++) + brcmnand_low_level_op(host, LL_OP_WR, buf[i], + (i + 1) == len); + break; + default: + BUG(); + break; + } +} + +/** + * Construct a FLASH_DMA descriptor as part of a linked list. You must know the + * following ahead of time: + * - Is this descriptor the beginning or end of a linked list? + * - What is the (DMA) address of the next descriptor in the linked list? + */ +static int brcmnand_fill_dma_desc(struct brcmnand_host *host, + struct brcm_nand_dma_desc *desc, u64 addr, + dma_addr_t buf, u32 len, u8 dma_cmd, + bool begin, bool end, + dma_addr_t next_desc) +{ + memset(desc, 0, sizeof(*desc)); + /* Descriptors are written in native byte order (wordwise) */ + desc->next_desc = lower_32_bits(next_desc); + desc->next_desc_ext = upper_32_bits(next_desc); + desc->cmd_irq = (dma_cmd << 24) | + (end ? (0x03 << 8) : 0) | /* IRQ | STOP */ + (!!begin) | ((!!end) << 1); /* head, tail */ +#ifdef CONFIG_CPU_BIG_ENDIAN + desc->cmd_irq |= 0x01 << 12; +#endif + desc->dram_addr = lower_32_bits(buf); + desc->dram_addr_ext = upper_32_bits(buf); + desc->tfr_len = len; + desc->total_len = len; + desc->flash_addr = lower_32_bits(addr); + desc->flash_addr_ext = upper_32_bits(addr); + desc->cs = host->cs; + desc->status_valid = 0x01; + return 0; +} + +/** + * Kick the FLASH_DMA engine, with a given DMA descriptor + */ +static void brcmnand_dma_run(struct brcmnand_host *host, dma_addr_t desc) +{ + struct brcmnand_controller *ctrl = host->ctrl; + unsigned long timeo = msecs_to_jiffies(100); + + flash_dma_writel(ctrl, FLASH_DMA_FIRST_DESC, lower_32_bits(desc)); + (void)flash_dma_readl(ctrl, FLASH_DMA_FIRST_DESC); + flash_dma_writel(ctrl, FLASH_DMA_FIRST_DESC_EXT, upper_32_bits(desc)); + (void)flash_dma_readl(ctrl, FLASH_DMA_FIRST_DESC_EXT); + + /* Start FLASH_DMA engine */ + ctrl->dma_pending = true; + mb(); /* flush previous writes */ + flash_dma_writel(ctrl, FLASH_DMA_CTRL, 0x03); /* wake | run */ + + if (wait_for_completion_timeout(&ctrl->dma_done, timeo) <= 0) { + dev_err(ctrl->dev, + "timeout waiting for DMA; status %#x, error status %#x\n", + flash_dma_readl(ctrl, FLASH_DMA_STATUS), + flash_dma_readl(ctrl, FLASH_DMA_ERROR_STATUS)); + } + ctrl->dma_pending = false; + flash_dma_writel(ctrl, FLASH_DMA_CTRL, 0); /* force stop */ +} + +static int brcmnand_dma_trans(struct brcmnand_host *host, u64 addr, u32 *buf, + u32 len, u8 dma_cmd) +{ + struct brcmnand_controller *ctrl = host->ctrl; + dma_addr_t buf_pa; + int dir = dma_cmd == CMD_PAGE_READ ? DMA_FROM_DEVICE : DMA_TO_DEVICE; + + buf_pa = dma_map_single(ctrl->dev, buf, len, dir); + if (dma_mapping_error(ctrl->dev, buf_pa)) { + dev_err(ctrl->dev, "unable to map buffer for DMA\n"); + return -ENOMEM; + } + + brcmnand_fill_dma_desc(host, ctrl->dma_desc, addr, buf_pa, len, + dma_cmd, true, true, 0); + + brcmnand_dma_run(host, ctrl->dma_pa); + + dma_unmap_single(ctrl->dev, buf_pa, len, dir); + + if (ctrl->dma_desc->status_valid & FLASH_DMA_ECC_ERROR) + return -EBADMSG; + else if (ctrl->dma_desc->status_valid & FLASH_DMA_CORR_ERROR) + return -EUCLEAN; + + return 0; +} + +/* + * Assumes proper CS is already set + */ +static int brcmnand_read_by_pio(struct mtd_info *mtd, struct nand_chip *chip, + u64 addr, unsigned int trans, u32 *buf, + u8 *oob, u64 *err_addr) +{ + struct brcmnand_host *host = nand_get_controller_data(chip); + struct brcmnand_controller *ctrl = host->ctrl; + int i, j, ret = 0; + + /* Clear error addresses */ + brcmnand_write_reg(ctrl, BRCMNAND_UNCORR_ADDR, 0); + brcmnand_write_reg(ctrl, BRCMNAND_CORR_ADDR, 0); + brcmnand_write_reg(ctrl, BRCMNAND_UNCORR_EXT_ADDR, 0); + brcmnand_write_reg(ctrl, BRCMNAND_CORR_EXT_ADDR, 0); + + brcmnand_write_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS, + (host->cs << 16) | ((addr >> 32) & 0xffff)); + (void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS); + + for (i = 0; i < trans; i++, addr += FC_BYTES) { + brcmnand_write_reg(ctrl, BRCMNAND_CMD_ADDRESS, + lower_32_bits(addr)); + (void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS); + /* SPARE_AREA_READ does not use ECC, so just use PAGE_READ */ + brcmnand_send_cmd(host, CMD_PAGE_READ); + brcmnand_waitfunc(mtd, chip); + + if (likely(buf)) { + brcmnand_soc_data_bus_prepare(ctrl->soc, false); + + for (j = 0; j < FC_WORDS; j++, buf++) + *buf = brcmnand_read_fc(ctrl, j); + + brcmnand_soc_data_bus_unprepare(ctrl->soc, false); + } + + if (oob) + oob += read_oob_from_regs(ctrl, i, oob, + mtd->oobsize / trans, + host->hwcfg.sector_size_1k); + + if (!ret) { + *err_addr = brcmnand_read_reg(ctrl, + BRCMNAND_UNCORR_ADDR) | + ((u64)(brcmnand_read_reg(ctrl, + BRCMNAND_UNCORR_EXT_ADDR) + & 0xffff) << 32); + if (*err_addr) + ret = -EBADMSG; + } + + if (!ret) { + *err_addr = brcmnand_read_reg(ctrl, + BRCMNAND_CORR_ADDR) | + ((u64)(brcmnand_read_reg(ctrl, + BRCMNAND_CORR_EXT_ADDR) + & 0xffff) << 32); + if (*err_addr) + ret = -EUCLEAN; + } + } + + return ret; +} + +/* + * Check a page to see if it is erased (w/ bitflips) after an uncorrectable ECC + * error + * + * Because the HW ECC signals an ECC error if an erase paged has even a single + * bitflip, we must check each ECC error to see if it is actually an erased + * page with bitflips, not a truly corrupted page. + * + * On a real error, return a negative error code (-EBADMSG for ECC error), and + * buf will contain raw data. + * Otherwise, buf gets filled with 0xffs and return the maximum number of + * bitflips-per-ECC-sector to the caller. + * + */ +static int brcmstb_nand_verify_erased_page(struct mtd_info *mtd, + struct nand_chip *chip, void *buf, u64 addr) +{ + int i, sas; + void *oob = chip->oob_poi; + int bitflips = 0; + int page = addr >> chip->page_shift; + int ret; + + if (!buf) { + buf = chip->data_buf; + /* Invalidate page cache */ + chip->pagebuf = -1; + } + + sas = mtd->oobsize / chip->ecc.steps; + + /* read without ecc for verification */ + ret = chip->ecc.read_page_raw(mtd, chip, buf, true, page); + if (ret) + return ret; + + for (i = 0; i < chip->ecc.steps; i++, oob += sas) { + ret = nand_check_erased_ecc_chunk(buf, chip->ecc.size, + oob, sas, NULL, 0, + chip->ecc.strength); + if (ret < 0) + return ret; + + bitflips = max(bitflips, ret); + } + + return bitflips; +} + +static int brcmnand_read(struct mtd_info *mtd, struct nand_chip *chip, + u64 addr, unsigned int trans, u32 *buf, u8 *oob) +{ + struct brcmnand_host *host = nand_get_controller_data(chip); + struct brcmnand_controller *ctrl = host->ctrl; + u64 err_addr = 0; + int err; + bool retry = true; + + dev_dbg(ctrl->dev, "read %llx -> %p\n", (unsigned long long)addr, buf); + +try_dmaread: + brcmnand_write_reg(ctrl, BRCMNAND_UNCORR_COUNT, 0); + + if (has_flash_dma(ctrl) && !oob && flash_dma_buf_ok(buf)) { + err = brcmnand_dma_trans(host, addr, buf, trans * FC_BYTES, + CMD_PAGE_READ); + if (err) { + if (mtd_is_bitflip_or_eccerr(err)) + err_addr = addr; + else + return -EIO; + } + } else { + if (oob) + memset(oob, 0x99, mtd->oobsize); + + err = brcmnand_read_by_pio(mtd, chip, addr, trans, buf, + oob, &err_addr); + } + + if (mtd_is_eccerr(err)) { + /* + * On controller version and 7.0, 7.1 , DMA read after a + * prior PIO read that reported uncorrectable error, + * the DMA engine captures this error following DMA read + * cleared only on subsequent DMA read, so just retry once + * to clear a possible false error reported for current DMA + * read + */ + if ((ctrl->nand_version == 0x0700) || + (ctrl->nand_version == 0x0701)) { + if (retry) { + retry = false; + goto try_dmaread; + } + } + + /* + * Controller version 7.2 has hw encoder to detect erased page + * bitflips, apply sw verification for older controllers only + */ + if (ctrl->nand_version < 0x0702) { + err = brcmstb_nand_verify_erased_page(mtd, chip, buf, + addr); + /* erased page bitflips corrected */ + if (err >= 0) + return err; + } + + dev_dbg(ctrl->dev, "uncorrectable error at 0x%llx\n", + (unsigned long long)err_addr); + mtd->ecc_stats.failed++; + /* NAND layer expects zero on ECC errors */ + return 0; + } + + if (mtd_is_bitflip(err)) { + unsigned int corrected = brcmnand_count_corrected(ctrl); + + dev_dbg(ctrl->dev, "corrected error at 0x%llx\n", + (unsigned long long)err_addr); + mtd->ecc_stats.corrected += corrected; + /* Always exceed the software-imposed threshold */ + return max(mtd->bitflip_threshold, corrected); + } + + return 0; +} + +static int brcmnand_read_page(struct mtd_info *mtd, struct nand_chip *chip, + uint8_t *buf, int oob_required, int page) +{ + struct brcmnand_host *host = nand_get_controller_data(chip); + u8 *oob = oob_required ? (u8 *)chip->oob_poi : NULL; + + nand_read_page_op(chip, page, 0, NULL, 0); + + return brcmnand_read(mtd, chip, host->last_addr, + mtd->writesize >> FC_SHIFT, (u32 *)buf, oob); +} + +static int brcmnand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip, + uint8_t *buf, int oob_required, int page) +{ + struct brcmnand_host *host = nand_get_controller_data(chip); + u8 *oob = oob_required ? (u8 *)chip->oob_poi : NULL; + int ret; + + nand_read_page_op(chip, page, 0, NULL, 0); + + brcmnand_set_ecc_enabled(host, 0); + ret = brcmnand_read(mtd, chip, host->last_addr, + mtd->writesize >> FC_SHIFT, (u32 *)buf, oob); + brcmnand_set_ecc_enabled(host, 1); + return ret; +} + +static int brcmnand_read_oob(struct mtd_info *mtd, struct nand_chip *chip, + int page) +{ + return brcmnand_read(mtd, chip, (u64)page << chip->page_shift, + mtd->writesize >> FC_SHIFT, + NULL, (u8 *)chip->oob_poi); +} + +static int brcmnand_read_oob_raw(struct mtd_info *mtd, struct nand_chip *chip, + int page) +{ + struct brcmnand_host *host = nand_get_controller_data(chip); + + brcmnand_set_ecc_enabled(host, 0); + brcmnand_read(mtd, chip, (u64)page << chip->page_shift, + mtd->writesize >> FC_SHIFT, + NULL, (u8 *)chip->oob_poi); + brcmnand_set_ecc_enabled(host, 1); + return 0; +} + +static int brcmnand_write(struct mtd_info *mtd, struct nand_chip *chip, + u64 addr, const u32 *buf, u8 *oob) +{ + struct brcmnand_host *host = nand_get_controller_data(chip); + struct brcmnand_controller *ctrl = host->ctrl; + unsigned int i, j, trans = mtd->writesize >> FC_SHIFT; + int status, ret = 0; + + dev_dbg(ctrl->dev, "write %llx <- %p\n", (unsigned long long)addr, buf); + + if (unlikely((unsigned long)buf & 0x03)) { + dev_warn(ctrl->dev, "unaligned buffer: %p\n", buf); + buf = (u32 *)((unsigned long)buf & ~0x03); + } + + brcmnand_wp(mtd, 0); + + for (i = 0; i < ctrl->max_oob; i += 4) + oob_reg_write(ctrl, i, 0xffffffff); + + if (has_flash_dma(ctrl) && !oob && flash_dma_buf_ok(buf)) { + if (brcmnand_dma_trans(host, addr, (u32 *)buf, + mtd->writesize, CMD_PROGRAM_PAGE)) + ret = -EIO; + goto out; + } + + brcmnand_write_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS, + (host->cs << 16) | ((addr >> 32) & 0xffff)); + (void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS); + + for (i = 0; i < trans; i++, addr += FC_BYTES) { + /* full address MUST be set before populating FC */ + brcmnand_write_reg(ctrl, BRCMNAND_CMD_ADDRESS, + lower_32_bits(addr)); + (void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS); + + if (buf) { + brcmnand_soc_data_bus_prepare(ctrl->soc, false); + + for (j = 0; j < FC_WORDS; j++, buf++) + brcmnand_write_fc(ctrl, j, *buf); + + brcmnand_soc_data_bus_unprepare(ctrl->soc, false); + } else if (oob) { + for (j = 0; j < FC_WORDS; j++) + brcmnand_write_fc(ctrl, j, 0xffffffff); + } + + if (oob) { + oob += write_oob_to_regs(ctrl, i, oob, + mtd->oobsize / trans, + host->hwcfg.sector_size_1k); + } + + /* we cannot use SPARE_AREA_PROGRAM when PARTIAL_PAGE_EN=0 */ + brcmnand_send_cmd(host, CMD_PROGRAM_PAGE); + status = brcmnand_waitfunc(mtd, chip); + + if (status & NAND_STATUS_FAIL) { + dev_info(ctrl->dev, "program failed at %llx\n", + (unsigned long long)addr); + ret = -EIO; + goto out; + } + } +out: + brcmnand_wp(mtd, 1); + return ret; +} + +static int brcmnand_write_page(struct mtd_info *mtd, struct nand_chip *chip, + const uint8_t *buf, int oob_required, int page) +{ + struct brcmnand_host *host = nand_get_controller_data(chip); + void *oob = oob_required ? chip->oob_poi : NULL; + + nand_prog_page_begin_op(chip, page, 0, NULL, 0); + brcmnand_write(mtd, chip, host->last_addr, (const u32 *)buf, oob); + + return nand_prog_page_end_op(chip); +} + +static int brcmnand_write_page_raw(struct mtd_info *mtd, + struct nand_chip *chip, const uint8_t *buf, + int oob_required, int page) +{ + struct brcmnand_host *host = nand_get_controller_data(chip); + void *oob = oob_required ? chip->oob_poi : NULL; + + nand_prog_page_begin_op(chip, page, 0, NULL, 0); + brcmnand_set_ecc_enabled(host, 0); + brcmnand_write(mtd, chip, host->last_addr, (const u32 *)buf, oob); + brcmnand_set_ecc_enabled(host, 1); + + return nand_prog_page_end_op(chip); +} + +static int brcmnand_write_oob(struct mtd_info *mtd, struct nand_chip *chip, + int page) +{ + return brcmnand_write(mtd, chip, (u64)page << chip->page_shift, + NULL, chip->oob_poi); +} + +static int brcmnand_write_oob_raw(struct mtd_info *mtd, struct nand_chip *chip, + int page) +{ + struct brcmnand_host *host = nand_get_controller_data(chip); + int ret; + + brcmnand_set_ecc_enabled(host, 0); + ret = brcmnand_write(mtd, chip, (u64)page << chip->page_shift, NULL, + (u8 *)chip->oob_poi); + brcmnand_set_ecc_enabled(host, 1); + + return ret; +} + +/*********************************************************************** + * Per-CS setup (1 NAND device) + ***********************************************************************/ + +static int brcmnand_set_cfg(struct brcmnand_host *host, + struct brcmnand_cfg *cfg) +{ + struct brcmnand_controller *ctrl = host->ctrl; + struct nand_chip *chip = &host->chip; + u16 cfg_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_CFG); + u16 cfg_ext_offs = brcmnand_cs_offset(ctrl, host->cs, + BRCMNAND_CS_CFG_EXT); + u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs, + BRCMNAND_CS_ACC_CONTROL); + u8 block_size = 0, page_size = 0, device_size = 0; + u32 tmp; + + if (ctrl->block_sizes) { + int i, found; + + for (i = 0, found = 0; ctrl->block_sizes[i]; i++) + if (ctrl->block_sizes[i] * 1024 == cfg->block_size) { + block_size = i; + found = 1; + } + if (!found) { + dev_warn(ctrl->dev, "invalid block size %u\n", + cfg->block_size); + return -EINVAL; + } + } else { + block_size = ffs(cfg->block_size) - ffs(BRCMNAND_MIN_BLOCKSIZE); + } + + if (cfg->block_size < BRCMNAND_MIN_BLOCKSIZE || (ctrl->max_block_size && + cfg->block_size > ctrl->max_block_size)) { + dev_warn(ctrl->dev, "invalid block size %u\n", + cfg->block_size); + block_size = 0; + } + + if (ctrl->page_sizes) { + int i, found; + + for (i = 0, found = 0; ctrl->page_sizes[i]; i++) + if (ctrl->page_sizes[i] == cfg->page_size) { + page_size = i; + found = 1; + } + if (!found) { + dev_warn(ctrl->dev, "invalid page size %u\n", + cfg->page_size); + return -EINVAL; + } + } else { + page_size = ffs(cfg->page_size) - ffs(BRCMNAND_MIN_PAGESIZE); + } + + if (cfg->page_size < BRCMNAND_MIN_PAGESIZE || (ctrl->max_page_size && + cfg->page_size > ctrl->max_page_size)) { + dev_warn(ctrl->dev, "invalid page size %u\n", cfg->page_size); + return -EINVAL; + } + + if (fls64(cfg->device_size) < fls64(BRCMNAND_MIN_DEVSIZE)) { + dev_warn(ctrl->dev, "invalid device size 0x%llx\n", + (unsigned long long)cfg->device_size); + return -EINVAL; + } + device_size = fls64(cfg->device_size) - fls64(BRCMNAND_MIN_DEVSIZE); + + tmp = (cfg->blk_adr_bytes << CFG_BLK_ADR_BYTES_SHIFT) | + (cfg->col_adr_bytes << CFG_COL_ADR_BYTES_SHIFT) | + (cfg->ful_adr_bytes << CFG_FUL_ADR_BYTES_SHIFT) | + (!!(cfg->device_width == 16) << CFG_BUS_WIDTH_SHIFT) | + (device_size << CFG_DEVICE_SIZE_SHIFT); + if (cfg_offs == cfg_ext_offs) { + tmp |= (page_size << CFG_PAGE_SIZE_SHIFT) | + (block_size << CFG_BLK_SIZE_SHIFT); + nand_writereg(ctrl, cfg_offs, tmp); + } else { + nand_writereg(ctrl, cfg_offs, tmp); + tmp = (page_size << CFG_EXT_PAGE_SIZE_SHIFT) | + (block_size << CFG_EXT_BLK_SIZE_SHIFT); + nand_writereg(ctrl, cfg_ext_offs, tmp); + } + + tmp = nand_readreg(ctrl, acc_control_offs); + tmp &= ~brcmnand_ecc_level_mask(ctrl); + tmp |= cfg->ecc_level << NAND_ACC_CONTROL_ECC_SHIFT; + tmp &= ~brcmnand_spare_area_mask(ctrl); + tmp |= cfg->spare_area_size; + nand_writereg(ctrl, acc_control_offs, tmp); + + brcmnand_set_sector_size_1k(host, cfg->sector_size_1k); + + /* threshold = ceil(BCH-level * 0.75) */ + brcmnand_wr_corr_thresh(host, DIV_ROUND_UP(chip->ecc.strength * 3, 4)); + + return 0; +} + +static void brcmnand_print_cfg(struct brcmnand_host *host, + char *buf, struct brcmnand_cfg *cfg) +{ + buf += sprintf(buf, + "%lluMiB total, %uKiB blocks, %u%s pages, %uB OOB, %u-bit", + (unsigned long long)cfg->device_size >> 20, + cfg->block_size >> 10, + cfg->page_size >= 1024 ? cfg->page_size >> 10 : cfg->page_size, + cfg->page_size >= 1024 ? "KiB" : "B", + cfg->spare_area_size, cfg->device_width); + + /* Account for Hamming ECC and for BCH 512B vs 1KiB sectors */ + if (is_hamming_ecc(host->ctrl, cfg)) + sprintf(buf, ", Hamming ECC"); + else if (cfg->sector_size_1k) + sprintf(buf, ", BCH-%u (1KiB sector)", cfg->ecc_level << 1); + else + sprintf(buf, ", BCH-%u", cfg->ecc_level); +} + +/* + * Minimum number of bytes to address a page. Calculated as: + * roundup(log2(size / page-size) / 8) + * + * NB: the following does not "round up" for non-power-of-2 'size'; but this is + * OK because many other things will break if 'size' is irregular... + */ +static inline int get_blk_adr_bytes(u64 size, u32 writesize) +{ + return ALIGN(ilog2(size) - ilog2(writesize), 8) >> 3; +} + +static int brcmnand_setup_dev(struct brcmnand_host *host) +{ + struct mtd_info *mtd = nand_to_mtd(&host->chip); + struct nand_chip *chip = &host->chip; + struct brcmnand_controller *ctrl = host->ctrl; + struct brcmnand_cfg *cfg = &host->hwcfg; + char msg[128]; + u32 offs, tmp, oob_sector; + int ret; + + memset(cfg, 0, sizeof(*cfg)); + + ret = of_property_read_u32(nand_get_flash_node(chip), + "brcm,nand-oob-sector-size", + &oob_sector); + if (ret) { + /* Use detected size */ + cfg->spare_area_size = mtd->oobsize / + (mtd->writesize >> FC_SHIFT); + } else { + cfg->spare_area_size = oob_sector; + } + if (cfg->spare_area_size > ctrl->max_oob) + cfg->spare_area_size = ctrl->max_oob; + /* + * Set oobsize to be consistent with controller's spare_area_size, as + * the rest is inaccessible. + */ + mtd->oobsize = cfg->spare_area_size * (mtd->writesize >> FC_SHIFT); + + cfg->device_size = mtd->size; + cfg->block_size = mtd->erasesize; + cfg->page_size = mtd->writesize; + cfg->device_width = (chip->options & NAND_BUSWIDTH_16) ? 16 : 8; + cfg->col_adr_bytes = 2; + cfg->blk_adr_bytes = get_blk_adr_bytes(mtd->size, mtd->writesize); + + if (chip->ecc.mode != NAND_ECC_HW) { + dev_err(ctrl->dev, "only HW ECC supported; selected: %d\n", + chip->ecc.mode); + return -EINVAL; + } + + if (chip->ecc.algo == NAND_ECC_UNKNOWN) { + if (chip->ecc.strength == 1 && chip->ecc.size == 512) + /* Default to Hamming for 1-bit ECC, if unspecified */ + chip->ecc.algo = NAND_ECC_HAMMING; + else + /* Otherwise, BCH */ + chip->ecc.algo = NAND_ECC_BCH; + } + + if (chip->ecc.algo == NAND_ECC_HAMMING && (chip->ecc.strength != 1 || + chip->ecc.size != 512)) { + dev_err(ctrl->dev, "invalid Hamming params: %d bits per %d bytes\n", + chip->ecc.strength, chip->ecc.size); + return -EINVAL; + } + + switch (chip->ecc.size) { + case 512: + if (chip->ecc.algo == NAND_ECC_HAMMING) + cfg->ecc_level = 15; + else + cfg->ecc_level = chip->ecc.strength; + cfg->sector_size_1k = 0; + break; + case 1024: + if (!(ctrl->features & BRCMNAND_HAS_1K_SECTORS)) { + dev_err(ctrl->dev, "1KB sectors not supported\n"); + return -EINVAL; + } + if (chip->ecc.strength & 0x1) { + dev_err(ctrl->dev, + "odd ECC not supported with 1KB sectors\n"); + return -EINVAL; + } + + cfg->ecc_level = chip->ecc.strength >> 1; + cfg->sector_size_1k = 1; + break; + default: + dev_err(ctrl->dev, "unsupported ECC size: %d\n", + chip->ecc.size); + return -EINVAL; + } + + cfg->ful_adr_bytes = cfg->blk_adr_bytes; + if (mtd->writesize > 512) + cfg->ful_adr_bytes += cfg->col_adr_bytes; + else + cfg->ful_adr_bytes += 1; + + ret = brcmnand_set_cfg(host, cfg); + if (ret) + return ret; + + brcmnand_set_ecc_enabled(host, 1); + + brcmnand_print_cfg(host, msg, cfg); + dev_info(ctrl->dev, "detected %s\n", msg); + + /* Configure ACC_CONTROL */ + offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_ACC_CONTROL); + tmp = nand_readreg(ctrl, offs); + tmp &= ~ACC_CONTROL_PARTIAL_PAGE; + tmp &= ~ACC_CONTROL_RD_ERASED; + + /* We need to turn on Read from erased paged protected by ECC */ + if (ctrl->nand_version >= 0x0702) + tmp |= ACC_CONTROL_RD_ERASED; + tmp &= ~ACC_CONTROL_FAST_PGM_RDIN; + if (ctrl->features & BRCMNAND_HAS_PREFETCH) + tmp &= ~ACC_CONTROL_PREFETCH; + + nand_writereg(ctrl, offs, tmp); + + return 0; +} + +static int brcmnand_init_cs(struct brcmnand_host *host, struct device_node *dn) +{ + struct brcmnand_controller *ctrl = host->ctrl; + struct platform_device *pdev = host->pdev; + struct mtd_info *mtd; + struct nand_chip *chip; + int ret; + u16 cfg_offs; + + ret = of_property_read_u32(dn, "reg", &host->cs); + if (ret) { + dev_err(&pdev->dev, "can't get chip-select\n"); + return -ENXIO; + } + + mtd = nand_to_mtd(&host->chip); + chip = &host->chip; + + nand_set_flash_node(chip, dn); + nand_set_controller_data(chip, host); + mtd->name = devm_kasprintf(&pdev->dev, GFP_KERNEL, "brcmnand.%d", + host->cs); + if (!mtd->name) + return -ENOMEM; + + mtd->owner = THIS_MODULE; + mtd->dev.parent = &pdev->dev; + + chip->IO_ADDR_R = (void __iomem *)0xdeadbeef; + chip->IO_ADDR_W = (void __iomem *)0xdeadbeef; + + chip->cmd_ctrl = brcmnand_cmd_ctrl; + chip->cmdfunc = brcmnand_cmdfunc; + chip->waitfunc = brcmnand_waitfunc; + chip->read_byte = brcmnand_read_byte; + chip->read_buf = brcmnand_read_buf; + chip->write_buf = brcmnand_write_buf; + + chip->ecc.mode = NAND_ECC_HW; + chip->ecc.read_page = brcmnand_read_page; + chip->ecc.write_page = brcmnand_write_page; + chip->ecc.read_page_raw = brcmnand_read_page_raw; + chip->ecc.write_page_raw = brcmnand_write_page_raw; + chip->ecc.write_oob_raw = brcmnand_write_oob_raw; + chip->ecc.read_oob_raw = brcmnand_read_oob_raw; + chip->ecc.read_oob = brcmnand_read_oob; + chip->ecc.write_oob = brcmnand_write_oob; + + chip->controller = &ctrl->controller; + + /* + * The bootloader might have configured 16bit mode but + * NAND READID command only works in 8bit mode. We force + * 8bit mode here to ensure that NAND READID commands works. + */ + cfg_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_CFG); + nand_writereg(ctrl, cfg_offs, + nand_readreg(ctrl, cfg_offs) & ~CFG_BUS_WIDTH); + + ret = nand_scan_ident(mtd, 1, NULL); + if (ret) + return ret; + + chip->options |= NAND_NO_SUBPAGE_WRITE; + /* + * Avoid (for instance) kmap()'d buffers from JFFS2, which we can't DMA + * to/from, and have nand_base pass us a bounce buffer instead, as + * needed. + */ + chip->options |= NAND_USE_BOUNCE_BUFFER; + + if (chip->bbt_options & NAND_BBT_USE_FLASH) + chip->bbt_options |= NAND_BBT_NO_OOB; + + if (brcmnand_setup_dev(host)) + return -ENXIO; + + chip->ecc.size = host->hwcfg.sector_size_1k ? 1024 : 512; + /* only use our internal HW threshold */ + mtd->bitflip_threshold = 1; + + ret = brcmstb_choose_ecc_layout(host); + if (ret) + return ret; + + ret = nand_scan_tail(mtd); + if (ret) + return ret; + + return mtd_device_register(mtd, NULL, 0); +} + +static void brcmnand_save_restore_cs_config(struct brcmnand_host *host, + int restore) +{ + struct brcmnand_controller *ctrl = host->ctrl; + u16 cfg_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_CFG); + u16 cfg_ext_offs = brcmnand_cs_offset(ctrl, host->cs, + BRCMNAND_CS_CFG_EXT); + u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs, + BRCMNAND_CS_ACC_CONTROL); + u16 t1_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_TIMING1); + u16 t2_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_TIMING2); + + if (restore) { + nand_writereg(ctrl, cfg_offs, host->hwcfg.config); + if (cfg_offs != cfg_ext_offs) + nand_writereg(ctrl, cfg_ext_offs, + host->hwcfg.config_ext); + nand_writereg(ctrl, acc_control_offs, host->hwcfg.acc_control); + nand_writereg(ctrl, t1_offs, host->hwcfg.timing_1); + nand_writereg(ctrl, t2_offs, host->hwcfg.timing_2); + } else { + host->hwcfg.config = nand_readreg(ctrl, cfg_offs); + if (cfg_offs != cfg_ext_offs) + host->hwcfg.config_ext = + nand_readreg(ctrl, cfg_ext_offs); + host->hwcfg.acc_control = nand_readreg(ctrl, acc_control_offs); + host->hwcfg.timing_1 = nand_readreg(ctrl, t1_offs); + host->hwcfg.timing_2 = nand_readreg(ctrl, t2_offs); + } +} + +static int brcmnand_suspend(struct device *dev) +{ + struct brcmnand_controller *ctrl = dev_get_drvdata(dev); + struct brcmnand_host *host; + + list_for_each_entry(host, &ctrl->host_list, node) + brcmnand_save_restore_cs_config(host, 0); + + ctrl->nand_cs_nand_select = brcmnand_read_reg(ctrl, BRCMNAND_CS_SELECT); + ctrl->nand_cs_nand_xor = brcmnand_read_reg(ctrl, BRCMNAND_CS_XOR); + ctrl->corr_stat_threshold = + brcmnand_read_reg(ctrl, BRCMNAND_CORR_THRESHOLD); + + if (has_flash_dma(ctrl)) + ctrl->flash_dma_mode = flash_dma_readl(ctrl, FLASH_DMA_MODE); + + return 0; +} + +static int brcmnand_resume(struct device *dev) +{ + struct brcmnand_controller *ctrl = dev_get_drvdata(dev); + struct brcmnand_host *host; + + if (has_flash_dma(ctrl)) { + flash_dma_writel(ctrl, FLASH_DMA_MODE, ctrl->flash_dma_mode); + flash_dma_writel(ctrl, FLASH_DMA_ERROR_STATUS, 0); + } + + brcmnand_write_reg(ctrl, BRCMNAND_CS_SELECT, ctrl->nand_cs_nand_select); + brcmnand_write_reg(ctrl, BRCMNAND_CS_XOR, ctrl->nand_cs_nand_xor); + brcmnand_write_reg(ctrl, BRCMNAND_CORR_THRESHOLD, + ctrl->corr_stat_threshold); + if (ctrl->soc) { + /* Clear/re-enable interrupt */ + ctrl->soc->ctlrdy_ack(ctrl->soc); + ctrl->soc->ctlrdy_set_enabled(ctrl->soc, true); + } + + list_for_each_entry(host, &ctrl->host_list, node) { + struct nand_chip *chip = &host->chip; + + brcmnand_save_restore_cs_config(host, 1); + + /* Reset the chip, required by some chips after power-up */ + nand_reset_op(chip); + } + + return 0; +} + +const struct dev_pm_ops brcmnand_pm_ops = { + .suspend = brcmnand_suspend, + .resume = brcmnand_resume, +}; +EXPORT_SYMBOL_GPL(brcmnand_pm_ops); + +static const struct of_device_id brcmnand_of_match[] = { + { .compatible = "brcm,brcmnand-v4.0" }, + { .compatible = "brcm,brcmnand-v5.0" }, + { .compatible = "brcm,brcmnand-v6.0" }, + { .compatible = "brcm,brcmnand-v6.1" }, + { .compatible = "brcm,brcmnand-v6.2" }, + { .compatible = "brcm,brcmnand-v7.0" }, + { .compatible = "brcm,brcmnand-v7.1" }, + { .compatible = "brcm,brcmnand-v7.2" }, + {}, +}; +MODULE_DEVICE_TABLE(of, brcmnand_of_match); + +/*********************************************************************** + * Platform driver setup (per controller) + ***********************************************************************/ + +int brcmnand_probe(struct platform_device *pdev, struct brcmnand_soc *soc) +{ + struct device *dev = &pdev->dev; + struct device_node *dn = dev->of_node, *child; + struct brcmnand_controller *ctrl; + struct resource *res; + int ret; + + /* We only support device-tree instantiation */ + if (!dn) + return -ENODEV; + + if (!of_match_node(brcmnand_of_match, dn)) + return -ENODEV; + + ctrl = devm_kzalloc(dev, sizeof(*ctrl), GFP_KERNEL); + if (!ctrl) + return -ENOMEM; + + dev_set_drvdata(dev, ctrl); + ctrl->dev = dev; + + init_completion(&ctrl->done); + init_completion(&ctrl->dma_done); + nand_hw_control_init(&ctrl->controller); + INIT_LIST_HEAD(&ctrl->host_list); + + /* NAND register range */ + res = platform_get_resource(pdev, IORESOURCE_MEM, 0); + ctrl->nand_base = devm_ioremap_resource(dev, res); + if (IS_ERR(ctrl->nand_base)) + return PTR_ERR(ctrl->nand_base); + + /* Enable clock before using NAND registers */ + ctrl->clk = devm_clk_get(dev, "nand"); + if (!IS_ERR(ctrl->clk)) { + ret = clk_prepare_enable(ctrl->clk); + if (ret) + return ret; + } else { + ret = PTR_ERR(ctrl->clk); + if (ret == -EPROBE_DEFER) + return ret; + + ctrl->clk = NULL; + } + + /* Initialize NAND revision */ + ret = brcmnand_revision_init(ctrl); + if (ret) + goto err; + + /* + * Most chips have this cache at a fixed offset within 'nand' block. + * Some must specify this region separately. + */ + res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand-cache"); + if (res) { + ctrl->nand_fc = devm_ioremap_resource(dev, res); + if (IS_ERR(ctrl->nand_fc)) { + ret = PTR_ERR(ctrl->nand_fc); + goto err; + } + } else { + ctrl->nand_fc = ctrl->nand_base + + ctrl->reg_offsets[BRCMNAND_FC_BASE]; + } + + /* FLASH_DMA */ + res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "flash-dma"); + if (res) { + ctrl->flash_dma_base = devm_ioremap_resource(dev, res); + if (IS_ERR(ctrl->flash_dma_base)) { + ret = PTR_ERR(ctrl->flash_dma_base); + goto err; + } + + flash_dma_writel(ctrl, FLASH_DMA_MODE, 1); /* linked-list */ + flash_dma_writel(ctrl, FLASH_DMA_ERROR_STATUS, 0); + + /* Allocate descriptor(s) */ + ctrl->dma_desc = dmam_alloc_coherent(dev, + sizeof(*ctrl->dma_desc), + &ctrl->dma_pa, GFP_KERNEL); + if (!ctrl->dma_desc) { + ret = -ENOMEM; + goto err; + } + + ctrl->dma_irq = platform_get_irq(pdev, 1); + if ((int)ctrl->dma_irq < 0) { + dev_err(dev, "missing FLASH_DMA IRQ\n"); + ret = -ENODEV; + goto err; + } + + ret = devm_request_irq(dev, ctrl->dma_irq, + brcmnand_dma_irq, 0, DRV_NAME, + ctrl); + if (ret < 0) { + dev_err(dev, "can't allocate IRQ %d: error %d\n", + ctrl->dma_irq, ret); + goto err; + } + + dev_info(dev, "enabling FLASH_DMA\n"); + } + + /* Disable automatic device ID config, direct addressing */ + brcmnand_rmw_reg(ctrl, BRCMNAND_CS_SELECT, + CS_SELECT_AUTO_DEVICE_ID_CFG | 0xff, 0, 0); + /* Disable XOR addressing */ + brcmnand_rmw_reg(ctrl, BRCMNAND_CS_XOR, 0xff, 0, 0); + + if (ctrl->features & BRCMNAND_HAS_WP) { + /* Permanently disable write protection */ + if (wp_on == 2) + brcmnand_set_wp(ctrl, false); + } else { + wp_on = 0; + } + + /* IRQ */ + ctrl->irq = platform_get_irq(pdev, 0); + if ((int)ctrl->irq < 0) { + dev_err(dev, "no IRQ defined\n"); + ret = -ENODEV; + goto err; + } + + /* + * Some SoCs integrate this controller (e.g., its interrupt bits) in + * interesting ways + */ + if (soc) { + ctrl->soc = soc; + + ret = devm_request_irq(dev, ctrl->irq, brcmnand_irq, 0, + DRV_NAME, ctrl); + + /* Enable interrupt */ + ctrl->soc->ctlrdy_ack(ctrl->soc); + ctrl->soc->ctlrdy_set_enabled(ctrl->soc, true); + } else { + /* Use standard interrupt infrastructure */ + ret = devm_request_irq(dev, ctrl->irq, brcmnand_ctlrdy_irq, 0, + DRV_NAME, ctrl); + } + if (ret < 0) { + dev_err(dev, "can't allocate IRQ %d: error %d\n", + ctrl->irq, ret); + goto err; + } + + for_each_available_child_of_node(dn, child) { + if (of_device_is_compatible(child, "brcm,nandcs")) { + struct brcmnand_host *host; + + host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL); + if (!host) { + of_node_put(child); + ret = -ENOMEM; + goto err; + } + host->pdev = pdev; + host->ctrl = ctrl; + + ret = brcmnand_init_cs(host, child); + if (ret) { + devm_kfree(dev, host); + continue; /* Try all chip-selects */ + } + + list_add_tail(&host->node, &ctrl->host_list); + } + } + + /* No chip-selects could initialize properly */ + if (list_empty(&ctrl->host_list)) { + ret = -ENODEV; + goto err; + } + + return 0; + +err: + clk_disable_unprepare(ctrl->clk); + return ret; + +} +EXPORT_SYMBOL_GPL(brcmnand_probe); + +int brcmnand_remove(struct platform_device *pdev) +{ + struct brcmnand_controller *ctrl = dev_get_drvdata(&pdev->dev); + struct brcmnand_host *host; + + list_for_each_entry(host, &ctrl->host_list, node) + nand_release(nand_to_mtd(&host->chip)); + + clk_disable_unprepare(ctrl->clk); + + dev_set_drvdata(&pdev->dev, NULL); + + return 0; +} +EXPORT_SYMBOL_GPL(brcmnand_remove); + +MODULE_LICENSE("GPL v2"); +MODULE_AUTHOR("Kevin Cernekee"); +MODULE_AUTHOR("Brian Norris"); +MODULE_DESCRIPTION("NAND driver for Broadcom chips"); +MODULE_ALIAS("platform:brcmnand"); diff --git a/drivers/mtd/nand/raw/brcmnand/brcmnand.h b/drivers/mtd/nand/raw/brcmnand/brcmnand.h new file mode 100644 index 000000000000..5c44cd4aba87 --- /dev/null +++ b/drivers/mtd/nand/raw/brcmnand/brcmnand.h @@ -0,0 +1,74 @@ +/* + * Copyright © 2015 Broadcom Corporation + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + */ + +#ifndef __BRCMNAND_H__ +#define __BRCMNAND_H__ + +#include +#include + +struct platform_device; +struct dev_pm_ops; + +struct brcmnand_soc { + bool (*ctlrdy_ack)(struct brcmnand_soc *soc); + void (*ctlrdy_set_enabled)(struct brcmnand_soc *soc, bool en); + void (*prepare_data_bus)(struct brcmnand_soc *soc, bool prepare, + bool is_param); +}; + +static inline void brcmnand_soc_data_bus_prepare(struct brcmnand_soc *soc, + bool is_param) +{ + if (soc && soc->prepare_data_bus) + soc->prepare_data_bus(soc, true, is_param); +} + +static inline void brcmnand_soc_data_bus_unprepare(struct brcmnand_soc *soc, + bool is_param) +{ + if (soc && soc->prepare_data_bus) + soc->prepare_data_bus(soc, false, is_param); +} + +static inline u32 brcmnand_readl(void __iomem *addr) +{ + /* + * MIPS endianness is configured by boot strap, which also reverses all + * bus endianness (i.e., big-endian CPU + big endian bus ==> native + * endian I/O). + * + * Other architectures (e.g., ARM) either do not support big endian, or + * else leave I/O in little endian mode. + */ + if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN)) + return __raw_readl(addr); + else + return readl_relaxed(addr); +} + +static inline void brcmnand_writel(u32 val, void __iomem *addr) +{ + /* See brcmnand_readl() comments */ + if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN)) + __raw_writel(val, addr); + else + writel_relaxed(val, addr); +} + +int brcmnand_probe(struct platform_device *pdev, struct brcmnand_soc *soc); +int brcmnand_remove(struct platform_device *pdev); + +extern const struct dev_pm_ops brcmnand_pm_ops; + +#endif /* __BRCMNAND_H__ */ diff --git a/drivers/mtd/nand/raw/brcmnand/brcmstb_nand.c b/drivers/mtd/nand/raw/brcmnand/brcmstb_nand.c new file mode 100644 index 000000000000..5c271077ac87 --- /dev/null +++ b/drivers/mtd/nand/raw/brcmnand/brcmstb_nand.c @@ -0,0 +1,44 @@ +/* + * Copyright © 2015 Broadcom Corporation + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + */ + +#include +#include +#include + +#include "brcmnand.h" + +static const struct of_device_id brcmstb_nand_of_match[] = { + { .compatible = "brcm,brcmnand" }, + {}, +}; +MODULE_DEVICE_TABLE(of, brcmstb_nand_of_match); + +static int brcmstb_nand_probe(struct platform_device *pdev) +{ + return brcmnand_probe(pdev, NULL); +} + +static struct platform_driver brcmstb_nand_driver = { + .probe = brcmstb_nand_probe, + .remove = brcmnand_remove, + .driver = { + .name = "brcmstb_nand", + .pm = &brcmnand_pm_ops, + .of_match_table = brcmstb_nand_of_match, + } +}; +module_platform_driver(brcmstb_nand_driver); + +MODULE_LICENSE("GPL v2"); +MODULE_AUTHOR("Brian Norris"); +MODULE_DESCRIPTION("NAND driver for Broadcom STB chips"); diff --git a/drivers/mtd/nand/raw/brcmnand/iproc_nand.c b/drivers/mtd/nand/raw/brcmnand/iproc_nand.c new file mode 100644 index 000000000000..4c6ae113664d --- /dev/null +++ b/drivers/mtd/nand/raw/brcmnand/iproc_nand.c @@ -0,0 +1,160 @@ +/* + * Copyright © 2015 Broadcom Corporation + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + */ + +#include +#include +#include +#include +#include +#include +#include +#include + +#include "brcmnand.h" + +struct iproc_nand_soc { + struct brcmnand_soc soc; + + void __iomem *idm_base; + void __iomem *ext_base; + spinlock_t idm_lock; +}; + +#define IPROC_NAND_CTLR_READY_OFFSET 0x10 +#define IPROC_NAND_CTLR_READY BIT(0) + +#define IPROC_NAND_IO_CTRL_OFFSET 0x00 +#define IPROC_NAND_APB_LE_MODE BIT(24) +#define IPROC_NAND_INT_CTRL_READ_ENABLE BIT(6) + +static bool iproc_nand_intc_ack(struct brcmnand_soc *soc) +{ + struct iproc_nand_soc *priv = + container_of(soc, struct iproc_nand_soc, soc); + void __iomem *mmio = priv->ext_base + IPROC_NAND_CTLR_READY_OFFSET; + u32 val = brcmnand_readl(mmio); + + if (val & IPROC_NAND_CTLR_READY) { + brcmnand_writel(IPROC_NAND_CTLR_READY, mmio); + return true; + } + + return false; +} + +static void iproc_nand_intc_set(struct brcmnand_soc *soc, bool en) +{ + struct iproc_nand_soc *priv = + container_of(soc, struct iproc_nand_soc, soc); + void __iomem *mmio = priv->idm_base + IPROC_NAND_IO_CTRL_OFFSET; + u32 val; + unsigned long flags; + + spin_lock_irqsave(&priv->idm_lock, flags); + + val = brcmnand_readl(mmio); + + if (en) + val |= IPROC_NAND_INT_CTRL_READ_ENABLE; + else + val &= ~IPROC_NAND_INT_CTRL_READ_ENABLE; + + brcmnand_writel(val, mmio); + + spin_unlock_irqrestore(&priv->idm_lock, flags); +} + +static void iproc_nand_apb_access(struct brcmnand_soc *soc, bool prepare, + bool is_param) +{ + struct iproc_nand_soc *priv = + container_of(soc, struct iproc_nand_soc, soc); + void __iomem *mmio = priv->idm_base + IPROC_NAND_IO_CTRL_OFFSET; + u32 val; + unsigned long flags; + + spin_lock_irqsave(&priv->idm_lock, flags); + + val = brcmnand_readl(mmio); + + /* + * In the case of BE or when dealing with NAND data, alway configure + * the APB bus to LE mode before accessing the FIFO and back to BE mode + * after the access is done + */ + if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) || !is_param) { + if (prepare) + val |= IPROC_NAND_APB_LE_MODE; + else + val &= ~IPROC_NAND_APB_LE_MODE; + } else { /* when in LE accessing the parameter page, keep APB in BE */ + val &= ~IPROC_NAND_APB_LE_MODE; + } + + brcmnand_writel(val, mmio); + + spin_unlock_irqrestore(&priv->idm_lock, flags); +} + +static int iproc_nand_probe(struct platform_device *pdev) +{ + struct device *dev = &pdev->dev; + struct iproc_nand_soc *priv; + struct brcmnand_soc *soc; + struct resource *res; + + priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); + if (!priv) + return -ENOMEM; + soc = &priv->soc; + + spin_lock_init(&priv->idm_lock); + + res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "iproc-idm"); + priv->idm_base = devm_ioremap_resource(dev, res); + if (IS_ERR(priv->idm_base)) + return PTR_ERR(priv->idm_base); + + res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "iproc-ext"); + priv->ext_base = devm_ioremap_resource(dev, res); + if (IS_ERR(priv->ext_base)) + return PTR_ERR(priv->ext_base); + + soc->ctlrdy_ack = iproc_nand_intc_ack; + soc->ctlrdy_set_enabled = iproc_nand_intc_set; + soc->prepare_data_bus = iproc_nand_apb_access; + + return brcmnand_probe(pdev, soc); +} + +static const struct of_device_id iproc_nand_of_match[] = { + { .compatible = "brcm,nand-iproc" }, + {}, +}; +MODULE_DEVICE_TABLE(of, iproc_nand_of_match); + +static struct platform_driver iproc_nand_driver = { + .probe = iproc_nand_probe, + .remove = brcmnand_remove, + .driver = { + .name = "iproc_nand", + .pm = &brcmnand_pm_ops, + .of_match_table = iproc_nand_of_match, + } +}; +module_platform_driver(iproc_nand_driver); + +MODULE_LICENSE("GPL v2"); +MODULE_AUTHOR("Brian Norris"); +MODULE_AUTHOR("Ray Jui"); +MODULE_DESCRIPTION("NAND driver for Broadcom IPROC-based SoCs"); diff --git a/drivers/mtd/nand/raw/cafe_nand.c b/drivers/mtd/nand/raw/cafe_nand.c new file mode 100644 index 000000000000..567ff972d5fc --- /dev/null +++ b/drivers/mtd/nand/raw/cafe_nand.c @@ -0,0 +1,871 @@ +/* + * Driver for One Laptop Per Child ‘CAFÉ’ controller, aka Marvell 88ALP01 + * + * The data sheet for this device can be found at: + * http://wiki.laptop.org/go/Datasheets + * + * Copyright © 2006 Red Hat, Inc. + * Copyright © 2006 David Woodhouse + */ + +#define DEBUG + +#include +#undef DEBUG +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#define CAFE_NAND_CTRL1 0x00 +#define CAFE_NAND_CTRL2 0x04 +#define CAFE_NAND_CTRL3 0x08 +#define CAFE_NAND_STATUS 0x0c +#define CAFE_NAND_IRQ 0x10 +#define CAFE_NAND_IRQ_MASK 0x14 +#define CAFE_NAND_DATA_LEN 0x18 +#define CAFE_NAND_ADDR1 0x1c +#define CAFE_NAND_ADDR2 0x20 +#define CAFE_NAND_TIMING1 0x24 +#define CAFE_NAND_TIMING2 0x28 +#define CAFE_NAND_TIMING3 0x2c +#define CAFE_NAND_NONMEM 0x30 +#define CAFE_NAND_ECC_RESULT 0x3C +#define CAFE_NAND_DMA_CTRL 0x40 +#define CAFE_NAND_DMA_ADDR0 0x44 +#define CAFE_NAND_DMA_ADDR1 0x48 +#define CAFE_NAND_ECC_SYN01 0x50 +#define CAFE_NAND_ECC_SYN23 0x54 +#define CAFE_NAND_ECC_SYN45 0x58 +#define CAFE_NAND_ECC_SYN67 0x5c +#define CAFE_NAND_READ_DATA 0x1000 +#define CAFE_NAND_WRITE_DATA 0x2000 + +#define CAFE_GLOBAL_CTRL 0x3004 +#define CAFE_GLOBAL_IRQ 0x3008 +#define CAFE_GLOBAL_IRQ_MASK 0x300c +#define CAFE_NAND_RESET 0x3034 + +/* Missing from the datasheet: bit 19 of CTRL1 sets CE0 vs. CE1 */ +#define CTRL1_CHIPSELECT (1<<19) + +struct cafe_priv { + struct nand_chip nand; + struct pci_dev *pdev; + void __iomem *mmio; + struct rs_control *rs; + uint32_t ctl1; + uint32_t ctl2; + int datalen; + int nr_data; + int data_pos; + int page_addr; + dma_addr_t dmaaddr; + unsigned char *dmabuf; +}; + +static int usedma = 1; +module_param(usedma, int, 0644); + +static int skipbbt = 0; +module_param(skipbbt, int, 0644); + +static int debug = 0; +module_param(debug, int, 0644); + +static int regdebug = 0; +module_param(regdebug, int, 0644); + +static int checkecc = 1; +module_param(checkecc, int, 0644); + +static unsigned int numtimings; +static int timing[3]; +module_param_array(timing, int, &numtimings, 0644); + +static const char *part_probes[] = { "cmdlinepart", "RedBoot", NULL }; + +/* Hrm. Why isn't this already conditional on something in the struct device? */ +#define cafe_dev_dbg(dev, args...) do { if (debug) dev_dbg(dev, ##args); } while(0) + +/* Make it easier to switch to PIO if we need to */ +#define cafe_readl(cafe, addr) readl((cafe)->mmio + CAFE_##addr) +#define cafe_writel(cafe, datum, addr) writel(datum, (cafe)->mmio + CAFE_##addr) + +static int cafe_device_ready(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct cafe_priv *cafe = nand_get_controller_data(chip); + int result = !!(cafe_readl(cafe, NAND_STATUS) & 0x40000000); + uint32_t irqs = cafe_readl(cafe, NAND_IRQ); + + cafe_writel(cafe, irqs, NAND_IRQ); + + cafe_dev_dbg(&cafe->pdev->dev, "NAND device is%s ready, IRQ %x (%x) (%x,%x)\n", + result?"":" not", irqs, cafe_readl(cafe, NAND_IRQ), + cafe_readl(cafe, GLOBAL_IRQ), cafe_readl(cafe, GLOBAL_IRQ_MASK)); + + return result; +} + + +static void cafe_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct cafe_priv *cafe = nand_get_controller_data(chip); + + if (usedma) + memcpy(cafe->dmabuf + cafe->datalen, buf, len); + else + memcpy_toio(cafe->mmio + CAFE_NAND_WRITE_DATA + cafe->datalen, buf, len); + + cafe->datalen += len; + + cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes to write buffer. datalen 0x%x\n", + len, cafe->datalen); +} + +static void cafe_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct cafe_priv *cafe = nand_get_controller_data(chip); + + if (usedma) + memcpy(buf, cafe->dmabuf + cafe->datalen, len); + else + memcpy_fromio(buf, cafe->mmio + CAFE_NAND_READ_DATA + cafe->datalen, len); + + cafe_dev_dbg(&cafe->pdev->dev, "Copy 0x%x bytes from position 0x%x in read buffer.\n", + len, cafe->datalen); + cafe->datalen += len; +} + +static uint8_t cafe_read_byte(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct cafe_priv *cafe = nand_get_controller_data(chip); + uint8_t d; + + cafe_read_buf(mtd, &d, 1); + cafe_dev_dbg(&cafe->pdev->dev, "Read %02x\n", d); + + return d; +} + +static void cafe_nand_cmdfunc(struct mtd_info *mtd, unsigned command, + int column, int page_addr) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct cafe_priv *cafe = nand_get_controller_data(chip); + int adrbytes = 0; + uint32_t ctl1; + uint32_t doneint = 0x80000000; + + cafe_dev_dbg(&cafe->pdev->dev, "cmdfunc %02x, 0x%x, 0x%x\n", + command, column, page_addr); + + if (command == NAND_CMD_ERASE2 || command == NAND_CMD_PAGEPROG) { + /* Second half of a command we already calculated */ + cafe_writel(cafe, cafe->ctl2 | 0x100 | command, NAND_CTRL2); + ctl1 = cafe->ctl1; + cafe->ctl2 &= ~(1<<30); + cafe_dev_dbg(&cafe->pdev->dev, "Continue command, ctl1 %08x, #data %d\n", + cafe->ctl1, cafe->nr_data); + goto do_command; + } + /* Reset ECC engine */ + cafe_writel(cafe, 0, NAND_CTRL2); + + /* Emulate NAND_CMD_READOOB on large-page chips */ + if (mtd->writesize > 512 && + command == NAND_CMD_READOOB) { + column += mtd->writesize; + command = NAND_CMD_READ0; + } + + /* FIXME: Do we need to send read command before sending data + for small-page chips, to position the buffer correctly? */ + + if (column != -1) { + cafe_writel(cafe, column, NAND_ADDR1); + adrbytes = 2; + if (page_addr != -1) + goto write_adr2; + } else if (page_addr != -1) { + cafe_writel(cafe, page_addr & 0xffff, NAND_ADDR1); + page_addr >>= 16; + write_adr2: + cafe_writel(cafe, page_addr, NAND_ADDR2); + adrbytes += 2; + if (mtd->size > mtd->writesize << 16) + adrbytes++; + } + + cafe->data_pos = cafe->datalen = 0; + + /* Set command valid bit, mask in the chip select bit */ + ctl1 = 0x80000000 | command | (cafe->ctl1 & CTRL1_CHIPSELECT); + + /* Set RD or WR bits as appropriate */ + if (command == NAND_CMD_READID || command == NAND_CMD_STATUS) { + ctl1 |= (1<<26); /* rd */ + /* Always 5 bytes, for now */ + cafe->datalen = 4; + /* And one address cycle -- even for STATUS, since the controller doesn't work without */ + adrbytes = 1; + } else if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 || + command == NAND_CMD_READOOB || command == NAND_CMD_RNDOUT) { + ctl1 |= 1<<26; /* rd */ + /* For now, assume just read to end of page */ + cafe->datalen = mtd->writesize + mtd->oobsize - column; + } else if (command == NAND_CMD_SEQIN) + ctl1 |= 1<<25; /* wr */ + + /* Set number of address bytes */ + if (adrbytes) + ctl1 |= ((adrbytes-1)|8) << 27; + + if (command == NAND_CMD_SEQIN || command == NAND_CMD_ERASE1) { + /* Ignore the first command of a pair; the hardware + deals with them both at once, later */ + cafe->ctl1 = ctl1; + cafe_dev_dbg(&cafe->pdev->dev, "Setup for delayed command, ctl1 %08x, dlen %x\n", + cafe->ctl1, cafe->datalen); + return; + } + /* RNDOUT and READ0 commands need a following byte */ + if (command == NAND_CMD_RNDOUT) + cafe_writel(cafe, cafe->ctl2 | 0x100 | NAND_CMD_RNDOUTSTART, NAND_CTRL2); + else if (command == NAND_CMD_READ0 && mtd->writesize > 512) + cafe_writel(cafe, cafe->ctl2 | 0x100 | NAND_CMD_READSTART, NAND_CTRL2); + + do_command: + cafe_dev_dbg(&cafe->pdev->dev, "dlen %x, ctl1 %x, ctl2 %x\n", + cafe->datalen, ctl1, cafe_readl(cafe, NAND_CTRL2)); + + /* NB: The datasheet lies -- we really should be subtracting 1 here */ + cafe_writel(cafe, cafe->datalen, NAND_DATA_LEN); + cafe_writel(cafe, 0x90000000, NAND_IRQ); + if (usedma && (ctl1 & (3<<25))) { + uint32_t dmactl = 0xc0000000 + cafe->datalen; + /* If WR or RD bits set, set up DMA */ + if (ctl1 & (1<<26)) { + /* It's a read */ + dmactl |= (1<<29); + /* ... so it's done when the DMA is done, not just + the command. */ + doneint = 0x10000000; + } + cafe_writel(cafe, dmactl, NAND_DMA_CTRL); + } + cafe->datalen = 0; + + if (unlikely(regdebug)) { + int i; + printk("About to write command %08x to register 0\n", ctl1); + for (i=4; i< 0x5c; i+=4) + printk("Register %x: %08x\n", i, readl(cafe->mmio + i)); + } + + cafe_writel(cafe, ctl1, NAND_CTRL1); + /* Apply this short delay always to ensure that we do wait tWB in + * any case on any machine. */ + ndelay(100); + + if (1) { + int c; + uint32_t irqs; + + for (c = 500000; c != 0; c--) { + irqs = cafe_readl(cafe, NAND_IRQ); + if (irqs & doneint) + break; + udelay(1); + if (!(c % 100000)) + cafe_dev_dbg(&cafe->pdev->dev, "Wait for ready, IRQ %x\n", irqs); + cpu_relax(); + } + cafe_writel(cafe, doneint, NAND_IRQ); + cafe_dev_dbg(&cafe->pdev->dev, "Command %x completed after %d usec, irqs %x (%x)\n", + command, 500000-c, irqs, cafe_readl(cafe, NAND_IRQ)); + } + + WARN_ON(cafe->ctl2 & (1<<30)); + + switch (command) { + + case NAND_CMD_CACHEDPROG: + case NAND_CMD_PAGEPROG: + case NAND_CMD_ERASE1: + case NAND_CMD_ERASE2: + case NAND_CMD_SEQIN: + case NAND_CMD_RNDIN: + case NAND_CMD_STATUS: + case NAND_CMD_RNDOUT: + cafe_writel(cafe, cafe->ctl2, NAND_CTRL2); + return; + } + nand_wait_ready(mtd); + cafe_writel(cafe, cafe->ctl2, NAND_CTRL2); +} + +static void cafe_select_chip(struct mtd_info *mtd, int chipnr) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct cafe_priv *cafe = nand_get_controller_data(chip); + + cafe_dev_dbg(&cafe->pdev->dev, "select_chip %d\n", chipnr); + + /* Mask the appropriate bit into the stored value of ctl1 + which will be used by cafe_nand_cmdfunc() */ + if (chipnr) + cafe->ctl1 |= CTRL1_CHIPSELECT; + else + cafe->ctl1 &= ~CTRL1_CHIPSELECT; +} + +static irqreturn_t cafe_nand_interrupt(int irq, void *id) +{ + struct mtd_info *mtd = id; + struct nand_chip *chip = mtd_to_nand(mtd); + struct cafe_priv *cafe = nand_get_controller_data(chip); + uint32_t irqs = cafe_readl(cafe, NAND_IRQ); + cafe_writel(cafe, irqs & ~0x90000000, NAND_IRQ); + if (!irqs) + return IRQ_NONE; + + cafe_dev_dbg(&cafe->pdev->dev, "irq, bits %x (%x)\n", irqs, cafe_readl(cafe, NAND_IRQ)); + return IRQ_HANDLED; +} + +static void cafe_nand_bug(struct mtd_info *mtd) +{ + BUG(); +} + +static int cafe_nand_write_oob(struct mtd_info *mtd, + struct nand_chip *chip, int page) +{ + return nand_prog_page_op(chip, page, mtd->writesize, chip->oob_poi, + mtd->oobsize); +} + +/* Don't use -- use nand_read_oob_std for now */ +static int cafe_nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip, + int page) +{ + return nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize); +} +/** + * cafe_nand_read_page_syndrome - [REPLACEABLE] hardware ecc syndrome based page read + * @mtd: mtd info structure + * @chip: nand chip info structure + * @buf: buffer to store read data + * @oob_required: caller expects OOB data read to chip->oob_poi + * + * The hw generator calculates the error syndrome automatically. Therefore + * we need a special oob layout and handling. + */ +static int cafe_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip, + uint8_t *buf, int oob_required, int page) +{ + struct cafe_priv *cafe = nand_get_controller_data(chip); + unsigned int max_bitflips = 0; + + cafe_dev_dbg(&cafe->pdev->dev, "ECC result %08x SYN1,2 %08x\n", + cafe_readl(cafe, NAND_ECC_RESULT), + cafe_readl(cafe, NAND_ECC_SYN01)); + + nand_read_page_op(chip, page, 0, buf, mtd->writesize); + chip->read_buf(mtd, chip->oob_poi, mtd->oobsize); + + if (checkecc && cafe_readl(cafe, NAND_ECC_RESULT) & (1<<18)) { + unsigned short syn[8], pat[4]; + int pos[4]; + u8 *oob = chip->oob_poi; + int i, n; + + for (i=0; i<8; i+=2) { + uint32_t tmp = cafe_readl(cafe, NAND_ECC_SYN01 + (i*2)); + syn[i] = cafe->rs->index_of[tmp & 0xfff]; + syn[i+1] = cafe->rs->index_of[(tmp >> 16) & 0xfff]; + } + + n = decode_rs16(cafe->rs, NULL, NULL, 1367, syn, 0, pos, 0, + pat); + + for (i = 0; i < n; i++) { + int p = pos[i]; + + /* The 12-bit symbols are mapped to bytes here */ + + if (p > 1374) { + /* out of range */ + n = -1374; + } else if (p == 0) { + /* high four bits do not correspond to data */ + if (pat[i] > 0xff) + n = -2048; + else + buf[0] ^= pat[i]; + } else if (p == 1365) { + buf[2047] ^= pat[i] >> 4; + oob[0] ^= pat[i] << 4; + } else if (p > 1365) { + if ((p & 1) == 1) { + oob[3*p/2 - 2048] ^= pat[i] >> 4; + oob[3*p/2 - 2047] ^= pat[i] << 4; + } else { + oob[3*p/2 - 2049] ^= pat[i] >> 8; + oob[3*p/2 - 2048] ^= pat[i]; + } + } else if ((p & 1) == 1) { + buf[3*p/2] ^= pat[i] >> 4; + buf[3*p/2 + 1] ^= pat[i] << 4; + } else { + buf[3*p/2 - 1] ^= pat[i] >> 8; + buf[3*p/2] ^= pat[i]; + } + } + + if (n < 0) { + dev_dbg(&cafe->pdev->dev, "Failed to correct ECC at %08x\n", + cafe_readl(cafe, NAND_ADDR2) * 2048); + for (i = 0; i < 0x5c; i += 4) + printk("Register %x: %08x\n", i, readl(cafe->mmio + i)); + mtd->ecc_stats.failed++; + } else { + dev_dbg(&cafe->pdev->dev, "Corrected %d symbol errors\n", n); + mtd->ecc_stats.corrected += n; + max_bitflips = max_t(unsigned int, max_bitflips, n); + } + } + + return max_bitflips; +} + +static int cafe_ooblayout_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + + if (section) + return -ERANGE; + + oobregion->offset = 0; + oobregion->length = chip->ecc.total; + + return 0; +} + +static int cafe_ooblayout_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + + if (section) + return -ERANGE; + + oobregion->offset = chip->ecc.total; + oobregion->length = mtd->oobsize - chip->ecc.total; + + return 0; +} + +static const struct mtd_ooblayout_ops cafe_ooblayout_ops = { + .ecc = cafe_ooblayout_ecc, + .free = cafe_ooblayout_free, +}; + +/* Ick. The BBT code really ought to be able to work this bit out + for itself from the above, at least for the 2KiB case */ +static uint8_t cafe_bbt_pattern_2048[] = { 'B', 'b', 't', '0' }; +static uint8_t cafe_mirror_pattern_2048[] = { '1', 't', 'b', 'B' }; + +static uint8_t cafe_bbt_pattern_512[] = { 0xBB }; +static uint8_t cafe_mirror_pattern_512[] = { 0xBC }; + + +static struct nand_bbt_descr cafe_bbt_main_descr_2048 = { + .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE + | NAND_BBT_2BIT | NAND_BBT_VERSION, + .offs = 14, + .len = 4, + .veroffs = 18, + .maxblocks = 4, + .pattern = cafe_bbt_pattern_2048 +}; + +static struct nand_bbt_descr cafe_bbt_mirror_descr_2048 = { + .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE + | NAND_BBT_2BIT | NAND_BBT_VERSION, + .offs = 14, + .len = 4, + .veroffs = 18, + .maxblocks = 4, + .pattern = cafe_mirror_pattern_2048 +}; + +static struct nand_bbt_descr cafe_bbt_main_descr_512 = { + .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE + | NAND_BBT_2BIT | NAND_BBT_VERSION, + .offs = 14, + .len = 1, + .veroffs = 15, + .maxblocks = 4, + .pattern = cafe_bbt_pattern_512 +}; + +static struct nand_bbt_descr cafe_bbt_mirror_descr_512 = { + .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE + | NAND_BBT_2BIT | NAND_BBT_VERSION, + .offs = 14, + .len = 1, + .veroffs = 15, + .maxblocks = 4, + .pattern = cafe_mirror_pattern_512 +}; + + +static int cafe_nand_write_page_lowlevel(struct mtd_info *mtd, + struct nand_chip *chip, + const uint8_t *buf, int oob_required, + int page) +{ + struct cafe_priv *cafe = nand_get_controller_data(chip); + + nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize); + chip->write_buf(mtd, chip->oob_poi, mtd->oobsize); + + /* Set up ECC autogeneration */ + cafe->ctl2 |= (1<<30); + + return nand_prog_page_end_op(chip); +} + +static int cafe_nand_block_bad(struct mtd_info *mtd, loff_t ofs) +{ + return 0; +} + +/* F_2[X]/(X**6+X+1) */ +static unsigned short gf64_mul(u8 a, u8 b) +{ + u8 c; + unsigned int i; + + c = 0; + for (i = 0; i < 6; i++) { + if (a & 1) + c ^= b; + a >>= 1; + b <<= 1; + if ((b & 0x40) != 0) + b ^= 0x43; + } + + return c; +} + +/* F_64[X]/(X**2+X+A**-1) with A the generator of F_64[X] */ +static u16 gf4096_mul(u16 a, u16 b) +{ + u8 ah, al, bh, bl, ch, cl; + + ah = a >> 6; + al = a & 0x3f; + bh = b >> 6; + bl = b & 0x3f; + + ch = gf64_mul(ah ^ al, bh ^ bl) ^ gf64_mul(al, bl); + cl = gf64_mul(gf64_mul(ah, bh), 0x21) ^ gf64_mul(al, bl); + + return (ch << 6) ^ cl; +} + +static int cafe_mul(int x) +{ + if (x == 0) + return 1; + return gf4096_mul(x, 0xe01); +} + +static int cafe_nand_probe(struct pci_dev *pdev, + const struct pci_device_id *ent) +{ + struct mtd_info *mtd; + struct cafe_priv *cafe; + uint32_t ctrl; + int err = 0; + int old_dma; + + /* Very old versions shared the same PCI ident for all three + functions on the chip. Verify the class too... */ + if ((pdev->class >> 8) != PCI_CLASS_MEMORY_FLASH) + return -ENODEV; + + err = pci_enable_device(pdev); + if (err) + return err; + + pci_set_master(pdev); + + cafe = kzalloc(sizeof(*cafe), GFP_KERNEL); + if (!cafe) + return -ENOMEM; + + mtd = nand_to_mtd(&cafe->nand); + mtd->dev.parent = &pdev->dev; + nand_set_controller_data(&cafe->nand, cafe); + + cafe->pdev = pdev; + cafe->mmio = pci_iomap(pdev, 0, 0); + if (!cafe->mmio) { + dev_warn(&pdev->dev, "failed to iomap\n"); + err = -ENOMEM; + goto out_free_mtd; + } + + cafe->rs = init_rs_non_canonical(12, &cafe_mul, 0, 1, 8); + if (!cafe->rs) { + err = -ENOMEM; + goto out_ior; + } + + cafe->nand.cmdfunc = cafe_nand_cmdfunc; + cafe->nand.dev_ready = cafe_device_ready; + cafe->nand.read_byte = cafe_read_byte; + cafe->nand.read_buf = cafe_read_buf; + cafe->nand.write_buf = cafe_write_buf; + cafe->nand.select_chip = cafe_select_chip; + cafe->nand.onfi_set_features = nand_onfi_get_set_features_notsupp; + cafe->nand.onfi_get_features = nand_onfi_get_set_features_notsupp; + + cafe->nand.chip_delay = 0; + + /* Enable the following for a flash based bad block table */ + cafe->nand.bbt_options = NAND_BBT_USE_FLASH; + + if (skipbbt) { + cafe->nand.options |= NAND_SKIP_BBTSCAN; + cafe->nand.block_bad = cafe_nand_block_bad; + } + + if (numtimings && numtimings != 3) { + dev_warn(&cafe->pdev->dev, "%d timing register values ignored; precisely three are required\n", numtimings); + } + + if (numtimings == 3) { + cafe_dev_dbg(&cafe->pdev->dev, "Using provided timings (%08x %08x %08x)\n", + timing[0], timing[1], timing[2]); + } else { + timing[0] = cafe_readl(cafe, NAND_TIMING1); + timing[1] = cafe_readl(cafe, NAND_TIMING2); + timing[2] = cafe_readl(cafe, NAND_TIMING3); + + if (timing[0] | timing[1] | timing[2]) { + cafe_dev_dbg(&cafe->pdev->dev, "Timing registers already set (%08x %08x %08x)\n", + timing[0], timing[1], timing[2]); + } else { + dev_warn(&cafe->pdev->dev, "Timing registers unset; using most conservative defaults\n"); + timing[0] = timing[1] = timing[2] = 0xffffffff; + } + } + + /* Start off by resetting the NAND controller completely */ + cafe_writel(cafe, 1, NAND_RESET); + cafe_writel(cafe, 0, NAND_RESET); + + cafe_writel(cafe, timing[0], NAND_TIMING1); + cafe_writel(cafe, timing[1], NAND_TIMING2); + cafe_writel(cafe, timing[2], NAND_TIMING3); + + cafe_writel(cafe, 0xffffffff, NAND_IRQ_MASK); + err = request_irq(pdev->irq, &cafe_nand_interrupt, IRQF_SHARED, + "CAFE NAND", mtd); + if (err) { + dev_warn(&pdev->dev, "Could not register IRQ %d\n", pdev->irq); + goto out_ior; + } + + /* Disable master reset, enable NAND clock */ + ctrl = cafe_readl(cafe, GLOBAL_CTRL); + ctrl &= 0xffffeff0; + ctrl |= 0x00007000; + cafe_writel(cafe, ctrl | 0x05, GLOBAL_CTRL); + cafe_writel(cafe, ctrl | 0x0a, GLOBAL_CTRL); + cafe_writel(cafe, 0, NAND_DMA_CTRL); + + cafe_writel(cafe, 0x7006, GLOBAL_CTRL); + cafe_writel(cafe, 0x700a, GLOBAL_CTRL); + + /* Enable NAND IRQ in global IRQ mask register */ + cafe_writel(cafe, 0x80000007, GLOBAL_IRQ_MASK); + cafe_dev_dbg(&cafe->pdev->dev, "Control %x, IRQ mask %x\n", + cafe_readl(cafe, GLOBAL_CTRL), + cafe_readl(cafe, GLOBAL_IRQ_MASK)); + + /* Do not use the DMA for the nand_scan_ident() */ + old_dma = usedma; + usedma = 0; + + /* Scan to find existence of the device */ + err = nand_scan_ident(mtd, 2, NULL); + if (err) + goto out_irq; + + cafe->dmabuf = dma_alloc_coherent(&cafe->pdev->dev, 2112, + &cafe->dmaaddr, GFP_KERNEL); + if (!cafe->dmabuf) { + err = -ENOMEM; + goto out_irq; + } + + /* Set up DMA address */ + cafe_writel(cafe, lower_32_bits(cafe->dmaaddr), NAND_DMA_ADDR0); + cafe_writel(cafe, upper_32_bits(cafe->dmaaddr), NAND_DMA_ADDR1); + + cafe_dev_dbg(&cafe->pdev->dev, "Set DMA address to %x (virt %p)\n", + cafe_readl(cafe, NAND_DMA_ADDR0), cafe->dmabuf); + + /* Restore the DMA flag */ + usedma = old_dma; + + cafe->ctl2 = 1<<27; /* Reed-Solomon ECC */ + if (mtd->writesize == 2048) + cafe->ctl2 |= 1<<29; /* 2KiB page size */ + + /* Set up ECC according to the type of chip we found */ + mtd_set_ooblayout(mtd, &cafe_ooblayout_ops); + if (mtd->writesize == 2048) { + cafe->nand.bbt_td = &cafe_bbt_main_descr_2048; + cafe->nand.bbt_md = &cafe_bbt_mirror_descr_2048; + } else if (mtd->writesize == 512) { + cafe->nand.bbt_td = &cafe_bbt_main_descr_512; + cafe->nand.bbt_md = &cafe_bbt_mirror_descr_512; + } else { + printk(KERN_WARNING "Unexpected NAND flash writesize %d. Aborting\n", + mtd->writesize); + goto out_free_dma; + } + cafe->nand.ecc.mode = NAND_ECC_HW_SYNDROME; + cafe->nand.ecc.size = mtd->writesize; + cafe->nand.ecc.bytes = 14; + cafe->nand.ecc.strength = 4; + cafe->nand.ecc.hwctl = (void *)cafe_nand_bug; + cafe->nand.ecc.calculate = (void *)cafe_nand_bug; + cafe->nand.ecc.correct = (void *)cafe_nand_bug; + cafe->nand.ecc.write_page = cafe_nand_write_page_lowlevel; + cafe->nand.ecc.write_oob = cafe_nand_write_oob; + cafe->nand.ecc.read_page = cafe_nand_read_page; + cafe->nand.ecc.read_oob = cafe_nand_read_oob; + + err = nand_scan_tail(mtd); + if (err) + goto out_free_dma; + + pci_set_drvdata(pdev, mtd); + + mtd->name = "cafe_nand"; + mtd_device_parse_register(mtd, part_probes, NULL, NULL, 0); + + goto out; + + out_free_dma: + dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr); + out_irq: + /* Disable NAND IRQ in global IRQ mask register */ + cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK); + free_irq(pdev->irq, mtd); + out_ior: + pci_iounmap(pdev, cafe->mmio); + out_free_mtd: + kfree(cafe); + out: + return err; +} + +static void cafe_nand_remove(struct pci_dev *pdev) +{ + struct mtd_info *mtd = pci_get_drvdata(pdev); + struct nand_chip *chip = mtd_to_nand(mtd); + struct cafe_priv *cafe = nand_get_controller_data(chip); + + /* Disable NAND IRQ in global IRQ mask register */ + cafe_writel(cafe, ~1 & cafe_readl(cafe, GLOBAL_IRQ_MASK), GLOBAL_IRQ_MASK); + free_irq(pdev->irq, mtd); + nand_release(mtd); + free_rs(cafe->rs); + pci_iounmap(pdev, cafe->mmio); + dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr); + kfree(cafe); +} + +static const struct pci_device_id cafe_nand_tbl[] = { + { PCI_VENDOR_ID_MARVELL, PCI_DEVICE_ID_MARVELL_88ALP01_NAND, + PCI_ANY_ID, PCI_ANY_ID }, + { } +}; + +MODULE_DEVICE_TABLE(pci, cafe_nand_tbl); + +static int cafe_nand_resume(struct pci_dev *pdev) +{ + uint32_t ctrl; + struct mtd_info *mtd = pci_get_drvdata(pdev); + struct nand_chip *chip = mtd_to_nand(mtd); + struct cafe_priv *cafe = nand_get_controller_data(chip); + + /* Start off by resetting the NAND controller completely */ + cafe_writel(cafe, 1, NAND_RESET); + cafe_writel(cafe, 0, NAND_RESET); + cafe_writel(cafe, 0xffffffff, NAND_IRQ_MASK); + + /* Restore timing configuration */ + cafe_writel(cafe, timing[0], NAND_TIMING1); + cafe_writel(cafe, timing[1], NAND_TIMING2); + cafe_writel(cafe, timing[2], NAND_TIMING3); + + /* Disable master reset, enable NAND clock */ + ctrl = cafe_readl(cafe, GLOBAL_CTRL); + ctrl &= 0xffffeff0; + ctrl |= 0x00007000; + cafe_writel(cafe, ctrl | 0x05, GLOBAL_CTRL); + cafe_writel(cafe, ctrl | 0x0a, GLOBAL_CTRL); + cafe_writel(cafe, 0, NAND_DMA_CTRL); + cafe_writel(cafe, 0x7006, GLOBAL_CTRL); + cafe_writel(cafe, 0x700a, GLOBAL_CTRL); + + /* Set up DMA address */ + cafe_writel(cafe, cafe->dmaaddr & 0xffffffff, NAND_DMA_ADDR0); + if (sizeof(cafe->dmaaddr) > 4) + /* Shift in two parts to shut the compiler up */ + cafe_writel(cafe, (cafe->dmaaddr >> 16) >> 16, NAND_DMA_ADDR1); + else + cafe_writel(cafe, 0, NAND_DMA_ADDR1); + + /* Enable NAND IRQ in global IRQ mask register */ + cafe_writel(cafe, 0x80000007, GLOBAL_IRQ_MASK); + return 0; +} + +static struct pci_driver cafe_nand_pci_driver = { + .name = "CAFÉ NAND", + .id_table = cafe_nand_tbl, + .probe = cafe_nand_probe, + .remove = cafe_nand_remove, + .resume = cafe_nand_resume, +}; + +module_pci_driver(cafe_nand_pci_driver); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("David Woodhouse "); +MODULE_DESCRIPTION("NAND flash driver for OLPC CAFÉ chip"); diff --git a/drivers/mtd/nand/raw/cmx270_nand.c b/drivers/mtd/nand/raw/cmx270_nand.c new file mode 100644 index 000000000000..02d6751e9efe --- /dev/null +++ b/drivers/mtd/nand/raw/cmx270_nand.c @@ -0,0 +1,244 @@ +/* + * Copyright (C) 2006 Compulab, Ltd. + * Mike Rapoport + * + * Derived from drivers/mtd/nand/h1910.c (removed in v3.10) + * Copyright (C) 2002 Marius Gröger (mag@sysgo.de) + * Copyright (c) 2001 Thomas Gleixner (gleixner@autronix.de) + * + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + * + * Overview: + * This is a device driver for the NAND flash device found on the + * CM-X270 board. + */ + +#include +#include +#include +#include +#include + +#include +#include +#include + +#include + +#define GPIO_NAND_CS (11) +#define GPIO_NAND_RB (89) + +/* MTD structure for CM-X270 board */ +static struct mtd_info *cmx270_nand_mtd; + +/* remaped IO address of the device */ +static void __iomem *cmx270_nand_io; + +/* + * Define static partitions for flash device + */ +static const struct mtd_partition partition_info[] = { + [0] = { + .name = "cmx270-0", + .offset = 0, + .size = MTDPART_SIZ_FULL + } +}; +#define NUM_PARTITIONS (ARRAY_SIZE(partition_info)) + +static u_char cmx270_read_byte(struct mtd_info *mtd) +{ + struct nand_chip *this = mtd_to_nand(mtd); + + return (readl(this->IO_ADDR_R) >> 16); +} + +static void cmx270_write_buf(struct mtd_info *mtd, const u_char *buf, int len) +{ + int i; + struct nand_chip *this = mtd_to_nand(mtd); + + for (i=0; iIO_ADDR_W); +} + +static void cmx270_read_buf(struct mtd_info *mtd, u_char *buf, int len) +{ + int i; + struct nand_chip *this = mtd_to_nand(mtd); + + for (i=0; iIO_ADDR_R) >> 16; +} + +static inline void nand_cs_on(void) +{ + gpio_set_value(GPIO_NAND_CS, 0); +} + +static void nand_cs_off(void) +{ + dsb(); + + gpio_set_value(GPIO_NAND_CS, 1); +} + +/* + * hardware specific access to control-lines + */ +static void cmx270_hwcontrol(struct mtd_info *mtd, int dat, + unsigned int ctrl) +{ + struct nand_chip *this = mtd_to_nand(mtd); + unsigned int nandaddr = (unsigned int)this->IO_ADDR_W; + + dsb(); + + if (ctrl & NAND_CTRL_CHANGE) { + if ( ctrl & NAND_ALE ) + nandaddr |= (1 << 3); + else + nandaddr &= ~(1 << 3); + if ( ctrl & NAND_CLE ) + nandaddr |= (1 << 2); + else + nandaddr &= ~(1 << 2); + if ( ctrl & NAND_NCE ) + nand_cs_on(); + else + nand_cs_off(); + } + + dsb(); + this->IO_ADDR_W = (void __iomem*)nandaddr; + if (dat != NAND_CMD_NONE) + writel((dat << 16), this->IO_ADDR_W); + + dsb(); +} + +/* + * read device ready pin + */ +static int cmx270_device_ready(struct mtd_info *mtd) +{ + dsb(); + + return (gpio_get_value(GPIO_NAND_RB)); +} + +/* + * Main initialization routine + */ +static int __init cmx270_init(void) +{ + struct nand_chip *this; + int ret; + + if (!(machine_is_armcore() && cpu_is_pxa27x())) + return -ENODEV; + + ret = gpio_request(GPIO_NAND_CS, "NAND CS"); + if (ret) { + pr_warn("CM-X270: failed to request NAND CS gpio\n"); + return ret; + } + + gpio_direction_output(GPIO_NAND_CS, 1); + + ret = gpio_request(GPIO_NAND_RB, "NAND R/B"); + if (ret) { + pr_warn("CM-X270: failed to request NAND R/B gpio\n"); + goto err_gpio_request; + } + + gpio_direction_input(GPIO_NAND_RB); + + /* Allocate memory for MTD device structure and private data */ + this = kzalloc(sizeof(struct nand_chip), GFP_KERNEL); + if (!this) { + ret = -ENOMEM; + goto err_kzalloc; + } + + cmx270_nand_io = ioremap(PXA_CS1_PHYS, 12); + if (!cmx270_nand_io) { + pr_debug("Unable to ioremap NAND device\n"); + ret = -EINVAL; + goto err_ioremap; + } + + cmx270_nand_mtd = nand_to_mtd(this); + + /* Link the private data with the MTD structure */ + cmx270_nand_mtd->owner = THIS_MODULE; + + /* insert callbacks */ + this->IO_ADDR_R = cmx270_nand_io; + this->IO_ADDR_W = cmx270_nand_io; + this->cmd_ctrl = cmx270_hwcontrol; + this->dev_ready = cmx270_device_ready; + + /* 15 us command delay time */ + this->chip_delay = 20; + this->ecc.mode = NAND_ECC_SOFT; + this->ecc.algo = NAND_ECC_HAMMING; + + /* read/write functions */ + this->read_byte = cmx270_read_byte; + this->read_buf = cmx270_read_buf; + this->write_buf = cmx270_write_buf; + + /* Scan to find existence of the device */ + ret = nand_scan(cmx270_nand_mtd, 1); + if (ret) { + pr_notice("No NAND device\n"); + goto err_scan; + } + + /* Register the partitions */ + ret = mtd_device_parse_register(cmx270_nand_mtd, NULL, NULL, + partition_info, NUM_PARTITIONS); + if (ret) + goto err_scan; + + /* Return happy */ + return 0; + +err_scan: + iounmap(cmx270_nand_io); +err_ioremap: + kfree(this); +err_kzalloc: + gpio_free(GPIO_NAND_RB); +err_gpio_request: + gpio_free(GPIO_NAND_CS); + + return ret; + +} +module_init(cmx270_init); + +/* + * Clean up routine + */ +static void __exit cmx270_cleanup(void) +{ + /* Release resources, unregister device */ + nand_release(cmx270_nand_mtd); + + gpio_free(GPIO_NAND_RB); + gpio_free(GPIO_NAND_CS); + + iounmap(cmx270_nand_io); + + kfree(mtd_to_nand(cmx270_nand_mtd)); +} +module_exit(cmx270_cleanup); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Mike Rapoport "); +MODULE_DESCRIPTION("NAND flash driver for Compulab CM-X270 Module"); diff --git a/drivers/mtd/nand/raw/cs553x_nand.c b/drivers/mtd/nand/raw/cs553x_nand.c new file mode 100644 index 000000000000..be1f28fc7363 --- /dev/null +++ b/drivers/mtd/nand/raw/cs553x_nand.c @@ -0,0 +1,355 @@ +/* + * (C) 2005, 2006 Red Hat Inc. + * + * Author: David Woodhouse + * Tom Sylla + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + * + * Overview: + * This is a device driver for the NAND flash controller found on + * the AMD CS5535/CS5536 companion chipsets for the Geode processor. + * mtd-id for command line partitioning is cs553x_nand_cs[0-3] + * where 0-3 reflects the chip select for NAND. + * + */ + +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#include +#include + +#define NR_CS553X_CONTROLLERS 4 + +#define MSR_DIVIL_GLD_CAP 0x51400000 /* DIVIL capabilitiies */ +#define CAP_CS5535 0x2df000ULL +#define CAP_CS5536 0x5df500ULL + +/* NAND Timing MSRs */ +#define MSR_NANDF_DATA 0x5140001b /* NAND Flash Data Timing MSR */ +#define MSR_NANDF_CTL 0x5140001c /* NAND Flash Control Timing */ +#define MSR_NANDF_RSVD 0x5140001d /* Reserved */ + +/* NAND BAR MSRs */ +#define MSR_DIVIL_LBAR_FLSH0 0x51400010 /* Flash Chip Select 0 */ +#define MSR_DIVIL_LBAR_FLSH1 0x51400011 /* Flash Chip Select 1 */ +#define MSR_DIVIL_LBAR_FLSH2 0x51400012 /* Flash Chip Select 2 */ +#define MSR_DIVIL_LBAR_FLSH3 0x51400013 /* Flash Chip Select 3 */ + /* Each made up of... */ +#define FLSH_LBAR_EN (1ULL<<32) +#define FLSH_NOR_NAND (1ULL<<33) /* 1 for NAND */ +#define FLSH_MEM_IO (1ULL<<34) /* 1 for MMIO */ + /* I/O BARs have BASE_ADDR in bits 15:4, IO_MASK in 47:36 */ + /* MMIO BARs have BASE_ADDR in bits 31:12, MEM_MASK in 63:44 */ + +/* Pin function selection MSR (IDE vs. flash on the IDE pins) */ +#define MSR_DIVIL_BALL_OPTS 0x51400015 +#define PIN_OPT_IDE (1<<0) /* 0 for flash, 1 for IDE */ + +/* Registers within the NAND flash controller BAR -- memory mapped */ +#define MM_NAND_DATA 0x00 /* 0 to 0x7ff, in fact */ +#define MM_NAND_CTL 0x800 /* Any even address 0x800-0x80e */ +#define MM_NAND_IO 0x801 /* Any odd address 0x801-0x80f */ +#define MM_NAND_STS 0x810 +#define MM_NAND_ECC_LSB 0x811 +#define MM_NAND_ECC_MSB 0x812 +#define MM_NAND_ECC_COL 0x813 +#define MM_NAND_LAC 0x814 +#define MM_NAND_ECC_CTL 0x815 + +/* Registers within the NAND flash controller BAR -- I/O mapped */ +#define IO_NAND_DATA 0x00 /* 0 to 3, in fact */ +#define IO_NAND_CTL 0x04 +#define IO_NAND_IO 0x05 +#define IO_NAND_STS 0x06 +#define IO_NAND_ECC_CTL 0x08 +#define IO_NAND_ECC_LSB 0x09 +#define IO_NAND_ECC_MSB 0x0a +#define IO_NAND_ECC_COL 0x0b +#define IO_NAND_LAC 0x0c + +#define CS_NAND_CTL_DIST_EN (1<<4) /* Enable NAND Distract interrupt */ +#define CS_NAND_CTL_RDY_INT_MASK (1<<3) /* Enable RDY/BUSY# interrupt */ +#define CS_NAND_CTL_ALE (1<<2) +#define CS_NAND_CTL_CLE (1<<1) +#define CS_NAND_CTL_CE (1<<0) /* Keep low; 1 to reset */ + +#define CS_NAND_STS_FLASH_RDY (1<<3) +#define CS_NAND_CTLR_BUSY (1<<2) +#define CS_NAND_CMD_COMP (1<<1) +#define CS_NAND_DIST_ST (1<<0) + +#define CS_NAND_ECC_PARITY (1<<2) +#define CS_NAND_ECC_CLRECC (1<<1) +#define CS_NAND_ECC_ENECC (1<<0) + +static void cs553x_read_buf(struct mtd_info *mtd, u_char *buf, int len) +{ + struct nand_chip *this = mtd_to_nand(mtd); + + while (unlikely(len > 0x800)) { + memcpy_fromio(buf, this->IO_ADDR_R, 0x800); + buf += 0x800; + len -= 0x800; + } + memcpy_fromio(buf, this->IO_ADDR_R, len); +} + +static void cs553x_write_buf(struct mtd_info *mtd, const u_char *buf, int len) +{ + struct nand_chip *this = mtd_to_nand(mtd); + + while (unlikely(len > 0x800)) { + memcpy_toio(this->IO_ADDR_R, buf, 0x800); + buf += 0x800; + len -= 0x800; + } + memcpy_toio(this->IO_ADDR_R, buf, len); +} + +static unsigned char cs553x_read_byte(struct mtd_info *mtd) +{ + struct nand_chip *this = mtd_to_nand(mtd); + return readb(this->IO_ADDR_R); +} + +static void cs553x_write_byte(struct mtd_info *mtd, u_char byte) +{ + struct nand_chip *this = mtd_to_nand(mtd); + int i = 100000; + + while (i && readb(this->IO_ADDR_R + MM_NAND_STS) & CS_NAND_CTLR_BUSY) { + udelay(1); + i--; + } + writeb(byte, this->IO_ADDR_W + 0x801); +} + +static void cs553x_hwcontrol(struct mtd_info *mtd, int cmd, + unsigned int ctrl) +{ + struct nand_chip *this = mtd_to_nand(mtd); + void __iomem *mmio_base = this->IO_ADDR_R; + if (ctrl & NAND_CTRL_CHANGE) { + unsigned char ctl = (ctrl & ~NAND_CTRL_CHANGE ) ^ 0x01; + writeb(ctl, mmio_base + MM_NAND_CTL); + } + if (cmd != NAND_CMD_NONE) + cs553x_write_byte(mtd, cmd); +} + +static int cs553x_device_ready(struct mtd_info *mtd) +{ + struct nand_chip *this = mtd_to_nand(mtd); + void __iomem *mmio_base = this->IO_ADDR_R; + unsigned char foo = readb(mmio_base + MM_NAND_STS); + + return (foo & CS_NAND_STS_FLASH_RDY) && !(foo & CS_NAND_CTLR_BUSY); +} + +static void cs_enable_hwecc(struct mtd_info *mtd, int mode) +{ + struct nand_chip *this = mtd_to_nand(mtd); + void __iomem *mmio_base = this->IO_ADDR_R; + + writeb(0x07, mmio_base + MM_NAND_ECC_CTL); +} + +static int cs_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code) +{ + uint32_t ecc; + struct nand_chip *this = mtd_to_nand(mtd); + void __iomem *mmio_base = this->IO_ADDR_R; + + ecc = readl(mmio_base + MM_NAND_STS); + + ecc_code[1] = ecc >> 8; + ecc_code[0] = ecc >> 16; + ecc_code[2] = ecc >> 24; + return 0; +} + +static struct mtd_info *cs553x_mtd[4]; + +static int __init cs553x_init_one(int cs, int mmio, unsigned long adr) +{ + int err = 0; + struct nand_chip *this; + struct mtd_info *new_mtd; + + printk(KERN_NOTICE "Probing CS553x NAND controller CS#%d at %sIO 0x%08lx\n", cs, mmio?"MM":"P", adr); + + if (!mmio) { + printk(KERN_NOTICE "PIO mode not yet implemented for CS553X NAND controller\n"); + return -ENXIO; + } + + /* Allocate memory for MTD device structure and private data */ + this = kzalloc(sizeof(struct nand_chip), GFP_KERNEL); + if (!this) { + err = -ENOMEM; + goto out; + } + + new_mtd = nand_to_mtd(this); + + /* Link the private data with the MTD structure */ + new_mtd->owner = THIS_MODULE; + + /* map physical address */ + this->IO_ADDR_R = this->IO_ADDR_W = ioremap(adr, 4096); + if (!this->IO_ADDR_R) { + printk(KERN_WARNING "ioremap cs553x NAND @0x%08lx failed\n", adr); + err = -EIO; + goto out_mtd; + } + + this->cmd_ctrl = cs553x_hwcontrol; + this->dev_ready = cs553x_device_ready; + this->read_byte = cs553x_read_byte; + this->read_buf = cs553x_read_buf; + this->write_buf = cs553x_write_buf; + + this->chip_delay = 0; + + this->ecc.mode = NAND_ECC_HW; + this->ecc.size = 256; + this->ecc.bytes = 3; + this->ecc.hwctl = cs_enable_hwecc; + this->ecc.calculate = cs_calculate_ecc; + this->ecc.correct = nand_correct_data; + this->ecc.strength = 1; + + /* Enable the following for a flash based bad block table */ + this->bbt_options = NAND_BBT_USE_FLASH; + + new_mtd->name = kasprintf(GFP_KERNEL, "cs553x_nand_cs%d", cs); + if (!new_mtd->name) { + err = -ENOMEM; + goto out_ior; + } + + /* Scan to find existence of the device */ + err = nand_scan(new_mtd, 1); + if (err) + goto out_free; + + cs553x_mtd[cs] = new_mtd; + goto out; + +out_free: + kfree(new_mtd->name); +out_ior: + iounmap(this->IO_ADDR_R); +out_mtd: + kfree(this); +out: + return err; +} + +static int is_geode(void) +{ + /* These are the CPUs which will have a CS553[56] companion chip */ + if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD && + boot_cpu_data.x86 == 5 && + boot_cpu_data.x86_model == 10) + return 1; /* Geode LX */ + + if ((boot_cpu_data.x86_vendor == X86_VENDOR_NSC || + boot_cpu_data.x86_vendor == X86_VENDOR_CYRIX) && + boot_cpu_data.x86 == 5 && + boot_cpu_data.x86_model == 5) + return 1; /* Geode GX (née GX2) */ + + return 0; +} + +static int __init cs553x_init(void) +{ + int err = -ENXIO; + int i; + uint64_t val; + + /* If the CPU isn't a Geode GX or LX, abort */ + if (!is_geode()) + return -ENXIO; + + /* If it doesn't have the CS553[56], abort */ + rdmsrl(MSR_DIVIL_GLD_CAP, val); + val &= ~0xFFULL; + if (val != CAP_CS5535 && val != CAP_CS5536) + return -ENXIO; + + /* If it doesn't have the NAND controller enabled, abort */ + rdmsrl(MSR_DIVIL_BALL_OPTS, val); + if (val & PIN_OPT_IDE) { + printk(KERN_INFO "CS553x NAND controller: Flash I/O not enabled in MSR_DIVIL_BALL_OPTS.\n"); + return -ENXIO; + } + + for (i = 0; i < NR_CS553X_CONTROLLERS; i++) { + rdmsrl(MSR_DIVIL_LBAR_FLSH0 + i, val); + + if ((val & (FLSH_LBAR_EN|FLSH_NOR_NAND)) == (FLSH_LBAR_EN|FLSH_NOR_NAND)) + err = cs553x_init_one(i, !!(val & FLSH_MEM_IO), val & 0xFFFFFFFF); + } + + /* Register all devices together here. This means we can easily hack it to + do mtdconcat etc. if we want to. */ + for (i = 0; i < NR_CS553X_CONTROLLERS; i++) { + if (cs553x_mtd[i]) { + /* If any devices registered, return success. Else the last error. */ + mtd_device_parse_register(cs553x_mtd[i], NULL, NULL, + NULL, 0); + err = 0; + } + } + + return err; +} + +module_init(cs553x_init); + +static void __exit cs553x_cleanup(void) +{ + int i; + + for (i = 0; i < NR_CS553X_CONTROLLERS; i++) { + struct mtd_info *mtd = cs553x_mtd[i]; + struct nand_chip *this; + void __iomem *mmio_base; + + if (!mtd) + continue; + + this = mtd_to_nand(mtd); + mmio_base = this->IO_ADDR_R; + + /* Release resources, unregister device */ + nand_release(mtd); + kfree(mtd->name); + cs553x_mtd[i] = NULL; + + /* unmap physical address */ + iounmap(mmio_base); + + /* Free the MTD device structure */ + kfree(this); + } +} + +module_exit(cs553x_cleanup); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("David Woodhouse "); +MODULE_DESCRIPTION("NAND controller driver for AMD CS5535/CS5536 companion chip"); diff --git a/drivers/mtd/nand/raw/davinci_nand.c b/drivers/mtd/nand/raw/davinci_nand.c new file mode 100644 index 000000000000..ccc8c43abcff --- /dev/null +++ b/drivers/mtd/nand/raw/davinci_nand.c @@ -0,0 +1,879 @@ +/* + * davinci_nand.c - NAND Flash Driver for DaVinci family chips + * + * Copyright © 2006 Texas Instruments. + * + * Port to 2.6.23 Copyright © 2008 by: + * Sander Huijsen + * Troy Kisky + * Dirk Behme + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. + */ + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#include +#include + +/* + * This is a device driver for the NAND flash controller found on the + * various DaVinci family chips. It handles up to four SoC chipselects, + * and some flavors of secondary chipselect (e.g. based on A12) as used + * with multichip packages. + * + * The 1-bit ECC hardware is supported, as well as the newer 4-bit ECC + * available on chips like the DM355 and OMAP-L137 and needed with the + * more error-prone MLC NAND chips. + * + * This driver assumes EM_WAIT connects all the NAND devices' RDY/nBUSY + * outputs in a "wire-AND" configuration, with no per-chip signals. + */ +struct davinci_nand_info { + struct nand_chip chip; + + struct device *dev; + struct clk *clk; + + bool is_readmode; + + void __iomem *base; + void __iomem *vaddr; + + uint32_t ioaddr; + uint32_t current_cs; + + uint32_t mask_chipsel; + uint32_t mask_ale; + uint32_t mask_cle; + + uint32_t core_chipsel; + + struct davinci_aemif_timing *timing; +}; + +static DEFINE_SPINLOCK(davinci_nand_lock); +static bool ecc4_busy; + +static inline struct davinci_nand_info *to_davinci_nand(struct mtd_info *mtd) +{ + return container_of(mtd_to_nand(mtd), struct davinci_nand_info, chip); +} + +static inline unsigned int davinci_nand_readl(struct davinci_nand_info *info, + int offset) +{ + return __raw_readl(info->base + offset); +} + +static inline void davinci_nand_writel(struct davinci_nand_info *info, + int offset, unsigned long value) +{ + __raw_writel(value, info->base + offset); +} + +/*----------------------------------------------------------------------*/ + +/* + * Access to hardware control lines: ALE, CLE, secondary chipselect. + */ + +static void nand_davinci_hwcontrol(struct mtd_info *mtd, int cmd, + unsigned int ctrl) +{ + struct davinci_nand_info *info = to_davinci_nand(mtd); + uint32_t addr = info->current_cs; + struct nand_chip *nand = mtd_to_nand(mtd); + + /* Did the control lines change? */ + if (ctrl & NAND_CTRL_CHANGE) { + if ((ctrl & NAND_CTRL_CLE) == NAND_CTRL_CLE) + addr |= info->mask_cle; + else if ((ctrl & NAND_CTRL_ALE) == NAND_CTRL_ALE) + addr |= info->mask_ale; + + nand->IO_ADDR_W = (void __iomem __force *)addr; + } + + if (cmd != NAND_CMD_NONE) + iowrite8(cmd, nand->IO_ADDR_W); +} + +static void nand_davinci_select_chip(struct mtd_info *mtd, int chip) +{ + struct davinci_nand_info *info = to_davinci_nand(mtd); + uint32_t addr = info->ioaddr; + + /* maybe kick in a second chipselect */ + if (chip > 0) + addr |= info->mask_chipsel; + info->current_cs = addr; + + info->chip.IO_ADDR_W = (void __iomem __force *)addr; + info->chip.IO_ADDR_R = info->chip.IO_ADDR_W; +} + +/*----------------------------------------------------------------------*/ + +/* + * 1-bit hardware ECC ... context maintained for each core chipselect + */ + +static inline uint32_t nand_davinci_readecc_1bit(struct mtd_info *mtd) +{ + struct davinci_nand_info *info = to_davinci_nand(mtd); + + return davinci_nand_readl(info, NANDF1ECC_OFFSET + + 4 * info->core_chipsel); +} + +static void nand_davinci_hwctl_1bit(struct mtd_info *mtd, int mode) +{ + struct davinci_nand_info *info; + uint32_t nandcfr; + unsigned long flags; + + info = to_davinci_nand(mtd); + + /* Reset ECC hardware */ + nand_davinci_readecc_1bit(mtd); + + spin_lock_irqsave(&davinci_nand_lock, flags); + + /* Restart ECC hardware */ + nandcfr = davinci_nand_readl(info, NANDFCR_OFFSET); + nandcfr |= BIT(8 + info->core_chipsel); + davinci_nand_writel(info, NANDFCR_OFFSET, nandcfr); + + spin_unlock_irqrestore(&davinci_nand_lock, flags); +} + +/* + * Read hardware ECC value and pack into three bytes + */ +static int nand_davinci_calculate_1bit(struct mtd_info *mtd, + const u_char *dat, u_char *ecc_code) +{ + unsigned int ecc_val = nand_davinci_readecc_1bit(mtd); + unsigned int ecc24 = (ecc_val & 0x0fff) | ((ecc_val & 0x0fff0000) >> 4); + + /* invert so that erased block ecc is correct */ + ecc24 = ~ecc24; + ecc_code[0] = (u_char)(ecc24); + ecc_code[1] = (u_char)(ecc24 >> 8); + ecc_code[2] = (u_char)(ecc24 >> 16); + + return 0; +} + +static int nand_davinci_correct_1bit(struct mtd_info *mtd, u_char *dat, + u_char *read_ecc, u_char *calc_ecc) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + uint32_t eccNand = read_ecc[0] | (read_ecc[1] << 8) | + (read_ecc[2] << 16); + uint32_t eccCalc = calc_ecc[0] | (calc_ecc[1] << 8) | + (calc_ecc[2] << 16); + uint32_t diff = eccCalc ^ eccNand; + + if (diff) { + if ((((diff >> 12) ^ diff) & 0xfff) == 0xfff) { + /* Correctable error */ + if ((diff >> (12 + 3)) < chip->ecc.size) { + dat[diff >> (12 + 3)] ^= BIT((diff >> 12) & 7); + return 1; + } else { + return -EBADMSG; + } + } else if (!(diff & (diff - 1))) { + /* Single bit ECC error in the ECC itself, + * nothing to fix */ + return 1; + } else { + /* Uncorrectable error */ + return -EBADMSG; + } + + } + return 0; +} + +/*----------------------------------------------------------------------*/ + +/* + * 4-bit hardware ECC ... context maintained over entire AEMIF + * + * This is a syndrome engine, but we avoid NAND_ECC_HW_SYNDROME + * since that forces use of a problematic "infix OOB" layout. + * Among other things, it trashes manufacturer bad block markers. + * Also, and specific to this hardware, it ECC-protects the "prepad" + * in the OOB ... while having ECC protection for parts of OOB would + * seem useful, the current MTD stack sometimes wants to update the + * OOB without recomputing ECC. + */ + +static void nand_davinci_hwctl_4bit(struct mtd_info *mtd, int mode) +{ + struct davinci_nand_info *info = to_davinci_nand(mtd); + unsigned long flags; + u32 val; + + /* Reset ECC hardware */ + davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET); + + spin_lock_irqsave(&davinci_nand_lock, flags); + + /* Start 4-bit ECC calculation for read/write */ + val = davinci_nand_readl(info, NANDFCR_OFFSET); + val &= ~(0x03 << 4); + val |= (info->core_chipsel << 4) | BIT(12); + davinci_nand_writel(info, NANDFCR_OFFSET, val); + + info->is_readmode = (mode == NAND_ECC_READ); + + spin_unlock_irqrestore(&davinci_nand_lock, flags); +} + +/* Read raw ECC code after writing to NAND. */ +static void +nand_davinci_readecc_4bit(struct davinci_nand_info *info, u32 code[4]) +{ + const u32 mask = 0x03ff03ff; + + code[0] = davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET) & mask; + code[1] = davinci_nand_readl(info, NAND_4BIT_ECC2_OFFSET) & mask; + code[2] = davinci_nand_readl(info, NAND_4BIT_ECC3_OFFSET) & mask; + code[3] = davinci_nand_readl(info, NAND_4BIT_ECC4_OFFSET) & mask; +} + +/* Terminate read ECC; or return ECC (as bytes) of data written to NAND. */ +static int nand_davinci_calculate_4bit(struct mtd_info *mtd, + const u_char *dat, u_char *ecc_code) +{ + struct davinci_nand_info *info = to_davinci_nand(mtd); + u32 raw_ecc[4], *p; + unsigned i; + + /* After a read, terminate ECC calculation by a dummy read + * of some 4-bit ECC register. ECC covers everything that + * was read; correct() just uses the hardware state, so + * ecc_code is not needed. + */ + if (info->is_readmode) { + davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET); + return 0; + } + + /* Pack eight raw 10-bit ecc values into ten bytes, making + * two passes which each convert four values (in upper and + * lower halves of two 32-bit words) into five bytes. The + * ROM boot loader uses this same packing scheme. + */ + nand_davinci_readecc_4bit(info, raw_ecc); + for (i = 0, p = raw_ecc; i < 2; i++, p += 2) { + *ecc_code++ = p[0] & 0xff; + *ecc_code++ = ((p[0] >> 8) & 0x03) | ((p[0] >> 14) & 0xfc); + *ecc_code++ = ((p[0] >> 22) & 0x0f) | ((p[1] << 4) & 0xf0); + *ecc_code++ = ((p[1] >> 4) & 0x3f) | ((p[1] >> 10) & 0xc0); + *ecc_code++ = (p[1] >> 18) & 0xff; + } + + return 0; +} + +/* Correct up to 4 bits in data we just read, using state left in the + * hardware plus the ecc_code computed when it was first written. + */ +static int nand_davinci_correct_4bit(struct mtd_info *mtd, + u_char *data, u_char *ecc_code, u_char *null) +{ + int i; + struct davinci_nand_info *info = to_davinci_nand(mtd); + unsigned short ecc10[8]; + unsigned short *ecc16; + u32 syndrome[4]; + u32 ecc_state; + unsigned num_errors, corrected; + unsigned long timeo; + + /* Unpack ten bytes into eight 10 bit values. We know we're + * little-endian, and use type punning for less shifting/masking. + */ + if (WARN_ON(0x01 & (unsigned) ecc_code)) + return -EINVAL; + ecc16 = (unsigned short *)ecc_code; + + ecc10[0] = (ecc16[0] >> 0) & 0x3ff; + ecc10[1] = ((ecc16[0] >> 10) & 0x3f) | ((ecc16[1] << 6) & 0x3c0); + ecc10[2] = (ecc16[1] >> 4) & 0x3ff; + ecc10[3] = ((ecc16[1] >> 14) & 0x3) | ((ecc16[2] << 2) & 0x3fc); + ecc10[4] = (ecc16[2] >> 8) | ((ecc16[3] << 8) & 0x300); + ecc10[5] = (ecc16[3] >> 2) & 0x3ff; + ecc10[6] = ((ecc16[3] >> 12) & 0xf) | ((ecc16[4] << 4) & 0x3f0); + ecc10[7] = (ecc16[4] >> 6) & 0x3ff; + + /* Tell ECC controller about the expected ECC codes. */ + for (i = 7; i >= 0; i--) + davinci_nand_writel(info, NAND_4BIT_ECC_LOAD_OFFSET, ecc10[i]); + + /* Allow time for syndrome calculation ... then read it. + * A syndrome of all zeroes 0 means no detected errors. + */ + davinci_nand_readl(info, NANDFSR_OFFSET); + nand_davinci_readecc_4bit(info, syndrome); + if (!(syndrome[0] | syndrome[1] | syndrome[2] | syndrome[3])) + return 0; + + /* + * Clear any previous address calculation by doing a dummy read of an + * error address register. + */ + davinci_nand_readl(info, NAND_ERR_ADD1_OFFSET); + + /* Start address calculation, and wait for it to complete. + * We _could_ start reading more data while this is working, + * to speed up the overall page read. + */ + davinci_nand_writel(info, NANDFCR_OFFSET, + davinci_nand_readl(info, NANDFCR_OFFSET) | BIT(13)); + + /* + * ECC_STATE field reads 0x3 (Error correction complete) immediately + * after setting the 4BITECC_ADD_CALC_START bit. So if you immediately + * begin trying to poll for the state, you may fall right out of your + * loop without any of the correction calculations having taken place. + * The recommendation from the hardware team is to initially delay as + * long as ECC_STATE reads less than 4. After that, ECC HW has entered + * correction state. + */ + timeo = jiffies + usecs_to_jiffies(100); + do { + ecc_state = (davinci_nand_readl(info, + NANDFSR_OFFSET) >> 8) & 0x0f; + cpu_relax(); + } while ((ecc_state < 4) && time_before(jiffies, timeo)); + + for (;;) { + u32 fsr = davinci_nand_readl(info, NANDFSR_OFFSET); + + switch ((fsr >> 8) & 0x0f) { + case 0: /* no error, should not happen */ + davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET); + return 0; + case 1: /* five or more errors detected */ + davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET); + return -EBADMSG; + case 2: /* error addresses computed */ + case 3: + num_errors = 1 + ((fsr >> 16) & 0x03); + goto correct; + default: /* still working on it */ + cpu_relax(); + continue; + } + } + +correct: + /* correct each error */ + for (i = 0, corrected = 0; i < num_errors; i++) { + int error_address, error_value; + + if (i > 1) { + error_address = davinci_nand_readl(info, + NAND_ERR_ADD2_OFFSET); + error_value = davinci_nand_readl(info, + NAND_ERR_ERRVAL2_OFFSET); + } else { + error_address = davinci_nand_readl(info, + NAND_ERR_ADD1_OFFSET); + error_value = davinci_nand_readl(info, + NAND_ERR_ERRVAL1_OFFSET); + } + + if (i & 1) { + error_address >>= 16; + error_value >>= 16; + } + error_address &= 0x3ff; + error_address = (512 + 7) - error_address; + + if (error_address < 512) { + data[error_address] ^= error_value; + corrected++; + } + } + + return corrected; +} + +/*----------------------------------------------------------------------*/ + +/* + * NOTE: NAND boot requires ALE == EM_A[1], CLE == EM_A[2], so that's + * how these chips are normally wired. This translates to both 8 and 16 + * bit busses using ALE == BIT(3) in byte addresses, and CLE == BIT(4). + * + * For now we assume that configuration, or any other one which ignores + * the two LSBs for NAND access ... so we can issue 32-bit reads/writes + * and have that transparently morphed into multiple NAND operations. + */ +static void nand_davinci_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + + if ((0x03 & ((unsigned)buf)) == 0 && (0x03 & len) == 0) + ioread32_rep(chip->IO_ADDR_R, buf, len >> 2); + else if ((0x01 & ((unsigned)buf)) == 0 && (0x01 & len) == 0) + ioread16_rep(chip->IO_ADDR_R, buf, len >> 1); + else + ioread8_rep(chip->IO_ADDR_R, buf, len); +} + +static void nand_davinci_write_buf(struct mtd_info *mtd, + const uint8_t *buf, int len) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + + if ((0x03 & ((unsigned)buf)) == 0 && (0x03 & len) == 0) + iowrite32_rep(chip->IO_ADDR_R, buf, len >> 2); + else if ((0x01 & ((unsigned)buf)) == 0 && (0x01 & len) == 0) + iowrite16_rep(chip->IO_ADDR_R, buf, len >> 1); + else + iowrite8_rep(chip->IO_ADDR_R, buf, len); +} + +/* + * Check hardware register for wait status. Returns 1 if device is ready, + * 0 if it is still busy. + */ +static int nand_davinci_dev_ready(struct mtd_info *mtd) +{ + struct davinci_nand_info *info = to_davinci_nand(mtd); + + return davinci_nand_readl(info, NANDFSR_OFFSET) & BIT(0); +} + +/*----------------------------------------------------------------------*/ + +/* An ECC layout for using 4-bit ECC with small-page flash, storing + * ten ECC bytes plus the manufacturer's bad block marker byte, and + * and not overlapping the default BBT markers. + */ +static int hwecc4_ooblayout_small_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + if (section > 2) + return -ERANGE; + + if (!section) { + oobregion->offset = 0; + oobregion->length = 5; + } else if (section == 1) { + oobregion->offset = 6; + oobregion->length = 2; + } else { + oobregion->offset = 13; + oobregion->length = 3; + } + + return 0; +} + +static int hwecc4_ooblayout_small_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + if (section > 1) + return -ERANGE; + + if (!section) { + oobregion->offset = 8; + oobregion->length = 5; + } else { + oobregion->offset = 16; + oobregion->length = mtd->oobsize - 16; + } + + return 0; +} + +static const struct mtd_ooblayout_ops hwecc4_small_ooblayout_ops = { + .ecc = hwecc4_ooblayout_small_ecc, + .free = hwecc4_ooblayout_small_free, +}; + +#if defined(CONFIG_OF) +static const struct of_device_id davinci_nand_of_match[] = { + {.compatible = "ti,davinci-nand", }, + {.compatible = "ti,keystone-nand", }, + {}, +}; +MODULE_DEVICE_TABLE(of, davinci_nand_of_match); + +static struct davinci_nand_pdata + *nand_davinci_get_pdata(struct platform_device *pdev) +{ + if (!dev_get_platdata(&pdev->dev) && pdev->dev.of_node) { + struct davinci_nand_pdata *pdata; + const char *mode; + u32 prop; + + pdata = devm_kzalloc(&pdev->dev, + sizeof(struct davinci_nand_pdata), + GFP_KERNEL); + pdev->dev.platform_data = pdata; + if (!pdata) + return ERR_PTR(-ENOMEM); + if (!of_property_read_u32(pdev->dev.of_node, + "ti,davinci-chipselect", &prop)) + pdev->id = prop; + else + return ERR_PTR(-EINVAL); + + if (!of_property_read_u32(pdev->dev.of_node, + "ti,davinci-mask-ale", &prop)) + pdata->mask_ale = prop; + if (!of_property_read_u32(pdev->dev.of_node, + "ti,davinci-mask-cle", &prop)) + pdata->mask_cle = prop; + if (!of_property_read_u32(pdev->dev.of_node, + "ti,davinci-mask-chipsel", &prop)) + pdata->mask_chipsel = prop; + if (!of_property_read_string(pdev->dev.of_node, + "ti,davinci-ecc-mode", &mode)) { + if (!strncmp("none", mode, 4)) + pdata->ecc_mode = NAND_ECC_NONE; + if (!strncmp("soft", mode, 4)) + pdata->ecc_mode = NAND_ECC_SOFT; + if (!strncmp("hw", mode, 2)) + pdata->ecc_mode = NAND_ECC_HW; + } + if (!of_property_read_u32(pdev->dev.of_node, + "ti,davinci-ecc-bits", &prop)) + pdata->ecc_bits = prop; + + if (!of_property_read_u32(pdev->dev.of_node, + "ti,davinci-nand-buswidth", &prop) && prop == 16) + pdata->options |= NAND_BUSWIDTH_16; + + if (of_property_read_bool(pdev->dev.of_node, + "ti,davinci-nand-use-bbt")) + pdata->bbt_options = NAND_BBT_USE_FLASH; + + /* + * Since kernel v4.8, this driver has been fixed to enable + * use of 4-bit hardware ECC with subpages and verified on + * TI's keystone EVMs (K2L, K2HK and K2E). + * However, in the interest of not breaking systems using + * existing UBI partitions, sub-page writes are not being + * (re)enabled. If you want to use subpage writes on Keystone + * platforms (i.e. do not have any existing UBI partitions), + * then use "ti,davinci-nand" as the compatible in your + * device-tree file. + */ + if (of_device_is_compatible(pdev->dev.of_node, + "ti,keystone-nand")) { + pdata->options |= NAND_NO_SUBPAGE_WRITE; + } + } + + return dev_get_platdata(&pdev->dev); +} +#else +static struct davinci_nand_pdata + *nand_davinci_get_pdata(struct platform_device *pdev) +{ + return dev_get_platdata(&pdev->dev); +} +#endif + +static int nand_davinci_probe(struct platform_device *pdev) +{ + struct davinci_nand_pdata *pdata; + struct davinci_nand_info *info; + struct resource *res1; + struct resource *res2; + void __iomem *vaddr; + void __iomem *base; + int ret; + uint32_t val; + struct mtd_info *mtd; + + pdata = nand_davinci_get_pdata(pdev); + if (IS_ERR(pdata)) + return PTR_ERR(pdata); + + /* insist on board-specific configuration */ + if (!pdata) + return -ENODEV; + + /* which external chipselect will we be managing? */ + if (pdev->id < 0 || pdev->id > 3) + return -ENODEV; + + info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL); + if (!info) + return -ENOMEM; + + platform_set_drvdata(pdev, info); + + res1 = platform_get_resource(pdev, IORESOURCE_MEM, 0); + res2 = platform_get_resource(pdev, IORESOURCE_MEM, 1); + if (!res1 || !res2) { + dev_err(&pdev->dev, "resource missing\n"); + return -EINVAL; + } + + vaddr = devm_ioremap_resource(&pdev->dev, res1); + if (IS_ERR(vaddr)) + return PTR_ERR(vaddr); + + /* + * This registers range is used to setup NAND settings. In case with + * TI AEMIF driver, the same memory address range is requested already + * by AEMIF, so we cannot request it twice, just ioremap. + * The AEMIF and NAND drivers not use the same registers in this range. + */ + base = devm_ioremap(&pdev->dev, res2->start, resource_size(res2)); + if (!base) { + dev_err(&pdev->dev, "ioremap failed for resource %pR\n", res2); + return -EADDRNOTAVAIL; + } + + info->dev = &pdev->dev; + info->base = base; + info->vaddr = vaddr; + + mtd = nand_to_mtd(&info->chip); + mtd->dev.parent = &pdev->dev; + nand_set_flash_node(&info->chip, pdev->dev.of_node); + + info->chip.IO_ADDR_R = vaddr; + info->chip.IO_ADDR_W = vaddr; + info->chip.chip_delay = 0; + info->chip.select_chip = nand_davinci_select_chip; + + /* options such as NAND_BBT_USE_FLASH */ + info->chip.bbt_options = pdata->bbt_options; + /* options such as 16-bit widths */ + info->chip.options = pdata->options; + info->chip.bbt_td = pdata->bbt_td; + info->chip.bbt_md = pdata->bbt_md; + info->timing = pdata->timing; + + info->ioaddr = (uint32_t __force) vaddr; + + info->current_cs = info->ioaddr; + info->core_chipsel = pdev->id; + info->mask_chipsel = pdata->mask_chipsel; + + /* use nandboot-capable ALE/CLE masks by default */ + info->mask_ale = pdata->mask_ale ? : MASK_ALE; + info->mask_cle = pdata->mask_cle ? : MASK_CLE; + + /* Set address of hardware control function */ + info->chip.cmd_ctrl = nand_davinci_hwcontrol; + info->chip.dev_ready = nand_davinci_dev_ready; + + /* Speed up buffer I/O */ + info->chip.read_buf = nand_davinci_read_buf; + info->chip.write_buf = nand_davinci_write_buf; + + /* Use board-specific ECC config */ + info->chip.ecc.mode = pdata->ecc_mode; + + ret = -EINVAL; + + info->clk = devm_clk_get(&pdev->dev, "aemif"); + if (IS_ERR(info->clk)) { + ret = PTR_ERR(info->clk); + dev_dbg(&pdev->dev, "unable to get AEMIF clock, err %d\n", ret); + return ret; + } + + ret = clk_prepare_enable(info->clk); + if (ret < 0) { + dev_dbg(&pdev->dev, "unable to enable AEMIF clock, err %d\n", + ret); + goto err_clk_enable; + } + + spin_lock_irq(&davinci_nand_lock); + + /* put CSxNAND into NAND mode */ + val = davinci_nand_readl(info, NANDFCR_OFFSET); + val |= BIT(info->core_chipsel); + davinci_nand_writel(info, NANDFCR_OFFSET, val); + + spin_unlock_irq(&davinci_nand_lock); + + /* Scan to find existence of the device(s) */ + ret = nand_scan_ident(mtd, pdata->mask_chipsel ? 2 : 1, NULL); + if (ret < 0) { + dev_dbg(&pdev->dev, "no NAND chip(s) found\n"); + goto err; + } + + switch (info->chip.ecc.mode) { + case NAND_ECC_NONE: + pdata->ecc_bits = 0; + break; + case NAND_ECC_SOFT: + pdata->ecc_bits = 0; + /* + * This driver expects Hamming based ECC when ecc_mode is set + * to NAND_ECC_SOFT. Force ecc.algo to NAND_ECC_HAMMING to + * avoid adding an extra ->ecc_algo field to + * davinci_nand_pdata. + */ + info->chip.ecc.algo = NAND_ECC_HAMMING; + break; + case NAND_ECC_HW: + if (pdata->ecc_bits == 4) { + /* No sanity checks: CPUs must support this, + * and the chips may not use NAND_BUSWIDTH_16. + */ + + /* No sharing 4-bit hardware between chipselects yet */ + spin_lock_irq(&davinci_nand_lock); + if (ecc4_busy) + ret = -EBUSY; + else + ecc4_busy = true; + spin_unlock_irq(&davinci_nand_lock); + + if (ret == -EBUSY) + return ret; + + info->chip.ecc.calculate = nand_davinci_calculate_4bit; + info->chip.ecc.correct = nand_davinci_correct_4bit; + info->chip.ecc.hwctl = nand_davinci_hwctl_4bit; + info->chip.ecc.bytes = 10; + info->chip.ecc.options = NAND_ECC_GENERIC_ERASED_CHECK; + info->chip.ecc.algo = NAND_ECC_BCH; + } else { + /* 1bit ecc hamming */ + info->chip.ecc.calculate = nand_davinci_calculate_1bit; + info->chip.ecc.correct = nand_davinci_correct_1bit; + info->chip.ecc.hwctl = nand_davinci_hwctl_1bit; + info->chip.ecc.bytes = 3; + info->chip.ecc.algo = NAND_ECC_HAMMING; + } + info->chip.ecc.size = 512; + info->chip.ecc.strength = pdata->ecc_bits; + break; + default: + return -EINVAL; + } + + /* Update ECC layout if needed ... for 1-bit HW ECC, the default + * is OK, but it allocates 6 bytes when only 3 are needed (for + * each 512 bytes). For the 4-bit HW ECC, that default is not + * usable: 10 bytes are needed, not 6. + */ + if (pdata->ecc_bits == 4) { + int chunks = mtd->writesize / 512; + + if (!chunks || mtd->oobsize < 16) { + dev_dbg(&pdev->dev, "too small\n"); + ret = -EINVAL; + goto err; + } + + /* For small page chips, preserve the manufacturer's + * badblock marking data ... and make sure a flash BBT + * table marker fits in the free bytes. + */ + if (chunks == 1) { + mtd_set_ooblayout(mtd, &hwecc4_small_ooblayout_ops); + } else if (chunks == 4 || chunks == 8) { + mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops); + info->chip.ecc.mode = NAND_ECC_HW_OOB_FIRST; + } else { + ret = -EIO; + goto err; + } + } + + ret = nand_scan_tail(mtd); + if (ret < 0) + goto err; + + if (pdata->parts) + ret = mtd_device_parse_register(mtd, NULL, NULL, + pdata->parts, pdata->nr_parts); + else + ret = mtd_device_register(mtd, NULL, 0); + if (ret < 0) + goto err; + + val = davinci_nand_readl(info, NRCSR_OFFSET); + dev_info(&pdev->dev, "controller rev. %d.%d\n", + (val >> 8) & 0xff, val & 0xff); + + return 0; + +err: + clk_disable_unprepare(info->clk); + +err_clk_enable: + spin_lock_irq(&davinci_nand_lock); + if (info->chip.ecc.mode == NAND_ECC_HW_SYNDROME) + ecc4_busy = false; + spin_unlock_irq(&davinci_nand_lock); + return ret; +} + +static int nand_davinci_remove(struct platform_device *pdev) +{ + struct davinci_nand_info *info = platform_get_drvdata(pdev); + + spin_lock_irq(&davinci_nand_lock); + if (info->chip.ecc.mode == NAND_ECC_HW_SYNDROME) + ecc4_busy = false; + spin_unlock_irq(&davinci_nand_lock); + + nand_release(nand_to_mtd(&info->chip)); + + clk_disable_unprepare(info->clk); + + return 0; +} + +static struct platform_driver nand_davinci_driver = { + .probe = nand_davinci_probe, + .remove = nand_davinci_remove, + .driver = { + .name = "davinci_nand", + .of_match_table = of_match_ptr(davinci_nand_of_match), + }, +}; +MODULE_ALIAS("platform:davinci_nand"); + +module_platform_driver(nand_davinci_driver); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Texas Instruments"); +MODULE_DESCRIPTION("Davinci NAND flash driver"); + diff --git a/drivers/mtd/nand/raw/denali.c b/drivers/mtd/nand/raw/denali.c new file mode 100644 index 000000000000..313c7f50621b --- /dev/null +++ b/drivers/mtd/nand/raw/denali.c @@ -0,0 +1,1408 @@ +/* + * NAND Flash Controller Device Driver + * Copyright © 2009-2010, Intel Corporation and its suppliers. + * + * This program is free software; you can redistribute it and/or modify it + * under the terms and conditions of the GNU General Public License, + * version 2, as published by the Free Software Foundation. + * + * This program is distributed in the hope it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for + * more details. + */ + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#include "denali.h" + +MODULE_LICENSE("GPL"); + +#define DENALI_NAND_NAME "denali-nand" + +/* for Indexed Addressing */ +#define DENALI_INDEXED_CTRL 0x00 +#define DENALI_INDEXED_DATA 0x10 + +#define DENALI_MAP00 (0 << 26) /* direct access to buffer */ +#define DENALI_MAP01 (1 << 26) /* read/write pages in PIO */ +#define DENALI_MAP10 (2 << 26) /* high-level control plane */ +#define DENALI_MAP11 (3 << 26) /* direct controller access */ + +/* MAP11 access cycle type */ +#define DENALI_MAP11_CMD ((DENALI_MAP11) | 0) /* command cycle */ +#define DENALI_MAP11_ADDR ((DENALI_MAP11) | 1) /* address cycle */ +#define DENALI_MAP11_DATA ((DENALI_MAP11) | 2) /* data cycle */ + +/* MAP10 commands */ +#define DENALI_ERASE 0x01 + +#define DENALI_BANK(denali) ((denali)->active_bank << 24) + +#define DENALI_INVALID_BANK -1 +#define DENALI_NR_BANKS 4 + +/* + * The bus interface clock, clk_x, is phase aligned with the core clock. The + * clk_x is an integral multiple N of the core clk. The value N is configured + * at IP delivery time, and its available value is 4, 5, or 6. We need to align + * to the largest value to make it work with any possible configuration. + */ +#define DENALI_CLK_X_MULT 6 + +static inline struct denali_nand_info *mtd_to_denali(struct mtd_info *mtd) +{ + return container_of(mtd_to_nand(mtd), struct denali_nand_info, nand); +} + +/* + * Direct Addressing - the slave address forms the control information (command + * type, bank, block, and page address). The slave data is the actual data to + * be transferred. This mode requires 28 bits of address region allocated. + */ +static u32 denali_direct_read(struct denali_nand_info *denali, u32 addr) +{ + return ioread32(denali->host + addr); +} + +static void denali_direct_write(struct denali_nand_info *denali, u32 addr, + u32 data) +{ + iowrite32(data, denali->host + addr); +} + +/* + * Indexed Addressing - address translation module intervenes in passing the + * control information. This mode reduces the required address range. The + * control information and transferred data are latched by the registers in + * the translation module. + */ +static u32 denali_indexed_read(struct denali_nand_info *denali, u32 addr) +{ + iowrite32(addr, denali->host + DENALI_INDEXED_CTRL); + return ioread32(denali->host + DENALI_INDEXED_DATA); +} + +static void denali_indexed_write(struct denali_nand_info *denali, u32 addr, + u32 data) +{ + iowrite32(addr, denali->host + DENALI_INDEXED_CTRL); + iowrite32(data, denali->host + DENALI_INDEXED_DATA); +} + +/* + * Use the configuration feature register to determine the maximum number of + * banks that the hardware supports. + */ +static void denali_detect_max_banks(struct denali_nand_info *denali) +{ + uint32_t features = ioread32(denali->reg + FEATURES); + + denali->max_banks = 1 << FIELD_GET(FEATURES__N_BANKS, features); + + /* the encoding changed from rev 5.0 to 5.1 */ + if (denali->revision < 0x0501) + denali->max_banks <<= 1; +} + +static void denali_enable_irq(struct denali_nand_info *denali) +{ + int i; + + for (i = 0; i < DENALI_NR_BANKS; i++) + iowrite32(U32_MAX, denali->reg + INTR_EN(i)); + iowrite32(GLOBAL_INT_EN_FLAG, denali->reg + GLOBAL_INT_ENABLE); +} + +static void denali_disable_irq(struct denali_nand_info *denali) +{ + int i; + + for (i = 0; i < DENALI_NR_BANKS; i++) + iowrite32(0, denali->reg + INTR_EN(i)); + iowrite32(0, denali->reg + GLOBAL_INT_ENABLE); +} + +static void denali_clear_irq(struct denali_nand_info *denali, + int bank, uint32_t irq_status) +{ + /* write one to clear bits */ + iowrite32(irq_status, denali->reg + INTR_STATUS(bank)); +} + +static void denali_clear_irq_all(struct denali_nand_info *denali) +{ + int i; + + for (i = 0; i < DENALI_NR_BANKS; i++) + denali_clear_irq(denali, i, U32_MAX); +} + +static irqreturn_t denali_isr(int irq, void *dev_id) +{ + struct denali_nand_info *denali = dev_id; + irqreturn_t ret = IRQ_NONE; + uint32_t irq_status; + int i; + + spin_lock(&denali->irq_lock); + + for (i = 0; i < DENALI_NR_BANKS; i++) { + irq_status = ioread32(denali->reg + INTR_STATUS(i)); + if (irq_status) + ret = IRQ_HANDLED; + + denali_clear_irq(denali, i, irq_status); + + if (i != denali->active_bank) + continue; + + denali->irq_status |= irq_status; + + if (denali->irq_status & denali->irq_mask) + complete(&denali->complete); + } + + spin_unlock(&denali->irq_lock); + + return ret; +} + +static void denali_reset_irq(struct denali_nand_info *denali) +{ + unsigned long flags; + + spin_lock_irqsave(&denali->irq_lock, flags); + denali->irq_status = 0; + denali->irq_mask = 0; + spin_unlock_irqrestore(&denali->irq_lock, flags); +} + +static uint32_t denali_wait_for_irq(struct denali_nand_info *denali, + uint32_t irq_mask) +{ + unsigned long time_left, flags; + uint32_t irq_status; + + spin_lock_irqsave(&denali->irq_lock, flags); + + irq_status = denali->irq_status; + + if (irq_mask & irq_status) { + /* return immediately if the IRQ has already happened. */ + spin_unlock_irqrestore(&denali->irq_lock, flags); + return irq_status; + } + + denali->irq_mask = irq_mask; + reinit_completion(&denali->complete); + spin_unlock_irqrestore(&denali->irq_lock, flags); + + time_left = wait_for_completion_timeout(&denali->complete, + msecs_to_jiffies(1000)); + if (!time_left) { + dev_err(denali->dev, "timeout while waiting for irq 0x%x\n", + irq_mask); + return 0; + } + + return denali->irq_status; +} + +static uint32_t denali_check_irq(struct denali_nand_info *denali) +{ + unsigned long flags; + uint32_t irq_status; + + spin_lock_irqsave(&denali->irq_lock, flags); + irq_status = denali->irq_status; + spin_unlock_irqrestore(&denali->irq_lock, flags); + + return irq_status; +} + +static void denali_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) +{ + struct denali_nand_info *denali = mtd_to_denali(mtd); + u32 addr = DENALI_MAP11_DATA | DENALI_BANK(denali); + int i; + + for (i = 0; i < len; i++) + buf[i] = denali->host_read(denali, addr); +} + +static void denali_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) +{ + struct denali_nand_info *denali = mtd_to_denali(mtd); + u32 addr = DENALI_MAP11_DATA | DENALI_BANK(denali); + int i; + + for (i = 0; i < len; i++) + denali->host_write(denali, addr, buf[i]); +} + +static void denali_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len) +{ + struct denali_nand_info *denali = mtd_to_denali(mtd); + u32 addr = DENALI_MAP11_DATA | DENALI_BANK(denali); + uint16_t *buf16 = (uint16_t *)buf; + int i; + + for (i = 0; i < len / 2; i++) + buf16[i] = denali->host_read(denali, addr); +} + +static void denali_write_buf16(struct mtd_info *mtd, const uint8_t *buf, + int len) +{ + struct denali_nand_info *denali = mtd_to_denali(mtd); + u32 addr = DENALI_MAP11_DATA | DENALI_BANK(denali); + const uint16_t *buf16 = (const uint16_t *)buf; + int i; + + for (i = 0; i < len / 2; i++) + denali->host_write(denali, addr, buf16[i]); +} + +static uint8_t denali_read_byte(struct mtd_info *mtd) +{ + uint8_t byte; + + denali_read_buf(mtd, &byte, 1); + + return byte; +} + +static void denali_write_byte(struct mtd_info *mtd, uint8_t byte) +{ + denali_write_buf(mtd, &byte, 1); +} + +static uint16_t denali_read_word(struct mtd_info *mtd) +{ + uint16_t word; + + denali_read_buf16(mtd, (uint8_t *)&word, 2); + + return word; +} + +static void denali_cmd_ctrl(struct mtd_info *mtd, int dat, unsigned int ctrl) +{ + struct denali_nand_info *denali = mtd_to_denali(mtd); + uint32_t type; + + if (ctrl & NAND_CLE) + type = DENALI_MAP11_CMD; + else if (ctrl & NAND_ALE) + type = DENALI_MAP11_ADDR; + else + return; + + /* + * Some commands are followed by chip->dev_ready or chip->waitfunc. + * irq_status must be cleared here to catch the R/B# interrupt later. + */ + if (ctrl & NAND_CTRL_CHANGE) + denali_reset_irq(denali); + + denali->host_write(denali, DENALI_BANK(denali) | type, dat); +} + +static int denali_dev_ready(struct mtd_info *mtd) +{ + struct denali_nand_info *denali = mtd_to_denali(mtd); + + return !!(denali_check_irq(denali) & INTR__INT_ACT); +} + +static int denali_check_erased_page(struct mtd_info *mtd, + struct nand_chip *chip, uint8_t *buf, + unsigned long uncor_ecc_flags, + unsigned int max_bitflips) +{ + struct denali_nand_info *denali = mtd_to_denali(mtd); + uint8_t *ecc_code = chip->oob_poi + denali->oob_skip_bytes; + int ecc_steps = chip->ecc.steps; + int ecc_size = chip->ecc.size; + int ecc_bytes = chip->ecc.bytes; + int i, stat; + + for (i = 0; i < ecc_steps; i++) { + if (!(uncor_ecc_flags & BIT(i))) + continue; + + stat = nand_check_erased_ecc_chunk(buf, ecc_size, + ecc_code, ecc_bytes, + NULL, 0, + chip->ecc.strength); + if (stat < 0) { + mtd->ecc_stats.failed++; + } else { + mtd->ecc_stats.corrected += stat; + max_bitflips = max_t(unsigned int, max_bitflips, stat); + } + + buf += ecc_size; + ecc_code += ecc_bytes; + } + + return max_bitflips; +} + +static int denali_hw_ecc_fixup(struct mtd_info *mtd, + struct denali_nand_info *denali, + unsigned long *uncor_ecc_flags) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + int bank = denali->active_bank; + uint32_t ecc_cor; + unsigned int max_bitflips; + + ecc_cor = ioread32(denali->reg + ECC_COR_INFO(bank)); + ecc_cor >>= ECC_COR_INFO__SHIFT(bank); + + if (ecc_cor & ECC_COR_INFO__UNCOR_ERR) { + /* + * This flag is set when uncorrectable error occurs at least in + * one ECC sector. We can not know "how many sectors", or + * "which sector(s)". We need erase-page check for all sectors. + */ + *uncor_ecc_flags = GENMASK(chip->ecc.steps - 1, 0); + return 0; + } + + max_bitflips = FIELD_GET(ECC_COR_INFO__MAX_ERRORS, ecc_cor); + + /* + * The register holds the maximum of per-sector corrected bitflips. + * This is suitable for the return value of the ->read_page() callback. + * Unfortunately, we can not know the total number of corrected bits in + * the page. Increase the stats by max_bitflips. (compromised solution) + */ + mtd->ecc_stats.corrected += max_bitflips; + + return max_bitflips; +} + +static int denali_sw_ecc_fixup(struct mtd_info *mtd, + struct denali_nand_info *denali, + unsigned long *uncor_ecc_flags, uint8_t *buf) +{ + unsigned int ecc_size = denali->nand.ecc.size; + unsigned int bitflips = 0; + unsigned int max_bitflips = 0; + uint32_t err_addr, err_cor_info; + unsigned int err_byte, err_sector, err_device; + uint8_t err_cor_value; + unsigned int prev_sector = 0; + uint32_t irq_status; + + denali_reset_irq(denali); + + do { + err_addr = ioread32(denali->reg + ECC_ERROR_ADDRESS); + err_sector = FIELD_GET(ECC_ERROR_ADDRESS__SECTOR, err_addr); + err_byte = FIELD_GET(ECC_ERROR_ADDRESS__OFFSET, err_addr); + + err_cor_info = ioread32(denali->reg + ERR_CORRECTION_INFO); + err_cor_value = FIELD_GET(ERR_CORRECTION_INFO__BYTE, + err_cor_info); + err_device = FIELD_GET(ERR_CORRECTION_INFO__DEVICE, + err_cor_info); + + /* reset the bitflip counter when crossing ECC sector */ + if (err_sector != prev_sector) + bitflips = 0; + + if (err_cor_info & ERR_CORRECTION_INFO__UNCOR) { + /* + * Check later if this is a real ECC error, or + * an erased sector. + */ + *uncor_ecc_flags |= BIT(err_sector); + } else if (err_byte < ecc_size) { + /* + * If err_byte is larger than ecc_size, means error + * happened in OOB, so we ignore it. It's no need for + * us to correct it err_device is represented the NAND + * error bits are happened in if there are more than + * one NAND connected. + */ + int offset; + unsigned int flips_in_byte; + + offset = (err_sector * ecc_size + err_byte) * + denali->devs_per_cs + err_device; + + /* correct the ECC error */ + flips_in_byte = hweight8(buf[offset] ^ err_cor_value); + buf[offset] ^= err_cor_value; + mtd->ecc_stats.corrected += flips_in_byte; + bitflips += flips_in_byte; + + max_bitflips = max(max_bitflips, bitflips); + } + + prev_sector = err_sector; + } while (!(err_cor_info & ERR_CORRECTION_INFO__LAST_ERR)); + + /* + * Once handle all ECC errors, controller will trigger an + * ECC_TRANSACTION_DONE interrupt. + */ + irq_status = denali_wait_for_irq(denali, INTR__ECC_TRANSACTION_DONE); + if (!(irq_status & INTR__ECC_TRANSACTION_DONE)) + return -EIO; + + return max_bitflips; +} + +static void denali_setup_dma64(struct denali_nand_info *denali, + dma_addr_t dma_addr, int page, int write) +{ + uint32_t mode; + const int page_count = 1; + + mode = DENALI_MAP10 | DENALI_BANK(denali) | page; + + /* DMA is a three step process */ + + /* + * 1. setup transfer type, interrupt when complete, + * burst len = 64 bytes, the number of pages + */ + denali->host_write(denali, mode, + 0x01002000 | (64 << 16) | (write << 8) | page_count); + + /* 2. set memory low address */ + denali->host_write(denali, mode, lower_32_bits(dma_addr)); + + /* 3. set memory high address */ + denali->host_write(denali, mode, upper_32_bits(dma_addr)); +} + +static void denali_setup_dma32(struct denali_nand_info *denali, + dma_addr_t dma_addr, int page, int write) +{ + uint32_t mode; + const int page_count = 1; + + mode = DENALI_MAP10 | DENALI_BANK(denali); + + /* DMA is a four step process */ + + /* 1. setup transfer type and # of pages */ + denali->host_write(denali, mode | page, + 0x2000 | (write << 8) | page_count); + + /* 2. set memory high address bits 23:8 */ + denali->host_write(denali, mode | ((dma_addr >> 16) << 8), 0x2200); + + /* 3. set memory low address bits 23:8 */ + denali->host_write(denali, mode | ((dma_addr & 0xffff) << 8), 0x2300); + + /* 4. interrupt when complete, burst len = 64 bytes */ + denali->host_write(denali, mode | 0x14000, 0x2400); +} + +static int denali_pio_read(struct denali_nand_info *denali, void *buf, + size_t size, int page, int raw) +{ + u32 addr = DENALI_MAP01 | DENALI_BANK(denali) | page; + uint32_t *buf32 = (uint32_t *)buf; + uint32_t irq_status, ecc_err_mask; + int i; + + if (denali->caps & DENALI_CAP_HW_ECC_FIXUP) + ecc_err_mask = INTR__ECC_UNCOR_ERR; + else + ecc_err_mask = INTR__ECC_ERR; + + denali_reset_irq(denali); + + for (i = 0; i < size / 4; i++) + *buf32++ = denali->host_read(denali, addr); + + irq_status = denali_wait_for_irq(denali, INTR__PAGE_XFER_INC); + if (!(irq_status & INTR__PAGE_XFER_INC)) + return -EIO; + + if (irq_status & INTR__ERASED_PAGE) + memset(buf, 0xff, size); + + return irq_status & ecc_err_mask ? -EBADMSG : 0; +} + +static int denali_pio_write(struct denali_nand_info *denali, + const void *buf, size_t size, int page, int raw) +{ + u32 addr = DENALI_MAP01 | DENALI_BANK(denali) | page; + const uint32_t *buf32 = (uint32_t *)buf; + uint32_t irq_status; + int i; + + denali_reset_irq(denali); + + for (i = 0; i < size / 4; i++) + denali->host_write(denali, addr, *buf32++); + + irq_status = denali_wait_for_irq(denali, + INTR__PROGRAM_COMP | INTR__PROGRAM_FAIL); + if (!(irq_status & INTR__PROGRAM_COMP)) + return -EIO; + + return 0; +} + +static int denali_pio_xfer(struct denali_nand_info *denali, void *buf, + size_t size, int page, int raw, int write) +{ + if (write) + return denali_pio_write(denali, buf, size, page, raw); + else + return denali_pio_read(denali, buf, size, page, raw); +} + +static int denali_dma_xfer(struct denali_nand_info *denali, void *buf, + size_t size, int page, int raw, int write) +{ + dma_addr_t dma_addr; + uint32_t irq_mask, irq_status, ecc_err_mask; + enum dma_data_direction dir = write ? DMA_TO_DEVICE : DMA_FROM_DEVICE; + int ret = 0; + + dma_addr = dma_map_single(denali->dev, buf, size, dir); + if (dma_mapping_error(denali->dev, dma_addr)) { + dev_dbg(denali->dev, "Failed to DMA-map buffer. Trying PIO.\n"); + return denali_pio_xfer(denali, buf, size, page, raw, write); + } + + if (write) { + /* + * INTR__PROGRAM_COMP is never asserted for the DMA transfer. + * We can use INTR__DMA_CMD_COMP instead. This flag is asserted + * when the page program is completed. + */ + irq_mask = INTR__DMA_CMD_COMP | INTR__PROGRAM_FAIL; + ecc_err_mask = 0; + } else if (denali->caps & DENALI_CAP_HW_ECC_FIXUP) { + irq_mask = INTR__DMA_CMD_COMP; + ecc_err_mask = INTR__ECC_UNCOR_ERR; + } else { + irq_mask = INTR__DMA_CMD_COMP; + ecc_err_mask = INTR__ECC_ERR; + } + + iowrite32(DMA_ENABLE__FLAG, denali->reg + DMA_ENABLE); + + denali_reset_irq(denali); + denali->setup_dma(denali, dma_addr, page, write); + + irq_status = denali_wait_for_irq(denali, irq_mask); + if (!(irq_status & INTR__DMA_CMD_COMP)) + ret = -EIO; + else if (irq_status & ecc_err_mask) + ret = -EBADMSG; + + iowrite32(0, denali->reg + DMA_ENABLE); + + dma_unmap_single(denali->dev, dma_addr, size, dir); + + if (irq_status & INTR__ERASED_PAGE) + memset(buf, 0xff, size); + + return ret; +} + +static int denali_data_xfer(struct denali_nand_info *denali, void *buf, + size_t size, int page, int raw, int write) +{ + iowrite32(raw ? 0 : ECC_ENABLE__FLAG, denali->reg + ECC_ENABLE); + iowrite32(raw ? TRANSFER_SPARE_REG__FLAG : 0, + denali->reg + TRANSFER_SPARE_REG); + + if (denali->dma_avail) + return denali_dma_xfer(denali, buf, size, page, raw, write); + else + return denali_pio_xfer(denali, buf, size, page, raw, write); +} + +static void denali_oob_xfer(struct mtd_info *mtd, struct nand_chip *chip, + int page, int write) +{ + struct denali_nand_info *denali = mtd_to_denali(mtd); + int writesize = mtd->writesize; + int oobsize = mtd->oobsize; + uint8_t *bufpoi = chip->oob_poi; + int ecc_steps = chip->ecc.steps; + int ecc_size = chip->ecc.size; + int ecc_bytes = chip->ecc.bytes; + int oob_skip = denali->oob_skip_bytes; + size_t size = writesize + oobsize; + int i, pos, len; + + /* BBM at the beginning of the OOB area */ + if (write) + nand_prog_page_begin_op(chip, page, writesize, bufpoi, + oob_skip); + else + nand_read_page_op(chip, page, writesize, bufpoi, oob_skip); + bufpoi += oob_skip; + + /* OOB ECC */ + for (i = 0; i < ecc_steps; i++) { + pos = ecc_size + i * (ecc_size + ecc_bytes); + len = ecc_bytes; + + if (pos >= writesize) + pos += oob_skip; + else if (pos + len > writesize) + len = writesize - pos; + + if (write) + nand_change_write_column_op(chip, pos, bufpoi, len, + false); + else + nand_change_read_column_op(chip, pos, bufpoi, len, + false); + bufpoi += len; + if (len < ecc_bytes) { + len = ecc_bytes - len; + if (write) + nand_change_write_column_op(chip, writesize + + oob_skip, bufpoi, + len, false); + else + nand_change_read_column_op(chip, writesize + + oob_skip, bufpoi, + len, false); + bufpoi += len; + } + } + + /* OOB free */ + len = oobsize - (bufpoi - chip->oob_poi); + if (write) + nand_change_write_column_op(chip, size - len, bufpoi, len, + false); + else + nand_change_read_column_op(chip, size - len, bufpoi, len, + false); +} + +static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip, + uint8_t *buf, int oob_required, int page) +{ + struct denali_nand_info *denali = mtd_to_denali(mtd); + int writesize = mtd->writesize; + int oobsize = mtd->oobsize; + int ecc_steps = chip->ecc.steps; + int ecc_size = chip->ecc.size; + int ecc_bytes = chip->ecc.bytes; + void *tmp_buf = denali->buf; + int oob_skip = denali->oob_skip_bytes; + size_t size = writesize + oobsize; + int ret, i, pos, len; + + ret = denali_data_xfer(denali, tmp_buf, size, page, 1, 0); + if (ret) + return ret; + + /* Arrange the buffer for syndrome payload/ecc layout */ + if (buf) { + for (i = 0; i < ecc_steps; i++) { + pos = i * (ecc_size + ecc_bytes); + len = ecc_size; + + if (pos >= writesize) + pos += oob_skip; + else if (pos + len > writesize) + len = writesize - pos; + + memcpy(buf, tmp_buf + pos, len); + buf += len; + if (len < ecc_size) { + len = ecc_size - len; + memcpy(buf, tmp_buf + writesize + oob_skip, + len); + buf += len; + } + } + } + + if (oob_required) { + uint8_t *oob = chip->oob_poi; + + /* BBM at the beginning of the OOB area */ + memcpy(oob, tmp_buf + writesize, oob_skip); + oob += oob_skip; + + /* OOB ECC */ + for (i = 0; i < ecc_steps; i++) { + pos = ecc_size + i * (ecc_size + ecc_bytes); + len = ecc_bytes; + + if (pos >= writesize) + pos += oob_skip; + else if (pos + len > writesize) + len = writesize - pos; + + memcpy(oob, tmp_buf + pos, len); + oob += len; + if (len < ecc_bytes) { + len = ecc_bytes - len; + memcpy(oob, tmp_buf + writesize + oob_skip, + len); + oob += len; + } + } + + /* OOB free */ + len = oobsize - (oob - chip->oob_poi); + memcpy(oob, tmp_buf + size - len, len); + } + + return 0; +} + +static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip, + int page) +{ + denali_oob_xfer(mtd, chip, page, 0); + + return 0; +} + +static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip, + int page) +{ + struct denali_nand_info *denali = mtd_to_denali(mtd); + + denali_reset_irq(denali); + + denali_oob_xfer(mtd, chip, page, 1); + + return nand_prog_page_end_op(chip); +} + +static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip, + uint8_t *buf, int oob_required, int page) +{ + struct denali_nand_info *denali = mtd_to_denali(mtd); + unsigned long uncor_ecc_flags = 0; + int stat = 0; + int ret; + + ret = denali_data_xfer(denali, buf, mtd->writesize, page, 0, 0); + if (ret && ret != -EBADMSG) + return ret; + + if (denali->caps & DENALI_CAP_HW_ECC_FIXUP) + stat = denali_hw_ecc_fixup(mtd, denali, &uncor_ecc_flags); + else if (ret == -EBADMSG) + stat = denali_sw_ecc_fixup(mtd, denali, &uncor_ecc_flags, buf); + + if (stat < 0) + return stat; + + if (uncor_ecc_flags) { + ret = denali_read_oob(mtd, chip, page); + if (ret) + return ret; + + stat = denali_check_erased_page(mtd, chip, buf, + uncor_ecc_flags, stat); + } + + return stat; +} + +static int denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip, + const uint8_t *buf, int oob_required, int page) +{ + struct denali_nand_info *denali = mtd_to_denali(mtd); + int writesize = mtd->writesize; + int oobsize = mtd->oobsize; + int ecc_steps = chip->ecc.steps; + int ecc_size = chip->ecc.size; + int ecc_bytes = chip->ecc.bytes; + void *tmp_buf = denali->buf; + int oob_skip = denali->oob_skip_bytes; + size_t size = writesize + oobsize; + int i, pos, len; + + /* + * Fill the buffer with 0xff first except the full page transfer. + * This simplifies the logic. + */ + if (!buf || !oob_required) + memset(tmp_buf, 0xff, size); + + /* Arrange the buffer for syndrome payload/ecc layout */ + if (buf) { + for (i = 0; i < ecc_steps; i++) { + pos = i * (ecc_size + ecc_bytes); + len = ecc_size; + + if (pos >= writesize) + pos += oob_skip; + else if (pos + len > writesize) + len = writesize - pos; + + memcpy(tmp_buf + pos, buf, len); + buf += len; + if (len < ecc_size) { + len = ecc_size - len; + memcpy(tmp_buf + writesize + oob_skip, buf, + len); + buf += len; + } + } + } + + if (oob_required) { + const uint8_t *oob = chip->oob_poi; + + /* BBM at the beginning of the OOB area */ + memcpy(tmp_buf + writesize, oob, oob_skip); + oob += oob_skip; + + /* OOB ECC */ + for (i = 0; i < ecc_steps; i++) { + pos = ecc_size + i * (ecc_size + ecc_bytes); + len = ecc_bytes; + + if (pos >= writesize) + pos += oob_skip; + else if (pos + len > writesize) + len = writesize - pos; + + memcpy(tmp_buf + pos, oob, len); + oob += len; + if (len < ecc_bytes) { + len = ecc_bytes - len; + memcpy(tmp_buf + writesize + oob_skip, oob, + len); + oob += len; + } + } + + /* OOB free */ + len = oobsize - (oob - chip->oob_poi); + memcpy(tmp_buf + size - len, oob, len); + } + + return denali_data_xfer(denali, tmp_buf, size, page, 1, 1); +} + +static int denali_write_page(struct mtd_info *mtd, struct nand_chip *chip, + const uint8_t *buf, int oob_required, int page) +{ + struct denali_nand_info *denali = mtd_to_denali(mtd); + + return denali_data_xfer(denali, (void *)buf, mtd->writesize, + page, 0, 1); +} + +static void denali_select_chip(struct mtd_info *mtd, int chip) +{ + struct denali_nand_info *denali = mtd_to_denali(mtd); + + denali->active_bank = chip; +} + +static int denali_waitfunc(struct mtd_info *mtd, struct nand_chip *chip) +{ + struct denali_nand_info *denali = mtd_to_denali(mtd); + uint32_t irq_status; + + /* R/B# pin transitioned from low to high? */ + irq_status = denali_wait_for_irq(denali, INTR__INT_ACT); + + return irq_status & INTR__INT_ACT ? 0 : NAND_STATUS_FAIL; +} + +static int denali_erase(struct mtd_info *mtd, int page) +{ + struct denali_nand_info *denali = mtd_to_denali(mtd); + uint32_t irq_status; + + denali_reset_irq(denali); + + denali->host_write(denali, DENALI_MAP10 | DENALI_BANK(denali) | page, + DENALI_ERASE); + + /* wait for erase to complete or failure to occur */ + irq_status = denali_wait_for_irq(denali, + INTR__ERASE_COMP | INTR__ERASE_FAIL); + + return irq_status & INTR__ERASE_COMP ? 0 : -EIO; +} + +static int denali_setup_data_interface(struct mtd_info *mtd, int chipnr, + const struct nand_data_interface *conf) +{ + struct denali_nand_info *denali = mtd_to_denali(mtd); + const struct nand_sdr_timings *timings; + unsigned long t_clk; + int acc_clks, re_2_we, re_2_re, we_2_re, addr_2_data; + int rdwr_en_lo, rdwr_en_hi, rdwr_en_lo_hi, cs_setup; + int addr_2_data_mask; + uint32_t tmp; + + timings = nand_get_sdr_timings(conf); + if (IS_ERR(timings)) + return PTR_ERR(timings); + + /* clk_x period in picoseconds */ + t_clk = DIV_ROUND_DOWN_ULL(1000000000000ULL, denali->clk_x_rate); + if (!t_clk) + return -EINVAL; + + if (chipnr == NAND_DATA_IFACE_CHECK_ONLY) + return 0; + + /* tREA -> ACC_CLKS */ + acc_clks = DIV_ROUND_UP(timings->tREA_max, t_clk); + acc_clks = min_t(int, acc_clks, ACC_CLKS__VALUE); + + tmp = ioread32(denali->reg + ACC_CLKS); + tmp &= ~ACC_CLKS__VALUE; + tmp |= FIELD_PREP(ACC_CLKS__VALUE, acc_clks); + iowrite32(tmp, denali->reg + ACC_CLKS); + + /* tRWH -> RE_2_WE */ + re_2_we = DIV_ROUND_UP(timings->tRHW_min, t_clk); + re_2_we = min_t(int, re_2_we, RE_2_WE__VALUE); + + tmp = ioread32(denali->reg + RE_2_WE); + tmp &= ~RE_2_WE__VALUE; + tmp |= FIELD_PREP(RE_2_WE__VALUE, re_2_we); + iowrite32(tmp, denali->reg + RE_2_WE); + + /* tRHZ -> RE_2_RE */ + re_2_re = DIV_ROUND_UP(timings->tRHZ_max, t_clk); + re_2_re = min_t(int, re_2_re, RE_2_RE__VALUE); + + tmp = ioread32(denali->reg + RE_2_RE); + tmp &= ~RE_2_RE__VALUE; + tmp |= FIELD_PREP(RE_2_RE__VALUE, re_2_re); + iowrite32(tmp, denali->reg + RE_2_RE); + + /* + * tCCS, tWHR -> WE_2_RE + * + * With WE_2_RE properly set, the Denali controller automatically takes + * care of the delay; the driver need not set NAND_WAIT_TCCS. + */ + we_2_re = DIV_ROUND_UP(max(timings->tCCS_min, timings->tWHR_min), + t_clk); + we_2_re = min_t(int, we_2_re, TWHR2_AND_WE_2_RE__WE_2_RE); + + tmp = ioread32(denali->reg + TWHR2_AND_WE_2_RE); + tmp &= ~TWHR2_AND_WE_2_RE__WE_2_RE; + tmp |= FIELD_PREP(TWHR2_AND_WE_2_RE__WE_2_RE, we_2_re); + iowrite32(tmp, denali->reg + TWHR2_AND_WE_2_RE); + + /* tADL -> ADDR_2_DATA */ + + /* for older versions, ADDR_2_DATA is only 6 bit wide */ + addr_2_data_mask = TCWAW_AND_ADDR_2_DATA__ADDR_2_DATA; + if (denali->revision < 0x0501) + addr_2_data_mask >>= 1; + + addr_2_data = DIV_ROUND_UP(timings->tADL_min, t_clk); + addr_2_data = min_t(int, addr_2_data, addr_2_data_mask); + + tmp = ioread32(denali->reg + TCWAW_AND_ADDR_2_DATA); + tmp &= ~TCWAW_AND_ADDR_2_DATA__ADDR_2_DATA; + tmp |= FIELD_PREP(TCWAW_AND_ADDR_2_DATA__ADDR_2_DATA, addr_2_data); + iowrite32(tmp, denali->reg + TCWAW_AND_ADDR_2_DATA); + + /* tREH, tWH -> RDWR_EN_HI_CNT */ + rdwr_en_hi = DIV_ROUND_UP(max(timings->tREH_min, timings->tWH_min), + t_clk); + rdwr_en_hi = min_t(int, rdwr_en_hi, RDWR_EN_HI_CNT__VALUE); + + tmp = ioread32(denali->reg + RDWR_EN_HI_CNT); + tmp &= ~RDWR_EN_HI_CNT__VALUE; + tmp |= FIELD_PREP(RDWR_EN_HI_CNT__VALUE, rdwr_en_hi); + iowrite32(tmp, denali->reg + RDWR_EN_HI_CNT); + + /* tRP, tWP -> RDWR_EN_LO_CNT */ + rdwr_en_lo = DIV_ROUND_UP(max(timings->tRP_min, timings->tWP_min), + t_clk); + rdwr_en_lo_hi = DIV_ROUND_UP(max(timings->tRC_min, timings->tWC_min), + t_clk); + rdwr_en_lo_hi = max(rdwr_en_lo_hi, DENALI_CLK_X_MULT); + rdwr_en_lo = max(rdwr_en_lo, rdwr_en_lo_hi - rdwr_en_hi); + rdwr_en_lo = min_t(int, rdwr_en_lo, RDWR_EN_LO_CNT__VALUE); + + tmp = ioread32(denali->reg + RDWR_EN_LO_CNT); + tmp &= ~RDWR_EN_LO_CNT__VALUE; + tmp |= FIELD_PREP(RDWR_EN_LO_CNT__VALUE, rdwr_en_lo); + iowrite32(tmp, denali->reg + RDWR_EN_LO_CNT); + + /* tCS, tCEA -> CS_SETUP_CNT */ + cs_setup = max3((int)DIV_ROUND_UP(timings->tCS_min, t_clk) - rdwr_en_lo, + (int)DIV_ROUND_UP(timings->tCEA_max, t_clk) - acc_clks, + 0); + cs_setup = min_t(int, cs_setup, CS_SETUP_CNT__VALUE); + + tmp = ioread32(denali->reg + CS_SETUP_CNT); + tmp &= ~CS_SETUP_CNT__VALUE; + tmp |= FIELD_PREP(CS_SETUP_CNT__VALUE, cs_setup); + iowrite32(tmp, denali->reg + CS_SETUP_CNT); + + return 0; +} + +static void denali_reset_banks(struct denali_nand_info *denali) +{ + u32 irq_status; + int i; + + for (i = 0; i < denali->max_banks; i++) { + denali->active_bank = i; + + denali_reset_irq(denali); + + iowrite32(DEVICE_RESET__BANK(i), + denali->reg + DEVICE_RESET); + + irq_status = denali_wait_for_irq(denali, + INTR__RST_COMP | INTR__INT_ACT | INTR__TIME_OUT); + if (!(irq_status & INTR__INT_ACT)) + break; + } + + dev_dbg(denali->dev, "%d chips connected\n", i); + denali->max_banks = i; +} + +static void denali_hw_init(struct denali_nand_info *denali) +{ + /* + * The REVISION register may not be reliable. Platforms are allowed to + * override it. + */ + if (!denali->revision) + denali->revision = swab16(ioread32(denali->reg + REVISION)); + + /* + * tell driver how many bit controller will skip before + * writing ECC code in OOB, this register may be already + * set by firmware. So we read this value out. + * if this value is 0, just let it be. + */ + denali->oob_skip_bytes = ioread32(denali->reg + SPARE_AREA_SKIP_BYTES); + denali_detect_max_banks(denali); + iowrite32(0x0F, denali->reg + RB_PIN_ENABLED); + iowrite32(CHIP_EN_DONT_CARE__FLAG, denali->reg + CHIP_ENABLE_DONT_CARE); + + iowrite32(0xffff, denali->reg + SPARE_AREA_MARKER); +} + +int denali_calc_ecc_bytes(int step_size, int strength) +{ + /* BCH code. Denali requires ecc.bytes to be multiple of 2 */ + return DIV_ROUND_UP(strength * fls(step_size * 8), 16) * 2; +} +EXPORT_SYMBOL(denali_calc_ecc_bytes); + +static int denali_ecc_setup(struct mtd_info *mtd, struct nand_chip *chip, + struct denali_nand_info *denali) +{ + int oobavail = mtd->oobsize - denali->oob_skip_bytes; + int ret; + + /* + * If .size and .strength are already set (usually by DT), + * check if they are supported by this controller. + */ + if (chip->ecc.size && chip->ecc.strength) + return nand_check_ecc_caps(chip, denali->ecc_caps, oobavail); + + /* + * We want .size and .strength closest to the chip's requirement + * unless NAND_ECC_MAXIMIZE is requested. + */ + if (!(chip->ecc.options & NAND_ECC_MAXIMIZE)) { + ret = nand_match_ecc_req(chip, denali->ecc_caps, oobavail); + if (!ret) + return 0; + } + + /* Max ECC strength is the last thing we can do */ + return nand_maximize_ecc(chip, denali->ecc_caps, oobavail); +} + +static int denali_ooblayout_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct denali_nand_info *denali = mtd_to_denali(mtd); + struct nand_chip *chip = mtd_to_nand(mtd); + + if (section) + return -ERANGE; + + oobregion->offset = denali->oob_skip_bytes; + oobregion->length = chip->ecc.total; + + return 0; +} + +static int denali_ooblayout_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct denali_nand_info *denali = mtd_to_denali(mtd); + struct nand_chip *chip = mtd_to_nand(mtd); + + if (section) + return -ERANGE; + + oobregion->offset = chip->ecc.total + denali->oob_skip_bytes; + oobregion->length = mtd->oobsize - oobregion->offset; + + return 0; +} + +static const struct mtd_ooblayout_ops denali_ooblayout_ops = { + .ecc = denali_ooblayout_ecc, + .free = denali_ooblayout_free, +}; + +static int denali_multidev_fixup(struct denali_nand_info *denali) +{ + struct nand_chip *chip = &denali->nand; + struct mtd_info *mtd = nand_to_mtd(chip); + + /* + * Support for multi device: + * When the IP configuration is x16 capable and two x8 chips are + * connected in parallel, DEVICES_CONNECTED should be set to 2. + * In this case, the core framework knows nothing about this fact, + * so we should tell it the _logical_ pagesize and anything necessary. + */ + denali->devs_per_cs = ioread32(denali->reg + DEVICES_CONNECTED); + + /* + * On some SoCs, DEVICES_CONNECTED is not auto-detected. + * For those, DEVICES_CONNECTED is left to 0. Set 1 if it is the case. + */ + if (denali->devs_per_cs == 0) { + denali->devs_per_cs = 1; + iowrite32(1, denali->reg + DEVICES_CONNECTED); + } + + if (denali->devs_per_cs == 1) + return 0; + + if (denali->devs_per_cs != 2) { + dev_err(denali->dev, "unsupported number of devices %d\n", + denali->devs_per_cs); + return -EINVAL; + } + + /* 2 chips in parallel */ + mtd->size <<= 1; + mtd->erasesize <<= 1; + mtd->writesize <<= 1; + mtd->oobsize <<= 1; + chip->chipsize <<= 1; + chip->page_shift += 1; + chip->phys_erase_shift += 1; + chip->bbt_erase_shift += 1; + chip->chip_shift += 1; + chip->pagemask <<= 1; + chip->ecc.size <<= 1; + chip->ecc.bytes <<= 1; + chip->ecc.strength <<= 1; + denali->oob_skip_bytes <<= 1; + + return 0; +} + +int denali_init(struct denali_nand_info *denali) +{ + struct nand_chip *chip = &denali->nand; + struct mtd_info *mtd = nand_to_mtd(chip); + u32 features = ioread32(denali->reg + FEATURES); + int ret; + + mtd->dev.parent = denali->dev; + denali_hw_init(denali); + + init_completion(&denali->complete); + spin_lock_init(&denali->irq_lock); + + denali_clear_irq_all(denali); + + ret = devm_request_irq(denali->dev, denali->irq, denali_isr, + IRQF_SHARED, DENALI_NAND_NAME, denali); + if (ret) { + dev_err(denali->dev, "Unable to request IRQ\n"); + return ret; + } + + denali_enable_irq(denali); + denali_reset_banks(denali); + + denali->active_bank = DENALI_INVALID_BANK; + + nand_set_flash_node(chip, denali->dev->of_node); + /* Fallback to the default name if DT did not give "label" property */ + if (!mtd->name) + mtd->name = "denali-nand"; + + chip->select_chip = denali_select_chip; + chip->read_byte = denali_read_byte; + chip->write_byte = denali_write_byte; + chip->read_word = denali_read_word; + chip->cmd_ctrl = denali_cmd_ctrl; + chip->dev_ready = denali_dev_ready; + chip->waitfunc = denali_waitfunc; + + if (features & FEATURES__INDEX_ADDR) { + denali->host_read = denali_indexed_read; + denali->host_write = denali_indexed_write; + } else { + denali->host_read = denali_direct_read; + denali->host_write = denali_direct_write; + } + + /* clk rate info is needed for setup_data_interface */ + if (denali->clk_x_rate) + chip->setup_data_interface = denali_setup_data_interface; + + ret = nand_scan_ident(mtd, denali->max_banks, NULL); + if (ret) + goto disable_irq; + + if (ioread32(denali->reg + FEATURES) & FEATURES__DMA) + denali->dma_avail = 1; + + if (denali->dma_avail) { + int dma_bit = denali->caps & DENALI_CAP_DMA_64BIT ? 64 : 32; + + ret = dma_set_mask(denali->dev, DMA_BIT_MASK(dma_bit)); + if (ret) { + dev_info(denali->dev, + "Failed to set DMA mask. Disabling DMA.\n"); + denali->dma_avail = 0; + } + } + + if (denali->dma_avail) { + chip->options |= NAND_USE_BOUNCE_BUFFER; + chip->buf_align = 16; + if (denali->caps & DENALI_CAP_DMA_64BIT) + denali->setup_dma = denali_setup_dma64; + else + denali->setup_dma = denali_setup_dma32; + } + + chip->bbt_options |= NAND_BBT_USE_FLASH; + chip->bbt_options |= NAND_BBT_NO_OOB; + chip->ecc.mode = NAND_ECC_HW_SYNDROME; + chip->options |= NAND_NO_SUBPAGE_WRITE; + + ret = denali_ecc_setup(mtd, chip, denali); + if (ret) { + dev_err(denali->dev, "Failed to setup ECC settings.\n"); + goto disable_irq; + } + + dev_dbg(denali->dev, + "chosen ECC settings: step=%d, strength=%d, bytes=%d\n", + chip->ecc.size, chip->ecc.strength, chip->ecc.bytes); + + iowrite32(FIELD_PREP(ECC_CORRECTION__ERASE_THRESHOLD, 1) | + FIELD_PREP(ECC_CORRECTION__VALUE, chip->ecc.strength), + denali->reg + ECC_CORRECTION); + iowrite32(mtd->erasesize / mtd->writesize, + denali->reg + PAGES_PER_BLOCK); + iowrite32(chip->options & NAND_BUSWIDTH_16 ? 1 : 0, + denali->reg + DEVICE_WIDTH); + iowrite32(chip->options & NAND_ROW_ADDR_3 ? 0 : TWO_ROW_ADDR_CYCLES__FLAG, + denali->reg + TWO_ROW_ADDR_CYCLES); + iowrite32(mtd->writesize, denali->reg + DEVICE_MAIN_AREA_SIZE); + iowrite32(mtd->oobsize, denali->reg + DEVICE_SPARE_AREA_SIZE); + + iowrite32(chip->ecc.size, denali->reg + CFG_DATA_BLOCK_SIZE); + iowrite32(chip->ecc.size, denali->reg + CFG_LAST_DATA_BLOCK_SIZE); + /* chip->ecc.steps is set by nand_scan_tail(); not available here */ + iowrite32(mtd->writesize / chip->ecc.size, + denali->reg + CFG_NUM_DATA_BLOCKS); + + mtd_set_ooblayout(mtd, &denali_ooblayout_ops); + + if (chip->options & NAND_BUSWIDTH_16) { + chip->read_buf = denali_read_buf16; + chip->write_buf = denali_write_buf16; + } else { + chip->read_buf = denali_read_buf; + chip->write_buf = denali_write_buf; + } + chip->ecc.read_page = denali_read_page; + chip->ecc.read_page_raw = denali_read_page_raw; + chip->ecc.write_page = denali_write_page; + chip->ecc.write_page_raw = denali_write_page_raw; + chip->ecc.read_oob = denali_read_oob; + chip->ecc.write_oob = denali_write_oob; + chip->erase = denali_erase; + + ret = denali_multidev_fixup(denali); + if (ret) + goto disable_irq; + + /* + * This buffer is DMA-mapped by denali_{read,write}_page_raw. Do not + * use devm_kmalloc() because the memory allocated by devm_ does not + * guarantee DMA-safe alignment. + */ + denali->buf = kmalloc(mtd->writesize + mtd->oobsize, GFP_KERNEL); + if (!denali->buf) { + ret = -ENOMEM; + goto disable_irq; + } + + ret = nand_scan_tail(mtd); + if (ret) + goto free_buf; + + ret = mtd_device_register(mtd, NULL, 0); + if (ret) { + dev_err(denali->dev, "Failed to register MTD: %d\n", ret); + goto free_buf; + } + return 0; + +free_buf: + kfree(denali->buf); +disable_irq: + denali_disable_irq(denali); + + return ret; +} +EXPORT_SYMBOL(denali_init); + +void denali_remove(struct denali_nand_info *denali) +{ + struct mtd_info *mtd = nand_to_mtd(&denali->nand); + + nand_release(mtd); + kfree(denali->buf); + denali_disable_irq(denali); +} +EXPORT_SYMBOL(denali_remove); diff --git a/drivers/mtd/nand/raw/denali.h b/drivers/mtd/nand/raw/denali.h new file mode 100644 index 000000000000..9ad33d237378 --- /dev/null +++ b/drivers/mtd/nand/raw/denali.h @@ -0,0 +1,335 @@ +/* + * NAND Flash Controller Device Driver + * Copyright (c) 2009 - 2010, Intel Corporation and its suppliers. + * + * This program is free software; you can redistribute it and/or modify it + * under the terms and conditions of the GNU General Public License, + * version 2, as published by the Free Software Foundation. + * + * This program is distributed in the hope it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for + * more details. + */ + +#ifndef __DENALI_H__ +#define __DENALI_H__ + +#include +#include +#include +#include +#include + +#define DEVICE_RESET 0x0 +#define DEVICE_RESET__BANK(bank) BIT(bank) + +#define TRANSFER_SPARE_REG 0x10 +#define TRANSFER_SPARE_REG__FLAG BIT(0) + +#define LOAD_WAIT_CNT 0x20 +#define LOAD_WAIT_CNT__VALUE GENMASK(15, 0) + +#define PROGRAM_WAIT_CNT 0x30 +#define PROGRAM_WAIT_CNT__VALUE GENMASK(15, 0) + +#define ERASE_WAIT_CNT 0x40 +#define ERASE_WAIT_CNT__VALUE GENMASK(15, 0) + +#define INT_MON_CYCCNT 0x50 +#define INT_MON_CYCCNT__VALUE GENMASK(15, 0) + +#define RB_PIN_ENABLED 0x60 +#define RB_PIN_ENABLED__BANK(bank) BIT(bank) + +#define MULTIPLANE_OPERATION 0x70 +#define MULTIPLANE_OPERATION__FLAG BIT(0) + +#define MULTIPLANE_READ_ENABLE 0x80 +#define MULTIPLANE_READ_ENABLE__FLAG BIT(0) + +#define COPYBACK_DISABLE 0x90 +#define COPYBACK_DISABLE__FLAG BIT(0) + +#define CACHE_WRITE_ENABLE 0xa0 +#define CACHE_WRITE_ENABLE__FLAG BIT(0) + +#define CACHE_READ_ENABLE 0xb0 +#define CACHE_READ_ENABLE__FLAG BIT(0) + +#define PREFETCH_MODE 0xc0 +#define PREFETCH_MODE__PREFETCH_EN BIT(0) +#define PREFETCH_MODE__PREFETCH_BURST_LENGTH GENMASK(15, 4) + +#define CHIP_ENABLE_DONT_CARE 0xd0 +#define CHIP_EN_DONT_CARE__FLAG BIT(0) + +#define ECC_ENABLE 0xe0 +#define ECC_ENABLE__FLAG BIT(0) + +#define GLOBAL_INT_ENABLE 0xf0 +#define GLOBAL_INT_EN_FLAG BIT(0) + +#define TWHR2_AND_WE_2_RE 0x100 +#define TWHR2_AND_WE_2_RE__WE_2_RE GENMASK(5, 0) +#define TWHR2_AND_WE_2_RE__TWHR2 GENMASK(13, 8) + +#define TCWAW_AND_ADDR_2_DATA 0x110 +/* The width of ADDR_2_DATA is 6 bit for old IP, 7 bit for new IP */ +#define TCWAW_AND_ADDR_2_DATA__ADDR_2_DATA GENMASK(6, 0) +#define TCWAW_AND_ADDR_2_DATA__TCWAW GENMASK(13, 8) + +#define RE_2_WE 0x120 +#define RE_2_WE__VALUE GENMASK(5, 0) + +#define ACC_CLKS 0x130 +#define ACC_CLKS__VALUE GENMASK(3, 0) + +#define NUMBER_OF_PLANES 0x140 +#define NUMBER_OF_PLANES__VALUE GENMASK(2, 0) + +#define PAGES_PER_BLOCK 0x150 +#define PAGES_PER_BLOCK__VALUE GENMASK(15, 0) + +#define DEVICE_WIDTH 0x160 +#define DEVICE_WIDTH__VALUE GENMASK(1, 0) + +#define DEVICE_MAIN_AREA_SIZE 0x170 +#define DEVICE_MAIN_AREA_SIZE__VALUE GENMASK(15, 0) + +#define DEVICE_SPARE_AREA_SIZE 0x180 +#define DEVICE_SPARE_AREA_SIZE__VALUE GENMASK(15, 0) + +#define TWO_ROW_ADDR_CYCLES 0x190 +#define TWO_ROW_ADDR_CYCLES__FLAG BIT(0) + +#define MULTIPLANE_ADDR_RESTRICT 0x1a0 +#define MULTIPLANE_ADDR_RESTRICT__FLAG BIT(0) + +#define ECC_CORRECTION 0x1b0 +#define ECC_CORRECTION__VALUE GENMASK(4, 0) +#define ECC_CORRECTION__ERASE_THRESHOLD GENMASK(31, 16) + +#define READ_MODE 0x1c0 +#define READ_MODE__VALUE GENMASK(3, 0) + +#define WRITE_MODE 0x1d0 +#define WRITE_MODE__VALUE GENMASK(3, 0) + +#define COPYBACK_MODE 0x1e0 +#define COPYBACK_MODE__VALUE GENMASK(3, 0) + +#define RDWR_EN_LO_CNT 0x1f0 +#define RDWR_EN_LO_CNT__VALUE GENMASK(4, 0) + +#define RDWR_EN_HI_CNT 0x200 +#define RDWR_EN_HI_CNT__VALUE GENMASK(4, 0) + +#define MAX_RD_DELAY 0x210 +#define MAX_RD_DELAY__VALUE GENMASK(3, 0) + +#define CS_SETUP_CNT 0x220 +#define CS_SETUP_CNT__VALUE GENMASK(4, 0) +#define CS_SETUP_CNT__TWB GENMASK(17, 12) + +#define SPARE_AREA_SKIP_BYTES 0x230 +#define SPARE_AREA_SKIP_BYTES__VALUE GENMASK(5, 0) + +#define SPARE_AREA_MARKER 0x240 +#define SPARE_AREA_MARKER__VALUE GENMASK(15, 0) + +#define DEVICES_CONNECTED 0x250 +#define DEVICES_CONNECTED__VALUE GENMASK(2, 0) + +#define DIE_MASK 0x260 +#define DIE_MASK__VALUE GENMASK(7, 0) + +#define FIRST_BLOCK_OF_NEXT_PLANE 0x270 +#define FIRST_BLOCK_OF_NEXT_PLANE__VALUE GENMASK(15, 0) + +#define WRITE_PROTECT 0x280 +#define WRITE_PROTECT__FLAG BIT(0) + +#define RE_2_RE 0x290 +#define RE_2_RE__VALUE GENMASK(5, 0) + +#define MANUFACTURER_ID 0x300 +#define MANUFACTURER_ID__VALUE GENMASK(7, 0) + +#define DEVICE_ID 0x310 +#define DEVICE_ID__VALUE GENMASK(7, 0) + +#define DEVICE_PARAM_0 0x320 +#define DEVICE_PARAM_0__VALUE GENMASK(7, 0) + +#define DEVICE_PARAM_1 0x330 +#define DEVICE_PARAM_1__VALUE GENMASK(7, 0) + +#define DEVICE_PARAM_2 0x340 +#define DEVICE_PARAM_2__VALUE GENMASK(7, 0) + +#define LOGICAL_PAGE_DATA_SIZE 0x350 +#define LOGICAL_PAGE_DATA_SIZE__VALUE GENMASK(15, 0) + +#define LOGICAL_PAGE_SPARE_SIZE 0x360 +#define LOGICAL_PAGE_SPARE_SIZE__VALUE GENMASK(15, 0) + +#define REVISION 0x370 +#define REVISION__VALUE GENMASK(15, 0) + +#define ONFI_DEVICE_FEATURES 0x380 +#define ONFI_DEVICE_FEATURES__VALUE GENMASK(5, 0) + +#define ONFI_OPTIONAL_COMMANDS 0x390 +#define ONFI_OPTIONAL_COMMANDS__VALUE GENMASK(5, 0) + +#define ONFI_TIMING_MODE 0x3a0 +#define ONFI_TIMING_MODE__VALUE GENMASK(5, 0) + +#define ONFI_PGM_CACHE_TIMING_MODE 0x3b0 +#define ONFI_PGM_CACHE_TIMING_MODE__VALUE GENMASK(5, 0) + +#define ONFI_DEVICE_NO_OF_LUNS 0x3c0 +#define ONFI_DEVICE_NO_OF_LUNS__NO_OF_LUNS GENMASK(7, 0) +#define ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE BIT(8) + +#define ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_L 0x3d0 +#define ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_L__VALUE GENMASK(15, 0) + +#define ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_U 0x3e0 +#define ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_U__VALUE GENMASK(15, 0) + +#define FEATURES 0x3f0 +#define FEATURES__N_BANKS GENMASK(1, 0) +#define FEATURES__ECC_MAX_ERR GENMASK(5, 2) +#define FEATURES__DMA BIT(6) +#define FEATURES__CMD_DMA BIT(7) +#define FEATURES__PARTITION BIT(8) +#define FEATURES__XDMA_SIDEBAND BIT(9) +#define FEATURES__GPREG BIT(10) +#define FEATURES__INDEX_ADDR BIT(11) + +#define TRANSFER_MODE 0x400 +#define TRANSFER_MODE__VALUE GENMASK(1, 0) + +#define INTR_STATUS(bank) (0x410 + (bank) * 0x50) +#define INTR_EN(bank) (0x420 + (bank) * 0x50) +/* bit[1:0] is used differently depending on IP version */ +#define INTR__ECC_UNCOR_ERR BIT(0) /* new IP */ +#define INTR__ECC_TRANSACTION_DONE BIT(0) /* old IP */ +#define INTR__ECC_ERR BIT(1) /* old IP */ +#define INTR__DMA_CMD_COMP BIT(2) +#define INTR__TIME_OUT BIT(3) +#define INTR__PROGRAM_FAIL BIT(4) +#define INTR__ERASE_FAIL BIT(5) +#define INTR__LOAD_COMP BIT(6) +#define INTR__PROGRAM_COMP BIT(7) +#define INTR__ERASE_COMP BIT(8) +#define INTR__PIPE_CPYBCK_CMD_COMP BIT(9) +#define INTR__LOCKED_BLK BIT(10) +#define INTR__UNSUP_CMD BIT(11) +#define INTR__INT_ACT BIT(12) +#define INTR__RST_COMP BIT(13) +#define INTR__PIPE_CMD_ERR BIT(14) +#define INTR__PAGE_XFER_INC BIT(15) +#define INTR__ERASED_PAGE BIT(16) + +#define PAGE_CNT(bank) (0x430 + (bank) * 0x50) +#define ERR_PAGE_ADDR(bank) (0x440 + (bank) * 0x50) +#define ERR_BLOCK_ADDR(bank) (0x450 + (bank) * 0x50) + +#define ECC_THRESHOLD 0x600 +#define ECC_THRESHOLD__VALUE GENMASK(9, 0) + +#define ECC_ERROR_BLOCK_ADDRESS 0x610 +#define ECC_ERROR_BLOCK_ADDRESS__VALUE GENMASK(15, 0) + +#define ECC_ERROR_PAGE_ADDRESS 0x620 +#define ECC_ERROR_PAGE_ADDRESS__VALUE GENMASK(11, 0) +#define ECC_ERROR_PAGE_ADDRESS__BANK GENMASK(15, 12) + +#define ECC_ERROR_ADDRESS 0x630 +#define ECC_ERROR_ADDRESS__OFFSET GENMASK(11, 0) +#define ECC_ERROR_ADDRESS__SECTOR GENMASK(15, 12) + +#define ERR_CORRECTION_INFO 0x640 +#define ERR_CORRECTION_INFO__BYTE GENMASK(7, 0) +#define ERR_CORRECTION_INFO__DEVICE GENMASK(11, 8) +#define ERR_CORRECTION_INFO__UNCOR BIT(14) +#define ERR_CORRECTION_INFO__LAST_ERR BIT(15) + +#define ECC_COR_INFO(bank) (0x650 + (bank) / 2 * 0x10) +#define ECC_COR_INFO__SHIFT(bank) ((bank) % 2 * 8) +#define ECC_COR_INFO__MAX_ERRORS GENMASK(6, 0) +#define ECC_COR_INFO__UNCOR_ERR BIT(7) + +#define CFG_DATA_BLOCK_SIZE 0x6b0 + +#define CFG_LAST_DATA_BLOCK_SIZE 0x6c0 + +#define CFG_NUM_DATA_BLOCKS 0x6d0 + +#define CFG_META_DATA_SIZE 0x6e0 + +#define DMA_ENABLE 0x700 +#define DMA_ENABLE__FLAG BIT(0) + +#define IGNORE_ECC_DONE 0x710 +#define IGNORE_ECC_DONE__FLAG BIT(0) + +#define DMA_INTR 0x720 +#define DMA_INTR_EN 0x730 +#define DMA_INTR__TARGET_ERROR BIT(0) +#define DMA_INTR__DESC_COMP_CHANNEL0 BIT(1) +#define DMA_INTR__DESC_COMP_CHANNEL1 BIT(2) +#define DMA_INTR__DESC_COMP_CHANNEL2 BIT(3) +#define DMA_INTR__DESC_COMP_CHANNEL3 BIT(4) +#define DMA_INTR__MEMCOPY_DESC_COMP BIT(5) + +#define TARGET_ERR_ADDR_LO 0x740 +#define TARGET_ERR_ADDR_LO__VALUE GENMASK(15, 0) + +#define TARGET_ERR_ADDR_HI 0x750 +#define TARGET_ERR_ADDR_HI__VALUE GENMASK(15, 0) + +#define CHNL_ACTIVE 0x760 +#define CHNL_ACTIVE__CHANNEL0 BIT(0) +#define CHNL_ACTIVE__CHANNEL1 BIT(1) +#define CHNL_ACTIVE__CHANNEL2 BIT(2) +#define CHNL_ACTIVE__CHANNEL3 BIT(3) + +struct denali_nand_info { + struct nand_chip nand; + unsigned long clk_x_rate; /* bus interface clock rate */ + int active_bank; /* currently selected bank */ + struct device *dev; + void __iomem *reg; /* Register Interface */ + void __iomem *host; /* Host Data/Command Interface */ + struct completion complete; + spinlock_t irq_lock; /* protect irq_mask and irq_status */ + u32 irq_mask; /* interrupts we are waiting for */ + u32 irq_status; /* interrupts that have happened */ + int irq; + void *buf; /* for syndrome layout conversion */ + dma_addr_t dma_addr; + int dma_avail; /* can support DMA? */ + int devs_per_cs; /* devices connected in parallel */ + int oob_skip_bytes; /* number of bytes reserved for BBM */ + int max_banks; + unsigned int revision; /* IP revision */ + unsigned int caps; /* IP capability (or quirk) */ + const struct nand_ecc_caps *ecc_caps; + u32 (*host_read)(struct denali_nand_info *denali, u32 addr); + void (*host_write)(struct denali_nand_info *denali, u32 addr, u32 data); + void (*setup_dma)(struct denali_nand_info *denali, dma_addr_t dma_addr, + int page, int write); +}; + +#define DENALI_CAP_HW_ECC_FIXUP BIT(0) +#define DENALI_CAP_DMA_64BIT BIT(1) + +int denali_calc_ecc_bytes(int step_size, int strength); +int denali_init(struct denali_nand_info *denali); +void denali_remove(struct denali_nand_info *denali); + +#endif /* __DENALI_H__ */ diff --git a/drivers/mtd/nand/raw/denali_dt.c b/drivers/mtd/nand/raw/denali_dt.c new file mode 100644 index 000000000000..cfd33e6ca77f --- /dev/null +++ b/drivers/mtd/nand/raw/denali_dt.c @@ -0,0 +1,163 @@ +/* + * NAND Flash Controller Device Driver for DT + * + * Copyright © 2011, Picochip. + * + * This program is free software; you can redistribute it and/or modify it + * under the terms and conditions of the GNU General Public License, + * version 2, as published by the Free Software Foundation. + * + * This program is distributed in the hope it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for + * more details. + */ + +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#include "denali.h" + +struct denali_dt { + struct denali_nand_info denali; + struct clk *clk; +}; + +struct denali_dt_data { + unsigned int revision; + unsigned int caps; + const struct nand_ecc_caps *ecc_caps; +}; + +NAND_ECC_CAPS_SINGLE(denali_socfpga_ecc_caps, denali_calc_ecc_bytes, + 512, 8, 15); +static const struct denali_dt_data denali_socfpga_data = { + .caps = DENALI_CAP_HW_ECC_FIXUP, + .ecc_caps = &denali_socfpga_ecc_caps, +}; + +NAND_ECC_CAPS_SINGLE(denali_uniphier_v5a_ecc_caps, denali_calc_ecc_bytes, + 1024, 8, 16, 24); +static const struct denali_dt_data denali_uniphier_v5a_data = { + .caps = DENALI_CAP_HW_ECC_FIXUP | + DENALI_CAP_DMA_64BIT, + .ecc_caps = &denali_uniphier_v5a_ecc_caps, +}; + +NAND_ECC_CAPS_SINGLE(denali_uniphier_v5b_ecc_caps, denali_calc_ecc_bytes, + 1024, 8, 16); +static const struct denali_dt_data denali_uniphier_v5b_data = { + .revision = 0x0501, + .caps = DENALI_CAP_HW_ECC_FIXUP | + DENALI_CAP_DMA_64BIT, + .ecc_caps = &denali_uniphier_v5b_ecc_caps, +}; + +static const struct of_device_id denali_nand_dt_ids[] = { + { + .compatible = "altr,socfpga-denali-nand", + .data = &denali_socfpga_data, + }, + { + .compatible = "socionext,uniphier-denali-nand-v5a", + .data = &denali_uniphier_v5a_data, + }, + { + .compatible = "socionext,uniphier-denali-nand-v5b", + .data = &denali_uniphier_v5b_data, + }, + { /* sentinel */ } +}; +MODULE_DEVICE_TABLE(of, denali_nand_dt_ids); + +static int denali_dt_probe(struct platform_device *pdev) +{ + struct resource *res; + struct denali_dt *dt; + const struct denali_dt_data *data; + struct denali_nand_info *denali; + int ret; + + dt = devm_kzalloc(&pdev->dev, sizeof(*dt), GFP_KERNEL); + if (!dt) + return -ENOMEM; + denali = &dt->denali; + + data = of_device_get_match_data(&pdev->dev); + if (data) { + denali->revision = data->revision; + denali->caps = data->caps; + denali->ecc_caps = data->ecc_caps; + } + + denali->dev = &pdev->dev; + denali->irq = platform_get_irq(pdev, 0); + if (denali->irq < 0) { + dev_err(&pdev->dev, "no irq defined\n"); + return denali->irq; + } + + res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "denali_reg"); + denali->reg = devm_ioremap_resource(&pdev->dev, res); + if (IS_ERR(denali->reg)) + return PTR_ERR(denali->reg); + + res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_data"); + denali->host = devm_ioremap_resource(&pdev->dev, res); + if (IS_ERR(denali->host)) + return PTR_ERR(denali->host); + + dt->clk = devm_clk_get(&pdev->dev, NULL); + if (IS_ERR(dt->clk)) { + dev_err(&pdev->dev, "no clk available\n"); + return PTR_ERR(dt->clk); + } + ret = clk_prepare_enable(dt->clk); + if (ret) + return ret; + + denali->clk_x_rate = clk_get_rate(dt->clk); + + ret = denali_init(denali); + if (ret) + goto out_disable_clk; + + platform_set_drvdata(pdev, dt); + return 0; + +out_disable_clk: + clk_disable_unprepare(dt->clk); + + return ret; +} + +static int denali_dt_remove(struct platform_device *pdev) +{ + struct denali_dt *dt = platform_get_drvdata(pdev); + + denali_remove(&dt->denali); + clk_disable_unprepare(dt->clk); + + return 0; +} + +static struct platform_driver denali_dt_driver = { + .probe = denali_dt_probe, + .remove = denali_dt_remove, + .driver = { + .name = "denali-nand-dt", + .of_match_table = denali_nand_dt_ids, + }, +}; +module_platform_driver(denali_dt_driver); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Jamie Iles"); +MODULE_DESCRIPTION("DT driver for Denali NAND controller"); diff --git a/drivers/mtd/nand/raw/denali_pci.c b/drivers/mtd/nand/raw/denali_pci.c new file mode 100644 index 000000000000..49cb3e1f8bd0 --- /dev/null +++ b/drivers/mtd/nand/raw/denali_pci.c @@ -0,0 +1,131 @@ +/* + * NAND Flash Controller Device Driver + * Copyright © 2009-2010, Intel Corporation and its suppliers. + * + * This program is free software; you can redistribute it and/or modify it + * under the terms and conditions of the GNU General Public License, + * version 2, as published by the Free Software Foundation. + * + * This program is distributed in the hope it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for + * more details. + */ + +#include +#include +#include +#include +#include + +#include "denali.h" + +#define DENALI_NAND_NAME "denali-nand-pci" + +#define INTEL_CE4100 1 +#define INTEL_MRST 2 + +/* List of platforms this NAND controller has be integrated into */ +static const struct pci_device_id denali_pci_ids[] = { + { PCI_VDEVICE(INTEL, 0x0701), INTEL_CE4100 }, + { PCI_VDEVICE(INTEL, 0x0809), INTEL_MRST }, + { /* end: all zeroes */ } +}; +MODULE_DEVICE_TABLE(pci, denali_pci_ids); + +NAND_ECC_CAPS_SINGLE(denali_pci_ecc_caps, denali_calc_ecc_bytes, 512, 8, 15); + +static int denali_pci_probe(struct pci_dev *dev, const struct pci_device_id *id) +{ + int ret; + resource_size_t csr_base, mem_base; + unsigned long csr_len, mem_len; + struct denali_nand_info *denali; + + denali = devm_kzalloc(&dev->dev, sizeof(*denali), GFP_KERNEL); + if (!denali) + return -ENOMEM; + + ret = pcim_enable_device(dev); + if (ret) { + dev_err(&dev->dev, "Spectra: pci_enable_device failed.\n"); + return ret; + } + + if (id->driver_data == INTEL_CE4100) { + mem_base = pci_resource_start(dev, 0); + mem_len = pci_resource_len(dev, 1); + csr_base = pci_resource_start(dev, 1); + csr_len = pci_resource_len(dev, 1); + } else { + csr_base = pci_resource_start(dev, 0); + csr_len = pci_resource_len(dev, 0); + mem_base = pci_resource_start(dev, 1); + mem_len = pci_resource_len(dev, 1); + if (!mem_len) { + mem_base = csr_base + csr_len; + mem_len = csr_len; + } + } + + pci_set_master(dev); + denali->dev = &dev->dev; + denali->irq = dev->irq; + denali->ecc_caps = &denali_pci_ecc_caps; + denali->nand.ecc.options |= NAND_ECC_MAXIMIZE; + denali->clk_x_rate = 200000000; /* 200 MHz */ + + ret = pci_request_regions(dev, DENALI_NAND_NAME); + if (ret) { + dev_err(&dev->dev, "Spectra: Unable to request memory regions\n"); + return ret; + } + + denali->reg = ioremap_nocache(csr_base, csr_len); + if (!denali->reg) { + dev_err(&dev->dev, "Spectra: Unable to remap memory region\n"); + return -ENOMEM; + } + + denali->host = ioremap_nocache(mem_base, mem_len); + if (!denali->host) { + dev_err(&dev->dev, "Spectra: ioremap_nocache failed!"); + ret = -ENOMEM; + goto failed_remap_reg; + } + + ret = denali_init(denali); + if (ret) + goto failed_remap_mem; + + pci_set_drvdata(dev, denali); + + return 0; + +failed_remap_mem: + iounmap(denali->host); +failed_remap_reg: + iounmap(denali->reg); + return ret; +} + +static void denali_pci_remove(struct pci_dev *dev) +{ + struct denali_nand_info *denali = pci_get_drvdata(dev); + + denali_remove(denali); + iounmap(denali->reg); + iounmap(denali->host); +} + +static struct pci_driver denali_pci_driver = { + .name = DENALI_NAND_NAME, + .id_table = denali_pci_ids, + .probe = denali_pci_probe, + .remove = denali_pci_remove, +}; +module_pci_driver(denali_pci_driver); + +MODULE_DESCRIPTION("PCI driver for Denali NAND controller"); +MODULE_AUTHOR("Intel Corporation and its suppliers"); +MODULE_LICENSE("GPL v2"); diff --git a/drivers/mtd/nand/raw/diskonchip.c b/drivers/mtd/nand/raw/diskonchip.c new file mode 100644 index 000000000000..1af77f798fe5 --- /dev/null +++ b/drivers/mtd/nand/raw/diskonchip.c @@ -0,0 +1,1709 @@ +/* + * (C) 2003 Red Hat, Inc. + * (C) 2004 Dan Brown + * (C) 2004 Kalev Lember + * + * Author: David Woodhouse + * Additional Diskonchip 2000 and Millennium support by Dan Brown + * Diskonchip Millennium Plus support by Kalev Lember + * + * Error correction code lifted from the old docecc code + * Author: Fabrice Bellard (fabrice.bellard@netgem.com) + * Copyright (C) 2000 Netgem S.A. + * converted to the generic Reed-Solomon library by Thomas Gleixner + * + * Interface to generic NAND code for M-Systems DiskOnChip devices + */ + +#include +#include +#include +#include +#include +#include +#include +#include + +#include +#include +#include +#include +#include +#include + +/* Where to look for the devices? */ +#ifndef CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS +#define CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS 0 +#endif + +static unsigned long doc_locations[] __initdata = { +#if defined (__alpha__) || defined(__i386__) || defined(__x86_64__) +#ifdef CONFIG_MTD_NAND_DISKONCHIP_PROBE_HIGH + 0xfffc8000, 0xfffca000, 0xfffcc000, 0xfffce000, + 0xfffd0000, 0xfffd2000, 0xfffd4000, 0xfffd6000, + 0xfffd8000, 0xfffda000, 0xfffdc000, 0xfffde000, + 0xfffe0000, 0xfffe2000, 0xfffe4000, 0xfffe6000, + 0xfffe8000, 0xfffea000, 0xfffec000, 0xfffee000, +#else + 0xc8000, 0xca000, 0xcc000, 0xce000, + 0xd0000, 0xd2000, 0xd4000, 0xd6000, + 0xd8000, 0xda000, 0xdc000, 0xde000, + 0xe0000, 0xe2000, 0xe4000, 0xe6000, + 0xe8000, 0xea000, 0xec000, 0xee000, +#endif +#endif + 0xffffffff }; + +static struct mtd_info *doclist = NULL; + +struct doc_priv { + void __iomem *virtadr; + unsigned long physadr; + u_char ChipID; + u_char CDSNControl; + int chips_per_floor; /* The number of chips detected on each floor */ + int curfloor; + int curchip; + int mh0_page; + int mh1_page; + struct mtd_info *nextdoc; + + /* Handle the last stage of initialization (BBT scan, partitioning) */ + int (*late_init)(struct mtd_info *mtd); +}; + +/* This is the ecc value computed by the HW ecc generator upon writing an empty + page, one with all 0xff for data. */ +static u_char empty_write_ecc[6] = { 0x4b, 0x00, 0xe2, 0x0e, 0x93, 0xf7 }; + +#define INFTL_BBT_RESERVED_BLOCKS 4 + +#define DoC_is_MillenniumPlus(doc) ((doc)->ChipID == DOC_ChipID_DocMilPlus16 || (doc)->ChipID == DOC_ChipID_DocMilPlus32) +#define DoC_is_Millennium(doc) ((doc)->ChipID == DOC_ChipID_DocMil) +#define DoC_is_2000(doc) ((doc)->ChipID == DOC_ChipID_Doc2k) + +static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd, + unsigned int bitmask); +static void doc200x_select_chip(struct mtd_info *mtd, int chip); + +static int debug = 0; +module_param(debug, int, 0); + +static int try_dword = 1; +module_param(try_dword, int, 0); + +static int no_ecc_failures = 0; +module_param(no_ecc_failures, int, 0); + +static int no_autopart = 0; +module_param(no_autopart, int, 0); + +static int show_firmware_partition = 0; +module_param(show_firmware_partition, int, 0); + +#ifdef CONFIG_MTD_NAND_DISKONCHIP_BBTWRITE +static int inftl_bbt_write = 1; +#else +static int inftl_bbt_write = 0; +#endif +module_param(inftl_bbt_write, int, 0); + +static unsigned long doc_config_location = CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS; +module_param(doc_config_location, ulong, 0); +MODULE_PARM_DESC(doc_config_location, "Physical memory address at which to probe for DiskOnChip"); + +/* Sector size for HW ECC */ +#define SECTOR_SIZE 512 +/* The sector bytes are packed into NB_DATA 10 bit words */ +#define NB_DATA (((SECTOR_SIZE + 1) * 8 + 6) / 10) +/* Number of roots */ +#define NROOTS 4 +/* First consective root */ +#define FCR 510 +/* Number of symbols */ +#define NN 1023 + +/* the Reed Solomon control structure */ +static struct rs_control *rs_decoder; + +/* + * The HW decoder in the DoC ASIC's provides us a error syndrome, + * which we must convert to a standard syndrome usable by the generic + * Reed-Solomon library code. + * + * Fabrice Bellard figured this out in the old docecc code. I added + * some comments, improved a minor bit and converted it to make use + * of the generic Reed-Solomon library. tglx + */ +static int doc_ecc_decode(struct rs_control *rs, uint8_t *data, uint8_t *ecc) +{ + int i, j, nerr, errpos[8]; + uint8_t parity; + uint16_t ds[4], s[5], tmp, errval[8], syn[4]; + + memset(syn, 0, sizeof(syn)); + /* Convert the ecc bytes into words */ + ds[0] = ((ecc[4] & 0xff) >> 0) | ((ecc[5] & 0x03) << 8); + ds[1] = ((ecc[5] & 0xfc) >> 2) | ((ecc[2] & 0x0f) << 6); + ds[2] = ((ecc[2] & 0xf0) >> 4) | ((ecc[3] & 0x3f) << 4); + ds[3] = ((ecc[3] & 0xc0) >> 6) | ((ecc[0] & 0xff) << 2); + parity = ecc[1]; + + /* Initialize the syndrome buffer */ + for (i = 0; i < NROOTS; i++) + s[i] = ds[0]; + /* + * Evaluate + * s[i] = ds[3]x^3 + ds[2]x^2 + ds[1]x^1 + ds[0] + * where x = alpha^(FCR + i) + */ + for (j = 1; j < NROOTS; j++) { + if (ds[j] == 0) + continue; + tmp = rs->index_of[ds[j]]; + for (i = 0; i < NROOTS; i++) + s[i] ^= rs->alpha_to[rs_modnn(rs, tmp + (FCR + i) * j)]; + } + + /* Calc syn[i] = s[i] / alpha^(v + i) */ + for (i = 0; i < NROOTS; i++) { + if (s[i]) + syn[i] = rs_modnn(rs, rs->index_of[s[i]] + (NN - FCR - i)); + } + /* Call the decoder library */ + nerr = decode_rs16(rs, NULL, NULL, 1019, syn, 0, errpos, 0, errval); + + /* Incorrectable errors ? */ + if (nerr < 0) + return nerr; + + /* + * Correct the errors. The bitpositions are a bit of magic, + * but they are given by the design of the de/encoder circuit + * in the DoC ASIC's. + */ + for (i = 0; i < nerr; i++) { + int index, bitpos, pos = 1015 - errpos[i]; + uint8_t val; + if (pos >= NB_DATA && pos < 1019) + continue; + if (pos < NB_DATA) { + /* extract bit position (MSB first) */ + pos = 10 * (NB_DATA - 1 - pos) - 6; + /* now correct the following 10 bits. At most two bytes + can be modified since pos is even */ + index = (pos >> 3) ^ 1; + bitpos = pos & 7; + if ((index >= 0 && index < SECTOR_SIZE) || index == (SECTOR_SIZE + 1)) { + val = (uint8_t) (errval[i] >> (2 + bitpos)); + parity ^= val; + if (index < SECTOR_SIZE) + data[index] ^= val; + } + index = ((pos >> 3) + 1) ^ 1; + bitpos = (bitpos + 10) & 7; + if (bitpos == 0) + bitpos = 8; + if ((index >= 0 && index < SECTOR_SIZE) || index == (SECTOR_SIZE + 1)) { + val = (uint8_t) (errval[i] << (8 - bitpos)); + parity ^= val; + if (index < SECTOR_SIZE) + data[index] ^= val; + } + } + } + /* If the parity is wrong, no rescue possible */ + return parity ? -EBADMSG : nerr; +} + +static void DoC_Delay(struct doc_priv *doc, unsigned short cycles) +{ + volatile char dummy; + int i; + + for (i = 0; i < cycles; i++) { + if (DoC_is_Millennium(doc)) + dummy = ReadDOC(doc->virtadr, NOP); + else if (DoC_is_MillenniumPlus(doc)) + dummy = ReadDOC(doc->virtadr, Mplus_NOP); + else + dummy = ReadDOC(doc->virtadr, DOCStatus); + } + +} + +#define CDSN_CTRL_FR_B_MASK (CDSN_CTRL_FR_B0 | CDSN_CTRL_FR_B1) + +/* DOC_WaitReady: Wait for RDY line to be asserted by the flash chip */ +static int _DoC_WaitReady(struct doc_priv *doc) +{ + void __iomem *docptr = doc->virtadr; + unsigned long timeo = jiffies + (HZ * 10); + + if (debug) + printk("_DoC_WaitReady...\n"); + /* Out-of-line routine to wait for chip response */ + if (DoC_is_MillenniumPlus(doc)) { + while ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) { + if (time_after(jiffies, timeo)) { + printk("_DoC_WaitReady timed out.\n"); + return -EIO; + } + udelay(1); + cond_resched(); + } + } else { + while (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) { + if (time_after(jiffies, timeo)) { + printk("_DoC_WaitReady timed out.\n"); + return -EIO; + } + udelay(1); + cond_resched(); + } + } + + return 0; +} + +static inline int DoC_WaitReady(struct doc_priv *doc) +{ + void __iomem *docptr = doc->virtadr; + int ret = 0; + + if (DoC_is_MillenniumPlus(doc)) { + DoC_Delay(doc, 4); + + if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) + /* Call the out-of-line routine to wait */ + ret = _DoC_WaitReady(doc); + } else { + DoC_Delay(doc, 4); + + if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) + /* Call the out-of-line routine to wait */ + ret = _DoC_WaitReady(doc); + DoC_Delay(doc, 2); + } + + if (debug) + printk("DoC_WaitReady OK\n"); + return ret; +} + +static void doc2000_write_byte(struct mtd_info *mtd, u_char datum) +{ + struct nand_chip *this = mtd_to_nand(mtd); + struct doc_priv *doc = nand_get_controller_data(this); + void __iomem *docptr = doc->virtadr; + + if (debug) + printk("write_byte %02x\n", datum); + WriteDOC(datum, docptr, CDSNSlowIO); + WriteDOC(datum, docptr, 2k_CDSN_IO); +} + +static u_char doc2000_read_byte(struct mtd_info *mtd) +{ + struct nand_chip *this = mtd_to_nand(mtd); + struct doc_priv *doc = nand_get_controller_data(this); + void __iomem *docptr = doc->virtadr; + u_char ret; + + ReadDOC(docptr, CDSNSlowIO); + DoC_Delay(doc, 2); + ret = ReadDOC(docptr, 2k_CDSN_IO); + if (debug) + printk("read_byte returns %02x\n", ret); + return ret; +} + +static void doc2000_writebuf(struct mtd_info *mtd, const u_char *buf, int len) +{ + struct nand_chip *this = mtd_to_nand(mtd); + struct doc_priv *doc = nand_get_controller_data(this); + void __iomem *docptr = doc->virtadr; + int i; + if (debug) + printk("writebuf of %d bytes: ", len); + for (i = 0; i < len; i++) { + WriteDOC_(buf[i], docptr, DoC_2k_CDSN_IO + i); + if (debug && i < 16) + printk("%02x ", buf[i]); + } + if (debug) + printk("\n"); +} + +static void doc2000_readbuf(struct mtd_info *mtd, u_char *buf, int len) +{ + struct nand_chip *this = mtd_to_nand(mtd); + struct doc_priv *doc = nand_get_controller_data(this); + void __iomem *docptr = doc->virtadr; + int i; + + if (debug) + printk("readbuf of %d bytes: ", len); + + for (i = 0; i < len; i++) { + buf[i] = ReadDOC(docptr, 2k_CDSN_IO + i); + } +} + +static void doc2000_readbuf_dword(struct mtd_info *mtd, u_char *buf, int len) +{ + struct nand_chip *this = mtd_to_nand(mtd); + struct doc_priv *doc = nand_get_controller_data(this); + void __iomem *docptr = doc->virtadr; + int i; + + if (debug) + printk("readbuf_dword of %d bytes: ", len); + + if (unlikely((((unsigned long)buf) | len) & 3)) { + for (i = 0; i < len; i++) { + *(uint8_t *) (&buf[i]) = ReadDOC(docptr, 2k_CDSN_IO + i); + } + } else { + for (i = 0; i < len; i += 4) { + *(uint32_t *) (&buf[i]) = readl(docptr + DoC_2k_CDSN_IO + i); + } + } +} + +static uint16_t __init doc200x_ident_chip(struct mtd_info *mtd, int nr) +{ + struct nand_chip *this = mtd_to_nand(mtd); + struct doc_priv *doc = nand_get_controller_data(this); + uint16_t ret; + + doc200x_select_chip(mtd, nr); + doc200x_hwcontrol(mtd, NAND_CMD_READID, + NAND_CTRL_CLE | NAND_CTRL_CHANGE); + doc200x_hwcontrol(mtd, 0, NAND_CTRL_ALE | NAND_CTRL_CHANGE); + doc200x_hwcontrol(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE); + + /* We can't use dev_ready here, but at least we wait for the + * command to complete + */ + udelay(50); + + ret = this->read_byte(mtd) << 8; + ret |= this->read_byte(mtd); + + if (doc->ChipID == DOC_ChipID_Doc2k && try_dword && !nr) { + /* First chip probe. See if we get same results by 32-bit access */ + union { + uint32_t dword; + uint8_t byte[4]; + } ident; + void __iomem *docptr = doc->virtadr; + + doc200x_hwcontrol(mtd, NAND_CMD_READID, + NAND_CTRL_CLE | NAND_CTRL_CHANGE); + doc200x_hwcontrol(mtd, 0, NAND_CTRL_ALE | NAND_CTRL_CHANGE); + doc200x_hwcontrol(mtd, NAND_CMD_NONE, + NAND_NCE | NAND_CTRL_CHANGE); + + udelay(50); + + ident.dword = readl(docptr + DoC_2k_CDSN_IO); + if (((ident.byte[0] << 8) | ident.byte[1]) == ret) { + printk(KERN_INFO "DiskOnChip 2000 responds to DWORD access\n"); + this->read_buf = &doc2000_readbuf_dword; + } + } + + return ret; +} + +static void __init doc2000_count_chips(struct mtd_info *mtd) +{ + struct nand_chip *this = mtd_to_nand(mtd); + struct doc_priv *doc = nand_get_controller_data(this); + uint16_t mfrid; + int i; + + /* Max 4 chips per floor on DiskOnChip 2000 */ + doc->chips_per_floor = 4; + + /* Find out what the first chip is */ + mfrid = doc200x_ident_chip(mtd, 0); + + /* Find how many chips in each floor. */ + for (i = 1; i < 4; i++) { + if (doc200x_ident_chip(mtd, i) != mfrid) + break; + } + doc->chips_per_floor = i; + printk(KERN_DEBUG "Detected %d chips per floor.\n", i); +} + +static int doc200x_wait(struct mtd_info *mtd, struct nand_chip *this) +{ + struct doc_priv *doc = nand_get_controller_data(this); + + int status; + + DoC_WaitReady(doc); + nand_status_op(this, NULL); + DoC_WaitReady(doc); + status = (int)this->read_byte(mtd); + + return status; +} + +static void doc2001_write_byte(struct mtd_info *mtd, u_char datum) +{ + struct nand_chip *this = mtd_to_nand(mtd); + struct doc_priv *doc = nand_get_controller_data(this); + void __iomem *docptr = doc->virtadr; + + WriteDOC(datum, docptr, CDSNSlowIO); + WriteDOC(datum, docptr, Mil_CDSN_IO); + WriteDOC(datum, docptr, WritePipeTerm); +} + +static u_char doc2001_read_byte(struct mtd_info *mtd) +{ + struct nand_chip *this = mtd_to_nand(mtd); + struct doc_priv *doc = nand_get_controller_data(this); + void __iomem *docptr = doc->virtadr; + + //ReadDOC(docptr, CDSNSlowIO); + /* 11.4.5 -- delay twice to allow extended length cycle */ + DoC_Delay(doc, 2); + ReadDOC(docptr, ReadPipeInit); + //return ReadDOC(docptr, Mil_CDSN_IO); + return ReadDOC(docptr, LastDataRead); +} + +static void doc2001_writebuf(struct mtd_info *mtd, const u_char *buf, int len) +{ + struct nand_chip *this = mtd_to_nand(mtd); + struct doc_priv *doc = nand_get_controller_data(this); + void __iomem *docptr = doc->virtadr; + int i; + + for (i = 0; i < len; i++) + WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i); + /* Terminate write pipeline */ + WriteDOC(0x00, docptr, WritePipeTerm); +} + +static void doc2001_readbuf(struct mtd_info *mtd, u_char *buf, int len) +{ + struct nand_chip *this = mtd_to_nand(mtd); + struct doc_priv *doc = nand_get_controller_data(this); + void __iomem *docptr = doc->virtadr; + int i; + + /* Start read pipeline */ + ReadDOC(docptr, ReadPipeInit); + + for (i = 0; i < len - 1; i++) + buf[i] = ReadDOC(docptr, Mil_CDSN_IO + (i & 0xff)); + + /* Terminate read pipeline */ + buf[i] = ReadDOC(docptr, LastDataRead); +} + +static u_char doc2001plus_read_byte(struct mtd_info *mtd) +{ + struct nand_chip *this = mtd_to_nand(mtd); + struct doc_priv *doc = nand_get_controller_data(this); + void __iomem *docptr = doc->virtadr; + u_char ret; + + ReadDOC(docptr, Mplus_ReadPipeInit); + ReadDOC(docptr, Mplus_ReadPipeInit); + ret = ReadDOC(docptr, Mplus_LastDataRead); + if (debug) + printk("read_byte returns %02x\n", ret); + return ret; +} + +static void doc2001plus_writebuf(struct mtd_info *mtd, const u_char *buf, int len) +{ + struct nand_chip *this = mtd_to_nand(mtd); + struct doc_priv *doc = nand_get_controller_data(this); + void __iomem *docptr = doc->virtadr; + int i; + + if (debug) + printk("writebuf of %d bytes: ", len); + for (i = 0; i < len; i++) { + WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i); + if (debug && i < 16) + printk("%02x ", buf[i]); + } + if (debug) + printk("\n"); +} + +static void doc2001plus_readbuf(struct mtd_info *mtd, u_char *buf, int len) +{ + struct nand_chip *this = mtd_to_nand(mtd); + struct doc_priv *doc = nand_get_controller_data(this); + void __iomem *docptr = doc->virtadr; + int i; + + if (debug) + printk("readbuf of %d bytes: ", len); + + /* Start read pipeline */ + ReadDOC(docptr, Mplus_ReadPipeInit); + ReadDOC(docptr, Mplus_ReadPipeInit); + + for (i = 0; i < len - 2; i++) { + buf[i] = ReadDOC(docptr, Mil_CDSN_IO); + if (debug && i < 16) + printk("%02x ", buf[i]); + } + + /* Terminate read pipeline */ + buf[len - 2] = ReadDOC(docptr, Mplus_LastDataRead); + if (debug && i < 16) + printk("%02x ", buf[len - 2]); + buf[len - 1] = ReadDOC(docptr, Mplus_LastDataRead); + if (debug && i < 16) + printk("%02x ", buf[len - 1]); + if (debug) + printk("\n"); +} + +static void doc2001plus_select_chip(struct mtd_info *mtd, int chip) +{ + struct nand_chip *this = mtd_to_nand(mtd); + struct doc_priv *doc = nand_get_controller_data(this); + void __iomem *docptr = doc->virtadr; + int floor = 0; + + if (debug) + printk("select chip (%d)\n", chip); + + if (chip == -1) { + /* Disable flash internally */ + WriteDOC(0, docptr, Mplus_FlashSelect); + return; + } + + floor = chip / doc->chips_per_floor; + chip -= (floor * doc->chips_per_floor); + + /* Assert ChipEnable and deassert WriteProtect */ + WriteDOC((DOC_FLASH_CE), docptr, Mplus_FlashSelect); + nand_reset_op(this); + + doc->curchip = chip; + doc->curfloor = floor; +} + +static void doc200x_select_chip(struct mtd_info *mtd, int chip) +{ + struct nand_chip *this = mtd_to_nand(mtd); + struct doc_priv *doc = nand_get_controller_data(this); + void __iomem *docptr = doc->virtadr; + int floor = 0; + + if (debug) + printk("select chip (%d)\n", chip); + + if (chip == -1) + return; + + floor = chip / doc->chips_per_floor; + chip -= (floor * doc->chips_per_floor); + + /* 11.4.4 -- deassert CE before changing chip */ + doc200x_hwcontrol(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE); + + WriteDOC(floor, docptr, FloorSelect); + WriteDOC(chip, docptr, CDSNDeviceSelect); + + doc200x_hwcontrol(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE); + + doc->curchip = chip; + doc->curfloor = floor; +} + +#define CDSN_CTRL_MSK (CDSN_CTRL_CE | CDSN_CTRL_CLE | CDSN_CTRL_ALE) + +static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd, + unsigned int ctrl) +{ + struct nand_chip *this = mtd_to_nand(mtd); + struct doc_priv *doc = nand_get_controller_data(this); + void __iomem *docptr = doc->virtadr; + + if (ctrl & NAND_CTRL_CHANGE) { + doc->CDSNControl &= ~CDSN_CTRL_MSK; + doc->CDSNControl |= ctrl & CDSN_CTRL_MSK; + if (debug) + printk("hwcontrol(%d): %02x\n", cmd, doc->CDSNControl); + WriteDOC(doc->CDSNControl, docptr, CDSNControl); + /* 11.4.3 -- 4 NOPs after CSDNControl write */ + DoC_Delay(doc, 4); + } + if (cmd != NAND_CMD_NONE) { + if (DoC_is_2000(doc)) + doc2000_write_byte(mtd, cmd); + else + doc2001_write_byte(mtd, cmd); + } +} + +static void doc2001plus_command(struct mtd_info *mtd, unsigned command, int column, int page_addr) +{ + struct nand_chip *this = mtd_to_nand(mtd); + struct doc_priv *doc = nand_get_controller_data(this); + void __iomem *docptr = doc->virtadr; + + /* + * Must terminate write pipeline before sending any commands + * to the device. + */ + if (command == NAND_CMD_PAGEPROG) { + WriteDOC(0x00, docptr, Mplus_WritePipeTerm); + WriteDOC(0x00, docptr, Mplus_WritePipeTerm); + } + + /* + * Write out the command to the device. + */ + if (command == NAND_CMD_SEQIN) { + int readcmd; + + if (column >= mtd->writesize) { + /* OOB area */ + column -= mtd->writesize; + readcmd = NAND_CMD_READOOB; + } else if (column < 256) { + /* First 256 bytes --> READ0 */ + readcmd = NAND_CMD_READ0; + } else { + column -= 256; + readcmd = NAND_CMD_READ1; + } + WriteDOC(readcmd, docptr, Mplus_FlashCmd); + } + WriteDOC(command, docptr, Mplus_FlashCmd); + WriteDOC(0, docptr, Mplus_WritePipeTerm); + WriteDOC(0, docptr, Mplus_WritePipeTerm); + + if (column != -1 || page_addr != -1) { + /* Serially input address */ + if (column != -1) { + /* Adjust columns for 16 bit buswidth */ + if (this->options & NAND_BUSWIDTH_16 && + !nand_opcode_8bits(command)) + column >>= 1; + WriteDOC(column, docptr, Mplus_FlashAddress); + } + if (page_addr != -1) { + WriteDOC((unsigned char)(page_addr & 0xff), docptr, Mplus_FlashAddress); + WriteDOC((unsigned char)((page_addr >> 8) & 0xff), docptr, Mplus_FlashAddress); + if (this->options & NAND_ROW_ADDR_3) { + WriteDOC((unsigned char)((page_addr >> 16) & 0x0f), docptr, Mplus_FlashAddress); + printk("high density\n"); + } + } + WriteDOC(0, docptr, Mplus_WritePipeTerm); + WriteDOC(0, docptr, Mplus_WritePipeTerm); + /* deassert ALE */ + if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 || + command == NAND_CMD_READOOB || command == NAND_CMD_READID) + WriteDOC(0, docptr, Mplus_FlashControl); + } + + /* + * program and erase have their own busy handlers + * status and sequential in needs no delay + */ + switch (command) { + + case NAND_CMD_PAGEPROG: + case NAND_CMD_ERASE1: + case NAND_CMD_ERASE2: + case NAND_CMD_SEQIN: + case NAND_CMD_STATUS: + return; + + case NAND_CMD_RESET: + if (this->dev_ready) + break; + udelay(this->chip_delay); + WriteDOC(NAND_CMD_STATUS, docptr, Mplus_FlashCmd); + WriteDOC(0, docptr, Mplus_WritePipeTerm); + WriteDOC(0, docptr, Mplus_WritePipeTerm); + while (!(this->read_byte(mtd) & 0x40)) ; + return; + + /* This applies to read commands */ + default: + /* + * If we don't have access to the busy pin, we apply the given + * command delay + */ + if (!this->dev_ready) { + udelay(this->chip_delay); + return; + } + } + + /* Apply this short delay always to ensure that we do wait tWB in + * any case on any machine. */ + ndelay(100); + /* wait until command is processed */ + while (!this->dev_ready(mtd)) ; +} + +static int doc200x_dev_ready(struct mtd_info *mtd) +{ + struct nand_chip *this = mtd_to_nand(mtd); + struct doc_priv *doc = nand_get_controller_data(this); + void __iomem *docptr = doc->virtadr; + + if (DoC_is_MillenniumPlus(doc)) { + /* 11.4.2 -- must NOP four times before checking FR/B# */ + DoC_Delay(doc, 4); + if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) { + if (debug) + printk("not ready\n"); + return 0; + } + if (debug) + printk("was ready\n"); + return 1; + } else { + /* 11.4.2 -- must NOP four times before checking FR/B# */ + DoC_Delay(doc, 4); + if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) { + if (debug) + printk("not ready\n"); + return 0; + } + /* 11.4.2 -- Must NOP twice if it's ready */ + DoC_Delay(doc, 2); + if (debug) + printk("was ready\n"); + return 1; + } +} + +static int doc200x_block_bad(struct mtd_info *mtd, loff_t ofs) +{ + /* This is our last resort if we couldn't find or create a BBT. Just + pretend all blocks are good. */ + return 0; +} + +static void doc200x_enable_hwecc(struct mtd_info *mtd, int mode) +{ + struct nand_chip *this = mtd_to_nand(mtd); + struct doc_priv *doc = nand_get_controller_data(this); + void __iomem *docptr = doc->virtadr; + + /* Prime the ECC engine */ + switch (mode) { + case NAND_ECC_READ: + WriteDOC(DOC_ECC_RESET, docptr, ECCConf); + WriteDOC(DOC_ECC_EN, docptr, ECCConf); + break; + case NAND_ECC_WRITE: + WriteDOC(DOC_ECC_RESET, docptr, ECCConf); + WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, ECCConf); + break; + } +} + +static void doc2001plus_enable_hwecc(struct mtd_info *mtd, int mode) +{ + struct nand_chip *this = mtd_to_nand(mtd); + struct doc_priv *doc = nand_get_controller_data(this); + void __iomem *docptr = doc->virtadr; + + /* Prime the ECC engine */ + switch (mode) { + case NAND_ECC_READ: + WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf); + WriteDOC(DOC_ECC_EN, docptr, Mplus_ECCConf); + break; + case NAND_ECC_WRITE: + WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf); + WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, Mplus_ECCConf); + break; + } +} + +/* This code is only called on write */ +static int doc200x_calculate_ecc(struct mtd_info *mtd, const u_char *dat, unsigned char *ecc_code) +{ + struct nand_chip *this = mtd_to_nand(mtd); + struct doc_priv *doc = nand_get_controller_data(this); + void __iomem *docptr = doc->virtadr; + int i; + int emptymatch = 1; + + /* flush the pipeline */ + if (DoC_is_2000(doc)) { + WriteDOC(doc->CDSNControl & ~CDSN_CTRL_FLASH_IO, docptr, CDSNControl); + WriteDOC(0, docptr, 2k_CDSN_IO); + WriteDOC(0, docptr, 2k_CDSN_IO); + WriteDOC(0, docptr, 2k_CDSN_IO); + WriteDOC(doc->CDSNControl, docptr, CDSNControl); + } else if (DoC_is_MillenniumPlus(doc)) { + WriteDOC(0, docptr, Mplus_NOP); + WriteDOC(0, docptr, Mplus_NOP); + WriteDOC(0, docptr, Mplus_NOP); + } else { + WriteDOC(0, docptr, NOP); + WriteDOC(0, docptr, NOP); + WriteDOC(0, docptr, NOP); + } + + for (i = 0; i < 6; i++) { + if (DoC_is_MillenniumPlus(doc)) + ecc_code[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i); + else + ecc_code[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i); + if (ecc_code[i] != empty_write_ecc[i]) + emptymatch = 0; + } + if (DoC_is_MillenniumPlus(doc)) + WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf); + else + WriteDOC(DOC_ECC_DIS, docptr, ECCConf); +#if 0 + /* If emptymatch=1, we might have an all-0xff data buffer. Check. */ + if (emptymatch) { + /* Note: this somewhat expensive test should not be triggered + often. It could be optimized away by examining the data in + the writebuf routine, and remembering the result. */ + for (i = 0; i < 512; i++) { + if (dat[i] == 0xff) + continue; + emptymatch = 0; + break; + } + } + /* If emptymatch still =1, we do have an all-0xff data buffer. + Return all-0xff ecc value instead of the computed one, so + it'll look just like a freshly-erased page. */ + if (emptymatch) + memset(ecc_code, 0xff, 6); +#endif + return 0; +} + +static int doc200x_correct_data(struct mtd_info *mtd, u_char *dat, + u_char *read_ecc, u_char *isnull) +{ + int i, ret = 0; + struct nand_chip *this = mtd_to_nand(mtd); + struct doc_priv *doc = nand_get_controller_data(this); + void __iomem *docptr = doc->virtadr; + uint8_t calc_ecc[6]; + volatile u_char dummy; + + /* flush the pipeline */ + if (DoC_is_2000(doc)) { + dummy = ReadDOC(docptr, 2k_ECCStatus); + dummy = ReadDOC(docptr, 2k_ECCStatus); + dummy = ReadDOC(docptr, 2k_ECCStatus); + } else if (DoC_is_MillenniumPlus(doc)) { + dummy = ReadDOC(docptr, Mplus_ECCConf); + dummy = ReadDOC(docptr, Mplus_ECCConf); + dummy = ReadDOC(docptr, Mplus_ECCConf); + } else { + dummy = ReadDOC(docptr, ECCConf); + dummy = ReadDOC(docptr, ECCConf); + dummy = ReadDOC(docptr, ECCConf); + } + + /* Error occurred ? */ + if (dummy & 0x80) { + for (i = 0; i < 6; i++) { + if (DoC_is_MillenniumPlus(doc)) + calc_ecc[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i); + else + calc_ecc[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i); + } + + ret = doc_ecc_decode(rs_decoder, dat, calc_ecc); + if (ret > 0) + printk(KERN_ERR "doc200x_correct_data corrected %d errors\n", ret); + } + if (DoC_is_MillenniumPlus(doc)) + WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf); + else + WriteDOC(DOC_ECC_DIS, docptr, ECCConf); + if (no_ecc_failures && mtd_is_eccerr(ret)) { + printk(KERN_ERR "suppressing ECC failure\n"); + ret = 0; + } + return ret; +} + +//u_char mydatabuf[528]; + +static int doc200x_ooblayout_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + if (section) + return -ERANGE; + + oobregion->offset = 0; + oobregion->length = 6; + + return 0; +} + +static int doc200x_ooblayout_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + if (section > 1) + return -ERANGE; + + /* + * The strange out-of-order free bytes definition is a (possibly + * unneeded) attempt to retain compatibility. It used to read: + * .oobfree = { {8, 8} } + * Since that leaves two bytes unusable, it was changed. But the + * following scheme might affect existing jffs2 installs by moving the + * cleanmarker: + * .oobfree = { {6, 10} } + * jffs2 seems to handle the above gracefully, but the current scheme + * seems safer. The only problem with it is that any code retrieving + * free bytes position must be able to handle out-of-order segments. + */ + if (!section) { + oobregion->offset = 8; + oobregion->length = 8; + } else { + oobregion->offset = 6; + oobregion->length = 2; + } + + return 0; +} + +static const struct mtd_ooblayout_ops doc200x_ooblayout_ops = { + .ecc = doc200x_ooblayout_ecc, + .free = doc200x_ooblayout_free, +}; + +/* Find the (I)NFTL Media Header, and optionally also the mirror media header. + On successful return, buf will contain a copy of the media header for + further processing. id is the string to scan for, and will presumably be + either "ANAND" or "BNAND". If findmirror=1, also look for the mirror media + header. The page #s of the found media headers are placed in mh0_page and + mh1_page in the DOC private structure. */ +static int __init find_media_headers(struct mtd_info *mtd, u_char *buf, const char *id, int findmirror) +{ + struct nand_chip *this = mtd_to_nand(mtd); + struct doc_priv *doc = nand_get_controller_data(this); + unsigned offs; + int ret; + size_t retlen; + + for (offs = 0; offs < mtd->size; offs += mtd->erasesize) { + ret = mtd_read(mtd, offs, mtd->writesize, &retlen, buf); + if (retlen != mtd->writesize) + continue; + if (ret) { + printk(KERN_WARNING "ECC error scanning DOC at 0x%x\n", offs); + } + if (memcmp(buf, id, 6)) + continue; + printk(KERN_INFO "Found DiskOnChip %s Media Header at 0x%x\n", id, offs); + if (doc->mh0_page == -1) { + doc->mh0_page = offs >> this->page_shift; + if (!findmirror) + return 1; + continue; + } + doc->mh1_page = offs >> this->page_shift; + return 2; + } + if (doc->mh0_page == -1) { + printk(KERN_WARNING "DiskOnChip %s Media Header not found.\n", id); + return 0; + } + /* Only one mediaheader was found. We want buf to contain a + mediaheader on return, so we'll have to re-read the one we found. */ + offs = doc->mh0_page << this->page_shift; + ret = mtd_read(mtd, offs, mtd->writesize, &retlen, buf); + if (retlen != mtd->writesize) { + /* Insanity. Give up. */ + printk(KERN_ERR "Read DiskOnChip Media Header once, but can't reread it???\n"); + return 0; + } + return 1; +} + +static inline int __init nftl_partscan(struct mtd_info *mtd, struct mtd_partition *parts) +{ + struct nand_chip *this = mtd_to_nand(mtd); + struct doc_priv *doc = nand_get_controller_data(this); + int ret = 0; + u_char *buf; + struct NFTLMediaHeader *mh; + const unsigned psize = 1 << this->page_shift; + int numparts = 0; + unsigned blocks, maxblocks; + int offs, numheaders; + + buf = kmalloc(mtd->writesize, GFP_KERNEL); + if (!buf) { + return 0; + } + if (!(numheaders = find_media_headers(mtd, buf, "ANAND", 1))) + goto out; + mh = (struct NFTLMediaHeader *)buf; + + le16_to_cpus(&mh->NumEraseUnits); + le16_to_cpus(&mh->FirstPhysicalEUN); + le32_to_cpus(&mh->FormattedSize); + + printk(KERN_INFO " DataOrgID = %s\n" + " NumEraseUnits = %d\n" + " FirstPhysicalEUN = %d\n" + " FormattedSize = %d\n" + " UnitSizeFactor = %d\n", + mh->DataOrgID, mh->NumEraseUnits, + mh->FirstPhysicalEUN, mh->FormattedSize, + mh->UnitSizeFactor); + + blocks = mtd->size >> this->phys_erase_shift; + maxblocks = min(32768U, mtd->erasesize - psize); + + if (mh->UnitSizeFactor == 0x00) { + /* Auto-determine UnitSizeFactor. The constraints are: + - There can be at most 32768 virtual blocks. + - There can be at most (virtual block size - page size) + virtual blocks (because MediaHeader+BBT must fit in 1). + */ + mh->UnitSizeFactor = 0xff; + while (blocks > maxblocks) { + blocks >>= 1; + maxblocks = min(32768U, (maxblocks << 1) + psize); + mh->UnitSizeFactor--; + } + printk(KERN_WARNING "UnitSizeFactor=0x00 detected. Correct value is assumed to be 0x%02x.\n", mh->UnitSizeFactor); + } + + /* NOTE: The lines below modify internal variables of the NAND and MTD + layers; variables with have already been configured by nand_scan. + Unfortunately, we didn't know before this point what these values + should be. Thus, this code is somewhat dependent on the exact + implementation of the NAND layer. */ + if (mh->UnitSizeFactor != 0xff) { + this->bbt_erase_shift += (0xff - mh->UnitSizeFactor); + mtd->erasesize <<= (0xff - mh->UnitSizeFactor); + printk(KERN_INFO "Setting virtual erase size to %d\n", mtd->erasesize); + blocks = mtd->size >> this->bbt_erase_shift; + maxblocks = min(32768U, mtd->erasesize - psize); + } + + if (blocks > maxblocks) { + printk(KERN_ERR "UnitSizeFactor of 0x%02x is inconsistent with device size. Aborting.\n", mh->UnitSizeFactor); + goto out; + } + + /* Skip past the media headers. */ + offs = max(doc->mh0_page, doc->mh1_page); + offs <<= this->page_shift; + offs += mtd->erasesize; + + if (show_firmware_partition == 1) { + parts[0].name = " DiskOnChip Firmware / Media Header partition"; + parts[0].offset = 0; + parts[0].size = offs; + numparts = 1; + } + + parts[numparts].name = " DiskOnChip BDTL partition"; + parts[numparts].offset = offs; + parts[numparts].size = (mh->NumEraseUnits - numheaders) << this->bbt_erase_shift; + + offs += parts[numparts].size; + numparts++; + + if (offs < mtd->size) { + parts[numparts].name = " DiskOnChip Remainder partition"; + parts[numparts].offset = offs; + parts[numparts].size = mtd->size - offs; + numparts++; + } + + ret = numparts; + out: + kfree(buf); + return ret; +} + +/* This is a stripped-down copy of the code in inftlmount.c */ +static inline int __init inftl_partscan(struct mtd_info *mtd, struct mtd_partition *parts) +{ + struct nand_chip *this = mtd_to_nand(mtd); + struct doc_priv *doc = nand_get_controller_data(this); + int ret = 0; + u_char *buf; + struct INFTLMediaHeader *mh; + struct INFTLPartition *ip; + int numparts = 0; + int blocks; + int vshift, lastvunit = 0; + int i; + int end = mtd->size; + + if (inftl_bbt_write) + end -= (INFTL_BBT_RESERVED_BLOCKS << this->phys_erase_shift); + + buf = kmalloc(mtd->writesize, GFP_KERNEL); + if (!buf) { + return 0; + } + + if (!find_media_headers(mtd, buf, "BNAND", 0)) + goto out; + doc->mh1_page = doc->mh0_page + (4096 >> this->page_shift); + mh = (struct INFTLMediaHeader *)buf; + + le32_to_cpus(&mh->NoOfBootImageBlocks); + le32_to_cpus(&mh->NoOfBinaryPartitions); + le32_to_cpus(&mh->NoOfBDTLPartitions); + le32_to_cpus(&mh->BlockMultiplierBits); + le32_to_cpus(&mh->FormatFlags); + le32_to_cpus(&mh->PercentUsed); + + printk(KERN_INFO " bootRecordID = %s\n" + " NoOfBootImageBlocks = %d\n" + " NoOfBinaryPartitions = %d\n" + " NoOfBDTLPartitions = %d\n" + " BlockMultiplerBits = %d\n" + " FormatFlgs = %d\n" + " OsakVersion = %d.%d.%d.%d\n" + " PercentUsed = %d\n", + mh->bootRecordID, mh->NoOfBootImageBlocks, + mh->NoOfBinaryPartitions, + mh->NoOfBDTLPartitions, + mh->BlockMultiplierBits, mh->FormatFlags, + ((unsigned char *) &mh->OsakVersion)[0] & 0xf, + ((unsigned char *) &mh->OsakVersion)[1] & 0xf, + ((unsigned char *) &mh->OsakVersion)[2] & 0xf, + ((unsigned char *) &mh->OsakVersion)[3] & 0xf, + mh->PercentUsed); + + vshift = this->phys_erase_shift + mh->BlockMultiplierBits; + + blocks = mtd->size >> vshift; + if (blocks > 32768) { + printk(KERN_ERR "BlockMultiplierBits=%d is inconsistent with device size. Aborting.\n", mh->BlockMultiplierBits); + goto out; + } + + blocks = doc->chips_per_floor << (this->chip_shift - this->phys_erase_shift); + if (inftl_bbt_write && (blocks > mtd->erasesize)) { + printk(KERN_ERR "Writeable BBTs spanning more than one erase block are not yet supported. FIX ME!\n"); + goto out; + } + + /* Scan the partitions */ + for (i = 0; (i < 4); i++) { + ip = &(mh->Partitions[i]); + le32_to_cpus(&ip->virtualUnits); + le32_to_cpus(&ip->firstUnit); + le32_to_cpus(&ip->lastUnit); + le32_to_cpus(&ip->flags); + le32_to_cpus(&ip->spareUnits); + le32_to_cpus(&ip->Reserved0); + + printk(KERN_INFO " PARTITION[%d] ->\n" + " virtualUnits = %d\n" + " firstUnit = %d\n" + " lastUnit = %d\n" + " flags = 0x%x\n" + " spareUnits = %d\n", + i, ip->virtualUnits, ip->firstUnit, + ip->lastUnit, ip->flags, + ip->spareUnits); + + if ((show_firmware_partition == 1) && + (i == 0) && (ip->firstUnit > 0)) { + parts[0].name = " DiskOnChip IPL / Media Header partition"; + parts[0].offset = 0; + parts[0].size = mtd->erasesize * ip->firstUnit; + numparts = 1; + } + + if (ip->flags & INFTL_BINARY) + parts[numparts].name = " DiskOnChip BDK partition"; + else + parts[numparts].name = " DiskOnChip BDTL partition"; + parts[numparts].offset = ip->firstUnit << vshift; + parts[numparts].size = (1 + ip->lastUnit - ip->firstUnit) << vshift; + numparts++; + if (ip->lastUnit > lastvunit) + lastvunit = ip->lastUnit; + if (ip->flags & INFTL_LAST) + break; + } + lastvunit++; + if ((lastvunit << vshift) < end) { + parts[numparts].name = " DiskOnChip Remainder partition"; + parts[numparts].offset = lastvunit << vshift; + parts[numparts].size = end - parts[numparts].offset; + numparts++; + } + ret = numparts; + out: + kfree(buf); + return ret; +} + +static int __init nftl_scan_bbt(struct mtd_info *mtd) +{ + int ret, numparts; + struct nand_chip *this = mtd_to_nand(mtd); + struct doc_priv *doc = nand_get_controller_data(this); + struct mtd_partition parts[2]; + + memset((char *)parts, 0, sizeof(parts)); + /* On NFTL, we have to find the media headers before we can read the + BBTs, since they're stored in the media header eraseblocks. */ + numparts = nftl_partscan(mtd, parts); + if (!numparts) + return -EIO; + this->bbt_td->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT | + NAND_BBT_SAVECONTENT | NAND_BBT_WRITE | + NAND_BBT_VERSION; + this->bbt_td->veroffs = 7; + this->bbt_td->pages[0] = doc->mh0_page + 1; + if (doc->mh1_page != -1) { + this->bbt_md->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT | + NAND_BBT_SAVECONTENT | NAND_BBT_WRITE | + NAND_BBT_VERSION; + this->bbt_md->veroffs = 7; + this->bbt_md->pages[0] = doc->mh1_page + 1; + } else { + this->bbt_md = NULL; + } + + ret = this->scan_bbt(mtd); + if (ret) + return ret; + + return mtd_device_register(mtd, parts, no_autopart ? 0 : numparts); +} + +static int __init inftl_scan_bbt(struct mtd_info *mtd) +{ + int ret, numparts; + struct nand_chip *this = mtd_to_nand(mtd); + struct doc_priv *doc = nand_get_controller_data(this); + struct mtd_partition parts[5]; + + if (this->numchips > doc->chips_per_floor) { + printk(KERN_ERR "Multi-floor INFTL devices not yet supported.\n"); + return -EIO; + } + + if (DoC_is_MillenniumPlus(doc)) { + this->bbt_td->options = NAND_BBT_2BIT | NAND_BBT_ABSPAGE; + if (inftl_bbt_write) + this->bbt_td->options |= NAND_BBT_WRITE; + this->bbt_td->pages[0] = 2; + this->bbt_md = NULL; + } else { + this->bbt_td->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT | NAND_BBT_VERSION; + if (inftl_bbt_write) + this->bbt_td->options |= NAND_BBT_WRITE; + this->bbt_td->offs = 8; + this->bbt_td->len = 8; + this->bbt_td->veroffs = 7; + this->bbt_td->maxblocks = INFTL_BBT_RESERVED_BLOCKS; + this->bbt_td->reserved_block_code = 0x01; + this->bbt_td->pattern = "MSYS_BBT"; + + this->bbt_md->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT | NAND_BBT_VERSION; + if (inftl_bbt_write) + this->bbt_md->options |= NAND_BBT_WRITE; + this->bbt_md->offs = 8; + this->bbt_md->len = 8; + this->bbt_md->veroffs = 7; + this->bbt_md->maxblocks = INFTL_BBT_RESERVED_BLOCKS; + this->bbt_md->reserved_block_code = 0x01; + this->bbt_md->pattern = "TBB_SYSM"; + } + + ret = this->scan_bbt(mtd); + if (ret) + return ret; + + memset((char *)parts, 0, sizeof(parts)); + numparts = inftl_partscan(mtd, parts); + /* At least for now, require the INFTL Media Header. We could probably + do without it for non-INFTL use, since all it gives us is + autopartitioning, but I want to give it more thought. */ + if (!numparts) + return -EIO; + return mtd_device_register(mtd, parts, no_autopart ? 0 : numparts); +} + +static inline int __init doc2000_init(struct mtd_info *mtd) +{ + struct nand_chip *this = mtd_to_nand(mtd); + struct doc_priv *doc = nand_get_controller_data(this); + + this->read_byte = doc2000_read_byte; + this->write_buf = doc2000_writebuf; + this->read_buf = doc2000_readbuf; + doc->late_init = nftl_scan_bbt; + + doc->CDSNControl = CDSN_CTRL_FLASH_IO | CDSN_CTRL_ECC_IO; + doc2000_count_chips(mtd); + mtd->name = "DiskOnChip 2000 (NFTL Model)"; + return (4 * doc->chips_per_floor); +} + +static inline int __init doc2001_init(struct mtd_info *mtd) +{ + struct nand_chip *this = mtd_to_nand(mtd); + struct doc_priv *doc = nand_get_controller_data(this); + + this->read_byte = doc2001_read_byte; + this->write_buf = doc2001_writebuf; + this->read_buf = doc2001_readbuf; + + ReadDOC(doc->virtadr, ChipID); + ReadDOC(doc->virtadr, ChipID); + ReadDOC(doc->virtadr, ChipID); + if (ReadDOC(doc->virtadr, ChipID) != DOC_ChipID_DocMil) { + /* It's not a Millennium; it's one of the newer + DiskOnChip 2000 units with a similar ASIC. + Treat it like a Millennium, except that it + can have multiple chips. */ + doc2000_count_chips(mtd); + mtd->name = "DiskOnChip 2000 (INFTL Model)"; + doc->late_init = inftl_scan_bbt; + return (4 * doc->chips_per_floor); + } else { + /* Bog-standard Millennium */ + doc->chips_per_floor = 1; + mtd->name = "DiskOnChip Millennium"; + doc->late_init = nftl_scan_bbt; + return 1; + } +} + +static inline int __init doc2001plus_init(struct mtd_info *mtd) +{ + struct nand_chip *this = mtd_to_nand(mtd); + struct doc_priv *doc = nand_get_controller_data(this); + + this->read_byte = doc2001plus_read_byte; + this->write_buf = doc2001plus_writebuf; + this->read_buf = doc2001plus_readbuf; + doc->late_init = inftl_scan_bbt; + this->cmd_ctrl = NULL; + this->select_chip = doc2001plus_select_chip; + this->cmdfunc = doc2001plus_command; + this->ecc.hwctl = doc2001plus_enable_hwecc; + + doc->chips_per_floor = 1; + mtd->name = "DiskOnChip Millennium Plus"; + + return 1; +} + +static int __init doc_probe(unsigned long physadr) +{ + unsigned char ChipID; + struct mtd_info *mtd; + struct nand_chip *nand; + struct doc_priv *doc; + void __iomem *virtadr; + unsigned char save_control; + unsigned char tmp, tmpb, tmpc; + int reg, len, numchips; + int ret = 0; + + if (!request_mem_region(physadr, DOC_IOREMAP_LEN, "DiskOnChip")) + return -EBUSY; + virtadr = ioremap(physadr, DOC_IOREMAP_LEN); + if (!virtadr) { + printk(KERN_ERR "Diskonchip ioremap failed: 0x%x bytes at 0x%lx\n", DOC_IOREMAP_LEN, physadr); + ret = -EIO; + goto error_ioremap; + } + + /* It's not possible to cleanly detect the DiskOnChip - the + * bootup procedure will put the device into reset mode, and + * it's not possible to talk to it without actually writing + * to the DOCControl register. So we store the current contents + * of the DOCControl register's location, in case we later decide + * that it's not a DiskOnChip, and want to put it back how we + * found it. + */ + save_control = ReadDOC(virtadr, DOCControl); + + /* Reset the DiskOnChip ASIC */ + WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, virtadr, DOCControl); + WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, virtadr, DOCControl); + + /* Enable the DiskOnChip ASIC */ + WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, virtadr, DOCControl); + WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, virtadr, DOCControl); + + ChipID = ReadDOC(virtadr, ChipID); + + switch (ChipID) { + case DOC_ChipID_Doc2k: + reg = DoC_2k_ECCStatus; + break; + case DOC_ChipID_DocMil: + reg = DoC_ECCConf; + break; + case DOC_ChipID_DocMilPlus16: + case DOC_ChipID_DocMilPlus32: + case 0: + /* Possible Millennium Plus, need to do more checks */ + /* Possibly release from power down mode */ + for (tmp = 0; (tmp < 4); tmp++) + ReadDOC(virtadr, Mplus_Power); + + /* Reset the Millennium Plus ASIC */ + tmp = DOC_MODE_RESET | DOC_MODE_MDWREN | DOC_MODE_RST_LAT | DOC_MODE_BDECT; + WriteDOC(tmp, virtadr, Mplus_DOCControl); + WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm); + + mdelay(1); + /* Enable the Millennium Plus ASIC */ + tmp = DOC_MODE_NORMAL | DOC_MODE_MDWREN | DOC_MODE_RST_LAT | DOC_MODE_BDECT; + WriteDOC(tmp, virtadr, Mplus_DOCControl); + WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm); + mdelay(1); + + ChipID = ReadDOC(virtadr, ChipID); + + switch (ChipID) { + case DOC_ChipID_DocMilPlus16: + reg = DoC_Mplus_Toggle; + break; + case DOC_ChipID_DocMilPlus32: + printk(KERN_ERR "DiskOnChip Millennium Plus 32MB is not supported, ignoring.\n"); + default: + ret = -ENODEV; + goto notfound; + } + break; + + default: + ret = -ENODEV; + goto notfound; + } + /* Check the TOGGLE bit in the ECC register */ + tmp = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT; + tmpb = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT; + tmpc = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT; + if ((tmp == tmpb) || (tmp != tmpc)) { + printk(KERN_WARNING "Possible DiskOnChip at 0x%lx failed TOGGLE test, dropping.\n", physadr); + ret = -ENODEV; + goto notfound; + } + + for (mtd = doclist; mtd; mtd = doc->nextdoc) { + unsigned char oldval; + unsigned char newval; + nand = mtd_to_nand(mtd); + doc = nand_get_controller_data(nand); + /* Use the alias resolution register to determine if this is + in fact the same DOC aliased to a new address. If writes + to one chip's alias resolution register change the value on + the other chip, they're the same chip. */ + if (ChipID == DOC_ChipID_DocMilPlus16) { + oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution); + newval = ReadDOC(virtadr, Mplus_AliasResolution); + } else { + oldval = ReadDOC(doc->virtadr, AliasResolution); + newval = ReadDOC(virtadr, AliasResolution); + } + if (oldval != newval) + continue; + if (ChipID == DOC_ChipID_DocMilPlus16) { + WriteDOC(~newval, virtadr, Mplus_AliasResolution); + oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution); + WriteDOC(newval, virtadr, Mplus_AliasResolution); // restore it + } else { + WriteDOC(~newval, virtadr, AliasResolution); + oldval = ReadDOC(doc->virtadr, AliasResolution); + WriteDOC(newval, virtadr, AliasResolution); // restore it + } + newval = ~newval; + if (oldval == newval) { + printk(KERN_DEBUG "Found alias of DOC at 0x%lx to 0x%lx\n", doc->physadr, physadr); + goto notfound; + } + } + + printk(KERN_NOTICE "DiskOnChip found at 0x%lx\n", physadr); + + len = sizeof(struct nand_chip) + sizeof(struct doc_priv) + + (2 * sizeof(struct nand_bbt_descr)); + nand = kzalloc(len, GFP_KERNEL); + if (!nand) { + ret = -ENOMEM; + goto fail; + } + + mtd = nand_to_mtd(nand); + doc = (struct doc_priv *) (nand + 1); + nand->bbt_td = (struct nand_bbt_descr *) (doc + 1); + nand->bbt_md = nand->bbt_td + 1; + + mtd->owner = THIS_MODULE; + mtd_set_ooblayout(mtd, &doc200x_ooblayout_ops); + + nand_set_controller_data(nand, doc); + nand->select_chip = doc200x_select_chip; + nand->cmd_ctrl = doc200x_hwcontrol; + nand->dev_ready = doc200x_dev_ready; + nand->waitfunc = doc200x_wait; + nand->block_bad = doc200x_block_bad; + nand->ecc.hwctl = doc200x_enable_hwecc; + nand->ecc.calculate = doc200x_calculate_ecc; + nand->ecc.correct = doc200x_correct_data; + + nand->ecc.mode = NAND_ECC_HW_SYNDROME; + nand->ecc.size = 512; + nand->ecc.bytes = 6; + nand->ecc.strength = 2; + nand->ecc.options = NAND_ECC_GENERIC_ERASED_CHECK; + nand->bbt_options = NAND_BBT_USE_FLASH; + /* Skip the automatic BBT scan so we can run it manually */ + nand->options |= NAND_SKIP_BBTSCAN; + + doc->physadr = physadr; + doc->virtadr = virtadr; + doc->ChipID = ChipID; + doc->curfloor = -1; + doc->curchip = -1; + doc->mh0_page = -1; + doc->mh1_page = -1; + doc->nextdoc = doclist; + + if (ChipID == DOC_ChipID_Doc2k) + numchips = doc2000_init(mtd); + else if (ChipID == DOC_ChipID_DocMilPlus16) + numchips = doc2001plus_init(mtd); + else + numchips = doc2001_init(mtd); + + if ((ret = nand_scan(mtd, numchips)) || (ret = doc->late_init(mtd))) { + /* DBB note: i believe nand_release is necessary here, as + buffers may have been allocated in nand_base. Check with + Thomas. FIX ME! */ + /* nand_release will call mtd_device_unregister, but we + haven't yet added it. This is handled without incident by + mtd_device_unregister, as far as I can tell. */ + nand_release(mtd); + kfree(nand); + goto fail; + } + + /* Success! */ + doclist = mtd; + return 0; + + notfound: + /* Put back the contents of the DOCControl register, in case it's not + actually a DiskOnChip. */ + WriteDOC(save_control, virtadr, DOCControl); + fail: + iounmap(virtadr); + +error_ioremap: + release_mem_region(physadr, DOC_IOREMAP_LEN); + + return ret; +} + +static void release_nanddoc(void) +{ + struct mtd_info *mtd, *nextmtd; + struct nand_chip *nand; + struct doc_priv *doc; + + for (mtd = doclist; mtd; mtd = nextmtd) { + nand = mtd_to_nand(mtd); + doc = nand_get_controller_data(nand); + + nextmtd = doc->nextdoc; + nand_release(mtd); + iounmap(doc->virtadr); + release_mem_region(doc->physadr, DOC_IOREMAP_LEN); + kfree(nand); + } +} + +static int __init init_nanddoc(void) +{ + int i, ret = 0; + + /* We could create the decoder on demand, if memory is a concern. + * This way we have it handy, if an error happens + * + * Symbolsize is 10 (bits) + * Primitve polynomial is x^10+x^3+1 + * first consecutive root is 510 + * primitve element to generate roots = 1 + * generator polinomial degree = 4 + */ + rs_decoder = init_rs(10, 0x409, FCR, 1, NROOTS); + if (!rs_decoder) { + printk(KERN_ERR "DiskOnChip: Could not create a RS decoder\n"); + return -ENOMEM; + } + + if (doc_config_location) { + printk(KERN_INFO "Using configured DiskOnChip probe address 0x%lx\n", doc_config_location); + ret = doc_probe(doc_config_location); + if (ret < 0) + goto outerr; + } else { + for (i = 0; (doc_locations[i] != 0xffffffff); i++) { + doc_probe(doc_locations[i]); + } + } + /* No banner message any more. Print a message if no DiskOnChip + found, so the user knows we at least tried. */ + if (!doclist) { + printk(KERN_INFO "No valid DiskOnChip devices found\n"); + ret = -ENODEV; + goto outerr; + } + return 0; + outerr: + free_rs(rs_decoder); + return ret; +} + +static void __exit cleanup_nanddoc(void) +{ + /* Cleanup the nand/DoC resources */ + release_nanddoc(); + + /* Free the reed solomon resources */ + if (rs_decoder) { + free_rs(rs_decoder); + } +} + +module_init(init_nanddoc); +module_exit(cleanup_nanddoc); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("David Woodhouse "); +MODULE_DESCRIPTION("M-Systems DiskOnChip 2000, Millennium and Millennium Plus device driver"); diff --git a/drivers/mtd/nand/raw/docg4.c b/drivers/mtd/nand/raw/docg4.c new file mode 100644 index 000000000000..72f1327c4430 --- /dev/null +++ b/drivers/mtd/nand/raw/docg4.c @@ -0,0 +1,1421 @@ +/* + * Copyright © 2012 Mike Dunn + * + * mtd nand driver for M-Systems DiskOnChip G4 + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * Tested on the Palm Treo 680. The G4 is also present on Toshiba Portege, Asus + * P526, some HTC smartphones (Wizard, Prophet, ...), O2 XDA Zinc, maybe others. + * Should work on these as well. Let me know! + * + * TODO: + * + * Mechanism for management of password-protected areas + * + * Hamming ecc when reading oob only + * + * According to the M-Sys documentation, this device is also available in a + * "dual-die" configuration having a 256MB capacity, but no mechanism for + * detecting this variant is documented. Currently this driver assumes 128MB + * capacity. + * + * Support for multiple cascaded devices ("floors"). Not sure which gadgets + * contain multiple G4s in a cascaded configuration, if any. + * + */ + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +/* + * In "reliable mode" consecutive 2k pages are used in parallel (in some + * fashion) to store the same data. The data can be read back from the + * even-numbered pages in the normal manner; odd-numbered pages will appear to + * contain junk. Systems that boot from the docg4 typically write the secondary + * program loader (SPL) code in this mode. The SPL is loaded by the initial + * program loader (IPL, stored in the docg4's 2k NOR-like region that is mapped + * to the reset vector address). This module parameter enables you to use this + * driver to write the SPL. When in this mode, no more than 2k of data can be + * written at a time, because the addresses do not increment in the normal + * manner, and the starting offset must be within an even-numbered 2k region; + * i.e., invalid starting offsets are 0x800, 0xa00, 0xc00, 0xe00, 0x1800, + * 0x1a00, ... Reliable mode is a special case and should not be used unless + * you know what you're doing. + */ +static bool reliable_mode; +module_param(reliable_mode, bool, 0); +MODULE_PARM_DESC(reliable_mode, "pages are programmed in reliable mode"); + +/* + * You'll want to ignore badblocks if you're reading a partition that contains + * data written by the TrueFFS library (i.e., by PalmOS, Windows, etc), since + * it does not use mtd nand's method for marking bad blocks (using oob area). + * This will also skip the check of the "page written" flag. + */ +static bool ignore_badblocks; +module_param(ignore_badblocks, bool, 0); +MODULE_PARM_DESC(ignore_badblocks, "no badblock checking performed"); + +struct docg4_priv { + struct mtd_info *mtd; + struct device *dev; + void __iomem *virtadr; + int status; + struct { + unsigned int command; + int column; + int page; + } last_command; + uint8_t oob_buf[16]; + uint8_t ecc_buf[7]; + int oob_page; + struct bch_control *bch; +}; + +/* + * Defines prefixed with DOCG4 are unique to the diskonchip G4. All others are + * shared with other diskonchip devices (P3, G3 at least). + * + * Functions with names prefixed with docg4_ are mtd / nand interface functions + * (though they may also be called internally). All others are internal. + */ + +#define DOC_IOSPACE_DATA 0x0800 + +/* register offsets */ +#define DOC_CHIPID 0x1000 +#define DOC_DEVICESELECT 0x100a +#define DOC_ASICMODE 0x100c +#define DOC_DATAEND 0x101e +#define DOC_NOP 0x103e + +#define DOC_FLASHSEQUENCE 0x1032 +#define DOC_FLASHCOMMAND 0x1034 +#define DOC_FLASHADDRESS 0x1036 +#define DOC_FLASHCONTROL 0x1038 +#define DOC_ECCCONF0 0x1040 +#define DOC_ECCCONF1 0x1042 +#define DOC_HAMMINGPARITY 0x1046 +#define DOC_BCH_SYNDROM(idx) (0x1048 + idx) + +#define DOC_ASICMODECONFIRM 0x1072 +#define DOC_CHIPID_INV 0x1074 +#define DOC_POWERMODE 0x107c + +#define DOCG4_MYSTERY_REG 0x1050 + +/* apparently used only to write oob bytes 6 and 7 */ +#define DOCG4_OOB_6_7 0x1052 + +/* DOC_FLASHSEQUENCE register commands */ +#define DOC_SEQ_RESET 0x00 +#define DOCG4_SEQ_PAGE_READ 0x03 +#define DOCG4_SEQ_FLUSH 0x29 +#define DOCG4_SEQ_PAGEWRITE 0x16 +#define DOCG4_SEQ_PAGEPROG 0x1e +#define DOCG4_SEQ_BLOCKERASE 0x24 +#define DOCG4_SEQ_SETMODE 0x45 + +/* DOC_FLASHCOMMAND register commands */ +#define DOCG4_CMD_PAGE_READ 0x00 +#define DOC_CMD_ERASECYCLE2 0xd0 +#define DOCG4_CMD_FLUSH 0x70 +#define DOCG4_CMD_READ2 0x30 +#define DOC_CMD_PROG_BLOCK_ADDR 0x60 +#define DOCG4_CMD_PAGEWRITE 0x80 +#define DOC_CMD_PROG_CYCLE2 0x10 +#define DOCG4_CMD_FAST_MODE 0xa3 /* functionality guessed */ +#define DOC_CMD_RELIABLE_MODE 0x22 +#define DOC_CMD_RESET 0xff + +/* DOC_POWERMODE register bits */ +#define DOC_POWERDOWN_READY 0x80 + +/* DOC_FLASHCONTROL register bits */ +#define DOC_CTRL_CE 0x10 +#define DOC_CTRL_UNKNOWN 0x40 +#define DOC_CTRL_FLASHREADY 0x01 + +/* DOC_ECCCONF0 register bits */ +#define DOC_ECCCONF0_READ_MODE 0x8000 +#define DOC_ECCCONF0_UNKNOWN 0x2000 +#define DOC_ECCCONF0_ECC_ENABLE 0x1000 +#define DOC_ECCCONF0_DATA_BYTES_MASK 0x07ff + +/* DOC_ECCCONF1 register bits */ +#define DOC_ECCCONF1_BCH_SYNDROM_ERR 0x80 +#define DOC_ECCCONF1_ECC_ENABLE 0x07 +#define DOC_ECCCONF1_PAGE_IS_WRITTEN 0x20 + +/* DOC_ASICMODE register bits */ +#define DOC_ASICMODE_RESET 0x00 +#define DOC_ASICMODE_NORMAL 0x01 +#define DOC_ASICMODE_POWERDOWN 0x02 +#define DOC_ASICMODE_MDWREN 0x04 +#define DOC_ASICMODE_BDETCT_RESET 0x08 +#define DOC_ASICMODE_RSTIN_RESET 0x10 +#define DOC_ASICMODE_RAM_WE 0x20 + +/* good status values read after read/write/erase operations */ +#define DOCG4_PROGSTATUS_GOOD 0x51 +#define DOCG4_PROGSTATUS_GOOD_2 0xe0 + +/* + * On read operations (page and oob-only), the first byte read from I/O reg is a + * status. On error, it reads 0x73; otherwise, it reads either 0x71 (first read + * after reset only) or 0x51, so bit 1 is presumed to be an error indicator. + */ +#define DOCG4_READ_ERROR 0x02 /* bit 1 indicates read error */ + +/* anatomy of the device */ +#define DOCG4_CHIP_SIZE 0x8000000 +#define DOCG4_PAGE_SIZE 0x200 +#define DOCG4_PAGES_PER_BLOCK 0x200 +#define DOCG4_BLOCK_SIZE (DOCG4_PAGES_PER_BLOCK * DOCG4_PAGE_SIZE) +#define DOCG4_NUMBLOCKS (DOCG4_CHIP_SIZE / DOCG4_BLOCK_SIZE) +#define DOCG4_OOB_SIZE 0x10 +#define DOCG4_CHIP_SHIFT 27 /* log_2(DOCG4_CHIP_SIZE) */ +#define DOCG4_PAGE_SHIFT 9 /* log_2(DOCG4_PAGE_SIZE) */ +#define DOCG4_ERASE_SHIFT 18 /* log_2(DOCG4_BLOCK_SIZE) */ + +/* all but the last byte is included in ecc calculation */ +#define DOCG4_BCH_SIZE (DOCG4_PAGE_SIZE + DOCG4_OOB_SIZE - 1) + +#define DOCG4_USERDATA_LEN 520 /* 512 byte page plus 8 oob avail to user */ + +/* expected values from the ID registers */ +#define DOCG4_IDREG1_VALUE 0x0400 +#define DOCG4_IDREG2_VALUE 0xfbff + +/* primitive polynomial used to build the Galois field used by hw ecc gen */ +#define DOCG4_PRIMITIVE_POLY 0x4443 + +#define DOCG4_M 14 /* Galois field is of order 2^14 */ +#define DOCG4_T 4 /* BCH alg corrects up to 4 bit errors */ + +#define DOCG4_FACTORY_BBT_PAGE 16 /* page where read-only factory bbt lives */ +#define DOCG4_REDUNDANT_BBT_PAGE 24 /* page where redundant factory bbt lives */ + +/* + * Bytes 0, 1 are used as badblock marker. + * Bytes 2 - 6 are available to the user. + * Byte 7 is hamming ecc for first 7 oob bytes only. + * Bytes 8 - 14 are hw-generated ecc covering entire page + oob bytes 0 - 14. + * Byte 15 (the last) is used by the driver as a "page written" flag. + */ +static int docg4_ooblayout_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + if (section) + return -ERANGE; + + oobregion->offset = 7; + oobregion->length = 9; + + return 0; +} + +static int docg4_ooblayout_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + if (section) + return -ERANGE; + + oobregion->offset = 2; + oobregion->length = 5; + + return 0; +} + +static const struct mtd_ooblayout_ops docg4_ooblayout_ops = { + .ecc = docg4_ooblayout_ecc, + .free = docg4_ooblayout_free, +}; + +/* + * The device has a nop register which M-Sys claims is for the purpose of + * inserting precise delays. But beware; at least some operations fail if the + * nop writes are replaced with a generic delay! + */ +static inline void write_nop(void __iomem *docptr) +{ + writew(0, docptr + DOC_NOP); +} + +static void docg4_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) +{ + int i; + struct nand_chip *nand = mtd_to_nand(mtd); + uint16_t *p = (uint16_t *) buf; + len >>= 1; + + for (i = 0; i < len; i++) + p[i] = readw(nand->IO_ADDR_R); +} + +static void docg4_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len) +{ + int i; + struct nand_chip *nand = mtd_to_nand(mtd); + uint16_t *p = (uint16_t *) buf; + len >>= 1; + + for (i = 0; i < len; i++) + writew(p[i], nand->IO_ADDR_W); +} + +static int poll_status(struct docg4_priv *doc) +{ + /* + * Busy-wait for the FLASHREADY bit to be set in the FLASHCONTROL + * register. Operations known to take a long time (e.g., block erase) + * should sleep for a while before calling this. + */ + + uint16_t flash_status; + unsigned long timeo; + void __iomem *docptr = doc->virtadr; + + dev_dbg(doc->dev, "%s...\n", __func__); + + /* hardware quirk requires reading twice initially */ + flash_status = readw(docptr + DOC_FLASHCONTROL); + + timeo = jiffies + msecs_to_jiffies(200); /* generous timeout */ + do { + cpu_relax(); + flash_status = readb(docptr + DOC_FLASHCONTROL); + } while (!(flash_status & DOC_CTRL_FLASHREADY) && + time_before(jiffies, timeo)); + + if (unlikely(!(flash_status & DOC_CTRL_FLASHREADY))) { + dev_err(doc->dev, "%s: timed out!\n", __func__); + return NAND_STATUS_FAIL; + } + + return 0; +} + + +static int docg4_wait(struct mtd_info *mtd, struct nand_chip *nand) +{ + + struct docg4_priv *doc = nand_get_controller_data(nand); + int status = NAND_STATUS_WP; /* inverse logic?? */ + dev_dbg(doc->dev, "%s...\n", __func__); + + /* report any previously unreported error */ + if (doc->status) { + status |= doc->status; + doc->status = 0; + return status; + } + + status |= poll_status(doc); + return status; +} + +static void docg4_select_chip(struct mtd_info *mtd, int chip) +{ + /* + * Select among multiple cascaded chips ("floors"). Multiple floors are + * not yet supported, so the only valid non-negative value is 0. + */ + struct nand_chip *nand = mtd_to_nand(mtd); + struct docg4_priv *doc = nand_get_controller_data(nand); + void __iomem *docptr = doc->virtadr; + + dev_dbg(doc->dev, "%s: chip %d\n", __func__, chip); + + if (chip < 0) + return; /* deselected */ + + if (chip > 0) + dev_warn(doc->dev, "multiple floors currently unsupported\n"); + + writew(0, docptr + DOC_DEVICESELECT); +} + +static void reset(struct mtd_info *mtd) +{ + /* full device reset */ + + struct nand_chip *nand = mtd_to_nand(mtd); + struct docg4_priv *doc = nand_get_controller_data(nand); + void __iomem *docptr = doc->virtadr; + + writew(DOC_ASICMODE_RESET | DOC_ASICMODE_MDWREN, + docptr + DOC_ASICMODE); + writew(~(DOC_ASICMODE_RESET | DOC_ASICMODE_MDWREN), + docptr + DOC_ASICMODECONFIRM); + write_nop(docptr); + + writew(DOC_ASICMODE_NORMAL | DOC_ASICMODE_MDWREN, + docptr + DOC_ASICMODE); + writew(~(DOC_ASICMODE_NORMAL | DOC_ASICMODE_MDWREN), + docptr + DOC_ASICMODECONFIRM); + + writew(DOC_ECCCONF1_ECC_ENABLE, docptr + DOC_ECCCONF1); + + poll_status(doc); +} + +static void read_hw_ecc(void __iomem *docptr, uint8_t *ecc_buf) +{ + /* read the 7 hw-generated ecc bytes */ + + int i; + for (i = 0; i < 7; i++) { /* hw quirk; read twice */ + ecc_buf[i] = readb(docptr + DOC_BCH_SYNDROM(i)); + ecc_buf[i] = readb(docptr + DOC_BCH_SYNDROM(i)); + } +} + +static int correct_data(struct mtd_info *mtd, uint8_t *buf, int page) +{ + /* + * Called after a page read when hardware reports bitflips. + * Up to four bitflips can be corrected. + */ + + struct nand_chip *nand = mtd_to_nand(mtd); + struct docg4_priv *doc = nand_get_controller_data(nand); + void __iomem *docptr = doc->virtadr; + int i, numerrs, errpos[4]; + const uint8_t blank_read_hwecc[8] = { + 0xcf, 0x72, 0xfc, 0x1b, 0xa9, 0xc7, 0xb9, 0 }; + + read_hw_ecc(docptr, doc->ecc_buf); /* read 7 hw-generated ecc bytes */ + + /* check if read error is due to a blank page */ + if (!memcmp(doc->ecc_buf, blank_read_hwecc, 7)) + return 0; /* yes */ + + /* skip additional check of "written flag" if ignore_badblocks */ + if (ignore_badblocks == false) { + + /* + * If the hw ecc bytes are not those of a blank page, there's + * still a chance that the page is blank, but was read with + * errors. Check the "written flag" in last oob byte, which + * is set to zero when a page is written. If more than half + * the bits are set, assume a blank page. Unfortunately, the + * bit flips(s) are not reported in stats. + */ + + if (nand->oob_poi[15]) { + int bit, numsetbits = 0; + unsigned long written_flag = nand->oob_poi[15]; + for_each_set_bit(bit, &written_flag, 8) + numsetbits++; + if (numsetbits > 4) { /* assume blank */ + dev_warn(doc->dev, + "error(s) in blank page " + "at offset %08x\n", + page * DOCG4_PAGE_SIZE); + return 0; + } + } + } + + /* + * The hardware ecc unit produces oob_ecc ^ calc_ecc. The kernel's bch + * algorithm is used to decode this. However the hw operates on page + * data in a bit order that is the reverse of that of the bch alg, + * requiring that the bits be reversed on the result. Thanks to Ivan + * Djelic for his analysis! + */ + for (i = 0; i < 7; i++) + doc->ecc_buf[i] = bitrev8(doc->ecc_buf[i]); + + numerrs = decode_bch(doc->bch, NULL, DOCG4_USERDATA_LEN, NULL, + doc->ecc_buf, NULL, errpos); + + if (numerrs == -EBADMSG) { + dev_warn(doc->dev, "uncorrectable errors at offset %08x\n", + page * DOCG4_PAGE_SIZE); + return -EBADMSG; + } + + BUG_ON(numerrs < 0); /* -EINVAL, or anything other than -EBADMSG */ + + /* undo last step in BCH alg (modulo mirroring not needed) */ + for (i = 0; i < numerrs; i++) + errpos[i] = (errpos[i] & ~7)|(7-(errpos[i] & 7)); + + /* fix the errors */ + for (i = 0; i < numerrs; i++) { + + /* ignore if error within oob ecc bytes */ + if (errpos[i] > DOCG4_USERDATA_LEN * 8) + continue; + + /* if error within oob area preceeding ecc bytes... */ + if (errpos[i] > DOCG4_PAGE_SIZE * 8) + change_bit(errpos[i] - DOCG4_PAGE_SIZE * 8, + (unsigned long *)nand->oob_poi); + + else /* error in page data */ + change_bit(errpos[i], (unsigned long *)buf); + } + + dev_notice(doc->dev, "%d error(s) corrected at offset %08x\n", + numerrs, page * DOCG4_PAGE_SIZE); + + return numerrs; +} + +static uint8_t docg4_read_byte(struct mtd_info *mtd) +{ + struct nand_chip *nand = mtd_to_nand(mtd); + struct docg4_priv *doc = nand_get_controller_data(nand); + + dev_dbg(doc->dev, "%s\n", __func__); + + if (doc->last_command.command == NAND_CMD_STATUS) { + int status; + + /* + * Previous nand command was status request, so nand + * infrastructure code expects to read the status here. If an + * error occurred in a previous operation, report it. + */ + doc->last_command.command = 0; + + if (doc->status) { + status = doc->status; + doc->status = 0; + } + + /* why is NAND_STATUS_WP inverse logic?? */ + else + status = NAND_STATUS_WP | NAND_STATUS_READY; + + return status; + } + + dev_warn(doc->dev, "unexpected call to read_byte()\n"); + + return 0; +} + +static void write_addr(struct docg4_priv *doc, uint32_t docg4_addr) +{ + /* write the four address bytes packed in docg4_addr to the device */ + + void __iomem *docptr = doc->virtadr; + writeb(docg4_addr & 0xff, docptr + DOC_FLASHADDRESS); + docg4_addr >>= 8; + writeb(docg4_addr & 0xff, docptr + DOC_FLASHADDRESS); + docg4_addr >>= 8; + writeb(docg4_addr & 0xff, docptr + DOC_FLASHADDRESS); + docg4_addr >>= 8; + writeb(docg4_addr & 0xff, docptr + DOC_FLASHADDRESS); +} + +static int read_progstatus(struct docg4_priv *doc) +{ + /* + * This apparently checks the status of programming. Done after an + * erasure, and after page data is written. On error, the status is + * saved, to be later retrieved by the nand infrastructure code. + */ + void __iomem *docptr = doc->virtadr; + + /* status is read from the I/O reg */ + uint16_t status1 = readw(docptr + DOC_IOSPACE_DATA); + uint16_t status2 = readw(docptr + DOC_IOSPACE_DATA); + uint16_t status3 = readw(docptr + DOCG4_MYSTERY_REG); + + dev_dbg(doc->dev, "docg4: %s: %02x %02x %02x\n", + __func__, status1, status2, status3); + + if (status1 != DOCG4_PROGSTATUS_GOOD + || status2 != DOCG4_PROGSTATUS_GOOD_2 + || status3 != DOCG4_PROGSTATUS_GOOD_2) { + doc->status = NAND_STATUS_FAIL; + dev_warn(doc->dev, "read_progstatus failed: " + "%02x, %02x, %02x\n", status1, status2, status3); + return -EIO; + } + return 0; +} + +static int pageprog(struct mtd_info *mtd) +{ + /* + * Final step in writing a page. Writes the contents of its + * internal buffer out to the flash array, or some such. + */ + + struct nand_chip *nand = mtd_to_nand(mtd); + struct docg4_priv *doc = nand_get_controller_data(nand); + void __iomem *docptr = doc->virtadr; + int retval = 0; + + dev_dbg(doc->dev, "docg4: %s\n", __func__); + + writew(DOCG4_SEQ_PAGEPROG, docptr + DOC_FLASHSEQUENCE); + writew(DOC_CMD_PROG_CYCLE2, docptr + DOC_FLASHCOMMAND); + write_nop(docptr); + write_nop(docptr); + + /* Just busy-wait; usleep_range() slows things down noticeably. */ + poll_status(doc); + + writew(DOCG4_SEQ_FLUSH, docptr + DOC_FLASHSEQUENCE); + writew(DOCG4_CMD_FLUSH, docptr + DOC_FLASHCOMMAND); + writew(DOC_ECCCONF0_READ_MODE | 4, docptr + DOC_ECCCONF0); + write_nop(docptr); + write_nop(docptr); + write_nop(docptr); + write_nop(docptr); + write_nop(docptr); + + retval = read_progstatus(doc); + writew(0, docptr + DOC_DATAEND); + write_nop(docptr); + poll_status(doc); + write_nop(docptr); + + return retval; +} + +static void sequence_reset(struct mtd_info *mtd) +{ + /* common starting sequence for all operations */ + + struct nand_chip *nand = mtd_to_nand(mtd); + struct docg4_priv *doc = nand_get_controller_data(nand); + void __iomem *docptr = doc->virtadr; + + writew(DOC_CTRL_UNKNOWN | DOC_CTRL_CE, docptr + DOC_FLASHCONTROL); + writew(DOC_SEQ_RESET, docptr + DOC_FLASHSEQUENCE); + writew(DOC_CMD_RESET, docptr + DOC_FLASHCOMMAND); + write_nop(docptr); + write_nop(docptr); + poll_status(doc); + write_nop(docptr); +} + +static void read_page_prologue(struct mtd_info *mtd, uint32_t docg4_addr) +{ + /* first step in reading a page */ + + struct nand_chip *nand = mtd_to_nand(mtd); + struct docg4_priv *doc = nand_get_controller_data(nand); + void __iomem *docptr = doc->virtadr; + + dev_dbg(doc->dev, + "docg4: %s: g4 page %08x\n", __func__, docg4_addr); + + sequence_reset(mtd); + + writew(DOCG4_SEQ_PAGE_READ, docptr + DOC_FLASHSEQUENCE); + writew(DOCG4_CMD_PAGE_READ, docptr + DOC_FLASHCOMMAND); + write_nop(docptr); + + write_addr(doc, docg4_addr); + + write_nop(docptr); + writew(DOCG4_CMD_READ2, docptr + DOC_FLASHCOMMAND); + write_nop(docptr); + write_nop(docptr); + + poll_status(doc); +} + +static void write_page_prologue(struct mtd_info *mtd, uint32_t docg4_addr) +{ + /* first step in writing a page */ + + struct nand_chip *nand = mtd_to_nand(mtd); + struct docg4_priv *doc = nand_get_controller_data(nand); + void __iomem *docptr = doc->virtadr; + + dev_dbg(doc->dev, + "docg4: %s: g4 addr: %x\n", __func__, docg4_addr); + sequence_reset(mtd); + + if (unlikely(reliable_mode)) { + writew(DOCG4_SEQ_SETMODE, docptr + DOC_FLASHSEQUENCE); + writew(DOCG4_CMD_FAST_MODE, docptr + DOC_FLASHCOMMAND); + writew(DOC_CMD_RELIABLE_MODE, docptr + DOC_FLASHCOMMAND); + write_nop(docptr); + } + + writew(DOCG4_SEQ_PAGEWRITE, docptr + DOC_FLASHSEQUENCE); + writew(DOCG4_CMD_PAGEWRITE, docptr + DOC_FLASHCOMMAND); + write_nop(docptr); + write_addr(doc, docg4_addr); + write_nop(docptr); + write_nop(docptr); + poll_status(doc); +} + +static uint32_t mtd_to_docg4_address(int page, int column) +{ + /* + * Convert mtd address to format used by the device, 32 bit packed. + * + * Some notes on G4 addressing... The M-Sys documentation on this device + * claims that pages are 2K in length, and indeed, the format of the + * address used by the device reflects that. But within each page are + * four 512 byte "sub-pages", each with its own oob data that is + * read/written immediately after the 512 bytes of page data. This oob + * data contains the ecc bytes for the preceeding 512 bytes. + * + * Rather than tell the mtd nand infrastructure that page size is 2k, + * with four sub-pages each, we engage in a little subterfuge and tell + * the infrastructure code that pages are 512 bytes in size. This is + * done because during the course of reverse-engineering the device, I + * never observed an instance where an entire 2K "page" was read or + * written as a unit. Each "sub-page" is always addressed individually, + * its data read/written, and ecc handled before the next "sub-page" is + * addressed. + * + * This requires us to convert addresses passed by the mtd nand + * infrastructure code to those used by the device. + * + * The address that is written to the device consists of four bytes: the + * first two are the 2k page number, and the second is the index into + * the page. The index is in terms of 16-bit half-words and includes + * the preceeding oob data, so e.g., the index into the second + * "sub-page" is 0x108, and the full device address of the start of mtd + * page 0x201 is 0x00800108. + */ + int g4_page = page / 4; /* device's 2K page */ + int g4_index = (page % 4) * 0x108 + column/2; /* offset into page */ + return (g4_page << 16) | g4_index; /* pack */ +} + +static void docg4_command(struct mtd_info *mtd, unsigned command, int column, + int page_addr) +{ + /* handle standard nand commands */ + + struct nand_chip *nand = mtd_to_nand(mtd); + struct docg4_priv *doc = nand_get_controller_data(nand); + uint32_t g4_addr = mtd_to_docg4_address(page_addr, column); + + dev_dbg(doc->dev, "%s %x, page_addr=%x, column=%x\n", + __func__, command, page_addr, column); + + /* + * Save the command and its arguments. This enables emulation of + * standard flash devices, and also some optimizations. + */ + doc->last_command.command = command; + doc->last_command.column = column; + doc->last_command.page = page_addr; + + switch (command) { + + case NAND_CMD_RESET: + reset(mtd); + break; + + case NAND_CMD_READ0: + read_page_prologue(mtd, g4_addr); + break; + + case NAND_CMD_STATUS: + /* next call to read_byte() will expect a status */ + break; + + case NAND_CMD_SEQIN: + if (unlikely(reliable_mode)) { + uint16_t g4_page = g4_addr >> 16; + + /* writes to odd-numbered 2k pages are invalid */ + if (g4_page & 0x01) + dev_warn(doc->dev, + "invalid reliable mode address\n"); + } + + write_page_prologue(mtd, g4_addr); + + /* hack for deferred write of oob bytes */ + if (doc->oob_page == page_addr) + memcpy(nand->oob_poi, doc->oob_buf, 16); + break; + + case NAND_CMD_PAGEPROG: + pageprog(mtd); + break; + + /* we don't expect these, based on review of nand_base.c */ + case NAND_CMD_READOOB: + case NAND_CMD_READID: + case NAND_CMD_ERASE1: + case NAND_CMD_ERASE2: + dev_warn(doc->dev, "docg4_command: " + "unexpected nand command 0x%x\n", command); + break; + + } +} + +static int read_page(struct mtd_info *mtd, struct nand_chip *nand, + uint8_t *buf, int page, bool use_ecc) +{ + struct docg4_priv *doc = nand_get_controller_data(nand); + void __iomem *docptr = doc->virtadr; + uint16_t status, edc_err, *buf16; + int bits_corrected = 0; + + dev_dbg(doc->dev, "%s: page %08x\n", __func__, page); + + nand_read_page_op(nand, page, 0, NULL, 0); + + writew(DOC_ECCCONF0_READ_MODE | + DOC_ECCCONF0_ECC_ENABLE | + DOC_ECCCONF0_UNKNOWN | + DOCG4_BCH_SIZE, + docptr + DOC_ECCCONF0); + write_nop(docptr); + write_nop(docptr); + write_nop(docptr); + write_nop(docptr); + write_nop(docptr); + + /* the 1st byte from the I/O reg is a status; the rest is page data */ + status = readw(docptr + DOC_IOSPACE_DATA); + if (status & DOCG4_READ_ERROR) { + dev_err(doc->dev, + "docg4_read_page: bad status: 0x%02x\n", status); + writew(0, docptr + DOC_DATAEND); + return -EIO; + } + + dev_dbg(doc->dev, "%s: status = 0x%x\n", __func__, status); + + docg4_read_buf(mtd, buf, DOCG4_PAGE_SIZE); /* read the page data */ + + /* this device always reads oob after page data */ + /* first 14 oob bytes read from I/O reg */ + docg4_read_buf(mtd, nand->oob_poi, 14); + + /* last 2 read from another reg */ + buf16 = (uint16_t *)(nand->oob_poi + 14); + *buf16 = readw(docptr + DOCG4_MYSTERY_REG); + + write_nop(docptr); + + if (likely(use_ecc == true)) { + + /* read the register that tells us if bitflip(s) detected */ + edc_err = readw(docptr + DOC_ECCCONF1); + edc_err = readw(docptr + DOC_ECCCONF1); + dev_dbg(doc->dev, "%s: edc_err = 0x%02x\n", __func__, edc_err); + + /* If bitflips are reported, attempt to correct with ecc */ + if (edc_err & DOC_ECCCONF1_BCH_SYNDROM_ERR) { + bits_corrected = correct_data(mtd, buf, page); + if (bits_corrected == -EBADMSG) + mtd->ecc_stats.failed++; + else + mtd->ecc_stats.corrected += bits_corrected; + } + } + + writew(0, docptr + DOC_DATAEND); + if (bits_corrected == -EBADMSG) /* uncorrectable errors */ + return 0; + return bits_corrected; +} + + +static int docg4_read_page_raw(struct mtd_info *mtd, struct nand_chip *nand, + uint8_t *buf, int oob_required, int page) +{ + return read_page(mtd, nand, buf, page, false); +} + +static int docg4_read_page(struct mtd_info *mtd, struct nand_chip *nand, + uint8_t *buf, int oob_required, int page) +{ + return read_page(mtd, nand, buf, page, true); +} + +static int docg4_read_oob(struct mtd_info *mtd, struct nand_chip *nand, + int page) +{ + struct docg4_priv *doc = nand_get_controller_data(nand); + void __iomem *docptr = doc->virtadr; + uint16_t status; + + dev_dbg(doc->dev, "%s: page %x\n", __func__, page); + + nand_read_page_op(nand, page, nand->ecc.size, NULL, 0); + + writew(DOC_ECCCONF0_READ_MODE | DOCG4_OOB_SIZE, docptr + DOC_ECCCONF0); + write_nop(docptr); + write_nop(docptr); + write_nop(docptr); + write_nop(docptr); + write_nop(docptr); + + /* the 1st byte from the I/O reg is a status; the rest is oob data */ + status = readw(docptr + DOC_IOSPACE_DATA); + if (status & DOCG4_READ_ERROR) { + dev_warn(doc->dev, + "docg4_read_oob failed: status = 0x%02x\n", status); + return -EIO; + } + + dev_dbg(doc->dev, "%s: status = 0x%x\n", __func__, status); + + docg4_read_buf(mtd, nand->oob_poi, 16); + + write_nop(docptr); + write_nop(docptr); + write_nop(docptr); + writew(0, docptr + DOC_DATAEND); + write_nop(docptr); + + return 0; +} + +static int docg4_erase_block(struct mtd_info *mtd, int page) +{ + struct nand_chip *nand = mtd_to_nand(mtd); + struct docg4_priv *doc = nand_get_controller_data(nand); + void __iomem *docptr = doc->virtadr; + uint16_t g4_page; + int status; + + dev_dbg(doc->dev, "%s: page %04x\n", __func__, page); + + sequence_reset(mtd); + + writew(DOCG4_SEQ_BLOCKERASE, docptr + DOC_FLASHSEQUENCE); + writew(DOC_CMD_PROG_BLOCK_ADDR, docptr + DOC_FLASHCOMMAND); + write_nop(docptr); + + /* only 2 bytes of address are written to specify erase block */ + g4_page = (uint16_t)(page / 4); /* to g4's 2k page addressing */ + writeb(g4_page & 0xff, docptr + DOC_FLASHADDRESS); + g4_page >>= 8; + writeb(g4_page & 0xff, docptr + DOC_FLASHADDRESS); + write_nop(docptr); + + /* start the erasure */ + writew(DOC_CMD_ERASECYCLE2, docptr + DOC_FLASHCOMMAND); + write_nop(docptr); + write_nop(docptr); + + usleep_range(500, 1000); /* erasure is long; take a snooze */ + poll_status(doc); + writew(DOCG4_SEQ_FLUSH, docptr + DOC_FLASHSEQUENCE); + writew(DOCG4_CMD_FLUSH, docptr + DOC_FLASHCOMMAND); + writew(DOC_ECCCONF0_READ_MODE | 4, docptr + DOC_ECCCONF0); + write_nop(docptr); + write_nop(docptr); + write_nop(docptr); + write_nop(docptr); + write_nop(docptr); + + read_progstatus(doc); + + writew(0, docptr + DOC_DATAEND); + write_nop(docptr); + poll_status(doc); + write_nop(docptr); + + status = nand->waitfunc(mtd, nand); + if (status < 0) + return status; + + return status & NAND_STATUS_FAIL ? -EIO : 0; +} + +static int write_page(struct mtd_info *mtd, struct nand_chip *nand, + const uint8_t *buf, int page, bool use_ecc) +{ + struct docg4_priv *doc = nand_get_controller_data(nand); + void __iomem *docptr = doc->virtadr; + uint8_t ecc_buf[8]; + + dev_dbg(doc->dev, "%s...\n", __func__); + + nand_prog_page_begin_op(nand, page, 0, NULL, 0); + + writew(DOC_ECCCONF0_ECC_ENABLE | + DOC_ECCCONF0_UNKNOWN | + DOCG4_BCH_SIZE, + docptr + DOC_ECCCONF0); + write_nop(docptr); + + /* write the page data */ + docg4_write_buf16(mtd, buf, DOCG4_PAGE_SIZE); + + /* oob bytes 0 through 5 are written to I/O reg */ + docg4_write_buf16(mtd, nand->oob_poi, 6); + + /* oob byte 6 written to a separate reg */ + writew(nand->oob_poi[6], docptr + DOCG4_OOB_6_7); + + write_nop(docptr); + write_nop(docptr); + + /* write hw-generated ecc bytes to oob */ + if (likely(use_ecc == true)) { + /* oob byte 7 is hamming code */ + uint8_t hamming = readb(docptr + DOC_HAMMINGPARITY); + hamming = readb(docptr + DOC_HAMMINGPARITY); /* 2nd read */ + writew(hamming, docptr + DOCG4_OOB_6_7); + write_nop(docptr); + + /* read the 7 bch bytes from ecc regs */ + read_hw_ecc(docptr, ecc_buf); + ecc_buf[7] = 0; /* clear the "page written" flag */ + } + + /* write user-supplied bytes to oob */ + else { + writew(nand->oob_poi[7], docptr + DOCG4_OOB_6_7); + write_nop(docptr); + memcpy(ecc_buf, &nand->oob_poi[8], 8); + } + + docg4_write_buf16(mtd, ecc_buf, 8); + write_nop(docptr); + write_nop(docptr); + writew(0, docptr + DOC_DATAEND); + write_nop(docptr); + + return nand_prog_page_end_op(nand); +} + +static int docg4_write_page_raw(struct mtd_info *mtd, struct nand_chip *nand, + const uint8_t *buf, int oob_required, int page) +{ + return write_page(mtd, nand, buf, page, false); +} + +static int docg4_write_page(struct mtd_info *mtd, struct nand_chip *nand, + const uint8_t *buf, int oob_required, int page) +{ + return write_page(mtd, nand, buf, page, true); +} + +static int docg4_write_oob(struct mtd_info *mtd, struct nand_chip *nand, + int page) +{ + /* + * Writing oob-only is not really supported, because MLC nand must write + * oob bytes at the same time as page data. Nonetheless, we save the + * oob buffer contents here, and then write it along with the page data + * if the same page is subsequently written. This allows user space + * utilities that write the oob data prior to the page data to work + * (e.g., nandwrite). The disdvantage is that, if the intention was to + * write oob only, the operation is quietly ignored. Also, oob can get + * corrupted if two concurrent processes are running nandwrite. + */ + + /* note that bytes 7..14 are hw generated hamming/ecc and overwritten */ + struct docg4_priv *doc = nand_get_controller_data(nand); + doc->oob_page = page; + memcpy(doc->oob_buf, nand->oob_poi, 16); + return 0; +} + +static int __init read_factory_bbt(struct mtd_info *mtd) +{ + /* + * The device contains a read-only factory bad block table. Read it and + * update the memory-based bbt accordingly. + */ + + struct nand_chip *nand = mtd_to_nand(mtd); + struct docg4_priv *doc = nand_get_controller_data(nand); + uint32_t g4_addr = mtd_to_docg4_address(DOCG4_FACTORY_BBT_PAGE, 0); + uint8_t *buf; + int i, block; + __u32 eccfailed_stats = mtd->ecc_stats.failed; + + buf = kzalloc(DOCG4_PAGE_SIZE, GFP_KERNEL); + if (buf == NULL) + return -ENOMEM; + + read_page_prologue(mtd, g4_addr); + docg4_read_page(mtd, nand, buf, 0, DOCG4_FACTORY_BBT_PAGE); + + /* + * If no memory-based bbt was created, exit. This will happen if module + * parameter ignore_badblocks is set. Then why even call this function? + * For an unknown reason, block erase always fails if it's the first + * operation after device power-up. The above read ensures it never is. + * Ugly, I know. + */ + if (nand->bbt == NULL) /* no memory-based bbt */ + goto exit; + + if (mtd->ecc_stats.failed > eccfailed_stats) { + /* + * Whoops, an ecc failure ocurred reading the factory bbt. + * It is stored redundantly, so we get another chance. + */ + eccfailed_stats = mtd->ecc_stats.failed; + docg4_read_page(mtd, nand, buf, 0, DOCG4_REDUNDANT_BBT_PAGE); + if (mtd->ecc_stats.failed > eccfailed_stats) { + dev_warn(doc->dev, + "The factory bbt could not be read!\n"); + goto exit; + } + } + + /* + * Parse factory bbt and update memory-based bbt. Factory bbt format is + * simple: one bit per block, block numbers increase left to right (msb + * to lsb). Bit clear means bad block. + */ + for (i = block = 0; block < DOCG4_NUMBLOCKS; block += 8, i++) { + int bitnum; + unsigned long bits = ~buf[i]; + for_each_set_bit(bitnum, &bits, 8) { + int badblock = block + 7 - bitnum; + nand->bbt[badblock / 4] |= + 0x03 << ((badblock % 4) * 2); + mtd->ecc_stats.badblocks++; + dev_notice(doc->dev, "factory-marked bad block: %d\n", + badblock); + } + } + exit: + kfree(buf); + return 0; +} + +static int docg4_block_markbad(struct mtd_info *mtd, loff_t ofs) +{ + /* + * Mark a block as bad. Bad blocks are marked in the oob area of the + * first page of the block. The default scan_bbt() in the nand + * infrastructure code works fine for building the memory-based bbt + * during initialization, as does the nand infrastructure function that + * checks if a block is bad by reading the bbt. This function replaces + * the nand default because writes to oob-only are not supported. + */ + + int ret, i; + uint8_t *buf; + struct nand_chip *nand = mtd_to_nand(mtd); + struct docg4_priv *doc = nand_get_controller_data(nand); + struct nand_bbt_descr *bbtd = nand->badblock_pattern; + int page = (int)(ofs >> nand->page_shift); + uint32_t g4_addr = mtd_to_docg4_address(page, 0); + + dev_dbg(doc->dev, "%s: %08llx\n", __func__, ofs); + + if (unlikely(ofs & (DOCG4_BLOCK_SIZE - 1))) + dev_warn(doc->dev, "%s: ofs %llx not start of block!\n", + __func__, ofs); + + /* allocate blank buffer for page data */ + buf = kzalloc(DOCG4_PAGE_SIZE, GFP_KERNEL); + if (buf == NULL) + return -ENOMEM; + + /* write bit-wise negation of pattern to oob buffer */ + memset(nand->oob_poi, 0xff, mtd->oobsize); + for (i = 0; i < bbtd->len; i++) + nand->oob_poi[bbtd->offs + i] = ~bbtd->pattern[i]; + + /* write first page of block */ + write_page_prologue(mtd, g4_addr); + docg4_write_page(mtd, nand, buf, 1, page); + ret = pageprog(mtd); + + kfree(buf); + + return ret; +} + +static int docg4_block_neverbad(struct mtd_info *mtd, loff_t ofs) +{ + /* only called when module_param ignore_badblocks is set */ + return 0; +} + +static int docg4_suspend(struct platform_device *pdev, pm_message_t state) +{ + /* + * Put the device into "deep power-down" mode. Note that CE# must be + * deasserted for this to take effect. The xscale, e.g., can be + * configured to float this signal when the processor enters power-down, + * and a suitable pull-up ensures its deassertion. + */ + + int i; + uint8_t pwr_down; + struct docg4_priv *doc = platform_get_drvdata(pdev); + void __iomem *docptr = doc->virtadr; + + dev_dbg(doc->dev, "%s...\n", __func__); + + /* poll the register that tells us we're ready to go to sleep */ + for (i = 0; i < 10; i++) { + pwr_down = readb(docptr + DOC_POWERMODE); + if (pwr_down & DOC_POWERDOWN_READY) + break; + usleep_range(1000, 4000); + } + + if (pwr_down & DOC_POWERDOWN_READY) { + dev_err(doc->dev, "suspend failed; " + "timeout polling DOC_POWERDOWN_READY\n"); + return -EIO; + } + + writew(DOC_ASICMODE_POWERDOWN | DOC_ASICMODE_MDWREN, + docptr + DOC_ASICMODE); + writew(~(DOC_ASICMODE_POWERDOWN | DOC_ASICMODE_MDWREN), + docptr + DOC_ASICMODECONFIRM); + + write_nop(docptr); + + return 0; +} + +static int docg4_resume(struct platform_device *pdev) +{ + + /* + * Exit power-down. Twelve consecutive reads of the address below + * accomplishes this, assuming CE# has been asserted. + */ + + struct docg4_priv *doc = platform_get_drvdata(pdev); + void __iomem *docptr = doc->virtadr; + int i; + + dev_dbg(doc->dev, "%s...\n", __func__); + + for (i = 0; i < 12; i++) + readb(docptr + 0x1fff); + + return 0; +} + +static void __init init_mtd_structs(struct mtd_info *mtd) +{ + /* initialize mtd and nand data structures */ + + /* + * Note that some of the following initializations are not usually + * required within a nand driver because they are performed by the nand + * infrastructure code as part of nand_scan(). In this case they need + * to be initialized here because we skip call to nand_scan_ident() (the + * first half of nand_scan()). The call to nand_scan_ident() is skipped + * because for this device the chip id is not read in the manner of a + * standard nand device. Unfortunately, nand_scan_ident() does other + * things as well, such as call nand_set_defaults(). + */ + + struct nand_chip *nand = mtd_to_nand(mtd); + struct docg4_priv *doc = nand_get_controller_data(nand); + + mtd->size = DOCG4_CHIP_SIZE; + mtd->name = "Msys_Diskonchip_G4"; + mtd->writesize = DOCG4_PAGE_SIZE; + mtd->erasesize = DOCG4_BLOCK_SIZE; + mtd->oobsize = DOCG4_OOB_SIZE; + mtd_set_ooblayout(mtd, &docg4_ooblayout_ops); + nand->chipsize = DOCG4_CHIP_SIZE; + nand->chip_shift = DOCG4_CHIP_SHIFT; + nand->bbt_erase_shift = nand->phys_erase_shift = DOCG4_ERASE_SHIFT; + nand->chip_delay = 20; + nand->page_shift = DOCG4_PAGE_SHIFT; + nand->pagemask = 0x3ffff; + nand->badblockpos = NAND_LARGE_BADBLOCK_POS; + nand->badblockbits = 8; + nand->ecc.mode = NAND_ECC_HW_SYNDROME; + nand->ecc.size = DOCG4_PAGE_SIZE; + nand->ecc.prepad = 8; + nand->ecc.bytes = 8; + nand->ecc.strength = DOCG4_T; + nand->options = NAND_BUSWIDTH_16 | NAND_NO_SUBPAGE_WRITE; + nand->IO_ADDR_R = nand->IO_ADDR_W = doc->virtadr + DOC_IOSPACE_DATA; + nand->controller = &nand->hwcontrol; + nand_hw_control_init(nand->controller); + + /* methods */ + nand->cmdfunc = docg4_command; + nand->waitfunc = docg4_wait; + nand->select_chip = docg4_select_chip; + nand->read_byte = docg4_read_byte; + nand->block_markbad = docg4_block_markbad; + nand->read_buf = docg4_read_buf; + nand->write_buf = docg4_write_buf16; + nand->erase = docg4_erase_block; + nand->onfi_set_features = nand_onfi_get_set_features_notsupp; + nand->onfi_get_features = nand_onfi_get_set_features_notsupp; + nand->ecc.read_page = docg4_read_page; + nand->ecc.write_page = docg4_write_page; + nand->ecc.read_page_raw = docg4_read_page_raw; + nand->ecc.write_page_raw = docg4_write_page_raw; + nand->ecc.read_oob = docg4_read_oob; + nand->ecc.write_oob = docg4_write_oob; + + /* + * The way the nand infrastructure code is written, a memory-based bbt + * is not created if NAND_SKIP_BBTSCAN is set. With no memory bbt, + * nand->block_bad() is used. So when ignoring bad blocks, we skip the + * scan and define a dummy block_bad() which always returns 0. + */ + if (ignore_badblocks) { + nand->options |= NAND_SKIP_BBTSCAN; + nand->block_bad = docg4_block_neverbad; + } + +} + +static int __init read_id_reg(struct mtd_info *mtd) +{ + struct nand_chip *nand = mtd_to_nand(mtd); + struct docg4_priv *doc = nand_get_controller_data(nand); + void __iomem *docptr = doc->virtadr; + uint16_t id1, id2; + + /* check for presence of g4 chip by reading id registers */ + id1 = readw(docptr + DOC_CHIPID); + id1 = readw(docptr + DOCG4_MYSTERY_REG); + id2 = readw(docptr + DOC_CHIPID_INV); + id2 = readw(docptr + DOCG4_MYSTERY_REG); + + if (id1 == DOCG4_IDREG1_VALUE && id2 == DOCG4_IDREG2_VALUE) { + dev_info(doc->dev, + "NAND device: 128MiB Diskonchip G4 detected\n"); + return 0; + } + + return -ENODEV; +} + +static char const *part_probes[] = { "cmdlinepart", "saftlpart", NULL }; + +static int __init probe_docg4(struct platform_device *pdev) +{ + struct mtd_info *mtd; + struct nand_chip *nand; + void __iomem *virtadr; + struct docg4_priv *doc; + int len, retval; + struct resource *r; + struct device *dev = &pdev->dev; + + r = platform_get_resource(pdev, IORESOURCE_MEM, 0); + if (r == NULL) { + dev_err(dev, "no io memory resource defined!\n"); + return -ENODEV; + } + + virtadr = ioremap(r->start, resource_size(r)); + if (!virtadr) { + dev_err(dev, "Diskonchip ioremap failed: %pR\n", r); + return -EIO; + } + + len = sizeof(struct nand_chip) + sizeof(struct docg4_priv); + nand = kzalloc(len, GFP_KERNEL); + if (nand == NULL) { + retval = -ENOMEM; + goto fail_unmap; + } + + mtd = nand_to_mtd(nand); + doc = (struct docg4_priv *) (nand + 1); + nand_set_controller_data(nand, doc); + mtd->dev.parent = &pdev->dev; + doc->virtadr = virtadr; + doc->dev = dev; + + init_mtd_structs(mtd); + + /* initialize kernel bch algorithm */ + doc->bch = init_bch(DOCG4_M, DOCG4_T, DOCG4_PRIMITIVE_POLY); + if (doc->bch == NULL) { + retval = -EINVAL; + goto fail; + } + + platform_set_drvdata(pdev, doc); + + reset(mtd); + retval = read_id_reg(mtd); + if (retval == -ENODEV) { + dev_warn(dev, "No diskonchip G4 device found.\n"); + goto fail; + } + + retval = nand_scan_tail(mtd); + if (retval) + goto fail; + + retval = read_factory_bbt(mtd); + if (retval) + goto fail; + + retval = mtd_device_parse_register(mtd, part_probes, NULL, NULL, 0); + if (retval) + goto fail; + + doc->mtd = mtd; + return 0; + +fail: + nand_release(mtd); /* deletes partitions and mtd devices */ + free_bch(doc->bch); + kfree(nand); + +fail_unmap: + iounmap(virtadr); + + return retval; +} + +static int __exit cleanup_docg4(struct platform_device *pdev) +{ + struct docg4_priv *doc = platform_get_drvdata(pdev); + nand_release(doc->mtd); + free_bch(doc->bch); + kfree(mtd_to_nand(doc->mtd)); + iounmap(doc->virtadr); + return 0; +} + +static struct platform_driver docg4_driver = { + .driver = { + .name = "docg4", + }, + .suspend = docg4_suspend, + .resume = docg4_resume, + .remove = __exit_p(cleanup_docg4), +}; + +module_platform_driver_probe(docg4_driver, probe_docg4); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Mike Dunn"); +MODULE_DESCRIPTION("M-Systems DiskOnChip G4 device driver"); diff --git a/drivers/mtd/nand/raw/fsl_elbc_nand.c b/drivers/mtd/nand/raw/fsl_elbc_nand.c new file mode 100644 index 000000000000..8b6dcd739ecb --- /dev/null +++ b/drivers/mtd/nand/raw/fsl_elbc_nand.c @@ -0,0 +1,979 @@ +/* Freescale Enhanced Local Bus Controller NAND driver + * + * Copyright © 2006-2007, 2010 Freescale Semiconductor + * + * Authors: Nick Spence , + * Scott Wood + * Jack Lan + * Roy Zang + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA + */ + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#include +#include +#include +#include + +#include +#include + +#define MAX_BANKS 8 +#define ERR_BYTE 0xFF /* Value returned for read bytes when read failed */ +#define FCM_TIMEOUT_MSECS 500 /* Maximum number of mSecs to wait for FCM */ + +/* mtd information per set */ + +struct fsl_elbc_mtd { + struct nand_chip chip; + struct fsl_lbc_ctrl *ctrl; + + struct device *dev; + int bank; /* Chip select bank number */ + u8 __iomem *vbase; /* Chip select base virtual address */ + int page_size; /* NAND page size (0=512, 1=2048) */ + unsigned int fmr; /* FCM Flash Mode Register value */ +}; + +/* Freescale eLBC FCM controller information */ + +struct fsl_elbc_fcm_ctrl { + struct nand_hw_control controller; + struct fsl_elbc_mtd *chips[MAX_BANKS]; + + u8 __iomem *addr; /* Address of assigned FCM buffer */ + unsigned int page; /* Last page written to / read from */ + unsigned int read_bytes; /* Number of bytes read during command */ + unsigned int column; /* Saved column from SEQIN */ + unsigned int index; /* Pointer to next byte to 'read' */ + unsigned int status; /* status read from LTESR after last op */ + unsigned int mdr; /* UPM/FCM Data Register value */ + unsigned int use_mdr; /* Non zero if the MDR is to be set */ + unsigned int oob; /* Non zero if operating on OOB data */ + unsigned int counter; /* counter for the initializations */ + unsigned int max_bitflips; /* Saved during READ0 cmd */ +}; + +/* These map to the positions used by the FCM hardware ECC generator */ + +static int fsl_elbc_ooblayout_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct fsl_elbc_mtd *priv = nand_get_controller_data(chip); + + if (section >= chip->ecc.steps) + return -ERANGE; + + oobregion->offset = (16 * section) + 6; + if (priv->fmr & FMR_ECCM) + oobregion->offset += 2; + + oobregion->length = chip->ecc.bytes; + + return 0; +} + +static int fsl_elbc_ooblayout_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct fsl_elbc_mtd *priv = nand_get_controller_data(chip); + + if (section > chip->ecc.steps) + return -ERANGE; + + if (!section) { + oobregion->offset = 0; + if (mtd->writesize > 512) + oobregion->offset++; + oobregion->length = (priv->fmr & FMR_ECCM) ? 7 : 5; + } else { + oobregion->offset = (16 * section) - + ((priv->fmr & FMR_ECCM) ? 5 : 7); + if (section < chip->ecc.steps) + oobregion->length = 13; + else + oobregion->length = mtd->oobsize - oobregion->offset; + } + + return 0; +} + +static const struct mtd_ooblayout_ops fsl_elbc_ooblayout_ops = { + .ecc = fsl_elbc_ooblayout_ecc, + .free = fsl_elbc_ooblayout_free, +}; + +/* + * ELBC may use HW ECC, so that OOB offsets, that NAND core uses for bbt, + * interfere with ECC positions, that's why we implement our own descriptors. + * OOB {11, 5}, works for both SP and LP chips, with ECCM = 1 and ECCM = 0. + */ +static u8 bbt_pattern[] = {'B', 'b', 't', '0' }; +static u8 mirror_pattern[] = {'1', 't', 'b', 'B' }; + +static struct nand_bbt_descr bbt_main_descr = { + .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | + NAND_BBT_2BIT | NAND_BBT_VERSION, + .offs = 11, + .len = 4, + .veroffs = 15, + .maxblocks = 4, + .pattern = bbt_pattern, +}; + +static struct nand_bbt_descr bbt_mirror_descr = { + .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | + NAND_BBT_2BIT | NAND_BBT_VERSION, + .offs = 11, + .len = 4, + .veroffs = 15, + .maxblocks = 4, + .pattern = mirror_pattern, +}; + +/*=================================*/ + +/* + * Set up the FCM hardware block and page address fields, and the fcm + * structure addr field to point to the correct FCM buffer in memory + */ +static void set_addr(struct mtd_info *mtd, int column, int page_addr, int oob) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct fsl_elbc_mtd *priv = nand_get_controller_data(chip); + struct fsl_lbc_ctrl *ctrl = priv->ctrl; + struct fsl_lbc_regs __iomem *lbc = ctrl->regs; + struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand; + int buf_num; + + elbc_fcm_ctrl->page = page_addr; + + if (priv->page_size) { + /* + * large page size chip : FPAR[PI] save the lowest 6 bits, + * FBAR[BLK] save the other bits. + */ + out_be32(&lbc->fbar, page_addr >> 6); + out_be32(&lbc->fpar, + ((page_addr << FPAR_LP_PI_SHIFT) & FPAR_LP_PI) | + (oob ? FPAR_LP_MS : 0) | column); + buf_num = (page_addr & 1) << 2; + } else { + /* + * small page size chip : FPAR[PI] save the lowest 5 bits, + * FBAR[BLK] save the other bits. + */ + out_be32(&lbc->fbar, page_addr >> 5); + out_be32(&lbc->fpar, + ((page_addr << FPAR_SP_PI_SHIFT) & FPAR_SP_PI) | + (oob ? FPAR_SP_MS : 0) | column); + buf_num = page_addr & 7; + } + + elbc_fcm_ctrl->addr = priv->vbase + buf_num * 1024; + elbc_fcm_ctrl->index = column; + + /* for OOB data point to the second half of the buffer */ + if (oob) + elbc_fcm_ctrl->index += priv->page_size ? 2048 : 512; + + dev_vdbg(priv->dev, "set_addr: bank=%d, " + "elbc_fcm_ctrl->addr=0x%p (0x%p), " + "index %x, pes %d ps %d\n", + buf_num, elbc_fcm_ctrl->addr, priv->vbase, + elbc_fcm_ctrl->index, + chip->phys_erase_shift, chip->page_shift); +} + +/* + * execute FCM command and wait for it to complete + */ +static int fsl_elbc_run_command(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct fsl_elbc_mtd *priv = nand_get_controller_data(chip); + struct fsl_lbc_ctrl *ctrl = priv->ctrl; + struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand; + struct fsl_lbc_regs __iomem *lbc = ctrl->regs; + + /* Setup the FMR[OP] to execute without write protection */ + out_be32(&lbc->fmr, priv->fmr | 3); + if (elbc_fcm_ctrl->use_mdr) + out_be32(&lbc->mdr, elbc_fcm_ctrl->mdr); + + dev_vdbg(priv->dev, + "fsl_elbc_run_command: fmr=%08x fir=%08x fcr=%08x\n", + in_be32(&lbc->fmr), in_be32(&lbc->fir), in_be32(&lbc->fcr)); + dev_vdbg(priv->dev, + "fsl_elbc_run_command: fbar=%08x fpar=%08x " + "fbcr=%08x bank=%d\n", + in_be32(&lbc->fbar), in_be32(&lbc->fpar), + in_be32(&lbc->fbcr), priv->bank); + + ctrl->irq_status = 0; + /* execute special operation */ + out_be32(&lbc->lsor, priv->bank); + + /* wait for FCM complete flag or timeout */ + wait_event_timeout(ctrl->irq_wait, ctrl->irq_status, + FCM_TIMEOUT_MSECS * HZ/1000); + elbc_fcm_ctrl->status = ctrl->irq_status; + /* store mdr value in case it was needed */ + if (elbc_fcm_ctrl->use_mdr) + elbc_fcm_ctrl->mdr = in_be32(&lbc->mdr); + + elbc_fcm_ctrl->use_mdr = 0; + + if (elbc_fcm_ctrl->status != LTESR_CC) { + dev_info(priv->dev, + "command failed: fir %x fcr %x status %x mdr %x\n", + in_be32(&lbc->fir), in_be32(&lbc->fcr), + elbc_fcm_ctrl->status, elbc_fcm_ctrl->mdr); + return -EIO; + } + + if (chip->ecc.mode != NAND_ECC_HW) + return 0; + + elbc_fcm_ctrl->max_bitflips = 0; + + if (elbc_fcm_ctrl->read_bytes == mtd->writesize + mtd->oobsize) { + uint32_t lteccr = in_be32(&lbc->lteccr); + /* + * if command was a full page read and the ELBC + * has the LTECCR register, then bits 12-15 (ppc order) of + * LTECCR indicates which 512 byte sub-pages had fixed errors. + * bits 28-31 are uncorrectable errors, marked elsewhere. + * for small page nand only 1 bit is used. + * if the ELBC doesn't have the lteccr register it reads 0 + * FIXME: 4 bits can be corrected on NANDs with 2k pages, so + * count the number of sub-pages with bitflips and update + * ecc_stats.corrected accordingly. + */ + if (lteccr & 0x000F000F) + out_be32(&lbc->lteccr, 0x000F000F); /* clear lteccr */ + if (lteccr & 0x000F0000) { + mtd->ecc_stats.corrected++; + elbc_fcm_ctrl->max_bitflips = 1; + } + } + + return 0; +} + +static void fsl_elbc_do_read(struct nand_chip *chip, int oob) +{ + struct fsl_elbc_mtd *priv = nand_get_controller_data(chip); + struct fsl_lbc_ctrl *ctrl = priv->ctrl; + struct fsl_lbc_regs __iomem *lbc = ctrl->regs; + + if (priv->page_size) { + out_be32(&lbc->fir, + (FIR_OP_CM0 << FIR_OP0_SHIFT) | + (FIR_OP_CA << FIR_OP1_SHIFT) | + (FIR_OP_PA << FIR_OP2_SHIFT) | + (FIR_OP_CM1 << FIR_OP3_SHIFT) | + (FIR_OP_RBW << FIR_OP4_SHIFT)); + + out_be32(&lbc->fcr, (NAND_CMD_READ0 << FCR_CMD0_SHIFT) | + (NAND_CMD_READSTART << FCR_CMD1_SHIFT)); + } else { + out_be32(&lbc->fir, + (FIR_OP_CM0 << FIR_OP0_SHIFT) | + (FIR_OP_CA << FIR_OP1_SHIFT) | + (FIR_OP_PA << FIR_OP2_SHIFT) | + (FIR_OP_RBW << FIR_OP3_SHIFT)); + + if (oob) + out_be32(&lbc->fcr, NAND_CMD_READOOB << FCR_CMD0_SHIFT); + else + out_be32(&lbc->fcr, NAND_CMD_READ0 << FCR_CMD0_SHIFT); + } +} + +/* cmdfunc send commands to the FCM */ +static void fsl_elbc_cmdfunc(struct mtd_info *mtd, unsigned int command, + int column, int page_addr) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct fsl_elbc_mtd *priv = nand_get_controller_data(chip); + struct fsl_lbc_ctrl *ctrl = priv->ctrl; + struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand; + struct fsl_lbc_regs __iomem *lbc = ctrl->regs; + + elbc_fcm_ctrl->use_mdr = 0; + + /* clear the read buffer */ + elbc_fcm_ctrl->read_bytes = 0; + if (command != NAND_CMD_PAGEPROG) + elbc_fcm_ctrl->index = 0; + + switch (command) { + /* READ0 and READ1 read the entire buffer to use hardware ECC. */ + case NAND_CMD_READ1: + column += 256; + + /* fall-through */ + case NAND_CMD_READ0: + dev_dbg(priv->dev, + "fsl_elbc_cmdfunc: NAND_CMD_READ0, page_addr:" + " 0x%x, column: 0x%x.\n", page_addr, column); + + + out_be32(&lbc->fbcr, 0); /* read entire page to enable ECC */ + set_addr(mtd, 0, page_addr, 0); + + elbc_fcm_ctrl->read_bytes = mtd->writesize + mtd->oobsize; + elbc_fcm_ctrl->index += column; + + fsl_elbc_do_read(chip, 0); + fsl_elbc_run_command(mtd); + return; + + /* READOOB reads only the OOB because no ECC is performed. */ + case NAND_CMD_READOOB: + dev_vdbg(priv->dev, + "fsl_elbc_cmdfunc: NAND_CMD_READOOB, page_addr:" + " 0x%x, column: 0x%x.\n", page_addr, column); + + out_be32(&lbc->fbcr, mtd->oobsize - column); + set_addr(mtd, column, page_addr, 1); + + elbc_fcm_ctrl->read_bytes = mtd->writesize + mtd->oobsize; + + fsl_elbc_do_read(chip, 1); + fsl_elbc_run_command(mtd); + return; + + case NAND_CMD_READID: + case NAND_CMD_PARAM: + dev_vdbg(priv->dev, "fsl_elbc_cmdfunc: NAND_CMD %x\n", command); + + out_be32(&lbc->fir, (FIR_OP_CM0 << FIR_OP0_SHIFT) | + (FIR_OP_UA << FIR_OP1_SHIFT) | + (FIR_OP_RBW << FIR_OP2_SHIFT)); + out_be32(&lbc->fcr, command << FCR_CMD0_SHIFT); + /* + * although currently it's 8 bytes for READID, we always read + * the maximum 256 bytes(for PARAM) + */ + out_be32(&lbc->fbcr, 256); + elbc_fcm_ctrl->read_bytes = 256; + elbc_fcm_ctrl->use_mdr = 1; + elbc_fcm_ctrl->mdr = column; + set_addr(mtd, 0, 0, 0); + fsl_elbc_run_command(mtd); + return; + + /* ERASE1 stores the block and page address */ + case NAND_CMD_ERASE1: + dev_vdbg(priv->dev, + "fsl_elbc_cmdfunc: NAND_CMD_ERASE1, " + "page_addr: 0x%x.\n", page_addr); + set_addr(mtd, 0, page_addr, 0); + return; + + /* ERASE2 uses the block and page address from ERASE1 */ + case NAND_CMD_ERASE2: + dev_vdbg(priv->dev, "fsl_elbc_cmdfunc: NAND_CMD_ERASE2.\n"); + + out_be32(&lbc->fir, + (FIR_OP_CM0 << FIR_OP0_SHIFT) | + (FIR_OP_PA << FIR_OP1_SHIFT) | + (FIR_OP_CM2 << FIR_OP2_SHIFT) | + (FIR_OP_CW1 << FIR_OP3_SHIFT) | + (FIR_OP_RS << FIR_OP4_SHIFT)); + + out_be32(&lbc->fcr, + (NAND_CMD_ERASE1 << FCR_CMD0_SHIFT) | + (NAND_CMD_STATUS << FCR_CMD1_SHIFT) | + (NAND_CMD_ERASE2 << FCR_CMD2_SHIFT)); + + out_be32(&lbc->fbcr, 0); + elbc_fcm_ctrl->read_bytes = 0; + elbc_fcm_ctrl->use_mdr = 1; + + fsl_elbc_run_command(mtd); + return; + + /* SEQIN sets up the addr buffer and all registers except the length */ + case NAND_CMD_SEQIN: { + __be32 fcr; + dev_vdbg(priv->dev, + "fsl_elbc_cmdfunc: NAND_CMD_SEQIN/PAGE_PROG, " + "page_addr: 0x%x, column: 0x%x.\n", + page_addr, column); + + elbc_fcm_ctrl->column = column; + elbc_fcm_ctrl->use_mdr = 1; + + if (column >= mtd->writesize) { + /* OOB area */ + column -= mtd->writesize; + elbc_fcm_ctrl->oob = 1; + } else { + WARN_ON(column != 0); + elbc_fcm_ctrl->oob = 0; + } + + fcr = (NAND_CMD_STATUS << FCR_CMD1_SHIFT) | + (NAND_CMD_SEQIN << FCR_CMD2_SHIFT) | + (NAND_CMD_PAGEPROG << FCR_CMD3_SHIFT); + + if (priv->page_size) { + out_be32(&lbc->fir, + (FIR_OP_CM2 << FIR_OP0_SHIFT) | + (FIR_OP_CA << FIR_OP1_SHIFT) | + (FIR_OP_PA << FIR_OP2_SHIFT) | + (FIR_OP_WB << FIR_OP3_SHIFT) | + (FIR_OP_CM3 << FIR_OP4_SHIFT) | + (FIR_OP_CW1 << FIR_OP5_SHIFT) | + (FIR_OP_RS << FIR_OP6_SHIFT)); + } else { + out_be32(&lbc->fir, + (FIR_OP_CM0 << FIR_OP0_SHIFT) | + (FIR_OP_CM2 << FIR_OP1_SHIFT) | + (FIR_OP_CA << FIR_OP2_SHIFT) | + (FIR_OP_PA << FIR_OP3_SHIFT) | + (FIR_OP_WB << FIR_OP4_SHIFT) | + (FIR_OP_CM3 << FIR_OP5_SHIFT) | + (FIR_OP_CW1 << FIR_OP6_SHIFT) | + (FIR_OP_RS << FIR_OP7_SHIFT)); + + if (elbc_fcm_ctrl->oob) + /* OOB area --> READOOB */ + fcr |= NAND_CMD_READOOB << FCR_CMD0_SHIFT; + else + /* First 256 bytes --> READ0 */ + fcr |= NAND_CMD_READ0 << FCR_CMD0_SHIFT; + } + + out_be32(&lbc->fcr, fcr); + set_addr(mtd, column, page_addr, elbc_fcm_ctrl->oob); + return; + } + + /* PAGEPROG reuses all of the setup from SEQIN and adds the length */ + case NAND_CMD_PAGEPROG: { + dev_vdbg(priv->dev, + "fsl_elbc_cmdfunc: NAND_CMD_PAGEPROG " + "writing %d bytes.\n", elbc_fcm_ctrl->index); + + /* if the write did not start at 0 or is not a full page + * then set the exact length, otherwise use a full page + * write so the HW generates the ECC. + */ + if (elbc_fcm_ctrl->oob || elbc_fcm_ctrl->column != 0 || + elbc_fcm_ctrl->index != mtd->writesize + mtd->oobsize) + out_be32(&lbc->fbcr, + elbc_fcm_ctrl->index - elbc_fcm_ctrl->column); + else + out_be32(&lbc->fbcr, 0); + + fsl_elbc_run_command(mtd); + return; + } + + /* CMD_STATUS must read the status byte while CEB is active */ + /* Note - it does not wait for the ready line */ + case NAND_CMD_STATUS: + out_be32(&lbc->fir, + (FIR_OP_CM0 << FIR_OP0_SHIFT) | + (FIR_OP_RBW << FIR_OP1_SHIFT)); + out_be32(&lbc->fcr, NAND_CMD_STATUS << FCR_CMD0_SHIFT); + out_be32(&lbc->fbcr, 1); + set_addr(mtd, 0, 0, 0); + elbc_fcm_ctrl->read_bytes = 1; + + fsl_elbc_run_command(mtd); + + /* The chip always seems to report that it is + * write-protected, even when it is not. + */ + setbits8(elbc_fcm_ctrl->addr, NAND_STATUS_WP); + return; + + /* RESET without waiting for the ready line */ + case NAND_CMD_RESET: + dev_dbg(priv->dev, "fsl_elbc_cmdfunc: NAND_CMD_RESET.\n"); + out_be32(&lbc->fir, FIR_OP_CM0 << FIR_OP0_SHIFT); + out_be32(&lbc->fcr, NAND_CMD_RESET << FCR_CMD0_SHIFT); + fsl_elbc_run_command(mtd); + return; + + default: + dev_err(priv->dev, + "fsl_elbc_cmdfunc: error, unsupported command 0x%x.\n", + command); + } +} + +static void fsl_elbc_select_chip(struct mtd_info *mtd, int chip) +{ + /* The hardware does not seem to support multiple + * chips per bank. + */ +} + +/* + * Write buf to the FCM Controller Data Buffer + */ +static void fsl_elbc_write_buf(struct mtd_info *mtd, const u8 *buf, int len) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct fsl_elbc_mtd *priv = nand_get_controller_data(chip); + struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand; + unsigned int bufsize = mtd->writesize + mtd->oobsize; + + if (len <= 0) { + dev_err(priv->dev, "write_buf of %d bytes", len); + elbc_fcm_ctrl->status = 0; + return; + } + + if ((unsigned int)len > bufsize - elbc_fcm_ctrl->index) { + dev_err(priv->dev, + "write_buf beyond end of buffer " + "(%d requested, %u available)\n", + len, bufsize - elbc_fcm_ctrl->index); + len = bufsize - elbc_fcm_ctrl->index; + } + + memcpy_toio(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index], buf, len); + /* + * This is workaround for the weird elbc hangs during nand write, + * Scott Wood says: "...perhaps difference in how long it takes a + * write to make it through the localbus compared to a write to IMMR + * is causing problems, and sync isn't helping for some reason." + * Reading back the last byte helps though. + */ + in_8(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index] + len - 1); + + elbc_fcm_ctrl->index += len; +} + +/* + * read a byte from either the FCM hardware buffer if it has any data left + * otherwise issue a command to read a single byte. + */ +static u8 fsl_elbc_read_byte(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct fsl_elbc_mtd *priv = nand_get_controller_data(chip); + struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand; + + /* If there are still bytes in the FCM, then use the next byte. */ + if (elbc_fcm_ctrl->index < elbc_fcm_ctrl->read_bytes) + return in_8(&elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index++]); + + dev_err(priv->dev, "read_byte beyond end of buffer\n"); + return ERR_BYTE; +} + +/* + * Read from the FCM Controller Data Buffer + */ +static void fsl_elbc_read_buf(struct mtd_info *mtd, u8 *buf, int len) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct fsl_elbc_mtd *priv = nand_get_controller_data(chip); + struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand; + int avail; + + if (len < 0) + return; + + avail = min((unsigned int)len, + elbc_fcm_ctrl->read_bytes - elbc_fcm_ctrl->index); + memcpy_fromio(buf, &elbc_fcm_ctrl->addr[elbc_fcm_ctrl->index], avail); + elbc_fcm_ctrl->index += avail; + + if (len > avail) + dev_err(priv->dev, + "read_buf beyond end of buffer " + "(%d requested, %d available)\n", + len, avail); +} + +/* This function is called after Program and Erase Operations to + * check for success or failure. + */ +static int fsl_elbc_wait(struct mtd_info *mtd, struct nand_chip *chip) +{ + struct fsl_elbc_mtd *priv = nand_get_controller_data(chip); + struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand; + + if (elbc_fcm_ctrl->status != LTESR_CC) + return NAND_STATUS_FAIL; + + /* The chip always seems to report that it is + * write-protected, even when it is not. + */ + return (elbc_fcm_ctrl->mdr & 0xff) | NAND_STATUS_WP; +} + +static int fsl_elbc_chip_init_tail(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct fsl_elbc_mtd *priv = nand_get_controller_data(chip); + struct fsl_lbc_ctrl *ctrl = priv->ctrl; + struct fsl_lbc_regs __iomem *lbc = ctrl->regs; + unsigned int al; + + /* calculate FMR Address Length field */ + al = 0; + if (chip->pagemask & 0xffff0000) + al++; + if (chip->pagemask & 0xff000000) + al++; + + priv->fmr |= al << FMR_AL_SHIFT; + + dev_dbg(priv->dev, "fsl_elbc_init: nand->numchips = %d\n", + chip->numchips); + dev_dbg(priv->dev, "fsl_elbc_init: nand->chipsize = %lld\n", + chip->chipsize); + dev_dbg(priv->dev, "fsl_elbc_init: nand->pagemask = %8x\n", + chip->pagemask); + dev_dbg(priv->dev, "fsl_elbc_init: nand->chip_delay = %d\n", + chip->chip_delay); + dev_dbg(priv->dev, "fsl_elbc_init: nand->badblockpos = %d\n", + chip->badblockpos); + dev_dbg(priv->dev, "fsl_elbc_init: nand->chip_shift = %d\n", + chip->chip_shift); + dev_dbg(priv->dev, "fsl_elbc_init: nand->page_shift = %d\n", + chip->page_shift); + dev_dbg(priv->dev, "fsl_elbc_init: nand->phys_erase_shift = %d\n", + chip->phys_erase_shift); + dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.mode = %d\n", + chip->ecc.mode); + dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.steps = %d\n", + chip->ecc.steps); + dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.bytes = %d\n", + chip->ecc.bytes); + dev_dbg(priv->dev, "fsl_elbc_init: nand->ecc.total = %d\n", + chip->ecc.total); + dev_dbg(priv->dev, "fsl_elbc_init: mtd->ooblayout = %p\n", + mtd->ooblayout); + dev_dbg(priv->dev, "fsl_elbc_init: mtd->flags = %08x\n", mtd->flags); + dev_dbg(priv->dev, "fsl_elbc_init: mtd->size = %lld\n", mtd->size); + dev_dbg(priv->dev, "fsl_elbc_init: mtd->erasesize = %d\n", + mtd->erasesize); + dev_dbg(priv->dev, "fsl_elbc_init: mtd->writesize = %d\n", + mtd->writesize); + dev_dbg(priv->dev, "fsl_elbc_init: mtd->oobsize = %d\n", + mtd->oobsize); + + /* adjust Option Register and ECC to match Flash page size */ + if (mtd->writesize == 512) { + priv->page_size = 0; + clrbits32(&lbc->bank[priv->bank].or, OR_FCM_PGS); + } else if (mtd->writesize == 2048) { + priv->page_size = 1; + setbits32(&lbc->bank[priv->bank].or, OR_FCM_PGS); + } else { + dev_err(priv->dev, + "fsl_elbc_init: page size %d is not supported\n", + mtd->writesize); + return -1; + } + + return 0; +} + +static int fsl_elbc_read_page(struct mtd_info *mtd, struct nand_chip *chip, + uint8_t *buf, int oob_required, int page) +{ + struct fsl_elbc_mtd *priv = nand_get_controller_data(chip); + struct fsl_lbc_ctrl *ctrl = priv->ctrl; + struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand; + + nand_read_page_op(chip, page, 0, buf, mtd->writesize); + if (oob_required) + fsl_elbc_read_buf(mtd, chip->oob_poi, mtd->oobsize); + + if (fsl_elbc_wait(mtd, chip) & NAND_STATUS_FAIL) + mtd->ecc_stats.failed++; + + return elbc_fcm_ctrl->max_bitflips; +} + +/* ECC will be calculated automatically, and errors will be detected in + * waitfunc. + */ +static int fsl_elbc_write_page(struct mtd_info *mtd, struct nand_chip *chip, + const uint8_t *buf, int oob_required, int page) +{ + nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize); + fsl_elbc_write_buf(mtd, chip->oob_poi, mtd->oobsize); + + return nand_prog_page_end_op(chip); +} + +/* ECC will be calculated automatically, and errors will be detected in + * waitfunc. + */ +static int fsl_elbc_write_subpage(struct mtd_info *mtd, struct nand_chip *chip, + uint32_t offset, uint32_t data_len, + const uint8_t *buf, int oob_required, int page) +{ + nand_prog_page_begin_op(chip, page, 0, NULL, 0); + fsl_elbc_write_buf(mtd, buf, mtd->writesize); + fsl_elbc_write_buf(mtd, chip->oob_poi, mtd->oobsize); + return nand_prog_page_end_op(chip); +} + +static int fsl_elbc_chip_init(struct fsl_elbc_mtd *priv) +{ + struct fsl_lbc_ctrl *ctrl = priv->ctrl; + struct fsl_lbc_regs __iomem *lbc = ctrl->regs; + struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = ctrl->nand; + struct nand_chip *chip = &priv->chip; + struct mtd_info *mtd = nand_to_mtd(chip); + + dev_dbg(priv->dev, "eLBC Set Information for bank %d\n", priv->bank); + + /* Fill in fsl_elbc_mtd structure */ + mtd->dev.parent = priv->dev; + nand_set_flash_node(chip, priv->dev->of_node); + + /* set timeout to maximum */ + priv->fmr = 15 << FMR_CWTO_SHIFT; + if (in_be32(&lbc->bank[priv->bank].or) & OR_FCM_PGS) + priv->fmr |= FMR_ECCM; + + /* fill in nand_chip structure */ + /* set up function call table */ + chip->read_byte = fsl_elbc_read_byte; + chip->write_buf = fsl_elbc_write_buf; + chip->read_buf = fsl_elbc_read_buf; + chip->select_chip = fsl_elbc_select_chip; + chip->cmdfunc = fsl_elbc_cmdfunc; + chip->waitfunc = fsl_elbc_wait; + chip->onfi_set_features = nand_onfi_get_set_features_notsupp; + chip->onfi_get_features = nand_onfi_get_set_features_notsupp; + + chip->bbt_td = &bbt_main_descr; + chip->bbt_md = &bbt_mirror_descr; + + /* set up nand options */ + chip->bbt_options = NAND_BBT_USE_FLASH; + + chip->controller = &elbc_fcm_ctrl->controller; + nand_set_controller_data(chip, priv); + + chip->ecc.read_page = fsl_elbc_read_page; + chip->ecc.write_page = fsl_elbc_write_page; + chip->ecc.write_subpage = fsl_elbc_write_subpage; + + /* If CS Base Register selects full hardware ECC then use it */ + if ((in_be32(&lbc->bank[priv->bank].br) & BR_DECC) == + BR_DECC_CHK_GEN) { + chip->ecc.mode = NAND_ECC_HW; + mtd_set_ooblayout(mtd, &fsl_elbc_ooblayout_ops); + chip->ecc.size = 512; + chip->ecc.bytes = 3; + chip->ecc.strength = 1; + } else { + /* otherwise fall back to default software ECC */ + chip->ecc.mode = NAND_ECC_SOFT; + chip->ecc.algo = NAND_ECC_HAMMING; + } + + return 0; +} + +static int fsl_elbc_chip_remove(struct fsl_elbc_mtd *priv) +{ + struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = priv->ctrl->nand; + struct mtd_info *mtd = nand_to_mtd(&priv->chip); + + nand_release(mtd); + + kfree(mtd->name); + + if (priv->vbase) + iounmap(priv->vbase); + + elbc_fcm_ctrl->chips[priv->bank] = NULL; + kfree(priv); + return 0; +} + +static DEFINE_MUTEX(fsl_elbc_nand_mutex); + +static int fsl_elbc_nand_probe(struct platform_device *pdev) +{ + struct fsl_lbc_regs __iomem *lbc; + struct fsl_elbc_mtd *priv; + struct resource res; + struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl; + static const char *part_probe_types[] + = { "cmdlinepart", "RedBoot", "ofpart", NULL }; + int ret; + int bank; + struct device *dev; + struct device_node *node = pdev->dev.of_node; + struct mtd_info *mtd; + + if (!fsl_lbc_ctrl_dev || !fsl_lbc_ctrl_dev->regs) + return -ENODEV; + lbc = fsl_lbc_ctrl_dev->regs; + dev = fsl_lbc_ctrl_dev->dev; + + /* get, allocate and map the memory resource */ + ret = of_address_to_resource(node, 0, &res); + if (ret) { + dev_err(dev, "failed to get resource\n"); + return ret; + } + + /* find which chip select it is connected to */ + for (bank = 0; bank < MAX_BANKS; bank++) + if ((in_be32(&lbc->bank[bank].br) & BR_V) && + (in_be32(&lbc->bank[bank].br) & BR_MSEL) == BR_MS_FCM && + (in_be32(&lbc->bank[bank].br) & + in_be32(&lbc->bank[bank].or) & BR_BA) + == fsl_lbc_addr(res.start)) + break; + + if (bank >= MAX_BANKS) { + dev_err(dev, "address did not match any chip selects\n"); + return -ENODEV; + } + + priv = kzalloc(sizeof(*priv), GFP_KERNEL); + if (!priv) + return -ENOMEM; + + mutex_lock(&fsl_elbc_nand_mutex); + if (!fsl_lbc_ctrl_dev->nand) { + elbc_fcm_ctrl = kzalloc(sizeof(*elbc_fcm_ctrl), GFP_KERNEL); + if (!elbc_fcm_ctrl) { + mutex_unlock(&fsl_elbc_nand_mutex); + ret = -ENOMEM; + goto err; + } + elbc_fcm_ctrl->counter++; + + nand_hw_control_init(&elbc_fcm_ctrl->controller); + fsl_lbc_ctrl_dev->nand = elbc_fcm_ctrl; + } else { + elbc_fcm_ctrl = fsl_lbc_ctrl_dev->nand; + } + mutex_unlock(&fsl_elbc_nand_mutex); + + elbc_fcm_ctrl->chips[bank] = priv; + priv->bank = bank; + priv->ctrl = fsl_lbc_ctrl_dev; + priv->dev = &pdev->dev; + dev_set_drvdata(priv->dev, priv); + + priv->vbase = ioremap(res.start, resource_size(&res)); + if (!priv->vbase) { + dev_err(dev, "failed to map chip region\n"); + ret = -ENOMEM; + goto err; + } + + mtd = nand_to_mtd(&priv->chip); + mtd->name = kasprintf(GFP_KERNEL, "%llx.flash", (u64)res.start); + if (!nand_to_mtd(&priv->chip)->name) { + ret = -ENOMEM; + goto err; + } + + ret = fsl_elbc_chip_init(priv); + if (ret) + goto err; + + ret = nand_scan_ident(mtd, 1, NULL); + if (ret) + goto err; + + ret = fsl_elbc_chip_init_tail(mtd); + if (ret) + goto err; + + ret = nand_scan_tail(mtd); + if (ret) + goto err; + + /* First look for RedBoot table or partitions on the command + * line, these take precedence over device tree information */ + mtd_device_parse_register(mtd, part_probe_types, NULL, + NULL, 0); + + printk(KERN_INFO "eLBC NAND device at 0x%llx, bank %d\n", + (unsigned long long)res.start, priv->bank); + return 0; + +err: + fsl_elbc_chip_remove(priv); + return ret; +} + +static int fsl_elbc_nand_remove(struct platform_device *pdev) +{ + struct fsl_elbc_fcm_ctrl *elbc_fcm_ctrl = fsl_lbc_ctrl_dev->nand; + struct fsl_elbc_mtd *priv = dev_get_drvdata(&pdev->dev); + + fsl_elbc_chip_remove(priv); + + mutex_lock(&fsl_elbc_nand_mutex); + elbc_fcm_ctrl->counter--; + if (!elbc_fcm_ctrl->counter) { + fsl_lbc_ctrl_dev->nand = NULL; + kfree(elbc_fcm_ctrl); + } + mutex_unlock(&fsl_elbc_nand_mutex); + + return 0; + +} + +static const struct of_device_id fsl_elbc_nand_match[] = { + { .compatible = "fsl,elbc-fcm-nand", }, + {} +}; +MODULE_DEVICE_TABLE(of, fsl_elbc_nand_match); + +static struct platform_driver fsl_elbc_nand_driver = { + .driver = { + .name = "fsl,elbc-fcm-nand", + .of_match_table = fsl_elbc_nand_match, + }, + .probe = fsl_elbc_nand_probe, + .remove = fsl_elbc_nand_remove, +}; + +module_platform_driver(fsl_elbc_nand_driver); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Freescale"); +MODULE_DESCRIPTION("Freescale Enhanced Local Bus Controller MTD NAND driver"); diff --git a/drivers/mtd/nand/raw/fsl_ifc_nand.c b/drivers/mtd/nand/raw/fsl_ifc_nand.c new file mode 100644 index 000000000000..4872a7ba6503 --- /dev/null +++ b/drivers/mtd/nand/raw/fsl_ifc_nand.c @@ -0,0 +1,1117 @@ +/* + * Freescale Integrated Flash Controller NAND driver + * + * Copyright 2011-2012 Freescale Semiconductor, Inc + * + * Author: Dipen Dudhat + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA + */ + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#define ERR_BYTE 0xFF /* Value returned for read + bytes when read failed */ +#define IFC_TIMEOUT_MSECS 500 /* Maximum number of mSecs to wait + for IFC NAND Machine */ + +struct fsl_ifc_ctrl; + +/* mtd information per set */ +struct fsl_ifc_mtd { + struct nand_chip chip; + struct fsl_ifc_ctrl *ctrl; + + struct device *dev; + int bank; /* Chip select bank number */ + unsigned int bufnum_mask; /* bufnum = page & bufnum_mask */ + u8 __iomem *vbase; /* Chip select base virtual address */ +}; + +/* overview of the fsl ifc controller */ +struct fsl_ifc_nand_ctrl { + struct nand_hw_control controller; + struct fsl_ifc_mtd *chips[FSL_IFC_BANK_COUNT]; + + void __iomem *addr; /* Address of assigned IFC buffer */ + unsigned int page; /* Last page written to / read from */ + unsigned int read_bytes;/* Number of bytes read during command */ + unsigned int column; /* Saved column from SEQIN */ + unsigned int index; /* Pointer to next byte to 'read' */ + unsigned int oob; /* Non zero if operating on OOB data */ + unsigned int eccread; /* Non zero for a full-page ECC read */ + unsigned int counter; /* counter for the initializations */ + unsigned int max_bitflips; /* Saved during READ0 cmd */ +}; + +static struct fsl_ifc_nand_ctrl *ifc_nand_ctrl; + +/* + * Generic flash bbt descriptors + */ +static u8 bbt_pattern[] = {'B', 'b', 't', '0' }; +static u8 mirror_pattern[] = {'1', 't', 'b', 'B' }; + +static struct nand_bbt_descr bbt_main_descr = { + .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | + NAND_BBT_2BIT | NAND_BBT_VERSION, + .offs = 2, /* 0 on 8-bit small page */ + .len = 4, + .veroffs = 6, + .maxblocks = 4, + .pattern = bbt_pattern, +}; + +static struct nand_bbt_descr bbt_mirror_descr = { + .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | + NAND_BBT_2BIT | NAND_BBT_VERSION, + .offs = 2, /* 0 on 8-bit small page */ + .len = 4, + .veroffs = 6, + .maxblocks = 4, + .pattern = mirror_pattern, +}; + +static int fsl_ifc_ooblayout_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + + if (section) + return -ERANGE; + + oobregion->offset = 8; + oobregion->length = chip->ecc.total; + + return 0; +} + +static int fsl_ifc_ooblayout_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + + if (section > 1) + return -ERANGE; + + if (mtd->writesize == 512 && + !(chip->options & NAND_BUSWIDTH_16)) { + if (!section) { + oobregion->offset = 0; + oobregion->length = 5; + } else { + oobregion->offset = 6; + oobregion->length = 2; + } + + return 0; + } + + if (!section) { + oobregion->offset = 2; + oobregion->length = 6; + } else { + oobregion->offset = chip->ecc.total + 8; + oobregion->length = mtd->oobsize - oobregion->offset; + } + + return 0; +} + +static const struct mtd_ooblayout_ops fsl_ifc_ooblayout_ops = { + .ecc = fsl_ifc_ooblayout_ecc, + .free = fsl_ifc_ooblayout_free, +}; + +/* + * Set up the IFC hardware block and page address fields, and the ifc nand + * structure addr field to point to the correct IFC buffer in memory + */ +static void set_addr(struct mtd_info *mtd, int column, int page_addr, int oob) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct fsl_ifc_mtd *priv = nand_get_controller_data(chip); + struct fsl_ifc_ctrl *ctrl = priv->ctrl; + struct fsl_ifc_runtime __iomem *ifc = ctrl->rregs; + int buf_num; + + ifc_nand_ctrl->page = page_addr; + /* Program ROW0/COL0 */ + ifc_out32(page_addr, &ifc->ifc_nand.row0); + ifc_out32((oob ? IFC_NAND_COL_MS : 0) | column, &ifc->ifc_nand.col0); + + buf_num = page_addr & priv->bufnum_mask; + + ifc_nand_ctrl->addr = priv->vbase + buf_num * (mtd->writesize * 2); + ifc_nand_ctrl->index = column; + + /* for OOB data point to the second half of the buffer */ + if (oob) + ifc_nand_ctrl->index += mtd->writesize; +} + +/* returns nonzero if entire page is blank */ +static int check_read_ecc(struct mtd_info *mtd, struct fsl_ifc_ctrl *ctrl, + u32 *eccstat, unsigned int bufnum) +{ + u32 reg = eccstat[bufnum / 4]; + int errors; + + errors = (reg >> ((3 - bufnum % 4) * 8)) & 15; + + return errors; +} + +/* + * execute IFC NAND command and wait for it to complete + */ +static void fsl_ifc_run_command(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct fsl_ifc_mtd *priv = nand_get_controller_data(chip); + struct fsl_ifc_ctrl *ctrl = priv->ctrl; + struct fsl_ifc_nand_ctrl *nctrl = ifc_nand_ctrl; + struct fsl_ifc_runtime __iomem *ifc = ctrl->rregs; + u32 eccstat[4]; + int i; + + /* set the chip select for NAND Transaction */ + ifc_out32(priv->bank << IFC_NAND_CSEL_SHIFT, + &ifc->ifc_nand.nand_csel); + + dev_vdbg(priv->dev, + "%s: fir0=%08x fcr0=%08x\n", + __func__, + ifc_in32(&ifc->ifc_nand.nand_fir0), + ifc_in32(&ifc->ifc_nand.nand_fcr0)); + + ctrl->nand_stat = 0; + + /* start read/write seq */ + ifc_out32(IFC_NAND_SEQ_STRT_FIR_STRT, &ifc->ifc_nand.nandseq_strt); + + /* wait for command complete flag or timeout */ + wait_event_timeout(ctrl->nand_wait, ctrl->nand_stat, + msecs_to_jiffies(IFC_TIMEOUT_MSECS)); + + /* ctrl->nand_stat will be updated from IRQ context */ + if (!ctrl->nand_stat) + dev_err(priv->dev, "Controller is not responding\n"); + if (ctrl->nand_stat & IFC_NAND_EVTER_STAT_FTOER) + dev_err(priv->dev, "NAND Flash Timeout Error\n"); + if (ctrl->nand_stat & IFC_NAND_EVTER_STAT_WPER) + dev_err(priv->dev, "NAND Flash Write Protect Error\n"); + + nctrl->max_bitflips = 0; + + if (nctrl->eccread) { + int errors; + int bufnum = nctrl->page & priv->bufnum_mask; + int sector = bufnum * chip->ecc.steps; + int sector_end = sector + chip->ecc.steps - 1; + __be32 *eccstat_regs; + + if (ctrl->version >= FSL_IFC_VERSION_2_0_0) + eccstat_regs = ifc->ifc_nand.v2_nand_eccstat; + else + eccstat_regs = ifc->ifc_nand.v1_nand_eccstat; + + for (i = sector / 4; i <= sector_end / 4; i++) + eccstat[i] = ifc_in32(&eccstat_regs[i]); + + for (i = sector; i <= sector_end; i++) { + errors = check_read_ecc(mtd, ctrl, eccstat, i); + + if (errors == 15) { + /* + * Uncorrectable error. + * We'll check for blank pages later. + * + * We disable ECCER reporting due to... + * erratum IFC-A002770 -- so report it now if we + * see an uncorrectable error in ECCSTAT. + */ + ctrl->nand_stat |= IFC_NAND_EVTER_STAT_ECCER; + continue; + } + + mtd->ecc_stats.corrected += errors; + nctrl->max_bitflips = max_t(unsigned int, + nctrl->max_bitflips, + errors); + } + + nctrl->eccread = 0; + } +} + +static void fsl_ifc_do_read(struct nand_chip *chip, + int oob, + struct mtd_info *mtd) +{ + struct fsl_ifc_mtd *priv = nand_get_controller_data(chip); + struct fsl_ifc_ctrl *ctrl = priv->ctrl; + struct fsl_ifc_runtime __iomem *ifc = ctrl->rregs; + + /* Program FIR/IFC_NAND_FCR0 for Small/Large page */ + if (mtd->writesize > 512) { + ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | + (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) | + (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) | + (IFC_FIR_OP_CMD1 << IFC_NAND_FIR0_OP3_SHIFT) | + (IFC_FIR_OP_RBCD << IFC_NAND_FIR0_OP4_SHIFT), + &ifc->ifc_nand.nand_fir0); + ifc_out32(0x0, &ifc->ifc_nand.nand_fir1); + + ifc_out32((NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT) | + (NAND_CMD_READSTART << IFC_NAND_FCR0_CMD1_SHIFT), + &ifc->ifc_nand.nand_fcr0); + } else { + ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | + (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) | + (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) | + (IFC_FIR_OP_RBCD << IFC_NAND_FIR0_OP3_SHIFT), + &ifc->ifc_nand.nand_fir0); + ifc_out32(0x0, &ifc->ifc_nand.nand_fir1); + + if (oob) + ifc_out32(NAND_CMD_READOOB << + IFC_NAND_FCR0_CMD0_SHIFT, + &ifc->ifc_nand.nand_fcr0); + else + ifc_out32(NAND_CMD_READ0 << + IFC_NAND_FCR0_CMD0_SHIFT, + &ifc->ifc_nand.nand_fcr0); + } +} + +/* cmdfunc send commands to the IFC NAND Machine */ +static void fsl_ifc_cmdfunc(struct mtd_info *mtd, unsigned int command, + int column, int page_addr) { + struct nand_chip *chip = mtd_to_nand(mtd); + struct fsl_ifc_mtd *priv = nand_get_controller_data(chip); + struct fsl_ifc_ctrl *ctrl = priv->ctrl; + struct fsl_ifc_runtime __iomem *ifc = ctrl->rregs; + + /* clear the read buffer */ + ifc_nand_ctrl->read_bytes = 0; + if (command != NAND_CMD_PAGEPROG) + ifc_nand_ctrl->index = 0; + + switch (command) { + /* READ0 read the entire buffer to use hardware ECC. */ + case NAND_CMD_READ0: + ifc_out32(0, &ifc->ifc_nand.nand_fbcr); + set_addr(mtd, 0, page_addr, 0); + + ifc_nand_ctrl->read_bytes = mtd->writesize + mtd->oobsize; + ifc_nand_ctrl->index += column; + + if (chip->ecc.mode == NAND_ECC_HW) + ifc_nand_ctrl->eccread = 1; + + fsl_ifc_do_read(chip, 0, mtd); + fsl_ifc_run_command(mtd); + return; + + /* READOOB reads only the OOB because no ECC is performed. */ + case NAND_CMD_READOOB: + ifc_out32(mtd->oobsize - column, &ifc->ifc_nand.nand_fbcr); + set_addr(mtd, column, page_addr, 1); + + ifc_nand_ctrl->read_bytes = mtd->writesize + mtd->oobsize; + + fsl_ifc_do_read(chip, 1, mtd); + fsl_ifc_run_command(mtd); + + return; + + case NAND_CMD_READID: + case NAND_CMD_PARAM: { + int timing = IFC_FIR_OP_RB; + if (command == NAND_CMD_PARAM) + timing = IFC_FIR_OP_RBCD; + + ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | + (IFC_FIR_OP_UA << IFC_NAND_FIR0_OP1_SHIFT) | + (timing << IFC_NAND_FIR0_OP2_SHIFT), + &ifc->ifc_nand.nand_fir0); + ifc_out32(command << IFC_NAND_FCR0_CMD0_SHIFT, + &ifc->ifc_nand.nand_fcr0); + ifc_out32(column, &ifc->ifc_nand.row3); + + /* + * although currently it's 8 bytes for READID, we always read + * the maximum 256 bytes(for PARAM) + */ + ifc_out32(256, &ifc->ifc_nand.nand_fbcr); + ifc_nand_ctrl->read_bytes = 256; + + set_addr(mtd, 0, 0, 0); + fsl_ifc_run_command(mtd); + return; + } + + /* ERASE1 stores the block and page address */ + case NAND_CMD_ERASE1: + set_addr(mtd, 0, page_addr, 0); + return; + + /* ERASE2 uses the block and page address from ERASE1 */ + case NAND_CMD_ERASE2: + ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | + (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP1_SHIFT) | + (IFC_FIR_OP_CMD1 << IFC_NAND_FIR0_OP2_SHIFT), + &ifc->ifc_nand.nand_fir0); + + ifc_out32((NAND_CMD_ERASE1 << IFC_NAND_FCR0_CMD0_SHIFT) | + (NAND_CMD_ERASE2 << IFC_NAND_FCR0_CMD1_SHIFT), + &ifc->ifc_nand.nand_fcr0); + + ifc_out32(0, &ifc->ifc_nand.nand_fbcr); + ifc_nand_ctrl->read_bytes = 0; + fsl_ifc_run_command(mtd); + return; + + /* SEQIN sets up the addr buffer and all registers except the length */ + case NAND_CMD_SEQIN: { + u32 nand_fcr0; + ifc_nand_ctrl->column = column; + ifc_nand_ctrl->oob = 0; + + if (mtd->writesize > 512) { + nand_fcr0 = + (NAND_CMD_SEQIN << IFC_NAND_FCR0_CMD0_SHIFT) | + (NAND_CMD_STATUS << IFC_NAND_FCR0_CMD1_SHIFT) | + (NAND_CMD_PAGEPROG << IFC_NAND_FCR0_CMD2_SHIFT); + + ifc_out32( + (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | + (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) | + (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) | + (IFC_FIR_OP_WBCD << IFC_NAND_FIR0_OP3_SHIFT) | + (IFC_FIR_OP_CMD2 << IFC_NAND_FIR0_OP4_SHIFT), + &ifc->ifc_nand.nand_fir0); + ifc_out32( + (IFC_FIR_OP_CW1 << IFC_NAND_FIR1_OP5_SHIFT) | + (IFC_FIR_OP_RDSTAT << IFC_NAND_FIR1_OP6_SHIFT) | + (IFC_FIR_OP_NOP << IFC_NAND_FIR1_OP7_SHIFT), + &ifc->ifc_nand.nand_fir1); + } else { + nand_fcr0 = ((NAND_CMD_PAGEPROG << + IFC_NAND_FCR0_CMD1_SHIFT) | + (NAND_CMD_SEQIN << + IFC_NAND_FCR0_CMD2_SHIFT) | + (NAND_CMD_STATUS << + IFC_NAND_FCR0_CMD3_SHIFT)); + + ifc_out32( + (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | + (IFC_FIR_OP_CMD2 << IFC_NAND_FIR0_OP1_SHIFT) | + (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP2_SHIFT) | + (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP3_SHIFT) | + (IFC_FIR_OP_WBCD << IFC_NAND_FIR0_OP4_SHIFT), + &ifc->ifc_nand.nand_fir0); + ifc_out32( + (IFC_FIR_OP_CMD1 << IFC_NAND_FIR1_OP5_SHIFT) | + (IFC_FIR_OP_CW3 << IFC_NAND_FIR1_OP6_SHIFT) | + (IFC_FIR_OP_RDSTAT << IFC_NAND_FIR1_OP7_SHIFT) | + (IFC_FIR_OP_NOP << IFC_NAND_FIR1_OP8_SHIFT), + &ifc->ifc_nand.nand_fir1); + + if (column >= mtd->writesize) + nand_fcr0 |= + NAND_CMD_READOOB << IFC_NAND_FCR0_CMD0_SHIFT; + else + nand_fcr0 |= + NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT; + } + + if (column >= mtd->writesize) { + /* OOB area --> READOOB */ + column -= mtd->writesize; + ifc_nand_ctrl->oob = 1; + } + ifc_out32(nand_fcr0, &ifc->ifc_nand.nand_fcr0); + set_addr(mtd, column, page_addr, ifc_nand_ctrl->oob); + return; + } + + /* PAGEPROG reuses all of the setup from SEQIN and adds the length */ + case NAND_CMD_PAGEPROG: { + if (ifc_nand_ctrl->oob) { + ifc_out32(ifc_nand_ctrl->index - + ifc_nand_ctrl->column, + &ifc->ifc_nand.nand_fbcr); + } else { + ifc_out32(0, &ifc->ifc_nand.nand_fbcr); + } + + fsl_ifc_run_command(mtd); + return; + } + + case NAND_CMD_STATUS: { + void __iomem *addr; + + ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | + (IFC_FIR_OP_RB << IFC_NAND_FIR0_OP1_SHIFT), + &ifc->ifc_nand.nand_fir0); + ifc_out32(NAND_CMD_STATUS << IFC_NAND_FCR0_CMD0_SHIFT, + &ifc->ifc_nand.nand_fcr0); + ifc_out32(1, &ifc->ifc_nand.nand_fbcr); + set_addr(mtd, 0, 0, 0); + ifc_nand_ctrl->read_bytes = 1; + + fsl_ifc_run_command(mtd); + + /* + * The chip always seems to report that it is + * write-protected, even when it is not. + */ + addr = ifc_nand_ctrl->addr; + if (chip->options & NAND_BUSWIDTH_16) + ifc_out16(ifc_in16(addr) | (NAND_STATUS_WP), addr); + else + ifc_out8(ifc_in8(addr) | (NAND_STATUS_WP), addr); + return; + } + + case NAND_CMD_RESET: + ifc_out32(IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT, + &ifc->ifc_nand.nand_fir0); + ifc_out32(NAND_CMD_RESET << IFC_NAND_FCR0_CMD0_SHIFT, + &ifc->ifc_nand.nand_fcr0); + fsl_ifc_run_command(mtd); + return; + + default: + dev_err(priv->dev, "%s: error, unsupported command 0x%x.\n", + __func__, command); + } +} + +static void fsl_ifc_select_chip(struct mtd_info *mtd, int chip) +{ + /* The hardware does not seem to support multiple + * chips per bank. + */ +} + +/* + * Write buf to the IFC NAND Controller Data Buffer + */ +static void fsl_ifc_write_buf(struct mtd_info *mtd, const u8 *buf, int len) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct fsl_ifc_mtd *priv = nand_get_controller_data(chip); + unsigned int bufsize = mtd->writesize + mtd->oobsize; + + if (len <= 0) { + dev_err(priv->dev, "%s: len %d bytes", __func__, len); + return; + } + + if ((unsigned int)len > bufsize - ifc_nand_ctrl->index) { + dev_err(priv->dev, + "%s: beyond end of buffer (%d requested, %u available)\n", + __func__, len, bufsize - ifc_nand_ctrl->index); + len = bufsize - ifc_nand_ctrl->index; + } + + memcpy_toio(ifc_nand_ctrl->addr + ifc_nand_ctrl->index, buf, len); + ifc_nand_ctrl->index += len; +} + +/* + * Read a byte from either the IFC hardware buffer + * read function for 8-bit buswidth + */ +static uint8_t fsl_ifc_read_byte(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct fsl_ifc_mtd *priv = nand_get_controller_data(chip); + unsigned int offset; + + /* + * If there are still bytes in the IFC buffer, then use the + * next byte. + */ + if (ifc_nand_ctrl->index < ifc_nand_ctrl->read_bytes) { + offset = ifc_nand_ctrl->index++; + return ifc_in8(ifc_nand_ctrl->addr + offset); + } + + dev_err(priv->dev, "%s: beyond end of buffer\n", __func__); + return ERR_BYTE; +} + +/* + * Read two bytes from the IFC hardware buffer + * read function for 16-bit buswith + */ +static uint8_t fsl_ifc_read_byte16(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct fsl_ifc_mtd *priv = nand_get_controller_data(chip); + uint16_t data; + + /* + * If there are still bytes in the IFC buffer, then use the + * next byte. + */ + if (ifc_nand_ctrl->index < ifc_nand_ctrl->read_bytes) { + data = ifc_in16(ifc_nand_ctrl->addr + ifc_nand_ctrl->index); + ifc_nand_ctrl->index += 2; + return (uint8_t) data; + } + + dev_err(priv->dev, "%s: beyond end of buffer\n", __func__); + return ERR_BYTE; +} + +/* + * Read from the IFC Controller Data Buffer + */ +static void fsl_ifc_read_buf(struct mtd_info *mtd, u8 *buf, int len) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct fsl_ifc_mtd *priv = nand_get_controller_data(chip); + int avail; + + if (len < 0) { + dev_err(priv->dev, "%s: len %d bytes", __func__, len); + return; + } + + avail = min((unsigned int)len, + ifc_nand_ctrl->read_bytes - ifc_nand_ctrl->index); + memcpy_fromio(buf, ifc_nand_ctrl->addr + ifc_nand_ctrl->index, avail); + ifc_nand_ctrl->index += avail; + + if (len > avail) + dev_err(priv->dev, + "%s: beyond end of buffer (%d requested, %d available)\n", + __func__, len, avail); +} + +/* + * This function is called after Program and Erase Operations to + * check for success or failure. + */ +static int fsl_ifc_wait(struct mtd_info *mtd, struct nand_chip *chip) +{ + struct fsl_ifc_mtd *priv = nand_get_controller_data(chip); + struct fsl_ifc_ctrl *ctrl = priv->ctrl; + struct fsl_ifc_runtime __iomem *ifc = ctrl->rregs; + u32 nand_fsr; + + /* Use READ_STATUS command, but wait for the device to be ready */ + ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | + (IFC_FIR_OP_RDSTAT << IFC_NAND_FIR0_OP1_SHIFT), + &ifc->ifc_nand.nand_fir0); + ifc_out32(NAND_CMD_STATUS << IFC_NAND_FCR0_CMD0_SHIFT, + &ifc->ifc_nand.nand_fcr0); + ifc_out32(1, &ifc->ifc_nand.nand_fbcr); + set_addr(mtd, 0, 0, 0); + ifc_nand_ctrl->read_bytes = 1; + + fsl_ifc_run_command(mtd); + + nand_fsr = ifc_in32(&ifc->ifc_nand.nand_fsr); + + /* + * The chip always seems to report that it is + * write-protected, even when it is not. + */ + return nand_fsr | NAND_STATUS_WP; +} + +/* + * The controller does not check for bitflips in erased pages, + * therefore software must check instead. + */ +static int check_erased_page(struct nand_chip *chip, u8 *buf) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + u8 *ecc = chip->oob_poi; + const int ecc_size = chip->ecc.bytes; + const int pkt_size = chip->ecc.size; + int i, res, bitflips = 0; + struct mtd_oob_region oobregion = { }; + + mtd_ooblayout_ecc(mtd, 0, &oobregion); + ecc += oobregion.offset; + + for (i = 0; i < chip->ecc.steps; ++i) { + res = nand_check_erased_ecc_chunk(buf, pkt_size, ecc, ecc_size, + NULL, 0, + chip->ecc.strength); + if (res < 0) + mtd->ecc_stats.failed++; + else + mtd->ecc_stats.corrected += res; + + bitflips = max(res, bitflips); + buf += pkt_size; + ecc += ecc_size; + } + + return bitflips; +} + +static int fsl_ifc_read_page(struct mtd_info *mtd, struct nand_chip *chip, + uint8_t *buf, int oob_required, int page) +{ + struct fsl_ifc_mtd *priv = nand_get_controller_data(chip); + struct fsl_ifc_ctrl *ctrl = priv->ctrl; + struct fsl_ifc_nand_ctrl *nctrl = ifc_nand_ctrl; + + nand_read_page_op(chip, page, 0, buf, mtd->writesize); + if (oob_required) + fsl_ifc_read_buf(mtd, chip->oob_poi, mtd->oobsize); + + if (ctrl->nand_stat & IFC_NAND_EVTER_STAT_ECCER) { + if (!oob_required) + fsl_ifc_read_buf(mtd, chip->oob_poi, mtd->oobsize); + + return check_erased_page(chip, buf); + } + + if (ctrl->nand_stat != IFC_NAND_EVTER_STAT_OPC) + mtd->ecc_stats.failed++; + + return nctrl->max_bitflips; +} + +/* ECC will be calculated automatically, and errors will be detected in + * waitfunc. + */ +static int fsl_ifc_write_page(struct mtd_info *mtd, struct nand_chip *chip, + const uint8_t *buf, int oob_required, int page) +{ + nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize); + fsl_ifc_write_buf(mtd, chip->oob_poi, mtd->oobsize); + + return nand_prog_page_end_op(chip); +} + +static int fsl_ifc_chip_init_tail(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct fsl_ifc_mtd *priv = nand_get_controller_data(chip); + + dev_dbg(priv->dev, "%s: nand->numchips = %d\n", __func__, + chip->numchips); + dev_dbg(priv->dev, "%s: nand->chipsize = %lld\n", __func__, + chip->chipsize); + dev_dbg(priv->dev, "%s: nand->pagemask = %8x\n", __func__, + chip->pagemask); + dev_dbg(priv->dev, "%s: nand->chip_delay = %d\n", __func__, + chip->chip_delay); + dev_dbg(priv->dev, "%s: nand->badblockpos = %d\n", __func__, + chip->badblockpos); + dev_dbg(priv->dev, "%s: nand->chip_shift = %d\n", __func__, + chip->chip_shift); + dev_dbg(priv->dev, "%s: nand->page_shift = %d\n", __func__, + chip->page_shift); + dev_dbg(priv->dev, "%s: nand->phys_erase_shift = %d\n", __func__, + chip->phys_erase_shift); + dev_dbg(priv->dev, "%s: nand->ecc.mode = %d\n", __func__, + chip->ecc.mode); + dev_dbg(priv->dev, "%s: nand->ecc.steps = %d\n", __func__, + chip->ecc.steps); + dev_dbg(priv->dev, "%s: nand->ecc.bytes = %d\n", __func__, + chip->ecc.bytes); + dev_dbg(priv->dev, "%s: nand->ecc.total = %d\n", __func__, + chip->ecc.total); + dev_dbg(priv->dev, "%s: mtd->ooblayout = %p\n", __func__, + mtd->ooblayout); + dev_dbg(priv->dev, "%s: mtd->flags = %08x\n", __func__, mtd->flags); + dev_dbg(priv->dev, "%s: mtd->size = %lld\n", __func__, mtd->size); + dev_dbg(priv->dev, "%s: mtd->erasesize = %d\n", __func__, + mtd->erasesize); + dev_dbg(priv->dev, "%s: mtd->writesize = %d\n", __func__, + mtd->writesize); + dev_dbg(priv->dev, "%s: mtd->oobsize = %d\n", __func__, + mtd->oobsize); + + return 0; +} + +static void fsl_ifc_sram_init(struct fsl_ifc_mtd *priv) +{ + struct fsl_ifc_ctrl *ctrl = priv->ctrl; + struct fsl_ifc_runtime __iomem *ifc_runtime = ctrl->rregs; + struct fsl_ifc_global __iomem *ifc_global = ctrl->gregs; + uint32_t csor = 0, csor_8k = 0, csor_ext = 0; + uint32_t cs = priv->bank; + + /* Save CSOR and CSOR_ext */ + csor = ifc_in32(&ifc_global->csor_cs[cs].csor); + csor_ext = ifc_in32(&ifc_global->csor_cs[cs].csor_ext); + + /* chage PageSize 8K and SpareSize 1K*/ + csor_8k = (csor & ~(CSOR_NAND_PGS_MASK)) | 0x0018C000; + ifc_out32(csor_8k, &ifc_global->csor_cs[cs].csor); + ifc_out32(0x0000400, &ifc_global->csor_cs[cs].csor_ext); + + /* READID */ + ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | + (IFC_FIR_OP_UA << IFC_NAND_FIR0_OP1_SHIFT) | + (IFC_FIR_OP_RB << IFC_NAND_FIR0_OP2_SHIFT), + &ifc_runtime->ifc_nand.nand_fir0); + ifc_out32(NAND_CMD_READID << IFC_NAND_FCR0_CMD0_SHIFT, + &ifc_runtime->ifc_nand.nand_fcr0); + ifc_out32(0x0, &ifc_runtime->ifc_nand.row3); + + ifc_out32(0x0, &ifc_runtime->ifc_nand.nand_fbcr); + + /* Program ROW0/COL0 */ + ifc_out32(0x0, &ifc_runtime->ifc_nand.row0); + ifc_out32(0x0, &ifc_runtime->ifc_nand.col0); + + /* set the chip select for NAND Transaction */ + ifc_out32(cs << IFC_NAND_CSEL_SHIFT, + &ifc_runtime->ifc_nand.nand_csel); + + /* start read seq */ + ifc_out32(IFC_NAND_SEQ_STRT_FIR_STRT, + &ifc_runtime->ifc_nand.nandseq_strt); + + /* wait for command complete flag or timeout */ + wait_event_timeout(ctrl->nand_wait, ctrl->nand_stat, + msecs_to_jiffies(IFC_TIMEOUT_MSECS)); + + if (ctrl->nand_stat != IFC_NAND_EVTER_STAT_OPC) + printk(KERN_ERR "fsl-ifc: Failed to Initialise SRAM\n"); + + /* Restore CSOR and CSOR_ext */ + ifc_out32(csor, &ifc_global->csor_cs[cs].csor); + ifc_out32(csor_ext, &ifc_global->csor_cs[cs].csor_ext); +} + +static int fsl_ifc_chip_init(struct fsl_ifc_mtd *priv) +{ + struct fsl_ifc_ctrl *ctrl = priv->ctrl; + struct fsl_ifc_global __iomem *ifc_global = ctrl->gregs; + struct fsl_ifc_runtime __iomem *ifc_runtime = ctrl->rregs; + struct nand_chip *chip = &priv->chip; + struct mtd_info *mtd = nand_to_mtd(&priv->chip); + u32 csor; + + /* Fill in fsl_ifc_mtd structure */ + mtd->dev.parent = priv->dev; + nand_set_flash_node(chip, priv->dev->of_node); + + /* fill in nand_chip structure */ + /* set up function call table */ + if ((ifc_in32(&ifc_global->cspr_cs[priv->bank].cspr)) + & CSPR_PORT_SIZE_16) + chip->read_byte = fsl_ifc_read_byte16; + else + chip->read_byte = fsl_ifc_read_byte; + + chip->write_buf = fsl_ifc_write_buf; + chip->read_buf = fsl_ifc_read_buf; + chip->select_chip = fsl_ifc_select_chip; + chip->cmdfunc = fsl_ifc_cmdfunc; + chip->waitfunc = fsl_ifc_wait; + chip->onfi_set_features = nand_onfi_get_set_features_notsupp; + chip->onfi_get_features = nand_onfi_get_set_features_notsupp; + + chip->bbt_td = &bbt_main_descr; + chip->bbt_md = &bbt_mirror_descr; + + ifc_out32(0x0, &ifc_runtime->ifc_nand.ncfgr); + + /* set up nand options */ + chip->bbt_options = NAND_BBT_USE_FLASH; + chip->options = NAND_NO_SUBPAGE_WRITE; + + if (ifc_in32(&ifc_global->cspr_cs[priv->bank].cspr) + & CSPR_PORT_SIZE_16) { + chip->read_byte = fsl_ifc_read_byte16; + chip->options |= NAND_BUSWIDTH_16; + } else { + chip->read_byte = fsl_ifc_read_byte; + } + + chip->controller = &ifc_nand_ctrl->controller; + nand_set_controller_data(chip, priv); + + chip->ecc.read_page = fsl_ifc_read_page; + chip->ecc.write_page = fsl_ifc_write_page; + + csor = ifc_in32(&ifc_global->csor_cs[priv->bank].csor); + + switch (csor & CSOR_NAND_PGS_MASK) { + case CSOR_NAND_PGS_512: + if (!(chip->options & NAND_BUSWIDTH_16)) { + /* Avoid conflict with bad block marker */ + bbt_main_descr.offs = 0; + bbt_mirror_descr.offs = 0; + } + + priv->bufnum_mask = 15; + break; + + case CSOR_NAND_PGS_2K: + priv->bufnum_mask = 3; + break; + + case CSOR_NAND_PGS_4K: + priv->bufnum_mask = 1; + break; + + case CSOR_NAND_PGS_8K: + priv->bufnum_mask = 0; + break; + + default: + dev_err(priv->dev, "bad csor %#x: bad page size\n", csor); + return -ENODEV; + } + + /* Must also set CSOR_NAND_ECC_ENC_EN if DEC_EN set */ + if (csor & CSOR_NAND_ECC_DEC_EN) { + chip->ecc.mode = NAND_ECC_HW; + mtd_set_ooblayout(mtd, &fsl_ifc_ooblayout_ops); + + /* Hardware generates ECC per 512 Bytes */ + chip->ecc.size = 512; + if ((csor & CSOR_NAND_ECC_MODE_MASK) == CSOR_NAND_ECC_MODE_4) { + chip->ecc.bytes = 8; + chip->ecc.strength = 4; + } else { + chip->ecc.bytes = 16; + chip->ecc.strength = 8; + } + } else { + chip->ecc.mode = NAND_ECC_SOFT; + chip->ecc.algo = NAND_ECC_HAMMING; + } + + if (ctrl->version >= FSL_IFC_VERSION_1_1_0) + fsl_ifc_sram_init(priv); + + /* + * As IFC version 2.0.0 has 16KB of internal SRAM as compared to older + * versions which had 8KB. Hence bufnum mask needs to be updated. + */ + if (ctrl->version >= FSL_IFC_VERSION_2_0_0) + priv->bufnum_mask = (priv->bufnum_mask * 2) + 1; + + return 0; +} + +static int fsl_ifc_chip_remove(struct fsl_ifc_mtd *priv) +{ + struct mtd_info *mtd = nand_to_mtd(&priv->chip); + + nand_release(mtd); + + kfree(mtd->name); + + if (priv->vbase) + iounmap(priv->vbase); + + ifc_nand_ctrl->chips[priv->bank] = NULL; + + return 0; +} + +static int match_bank(struct fsl_ifc_global __iomem *ifc_global, int bank, + phys_addr_t addr) +{ + u32 cspr = ifc_in32(&ifc_global->cspr_cs[bank].cspr); + + if (!(cspr & CSPR_V)) + return 0; + if ((cspr & CSPR_MSEL) != CSPR_MSEL_NAND) + return 0; + + return (cspr & CSPR_BA) == convert_ifc_address(addr); +} + +static DEFINE_MUTEX(fsl_ifc_nand_mutex); + +static int fsl_ifc_nand_probe(struct platform_device *dev) +{ + struct fsl_ifc_runtime __iomem *ifc; + struct fsl_ifc_mtd *priv; + struct resource res; + static const char *part_probe_types[] + = { "cmdlinepart", "RedBoot", "ofpart", NULL }; + int ret; + int bank; + struct device_node *node = dev->dev.of_node; + struct mtd_info *mtd; + + if (!fsl_ifc_ctrl_dev || !fsl_ifc_ctrl_dev->rregs) + return -ENODEV; + ifc = fsl_ifc_ctrl_dev->rregs; + + /* get, allocate and map the memory resource */ + ret = of_address_to_resource(node, 0, &res); + if (ret) { + dev_err(&dev->dev, "%s: failed to get resource\n", __func__); + return ret; + } + + /* find which chip select it is connected to */ + for (bank = 0; bank < fsl_ifc_ctrl_dev->banks; bank++) { + if (match_bank(fsl_ifc_ctrl_dev->gregs, bank, res.start)) + break; + } + + if (bank >= fsl_ifc_ctrl_dev->banks) { + dev_err(&dev->dev, "%s: address did not match any chip selects\n", + __func__); + return -ENODEV; + } + + priv = devm_kzalloc(&dev->dev, sizeof(*priv), GFP_KERNEL); + if (!priv) + return -ENOMEM; + + mutex_lock(&fsl_ifc_nand_mutex); + if (!fsl_ifc_ctrl_dev->nand) { + ifc_nand_ctrl = kzalloc(sizeof(*ifc_nand_ctrl), GFP_KERNEL); + if (!ifc_nand_ctrl) { + mutex_unlock(&fsl_ifc_nand_mutex); + return -ENOMEM; + } + + ifc_nand_ctrl->read_bytes = 0; + ifc_nand_ctrl->index = 0; + ifc_nand_ctrl->addr = NULL; + fsl_ifc_ctrl_dev->nand = ifc_nand_ctrl; + + nand_hw_control_init(&ifc_nand_ctrl->controller); + } else { + ifc_nand_ctrl = fsl_ifc_ctrl_dev->nand; + } + mutex_unlock(&fsl_ifc_nand_mutex); + + ifc_nand_ctrl->chips[bank] = priv; + priv->bank = bank; + priv->ctrl = fsl_ifc_ctrl_dev; + priv->dev = &dev->dev; + + priv->vbase = ioremap(res.start, resource_size(&res)); + if (!priv->vbase) { + dev_err(priv->dev, "%s: failed to map chip region\n", __func__); + ret = -ENOMEM; + goto err; + } + + dev_set_drvdata(priv->dev, priv); + + ifc_out32(IFC_NAND_EVTER_EN_OPC_EN | + IFC_NAND_EVTER_EN_FTOER_EN | + IFC_NAND_EVTER_EN_WPER_EN, + &ifc->ifc_nand.nand_evter_en); + + /* enable NAND Machine Interrupts */ + ifc_out32(IFC_NAND_EVTER_INTR_OPCIR_EN | + IFC_NAND_EVTER_INTR_FTOERIR_EN | + IFC_NAND_EVTER_INTR_WPERIR_EN, + &ifc->ifc_nand.nand_evter_intr_en); + + mtd = nand_to_mtd(&priv->chip); + mtd->name = kasprintf(GFP_KERNEL, "%llx.flash", (u64)res.start); + if (!mtd->name) { + ret = -ENOMEM; + goto err; + } + + ret = fsl_ifc_chip_init(priv); + if (ret) + goto err; + + ret = nand_scan_ident(mtd, 1, NULL); + if (ret) + goto err; + + ret = fsl_ifc_chip_init_tail(mtd); + if (ret) + goto err; + + ret = nand_scan_tail(mtd); + if (ret) + goto err; + + /* First look for RedBoot table or partitions on the command + * line, these take precedence over device tree information */ + mtd_device_parse_register(mtd, part_probe_types, NULL, NULL, 0); + + dev_info(priv->dev, "IFC NAND device at 0x%llx, bank %d\n", + (unsigned long long)res.start, priv->bank); + return 0; + +err: + fsl_ifc_chip_remove(priv); + return ret; +} + +static int fsl_ifc_nand_remove(struct platform_device *dev) +{ + struct fsl_ifc_mtd *priv = dev_get_drvdata(&dev->dev); + + fsl_ifc_chip_remove(priv); + + mutex_lock(&fsl_ifc_nand_mutex); + ifc_nand_ctrl->counter--; + if (!ifc_nand_ctrl->counter) { + fsl_ifc_ctrl_dev->nand = NULL; + kfree(ifc_nand_ctrl); + } + mutex_unlock(&fsl_ifc_nand_mutex); + + return 0; +} + +static const struct of_device_id fsl_ifc_nand_match[] = { + { + .compatible = "fsl,ifc-nand", + }, + {} +}; +MODULE_DEVICE_TABLE(of, fsl_ifc_nand_match); + +static struct platform_driver fsl_ifc_nand_driver = { + .driver = { + .name = "fsl,ifc-nand", + .of_match_table = fsl_ifc_nand_match, + }, + .probe = fsl_ifc_nand_probe, + .remove = fsl_ifc_nand_remove, +}; + +module_platform_driver(fsl_ifc_nand_driver); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Freescale"); +MODULE_DESCRIPTION("Freescale Integrated Flash Controller MTD NAND driver"); diff --git a/drivers/mtd/nand/raw/fsl_upm.c b/drivers/mtd/nand/raw/fsl_upm.c new file mode 100644 index 000000000000..a88e2cf66e0f --- /dev/null +++ b/drivers/mtd/nand/raw/fsl_upm.c @@ -0,0 +1,363 @@ +/* + * Freescale UPM NAND driver. + * + * Copyright © 2007-2008 MontaVista Software, Inc. + * + * Author: Anton Vorontsov + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + */ + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#define FSL_UPM_WAIT_RUN_PATTERN 0x1 +#define FSL_UPM_WAIT_WRITE_BYTE 0x2 +#define FSL_UPM_WAIT_WRITE_BUFFER 0x4 + +struct fsl_upm_nand { + struct device *dev; + struct nand_chip chip; + int last_ctrl; + struct mtd_partition *parts; + struct fsl_upm upm; + uint8_t upm_addr_offset; + uint8_t upm_cmd_offset; + void __iomem *io_base; + int rnb_gpio[NAND_MAX_CHIPS]; + uint32_t mchip_offsets[NAND_MAX_CHIPS]; + uint32_t mchip_count; + uint32_t mchip_number; + int chip_delay; + uint32_t wait_flags; +}; + +static inline struct fsl_upm_nand *to_fsl_upm_nand(struct mtd_info *mtdinfo) +{ + return container_of(mtd_to_nand(mtdinfo), struct fsl_upm_nand, + chip); +} + +static int fun_chip_ready(struct mtd_info *mtd) +{ + struct fsl_upm_nand *fun = to_fsl_upm_nand(mtd); + + if (gpio_get_value(fun->rnb_gpio[fun->mchip_number])) + return 1; + + dev_vdbg(fun->dev, "busy\n"); + return 0; +} + +static void fun_wait_rnb(struct fsl_upm_nand *fun) +{ + if (fun->rnb_gpio[fun->mchip_number] >= 0) { + struct mtd_info *mtd = nand_to_mtd(&fun->chip); + int cnt = 1000000; + + while (--cnt && !fun_chip_ready(mtd)) + cpu_relax(); + if (!cnt) + dev_err(fun->dev, "tired waiting for RNB\n"); + } else { + ndelay(100); + } +} + +static void fun_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct fsl_upm_nand *fun = to_fsl_upm_nand(mtd); + u32 mar; + + if (!(ctrl & fun->last_ctrl)) { + fsl_upm_end_pattern(&fun->upm); + + if (cmd == NAND_CMD_NONE) + return; + + fun->last_ctrl = ctrl & (NAND_ALE | NAND_CLE); + } + + if (ctrl & NAND_CTRL_CHANGE) { + if (ctrl & NAND_ALE) + fsl_upm_start_pattern(&fun->upm, fun->upm_addr_offset); + else if (ctrl & NAND_CLE) + fsl_upm_start_pattern(&fun->upm, fun->upm_cmd_offset); + } + + mar = (cmd << (32 - fun->upm.width)) | + fun->mchip_offsets[fun->mchip_number]; + fsl_upm_run_pattern(&fun->upm, chip->IO_ADDR_R, mar); + + if (fun->wait_flags & FSL_UPM_WAIT_RUN_PATTERN) + fun_wait_rnb(fun); +} + +static void fun_select_chip(struct mtd_info *mtd, int mchip_nr) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct fsl_upm_nand *fun = to_fsl_upm_nand(mtd); + + if (mchip_nr == -1) { + chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE); + } else if (mchip_nr >= 0 && mchip_nr < NAND_MAX_CHIPS) { + fun->mchip_number = mchip_nr; + chip->IO_ADDR_R = fun->io_base + fun->mchip_offsets[mchip_nr]; + chip->IO_ADDR_W = chip->IO_ADDR_R; + } else { + BUG(); + } +} + +static uint8_t fun_read_byte(struct mtd_info *mtd) +{ + struct fsl_upm_nand *fun = to_fsl_upm_nand(mtd); + + return in_8(fun->chip.IO_ADDR_R); +} + +static void fun_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) +{ + struct fsl_upm_nand *fun = to_fsl_upm_nand(mtd); + int i; + + for (i = 0; i < len; i++) + buf[i] = in_8(fun->chip.IO_ADDR_R); +} + +static void fun_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) +{ + struct fsl_upm_nand *fun = to_fsl_upm_nand(mtd); + int i; + + for (i = 0; i < len; i++) { + out_8(fun->chip.IO_ADDR_W, buf[i]); + if (fun->wait_flags & FSL_UPM_WAIT_WRITE_BYTE) + fun_wait_rnb(fun); + } + if (fun->wait_flags & FSL_UPM_WAIT_WRITE_BUFFER) + fun_wait_rnb(fun); +} + +static int fun_chip_init(struct fsl_upm_nand *fun, + const struct device_node *upm_np, + const struct resource *io_res) +{ + struct mtd_info *mtd = nand_to_mtd(&fun->chip); + int ret; + struct device_node *flash_np; + + fun->chip.IO_ADDR_R = fun->io_base; + fun->chip.IO_ADDR_W = fun->io_base; + fun->chip.cmd_ctrl = fun_cmd_ctrl; + fun->chip.chip_delay = fun->chip_delay; + fun->chip.read_byte = fun_read_byte; + fun->chip.read_buf = fun_read_buf; + fun->chip.write_buf = fun_write_buf; + fun->chip.ecc.mode = NAND_ECC_SOFT; + fun->chip.ecc.algo = NAND_ECC_HAMMING; + if (fun->mchip_count > 1) + fun->chip.select_chip = fun_select_chip; + + if (fun->rnb_gpio[0] >= 0) + fun->chip.dev_ready = fun_chip_ready; + + mtd->dev.parent = fun->dev; + + flash_np = of_get_next_child(upm_np, NULL); + if (!flash_np) + return -ENODEV; + + nand_set_flash_node(&fun->chip, flash_np); + mtd->name = kasprintf(GFP_KERNEL, "0x%llx.%s", (u64)io_res->start, + flash_np->name); + if (!mtd->name) { + ret = -ENOMEM; + goto err; + } + + ret = nand_scan(mtd, fun->mchip_count); + if (ret) + goto err; + + ret = mtd_device_register(mtd, NULL, 0); +err: + of_node_put(flash_np); + if (ret) + kfree(mtd->name); + return ret; +} + +static int fun_probe(struct platform_device *ofdev) +{ + struct fsl_upm_nand *fun; + struct resource io_res; + const __be32 *prop; + int rnb_gpio; + int ret; + int size; + int i; + + fun = kzalloc(sizeof(*fun), GFP_KERNEL); + if (!fun) + return -ENOMEM; + + ret = of_address_to_resource(ofdev->dev.of_node, 0, &io_res); + if (ret) { + dev_err(&ofdev->dev, "can't get IO base\n"); + goto err1; + } + + ret = fsl_upm_find(io_res.start, &fun->upm); + if (ret) { + dev_err(&ofdev->dev, "can't find UPM\n"); + goto err1; + } + + prop = of_get_property(ofdev->dev.of_node, "fsl,upm-addr-offset", + &size); + if (!prop || size != sizeof(uint32_t)) { + dev_err(&ofdev->dev, "can't get UPM address offset\n"); + ret = -EINVAL; + goto err1; + } + fun->upm_addr_offset = *prop; + + prop = of_get_property(ofdev->dev.of_node, "fsl,upm-cmd-offset", &size); + if (!prop || size != sizeof(uint32_t)) { + dev_err(&ofdev->dev, "can't get UPM command offset\n"); + ret = -EINVAL; + goto err1; + } + fun->upm_cmd_offset = *prop; + + prop = of_get_property(ofdev->dev.of_node, + "fsl,upm-addr-line-cs-offsets", &size); + if (prop && (size / sizeof(uint32_t)) > 0) { + fun->mchip_count = size / sizeof(uint32_t); + if (fun->mchip_count >= NAND_MAX_CHIPS) { + dev_err(&ofdev->dev, "too much multiple chips\n"); + goto err1; + } + for (i = 0; i < fun->mchip_count; i++) + fun->mchip_offsets[i] = be32_to_cpu(prop[i]); + } else { + fun->mchip_count = 1; + } + + for (i = 0; i < fun->mchip_count; i++) { + fun->rnb_gpio[i] = -1; + rnb_gpio = of_get_gpio(ofdev->dev.of_node, i); + if (rnb_gpio >= 0) { + ret = gpio_request(rnb_gpio, dev_name(&ofdev->dev)); + if (ret) { + dev_err(&ofdev->dev, + "can't request RNB gpio #%d\n", i); + goto err2; + } + gpio_direction_input(rnb_gpio); + fun->rnb_gpio[i] = rnb_gpio; + } else if (rnb_gpio == -EINVAL) { + dev_err(&ofdev->dev, "RNB gpio #%d is invalid\n", i); + goto err2; + } + } + + prop = of_get_property(ofdev->dev.of_node, "chip-delay", NULL); + if (prop) + fun->chip_delay = be32_to_cpup(prop); + else + fun->chip_delay = 50; + + prop = of_get_property(ofdev->dev.of_node, "fsl,upm-wait-flags", &size); + if (prop && size == sizeof(uint32_t)) + fun->wait_flags = be32_to_cpup(prop); + else + fun->wait_flags = FSL_UPM_WAIT_RUN_PATTERN | + FSL_UPM_WAIT_WRITE_BYTE; + + fun->io_base = devm_ioremap_nocache(&ofdev->dev, io_res.start, + resource_size(&io_res)); + if (!fun->io_base) { + ret = -ENOMEM; + goto err2; + } + + fun->dev = &ofdev->dev; + fun->last_ctrl = NAND_CLE; + + ret = fun_chip_init(fun, ofdev->dev.of_node, &io_res); + if (ret) + goto err2; + + dev_set_drvdata(&ofdev->dev, fun); + + return 0; +err2: + for (i = 0; i < fun->mchip_count; i++) { + if (fun->rnb_gpio[i] < 0) + break; + gpio_free(fun->rnb_gpio[i]); + } +err1: + kfree(fun); + + return ret; +} + +static int fun_remove(struct platform_device *ofdev) +{ + struct fsl_upm_nand *fun = dev_get_drvdata(&ofdev->dev); + struct mtd_info *mtd = nand_to_mtd(&fun->chip); + int i; + + nand_release(mtd); + kfree(mtd->name); + + for (i = 0; i < fun->mchip_count; i++) { + if (fun->rnb_gpio[i] < 0) + break; + gpio_free(fun->rnb_gpio[i]); + } + + kfree(fun); + + return 0; +} + +static const struct of_device_id of_fun_match[] = { + { .compatible = "fsl,upm-nand" }, + {}, +}; +MODULE_DEVICE_TABLE(of, of_fun_match); + +static struct platform_driver of_fun_driver = { + .driver = { + .name = "fsl,upm-nand", + .of_match_table = of_fun_match, + }, + .probe = fun_probe, + .remove = fun_remove, +}; + +module_platform_driver(of_fun_driver); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Anton Vorontsov "); +MODULE_DESCRIPTION("Driver for NAND chips working through Freescale " + "LocalBus User-Programmable Machine"); diff --git a/drivers/mtd/nand/raw/fsmc_nand.c b/drivers/mtd/nand/raw/fsmc_nand.c new file mode 100644 index 000000000000..7e66268f8154 --- /dev/null +++ b/drivers/mtd/nand/raw/fsmc_nand.c @@ -0,0 +1,1175 @@ +/* + * ST Microelectronics + * Flexible Static Memory Controller (FSMC) + * Driver for NAND portions + * + * Copyright © 2010 ST Microelectronics + * Vipin Kumar + * Ashish Priyadarshi + * + * Based on drivers/mtd/nand/nomadik_nand.c (removed in v3.8) + * Copyright © 2007 STMicroelectronics Pvt. Ltd. + * Copyright © 2009 Alessandro Rubini + * + * This file is licensed under the terms of the GNU General Public + * License version 2. This program is licensed "as is" without any + * warranty of any kind, whether express or implied. + */ + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +/* fsmc controller registers for NOR flash */ +#define CTRL 0x0 + /* ctrl register definitions */ + #define BANK_ENABLE (1 << 0) + #define MUXED (1 << 1) + #define NOR_DEV (2 << 2) + #define WIDTH_8 (0 << 4) + #define WIDTH_16 (1 << 4) + #define RSTPWRDWN (1 << 6) + #define WPROT (1 << 7) + #define WRT_ENABLE (1 << 12) + #define WAIT_ENB (1 << 13) + +#define CTRL_TIM 0x4 + /* ctrl_tim register definitions */ + +#define FSMC_NOR_BANK_SZ 0x8 +#define FSMC_NOR_REG_SIZE 0x40 + +#define FSMC_NOR_REG(base, bank, reg) (base + \ + FSMC_NOR_BANK_SZ * (bank) + \ + reg) + +/* fsmc controller registers for NAND flash */ +#define PC 0x00 + /* pc register definitions */ + #define FSMC_RESET (1 << 0) + #define FSMC_WAITON (1 << 1) + #define FSMC_ENABLE (1 << 2) + #define FSMC_DEVTYPE_NAND (1 << 3) + #define FSMC_DEVWID_8 (0 << 4) + #define FSMC_DEVWID_16 (1 << 4) + #define FSMC_ECCEN (1 << 6) + #define FSMC_ECCPLEN_512 (0 << 7) + #define FSMC_ECCPLEN_256 (1 << 7) + #define FSMC_TCLR_1 (1) + #define FSMC_TCLR_SHIFT (9) + #define FSMC_TCLR_MASK (0xF) + #define FSMC_TAR_1 (1) + #define FSMC_TAR_SHIFT (13) + #define FSMC_TAR_MASK (0xF) +#define STS 0x04 + /* sts register definitions */ + #define FSMC_CODE_RDY (1 << 15) +#define COMM 0x08 + /* comm register definitions */ + #define FSMC_TSET_0 0 + #define FSMC_TSET_SHIFT 0 + #define FSMC_TSET_MASK 0xFF + #define FSMC_TWAIT_6 6 + #define FSMC_TWAIT_SHIFT 8 + #define FSMC_TWAIT_MASK 0xFF + #define FSMC_THOLD_4 4 + #define FSMC_THOLD_SHIFT 16 + #define FSMC_THOLD_MASK 0xFF + #define FSMC_THIZ_1 1 + #define FSMC_THIZ_SHIFT 24 + #define FSMC_THIZ_MASK 0xFF +#define ATTRIB 0x0C +#define IOATA 0x10 +#define ECC1 0x14 +#define ECC2 0x18 +#define ECC3 0x1C +#define FSMC_NAND_BANK_SZ 0x20 + +#define FSMC_NAND_REG(base, bank, reg) (base + FSMC_NOR_REG_SIZE + \ + (FSMC_NAND_BANK_SZ * (bank)) + \ + reg) + +#define FSMC_BUSY_WAIT_TIMEOUT (1 * HZ) + +struct fsmc_nand_timings { + uint8_t tclr; + uint8_t tar; + uint8_t thiz; + uint8_t thold; + uint8_t twait; + uint8_t tset; +}; + +enum access_mode { + USE_DMA_ACCESS = 1, + USE_WORD_ACCESS, +}; + +/** + * struct fsmc_nand_data - structure for FSMC NAND device state + * + * @pid: Part ID on the AMBA PrimeCell format + * @mtd: MTD info for a NAND flash. + * @nand: Chip related info for a NAND flash. + * @partitions: Partition info for a NAND Flash. + * @nr_partitions: Total number of partition of a NAND flash. + * + * @bank: Bank number for probed device. + * @clk: Clock structure for FSMC. + * + * @read_dma_chan: DMA channel for read access + * @write_dma_chan: DMA channel for write access to NAND + * @dma_access_complete: Completion structure + * + * @data_pa: NAND Physical port for Data. + * @data_va: NAND port for Data. + * @cmd_va: NAND port for Command. + * @addr_va: NAND port for Address. + * @regs_va: FSMC regs base address. + */ +struct fsmc_nand_data { + u32 pid; + struct nand_chip nand; + + unsigned int bank; + struct device *dev; + enum access_mode mode; + struct clk *clk; + + /* DMA related objects */ + struct dma_chan *read_dma_chan; + struct dma_chan *write_dma_chan; + struct completion dma_access_complete; + + struct fsmc_nand_timings *dev_timings; + + dma_addr_t data_pa; + void __iomem *data_va; + void __iomem *cmd_va; + void __iomem *addr_va; + void __iomem *regs_va; +}; + +static int fsmc_ecc1_ooblayout_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + + if (section >= chip->ecc.steps) + return -ERANGE; + + oobregion->offset = (section * 16) + 2; + oobregion->length = 3; + + return 0; +} + +static int fsmc_ecc1_ooblayout_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + + if (section >= chip->ecc.steps) + return -ERANGE; + + oobregion->offset = (section * 16) + 8; + + if (section < chip->ecc.steps - 1) + oobregion->length = 8; + else + oobregion->length = mtd->oobsize - oobregion->offset; + + return 0; +} + +static const struct mtd_ooblayout_ops fsmc_ecc1_ooblayout_ops = { + .ecc = fsmc_ecc1_ooblayout_ecc, + .free = fsmc_ecc1_ooblayout_free, +}; + +/* + * ECC placement definitions in oobfree type format. + * There are 13 bytes of ecc for every 512 byte block and it has to be read + * consecutively and immediately after the 512 byte data block for hardware to + * generate the error bit offsets in 512 byte data. + */ +static int fsmc_ecc4_ooblayout_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + + if (section >= chip->ecc.steps) + return -ERANGE; + + oobregion->length = chip->ecc.bytes; + + if (!section && mtd->writesize <= 512) + oobregion->offset = 0; + else + oobregion->offset = (section * 16) + 2; + + return 0; +} + +static int fsmc_ecc4_ooblayout_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + + if (section >= chip->ecc.steps) + return -ERANGE; + + oobregion->offset = (section * 16) + 15; + + if (section < chip->ecc.steps - 1) + oobregion->length = 3; + else + oobregion->length = mtd->oobsize - oobregion->offset; + + return 0; +} + +static const struct mtd_ooblayout_ops fsmc_ecc4_ooblayout_ops = { + .ecc = fsmc_ecc4_ooblayout_ecc, + .free = fsmc_ecc4_ooblayout_free, +}; + +static inline struct fsmc_nand_data *mtd_to_fsmc(struct mtd_info *mtd) +{ + return container_of(mtd_to_nand(mtd), struct fsmc_nand_data, nand); +} + +/* + * fsmc_cmd_ctrl - For facilitaing Hardware access + * This routine allows hardware specific access to control-lines(ALE,CLE) + */ +static void fsmc_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl) +{ + struct nand_chip *this = mtd_to_nand(mtd); + struct fsmc_nand_data *host = mtd_to_fsmc(mtd); + void __iomem *regs = host->regs_va; + unsigned int bank = host->bank; + + if (ctrl & NAND_CTRL_CHANGE) { + u32 pc; + + if (ctrl & NAND_CLE) { + this->IO_ADDR_R = host->cmd_va; + this->IO_ADDR_W = host->cmd_va; + } else if (ctrl & NAND_ALE) { + this->IO_ADDR_R = host->addr_va; + this->IO_ADDR_W = host->addr_va; + } else { + this->IO_ADDR_R = host->data_va; + this->IO_ADDR_W = host->data_va; + } + + pc = readl(FSMC_NAND_REG(regs, bank, PC)); + if (ctrl & NAND_NCE) + pc |= FSMC_ENABLE; + else + pc &= ~FSMC_ENABLE; + writel_relaxed(pc, FSMC_NAND_REG(regs, bank, PC)); + } + + mb(); + + if (cmd != NAND_CMD_NONE) + writeb_relaxed(cmd, this->IO_ADDR_W); +} + +/* + * fsmc_nand_setup - FSMC (Flexible Static Memory Controller) init routine + * + * This routine initializes timing parameters related to NAND memory access in + * FSMC registers + */ +static void fsmc_nand_setup(struct fsmc_nand_data *host, + struct fsmc_nand_timings *tims) +{ + uint32_t value = FSMC_DEVTYPE_NAND | FSMC_ENABLE | FSMC_WAITON; + uint32_t tclr, tar, thiz, thold, twait, tset; + unsigned int bank = host->bank; + void __iomem *regs = host->regs_va; + + tclr = (tims->tclr & FSMC_TCLR_MASK) << FSMC_TCLR_SHIFT; + tar = (tims->tar & FSMC_TAR_MASK) << FSMC_TAR_SHIFT; + thiz = (tims->thiz & FSMC_THIZ_MASK) << FSMC_THIZ_SHIFT; + thold = (tims->thold & FSMC_THOLD_MASK) << FSMC_THOLD_SHIFT; + twait = (tims->twait & FSMC_TWAIT_MASK) << FSMC_TWAIT_SHIFT; + tset = (tims->tset & FSMC_TSET_MASK) << FSMC_TSET_SHIFT; + + if (host->nand.options & NAND_BUSWIDTH_16) + writel_relaxed(value | FSMC_DEVWID_16, + FSMC_NAND_REG(regs, bank, PC)); + else + writel_relaxed(value | FSMC_DEVWID_8, + FSMC_NAND_REG(regs, bank, PC)); + + writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) | tclr | tar, + FSMC_NAND_REG(regs, bank, PC)); + writel_relaxed(thiz | thold | twait | tset, + FSMC_NAND_REG(regs, bank, COMM)); + writel_relaxed(thiz | thold | twait | tset, + FSMC_NAND_REG(regs, bank, ATTRIB)); +} + +static int fsmc_calc_timings(struct fsmc_nand_data *host, + const struct nand_sdr_timings *sdrt, + struct fsmc_nand_timings *tims) +{ + unsigned long hclk = clk_get_rate(host->clk); + unsigned long hclkn = NSEC_PER_SEC / hclk; + uint32_t thiz, thold, twait, tset; + + if (sdrt->tRC_min < 30000) + return -EOPNOTSUPP; + + tims->tar = DIV_ROUND_UP(sdrt->tAR_min / 1000, hclkn) - 1; + if (tims->tar > FSMC_TAR_MASK) + tims->tar = FSMC_TAR_MASK; + tims->tclr = DIV_ROUND_UP(sdrt->tCLR_min / 1000, hclkn) - 1; + if (tims->tclr > FSMC_TCLR_MASK) + tims->tclr = FSMC_TCLR_MASK; + + thiz = sdrt->tCS_min - sdrt->tWP_min; + tims->thiz = DIV_ROUND_UP(thiz / 1000, hclkn); + + thold = sdrt->tDH_min; + if (thold < sdrt->tCH_min) + thold = sdrt->tCH_min; + if (thold < sdrt->tCLH_min) + thold = sdrt->tCLH_min; + if (thold < sdrt->tWH_min) + thold = sdrt->tWH_min; + if (thold < sdrt->tALH_min) + thold = sdrt->tALH_min; + if (thold < sdrt->tREH_min) + thold = sdrt->tREH_min; + tims->thold = DIV_ROUND_UP(thold / 1000, hclkn); + if (tims->thold == 0) + tims->thold = 1; + else if (tims->thold > FSMC_THOLD_MASK) + tims->thold = FSMC_THOLD_MASK; + + twait = max(sdrt->tRP_min, sdrt->tWP_min); + tims->twait = DIV_ROUND_UP(twait / 1000, hclkn) - 1; + if (tims->twait == 0) + tims->twait = 1; + else if (tims->twait > FSMC_TWAIT_MASK) + tims->twait = FSMC_TWAIT_MASK; + + tset = max(sdrt->tCS_min - sdrt->tWP_min, + sdrt->tCEA_max - sdrt->tREA_max); + tims->tset = DIV_ROUND_UP(tset / 1000, hclkn) - 1; + if (tims->tset == 0) + tims->tset = 1; + else if (tims->tset > FSMC_TSET_MASK) + tims->tset = FSMC_TSET_MASK; + + return 0; +} + +static int fsmc_setup_data_interface(struct mtd_info *mtd, int csline, + const struct nand_data_interface *conf) +{ + struct nand_chip *nand = mtd_to_nand(mtd); + struct fsmc_nand_data *host = nand_get_controller_data(nand); + struct fsmc_nand_timings tims; + const struct nand_sdr_timings *sdrt; + int ret; + + sdrt = nand_get_sdr_timings(conf); + if (IS_ERR(sdrt)) + return PTR_ERR(sdrt); + + ret = fsmc_calc_timings(host, sdrt, &tims); + if (ret) + return ret; + + if (csline == NAND_DATA_IFACE_CHECK_ONLY) + return 0; + + fsmc_nand_setup(host, &tims); + + return 0; +} + +/* + * fsmc_enable_hwecc - Enables Hardware ECC through FSMC registers + */ +static void fsmc_enable_hwecc(struct mtd_info *mtd, int mode) +{ + struct fsmc_nand_data *host = mtd_to_fsmc(mtd); + void __iomem *regs = host->regs_va; + uint32_t bank = host->bank; + + writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) & ~FSMC_ECCPLEN_256, + FSMC_NAND_REG(regs, bank, PC)); + writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) & ~FSMC_ECCEN, + FSMC_NAND_REG(regs, bank, PC)); + writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) | FSMC_ECCEN, + FSMC_NAND_REG(regs, bank, PC)); +} + +/* + * fsmc_read_hwecc_ecc4 - Hardware ECC calculator for ecc4 option supported by + * FSMC. ECC is 13 bytes for 512 bytes of data (supports error correction up to + * max of 8-bits) + */ +static int fsmc_read_hwecc_ecc4(struct mtd_info *mtd, const uint8_t *data, + uint8_t *ecc) +{ + struct fsmc_nand_data *host = mtd_to_fsmc(mtd); + void __iomem *regs = host->regs_va; + uint32_t bank = host->bank; + uint32_t ecc_tmp; + unsigned long deadline = jiffies + FSMC_BUSY_WAIT_TIMEOUT; + + do { + if (readl_relaxed(FSMC_NAND_REG(regs, bank, STS)) & FSMC_CODE_RDY) + break; + else + cond_resched(); + } while (!time_after_eq(jiffies, deadline)); + + if (time_after_eq(jiffies, deadline)) { + dev_err(host->dev, "calculate ecc timed out\n"); + return -ETIMEDOUT; + } + + ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC1)); + ecc[0] = (uint8_t) (ecc_tmp >> 0); + ecc[1] = (uint8_t) (ecc_tmp >> 8); + ecc[2] = (uint8_t) (ecc_tmp >> 16); + ecc[3] = (uint8_t) (ecc_tmp >> 24); + + ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC2)); + ecc[4] = (uint8_t) (ecc_tmp >> 0); + ecc[5] = (uint8_t) (ecc_tmp >> 8); + ecc[6] = (uint8_t) (ecc_tmp >> 16); + ecc[7] = (uint8_t) (ecc_tmp >> 24); + + ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC3)); + ecc[8] = (uint8_t) (ecc_tmp >> 0); + ecc[9] = (uint8_t) (ecc_tmp >> 8); + ecc[10] = (uint8_t) (ecc_tmp >> 16); + ecc[11] = (uint8_t) (ecc_tmp >> 24); + + ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, STS)); + ecc[12] = (uint8_t) (ecc_tmp >> 16); + + return 0; +} + +/* + * fsmc_read_hwecc_ecc1 - Hardware ECC calculator for ecc1 option supported by + * FSMC. ECC is 3 bytes for 512 bytes of data (supports error correction up to + * max of 1-bit) + */ +static int fsmc_read_hwecc_ecc1(struct mtd_info *mtd, const uint8_t *data, + uint8_t *ecc) +{ + struct fsmc_nand_data *host = mtd_to_fsmc(mtd); + void __iomem *regs = host->regs_va; + uint32_t bank = host->bank; + uint32_t ecc_tmp; + + ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC1)); + ecc[0] = (uint8_t) (ecc_tmp >> 0); + ecc[1] = (uint8_t) (ecc_tmp >> 8); + ecc[2] = (uint8_t) (ecc_tmp >> 16); + + return 0; +} + +/* Count the number of 0's in buff upto a max of max_bits */ +static int count_written_bits(uint8_t *buff, int size, int max_bits) +{ + int k, written_bits = 0; + + for (k = 0; k < size; k++) { + written_bits += hweight8(~buff[k]); + if (written_bits > max_bits) + break; + } + + return written_bits; +} + +static void dma_complete(void *param) +{ + struct fsmc_nand_data *host = param; + + complete(&host->dma_access_complete); +} + +static int dma_xfer(struct fsmc_nand_data *host, void *buffer, int len, + enum dma_data_direction direction) +{ + struct dma_chan *chan; + struct dma_device *dma_dev; + struct dma_async_tx_descriptor *tx; + dma_addr_t dma_dst, dma_src, dma_addr; + dma_cookie_t cookie; + unsigned long flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT; + int ret; + unsigned long time_left; + + if (direction == DMA_TO_DEVICE) + chan = host->write_dma_chan; + else if (direction == DMA_FROM_DEVICE) + chan = host->read_dma_chan; + else + return -EINVAL; + + dma_dev = chan->device; + dma_addr = dma_map_single(dma_dev->dev, buffer, len, direction); + + if (direction == DMA_TO_DEVICE) { + dma_src = dma_addr; + dma_dst = host->data_pa; + } else { + dma_src = host->data_pa; + dma_dst = dma_addr; + } + + tx = dma_dev->device_prep_dma_memcpy(chan, dma_dst, dma_src, + len, flags); + if (!tx) { + dev_err(host->dev, "device_prep_dma_memcpy error\n"); + ret = -EIO; + goto unmap_dma; + } + + tx->callback = dma_complete; + tx->callback_param = host; + cookie = tx->tx_submit(tx); + + ret = dma_submit_error(cookie); + if (ret) { + dev_err(host->dev, "dma_submit_error %d\n", cookie); + goto unmap_dma; + } + + dma_async_issue_pending(chan); + + time_left = + wait_for_completion_timeout(&host->dma_access_complete, + msecs_to_jiffies(3000)); + if (time_left == 0) { + dmaengine_terminate_all(chan); + dev_err(host->dev, "wait_for_completion_timeout\n"); + ret = -ETIMEDOUT; + goto unmap_dma; + } + + ret = 0; + +unmap_dma: + dma_unmap_single(dma_dev->dev, dma_addr, len, direction); + + return ret; +} + +/* + * fsmc_write_buf - write buffer to chip + * @mtd: MTD device structure + * @buf: data buffer + * @len: number of bytes to write + */ +static void fsmc_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) +{ + int i; + struct nand_chip *chip = mtd_to_nand(mtd); + + if (IS_ALIGNED((uint32_t)buf, sizeof(uint32_t)) && + IS_ALIGNED(len, sizeof(uint32_t))) { + uint32_t *p = (uint32_t *)buf; + len = len >> 2; + for (i = 0; i < len; i++) + writel_relaxed(p[i], chip->IO_ADDR_W); + } else { + for (i = 0; i < len; i++) + writeb_relaxed(buf[i], chip->IO_ADDR_W); + } +} + +/* + * fsmc_read_buf - read chip data into buffer + * @mtd: MTD device structure + * @buf: buffer to store date + * @len: number of bytes to read + */ +static void fsmc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) +{ + int i; + struct nand_chip *chip = mtd_to_nand(mtd); + + if (IS_ALIGNED((uint32_t)buf, sizeof(uint32_t)) && + IS_ALIGNED(len, sizeof(uint32_t))) { + uint32_t *p = (uint32_t *)buf; + len = len >> 2; + for (i = 0; i < len; i++) + p[i] = readl_relaxed(chip->IO_ADDR_R); + } else { + for (i = 0; i < len; i++) + buf[i] = readb_relaxed(chip->IO_ADDR_R); + } +} + +/* + * fsmc_read_buf_dma - read chip data into buffer + * @mtd: MTD device structure + * @buf: buffer to store date + * @len: number of bytes to read + */ +static void fsmc_read_buf_dma(struct mtd_info *mtd, uint8_t *buf, int len) +{ + struct fsmc_nand_data *host = mtd_to_fsmc(mtd); + + dma_xfer(host, buf, len, DMA_FROM_DEVICE); +} + +/* + * fsmc_write_buf_dma - write buffer to chip + * @mtd: MTD device structure + * @buf: data buffer + * @len: number of bytes to write + */ +static void fsmc_write_buf_dma(struct mtd_info *mtd, const uint8_t *buf, + int len) +{ + struct fsmc_nand_data *host = mtd_to_fsmc(mtd); + + dma_xfer(host, (void *)buf, len, DMA_TO_DEVICE); +} + +/* + * fsmc_read_page_hwecc + * @mtd: mtd info structure + * @chip: nand chip info structure + * @buf: buffer to store read data + * @oob_required: caller expects OOB data read to chip->oob_poi + * @page: page number to read + * + * This routine is needed for fsmc version 8 as reading from NAND chip has to be + * performed in a strict sequence as follows: + * data(512 byte) -> ecc(13 byte) + * After this read, fsmc hardware generates and reports error data bits(up to a + * max of 8 bits) + */ +static int fsmc_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip, + uint8_t *buf, int oob_required, int page) +{ + int i, j, s, stat, eccsize = chip->ecc.size; + int eccbytes = chip->ecc.bytes; + int eccsteps = chip->ecc.steps; + uint8_t *p = buf; + uint8_t *ecc_calc = chip->ecc.calc_buf; + uint8_t *ecc_code = chip->ecc.code_buf; + int off, len, group = 0; + /* + * ecc_oob is intentionally taken as uint16_t. In 16bit devices, we + * end up reading 14 bytes (7 words) from oob. The local array is + * to maintain word alignment + */ + uint16_t ecc_oob[7]; + uint8_t *oob = (uint8_t *)&ecc_oob[0]; + unsigned int max_bitflips = 0; + + for (i = 0, s = 0; s < eccsteps; s++, i += eccbytes, p += eccsize) { + nand_read_page_op(chip, page, s * eccsize, NULL, 0); + chip->ecc.hwctl(mtd, NAND_ECC_READ); + chip->read_buf(mtd, p, eccsize); + + for (j = 0; j < eccbytes;) { + struct mtd_oob_region oobregion; + int ret; + + ret = mtd_ooblayout_ecc(mtd, group++, &oobregion); + if (ret) + return ret; + + off = oobregion.offset; + len = oobregion.length; + + /* + * length is intentionally kept a higher multiple of 2 + * to read at least 13 bytes even in case of 16 bit NAND + * devices + */ + if (chip->options & NAND_BUSWIDTH_16) + len = roundup(len, 2); + + nand_read_oob_op(chip, page, off, oob + j, len); + j += len; + } + + memcpy(&ecc_code[i], oob, chip->ecc.bytes); + chip->ecc.calculate(mtd, p, &ecc_calc[i]); + + stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]); + if (stat < 0) { + mtd->ecc_stats.failed++; + } else { + mtd->ecc_stats.corrected += stat; + max_bitflips = max_t(unsigned int, max_bitflips, stat); + } + } + + return max_bitflips; +} + +/* + * fsmc_bch8_correct_data + * @mtd: mtd info structure + * @dat: buffer of read data + * @read_ecc: ecc read from device spare area + * @calc_ecc: ecc calculated from read data + * + * calc_ecc is a 104 bit information containing maximum of 8 error + * offset informations of 13 bits each in 512 bytes of read data. + */ +static int fsmc_bch8_correct_data(struct mtd_info *mtd, uint8_t *dat, + uint8_t *read_ecc, uint8_t *calc_ecc) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct fsmc_nand_data *host = mtd_to_fsmc(mtd); + void __iomem *regs = host->regs_va; + unsigned int bank = host->bank; + uint32_t err_idx[8]; + uint32_t num_err, i; + uint32_t ecc1, ecc2, ecc3, ecc4; + + num_err = (readl_relaxed(FSMC_NAND_REG(regs, bank, STS)) >> 10) & 0xF; + + /* no bit flipping */ + if (likely(num_err == 0)) + return 0; + + /* too many errors */ + if (unlikely(num_err > 8)) { + /* + * This is a temporary erase check. A newly erased page read + * would result in an ecc error because the oob data is also + * erased to FF and the calculated ecc for an FF data is not + * FF..FF. + * This is a workaround to skip performing correction in case + * data is FF..FF + * + * Logic: + * For every page, each bit written as 0 is counted until these + * number of bits are greater than 8 (the maximum correction + * capability of FSMC for each 512 + 13 bytes) + */ + + int bits_ecc = count_written_bits(read_ecc, chip->ecc.bytes, 8); + int bits_data = count_written_bits(dat, chip->ecc.size, 8); + + if ((bits_ecc + bits_data) <= 8) { + if (bits_data) + memset(dat, 0xff, chip->ecc.size); + return bits_data; + } + + return -EBADMSG; + } + + /* + * ------------------- calc_ecc[] bit wise -----------|--13 bits--| + * |---idx[7]--|--.....-----|---idx[2]--||---idx[1]--||---idx[0]--| + * + * calc_ecc is a 104 bit information containing maximum of 8 error + * offset informations of 13 bits each. calc_ecc is copied into a + * uint64_t array and error offset indexes are populated in err_idx + * array + */ + ecc1 = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC1)); + ecc2 = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC2)); + ecc3 = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC3)); + ecc4 = readl_relaxed(FSMC_NAND_REG(regs, bank, STS)); + + err_idx[0] = (ecc1 >> 0) & 0x1FFF; + err_idx[1] = (ecc1 >> 13) & 0x1FFF; + err_idx[2] = (((ecc2 >> 0) & 0x7F) << 6) | ((ecc1 >> 26) & 0x3F); + err_idx[3] = (ecc2 >> 7) & 0x1FFF; + err_idx[4] = (((ecc3 >> 0) & 0x1) << 12) | ((ecc2 >> 20) & 0xFFF); + err_idx[5] = (ecc3 >> 1) & 0x1FFF; + err_idx[6] = (ecc3 >> 14) & 0x1FFF; + err_idx[7] = (((ecc4 >> 16) & 0xFF) << 5) | ((ecc3 >> 27) & 0x1F); + + i = 0; + while (num_err--) { + change_bit(0, (unsigned long *)&err_idx[i]); + change_bit(1, (unsigned long *)&err_idx[i]); + + if (err_idx[i] < chip->ecc.size * 8) { + change_bit(err_idx[i], (unsigned long *)dat); + i++; + } + } + return i; +} + +static bool filter(struct dma_chan *chan, void *slave) +{ + chan->private = slave; + return true; +} + +static int fsmc_nand_probe_config_dt(struct platform_device *pdev, + struct fsmc_nand_data *host, + struct nand_chip *nand) +{ + struct device_node *np = pdev->dev.of_node; + u32 val; + int ret; + + nand->options = 0; + + if (!of_property_read_u32(np, "bank-width", &val)) { + if (val == 2) { + nand->options |= NAND_BUSWIDTH_16; + } else if (val != 1) { + dev_err(&pdev->dev, "invalid bank-width %u\n", val); + return -EINVAL; + } + } + + if (of_get_property(np, "nand-skip-bbtscan", NULL)) + nand->options |= NAND_SKIP_BBTSCAN; + + host->dev_timings = devm_kzalloc(&pdev->dev, + sizeof(*host->dev_timings), GFP_KERNEL); + if (!host->dev_timings) + return -ENOMEM; + ret = of_property_read_u8_array(np, "timings", (u8 *)host->dev_timings, + sizeof(*host->dev_timings)); + if (ret) + host->dev_timings = NULL; + + /* Set default NAND bank to 0 */ + host->bank = 0; + if (!of_property_read_u32(np, "bank", &val)) { + if (val > 3) { + dev_err(&pdev->dev, "invalid bank %u\n", val); + return -EINVAL; + } + host->bank = val; + } + return 0; +} + +/* + * fsmc_nand_probe - Probe function + * @pdev: platform device structure + */ +static int __init fsmc_nand_probe(struct platform_device *pdev) +{ + struct fsmc_nand_data *host; + struct mtd_info *mtd; + struct nand_chip *nand; + struct resource *res; + dma_cap_mask_t mask; + int ret = 0; + u32 pid; + int i; + + /* Allocate memory for the device structure (and zero it) */ + host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL); + if (!host) + return -ENOMEM; + + nand = &host->nand; + + ret = fsmc_nand_probe_config_dt(pdev, host, nand); + if (ret) + return ret; + + res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_data"); + host->data_va = devm_ioremap_resource(&pdev->dev, res); + if (IS_ERR(host->data_va)) + return PTR_ERR(host->data_va); + + host->data_pa = (dma_addr_t)res->start; + + res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_addr"); + host->addr_va = devm_ioremap_resource(&pdev->dev, res); + if (IS_ERR(host->addr_va)) + return PTR_ERR(host->addr_va); + + res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_cmd"); + host->cmd_va = devm_ioremap_resource(&pdev->dev, res); + if (IS_ERR(host->cmd_va)) + return PTR_ERR(host->cmd_va); + + res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "fsmc_regs"); + host->regs_va = devm_ioremap_resource(&pdev->dev, res); + if (IS_ERR(host->regs_va)) + return PTR_ERR(host->regs_va); + + host->clk = devm_clk_get(&pdev->dev, NULL); + if (IS_ERR(host->clk)) { + dev_err(&pdev->dev, "failed to fetch block clock\n"); + return PTR_ERR(host->clk); + } + + ret = clk_prepare_enable(host->clk); + if (ret) + return ret; + + /* + * This device ID is actually a common AMBA ID as used on the + * AMBA PrimeCell bus. However it is not a PrimeCell. + */ + for (pid = 0, i = 0; i < 4; i++) + pid |= (readl(host->regs_va + resource_size(res) - 0x20 + 4 * i) & 255) << (i * 8); + host->pid = pid; + dev_info(&pdev->dev, "FSMC device partno %03x, manufacturer %02x, " + "revision %02x, config %02x\n", + AMBA_PART_BITS(pid), AMBA_MANF_BITS(pid), + AMBA_REV_BITS(pid), AMBA_CONFIG_BITS(pid)); + + host->dev = &pdev->dev; + + if (host->mode == USE_DMA_ACCESS) + init_completion(&host->dma_access_complete); + + /* Link all private pointers */ + mtd = nand_to_mtd(&host->nand); + nand_set_controller_data(nand, host); + nand_set_flash_node(nand, pdev->dev.of_node); + + mtd->dev.parent = &pdev->dev; + nand->IO_ADDR_R = host->data_va; + nand->IO_ADDR_W = host->data_va; + nand->cmd_ctrl = fsmc_cmd_ctrl; + nand->chip_delay = 30; + + /* + * Setup default ECC mode. nand_dt_init() called from nand_scan_ident() + * can overwrite this value if the DT provides a different value. + */ + nand->ecc.mode = NAND_ECC_HW; + nand->ecc.hwctl = fsmc_enable_hwecc; + nand->ecc.size = 512; + nand->badblockbits = 7; + + switch (host->mode) { + case USE_DMA_ACCESS: + dma_cap_zero(mask); + dma_cap_set(DMA_MEMCPY, mask); + host->read_dma_chan = dma_request_channel(mask, filter, NULL); + if (!host->read_dma_chan) { + dev_err(&pdev->dev, "Unable to get read dma channel\n"); + goto err_req_read_chnl; + } + host->write_dma_chan = dma_request_channel(mask, filter, NULL); + if (!host->write_dma_chan) { + dev_err(&pdev->dev, "Unable to get write dma channel\n"); + goto err_req_write_chnl; + } + nand->read_buf = fsmc_read_buf_dma; + nand->write_buf = fsmc_write_buf_dma; + break; + + default: + case USE_WORD_ACCESS: + nand->read_buf = fsmc_read_buf; + nand->write_buf = fsmc_write_buf; + break; + } + + if (host->dev_timings) + fsmc_nand_setup(host, host->dev_timings); + else + nand->setup_data_interface = fsmc_setup_data_interface; + + if (AMBA_REV_BITS(host->pid) >= 8) { + nand->ecc.read_page = fsmc_read_page_hwecc; + nand->ecc.calculate = fsmc_read_hwecc_ecc4; + nand->ecc.correct = fsmc_bch8_correct_data; + nand->ecc.bytes = 13; + nand->ecc.strength = 8; + } + + /* + * Scan to find existence of the device + */ + ret = nand_scan_ident(mtd, 1, NULL); + if (ret) { + dev_err(&pdev->dev, "No NAND Device found!\n"); + goto err_scan_ident; + } + + if (AMBA_REV_BITS(host->pid) >= 8) { + switch (mtd->oobsize) { + case 16: + case 64: + case 128: + case 224: + case 256: + break; + default: + dev_warn(&pdev->dev, "No oob scheme defined for oobsize %d\n", + mtd->oobsize); + ret = -EINVAL; + goto err_probe; + } + + mtd_set_ooblayout(mtd, &fsmc_ecc4_ooblayout_ops); + } else { + switch (nand->ecc.mode) { + case NAND_ECC_HW: + dev_info(&pdev->dev, "Using 1-bit HW ECC scheme\n"); + nand->ecc.calculate = fsmc_read_hwecc_ecc1; + nand->ecc.correct = nand_correct_data; + nand->ecc.bytes = 3; + nand->ecc.strength = 1; + break; + + case NAND_ECC_SOFT: + if (nand->ecc.algo == NAND_ECC_BCH) { + dev_info(&pdev->dev, "Using 4-bit SW BCH ECC scheme\n"); + break; + } + + case NAND_ECC_ON_DIE: + break; + + default: + dev_err(&pdev->dev, "Unsupported ECC mode!\n"); + goto err_probe; + } + + /* + * Don't set layout for BCH4 SW ECC. This will be + * generated later in nand_bch_init() later. + */ + if (nand->ecc.mode == NAND_ECC_HW) { + switch (mtd->oobsize) { + case 16: + case 64: + case 128: + mtd_set_ooblayout(mtd, + &fsmc_ecc1_ooblayout_ops); + break; + default: + dev_warn(&pdev->dev, + "No oob scheme defined for oobsize %d\n", + mtd->oobsize); + ret = -EINVAL; + goto err_probe; + } + } + } + + /* Second stage of scan to fill MTD data-structures */ + ret = nand_scan_tail(mtd); + if (ret) + goto err_probe; + + mtd->name = "nand"; + ret = mtd_device_register(mtd, NULL, 0); + if (ret) + goto err_probe; + + platform_set_drvdata(pdev, host); + dev_info(&pdev->dev, "FSMC NAND driver registration successful\n"); + return 0; + +err_probe: +err_scan_ident: + if (host->mode == USE_DMA_ACCESS) + dma_release_channel(host->write_dma_chan); +err_req_write_chnl: + if (host->mode == USE_DMA_ACCESS) + dma_release_channel(host->read_dma_chan); +err_req_read_chnl: + clk_disable_unprepare(host->clk); + return ret; +} + +/* + * Clean up routine + */ +static int fsmc_nand_remove(struct platform_device *pdev) +{ + struct fsmc_nand_data *host = platform_get_drvdata(pdev); + + if (host) { + nand_release(nand_to_mtd(&host->nand)); + + if (host->mode == USE_DMA_ACCESS) { + dma_release_channel(host->write_dma_chan); + dma_release_channel(host->read_dma_chan); + } + clk_disable_unprepare(host->clk); + } + + return 0; +} + +#ifdef CONFIG_PM_SLEEP +static int fsmc_nand_suspend(struct device *dev) +{ + struct fsmc_nand_data *host = dev_get_drvdata(dev); + if (host) + clk_disable_unprepare(host->clk); + return 0; +} + +static int fsmc_nand_resume(struct device *dev) +{ + struct fsmc_nand_data *host = dev_get_drvdata(dev); + if (host) { + clk_prepare_enable(host->clk); + if (host->dev_timings) + fsmc_nand_setup(host, host->dev_timings); + } + return 0; +} +#endif + +static SIMPLE_DEV_PM_OPS(fsmc_nand_pm_ops, fsmc_nand_suspend, fsmc_nand_resume); + +static const struct of_device_id fsmc_nand_id_table[] = { + { .compatible = "st,spear600-fsmc-nand" }, + { .compatible = "stericsson,fsmc-nand" }, + {} +}; +MODULE_DEVICE_TABLE(of, fsmc_nand_id_table); + +static struct platform_driver fsmc_nand_driver = { + .remove = fsmc_nand_remove, + .driver = { + .name = "fsmc-nand", + .of_match_table = fsmc_nand_id_table, + .pm = &fsmc_nand_pm_ops, + }, +}; + +module_platform_driver_probe(fsmc_nand_driver, fsmc_nand_probe); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Vipin Kumar , Ashish Priyadarshi"); +MODULE_DESCRIPTION("NAND driver for SPEAr Platforms"); diff --git a/drivers/mtd/nand/raw/gpio.c b/drivers/mtd/nand/raw/gpio.c new file mode 100644 index 000000000000..2780af26d9ab --- /dev/null +++ b/drivers/mtd/nand/raw/gpio.c @@ -0,0 +1,327 @@ +/* + * Updated, and converted to generic GPIO based driver by Russell King. + * + * Written by Ben Dooks + * Based on 2.4 version by Mark Whittaker + * + * © 2004 Simtec Electronics + * + * Device driver for NAND flash that uses a memory mapped interface to + * read/write the NAND commands and data, and GPIO pins for control signals + * (the DT binding refers to this as "GPIO assisted NAND flash") + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + * + */ + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +struct gpiomtd { + void __iomem *io_sync; + struct nand_chip nand_chip; + struct gpio_nand_platdata plat; + struct gpio_desc *nce; /* Optional chip enable */ + struct gpio_desc *cle; + struct gpio_desc *ale; + struct gpio_desc *rdy; + struct gpio_desc *nwp; /* Optional write protection */ +}; + +static inline struct gpiomtd *gpio_nand_getpriv(struct mtd_info *mtd) +{ + return container_of(mtd_to_nand(mtd), struct gpiomtd, nand_chip); +} + + +#ifdef CONFIG_ARM +/* gpio_nand_dosync() + * + * Make sure the GPIO state changes occur in-order with writes to NAND + * memory region. + * Needed on PXA due to bus-reordering within the SoC itself (see section on + * I/O ordering in PXA manual (section 2.3, p35) + */ +static void gpio_nand_dosync(struct gpiomtd *gpiomtd) +{ + unsigned long tmp; + + if (gpiomtd->io_sync) { + /* + * Linux memory barriers don't cater for what's required here. + * What's required is what's here - a read from a separate + * region with a dependency on that read. + */ + tmp = readl(gpiomtd->io_sync); + asm volatile("mov %1, %0\n" : "=r" (tmp) : "r" (tmp)); + } +} +#else +static inline void gpio_nand_dosync(struct gpiomtd *gpiomtd) {} +#endif + +static void gpio_nand_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl) +{ + struct gpiomtd *gpiomtd = gpio_nand_getpriv(mtd); + + gpio_nand_dosync(gpiomtd); + + if (ctrl & NAND_CTRL_CHANGE) { + if (gpiomtd->nce) + gpiod_set_value(gpiomtd->nce, !(ctrl & NAND_NCE)); + gpiod_set_value(gpiomtd->cle, !!(ctrl & NAND_CLE)); + gpiod_set_value(gpiomtd->ale, !!(ctrl & NAND_ALE)); + gpio_nand_dosync(gpiomtd); + } + if (cmd == NAND_CMD_NONE) + return; + + writeb(cmd, gpiomtd->nand_chip.IO_ADDR_W); + gpio_nand_dosync(gpiomtd); +} + +static int gpio_nand_devready(struct mtd_info *mtd) +{ + struct gpiomtd *gpiomtd = gpio_nand_getpriv(mtd); + + return gpiod_get_value(gpiomtd->rdy); +} + +#ifdef CONFIG_OF +static const struct of_device_id gpio_nand_id_table[] = { + { .compatible = "gpio-control-nand" }, + {} +}; +MODULE_DEVICE_TABLE(of, gpio_nand_id_table); + +static int gpio_nand_get_config_of(const struct device *dev, + struct gpio_nand_platdata *plat) +{ + u32 val; + + if (!dev->of_node) + return -ENODEV; + + if (!of_property_read_u32(dev->of_node, "bank-width", &val)) { + if (val == 2) { + plat->options |= NAND_BUSWIDTH_16; + } else if (val != 1) { + dev_err(dev, "invalid bank-width %u\n", val); + return -EINVAL; + } + } + + if (!of_property_read_u32(dev->of_node, "chip-delay", &val)) + plat->chip_delay = val; + + return 0; +} + +static struct resource *gpio_nand_get_io_sync_of(struct platform_device *pdev) +{ + struct resource *r; + u64 addr; + + if (of_property_read_u64(pdev->dev.of_node, + "gpio-control-nand,io-sync-reg", &addr)) + return NULL; + + r = devm_kzalloc(&pdev->dev, sizeof(*r), GFP_KERNEL); + if (!r) + return NULL; + + r->start = addr; + r->end = r->start + 0x3; + r->flags = IORESOURCE_MEM; + + return r; +} +#else /* CONFIG_OF */ +static inline int gpio_nand_get_config_of(const struct device *dev, + struct gpio_nand_platdata *plat) +{ + return -ENOSYS; +} + +static inline struct resource * +gpio_nand_get_io_sync_of(struct platform_device *pdev) +{ + return NULL; +} +#endif /* CONFIG_OF */ + +static inline int gpio_nand_get_config(const struct device *dev, + struct gpio_nand_platdata *plat) +{ + int ret = gpio_nand_get_config_of(dev, plat); + + if (!ret) + return ret; + + if (dev_get_platdata(dev)) { + memcpy(plat, dev_get_platdata(dev), sizeof(*plat)); + return 0; + } + + return -EINVAL; +} + +static inline struct resource * +gpio_nand_get_io_sync(struct platform_device *pdev) +{ + struct resource *r = gpio_nand_get_io_sync_of(pdev); + + if (r) + return r; + + return platform_get_resource(pdev, IORESOURCE_MEM, 1); +} + +static int gpio_nand_remove(struct platform_device *pdev) +{ + struct gpiomtd *gpiomtd = platform_get_drvdata(pdev); + + nand_release(nand_to_mtd(&gpiomtd->nand_chip)); + + /* Enable write protection and disable the chip */ + if (gpiomtd->nwp && !IS_ERR(gpiomtd->nwp)) + gpiod_set_value(gpiomtd->nwp, 0); + if (gpiomtd->nce && !IS_ERR(gpiomtd->nce)) + gpiod_set_value(gpiomtd->nce, 0); + + return 0; +} + +static int gpio_nand_probe(struct platform_device *pdev) +{ + struct gpiomtd *gpiomtd; + struct nand_chip *chip; + struct mtd_info *mtd; + struct resource *res; + struct device *dev = &pdev->dev; + int ret = 0; + + if (!dev->of_node && !dev_get_platdata(dev)) + return -EINVAL; + + gpiomtd = devm_kzalloc(dev, sizeof(*gpiomtd), GFP_KERNEL); + if (!gpiomtd) + return -ENOMEM; + + chip = &gpiomtd->nand_chip; + + res = platform_get_resource(pdev, IORESOURCE_MEM, 0); + chip->IO_ADDR_R = devm_ioremap_resource(dev, res); + if (IS_ERR(chip->IO_ADDR_R)) + return PTR_ERR(chip->IO_ADDR_R); + + res = gpio_nand_get_io_sync(pdev); + if (res) { + gpiomtd->io_sync = devm_ioremap_resource(dev, res); + if (IS_ERR(gpiomtd->io_sync)) + return PTR_ERR(gpiomtd->io_sync); + } + + ret = gpio_nand_get_config(dev, &gpiomtd->plat); + if (ret) + return ret; + + /* Just enable the chip */ + gpiomtd->nce = devm_gpiod_get_optional(dev, "nce", GPIOD_OUT_HIGH); + if (IS_ERR(gpiomtd->nce)) + return PTR_ERR(gpiomtd->nce); + + /* We disable write protection once we know probe() will succeed */ + gpiomtd->nwp = devm_gpiod_get_optional(dev, "nwp", GPIOD_OUT_LOW); + if (IS_ERR(gpiomtd->nwp)) { + ret = PTR_ERR(gpiomtd->nwp); + goto out_ce; + } + + gpiomtd->ale = devm_gpiod_get(dev, "ale", GPIOD_OUT_LOW); + if (IS_ERR(gpiomtd->ale)) { + ret = PTR_ERR(gpiomtd->ale); + goto out_ce; + } + + gpiomtd->cle = devm_gpiod_get(dev, "cle", GPIOD_OUT_LOW); + if (IS_ERR(gpiomtd->cle)) { + ret = PTR_ERR(gpiomtd->cle); + goto out_ce; + } + + gpiomtd->rdy = devm_gpiod_get_optional(dev, "rdy", GPIOD_IN); + if (IS_ERR(gpiomtd->rdy)) { + ret = PTR_ERR(gpiomtd->rdy); + goto out_ce; + } + /* Using RDY pin */ + if (gpiomtd->rdy) + chip->dev_ready = gpio_nand_devready; + + nand_set_flash_node(chip, pdev->dev.of_node); + chip->IO_ADDR_W = chip->IO_ADDR_R; + chip->ecc.mode = NAND_ECC_SOFT; + chip->ecc.algo = NAND_ECC_HAMMING; + chip->options = gpiomtd->plat.options; + chip->chip_delay = gpiomtd->plat.chip_delay; + chip->cmd_ctrl = gpio_nand_cmd_ctrl; + + mtd = nand_to_mtd(chip); + mtd->dev.parent = dev; + + platform_set_drvdata(pdev, gpiomtd); + + /* Disable write protection, if wired up */ + if (gpiomtd->nwp && !IS_ERR(gpiomtd->nwp)) + gpiod_direction_output(gpiomtd->nwp, 1); + + ret = nand_scan(mtd, 1); + if (ret) + goto err_wp; + + if (gpiomtd->plat.adjust_parts) + gpiomtd->plat.adjust_parts(&gpiomtd->plat, mtd->size); + + ret = mtd_device_register(mtd, gpiomtd->plat.parts, + gpiomtd->plat.num_parts); + if (!ret) + return 0; + +err_wp: + if (gpiomtd->nwp && !IS_ERR(gpiomtd->nwp)) + gpiod_set_value(gpiomtd->nwp, 0); +out_ce: + if (gpiomtd->nce && !IS_ERR(gpiomtd->nce)) + gpiod_set_value(gpiomtd->nce, 0); + + return ret; +} + +static struct platform_driver gpio_nand_driver = { + .probe = gpio_nand_probe, + .remove = gpio_nand_remove, + .driver = { + .name = "gpio-nand", + .of_match_table = of_match_ptr(gpio_nand_id_table), + }, +}; + +module_platform_driver(gpio_nand_driver); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Ben Dooks "); +MODULE_DESCRIPTION("GPIO NAND Driver"); diff --git a/drivers/mtd/nand/raw/gpmi-nand/Makefile b/drivers/mtd/nand/raw/gpmi-nand/Makefile new file mode 100644 index 000000000000..3a462487c35e --- /dev/null +++ b/drivers/mtd/nand/raw/gpmi-nand/Makefile @@ -0,0 +1,3 @@ +obj-$(CONFIG_MTD_NAND_GPMI_NAND) += gpmi_nand.o +gpmi_nand-objs += gpmi-nand.o +gpmi_nand-objs += gpmi-lib.o diff --git a/drivers/mtd/nand/raw/gpmi-nand/bch-regs.h b/drivers/mtd/nand/raw/gpmi-nand/bch-regs.h new file mode 100644 index 000000000000..05bb91f2f4c4 --- /dev/null +++ b/drivers/mtd/nand/raw/gpmi-nand/bch-regs.h @@ -0,0 +1,128 @@ +/* + * Freescale GPMI NAND Flash Driver + * + * Copyright 2008-2011 Freescale Semiconductor, Inc. + * Copyright 2008 Embedded Alley Solutions, Inc. + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License along + * with this program; if not, write to the Free Software Foundation, Inc., + * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. + */ +#ifndef __GPMI_NAND_BCH_REGS_H +#define __GPMI_NAND_BCH_REGS_H + +#define HW_BCH_CTRL 0x00000000 +#define HW_BCH_CTRL_SET 0x00000004 +#define HW_BCH_CTRL_CLR 0x00000008 +#define HW_BCH_CTRL_TOG 0x0000000c + +#define BM_BCH_CTRL_COMPLETE_IRQ_EN (1 << 8) +#define BM_BCH_CTRL_COMPLETE_IRQ (1 << 0) + +#define HW_BCH_STATUS0 0x00000010 +#define HW_BCH_MODE 0x00000020 +#define HW_BCH_ENCODEPTR 0x00000030 +#define HW_BCH_DATAPTR 0x00000040 +#define HW_BCH_METAPTR 0x00000050 +#define HW_BCH_LAYOUTSELECT 0x00000070 + +#define HW_BCH_FLASH0LAYOUT0 0x00000080 + +#define BP_BCH_FLASH0LAYOUT0_NBLOCKS 24 +#define BM_BCH_FLASH0LAYOUT0_NBLOCKS (0xff << BP_BCH_FLASH0LAYOUT0_NBLOCKS) +#define BF_BCH_FLASH0LAYOUT0_NBLOCKS(v) \ + (((v) << BP_BCH_FLASH0LAYOUT0_NBLOCKS) & BM_BCH_FLASH0LAYOUT0_NBLOCKS) + +#define BP_BCH_FLASH0LAYOUT0_META_SIZE 16 +#define BM_BCH_FLASH0LAYOUT0_META_SIZE (0xff << BP_BCH_FLASH0LAYOUT0_META_SIZE) +#define BF_BCH_FLASH0LAYOUT0_META_SIZE(v) \ + (((v) << BP_BCH_FLASH0LAYOUT0_META_SIZE)\ + & BM_BCH_FLASH0LAYOUT0_META_SIZE) + +#define BP_BCH_FLASH0LAYOUT0_ECC0 12 +#define BM_BCH_FLASH0LAYOUT0_ECC0 (0xf << BP_BCH_FLASH0LAYOUT0_ECC0) +#define MX6Q_BP_BCH_FLASH0LAYOUT0_ECC0 11 +#define MX6Q_BM_BCH_FLASH0LAYOUT0_ECC0 (0x1f << MX6Q_BP_BCH_FLASH0LAYOUT0_ECC0) +#define BF_BCH_FLASH0LAYOUT0_ECC0(v, x) \ + (GPMI_IS_MX6(x) \ + ? (((v) << MX6Q_BP_BCH_FLASH0LAYOUT0_ECC0) \ + & MX6Q_BM_BCH_FLASH0LAYOUT0_ECC0) \ + : (((v) << BP_BCH_FLASH0LAYOUT0_ECC0) \ + & BM_BCH_FLASH0LAYOUT0_ECC0) \ + ) + +#define MX6Q_BP_BCH_FLASH0LAYOUT0_GF_13_14 10 +#define MX6Q_BM_BCH_FLASH0LAYOUT0_GF_13_14 \ + (0x1 << MX6Q_BP_BCH_FLASH0LAYOUT0_GF_13_14) +#define BF_BCH_FLASH0LAYOUT0_GF(v, x) \ + ((GPMI_IS_MX6(x) && ((v) == 14)) \ + ? (((1) << MX6Q_BP_BCH_FLASH0LAYOUT0_GF_13_14) \ + & MX6Q_BM_BCH_FLASH0LAYOUT0_GF_13_14) \ + : 0 \ + ) + +#define BP_BCH_FLASH0LAYOUT0_DATA0_SIZE 0 +#define BM_BCH_FLASH0LAYOUT0_DATA0_SIZE \ + (0xfff << BP_BCH_FLASH0LAYOUT0_DATA0_SIZE) +#define MX6Q_BM_BCH_FLASH0LAYOUT0_DATA0_SIZE \ + (0x3ff << BP_BCH_FLASH0LAYOUT0_DATA0_SIZE) +#define BF_BCH_FLASH0LAYOUT0_DATA0_SIZE(v, x) \ + (GPMI_IS_MX6(x) \ + ? (((v) >> 2) & MX6Q_BM_BCH_FLASH0LAYOUT0_DATA0_SIZE) \ + : ((v) & BM_BCH_FLASH0LAYOUT0_DATA0_SIZE) \ + ) + +#define HW_BCH_FLASH0LAYOUT1 0x00000090 + +#define BP_BCH_FLASH0LAYOUT1_PAGE_SIZE 16 +#define BM_BCH_FLASH0LAYOUT1_PAGE_SIZE \ + (0xffff << BP_BCH_FLASH0LAYOUT1_PAGE_SIZE) +#define BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(v) \ + (((v) << BP_BCH_FLASH0LAYOUT1_PAGE_SIZE) \ + & BM_BCH_FLASH0LAYOUT1_PAGE_SIZE) + +#define BP_BCH_FLASH0LAYOUT1_ECCN 12 +#define BM_BCH_FLASH0LAYOUT1_ECCN (0xf << BP_BCH_FLASH0LAYOUT1_ECCN) +#define MX6Q_BP_BCH_FLASH0LAYOUT1_ECCN 11 +#define MX6Q_BM_BCH_FLASH0LAYOUT1_ECCN (0x1f << MX6Q_BP_BCH_FLASH0LAYOUT1_ECCN) +#define BF_BCH_FLASH0LAYOUT1_ECCN(v, x) \ + (GPMI_IS_MX6(x) \ + ? (((v) << MX6Q_BP_BCH_FLASH0LAYOUT1_ECCN) \ + & MX6Q_BM_BCH_FLASH0LAYOUT1_ECCN) \ + : (((v) << BP_BCH_FLASH0LAYOUT1_ECCN) \ + & BM_BCH_FLASH0LAYOUT1_ECCN) \ + ) + +#define MX6Q_BP_BCH_FLASH0LAYOUT1_GF_13_14 10 +#define MX6Q_BM_BCH_FLASH0LAYOUT1_GF_13_14 \ + (0x1 << MX6Q_BP_BCH_FLASH0LAYOUT1_GF_13_14) +#define BF_BCH_FLASH0LAYOUT1_GF(v, x) \ + ((GPMI_IS_MX6(x) && ((v) == 14)) \ + ? (((1) << MX6Q_BP_BCH_FLASH0LAYOUT1_GF_13_14) \ + & MX6Q_BM_BCH_FLASH0LAYOUT1_GF_13_14) \ + : 0 \ + ) + +#define BP_BCH_FLASH0LAYOUT1_DATAN_SIZE 0 +#define BM_BCH_FLASH0LAYOUT1_DATAN_SIZE \ + (0xfff << BP_BCH_FLASH0LAYOUT1_DATAN_SIZE) +#define MX6Q_BM_BCH_FLASH0LAYOUT1_DATAN_SIZE \ + (0x3ff << BP_BCH_FLASH0LAYOUT1_DATAN_SIZE) +#define BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(v, x) \ + (GPMI_IS_MX6(x) \ + ? (((v) >> 2) & MX6Q_BM_BCH_FLASH0LAYOUT1_DATAN_SIZE) \ + : ((v) & BM_BCH_FLASH0LAYOUT1_DATAN_SIZE) \ + ) + +#define HW_BCH_VERSION 0x00000160 +#endif diff --git a/drivers/mtd/nand/raw/gpmi-nand/gpmi-lib.c b/drivers/mtd/nand/raw/gpmi-nand/gpmi-lib.c new file mode 100644 index 000000000000..97787246af41 --- /dev/null +++ b/drivers/mtd/nand/raw/gpmi-nand/gpmi-lib.c @@ -0,0 +1,1510 @@ +/* + * Freescale GPMI NAND Flash Driver + * + * Copyright (C) 2008-2011 Freescale Semiconductor, Inc. + * Copyright (C) 2008 Embedded Alley Solutions, Inc. + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License along + * with this program; if not, write to the Free Software Foundation, Inc., + * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. + */ +#include +#include +#include + +#include "gpmi-nand.h" +#include "gpmi-regs.h" +#include "bch-regs.h" + +static struct timing_threshold timing_default_threshold = { + .max_data_setup_cycles = (BM_GPMI_TIMING0_DATA_SETUP >> + BP_GPMI_TIMING0_DATA_SETUP), + .internal_data_setup_in_ns = 0, + .max_sample_delay_factor = (BM_GPMI_CTRL1_RDN_DELAY >> + BP_GPMI_CTRL1_RDN_DELAY), + .max_dll_clock_period_in_ns = 32, + .max_dll_delay_in_ns = 16, +}; + +#define MXS_SET_ADDR 0x4 +#define MXS_CLR_ADDR 0x8 +/* + * Clear the bit and poll it cleared. This is usually called with + * a reset address and mask being either SFTRST(bit 31) or CLKGATE + * (bit 30). + */ +static int clear_poll_bit(void __iomem *addr, u32 mask) +{ + int timeout = 0x400; + + /* clear the bit */ + writel(mask, addr + MXS_CLR_ADDR); + + /* + * SFTRST needs 3 GPMI clocks to settle, the reference manual + * recommends to wait 1us. + */ + udelay(1); + + /* poll the bit becoming clear */ + while ((readl(addr) & mask) && --timeout) + /* nothing */; + + return !timeout; +} + +#define MODULE_CLKGATE (1 << 30) +#define MODULE_SFTRST (1 << 31) +/* + * The current mxs_reset_block() will do two things: + * [1] enable the module. + * [2] reset the module. + * + * In most of the cases, it's ok. + * But in MX23, there is a hardware bug in the BCH block (see erratum #2847). + * If you try to soft reset the BCH block, it becomes unusable until + * the next hard reset. This case occurs in the NAND boot mode. When the board + * boots by NAND, the ROM of the chip will initialize the BCH blocks itself. + * So If the driver tries to reset the BCH again, the BCH will not work anymore. + * You will see a DMA timeout in this case. The bug has been fixed + * in the following chips, such as MX28. + * + * To avoid this bug, just add a new parameter `just_enable` for + * the mxs_reset_block(), and rewrite it here. + */ +static int gpmi_reset_block(void __iomem *reset_addr, bool just_enable) +{ + int ret; + int timeout = 0x400; + + /* clear and poll SFTRST */ + ret = clear_poll_bit(reset_addr, MODULE_SFTRST); + if (unlikely(ret)) + goto error; + + /* clear CLKGATE */ + writel(MODULE_CLKGATE, reset_addr + MXS_CLR_ADDR); + + if (!just_enable) { + /* set SFTRST to reset the block */ + writel(MODULE_SFTRST, reset_addr + MXS_SET_ADDR); + udelay(1); + + /* poll CLKGATE becoming set */ + while ((!(readl(reset_addr) & MODULE_CLKGATE)) && --timeout) + /* nothing */; + if (unlikely(!timeout)) + goto error; + } + + /* clear and poll SFTRST */ + ret = clear_poll_bit(reset_addr, MODULE_SFTRST); + if (unlikely(ret)) + goto error; + + /* clear and poll CLKGATE */ + ret = clear_poll_bit(reset_addr, MODULE_CLKGATE); + if (unlikely(ret)) + goto error; + + return 0; + +error: + pr_err("%s(%p): module reset timeout\n", __func__, reset_addr); + return -ETIMEDOUT; +} + +static int __gpmi_enable_clk(struct gpmi_nand_data *this, bool v) +{ + struct clk *clk; + int ret; + int i; + + for (i = 0; i < GPMI_CLK_MAX; i++) { + clk = this->resources.clock[i]; + if (!clk) + break; + + if (v) { + ret = clk_prepare_enable(clk); + if (ret) + goto err_clk; + } else { + clk_disable_unprepare(clk); + } + } + return 0; + +err_clk: + for (; i > 0; i--) + clk_disable_unprepare(this->resources.clock[i - 1]); + return ret; +} + +#define gpmi_enable_clk(x) __gpmi_enable_clk(x, true) +#define gpmi_disable_clk(x) __gpmi_enable_clk(x, false) + +int gpmi_init(struct gpmi_nand_data *this) +{ + struct resources *r = &this->resources; + int ret; + + ret = gpmi_enable_clk(this); + if (ret) + return ret; + ret = gpmi_reset_block(r->gpmi_regs, false); + if (ret) + goto err_out; + + /* + * Reset BCH here, too. We got failures otherwise :( + * See later BCH reset for explanation of MX23 handling + */ + ret = gpmi_reset_block(r->bch_regs, GPMI_IS_MX23(this)); + if (ret) + goto err_out; + + + /* Choose NAND mode. */ + writel(BM_GPMI_CTRL1_GPMI_MODE, r->gpmi_regs + HW_GPMI_CTRL1_CLR); + + /* Set the IRQ polarity. */ + writel(BM_GPMI_CTRL1_ATA_IRQRDY_POLARITY, + r->gpmi_regs + HW_GPMI_CTRL1_SET); + + /* Disable Write-Protection. */ + writel(BM_GPMI_CTRL1_DEV_RESET, r->gpmi_regs + HW_GPMI_CTRL1_SET); + + /* Select BCH ECC. */ + writel(BM_GPMI_CTRL1_BCH_MODE, r->gpmi_regs + HW_GPMI_CTRL1_SET); + + /* + * Decouple the chip select from dma channel. We use dma0 for all + * the chips. + */ + writel(BM_GPMI_CTRL1_DECOUPLE_CS, r->gpmi_regs + HW_GPMI_CTRL1_SET); + + gpmi_disable_clk(this); + return 0; +err_out: + gpmi_disable_clk(this); + return ret; +} + +/* This function is very useful. It is called only when the bug occur. */ +void gpmi_dump_info(struct gpmi_nand_data *this) +{ + struct resources *r = &this->resources; + struct bch_geometry *geo = &this->bch_geometry; + u32 reg; + int i; + + dev_err(this->dev, "Show GPMI registers :\n"); + for (i = 0; i <= HW_GPMI_DEBUG / 0x10 + 1; i++) { + reg = readl(r->gpmi_regs + i * 0x10); + dev_err(this->dev, "offset 0x%.3x : 0x%.8x\n", i * 0x10, reg); + } + + /* start to print out the BCH info */ + dev_err(this->dev, "Show BCH registers :\n"); + for (i = 0; i <= HW_BCH_VERSION / 0x10 + 1; i++) { + reg = readl(r->bch_regs + i * 0x10); + dev_err(this->dev, "offset 0x%.3x : 0x%.8x\n", i * 0x10, reg); + } + dev_err(this->dev, "BCH Geometry :\n" + "GF length : %u\n" + "ECC Strength : %u\n" + "Page Size in Bytes : %u\n" + "Metadata Size in Bytes : %u\n" + "ECC Chunk Size in Bytes: %u\n" + "ECC Chunk Count : %u\n" + "Payload Size in Bytes : %u\n" + "Auxiliary Size in Bytes: %u\n" + "Auxiliary Status Offset: %u\n" + "Block Mark Byte Offset : %u\n" + "Block Mark Bit Offset : %u\n", + geo->gf_len, + geo->ecc_strength, + geo->page_size, + geo->metadata_size, + geo->ecc_chunk_size, + geo->ecc_chunk_count, + geo->payload_size, + geo->auxiliary_size, + geo->auxiliary_status_offset, + geo->block_mark_byte_offset, + geo->block_mark_bit_offset); +} + +/* Configures the geometry for BCH. */ +int bch_set_geometry(struct gpmi_nand_data *this) +{ + struct resources *r = &this->resources; + struct bch_geometry *bch_geo = &this->bch_geometry; + unsigned int block_count; + unsigned int block_size; + unsigned int metadata_size; + unsigned int ecc_strength; + unsigned int page_size; + unsigned int gf_len; + int ret; + + if (common_nfc_set_geometry(this)) + return !0; + + block_count = bch_geo->ecc_chunk_count - 1; + block_size = bch_geo->ecc_chunk_size; + metadata_size = bch_geo->metadata_size; + ecc_strength = bch_geo->ecc_strength >> 1; + page_size = bch_geo->page_size; + gf_len = bch_geo->gf_len; + + ret = gpmi_enable_clk(this); + if (ret) + return ret; + + /* + * Due to erratum #2847 of the MX23, the BCH cannot be soft reset on this + * chip, otherwise it will lock up. So we skip resetting BCH on the MX23. + * On the other hand, the MX28 needs the reset, because one case has been + * seen where the BCH produced ECC errors constantly after 10000 + * consecutive reboots. The latter case has not been seen on the MX23 + * yet, still we don't know if it could happen there as well. + */ + ret = gpmi_reset_block(r->bch_regs, GPMI_IS_MX23(this)); + if (ret) + goto err_out; + + /* Configure layout 0. */ + writel(BF_BCH_FLASH0LAYOUT0_NBLOCKS(block_count) + | BF_BCH_FLASH0LAYOUT0_META_SIZE(metadata_size) + | BF_BCH_FLASH0LAYOUT0_ECC0(ecc_strength, this) + | BF_BCH_FLASH0LAYOUT0_GF(gf_len, this) + | BF_BCH_FLASH0LAYOUT0_DATA0_SIZE(block_size, this), + r->bch_regs + HW_BCH_FLASH0LAYOUT0); + + writel(BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(page_size) + | BF_BCH_FLASH0LAYOUT1_ECCN(ecc_strength, this) + | BF_BCH_FLASH0LAYOUT1_GF(gf_len, this) + | BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(block_size, this), + r->bch_regs + HW_BCH_FLASH0LAYOUT1); + + /* Set *all* chip selects to use layout 0. */ + writel(0, r->bch_regs + HW_BCH_LAYOUTSELECT); + + /* Enable interrupts. */ + writel(BM_BCH_CTRL_COMPLETE_IRQ_EN, + r->bch_regs + HW_BCH_CTRL_SET); + + gpmi_disable_clk(this); + return 0; +err_out: + gpmi_disable_clk(this); + return ret; +} + +/* Converts time in nanoseconds to cycles. */ +static unsigned int ns_to_cycles(unsigned int time, + unsigned int period, unsigned int min) +{ + unsigned int k; + + k = (time + period - 1) / period; + return max(k, min); +} + +#define DEF_MIN_PROP_DELAY 5 +#define DEF_MAX_PROP_DELAY 9 +/* Apply timing to current hardware conditions. */ +static int gpmi_nfc_compute_hardware_timing(struct gpmi_nand_data *this, + struct gpmi_nfc_hardware_timing *hw) +{ + struct timing_threshold *nfc = &timing_default_threshold; + struct resources *r = &this->resources; + struct nand_chip *nand = &this->nand; + struct nand_timing target = this->timing; + bool improved_timing_is_available; + unsigned long clock_frequency_in_hz; + unsigned int clock_period_in_ns; + bool dll_use_half_periods; + unsigned int dll_delay_shift; + unsigned int max_sample_delay_in_ns; + unsigned int address_setup_in_cycles; + unsigned int data_setup_in_ns; + unsigned int data_setup_in_cycles; + unsigned int data_hold_in_cycles; + int ideal_sample_delay_in_ns; + unsigned int sample_delay_factor; + int tEYE; + unsigned int min_prop_delay_in_ns = DEF_MIN_PROP_DELAY; + unsigned int max_prop_delay_in_ns = DEF_MAX_PROP_DELAY; + + /* + * If there are multiple chips, we need to relax the timings to allow + * for signal distortion due to higher capacitance. + */ + if (nand->numchips > 2) { + target.data_setup_in_ns += 10; + target.data_hold_in_ns += 10; + target.address_setup_in_ns += 10; + } else if (nand->numchips > 1) { + target.data_setup_in_ns += 5; + target.data_hold_in_ns += 5; + target.address_setup_in_ns += 5; + } + + /* Check if improved timing information is available. */ + improved_timing_is_available = + (target.tREA_in_ns >= 0) && + (target.tRLOH_in_ns >= 0) && + (target.tRHOH_in_ns >= 0); + + /* Inspect the clock. */ + nfc->clock_frequency_in_hz = clk_get_rate(r->clock[0]); + clock_frequency_in_hz = nfc->clock_frequency_in_hz; + clock_period_in_ns = NSEC_PER_SEC / clock_frequency_in_hz; + + /* + * The NFC quantizes setup and hold parameters in terms of clock cycles. + * Here, we quantize the setup and hold timing parameters to the + * next-highest clock period to make sure we apply at least the + * specified times. + * + * For data setup and data hold, the hardware interprets a value of zero + * as the largest possible delay. This is not what's intended by a zero + * in the input parameter, so we impose a minimum of one cycle. + */ + data_setup_in_cycles = ns_to_cycles(target.data_setup_in_ns, + clock_period_in_ns, 1); + data_hold_in_cycles = ns_to_cycles(target.data_hold_in_ns, + clock_period_in_ns, 1); + address_setup_in_cycles = ns_to_cycles(target.address_setup_in_ns, + clock_period_in_ns, 0); + + /* + * The clock's period affects the sample delay in a number of ways: + * + * (1) The NFC HAL tells us the maximum clock period the sample delay + * DLL can tolerate. If the clock period is greater than half that + * maximum, we must configure the DLL to be driven by half periods. + * + * (2) We need to convert from an ideal sample delay, in ns, to a + * "sample delay factor," which the NFC uses. This factor depends on + * whether we're driving the DLL with full or half periods. + * Paraphrasing the reference manual: + * + * AD = SDF x 0.125 x RP + * + * where: + * + * AD is the applied delay, in ns. + * SDF is the sample delay factor, which is dimensionless. + * RP is the reference period, in ns, which is a full clock period + * if the DLL is being driven by full periods, or half that if + * the DLL is being driven by half periods. + * + * Let's re-arrange this in a way that's more useful to us: + * + * 8 + * SDF = AD x ---- + * RP + * + * The reference period is either the clock period or half that, so this + * is: + * + * 8 AD x DDF + * SDF = AD x ----- = -------- + * f x P P + * + * where: + * + * f is 1 or 1/2, depending on how we're driving the DLL. + * P is the clock period. + * DDF is the DLL Delay Factor, a dimensionless value that + * incorporates all the constants in the conversion. + * + * DDF will be either 8 or 16, both of which are powers of two. We can + * reduce the cost of this conversion by using bit shifts instead of + * multiplication or division. Thus: + * + * AD << DDS + * SDF = --------- + * P + * + * or + * + * AD = (SDF >> DDS) x P + * + * where: + * + * DDS is the DLL Delay Shift, the logarithm to base 2 of the DDF. + */ + if (clock_period_in_ns > (nfc->max_dll_clock_period_in_ns >> 1)) { + dll_use_half_periods = true; + dll_delay_shift = 3 + 1; + } else { + dll_use_half_periods = false; + dll_delay_shift = 3; + } + + /* + * Compute the maximum sample delay the NFC allows, under current + * conditions. If the clock is running too slowly, no sample delay is + * possible. + */ + if (clock_period_in_ns > nfc->max_dll_clock_period_in_ns) + max_sample_delay_in_ns = 0; + else { + /* + * Compute the delay implied by the largest sample delay factor + * the NFC allows. + */ + max_sample_delay_in_ns = + (nfc->max_sample_delay_factor * clock_period_in_ns) >> + dll_delay_shift; + + /* + * Check if the implied sample delay larger than the NFC + * actually allows. + */ + if (max_sample_delay_in_ns > nfc->max_dll_delay_in_ns) + max_sample_delay_in_ns = nfc->max_dll_delay_in_ns; + } + + /* + * Check if improved timing information is available. If not, we have to + * use a less-sophisticated algorithm. + */ + if (!improved_timing_is_available) { + /* + * Fold the read setup time required by the NFC into the ideal + * sample delay. + */ + ideal_sample_delay_in_ns = target.gpmi_sample_delay_in_ns + + nfc->internal_data_setup_in_ns; + + /* + * The ideal sample delay may be greater than the maximum + * allowed by the NFC. If so, we can trade off sample delay time + * for more data setup time. + * + * In each iteration of the following loop, we add a cycle to + * the data setup time and subtract a corresponding amount from + * the sample delay until we've satisified the constraints or + * can't do any better. + */ + while ((ideal_sample_delay_in_ns > max_sample_delay_in_ns) && + (data_setup_in_cycles < nfc->max_data_setup_cycles)) { + + data_setup_in_cycles++; + ideal_sample_delay_in_ns -= clock_period_in_ns; + + if (ideal_sample_delay_in_ns < 0) + ideal_sample_delay_in_ns = 0; + + } + + /* + * Compute the sample delay factor that corresponds most closely + * to the ideal sample delay. If the result is too large for the + * NFC, use the maximum value. + * + * Notice that we use the ns_to_cycles function to compute the + * sample delay factor. We do this because the form of the + * computation is the same as that for calculating cycles. + */ + sample_delay_factor = + ns_to_cycles( + ideal_sample_delay_in_ns << dll_delay_shift, + clock_period_in_ns, 0); + + if (sample_delay_factor > nfc->max_sample_delay_factor) + sample_delay_factor = nfc->max_sample_delay_factor; + + /* Skip to the part where we return our results. */ + goto return_results; + } + + /* + * If control arrives here, we have more detailed timing information, + * so we can use a better algorithm. + */ + + /* + * Fold the read setup time required by the NFC into the maximum + * propagation delay. + */ + max_prop_delay_in_ns += nfc->internal_data_setup_in_ns; + + /* + * Earlier, we computed the number of clock cycles required to satisfy + * the data setup time. Now, we need to know the actual nanoseconds. + */ + data_setup_in_ns = clock_period_in_ns * data_setup_in_cycles; + + /* + * Compute tEYE, the width of the data eye when reading from the NAND + * Flash. The eye width is fundamentally determined by the data setup + * time, perturbed by propagation delays and some characteristics of the + * NAND Flash device. + * + * start of the eye = max_prop_delay + tREA + * end of the eye = min_prop_delay + tRHOH + data_setup + */ + tEYE = (int)min_prop_delay_in_ns + (int)target.tRHOH_in_ns + + (int)data_setup_in_ns; + + tEYE -= (int)max_prop_delay_in_ns + (int)target.tREA_in_ns; + + /* + * The eye must be open. If it's not, we can try to open it by + * increasing its main forcer, the data setup time. + * + * In each iteration of the following loop, we increase the data setup + * time by a single clock cycle. We do this until either the eye is + * open or we run into NFC limits. + */ + while ((tEYE <= 0) && + (data_setup_in_cycles < nfc->max_data_setup_cycles)) { + /* Give a cycle to data setup. */ + data_setup_in_cycles++; + /* Synchronize the data setup time with the cycles. */ + data_setup_in_ns += clock_period_in_ns; + /* Adjust tEYE accordingly. */ + tEYE += clock_period_in_ns; + } + + /* + * When control arrives here, the eye is open. The ideal time to sample + * the data is in the center of the eye: + * + * end of the eye + start of the eye + * --------------------------------- - data_setup + * 2 + * + * After some algebra, this simplifies to the code immediately below. + */ + ideal_sample_delay_in_ns = + ((int)max_prop_delay_in_ns + + (int)target.tREA_in_ns + + (int)min_prop_delay_in_ns + + (int)target.tRHOH_in_ns - + (int)data_setup_in_ns) >> 1; + + /* + * The following figure illustrates some aspects of a NAND Flash read: + * + * + * __ _____________________________________ + * RDN \_________________/ + * + * <---- tEYE -----> + * /-----------------\ + * Read Data ----------------------------< >--------- + * \-----------------/ + * ^ ^ ^ ^ + * | | | | + * |<--Data Setup -->|<--Delay Time -->| | + * | | | | + * | | | + * | |<-- Quantized Delay Time -->| + * | | | + * + * + * We have some issues we must now address: + * + * (1) The *ideal* sample delay time must not be negative. If it is, we + * jam it to zero. + * + * (2) The *ideal* sample delay time must not be greater than that + * allowed by the NFC. If it is, we can increase the data setup + * time, which will reduce the delay between the end of the data + * setup and the center of the eye. It will also make the eye + * larger, which might help with the next issue... + * + * (3) The *quantized* sample delay time must not fall either before the + * eye opens or after it closes (the latter is the problem + * illustrated in the above figure). + */ + + /* Jam a negative ideal sample delay to zero. */ + if (ideal_sample_delay_in_ns < 0) + ideal_sample_delay_in_ns = 0; + + /* + * Extend the data setup as needed to reduce the ideal sample delay + * below the maximum permitted by the NFC. + */ + while ((ideal_sample_delay_in_ns > max_sample_delay_in_ns) && + (data_setup_in_cycles < nfc->max_data_setup_cycles)) { + + /* Give a cycle to data setup. */ + data_setup_in_cycles++; + /* Synchronize the data setup time with the cycles. */ + data_setup_in_ns += clock_period_in_ns; + /* Adjust tEYE accordingly. */ + tEYE += clock_period_in_ns; + + /* + * Decrease the ideal sample delay by one half cycle, to keep it + * in the middle of the eye. + */ + ideal_sample_delay_in_ns -= (clock_period_in_ns >> 1); + + /* Jam a negative ideal sample delay to zero. */ + if (ideal_sample_delay_in_ns < 0) + ideal_sample_delay_in_ns = 0; + } + + /* + * Compute the sample delay factor that corresponds to the ideal sample + * delay. If the result is too large, then use the maximum allowed + * value. + * + * Notice that we use the ns_to_cycles function to compute the sample + * delay factor. We do this because the form of the computation is the + * same as that for calculating cycles. + */ + sample_delay_factor = + ns_to_cycles(ideal_sample_delay_in_ns << dll_delay_shift, + clock_period_in_ns, 0); + + if (sample_delay_factor > nfc->max_sample_delay_factor) + sample_delay_factor = nfc->max_sample_delay_factor; + + /* + * These macros conveniently encapsulate a computation we'll use to + * continuously evaluate whether or not the data sample delay is inside + * the eye. + */ + #define IDEAL_DELAY ((int) ideal_sample_delay_in_ns) + + #define QUANTIZED_DELAY \ + ((int) ((sample_delay_factor * clock_period_in_ns) >> \ + dll_delay_shift)) + + #define DELAY_ERROR (abs(QUANTIZED_DELAY - IDEAL_DELAY)) + + #define SAMPLE_IS_NOT_WITHIN_THE_EYE (DELAY_ERROR > (tEYE >> 1)) + + /* + * While the quantized sample time falls outside the eye, reduce the + * sample delay or extend the data setup to move the sampling point back + * toward the eye. Do not allow the number of data setup cycles to + * exceed the maximum allowed by the NFC. + */ + while (SAMPLE_IS_NOT_WITHIN_THE_EYE && + (data_setup_in_cycles < nfc->max_data_setup_cycles)) { + /* + * If control arrives here, the quantized sample delay falls + * outside the eye. Check if it's before the eye opens, or after + * the eye closes. + */ + if (QUANTIZED_DELAY > IDEAL_DELAY) { + /* + * If control arrives here, the quantized sample delay + * falls after the eye closes. Decrease the quantized + * delay time and then go back to re-evaluate. + */ + if (sample_delay_factor != 0) + sample_delay_factor--; + continue; + } + + /* + * If control arrives here, the quantized sample delay falls + * before the eye opens. Shift the sample point by increasing + * data setup time. This will also make the eye larger. + */ + + /* Give a cycle to data setup. */ + data_setup_in_cycles++; + /* Synchronize the data setup time with the cycles. */ + data_setup_in_ns += clock_period_in_ns; + /* Adjust tEYE accordingly. */ + tEYE += clock_period_in_ns; + + /* + * Decrease the ideal sample delay by one half cycle, to keep it + * in the middle of the eye. + */ + ideal_sample_delay_in_ns -= (clock_period_in_ns >> 1); + + /* ...and one less period for the delay time. */ + ideal_sample_delay_in_ns -= clock_period_in_ns; + + /* Jam a negative ideal sample delay to zero. */ + if (ideal_sample_delay_in_ns < 0) + ideal_sample_delay_in_ns = 0; + + /* + * We have a new ideal sample delay, so re-compute the quantized + * delay. + */ + sample_delay_factor = + ns_to_cycles( + ideal_sample_delay_in_ns << dll_delay_shift, + clock_period_in_ns, 0); + + if (sample_delay_factor > nfc->max_sample_delay_factor) + sample_delay_factor = nfc->max_sample_delay_factor; + } + + /* Control arrives here when we're ready to return our results. */ +return_results: + hw->data_setup_in_cycles = data_setup_in_cycles; + hw->data_hold_in_cycles = data_hold_in_cycles; + hw->address_setup_in_cycles = address_setup_in_cycles; + hw->use_half_periods = dll_use_half_periods; + hw->sample_delay_factor = sample_delay_factor; + hw->device_busy_timeout = GPMI_DEFAULT_BUSY_TIMEOUT; + hw->wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_4_TO_8NS; + + /* Return success. */ + return 0; +} + +/* + * <1> Firstly, we should know what's the GPMI-clock means. + * The GPMI-clock is the internal clock in the gpmi nand controller. + * If you set 100MHz to gpmi nand controller, the GPMI-clock's period + * is 10ns. Mark the GPMI-clock's period as GPMI-clock-period. + * + * <2> Secondly, we should know what's the frequency on the nand chip pins. + * The frequency on the nand chip pins is derived from the GPMI-clock. + * We can get it from the following equation: + * + * F = G / (DS + DH) + * + * F : the frequency on the nand chip pins. + * G : the GPMI clock, such as 100MHz. + * DS : GPMI_HW_GPMI_TIMING0:DATA_SETUP + * DH : GPMI_HW_GPMI_TIMING0:DATA_HOLD + * + * <3> Thirdly, when the frequency on the nand chip pins is above 33MHz, + * the nand EDO(extended Data Out) timing could be applied. + * The GPMI implements a feedback read strobe to sample the read data. + * The feedback read strobe can be delayed to support the nand EDO timing + * where the read strobe may deasserts before the read data is valid, and + * read data is valid for some time after read strobe. + * + * The following figure illustrates some aspects of a NAND Flash read: + * + * |<---tREA---->| + * | | + * | | | + * |<--tRP-->| | + * | | | + * __ ___|__________________________________ + * RDN \________/ | + * | + * /---------\ + * Read Data --------------< >--------- + * \---------/ + * | | + * |<-D->| + * FeedbackRDN ________ ____________ + * \___________/ + * + * D stands for delay, set in the HW_GPMI_CTRL1:RDN_DELAY. + * + * + * <4> Now, we begin to describe how to compute the right RDN_DELAY. + * + * 4.1) From the aspect of the nand chip pins: + * Delay = (tREA + C - tRP) {1} + * + * tREA : the maximum read access time. From the ONFI nand standards, + * we know that tREA is 16ns in mode 5, tREA is 20ns is mode 4. + * Please check it in : www.onfi.org + * C : a constant for adjust the delay. default is 4. + * tRP : the read pulse width. + * Specified by the HW_GPMI_TIMING0:DATA_SETUP: + * tRP = (GPMI-clock-period) * DATA_SETUP + * + * 4.2) From the aspect of the GPMI nand controller: + * Delay = RDN_DELAY * 0.125 * RP {2} + * + * RP : the DLL reference period. + * if (GPMI-clock-period > DLL_THRETHOLD) + * RP = GPMI-clock-period / 2; + * else + * RP = GPMI-clock-period; + * + * Set the HW_GPMI_CTRL1:HALF_PERIOD if GPMI-clock-period + * is greater DLL_THRETHOLD. In other SOCs, the DLL_THRETHOLD + * is 16ns, but in mx6q, we use 12ns. + * + * 4.3) since {1} equals {2}, we get: + * + * (tREA + 4 - tRP) * 8 + * RDN_DELAY = --------------------- {3} + * RP + * + * 4.4) We only support the fastest asynchronous mode of ONFI nand. + * For some ONFI nand, the mode 4 is the fastest mode; + * while for some ONFI nand, the mode 5 is the fastest mode. + * So we only support the mode 4 and mode 5. It is no need to + * support other modes. + */ +static void gpmi_compute_edo_timing(struct gpmi_nand_data *this, + struct gpmi_nfc_hardware_timing *hw) +{ + struct resources *r = &this->resources; + unsigned long rate = clk_get_rate(r->clock[0]); + int mode = this->timing_mode; + int dll_threshold = this->devdata->max_chain_delay; + unsigned long delay; + unsigned long clk_period; + int t_rea; + int c = 4; + int t_rp; + int rp; + + /* + * [1] for GPMI_HW_GPMI_TIMING0: + * The async mode requires 40MHz for mode 4, 50MHz for mode 5. + * The GPMI can support 100MHz at most. So if we want to + * get the 40MHz or 50MHz, we have to set DS=1, DH=1. + * Set the ADDRESS_SETUP to 0 in mode 4. + */ + hw->data_setup_in_cycles = 1; + hw->data_hold_in_cycles = 1; + hw->address_setup_in_cycles = ((mode == 5) ? 1 : 0); + + /* [2] for GPMI_HW_GPMI_TIMING1 */ + hw->device_busy_timeout = 0x9000; + + /* [3] for GPMI_HW_GPMI_CTRL1 */ + hw->wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY; + + /* + * Enlarge 10 times for the numerator and denominator in {3}. + * This make us to get more accurate result. + */ + clk_period = NSEC_PER_SEC / (rate / 10); + dll_threshold *= 10; + t_rea = ((mode == 5) ? 16 : 20) * 10; + c *= 10; + + t_rp = clk_period * 1; /* DATA_SETUP is 1 */ + + if (clk_period > dll_threshold) { + hw->use_half_periods = 1; + rp = clk_period / 2; + } else { + hw->use_half_periods = 0; + rp = clk_period; + } + + /* + * Multiply the numerator with 10, we could do a round off: + * 7.8 round up to 8; 7.4 round down to 7. + */ + delay = (((t_rea + c - t_rp) * 8) * 10) / rp; + delay = (delay + 5) / 10; + + hw->sample_delay_factor = delay; +} + +static int enable_edo_mode(struct gpmi_nand_data *this, int mode) +{ + struct resources *r = &this->resources; + struct nand_chip *nand = &this->nand; + struct mtd_info *mtd = nand_to_mtd(nand); + uint8_t *feature; + unsigned long rate; + int ret; + + feature = kzalloc(ONFI_SUBFEATURE_PARAM_LEN, GFP_KERNEL); + if (!feature) + return -ENOMEM; + + nand->select_chip(mtd, 0); + + /* [1] send SET FEATURE command to NAND */ + feature[0] = mode; + ret = nand->onfi_set_features(mtd, nand, + ONFI_FEATURE_ADDR_TIMING_MODE, feature); + if (ret) + goto err_out; + + /* [2] send GET FEATURE command to double-check the timing mode */ + memset(feature, 0, ONFI_SUBFEATURE_PARAM_LEN); + ret = nand->onfi_get_features(mtd, nand, + ONFI_FEATURE_ADDR_TIMING_MODE, feature); + if (ret || feature[0] != mode) + goto err_out; + + nand->select_chip(mtd, -1); + + /* [3] set the main IO clock, 100MHz for mode 5, 80MHz for mode 4. */ + rate = (mode == 5) ? 100000000 : 80000000; + clk_set_rate(r->clock[0], rate); + + /* Let the gpmi_begin() re-compute the timing again. */ + this->flags &= ~GPMI_TIMING_INIT_OK; + + this->flags |= GPMI_ASYNC_EDO_ENABLED; + this->timing_mode = mode; + kfree(feature); + dev_info(this->dev, "enable the asynchronous EDO mode %d\n", mode); + return 0; + +err_out: + nand->select_chip(mtd, -1); + kfree(feature); + dev_err(this->dev, "mode:%d ,failed in set feature.\n", mode); + return -EINVAL; +} + +int gpmi_extra_init(struct gpmi_nand_data *this) +{ + struct nand_chip *chip = &this->nand; + + /* Enable the asynchronous EDO feature. */ + if (GPMI_IS_MX6(this) && chip->onfi_version) { + int mode = onfi_get_async_timing_mode(chip); + + /* We only support the timing mode 4 and mode 5. */ + if (mode & ONFI_TIMING_MODE_5) + mode = 5; + else if (mode & ONFI_TIMING_MODE_4) + mode = 4; + else + return 0; + + return enable_edo_mode(this, mode); + } + return 0; +} + +/* Begin the I/O */ +void gpmi_begin(struct gpmi_nand_data *this) +{ + struct resources *r = &this->resources; + void __iomem *gpmi_regs = r->gpmi_regs; + unsigned int clock_period_in_ns; + uint32_t reg; + unsigned int dll_wait_time_in_us; + struct gpmi_nfc_hardware_timing hw; + int ret; + + /* Enable the clock. */ + ret = gpmi_enable_clk(this); + if (ret) { + dev_err(this->dev, "We failed in enable the clk\n"); + goto err_out; + } + + /* Only initialize the timing once */ + if (this->flags & GPMI_TIMING_INIT_OK) + return; + this->flags |= GPMI_TIMING_INIT_OK; + + if (this->flags & GPMI_ASYNC_EDO_ENABLED) + gpmi_compute_edo_timing(this, &hw); + else + gpmi_nfc_compute_hardware_timing(this, &hw); + + /* [1] Set HW_GPMI_TIMING0 */ + reg = BF_GPMI_TIMING0_ADDRESS_SETUP(hw.address_setup_in_cycles) | + BF_GPMI_TIMING0_DATA_HOLD(hw.data_hold_in_cycles) | + BF_GPMI_TIMING0_DATA_SETUP(hw.data_setup_in_cycles); + + writel(reg, gpmi_regs + HW_GPMI_TIMING0); + + /* [2] Set HW_GPMI_TIMING1 */ + writel(BF_GPMI_TIMING1_BUSY_TIMEOUT(hw.device_busy_timeout), + gpmi_regs + HW_GPMI_TIMING1); + + /* [3] The following code is to set the HW_GPMI_CTRL1. */ + + /* Set the WRN_DLY_SEL */ + writel(BM_GPMI_CTRL1_WRN_DLY_SEL, gpmi_regs + HW_GPMI_CTRL1_CLR); + writel(BF_GPMI_CTRL1_WRN_DLY_SEL(hw.wrn_dly_sel), + gpmi_regs + HW_GPMI_CTRL1_SET); + + /* DLL_ENABLE must be set to 0 when setting RDN_DELAY or HALF_PERIOD. */ + writel(BM_GPMI_CTRL1_DLL_ENABLE, gpmi_regs + HW_GPMI_CTRL1_CLR); + + /* Clear out the DLL control fields. */ + reg = BM_GPMI_CTRL1_RDN_DELAY | BM_GPMI_CTRL1_HALF_PERIOD; + writel(reg, gpmi_regs + HW_GPMI_CTRL1_CLR); + + /* If no sample delay is called for, return immediately. */ + if (!hw.sample_delay_factor) + return; + + /* Set RDN_DELAY or HALF_PERIOD. */ + reg = ((hw.use_half_periods) ? BM_GPMI_CTRL1_HALF_PERIOD : 0) + | BF_GPMI_CTRL1_RDN_DELAY(hw.sample_delay_factor); + + writel(reg, gpmi_regs + HW_GPMI_CTRL1_SET); + + /* At last, we enable the DLL. */ + writel(BM_GPMI_CTRL1_DLL_ENABLE, gpmi_regs + HW_GPMI_CTRL1_SET); + + /* + * After we enable the GPMI DLL, we have to wait 64 clock cycles before + * we can use the GPMI. Calculate the amount of time we need to wait, + * in microseconds. + */ + clock_period_in_ns = NSEC_PER_SEC / clk_get_rate(r->clock[0]); + dll_wait_time_in_us = (clock_period_in_ns * 64) / 1000; + + if (!dll_wait_time_in_us) + dll_wait_time_in_us = 1; + + /* Wait for the DLL to settle. */ + udelay(dll_wait_time_in_us); + +err_out: + return; +} + +void gpmi_end(struct gpmi_nand_data *this) +{ + gpmi_disable_clk(this); +} + +/* Clears a BCH interrupt. */ +void gpmi_clear_bch(struct gpmi_nand_data *this) +{ + struct resources *r = &this->resources; + writel(BM_BCH_CTRL_COMPLETE_IRQ, r->bch_regs + HW_BCH_CTRL_CLR); +} + +/* Returns the Ready/Busy status of the given chip. */ +int gpmi_is_ready(struct gpmi_nand_data *this, unsigned chip) +{ + struct resources *r = &this->resources; + uint32_t mask = 0; + uint32_t reg = 0; + + if (GPMI_IS_MX23(this)) { + mask = MX23_BM_GPMI_DEBUG_READY0 << chip; + reg = readl(r->gpmi_regs + HW_GPMI_DEBUG); + } else if (GPMI_IS_MX28(this) || GPMI_IS_MX6(this)) { + /* + * In the imx6, all the ready/busy pins are bound + * together. So we only need to check chip 0. + */ + if (GPMI_IS_MX6(this)) + chip = 0; + + /* MX28 shares the same R/B register as MX6Q. */ + mask = MX28_BF_GPMI_STAT_READY_BUSY(1 << chip); + reg = readl(r->gpmi_regs + HW_GPMI_STAT); + } else + dev_err(this->dev, "unknown arch.\n"); + return reg & mask; +} + +static inline void set_dma_type(struct gpmi_nand_data *this, + enum dma_ops_type type) +{ + this->last_dma_type = this->dma_type; + this->dma_type = type; +} + +int gpmi_send_command(struct gpmi_nand_data *this) +{ + struct dma_chan *channel = get_dma_chan(this); + struct dma_async_tx_descriptor *desc; + struct scatterlist *sgl; + int chip = this->current_chip; + u32 pio[3]; + + /* [1] send out the PIO words */ + pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WRITE) + | BM_GPMI_CTRL0_WORD_LENGTH + | BF_GPMI_CTRL0_CS(chip, this) + | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this) + | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_CLE) + | BM_GPMI_CTRL0_ADDRESS_INCREMENT + | BF_GPMI_CTRL0_XFER_COUNT(this->command_length); + pio[1] = pio[2] = 0; + desc = dmaengine_prep_slave_sg(channel, + (struct scatterlist *)pio, + ARRAY_SIZE(pio), DMA_TRANS_NONE, 0); + if (!desc) + return -EINVAL; + + /* [2] send out the COMMAND + ADDRESS string stored in @buffer */ + sgl = &this->cmd_sgl; + + sg_init_one(sgl, this->cmd_buffer, this->command_length); + dma_map_sg(this->dev, sgl, 1, DMA_TO_DEVICE); + desc = dmaengine_prep_slave_sg(channel, + sgl, 1, DMA_MEM_TO_DEV, + DMA_PREP_INTERRUPT | DMA_CTRL_ACK); + if (!desc) + return -EINVAL; + + /* [3] submit the DMA */ + set_dma_type(this, DMA_FOR_COMMAND); + return start_dma_without_bch_irq(this, desc); +} + +int gpmi_send_data(struct gpmi_nand_data *this) +{ + struct dma_async_tx_descriptor *desc; + struct dma_chan *channel = get_dma_chan(this); + int chip = this->current_chip; + uint32_t command_mode; + uint32_t address; + u32 pio[2]; + + /* [1] PIO */ + command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WRITE; + address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA; + + pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode) + | BM_GPMI_CTRL0_WORD_LENGTH + | BF_GPMI_CTRL0_CS(chip, this) + | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this) + | BF_GPMI_CTRL0_ADDRESS(address) + | BF_GPMI_CTRL0_XFER_COUNT(this->upper_len); + pio[1] = 0; + desc = dmaengine_prep_slave_sg(channel, (struct scatterlist *)pio, + ARRAY_SIZE(pio), DMA_TRANS_NONE, 0); + if (!desc) + return -EINVAL; + + /* [2] send DMA request */ + prepare_data_dma(this, DMA_TO_DEVICE); + desc = dmaengine_prep_slave_sg(channel, &this->data_sgl, + 1, DMA_MEM_TO_DEV, + DMA_PREP_INTERRUPT | DMA_CTRL_ACK); + if (!desc) + return -EINVAL; + + /* [3] submit the DMA */ + set_dma_type(this, DMA_FOR_WRITE_DATA); + return start_dma_without_bch_irq(this, desc); +} + +int gpmi_read_data(struct gpmi_nand_data *this) +{ + struct dma_async_tx_descriptor *desc; + struct dma_chan *channel = get_dma_chan(this); + int chip = this->current_chip; + u32 pio[2]; + + /* [1] : send PIO */ + pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__READ) + | BM_GPMI_CTRL0_WORD_LENGTH + | BF_GPMI_CTRL0_CS(chip, this) + | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this) + | BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA) + | BF_GPMI_CTRL0_XFER_COUNT(this->upper_len); + pio[1] = 0; + desc = dmaengine_prep_slave_sg(channel, + (struct scatterlist *)pio, + ARRAY_SIZE(pio), DMA_TRANS_NONE, 0); + if (!desc) + return -EINVAL; + + /* [2] : send DMA request */ + prepare_data_dma(this, DMA_FROM_DEVICE); + desc = dmaengine_prep_slave_sg(channel, &this->data_sgl, + 1, DMA_DEV_TO_MEM, + DMA_PREP_INTERRUPT | DMA_CTRL_ACK); + if (!desc) + return -EINVAL; + + /* [3] : submit the DMA */ + set_dma_type(this, DMA_FOR_READ_DATA); + return start_dma_without_bch_irq(this, desc); +} + +int gpmi_send_page(struct gpmi_nand_data *this, + dma_addr_t payload, dma_addr_t auxiliary) +{ + struct bch_geometry *geo = &this->bch_geometry; + uint32_t command_mode; + uint32_t address; + uint32_t ecc_command; + uint32_t buffer_mask; + struct dma_async_tx_descriptor *desc; + struct dma_chan *channel = get_dma_chan(this); + int chip = this->current_chip; + u32 pio[6]; + + /* A DMA descriptor that does an ECC page read. */ + command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WRITE; + address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA; + ecc_command = BV_GPMI_ECCCTRL_ECC_CMD__BCH_ENCODE; + buffer_mask = BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE | + BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY; + + pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode) + | BM_GPMI_CTRL0_WORD_LENGTH + | BF_GPMI_CTRL0_CS(chip, this) + | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this) + | BF_GPMI_CTRL0_ADDRESS(address) + | BF_GPMI_CTRL0_XFER_COUNT(0); + pio[1] = 0; + pio[2] = BM_GPMI_ECCCTRL_ENABLE_ECC + | BF_GPMI_ECCCTRL_ECC_CMD(ecc_command) + | BF_GPMI_ECCCTRL_BUFFER_MASK(buffer_mask); + pio[3] = geo->page_size; + pio[4] = payload; + pio[5] = auxiliary; + + desc = dmaengine_prep_slave_sg(channel, + (struct scatterlist *)pio, + ARRAY_SIZE(pio), DMA_TRANS_NONE, + DMA_CTRL_ACK); + if (!desc) + return -EINVAL; + + set_dma_type(this, DMA_FOR_WRITE_ECC_PAGE); + return start_dma_with_bch_irq(this, desc); +} + +int gpmi_read_page(struct gpmi_nand_data *this, + dma_addr_t payload, dma_addr_t auxiliary) +{ + struct bch_geometry *geo = &this->bch_geometry; + uint32_t command_mode; + uint32_t address; + uint32_t ecc_command; + uint32_t buffer_mask; + struct dma_async_tx_descriptor *desc; + struct dma_chan *channel = get_dma_chan(this); + int chip = this->current_chip; + u32 pio[6]; + + /* [1] Wait for the chip to report ready. */ + command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY; + address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA; + + pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode) + | BM_GPMI_CTRL0_WORD_LENGTH + | BF_GPMI_CTRL0_CS(chip, this) + | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this) + | BF_GPMI_CTRL0_ADDRESS(address) + | BF_GPMI_CTRL0_XFER_COUNT(0); + pio[1] = 0; + desc = dmaengine_prep_slave_sg(channel, + (struct scatterlist *)pio, 2, + DMA_TRANS_NONE, 0); + if (!desc) + return -EINVAL; + + /* [2] Enable the BCH block and read. */ + command_mode = BV_GPMI_CTRL0_COMMAND_MODE__READ; + address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA; + ecc_command = BV_GPMI_ECCCTRL_ECC_CMD__BCH_DECODE; + buffer_mask = BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE + | BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY; + + pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode) + | BM_GPMI_CTRL0_WORD_LENGTH + | BF_GPMI_CTRL0_CS(chip, this) + | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this) + | BF_GPMI_CTRL0_ADDRESS(address) + | BF_GPMI_CTRL0_XFER_COUNT(geo->page_size); + + pio[1] = 0; + pio[2] = BM_GPMI_ECCCTRL_ENABLE_ECC + | BF_GPMI_ECCCTRL_ECC_CMD(ecc_command) + | BF_GPMI_ECCCTRL_BUFFER_MASK(buffer_mask); + pio[3] = geo->page_size; + pio[4] = payload; + pio[5] = auxiliary; + desc = dmaengine_prep_slave_sg(channel, + (struct scatterlist *)pio, + ARRAY_SIZE(pio), DMA_TRANS_NONE, + DMA_PREP_INTERRUPT | DMA_CTRL_ACK); + if (!desc) + return -EINVAL; + + /* [3] Disable the BCH block */ + command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY; + address = BV_GPMI_CTRL0_ADDRESS__NAND_DATA; + + pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode) + | BM_GPMI_CTRL0_WORD_LENGTH + | BF_GPMI_CTRL0_CS(chip, this) + | BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this) + | BF_GPMI_CTRL0_ADDRESS(address) + | BF_GPMI_CTRL0_XFER_COUNT(geo->page_size); + pio[1] = 0; + pio[2] = 0; /* clear GPMI_HW_GPMI_ECCCTRL, disable the BCH. */ + desc = dmaengine_prep_slave_sg(channel, + (struct scatterlist *)pio, 3, + DMA_TRANS_NONE, + DMA_PREP_INTERRUPT | DMA_CTRL_ACK); + if (!desc) + return -EINVAL; + + /* [4] submit the DMA */ + set_dma_type(this, DMA_FOR_READ_ECC_PAGE); + return start_dma_with_bch_irq(this, desc); +} + +/** + * gpmi_copy_bits - copy bits from one memory region to another + * @dst: destination buffer + * @dst_bit_off: bit offset we're starting to write at + * @src: source buffer + * @src_bit_off: bit offset we're starting to read from + * @nbits: number of bits to copy + * + * This functions copies bits from one memory region to another, and is used by + * the GPMI driver to copy ECC sections which are not guaranteed to be byte + * aligned. + * + * src and dst should not overlap. + * + */ +void gpmi_copy_bits(u8 *dst, size_t dst_bit_off, + const u8 *src, size_t src_bit_off, + size_t nbits) +{ + size_t i; + size_t nbytes; + u32 src_buffer = 0; + size_t bits_in_src_buffer = 0; + + if (!nbits) + return; + + /* + * Move src and dst pointers to the closest byte pointer and store bit + * offsets within a byte. + */ + src += src_bit_off / 8; + src_bit_off %= 8; + + dst += dst_bit_off / 8; + dst_bit_off %= 8; + + /* + * Initialize the src_buffer value with bits available in the first + * byte of data so that we end up with a byte aligned src pointer. + */ + if (src_bit_off) { + src_buffer = src[0] >> src_bit_off; + if (nbits >= (8 - src_bit_off)) { + bits_in_src_buffer += 8 - src_bit_off; + } else { + src_buffer &= GENMASK(nbits - 1, 0); + bits_in_src_buffer += nbits; + } + nbits -= bits_in_src_buffer; + src++; + } + + /* Calculate the number of bytes that can be copied from src to dst. */ + nbytes = nbits / 8; + + /* Try to align dst to a byte boundary. */ + if (dst_bit_off) { + if (bits_in_src_buffer < (8 - dst_bit_off) && nbytes) { + src_buffer |= src[0] << bits_in_src_buffer; + bits_in_src_buffer += 8; + src++; + nbytes--; + } + + if (bits_in_src_buffer >= (8 - dst_bit_off)) { + dst[0] &= GENMASK(dst_bit_off - 1, 0); + dst[0] |= src_buffer << dst_bit_off; + src_buffer >>= (8 - dst_bit_off); + bits_in_src_buffer -= (8 - dst_bit_off); + dst_bit_off = 0; + dst++; + if (bits_in_src_buffer > 7) { + bits_in_src_buffer -= 8; + dst[0] = src_buffer; + dst++; + src_buffer >>= 8; + } + } + } + + if (!bits_in_src_buffer && !dst_bit_off) { + /* + * Both src and dst pointers are byte aligned, thus we can + * just use the optimized memcpy function. + */ + if (nbytes) + memcpy(dst, src, nbytes); + } else { + /* + * src buffer is not byte aligned, hence we have to copy each + * src byte to the src_buffer variable before extracting a byte + * to store in dst. + */ + for (i = 0; i < nbytes; i++) { + src_buffer |= src[i] << bits_in_src_buffer; + dst[i] = src_buffer; + src_buffer >>= 8; + } + } + /* Update dst and src pointers */ + dst += nbytes; + src += nbytes; + + /* + * nbits is the number of remaining bits. It should not exceed 8 as + * we've already copied as much bytes as possible. + */ + nbits %= 8; + + /* + * If there's no more bits to copy to the destination and src buffer + * was already byte aligned, then we're done. + */ + if (!nbits && !bits_in_src_buffer) + return; + + /* Copy the remaining bits to src_buffer */ + if (nbits) + src_buffer |= (*src & GENMASK(nbits - 1, 0)) << + bits_in_src_buffer; + bits_in_src_buffer += nbits; + + /* + * In case there were not enough bits to get a byte aligned dst buffer + * prepare the src_buffer variable to match the dst organization (shift + * src_buffer by dst_bit_off and retrieve the least significant bits + * from dst). + */ + if (dst_bit_off) + src_buffer = (src_buffer << dst_bit_off) | + (*dst & GENMASK(dst_bit_off - 1, 0)); + bits_in_src_buffer += dst_bit_off; + + /* + * Keep most significant bits from dst if we end up with an unaligned + * number of bits. + */ + nbytes = bits_in_src_buffer / 8; + if (bits_in_src_buffer % 8) { + src_buffer |= (dst[nbytes] & + GENMASK(7, bits_in_src_buffer % 8)) << + (nbytes * 8); + nbytes++; + } + + /* Copy the remaining bytes to dst */ + for (i = 0; i < nbytes; i++) { + dst[i] = src_buffer; + src_buffer >>= 8; + } +} diff --git a/drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.c b/drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.c new file mode 100644 index 000000000000..61fdd733492f --- /dev/null +++ b/drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.c @@ -0,0 +1,2182 @@ +/* + * Freescale GPMI NAND Flash Driver + * + * Copyright (C) 2010-2015 Freescale Semiconductor, Inc. + * Copyright (C) 2008 Embedded Alley Solutions, Inc. + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License along + * with this program; if not, write to the Free Software Foundation, Inc., + * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. + */ +#include +#include +#include +#include +#include +#include +#include +#include +#include "gpmi-nand.h" +#include "bch-regs.h" + +/* Resource names for the GPMI NAND driver. */ +#define GPMI_NAND_GPMI_REGS_ADDR_RES_NAME "gpmi-nand" +#define GPMI_NAND_BCH_REGS_ADDR_RES_NAME "bch" +#define GPMI_NAND_BCH_INTERRUPT_RES_NAME "bch" + +/* add our owner bbt descriptor */ +static uint8_t scan_ff_pattern[] = { 0xff }; +static struct nand_bbt_descr gpmi_bbt_descr = { + .options = 0, + .offs = 0, + .len = 1, + .pattern = scan_ff_pattern +}; + +/* + * We may change the layout if we can get the ECC info from the datasheet, + * else we will use all the (page + OOB). + */ +static int gpmi_ooblayout_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct gpmi_nand_data *this = nand_get_controller_data(chip); + struct bch_geometry *geo = &this->bch_geometry; + + if (section) + return -ERANGE; + + oobregion->offset = 0; + oobregion->length = geo->page_size - mtd->writesize; + + return 0; +} + +static int gpmi_ooblayout_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct gpmi_nand_data *this = nand_get_controller_data(chip); + struct bch_geometry *geo = &this->bch_geometry; + + if (section) + return -ERANGE; + + /* The available oob size we have. */ + if (geo->page_size < mtd->writesize + mtd->oobsize) { + oobregion->offset = geo->page_size - mtd->writesize; + oobregion->length = mtd->oobsize - oobregion->offset; + } + + return 0; +} + +static const char * const gpmi_clks_for_mx2x[] = { + "gpmi_io", +}; + +static const struct mtd_ooblayout_ops gpmi_ooblayout_ops = { + .ecc = gpmi_ooblayout_ecc, + .free = gpmi_ooblayout_free, +}; + +static const struct gpmi_devdata gpmi_devdata_imx23 = { + .type = IS_MX23, + .bch_max_ecc_strength = 20, + .max_chain_delay = 16, + .clks = gpmi_clks_for_mx2x, + .clks_count = ARRAY_SIZE(gpmi_clks_for_mx2x), +}; + +static const struct gpmi_devdata gpmi_devdata_imx28 = { + .type = IS_MX28, + .bch_max_ecc_strength = 20, + .max_chain_delay = 16, + .clks = gpmi_clks_for_mx2x, + .clks_count = ARRAY_SIZE(gpmi_clks_for_mx2x), +}; + +static const char * const gpmi_clks_for_mx6[] = { + "gpmi_io", "gpmi_apb", "gpmi_bch", "gpmi_bch_apb", "per1_bch", +}; + +static const struct gpmi_devdata gpmi_devdata_imx6q = { + .type = IS_MX6Q, + .bch_max_ecc_strength = 40, + .max_chain_delay = 12, + .clks = gpmi_clks_for_mx6, + .clks_count = ARRAY_SIZE(gpmi_clks_for_mx6), +}; + +static const struct gpmi_devdata gpmi_devdata_imx6sx = { + .type = IS_MX6SX, + .bch_max_ecc_strength = 62, + .max_chain_delay = 12, + .clks = gpmi_clks_for_mx6, + .clks_count = ARRAY_SIZE(gpmi_clks_for_mx6), +}; + +static const char * const gpmi_clks_for_mx7d[] = { + "gpmi_io", "gpmi_bch_apb", +}; + +static const struct gpmi_devdata gpmi_devdata_imx7d = { + .type = IS_MX7D, + .bch_max_ecc_strength = 62, + .max_chain_delay = 12, + .clks = gpmi_clks_for_mx7d, + .clks_count = ARRAY_SIZE(gpmi_clks_for_mx7d), +}; + +static irqreturn_t bch_irq(int irq, void *cookie) +{ + struct gpmi_nand_data *this = cookie; + + gpmi_clear_bch(this); + complete(&this->bch_done); + return IRQ_HANDLED; +} + +/* + * Calculate the ECC strength by hand: + * E : The ECC strength. + * G : the length of Galois Field. + * N : The chunk count of per page. + * O : the oobsize of the NAND chip. + * M : the metasize of per page. + * + * The formula is : + * E * G * N + * ------------ <= (O - M) + * 8 + * + * So, we get E by: + * (O - M) * 8 + * E <= ------------- + * G * N + */ +static inline int get_ecc_strength(struct gpmi_nand_data *this) +{ + struct bch_geometry *geo = &this->bch_geometry; + struct mtd_info *mtd = nand_to_mtd(&this->nand); + int ecc_strength; + + ecc_strength = ((mtd->oobsize - geo->metadata_size) * 8) + / (geo->gf_len * geo->ecc_chunk_count); + + /* We need the minor even number. */ + return round_down(ecc_strength, 2); +} + +static inline bool gpmi_check_ecc(struct gpmi_nand_data *this) +{ + struct bch_geometry *geo = &this->bch_geometry; + + /* Do the sanity check. */ + if (GPMI_IS_MX23(this) || GPMI_IS_MX28(this)) { + /* The mx23/mx28 only support the GF13. */ + if (geo->gf_len == 14) + return false; + } + return geo->ecc_strength <= this->devdata->bch_max_ecc_strength; +} + +/* + * If we can get the ECC information from the nand chip, we do not + * need to calculate them ourselves. + * + * We may have available oob space in this case. + */ +static int set_geometry_by_ecc_info(struct gpmi_nand_data *this) +{ + struct bch_geometry *geo = &this->bch_geometry; + struct nand_chip *chip = &this->nand; + struct mtd_info *mtd = nand_to_mtd(chip); + unsigned int block_mark_bit_offset; + + if (!(chip->ecc_strength_ds > 0 && chip->ecc_step_ds > 0)) + return -EINVAL; + + switch (chip->ecc_step_ds) { + case SZ_512: + geo->gf_len = 13; + break; + case SZ_1K: + geo->gf_len = 14; + break; + default: + dev_err(this->dev, + "unsupported nand chip. ecc bits : %d, ecc size : %d\n", + chip->ecc_strength_ds, chip->ecc_step_ds); + return -EINVAL; + } + geo->ecc_chunk_size = chip->ecc_step_ds; + geo->ecc_strength = round_up(chip->ecc_strength_ds, 2); + if (!gpmi_check_ecc(this)) + return -EINVAL; + + /* Keep the C >= O */ + if (geo->ecc_chunk_size < mtd->oobsize) { + dev_err(this->dev, + "unsupported nand chip. ecc size: %d, oob size : %d\n", + chip->ecc_step_ds, mtd->oobsize); + return -EINVAL; + } + + /* The default value, see comment in the legacy_set_geometry(). */ + geo->metadata_size = 10; + + geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunk_size; + + /* + * Now, the NAND chip with 2K page(data chunk is 512byte) shows below: + * + * | P | + * |<----------------------------------------------------->| + * | | + * | (Block Mark) | + * | P' | | | | + * |<-------------------------------------------->| D | | O' | + * | |<---->| |<--->| + * V V V V V + * +---+----------+-+----------+-+----------+-+----------+-+-----+ + * | M | data |E| data |E| data |E| data |E| | + * +---+----------+-+----------+-+----------+-+----------+-+-----+ + * ^ ^ + * | O | + * |<------------>| + * | | + * + * P : the page size for BCH module. + * E : The ECC strength. + * G : the length of Galois Field. + * N : The chunk count of per page. + * M : the metasize of per page. + * C : the ecc chunk size, aka the "data" above. + * P': the nand chip's page size. + * O : the nand chip's oob size. + * O': the free oob. + * + * The formula for P is : + * + * E * G * N + * P = ------------ + P' + M + * 8 + * + * The position of block mark moves forward in the ECC-based view + * of page, and the delta is: + * + * E * G * (N - 1) + * D = (---------------- + M) + * 8 + * + * Please see the comment in legacy_set_geometry(). + * With the condition C >= O , we still can get same result. + * So the bit position of the physical block mark within the ECC-based + * view of the page is : + * (P' - D) * 8 + */ + geo->page_size = mtd->writesize + geo->metadata_size + + (geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) / 8; + + geo->payload_size = mtd->writesize; + + geo->auxiliary_status_offset = ALIGN(geo->metadata_size, 4); + geo->auxiliary_size = ALIGN(geo->metadata_size, 4) + + ALIGN(geo->ecc_chunk_count, 4); + + if (!this->swap_block_mark) + return 0; + + /* For bit swap. */ + block_mark_bit_offset = mtd->writesize * 8 - + (geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1) + + geo->metadata_size * 8); + + geo->block_mark_byte_offset = block_mark_bit_offset / 8; + geo->block_mark_bit_offset = block_mark_bit_offset % 8; + return 0; +} + +static int legacy_set_geometry(struct gpmi_nand_data *this) +{ + struct bch_geometry *geo = &this->bch_geometry; + struct mtd_info *mtd = nand_to_mtd(&this->nand); + unsigned int metadata_size; + unsigned int status_size; + unsigned int block_mark_bit_offset; + + /* + * The size of the metadata can be changed, though we set it to 10 + * bytes now. But it can't be too large, because we have to save + * enough space for BCH. + */ + geo->metadata_size = 10; + + /* The default for the length of Galois Field. */ + geo->gf_len = 13; + + /* The default for chunk size. */ + geo->ecc_chunk_size = 512; + while (geo->ecc_chunk_size < mtd->oobsize) { + geo->ecc_chunk_size *= 2; /* keep C >= O */ + geo->gf_len = 14; + } + + geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunk_size; + + /* We use the same ECC strength for all chunks. */ + geo->ecc_strength = get_ecc_strength(this); + if (!gpmi_check_ecc(this)) { + dev_err(this->dev, + "ecc strength: %d cannot be supported by the controller (%d)\n" + "try to use minimum ecc strength that NAND chip required\n", + geo->ecc_strength, + this->devdata->bch_max_ecc_strength); + return -EINVAL; + } + + geo->page_size = mtd->writesize + geo->metadata_size + + (geo->gf_len * geo->ecc_strength * geo->ecc_chunk_count) / 8; + geo->payload_size = mtd->writesize; + + /* + * The auxiliary buffer contains the metadata and the ECC status. The + * metadata is padded to the nearest 32-bit boundary. The ECC status + * contains one byte for every ECC chunk, and is also padded to the + * nearest 32-bit boundary. + */ + metadata_size = ALIGN(geo->metadata_size, 4); + status_size = ALIGN(geo->ecc_chunk_count, 4); + + geo->auxiliary_size = metadata_size + status_size; + geo->auxiliary_status_offset = metadata_size; + + if (!this->swap_block_mark) + return 0; + + /* + * We need to compute the byte and bit offsets of + * the physical block mark within the ECC-based view of the page. + * + * NAND chip with 2K page shows below: + * (Block Mark) + * | | + * | D | + * |<---->| + * V V + * +---+----------+-+----------+-+----------+-+----------+-+ + * | M | data |E| data |E| data |E| data |E| + * +---+----------+-+----------+-+----------+-+----------+-+ + * + * The position of block mark moves forward in the ECC-based view + * of page, and the delta is: + * + * E * G * (N - 1) + * D = (---------------- + M) + * 8 + * + * With the formula to compute the ECC strength, and the condition + * : C >= O (C is the ecc chunk size) + * + * It's easy to deduce to the following result: + * + * E * G (O - M) C - M C - M + * ----------- <= ------- <= -------- < --------- + * 8 N N (N - 1) + * + * So, we get: + * + * E * G * (N - 1) + * D = (---------------- + M) < C + * 8 + * + * The above inequality means the position of block mark + * within the ECC-based view of the page is still in the data chunk, + * and it's NOT in the ECC bits of the chunk. + * + * Use the following to compute the bit position of the + * physical block mark within the ECC-based view of the page: + * (page_size - D) * 8 + * + * --Huang Shijie + */ + block_mark_bit_offset = mtd->writesize * 8 - + (geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1) + + geo->metadata_size * 8); + + geo->block_mark_byte_offset = block_mark_bit_offset / 8; + geo->block_mark_bit_offset = block_mark_bit_offset % 8; + return 0; +} + +int common_nfc_set_geometry(struct gpmi_nand_data *this) +{ + if ((of_property_read_bool(this->dev->of_node, "fsl,use-minimum-ecc")) + || legacy_set_geometry(this)) + return set_geometry_by_ecc_info(this); + + return 0; +} + +struct dma_chan *get_dma_chan(struct gpmi_nand_data *this) +{ + /* We use the DMA channel 0 to access all the nand chips. */ + return this->dma_chans[0]; +} + +/* Can we use the upper's buffer directly for DMA? */ +void prepare_data_dma(struct gpmi_nand_data *this, enum dma_data_direction dr) +{ + struct scatterlist *sgl = &this->data_sgl; + int ret; + + /* first try to map the upper buffer directly */ + if (virt_addr_valid(this->upper_buf) && + !object_is_on_stack(this->upper_buf)) { + sg_init_one(sgl, this->upper_buf, this->upper_len); + ret = dma_map_sg(this->dev, sgl, 1, dr); + if (ret == 0) + goto map_fail; + + this->direct_dma_map_ok = true; + return; + } + +map_fail: + /* We have to use our own DMA buffer. */ + sg_init_one(sgl, this->data_buffer_dma, this->upper_len); + + if (dr == DMA_TO_DEVICE) + memcpy(this->data_buffer_dma, this->upper_buf, this->upper_len); + + dma_map_sg(this->dev, sgl, 1, dr); + + this->direct_dma_map_ok = false; +} + +/* This will be called after the DMA operation is finished. */ +static void dma_irq_callback(void *param) +{ + struct gpmi_nand_data *this = param; + struct completion *dma_c = &this->dma_done; + + switch (this->dma_type) { + case DMA_FOR_COMMAND: + dma_unmap_sg(this->dev, &this->cmd_sgl, 1, DMA_TO_DEVICE); + break; + + case DMA_FOR_READ_DATA: + dma_unmap_sg(this->dev, &this->data_sgl, 1, DMA_FROM_DEVICE); + if (this->direct_dma_map_ok == false) + memcpy(this->upper_buf, this->data_buffer_dma, + this->upper_len); + break; + + case DMA_FOR_WRITE_DATA: + dma_unmap_sg(this->dev, &this->data_sgl, 1, DMA_TO_DEVICE); + break; + + case DMA_FOR_READ_ECC_PAGE: + case DMA_FOR_WRITE_ECC_PAGE: + /* We have to wait the BCH interrupt to finish. */ + break; + + default: + dev_err(this->dev, "in wrong DMA operation.\n"); + } + + complete(dma_c); +} + +int start_dma_without_bch_irq(struct gpmi_nand_data *this, + struct dma_async_tx_descriptor *desc) +{ + struct completion *dma_c = &this->dma_done; + unsigned long timeout; + + init_completion(dma_c); + + desc->callback = dma_irq_callback; + desc->callback_param = this; + dmaengine_submit(desc); + dma_async_issue_pending(get_dma_chan(this)); + + /* Wait for the interrupt from the DMA block. */ + timeout = wait_for_completion_timeout(dma_c, msecs_to_jiffies(1000)); + if (!timeout) { + dev_err(this->dev, "DMA timeout, last DMA :%d\n", + this->last_dma_type); + gpmi_dump_info(this); + return -ETIMEDOUT; + } + return 0; +} + +/* + * This function is used in BCH reading or BCH writing pages. + * It will wait for the BCH interrupt as long as ONE second. + * Actually, we must wait for two interrupts : + * [1] firstly the DMA interrupt and + * [2] secondly the BCH interrupt. + */ +int start_dma_with_bch_irq(struct gpmi_nand_data *this, + struct dma_async_tx_descriptor *desc) +{ + struct completion *bch_c = &this->bch_done; + unsigned long timeout; + + /* Prepare to receive an interrupt from the BCH block. */ + init_completion(bch_c); + + /* start the DMA */ + start_dma_without_bch_irq(this, desc); + + /* Wait for the interrupt from the BCH block. */ + timeout = wait_for_completion_timeout(bch_c, msecs_to_jiffies(1000)); + if (!timeout) { + dev_err(this->dev, "BCH timeout, last DMA :%d\n", + this->last_dma_type); + gpmi_dump_info(this); + return -ETIMEDOUT; + } + return 0; +} + +static int acquire_register_block(struct gpmi_nand_data *this, + const char *res_name) +{ + struct platform_device *pdev = this->pdev; + struct resources *res = &this->resources; + struct resource *r; + void __iomem *p; + + r = platform_get_resource_byname(pdev, IORESOURCE_MEM, res_name); + p = devm_ioremap_resource(&pdev->dev, r); + if (IS_ERR(p)) + return PTR_ERR(p); + + if (!strcmp(res_name, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME)) + res->gpmi_regs = p; + else if (!strcmp(res_name, GPMI_NAND_BCH_REGS_ADDR_RES_NAME)) + res->bch_regs = p; + else + dev_err(this->dev, "unknown resource name : %s\n", res_name); + + return 0; +} + +static int acquire_bch_irq(struct gpmi_nand_data *this, irq_handler_t irq_h) +{ + struct platform_device *pdev = this->pdev; + const char *res_name = GPMI_NAND_BCH_INTERRUPT_RES_NAME; + struct resource *r; + int err; + + r = platform_get_resource_byname(pdev, IORESOURCE_IRQ, res_name); + if (!r) { + dev_err(this->dev, "Can't get resource for %s\n", res_name); + return -ENODEV; + } + + err = devm_request_irq(this->dev, r->start, irq_h, 0, res_name, this); + if (err) + dev_err(this->dev, "error requesting BCH IRQ\n"); + + return err; +} + +static void release_dma_channels(struct gpmi_nand_data *this) +{ + unsigned int i; + for (i = 0; i < DMA_CHANS; i++) + if (this->dma_chans[i]) { + dma_release_channel(this->dma_chans[i]); + this->dma_chans[i] = NULL; + } +} + +static int acquire_dma_channels(struct gpmi_nand_data *this) +{ + struct platform_device *pdev = this->pdev; + struct dma_chan *dma_chan; + + /* request dma channel */ + dma_chan = dma_request_slave_channel(&pdev->dev, "rx-tx"); + if (!dma_chan) { + dev_err(this->dev, "Failed to request DMA channel.\n"); + goto acquire_err; + } + + this->dma_chans[0] = dma_chan; + return 0; + +acquire_err: + release_dma_channels(this); + return -EINVAL; +} + +static int gpmi_get_clks(struct gpmi_nand_data *this) +{ + struct resources *r = &this->resources; + struct clk *clk; + int err, i; + + for (i = 0; i < this->devdata->clks_count; i++) { + clk = devm_clk_get(this->dev, this->devdata->clks[i]); + if (IS_ERR(clk)) { + err = PTR_ERR(clk); + goto err_clock; + } + + r->clock[i] = clk; + } + + if (GPMI_IS_MX6(this)) + /* + * Set the default value for the gpmi clock. + * + * If you want to use the ONFI nand which is in the + * Synchronous Mode, you should change the clock as you need. + */ + clk_set_rate(r->clock[0], 22000000); + + return 0; + +err_clock: + dev_dbg(this->dev, "failed in finding the clocks.\n"); + return err; +} + +static int acquire_resources(struct gpmi_nand_data *this) +{ + int ret; + + ret = acquire_register_block(this, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME); + if (ret) + goto exit_regs; + + ret = acquire_register_block(this, GPMI_NAND_BCH_REGS_ADDR_RES_NAME); + if (ret) + goto exit_regs; + + ret = acquire_bch_irq(this, bch_irq); + if (ret) + goto exit_regs; + + ret = acquire_dma_channels(this); + if (ret) + goto exit_regs; + + ret = gpmi_get_clks(this); + if (ret) + goto exit_clock; + return 0; + +exit_clock: + release_dma_channels(this); +exit_regs: + return ret; +} + +static void release_resources(struct gpmi_nand_data *this) +{ + release_dma_channels(this); +} + +static int init_hardware(struct gpmi_nand_data *this) +{ + int ret; + + /* + * This structure contains the "safe" GPMI timing that should succeed + * with any NAND Flash device + * (although, with less-than-optimal performance). + */ + struct nand_timing safe_timing = { + .data_setup_in_ns = 80, + .data_hold_in_ns = 60, + .address_setup_in_ns = 25, + .gpmi_sample_delay_in_ns = 6, + .tREA_in_ns = -1, + .tRLOH_in_ns = -1, + .tRHOH_in_ns = -1, + }; + + /* Initialize the hardwares. */ + ret = gpmi_init(this); + if (ret) + return ret; + + this->timing = safe_timing; + return 0; +} + +static int read_page_prepare(struct gpmi_nand_data *this, + void *destination, unsigned length, + void *alt_virt, dma_addr_t alt_phys, unsigned alt_size, + void **use_virt, dma_addr_t *use_phys) +{ + struct device *dev = this->dev; + + if (virt_addr_valid(destination)) { + dma_addr_t dest_phys; + + dest_phys = dma_map_single(dev, destination, + length, DMA_FROM_DEVICE); + if (dma_mapping_error(dev, dest_phys)) { + if (alt_size < length) { + dev_err(dev, "Alternate buffer is too small\n"); + return -ENOMEM; + } + goto map_failed; + } + *use_virt = destination; + *use_phys = dest_phys; + this->direct_dma_map_ok = true; + return 0; + } + +map_failed: + *use_virt = alt_virt; + *use_phys = alt_phys; + this->direct_dma_map_ok = false; + return 0; +} + +static inline void read_page_end(struct gpmi_nand_data *this, + void *destination, unsigned length, + void *alt_virt, dma_addr_t alt_phys, unsigned alt_size, + void *used_virt, dma_addr_t used_phys) +{ + if (this->direct_dma_map_ok) + dma_unmap_single(this->dev, used_phys, length, DMA_FROM_DEVICE); +} + +static inline void read_page_swap_end(struct gpmi_nand_data *this, + void *destination, unsigned length, + void *alt_virt, dma_addr_t alt_phys, unsigned alt_size, + void *used_virt, dma_addr_t used_phys) +{ + if (!this->direct_dma_map_ok) + memcpy(destination, alt_virt, length); +} + +static int send_page_prepare(struct gpmi_nand_data *this, + const void *source, unsigned length, + void *alt_virt, dma_addr_t alt_phys, unsigned alt_size, + const void **use_virt, dma_addr_t *use_phys) +{ + struct device *dev = this->dev; + + if (virt_addr_valid(source)) { + dma_addr_t source_phys; + + source_phys = dma_map_single(dev, (void *)source, length, + DMA_TO_DEVICE); + if (dma_mapping_error(dev, source_phys)) { + if (alt_size < length) { + dev_err(dev, "Alternate buffer is too small\n"); + return -ENOMEM; + } + goto map_failed; + } + *use_virt = source; + *use_phys = source_phys; + return 0; + } +map_failed: + /* + * Copy the content of the source buffer into the alternate + * buffer and set up the return values accordingly. + */ + memcpy(alt_virt, source, length); + + *use_virt = alt_virt; + *use_phys = alt_phys; + return 0; +} + +static void send_page_end(struct gpmi_nand_data *this, + const void *source, unsigned length, + void *alt_virt, dma_addr_t alt_phys, unsigned alt_size, + const void *used_virt, dma_addr_t used_phys) +{ + struct device *dev = this->dev; + if (used_virt == source) + dma_unmap_single(dev, used_phys, length, DMA_TO_DEVICE); +} + +static void gpmi_free_dma_buffer(struct gpmi_nand_data *this) +{ + struct device *dev = this->dev; + + if (this->page_buffer_virt && virt_addr_valid(this->page_buffer_virt)) + dma_free_coherent(dev, this->page_buffer_size, + this->page_buffer_virt, + this->page_buffer_phys); + kfree(this->cmd_buffer); + kfree(this->data_buffer_dma); + kfree(this->raw_buffer); + + this->cmd_buffer = NULL; + this->data_buffer_dma = NULL; + this->raw_buffer = NULL; + this->page_buffer_virt = NULL; + this->page_buffer_size = 0; +} + +/* Allocate the DMA buffers */ +static int gpmi_alloc_dma_buffer(struct gpmi_nand_data *this) +{ + struct bch_geometry *geo = &this->bch_geometry; + struct device *dev = this->dev; + struct mtd_info *mtd = nand_to_mtd(&this->nand); + + /* [1] Allocate a command buffer. PAGE_SIZE is enough. */ + this->cmd_buffer = kzalloc(PAGE_SIZE, GFP_DMA | GFP_KERNEL); + if (this->cmd_buffer == NULL) + goto error_alloc; + + /* + * [2] Allocate a read/write data buffer. + * The gpmi_alloc_dma_buffer can be called twice. + * We allocate a PAGE_SIZE length buffer if gpmi_alloc_dma_buffer + * is called before the nand_scan_ident; and we allocate a buffer + * of the real NAND page size when the gpmi_alloc_dma_buffer is + * called after the nand_scan_ident. + */ + this->data_buffer_dma = kzalloc(mtd->writesize ?: PAGE_SIZE, + GFP_DMA | GFP_KERNEL); + if (this->data_buffer_dma == NULL) + goto error_alloc; + + /* + * [3] Allocate the page buffer. + * + * Both the payload buffer and the auxiliary buffer must appear on + * 32-bit boundaries. We presume the size of the payload buffer is a + * power of two and is much larger than four, which guarantees the + * auxiliary buffer will appear on a 32-bit boundary. + */ + this->page_buffer_size = geo->payload_size + geo->auxiliary_size; + this->page_buffer_virt = dma_alloc_coherent(dev, this->page_buffer_size, + &this->page_buffer_phys, GFP_DMA); + if (!this->page_buffer_virt) + goto error_alloc; + + this->raw_buffer = kzalloc(mtd->writesize + mtd->oobsize, GFP_KERNEL); + if (!this->raw_buffer) + goto error_alloc; + + /* Slice up the page buffer. */ + this->payload_virt = this->page_buffer_virt; + this->payload_phys = this->page_buffer_phys; + this->auxiliary_virt = this->payload_virt + geo->payload_size; + this->auxiliary_phys = this->payload_phys + geo->payload_size; + return 0; + +error_alloc: + gpmi_free_dma_buffer(this); + return -ENOMEM; +} + +static void gpmi_cmd_ctrl(struct mtd_info *mtd, int data, unsigned int ctrl) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct gpmi_nand_data *this = nand_get_controller_data(chip); + int ret; + + /* + * Every operation begins with a command byte and a series of zero or + * more address bytes. These are distinguished by either the Address + * Latch Enable (ALE) or Command Latch Enable (CLE) signals being + * asserted. When MTD is ready to execute the command, it will deassert + * both latch enables. + * + * Rather than run a separate DMA operation for every single byte, we + * queue them up and run a single DMA operation for the entire series + * of command and data bytes. NAND_CMD_NONE means the END of the queue. + */ + if ((ctrl & (NAND_ALE | NAND_CLE))) { + if (data != NAND_CMD_NONE) + this->cmd_buffer[this->command_length++] = data; + return; + } + + if (!this->command_length) + return; + + ret = gpmi_send_command(this); + if (ret) + dev_err(this->dev, "Chip: %u, Error %d\n", + this->current_chip, ret); + + this->command_length = 0; +} + +static int gpmi_dev_ready(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct gpmi_nand_data *this = nand_get_controller_data(chip); + + return gpmi_is_ready(this, this->current_chip); +} + +static void gpmi_select_chip(struct mtd_info *mtd, int chipnr) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct gpmi_nand_data *this = nand_get_controller_data(chip); + + if ((this->current_chip < 0) && (chipnr >= 0)) + gpmi_begin(this); + else if ((this->current_chip >= 0) && (chipnr < 0)) + gpmi_end(this); + + this->current_chip = chipnr; +} + +static void gpmi_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct gpmi_nand_data *this = nand_get_controller_data(chip); + + dev_dbg(this->dev, "len is %d\n", len); + this->upper_buf = buf; + this->upper_len = len; + + gpmi_read_data(this); +} + +static void gpmi_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct gpmi_nand_data *this = nand_get_controller_data(chip); + + dev_dbg(this->dev, "len is %d\n", len); + this->upper_buf = (uint8_t *)buf; + this->upper_len = len; + + gpmi_send_data(this); +} + +static uint8_t gpmi_read_byte(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct gpmi_nand_data *this = nand_get_controller_data(chip); + uint8_t *buf = this->data_buffer_dma; + + gpmi_read_buf(mtd, buf, 1); + return buf[0]; +} + +/* + * Handles block mark swapping. + * It can be called in swapping the block mark, or swapping it back, + * because the the operations are the same. + */ +static void block_mark_swapping(struct gpmi_nand_data *this, + void *payload, void *auxiliary) +{ + struct bch_geometry *nfc_geo = &this->bch_geometry; + unsigned char *p; + unsigned char *a; + unsigned int bit; + unsigned char mask; + unsigned char from_data; + unsigned char from_oob; + + if (!this->swap_block_mark) + return; + + /* + * If control arrives here, we're swapping. Make some convenience + * variables. + */ + bit = nfc_geo->block_mark_bit_offset; + p = payload + nfc_geo->block_mark_byte_offset; + a = auxiliary; + + /* + * Get the byte from the data area that overlays the block mark. Since + * the ECC engine applies its own view to the bits in the page, the + * physical block mark won't (in general) appear on a byte boundary in + * the data. + */ + from_data = (p[0] >> bit) | (p[1] << (8 - bit)); + + /* Get the byte from the OOB. */ + from_oob = a[0]; + + /* Swap them. */ + a[0] = from_data; + + mask = (0x1 << bit) - 1; + p[0] = (p[0] & mask) | (from_oob << bit); + + mask = ~0 << bit; + p[1] = (p[1] & mask) | (from_oob >> (8 - bit)); +} + +static int gpmi_ecc_read_page_data(struct nand_chip *chip, + uint8_t *buf, int oob_required, + int page) +{ + struct gpmi_nand_data *this = nand_get_controller_data(chip); + struct bch_geometry *nfc_geo = &this->bch_geometry; + struct mtd_info *mtd = nand_to_mtd(chip); + void *payload_virt; + dma_addr_t payload_phys; + void *auxiliary_virt; + dma_addr_t auxiliary_phys; + unsigned int i; + unsigned char *status; + unsigned int max_bitflips = 0; + int ret; + + dev_dbg(this->dev, "page number is : %d\n", page); + ret = read_page_prepare(this, buf, nfc_geo->payload_size, + this->payload_virt, this->payload_phys, + nfc_geo->payload_size, + &payload_virt, &payload_phys); + if (ret) { + dev_err(this->dev, "Inadequate DMA buffer\n"); + ret = -ENOMEM; + return ret; + } + auxiliary_virt = this->auxiliary_virt; + auxiliary_phys = this->auxiliary_phys; + + /* go! */ + ret = gpmi_read_page(this, payload_phys, auxiliary_phys); + read_page_end(this, buf, nfc_geo->payload_size, + this->payload_virt, this->payload_phys, + nfc_geo->payload_size, + payload_virt, payload_phys); + if (ret) { + dev_err(this->dev, "Error in ECC-based read: %d\n", ret); + return ret; + } + + /* Loop over status bytes, accumulating ECC status. */ + status = auxiliary_virt + nfc_geo->auxiliary_status_offset; + + read_page_swap_end(this, buf, nfc_geo->payload_size, + this->payload_virt, this->payload_phys, + nfc_geo->payload_size, + payload_virt, payload_phys); + + for (i = 0; i < nfc_geo->ecc_chunk_count; i++, status++) { + if ((*status == STATUS_GOOD) || (*status == STATUS_ERASED)) + continue; + + if (*status == STATUS_UNCORRECTABLE) { + int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len; + u8 *eccbuf = this->raw_buffer; + int offset, bitoffset; + int eccbytes; + int flips; + + /* Read ECC bytes into our internal raw_buffer */ + offset = nfc_geo->metadata_size * 8; + offset += ((8 * nfc_geo->ecc_chunk_size) + eccbits) * (i + 1); + offset -= eccbits; + bitoffset = offset % 8; + eccbytes = DIV_ROUND_UP(offset + eccbits, 8); + offset /= 8; + eccbytes -= offset; + nand_change_read_column_op(chip, offset, eccbuf, + eccbytes, false); + + /* + * ECC data are not byte aligned and we may have + * in-band data in the first and last byte of + * eccbuf. Set non-eccbits to one so that + * nand_check_erased_ecc_chunk() does not count them + * as bitflips. + */ + if (bitoffset) + eccbuf[0] |= GENMASK(bitoffset - 1, 0); + + bitoffset = (bitoffset + eccbits) % 8; + if (bitoffset) + eccbuf[eccbytes - 1] |= GENMASK(7, bitoffset); + + /* + * The ECC hardware has an uncorrectable ECC status + * code in case we have bitflips in an erased page. As + * nothing was written into this subpage the ECC is + * obviously wrong and we can not trust it. We assume + * at this point that we are reading an erased page and + * try to correct the bitflips in buffer up to + * ecc_strength bitflips. If this is a page with random + * data, we exceed this number of bitflips and have a + * ECC failure. Otherwise we use the corrected buffer. + */ + if (i == 0) { + /* The first block includes metadata */ + flips = nand_check_erased_ecc_chunk( + buf + i * nfc_geo->ecc_chunk_size, + nfc_geo->ecc_chunk_size, + eccbuf, eccbytes, + auxiliary_virt, + nfc_geo->metadata_size, + nfc_geo->ecc_strength); + } else { + flips = nand_check_erased_ecc_chunk( + buf + i * nfc_geo->ecc_chunk_size, + nfc_geo->ecc_chunk_size, + eccbuf, eccbytes, + NULL, 0, + nfc_geo->ecc_strength); + } + + if (flips > 0) { + max_bitflips = max_t(unsigned int, max_bitflips, + flips); + mtd->ecc_stats.corrected += flips; + continue; + } + + mtd->ecc_stats.failed++; + continue; + } + + mtd->ecc_stats.corrected += *status; + max_bitflips = max_t(unsigned int, max_bitflips, *status); + } + + /* handle the block mark swapping */ + block_mark_swapping(this, buf, auxiliary_virt); + + if (oob_required) { + /* + * It's time to deliver the OOB bytes. See gpmi_ecc_read_oob() + * for details about our policy for delivering the OOB. + * + * We fill the caller's buffer with set bits, and then copy the + * block mark to th caller's buffer. Note that, if block mark + * swapping was necessary, it has already been done, so we can + * rely on the first byte of the auxiliary buffer to contain + * the block mark. + */ + memset(chip->oob_poi, ~0, mtd->oobsize); + chip->oob_poi[0] = ((uint8_t *) auxiliary_virt)[0]; + } + + return max_bitflips; +} + +static int gpmi_ecc_read_page(struct mtd_info *mtd, struct nand_chip *chip, + uint8_t *buf, int oob_required, int page) +{ + nand_read_page_op(chip, page, 0, NULL, 0); + + return gpmi_ecc_read_page_data(chip, buf, oob_required, page); +} + +/* Fake a virtual small page for the subpage read */ +static int gpmi_ecc_read_subpage(struct mtd_info *mtd, struct nand_chip *chip, + uint32_t offs, uint32_t len, uint8_t *buf, int page) +{ + struct gpmi_nand_data *this = nand_get_controller_data(chip); + void __iomem *bch_regs = this->resources.bch_regs; + struct bch_geometry old_geo = this->bch_geometry; + struct bch_geometry *geo = &this->bch_geometry; + int size = chip->ecc.size; /* ECC chunk size */ + int meta, n, page_size; + u32 r1_old, r2_old, r1_new, r2_new; + unsigned int max_bitflips; + int first, last, marker_pos; + int ecc_parity_size; + int col = 0; + int old_swap_block_mark = this->swap_block_mark; + + /* The size of ECC parity */ + ecc_parity_size = geo->gf_len * geo->ecc_strength / 8; + + /* Align it with the chunk size */ + first = offs / size; + last = (offs + len - 1) / size; + + if (this->swap_block_mark) { + /* + * Find the chunk which contains the Block Marker. + * If this chunk is in the range of [first, last], + * we have to read out the whole page. + * Why? since we had swapped the data at the position of Block + * Marker to the metadata which is bound with the chunk 0. + */ + marker_pos = geo->block_mark_byte_offset / size; + if (last >= marker_pos && first <= marker_pos) { + dev_dbg(this->dev, + "page:%d, first:%d, last:%d, marker at:%d\n", + page, first, last, marker_pos); + return gpmi_ecc_read_page(mtd, chip, buf, 0, page); + } + } + + meta = geo->metadata_size; + if (first) { + col = meta + (size + ecc_parity_size) * first; + meta = 0; + buf = buf + first * size; + } + + nand_read_page_op(chip, page, col, NULL, 0); + + /* Save the old environment */ + r1_old = r1_new = readl(bch_regs + HW_BCH_FLASH0LAYOUT0); + r2_old = r2_new = readl(bch_regs + HW_BCH_FLASH0LAYOUT1); + + /* change the BCH registers and bch_geometry{} */ + n = last - first + 1; + page_size = meta + (size + ecc_parity_size) * n; + + r1_new &= ~(BM_BCH_FLASH0LAYOUT0_NBLOCKS | + BM_BCH_FLASH0LAYOUT0_META_SIZE); + r1_new |= BF_BCH_FLASH0LAYOUT0_NBLOCKS(n - 1) + | BF_BCH_FLASH0LAYOUT0_META_SIZE(meta); + writel(r1_new, bch_regs + HW_BCH_FLASH0LAYOUT0); + + r2_new &= ~BM_BCH_FLASH0LAYOUT1_PAGE_SIZE; + r2_new |= BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(page_size); + writel(r2_new, bch_regs + HW_BCH_FLASH0LAYOUT1); + + geo->ecc_chunk_count = n; + geo->payload_size = n * size; + geo->page_size = page_size; + geo->auxiliary_status_offset = ALIGN(meta, 4); + + dev_dbg(this->dev, "page:%d(%d:%d)%d, chunk:(%d:%d), BCH PG size:%d\n", + page, offs, len, col, first, n, page_size); + + /* Read the subpage now */ + this->swap_block_mark = false; + max_bitflips = gpmi_ecc_read_page_data(chip, buf, 0, page); + + /* Restore */ + writel(r1_old, bch_regs + HW_BCH_FLASH0LAYOUT0); + writel(r2_old, bch_regs + HW_BCH_FLASH0LAYOUT1); + this->bch_geometry = old_geo; + this->swap_block_mark = old_swap_block_mark; + + return max_bitflips; +} + +static int gpmi_ecc_write_page(struct mtd_info *mtd, struct nand_chip *chip, + const uint8_t *buf, int oob_required, int page) +{ + struct gpmi_nand_data *this = nand_get_controller_data(chip); + struct bch_geometry *nfc_geo = &this->bch_geometry; + const void *payload_virt; + dma_addr_t payload_phys; + const void *auxiliary_virt; + dma_addr_t auxiliary_phys; + int ret; + + dev_dbg(this->dev, "ecc write page.\n"); + + nand_prog_page_begin_op(chip, page, 0, NULL, 0); + + if (this->swap_block_mark) { + /* + * If control arrives here, we're doing block mark swapping. + * Since we can't modify the caller's buffers, we must copy them + * into our own. + */ + memcpy(this->payload_virt, buf, mtd->writesize); + payload_virt = this->payload_virt; + payload_phys = this->payload_phys; + + memcpy(this->auxiliary_virt, chip->oob_poi, + nfc_geo->auxiliary_size); + auxiliary_virt = this->auxiliary_virt; + auxiliary_phys = this->auxiliary_phys; + + /* Handle block mark swapping. */ + block_mark_swapping(this, + (void *)payload_virt, (void *)auxiliary_virt); + } else { + /* + * If control arrives here, we're not doing block mark swapping, + * so we can to try and use the caller's buffers. + */ + ret = send_page_prepare(this, + buf, mtd->writesize, + this->payload_virt, this->payload_phys, + nfc_geo->payload_size, + &payload_virt, &payload_phys); + if (ret) { + dev_err(this->dev, "Inadequate payload DMA buffer\n"); + return 0; + } + + ret = send_page_prepare(this, + chip->oob_poi, mtd->oobsize, + this->auxiliary_virt, this->auxiliary_phys, + nfc_geo->auxiliary_size, + &auxiliary_virt, &auxiliary_phys); + if (ret) { + dev_err(this->dev, "Inadequate auxiliary DMA buffer\n"); + goto exit_auxiliary; + } + } + + /* Ask the NFC. */ + ret = gpmi_send_page(this, payload_phys, auxiliary_phys); + if (ret) + dev_err(this->dev, "Error in ECC-based write: %d\n", ret); + + if (!this->swap_block_mark) { + send_page_end(this, chip->oob_poi, mtd->oobsize, + this->auxiliary_virt, this->auxiliary_phys, + nfc_geo->auxiliary_size, + auxiliary_virt, auxiliary_phys); +exit_auxiliary: + send_page_end(this, buf, mtd->writesize, + this->payload_virt, this->payload_phys, + nfc_geo->payload_size, + payload_virt, payload_phys); + } + + if (ret) + return ret; + + return nand_prog_page_end_op(chip); +} + +/* + * There are several places in this driver where we have to handle the OOB and + * block marks. This is the function where things are the most complicated, so + * this is where we try to explain it all. All the other places refer back to + * here. + * + * These are the rules, in order of decreasing importance: + * + * 1) Nothing the caller does can be allowed to imperil the block mark. + * + * 2) In read operations, the first byte of the OOB we return must reflect the + * true state of the block mark, no matter where that block mark appears in + * the physical page. + * + * 3) ECC-based read operations return an OOB full of set bits (since we never + * allow ECC-based writes to the OOB, it doesn't matter what ECC-based reads + * return). + * + * 4) "Raw" read operations return a direct view of the physical bytes in the + * page, using the conventional definition of which bytes are data and which + * are OOB. This gives the caller a way to see the actual, physical bytes + * in the page, without the distortions applied by our ECC engine. + * + * + * What we do for this specific read operation depends on two questions: + * + * 1) Are we doing a "raw" read, or an ECC-based read? + * + * 2) Are we using block mark swapping or transcription? + * + * There are four cases, illustrated by the following Karnaugh map: + * + * | Raw | ECC-based | + * -------------+-------------------------+-------------------------+ + * | Read the conventional | | + * | OOB at the end of the | | + * Swapping | page and return it. It | | + * | contains exactly what | | + * | we want. | Read the block mark and | + * -------------+-------------------------+ return it in a buffer | + * | Read the conventional | full of set bits. | + * | OOB at the end of the | | + * | page and also the block | | + * Transcribing | mark in the metadata. | | + * | Copy the block mark | | + * | into the first byte of | | + * | the OOB. | | + * -------------+-------------------------+-------------------------+ + * + * Note that we break rule #4 in the Transcribing/Raw case because we're not + * giving an accurate view of the actual, physical bytes in the page (we're + * overwriting the block mark). That's OK because it's more important to follow + * rule #2. + * + * It turns out that knowing whether we want an "ECC-based" or "raw" read is not + * easy. When reading a page, for example, the NAND Flash MTD code calls our + * ecc.read_page or ecc.read_page_raw function. Thus, the fact that MTD wants an + * ECC-based or raw view of the page is implicit in which function it calls + * (there is a similar pair of ECC-based/raw functions for writing). + */ +static int gpmi_ecc_read_oob(struct mtd_info *mtd, struct nand_chip *chip, + int page) +{ + struct gpmi_nand_data *this = nand_get_controller_data(chip); + + dev_dbg(this->dev, "page number is %d\n", page); + /* clear the OOB buffer */ + memset(chip->oob_poi, ~0, mtd->oobsize); + + /* Read out the conventional OOB. */ + nand_read_page_op(chip, page, mtd->writesize, NULL, 0); + chip->read_buf(mtd, chip->oob_poi, mtd->oobsize); + + /* + * Now, we want to make sure the block mark is correct. In the + * non-transcribing case (!GPMI_IS_MX23()), we already have it. + * Otherwise, we need to explicitly read it. + */ + if (GPMI_IS_MX23(this)) { + /* Read the block mark into the first byte of the OOB buffer. */ + nand_read_page_op(chip, page, 0, NULL, 0); + chip->oob_poi[0] = chip->read_byte(mtd); + } + + return 0; +} + +static int +gpmi_ecc_write_oob(struct mtd_info *mtd, struct nand_chip *chip, int page) +{ + struct mtd_oob_region of = { }; + + /* Do we have available oob area? */ + mtd_ooblayout_free(mtd, 0, &of); + if (!of.length) + return -EPERM; + + if (!nand_is_slc(chip)) + return -EPERM; + + return nand_prog_page_op(chip, page, mtd->writesize + of.offset, + chip->oob_poi + of.offset, of.length); +} + +/* + * This function reads a NAND page without involving the ECC engine (no HW + * ECC correction). + * The tricky part in the GPMI/BCH controller is that it stores ECC bits + * inline (interleaved with payload DATA), and do not align data chunk on + * byte boundaries. + * We thus need to take care moving the payload data and ECC bits stored in the + * page into the provided buffers, which is why we're using gpmi_copy_bits. + * + * See set_geometry_by_ecc_info inline comments to have a full description + * of the layout used by the GPMI controller. + */ +static int gpmi_ecc_read_page_raw(struct mtd_info *mtd, + struct nand_chip *chip, uint8_t *buf, + int oob_required, int page) +{ + struct gpmi_nand_data *this = nand_get_controller_data(chip); + struct bch_geometry *nfc_geo = &this->bch_geometry; + int eccsize = nfc_geo->ecc_chunk_size; + int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len; + u8 *tmp_buf = this->raw_buffer; + size_t src_bit_off; + size_t oob_bit_off; + size_t oob_byte_off; + uint8_t *oob = chip->oob_poi; + int step; + + nand_read_page_op(chip, page, 0, tmp_buf, + mtd->writesize + mtd->oobsize); + + /* + * If required, swap the bad block marker and the data stored in the + * metadata section, so that we don't wrongly consider a block as bad. + * + * See the layout description for a detailed explanation on why this + * is needed. + */ + if (this->swap_block_mark) + swap(tmp_buf[0], tmp_buf[mtd->writesize]); + + /* + * Copy the metadata section into the oob buffer (this section is + * guaranteed to be aligned on a byte boundary). + */ + if (oob_required) + memcpy(oob, tmp_buf, nfc_geo->metadata_size); + + oob_bit_off = nfc_geo->metadata_size * 8; + src_bit_off = oob_bit_off; + + /* Extract interleaved payload data and ECC bits */ + for (step = 0; step < nfc_geo->ecc_chunk_count; step++) { + if (buf) + gpmi_copy_bits(buf, step * eccsize * 8, + tmp_buf, src_bit_off, + eccsize * 8); + src_bit_off += eccsize * 8; + + /* Align last ECC block to align a byte boundary */ + if (step == nfc_geo->ecc_chunk_count - 1 && + (oob_bit_off + eccbits) % 8) + eccbits += 8 - ((oob_bit_off + eccbits) % 8); + + if (oob_required) + gpmi_copy_bits(oob, oob_bit_off, + tmp_buf, src_bit_off, + eccbits); + + src_bit_off += eccbits; + oob_bit_off += eccbits; + } + + if (oob_required) { + oob_byte_off = oob_bit_off / 8; + + if (oob_byte_off < mtd->oobsize) + memcpy(oob + oob_byte_off, + tmp_buf + mtd->writesize + oob_byte_off, + mtd->oobsize - oob_byte_off); + } + + return 0; +} + +/* + * This function writes a NAND page without involving the ECC engine (no HW + * ECC generation). + * The tricky part in the GPMI/BCH controller is that it stores ECC bits + * inline (interleaved with payload DATA), and do not align data chunk on + * byte boundaries. + * We thus need to take care moving the OOB area at the right place in the + * final page, which is why we're using gpmi_copy_bits. + * + * See set_geometry_by_ecc_info inline comments to have a full description + * of the layout used by the GPMI controller. + */ +static int gpmi_ecc_write_page_raw(struct mtd_info *mtd, + struct nand_chip *chip, + const uint8_t *buf, + int oob_required, int page) +{ + struct gpmi_nand_data *this = nand_get_controller_data(chip); + struct bch_geometry *nfc_geo = &this->bch_geometry; + int eccsize = nfc_geo->ecc_chunk_size; + int eccbits = nfc_geo->ecc_strength * nfc_geo->gf_len; + u8 *tmp_buf = this->raw_buffer; + uint8_t *oob = chip->oob_poi; + size_t dst_bit_off; + size_t oob_bit_off; + size_t oob_byte_off; + int step; + + /* + * Initialize all bits to 1 in case we don't have a buffer for the + * payload or oob data in order to leave unspecified bits of data + * to their initial state. + */ + if (!buf || !oob_required) + memset(tmp_buf, 0xff, mtd->writesize + mtd->oobsize); + + /* + * First copy the metadata section (stored in oob buffer) at the + * beginning of the page, as imposed by the GPMI layout. + */ + memcpy(tmp_buf, oob, nfc_geo->metadata_size); + oob_bit_off = nfc_geo->metadata_size * 8; + dst_bit_off = oob_bit_off; + + /* Interleave payload data and ECC bits */ + for (step = 0; step < nfc_geo->ecc_chunk_count; step++) { + if (buf) + gpmi_copy_bits(tmp_buf, dst_bit_off, + buf, step * eccsize * 8, eccsize * 8); + dst_bit_off += eccsize * 8; + + /* Align last ECC block to align a byte boundary */ + if (step == nfc_geo->ecc_chunk_count - 1 && + (oob_bit_off + eccbits) % 8) + eccbits += 8 - ((oob_bit_off + eccbits) % 8); + + if (oob_required) + gpmi_copy_bits(tmp_buf, dst_bit_off, + oob, oob_bit_off, eccbits); + + dst_bit_off += eccbits; + oob_bit_off += eccbits; + } + + oob_byte_off = oob_bit_off / 8; + + if (oob_required && oob_byte_off < mtd->oobsize) + memcpy(tmp_buf + mtd->writesize + oob_byte_off, + oob + oob_byte_off, mtd->oobsize - oob_byte_off); + + /* + * If required, swap the bad block marker and the first byte of the + * metadata section, so that we don't modify the bad block marker. + * + * See the layout description for a detailed explanation on why this + * is needed. + */ + if (this->swap_block_mark) + swap(tmp_buf[0], tmp_buf[mtd->writesize]); + + return nand_prog_page_op(chip, page, 0, tmp_buf, + mtd->writesize + mtd->oobsize); +} + +static int gpmi_ecc_read_oob_raw(struct mtd_info *mtd, struct nand_chip *chip, + int page) +{ + return gpmi_ecc_read_page_raw(mtd, chip, NULL, 1, page); +} + +static int gpmi_ecc_write_oob_raw(struct mtd_info *mtd, struct nand_chip *chip, + int page) +{ + return gpmi_ecc_write_page_raw(mtd, chip, NULL, 1, page); +} + +static int gpmi_block_markbad(struct mtd_info *mtd, loff_t ofs) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct gpmi_nand_data *this = nand_get_controller_data(chip); + int ret = 0; + uint8_t *block_mark; + int column, page, chipnr; + + chipnr = (int)(ofs >> chip->chip_shift); + chip->select_chip(mtd, chipnr); + + column = !GPMI_IS_MX23(this) ? mtd->writesize : 0; + + /* Write the block mark. */ + block_mark = this->data_buffer_dma; + block_mark[0] = 0; /* bad block marker */ + + /* Shift to get page */ + page = (int)(ofs >> chip->page_shift); + + ret = nand_prog_page_op(chip, page, column, block_mark, 1); + + chip->select_chip(mtd, -1); + + return ret; +} + +static int nand_boot_set_geometry(struct gpmi_nand_data *this) +{ + struct boot_rom_geometry *geometry = &this->rom_geometry; + + /* + * Set the boot block stride size. + * + * In principle, we should be reading this from the OTP bits, since + * that's where the ROM is going to get it. In fact, we don't have any + * way to read the OTP bits, so we go with the default and hope for the + * best. + */ + geometry->stride_size_in_pages = 64; + + /* + * Set the search area stride exponent. + * + * In principle, we should be reading this from the OTP bits, since + * that's where the ROM is going to get it. In fact, we don't have any + * way to read the OTP bits, so we go with the default and hope for the + * best. + */ + geometry->search_area_stride_exponent = 2; + return 0; +} + +static const char *fingerprint = "STMP"; +static int mx23_check_transcription_stamp(struct gpmi_nand_data *this) +{ + struct boot_rom_geometry *rom_geo = &this->rom_geometry; + struct device *dev = this->dev; + struct nand_chip *chip = &this->nand; + struct mtd_info *mtd = nand_to_mtd(chip); + unsigned int search_area_size_in_strides; + unsigned int stride; + unsigned int page; + uint8_t *buffer = chip->data_buf; + int saved_chip_number; + int found_an_ncb_fingerprint = false; + + /* Compute the number of strides in a search area. */ + search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent; + + saved_chip_number = this->current_chip; + chip->select_chip(mtd, 0); + + /* + * Loop through the first search area, looking for the NCB fingerprint. + */ + dev_dbg(dev, "Scanning for an NCB fingerprint...\n"); + + for (stride = 0; stride < search_area_size_in_strides; stride++) { + /* Compute the page addresses. */ + page = stride * rom_geo->stride_size_in_pages; + + dev_dbg(dev, "Looking for a fingerprint in page 0x%x\n", page); + + /* + * Read the NCB fingerprint. The fingerprint is four bytes long + * and starts in the 12th byte of the page. + */ + nand_read_page_op(chip, page, 12, NULL, 0); + chip->read_buf(mtd, buffer, strlen(fingerprint)); + + /* Look for the fingerprint. */ + if (!memcmp(buffer, fingerprint, strlen(fingerprint))) { + found_an_ncb_fingerprint = true; + break; + } + + } + + chip->select_chip(mtd, saved_chip_number); + + if (found_an_ncb_fingerprint) + dev_dbg(dev, "\tFound a fingerprint\n"); + else + dev_dbg(dev, "\tNo fingerprint found\n"); + return found_an_ncb_fingerprint; +} + +/* Writes a transcription stamp. */ +static int mx23_write_transcription_stamp(struct gpmi_nand_data *this) +{ + struct device *dev = this->dev; + struct boot_rom_geometry *rom_geo = &this->rom_geometry; + struct nand_chip *chip = &this->nand; + struct mtd_info *mtd = nand_to_mtd(chip); + unsigned int block_size_in_pages; + unsigned int search_area_size_in_strides; + unsigned int search_area_size_in_pages; + unsigned int search_area_size_in_blocks; + unsigned int block; + unsigned int stride; + unsigned int page; + uint8_t *buffer = chip->data_buf; + int saved_chip_number; + int status; + + /* Compute the search area geometry. */ + block_size_in_pages = mtd->erasesize / mtd->writesize; + search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent; + search_area_size_in_pages = search_area_size_in_strides * + rom_geo->stride_size_in_pages; + search_area_size_in_blocks = + (search_area_size_in_pages + (block_size_in_pages - 1)) / + block_size_in_pages; + + dev_dbg(dev, "Search Area Geometry :\n"); + dev_dbg(dev, "\tin Blocks : %u\n", search_area_size_in_blocks); + dev_dbg(dev, "\tin Strides: %u\n", search_area_size_in_strides); + dev_dbg(dev, "\tin Pages : %u\n", search_area_size_in_pages); + + /* Select chip 0. */ + saved_chip_number = this->current_chip; + chip->select_chip(mtd, 0); + + /* Loop over blocks in the first search area, erasing them. */ + dev_dbg(dev, "Erasing the search area...\n"); + + for (block = 0; block < search_area_size_in_blocks; block++) { + /* Erase this block. */ + dev_dbg(dev, "\tErasing block 0x%x\n", block); + status = nand_erase_op(chip, block); + if (status) + dev_err(dev, "[%s] Erase failed.\n", __func__); + } + + /* Write the NCB fingerprint into the page buffer. */ + memset(buffer, ~0, mtd->writesize); + memcpy(buffer + 12, fingerprint, strlen(fingerprint)); + + /* Loop through the first search area, writing NCB fingerprints. */ + dev_dbg(dev, "Writing NCB fingerprints...\n"); + for (stride = 0; stride < search_area_size_in_strides; stride++) { + /* Compute the page addresses. */ + page = stride * rom_geo->stride_size_in_pages; + + /* Write the first page of the current stride. */ + dev_dbg(dev, "Writing an NCB fingerprint in page 0x%x\n", page); + + status = chip->ecc.write_page_raw(mtd, chip, buffer, 0, page); + if (status) + dev_err(dev, "[%s] Write failed.\n", __func__); + } + + /* Deselect chip 0. */ + chip->select_chip(mtd, saved_chip_number); + return 0; +} + +static int mx23_boot_init(struct gpmi_nand_data *this) +{ + struct device *dev = this->dev; + struct nand_chip *chip = &this->nand; + struct mtd_info *mtd = nand_to_mtd(chip); + unsigned int block_count; + unsigned int block; + int chipnr; + int page; + loff_t byte; + uint8_t block_mark; + int ret = 0; + + /* + * If control arrives here, we can't use block mark swapping, which + * means we're forced to use transcription. First, scan for the + * transcription stamp. If we find it, then we don't have to do + * anything -- the block marks are already transcribed. + */ + if (mx23_check_transcription_stamp(this)) + return 0; + + /* + * If control arrives here, we couldn't find a transcription stamp, so + * so we presume the block marks are in the conventional location. + */ + dev_dbg(dev, "Transcribing bad block marks...\n"); + + /* Compute the number of blocks in the entire medium. */ + block_count = chip->chipsize >> chip->phys_erase_shift; + + /* + * Loop over all the blocks in the medium, transcribing block marks as + * we go. + */ + for (block = 0; block < block_count; block++) { + /* + * Compute the chip, page and byte addresses for this block's + * conventional mark. + */ + chipnr = block >> (chip->chip_shift - chip->phys_erase_shift); + page = block << (chip->phys_erase_shift - chip->page_shift); + byte = block << chip->phys_erase_shift; + + /* Send the command to read the conventional block mark. */ + chip->select_chip(mtd, chipnr); + nand_read_page_op(chip, page, mtd->writesize, NULL, 0); + block_mark = chip->read_byte(mtd); + chip->select_chip(mtd, -1); + + /* + * Check if the block is marked bad. If so, we need to mark it + * again, but this time the result will be a mark in the + * location where we transcribe block marks. + */ + if (block_mark != 0xff) { + dev_dbg(dev, "Transcribing mark in block %u\n", block); + ret = chip->block_markbad(mtd, byte); + if (ret) + dev_err(dev, + "Failed to mark block bad with ret %d\n", + ret); + } + } + + /* Write the stamp that indicates we've transcribed the block marks. */ + mx23_write_transcription_stamp(this); + return 0; +} + +static int nand_boot_init(struct gpmi_nand_data *this) +{ + nand_boot_set_geometry(this); + + /* This is ROM arch-specific initilization before the BBT scanning. */ + if (GPMI_IS_MX23(this)) + return mx23_boot_init(this); + return 0; +} + +static int gpmi_set_geometry(struct gpmi_nand_data *this) +{ + int ret; + + /* Free the temporary DMA memory for reading ID. */ + gpmi_free_dma_buffer(this); + + /* Set up the NFC geometry which is used by BCH. */ + ret = bch_set_geometry(this); + if (ret) { + dev_err(this->dev, "Error setting BCH geometry : %d\n", ret); + return ret; + } + + /* Alloc the new DMA buffers according to the pagesize and oobsize */ + return gpmi_alloc_dma_buffer(this); +} + +static int gpmi_init_last(struct gpmi_nand_data *this) +{ + struct nand_chip *chip = &this->nand; + struct mtd_info *mtd = nand_to_mtd(chip); + struct nand_ecc_ctrl *ecc = &chip->ecc; + struct bch_geometry *bch_geo = &this->bch_geometry; + int ret; + + /* Set up the medium geometry */ + ret = gpmi_set_geometry(this); + if (ret) + return ret; + + /* Init the nand_ecc_ctrl{} */ + ecc->read_page = gpmi_ecc_read_page; + ecc->write_page = gpmi_ecc_write_page; + ecc->read_oob = gpmi_ecc_read_oob; + ecc->write_oob = gpmi_ecc_write_oob; + ecc->read_page_raw = gpmi_ecc_read_page_raw; + ecc->write_page_raw = gpmi_ecc_write_page_raw; + ecc->read_oob_raw = gpmi_ecc_read_oob_raw; + ecc->write_oob_raw = gpmi_ecc_write_oob_raw; + ecc->mode = NAND_ECC_HW; + ecc->size = bch_geo->ecc_chunk_size; + ecc->strength = bch_geo->ecc_strength; + mtd_set_ooblayout(mtd, &gpmi_ooblayout_ops); + + /* + * We only enable the subpage read when: + * (1) the chip is imx6, and + * (2) the size of the ECC parity is byte aligned. + */ + if (GPMI_IS_MX6(this) && + ((bch_geo->gf_len * bch_geo->ecc_strength) % 8) == 0) { + ecc->read_subpage = gpmi_ecc_read_subpage; + chip->options |= NAND_SUBPAGE_READ; + } + + /* + * Can we enable the extra features? such as EDO or Sync mode. + * + * We do not check the return value now. That's means if we fail in + * enable the extra features, we still can run in the normal way. + */ + gpmi_extra_init(this); + + return 0; +} + +static int gpmi_nand_init(struct gpmi_nand_data *this) +{ + struct nand_chip *chip = &this->nand; + struct mtd_info *mtd = nand_to_mtd(chip); + int ret; + + /* init current chip */ + this->current_chip = -1; + + /* init the MTD data structures */ + mtd->name = "gpmi-nand"; + mtd->dev.parent = this->dev; + + /* init the nand_chip{}, we don't support a 16-bit NAND Flash bus. */ + nand_set_controller_data(chip, this); + nand_set_flash_node(chip, this->pdev->dev.of_node); + chip->select_chip = gpmi_select_chip; + chip->cmd_ctrl = gpmi_cmd_ctrl; + chip->dev_ready = gpmi_dev_ready; + chip->read_byte = gpmi_read_byte; + chip->read_buf = gpmi_read_buf; + chip->write_buf = gpmi_write_buf; + chip->badblock_pattern = &gpmi_bbt_descr; + chip->block_markbad = gpmi_block_markbad; + chip->options |= NAND_NO_SUBPAGE_WRITE; + + /* Set up swap_block_mark, must be set before the gpmi_set_geometry() */ + this->swap_block_mark = !GPMI_IS_MX23(this); + + /* + * Allocate a temporary DMA buffer for reading ID in the + * nand_scan_ident(). + */ + this->bch_geometry.payload_size = 1024; + this->bch_geometry.auxiliary_size = 128; + ret = gpmi_alloc_dma_buffer(this); + if (ret) + goto err_out; + + ret = nand_scan_ident(mtd, GPMI_IS_MX6(this) ? 2 : 1, NULL); + if (ret) + goto err_out; + + if (chip->bbt_options & NAND_BBT_USE_FLASH) { + chip->bbt_options |= NAND_BBT_NO_OOB; + + if (of_property_read_bool(this->dev->of_node, + "fsl,no-blockmark-swap")) + this->swap_block_mark = false; + } + dev_dbg(this->dev, "Blockmark swapping %sabled\n", + this->swap_block_mark ? "en" : "dis"); + + ret = gpmi_init_last(this); + if (ret) + goto err_out; + + chip->options |= NAND_SKIP_BBTSCAN; + ret = nand_scan_tail(mtd); + if (ret) + goto err_out; + + ret = nand_boot_init(this); + if (ret) + goto err_nand_cleanup; + ret = chip->scan_bbt(mtd); + if (ret) + goto err_nand_cleanup; + + ret = mtd_device_register(mtd, NULL, 0); + if (ret) + goto err_nand_cleanup; + return 0; + +err_nand_cleanup: + nand_cleanup(chip); +err_out: + gpmi_free_dma_buffer(this); + return ret; +} + +static const struct of_device_id gpmi_nand_id_table[] = { + { + .compatible = "fsl,imx23-gpmi-nand", + .data = &gpmi_devdata_imx23, + }, { + .compatible = "fsl,imx28-gpmi-nand", + .data = &gpmi_devdata_imx28, + }, { + .compatible = "fsl,imx6q-gpmi-nand", + .data = &gpmi_devdata_imx6q, + }, { + .compatible = "fsl,imx6sx-gpmi-nand", + .data = &gpmi_devdata_imx6sx, + }, { + .compatible = "fsl,imx7d-gpmi-nand", + .data = &gpmi_devdata_imx7d, + }, {} +}; +MODULE_DEVICE_TABLE(of, gpmi_nand_id_table); + +static int gpmi_nand_probe(struct platform_device *pdev) +{ + struct gpmi_nand_data *this; + const struct of_device_id *of_id; + int ret; + + this = devm_kzalloc(&pdev->dev, sizeof(*this), GFP_KERNEL); + if (!this) + return -ENOMEM; + + of_id = of_match_device(gpmi_nand_id_table, &pdev->dev); + if (of_id) { + this->devdata = of_id->data; + } else { + dev_err(&pdev->dev, "Failed to find the right device id.\n"); + return -ENODEV; + } + + platform_set_drvdata(pdev, this); + this->pdev = pdev; + this->dev = &pdev->dev; + + ret = acquire_resources(this); + if (ret) + goto exit_acquire_resources; + + ret = init_hardware(this); + if (ret) + goto exit_nfc_init; + + ret = gpmi_nand_init(this); + if (ret) + goto exit_nfc_init; + + dev_info(this->dev, "driver registered.\n"); + + return 0; + +exit_nfc_init: + release_resources(this); +exit_acquire_resources: + + return ret; +} + +static int gpmi_nand_remove(struct platform_device *pdev) +{ + struct gpmi_nand_data *this = platform_get_drvdata(pdev); + + nand_release(nand_to_mtd(&this->nand)); + gpmi_free_dma_buffer(this); + release_resources(this); + return 0; +} + +#ifdef CONFIG_PM_SLEEP +static int gpmi_pm_suspend(struct device *dev) +{ + struct gpmi_nand_data *this = dev_get_drvdata(dev); + + release_dma_channels(this); + return 0; +} + +static int gpmi_pm_resume(struct device *dev) +{ + struct gpmi_nand_data *this = dev_get_drvdata(dev); + int ret; + + ret = acquire_dma_channels(this); + if (ret < 0) + return ret; + + /* re-init the GPMI registers */ + this->flags &= ~GPMI_TIMING_INIT_OK; + ret = gpmi_init(this); + if (ret) { + dev_err(this->dev, "Error setting GPMI : %d\n", ret); + return ret; + } + + /* re-init the BCH registers */ + ret = bch_set_geometry(this); + if (ret) { + dev_err(this->dev, "Error setting BCH : %d\n", ret); + return ret; + } + + /* re-init others */ + gpmi_extra_init(this); + + return 0; +} +#endif /* CONFIG_PM_SLEEP */ + +static const struct dev_pm_ops gpmi_pm_ops = { + SET_SYSTEM_SLEEP_PM_OPS(gpmi_pm_suspend, gpmi_pm_resume) +}; + +static struct platform_driver gpmi_nand_driver = { + .driver = { + .name = "gpmi-nand", + .pm = &gpmi_pm_ops, + .of_match_table = gpmi_nand_id_table, + }, + .probe = gpmi_nand_probe, + .remove = gpmi_nand_remove, +}; +module_platform_driver(gpmi_nand_driver); + +MODULE_AUTHOR("Freescale Semiconductor, Inc."); +MODULE_DESCRIPTION("i.MX GPMI NAND Flash Controller Driver"); +MODULE_LICENSE("GPL"); diff --git a/drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.h b/drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.h new file mode 100644 index 000000000000..06c1f993912c --- /dev/null +++ b/drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.h @@ -0,0 +1,315 @@ +/* + * Freescale GPMI NAND Flash Driver + * + * Copyright (C) 2010-2011 Freescale Semiconductor, Inc. + * Copyright (C) 2008 Embedded Alley Solutions, Inc. + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + */ +#ifndef __DRIVERS_MTD_NAND_GPMI_NAND_H +#define __DRIVERS_MTD_NAND_GPMI_NAND_H + +#include +#include +#include +#include + +#define GPMI_CLK_MAX 5 /* MX6Q needs five clocks */ +struct resources { + void __iomem *gpmi_regs; + void __iomem *bch_regs; + unsigned int dma_low_channel; + unsigned int dma_high_channel; + struct clk *clock[GPMI_CLK_MAX]; +}; + +/** + * struct bch_geometry - BCH geometry description. + * @gf_len: The length of Galois Field. (e.g., 13 or 14) + * @ecc_strength: A number that describes the strength of the ECC + * algorithm. + * @page_size: The size, in bytes, of a physical page, including + * both data and OOB. + * @metadata_size: The size, in bytes, of the metadata. + * @ecc_chunk_size: The size, in bytes, of a single ECC chunk. Note + * the first chunk in the page includes both data and + * metadata, so it's a bit larger than this value. + * @ecc_chunk_count: The number of ECC chunks in the page, + * @payload_size: The size, in bytes, of the payload buffer. + * @auxiliary_size: The size, in bytes, of the auxiliary buffer. + * @auxiliary_status_offset: The offset into the auxiliary buffer at which + * the ECC status appears. + * @block_mark_byte_offset: The byte offset in the ECC-based page view at + * which the underlying physical block mark appears. + * @block_mark_bit_offset: The bit offset into the ECC-based page view at + * which the underlying physical block mark appears. + */ +struct bch_geometry { + unsigned int gf_len; + unsigned int ecc_strength; + unsigned int page_size; + unsigned int metadata_size; + unsigned int ecc_chunk_size; + unsigned int ecc_chunk_count; + unsigned int payload_size; + unsigned int auxiliary_size; + unsigned int auxiliary_status_offset; + unsigned int block_mark_byte_offset; + unsigned int block_mark_bit_offset; +}; + +/** + * struct boot_rom_geometry - Boot ROM geometry description. + * @stride_size_in_pages: The size of a boot block stride, in pages. + * @search_area_stride_exponent: The logarithm to base 2 of the size of a + * search area in boot block strides. + */ +struct boot_rom_geometry { + unsigned int stride_size_in_pages; + unsigned int search_area_stride_exponent; +}; + +/* DMA operations types */ +enum dma_ops_type { + DMA_FOR_COMMAND = 1, + DMA_FOR_READ_DATA, + DMA_FOR_WRITE_DATA, + DMA_FOR_READ_ECC_PAGE, + DMA_FOR_WRITE_ECC_PAGE +}; + +/** + * struct nand_timing - Fundamental timing attributes for NAND. + * @data_setup_in_ns: The data setup time, in nanoseconds. Usually the + * maximum of tDS and tWP. A negative value + * indicates this characteristic isn't known. + * @data_hold_in_ns: The data hold time, in nanoseconds. Usually the + * maximum of tDH, tWH and tREH. A negative value + * indicates this characteristic isn't known. + * @address_setup_in_ns: The address setup time, in nanoseconds. Usually + * the maximum of tCLS, tCS and tALS. A negative + * value indicates this characteristic isn't known. + * @gpmi_sample_delay_in_ns: A GPMI-specific timing parameter. A negative value + * indicates this characteristic isn't known. + * @tREA_in_ns: tREA, in nanoseconds, from the data sheet. A + * negative value indicates this characteristic isn't + * known. + * @tRLOH_in_ns: tRLOH, in nanoseconds, from the data sheet. A + * negative value indicates this characteristic isn't + * known. + * @tRHOH_in_ns: tRHOH, in nanoseconds, from the data sheet. A + * negative value indicates this characteristic isn't + * known. + */ +struct nand_timing { + int8_t data_setup_in_ns; + int8_t data_hold_in_ns; + int8_t address_setup_in_ns; + int8_t gpmi_sample_delay_in_ns; + int8_t tREA_in_ns; + int8_t tRLOH_in_ns; + int8_t tRHOH_in_ns; +}; + +enum gpmi_type { + IS_MX23, + IS_MX28, + IS_MX6Q, + IS_MX6SX, + IS_MX7D, +}; + +struct gpmi_devdata { + enum gpmi_type type; + int bch_max_ecc_strength; + int max_chain_delay; /* See the async EDO mode */ + const char * const *clks; + const int clks_count; +}; + +struct gpmi_nand_data { + /* flags */ +#define GPMI_ASYNC_EDO_ENABLED (1 << 0) +#define GPMI_TIMING_INIT_OK (1 << 1) + int flags; + const struct gpmi_devdata *devdata; + + /* System Interface */ + struct device *dev; + struct platform_device *pdev; + + /* Resources */ + struct resources resources; + + /* Flash Hardware */ + struct nand_timing timing; + int timing_mode; + + /* BCH */ + struct bch_geometry bch_geometry; + struct completion bch_done; + + /* NAND Boot issue */ + bool swap_block_mark; + struct boot_rom_geometry rom_geometry; + + /* MTD / NAND */ + struct nand_chip nand; + + /* General-use Variables */ + int current_chip; + unsigned int command_length; + + /* passed from upper layer */ + uint8_t *upper_buf; + int upper_len; + + /* for DMA operations */ + bool direct_dma_map_ok; + + struct scatterlist cmd_sgl; + char *cmd_buffer; + + struct scatterlist data_sgl; + char *data_buffer_dma; + + void *page_buffer_virt; + dma_addr_t page_buffer_phys; + unsigned int page_buffer_size; + + void *payload_virt; + dma_addr_t payload_phys; + + void *auxiliary_virt; + dma_addr_t auxiliary_phys; + + void *raw_buffer; + + /* DMA channels */ +#define DMA_CHANS 8 + struct dma_chan *dma_chans[DMA_CHANS]; + enum dma_ops_type last_dma_type; + enum dma_ops_type dma_type; + struct completion dma_done; + + /* private */ + void *private; +}; + +/** + * struct gpmi_nfc_hardware_timing - GPMI hardware timing parameters. + * @data_setup_in_cycles: The data setup time, in cycles. + * @data_hold_in_cycles: The data hold time, in cycles. + * @address_setup_in_cycles: The address setup time, in cycles. + * @device_busy_timeout: The timeout waiting for NAND Ready/Busy, + * this value is the number of cycles multiplied + * by 4096. + * @use_half_periods: Indicates the clock is running slowly, so the + * NFC DLL should use half-periods. + * @sample_delay_factor: The sample delay factor. + * @wrn_dly_sel: The delay on the GPMI write strobe. + */ +struct gpmi_nfc_hardware_timing { + /* for HW_GPMI_TIMING0 */ + uint8_t data_setup_in_cycles; + uint8_t data_hold_in_cycles; + uint8_t address_setup_in_cycles; + + /* for HW_GPMI_TIMING1 */ + uint16_t device_busy_timeout; +#define GPMI_DEFAULT_BUSY_TIMEOUT 0x500 /* default busy timeout value.*/ + + /* for HW_GPMI_CTRL1 */ + bool use_half_periods; + uint8_t sample_delay_factor; + uint8_t wrn_dly_sel; +}; + +/** + * struct timing_threshold - Timing threshold + * @max_data_setup_cycles: The maximum number of data setup cycles that + * can be expressed in the hardware. + * @internal_data_setup_in_ns: The time, in ns, that the NFC hardware requires + * for data read internal setup. In the Reference + * Manual, see the chapter "High-Speed NAND + * Timing" for more details. + * @max_sample_delay_factor: The maximum sample delay factor that can be + * expressed in the hardware. + * @max_dll_clock_period_in_ns: The maximum period of the GPMI clock that the + * sample delay DLL hardware can possibly work + * with (the DLL is unusable with longer periods). + * If the full-cycle period is greater than HALF + * this value, the DLL must be configured to use + * half-periods. + * @max_dll_delay_in_ns: The maximum amount of delay, in ns, that the + * DLL can implement. + * @clock_frequency_in_hz: The clock frequency, in Hz, during the current + * I/O transaction. If no I/O transaction is in + * progress, this is the clock frequency during + * the most recent I/O transaction. + */ +struct timing_threshold { + const unsigned int max_chip_count; + const unsigned int max_data_setup_cycles; + const unsigned int internal_data_setup_in_ns; + const unsigned int max_sample_delay_factor; + const unsigned int max_dll_clock_period_in_ns; + const unsigned int max_dll_delay_in_ns; + unsigned long clock_frequency_in_hz; + +}; + +/* Common Services */ +int common_nfc_set_geometry(struct gpmi_nand_data *); +struct dma_chan *get_dma_chan(struct gpmi_nand_data *); +void prepare_data_dma(struct gpmi_nand_data *, + enum dma_data_direction dr); +int start_dma_without_bch_irq(struct gpmi_nand_data *, + struct dma_async_tx_descriptor *); +int start_dma_with_bch_irq(struct gpmi_nand_data *, + struct dma_async_tx_descriptor *); + +/* GPMI-NAND helper function library */ +int gpmi_init(struct gpmi_nand_data *); +int gpmi_extra_init(struct gpmi_nand_data *); +void gpmi_clear_bch(struct gpmi_nand_data *); +void gpmi_dump_info(struct gpmi_nand_data *); +int bch_set_geometry(struct gpmi_nand_data *); +int gpmi_is_ready(struct gpmi_nand_data *, unsigned chip); +int gpmi_send_command(struct gpmi_nand_data *); +void gpmi_begin(struct gpmi_nand_data *); +void gpmi_end(struct gpmi_nand_data *); +int gpmi_read_data(struct gpmi_nand_data *); +int gpmi_send_data(struct gpmi_nand_data *); +int gpmi_send_page(struct gpmi_nand_data *, + dma_addr_t payload, dma_addr_t auxiliary); +int gpmi_read_page(struct gpmi_nand_data *, + dma_addr_t payload, dma_addr_t auxiliary); + +void gpmi_copy_bits(u8 *dst, size_t dst_bit_off, + const u8 *src, size_t src_bit_off, + size_t nbits); + +/* BCH : Status Block Completion Codes */ +#define STATUS_GOOD 0x00 +#define STATUS_ERASED 0xff +#define STATUS_UNCORRECTABLE 0xfe + +/* Use the devdata to distinguish different Archs. */ +#define GPMI_IS_MX23(x) ((x)->devdata->type == IS_MX23) +#define GPMI_IS_MX28(x) ((x)->devdata->type == IS_MX28) +#define GPMI_IS_MX6Q(x) ((x)->devdata->type == IS_MX6Q) +#define GPMI_IS_MX6SX(x) ((x)->devdata->type == IS_MX6SX) +#define GPMI_IS_MX7D(x) ((x)->devdata->type == IS_MX7D) + +#define GPMI_IS_MX6(x) (GPMI_IS_MX6Q(x) || GPMI_IS_MX6SX(x) || \ + GPMI_IS_MX7D(x)) +#endif diff --git a/drivers/mtd/nand/raw/gpmi-nand/gpmi-regs.h b/drivers/mtd/nand/raw/gpmi-nand/gpmi-regs.h new file mode 100644 index 000000000000..82114cdc8330 --- /dev/null +++ b/drivers/mtd/nand/raw/gpmi-nand/gpmi-regs.h @@ -0,0 +1,187 @@ +/* + * Freescale GPMI NAND Flash Driver + * + * Copyright 2008-2011 Freescale Semiconductor, Inc. + * Copyright 2008 Embedded Alley Solutions, Inc. + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License along + * with this program; if not, write to the Free Software Foundation, Inc., + * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. + */ +#ifndef __GPMI_NAND_GPMI_REGS_H +#define __GPMI_NAND_GPMI_REGS_H + +#define HW_GPMI_CTRL0 0x00000000 +#define HW_GPMI_CTRL0_SET 0x00000004 +#define HW_GPMI_CTRL0_CLR 0x00000008 +#define HW_GPMI_CTRL0_TOG 0x0000000c + +#define BP_GPMI_CTRL0_COMMAND_MODE 24 +#define BM_GPMI_CTRL0_COMMAND_MODE (3 << BP_GPMI_CTRL0_COMMAND_MODE) +#define BF_GPMI_CTRL0_COMMAND_MODE(v) \ + (((v) << BP_GPMI_CTRL0_COMMAND_MODE) & BM_GPMI_CTRL0_COMMAND_MODE) +#define BV_GPMI_CTRL0_COMMAND_MODE__WRITE 0x0 +#define BV_GPMI_CTRL0_COMMAND_MODE__READ 0x1 +#define BV_GPMI_CTRL0_COMMAND_MODE__READ_AND_COMPARE 0x2 +#define BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY 0x3 + +#define BM_GPMI_CTRL0_WORD_LENGTH (1 << 23) +#define BV_GPMI_CTRL0_WORD_LENGTH__16_BIT 0x0 +#define BV_GPMI_CTRL0_WORD_LENGTH__8_BIT 0x1 + +/* + * Difference in LOCK_CS between imx23 and imx28 : + * This bit may impact the _POWER_ consumption. So some chips + * do not set it. + */ +#define MX23_BP_GPMI_CTRL0_LOCK_CS 22 +#define MX28_BP_GPMI_CTRL0_LOCK_CS 27 +#define LOCK_CS_ENABLE 0x1 +#define BF_GPMI_CTRL0_LOCK_CS(v, x) 0x0 + +/* Difference in CS between imx23 and imx28 */ +#define BP_GPMI_CTRL0_CS 20 +#define MX23_BM_GPMI_CTRL0_CS (3 << BP_GPMI_CTRL0_CS) +#define MX28_BM_GPMI_CTRL0_CS (7 << BP_GPMI_CTRL0_CS) +#define BF_GPMI_CTRL0_CS(v, x) (((v) << BP_GPMI_CTRL0_CS) & \ + (GPMI_IS_MX23((x)) \ + ? MX23_BM_GPMI_CTRL0_CS \ + : MX28_BM_GPMI_CTRL0_CS)) + +#define BP_GPMI_CTRL0_ADDRESS 17 +#define BM_GPMI_CTRL0_ADDRESS (3 << BP_GPMI_CTRL0_ADDRESS) +#define BF_GPMI_CTRL0_ADDRESS(v) \ + (((v) << BP_GPMI_CTRL0_ADDRESS) & BM_GPMI_CTRL0_ADDRESS) +#define BV_GPMI_CTRL0_ADDRESS__NAND_DATA 0x0 +#define BV_GPMI_CTRL0_ADDRESS__NAND_CLE 0x1 +#define BV_GPMI_CTRL0_ADDRESS__NAND_ALE 0x2 + +#define BM_GPMI_CTRL0_ADDRESS_INCREMENT (1 << 16) +#define BV_GPMI_CTRL0_ADDRESS_INCREMENT__DISABLED 0x0 +#define BV_GPMI_CTRL0_ADDRESS_INCREMENT__ENABLED 0x1 + +#define BP_GPMI_CTRL0_XFER_COUNT 0 +#define BM_GPMI_CTRL0_XFER_COUNT (0xffff << BP_GPMI_CTRL0_XFER_COUNT) +#define BF_GPMI_CTRL0_XFER_COUNT(v) \ + (((v) << BP_GPMI_CTRL0_XFER_COUNT) & BM_GPMI_CTRL0_XFER_COUNT) + +#define HW_GPMI_COMPARE 0x00000010 + +#define HW_GPMI_ECCCTRL 0x00000020 +#define HW_GPMI_ECCCTRL_SET 0x00000024 +#define HW_GPMI_ECCCTRL_CLR 0x00000028 +#define HW_GPMI_ECCCTRL_TOG 0x0000002c + +#define BP_GPMI_ECCCTRL_ECC_CMD 13 +#define BM_GPMI_ECCCTRL_ECC_CMD (3 << BP_GPMI_ECCCTRL_ECC_CMD) +#define BF_GPMI_ECCCTRL_ECC_CMD(v) \ + (((v) << BP_GPMI_ECCCTRL_ECC_CMD) & BM_GPMI_ECCCTRL_ECC_CMD) +#define BV_GPMI_ECCCTRL_ECC_CMD__BCH_DECODE 0x0 +#define BV_GPMI_ECCCTRL_ECC_CMD__BCH_ENCODE 0x1 + +#define BM_GPMI_ECCCTRL_ENABLE_ECC (1 << 12) +#define BV_GPMI_ECCCTRL_ENABLE_ECC__ENABLE 0x1 +#define BV_GPMI_ECCCTRL_ENABLE_ECC__DISABLE 0x0 + +#define BP_GPMI_ECCCTRL_BUFFER_MASK 0 +#define BM_GPMI_ECCCTRL_BUFFER_MASK (0x1ff << BP_GPMI_ECCCTRL_BUFFER_MASK) +#define BF_GPMI_ECCCTRL_BUFFER_MASK(v) \ + (((v) << BP_GPMI_ECCCTRL_BUFFER_MASK) & BM_GPMI_ECCCTRL_BUFFER_MASK) +#define BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY 0x100 +#define BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE 0x1FF + +#define HW_GPMI_ECCCOUNT 0x00000030 +#define HW_GPMI_PAYLOAD 0x00000040 +#define HW_GPMI_AUXILIARY 0x00000050 +#define HW_GPMI_CTRL1 0x00000060 +#define HW_GPMI_CTRL1_SET 0x00000064 +#define HW_GPMI_CTRL1_CLR 0x00000068 +#define HW_GPMI_CTRL1_TOG 0x0000006c + +#define BP_GPMI_CTRL1_DECOUPLE_CS 24 +#define BM_GPMI_CTRL1_DECOUPLE_CS (1 << BP_GPMI_CTRL1_DECOUPLE_CS) + +#define BP_GPMI_CTRL1_WRN_DLY_SEL 22 +#define BM_GPMI_CTRL1_WRN_DLY_SEL (0x3 << BP_GPMI_CTRL1_WRN_DLY_SEL) +#define BF_GPMI_CTRL1_WRN_DLY_SEL(v) \ + (((v) << BP_GPMI_CTRL1_WRN_DLY_SEL) & BM_GPMI_CTRL1_WRN_DLY_SEL) +#define BV_GPMI_CTRL1_WRN_DLY_SEL_4_TO_8NS 0x0 +#define BV_GPMI_CTRL1_WRN_DLY_SEL_6_TO_10NS 0x1 +#define BV_GPMI_CTRL1_WRN_DLY_SEL_7_TO_12NS 0x2 +#define BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY 0x3 + +#define BM_GPMI_CTRL1_BCH_MODE (1 << 18) + +#define BP_GPMI_CTRL1_DLL_ENABLE 17 +#define BM_GPMI_CTRL1_DLL_ENABLE (1 << BP_GPMI_CTRL1_DLL_ENABLE) + +#define BP_GPMI_CTRL1_HALF_PERIOD 16 +#define BM_GPMI_CTRL1_HALF_PERIOD (1 << BP_GPMI_CTRL1_HALF_PERIOD) + +#define BP_GPMI_CTRL1_RDN_DELAY 12 +#define BM_GPMI_CTRL1_RDN_DELAY (0xf << BP_GPMI_CTRL1_RDN_DELAY) +#define BF_GPMI_CTRL1_RDN_DELAY(v) \ + (((v) << BP_GPMI_CTRL1_RDN_DELAY) & BM_GPMI_CTRL1_RDN_DELAY) + +#define BM_GPMI_CTRL1_DEV_RESET (1 << 3) +#define BV_GPMI_CTRL1_DEV_RESET__ENABLED 0x0 +#define BV_GPMI_CTRL1_DEV_RESET__DISABLED 0x1 + +#define BM_GPMI_CTRL1_ATA_IRQRDY_POLARITY (1 << 2) +#define BV_GPMI_CTRL1_ATA_IRQRDY_POLARITY__ACTIVELOW 0x0 +#define BV_GPMI_CTRL1_ATA_IRQRDY_POLARITY__ACTIVEHIGH 0x1 + +#define BM_GPMI_CTRL1_CAMERA_MODE (1 << 1) +#define BV_GPMI_CTRL1_GPMI_MODE__NAND 0x0 +#define BV_GPMI_CTRL1_GPMI_MODE__ATA 0x1 + +#define BM_GPMI_CTRL1_GPMI_MODE (1 << 0) + +#define HW_GPMI_TIMING0 0x00000070 + +#define BP_GPMI_TIMING0_ADDRESS_SETUP 16 +#define BM_GPMI_TIMING0_ADDRESS_SETUP (0xff << BP_GPMI_TIMING0_ADDRESS_SETUP) +#define BF_GPMI_TIMING0_ADDRESS_SETUP(v) \ + (((v) << BP_GPMI_TIMING0_ADDRESS_SETUP) & BM_GPMI_TIMING0_ADDRESS_SETUP) + +#define BP_GPMI_TIMING0_DATA_HOLD 8 +#define BM_GPMI_TIMING0_DATA_HOLD (0xff << BP_GPMI_TIMING0_DATA_HOLD) +#define BF_GPMI_TIMING0_DATA_HOLD(v) \ + (((v) << BP_GPMI_TIMING0_DATA_HOLD) & BM_GPMI_TIMING0_DATA_HOLD) + +#define BP_GPMI_TIMING0_DATA_SETUP 0 +#define BM_GPMI_TIMING0_DATA_SETUP (0xff << BP_GPMI_TIMING0_DATA_SETUP) +#define BF_GPMI_TIMING0_DATA_SETUP(v) \ + (((v) << BP_GPMI_TIMING0_DATA_SETUP) & BM_GPMI_TIMING0_DATA_SETUP) + +#define HW_GPMI_TIMING1 0x00000080 +#define BP_GPMI_TIMING1_BUSY_TIMEOUT 16 +#define BM_GPMI_TIMING1_BUSY_TIMEOUT (0xffff << BP_GPMI_TIMING1_BUSY_TIMEOUT) +#define BF_GPMI_TIMING1_BUSY_TIMEOUT(v) \ + (((v) << BP_GPMI_TIMING1_BUSY_TIMEOUT) & BM_GPMI_TIMING1_BUSY_TIMEOUT) + +#define HW_GPMI_TIMING2 0x00000090 +#define HW_GPMI_DATA 0x000000a0 + +/* MX28 uses this to detect READY. */ +#define HW_GPMI_STAT 0x000000b0 +#define MX28_BP_GPMI_STAT_READY_BUSY 24 +#define MX28_BM_GPMI_STAT_READY_BUSY (0xff << MX28_BP_GPMI_STAT_READY_BUSY) +#define MX28_BF_GPMI_STAT_READY_BUSY(v) \ + (((v) << MX28_BP_GPMI_STAT_READY_BUSY) & MX28_BM_GPMI_STAT_READY_BUSY) + +/* MX23 uses this to detect READY. */ +#define HW_GPMI_DEBUG 0x000000c0 +#define MX23_BP_GPMI_DEBUG_READY0 28 +#define MX23_BM_GPMI_DEBUG_READY0 (1 << MX23_BP_GPMI_DEBUG_READY0) +#endif diff --git a/drivers/mtd/nand/raw/hisi504_nand.c b/drivers/mtd/nand/raw/hisi504_nand.c new file mode 100644 index 000000000000..cb862793ab6d --- /dev/null +++ b/drivers/mtd/nand/raw/hisi504_nand.c @@ -0,0 +1,896 @@ +/* + * Hisilicon NAND Flash controller driver + * + * Copyright © 2012-2014 HiSilicon Technologies Co., Ltd. + * http://www.hisilicon.com + * + * Author: Zhou Wang + * The initial developer of the original code is Zhiyong Cai + * + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + */ +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#define HINFC504_MAX_CHIP (4) +#define HINFC504_W_LATCH (5) +#define HINFC504_R_LATCH (7) +#define HINFC504_RW_LATCH (3) + +#define HINFC504_NFC_TIMEOUT (2 * HZ) +#define HINFC504_NFC_PM_TIMEOUT (1 * HZ) +#define HINFC504_NFC_DMA_TIMEOUT (5 * HZ) +#define HINFC504_CHIP_DELAY (25) + +#define HINFC504_REG_BASE_ADDRESS_LEN (0x100) +#define HINFC504_BUFFER_BASE_ADDRESS_LEN (2048 + 128) + +#define HINFC504_ADDR_CYCLE_MASK 0x4 + +#define HINFC504_CON 0x00 +#define HINFC504_CON_OP_MODE_NORMAL BIT(0) +#define HINFC504_CON_PAGEISZE_SHIFT (1) +#define HINFC504_CON_PAGESIZE_MASK (0x07) +#define HINFC504_CON_BUS_WIDTH BIT(4) +#define HINFC504_CON_READY_BUSY_SEL BIT(8) +#define HINFC504_CON_ECCTYPE_SHIFT (9) +#define HINFC504_CON_ECCTYPE_MASK (0x07) + +#define HINFC504_PWIDTH 0x04 +#define SET_HINFC504_PWIDTH(_w_lcnt, _r_lcnt, _rw_hcnt) \ + ((_w_lcnt) | (((_r_lcnt) & 0x0F) << 4) | (((_rw_hcnt) & 0x0F) << 8)) + +#define HINFC504_CMD 0x0C +#define HINFC504_ADDRL 0x10 +#define HINFC504_ADDRH 0x14 +#define HINFC504_DATA_NUM 0x18 + +#define HINFC504_OP 0x1C +#define HINFC504_OP_READ_DATA_EN BIT(1) +#define HINFC504_OP_WAIT_READY_EN BIT(2) +#define HINFC504_OP_CMD2_EN BIT(3) +#define HINFC504_OP_WRITE_DATA_EN BIT(4) +#define HINFC504_OP_ADDR_EN BIT(5) +#define HINFC504_OP_CMD1_EN BIT(6) +#define HINFC504_OP_NF_CS_SHIFT (7) +#define HINFC504_OP_NF_CS_MASK (3) +#define HINFC504_OP_ADDR_CYCLE_SHIFT (9) +#define HINFC504_OP_ADDR_CYCLE_MASK (7) + +#define HINFC504_STATUS 0x20 +#define HINFC504_READY BIT(0) + +#define HINFC504_INTEN 0x24 +#define HINFC504_INTEN_DMA BIT(9) +#define HINFC504_INTEN_UE BIT(6) +#define HINFC504_INTEN_CE BIT(5) + +#define HINFC504_INTS 0x28 +#define HINFC504_INTS_DMA BIT(9) +#define HINFC504_INTS_UE BIT(6) +#define HINFC504_INTS_CE BIT(5) + +#define HINFC504_INTCLR 0x2C +#define HINFC504_INTCLR_DMA BIT(9) +#define HINFC504_INTCLR_UE BIT(6) +#define HINFC504_INTCLR_CE BIT(5) + +#define HINFC504_ECC_STATUS 0x5C +#define HINFC504_ECC_16_BIT_SHIFT 12 + +#define HINFC504_DMA_CTRL 0x60 +#define HINFC504_DMA_CTRL_DMA_START BIT(0) +#define HINFC504_DMA_CTRL_WE BIT(1) +#define HINFC504_DMA_CTRL_DATA_AREA_EN BIT(2) +#define HINFC504_DMA_CTRL_OOB_AREA_EN BIT(3) +#define HINFC504_DMA_CTRL_BURST4_EN BIT(4) +#define HINFC504_DMA_CTRL_BURST8_EN BIT(5) +#define HINFC504_DMA_CTRL_BURST16_EN BIT(6) +#define HINFC504_DMA_CTRL_ADDR_NUM_SHIFT (7) +#define HINFC504_DMA_CTRL_ADDR_NUM_MASK (1) +#define HINFC504_DMA_CTRL_CS_SHIFT (8) +#define HINFC504_DMA_CTRL_CS_MASK (0x03) + +#define HINFC504_DMA_ADDR_DATA 0x64 +#define HINFC504_DMA_ADDR_OOB 0x68 + +#define HINFC504_DMA_LEN 0x6C +#define HINFC504_DMA_LEN_OOB_SHIFT (16) +#define HINFC504_DMA_LEN_OOB_MASK (0xFFF) + +#define HINFC504_DMA_PARA 0x70 +#define HINFC504_DMA_PARA_DATA_RW_EN BIT(0) +#define HINFC504_DMA_PARA_OOB_RW_EN BIT(1) +#define HINFC504_DMA_PARA_DATA_EDC_EN BIT(2) +#define HINFC504_DMA_PARA_OOB_EDC_EN BIT(3) +#define HINFC504_DMA_PARA_DATA_ECC_EN BIT(4) +#define HINFC504_DMA_PARA_OOB_ECC_EN BIT(5) + +#define HINFC_VERSION 0x74 +#define HINFC504_LOG_READ_ADDR 0x7C +#define HINFC504_LOG_READ_LEN 0x80 + +#define HINFC504_NANDINFO_LEN 0x10 + +struct hinfc_host { + struct nand_chip chip; + struct device *dev; + void __iomem *iobase; + void __iomem *mmio; + struct completion cmd_complete; + unsigned int offset; + unsigned int command; + int chipselect; + unsigned int addr_cycle; + u32 addr_value[2]; + u32 cache_addr_value[2]; + char *buffer; + dma_addr_t dma_buffer; + dma_addr_t dma_oob; + int version; + unsigned int irq_status; /* interrupt status */ +}; + +static inline unsigned int hinfc_read(struct hinfc_host *host, unsigned int reg) +{ + return readl(host->iobase + reg); +} + +static inline void hinfc_write(struct hinfc_host *host, unsigned int value, + unsigned int reg) +{ + writel(value, host->iobase + reg); +} + +static void wait_controller_finished(struct hinfc_host *host) +{ + unsigned long timeout = jiffies + HINFC504_NFC_TIMEOUT; + int val; + + while (time_before(jiffies, timeout)) { + val = hinfc_read(host, HINFC504_STATUS); + if (host->command == NAND_CMD_ERASE2) { + /* nfc is ready */ + while (!(val & HINFC504_READY)) { + usleep_range(500, 1000); + val = hinfc_read(host, HINFC504_STATUS); + } + return; + } + + if (val & HINFC504_READY) + return; + } + + /* wait cmd timeout */ + dev_err(host->dev, "Wait NAND controller exec cmd timeout.\n"); +} + +static void hisi_nfc_dma_transfer(struct hinfc_host *host, int todev) +{ + struct nand_chip *chip = &host->chip; + struct mtd_info *mtd = nand_to_mtd(chip); + unsigned long val; + int ret; + + hinfc_write(host, host->dma_buffer, HINFC504_DMA_ADDR_DATA); + hinfc_write(host, host->dma_oob, HINFC504_DMA_ADDR_OOB); + + if (chip->ecc.mode == NAND_ECC_NONE) { + hinfc_write(host, ((mtd->oobsize & HINFC504_DMA_LEN_OOB_MASK) + << HINFC504_DMA_LEN_OOB_SHIFT), HINFC504_DMA_LEN); + + hinfc_write(host, HINFC504_DMA_PARA_DATA_RW_EN + | HINFC504_DMA_PARA_OOB_RW_EN, HINFC504_DMA_PARA); + } else { + if (host->command == NAND_CMD_READOOB) + hinfc_write(host, HINFC504_DMA_PARA_OOB_RW_EN + | HINFC504_DMA_PARA_OOB_EDC_EN + | HINFC504_DMA_PARA_OOB_ECC_EN, HINFC504_DMA_PARA); + else + hinfc_write(host, HINFC504_DMA_PARA_DATA_RW_EN + | HINFC504_DMA_PARA_OOB_RW_EN + | HINFC504_DMA_PARA_DATA_EDC_EN + | HINFC504_DMA_PARA_OOB_EDC_EN + | HINFC504_DMA_PARA_DATA_ECC_EN + | HINFC504_DMA_PARA_OOB_ECC_EN, HINFC504_DMA_PARA); + + } + + val = (HINFC504_DMA_CTRL_DMA_START | HINFC504_DMA_CTRL_BURST4_EN + | HINFC504_DMA_CTRL_BURST8_EN | HINFC504_DMA_CTRL_BURST16_EN + | HINFC504_DMA_CTRL_DATA_AREA_EN | HINFC504_DMA_CTRL_OOB_AREA_EN + | ((host->addr_cycle == 4 ? 1 : 0) + << HINFC504_DMA_CTRL_ADDR_NUM_SHIFT) + | ((host->chipselect & HINFC504_DMA_CTRL_CS_MASK) + << HINFC504_DMA_CTRL_CS_SHIFT)); + + if (todev) + val |= HINFC504_DMA_CTRL_WE; + + init_completion(&host->cmd_complete); + + hinfc_write(host, val, HINFC504_DMA_CTRL); + ret = wait_for_completion_timeout(&host->cmd_complete, + HINFC504_NFC_DMA_TIMEOUT); + + if (!ret) { + dev_err(host->dev, "DMA operation(irq) timeout!\n"); + /* sanity check */ + val = hinfc_read(host, HINFC504_DMA_CTRL); + if (!(val & HINFC504_DMA_CTRL_DMA_START)) + dev_err(host->dev, "DMA is already done but without irq ACK!\n"); + else + dev_err(host->dev, "DMA is really timeout!\n"); + } +} + +static int hisi_nfc_send_cmd_pageprog(struct hinfc_host *host) +{ + host->addr_value[0] &= 0xffff0000; + + hinfc_write(host, host->addr_value[0], HINFC504_ADDRL); + hinfc_write(host, host->addr_value[1], HINFC504_ADDRH); + hinfc_write(host, NAND_CMD_PAGEPROG << 8 | NAND_CMD_SEQIN, + HINFC504_CMD); + + hisi_nfc_dma_transfer(host, 1); + + return 0; +} + +static int hisi_nfc_send_cmd_readstart(struct hinfc_host *host) +{ + struct mtd_info *mtd = nand_to_mtd(&host->chip); + + if ((host->addr_value[0] == host->cache_addr_value[0]) && + (host->addr_value[1] == host->cache_addr_value[1])) + return 0; + + host->addr_value[0] &= 0xffff0000; + + hinfc_write(host, host->addr_value[0], HINFC504_ADDRL); + hinfc_write(host, host->addr_value[1], HINFC504_ADDRH); + hinfc_write(host, NAND_CMD_READSTART << 8 | NAND_CMD_READ0, + HINFC504_CMD); + + hinfc_write(host, 0, HINFC504_LOG_READ_ADDR); + hinfc_write(host, mtd->writesize + mtd->oobsize, + HINFC504_LOG_READ_LEN); + + hisi_nfc_dma_transfer(host, 0); + + host->cache_addr_value[0] = host->addr_value[0]; + host->cache_addr_value[1] = host->addr_value[1]; + + return 0; +} + +static int hisi_nfc_send_cmd_erase(struct hinfc_host *host) +{ + hinfc_write(host, host->addr_value[0], HINFC504_ADDRL); + hinfc_write(host, (NAND_CMD_ERASE2 << 8) | NAND_CMD_ERASE1, + HINFC504_CMD); + + hinfc_write(host, HINFC504_OP_WAIT_READY_EN + | HINFC504_OP_CMD2_EN + | HINFC504_OP_CMD1_EN + | HINFC504_OP_ADDR_EN + | ((host->chipselect & HINFC504_OP_NF_CS_MASK) + << HINFC504_OP_NF_CS_SHIFT) + | ((host->addr_cycle & HINFC504_OP_ADDR_CYCLE_MASK) + << HINFC504_OP_ADDR_CYCLE_SHIFT), + HINFC504_OP); + + wait_controller_finished(host); + + return 0; +} + +static int hisi_nfc_send_cmd_readid(struct hinfc_host *host) +{ + hinfc_write(host, HINFC504_NANDINFO_LEN, HINFC504_DATA_NUM); + hinfc_write(host, NAND_CMD_READID, HINFC504_CMD); + hinfc_write(host, 0, HINFC504_ADDRL); + + hinfc_write(host, HINFC504_OP_CMD1_EN | HINFC504_OP_ADDR_EN + | HINFC504_OP_READ_DATA_EN + | ((host->chipselect & HINFC504_OP_NF_CS_MASK) + << HINFC504_OP_NF_CS_SHIFT) + | 1 << HINFC504_OP_ADDR_CYCLE_SHIFT, HINFC504_OP); + + wait_controller_finished(host); + + return 0; +} + +static int hisi_nfc_send_cmd_status(struct hinfc_host *host) +{ + hinfc_write(host, HINFC504_NANDINFO_LEN, HINFC504_DATA_NUM); + hinfc_write(host, NAND_CMD_STATUS, HINFC504_CMD); + hinfc_write(host, HINFC504_OP_CMD1_EN + | HINFC504_OP_READ_DATA_EN + | ((host->chipselect & HINFC504_OP_NF_CS_MASK) + << HINFC504_OP_NF_CS_SHIFT), + HINFC504_OP); + + wait_controller_finished(host); + + return 0; +} + +static int hisi_nfc_send_cmd_reset(struct hinfc_host *host, int chipselect) +{ + hinfc_write(host, NAND_CMD_RESET, HINFC504_CMD); + + hinfc_write(host, HINFC504_OP_CMD1_EN + | ((chipselect & HINFC504_OP_NF_CS_MASK) + << HINFC504_OP_NF_CS_SHIFT) + | HINFC504_OP_WAIT_READY_EN, + HINFC504_OP); + + wait_controller_finished(host); + + return 0; +} + +static void hisi_nfc_select_chip(struct mtd_info *mtd, int chipselect) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct hinfc_host *host = nand_get_controller_data(chip); + + if (chipselect < 0) + return; + + host->chipselect = chipselect; +} + +static uint8_t hisi_nfc_read_byte(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct hinfc_host *host = nand_get_controller_data(chip); + + if (host->command == NAND_CMD_STATUS) + return *(uint8_t *)(host->mmio); + + host->offset++; + + if (host->command == NAND_CMD_READID) + return *(uint8_t *)(host->mmio + host->offset - 1); + + return *(uint8_t *)(host->buffer + host->offset - 1); +} + +static u16 hisi_nfc_read_word(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct hinfc_host *host = nand_get_controller_data(chip); + + host->offset += 2; + return *(u16 *)(host->buffer + host->offset - 2); +} + +static void +hisi_nfc_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct hinfc_host *host = nand_get_controller_data(chip); + + memcpy(host->buffer + host->offset, buf, len); + host->offset += len; +} + +static void hisi_nfc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct hinfc_host *host = nand_get_controller_data(chip); + + memcpy(buf, host->buffer + host->offset, len); + host->offset += len; +} + +static void set_addr(struct mtd_info *mtd, int column, int page_addr) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct hinfc_host *host = nand_get_controller_data(chip); + unsigned int command = host->command; + + host->addr_cycle = 0; + host->addr_value[0] = 0; + host->addr_value[1] = 0; + + /* Serially input address */ + if (column != -1) { + /* Adjust columns for 16 bit buswidth */ + if (chip->options & NAND_BUSWIDTH_16 && + !nand_opcode_8bits(command)) + column >>= 1; + + host->addr_value[0] = column & 0xffff; + host->addr_cycle = 2; + } + if (page_addr != -1) { + host->addr_value[0] |= (page_addr & 0xffff) + << (host->addr_cycle * 8); + host->addr_cycle += 2; + if (chip->options & NAND_ROW_ADDR_3) { + host->addr_cycle += 1; + if (host->command == NAND_CMD_ERASE1) + host->addr_value[0] |= ((page_addr >> 16) & 0xff) << 16; + else + host->addr_value[1] |= ((page_addr >> 16) & 0xff); + } + } +} + +static void hisi_nfc_cmdfunc(struct mtd_info *mtd, unsigned command, int column, + int page_addr) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct hinfc_host *host = nand_get_controller_data(chip); + int is_cache_invalid = 1; + unsigned int flag = 0; + + host->command = command; + + switch (command) { + case NAND_CMD_READ0: + case NAND_CMD_READOOB: + if (command == NAND_CMD_READ0) + host->offset = column; + else + host->offset = column + mtd->writesize; + + is_cache_invalid = 0; + set_addr(mtd, column, page_addr); + hisi_nfc_send_cmd_readstart(host); + break; + + case NAND_CMD_SEQIN: + host->offset = column; + set_addr(mtd, column, page_addr); + break; + + case NAND_CMD_ERASE1: + set_addr(mtd, column, page_addr); + break; + + case NAND_CMD_PAGEPROG: + hisi_nfc_send_cmd_pageprog(host); + break; + + case NAND_CMD_ERASE2: + hisi_nfc_send_cmd_erase(host); + break; + + case NAND_CMD_READID: + host->offset = column; + memset(host->mmio, 0, 0x10); + hisi_nfc_send_cmd_readid(host); + break; + + case NAND_CMD_STATUS: + flag = hinfc_read(host, HINFC504_CON); + if (chip->ecc.mode == NAND_ECC_HW) + hinfc_write(host, + flag & ~(HINFC504_CON_ECCTYPE_MASK << + HINFC504_CON_ECCTYPE_SHIFT), HINFC504_CON); + + host->offset = 0; + memset(host->mmio, 0, 0x10); + hisi_nfc_send_cmd_status(host); + hinfc_write(host, flag, HINFC504_CON); + break; + + case NAND_CMD_RESET: + hisi_nfc_send_cmd_reset(host, host->chipselect); + break; + + default: + dev_err(host->dev, "Error: unsupported cmd(cmd=%x, col=%x, page=%x)\n", + command, column, page_addr); + } + + if (is_cache_invalid) { + host->cache_addr_value[0] = ~0; + host->cache_addr_value[1] = ~0; + } +} + +static irqreturn_t hinfc_irq_handle(int irq, void *devid) +{ + struct hinfc_host *host = devid; + unsigned int flag; + + flag = hinfc_read(host, HINFC504_INTS); + /* store interrupts state */ + host->irq_status |= flag; + + if (flag & HINFC504_INTS_DMA) { + hinfc_write(host, HINFC504_INTCLR_DMA, HINFC504_INTCLR); + complete(&host->cmd_complete); + } else if (flag & HINFC504_INTS_CE) { + hinfc_write(host, HINFC504_INTCLR_CE, HINFC504_INTCLR); + } else if (flag & HINFC504_INTS_UE) { + hinfc_write(host, HINFC504_INTCLR_UE, HINFC504_INTCLR); + } + + return IRQ_HANDLED; +} + +static int hisi_nand_read_page_hwecc(struct mtd_info *mtd, + struct nand_chip *chip, uint8_t *buf, int oob_required, int page) +{ + struct hinfc_host *host = nand_get_controller_data(chip); + int max_bitflips = 0, stat = 0, stat_max = 0, status_ecc; + int stat_1, stat_2; + + nand_read_page_op(chip, page, 0, buf, mtd->writesize); + chip->read_buf(mtd, chip->oob_poi, mtd->oobsize); + + /* errors which can not be corrected by ECC */ + if (host->irq_status & HINFC504_INTS_UE) { + mtd->ecc_stats.failed++; + } else if (host->irq_status & HINFC504_INTS_CE) { + /* TODO: need add other ECC modes! */ + switch (chip->ecc.strength) { + case 16: + status_ecc = hinfc_read(host, HINFC504_ECC_STATUS) >> + HINFC504_ECC_16_BIT_SHIFT & 0x0fff; + stat_2 = status_ecc & 0x3f; + stat_1 = status_ecc >> 6 & 0x3f; + stat = stat_1 + stat_2; + stat_max = max_t(int, stat_1, stat_2); + } + mtd->ecc_stats.corrected += stat; + max_bitflips = max_t(int, max_bitflips, stat_max); + } + host->irq_status = 0; + + return max_bitflips; +} + +static int hisi_nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip, + int page) +{ + struct hinfc_host *host = nand_get_controller_data(chip); + + nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize); + + if (host->irq_status & HINFC504_INTS_UE) { + host->irq_status = 0; + return -EBADMSG; + } + + host->irq_status = 0; + return 0; +} + +static int hisi_nand_write_page_hwecc(struct mtd_info *mtd, + struct nand_chip *chip, const uint8_t *buf, int oob_required, + int page) +{ + nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize); + if (oob_required) + chip->write_buf(mtd, chip->oob_poi, mtd->oobsize); + + return nand_prog_page_end_op(chip); +} + +static void hisi_nfc_host_init(struct hinfc_host *host) +{ + struct nand_chip *chip = &host->chip; + unsigned int flag = 0; + + host->version = hinfc_read(host, HINFC_VERSION); + host->addr_cycle = 0; + host->addr_value[0] = 0; + host->addr_value[1] = 0; + host->cache_addr_value[0] = ~0; + host->cache_addr_value[1] = ~0; + host->chipselect = 0; + + /* default page size: 2K, ecc_none. need modify */ + flag = HINFC504_CON_OP_MODE_NORMAL | HINFC504_CON_READY_BUSY_SEL + | ((0x001 & HINFC504_CON_PAGESIZE_MASK) + << HINFC504_CON_PAGEISZE_SHIFT) + | ((0x0 & HINFC504_CON_ECCTYPE_MASK) + << HINFC504_CON_ECCTYPE_SHIFT) + | ((chip->options & NAND_BUSWIDTH_16) ? + HINFC504_CON_BUS_WIDTH : 0); + hinfc_write(host, flag, HINFC504_CON); + + memset(host->mmio, 0xff, HINFC504_BUFFER_BASE_ADDRESS_LEN); + + hinfc_write(host, SET_HINFC504_PWIDTH(HINFC504_W_LATCH, + HINFC504_R_LATCH, HINFC504_RW_LATCH), HINFC504_PWIDTH); + + /* enable DMA irq */ + hinfc_write(host, HINFC504_INTEN_DMA, HINFC504_INTEN); +} + +static int hisi_ooblayout_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + /* FIXME: add ECC bytes position */ + return -ENOTSUPP; +} + +static int hisi_ooblayout_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + if (section) + return -ERANGE; + + oobregion->offset = 2; + oobregion->length = 6; + + return 0; +} + +static const struct mtd_ooblayout_ops hisi_ooblayout_ops = { + .ecc = hisi_ooblayout_ecc, + .free = hisi_ooblayout_free, +}; + +static int hisi_nfc_ecc_probe(struct hinfc_host *host) +{ + unsigned int flag; + int size, strength, ecc_bits; + struct device *dev = host->dev; + struct nand_chip *chip = &host->chip; + struct mtd_info *mtd = nand_to_mtd(chip); + + size = chip->ecc.size; + strength = chip->ecc.strength; + if (size != 1024) { + dev_err(dev, "error ecc size: %d\n", size); + return -EINVAL; + } + + if ((size == 1024) && ((strength != 8) && (strength != 16) && + (strength != 24) && (strength != 40))) { + dev_err(dev, "ecc size and strength do not match\n"); + return -EINVAL; + } + + chip->ecc.size = size; + chip->ecc.strength = strength; + + chip->ecc.read_page = hisi_nand_read_page_hwecc; + chip->ecc.read_oob = hisi_nand_read_oob; + chip->ecc.write_page = hisi_nand_write_page_hwecc; + + switch (chip->ecc.strength) { + case 16: + ecc_bits = 6; + if (mtd->writesize == 2048) + mtd_set_ooblayout(mtd, &hisi_ooblayout_ops); + + /* TODO: add more page size support */ + break; + + /* TODO: add more ecc strength support */ + default: + dev_err(dev, "not support strength: %d\n", chip->ecc.strength); + return -EINVAL; + } + + flag = hinfc_read(host, HINFC504_CON); + /* add ecc type configure */ + flag |= ((ecc_bits & HINFC504_CON_ECCTYPE_MASK) + << HINFC504_CON_ECCTYPE_SHIFT); + hinfc_write(host, flag, HINFC504_CON); + + /* enable ecc irq */ + flag = hinfc_read(host, HINFC504_INTEN) & 0xfff; + hinfc_write(host, flag | HINFC504_INTEN_UE | HINFC504_INTEN_CE, + HINFC504_INTEN); + + return 0; +} + +static int hisi_nfc_probe(struct platform_device *pdev) +{ + int ret = 0, irq, flag, max_chips = HINFC504_MAX_CHIP; + struct device *dev = &pdev->dev; + struct hinfc_host *host; + struct nand_chip *chip; + struct mtd_info *mtd; + struct resource *res; + struct device_node *np = dev->of_node; + + host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL); + if (!host) + return -ENOMEM; + host->dev = dev; + + platform_set_drvdata(pdev, host); + chip = &host->chip; + mtd = nand_to_mtd(chip); + + irq = platform_get_irq(pdev, 0); + if (irq < 0) { + dev_err(dev, "no IRQ resource defined\n"); + ret = -ENXIO; + goto err_res; + } + + res = platform_get_resource(pdev, IORESOURCE_MEM, 0); + host->iobase = devm_ioremap_resource(dev, res); + if (IS_ERR(host->iobase)) { + ret = PTR_ERR(host->iobase); + goto err_res; + } + + res = platform_get_resource(pdev, IORESOURCE_MEM, 1); + host->mmio = devm_ioremap_resource(dev, res); + if (IS_ERR(host->mmio)) { + ret = PTR_ERR(host->mmio); + dev_err(dev, "devm_ioremap_resource[1] fail\n"); + goto err_res; + } + + mtd->name = "hisi_nand"; + mtd->dev.parent = &pdev->dev; + + nand_set_controller_data(chip, host); + nand_set_flash_node(chip, np); + chip->cmdfunc = hisi_nfc_cmdfunc; + chip->select_chip = hisi_nfc_select_chip; + chip->read_byte = hisi_nfc_read_byte; + chip->read_word = hisi_nfc_read_word; + chip->write_buf = hisi_nfc_write_buf; + chip->read_buf = hisi_nfc_read_buf; + chip->chip_delay = HINFC504_CHIP_DELAY; + chip->onfi_set_features = nand_onfi_get_set_features_notsupp; + chip->onfi_get_features = nand_onfi_get_set_features_notsupp; + + hisi_nfc_host_init(host); + + ret = devm_request_irq(dev, irq, hinfc_irq_handle, 0x0, "nandc", host); + if (ret) { + dev_err(dev, "failed to request IRQ\n"); + goto err_res; + } + + ret = nand_scan_ident(mtd, max_chips, NULL); + if (ret) + goto err_res; + + host->buffer = dmam_alloc_coherent(dev, mtd->writesize + mtd->oobsize, + &host->dma_buffer, GFP_KERNEL); + if (!host->buffer) { + ret = -ENOMEM; + goto err_res; + } + + host->dma_oob = host->dma_buffer + mtd->writesize; + memset(host->buffer, 0xff, mtd->writesize + mtd->oobsize); + + flag = hinfc_read(host, HINFC504_CON); + flag &= ~(HINFC504_CON_PAGESIZE_MASK << HINFC504_CON_PAGEISZE_SHIFT); + switch (mtd->writesize) { + case 2048: + flag |= (0x001 << HINFC504_CON_PAGEISZE_SHIFT); break; + /* + * TODO: add more pagesize support, + * default pagesize has been set in hisi_nfc_host_init + */ + default: + dev_err(dev, "NON-2KB page size nand flash\n"); + ret = -EINVAL; + goto err_res; + } + hinfc_write(host, flag, HINFC504_CON); + + if (chip->ecc.mode == NAND_ECC_HW) + hisi_nfc_ecc_probe(host); + + ret = nand_scan_tail(mtd); + if (ret) { + dev_err(dev, "nand_scan_tail failed: %d\n", ret); + goto err_res; + } + + ret = mtd_device_register(mtd, NULL, 0); + if (ret) { + dev_err(dev, "Err MTD partition=%d\n", ret); + goto err_mtd; + } + + return 0; + +err_mtd: + nand_release(mtd); +err_res: + return ret; +} + +static int hisi_nfc_remove(struct platform_device *pdev) +{ + struct hinfc_host *host = platform_get_drvdata(pdev); + struct mtd_info *mtd = nand_to_mtd(&host->chip); + + nand_release(mtd); + + return 0; +} + +#ifdef CONFIG_PM_SLEEP +static int hisi_nfc_suspend(struct device *dev) +{ + struct hinfc_host *host = dev_get_drvdata(dev); + unsigned long timeout = jiffies + HINFC504_NFC_PM_TIMEOUT; + + while (time_before(jiffies, timeout)) { + if (((hinfc_read(host, HINFC504_STATUS) & 0x1) == 0x0) && + (hinfc_read(host, HINFC504_DMA_CTRL) & + HINFC504_DMA_CTRL_DMA_START)) { + cond_resched(); + return 0; + } + } + + dev_err(host->dev, "nand controller suspend timeout.\n"); + + return -EAGAIN; +} + +static int hisi_nfc_resume(struct device *dev) +{ + int cs; + struct hinfc_host *host = dev_get_drvdata(dev); + struct nand_chip *chip = &host->chip; + + for (cs = 0; cs < chip->numchips; cs++) + hisi_nfc_send_cmd_reset(host, cs); + hinfc_write(host, SET_HINFC504_PWIDTH(HINFC504_W_LATCH, + HINFC504_R_LATCH, HINFC504_RW_LATCH), HINFC504_PWIDTH); + + return 0; +} +#endif +static SIMPLE_DEV_PM_OPS(hisi_nfc_pm_ops, hisi_nfc_suspend, hisi_nfc_resume); + +static const struct of_device_id nfc_id_table[] = { + { .compatible = "hisilicon,504-nfc" }, + {} +}; +MODULE_DEVICE_TABLE(of, nfc_id_table); + +static struct platform_driver hisi_nfc_driver = { + .driver = { + .name = "hisi_nand", + .of_match_table = nfc_id_table, + .pm = &hisi_nfc_pm_ops, + }, + .probe = hisi_nfc_probe, + .remove = hisi_nfc_remove, +}; + +module_platform_driver(hisi_nfc_driver); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Zhou Wang"); +MODULE_AUTHOR("Zhiyong Cai"); +MODULE_DESCRIPTION("Hisilicon Nand Flash Controller Driver"); diff --git a/drivers/mtd/nand/raw/jz4740_nand.c b/drivers/mtd/nand/raw/jz4740_nand.c new file mode 100644 index 000000000000..613b00a9604b --- /dev/null +++ b/drivers/mtd/nand/raw/jz4740_nand.c @@ -0,0 +1,536 @@ +/* + * Copyright (C) 2009-2010, Lars-Peter Clausen + * JZ4740 SoC NAND controller driver + * + * This program is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License as published by the + * Free Software Foundation; either version 2 of the License, or (at your + * option) any later version. + * + * You should have received a copy of the GNU General Public License along + * with this program; if not, write to the Free Software Foundation, Inc., + * 675 Mass Ave, Cambridge, MA 02139, USA. + * + */ + +#include +#include +#include +#include +#include + +#include +#include +#include + +#include + +#include + +#define JZ_REG_NAND_CTRL 0x50 +#define JZ_REG_NAND_ECC_CTRL 0x100 +#define JZ_REG_NAND_DATA 0x104 +#define JZ_REG_NAND_PAR0 0x108 +#define JZ_REG_NAND_PAR1 0x10C +#define JZ_REG_NAND_PAR2 0x110 +#define JZ_REG_NAND_IRQ_STAT 0x114 +#define JZ_REG_NAND_IRQ_CTRL 0x118 +#define JZ_REG_NAND_ERR(x) (0x11C + ((x) << 2)) + +#define JZ_NAND_ECC_CTRL_PAR_READY BIT(4) +#define JZ_NAND_ECC_CTRL_ENCODING BIT(3) +#define JZ_NAND_ECC_CTRL_RS BIT(2) +#define JZ_NAND_ECC_CTRL_RESET BIT(1) +#define JZ_NAND_ECC_CTRL_ENABLE BIT(0) + +#define JZ_NAND_STATUS_ERR_COUNT (BIT(31) | BIT(30) | BIT(29)) +#define JZ_NAND_STATUS_PAD_FINISH BIT(4) +#define JZ_NAND_STATUS_DEC_FINISH BIT(3) +#define JZ_NAND_STATUS_ENC_FINISH BIT(2) +#define JZ_NAND_STATUS_UNCOR_ERROR BIT(1) +#define JZ_NAND_STATUS_ERROR BIT(0) + +#define JZ_NAND_CTRL_ENABLE_CHIP(x) BIT((x) << 1) +#define JZ_NAND_CTRL_ASSERT_CHIP(x) BIT(((x) << 1) + 1) +#define JZ_NAND_CTRL_ASSERT_CHIP_MASK 0xaa + +#define JZ_NAND_MEM_CMD_OFFSET 0x08000 +#define JZ_NAND_MEM_ADDR_OFFSET 0x10000 + +struct jz_nand { + struct nand_chip chip; + void __iomem *base; + struct resource *mem; + + unsigned char banks[JZ_NAND_NUM_BANKS]; + void __iomem *bank_base[JZ_NAND_NUM_BANKS]; + struct resource *bank_mem[JZ_NAND_NUM_BANKS]; + + int selected_bank; + + struct gpio_desc *busy_gpio; + bool is_reading; +}; + +static inline struct jz_nand *mtd_to_jz_nand(struct mtd_info *mtd) +{ + return container_of(mtd_to_nand(mtd), struct jz_nand, chip); +} + +static void jz_nand_select_chip(struct mtd_info *mtd, int chipnr) +{ + struct jz_nand *nand = mtd_to_jz_nand(mtd); + struct nand_chip *chip = mtd_to_nand(mtd); + uint32_t ctrl; + int banknr; + + ctrl = readl(nand->base + JZ_REG_NAND_CTRL); + ctrl &= ~JZ_NAND_CTRL_ASSERT_CHIP_MASK; + + if (chipnr == -1) { + banknr = -1; + } else { + banknr = nand->banks[chipnr] - 1; + chip->IO_ADDR_R = nand->bank_base[banknr]; + chip->IO_ADDR_W = nand->bank_base[banknr]; + } + writel(ctrl, nand->base + JZ_REG_NAND_CTRL); + + nand->selected_bank = banknr; +} + +static void jz_nand_cmd_ctrl(struct mtd_info *mtd, int dat, unsigned int ctrl) +{ + struct jz_nand *nand = mtd_to_jz_nand(mtd); + struct nand_chip *chip = mtd_to_nand(mtd); + uint32_t reg; + void __iomem *bank_base = nand->bank_base[nand->selected_bank]; + + BUG_ON(nand->selected_bank < 0); + + if (ctrl & NAND_CTRL_CHANGE) { + BUG_ON((ctrl & NAND_ALE) && (ctrl & NAND_CLE)); + if (ctrl & NAND_ALE) + bank_base += JZ_NAND_MEM_ADDR_OFFSET; + else if (ctrl & NAND_CLE) + bank_base += JZ_NAND_MEM_CMD_OFFSET; + chip->IO_ADDR_W = bank_base; + + reg = readl(nand->base + JZ_REG_NAND_CTRL); + if (ctrl & NAND_NCE) + reg |= JZ_NAND_CTRL_ASSERT_CHIP(nand->selected_bank); + else + reg &= ~JZ_NAND_CTRL_ASSERT_CHIP(nand->selected_bank); + writel(reg, nand->base + JZ_REG_NAND_CTRL); + } + if (dat != NAND_CMD_NONE) + writeb(dat, chip->IO_ADDR_W); +} + +static int jz_nand_dev_ready(struct mtd_info *mtd) +{ + struct jz_nand *nand = mtd_to_jz_nand(mtd); + return gpiod_get_value_cansleep(nand->busy_gpio); +} + +static void jz_nand_hwctl(struct mtd_info *mtd, int mode) +{ + struct jz_nand *nand = mtd_to_jz_nand(mtd); + uint32_t reg; + + writel(0, nand->base + JZ_REG_NAND_IRQ_STAT); + reg = readl(nand->base + JZ_REG_NAND_ECC_CTRL); + + reg |= JZ_NAND_ECC_CTRL_RESET; + reg |= JZ_NAND_ECC_CTRL_ENABLE; + reg |= JZ_NAND_ECC_CTRL_RS; + + switch (mode) { + case NAND_ECC_READ: + reg &= ~JZ_NAND_ECC_CTRL_ENCODING; + nand->is_reading = true; + break; + case NAND_ECC_WRITE: + reg |= JZ_NAND_ECC_CTRL_ENCODING; + nand->is_reading = false; + break; + default: + break; + } + + writel(reg, nand->base + JZ_REG_NAND_ECC_CTRL); +} + +static int jz_nand_calculate_ecc_rs(struct mtd_info *mtd, const uint8_t *dat, + uint8_t *ecc_code) +{ + struct jz_nand *nand = mtd_to_jz_nand(mtd); + uint32_t reg, status; + int i; + unsigned int timeout = 1000; + static uint8_t empty_block_ecc[] = {0xcd, 0x9d, 0x90, 0x58, 0xf4, + 0x8b, 0xff, 0xb7, 0x6f}; + + if (nand->is_reading) + return 0; + + do { + status = readl(nand->base + JZ_REG_NAND_IRQ_STAT); + } while (!(status & JZ_NAND_STATUS_ENC_FINISH) && --timeout); + + if (timeout == 0) + return -1; + + reg = readl(nand->base + JZ_REG_NAND_ECC_CTRL); + reg &= ~JZ_NAND_ECC_CTRL_ENABLE; + writel(reg, nand->base + JZ_REG_NAND_ECC_CTRL); + + for (i = 0; i < 9; ++i) + ecc_code[i] = readb(nand->base + JZ_REG_NAND_PAR0 + i); + + /* If the written data is completly 0xff, we also want to write 0xff as + * ecc, otherwise we will get in trouble when doing subpage writes. */ + if (memcmp(ecc_code, empty_block_ecc, 9) == 0) + memset(ecc_code, 0xff, 9); + + return 0; +} + +static void jz_nand_correct_data(uint8_t *dat, int index, int mask) +{ + int offset = index & 0x7; + uint16_t data; + + index += (index >> 3); + + data = dat[index]; + data |= dat[index+1] << 8; + + mask ^= (data >> offset) & 0x1ff; + data &= ~(0x1ff << offset); + data |= (mask << offset); + + dat[index] = data & 0xff; + dat[index+1] = (data >> 8) & 0xff; +} + +static int jz_nand_correct_ecc_rs(struct mtd_info *mtd, uint8_t *dat, + uint8_t *read_ecc, uint8_t *calc_ecc) +{ + struct jz_nand *nand = mtd_to_jz_nand(mtd); + int i, error_count, index; + uint32_t reg, status, error; + unsigned int timeout = 1000; + + for (i = 0; i < 9; ++i) + writeb(read_ecc[i], nand->base + JZ_REG_NAND_PAR0 + i); + + reg = readl(nand->base + JZ_REG_NAND_ECC_CTRL); + reg |= JZ_NAND_ECC_CTRL_PAR_READY; + writel(reg, nand->base + JZ_REG_NAND_ECC_CTRL); + + do { + status = readl(nand->base + JZ_REG_NAND_IRQ_STAT); + } while (!(status & JZ_NAND_STATUS_DEC_FINISH) && --timeout); + + if (timeout == 0) + return -ETIMEDOUT; + + reg = readl(nand->base + JZ_REG_NAND_ECC_CTRL); + reg &= ~JZ_NAND_ECC_CTRL_ENABLE; + writel(reg, nand->base + JZ_REG_NAND_ECC_CTRL); + + if (status & JZ_NAND_STATUS_ERROR) { + if (status & JZ_NAND_STATUS_UNCOR_ERROR) + return -EBADMSG; + + error_count = (status & JZ_NAND_STATUS_ERR_COUNT) >> 29; + + for (i = 0; i < error_count; ++i) { + error = readl(nand->base + JZ_REG_NAND_ERR(i)); + index = ((error >> 16) & 0x1ff) - 1; + if (index >= 0 && index < 512) + jz_nand_correct_data(dat, index, error & 0x1ff); + } + + return error_count; + } + + return 0; +} + +static int jz_nand_ioremap_resource(struct platform_device *pdev, + const char *name, struct resource **res, void *__iomem *base) +{ + int ret; + + *res = platform_get_resource_byname(pdev, IORESOURCE_MEM, name); + if (!*res) { + dev_err(&pdev->dev, "Failed to get platform %s memory\n", name); + ret = -ENXIO; + goto err; + } + + *res = request_mem_region((*res)->start, resource_size(*res), + pdev->name); + if (!*res) { + dev_err(&pdev->dev, "Failed to request %s memory region\n", name); + ret = -EBUSY; + goto err; + } + + *base = ioremap((*res)->start, resource_size(*res)); + if (!*base) { + dev_err(&pdev->dev, "Failed to ioremap %s memory region\n", name); + ret = -EBUSY; + goto err_release_mem; + } + + return 0; + +err_release_mem: + release_mem_region((*res)->start, resource_size(*res)); +err: + *res = NULL; + *base = NULL; + return ret; +} + +static inline void jz_nand_iounmap_resource(struct resource *res, + void __iomem *base) +{ + iounmap(base); + release_mem_region(res->start, resource_size(res)); +} + +static int jz_nand_detect_bank(struct platform_device *pdev, + struct jz_nand *nand, unsigned char bank, + size_t chipnr, uint8_t *nand_maf_id, + uint8_t *nand_dev_id) +{ + int ret; + char res_name[6]; + uint32_t ctrl; + struct nand_chip *chip = &nand->chip; + struct mtd_info *mtd = nand_to_mtd(chip); + u8 id[2]; + + /* Request I/O resource. */ + sprintf(res_name, "bank%d", bank); + ret = jz_nand_ioremap_resource(pdev, res_name, + &nand->bank_mem[bank - 1], + &nand->bank_base[bank - 1]); + if (ret) + return ret; + + /* Enable chip in bank. */ + ctrl = readl(nand->base + JZ_REG_NAND_CTRL); + ctrl |= JZ_NAND_CTRL_ENABLE_CHIP(bank - 1); + writel(ctrl, nand->base + JZ_REG_NAND_CTRL); + + if (chipnr == 0) { + /* Detect first chip. */ + ret = nand_scan_ident(mtd, 1, NULL); + if (ret) + goto notfound_id; + + /* Retrieve the IDs from the first chip. */ + chip->select_chip(mtd, 0); + nand_reset_op(chip); + nand_readid_op(chip, 0, id, sizeof(id)); + *nand_maf_id = id[0]; + *nand_dev_id = id[1]; + } else { + /* Detect additional chip. */ + chip->select_chip(mtd, chipnr); + nand_reset_op(chip); + nand_readid_op(chip, 0, id, sizeof(id)); + if (*nand_maf_id != id[0] || *nand_dev_id != id[1]) { + ret = -ENODEV; + goto notfound_id; + } + + /* Update size of the MTD. */ + chip->numchips++; + mtd->size += chip->chipsize; + } + + dev_info(&pdev->dev, "Found chip %i on bank %i\n", chipnr, bank); + return 0; + +notfound_id: + dev_info(&pdev->dev, "No chip found on bank %i\n", bank); + ctrl &= ~(JZ_NAND_CTRL_ENABLE_CHIP(bank - 1)); + writel(ctrl, nand->base + JZ_REG_NAND_CTRL); + jz_nand_iounmap_resource(nand->bank_mem[bank - 1], + nand->bank_base[bank - 1]); + return ret; +} + +static int jz_nand_probe(struct platform_device *pdev) +{ + int ret; + struct jz_nand *nand; + struct nand_chip *chip; + struct mtd_info *mtd; + struct jz_nand_platform_data *pdata = dev_get_platdata(&pdev->dev); + size_t chipnr, bank_idx; + uint8_t nand_maf_id = 0, nand_dev_id = 0; + + nand = kzalloc(sizeof(*nand), GFP_KERNEL); + if (!nand) + return -ENOMEM; + + ret = jz_nand_ioremap_resource(pdev, "mmio", &nand->mem, &nand->base); + if (ret) + goto err_free; + + nand->busy_gpio = devm_gpiod_get_optional(&pdev->dev, "busy", GPIOD_IN); + if (IS_ERR(nand->busy_gpio)) { + ret = PTR_ERR(nand->busy_gpio); + dev_err(&pdev->dev, "Failed to request busy gpio %d\n", + ret); + goto err_iounmap_mmio; + } + + chip = &nand->chip; + mtd = nand_to_mtd(chip); + mtd->dev.parent = &pdev->dev; + mtd->name = "jz4740-nand"; + + chip->ecc.hwctl = jz_nand_hwctl; + chip->ecc.calculate = jz_nand_calculate_ecc_rs; + chip->ecc.correct = jz_nand_correct_ecc_rs; + chip->ecc.mode = NAND_ECC_HW_OOB_FIRST; + chip->ecc.size = 512; + chip->ecc.bytes = 9; + chip->ecc.strength = 4; + chip->ecc.options = NAND_ECC_GENERIC_ERASED_CHECK; + + chip->chip_delay = 50; + chip->cmd_ctrl = jz_nand_cmd_ctrl; + chip->select_chip = jz_nand_select_chip; + + if (nand->busy_gpio) + chip->dev_ready = jz_nand_dev_ready; + + platform_set_drvdata(pdev, nand); + + /* We are going to autodetect NAND chips in the banks specified in the + * platform data. Although nand_scan_ident() can detect multiple chips, + * it requires those chips to be numbered consecuitively, which is not + * always the case for external memory banks. And a fixed chip-to-bank + * mapping is not practical either, since for example Dingoo units + * produced at different times have NAND chips in different banks. + */ + chipnr = 0; + for (bank_idx = 0; bank_idx < JZ_NAND_NUM_BANKS; bank_idx++) { + unsigned char bank; + + /* If there is no platform data, look for NAND in bank 1, + * which is the most likely bank since it is the only one + * that can be booted from. + */ + bank = pdata ? pdata->banks[bank_idx] : bank_idx ^ 1; + if (bank == 0) + break; + if (bank > JZ_NAND_NUM_BANKS) { + dev_warn(&pdev->dev, + "Skipping non-existing bank: %d\n", bank); + continue; + } + /* The detection routine will directly or indirectly call + * jz_nand_select_chip(), so nand->banks has to contain the + * bank we're checking. + */ + nand->banks[chipnr] = bank; + if (jz_nand_detect_bank(pdev, nand, bank, chipnr, + &nand_maf_id, &nand_dev_id) == 0) + chipnr++; + else + nand->banks[chipnr] = 0; + } + if (chipnr == 0) { + dev_err(&pdev->dev, "No NAND chips found\n"); + goto err_iounmap_mmio; + } + + if (pdata && pdata->ident_callback) { + pdata->ident_callback(pdev, mtd, &pdata->partitions, + &pdata->num_partitions); + } + + ret = nand_scan_tail(mtd); + if (ret) { + dev_err(&pdev->dev, "Failed to scan NAND\n"); + goto err_unclaim_banks; + } + + ret = mtd_device_parse_register(mtd, NULL, NULL, + pdata ? pdata->partitions : NULL, + pdata ? pdata->num_partitions : 0); + + if (ret) { + dev_err(&pdev->dev, "Failed to add mtd device\n"); + goto err_nand_release; + } + + dev_info(&pdev->dev, "Successfully registered JZ4740 NAND driver\n"); + + return 0; + +err_nand_release: + nand_release(mtd); +err_unclaim_banks: + while (chipnr--) { + unsigned char bank = nand->banks[chipnr]; + jz_nand_iounmap_resource(nand->bank_mem[bank - 1], + nand->bank_base[bank - 1]); + } + writel(0, nand->base + JZ_REG_NAND_CTRL); +err_iounmap_mmio: + jz_nand_iounmap_resource(nand->mem, nand->base); +err_free: + kfree(nand); + return ret; +} + +static int jz_nand_remove(struct platform_device *pdev) +{ + struct jz_nand *nand = platform_get_drvdata(pdev); + size_t i; + + nand_release(nand_to_mtd(&nand->chip)); + + /* Deassert and disable all chips */ + writel(0, nand->base + JZ_REG_NAND_CTRL); + + for (i = 0; i < JZ_NAND_NUM_BANKS; ++i) { + unsigned char bank = nand->banks[i]; + if (bank != 0) { + jz_nand_iounmap_resource(nand->bank_mem[bank - 1], + nand->bank_base[bank - 1]); + } + } + + jz_nand_iounmap_resource(nand->mem, nand->base); + + kfree(nand); + + return 0; +} + +static struct platform_driver jz_nand_driver = { + .probe = jz_nand_probe, + .remove = jz_nand_remove, + .driver = { + .name = "jz4740-nand", + }, +}; + +module_platform_driver(jz_nand_driver); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Lars-Peter Clausen "); +MODULE_DESCRIPTION("NAND controller driver for JZ4740 SoC"); +MODULE_ALIAS("platform:jz4740-nand"); diff --git a/drivers/mtd/nand/raw/jz4780_bch.c b/drivers/mtd/nand/raw/jz4780_bch.c new file mode 100644 index 000000000000..731c6051d91e --- /dev/null +++ b/drivers/mtd/nand/raw/jz4780_bch.c @@ -0,0 +1,380 @@ +/* + * JZ4780 BCH controller + * + * Copyright (c) 2015 Imagination Technologies + * Author: Alex Smith + * + * This program is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License version 2 as published + * by the Free Software Foundation. + */ + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#include "jz4780_bch.h" + +#define BCH_BHCR 0x0 +#define BCH_BHCCR 0x8 +#define BCH_BHCNT 0xc +#define BCH_BHDR 0x10 +#define BCH_BHPAR0 0x14 +#define BCH_BHERR0 0x84 +#define BCH_BHINT 0x184 +#define BCH_BHINTES 0x188 +#define BCH_BHINTEC 0x18c +#define BCH_BHINTE 0x190 + +#define BCH_BHCR_BSEL_SHIFT 4 +#define BCH_BHCR_BSEL_MASK (0x7f << BCH_BHCR_BSEL_SHIFT) +#define BCH_BHCR_ENCE BIT(2) +#define BCH_BHCR_INIT BIT(1) +#define BCH_BHCR_BCHE BIT(0) + +#define BCH_BHCNT_PARITYSIZE_SHIFT 16 +#define BCH_BHCNT_PARITYSIZE_MASK (0x7f << BCH_BHCNT_PARITYSIZE_SHIFT) +#define BCH_BHCNT_BLOCKSIZE_SHIFT 0 +#define BCH_BHCNT_BLOCKSIZE_MASK (0x7ff << BCH_BHCNT_BLOCKSIZE_SHIFT) + +#define BCH_BHERR_MASK_SHIFT 16 +#define BCH_BHERR_MASK_MASK (0xffff << BCH_BHERR_MASK_SHIFT) +#define BCH_BHERR_INDEX_SHIFT 0 +#define BCH_BHERR_INDEX_MASK (0x7ff << BCH_BHERR_INDEX_SHIFT) + +#define BCH_BHINT_ERRC_SHIFT 24 +#define BCH_BHINT_ERRC_MASK (0x7f << BCH_BHINT_ERRC_SHIFT) +#define BCH_BHINT_TERRC_SHIFT 16 +#define BCH_BHINT_TERRC_MASK (0x7f << BCH_BHINT_TERRC_SHIFT) +#define BCH_BHINT_DECF BIT(3) +#define BCH_BHINT_ENCF BIT(2) +#define BCH_BHINT_UNCOR BIT(1) +#define BCH_BHINT_ERR BIT(0) + +#define BCH_CLK_RATE (200 * 1000 * 1000) + +/* Timeout for BCH calculation/correction. */ +#define BCH_TIMEOUT_US 100000 + +struct jz4780_bch { + struct device *dev; + void __iomem *base; + struct clk *clk; + struct mutex lock; +}; + +static void jz4780_bch_init(struct jz4780_bch *bch, + struct jz4780_bch_params *params, bool encode) +{ + u32 reg; + + /* Clear interrupt status. */ + writel(readl(bch->base + BCH_BHINT), bch->base + BCH_BHINT); + + /* Set up BCH count register. */ + reg = params->size << BCH_BHCNT_BLOCKSIZE_SHIFT; + reg |= params->bytes << BCH_BHCNT_PARITYSIZE_SHIFT; + writel(reg, bch->base + BCH_BHCNT); + + /* Initialise and enable BCH. */ + reg = BCH_BHCR_BCHE | BCH_BHCR_INIT; + reg |= params->strength << BCH_BHCR_BSEL_SHIFT; + if (encode) + reg |= BCH_BHCR_ENCE; + writel(reg, bch->base + BCH_BHCR); +} + +static void jz4780_bch_disable(struct jz4780_bch *bch) +{ + writel(readl(bch->base + BCH_BHINT), bch->base + BCH_BHINT); + writel(BCH_BHCR_BCHE, bch->base + BCH_BHCCR); +} + +static void jz4780_bch_write_data(struct jz4780_bch *bch, const void *buf, + size_t size) +{ + size_t size32 = size / sizeof(u32); + size_t size8 = size % sizeof(u32); + const u32 *src32; + const u8 *src8; + + src32 = (const u32 *)buf; + while (size32--) + writel(*src32++, bch->base + BCH_BHDR); + + src8 = (const u8 *)src32; + while (size8--) + writeb(*src8++, bch->base + BCH_BHDR); +} + +static void jz4780_bch_read_parity(struct jz4780_bch *bch, void *buf, + size_t size) +{ + size_t size32 = size / sizeof(u32); + size_t size8 = size % sizeof(u32); + u32 *dest32; + u8 *dest8; + u32 val, offset = 0; + + dest32 = (u32 *)buf; + while (size32--) { + *dest32++ = readl(bch->base + BCH_BHPAR0 + offset); + offset += sizeof(u32); + } + + dest8 = (u8 *)dest32; + val = readl(bch->base + BCH_BHPAR0 + offset); + switch (size8) { + case 3: + dest8[2] = (val >> 16) & 0xff; + case 2: + dest8[1] = (val >> 8) & 0xff; + case 1: + dest8[0] = val & 0xff; + break; + } +} + +static bool jz4780_bch_wait_complete(struct jz4780_bch *bch, unsigned int irq, + u32 *status) +{ + u32 reg; + int ret; + + /* + * While we could use interrupts here and sleep until the operation + * completes, the controller works fairly quickly (usually a few + * microseconds) and so the overhead of sleeping until we get an + * interrupt quite noticeably decreases performance. + */ + ret = readl_poll_timeout(bch->base + BCH_BHINT, reg, + (reg & irq) == irq, 0, BCH_TIMEOUT_US); + if (ret) + return false; + + if (status) + *status = reg; + + writel(reg, bch->base + BCH_BHINT); + return true; +} + +/** + * jz4780_bch_calculate() - calculate ECC for a data buffer + * @bch: BCH device. + * @params: BCH parameters. + * @buf: input buffer with raw data. + * @ecc_code: output buffer with ECC. + * + * Return: 0 on success, -ETIMEDOUT if timed out while waiting for BCH + * controller. + */ +int jz4780_bch_calculate(struct jz4780_bch *bch, struct jz4780_bch_params *params, + const u8 *buf, u8 *ecc_code) +{ + int ret = 0; + + mutex_lock(&bch->lock); + jz4780_bch_init(bch, params, true); + jz4780_bch_write_data(bch, buf, params->size); + + if (jz4780_bch_wait_complete(bch, BCH_BHINT_ENCF, NULL)) { + jz4780_bch_read_parity(bch, ecc_code, params->bytes); + } else { + dev_err(bch->dev, "timed out while calculating ECC\n"); + ret = -ETIMEDOUT; + } + + jz4780_bch_disable(bch); + mutex_unlock(&bch->lock); + return ret; +} +EXPORT_SYMBOL(jz4780_bch_calculate); + +/** + * jz4780_bch_correct() - detect and correct bit errors + * @bch: BCH device. + * @params: BCH parameters. + * @buf: raw data read from the chip. + * @ecc_code: ECC read from the chip. + * + * Given the raw data and the ECC read from the NAND device, detects and + * corrects errors in the data. + * + * Return: the number of bit errors corrected, -EBADMSG if there are too many + * errors to correct or -ETIMEDOUT if we timed out waiting for the controller. + */ +int jz4780_bch_correct(struct jz4780_bch *bch, struct jz4780_bch_params *params, + u8 *buf, u8 *ecc_code) +{ + u32 reg, mask, index; + int i, ret, count; + + mutex_lock(&bch->lock); + + jz4780_bch_init(bch, params, false); + jz4780_bch_write_data(bch, buf, params->size); + jz4780_bch_write_data(bch, ecc_code, params->bytes); + + if (!jz4780_bch_wait_complete(bch, BCH_BHINT_DECF, ®)) { + dev_err(bch->dev, "timed out while correcting data\n"); + ret = -ETIMEDOUT; + goto out; + } + + if (reg & BCH_BHINT_UNCOR) { + dev_warn(bch->dev, "uncorrectable ECC error\n"); + ret = -EBADMSG; + goto out; + } + + /* Correct any detected errors. */ + if (reg & BCH_BHINT_ERR) { + count = (reg & BCH_BHINT_ERRC_MASK) >> BCH_BHINT_ERRC_SHIFT; + ret = (reg & BCH_BHINT_TERRC_MASK) >> BCH_BHINT_TERRC_SHIFT; + + for (i = 0; i < count; i++) { + reg = readl(bch->base + BCH_BHERR0 + (i * 4)); + mask = (reg & BCH_BHERR_MASK_MASK) >> + BCH_BHERR_MASK_SHIFT; + index = (reg & BCH_BHERR_INDEX_MASK) >> + BCH_BHERR_INDEX_SHIFT; + buf[(index * 2) + 0] ^= mask; + buf[(index * 2) + 1] ^= mask >> 8; + } + } else { + ret = 0; + } + +out: + jz4780_bch_disable(bch); + mutex_unlock(&bch->lock); + return ret; +} +EXPORT_SYMBOL(jz4780_bch_correct); + +/** + * jz4780_bch_get() - get the BCH controller device + * @np: BCH device tree node. + * + * Gets the BCH controller device from the specified device tree node. The + * device must be released with jz4780_bch_release() when it is no longer being + * used. + * + * Return: a pointer to jz4780_bch, errors are encoded into the pointer. + * PTR_ERR(-EPROBE_DEFER) if the device hasn't been initialised yet. + */ +static struct jz4780_bch *jz4780_bch_get(struct device_node *np) +{ + struct platform_device *pdev; + struct jz4780_bch *bch; + + pdev = of_find_device_by_node(np); + if (!pdev || !platform_get_drvdata(pdev)) + return ERR_PTR(-EPROBE_DEFER); + + get_device(&pdev->dev); + + bch = platform_get_drvdata(pdev); + clk_prepare_enable(bch->clk); + + return bch; +} + +/** + * of_jz4780_bch_get() - get the BCH controller from a DT node + * @of_node: the node that contains a bch-controller property. + * + * Get the bch-controller property from the given device tree + * node and pass it to jz4780_bch_get to do the work. + * + * Return: a pointer to jz4780_bch, errors are encoded into the pointer. + * PTR_ERR(-EPROBE_DEFER) if the device hasn't been initialised yet. + */ +struct jz4780_bch *of_jz4780_bch_get(struct device_node *of_node) +{ + struct jz4780_bch *bch = NULL; + struct device_node *np; + + np = of_parse_phandle(of_node, "ingenic,bch-controller", 0); + + if (np) { + bch = jz4780_bch_get(np); + of_node_put(np); + } + return bch; +} +EXPORT_SYMBOL(of_jz4780_bch_get); + +/** + * jz4780_bch_release() - release the BCH controller device + * @bch: BCH device. + */ +void jz4780_bch_release(struct jz4780_bch *bch) +{ + clk_disable_unprepare(bch->clk); + put_device(bch->dev); +} +EXPORT_SYMBOL(jz4780_bch_release); + +static int jz4780_bch_probe(struct platform_device *pdev) +{ + struct device *dev = &pdev->dev; + struct jz4780_bch *bch; + struct resource *res; + + bch = devm_kzalloc(dev, sizeof(*bch), GFP_KERNEL); + if (!bch) + return -ENOMEM; + + res = platform_get_resource(pdev, IORESOURCE_MEM, 0); + bch->base = devm_ioremap_resource(dev, res); + if (IS_ERR(bch->base)) + return PTR_ERR(bch->base); + + jz4780_bch_disable(bch); + + bch->clk = devm_clk_get(dev, NULL); + if (IS_ERR(bch->clk)) { + dev_err(dev, "failed to get clock: %ld\n", PTR_ERR(bch->clk)); + return PTR_ERR(bch->clk); + } + + clk_set_rate(bch->clk, BCH_CLK_RATE); + + mutex_init(&bch->lock); + + bch->dev = dev; + platform_set_drvdata(pdev, bch); + + return 0; +} + +static const struct of_device_id jz4780_bch_dt_match[] = { + { .compatible = "ingenic,jz4780-bch" }, + {}, +}; +MODULE_DEVICE_TABLE(of, jz4780_bch_dt_match); + +static struct platform_driver jz4780_bch_driver = { + .probe = jz4780_bch_probe, + .driver = { + .name = "jz4780-bch", + .of_match_table = of_match_ptr(jz4780_bch_dt_match), + }, +}; +module_platform_driver(jz4780_bch_driver); + +MODULE_AUTHOR("Alex Smith "); +MODULE_AUTHOR("Harvey Hunt "); +MODULE_DESCRIPTION("Ingenic JZ4780 BCH error correction driver"); +MODULE_LICENSE("GPL v2"); diff --git a/drivers/mtd/nand/raw/jz4780_bch.h b/drivers/mtd/nand/raw/jz4780_bch.h new file mode 100644 index 000000000000..bf4718088a3a --- /dev/null +++ b/drivers/mtd/nand/raw/jz4780_bch.h @@ -0,0 +1,43 @@ +/* + * JZ4780 BCH controller + * + * Copyright (c) 2015 Imagination Technologies + * Author: Alex Smith + * + * This program is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License version 2 as published + * by the Free Software Foundation. + */ + +#ifndef __DRIVERS_MTD_NAND_JZ4780_BCH_H__ +#define __DRIVERS_MTD_NAND_JZ4780_BCH_H__ + +#include + +struct device; +struct device_node; +struct jz4780_bch; + +/** + * struct jz4780_bch_params - BCH parameters + * @size: data bytes per ECC step. + * @bytes: ECC bytes per step. + * @strength: number of correctable bits per ECC step. + */ +struct jz4780_bch_params { + int size; + int bytes; + int strength; +}; + +int jz4780_bch_calculate(struct jz4780_bch *bch, + struct jz4780_bch_params *params, + const u8 *buf, u8 *ecc_code); +int jz4780_bch_correct(struct jz4780_bch *bch, + struct jz4780_bch_params *params, u8 *buf, + u8 *ecc_code); + +void jz4780_bch_release(struct jz4780_bch *bch); +struct jz4780_bch *of_jz4780_bch_get(struct device_node *np); + +#endif /* __DRIVERS_MTD_NAND_JZ4780_BCH_H__ */ diff --git a/drivers/mtd/nand/raw/jz4780_nand.c b/drivers/mtd/nand/raw/jz4780_nand.c new file mode 100644 index 000000000000..e69f6ae4c539 --- /dev/null +++ b/drivers/mtd/nand/raw/jz4780_nand.c @@ -0,0 +1,416 @@ +/* + * JZ4780 NAND driver + * + * Copyright (c) 2015 Imagination Technologies + * Author: Alex Smith + * + * This program is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License version 2 as published + * by the Free Software Foundation. + */ + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#include + +#include "jz4780_bch.h" + +#define DRV_NAME "jz4780-nand" + +#define OFFSET_DATA 0x00000000 +#define OFFSET_CMD 0x00400000 +#define OFFSET_ADDR 0x00800000 + +/* Command delay when there is no R/B pin. */ +#define RB_DELAY_US 100 + +struct jz4780_nand_cs { + unsigned int bank; + void __iomem *base; +}; + +struct jz4780_nand_controller { + struct device *dev; + struct jz4780_bch *bch; + struct nand_hw_control controller; + unsigned int num_banks; + struct list_head chips; + int selected; + struct jz4780_nand_cs cs[]; +}; + +struct jz4780_nand_chip { + struct nand_chip chip; + struct list_head chip_list; + + struct gpio_desc *busy_gpio; + struct gpio_desc *wp_gpio; + unsigned int reading: 1; +}; + +static inline struct jz4780_nand_chip *to_jz4780_nand_chip(struct mtd_info *mtd) +{ + return container_of(mtd_to_nand(mtd), struct jz4780_nand_chip, chip); +} + +static inline struct jz4780_nand_controller *to_jz4780_nand_controller(struct nand_hw_control *ctrl) +{ + return container_of(ctrl, struct jz4780_nand_controller, controller); +} + +static void jz4780_nand_select_chip(struct mtd_info *mtd, int chipnr) +{ + struct jz4780_nand_chip *nand = to_jz4780_nand_chip(mtd); + struct jz4780_nand_controller *nfc = to_jz4780_nand_controller(nand->chip.controller); + struct jz4780_nand_cs *cs; + + /* Ensure the currently selected chip is deasserted. */ + if (chipnr == -1 && nfc->selected >= 0) { + cs = &nfc->cs[nfc->selected]; + jz4780_nemc_assert(nfc->dev, cs->bank, false); + } + + nfc->selected = chipnr; +} + +static void jz4780_nand_cmd_ctrl(struct mtd_info *mtd, int cmd, + unsigned int ctrl) +{ + struct jz4780_nand_chip *nand = to_jz4780_nand_chip(mtd); + struct jz4780_nand_controller *nfc = to_jz4780_nand_controller(nand->chip.controller); + struct jz4780_nand_cs *cs; + + if (WARN_ON(nfc->selected < 0)) + return; + + cs = &nfc->cs[nfc->selected]; + + jz4780_nemc_assert(nfc->dev, cs->bank, ctrl & NAND_NCE); + + if (cmd == NAND_CMD_NONE) + return; + + if (ctrl & NAND_ALE) + writeb(cmd, cs->base + OFFSET_ADDR); + else if (ctrl & NAND_CLE) + writeb(cmd, cs->base + OFFSET_CMD); +} + +static int jz4780_nand_dev_ready(struct mtd_info *mtd) +{ + struct jz4780_nand_chip *nand = to_jz4780_nand_chip(mtd); + + return !gpiod_get_value_cansleep(nand->busy_gpio); +} + +static void jz4780_nand_ecc_hwctl(struct mtd_info *mtd, int mode) +{ + struct jz4780_nand_chip *nand = to_jz4780_nand_chip(mtd); + + nand->reading = (mode == NAND_ECC_READ); +} + +static int jz4780_nand_ecc_calculate(struct mtd_info *mtd, const u8 *dat, + u8 *ecc_code) +{ + struct jz4780_nand_chip *nand = to_jz4780_nand_chip(mtd); + struct jz4780_nand_controller *nfc = to_jz4780_nand_controller(nand->chip.controller); + struct jz4780_bch_params params; + + /* + * Don't need to generate the ECC when reading, BCH does it for us as + * part of decoding/correction. + */ + if (nand->reading) + return 0; + + params.size = nand->chip.ecc.size; + params.bytes = nand->chip.ecc.bytes; + params.strength = nand->chip.ecc.strength; + + return jz4780_bch_calculate(nfc->bch, ¶ms, dat, ecc_code); +} + +static int jz4780_nand_ecc_correct(struct mtd_info *mtd, u8 *dat, + u8 *read_ecc, u8 *calc_ecc) +{ + struct jz4780_nand_chip *nand = to_jz4780_nand_chip(mtd); + struct jz4780_nand_controller *nfc = to_jz4780_nand_controller(nand->chip.controller); + struct jz4780_bch_params params; + + params.size = nand->chip.ecc.size; + params.bytes = nand->chip.ecc.bytes; + params.strength = nand->chip.ecc.strength; + + return jz4780_bch_correct(nfc->bch, ¶ms, dat, read_ecc); +} + +static int jz4780_nand_init_ecc(struct jz4780_nand_chip *nand, struct device *dev) +{ + struct nand_chip *chip = &nand->chip; + struct mtd_info *mtd = nand_to_mtd(chip); + struct jz4780_nand_controller *nfc = to_jz4780_nand_controller(chip->controller); + int eccbytes; + + chip->ecc.bytes = fls((1 + 8) * chip->ecc.size) * + (chip->ecc.strength / 8); + + switch (chip->ecc.mode) { + case NAND_ECC_HW: + if (!nfc->bch) { + dev_err(dev, "HW BCH selected, but BCH controller not found\n"); + return -ENODEV; + } + + chip->ecc.hwctl = jz4780_nand_ecc_hwctl; + chip->ecc.calculate = jz4780_nand_ecc_calculate; + chip->ecc.correct = jz4780_nand_ecc_correct; + /* fall through */ + case NAND_ECC_SOFT: + dev_info(dev, "using %s (strength %d, size %d, bytes %d)\n", + (nfc->bch) ? "hardware BCH" : "software ECC", + chip->ecc.strength, chip->ecc.size, chip->ecc.bytes); + break; + case NAND_ECC_NONE: + dev_info(dev, "not using ECC\n"); + break; + default: + dev_err(dev, "ECC mode %d not supported\n", chip->ecc.mode); + return -EINVAL; + } + + /* The NAND core will generate the ECC layout for SW ECC */ + if (chip->ecc.mode != NAND_ECC_HW) + return 0; + + /* Generate ECC layout. ECC codes are right aligned in the OOB area. */ + eccbytes = mtd->writesize / chip->ecc.size * chip->ecc.bytes; + + if (eccbytes > mtd->oobsize - 2) { + dev_err(dev, + "invalid ECC config: required %d ECC bytes, but only %d are available", + eccbytes, mtd->oobsize - 2); + return -EINVAL; + } + + mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops); + + return 0; +} + +static int jz4780_nand_init_chip(struct platform_device *pdev, + struct jz4780_nand_controller *nfc, + struct device_node *np, + unsigned int chipnr) +{ + struct device *dev = &pdev->dev; + struct jz4780_nand_chip *nand; + struct jz4780_nand_cs *cs; + struct resource *res; + struct nand_chip *chip; + struct mtd_info *mtd; + const __be32 *reg; + int ret = 0; + + cs = &nfc->cs[chipnr]; + + reg = of_get_property(np, "reg", NULL); + if (!reg) + return -EINVAL; + + cs->bank = be32_to_cpu(*reg); + + jz4780_nemc_set_type(nfc->dev, cs->bank, JZ4780_NEMC_BANK_NAND); + + res = platform_get_resource(pdev, IORESOURCE_MEM, chipnr); + cs->base = devm_ioremap_resource(dev, res); + if (IS_ERR(cs->base)) + return PTR_ERR(cs->base); + + nand = devm_kzalloc(dev, sizeof(*nand), GFP_KERNEL); + if (!nand) + return -ENOMEM; + + nand->busy_gpio = devm_gpiod_get_optional(dev, "rb", GPIOD_IN); + + if (IS_ERR(nand->busy_gpio)) { + ret = PTR_ERR(nand->busy_gpio); + dev_err(dev, "failed to request busy GPIO: %d\n", ret); + return ret; + } else if (nand->busy_gpio) { + nand->chip.dev_ready = jz4780_nand_dev_ready; + } + + nand->wp_gpio = devm_gpiod_get_optional(dev, "wp", GPIOD_OUT_LOW); + + if (IS_ERR(nand->wp_gpio)) { + ret = PTR_ERR(nand->wp_gpio); + dev_err(dev, "failed to request WP GPIO: %d\n", ret); + return ret; + } + + chip = &nand->chip; + mtd = nand_to_mtd(chip); + mtd->name = devm_kasprintf(dev, GFP_KERNEL, "%s.%d", dev_name(dev), + cs->bank); + if (!mtd->name) + return -ENOMEM; + mtd->dev.parent = dev; + + chip->IO_ADDR_R = cs->base + OFFSET_DATA; + chip->IO_ADDR_W = cs->base + OFFSET_DATA; + chip->chip_delay = RB_DELAY_US; + chip->options = NAND_NO_SUBPAGE_WRITE; + chip->select_chip = jz4780_nand_select_chip; + chip->cmd_ctrl = jz4780_nand_cmd_ctrl; + chip->ecc.mode = NAND_ECC_HW; + chip->controller = &nfc->controller; + nand_set_flash_node(chip, np); + + ret = nand_scan_ident(mtd, 1, NULL); + if (ret) + return ret; + + ret = jz4780_nand_init_ecc(nand, dev); + if (ret) + return ret; + + ret = nand_scan_tail(mtd); + if (ret) + return ret; + + ret = mtd_device_register(mtd, NULL, 0); + if (ret) { + nand_release(mtd); + return ret; + } + + list_add_tail(&nand->chip_list, &nfc->chips); + + return 0; +} + +static void jz4780_nand_cleanup_chips(struct jz4780_nand_controller *nfc) +{ + struct jz4780_nand_chip *chip; + + while (!list_empty(&nfc->chips)) { + chip = list_first_entry(&nfc->chips, struct jz4780_nand_chip, chip_list); + nand_release(nand_to_mtd(&chip->chip)); + list_del(&chip->chip_list); + } +} + +static int jz4780_nand_init_chips(struct jz4780_nand_controller *nfc, + struct platform_device *pdev) +{ + struct device *dev = &pdev->dev; + struct device_node *np; + int i = 0; + int ret; + int num_chips = of_get_child_count(dev->of_node); + + if (num_chips > nfc->num_banks) { + dev_err(dev, "found %d chips but only %d banks\n", num_chips, nfc->num_banks); + return -EINVAL; + } + + for_each_child_of_node(dev->of_node, np) { + ret = jz4780_nand_init_chip(pdev, nfc, np, i); + if (ret) { + jz4780_nand_cleanup_chips(nfc); + return ret; + } + + i++; + } + + return 0; +} + +static int jz4780_nand_probe(struct platform_device *pdev) +{ + struct device *dev = &pdev->dev; + unsigned int num_banks; + struct jz4780_nand_controller *nfc; + int ret; + + num_banks = jz4780_nemc_num_banks(dev); + if (num_banks == 0) { + dev_err(dev, "no banks found\n"); + return -ENODEV; + } + + nfc = devm_kzalloc(dev, sizeof(*nfc) + (sizeof(nfc->cs[0]) * num_banks), GFP_KERNEL); + if (!nfc) + return -ENOMEM; + + /* + * Check for BCH HW before we call nand_scan_ident, to prevent us from + * having to call it again if the BCH driver returns -EPROBE_DEFER. + */ + nfc->bch = of_jz4780_bch_get(dev->of_node); + if (IS_ERR(nfc->bch)) + return PTR_ERR(nfc->bch); + + nfc->dev = dev; + nfc->num_banks = num_banks; + + nand_hw_control_init(&nfc->controller); + INIT_LIST_HEAD(&nfc->chips); + + ret = jz4780_nand_init_chips(nfc, pdev); + if (ret) { + if (nfc->bch) + jz4780_bch_release(nfc->bch); + return ret; + } + + platform_set_drvdata(pdev, nfc); + return 0; +} + +static int jz4780_nand_remove(struct platform_device *pdev) +{ + struct jz4780_nand_controller *nfc = platform_get_drvdata(pdev); + + if (nfc->bch) + jz4780_bch_release(nfc->bch); + + jz4780_nand_cleanup_chips(nfc); + + return 0; +} + +static const struct of_device_id jz4780_nand_dt_match[] = { + { .compatible = "ingenic,jz4780-nand" }, + {}, +}; +MODULE_DEVICE_TABLE(of, jz4780_nand_dt_match); + +static struct platform_driver jz4780_nand_driver = { + .probe = jz4780_nand_probe, + .remove = jz4780_nand_remove, + .driver = { + .name = DRV_NAME, + .of_match_table = of_match_ptr(jz4780_nand_dt_match), + }, +}; +module_platform_driver(jz4780_nand_driver); + +MODULE_AUTHOR("Alex Smith "); +MODULE_AUTHOR("Harvey Hunt "); +MODULE_DESCRIPTION("Ingenic JZ4780 NAND driver"); +MODULE_LICENSE("GPL v2"); diff --git a/drivers/mtd/nand/raw/lpc32xx_mlc.c b/drivers/mtd/nand/raw/lpc32xx_mlc.c new file mode 100644 index 000000000000..e357948a7505 --- /dev/null +++ b/drivers/mtd/nand/raw/lpc32xx_mlc.c @@ -0,0 +1,909 @@ +/* + * Driver for NAND MLC Controller in LPC32xx + * + * Author: Roland Stigge + * + * Copyright © 2011 WORK Microwave GmbH + * Copyright © 2011, 2012 Roland Stigge + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * + * NAND Flash Controller Operation: + * - Read: Auto Decode + * - Write: Auto Encode + * - Tested Page Sizes: 2048, 4096 + */ + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#define DRV_NAME "lpc32xx_mlc" + +/********************************************************************** +* MLC NAND controller register offsets +**********************************************************************/ + +#define MLC_BUFF(x) (x + 0x00000) +#define MLC_DATA(x) (x + 0x08000) +#define MLC_CMD(x) (x + 0x10000) +#define MLC_ADDR(x) (x + 0x10004) +#define MLC_ECC_ENC_REG(x) (x + 0x10008) +#define MLC_ECC_DEC_REG(x) (x + 0x1000C) +#define MLC_ECC_AUTO_ENC_REG(x) (x + 0x10010) +#define MLC_ECC_AUTO_DEC_REG(x) (x + 0x10014) +#define MLC_RPR(x) (x + 0x10018) +#define MLC_WPR(x) (x + 0x1001C) +#define MLC_RUBP(x) (x + 0x10020) +#define MLC_ROBP(x) (x + 0x10024) +#define MLC_SW_WP_ADD_LOW(x) (x + 0x10028) +#define MLC_SW_WP_ADD_HIG(x) (x + 0x1002C) +#define MLC_ICR(x) (x + 0x10030) +#define MLC_TIME_REG(x) (x + 0x10034) +#define MLC_IRQ_MR(x) (x + 0x10038) +#define MLC_IRQ_SR(x) (x + 0x1003C) +#define MLC_LOCK_PR(x) (x + 0x10044) +#define MLC_ISR(x) (x + 0x10048) +#define MLC_CEH(x) (x + 0x1004C) + +/********************************************************************** +* MLC_CMD bit definitions +**********************************************************************/ +#define MLCCMD_RESET 0xFF + +/********************************************************************** +* MLC_ICR bit definitions +**********************************************************************/ +#define MLCICR_WPROT (1 << 3) +#define MLCICR_LARGEBLOCK (1 << 2) +#define MLCICR_LONGADDR (1 << 1) +#define MLCICR_16BIT (1 << 0) /* unsupported by LPC32x0! */ + +/********************************************************************** +* MLC_TIME_REG bit definitions +**********************************************************************/ +#define MLCTIMEREG_TCEA_DELAY(n) (((n) & 0x03) << 24) +#define MLCTIMEREG_BUSY_DELAY(n) (((n) & 0x1F) << 19) +#define MLCTIMEREG_NAND_TA(n) (((n) & 0x07) << 16) +#define MLCTIMEREG_RD_HIGH(n) (((n) & 0x0F) << 12) +#define MLCTIMEREG_RD_LOW(n) (((n) & 0x0F) << 8) +#define MLCTIMEREG_WR_HIGH(n) (((n) & 0x0F) << 4) +#define MLCTIMEREG_WR_LOW(n) (((n) & 0x0F) << 0) + +/********************************************************************** +* MLC_IRQ_MR and MLC_IRQ_SR bit definitions +**********************************************************************/ +#define MLCIRQ_NAND_READY (1 << 5) +#define MLCIRQ_CONTROLLER_READY (1 << 4) +#define MLCIRQ_DECODE_FAILURE (1 << 3) +#define MLCIRQ_DECODE_ERROR (1 << 2) +#define MLCIRQ_ECC_READY (1 << 1) +#define MLCIRQ_WRPROT_FAULT (1 << 0) + +/********************************************************************** +* MLC_LOCK_PR bit definitions +**********************************************************************/ +#define MLCLOCKPR_MAGIC 0xA25E + +/********************************************************************** +* MLC_ISR bit definitions +**********************************************************************/ +#define MLCISR_DECODER_FAILURE (1 << 6) +#define MLCISR_ERRORS ((1 << 4) | (1 << 5)) +#define MLCISR_ERRORS_DETECTED (1 << 3) +#define MLCISR_ECC_READY (1 << 2) +#define MLCISR_CONTROLLER_READY (1 << 1) +#define MLCISR_NAND_READY (1 << 0) + +/********************************************************************** +* MLC_CEH bit definitions +**********************************************************************/ +#define MLCCEH_NORMAL (1 << 0) + +struct lpc32xx_nand_cfg_mlc { + uint32_t tcea_delay; + uint32_t busy_delay; + uint32_t nand_ta; + uint32_t rd_high; + uint32_t rd_low; + uint32_t wr_high; + uint32_t wr_low; + int wp_gpio; + struct mtd_partition *parts; + unsigned num_parts; +}; + +static int lpc32xx_ooblayout_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *nand_chip = mtd_to_nand(mtd); + + if (section >= nand_chip->ecc.steps) + return -ERANGE; + + oobregion->offset = ((section + 1) * 16) - nand_chip->ecc.bytes; + oobregion->length = nand_chip->ecc.bytes; + + return 0; +} + +static int lpc32xx_ooblayout_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *nand_chip = mtd_to_nand(mtd); + + if (section >= nand_chip->ecc.steps) + return -ERANGE; + + oobregion->offset = 16 * section; + oobregion->length = 16 - nand_chip->ecc.bytes; + + return 0; +} + +static const struct mtd_ooblayout_ops lpc32xx_ooblayout_ops = { + .ecc = lpc32xx_ooblayout_ecc, + .free = lpc32xx_ooblayout_free, +}; + +static struct nand_bbt_descr lpc32xx_nand_bbt = { + .options = NAND_BBT_ABSPAGE | NAND_BBT_2BIT | NAND_BBT_NO_OOB | + NAND_BBT_WRITE, + .pages = { 524224, 0, 0, 0, 0, 0, 0, 0 }, +}; + +static struct nand_bbt_descr lpc32xx_nand_bbt_mirror = { + .options = NAND_BBT_ABSPAGE | NAND_BBT_2BIT | NAND_BBT_NO_OOB | + NAND_BBT_WRITE, + .pages = { 524160, 0, 0, 0, 0, 0, 0, 0 }, +}; + +struct lpc32xx_nand_host { + struct nand_chip nand_chip; + struct lpc32xx_mlc_platform_data *pdata; + struct clk *clk; + void __iomem *io_base; + int irq; + struct lpc32xx_nand_cfg_mlc *ncfg; + struct completion comp_nand; + struct completion comp_controller; + uint32_t llptr; + /* + * Physical addresses of ECC buffer, DMA data buffers, OOB data buffer + */ + dma_addr_t oob_buf_phy; + /* + * Virtual addresses of ECC buffer, DMA data buffers, OOB data buffer + */ + uint8_t *oob_buf; + /* Physical address of DMA base address */ + dma_addr_t io_base_phy; + + struct completion comp_dma; + struct dma_chan *dma_chan; + struct dma_slave_config dma_slave_config; + struct scatterlist sgl; + uint8_t *dma_buf; + uint8_t *dummy_buf; + int mlcsubpages; /* number of 512bytes-subpages */ +}; + +/* + * Activate/Deactivate DMA Operation: + * + * Using the PL080 DMA Controller for transferring the 512 byte subpages + * instead of doing readl() / writel() in a loop slows it down significantly. + * Measurements via getnstimeofday() upon 512 byte subpage reads reveal: + * + * - readl() of 128 x 32 bits in a loop: ~20us + * - DMA read of 512 bytes (32 bit, 4...128 words bursts): ~60us + * - DMA read of 512 bytes (32 bit, no bursts): ~100us + * + * This applies to the transfer itself. In the DMA case: only the + * wait_for_completion() (DMA setup _not_ included). + * + * Note that the 512 bytes subpage transfer is done directly from/to a + * FIFO/buffer inside the NAND controller. Most of the time (~400-800us for a + * 2048 bytes page) is spent waiting for the NAND IRQ, anyway. (The NAND + * controller transferring data between its internal buffer to/from the NAND + * chip.) + * + * Therefore, using the PL080 DMA is disabled by default, for now. + * + */ +static int use_dma; + +static void lpc32xx_nand_setup(struct lpc32xx_nand_host *host) +{ + uint32_t clkrate, tmp; + + /* Reset MLC controller */ + writel(MLCCMD_RESET, MLC_CMD(host->io_base)); + udelay(1000); + + /* Get base clock for MLC block */ + clkrate = clk_get_rate(host->clk); + if (clkrate == 0) + clkrate = 104000000; + + /* Unlock MLC_ICR + * (among others, will be locked again automatically) */ + writew(MLCLOCKPR_MAGIC, MLC_LOCK_PR(host->io_base)); + + /* Configure MLC Controller: Large Block, 5 Byte Address */ + tmp = MLCICR_LARGEBLOCK | MLCICR_LONGADDR; + writel(tmp, MLC_ICR(host->io_base)); + + /* Unlock MLC_TIME_REG + * (among others, will be locked again automatically) */ + writew(MLCLOCKPR_MAGIC, MLC_LOCK_PR(host->io_base)); + + /* Compute clock setup values, see LPC and NAND manual */ + tmp = 0; + tmp |= MLCTIMEREG_TCEA_DELAY(clkrate / host->ncfg->tcea_delay + 1); + tmp |= MLCTIMEREG_BUSY_DELAY(clkrate / host->ncfg->busy_delay + 1); + tmp |= MLCTIMEREG_NAND_TA(clkrate / host->ncfg->nand_ta + 1); + tmp |= MLCTIMEREG_RD_HIGH(clkrate / host->ncfg->rd_high + 1); + tmp |= MLCTIMEREG_RD_LOW(clkrate / host->ncfg->rd_low); + tmp |= MLCTIMEREG_WR_HIGH(clkrate / host->ncfg->wr_high + 1); + tmp |= MLCTIMEREG_WR_LOW(clkrate / host->ncfg->wr_low); + writel(tmp, MLC_TIME_REG(host->io_base)); + + /* Enable IRQ for CONTROLLER_READY and NAND_READY */ + writeb(MLCIRQ_CONTROLLER_READY | MLCIRQ_NAND_READY, + MLC_IRQ_MR(host->io_base)); + + /* Normal nCE operation: nCE controlled by controller */ + writel(MLCCEH_NORMAL, MLC_CEH(host->io_base)); +} + +/* + * Hardware specific access to control lines + */ +static void lpc32xx_nand_cmd_ctrl(struct mtd_info *mtd, int cmd, + unsigned int ctrl) +{ + struct nand_chip *nand_chip = mtd_to_nand(mtd); + struct lpc32xx_nand_host *host = nand_get_controller_data(nand_chip); + + if (cmd != NAND_CMD_NONE) { + if (ctrl & NAND_CLE) + writel(cmd, MLC_CMD(host->io_base)); + else + writel(cmd, MLC_ADDR(host->io_base)); + } +} + +/* + * Read Device Ready (NAND device _and_ controller ready) + */ +static int lpc32xx_nand_device_ready(struct mtd_info *mtd) +{ + struct nand_chip *nand_chip = mtd_to_nand(mtd); + struct lpc32xx_nand_host *host = nand_get_controller_data(nand_chip); + + if ((readb(MLC_ISR(host->io_base)) & + (MLCISR_CONTROLLER_READY | MLCISR_NAND_READY)) == + (MLCISR_CONTROLLER_READY | MLCISR_NAND_READY)) + return 1; + + return 0; +} + +static irqreturn_t lpc3xxx_nand_irq(int irq, struct lpc32xx_nand_host *host) +{ + uint8_t sr; + + /* Clear interrupt flag by reading status */ + sr = readb(MLC_IRQ_SR(host->io_base)); + if (sr & MLCIRQ_NAND_READY) + complete(&host->comp_nand); + if (sr & MLCIRQ_CONTROLLER_READY) + complete(&host->comp_controller); + + return IRQ_HANDLED; +} + +static int lpc32xx_waitfunc_nand(struct mtd_info *mtd, struct nand_chip *chip) +{ + struct lpc32xx_nand_host *host = nand_get_controller_data(chip); + + if (readb(MLC_ISR(host->io_base)) & MLCISR_NAND_READY) + goto exit; + + wait_for_completion(&host->comp_nand); + + while (!(readb(MLC_ISR(host->io_base)) & MLCISR_NAND_READY)) { + /* Seems to be delayed sometimes by controller */ + dev_dbg(&mtd->dev, "Warning: NAND not ready.\n"); + cpu_relax(); + } + +exit: + return NAND_STATUS_READY; +} + +static int lpc32xx_waitfunc_controller(struct mtd_info *mtd, + struct nand_chip *chip) +{ + struct lpc32xx_nand_host *host = nand_get_controller_data(chip); + + if (readb(MLC_ISR(host->io_base)) & MLCISR_CONTROLLER_READY) + goto exit; + + wait_for_completion(&host->comp_controller); + + while (!(readb(MLC_ISR(host->io_base)) & + MLCISR_CONTROLLER_READY)) { + dev_dbg(&mtd->dev, "Warning: Controller not ready.\n"); + cpu_relax(); + } + +exit: + return NAND_STATUS_READY; +} + +static int lpc32xx_waitfunc(struct mtd_info *mtd, struct nand_chip *chip) +{ + lpc32xx_waitfunc_nand(mtd, chip); + lpc32xx_waitfunc_controller(mtd, chip); + + return NAND_STATUS_READY; +} + +/* + * Enable NAND write protect + */ +static void lpc32xx_wp_enable(struct lpc32xx_nand_host *host) +{ + if (gpio_is_valid(host->ncfg->wp_gpio)) + gpio_set_value(host->ncfg->wp_gpio, 0); +} + +/* + * Disable NAND write protect + */ +static void lpc32xx_wp_disable(struct lpc32xx_nand_host *host) +{ + if (gpio_is_valid(host->ncfg->wp_gpio)) + gpio_set_value(host->ncfg->wp_gpio, 1); +} + +static void lpc32xx_dma_complete_func(void *completion) +{ + complete(completion); +} + +static int lpc32xx_xmit_dma(struct mtd_info *mtd, void *mem, int len, + enum dma_transfer_direction dir) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct lpc32xx_nand_host *host = nand_get_controller_data(chip); + struct dma_async_tx_descriptor *desc; + int flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT; + int res; + + sg_init_one(&host->sgl, mem, len); + + res = dma_map_sg(host->dma_chan->device->dev, &host->sgl, 1, + DMA_BIDIRECTIONAL); + if (res != 1) { + dev_err(mtd->dev.parent, "Failed to map sg list\n"); + return -ENXIO; + } + desc = dmaengine_prep_slave_sg(host->dma_chan, &host->sgl, 1, dir, + flags); + if (!desc) { + dev_err(mtd->dev.parent, "Failed to prepare slave sg\n"); + goto out1; + } + + init_completion(&host->comp_dma); + desc->callback = lpc32xx_dma_complete_func; + desc->callback_param = &host->comp_dma; + + dmaengine_submit(desc); + dma_async_issue_pending(host->dma_chan); + + wait_for_completion_timeout(&host->comp_dma, msecs_to_jiffies(1000)); + + dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1, + DMA_BIDIRECTIONAL); + return 0; +out1: + dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1, + DMA_BIDIRECTIONAL); + return -ENXIO; +} + +static int lpc32xx_read_page(struct mtd_info *mtd, struct nand_chip *chip, + uint8_t *buf, int oob_required, int page) +{ + struct lpc32xx_nand_host *host = nand_get_controller_data(chip); + int i, j; + uint8_t *oobbuf = chip->oob_poi; + uint32_t mlc_isr; + int res; + uint8_t *dma_buf; + bool dma_mapped; + + if ((void *)buf <= high_memory) { + dma_buf = buf; + dma_mapped = true; + } else { + dma_buf = host->dma_buf; + dma_mapped = false; + } + + /* Writing Command and Address */ + nand_read_page_op(chip, page, 0, NULL, 0); + + /* For all sub-pages */ + for (i = 0; i < host->mlcsubpages; i++) { + /* Start Auto Decode Command */ + writeb(0x00, MLC_ECC_AUTO_DEC_REG(host->io_base)); + + /* Wait for Controller Ready */ + lpc32xx_waitfunc_controller(mtd, chip); + + /* Check ECC Error status */ + mlc_isr = readl(MLC_ISR(host->io_base)); + if (mlc_isr & MLCISR_DECODER_FAILURE) { + mtd->ecc_stats.failed++; + dev_warn(&mtd->dev, "%s: DECODER_FAILURE\n", __func__); + } else if (mlc_isr & MLCISR_ERRORS_DETECTED) { + mtd->ecc_stats.corrected += ((mlc_isr >> 4) & 0x3) + 1; + } + + /* Read 512 + 16 Bytes */ + if (use_dma) { + res = lpc32xx_xmit_dma(mtd, dma_buf + i * 512, 512, + DMA_DEV_TO_MEM); + if (res) + return res; + } else { + for (j = 0; j < (512 >> 2); j++) { + *((uint32_t *)(buf)) = + readl(MLC_BUFF(host->io_base)); + buf += 4; + } + } + for (j = 0; j < (16 >> 2); j++) { + *((uint32_t *)(oobbuf)) = + readl(MLC_BUFF(host->io_base)); + oobbuf += 4; + } + } + + if (use_dma && !dma_mapped) + memcpy(buf, dma_buf, mtd->writesize); + + return 0; +} + +static int lpc32xx_write_page_lowlevel(struct mtd_info *mtd, + struct nand_chip *chip, + const uint8_t *buf, int oob_required, + int page) +{ + struct lpc32xx_nand_host *host = nand_get_controller_data(chip); + const uint8_t *oobbuf = chip->oob_poi; + uint8_t *dma_buf = (uint8_t *)buf; + int res; + int i, j; + + if (use_dma && (void *)buf >= high_memory) { + dma_buf = host->dma_buf; + memcpy(dma_buf, buf, mtd->writesize); + } + + nand_prog_page_begin_op(chip, page, 0, NULL, 0); + + for (i = 0; i < host->mlcsubpages; i++) { + /* Start Encode */ + writeb(0x00, MLC_ECC_ENC_REG(host->io_base)); + + /* Write 512 + 6 Bytes to Buffer */ + if (use_dma) { + res = lpc32xx_xmit_dma(mtd, dma_buf + i * 512, 512, + DMA_MEM_TO_DEV); + if (res) + return res; + } else { + for (j = 0; j < (512 >> 2); j++) { + writel(*((uint32_t *)(buf)), + MLC_BUFF(host->io_base)); + buf += 4; + } + } + writel(*((uint32_t *)(oobbuf)), MLC_BUFF(host->io_base)); + oobbuf += 4; + writew(*((uint16_t *)(oobbuf)), MLC_BUFF(host->io_base)); + oobbuf += 12; + + /* Auto Encode w/ Bit 8 = 0 (see LPC MLC Controller manual) */ + writeb(0x00, MLC_ECC_AUTO_ENC_REG(host->io_base)); + + /* Wait for Controller Ready */ + lpc32xx_waitfunc_controller(mtd, chip); + } + + return nand_prog_page_end_op(chip); +} + +static int lpc32xx_read_oob(struct mtd_info *mtd, struct nand_chip *chip, + int page) +{ + struct lpc32xx_nand_host *host = nand_get_controller_data(chip); + + /* Read whole page - necessary with MLC controller! */ + lpc32xx_read_page(mtd, chip, host->dummy_buf, 1, page); + + return 0; +} + +static int lpc32xx_write_oob(struct mtd_info *mtd, struct nand_chip *chip, + int page) +{ + /* None, write_oob conflicts with the automatic LPC MLC ECC decoder! */ + return 0; +} + +/* Prepares MLC for transfers with H/W ECC enabled: always enabled anyway */ +static void lpc32xx_ecc_enable(struct mtd_info *mtd, int mode) +{ + /* Always enabled! */ +} + +static int lpc32xx_dma_setup(struct lpc32xx_nand_host *host) +{ + struct mtd_info *mtd = nand_to_mtd(&host->nand_chip); + dma_cap_mask_t mask; + + if (!host->pdata || !host->pdata->dma_filter) { + dev_err(mtd->dev.parent, "no DMA platform data\n"); + return -ENOENT; + } + + dma_cap_zero(mask); + dma_cap_set(DMA_SLAVE, mask); + host->dma_chan = dma_request_channel(mask, host->pdata->dma_filter, + "nand-mlc"); + if (!host->dma_chan) { + dev_err(mtd->dev.parent, "Failed to request DMA channel\n"); + return -EBUSY; + } + + /* + * Set direction to a sensible value even if the dmaengine driver + * should ignore it. With the default (DMA_MEM_TO_MEM), the amba-pl08x + * driver criticizes it as "alien transfer direction". + */ + host->dma_slave_config.direction = DMA_DEV_TO_MEM; + host->dma_slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; + host->dma_slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; + host->dma_slave_config.src_maxburst = 128; + host->dma_slave_config.dst_maxburst = 128; + /* DMA controller does flow control: */ + host->dma_slave_config.device_fc = false; + host->dma_slave_config.src_addr = MLC_BUFF(host->io_base_phy); + host->dma_slave_config.dst_addr = MLC_BUFF(host->io_base_phy); + if (dmaengine_slave_config(host->dma_chan, &host->dma_slave_config)) { + dev_err(mtd->dev.parent, "Failed to setup DMA slave\n"); + goto out1; + } + + return 0; +out1: + dma_release_channel(host->dma_chan); + return -ENXIO; +} + +static struct lpc32xx_nand_cfg_mlc *lpc32xx_parse_dt(struct device *dev) +{ + struct lpc32xx_nand_cfg_mlc *ncfg; + struct device_node *np = dev->of_node; + + ncfg = devm_kzalloc(dev, sizeof(*ncfg), GFP_KERNEL); + if (!ncfg) + return NULL; + + of_property_read_u32(np, "nxp,tcea-delay", &ncfg->tcea_delay); + of_property_read_u32(np, "nxp,busy-delay", &ncfg->busy_delay); + of_property_read_u32(np, "nxp,nand-ta", &ncfg->nand_ta); + of_property_read_u32(np, "nxp,rd-high", &ncfg->rd_high); + of_property_read_u32(np, "nxp,rd-low", &ncfg->rd_low); + of_property_read_u32(np, "nxp,wr-high", &ncfg->wr_high); + of_property_read_u32(np, "nxp,wr-low", &ncfg->wr_low); + + if (!ncfg->tcea_delay || !ncfg->busy_delay || !ncfg->nand_ta || + !ncfg->rd_high || !ncfg->rd_low || !ncfg->wr_high || + !ncfg->wr_low) { + dev_err(dev, "chip parameters not specified correctly\n"); + return NULL; + } + + ncfg->wp_gpio = of_get_named_gpio(np, "gpios", 0); + + return ncfg; +} + +/* + * Probe for NAND controller + */ +static int lpc32xx_nand_probe(struct platform_device *pdev) +{ + struct lpc32xx_nand_host *host; + struct mtd_info *mtd; + struct nand_chip *nand_chip; + struct resource *rc; + int res; + + /* Allocate memory for the device structure (and zero it) */ + host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL); + if (!host) + return -ENOMEM; + + rc = platform_get_resource(pdev, IORESOURCE_MEM, 0); + host->io_base = devm_ioremap_resource(&pdev->dev, rc); + if (IS_ERR(host->io_base)) + return PTR_ERR(host->io_base); + + host->io_base_phy = rc->start; + + nand_chip = &host->nand_chip; + mtd = nand_to_mtd(nand_chip); + if (pdev->dev.of_node) + host->ncfg = lpc32xx_parse_dt(&pdev->dev); + if (!host->ncfg) { + dev_err(&pdev->dev, + "Missing or bad NAND config from device tree\n"); + return -ENOENT; + } + if (host->ncfg->wp_gpio == -EPROBE_DEFER) + return -EPROBE_DEFER; + if (gpio_is_valid(host->ncfg->wp_gpio) && + gpio_request(host->ncfg->wp_gpio, "NAND WP")) { + dev_err(&pdev->dev, "GPIO not available\n"); + return -EBUSY; + } + lpc32xx_wp_disable(host); + + host->pdata = dev_get_platdata(&pdev->dev); + + /* link the private data structures */ + nand_set_controller_data(nand_chip, host); + nand_set_flash_node(nand_chip, pdev->dev.of_node); + mtd->dev.parent = &pdev->dev; + + /* Get NAND clock */ + host->clk = clk_get(&pdev->dev, NULL); + if (IS_ERR(host->clk)) { + dev_err(&pdev->dev, "Clock initialization failure\n"); + res = -ENOENT; + goto err_exit1; + } + res = clk_prepare_enable(host->clk); + if (res) + goto err_put_clk; + + nand_chip->cmd_ctrl = lpc32xx_nand_cmd_ctrl; + nand_chip->dev_ready = lpc32xx_nand_device_ready; + nand_chip->chip_delay = 25; /* us */ + nand_chip->IO_ADDR_R = MLC_DATA(host->io_base); + nand_chip->IO_ADDR_W = MLC_DATA(host->io_base); + + /* Init NAND controller */ + lpc32xx_nand_setup(host); + + platform_set_drvdata(pdev, host); + + /* Initialize function pointers */ + nand_chip->ecc.hwctl = lpc32xx_ecc_enable; + nand_chip->ecc.read_page_raw = lpc32xx_read_page; + nand_chip->ecc.read_page = lpc32xx_read_page; + nand_chip->ecc.write_page_raw = lpc32xx_write_page_lowlevel; + nand_chip->ecc.write_page = lpc32xx_write_page_lowlevel; + nand_chip->ecc.write_oob = lpc32xx_write_oob; + nand_chip->ecc.read_oob = lpc32xx_read_oob; + nand_chip->ecc.strength = 4; + nand_chip->ecc.bytes = 10; + nand_chip->waitfunc = lpc32xx_waitfunc; + + nand_chip->options = NAND_NO_SUBPAGE_WRITE; + nand_chip->bbt_options = NAND_BBT_USE_FLASH | NAND_BBT_NO_OOB; + nand_chip->bbt_td = &lpc32xx_nand_bbt; + nand_chip->bbt_md = &lpc32xx_nand_bbt_mirror; + + if (use_dma) { + res = lpc32xx_dma_setup(host); + if (res) { + res = -EIO; + goto err_exit2; + } + } + + /* + * Scan to find existance of the device and + * Get the type of NAND device SMALL block or LARGE block + */ + res = nand_scan_ident(mtd, 1, NULL); + if (res) + goto err_exit3; + + host->dma_buf = devm_kzalloc(&pdev->dev, mtd->writesize, GFP_KERNEL); + if (!host->dma_buf) { + res = -ENOMEM; + goto err_exit3; + } + + host->dummy_buf = devm_kzalloc(&pdev->dev, mtd->writesize, GFP_KERNEL); + if (!host->dummy_buf) { + res = -ENOMEM; + goto err_exit3; + } + + nand_chip->ecc.mode = NAND_ECC_HW; + nand_chip->ecc.size = 512; + mtd_set_ooblayout(mtd, &lpc32xx_ooblayout_ops); + host->mlcsubpages = mtd->writesize / 512; + + /* initially clear interrupt status */ + readb(MLC_IRQ_SR(host->io_base)); + + init_completion(&host->comp_nand); + init_completion(&host->comp_controller); + + host->irq = platform_get_irq(pdev, 0); + if (host->irq < 0) { + dev_err(&pdev->dev, "failed to get platform irq\n"); + res = -EINVAL; + goto err_exit3; + } + + if (request_irq(host->irq, (irq_handler_t)&lpc3xxx_nand_irq, + IRQF_TRIGGER_HIGH, DRV_NAME, host)) { + dev_err(&pdev->dev, "Error requesting NAND IRQ\n"); + res = -ENXIO; + goto err_exit3; + } + + /* + * Fills out all the uninitialized function pointers with the defaults + * And scans for a bad block table if appropriate. + */ + res = nand_scan_tail(mtd); + if (res) + goto err_exit4; + + mtd->name = DRV_NAME; + + res = mtd_device_register(mtd, host->ncfg->parts, + host->ncfg->num_parts); + if (!res) + return res; + + nand_release(mtd); + +err_exit4: + free_irq(host->irq, host); +err_exit3: + if (use_dma) + dma_release_channel(host->dma_chan); +err_exit2: + clk_disable_unprepare(host->clk); +err_put_clk: + clk_put(host->clk); +err_exit1: + lpc32xx_wp_enable(host); + gpio_free(host->ncfg->wp_gpio); + + return res; +} + +/* + * Remove NAND device + */ +static int lpc32xx_nand_remove(struct platform_device *pdev) +{ + struct lpc32xx_nand_host *host = platform_get_drvdata(pdev); + struct mtd_info *mtd = nand_to_mtd(&host->nand_chip); + + nand_release(mtd); + free_irq(host->irq, host); + if (use_dma) + dma_release_channel(host->dma_chan); + + clk_disable_unprepare(host->clk); + clk_put(host->clk); + + lpc32xx_wp_enable(host); + gpio_free(host->ncfg->wp_gpio); + + return 0; +} + +#ifdef CONFIG_PM +static int lpc32xx_nand_resume(struct platform_device *pdev) +{ + struct lpc32xx_nand_host *host = platform_get_drvdata(pdev); + int ret; + + /* Re-enable NAND clock */ + ret = clk_prepare_enable(host->clk); + if (ret) + return ret; + + /* Fresh init of NAND controller */ + lpc32xx_nand_setup(host); + + /* Disable write protect */ + lpc32xx_wp_disable(host); + + return 0; +} + +static int lpc32xx_nand_suspend(struct platform_device *pdev, pm_message_t pm) +{ + struct lpc32xx_nand_host *host = platform_get_drvdata(pdev); + + /* Enable write protect for safety */ + lpc32xx_wp_enable(host); + + /* Disable clock */ + clk_disable_unprepare(host->clk); + return 0; +} + +#else +#define lpc32xx_nand_resume NULL +#define lpc32xx_nand_suspend NULL +#endif + +static const struct of_device_id lpc32xx_nand_match[] = { + { .compatible = "nxp,lpc3220-mlc" }, + { /* sentinel */ }, +}; +MODULE_DEVICE_TABLE(of, lpc32xx_nand_match); + +static struct platform_driver lpc32xx_nand_driver = { + .probe = lpc32xx_nand_probe, + .remove = lpc32xx_nand_remove, + .resume = lpc32xx_nand_resume, + .suspend = lpc32xx_nand_suspend, + .driver = { + .name = DRV_NAME, + .of_match_table = lpc32xx_nand_match, + }, +}; + +module_platform_driver(lpc32xx_nand_driver); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Roland Stigge "); +MODULE_DESCRIPTION("NAND driver for the NXP LPC32XX MLC controller"); diff --git a/drivers/mtd/nand/raw/lpc32xx_slc.c b/drivers/mtd/nand/raw/lpc32xx_slc.c new file mode 100644 index 000000000000..5f7cc6da0a7f --- /dev/null +++ b/drivers/mtd/nand/raw/lpc32xx_slc.c @@ -0,0 +1,1032 @@ +/* + * NXP LPC32XX NAND SLC driver + * + * Authors: + * Kevin Wells + * Roland Stigge + * + * Copyright © 2011 NXP Semiconductors + * Copyright © 2012 Roland Stigge + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + */ + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#define LPC32XX_MODNAME "lpc32xx-nand" + +/********************************************************************** +* SLC NAND controller register offsets +**********************************************************************/ + +#define SLC_DATA(x) (x + 0x000) +#define SLC_ADDR(x) (x + 0x004) +#define SLC_CMD(x) (x + 0x008) +#define SLC_STOP(x) (x + 0x00C) +#define SLC_CTRL(x) (x + 0x010) +#define SLC_CFG(x) (x + 0x014) +#define SLC_STAT(x) (x + 0x018) +#define SLC_INT_STAT(x) (x + 0x01C) +#define SLC_IEN(x) (x + 0x020) +#define SLC_ISR(x) (x + 0x024) +#define SLC_ICR(x) (x + 0x028) +#define SLC_TAC(x) (x + 0x02C) +#define SLC_TC(x) (x + 0x030) +#define SLC_ECC(x) (x + 0x034) +#define SLC_DMA_DATA(x) (x + 0x038) + +/********************************************************************** +* slc_ctrl register definitions +**********************************************************************/ +#define SLCCTRL_SW_RESET (1 << 2) /* Reset the NAND controller bit */ +#define SLCCTRL_ECC_CLEAR (1 << 1) /* Reset ECC bit */ +#define SLCCTRL_DMA_START (1 << 0) /* Start DMA channel bit */ + +/********************************************************************** +* slc_cfg register definitions +**********************************************************************/ +#define SLCCFG_CE_LOW (1 << 5) /* Force CE low bit */ +#define SLCCFG_DMA_ECC (1 << 4) /* Enable DMA ECC bit */ +#define SLCCFG_ECC_EN (1 << 3) /* ECC enable bit */ +#define SLCCFG_DMA_BURST (1 << 2) /* DMA burst bit */ +#define SLCCFG_DMA_DIR (1 << 1) /* DMA write(0)/read(1) bit */ +#define SLCCFG_WIDTH (1 << 0) /* External device width, 0=8bit */ + +/********************************************************************** +* slc_stat register definitions +**********************************************************************/ +#define SLCSTAT_DMA_FIFO (1 << 2) /* DMA FIFO has data bit */ +#define SLCSTAT_SLC_FIFO (1 << 1) /* SLC FIFO has data bit */ +#define SLCSTAT_NAND_READY (1 << 0) /* NAND device is ready bit */ + +/********************************************************************** +* slc_int_stat, slc_ien, slc_isr, and slc_icr register definitions +**********************************************************************/ +#define SLCSTAT_INT_TC (1 << 1) /* Transfer count bit */ +#define SLCSTAT_INT_RDY_EN (1 << 0) /* Ready interrupt bit */ + +/********************************************************************** +* slc_tac register definitions +**********************************************************************/ +/* Computation of clock cycles on basis of controller and device clock rates */ +#define SLCTAC_CLOCKS(c, n, s) (min_t(u32, DIV_ROUND_UP(c, n) - 1, 0xF) << s) + +/* Clock setting for RDY write sample wait time in 2*n clocks */ +#define SLCTAC_WDR(n) (((n) & 0xF) << 28) +/* Write pulse width in clock cycles, 1 to 16 clocks */ +#define SLCTAC_WWIDTH(c, n) (SLCTAC_CLOCKS(c, n, 24)) +/* Write hold time of control and data signals, 1 to 16 clocks */ +#define SLCTAC_WHOLD(c, n) (SLCTAC_CLOCKS(c, n, 20)) +/* Write setup time of control and data signals, 1 to 16 clocks */ +#define SLCTAC_WSETUP(c, n) (SLCTAC_CLOCKS(c, n, 16)) +/* Clock setting for RDY read sample wait time in 2*n clocks */ +#define SLCTAC_RDR(n) (((n) & 0xF) << 12) +/* Read pulse width in clock cycles, 1 to 16 clocks */ +#define SLCTAC_RWIDTH(c, n) (SLCTAC_CLOCKS(c, n, 8)) +/* Read hold time of control and data signals, 1 to 16 clocks */ +#define SLCTAC_RHOLD(c, n) (SLCTAC_CLOCKS(c, n, 4)) +/* Read setup time of control and data signals, 1 to 16 clocks */ +#define SLCTAC_RSETUP(c, n) (SLCTAC_CLOCKS(c, n, 0)) + +/********************************************************************** +* slc_ecc register definitions +**********************************************************************/ +/* ECC line party fetch macro */ +#define SLCECC_TO_LINEPAR(n) (((n) >> 6) & 0x7FFF) +#define SLCECC_TO_COLPAR(n) ((n) & 0x3F) + +/* + * DMA requires storage space for the DMA local buffer and the hardware ECC + * storage area. The DMA local buffer is only used if DMA mapping fails + * during runtime. + */ +#define LPC32XX_DMA_DATA_SIZE 4096 +#define LPC32XX_ECC_SAVE_SIZE ((4096 / 256) * 4) + +/* Number of bytes used for ECC stored in NAND per 256 bytes */ +#define LPC32XX_SLC_DEV_ECC_BYTES 3 + +/* + * If the NAND base clock frequency can't be fetched, this frequency will be + * used instead as the base. This rate is used to setup the timing registers + * used for NAND accesses. + */ +#define LPC32XX_DEF_BUS_RATE 133250000 + +/* Milliseconds for DMA FIFO timeout (unlikely anyway) */ +#define LPC32XX_DMA_TIMEOUT 100 + +/* + * NAND ECC Layout for small page NAND devices + * Note: For large and huge page devices, the default layouts are used + */ +static int lpc32xx_ooblayout_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + if (section) + return -ERANGE; + + oobregion->length = 6; + oobregion->offset = 10; + + return 0; +} + +static int lpc32xx_ooblayout_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + if (section > 1) + return -ERANGE; + + if (!section) { + oobregion->offset = 0; + oobregion->length = 4; + } else { + oobregion->offset = 6; + oobregion->length = 4; + } + + return 0; +} + +static const struct mtd_ooblayout_ops lpc32xx_ooblayout_ops = { + .ecc = lpc32xx_ooblayout_ecc, + .free = lpc32xx_ooblayout_free, +}; + +static u8 bbt_pattern[] = {'B', 'b', 't', '0' }; +static u8 mirror_pattern[] = {'1', 't', 'b', 'B' }; + +/* + * Small page FLASH BBT descriptors, marker at offset 0, version at offset 6 + * Note: Large page devices used the default layout + */ +static struct nand_bbt_descr bbt_smallpage_main_descr = { + .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE + | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, + .offs = 0, + .len = 4, + .veroffs = 6, + .maxblocks = 4, + .pattern = bbt_pattern +}; + +static struct nand_bbt_descr bbt_smallpage_mirror_descr = { + .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE + | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, + .offs = 0, + .len = 4, + .veroffs = 6, + .maxblocks = 4, + .pattern = mirror_pattern +}; + +/* + * NAND platform configuration structure + */ +struct lpc32xx_nand_cfg_slc { + uint32_t wdr_clks; + uint32_t wwidth; + uint32_t whold; + uint32_t wsetup; + uint32_t rdr_clks; + uint32_t rwidth; + uint32_t rhold; + uint32_t rsetup; + int wp_gpio; + struct mtd_partition *parts; + unsigned num_parts; +}; + +struct lpc32xx_nand_host { + struct nand_chip nand_chip; + struct lpc32xx_slc_platform_data *pdata; + struct clk *clk; + void __iomem *io_base; + struct lpc32xx_nand_cfg_slc *ncfg; + + struct completion comp; + struct dma_chan *dma_chan; + uint32_t dma_buf_len; + struct dma_slave_config dma_slave_config; + struct scatterlist sgl; + + /* + * DMA and CPU addresses of ECC work area and data buffer + */ + uint32_t *ecc_buf; + uint8_t *data_buf; + dma_addr_t io_base_dma; +}; + +static void lpc32xx_nand_setup(struct lpc32xx_nand_host *host) +{ + uint32_t clkrate, tmp; + + /* Reset SLC controller */ + writel(SLCCTRL_SW_RESET, SLC_CTRL(host->io_base)); + udelay(1000); + + /* Basic setup */ + writel(0, SLC_CFG(host->io_base)); + writel(0, SLC_IEN(host->io_base)); + writel((SLCSTAT_INT_TC | SLCSTAT_INT_RDY_EN), + SLC_ICR(host->io_base)); + + /* Get base clock for SLC block */ + clkrate = clk_get_rate(host->clk); + if (clkrate == 0) + clkrate = LPC32XX_DEF_BUS_RATE; + + /* Compute clock setup values */ + tmp = SLCTAC_WDR(host->ncfg->wdr_clks) | + SLCTAC_WWIDTH(clkrate, host->ncfg->wwidth) | + SLCTAC_WHOLD(clkrate, host->ncfg->whold) | + SLCTAC_WSETUP(clkrate, host->ncfg->wsetup) | + SLCTAC_RDR(host->ncfg->rdr_clks) | + SLCTAC_RWIDTH(clkrate, host->ncfg->rwidth) | + SLCTAC_RHOLD(clkrate, host->ncfg->rhold) | + SLCTAC_RSETUP(clkrate, host->ncfg->rsetup); + writel(tmp, SLC_TAC(host->io_base)); +} + +/* + * Hardware specific access to control lines + */ +static void lpc32xx_nand_cmd_ctrl(struct mtd_info *mtd, int cmd, + unsigned int ctrl) +{ + uint32_t tmp; + struct nand_chip *chip = mtd_to_nand(mtd); + struct lpc32xx_nand_host *host = nand_get_controller_data(chip); + + /* Does CE state need to be changed? */ + tmp = readl(SLC_CFG(host->io_base)); + if (ctrl & NAND_NCE) + tmp |= SLCCFG_CE_LOW; + else + tmp &= ~SLCCFG_CE_LOW; + writel(tmp, SLC_CFG(host->io_base)); + + if (cmd != NAND_CMD_NONE) { + if (ctrl & NAND_CLE) + writel(cmd, SLC_CMD(host->io_base)); + else + writel(cmd, SLC_ADDR(host->io_base)); + } +} + +/* + * Read the Device Ready pin + */ +static int lpc32xx_nand_device_ready(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct lpc32xx_nand_host *host = nand_get_controller_data(chip); + int rdy = 0; + + if ((readl(SLC_STAT(host->io_base)) & SLCSTAT_NAND_READY) != 0) + rdy = 1; + + return rdy; +} + +/* + * Enable NAND write protect + */ +static void lpc32xx_wp_enable(struct lpc32xx_nand_host *host) +{ + if (gpio_is_valid(host->ncfg->wp_gpio)) + gpio_set_value(host->ncfg->wp_gpio, 0); +} + +/* + * Disable NAND write protect + */ +static void lpc32xx_wp_disable(struct lpc32xx_nand_host *host) +{ + if (gpio_is_valid(host->ncfg->wp_gpio)) + gpio_set_value(host->ncfg->wp_gpio, 1); +} + +/* + * Prepares SLC for transfers with H/W ECC enabled + */ +static void lpc32xx_nand_ecc_enable(struct mtd_info *mtd, int mode) +{ + /* Hardware ECC is enabled automatically in hardware as needed */ +} + +/* + * Calculates the ECC for the data + */ +static int lpc32xx_nand_ecc_calculate(struct mtd_info *mtd, + const unsigned char *buf, + unsigned char *code) +{ + /* + * ECC is calculated automatically in hardware during syndrome read + * and write operations, so it doesn't need to be calculated here. + */ + return 0; +} + +/* + * Read a single byte from NAND device + */ +static uint8_t lpc32xx_nand_read_byte(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct lpc32xx_nand_host *host = nand_get_controller_data(chip); + + return (uint8_t)readl(SLC_DATA(host->io_base)); +} + +/* + * Simple device read without ECC + */ +static void lpc32xx_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct lpc32xx_nand_host *host = nand_get_controller_data(chip); + + /* Direct device read with no ECC */ + while (len-- > 0) + *buf++ = (uint8_t)readl(SLC_DATA(host->io_base)); +} + +/* + * Simple device write without ECC + */ +static void lpc32xx_nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct lpc32xx_nand_host *host = nand_get_controller_data(chip); + + /* Direct device write with no ECC */ + while (len-- > 0) + writel((uint32_t)*buf++, SLC_DATA(host->io_base)); +} + +/* + * Read the OOB data from the device without ECC using FIFO method + */ +static int lpc32xx_nand_read_oob_syndrome(struct mtd_info *mtd, + struct nand_chip *chip, int page) +{ + return nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize); +} + +/* + * Write the OOB data to the device without ECC using FIFO method + */ +static int lpc32xx_nand_write_oob_syndrome(struct mtd_info *mtd, + struct nand_chip *chip, int page) +{ + return nand_prog_page_op(chip, page, mtd->writesize, chip->oob_poi, + mtd->oobsize); +} + +/* + * Fills in the ECC fields in the OOB buffer with the hardware generated ECC + */ +static void lpc32xx_slc_ecc_copy(uint8_t *spare, const uint32_t *ecc, int count) +{ + int i; + + for (i = 0; i < (count * 3); i += 3) { + uint32_t ce = ecc[i / 3]; + ce = ~(ce << 2) & 0xFFFFFF; + spare[i + 2] = (uint8_t)(ce & 0xFF); + ce >>= 8; + spare[i + 1] = (uint8_t)(ce & 0xFF); + ce >>= 8; + spare[i] = (uint8_t)(ce & 0xFF); + } +} + +static void lpc32xx_dma_complete_func(void *completion) +{ + complete(completion); +} + +static int lpc32xx_xmit_dma(struct mtd_info *mtd, dma_addr_t dma, + void *mem, int len, enum dma_transfer_direction dir) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct lpc32xx_nand_host *host = nand_get_controller_data(chip); + struct dma_async_tx_descriptor *desc; + int flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT; + int res; + + host->dma_slave_config.direction = dir; + host->dma_slave_config.src_addr = dma; + host->dma_slave_config.dst_addr = dma; + host->dma_slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; + host->dma_slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; + host->dma_slave_config.src_maxburst = 4; + host->dma_slave_config.dst_maxburst = 4; + /* DMA controller does flow control: */ + host->dma_slave_config.device_fc = false; + if (dmaengine_slave_config(host->dma_chan, &host->dma_slave_config)) { + dev_err(mtd->dev.parent, "Failed to setup DMA slave\n"); + return -ENXIO; + } + + sg_init_one(&host->sgl, mem, len); + + res = dma_map_sg(host->dma_chan->device->dev, &host->sgl, 1, + DMA_BIDIRECTIONAL); + if (res != 1) { + dev_err(mtd->dev.parent, "Failed to map sg list\n"); + return -ENXIO; + } + desc = dmaengine_prep_slave_sg(host->dma_chan, &host->sgl, 1, dir, + flags); + if (!desc) { + dev_err(mtd->dev.parent, "Failed to prepare slave sg\n"); + goto out1; + } + + init_completion(&host->comp); + desc->callback = lpc32xx_dma_complete_func; + desc->callback_param = &host->comp; + + dmaengine_submit(desc); + dma_async_issue_pending(host->dma_chan); + + wait_for_completion_timeout(&host->comp, msecs_to_jiffies(1000)); + + dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1, + DMA_BIDIRECTIONAL); + + return 0; +out1: + dma_unmap_sg(host->dma_chan->device->dev, &host->sgl, 1, + DMA_BIDIRECTIONAL); + return -ENXIO; +} + +/* + * DMA read/write transfers with ECC support + */ +static int lpc32xx_xfer(struct mtd_info *mtd, uint8_t *buf, int eccsubpages, + int read) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct lpc32xx_nand_host *host = nand_get_controller_data(chip); + int i, status = 0; + unsigned long timeout; + int res; + enum dma_transfer_direction dir = + read ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV; + uint8_t *dma_buf; + bool dma_mapped; + + if ((void *)buf <= high_memory) { + dma_buf = buf; + dma_mapped = true; + } else { + dma_buf = host->data_buf; + dma_mapped = false; + if (!read) + memcpy(host->data_buf, buf, mtd->writesize); + } + + if (read) { + writel(readl(SLC_CFG(host->io_base)) | + SLCCFG_DMA_DIR | SLCCFG_ECC_EN | SLCCFG_DMA_ECC | + SLCCFG_DMA_BURST, SLC_CFG(host->io_base)); + } else { + writel((readl(SLC_CFG(host->io_base)) | + SLCCFG_ECC_EN | SLCCFG_DMA_ECC | SLCCFG_DMA_BURST) & + ~SLCCFG_DMA_DIR, + SLC_CFG(host->io_base)); + } + + /* Clear initial ECC */ + writel(SLCCTRL_ECC_CLEAR, SLC_CTRL(host->io_base)); + + /* Transfer size is data area only */ + writel(mtd->writesize, SLC_TC(host->io_base)); + + /* Start transfer in the NAND controller */ + writel(readl(SLC_CTRL(host->io_base)) | SLCCTRL_DMA_START, + SLC_CTRL(host->io_base)); + + for (i = 0; i < chip->ecc.steps; i++) { + /* Data */ + res = lpc32xx_xmit_dma(mtd, SLC_DMA_DATA(host->io_base_dma), + dma_buf + i * chip->ecc.size, + mtd->writesize / chip->ecc.steps, dir); + if (res) + return res; + + /* Always _read_ ECC */ + if (i == chip->ecc.steps - 1) + break; + if (!read) /* ECC availability delayed on write */ + udelay(10); + res = lpc32xx_xmit_dma(mtd, SLC_ECC(host->io_base_dma), + &host->ecc_buf[i], 4, DMA_DEV_TO_MEM); + if (res) + return res; + } + + /* + * According to NXP, the DMA can be finished here, but the NAND + * controller may still have buffered data. After porting to using the + * dmaengine DMA driver (amba-pl080), the condition (DMA_FIFO empty) + * appears to be always true, according to tests. Keeping the check for + * safety reasons for now. + */ + if (readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO) { + dev_warn(mtd->dev.parent, "FIFO not empty!\n"); + timeout = jiffies + msecs_to_jiffies(LPC32XX_DMA_TIMEOUT); + while ((readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO) && + time_before(jiffies, timeout)) + cpu_relax(); + if (!time_before(jiffies, timeout)) { + dev_err(mtd->dev.parent, "FIFO held data too long\n"); + status = -EIO; + } + } + + /* Read last calculated ECC value */ + if (!read) + udelay(10); + host->ecc_buf[chip->ecc.steps - 1] = + readl(SLC_ECC(host->io_base)); + + /* Flush DMA */ + dmaengine_terminate_all(host->dma_chan); + + if (readl(SLC_STAT(host->io_base)) & SLCSTAT_DMA_FIFO || + readl(SLC_TC(host->io_base))) { + /* Something is left in the FIFO, something is wrong */ + dev_err(mtd->dev.parent, "DMA FIFO failure\n"); + status = -EIO; + } + + /* Stop DMA & HW ECC */ + writel(readl(SLC_CTRL(host->io_base)) & ~SLCCTRL_DMA_START, + SLC_CTRL(host->io_base)); + writel(readl(SLC_CFG(host->io_base)) & + ~(SLCCFG_DMA_DIR | SLCCFG_ECC_EN | SLCCFG_DMA_ECC | + SLCCFG_DMA_BURST), SLC_CFG(host->io_base)); + + if (!dma_mapped && read) + memcpy(buf, host->data_buf, mtd->writesize); + + return status; +} + +/* + * Read the data and OOB data from the device, use ECC correction with the + * data, disable ECC for the OOB data + */ +static int lpc32xx_nand_read_page_syndrome(struct mtd_info *mtd, + struct nand_chip *chip, uint8_t *buf, + int oob_required, int page) +{ + struct lpc32xx_nand_host *host = nand_get_controller_data(chip); + struct mtd_oob_region oobregion = { }; + int stat, i, status, error; + uint8_t *oobecc, tmpecc[LPC32XX_ECC_SAVE_SIZE]; + + /* Issue read command */ + nand_read_page_op(chip, page, 0, NULL, 0); + + /* Read data and oob, calculate ECC */ + status = lpc32xx_xfer(mtd, buf, chip->ecc.steps, 1); + + /* Get OOB data */ + chip->read_buf(mtd, chip->oob_poi, mtd->oobsize); + + /* Convert to stored ECC format */ + lpc32xx_slc_ecc_copy(tmpecc, (uint32_t *) host->ecc_buf, chip->ecc.steps); + + /* Pointer to ECC data retrieved from NAND spare area */ + error = mtd_ooblayout_ecc(mtd, 0, &oobregion); + if (error) + return error; + + oobecc = chip->oob_poi + oobregion.offset; + + for (i = 0; i < chip->ecc.steps; i++) { + stat = chip->ecc.correct(mtd, buf, oobecc, + &tmpecc[i * chip->ecc.bytes]); + if (stat < 0) + mtd->ecc_stats.failed++; + else + mtd->ecc_stats.corrected += stat; + + buf += chip->ecc.size; + oobecc += chip->ecc.bytes; + } + + return status; +} + +/* + * Read the data and OOB data from the device, no ECC correction with the + * data or OOB data + */ +static int lpc32xx_nand_read_page_raw_syndrome(struct mtd_info *mtd, + struct nand_chip *chip, + uint8_t *buf, int oob_required, + int page) +{ + /* Issue read command */ + nand_read_page_op(chip, page, 0, NULL, 0); + + /* Raw reads can just use the FIFO interface */ + chip->read_buf(mtd, buf, chip->ecc.size * chip->ecc.steps); + chip->read_buf(mtd, chip->oob_poi, mtd->oobsize); + + return 0; +} + +/* + * Write the data and OOB data to the device, use ECC with the data, + * disable ECC for the OOB data + */ +static int lpc32xx_nand_write_page_syndrome(struct mtd_info *mtd, + struct nand_chip *chip, + const uint8_t *buf, + int oob_required, int page) +{ + struct lpc32xx_nand_host *host = nand_get_controller_data(chip); + struct mtd_oob_region oobregion = { }; + uint8_t *pb; + int error; + + nand_prog_page_begin_op(chip, page, 0, NULL, 0); + + /* Write data, calculate ECC on outbound data */ + error = lpc32xx_xfer(mtd, (uint8_t *)buf, chip->ecc.steps, 0); + if (error) + return error; + + /* + * The calculated ECC needs some manual work done to it before + * committing it to NAND. Process the calculated ECC and place + * the resultant values directly into the OOB buffer. */ + error = mtd_ooblayout_ecc(mtd, 0, &oobregion); + if (error) + return error; + + pb = chip->oob_poi + oobregion.offset; + lpc32xx_slc_ecc_copy(pb, (uint32_t *)host->ecc_buf, chip->ecc.steps); + + /* Write ECC data to device */ + chip->write_buf(mtd, chip->oob_poi, mtd->oobsize); + + return nand_prog_page_end_op(chip); +} + +/* + * Write the data and OOB data to the device, no ECC correction with the + * data or OOB data + */ +static int lpc32xx_nand_write_page_raw_syndrome(struct mtd_info *mtd, + struct nand_chip *chip, + const uint8_t *buf, + int oob_required, int page) +{ + /* Raw writes can just use the FIFO interface */ + nand_prog_page_begin_op(chip, page, 0, buf, + chip->ecc.size * chip->ecc.steps); + chip->write_buf(mtd, chip->oob_poi, mtd->oobsize); + + return nand_prog_page_end_op(chip); +} + +static int lpc32xx_nand_dma_setup(struct lpc32xx_nand_host *host) +{ + struct mtd_info *mtd = nand_to_mtd(&host->nand_chip); + dma_cap_mask_t mask; + + if (!host->pdata || !host->pdata->dma_filter) { + dev_err(mtd->dev.parent, "no DMA platform data\n"); + return -ENOENT; + } + + dma_cap_zero(mask); + dma_cap_set(DMA_SLAVE, mask); + host->dma_chan = dma_request_channel(mask, host->pdata->dma_filter, + "nand-slc"); + if (!host->dma_chan) { + dev_err(mtd->dev.parent, "Failed to request DMA channel\n"); + return -EBUSY; + } + + return 0; +} + +static struct lpc32xx_nand_cfg_slc *lpc32xx_parse_dt(struct device *dev) +{ + struct lpc32xx_nand_cfg_slc *ncfg; + struct device_node *np = dev->of_node; + + ncfg = devm_kzalloc(dev, sizeof(*ncfg), GFP_KERNEL); + if (!ncfg) + return NULL; + + of_property_read_u32(np, "nxp,wdr-clks", &ncfg->wdr_clks); + of_property_read_u32(np, "nxp,wwidth", &ncfg->wwidth); + of_property_read_u32(np, "nxp,whold", &ncfg->whold); + of_property_read_u32(np, "nxp,wsetup", &ncfg->wsetup); + of_property_read_u32(np, "nxp,rdr-clks", &ncfg->rdr_clks); + of_property_read_u32(np, "nxp,rwidth", &ncfg->rwidth); + of_property_read_u32(np, "nxp,rhold", &ncfg->rhold); + of_property_read_u32(np, "nxp,rsetup", &ncfg->rsetup); + + if (!ncfg->wdr_clks || !ncfg->wwidth || !ncfg->whold || + !ncfg->wsetup || !ncfg->rdr_clks || !ncfg->rwidth || + !ncfg->rhold || !ncfg->rsetup) { + dev_err(dev, "chip parameters not specified correctly\n"); + return NULL; + } + + ncfg->wp_gpio = of_get_named_gpio(np, "gpios", 0); + + return ncfg; +} + +/* + * Probe for NAND controller + */ +static int lpc32xx_nand_probe(struct platform_device *pdev) +{ + struct lpc32xx_nand_host *host; + struct mtd_info *mtd; + struct nand_chip *chip; + struct resource *rc; + int res; + + /* Allocate memory for the device structure (and zero it) */ + host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL); + if (!host) + return -ENOMEM; + + rc = platform_get_resource(pdev, IORESOURCE_MEM, 0); + host->io_base = devm_ioremap_resource(&pdev->dev, rc); + if (IS_ERR(host->io_base)) + return PTR_ERR(host->io_base); + + host->io_base_dma = rc->start; + if (pdev->dev.of_node) + host->ncfg = lpc32xx_parse_dt(&pdev->dev); + if (!host->ncfg) { + dev_err(&pdev->dev, + "Missing or bad NAND config from device tree\n"); + return -ENOENT; + } + if (host->ncfg->wp_gpio == -EPROBE_DEFER) + return -EPROBE_DEFER; + if (gpio_is_valid(host->ncfg->wp_gpio) && devm_gpio_request(&pdev->dev, + host->ncfg->wp_gpio, "NAND WP")) { + dev_err(&pdev->dev, "GPIO not available\n"); + return -EBUSY; + } + lpc32xx_wp_disable(host); + + host->pdata = dev_get_platdata(&pdev->dev); + + chip = &host->nand_chip; + mtd = nand_to_mtd(chip); + nand_set_controller_data(chip, host); + nand_set_flash_node(chip, pdev->dev.of_node); + mtd->owner = THIS_MODULE; + mtd->dev.parent = &pdev->dev; + + /* Get NAND clock */ + host->clk = devm_clk_get(&pdev->dev, NULL); + if (IS_ERR(host->clk)) { + dev_err(&pdev->dev, "Clock failure\n"); + res = -ENOENT; + goto err_exit1; + } + res = clk_prepare_enable(host->clk); + if (res) + goto err_exit1; + + /* Set NAND IO addresses and command/ready functions */ + chip->IO_ADDR_R = SLC_DATA(host->io_base); + chip->IO_ADDR_W = SLC_DATA(host->io_base); + chip->cmd_ctrl = lpc32xx_nand_cmd_ctrl; + chip->dev_ready = lpc32xx_nand_device_ready; + chip->chip_delay = 20; /* 20us command delay time */ + + /* Init NAND controller */ + lpc32xx_nand_setup(host); + + platform_set_drvdata(pdev, host); + + /* NAND callbacks for LPC32xx SLC hardware */ + chip->ecc.mode = NAND_ECC_HW_SYNDROME; + chip->read_byte = lpc32xx_nand_read_byte; + chip->read_buf = lpc32xx_nand_read_buf; + chip->write_buf = lpc32xx_nand_write_buf; + chip->ecc.read_page_raw = lpc32xx_nand_read_page_raw_syndrome; + chip->ecc.read_page = lpc32xx_nand_read_page_syndrome; + chip->ecc.write_page_raw = lpc32xx_nand_write_page_raw_syndrome; + chip->ecc.write_page = lpc32xx_nand_write_page_syndrome; + chip->ecc.write_oob = lpc32xx_nand_write_oob_syndrome; + chip->ecc.read_oob = lpc32xx_nand_read_oob_syndrome; + chip->ecc.calculate = lpc32xx_nand_ecc_calculate; + chip->ecc.correct = nand_correct_data; + chip->ecc.strength = 1; + chip->ecc.hwctl = lpc32xx_nand_ecc_enable; + + /* + * Allocate a large enough buffer for a single huge page plus + * extra space for the spare area and ECC storage area + */ + host->dma_buf_len = LPC32XX_DMA_DATA_SIZE + LPC32XX_ECC_SAVE_SIZE; + host->data_buf = devm_kzalloc(&pdev->dev, host->dma_buf_len, + GFP_KERNEL); + if (host->data_buf == NULL) { + res = -ENOMEM; + goto err_exit2; + } + + res = lpc32xx_nand_dma_setup(host); + if (res) { + res = -EIO; + goto err_exit2; + } + + /* Find NAND device */ + res = nand_scan_ident(mtd, 1, NULL); + if (res) + goto err_exit3; + + /* OOB and ECC CPU and DMA work areas */ + host->ecc_buf = (uint32_t *)(host->data_buf + LPC32XX_DMA_DATA_SIZE); + + /* + * Small page FLASH has a unique OOB layout, but large and huge + * page FLASH use the standard layout. Small page FLASH uses a + * custom BBT marker layout. + */ + if (mtd->writesize <= 512) + mtd_set_ooblayout(mtd, &lpc32xx_ooblayout_ops); + + /* These sizes remain the same regardless of page size */ + chip->ecc.size = 256; + chip->ecc.bytes = LPC32XX_SLC_DEV_ECC_BYTES; + chip->ecc.prepad = chip->ecc.postpad = 0; + + /* + * Use a custom BBT marker setup for small page FLASH that + * won't interfere with the ECC layout. Large and huge page + * FLASH use the standard layout. + */ + if ((chip->bbt_options & NAND_BBT_USE_FLASH) && + mtd->writesize <= 512) { + chip->bbt_td = &bbt_smallpage_main_descr; + chip->bbt_md = &bbt_smallpage_mirror_descr; + } + + /* + * Fills out all the uninitialized function pointers with the defaults + */ + res = nand_scan_tail(mtd); + if (res) + goto err_exit3; + + mtd->name = "nxp_lpc3220_slc"; + res = mtd_device_register(mtd, host->ncfg->parts, + host->ncfg->num_parts); + if (!res) + return res; + + nand_release(mtd); + +err_exit3: + dma_release_channel(host->dma_chan); +err_exit2: + clk_disable_unprepare(host->clk); +err_exit1: + lpc32xx_wp_enable(host); + + return res; +} + +/* + * Remove NAND device. + */ +static int lpc32xx_nand_remove(struct platform_device *pdev) +{ + uint32_t tmp; + struct lpc32xx_nand_host *host = platform_get_drvdata(pdev); + struct mtd_info *mtd = nand_to_mtd(&host->nand_chip); + + nand_release(mtd); + dma_release_channel(host->dma_chan); + + /* Force CE high */ + tmp = readl(SLC_CTRL(host->io_base)); + tmp &= ~SLCCFG_CE_LOW; + writel(tmp, SLC_CTRL(host->io_base)); + + clk_disable_unprepare(host->clk); + lpc32xx_wp_enable(host); + + return 0; +} + +#ifdef CONFIG_PM +static int lpc32xx_nand_resume(struct platform_device *pdev) +{ + struct lpc32xx_nand_host *host = platform_get_drvdata(pdev); + int ret; + + /* Re-enable NAND clock */ + ret = clk_prepare_enable(host->clk); + if (ret) + return ret; + + /* Fresh init of NAND controller */ + lpc32xx_nand_setup(host); + + /* Disable write protect */ + lpc32xx_wp_disable(host); + + return 0; +} + +static int lpc32xx_nand_suspend(struct platform_device *pdev, pm_message_t pm) +{ + uint32_t tmp; + struct lpc32xx_nand_host *host = platform_get_drvdata(pdev); + + /* Force CE high */ + tmp = readl(SLC_CTRL(host->io_base)); + tmp &= ~SLCCFG_CE_LOW; + writel(tmp, SLC_CTRL(host->io_base)); + + /* Enable write protect for safety */ + lpc32xx_wp_enable(host); + + /* Disable clock */ + clk_disable_unprepare(host->clk); + + return 0; +} + +#else +#define lpc32xx_nand_resume NULL +#define lpc32xx_nand_suspend NULL +#endif + +static const struct of_device_id lpc32xx_nand_match[] = { + { .compatible = "nxp,lpc3220-slc" }, + { /* sentinel */ }, +}; +MODULE_DEVICE_TABLE(of, lpc32xx_nand_match); + +static struct platform_driver lpc32xx_nand_driver = { + .probe = lpc32xx_nand_probe, + .remove = lpc32xx_nand_remove, + .resume = lpc32xx_nand_resume, + .suspend = lpc32xx_nand_suspend, + .driver = { + .name = LPC32XX_MODNAME, + .of_match_table = lpc32xx_nand_match, + }, +}; + +module_platform_driver(lpc32xx_nand_driver); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Kevin Wells "); +MODULE_AUTHOR("Roland Stigge "); +MODULE_DESCRIPTION("NAND driver for the NXP LPC32XX SLC controller"); diff --git a/drivers/mtd/nand/raw/marvell_nand.c b/drivers/mtd/nand/raw/marvell_nand.c new file mode 100644 index 000000000000..cc21f9633edd --- /dev/null +++ b/drivers/mtd/nand/raw/marvell_nand.c @@ -0,0 +1,2915 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Marvell NAND flash controller driver + * + * Copyright (C) 2017 Marvell + * Author: Miquel RAYNAL + * + */ + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#include +#include +#include +#include + +/* Data FIFO granularity, FIFO reads/writes must be a multiple of this length */ +#define FIFO_DEPTH 8 +#define FIFO_REP(x) (x / sizeof(u32)) +#define BCH_SEQ_READS (32 / FIFO_DEPTH) +/* NFC does not support transfers of larger chunks at a time */ +#define MAX_CHUNK_SIZE 2112 +/* NFCv1 cannot read more that 7 bytes of ID */ +#define NFCV1_READID_LEN 7 +/* Polling is done at a pace of POLL_PERIOD us until POLL_TIMEOUT is reached */ +#define POLL_PERIOD 0 +#define POLL_TIMEOUT 100000 +/* Interrupt maximum wait period in ms */ +#define IRQ_TIMEOUT 1000 +/* Latency in clock cycles between SoC pins and NFC logic */ +#define MIN_RD_DEL_CNT 3 +/* Maximum number of contiguous address cycles */ +#define MAX_ADDRESS_CYC_NFCV1 5 +#define MAX_ADDRESS_CYC_NFCV2 7 +/* System control registers/bits to enable the NAND controller on some SoCs */ +#define GENCONF_SOC_DEVICE_MUX 0x208 +#define GENCONF_SOC_DEVICE_MUX_NFC_EN BIT(0) +#define GENCONF_SOC_DEVICE_MUX_ECC_CLK_RST BIT(20) +#define GENCONF_SOC_DEVICE_MUX_ECC_CORE_RST BIT(21) +#define GENCONF_SOC_DEVICE_MUX_NFC_INT_EN BIT(25) +#define GENCONF_CLK_GATING_CTRL 0x220 +#define GENCONF_CLK_GATING_CTRL_ND_GATE BIT(2) +#define GENCONF_ND_CLK_CTRL 0x700 +#define GENCONF_ND_CLK_CTRL_EN BIT(0) + +/* NAND controller data flash control register */ +#define NDCR 0x00 +#define NDCR_ALL_INT GENMASK(11, 0) +#define NDCR_CS1_CMDDM BIT(7) +#define NDCR_CS0_CMDDM BIT(8) +#define NDCR_RDYM BIT(11) +#define NDCR_ND_ARB_EN BIT(12) +#define NDCR_RA_START BIT(15) +#define NDCR_RD_ID_CNT(x) (min_t(unsigned int, x, 0x7) << 16) +#define NDCR_PAGE_SZ(x) (x >= 2048 ? BIT(24) : 0) +#define NDCR_DWIDTH_M BIT(26) +#define NDCR_DWIDTH_C BIT(27) +#define NDCR_ND_RUN BIT(28) +#define NDCR_DMA_EN BIT(29) +#define NDCR_ECC_EN BIT(30) +#define NDCR_SPARE_EN BIT(31) +#define NDCR_GENERIC_FIELDS_MASK (~(NDCR_RA_START | NDCR_PAGE_SZ(2048) | \ + NDCR_DWIDTH_M | NDCR_DWIDTH_C)) + +/* NAND interface timing parameter 0 register */ +#define NDTR0 0x04 +#define NDTR0_TRP(x) ((min_t(unsigned int, x, 0xF) & 0x7) << 0) +#define NDTR0_TRH(x) (min_t(unsigned int, x, 0x7) << 3) +#define NDTR0_ETRP(x) ((min_t(unsigned int, x, 0xF) & 0x8) << 3) +#define NDTR0_SEL_NRE_EDGE BIT(7) +#define NDTR0_TWP(x) (min_t(unsigned int, x, 0x7) << 8) +#define NDTR0_TWH(x) (min_t(unsigned int, x, 0x7) << 11) +#define NDTR0_TCS(x) (min_t(unsigned int, x, 0x7) << 16) +#define NDTR0_TCH(x) (min_t(unsigned int, x, 0x7) << 19) +#define NDTR0_RD_CNT_DEL(x) (min_t(unsigned int, x, 0xF) << 22) +#define NDTR0_SELCNTR BIT(26) +#define NDTR0_TADL(x) (min_t(unsigned int, x, 0x1F) << 27) + +/* NAND interface timing parameter 1 register */ +#define NDTR1 0x0C +#define NDTR1_TAR(x) (min_t(unsigned int, x, 0xF) << 0) +#define NDTR1_TWHR(x) (min_t(unsigned int, x, 0xF) << 4) +#define NDTR1_TRHW(x) (min_t(unsigned int, x / 16, 0x3) << 8) +#define NDTR1_PRESCALE BIT(14) +#define NDTR1_WAIT_MODE BIT(15) +#define NDTR1_TR(x) (min_t(unsigned int, x, 0xFFFF) << 16) + +/* NAND controller status register */ +#define NDSR 0x14 +#define NDSR_WRCMDREQ BIT(0) +#define NDSR_RDDREQ BIT(1) +#define NDSR_WRDREQ BIT(2) +#define NDSR_CORERR BIT(3) +#define NDSR_UNCERR BIT(4) +#define NDSR_CMDD(cs) BIT(8 - cs) +#define NDSR_RDY(rb) BIT(11 + rb) +#define NDSR_ERRCNT(x) ((x >> 16) & 0x1F) + +/* NAND ECC control register */ +#define NDECCCTRL 0x28 +#define NDECCCTRL_BCH_EN BIT(0) + +/* NAND controller data buffer register */ +#define NDDB 0x40 + +/* NAND controller command buffer 0 register */ +#define NDCB0 0x48 +#define NDCB0_CMD1(x) ((x & 0xFF) << 0) +#define NDCB0_CMD2(x) ((x & 0xFF) << 8) +#define NDCB0_ADDR_CYC(x) ((x & 0x7) << 16) +#define NDCB0_ADDR_GET_NUM_CYC(x) (((x) >> 16) & 0x7) +#define NDCB0_DBC BIT(19) +#define NDCB0_CMD_TYPE(x) ((x & 0x7) << 21) +#define NDCB0_CSEL BIT(24) +#define NDCB0_RDY_BYP BIT(27) +#define NDCB0_LEN_OVRD BIT(28) +#define NDCB0_CMD_XTYPE(x) ((x & 0x7) << 29) + +/* NAND controller command buffer 1 register */ +#define NDCB1 0x4C +#define NDCB1_COLS(x) ((x & 0xFFFF) << 0) +#define NDCB1_ADDRS_PAGE(x) (x << 16) + +/* NAND controller command buffer 2 register */ +#define NDCB2 0x50 +#define NDCB2_ADDR5_PAGE(x) (((x >> 16) & 0xFF) << 0) +#define NDCB2_ADDR5_CYC(x) ((x & 0xFF) << 0) + +/* NAND controller command buffer 3 register */ +#define NDCB3 0x54 +#define NDCB3_ADDR6_CYC(x) ((x & 0xFF) << 16) +#define NDCB3_ADDR7_CYC(x) ((x & 0xFF) << 24) + +/* NAND controller command buffer 0 register 'type' and 'xtype' fields */ +#define TYPE_READ 0 +#define TYPE_WRITE 1 +#define TYPE_ERASE 2 +#define TYPE_READ_ID 3 +#define TYPE_STATUS 4 +#define TYPE_RESET 5 +#define TYPE_NAKED_CMD 6 +#define TYPE_NAKED_ADDR 7 +#define TYPE_MASK 7 +#define XTYPE_MONOLITHIC_RW 0 +#define XTYPE_LAST_NAKED_RW 1 +#define XTYPE_FINAL_COMMAND 3 +#define XTYPE_READ 4 +#define XTYPE_WRITE_DISPATCH 4 +#define XTYPE_NAKED_RW 5 +#define XTYPE_COMMAND_DISPATCH 6 +#define XTYPE_MASK 7 + +/** + * Marvell ECC engine works differently than the others, in order to limit the + * size of the IP, hardware engineers chose to set a fixed strength at 16 bits + * per subpage, and depending on a the desired strength needed by the NAND chip, + * a particular layout mixing data/spare/ecc is defined, with a possible last + * chunk smaller that the others. + * + * @writesize: Full page size on which the layout applies + * @chunk: Desired ECC chunk size on which the layout applies + * @strength: Desired ECC strength (per chunk size bytes) on which the + * layout applies + * @nchunks: Total number of chunks + * @full_chunk_cnt: Number of full-sized chunks, which is the number of + * repetitions of the pattern: + * (data_bytes + spare_bytes + ecc_bytes). + * @data_bytes: Number of data bytes per chunk + * @spare_bytes: Number of spare bytes per chunk + * @ecc_bytes: Number of ecc bytes per chunk + * @last_data_bytes: Number of data bytes in the last chunk + * @last_spare_bytes: Number of spare bytes in the last chunk + * @last_ecc_bytes: Number of ecc bytes in the last chunk + */ +struct marvell_hw_ecc_layout { + /* Constraints */ + int writesize; + int chunk; + int strength; + /* Corresponding layout */ + int nchunks; + int full_chunk_cnt; + int data_bytes; + int spare_bytes; + int ecc_bytes; + int last_data_bytes; + int last_spare_bytes; + int last_ecc_bytes; +}; + +#define MARVELL_LAYOUT(ws, dc, ds, nc, fcc, db, sb, eb, ldb, lsb, leb) \ + { \ + .writesize = ws, \ + .chunk = dc, \ + .strength = ds, \ + .nchunks = nc, \ + .full_chunk_cnt = fcc, \ + .data_bytes = db, \ + .spare_bytes = sb, \ + .ecc_bytes = eb, \ + .last_data_bytes = ldb, \ + .last_spare_bytes = lsb, \ + .last_ecc_bytes = leb, \ + } + +/* Layouts explained in AN-379_Marvell_SoC_NFC_ECC */ +static const struct marvell_hw_ecc_layout marvell_nfc_layouts[] = { + MARVELL_LAYOUT( 512, 512, 1, 1, 1, 512, 8, 8, 0, 0, 0), + MARVELL_LAYOUT( 2048, 512, 1, 1, 1, 2048, 40, 24, 0, 0, 0), + MARVELL_LAYOUT( 2048, 512, 4, 1, 1, 2048, 32, 30, 0, 0, 0), + MARVELL_LAYOUT( 4096, 512, 4, 2, 2, 2048, 32, 30, 0, 0, 0), + MARVELL_LAYOUT( 4096, 512, 8, 5, 4, 1024, 0, 30, 0, 64, 30), +}; + +/** + * The Nand Flash Controller has up to 4 CE and 2 RB pins. The CE selection + * is made by a field in NDCB0 register, and in another field in NDCB2 register. + * The datasheet describes the logic with an error: ADDR5 field is once + * declared at the beginning of NDCB2, and another time at its end. Because the + * ADDR5 field of NDCB2 may be used by other bytes, it would be more logical + * to use the last bit of this field instead of the first ones. + * + * @cs: Wanted CE lane. + * @ndcb0_csel: Value of the NDCB0 register with or without the flag + * selecting the wanted CE lane. This is set once when + * the Device Tree is probed. + * @rb: Ready/Busy pin for the flash chip + */ +struct marvell_nand_chip_sel { + unsigned int cs; + u32 ndcb0_csel; + unsigned int rb; +}; + +/** + * NAND chip structure: stores NAND chip device related information + * + * @chip: Base NAND chip structure + * @node: Used to store NAND chips into a list + * @layout NAND layout when using hardware ECC + * @ndcr: Controller register value for this NAND chip + * @ndtr0: Timing registers 0 value for this NAND chip + * @ndtr1: Timing registers 1 value for this NAND chip + * @selected_die: Current active CS + * @nsels: Number of CS lines required by the NAND chip + * @sels: Array of CS lines descriptions + */ +struct marvell_nand_chip { + struct nand_chip chip; + struct list_head node; + const struct marvell_hw_ecc_layout *layout; + u32 ndcr; + u32 ndtr0; + u32 ndtr1; + int addr_cyc; + int selected_die; + unsigned int nsels; + struct marvell_nand_chip_sel sels[0]; +}; + +static inline struct marvell_nand_chip *to_marvell_nand(struct nand_chip *chip) +{ + return container_of(chip, struct marvell_nand_chip, chip); +} + +static inline struct marvell_nand_chip_sel *to_nand_sel(struct marvell_nand_chip + *nand) +{ + return &nand->sels[nand->selected_die]; +} + +/** + * NAND controller capabilities for distinction between compatible strings + * + * @max_cs_nb: Number of Chip Select lines available + * @max_rb_nb: Number of Ready/Busy lines available + * @need_system_controller: Indicates if the SoC needs to have access to the + * system controller (ie. to enable the NAND controller) + * @legacy_of_bindings: Indicates if DT parsing must be done using the old + * fashion way + * @is_nfcv2: NFCv2 has numerous enhancements compared to NFCv1, ie. + * BCH error detection and correction algorithm, + * NDCB3 register has been added + * @use_dma: Use dma for data transfers + */ +struct marvell_nfc_caps { + unsigned int max_cs_nb; + unsigned int max_rb_nb; + bool need_system_controller; + bool legacy_of_bindings; + bool is_nfcv2; + bool use_dma; +}; + +/** + * NAND controller structure: stores Marvell NAND controller information + * + * @controller: Base controller structure + * @dev: Parent device (used to print error messages) + * @regs: NAND controller registers + * @ecc_clk: ECC block clock, two times the NAND controller clock + * @complete: Completion object to wait for NAND controller events + * @assigned_cs: Bitmask describing already assigned CS lines + * @chips: List containing all the NAND chips attached to + * this NAND controller + * @caps: NAND controller capabilities for each compatible string + * @dma_chan: DMA channel (NFCv1 only) + * @dma_buf: 32-bit aligned buffer for DMA transfers (NFCv1 only) + */ +struct marvell_nfc { + struct nand_hw_control controller; + struct device *dev; + void __iomem *regs; + struct clk *ecc_clk; + struct completion complete; + unsigned long assigned_cs; + struct list_head chips; + struct nand_chip *selected_chip; + const struct marvell_nfc_caps *caps; + + /* DMA (NFCv1 only) */ + bool use_dma; + struct dma_chan *dma_chan; + u8 *dma_buf; +}; + +static inline struct marvell_nfc *to_marvell_nfc(struct nand_hw_control *ctrl) +{ + return container_of(ctrl, struct marvell_nfc, controller); +} + +/** + * NAND controller timings expressed in NAND Controller clock cycles + * + * @tRP: ND_nRE pulse width + * @tRH: ND_nRE high duration + * @tWP: ND_nWE pulse time + * @tWH: ND_nWE high duration + * @tCS: Enable signal setup time + * @tCH: Enable signal hold time + * @tADL: Address to write data delay + * @tAR: ND_ALE low to ND_nRE low delay + * @tWHR: ND_nWE high to ND_nRE low for status read + * @tRHW: ND_nRE high duration, read to write delay + * @tR: ND_nWE high to ND_nRE low for read + */ +struct marvell_nfc_timings { + /* NDTR0 fields */ + unsigned int tRP; + unsigned int tRH; + unsigned int tWP; + unsigned int tWH; + unsigned int tCS; + unsigned int tCH; + unsigned int tADL; + /* NDTR1 fields */ + unsigned int tAR; + unsigned int tWHR; + unsigned int tRHW; + unsigned int tR; +}; + +/** + * Derives a duration in numbers of clock cycles. + * + * @ps: Duration in pico-seconds + * @period_ns: Clock period in nano-seconds + * + * Convert the duration in nano-seconds, then divide by the period and + * return the number of clock periods. + */ +#define TO_CYCLES(ps, period_ns) (DIV_ROUND_UP(ps / 1000, period_ns)) +#define TO_CYCLES64(ps, period_ns) (DIV_ROUND_UP_ULL(div_u64(ps, 1000), \ + period_ns)) + +/** + * NAND driver structure filled during the parsing of the ->exec_op() subop + * subset of instructions. + * + * @ndcb: Array of values written to NDCBx registers + * @cle_ale_delay_ns: Optional delay after the last CMD or ADDR cycle + * @rdy_timeout_ms: Timeout for waits on Ready/Busy pin + * @rdy_delay_ns: Optional delay after waiting for the RB pin + * @data_delay_ns: Optional delay after the data xfer + * @data_instr_idx: Index of the data instruction in the subop + * @data_instr: Pointer to the data instruction in the subop + */ +struct marvell_nfc_op { + u32 ndcb[4]; + unsigned int cle_ale_delay_ns; + unsigned int rdy_timeout_ms; + unsigned int rdy_delay_ns; + unsigned int data_delay_ns; + unsigned int data_instr_idx; + const struct nand_op_instr *data_instr; +}; + +/* + * Internal helper to conditionnally apply a delay (from the above structure, + * most of the time). + */ +static void cond_delay(unsigned int ns) +{ + if (!ns) + return; + + if (ns < 10000) + ndelay(ns); + else + udelay(DIV_ROUND_UP(ns, 1000)); +} + +/* + * The controller has many flags that could generate interrupts, most of them + * are disabled and polling is used. For the very slow signals, using interrupts + * may relax the CPU charge. + */ +static void marvell_nfc_disable_int(struct marvell_nfc *nfc, u32 int_mask) +{ + u32 reg; + + /* Writing 1 disables the interrupt */ + reg = readl_relaxed(nfc->regs + NDCR); + writel_relaxed(reg | int_mask, nfc->regs + NDCR); +} + +static void marvell_nfc_enable_int(struct marvell_nfc *nfc, u32 int_mask) +{ + u32 reg; + + /* Writing 0 enables the interrupt */ + reg = readl_relaxed(nfc->regs + NDCR); + writel_relaxed(reg & ~int_mask, nfc->regs + NDCR); +} + +static void marvell_nfc_clear_int(struct marvell_nfc *nfc, u32 int_mask) +{ + writel_relaxed(int_mask, nfc->regs + NDSR); +} + +static void marvell_nfc_force_byte_access(struct nand_chip *chip, + bool force_8bit) +{ + struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); + u32 ndcr; + + /* + * Callers of this function do not verify if the NAND is using a 16-bit + * an 8-bit bus for normal operations, so we need to take care of that + * here by leaving the configuration unchanged if the NAND does not have + * the NAND_BUSWIDTH_16 flag set. + */ + if (!(chip->options & NAND_BUSWIDTH_16)) + return; + + ndcr = readl_relaxed(nfc->regs + NDCR); + + if (force_8bit) + ndcr &= ~(NDCR_DWIDTH_M | NDCR_DWIDTH_C); + else + ndcr |= NDCR_DWIDTH_M | NDCR_DWIDTH_C; + + writel_relaxed(ndcr, nfc->regs + NDCR); +} + +static int marvell_nfc_wait_ndrun(struct nand_chip *chip) +{ + struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); + u32 val; + int ret; + + /* + * The command is being processed, wait for the ND_RUN bit to be + * cleared by the NFC. If not, we must clear it by hand. + */ + ret = readl_relaxed_poll_timeout(nfc->regs + NDCR, val, + (val & NDCR_ND_RUN) == 0, + POLL_PERIOD, POLL_TIMEOUT); + if (ret) { + dev_err(nfc->dev, "Timeout on NAND controller run mode\n"); + writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN, + nfc->regs + NDCR); + return ret; + } + + return 0; +} + +/* + * Any time a command has to be sent to the controller, the following sequence + * has to be followed: + * - call marvell_nfc_prepare_cmd() + * -> activate the ND_RUN bit that will kind of 'start a job' + * -> wait the signal indicating the NFC is waiting for a command + * - send the command (cmd and address cycles) + * - enventually send or receive the data + * - call marvell_nfc_end_cmd() with the corresponding flag + * -> wait the flag to be triggered or cancel the job with a timeout + * + * The following helpers are here to factorize the code a bit so that + * specialized functions responsible for executing the actual NAND + * operations do not have to replicate the same code blocks. + */ +static int marvell_nfc_prepare_cmd(struct nand_chip *chip) +{ + struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); + u32 ndcr, val; + int ret; + + /* Poll ND_RUN and clear NDSR before issuing any command */ + ret = marvell_nfc_wait_ndrun(chip); + if (ret) { + dev_err(nfc->dev, "Last operation did not succeed\n"); + return ret; + } + + ndcr = readl_relaxed(nfc->regs + NDCR); + writel_relaxed(readl(nfc->regs + NDSR), nfc->regs + NDSR); + + /* Assert ND_RUN bit and wait the NFC to be ready */ + writel_relaxed(ndcr | NDCR_ND_RUN, nfc->regs + NDCR); + ret = readl_relaxed_poll_timeout(nfc->regs + NDSR, val, + val & NDSR_WRCMDREQ, + POLL_PERIOD, POLL_TIMEOUT); + if (ret) { + dev_err(nfc->dev, "Timeout on WRCMDRE\n"); + return -ETIMEDOUT; + } + + /* Command may be written, clear WRCMDREQ status bit */ + writel_relaxed(NDSR_WRCMDREQ, nfc->regs + NDSR); + + return 0; +} + +static void marvell_nfc_send_cmd(struct nand_chip *chip, + struct marvell_nfc_op *nfc_op) +{ + struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); + struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); + + dev_dbg(nfc->dev, "\nNDCR: 0x%08x\n" + "NDCB0: 0x%08x\nNDCB1: 0x%08x\nNDCB2: 0x%08x\nNDCB3: 0x%08x\n", + (u32)readl_relaxed(nfc->regs + NDCR), nfc_op->ndcb[0], + nfc_op->ndcb[1], nfc_op->ndcb[2], nfc_op->ndcb[3]); + + writel_relaxed(to_nand_sel(marvell_nand)->ndcb0_csel | nfc_op->ndcb[0], + nfc->regs + NDCB0); + writel_relaxed(nfc_op->ndcb[1], nfc->regs + NDCB0); + writel(nfc_op->ndcb[2], nfc->regs + NDCB0); + + /* + * Write NDCB0 four times only if LEN_OVRD is set or if ADDR6 or ADDR7 + * fields are used (only available on NFCv2). + */ + if (nfc_op->ndcb[0] & NDCB0_LEN_OVRD || + NDCB0_ADDR_GET_NUM_CYC(nfc_op->ndcb[0]) >= 6) { + if (!WARN_ON_ONCE(!nfc->caps->is_nfcv2)) + writel(nfc_op->ndcb[3], nfc->regs + NDCB0); + } +} + +static int marvell_nfc_end_cmd(struct nand_chip *chip, int flag, + const char *label) +{ + struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); + u32 val; + int ret; + + ret = readl_relaxed_poll_timeout(nfc->regs + NDSR, val, + val & flag, + POLL_PERIOD, POLL_TIMEOUT); + + if (ret) { + dev_err(nfc->dev, "Timeout on %s (NDSR: 0x%08x)\n", + label, val); + if (nfc->dma_chan) + dmaengine_terminate_all(nfc->dma_chan); + return ret; + } + + /* + * DMA function uses this helper to poll on CMDD bits without wanting + * them to be cleared. + */ + if (nfc->use_dma && (readl_relaxed(nfc->regs + NDCR) & NDCR_DMA_EN)) + return 0; + + writel_relaxed(flag, nfc->regs + NDSR); + + return 0; +} + +static int marvell_nfc_wait_cmdd(struct nand_chip *chip) +{ + struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); + int cs_flag = NDSR_CMDD(to_nand_sel(marvell_nand)->ndcb0_csel); + + return marvell_nfc_end_cmd(chip, cs_flag, "CMDD"); +} + +static int marvell_nfc_wait_op(struct nand_chip *chip, unsigned int timeout_ms) +{ + struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); + int ret; + + /* Timeout is expressed in ms */ + if (!timeout_ms) + timeout_ms = IRQ_TIMEOUT; + + init_completion(&nfc->complete); + + marvell_nfc_enable_int(nfc, NDCR_RDYM); + ret = wait_for_completion_timeout(&nfc->complete, + msecs_to_jiffies(timeout_ms)); + marvell_nfc_disable_int(nfc, NDCR_RDYM); + marvell_nfc_clear_int(nfc, NDSR_RDY(0) | NDSR_RDY(1)); + if (!ret) { + dev_err(nfc->dev, "Timeout waiting for RB signal\n"); + return -ETIMEDOUT; + } + + return 0; +} + +static void marvell_nfc_select_chip(struct mtd_info *mtd, int die_nr) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); + struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); + u32 ndcr_generic; + + if (chip == nfc->selected_chip && die_nr == marvell_nand->selected_die) + return; + + if (die_nr < 0 || die_nr >= marvell_nand->nsels) { + nfc->selected_chip = NULL; + marvell_nand->selected_die = -1; + return; + } + + /* + * Do not change the timing registers when using the DT property + * marvell,nand-keep-config; in that case ->ndtr0 and ->ndtr1 from the + * marvell_nand structure are supposedly empty. + */ + writel_relaxed(marvell_nand->ndtr0, nfc->regs + NDTR0); + writel_relaxed(marvell_nand->ndtr1, nfc->regs + NDTR1); + + /* + * Reset the NDCR register to a clean state for this particular chip, + * also clear ND_RUN bit. + */ + ndcr_generic = readl_relaxed(nfc->regs + NDCR) & + NDCR_GENERIC_FIELDS_MASK & ~NDCR_ND_RUN; + writel_relaxed(ndcr_generic | marvell_nand->ndcr, nfc->regs + NDCR); + + /* Also reset the interrupt status register */ + marvell_nfc_clear_int(nfc, NDCR_ALL_INT); + + nfc->selected_chip = chip; + marvell_nand->selected_die = die_nr; +} + +static irqreturn_t marvell_nfc_isr(int irq, void *dev_id) +{ + struct marvell_nfc *nfc = dev_id; + u32 st = readl_relaxed(nfc->regs + NDSR); + u32 ien = (~readl_relaxed(nfc->regs + NDCR)) & NDCR_ALL_INT; + + /* + * RDY interrupt mask is one bit in NDCR while there are two status + * bit in NDSR (RDY[cs0/cs2] and RDY[cs1/cs3]). + */ + if (st & NDSR_RDY(1)) + st |= NDSR_RDY(0); + + if (!(st & ien)) + return IRQ_NONE; + + marvell_nfc_disable_int(nfc, st & NDCR_ALL_INT); + + if (!(st & (NDSR_RDDREQ | NDSR_WRDREQ | NDSR_WRCMDREQ))) + complete(&nfc->complete); + + return IRQ_HANDLED; +} + +/* HW ECC related functions */ +static void marvell_nfc_enable_hw_ecc(struct nand_chip *chip) +{ + struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); + u32 ndcr = readl_relaxed(nfc->regs + NDCR); + + if (!(ndcr & NDCR_ECC_EN)) { + writel_relaxed(ndcr | NDCR_ECC_EN, nfc->regs + NDCR); + + /* + * When enabling BCH, set threshold to 0 to always know the + * number of corrected bitflips. + */ + if (chip->ecc.algo == NAND_ECC_BCH) + writel_relaxed(NDECCCTRL_BCH_EN, nfc->regs + NDECCCTRL); + } +} + +static void marvell_nfc_disable_hw_ecc(struct nand_chip *chip) +{ + struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); + u32 ndcr = readl_relaxed(nfc->regs + NDCR); + + if (ndcr & NDCR_ECC_EN) { + writel_relaxed(ndcr & ~NDCR_ECC_EN, nfc->regs + NDCR); + if (chip->ecc.algo == NAND_ECC_BCH) + writel_relaxed(0, nfc->regs + NDECCCTRL); + } +} + +/* DMA related helpers */ +static void marvell_nfc_enable_dma(struct marvell_nfc *nfc) +{ + u32 reg; + + reg = readl_relaxed(nfc->regs + NDCR); + writel_relaxed(reg | NDCR_DMA_EN, nfc->regs + NDCR); +} + +static void marvell_nfc_disable_dma(struct marvell_nfc *nfc) +{ + u32 reg; + + reg = readl_relaxed(nfc->regs + NDCR); + writel_relaxed(reg & ~NDCR_DMA_EN, nfc->regs + NDCR); +} + +/* Read/write PIO/DMA accessors */ +static int marvell_nfc_xfer_data_dma(struct marvell_nfc *nfc, + enum dma_data_direction direction, + unsigned int len) +{ + unsigned int dma_len = min_t(int, ALIGN(len, 32), MAX_CHUNK_SIZE); + struct dma_async_tx_descriptor *tx; + struct scatterlist sg; + dma_cookie_t cookie; + int ret; + + marvell_nfc_enable_dma(nfc); + /* Prepare the DMA transfer */ + sg_init_one(&sg, nfc->dma_buf, dma_len); + dma_map_sg(nfc->dma_chan->device->dev, &sg, 1, direction); + tx = dmaengine_prep_slave_sg(nfc->dma_chan, &sg, 1, + direction == DMA_FROM_DEVICE ? + DMA_DEV_TO_MEM : DMA_MEM_TO_DEV, + DMA_PREP_INTERRUPT); + if (!tx) { + dev_err(nfc->dev, "Could not prepare DMA S/G list\n"); + return -ENXIO; + } + + /* Do the task and wait for it to finish */ + cookie = dmaengine_submit(tx); + ret = dma_submit_error(cookie); + if (ret) + return -EIO; + + dma_async_issue_pending(nfc->dma_chan); + ret = marvell_nfc_wait_cmdd(nfc->selected_chip); + dma_unmap_sg(nfc->dma_chan->device->dev, &sg, 1, direction); + marvell_nfc_disable_dma(nfc); + if (ret) { + dev_err(nfc->dev, "Timeout waiting for DMA (status: %d)\n", + dmaengine_tx_status(nfc->dma_chan, cookie, NULL)); + dmaengine_terminate_all(nfc->dma_chan); + return -ETIMEDOUT; + } + + return 0; +} + +static int marvell_nfc_xfer_data_in_pio(struct marvell_nfc *nfc, u8 *in, + unsigned int len) +{ + unsigned int last_len = len % FIFO_DEPTH; + unsigned int last_full_offset = round_down(len, FIFO_DEPTH); + int i; + + for (i = 0; i < last_full_offset; i += FIFO_DEPTH) + ioread32_rep(nfc->regs + NDDB, in + i, FIFO_REP(FIFO_DEPTH)); + + if (last_len) { + u8 tmp_buf[FIFO_DEPTH]; + + ioread32_rep(nfc->regs + NDDB, tmp_buf, FIFO_REP(FIFO_DEPTH)); + memcpy(in + last_full_offset, tmp_buf, last_len); + } + + return 0; +} + +static int marvell_nfc_xfer_data_out_pio(struct marvell_nfc *nfc, const u8 *out, + unsigned int len) +{ + unsigned int last_len = len % FIFO_DEPTH; + unsigned int last_full_offset = round_down(len, FIFO_DEPTH); + int i; + + for (i = 0; i < last_full_offset; i += FIFO_DEPTH) + iowrite32_rep(nfc->regs + NDDB, out + i, FIFO_REP(FIFO_DEPTH)); + + if (last_len) { + u8 tmp_buf[FIFO_DEPTH]; + + memcpy(tmp_buf, out + last_full_offset, last_len); + iowrite32_rep(nfc->regs + NDDB, tmp_buf, FIFO_REP(FIFO_DEPTH)); + } + + return 0; +} + +static void marvell_nfc_check_empty_chunk(struct nand_chip *chip, + u8 *data, int data_len, + u8 *spare, int spare_len, + u8 *ecc, int ecc_len, + unsigned int *max_bitflips) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + int bf; + + /* + * Blank pages (all 0xFF) that have not been written may be recognized + * as bad if bitflips occur, so whenever an uncorrectable error occurs, + * check if the entire page (with ECC bytes) is actually blank or not. + */ + if (!data) + data_len = 0; + if (!spare) + spare_len = 0; + if (!ecc) + ecc_len = 0; + + bf = nand_check_erased_ecc_chunk(data, data_len, ecc, ecc_len, + spare, spare_len, chip->ecc.strength); + if (bf < 0) { + mtd->ecc_stats.failed++; + return; + } + + /* Update the stats and max_bitflips */ + mtd->ecc_stats.corrected += bf; + *max_bitflips = max_t(unsigned int, *max_bitflips, bf); +} + +/* + * Check a chunk is correct or not according to hardware ECC engine. + * mtd->ecc_stats.corrected is updated, as well as max_bitflips, however + * mtd->ecc_stats.failure is not, the function will instead return a non-zero + * value indicating that a check on the emptyness of the subpage must be + * performed before declaring the subpage corrupted. + */ +static int marvell_nfc_hw_ecc_correct(struct nand_chip *chip, + unsigned int *max_bitflips) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); + int bf = 0; + u32 ndsr; + + ndsr = readl_relaxed(nfc->regs + NDSR); + + /* Check uncorrectable error flag */ + if (ndsr & NDSR_UNCERR) { + writel_relaxed(ndsr, nfc->regs + NDSR); + + /* + * Do not increment ->ecc_stats.failed now, instead, return a + * non-zero value to indicate that this chunk was apparently + * bad, and it should be check to see if it empty or not. If + * the chunk (with ECC bytes) is not declared empty, the calling + * function must increment the failure count. + */ + return -EBADMSG; + } + + /* Check correctable error flag */ + if (ndsr & NDSR_CORERR) { + writel_relaxed(ndsr, nfc->regs + NDSR); + + if (chip->ecc.algo == NAND_ECC_BCH) + bf = NDSR_ERRCNT(ndsr); + else + bf = 1; + } + + /* Update the stats and max_bitflips */ + mtd->ecc_stats.corrected += bf; + *max_bitflips = max_t(unsigned int, *max_bitflips, bf); + + return 0; +} + +/* Hamming read helpers */ +static int marvell_nfc_hw_ecc_hmg_do_read_page(struct nand_chip *chip, + u8 *data_buf, u8 *oob_buf, + bool raw, int page) +{ + struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); + struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); + const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; + struct marvell_nfc_op nfc_op = { + .ndcb[0] = NDCB0_CMD_TYPE(TYPE_READ) | + NDCB0_ADDR_CYC(marvell_nand->addr_cyc) | + NDCB0_DBC | + NDCB0_CMD1(NAND_CMD_READ0) | + NDCB0_CMD2(NAND_CMD_READSTART), + .ndcb[1] = NDCB1_ADDRS_PAGE(page), + .ndcb[2] = NDCB2_ADDR5_PAGE(page), + }; + unsigned int oob_bytes = lt->spare_bytes + (raw ? lt->ecc_bytes : 0); + int ret; + + /* NFCv2 needs more information about the operation being executed */ + if (nfc->caps->is_nfcv2) + nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW); + + ret = marvell_nfc_prepare_cmd(chip); + if (ret) + return ret; + + marvell_nfc_send_cmd(chip, &nfc_op); + ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ, + "RDDREQ while draining FIFO (data/oob)"); + if (ret) + return ret; + + /* + * Read the page then the OOB area. Unlike what is shown in current + * documentation, spare bytes are protected by the ECC engine, and must + * be at the beginning of the OOB area or running this driver on legacy + * systems will prevent the discovery of the BBM/BBT. + */ + if (nfc->use_dma) { + marvell_nfc_xfer_data_dma(nfc, DMA_FROM_DEVICE, + lt->data_bytes + oob_bytes); + memcpy(data_buf, nfc->dma_buf, lt->data_bytes); + memcpy(oob_buf, nfc->dma_buf + lt->data_bytes, oob_bytes); + } else { + marvell_nfc_xfer_data_in_pio(nfc, data_buf, lt->data_bytes); + marvell_nfc_xfer_data_in_pio(nfc, oob_buf, oob_bytes); + } + + ret = marvell_nfc_wait_cmdd(chip); + + return ret; +} + +static int marvell_nfc_hw_ecc_hmg_read_page_raw(struct mtd_info *mtd, + struct nand_chip *chip, u8 *buf, + int oob_required, int page) +{ + return marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi, + true, page); +} + +static int marvell_nfc_hw_ecc_hmg_read_page(struct mtd_info *mtd, + struct nand_chip *chip, + u8 *buf, int oob_required, + int page) +{ + const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; + unsigned int full_sz = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes; + int max_bitflips = 0, ret; + u8 *raw_buf; + + marvell_nfc_enable_hw_ecc(chip); + marvell_nfc_hw_ecc_hmg_do_read_page(chip, buf, chip->oob_poi, false, + page); + ret = marvell_nfc_hw_ecc_correct(chip, &max_bitflips); + marvell_nfc_disable_hw_ecc(chip); + + if (!ret) + return max_bitflips; + + /* + * When ECC failures are detected, check if the full page has been + * written or not. Ignore the failure if it is actually empty. + */ + raw_buf = kmalloc(full_sz, GFP_KERNEL); + if (!raw_buf) + return -ENOMEM; + + marvell_nfc_hw_ecc_hmg_do_read_page(chip, raw_buf, raw_buf + + lt->data_bytes, true, page); + marvell_nfc_check_empty_chunk(chip, raw_buf, full_sz, NULL, 0, NULL, 0, + &max_bitflips); + kfree(raw_buf); + + return max_bitflips; +} + +/* + * Spare area in Hamming layouts is not protected by the ECC engine (even if + * it appears before the ECC bytes when reading), the ->read_oob_raw() function + * also stands for ->read_oob(). + */ +static int marvell_nfc_hw_ecc_hmg_read_oob_raw(struct mtd_info *mtd, + struct nand_chip *chip, int page) +{ + /* Invalidate page cache */ + chip->pagebuf = -1; + + return marvell_nfc_hw_ecc_hmg_do_read_page(chip, chip->data_buf, + chip->oob_poi, true, page); +} + +/* Hamming write helpers */ +static int marvell_nfc_hw_ecc_hmg_do_write_page(struct nand_chip *chip, + const u8 *data_buf, + const u8 *oob_buf, bool raw, + int page) +{ + struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); + struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); + const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; + struct marvell_nfc_op nfc_op = { + .ndcb[0] = NDCB0_CMD_TYPE(TYPE_WRITE) | + NDCB0_ADDR_CYC(marvell_nand->addr_cyc) | + NDCB0_CMD1(NAND_CMD_SEQIN) | + NDCB0_CMD2(NAND_CMD_PAGEPROG) | + NDCB0_DBC, + .ndcb[1] = NDCB1_ADDRS_PAGE(page), + .ndcb[2] = NDCB2_ADDR5_PAGE(page), + }; + unsigned int oob_bytes = lt->spare_bytes + (raw ? lt->ecc_bytes : 0); + int ret; + + /* NFCv2 needs more information about the operation being executed */ + if (nfc->caps->is_nfcv2) + nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW); + + ret = marvell_nfc_prepare_cmd(chip); + if (ret) + return ret; + + marvell_nfc_send_cmd(chip, &nfc_op); + ret = marvell_nfc_end_cmd(chip, NDSR_WRDREQ, + "WRDREQ while loading FIFO (data)"); + if (ret) + return ret; + + /* Write the page then the OOB area */ + if (nfc->use_dma) { + memcpy(nfc->dma_buf, data_buf, lt->data_bytes); + memcpy(nfc->dma_buf + lt->data_bytes, oob_buf, oob_bytes); + marvell_nfc_xfer_data_dma(nfc, DMA_TO_DEVICE, lt->data_bytes + + lt->ecc_bytes + lt->spare_bytes); + } else { + marvell_nfc_xfer_data_out_pio(nfc, data_buf, lt->data_bytes); + marvell_nfc_xfer_data_out_pio(nfc, oob_buf, oob_bytes); + } + + ret = marvell_nfc_wait_cmdd(chip); + if (ret) + return ret; + + ret = marvell_nfc_wait_op(chip, + chip->data_interface.timings.sdr.tPROG_max); + return ret; +} + +static int marvell_nfc_hw_ecc_hmg_write_page_raw(struct mtd_info *mtd, + struct nand_chip *chip, + const u8 *buf, + int oob_required, int page) +{ + return marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi, + true, page); +} + +static int marvell_nfc_hw_ecc_hmg_write_page(struct mtd_info *mtd, + struct nand_chip *chip, + const u8 *buf, + int oob_required, int page) +{ + int ret; + + marvell_nfc_enable_hw_ecc(chip); + ret = marvell_nfc_hw_ecc_hmg_do_write_page(chip, buf, chip->oob_poi, + false, page); + marvell_nfc_disable_hw_ecc(chip); + + return ret; +} + +/* + * Spare area in Hamming layouts is not protected by the ECC engine (even if + * it appears before the ECC bytes when reading), the ->write_oob_raw() function + * also stands for ->write_oob(). + */ +static int marvell_nfc_hw_ecc_hmg_write_oob_raw(struct mtd_info *mtd, + struct nand_chip *chip, + int page) +{ + /* Invalidate page cache */ + chip->pagebuf = -1; + + memset(chip->data_buf, 0xFF, mtd->writesize); + + return marvell_nfc_hw_ecc_hmg_do_write_page(chip, chip->data_buf, + chip->oob_poi, true, page); +} + +/* BCH read helpers */ +static int marvell_nfc_hw_ecc_bch_read_page_raw(struct mtd_info *mtd, + struct nand_chip *chip, u8 *buf, + int oob_required, int page) +{ + const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; + u8 *oob = chip->oob_poi; + int chunk_size = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes; + int ecc_offset = (lt->full_chunk_cnt * lt->spare_bytes) + + lt->last_spare_bytes; + int data_len = lt->data_bytes; + int spare_len = lt->spare_bytes; + int ecc_len = lt->ecc_bytes; + int chunk; + + if (oob_required) + memset(chip->oob_poi, 0xFF, mtd->oobsize); + + nand_read_page_op(chip, page, 0, NULL, 0); + + for (chunk = 0; chunk < lt->nchunks; chunk++) { + /* Update last chunk length */ + if (chunk >= lt->full_chunk_cnt) { + data_len = lt->last_data_bytes; + spare_len = lt->last_spare_bytes; + ecc_len = lt->last_ecc_bytes; + } + + /* Read data bytes*/ + nand_change_read_column_op(chip, chunk * chunk_size, + buf + (lt->data_bytes * chunk), + data_len, false); + + /* Read spare bytes */ + nand_read_data_op(chip, oob + (lt->spare_bytes * chunk), + spare_len, false); + + /* Read ECC bytes */ + nand_read_data_op(chip, oob + ecc_offset + + (ALIGN(lt->ecc_bytes, 32) * chunk), + ecc_len, false); + } + + return 0; +} + +static void marvell_nfc_hw_ecc_bch_read_chunk(struct nand_chip *chip, int chunk, + u8 *data, unsigned int data_len, + u8 *spare, unsigned int spare_len, + int page) +{ + struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); + struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); + const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; + int i, ret; + struct marvell_nfc_op nfc_op = { + .ndcb[0] = NDCB0_CMD_TYPE(TYPE_READ) | + NDCB0_ADDR_CYC(marvell_nand->addr_cyc) | + NDCB0_LEN_OVRD, + .ndcb[1] = NDCB1_ADDRS_PAGE(page), + .ndcb[2] = NDCB2_ADDR5_PAGE(page), + .ndcb[3] = data_len + spare_len, + }; + + ret = marvell_nfc_prepare_cmd(chip); + if (ret) + return; + + if (chunk == 0) + nfc_op.ndcb[0] |= NDCB0_DBC | + NDCB0_CMD1(NAND_CMD_READ0) | + NDCB0_CMD2(NAND_CMD_READSTART); + + /* + * Trigger the naked read operation only on the last chunk. + * Otherwise, use monolithic read. + */ + if (lt->nchunks == 1 || (chunk < lt->nchunks - 1)) + nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW); + else + nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW); + + marvell_nfc_send_cmd(chip, &nfc_op); + + /* + * According to the datasheet, when reading from NDDB + * with BCH enabled, after each 32 bytes reads, we + * have to make sure that the NDSR.RDDREQ bit is set. + * + * Drain the FIFO, 8 32-bit reads at a time, and skip + * the polling on the last read. + * + * Length is a multiple of 32 bytes, hence it is a multiple of 8 too. + */ + for (i = 0; i < data_len; i += FIFO_DEPTH * BCH_SEQ_READS) { + marvell_nfc_end_cmd(chip, NDSR_RDDREQ, + "RDDREQ while draining FIFO (data)"); + marvell_nfc_xfer_data_in_pio(nfc, data, + FIFO_DEPTH * BCH_SEQ_READS); + data += FIFO_DEPTH * BCH_SEQ_READS; + } + + for (i = 0; i < spare_len; i += FIFO_DEPTH * BCH_SEQ_READS) { + marvell_nfc_end_cmd(chip, NDSR_RDDREQ, + "RDDREQ while draining FIFO (OOB)"); + marvell_nfc_xfer_data_in_pio(nfc, spare, + FIFO_DEPTH * BCH_SEQ_READS); + spare += FIFO_DEPTH * BCH_SEQ_READS; + } +} + +static int marvell_nfc_hw_ecc_bch_read_page(struct mtd_info *mtd, + struct nand_chip *chip, + u8 *buf, int oob_required, + int page) +{ + const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; + int data_len = lt->data_bytes, spare_len = lt->spare_bytes, ecc_len; + u8 *data = buf, *spare = chip->oob_poi, *ecc; + int max_bitflips = 0; + u32 failure_mask = 0; + int chunk, ecc_offset_in_page, ret; + + /* + * With BCH, OOB is not fully used (and thus not read entirely), not + * expected bytes could show up at the end of the OOB buffer if not + * explicitly erased. + */ + if (oob_required) + memset(chip->oob_poi, 0xFF, mtd->oobsize); + + marvell_nfc_enable_hw_ecc(chip); + + for (chunk = 0; chunk < lt->nchunks; chunk++) { + /* Update length for the last chunk */ + if (chunk >= lt->full_chunk_cnt) { + data_len = lt->last_data_bytes; + spare_len = lt->last_spare_bytes; + } + + /* Read the chunk and detect number of bitflips */ + marvell_nfc_hw_ecc_bch_read_chunk(chip, chunk, data, data_len, + spare, spare_len, page); + ret = marvell_nfc_hw_ecc_correct(chip, &max_bitflips); + if (ret) + failure_mask |= BIT(chunk); + + data += data_len; + spare += spare_len; + } + + marvell_nfc_disable_hw_ecc(chip); + + if (!failure_mask) + return max_bitflips; + + /* + * Please note that dumping the ECC bytes during a normal read with OOB + * area would add a significant overhead as ECC bytes are "consumed" by + * the controller in normal mode and must be re-read in raw mode. To + * avoid dropping the performances, we prefer not to include them. The + * user should re-read the page in raw mode if ECC bytes are required. + * + * However, for any subpage read error reported by ->correct(), the ECC + * bytes must be read in raw mode and the full subpage must be checked + * to see if it is entirely empty of if there was an actual error. + */ + for (chunk = 0; chunk < lt->nchunks; chunk++) { + /* No failure reported for this chunk, move to the next one */ + if (!(failure_mask & BIT(chunk))) + continue; + + /* Derive ECC bytes positions (in page/buffer) and length */ + ecc = chip->oob_poi + + (lt->full_chunk_cnt * lt->spare_bytes) + + lt->last_spare_bytes + + (chunk * ALIGN(lt->ecc_bytes, 32)); + ecc_offset_in_page = + (chunk * (lt->data_bytes + lt->spare_bytes + + lt->ecc_bytes)) + + (chunk < lt->full_chunk_cnt ? + lt->data_bytes + lt->spare_bytes : + lt->last_data_bytes + lt->last_spare_bytes); + ecc_len = chunk < lt->full_chunk_cnt ? + lt->ecc_bytes : lt->last_ecc_bytes; + + /* Do the actual raw read of the ECC bytes */ + nand_change_read_column_op(chip, ecc_offset_in_page, + ecc, ecc_len, false); + + /* Derive data/spare bytes positions (in buffer) and length */ + data = buf + (chunk * lt->data_bytes); + data_len = chunk < lt->full_chunk_cnt ? + lt->data_bytes : lt->last_data_bytes; + spare = chip->oob_poi + (chunk * (lt->spare_bytes + + lt->ecc_bytes)); + spare_len = chunk < lt->full_chunk_cnt ? + lt->spare_bytes : lt->last_spare_bytes; + + /* Check the entire chunk (data + spare + ecc) for emptyness */ + marvell_nfc_check_empty_chunk(chip, data, data_len, spare, + spare_len, ecc, ecc_len, + &max_bitflips); + } + + return max_bitflips; +} + +static int marvell_nfc_hw_ecc_bch_read_oob_raw(struct mtd_info *mtd, + struct nand_chip *chip, int page) +{ + /* Invalidate page cache */ + chip->pagebuf = -1; + + return chip->ecc.read_page_raw(mtd, chip, chip->data_buf, true, page); +} + +static int marvell_nfc_hw_ecc_bch_read_oob(struct mtd_info *mtd, + struct nand_chip *chip, int page) +{ + /* Invalidate page cache */ + chip->pagebuf = -1; + + return chip->ecc.read_page(mtd, chip, chip->data_buf, true, page); +} + +/* BCH write helpers */ +static int marvell_nfc_hw_ecc_bch_write_page_raw(struct mtd_info *mtd, + struct nand_chip *chip, + const u8 *buf, + int oob_required, int page) +{ + const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; + int full_chunk_size = lt->data_bytes + lt->spare_bytes + lt->ecc_bytes; + int data_len = lt->data_bytes; + int spare_len = lt->spare_bytes; + int ecc_len = lt->ecc_bytes; + int spare_offset = 0; + int ecc_offset = (lt->full_chunk_cnt * lt->spare_bytes) + + lt->last_spare_bytes; + int chunk; + + nand_prog_page_begin_op(chip, page, 0, NULL, 0); + + for (chunk = 0; chunk < lt->nchunks; chunk++) { + if (chunk >= lt->full_chunk_cnt) { + data_len = lt->last_data_bytes; + spare_len = lt->last_spare_bytes; + ecc_len = lt->last_ecc_bytes; + } + + /* Point to the column of the next chunk */ + nand_change_write_column_op(chip, chunk * full_chunk_size, + NULL, 0, false); + + /* Write the data */ + nand_write_data_op(chip, buf + (chunk * lt->data_bytes), + data_len, false); + + if (!oob_required) + continue; + + /* Write the spare bytes */ + if (spare_len) + nand_write_data_op(chip, chip->oob_poi + spare_offset, + spare_len, false); + + /* Write the ECC bytes */ + if (ecc_len) + nand_write_data_op(chip, chip->oob_poi + ecc_offset, + ecc_len, false); + + spare_offset += spare_len; + ecc_offset += ALIGN(ecc_len, 32); + } + + return nand_prog_page_end_op(chip); +} + +static int +marvell_nfc_hw_ecc_bch_write_chunk(struct nand_chip *chip, int chunk, + const u8 *data, unsigned int data_len, + const u8 *spare, unsigned int spare_len, + int page) +{ + struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); + struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); + const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; + int ret; + struct marvell_nfc_op nfc_op = { + .ndcb[0] = NDCB0_CMD_TYPE(TYPE_WRITE) | NDCB0_LEN_OVRD, + .ndcb[3] = data_len + spare_len, + }; + + /* + * First operation dispatches the CMD_SEQIN command, issue the address + * cycles and asks for the first chunk of data. + * All operations in the middle (if any) will issue a naked write and + * also ask for data. + * Last operation (if any) asks for the last chunk of data through a + * last naked write. + */ + if (chunk == 0) { + nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_WRITE_DISPATCH) | + NDCB0_ADDR_CYC(marvell_nand->addr_cyc) | + NDCB0_CMD1(NAND_CMD_SEQIN); + nfc_op.ndcb[1] |= NDCB1_ADDRS_PAGE(page); + nfc_op.ndcb[2] |= NDCB2_ADDR5_PAGE(page); + } else if (chunk < lt->nchunks - 1) { + nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_NAKED_RW); + } else { + nfc_op.ndcb[0] |= NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW); + } + + /* Always dispatch the PAGEPROG command on the last chunk */ + if (chunk == lt->nchunks - 1) + nfc_op.ndcb[0] |= NDCB0_CMD2(NAND_CMD_PAGEPROG) | NDCB0_DBC; + + ret = marvell_nfc_prepare_cmd(chip); + if (ret) + return ret; + + marvell_nfc_send_cmd(chip, &nfc_op); + ret = marvell_nfc_end_cmd(chip, NDSR_WRDREQ, + "WRDREQ while loading FIFO (data)"); + if (ret) + return ret; + + /* Transfer the contents */ + iowrite32_rep(nfc->regs + NDDB, data, FIFO_REP(data_len)); + iowrite32_rep(nfc->regs + NDDB, spare, FIFO_REP(spare_len)); + + return 0; +} + +static int marvell_nfc_hw_ecc_bch_write_page(struct mtd_info *mtd, + struct nand_chip *chip, + const u8 *buf, + int oob_required, int page) +{ + const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; + const u8 *data = buf; + const u8 *spare = chip->oob_poi; + int data_len = lt->data_bytes; + int spare_len = lt->spare_bytes; + int chunk, ret; + + /* Spare data will be written anyway, so clear it to avoid garbage */ + if (!oob_required) + memset(chip->oob_poi, 0xFF, mtd->oobsize); + + marvell_nfc_enable_hw_ecc(chip); + + for (chunk = 0; chunk < lt->nchunks; chunk++) { + if (chunk >= lt->full_chunk_cnt) { + data_len = lt->last_data_bytes; + spare_len = lt->last_spare_bytes; + } + + marvell_nfc_hw_ecc_bch_write_chunk(chip, chunk, data, data_len, + spare, spare_len, page); + data += data_len; + spare += spare_len; + + /* + * Waiting only for CMDD or PAGED is not enough, ECC are + * partially written. No flag is set once the operation is + * really finished but the ND_RUN bit is cleared, so wait for it + * before stepping into the next command. + */ + marvell_nfc_wait_ndrun(chip); + } + + ret = marvell_nfc_wait_op(chip, + chip->data_interface.timings.sdr.tPROG_max); + + marvell_nfc_disable_hw_ecc(chip); + + if (ret) + return ret; + + return 0; +} + +static int marvell_nfc_hw_ecc_bch_write_oob_raw(struct mtd_info *mtd, + struct nand_chip *chip, + int page) +{ + /* Invalidate page cache */ + chip->pagebuf = -1; + + memset(chip->data_buf, 0xFF, mtd->writesize); + + return chip->ecc.write_page_raw(mtd, chip, chip->data_buf, true, page); +} + +static int marvell_nfc_hw_ecc_bch_write_oob(struct mtd_info *mtd, + struct nand_chip *chip, int page) +{ + /* Invalidate page cache */ + chip->pagebuf = -1; + + memset(chip->data_buf, 0xFF, mtd->writesize); + + return chip->ecc.write_page(mtd, chip, chip->data_buf, true, page); +} + +/* NAND framework ->exec_op() hooks and related helpers */ +static void marvell_nfc_parse_instructions(struct nand_chip *chip, + const struct nand_subop *subop, + struct marvell_nfc_op *nfc_op) +{ + const struct nand_op_instr *instr = NULL; + struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); + bool first_cmd = true; + unsigned int op_id; + int i; + + /* Reset the input structure as most of its fields will be OR'ed */ + memset(nfc_op, 0, sizeof(struct marvell_nfc_op)); + + for (op_id = 0; op_id < subop->ninstrs; op_id++) { + unsigned int offset, naddrs; + const u8 *addrs; + int len = nand_subop_get_data_len(subop, op_id); + + instr = &subop->instrs[op_id]; + + switch (instr->type) { + case NAND_OP_CMD_INSTR: + if (first_cmd) + nfc_op->ndcb[0] |= + NDCB0_CMD1(instr->ctx.cmd.opcode); + else + nfc_op->ndcb[0] |= + NDCB0_CMD2(instr->ctx.cmd.opcode) | + NDCB0_DBC; + + nfc_op->cle_ale_delay_ns = instr->delay_ns; + first_cmd = false; + break; + + case NAND_OP_ADDR_INSTR: + offset = nand_subop_get_addr_start_off(subop, op_id); + naddrs = nand_subop_get_num_addr_cyc(subop, op_id); + addrs = &instr->ctx.addr.addrs[offset]; + + nfc_op->ndcb[0] |= NDCB0_ADDR_CYC(naddrs); + + for (i = 0; i < min_t(unsigned int, 4, naddrs); i++) + nfc_op->ndcb[1] |= addrs[i] << (8 * i); + + if (naddrs >= 5) + nfc_op->ndcb[2] |= NDCB2_ADDR5_CYC(addrs[4]); + if (naddrs >= 6) + nfc_op->ndcb[3] |= NDCB3_ADDR6_CYC(addrs[5]); + if (naddrs == 7) + nfc_op->ndcb[3] |= NDCB3_ADDR7_CYC(addrs[6]); + + nfc_op->cle_ale_delay_ns = instr->delay_ns; + break; + + case NAND_OP_DATA_IN_INSTR: + nfc_op->data_instr = instr; + nfc_op->data_instr_idx = op_id; + nfc_op->ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ); + if (nfc->caps->is_nfcv2) { + nfc_op->ndcb[0] |= + NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW) | + NDCB0_LEN_OVRD; + nfc_op->ndcb[3] |= round_up(len, FIFO_DEPTH); + } + nfc_op->data_delay_ns = instr->delay_ns; + break; + + case NAND_OP_DATA_OUT_INSTR: + nfc_op->data_instr = instr; + nfc_op->data_instr_idx = op_id; + nfc_op->ndcb[0] |= NDCB0_CMD_TYPE(TYPE_WRITE); + if (nfc->caps->is_nfcv2) { + nfc_op->ndcb[0] |= + NDCB0_CMD_XTYPE(XTYPE_MONOLITHIC_RW) | + NDCB0_LEN_OVRD; + nfc_op->ndcb[3] |= round_up(len, FIFO_DEPTH); + } + nfc_op->data_delay_ns = instr->delay_ns; + break; + + case NAND_OP_WAITRDY_INSTR: + nfc_op->rdy_timeout_ms = instr->ctx.waitrdy.timeout_ms; + nfc_op->rdy_delay_ns = instr->delay_ns; + break; + } + } +} + +static int marvell_nfc_xfer_data_pio(struct nand_chip *chip, + const struct nand_subop *subop, + struct marvell_nfc_op *nfc_op) +{ + struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); + const struct nand_op_instr *instr = nfc_op->data_instr; + unsigned int op_id = nfc_op->data_instr_idx; + unsigned int len = nand_subop_get_data_len(subop, op_id); + unsigned int offset = nand_subop_get_data_start_off(subop, op_id); + bool reading = (instr->type == NAND_OP_DATA_IN_INSTR); + int ret; + + if (instr->ctx.data.force_8bit) + marvell_nfc_force_byte_access(chip, true); + + if (reading) { + u8 *in = instr->ctx.data.buf.in + offset; + + ret = marvell_nfc_xfer_data_in_pio(nfc, in, len); + } else { + const u8 *out = instr->ctx.data.buf.out + offset; + + ret = marvell_nfc_xfer_data_out_pio(nfc, out, len); + } + + if (instr->ctx.data.force_8bit) + marvell_nfc_force_byte_access(chip, false); + + return ret; +} + +static int marvell_nfc_monolithic_access_exec(struct nand_chip *chip, + const struct nand_subop *subop) +{ + struct marvell_nfc_op nfc_op; + bool reading; + int ret; + + marvell_nfc_parse_instructions(chip, subop, &nfc_op); + reading = (nfc_op.data_instr->type == NAND_OP_DATA_IN_INSTR); + + ret = marvell_nfc_prepare_cmd(chip); + if (ret) + return ret; + + marvell_nfc_send_cmd(chip, &nfc_op); + ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ | NDSR_WRDREQ, + "RDDREQ/WRDREQ while draining raw data"); + if (ret) + return ret; + + cond_delay(nfc_op.cle_ale_delay_ns); + + if (reading) { + if (nfc_op.rdy_timeout_ms) { + ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); + if (ret) + return ret; + } + + cond_delay(nfc_op.rdy_delay_ns); + } + + marvell_nfc_xfer_data_pio(chip, subop, &nfc_op); + ret = marvell_nfc_wait_cmdd(chip); + if (ret) + return ret; + + cond_delay(nfc_op.data_delay_ns); + + if (!reading) { + if (nfc_op.rdy_timeout_ms) { + ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); + if (ret) + return ret; + } + + cond_delay(nfc_op.rdy_delay_ns); + } + + /* + * NDCR ND_RUN bit should be cleared automatically at the end of each + * operation but experience shows that the behavior is buggy when it + * comes to writes (with LEN_OVRD). Clear it by hand in this case. + */ + if (!reading) { + struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); + + writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN, + nfc->regs + NDCR); + } + + return 0; +} + +static int marvell_nfc_naked_access_exec(struct nand_chip *chip, + const struct nand_subop *subop) +{ + struct marvell_nfc_op nfc_op; + int ret; + + marvell_nfc_parse_instructions(chip, subop, &nfc_op); + + /* + * Naked access are different in that they need to be flagged as naked + * by the controller. Reset the controller registers fields that inform + * on the type and refill them according to the ongoing operation. + */ + nfc_op.ndcb[0] &= ~(NDCB0_CMD_TYPE(TYPE_MASK) | + NDCB0_CMD_XTYPE(XTYPE_MASK)); + switch (subop->instrs[0].type) { + case NAND_OP_CMD_INSTR: + nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_NAKED_CMD); + break; + case NAND_OP_ADDR_INSTR: + nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_NAKED_ADDR); + break; + case NAND_OP_DATA_IN_INSTR: + nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ) | + NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW); + break; + case NAND_OP_DATA_OUT_INSTR: + nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_WRITE) | + NDCB0_CMD_XTYPE(XTYPE_LAST_NAKED_RW); + break; + default: + /* This should never happen */ + break; + } + + ret = marvell_nfc_prepare_cmd(chip); + if (ret) + return ret; + + marvell_nfc_send_cmd(chip, &nfc_op); + + if (!nfc_op.data_instr) { + ret = marvell_nfc_wait_cmdd(chip); + cond_delay(nfc_op.cle_ale_delay_ns); + return ret; + } + + ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ | NDSR_WRDREQ, + "RDDREQ/WRDREQ while draining raw data"); + if (ret) + return ret; + + marvell_nfc_xfer_data_pio(chip, subop, &nfc_op); + ret = marvell_nfc_wait_cmdd(chip); + if (ret) + return ret; + + /* + * NDCR ND_RUN bit should be cleared automatically at the end of each + * operation but experience shows that the behavior is buggy when it + * comes to writes (with LEN_OVRD). Clear it by hand in this case. + */ + if (subop->instrs[0].type == NAND_OP_DATA_OUT_INSTR) { + struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); + + writel_relaxed(readl(nfc->regs + NDCR) & ~NDCR_ND_RUN, + nfc->regs + NDCR); + } + + return 0; +} + +static int marvell_nfc_naked_waitrdy_exec(struct nand_chip *chip, + const struct nand_subop *subop) +{ + struct marvell_nfc_op nfc_op; + int ret; + + marvell_nfc_parse_instructions(chip, subop, &nfc_op); + + ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); + cond_delay(nfc_op.rdy_delay_ns); + + return ret; +} + +static int marvell_nfc_read_id_type_exec(struct nand_chip *chip, + const struct nand_subop *subop) +{ + struct marvell_nfc_op nfc_op; + int ret; + + marvell_nfc_parse_instructions(chip, subop, &nfc_op); + nfc_op.ndcb[0] &= ~NDCB0_CMD_TYPE(TYPE_READ); + nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_READ_ID); + + ret = marvell_nfc_prepare_cmd(chip); + if (ret) + return ret; + + marvell_nfc_send_cmd(chip, &nfc_op); + ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ, + "RDDREQ while reading ID"); + if (ret) + return ret; + + cond_delay(nfc_op.cle_ale_delay_ns); + + if (nfc_op.rdy_timeout_ms) { + ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); + if (ret) + return ret; + } + + cond_delay(nfc_op.rdy_delay_ns); + + marvell_nfc_xfer_data_pio(chip, subop, &nfc_op); + ret = marvell_nfc_wait_cmdd(chip); + if (ret) + return ret; + + cond_delay(nfc_op.data_delay_ns); + + return 0; +} + +static int marvell_nfc_read_status_exec(struct nand_chip *chip, + const struct nand_subop *subop) +{ + struct marvell_nfc_op nfc_op; + int ret; + + marvell_nfc_parse_instructions(chip, subop, &nfc_op); + nfc_op.ndcb[0] &= ~NDCB0_CMD_TYPE(TYPE_READ); + nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_STATUS); + + ret = marvell_nfc_prepare_cmd(chip); + if (ret) + return ret; + + marvell_nfc_send_cmd(chip, &nfc_op); + ret = marvell_nfc_end_cmd(chip, NDSR_RDDREQ, + "RDDREQ while reading status"); + if (ret) + return ret; + + cond_delay(nfc_op.cle_ale_delay_ns); + + if (nfc_op.rdy_timeout_ms) { + ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); + if (ret) + return ret; + } + + cond_delay(nfc_op.rdy_delay_ns); + + marvell_nfc_xfer_data_pio(chip, subop, &nfc_op); + ret = marvell_nfc_wait_cmdd(chip); + if (ret) + return ret; + + cond_delay(nfc_op.data_delay_ns); + + return 0; +} + +static int marvell_nfc_reset_cmd_type_exec(struct nand_chip *chip, + const struct nand_subop *subop) +{ + struct marvell_nfc_op nfc_op; + int ret; + + marvell_nfc_parse_instructions(chip, subop, &nfc_op); + nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_RESET); + + ret = marvell_nfc_prepare_cmd(chip); + if (ret) + return ret; + + marvell_nfc_send_cmd(chip, &nfc_op); + ret = marvell_nfc_wait_cmdd(chip); + if (ret) + return ret; + + cond_delay(nfc_op.cle_ale_delay_ns); + + ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); + if (ret) + return ret; + + cond_delay(nfc_op.rdy_delay_ns); + + return 0; +} + +static int marvell_nfc_erase_cmd_type_exec(struct nand_chip *chip, + const struct nand_subop *subop) +{ + struct marvell_nfc_op nfc_op; + int ret; + + marvell_nfc_parse_instructions(chip, subop, &nfc_op); + nfc_op.ndcb[0] |= NDCB0_CMD_TYPE(TYPE_ERASE); + + ret = marvell_nfc_prepare_cmd(chip); + if (ret) + return ret; + + marvell_nfc_send_cmd(chip, &nfc_op); + ret = marvell_nfc_wait_cmdd(chip); + if (ret) + return ret; + + cond_delay(nfc_op.cle_ale_delay_ns); + + ret = marvell_nfc_wait_op(chip, nfc_op.rdy_timeout_ms); + if (ret) + return ret; + + cond_delay(nfc_op.rdy_delay_ns); + + return 0; +} + +static const struct nand_op_parser marvell_nfcv2_op_parser = NAND_OP_PARSER( + /* Monolithic reads/writes */ + NAND_OP_PARSER_PATTERN( + marvell_nfc_monolithic_access_exec, + NAND_OP_PARSER_PAT_CMD_ELEM(false), + NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYC_NFCV2), + NAND_OP_PARSER_PAT_CMD_ELEM(true), + NAND_OP_PARSER_PAT_WAITRDY_ELEM(true), + NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_CHUNK_SIZE)), + NAND_OP_PARSER_PATTERN( + marvell_nfc_monolithic_access_exec, + NAND_OP_PARSER_PAT_CMD_ELEM(false), + NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV2), + NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_CHUNK_SIZE), + NAND_OP_PARSER_PAT_CMD_ELEM(true), + NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)), + /* Naked commands */ + NAND_OP_PARSER_PATTERN( + marvell_nfc_naked_access_exec, + NAND_OP_PARSER_PAT_CMD_ELEM(false)), + NAND_OP_PARSER_PATTERN( + marvell_nfc_naked_access_exec, + NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV2)), + NAND_OP_PARSER_PATTERN( + marvell_nfc_naked_access_exec, + NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_CHUNK_SIZE)), + NAND_OP_PARSER_PATTERN( + marvell_nfc_naked_access_exec, + NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_CHUNK_SIZE)), + NAND_OP_PARSER_PATTERN( + marvell_nfc_naked_waitrdy_exec, + NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), + ); + +static const struct nand_op_parser marvell_nfcv1_op_parser = NAND_OP_PARSER( + /* Naked commands not supported, use a function for each pattern */ + NAND_OP_PARSER_PATTERN( + marvell_nfc_read_id_type_exec, + NAND_OP_PARSER_PAT_CMD_ELEM(false), + NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV1), + NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 8)), + NAND_OP_PARSER_PATTERN( + marvell_nfc_erase_cmd_type_exec, + NAND_OP_PARSER_PAT_CMD_ELEM(false), + NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC_NFCV1), + NAND_OP_PARSER_PAT_CMD_ELEM(false), + NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), + NAND_OP_PARSER_PATTERN( + marvell_nfc_read_status_exec, + NAND_OP_PARSER_PAT_CMD_ELEM(false), + NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 1)), + NAND_OP_PARSER_PATTERN( + marvell_nfc_reset_cmd_type_exec, + NAND_OP_PARSER_PAT_CMD_ELEM(false), + NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), + NAND_OP_PARSER_PATTERN( + marvell_nfc_naked_waitrdy_exec, + NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), + ); + +static int marvell_nfc_exec_op(struct nand_chip *chip, + const struct nand_operation *op, + bool check_only) +{ + struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); + + if (nfc->caps->is_nfcv2) + return nand_op_parser_exec_op(chip, &marvell_nfcv2_op_parser, + op, check_only); + else + return nand_op_parser_exec_op(chip, &marvell_nfcv1_op_parser, + op, check_only); +} + +/* + * Layouts were broken in old pxa3xx_nand driver, these are supposed to be + * usable. + */ +static int marvell_nand_ooblayout_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; + + if (section) + return -ERANGE; + + oobregion->length = (lt->full_chunk_cnt * lt->ecc_bytes) + + lt->last_ecc_bytes; + oobregion->offset = mtd->oobsize - oobregion->length; + + return 0; +} + +static int marvell_nand_ooblayout_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + const struct marvell_hw_ecc_layout *lt = to_marvell_nand(chip)->layout; + + if (section) + return -ERANGE; + + /* + * Bootrom looks in bytes 0 & 5 for bad blocks for the + * 4KB page / 4bit BCH combination. + */ + if (mtd->writesize == SZ_4K && lt->data_bytes == SZ_2K) + oobregion->offset = 6; + else + oobregion->offset = 2; + + oobregion->length = (lt->full_chunk_cnt * lt->spare_bytes) + + lt->last_spare_bytes - oobregion->offset; + + return 0; +} + +static const struct mtd_ooblayout_ops marvell_nand_ooblayout_ops = { + .ecc = marvell_nand_ooblayout_ecc, + .free = marvell_nand_ooblayout_free, +}; + +static int marvell_nand_hw_ecc_ctrl_init(struct mtd_info *mtd, + struct nand_ecc_ctrl *ecc) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); + const struct marvell_hw_ecc_layout *l; + int i; + + if (!nfc->caps->is_nfcv2 && + (mtd->writesize + mtd->oobsize > MAX_CHUNK_SIZE)) { + dev_err(nfc->dev, + "NFCv1: writesize (%d) cannot be bigger than a chunk (%d)\n", + mtd->writesize, MAX_CHUNK_SIZE - mtd->oobsize); + return -ENOTSUPP; + } + + to_marvell_nand(chip)->layout = NULL; + for (i = 0; i < ARRAY_SIZE(marvell_nfc_layouts); i++) { + l = &marvell_nfc_layouts[i]; + if (mtd->writesize == l->writesize && + ecc->size == l->chunk && ecc->strength == l->strength) { + to_marvell_nand(chip)->layout = l; + break; + } + } + + if (!to_marvell_nand(chip)->layout || + (!nfc->caps->is_nfcv2 && ecc->strength > 1)) { + dev_err(nfc->dev, + "ECC strength %d at page size %d is not supported\n", + ecc->strength, mtd->writesize); + return -ENOTSUPP; + } + + mtd_set_ooblayout(mtd, &marvell_nand_ooblayout_ops); + ecc->steps = l->nchunks; + ecc->size = l->data_bytes; + + if (ecc->strength == 1) { + chip->ecc.algo = NAND_ECC_HAMMING; + ecc->read_page_raw = marvell_nfc_hw_ecc_hmg_read_page_raw; + ecc->read_page = marvell_nfc_hw_ecc_hmg_read_page; + ecc->read_oob_raw = marvell_nfc_hw_ecc_hmg_read_oob_raw; + ecc->read_oob = ecc->read_oob_raw; + ecc->write_page_raw = marvell_nfc_hw_ecc_hmg_write_page_raw; + ecc->write_page = marvell_nfc_hw_ecc_hmg_write_page; + ecc->write_oob_raw = marvell_nfc_hw_ecc_hmg_write_oob_raw; + ecc->write_oob = ecc->write_oob_raw; + } else { + chip->ecc.algo = NAND_ECC_BCH; + ecc->strength = 16; + ecc->read_page_raw = marvell_nfc_hw_ecc_bch_read_page_raw; + ecc->read_page = marvell_nfc_hw_ecc_bch_read_page; + ecc->read_oob_raw = marvell_nfc_hw_ecc_bch_read_oob_raw; + ecc->read_oob = marvell_nfc_hw_ecc_bch_read_oob; + ecc->write_page_raw = marvell_nfc_hw_ecc_bch_write_page_raw; + ecc->write_page = marvell_nfc_hw_ecc_bch_write_page; + ecc->write_oob_raw = marvell_nfc_hw_ecc_bch_write_oob_raw; + ecc->write_oob = marvell_nfc_hw_ecc_bch_write_oob; + } + + return 0; +} + +static int marvell_nand_ecc_init(struct mtd_info *mtd, + struct nand_ecc_ctrl *ecc) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); + int ret; + + if (ecc->mode != NAND_ECC_NONE && (!ecc->size || !ecc->strength)) { + if (chip->ecc_step_ds && chip->ecc_strength_ds) { + ecc->size = chip->ecc_step_ds; + ecc->strength = chip->ecc_strength_ds; + } else { + dev_info(nfc->dev, + "No minimum ECC strength, using 1b/512B\n"); + ecc->size = 512; + ecc->strength = 1; + } + } + + switch (ecc->mode) { + case NAND_ECC_HW: + ret = marvell_nand_hw_ecc_ctrl_init(mtd, ecc); + if (ret) + return ret; + break; + case NAND_ECC_NONE: + case NAND_ECC_SOFT: + if (!nfc->caps->is_nfcv2 && mtd->writesize != SZ_512 && + mtd->writesize != SZ_2K) { + dev_err(nfc->dev, "NFCv1 cannot write %d bytes pages\n", + mtd->writesize); + return -EINVAL; + } + break; + default: + return -EINVAL; + } + + return 0; +} + +static u8 bbt_pattern[] = {'M', 'V', 'B', 'b', 't', '0' }; +static u8 bbt_mirror_pattern[] = {'1', 't', 'b', 'B', 'V', 'M' }; + +static struct nand_bbt_descr bbt_main_descr = { + .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | + NAND_BBT_2BIT | NAND_BBT_VERSION, + .offs = 8, + .len = 6, + .veroffs = 14, + .maxblocks = 8, /* Last 8 blocks in each chip */ + .pattern = bbt_pattern +}; + +static struct nand_bbt_descr bbt_mirror_descr = { + .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | + NAND_BBT_2BIT | NAND_BBT_VERSION, + .offs = 8, + .len = 6, + .veroffs = 14, + .maxblocks = 8, /* Last 8 blocks in each chip */ + .pattern = bbt_mirror_pattern +}; + +static int marvell_nfc_setup_data_interface(struct mtd_info *mtd, int chipnr, + const struct nand_data_interface + *conf) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); + struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); + unsigned int period_ns = 1000000000 / clk_get_rate(nfc->ecc_clk) * 2; + const struct nand_sdr_timings *sdr; + struct marvell_nfc_timings nfc_tmg; + int read_delay; + + sdr = nand_get_sdr_timings(conf); + if (IS_ERR(sdr)) + return PTR_ERR(sdr); + + /* + * SDR timings are given in pico-seconds while NFC timings must be + * expressed in NAND controller clock cycles, which is half of the + * frequency of the accessible ECC clock retrieved by clk_get_rate(). + * This is not written anywhere in the datasheet but was observed + * with an oscilloscope. + * + * NFC datasheet gives equations from which thoses calculations + * are derived, they tend to be slightly more restrictives than the + * given core timings and may improve the overall speed. + */ + nfc_tmg.tRP = TO_CYCLES(DIV_ROUND_UP(sdr->tRC_min, 2), period_ns) - 1; + nfc_tmg.tRH = nfc_tmg.tRP; + nfc_tmg.tWP = TO_CYCLES(DIV_ROUND_UP(sdr->tWC_min, 2), period_ns) - 1; + nfc_tmg.tWH = nfc_tmg.tWP; + nfc_tmg.tCS = TO_CYCLES(sdr->tCS_min, period_ns); + nfc_tmg.tCH = TO_CYCLES(sdr->tCH_min, period_ns) - 1; + nfc_tmg.tADL = TO_CYCLES(sdr->tADL_min, period_ns); + /* + * Read delay is the time of propagation from SoC pins to NFC internal + * logic. With non-EDO timings, this is MIN_RD_DEL_CNT clock cycles. In + * EDO mode, an additional delay of tRH must be taken into account so + * the data is sampled on the falling edge instead of the rising edge. + */ + read_delay = sdr->tRC_min >= 30000 ? + MIN_RD_DEL_CNT : MIN_RD_DEL_CNT + nfc_tmg.tRH; + + nfc_tmg.tAR = TO_CYCLES(sdr->tAR_min, period_ns); + /* + * tWHR and tRHW are supposed to be read to write delays (and vice + * versa) but in some cases, ie. when doing a change column, they must + * be greater than that to be sure tCCS delay is respected. + */ + nfc_tmg.tWHR = TO_CYCLES(max_t(int, sdr->tWHR_min, sdr->tCCS_min), + period_ns) - 2, + nfc_tmg.tRHW = TO_CYCLES(max_t(int, sdr->tRHW_min, sdr->tCCS_min), + period_ns); + + /* + * NFCv2: Use WAIT_MODE (wait for RB line), do not rely only on delays. + * NFCv1: No WAIT_MODE, tR must be maximal. + */ + if (nfc->caps->is_nfcv2) { + nfc_tmg.tR = TO_CYCLES(sdr->tWB_max, period_ns); + } else { + nfc_tmg.tR = TO_CYCLES64(sdr->tWB_max + sdr->tR_max, + period_ns); + if (nfc_tmg.tR + 3 > nfc_tmg.tCH) + nfc_tmg.tR = nfc_tmg.tCH - 3; + else + nfc_tmg.tR = 0; + } + + if (chipnr < 0) + return 0; + + marvell_nand->ndtr0 = + NDTR0_TRP(nfc_tmg.tRP) | + NDTR0_TRH(nfc_tmg.tRH) | + NDTR0_ETRP(nfc_tmg.tRP) | + NDTR0_TWP(nfc_tmg.tWP) | + NDTR0_TWH(nfc_tmg.tWH) | + NDTR0_TCS(nfc_tmg.tCS) | + NDTR0_TCH(nfc_tmg.tCH); + + marvell_nand->ndtr1 = + NDTR1_TAR(nfc_tmg.tAR) | + NDTR1_TWHR(nfc_tmg.tWHR) | + NDTR1_TR(nfc_tmg.tR); + + if (nfc->caps->is_nfcv2) { + marvell_nand->ndtr0 |= + NDTR0_RD_CNT_DEL(read_delay) | + NDTR0_SELCNTR | + NDTR0_TADL(nfc_tmg.tADL); + + marvell_nand->ndtr1 |= + NDTR1_TRHW(nfc_tmg.tRHW) | + NDTR1_WAIT_MODE; + } + + return 0; +} + +static int marvell_nand_chip_init(struct device *dev, struct marvell_nfc *nfc, + struct device_node *np) +{ + struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(dev); + struct marvell_nand_chip *marvell_nand; + struct mtd_info *mtd; + struct nand_chip *chip; + int nsels, ret, i; + u32 cs, rb; + + /* + * The legacy "num-cs" property indicates the number of CS on the only + * chip connected to the controller (legacy bindings does not support + * more than one chip). CS are only incremented one by one while the RB + * pin is always the #0. + * + * When not using legacy bindings, a couple of "reg" and "nand-rb" + * properties must be filled. For each chip, expressed as a subnode, + * "reg" points to the CS lines and "nand-rb" to the RB line. + */ + if (pdata) { + nsels = 1; + } else if (nfc->caps->legacy_of_bindings && + !of_get_property(np, "num-cs", &nsels)) { + dev_err(dev, "missing num-cs property\n"); + return -EINVAL; + } else if (!of_get_property(np, "reg", &nsels)) { + dev_err(dev, "missing reg property\n"); + return -EINVAL; + } + + if (!pdata) + nsels /= sizeof(u32); + if (!nsels) { + dev_err(dev, "invalid reg property size\n"); + return -EINVAL; + } + + /* Alloc the nand chip structure */ + marvell_nand = devm_kzalloc(dev, sizeof(*marvell_nand) + + (nsels * + sizeof(struct marvell_nand_chip_sel)), + GFP_KERNEL); + if (!marvell_nand) { + dev_err(dev, "could not allocate chip structure\n"); + return -ENOMEM; + } + + marvell_nand->nsels = nsels; + marvell_nand->selected_die = -1; + + for (i = 0; i < nsels; i++) { + if (pdata || nfc->caps->legacy_of_bindings) { + /* + * Legacy bindings use the CS lines in natural + * order (0, 1, ...) + */ + cs = i; + } else { + /* Retrieve CS id */ + ret = of_property_read_u32_index(np, "reg", i, &cs); + if (ret) { + dev_err(dev, "could not retrieve reg property: %d\n", + ret); + return ret; + } + } + + if (cs >= nfc->caps->max_cs_nb) { + dev_err(dev, "invalid reg value: %u (max CS = %d)\n", + cs, nfc->caps->max_cs_nb); + return -EINVAL; + } + + if (test_and_set_bit(cs, &nfc->assigned_cs)) { + dev_err(dev, "CS %d already assigned\n", cs); + return -EINVAL; + } + + /* + * The cs variable represents the chip select id, which must be + * converted in bit fields for NDCB0 and NDCB2 to select the + * right chip. Unfortunately, due to a lack of information on + * the subject and incoherent documentation, the user should not + * use CS1 and CS3 at all as asserting them is not supported in + * a reliable way (due to multiplexing inside ADDR5 field). + */ + marvell_nand->sels[i].cs = cs; + switch (cs) { + case 0: + case 2: + marvell_nand->sels[i].ndcb0_csel = 0; + break; + case 1: + case 3: + marvell_nand->sels[i].ndcb0_csel = NDCB0_CSEL; + break; + default: + return -EINVAL; + } + + /* Retrieve RB id */ + if (pdata || nfc->caps->legacy_of_bindings) { + /* Legacy bindings always use RB #0 */ + rb = 0; + } else { + ret = of_property_read_u32_index(np, "nand-rb", i, + &rb); + if (ret) { + dev_err(dev, + "could not retrieve RB property: %d\n", + ret); + return ret; + } + } + + if (rb >= nfc->caps->max_rb_nb) { + dev_err(dev, "invalid reg value: %u (max RB = %d)\n", + rb, nfc->caps->max_rb_nb); + return -EINVAL; + } + + marvell_nand->sels[i].rb = rb; + } + + chip = &marvell_nand->chip; + chip->controller = &nfc->controller; + nand_set_flash_node(chip, np); + + chip->exec_op = marvell_nfc_exec_op; + chip->select_chip = marvell_nfc_select_chip; + if (!of_property_read_bool(np, "marvell,nand-keep-config")) + chip->setup_data_interface = marvell_nfc_setup_data_interface; + + mtd = nand_to_mtd(chip); + mtd->dev.parent = dev; + + /* + * Default to HW ECC engine mode. If the nand-ecc-mode property is given + * in the DT node, this entry will be overwritten in nand_scan_ident(). + */ + chip->ecc.mode = NAND_ECC_HW; + + /* + * Save a reference value for timing registers before + * ->setup_data_interface() is called. + */ + marvell_nand->ndtr0 = readl_relaxed(nfc->regs + NDTR0); + marvell_nand->ndtr1 = readl_relaxed(nfc->regs + NDTR1); + + chip->options |= NAND_BUSWIDTH_AUTO; + ret = nand_scan_ident(mtd, marvell_nand->nsels, NULL); + if (ret) { + dev_err(dev, "could not identify the nand chip\n"); + return ret; + } + + if (pdata && pdata->flash_bbt) + chip->bbt_options |= NAND_BBT_USE_FLASH; + + if (chip->bbt_options & NAND_BBT_USE_FLASH) { + /* + * We'll use a bad block table stored in-flash and don't + * allow writing the bad block marker to the flash. + */ + chip->bbt_options |= NAND_BBT_NO_OOB_BBM; + chip->bbt_td = &bbt_main_descr; + chip->bbt_md = &bbt_mirror_descr; + } + + /* Save the chip-specific fields of NDCR */ + marvell_nand->ndcr = NDCR_PAGE_SZ(mtd->writesize); + if (chip->options & NAND_BUSWIDTH_16) + marvell_nand->ndcr |= NDCR_DWIDTH_M | NDCR_DWIDTH_C; + + /* + * On small page NANDs, only one cycle is needed to pass the + * column address. + */ + if (mtd->writesize <= 512) { + marvell_nand->addr_cyc = 1; + } else { + marvell_nand->addr_cyc = 2; + marvell_nand->ndcr |= NDCR_RA_START; + } + + /* + * Now add the number of cycles needed to pass the row + * address. + * + * Addressing a chip using CS 2 or 3 should also need the third row + * cycle but due to inconsistance in the documentation and lack of + * hardware to test this situation, this case is not supported. + */ + if (chip->options & NAND_ROW_ADDR_3) + marvell_nand->addr_cyc += 3; + else + marvell_nand->addr_cyc += 2; + + if (pdata) { + chip->ecc.size = pdata->ecc_step_size; + chip->ecc.strength = pdata->ecc_strength; + } + + ret = marvell_nand_ecc_init(mtd, &chip->ecc); + if (ret) { + dev_err(dev, "ECC init failed: %d\n", ret); + return ret; + } + + if (chip->ecc.mode == NAND_ECC_HW) { + /* + * Subpage write not available with hardware ECC, prohibit also + * subpage read as in userspace subpage access would still be + * allowed and subpage write, if used, would lead to numerous + * uncorrectable ECC errors. + */ + chip->options |= NAND_NO_SUBPAGE_WRITE; + } + + if (pdata || nfc->caps->legacy_of_bindings) { + /* + * We keep the MTD name unchanged to avoid breaking platforms + * where the MTD cmdline parser is used and the bootloader + * has not been updated to use the new naming scheme. + */ + mtd->name = "pxa3xx_nand-0"; + } else if (!mtd->name) { + /* + * If the new bindings are used and the bootloader has not been + * updated to pass a new mtdparts parameter on the cmdline, you + * should define the following property in your NAND node, ie: + * + * label = "main-storage"; + * + * This way, mtd->name will be set by the core when + * nand_set_flash_node() is called. + */ + mtd->name = devm_kasprintf(nfc->dev, GFP_KERNEL, + "%s:nand.%d", dev_name(nfc->dev), + marvell_nand->sels[0].cs); + if (!mtd->name) { + dev_err(nfc->dev, "Failed to allocate mtd->name\n"); + return -ENOMEM; + } + } + + ret = nand_scan_tail(mtd); + if (ret) { + dev_err(dev, "nand_scan_tail failed: %d\n", ret); + return ret; + } + + if (pdata) + /* Legacy bindings support only one chip */ + ret = mtd_device_register(mtd, pdata->parts[0], + pdata->nr_parts[0]); + else + ret = mtd_device_register(mtd, NULL, 0); + if (ret) { + dev_err(dev, "failed to register mtd device: %d\n", ret); + nand_release(mtd); + return ret; + } + + list_add_tail(&marvell_nand->node, &nfc->chips); + + return 0; +} + +static int marvell_nand_chips_init(struct device *dev, struct marvell_nfc *nfc) +{ + struct device_node *np = dev->of_node; + struct device_node *nand_np; + int max_cs = nfc->caps->max_cs_nb; + int nchips; + int ret; + + if (!np) + nchips = 1; + else + nchips = of_get_child_count(np); + + if (nchips > max_cs) { + dev_err(dev, "too many NAND chips: %d (max = %d CS)\n", nchips, + max_cs); + return -EINVAL; + } + + /* + * Legacy bindings do not use child nodes to exhibit NAND chip + * properties and layout. Instead, NAND properties are mixed with the + * controller ones, and partitions are defined as direct subnodes of the + * NAND controller node. + */ + if (nfc->caps->legacy_of_bindings) { + ret = marvell_nand_chip_init(dev, nfc, np); + return ret; + } + + for_each_child_of_node(np, nand_np) { + ret = marvell_nand_chip_init(dev, nfc, nand_np); + if (ret) { + of_node_put(nand_np); + return ret; + } + } + + return 0; +} + +static void marvell_nand_chips_cleanup(struct marvell_nfc *nfc) +{ + struct marvell_nand_chip *entry, *temp; + + list_for_each_entry_safe(entry, temp, &nfc->chips, node) { + nand_release(nand_to_mtd(&entry->chip)); + list_del(&entry->node); + } +} + +static int marvell_nfc_init_dma(struct marvell_nfc *nfc) +{ + struct platform_device *pdev = container_of(nfc->dev, + struct platform_device, + dev); + struct dma_slave_config config = {}; + struct resource *r; + dma_cap_mask_t mask; + struct pxad_param param; + int ret; + + if (!IS_ENABLED(CONFIG_PXA_DMA)) { + dev_warn(nfc->dev, + "DMA not enabled in configuration\n"); + return -ENOTSUPP; + } + + ret = dma_set_mask_and_coherent(nfc->dev, DMA_BIT_MASK(32)); + if (ret) + return ret; + + r = platform_get_resource(pdev, IORESOURCE_DMA, 0); + if (!r) { + dev_err(nfc->dev, "No resource defined for data DMA\n"); + return -ENXIO; + } + + param.drcmr = r->start; + param.prio = PXAD_PRIO_LOWEST; + dma_cap_zero(mask); + dma_cap_set(DMA_SLAVE, mask); + nfc->dma_chan = + dma_request_slave_channel_compat(mask, pxad_filter_fn, + ¶m, nfc->dev, + "data"); + if (!nfc->dma_chan) { + dev_err(nfc->dev, + "Unable to request data DMA channel\n"); + return -ENODEV; + } + + r = platform_get_resource(pdev, IORESOURCE_MEM, 0); + if (!r) + return -ENXIO; + + config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; + config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; + config.src_addr = r->start + NDDB; + config.dst_addr = r->start + NDDB; + config.src_maxburst = 32; + config.dst_maxburst = 32; + ret = dmaengine_slave_config(nfc->dma_chan, &config); + if (ret < 0) { + dev_err(nfc->dev, "Failed to configure DMA channel\n"); + return ret; + } + + /* + * DMA must act on length multiple of 32 and this length may be + * bigger than the destination buffer. Use this buffer instead + * for DMA transfers and then copy the desired amount of data to + * the provided buffer. + */ + nfc->dma_buf = kmalloc(MAX_CHUNK_SIZE, GFP_KERNEL | GFP_DMA); + if (!nfc->dma_buf) + return -ENOMEM; + + nfc->use_dma = true; + + return 0; +} + +static int marvell_nfc_init(struct marvell_nfc *nfc) +{ + struct device_node *np = nfc->dev->of_node; + + /* + * Some SoCs like A7k/A8k need to enable manually the NAND + * controller, gated clocks and reset bits to avoid being bootloader + * dependent. This is done through the use of the System Functions + * registers. + */ + if (nfc->caps->need_system_controller) { + struct regmap *sysctrl_base = + syscon_regmap_lookup_by_phandle(np, + "marvell,system-controller"); + u32 reg; + + if (IS_ERR(sysctrl_base)) + return PTR_ERR(sysctrl_base); + + reg = GENCONF_SOC_DEVICE_MUX_NFC_EN | + GENCONF_SOC_DEVICE_MUX_ECC_CLK_RST | + GENCONF_SOC_DEVICE_MUX_ECC_CORE_RST | + GENCONF_SOC_DEVICE_MUX_NFC_INT_EN; + regmap_write(sysctrl_base, GENCONF_SOC_DEVICE_MUX, reg); + + regmap_read(sysctrl_base, GENCONF_CLK_GATING_CTRL, ®); + reg |= GENCONF_CLK_GATING_CTRL_ND_GATE; + regmap_write(sysctrl_base, GENCONF_CLK_GATING_CTRL, reg); + + regmap_read(sysctrl_base, GENCONF_ND_CLK_CTRL, ®); + reg |= GENCONF_ND_CLK_CTRL_EN; + regmap_write(sysctrl_base, GENCONF_ND_CLK_CTRL, reg); + } + + /* Configure the DMA if appropriate */ + if (!nfc->caps->is_nfcv2) + marvell_nfc_init_dma(nfc); + + /* + * ECC operations and interruptions are only enabled when specifically + * needed. ECC shall not be activated in the early stages (fails probe). + * Arbiter flag, even if marked as "reserved", must be set (empirical). + * SPARE_EN bit must always be set or ECC bytes will not be at the same + * offset in the read page and this will fail the protection. + */ + writel_relaxed(NDCR_ALL_INT | NDCR_ND_ARB_EN | NDCR_SPARE_EN | + NDCR_RD_ID_CNT(NFCV1_READID_LEN), nfc->regs + NDCR); + writel_relaxed(0xFFFFFFFF, nfc->regs + NDSR); + writel_relaxed(0, nfc->regs + NDECCCTRL); + + return 0; +} + +static int marvell_nfc_probe(struct platform_device *pdev) +{ + struct device *dev = &pdev->dev; + struct resource *r; + struct marvell_nfc *nfc; + int ret; + int irq; + + nfc = devm_kzalloc(&pdev->dev, sizeof(struct marvell_nfc), + GFP_KERNEL); + if (!nfc) + return -ENOMEM; + + nfc->dev = dev; + nand_hw_control_init(&nfc->controller); + INIT_LIST_HEAD(&nfc->chips); + + r = platform_get_resource(pdev, IORESOURCE_MEM, 0); + nfc->regs = devm_ioremap_resource(dev, r); + if (IS_ERR(nfc->regs)) + return PTR_ERR(nfc->regs); + + irq = platform_get_irq(pdev, 0); + if (irq < 0) { + dev_err(dev, "failed to retrieve irq\n"); + return irq; + } + + nfc->ecc_clk = devm_clk_get(&pdev->dev, NULL); + if (IS_ERR(nfc->ecc_clk)) + return PTR_ERR(nfc->ecc_clk); + + ret = clk_prepare_enable(nfc->ecc_clk); + if (ret) + return ret; + + marvell_nfc_disable_int(nfc, NDCR_ALL_INT); + marvell_nfc_clear_int(nfc, NDCR_ALL_INT); + ret = devm_request_irq(dev, irq, marvell_nfc_isr, + 0, "marvell-nfc", nfc); + if (ret) + goto unprepare_clk; + + /* Get NAND controller capabilities */ + if (pdev->id_entry) + nfc->caps = (void *)pdev->id_entry->driver_data; + else + nfc->caps = of_device_get_match_data(&pdev->dev); + + if (!nfc->caps) { + dev_err(dev, "Could not retrieve NFC caps\n"); + ret = -EINVAL; + goto unprepare_clk; + } + + /* Init the controller and then probe the chips */ + ret = marvell_nfc_init(nfc); + if (ret) + goto unprepare_clk; + + platform_set_drvdata(pdev, nfc); + + ret = marvell_nand_chips_init(dev, nfc); + if (ret) + goto unprepare_clk; + + return 0; + +unprepare_clk: + clk_disable_unprepare(nfc->ecc_clk); + + return ret; +} + +static int marvell_nfc_remove(struct platform_device *pdev) +{ + struct marvell_nfc *nfc = platform_get_drvdata(pdev); + + marvell_nand_chips_cleanup(nfc); + + if (nfc->use_dma) { + dmaengine_terminate_all(nfc->dma_chan); + dma_release_channel(nfc->dma_chan); + } + + clk_disable_unprepare(nfc->ecc_clk); + + return 0; +} + +static const struct marvell_nfc_caps marvell_armada_8k_nfc_caps = { + .max_cs_nb = 4, + .max_rb_nb = 2, + .need_system_controller = true, + .is_nfcv2 = true, +}; + +static const struct marvell_nfc_caps marvell_armada370_nfc_caps = { + .max_cs_nb = 4, + .max_rb_nb = 2, + .is_nfcv2 = true, +}; + +static const struct marvell_nfc_caps marvell_pxa3xx_nfc_caps = { + .max_cs_nb = 2, + .max_rb_nb = 1, + .use_dma = true, +}; + +static const struct marvell_nfc_caps marvell_armada_8k_nfc_legacy_caps = { + .max_cs_nb = 4, + .max_rb_nb = 2, + .need_system_controller = true, + .legacy_of_bindings = true, + .is_nfcv2 = true, +}; + +static const struct marvell_nfc_caps marvell_armada370_nfc_legacy_caps = { + .max_cs_nb = 4, + .max_rb_nb = 2, + .legacy_of_bindings = true, + .is_nfcv2 = true, +}; + +static const struct marvell_nfc_caps marvell_pxa3xx_nfc_legacy_caps = { + .max_cs_nb = 2, + .max_rb_nb = 1, + .legacy_of_bindings = true, + .use_dma = true, +}; + +static const struct platform_device_id marvell_nfc_platform_ids[] = { + { + .name = "pxa3xx-nand", + .driver_data = (kernel_ulong_t)&marvell_pxa3xx_nfc_legacy_caps, + }, + { /* sentinel */ }, +}; +MODULE_DEVICE_TABLE(platform, marvell_nfc_platform_ids); + +static const struct of_device_id marvell_nfc_of_ids[] = { + { + .compatible = "marvell,armada-8k-nand-controller", + .data = &marvell_armada_8k_nfc_caps, + }, + { + .compatible = "marvell,armada370-nand-controller", + .data = &marvell_armada370_nfc_caps, + }, + { + .compatible = "marvell,pxa3xx-nand-controller", + .data = &marvell_pxa3xx_nfc_caps, + }, + /* Support for old/deprecated bindings: */ + { + .compatible = "marvell,armada-8k-nand", + .data = &marvell_armada_8k_nfc_legacy_caps, + }, + { + .compatible = "marvell,armada370-nand", + .data = &marvell_armada370_nfc_legacy_caps, + }, + { + .compatible = "marvell,pxa3xx-nand", + .data = &marvell_pxa3xx_nfc_legacy_caps, + }, + { /* sentinel */ }, +}; +MODULE_DEVICE_TABLE(of, marvell_nfc_of_ids); + +static struct platform_driver marvell_nfc_driver = { + .driver = { + .name = "marvell-nfc", + .of_match_table = marvell_nfc_of_ids, + }, + .id_table = marvell_nfc_platform_ids, + .probe = marvell_nfc_probe, + .remove = marvell_nfc_remove, +}; +module_platform_driver(marvell_nfc_driver); + +MODULE_LICENSE("GPL"); +MODULE_DESCRIPTION("Marvell NAND controller driver"); diff --git a/drivers/mtd/nand/raw/mpc5121_nfc.c b/drivers/mtd/nand/raw/mpc5121_nfc.c new file mode 100644 index 000000000000..913b9d1225c6 --- /dev/null +++ b/drivers/mtd/nand/raw/mpc5121_nfc.c @@ -0,0 +1,856 @@ +/* + * Copyright 2004-2008 Freescale Semiconductor, Inc. + * Copyright 2009 Semihalf. + * + * Approved as OSADL project by a majority of OSADL members and funded + * by OSADL membership fees in 2009; for details see www.osadl.org. + * + * Based on original driver from Freescale Semiconductor + * written by John Rigby on basis of mxc_nand.c. + * Reworked and extended by Piotr Ziecik . + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License + * as published by the Free Software Foundation; either version 2 + * of the License, or (at your option) any later version. + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, + * MA 02110-1301, USA. + */ + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#include + +/* Addresses for NFC MAIN RAM BUFFER areas */ +#define NFC_MAIN_AREA(n) ((n) * 0x200) + +/* Addresses for NFC SPARE BUFFER areas */ +#define NFC_SPARE_BUFFERS 8 +#define NFC_SPARE_LEN 0x40 +#define NFC_SPARE_AREA(n) (0x1000 + ((n) * NFC_SPARE_LEN)) + +/* MPC5121 NFC registers */ +#define NFC_BUF_ADDR 0x1E04 +#define NFC_FLASH_ADDR 0x1E06 +#define NFC_FLASH_CMD 0x1E08 +#define NFC_CONFIG 0x1E0A +#define NFC_ECC_STATUS1 0x1E0C +#define NFC_ECC_STATUS2 0x1E0E +#define NFC_SPAS 0x1E10 +#define NFC_WRPROT 0x1E12 +#define NFC_NF_WRPRST 0x1E18 +#define NFC_CONFIG1 0x1E1A +#define NFC_CONFIG2 0x1E1C +#define NFC_UNLOCKSTART_BLK0 0x1E20 +#define NFC_UNLOCKEND_BLK0 0x1E22 +#define NFC_UNLOCKSTART_BLK1 0x1E24 +#define NFC_UNLOCKEND_BLK1 0x1E26 +#define NFC_UNLOCKSTART_BLK2 0x1E28 +#define NFC_UNLOCKEND_BLK2 0x1E2A +#define NFC_UNLOCKSTART_BLK3 0x1E2C +#define NFC_UNLOCKEND_BLK3 0x1E2E + +/* Bit Definitions: NFC_BUF_ADDR */ +#define NFC_RBA_MASK (7 << 0) +#define NFC_ACTIVE_CS_SHIFT 5 +#define NFC_ACTIVE_CS_MASK (3 << NFC_ACTIVE_CS_SHIFT) + +/* Bit Definitions: NFC_CONFIG */ +#define NFC_BLS_UNLOCKED (1 << 1) + +/* Bit Definitions: NFC_CONFIG1 */ +#define NFC_ECC_4BIT (1 << 0) +#define NFC_FULL_PAGE_DMA (1 << 1) +#define NFC_SPARE_ONLY (1 << 2) +#define NFC_ECC_ENABLE (1 << 3) +#define NFC_INT_MASK (1 << 4) +#define NFC_BIG_ENDIAN (1 << 5) +#define NFC_RESET (1 << 6) +#define NFC_CE (1 << 7) +#define NFC_ONE_CYCLE (1 << 8) +#define NFC_PPB_32 (0 << 9) +#define NFC_PPB_64 (1 << 9) +#define NFC_PPB_128 (2 << 9) +#define NFC_PPB_256 (3 << 9) +#define NFC_PPB_MASK (3 << 9) +#define NFC_FULL_PAGE_INT (1 << 11) + +/* Bit Definitions: NFC_CONFIG2 */ +#define NFC_COMMAND (1 << 0) +#define NFC_ADDRESS (1 << 1) +#define NFC_INPUT (1 << 2) +#define NFC_OUTPUT (1 << 3) +#define NFC_ID (1 << 4) +#define NFC_STATUS (1 << 5) +#define NFC_CMD_FAIL (1 << 15) +#define NFC_INT (1 << 15) + +/* Bit Definitions: NFC_WRPROT */ +#define NFC_WPC_LOCK_TIGHT (1 << 0) +#define NFC_WPC_LOCK (1 << 1) +#define NFC_WPC_UNLOCK (1 << 2) + +#define DRV_NAME "mpc5121_nfc" + +/* Timeouts */ +#define NFC_RESET_TIMEOUT 1000 /* 1 ms */ +#define NFC_TIMEOUT (HZ / 10) /* 1/10 s */ + +struct mpc5121_nfc_prv { + struct nand_chip chip; + int irq; + void __iomem *regs; + struct clk *clk; + wait_queue_head_t irq_waitq; + uint column; + int spareonly; + void __iomem *csreg; + struct device *dev; +}; + +static void mpc5121_nfc_done(struct mtd_info *mtd); + +/* Read NFC register */ +static inline u16 nfc_read(struct mtd_info *mtd, uint reg) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct mpc5121_nfc_prv *prv = nand_get_controller_data(chip); + + return in_be16(prv->regs + reg); +} + +/* Write NFC register */ +static inline void nfc_write(struct mtd_info *mtd, uint reg, u16 val) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct mpc5121_nfc_prv *prv = nand_get_controller_data(chip); + + out_be16(prv->regs + reg, val); +} + +/* Set bits in NFC register */ +static inline void nfc_set(struct mtd_info *mtd, uint reg, u16 bits) +{ + nfc_write(mtd, reg, nfc_read(mtd, reg) | bits); +} + +/* Clear bits in NFC register */ +static inline void nfc_clear(struct mtd_info *mtd, uint reg, u16 bits) +{ + nfc_write(mtd, reg, nfc_read(mtd, reg) & ~bits); +} + +/* Invoke address cycle */ +static inline void mpc5121_nfc_send_addr(struct mtd_info *mtd, u16 addr) +{ + nfc_write(mtd, NFC_FLASH_ADDR, addr); + nfc_write(mtd, NFC_CONFIG2, NFC_ADDRESS); + mpc5121_nfc_done(mtd); +} + +/* Invoke command cycle */ +static inline void mpc5121_nfc_send_cmd(struct mtd_info *mtd, u16 cmd) +{ + nfc_write(mtd, NFC_FLASH_CMD, cmd); + nfc_write(mtd, NFC_CONFIG2, NFC_COMMAND); + mpc5121_nfc_done(mtd); +} + +/* Send data from NFC buffers to NAND flash */ +static inline void mpc5121_nfc_send_prog_page(struct mtd_info *mtd) +{ + nfc_clear(mtd, NFC_BUF_ADDR, NFC_RBA_MASK); + nfc_write(mtd, NFC_CONFIG2, NFC_INPUT); + mpc5121_nfc_done(mtd); +} + +/* Receive data from NAND flash */ +static inline void mpc5121_nfc_send_read_page(struct mtd_info *mtd) +{ + nfc_clear(mtd, NFC_BUF_ADDR, NFC_RBA_MASK); + nfc_write(mtd, NFC_CONFIG2, NFC_OUTPUT); + mpc5121_nfc_done(mtd); +} + +/* Receive ID from NAND flash */ +static inline void mpc5121_nfc_send_read_id(struct mtd_info *mtd) +{ + nfc_clear(mtd, NFC_BUF_ADDR, NFC_RBA_MASK); + nfc_write(mtd, NFC_CONFIG2, NFC_ID); + mpc5121_nfc_done(mtd); +} + +/* Receive status from NAND flash */ +static inline void mpc5121_nfc_send_read_status(struct mtd_info *mtd) +{ + nfc_clear(mtd, NFC_BUF_ADDR, NFC_RBA_MASK); + nfc_write(mtd, NFC_CONFIG2, NFC_STATUS); + mpc5121_nfc_done(mtd); +} + +/* NFC interrupt handler */ +static irqreturn_t mpc5121_nfc_irq(int irq, void *data) +{ + struct mtd_info *mtd = data; + struct nand_chip *chip = mtd_to_nand(mtd); + struct mpc5121_nfc_prv *prv = nand_get_controller_data(chip); + + nfc_set(mtd, NFC_CONFIG1, NFC_INT_MASK); + wake_up(&prv->irq_waitq); + + return IRQ_HANDLED; +} + +/* Wait for operation complete */ +static void mpc5121_nfc_done(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct mpc5121_nfc_prv *prv = nand_get_controller_data(chip); + int rv; + + if ((nfc_read(mtd, NFC_CONFIG2) & NFC_INT) == 0) { + nfc_clear(mtd, NFC_CONFIG1, NFC_INT_MASK); + rv = wait_event_timeout(prv->irq_waitq, + (nfc_read(mtd, NFC_CONFIG2) & NFC_INT), NFC_TIMEOUT); + + if (!rv) + dev_warn(prv->dev, + "Timeout while waiting for interrupt.\n"); + } + + nfc_clear(mtd, NFC_CONFIG2, NFC_INT); +} + +/* Do address cycle(s) */ +static void mpc5121_nfc_addr_cycle(struct mtd_info *mtd, int column, int page) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + u32 pagemask = chip->pagemask; + + if (column != -1) { + mpc5121_nfc_send_addr(mtd, column); + if (mtd->writesize > 512) + mpc5121_nfc_send_addr(mtd, column >> 8); + } + + if (page != -1) { + do { + mpc5121_nfc_send_addr(mtd, page & 0xFF); + page >>= 8; + pagemask >>= 8; + } while (pagemask); + } +} + +/* Control chip select signals */ +static void mpc5121_nfc_select_chip(struct mtd_info *mtd, int chip) +{ + if (chip < 0) { + nfc_clear(mtd, NFC_CONFIG1, NFC_CE); + return; + } + + nfc_clear(mtd, NFC_BUF_ADDR, NFC_ACTIVE_CS_MASK); + nfc_set(mtd, NFC_BUF_ADDR, (chip << NFC_ACTIVE_CS_SHIFT) & + NFC_ACTIVE_CS_MASK); + nfc_set(mtd, NFC_CONFIG1, NFC_CE); +} + +/* Init external chip select logic on ADS5121 board */ +static int ads5121_chipselect_init(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct mpc5121_nfc_prv *prv = nand_get_controller_data(chip); + struct device_node *dn; + + dn = of_find_compatible_node(NULL, NULL, "fsl,mpc5121ads-cpld"); + if (dn) { + prv->csreg = of_iomap(dn, 0); + of_node_put(dn); + if (!prv->csreg) + return -ENOMEM; + + /* CPLD Register 9 controls NAND /CE Lines */ + prv->csreg += 9; + return 0; + } + + return -EINVAL; +} + +/* Control chips select signal on ADS5121 board */ +static void ads5121_select_chip(struct mtd_info *mtd, int chip) +{ + struct nand_chip *nand = mtd_to_nand(mtd); + struct mpc5121_nfc_prv *prv = nand_get_controller_data(nand); + u8 v; + + v = in_8(prv->csreg); + v |= 0x0F; + + if (chip >= 0) { + mpc5121_nfc_select_chip(mtd, 0); + v &= ~(1 << chip); + } else + mpc5121_nfc_select_chip(mtd, -1); + + out_8(prv->csreg, v); +} + +/* Read NAND Ready/Busy signal */ +static int mpc5121_nfc_dev_ready(struct mtd_info *mtd) +{ + /* + * NFC handles ready/busy signal internally. Therefore, this function + * always returns status as ready. + */ + return 1; +} + +/* Write command to NAND flash */ +static void mpc5121_nfc_command(struct mtd_info *mtd, unsigned command, + int column, int page) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct mpc5121_nfc_prv *prv = nand_get_controller_data(chip); + + prv->column = (column >= 0) ? column : 0; + prv->spareonly = 0; + + switch (command) { + case NAND_CMD_PAGEPROG: + mpc5121_nfc_send_prog_page(mtd); + break; + /* + * NFC does not support sub-page reads and writes, + * so emulate them using full page transfers. + */ + case NAND_CMD_READ0: + column = 0; + break; + + case NAND_CMD_READ1: + prv->column += 256; + command = NAND_CMD_READ0; + column = 0; + break; + + case NAND_CMD_READOOB: + prv->spareonly = 1; + command = NAND_CMD_READ0; + column = 0; + break; + + case NAND_CMD_SEQIN: + mpc5121_nfc_command(mtd, NAND_CMD_READ0, column, page); + column = 0; + break; + + case NAND_CMD_ERASE1: + case NAND_CMD_ERASE2: + case NAND_CMD_READID: + case NAND_CMD_STATUS: + break; + + default: + return; + } + + mpc5121_nfc_send_cmd(mtd, command); + mpc5121_nfc_addr_cycle(mtd, column, page); + + switch (command) { + case NAND_CMD_READ0: + if (mtd->writesize > 512) + mpc5121_nfc_send_cmd(mtd, NAND_CMD_READSTART); + mpc5121_nfc_send_read_page(mtd); + break; + + case NAND_CMD_READID: + mpc5121_nfc_send_read_id(mtd); + break; + + case NAND_CMD_STATUS: + mpc5121_nfc_send_read_status(mtd); + if (chip->options & NAND_BUSWIDTH_16) + prv->column = 1; + else + prv->column = 0; + break; + } +} + +/* Copy data from/to NFC spare buffers. */ +static void mpc5121_nfc_copy_spare(struct mtd_info *mtd, uint offset, + u8 *buffer, uint size, int wr) +{ + struct nand_chip *nand = mtd_to_nand(mtd); + struct mpc5121_nfc_prv *prv = nand_get_controller_data(nand); + uint o, s, sbsize, blksize; + + /* + * NAND spare area is available through NFC spare buffers. + * The NFC divides spare area into (page_size / 512) chunks. + * Each chunk is placed into separate spare memory area, using + * first (spare_size / num_of_chunks) bytes of the buffer. + * + * For NAND device in which the spare area is not divided fully + * by the number of chunks, number of used bytes in each spare + * buffer is rounded down to the nearest even number of bytes, + * and all remaining bytes are added to the last used spare area. + * + * For more information read section 26.6.10 of MPC5121e + * Microcontroller Reference Manual, Rev. 3. + */ + + /* Calculate number of valid bytes in each spare buffer */ + sbsize = (mtd->oobsize / (mtd->writesize / 512)) & ~1; + + while (size) { + /* Calculate spare buffer number */ + s = offset / sbsize; + if (s > NFC_SPARE_BUFFERS - 1) + s = NFC_SPARE_BUFFERS - 1; + + /* + * Calculate offset to requested data block in selected spare + * buffer and its size. + */ + o = offset - (s * sbsize); + blksize = min(sbsize - o, size); + + if (wr) + memcpy_toio(prv->regs + NFC_SPARE_AREA(s) + o, + buffer, blksize); + else + memcpy_fromio(buffer, + prv->regs + NFC_SPARE_AREA(s) + o, blksize); + + buffer += blksize; + offset += blksize; + size -= blksize; + }; +} + +/* Copy data from/to NFC main and spare buffers */ +static void mpc5121_nfc_buf_copy(struct mtd_info *mtd, u_char *buf, int len, + int wr) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct mpc5121_nfc_prv *prv = nand_get_controller_data(chip); + uint c = prv->column; + uint l; + + /* Handle spare area access */ + if (prv->spareonly || c >= mtd->writesize) { + /* Calculate offset from beginning of spare area */ + if (c >= mtd->writesize) + c -= mtd->writesize; + + prv->column += len; + mpc5121_nfc_copy_spare(mtd, c, buf, len, wr); + return; + } + + /* + * Handle main area access - limit copy length to prevent + * crossing main/spare boundary. + */ + l = min((uint)len, mtd->writesize - c); + prv->column += l; + + if (wr) + memcpy_toio(prv->regs + NFC_MAIN_AREA(0) + c, buf, l); + else + memcpy_fromio(buf, prv->regs + NFC_MAIN_AREA(0) + c, l); + + /* Handle crossing main/spare boundary */ + if (l != len) { + buf += l; + len -= l; + mpc5121_nfc_buf_copy(mtd, buf, len, wr); + } +} + +/* Read data from NFC buffers */ +static void mpc5121_nfc_read_buf(struct mtd_info *mtd, u_char *buf, int len) +{ + mpc5121_nfc_buf_copy(mtd, buf, len, 0); +} + +/* Write data to NFC buffers */ +static void mpc5121_nfc_write_buf(struct mtd_info *mtd, + const u_char *buf, int len) +{ + mpc5121_nfc_buf_copy(mtd, (u_char *)buf, len, 1); +} + +/* Read byte from NFC buffers */ +static u8 mpc5121_nfc_read_byte(struct mtd_info *mtd) +{ + u8 tmp; + + mpc5121_nfc_read_buf(mtd, &tmp, sizeof(tmp)); + + return tmp; +} + +/* Read word from NFC buffers */ +static u16 mpc5121_nfc_read_word(struct mtd_info *mtd) +{ + u16 tmp; + + mpc5121_nfc_read_buf(mtd, (u_char *)&tmp, sizeof(tmp)); + + return tmp; +} + +/* + * Read NFC configuration from Reset Config Word + * + * NFC is configured during reset in basis of information stored + * in Reset Config Word. There is no other way to set NAND block + * size, spare size and bus width. + */ +static int mpc5121_nfc_read_hw_config(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct mpc5121_nfc_prv *prv = nand_get_controller_data(chip); + struct mpc512x_reset_module *rm; + struct device_node *rmnode; + uint rcw_pagesize = 0; + uint rcw_sparesize = 0; + uint rcw_width; + uint rcwh; + uint romloc, ps; + int ret = 0; + + rmnode = of_find_compatible_node(NULL, NULL, "fsl,mpc5121-reset"); + if (!rmnode) { + dev_err(prv->dev, "Missing 'fsl,mpc5121-reset' " + "node in device tree!\n"); + return -ENODEV; + } + + rm = of_iomap(rmnode, 0); + if (!rm) { + dev_err(prv->dev, "Error mapping reset module node!\n"); + ret = -EBUSY; + goto out; + } + + rcwh = in_be32(&rm->rcwhr); + + /* Bit 6: NFC bus width */ + rcw_width = ((rcwh >> 6) & 0x1) ? 2 : 1; + + /* Bit 7: NFC Page/Spare size */ + ps = (rcwh >> 7) & 0x1; + + /* Bits [22:21]: ROM Location */ + romloc = (rcwh >> 21) & 0x3; + + /* Decode RCW bits */ + switch ((ps << 2) | romloc) { + case 0x00: + case 0x01: + rcw_pagesize = 512; + rcw_sparesize = 16; + break; + case 0x02: + case 0x03: + rcw_pagesize = 4096; + rcw_sparesize = 128; + break; + case 0x04: + case 0x05: + rcw_pagesize = 2048; + rcw_sparesize = 64; + break; + case 0x06: + case 0x07: + rcw_pagesize = 4096; + rcw_sparesize = 218; + break; + } + + mtd->writesize = rcw_pagesize; + mtd->oobsize = rcw_sparesize; + if (rcw_width == 2) + chip->options |= NAND_BUSWIDTH_16; + + dev_notice(prv->dev, "Configured for " + "%u-bit NAND, page size %u " + "with %u spare.\n", + rcw_width * 8, rcw_pagesize, + rcw_sparesize); + iounmap(rm); +out: + of_node_put(rmnode); + return ret; +} + +/* Free driver resources */ +static void mpc5121_nfc_free(struct device *dev, struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct mpc5121_nfc_prv *prv = nand_get_controller_data(chip); + + if (prv->clk) + clk_disable_unprepare(prv->clk); + + if (prv->csreg) + iounmap(prv->csreg); +} + +static int mpc5121_nfc_probe(struct platform_device *op) +{ + struct device_node *dn = op->dev.of_node; + struct clk *clk; + struct device *dev = &op->dev; + struct mpc5121_nfc_prv *prv; + struct resource res; + struct mtd_info *mtd; + struct nand_chip *chip; + unsigned long regs_paddr, regs_size; + const __be32 *chips_no; + int resettime = 0; + int retval = 0; + int rev, len; + + /* + * Check SoC revision. This driver supports only NFC + * in MPC5121 revision 2 and MPC5123 revision 3. + */ + rev = (mfspr(SPRN_SVR) >> 4) & 0xF; + if ((rev != 2) && (rev != 3)) { + dev_err(dev, "SoC revision %u is not supported!\n", rev); + return -ENXIO; + } + + prv = devm_kzalloc(dev, sizeof(*prv), GFP_KERNEL); + if (!prv) + return -ENOMEM; + + chip = &prv->chip; + mtd = nand_to_mtd(chip); + + mtd->dev.parent = dev; + nand_set_controller_data(chip, prv); + nand_set_flash_node(chip, dn); + prv->dev = dev; + + /* Read NFC configuration from Reset Config Word */ + retval = mpc5121_nfc_read_hw_config(mtd); + if (retval) { + dev_err(dev, "Unable to read NFC config!\n"); + return retval; + } + + prv->irq = irq_of_parse_and_map(dn, 0); + if (prv->irq == NO_IRQ) { + dev_err(dev, "Error mapping IRQ!\n"); + return -EINVAL; + } + + retval = of_address_to_resource(dn, 0, &res); + if (retval) { + dev_err(dev, "Error parsing memory region!\n"); + return retval; + } + + chips_no = of_get_property(dn, "chips", &len); + if (!chips_no || len != sizeof(*chips_no)) { + dev_err(dev, "Invalid/missing 'chips' property!\n"); + return -EINVAL; + } + + regs_paddr = res.start; + regs_size = resource_size(&res); + + if (!devm_request_mem_region(dev, regs_paddr, regs_size, DRV_NAME)) { + dev_err(dev, "Error requesting memory region!\n"); + return -EBUSY; + } + + prv->regs = devm_ioremap(dev, regs_paddr, regs_size); + if (!prv->regs) { + dev_err(dev, "Error mapping memory region!\n"); + return -ENOMEM; + } + + mtd->name = "MPC5121 NAND"; + chip->dev_ready = mpc5121_nfc_dev_ready; + chip->cmdfunc = mpc5121_nfc_command; + chip->read_byte = mpc5121_nfc_read_byte; + chip->read_word = mpc5121_nfc_read_word; + chip->read_buf = mpc5121_nfc_read_buf; + chip->write_buf = mpc5121_nfc_write_buf; + chip->select_chip = mpc5121_nfc_select_chip; + chip->onfi_set_features = nand_onfi_get_set_features_notsupp; + chip->onfi_get_features = nand_onfi_get_set_features_notsupp; + chip->bbt_options = NAND_BBT_USE_FLASH; + chip->ecc.mode = NAND_ECC_SOFT; + chip->ecc.algo = NAND_ECC_HAMMING; + + /* Support external chip-select logic on ADS5121 board */ + if (of_machine_is_compatible("fsl,mpc5121ads")) { + retval = ads5121_chipselect_init(mtd); + if (retval) { + dev_err(dev, "Chipselect init error!\n"); + return retval; + } + + chip->select_chip = ads5121_select_chip; + } + + /* Enable NFC clock */ + clk = devm_clk_get(dev, "ipg"); + if (IS_ERR(clk)) { + dev_err(dev, "Unable to acquire NFC clock!\n"); + retval = PTR_ERR(clk); + goto error; + } + retval = clk_prepare_enable(clk); + if (retval) { + dev_err(dev, "Unable to enable NFC clock!\n"); + goto error; + } + prv->clk = clk; + + /* Reset NAND Flash controller */ + nfc_set(mtd, NFC_CONFIG1, NFC_RESET); + while (nfc_read(mtd, NFC_CONFIG1) & NFC_RESET) { + if (resettime++ >= NFC_RESET_TIMEOUT) { + dev_err(dev, "Timeout while resetting NFC!\n"); + retval = -EINVAL; + goto error; + } + + udelay(1); + } + + /* Enable write to NFC memory */ + nfc_write(mtd, NFC_CONFIG, NFC_BLS_UNLOCKED); + + /* Enable write to all NAND pages */ + nfc_write(mtd, NFC_UNLOCKSTART_BLK0, 0x0000); + nfc_write(mtd, NFC_UNLOCKEND_BLK0, 0xFFFF); + nfc_write(mtd, NFC_WRPROT, NFC_WPC_UNLOCK); + + /* + * Setup NFC: + * - Big Endian transfers, + * - Interrupt after full page read/write. + */ + nfc_write(mtd, NFC_CONFIG1, NFC_BIG_ENDIAN | NFC_INT_MASK | + NFC_FULL_PAGE_INT); + + /* Set spare area size */ + nfc_write(mtd, NFC_SPAS, mtd->oobsize >> 1); + + init_waitqueue_head(&prv->irq_waitq); + retval = devm_request_irq(dev, prv->irq, &mpc5121_nfc_irq, 0, DRV_NAME, + mtd); + if (retval) { + dev_err(dev, "Error requesting IRQ!\n"); + goto error; + } + + /* Detect NAND chips */ + retval = nand_scan(mtd, be32_to_cpup(chips_no)); + if (retval) { + dev_err(dev, "NAND Flash not found !\n"); + goto error; + } + + /* Set erase block size */ + switch (mtd->erasesize / mtd->writesize) { + case 32: + nfc_set(mtd, NFC_CONFIG1, NFC_PPB_32); + break; + + case 64: + nfc_set(mtd, NFC_CONFIG1, NFC_PPB_64); + break; + + case 128: + nfc_set(mtd, NFC_CONFIG1, NFC_PPB_128); + break; + + case 256: + nfc_set(mtd, NFC_CONFIG1, NFC_PPB_256); + break; + + default: + dev_err(dev, "Unsupported NAND flash!\n"); + retval = -ENXIO; + goto error; + } + + dev_set_drvdata(dev, mtd); + + /* Register device in MTD */ + retval = mtd_device_register(mtd, NULL, 0); + if (retval) { + dev_err(dev, "Error adding MTD device!\n"); + goto error; + } + + return 0; +error: + mpc5121_nfc_free(dev, mtd); + return retval; +} + +static int mpc5121_nfc_remove(struct platform_device *op) +{ + struct device *dev = &op->dev; + struct mtd_info *mtd = dev_get_drvdata(dev); + + nand_release(mtd); + mpc5121_nfc_free(dev, mtd); + + return 0; +} + +static const struct of_device_id mpc5121_nfc_match[] = { + { .compatible = "fsl,mpc5121-nfc", }, + {}, +}; +MODULE_DEVICE_TABLE(of, mpc5121_nfc_match); + +static struct platform_driver mpc5121_nfc_driver = { + .probe = mpc5121_nfc_probe, + .remove = mpc5121_nfc_remove, + .driver = { + .name = DRV_NAME, + .of_match_table = mpc5121_nfc_match, + }, +}; + +module_platform_driver(mpc5121_nfc_driver); + +MODULE_AUTHOR("Freescale Semiconductor, Inc."); +MODULE_DESCRIPTION("MPC5121 NAND MTD driver"); +MODULE_LICENSE("GPL"); diff --git a/drivers/mtd/nand/raw/mtk_ecc.c b/drivers/mtd/nand/raw/mtk_ecc.c new file mode 100644 index 000000000000..40d86a861a70 --- /dev/null +++ b/drivers/mtd/nand/raw/mtk_ecc.c @@ -0,0 +1,608 @@ +/* + * MTK ECC controller driver. + * Copyright (C) 2016 MediaTek Inc. + * Authors: Xiaolei Li + * Jorge Ramirez-Ortiz + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + */ + +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#include "mtk_ecc.h" + +#define ECC_IDLE_MASK BIT(0) +#define ECC_IRQ_EN BIT(0) +#define ECC_PG_IRQ_SEL BIT(1) +#define ECC_OP_ENABLE (1) +#define ECC_OP_DISABLE (0) + +#define ECC_ENCCON (0x00) +#define ECC_ENCCNFG (0x04) +#define ECC_MS_SHIFT (16) +#define ECC_ENCDIADDR (0x08) +#define ECC_ENCIDLE (0x0C) +#define ECC_DECCON (0x100) +#define ECC_DECCNFG (0x104) +#define DEC_EMPTY_EN BIT(31) +#define DEC_CNFG_CORRECT (0x3 << 12) +#define ECC_DECIDLE (0x10C) +#define ECC_DECENUM0 (0x114) + +#define ECC_TIMEOUT (500000) + +#define ECC_IDLE_REG(op) ((op) == ECC_ENCODE ? ECC_ENCIDLE : ECC_DECIDLE) +#define ECC_CTL_REG(op) ((op) == ECC_ENCODE ? ECC_ENCCON : ECC_DECCON) + +struct mtk_ecc_caps { + u32 err_mask; + const u8 *ecc_strength; + const u32 *ecc_regs; + u8 num_ecc_strength; + u8 ecc_mode_shift; + u32 parity_bits; + int pg_irq_sel; +}; + +struct mtk_ecc { + struct device *dev; + const struct mtk_ecc_caps *caps; + void __iomem *regs; + struct clk *clk; + + struct completion done; + struct mutex lock; + u32 sectors; + + u8 *eccdata; +}; + +/* ecc strength that each IP supports */ +static const u8 ecc_strength_mt2701[] = { + 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 28, 32, 36, + 40, 44, 48, 52, 56, 60 +}; + +static const u8 ecc_strength_mt2712[] = { + 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 28, 32, 36, + 40, 44, 48, 52, 56, 60, 68, 72, 80 +}; + +static const u8 ecc_strength_mt7622[] = { + 4, 6, 8, 10, 12, 14, 16 +}; + +enum mtk_ecc_regs { + ECC_ENCPAR00, + ECC_ENCIRQ_EN, + ECC_ENCIRQ_STA, + ECC_DECDONE, + ECC_DECIRQ_EN, + ECC_DECIRQ_STA, +}; + +static int mt2701_ecc_regs[] = { + [ECC_ENCPAR00] = 0x10, + [ECC_ENCIRQ_EN] = 0x80, + [ECC_ENCIRQ_STA] = 0x84, + [ECC_DECDONE] = 0x124, + [ECC_DECIRQ_EN] = 0x200, + [ECC_DECIRQ_STA] = 0x204, +}; + +static int mt2712_ecc_regs[] = { + [ECC_ENCPAR00] = 0x300, + [ECC_ENCIRQ_EN] = 0x80, + [ECC_ENCIRQ_STA] = 0x84, + [ECC_DECDONE] = 0x124, + [ECC_DECIRQ_EN] = 0x200, + [ECC_DECIRQ_STA] = 0x204, +}; + +static int mt7622_ecc_regs[] = { + [ECC_ENCPAR00] = 0x10, + [ECC_ENCIRQ_EN] = 0x30, + [ECC_ENCIRQ_STA] = 0x34, + [ECC_DECDONE] = 0x11c, + [ECC_DECIRQ_EN] = 0x140, + [ECC_DECIRQ_STA] = 0x144, +}; + +static inline void mtk_ecc_wait_idle(struct mtk_ecc *ecc, + enum mtk_ecc_operation op) +{ + struct device *dev = ecc->dev; + u32 val; + int ret; + + ret = readl_poll_timeout_atomic(ecc->regs + ECC_IDLE_REG(op), val, + val & ECC_IDLE_MASK, + 10, ECC_TIMEOUT); + if (ret) + dev_warn(dev, "%s NOT idle\n", + op == ECC_ENCODE ? "encoder" : "decoder"); +} + +static irqreturn_t mtk_ecc_irq(int irq, void *id) +{ + struct mtk_ecc *ecc = id; + u32 dec, enc; + + dec = readw(ecc->regs + ecc->caps->ecc_regs[ECC_DECIRQ_STA]) + & ECC_IRQ_EN; + if (dec) { + dec = readw(ecc->regs + ecc->caps->ecc_regs[ECC_DECDONE]); + if (dec & ecc->sectors) { + /* + * Clear decode IRQ status once again to ensure that + * there will be no extra IRQ. + */ + readw(ecc->regs + ecc->caps->ecc_regs[ECC_DECIRQ_STA]); + ecc->sectors = 0; + complete(&ecc->done); + } else { + return IRQ_HANDLED; + } + } else { + enc = readl(ecc->regs + ecc->caps->ecc_regs[ECC_ENCIRQ_STA]) + & ECC_IRQ_EN; + if (enc) + complete(&ecc->done); + else + return IRQ_NONE; + } + + return IRQ_HANDLED; +} + +static int mtk_ecc_config(struct mtk_ecc *ecc, struct mtk_ecc_config *config) +{ + u32 ecc_bit, dec_sz, enc_sz; + u32 reg, i; + + for (i = 0; i < ecc->caps->num_ecc_strength; i++) { + if (ecc->caps->ecc_strength[i] == config->strength) + break; + } + + if (i == ecc->caps->num_ecc_strength) { + dev_err(ecc->dev, "invalid ecc strength %d\n", + config->strength); + return -EINVAL; + } + + ecc_bit = i; + + if (config->op == ECC_ENCODE) { + /* configure ECC encoder (in bits) */ + enc_sz = config->len << 3; + + reg = ecc_bit | (config->mode << ecc->caps->ecc_mode_shift); + reg |= (enc_sz << ECC_MS_SHIFT); + writel(reg, ecc->regs + ECC_ENCCNFG); + + if (config->mode != ECC_NFI_MODE) + writel(lower_32_bits(config->addr), + ecc->regs + ECC_ENCDIADDR); + + } else { + /* configure ECC decoder (in bits) */ + dec_sz = (config->len << 3) + + config->strength * ecc->caps->parity_bits; + + reg = ecc_bit | (config->mode << ecc->caps->ecc_mode_shift); + reg |= (dec_sz << ECC_MS_SHIFT) | DEC_CNFG_CORRECT; + reg |= DEC_EMPTY_EN; + writel(reg, ecc->regs + ECC_DECCNFG); + + if (config->sectors) + ecc->sectors = 1 << (config->sectors - 1); + } + + return 0; +} + +void mtk_ecc_get_stats(struct mtk_ecc *ecc, struct mtk_ecc_stats *stats, + int sectors) +{ + u32 offset, i, err; + u32 bitflips = 0; + + stats->corrected = 0; + stats->failed = 0; + + for (i = 0; i < sectors; i++) { + offset = (i >> 2) << 2; + err = readl(ecc->regs + ECC_DECENUM0 + offset); + err = err >> ((i % 4) * 8); + err &= ecc->caps->err_mask; + if (err == ecc->caps->err_mask) { + /* uncorrectable errors */ + stats->failed++; + continue; + } + + stats->corrected += err; + bitflips = max_t(u32, bitflips, err); + } + + stats->bitflips = bitflips; +} +EXPORT_SYMBOL(mtk_ecc_get_stats); + +void mtk_ecc_release(struct mtk_ecc *ecc) +{ + clk_disable_unprepare(ecc->clk); + put_device(ecc->dev); +} +EXPORT_SYMBOL(mtk_ecc_release); + +static void mtk_ecc_hw_init(struct mtk_ecc *ecc) +{ + mtk_ecc_wait_idle(ecc, ECC_ENCODE); + writew(ECC_OP_DISABLE, ecc->regs + ECC_ENCCON); + + mtk_ecc_wait_idle(ecc, ECC_DECODE); + writel(ECC_OP_DISABLE, ecc->regs + ECC_DECCON); +} + +static struct mtk_ecc *mtk_ecc_get(struct device_node *np) +{ + struct platform_device *pdev; + struct mtk_ecc *ecc; + + pdev = of_find_device_by_node(np); + if (!pdev || !platform_get_drvdata(pdev)) + return ERR_PTR(-EPROBE_DEFER); + + get_device(&pdev->dev); + ecc = platform_get_drvdata(pdev); + clk_prepare_enable(ecc->clk); + mtk_ecc_hw_init(ecc); + + return ecc; +} + +struct mtk_ecc *of_mtk_ecc_get(struct device_node *of_node) +{ + struct mtk_ecc *ecc = NULL; + struct device_node *np; + + np = of_parse_phandle(of_node, "ecc-engine", 0); + if (np) { + ecc = mtk_ecc_get(np); + of_node_put(np); + } + + return ecc; +} +EXPORT_SYMBOL(of_mtk_ecc_get); + +int mtk_ecc_enable(struct mtk_ecc *ecc, struct mtk_ecc_config *config) +{ + enum mtk_ecc_operation op = config->op; + u16 reg_val; + int ret; + + ret = mutex_lock_interruptible(&ecc->lock); + if (ret) { + dev_err(ecc->dev, "interrupted when attempting to lock\n"); + return ret; + } + + mtk_ecc_wait_idle(ecc, op); + + ret = mtk_ecc_config(ecc, config); + if (ret) { + mutex_unlock(&ecc->lock); + return ret; + } + + if (config->mode != ECC_NFI_MODE || op != ECC_ENCODE) { + init_completion(&ecc->done); + reg_val = ECC_IRQ_EN; + /* + * For ECC_NFI_MODE, if ecc->caps->pg_irq_sel is 1, then it + * means this chip can only generate one ecc irq during page + * read / write. If is 0, generate one ecc irq each ecc step. + */ + if (ecc->caps->pg_irq_sel && config->mode == ECC_NFI_MODE) + reg_val |= ECC_PG_IRQ_SEL; + if (op == ECC_ENCODE) + writew(reg_val, ecc->regs + + ecc->caps->ecc_regs[ECC_ENCIRQ_EN]); + else + writew(reg_val, ecc->regs + + ecc->caps->ecc_regs[ECC_DECIRQ_EN]); + } + + writew(ECC_OP_ENABLE, ecc->regs + ECC_CTL_REG(op)); + + return 0; +} +EXPORT_SYMBOL(mtk_ecc_enable); + +void mtk_ecc_disable(struct mtk_ecc *ecc) +{ + enum mtk_ecc_operation op = ECC_ENCODE; + + /* find out the running operation */ + if (readw(ecc->regs + ECC_CTL_REG(op)) != ECC_OP_ENABLE) + op = ECC_DECODE; + + /* disable it */ + mtk_ecc_wait_idle(ecc, op); + if (op == ECC_DECODE) { + /* + * Clear decode IRQ status in case there is a timeout to wait + * decode IRQ. + */ + readw(ecc->regs + ecc->caps->ecc_regs[ECC_DECDONE]); + writew(0, ecc->regs + ecc->caps->ecc_regs[ECC_DECIRQ_EN]); + } else { + writew(0, ecc->regs + ecc->caps->ecc_regs[ECC_ENCIRQ_EN]); + } + + writew(ECC_OP_DISABLE, ecc->regs + ECC_CTL_REG(op)); + + mutex_unlock(&ecc->lock); +} +EXPORT_SYMBOL(mtk_ecc_disable); + +int mtk_ecc_wait_done(struct mtk_ecc *ecc, enum mtk_ecc_operation op) +{ + int ret; + + ret = wait_for_completion_timeout(&ecc->done, msecs_to_jiffies(500)); + if (!ret) { + dev_err(ecc->dev, "%s timeout - interrupt did not arrive)\n", + (op == ECC_ENCODE) ? "encoder" : "decoder"); + return -ETIMEDOUT; + } + + return 0; +} +EXPORT_SYMBOL(mtk_ecc_wait_done); + +int mtk_ecc_encode(struct mtk_ecc *ecc, struct mtk_ecc_config *config, + u8 *data, u32 bytes) +{ + dma_addr_t addr; + u32 len; + int ret; + + addr = dma_map_single(ecc->dev, data, bytes, DMA_TO_DEVICE); + ret = dma_mapping_error(ecc->dev, addr); + if (ret) { + dev_err(ecc->dev, "dma mapping error\n"); + return -EINVAL; + } + + config->op = ECC_ENCODE; + config->addr = addr; + ret = mtk_ecc_enable(ecc, config); + if (ret) { + dma_unmap_single(ecc->dev, addr, bytes, DMA_TO_DEVICE); + return ret; + } + + ret = mtk_ecc_wait_done(ecc, ECC_ENCODE); + if (ret) + goto timeout; + + mtk_ecc_wait_idle(ecc, ECC_ENCODE); + + /* Program ECC bytes to OOB: per sector oob = FDM + ECC + SPARE */ + len = (config->strength * ecc->caps->parity_bits + 7) >> 3; + + /* write the parity bytes generated by the ECC back to temp buffer */ + __ioread32_copy(ecc->eccdata, + ecc->regs + ecc->caps->ecc_regs[ECC_ENCPAR00], + round_up(len, 4)); + + /* copy into possibly unaligned OOB region with actual length */ + memcpy(data + bytes, ecc->eccdata, len); +timeout: + + dma_unmap_single(ecc->dev, addr, bytes, DMA_TO_DEVICE); + mtk_ecc_disable(ecc); + + return ret; +} +EXPORT_SYMBOL(mtk_ecc_encode); + +void mtk_ecc_adjust_strength(struct mtk_ecc *ecc, u32 *p) +{ + const u8 *ecc_strength = ecc->caps->ecc_strength; + int i; + + for (i = 0; i < ecc->caps->num_ecc_strength; i++) { + if (*p <= ecc_strength[i]) { + if (!i) + *p = ecc_strength[i]; + else if (*p != ecc_strength[i]) + *p = ecc_strength[i - 1]; + return; + } + } + + *p = ecc_strength[ecc->caps->num_ecc_strength - 1]; +} +EXPORT_SYMBOL(mtk_ecc_adjust_strength); + +unsigned int mtk_ecc_get_parity_bits(struct mtk_ecc *ecc) +{ + return ecc->caps->parity_bits; +} +EXPORT_SYMBOL(mtk_ecc_get_parity_bits); + +static const struct mtk_ecc_caps mtk_ecc_caps_mt2701 = { + .err_mask = 0x3f, + .ecc_strength = ecc_strength_mt2701, + .ecc_regs = mt2701_ecc_regs, + .num_ecc_strength = 20, + .ecc_mode_shift = 5, + .parity_bits = 14, + .pg_irq_sel = 0, +}; + +static const struct mtk_ecc_caps mtk_ecc_caps_mt2712 = { + .err_mask = 0x7f, + .ecc_strength = ecc_strength_mt2712, + .ecc_regs = mt2712_ecc_regs, + .num_ecc_strength = 23, + .ecc_mode_shift = 5, + .parity_bits = 14, + .pg_irq_sel = 1, +}; + +static const struct mtk_ecc_caps mtk_ecc_caps_mt7622 = { + .err_mask = 0x3f, + .ecc_strength = ecc_strength_mt7622, + .ecc_regs = mt7622_ecc_regs, + .num_ecc_strength = 7, + .ecc_mode_shift = 4, + .parity_bits = 13, + .pg_irq_sel = 0, +}; + +static const struct of_device_id mtk_ecc_dt_match[] = { + { + .compatible = "mediatek,mt2701-ecc", + .data = &mtk_ecc_caps_mt2701, + }, { + .compatible = "mediatek,mt2712-ecc", + .data = &mtk_ecc_caps_mt2712, + }, { + .compatible = "mediatek,mt7622-ecc", + .data = &mtk_ecc_caps_mt7622, + }, + {}, +}; + +static int mtk_ecc_probe(struct platform_device *pdev) +{ + struct device *dev = &pdev->dev; + struct mtk_ecc *ecc; + struct resource *res; + const struct of_device_id *of_ecc_id = NULL; + u32 max_eccdata_size; + int irq, ret; + + ecc = devm_kzalloc(dev, sizeof(*ecc), GFP_KERNEL); + if (!ecc) + return -ENOMEM; + + of_ecc_id = of_match_device(mtk_ecc_dt_match, &pdev->dev); + if (!of_ecc_id) + return -ENODEV; + + ecc->caps = of_ecc_id->data; + + max_eccdata_size = ecc->caps->num_ecc_strength - 1; + max_eccdata_size = ecc->caps->ecc_strength[max_eccdata_size]; + max_eccdata_size = (max_eccdata_size * ecc->caps->parity_bits + 7) >> 3; + max_eccdata_size = round_up(max_eccdata_size, 4); + ecc->eccdata = devm_kzalloc(dev, max_eccdata_size, GFP_KERNEL); + if (!ecc->eccdata) + return -ENOMEM; + + res = platform_get_resource(pdev, IORESOURCE_MEM, 0); + ecc->regs = devm_ioremap_resource(dev, res); + if (IS_ERR(ecc->regs)) { + dev_err(dev, "failed to map regs: %ld\n", PTR_ERR(ecc->regs)); + return PTR_ERR(ecc->regs); + } + + ecc->clk = devm_clk_get(dev, NULL); + if (IS_ERR(ecc->clk)) { + dev_err(dev, "failed to get clock: %ld\n", PTR_ERR(ecc->clk)); + return PTR_ERR(ecc->clk); + } + + irq = platform_get_irq(pdev, 0); + if (irq < 0) { + dev_err(dev, "failed to get irq: %d\n", irq); + return irq; + } + + ret = dma_set_mask(dev, DMA_BIT_MASK(32)); + if (ret) { + dev_err(dev, "failed to set DMA mask\n"); + return ret; + } + + ret = devm_request_irq(dev, irq, mtk_ecc_irq, 0x0, "mtk-ecc", ecc); + if (ret) { + dev_err(dev, "failed to request irq\n"); + return -EINVAL; + } + + ecc->dev = dev; + mutex_init(&ecc->lock); + platform_set_drvdata(pdev, ecc); + dev_info(dev, "probed\n"); + + return 0; +} + +#ifdef CONFIG_PM_SLEEP +static int mtk_ecc_suspend(struct device *dev) +{ + struct mtk_ecc *ecc = dev_get_drvdata(dev); + + clk_disable_unprepare(ecc->clk); + + return 0; +} + +static int mtk_ecc_resume(struct device *dev) +{ + struct mtk_ecc *ecc = dev_get_drvdata(dev); + int ret; + + ret = clk_prepare_enable(ecc->clk); + if (ret) { + dev_err(dev, "failed to enable clk\n"); + return ret; + } + + return 0; +} + +static SIMPLE_DEV_PM_OPS(mtk_ecc_pm_ops, mtk_ecc_suspend, mtk_ecc_resume); +#endif + +MODULE_DEVICE_TABLE(of, mtk_ecc_dt_match); + +static struct platform_driver mtk_ecc_driver = { + .probe = mtk_ecc_probe, + .driver = { + .name = "mtk-ecc", + .of_match_table = of_match_ptr(mtk_ecc_dt_match), +#ifdef CONFIG_PM_SLEEP + .pm = &mtk_ecc_pm_ops, +#endif + }, +}; + +module_platform_driver(mtk_ecc_driver); + +MODULE_AUTHOR("Xiaolei Li "); +MODULE_DESCRIPTION("MTK Nand ECC Driver"); +MODULE_LICENSE("GPL"); diff --git a/drivers/mtd/nand/raw/mtk_ecc.h b/drivers/mtd/nand/raw/mtk_ecc.h new file mode 100644 index 000000000000..a455df080952 --- /dev/null +++ b/drivers/mtd/nand/raw/mtk_ecc.h @@ -0,0 +1,49 @@ +/* + * MTK SDG1 ECC controller + * + * Copyright (c) 2016 Mediatek + * Authors: Xiaolei Li + * Jorge Ramirez-Ortiz + * This program is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License version 2 as published + * by the Free Software Foundation. + */ + +#ifndef __DRIVERS_MTD_NAND_MTK_ECC_H__ +#define __DRIVERS_MTD_NAND_MTK_ECC_H__ + +#include + +enum mtk_ecc_mode {ECC_DMA_MODE = 0, ECC_NFI_MODE = 1}; +enum mtk_ecc_operation {ECC_ENCODE, ECC_DECODE}; + +struct device_node; +struct mtk_ecc; + +struct mtk_ecc_stats { + u32 corrected; + u32 bitflips; + u32 failed; +}; + +struct mtk_ecc_config { + enum mtk_ecc_operation op; + enum mtk_ecc_mode mode; + dma_addr_t addr; + u32 strength; + u32 sectors; + u32 len; +}; + +int mtk_ecc_encode(struct mtk_ecc *, struct mtk_ecc_config *, u8 *, u32); +void mtk_ecc_get_stats(struct mtk_ecc *, struct mtk_ecc_stats *, int); +int mtk_ecc_wait_done(struct mtk_ecc *, enum mtk_ecc_operation); +int mtk_ecc_enable(struct mtk_ecc *, struct mtk_ecc_config *); +void mtk_ecc_disable(struct mtk_ecc *); +void mtk_ecc_adjust_strength(struct mtk_ecc *ecc, u32 *p); +unsigned int mtk_ecc_get_parity_bits(struct mtk_ecc *ecc); + +struct mtk_ecc *of_mtk_ecc_get(struct device_node *); +void mtk_ecc_release(struct mtk_ecc *); + +#endif diff --git a/drivers/mtd/nand/raw/mtk_nand.c b/drivers/mtd/nand/raw/mtk_nand.c new file mode 100644 index 000000000000..6977da3a26aa --- /dev/null +++ b/drivers/mtd/nand/raw/mtk_nand.c @@ -0,0 +1,1599 @@ +/* + * MTK NAND Flash controller driver. + * Copyright (C) 2016 MediaTek Inc. + * Authors: Xiaolei Li + * Jorge Ramirez-Ortiz + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + */ + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include "mtk_ecc.h" + +/* NAND controller register definition */ +#define NFI_CNFG (0x00) +#define CNFG_AHB BIT(0) +#define CNFG_READ_EN BIT(1) +#define CNFG_DMA_BURST_EN BIT(2) +#define CNFG_BYTE_RW BIT(6) +#define CNFG_HW_ECC_EN BIT(8) +#define CNFG_AUTO_FMT_EN BIT(9) +#define CNFG_OP_CUST (6 << 12) +#define NFI_PAGEFMT (0x04) +#define PAGEFMT_FDM_ECC_SHIFT (12) +#define PAGEFMT_FDM_SHIFT (8) +#define PAGEFMT_SEC_SEL_512 BIT(2) +#define PAGEFMT_512_2K (0) +#define PAGEFMT_2K_4K (1) +#define PAGEFMT_4K_8K (2) +#define PAGEFMT_8K_16K (3) +/* NFI control */ +#define NFI_CON (0x08) +#define CON_FIFO_FLUSH BIT(0) +#define CON_NFI_RST BIT(1) +#define CON_BRD BIT(8) /* burst read */ +#define CON_BWR BIT(9) /* burst write */ +#define CON_SEC_SHIFT (12) +/* Timming control register */ +#define NFI_ACCCON (0x0C) +#define NFI_INTR_EN (0x10) +#define INTR_AHB_DONE_EN BIT(6) +#define NFI_INTR_STA (0x14) +#define NFI_CMD (0x20) +#define NFI_ADDRNOB (0x30) +#define NFI_COLADDR (0x34) +#define NFI_ROWADDR (0x38) +#define NFI_STRDATA (0x40) +#define STAR_EN (1) +#define STAR_DE (0) +#define NFI_CNRNB (0x44) +#define NFI_DATAW (0x50) +#define NFI_DATAR (0x54) +#define NFI_PIO_DIRDY (0x58) +#define PIO_DI_RDY (0x01) +#define NFI_STA (0x60) +#define STA_CMD BIT(0) +#define STA_ADDR BIT(1) +#define STA_BUSY BIT(8) +#define STA_EMP_PAGE BIT(12) +#define NFI_FSM_CUSTDATA (0xe << 16) +#define NFI_FSM_MASK (0xf << 16) +#define NFI_ADDRCNTR (0x70) +#define CNTR_MASK GENMASK(16, 12) +#define ADDRCNTR_SEC_SHIFT (12) +#define ADDRCNTR_SEC(val) \ + (((val) & CNTR_MASK) >> ADDRCNTR_SEC_SHIFT) +#define NFI_STRADDR (0x80) +#define NFI_BYTELEN (0x84) +#define NFI_CSEL (0x90) +#define NFI_FDML(x) (0xA0 + (x) * sizeof(u32) * 2) +#define NFI_FDMM(x) (0xA4 + (x) * sizeof(u32) * 2) +#define NFI_FDM_MAX_SIZE (8) +#define NFI_FDM_MIN_SIZE (1) +#define NFI_MASTER_STA (0x224) +#define MASTER_STA_MASK (0x0FFF) +#define NFI_EMPTY_THRESH (0x23C) + +#define MTK_NAME "mtk-nand" +#define KB(x) ((x) * 1024UL) +#define MB(x) (KB(x) * 1024UL) + +#define MTK_TIMEOUT (500000) +#define MTK_RESET_TIMEOUT (1000000) +#define MTK_NAND_MAX_NSELS (2) +#define MTK_NFC_MIN_SPARE (16) +#define ACCTIMING(tpoecs, tprecs, tc2r, tw2r, twh, twst, trlt) \ + ((tpoecs) << 28 | (tprecs) << 22 | (tc2r) << 16 | \ + (tw2r) << 12 | (twh) << 8 | (twst) << 4 | (trlt)) + +struct mtk_nfc_caps { + const u8 *spare_size; + u8 num_spare_size; + u8 pageformat_spare_shift; + u8 nfi_clk_div; + u8 max_sector; + u32 max_sector_size; +}; + +struct mtk_nfc_bad_mark_ctl { + void (*bm_swap)(struct mtd_info *, u8 *buf, int raw); + u32 sec; + u32 pos; +}; + +/* + * FDM: region used to store free OOB data + */ +struct mtk_nfc_fdm { + u32 reg_size; + u32 ecc_size; +}; + +struct mtk_nfc_nand_chip { + struct list_head node; + struct nand_chip nand; + + struct mtk_nfc_bad_mark_ctl bad_mark; + struct mtk_nfc_fdm fdm; + u32 spare_per_sector; + + int nsels; + u8 sels[0]; + /* nothing after this field */ +}; + +struct mtk_nfc_clk { + struct clk *nfi_clk; + struct clk *pad_clk; +}; + +struct mtk_nfc { + struct nand_hw_control controller; + struct mtk_ecc_config ecc_cfg; + struct mtk_nfc_clk clk; + struct mtk_ecc *ecc; + + struct device *dev; + const struct mtk_nfc_caps *caps; + void __iomem *regs; + + struct completion done; + struct list_head chips; + + u8 *buffer; +}; + +/* + * supported spare size of each IP. + * order should be the same with the spare size bitfiled defination of + * register NFI_PAGEFMT. + */ +static const u8 spare_size_mt2701[] = { + 16, 26, 27, 28, 32, 36, 40, 44, 48, 49, 50, 51, 52, 62, 63, 64 +}; + +static const u8 spare_size_mt2712[] = { + 16, 26, 27, 28, 32, 36, 40, 44, 48, 49, 50, 51, 52, 62, 61, 63, 64, 67, + 74 +}; + +static const u8 spare_size_mt7622[] = { + 16, 26, 27, 28 +}; + +static inline struct mtk_nfc_nand_chip *to_mtk_nand(struct nand_chip *nand) +{ + return container_of(nand, struct mtk_nfc_nand_chip, nand); +} + +static inline u8 *data_ptr(struct nand_chip *chip, const u8 *p, int i) +{ + return (u8 *)p + i * chip->ecc.size; +} + +static inline u8 *oob_ptr(struct nand_chip *chip, int i) +{ + struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip); + u8 *poi; + + /* map the sector's FDM data to free oob: + * the beginning of the oob area stores the FDM data of bad mark sectors + */ + + if (i < mtk_nand->bad_mark.sec) + poi = chip->oob_poi + (i + 1) * mtk_nand->fdm.reg_size; + else if (i == mtk_nand->bad_mark.sec) + poi = chip->oob_poi; + else + poi = chip->oob_poi + i * mtk_nand->fdm.reg_size; + + return poi; +} + +static inline int mtk_data_len(struct nand_chip *chip) +{ + struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip); + + return chip->ecc.size + mtk_nand->spare_per_sector; +} + +static inline u8 *mtk_data_ptr(struct nand_chip *chip, int i) +{ + struct mtk_nfc *nfc = nand_get_controller_data(chip); + + return nfc->buffer + i * mtk_data_len(chip); +} + +static inline u8 *mtk_oob_ptr(struct nand_chip *chip, int i) +{ + struct mtk_nfc *nfc = nand_get_controller_data(chip); + + return nfc->buffer + i * mtk_data_len(chip) + chip->ecc.size; +} + +static inline void nfi_writel(struct mtk_nfc *nfc, u32 val, u32 reg) +{ + writel(val, nfc->regs + reg); +} + +static inline void nfi_writew(struct mtk_nfc *nfc, u16 val, u32 reg) +{ + writew(val, nfc->regs + reg); +} + +static inline void nfi_writeb(struct mtk_nfc *nfc, u8 val, u32 reg) +{ + writeb(val, nfc->regs + reg); +} + +static inline u32 nfi_readl(struct mtk_nfc *nfc, u32 reg) +{ + return readl_relaxed(nfc->regs + reg); +} + +static inline u16 nfi_readw(struct mtk_nfc *nfc, u32 reg) +{ + return readw_relaxed(nfc->regs + reg); +} + +static inline u8 nfi_readb(struct mtk_nfc *nfc, u32 reg) +{ + return readb_relaxed(nfc->regs + reg); +} + +static void mtk_nfc_hw_reset(struct mtk_nfc *nfc) +{ + struct device *dev = nfc->dev; + u32 val; + int ret; + + /* reset all registers and force the NFI master to terminate */ + nfi_writel(nfc, CON_FIFO_FLUSH | CON_NFI_RST, NFI_CON); + + /* wait for the master to finish the last transaction */ + ret = readl_poll_timeout(nfc->regs + NFI_MASTER_STA, val, + !(val & MASTER_STA_MASK), 50, + MTK_RESET_TIMEOUT); + if (ret) + dev_warn(dev, "master active in reset [0x%x] = 0x%x\n", + NFI_MASTER_STA, val); + + /* ensure any status register affected by the NFI master is reset */ + nfi_writel(nfc, CON_FIFO_FLUSH | CON_NFI_RST, NFI_CON); + nfi_writew(nfc, STAR_DE, NFI_STRDATA); +} + +static int mtk_nfc_send_command(struct mtk_nfc *nfc, u8 command) +{ + struct device *dev = nfc->dev; + u32 val; + int ret; + + nfi_writel(nfc, command, NFI_CMD); + + ret = readl_poll_timeout_atomic(nfc->regs + NFI_STA, val, + !(val & STA_CMD), 10, MTK_TIMEOUT); + if (ret) { + dev_warn(dev, "nfi core timed out entering command mode\n"); + return -EIO; + } + + return 0; +} + +static int mtk_nfc_send_address(struct mtk_nfc *nfc, int addr) +{ + struct device *dev = nfc->dev; + u32 val; + int ret; + + nfi_writel(nfc, addr, NFI_COLADDR); + nfi_writel(nfc, 0, NFI_ROWADDR); + nfi_writew(nfc, 1, NFI_ADDRNOB); + + ret = readl_poll_timeout_atomic(nfc->regs + NFI_STA, val, + !(val & STA_ADDR), 10, MTK_TIMEOUT); + if (ret) { + dev_warn(dev, "nfi core timed out entering address mode\n"); + return -EIO; + } + + return 0; +} + +static int mtk_nfc_hw_runtime_config(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip); + struct mtk_nfc *nfc = nand_get_controller_data(chip); + u32 fmt, spare, i; + + if (!mtd->writesize) + return 0; + + spare = mtk_nand->spare_per_sector; + + switch (mtd->writesize) { + case 512: + fmt = PAGEFMT_512_2K | PAGEFMT_SEC_SEL_512; + break; + case KB(2): + if (chip->ecc.size == 512) + fmt = PAGEFMT_2K_4K | PAGEFMT_SEC_SEL_512; + else + fmt = PAGEFMT_512_2K; + break; + case KB(4): + if (chip->ecc.size == 512) + fmt = PAGEFMT_4K_8K | PAGEFMT_SEC_SEL_512; + else + fmt = PAGEFMT_2K_4K; + break; + case KB(8): + if (chip->ecc.size == 512) + fmt = PAGEFMT_8K_16K | PAGEFMT_SEC_SEL_512; + else + fmt = PAGEFMT_4K_8K; + break; + case KB(16): + fmt = PAGEFMT_8K_16K; + break; + default: + dev_err(nfc->dev, "invalid page len: %d\n", mtd->writesize); + return -EINVAL; + } + + /* + * the hardware will double the value for this eccsize, so we need to + * halve it + */ + if (chip->ecc.size == 1024) + spare >>= 1; + + for (i = 0; i < nfc->caps->num_spare_size; i++) { + if (nfc->caps->spare_size[i] == spare) + break; + } + + if (i == nfc->caps->num_spare_size) { + dev_err(nfc->dev, "invalid spare size %d\n", spare); + return -EINVAL; + } + + fmt |= i << nfc->caps->pageformat_spare_shift; + + fmt |= mtk_nand->fdm.reg_size << PAGEFMT_FDM_SHIFT; + fmt |= mtk_nand->fdm.ecc_size << PAGEFMT_FDM_ECC_SHIFT; + nfi_writel(nfc, fmt, NFI_PAGEFMT); + + nfc->ecc_cfg.strength = chip->ecc.strength; + nfc->ecc_cfg.len = chip->ecc.size + mtk_nand->fdm.ecc_size; + + return 0; +} + +static void mtk_nfc_select_chip(struct mtd_info *mtd, int chip) +{ + struct nand_chip *nand = mtd_to_nand(mtd); + struct mtk_nfc *nfc = nand_get_controller_data(nand); + struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(nand); + + if (chip < 0) + return; + + mtk_nfc_hw_runtime_config(mtd); + + nfi_writel(nfc, mtk_nand->sels[chip], NFI_CSEL); +} + +static int mtk_nfc_dev_ready(struct mtd_info *mtd) +{ + struct mtk_nfc *nfc = nand_get_controller_data(mtd_to_nand(mtd)); + + if (nfi_readl(nfc, NFI_STA) & STA_BUSY) + return 0; + + return 1; +} + +static void mtk_nfc_cmd_ctrl(struct mtd_info *mtd, int dat, unsigned int ctrl) +{ + struct mtk_nfc *nfc = nand_get_controller_data(mtd_to_nand(mtd)); + + if (ctrl & NAND_ALE) { + mtk_nfc_send_address(nfc, dat); + } else if (ctrl & NAND_CLE) { + mtk_nfc_hw_reset(nfc); + + nfi_writew(nfc, CNFG_OP_CUST, NFI_CNFG); + mtk_nfc_send_command(nfc, dat); + } +} + +static inline void mtk_nfc_wait_ioready(struct mtk_nfc *nfc) +{ + int rc; + u8 val; + + rc = readb_poll_timeout_atomic(nfc->regs + NFI_PIO_DIRDY, val, + val & PIO_DI_RDY, 10, MTK_TIMEOUT); + if (rc < 0) + dev_err(nfc->dev, "data not ready\n"); +} + +static inline u8 mtk_nfc_read_byte(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct mtk_nfc *nfc = nand_get_controller_data(chip); + u32 reg; + + /* after each byte read, the NFI_STA reg is reset by the hardware */ + reg = nfi_readl(nfc, NFI_STA) & NFI_FSM_MASK; + if (reg != NFI_FSM_CUSTDATA) { + reg = nfi_readw(nfc, NFI_CNFG); + reg |= CNFG_BYTE_RW | CNFG_READ_EN; + nfi_writew(nfc, reg, NFI_CNFG); + + /* + * set to max sector to allow the HW to continue reading over + * unaligned accesses + */ + reg = (nfc->caps->max_sector << CON_SEC_SHIFT) | CON_BRD; + nfi_writel(nfc, reg, NFI_CON); + + /* trigger to fetch data */ + nfi_writew(nfc, STAR_EN, NFI_STRDATA); + } + + mtk_nfc_wait_ioready(nfc); + + return nfi_readb(nfc, NFI_DATAR); +} + +static void mtk_nfc_read_buf(struct mtd_info *mtd, u8 *buf, int len) +{ + int i; + + for (i = 0; i < len; i++) + buf[i] = mtk_nfc_read_byte(mtd); +} + +static void mtk_nfc_write_byte(struct mtd_info *mtd, u8 byte) +{ + struct mtk_nfc *nfc = nand_get_controller_data(mtd_to_nand(mtd)); + u32 reg; + + reg = nfi_readl(nfc, NFI_STA) & NFI_FSM_MASK; + + if (reg != NFI_FSM_CUSTDATA) { + reg = nfi_readw(nfc, NFI_CNFG) | CNFG_BYTE_RW; + nfi_writew(nfc, reg, NFI_CNFG); + + reg = nfc->caps->max_sector << CON_SEC_SHIFT | CON_BWR; + nfi_writel(nfc, reg, NFI_CON); + + nfi_writew(nfc, STAR_EN, NFI_STRDATA); + } + + mtk_nfc_wait_ioready(nfc); + nfi_writeb(nfc, byte, NFI_DATAW); +} + +static void mtk_nfc_write_buf(struct mtd_info *mtd, const u8 *buf, int len) +{ + int i; + + for (i = 0; i < len; i++) + mtk_nfc_write_byte(mtd, buf[i]); +} + +static int mtk_nfc_setup_data_interface(struct mtd_info *mtd, int csline, + const struct nand_data_interface *conf) +{ + struct mtk_nfc *nfc = nand_get_controller_data(mtd_to_nand(mtd)); + const struct nand_sdr_timings *timings; + u32 rate, tpoecs, tprecs, tc2r, tw2r, twh, twst, trlt; + + timings = nand_get_sdr_timings(conf); + if (IS_ERR(timings)) + return -ENOTSUPP; + + if (csline == NAND_DATA_IFACE_CHECK_ONLY) + return 0; + + rate = clk_get_rate(nfc->clk.nfi_clk); + /* There is a frequency divider in some IPs */ + rate /= nfc->caps->nfi_clk_div; + + /* turn clock rate into KHZ */ + rate /= 1000; + + tpoecs = max(timings->tALH_min, timings->tCLH_min) / 1000; + tpoecs = DIV_ROUND_UP(tpoecs * rate, 1000000); + tpoecs &= 0xf; + + tprecs = max(timings->tCLS_min, timings->tALS_min) / 1000; + tprecs = DIV_ROUND_UP(tprecs * rate, 1000000); + tprecs &= 0x3f; + + /* sdr interface has no tCR which means CE# low to RE# low */ + tc2r = 0; + + tw2r = timings->tWHR_min / 1000; + tw2r = DIV_ROUND_UP(tw2r * rate, 1000000); + tw2r = DIV_ROUND_UP(tw2r - 1, 2); + tw2r &= 0xf; + + twh = max(timings->tREH_min, timings->tWH_min) / 1000; + twh = DIV_ROUND_UP(twh * rate, 1000000) - 1; + twh &= 0xf; + + twst = timings->tWP_min / 1000; + twst = DIV_ROUND_UP(twst * rate, 1000000) - 1; + twst &= 0xf; + + trlt = max(timings->tREA_max, timings->tRP_min) / 1000; + trlt = DIV_ROUND_UP(trlt * rate, 1000000) - 1; + trlt &= 0xf; + + /* + * ACCON: access timing control register + * ------------------------------------- + * 31:28: tpoecs, minimum required time for CS post pulling down after + * accessing the device + * 27:22: tprecs, minimum required time for CS pre pulling down before + * accessing the device + * 21:16: tc2r, minimum required time from NCEB low to NREB low + * 15:12: tw2r, minimum required time from NWEB high to NREB low. + * 11:08: twh, write enable hold time + * 07:04: twst, write wait states + * 03:00: trlt, read wait states + */ + trlt = ACCTIMING(tpoecs, tprecs, tc2r, tw2r, twh, twst, trlt); + nfi_writel(nfc, trlt, NFI_ACCCON); + + return 0; +} + +static int mtk_nfc_sector_encode(struct nand_chip *chip, u8 *data) +{ + struct mtk_nfc *nfc = nand_get_controller_data(chip); + struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip); + int size = chip->ecc.size + mtk_nand->fdm.reg_size; + + nfc->ecc_cfg.mode = ECC_DMA_MODE; + nfc->ecc_cfg.op = ECC_ENCODE; + + return mtk_ecc_encode(nfc->ecc, &nfc->ecc_cfg, data, size); +} + +static void mtk_nfc_no_bad_mark_swap(struct mtd_info *a, u8 *b, int c) +{ + /* nop */ +} + +static void mtk_nfc_bad_mark_swap(struct mtd_info *mtd, u8 *buf, int raw) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct mtk_nfc_nand_chip *nand = to_mtk_nand(chip); + u32 bad_pos = nand->bad_mark.pos; + + if (raw) + bad_pos += nand->bad_mark.sec * mtk_data_len(chip); + else + bad_pos += nand->bad_mark.sec * chip->ecc.size; + + swap(chip->oob_poi[0], buf[bad_pos]); +} + +static int mtk_nfc_format_subpage(struct mtd_info *mtd, u32 offset, + u32 len, const u8 *buf) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip); + struct mtk_nfc *nfc = nand_get_controller_data(chip); + struct mtk_nfc_fdm *fdm = &mtk_nand->fdm; + u32 start, end; + int i, ret; + + start = offset / chip->ecc.size; + end = DIV_ROUND_UP(offset + len, chip->ecc.size); + + memset(nfc->buffer, 0xff, mtd->writesize + mtd->oobsize); + for (i = 0; i < chip->ecc.steps; i++) { + memcpy(mtk_data_ptr(chip, i), data_ptr(chip, buf, i), + chip->ecc.size); + + if (start > i || i >= end) + continue; + + if (i == mtk_nand->bad_mark.sec) + mtk_nand->bad_mark.bm_swap(mtd, nfc->buffer, 1); + + memcpy(mtk_oob_ptr(chip, i), oob_ptr(chip, i), fdm->reg_size); + + /* program the CRC back to the OOB */ + ret = mtk_nfc_sector_encode(chip, mtk_data_ptr(chip, i)); + if (ret < 0) + return ret; + } + + return 0; +} + +static void mtk_nfc_format_page(struct mtd_info *mtd, const u8 *buf) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip); + struct mtk_nfc *nfc = nand_get_controller_data(chip); + struct mtk_nfc_fdm *fdm = &mtk_nand->fdm; + u32 i; + + memset(nfc->buffer, 0xff, mtd->writesize + mtd->oobsize); + for (i = 0; i < chip->ecc.steps; i++) { + if (buf) + memcpy(mtk_data_ptr(chip, i), data_ptr(chip, buf, i), + chip->ecc.size); + + if (i == mtk_nand->bad_mark.sec) + mtk_nand->bad_mark.bm_swap(mtd, nfc->buffer, 1); + + memcpy(mtk_oob_ptr(chip, i), oob_ptr(chip, i), fdm->reg_size); + } +} + +static inline void mtk_nfc_read_fdm(struct nand_chip *chip, u32 start, + u32 sectors) +{ + struct mtk_nfc *nfc = nand_get_controller_data(chip); + struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip); + struct mtk_nfc_fdm *fdm = &mtk_nand->fdm; + u32 vall, valm; + u8 *oobptr; + int i, j; + + for (i = 0; i < sectors; i++) { + oobptr = oob_ptr(chip, start + i); + vall = nfi_readl(nfc, NFI_FDML(i)); + valm = nfi_readl(nfc, NFI_FDMM(i)); + + for (j = 0; j < fdm->reg_size; j++) + oobptr[j] = (j >= 4 ? valm : vall) >> ((j % 4) * 8); + } +} + +static inline void mtk_nfc_write_fdm(struct nand_chip *chip) +{ + struct mtk_nfc *nfc = nand_get_controller_data(chip); + struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip); + struct mtk_nfc_fdm *fdm = &mtk_nand->fdm; + u32 vall, valm; + u8 *oobptr; + int i, j; + + for (i = 0; i < chip->ecc.steps; i++) { + oobptr = oob_ptr(chip, i); + vall = 0; + valm = 0; + for (j = 0; j < 8; j++) { + if (j < 4) + vall |= (j < fdm->reg_size ? oobptr[j] : 0xff) + << (j * 8); + else + valm |= (j < fdm->reg_size ? oobptr[j] : 0xff) + << ((j - 4) * 8); + } + nfi_writel(nfc, vall, NFI_FDML(i)); + nfi_writel(nfc, valm, NFI_FDMM(i)); + } +} + +static int mtk_nfc_do_write_page(struct mtd_info *mtd, struct nand_chip *chip, + const u8 *buf, int page, int len) +{ + struct mtk_nfc *nfc = nand_get_controller_data(chip); + struct device *dev = nfc->dev; + dma_addr_t addr; + u32 reg; + int ret; + + addr = dma_map_single(dev, (void *)buf, len, DMA_TO_DEVICE); + ret = dma_mapping_error(nfc->dev, addr); + if (ret) { + dev_err(nfc->dev, "dma mapping error\n"); + return -EINVAL; + } + + reg = nfi_readw(nfc, NFI_CNFG) | CNFG_AHB | CNFG_DMA_BURST_EN; + nfi_writew(nfc, reg, NFI_CNFG); + + nfi_writel(nfc, chip->ecc.steps << CON_SEC_SHIFT, NFI_CON); + nfi_writel(nfc, lower_32_bits(addr), NFI_STRADDR); + nfi_writew(nfc, INTR_AHB_DONE_EN, NFI_INTR_EN); + + init_completion(&nfc->done); + + reg = nfi_readl(nfc, NFI_CON) | CON_BWR; + nfi_writel(nfc, reg, NFI_CON); + nfi_writew(nfc, STAR_EN, NFI_STRDATA); + + ret = wait_for_completion_timeout(&nfc->done, msecs_to_jiffies(500)); + if (!ret) { + dev_err(dev, "program ahb done timeout\n"); + nfi_writew(nfc, 0, NFI_INTR_EN); + ret = -ETIMEDOUT; + goto timeout; + } + + ret = readl_poll_timeout_atomic(nfc->regs + NFI_ADDRCNTR, reg, + ADDRCNTR_SEC(reg) >= chip->ecc.steps, + 10, MTK_TIMEOUT); + if (ret) + dev_err(dev, "hwecc write timeout\n"); + +timeout: + + dma_unmap_single(nfc->dev, addr, len, DMA_TO_DEVICE); + nfi_writel(nfc, 0, NFI_CON); + + return ret; +} + +static int mtk_nfc_write_page(struct mtd_info *mtd, struct nand_chip *chip, + const u8 *buf, int page, int raw) +{ + struct mtk_nfc *nfc = nand_get_controller_data(chip); + struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip); + size_t len; + const u8 *bufpoi; + u32 reg; + int ret; + + nand_prog_page_begin_op(chip, page, 0, NULL, 0); + + if (!raw) { + /* OOB => FDM: from register, ECC: from HW */ + reg = nfi_readw(nfc, NFI_CNFG) | CNFG_AUTO_FMT_EN; + nfi_writew(nfc, reg | CNFG_HW_ECC_EN, NFI_CNFG); + + nfc->ecc_cfg.op = ECC_ENCODE; + nfc->ecc_cfg.mode = ECC_NFI_MODE; + ret = mtk_ecc_enable(nfc->ecc, &nfc->ecc_cfg); + if (ret) { + /* clear NFI config */ + reg = nfi_readw(nfc, NFI_CNFG); + reg &= ~(CNFG_AUTO_FMT_EN | CNFG_HW_ECC_EN); + nfi_writew(nfc, reg, NFI_CNFG); + + return ret; + } + + memcpy(nfc->buffer, buf, mtd->writesize); + mtk_nand->bad_mark.bm_swap(mtd, nfc->buffer, raw); + bufpoi = nfc->buffer; + + /* write OOB into the FDM registers (OOB area in MTK NAND) */ + mtk_nfc_write_fdm(chip); + } else { + bufpoi = buf; + } + + len = mtd->writesize + (raw ? mtd->oobsize : 0); + ret = mtk_nfc_do_write_page(mtd, chip, bufpoi, page, len); + + if (!raw) + mtk_ecc_disable(nfc->ecc); + + if (ret) + return ret; + + return nand_prog_page_end_op(chip); +} + +static int mtk_nfc_write_page_hwecc(struct mtd_info *mtd, + struct nand_chip *chip, const u8 *buf, + int oob_on, int page) +{ + return mtk_nfc_write_page(mtd, chip, buf, page, 0); +} + +static int mtk_nfc_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip, + const u8 *buf, int oob_on, int pg) +{ + struct mtk_nfc *nfc = nand_get_controller_data(chip); + + mtk_nfc_format_page(mtd, buf); + return mtk_nfc_write_page(mtd, chip, nfc->buffer, pg, 1); +} + +static int mtk_nfc_write_subpage_hwecc(struct mtd_info *mtd, + struct nand_chip *chip, u32 offset, + u32 data_len, const u8 *buf, + int oob_on, int page) +{ + struct mtk_nfc *nfc = nand_get_controller_data(chip); + int ret; + + ret = mtk_nfc_format_subpage(mtd, offset, data_len, buf); + if (ret < 0) + return ret; + + /* use the data in the private buffer (now with FDM and CRC) */ + return mtk_nfc_write_page(mtd, chip, nfc->buffer, page, 1); +} + +static int mtk_nfc_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip, + int page) +{ + return mtk_nfc_write_page_raw(mtd, chip, NULL, 1, page); +} + +static int mtk_nfc_update_ecc_stats(struct mtd_info *mtd, u8 *buf, u32 sectors) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct mtk_nfc *nfc = nand_get_controller_data(chip); + struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip); + struct mtk_ecc_stats stats; + int rc, i; + + rc = nfi_readl(nfc, NFI_STA) & STA_EMP_PAGE; + if (rc) { + memset(buf, 0xff, sectors * chip->ecc.size); + for (i = 0; i < sectors; i++) + memset(oob_ptr(chip, i), 0xff, mtk_nand->fdm.reg_size); + return 0; + } + + mtk_ecc_get_stats(nfc->ecc, &stats, sectors); + mtd->ecc_stats.corrected += stats.corrected; + mtd->ecc_stats.failed += stats.failed; + + return stats.bitflips; +} + +static int mtk_nfc_read_subpage(struct mtd_info *mtd, struct nand_chip *chip, + u32 data_offs, u32 readlen, + u8 *bufpoi, int page, int raw) +{ + struct mtk_nfc *nfc = nand_get_controller_data(chip); + struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip); + u32 spare = mtk_nand->spare_per_sector; + u32 column, sectors, start, end, reg; + dma_addr_t addr; + int bitflips; + size_t len; + u8 *buf; + int rc; + + start = data_offs / chip->ecc.size; + end = DIV_ROUND_UP(data_offs + readlen, chip->ecc.size); + + sectors = end - start; + column = start * (chip->ecc.size + spare); + + len = sectors * chip->ecc.size + (raw ? sectors * spare : 0); + buf = bufpoi + start * chip->ecc.size; + + nand_read_page_op(chip, page, column, NULL, 0); + + addr = dma_map_single(nfc->dev, buf, len, DMA_FROM_DEVICE); + rc = dma_mapping_error(nfc->dev, addr); + if (rc) { + dev_err(nfc->dev, "dma mapping error\n"); + + return -EINVAL; + } + + reg = nfi_readw(nfc, NFI_CNFG); + reg |= CNFG_READ_EN | CNFG_DMA_BURST_EN | CNFG_AHB; + if (!raw) { + reg |= CNFG_AUTO_FMT_EN | CNFG_HW_ECC_EN; + nfi_writew(nfc, reg, NFI_CNFG); + + nfc->ecc_cfg.mode = ECC_NFI_MODE; + nfc->ecc_cfg.sectors = sectors; + nfc->ecc_cfg.op = ECC_DECODE; + rc = mtk_ecc_enable(nfc->ecc, &nfc->ecc_cfg); + if (rc) { + dev_err(nfc->dev, "ecc enable\n"); + /* clear NFI_CNFG */ + reg &= ~(CNFG_DMA_BURST_EN | CNFG_AHB | CNFG_READ_EN | + CNFG_AUTO_FMT_EN | CNFG_HW_ECC_EN); + nfi_writew(nfc, reg, NFI_CNFG); + dma_unmap_single(nfc->dev, addr, len, DMA_FROM_DEVICE); + + return rc; + } + } else { + nfi_writew(nfc, reg, NFI_CNFG); + } + + nfi_writel(nfc, sectors << CON_SEC_SHIFT, NFI_CON); + nfi_writew(nfc, INTR_AHB_DONE_EN, NFI_INTR_EN); + nfi_writel(nfc, lower_32_bits(addr), NFI_STRADDR); + + init_completion(&nfc->done); + reg = nfi_readl(nfc, NFI_CON) | CON_BRD; + nfi_writel(nfc, reg, NFI_CON); + nfi_writew(nfc, STAR_EN, NFI_STRDATA); + + rc = wait_for_completion_timeout(&nfc->done, msecs_to_jiffies(500)); + if (!rc) + dev_warn(nfc->dev, "read ahb/dma done timeout\n"); + + rc = readl_poll_timeout_atomic(nfc->regs + NFI_BYTELEN, reg, + ADDRCNTR_SEC(reg) >= sectors, 10, + MTK_TIMEOUT); + if (rc < 0) { + dev_err(nfc->dev, "subpage done timeout\n"); + bitflips = -EIO; + } else { + bitflips = 0; + if (!raw) { + rc = mtk_ecc_wait_done(nfc->ecc, ECC_DECODE); + bitflips = rc < 0 ? -ETIMEDOUT : + mtk_nfc_update_ecc_stats(mtd, buf, sectors); + mtk_nfc_read_fdm(chip, start, sectors); + } + } + + dma_unmap_single(nfc->dev, addr, len, DMA_FROM_DEVICE); + + if (raw) + goto done; + + mtk_ecc_disable(nfc->ecc); + + if (clamp(mtk_nand->bad_mark.sec, start, end) == mtk_nand->bad_mark.sec) + mtk_nand->bad_mark.bm_swap(mtd, bufpoi, raw); +done: + nfi_writel(nfc, 0, NFI_CON); + + return bitflips; +} + +static int mtk_nfc_read_subpage_hwecc(struct mtd_info *mtd, + struct nand_chip *chip, u32 off, + u32 len, u8 *p, int pg) +{ + return mtk_nfc_read_subpage(mtd, chip, off, len, p, pg, 0); +} + +static int mtk_nfc_read_page_hwecc(struct mtd_info *mtd, + struct nand_chip *chip, u8 *p, + int oob_on, int pg) +{ + return mtk_nfc_read_subpage(mtd, chip, 0, mtd->writesize, p, pg, 0); +} + +static int mtk_nfc_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip, + u8 *buf, int oob_on, int page) +{ + struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip); + struct mtk_nfc *nfc = nand_get_controller_data(chip); + struct mtk_nfc_fdm *fdm = &mtk_nand->fdm; + int i, ret; + + memset(nfc->buffer, 0xff, mtd->writesize + mtd->oobsize); + ret = mtk_nfc_read_subpage(mtd, chip, 0, mtd->writesize, nfc->buffer, + page, 1); + if (ret < 0) + return ret; + + for (i = 0; i < chip->ecc.steps; i++) { + memcpy(oob_ptr(chip, i), mtk_oob_ptr(chip, i), fdm->reg_size); + + if (i == mtk_nand->bad_mark.sec) + mtk_nand->bad_mark.bm_swap(mtd, nfc->buffer, 1); + + if (buf) + memcpy(data_ptr(chip, buf, i), mtk_data_ptr(chip, i), + chip->ecc.size); + } + + return ret; +} + +static int mtk_nfc_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip, + int page) +{ + return mtk_nfc_read_page_raw(mtd, chip, NULL, 1, page); +} + +static inline void mtk_nfc_hw_init(struct mtk_nfc *nfc) +{ + /* + * CNRNB: nand ready/busy register + * ------------------------------- + * 7:4: timeout register for polling the NAND busy/ready signal + * 0 : poll the status of the busy/ready signal after [7:4]*16 cycles. + */ + nfi_writew(nfc, 0xf1, NFI_CNRNB); + nfi_writel(nfc, PAGEFMT_8K_16K, NFI_PAGEFMT); + + mtk_nfc_hw_reset(nfc); + + nfi_readl(nfc, NFI_INTR_STA); + nfi_writel(nfc, 0, NFI_INTR_EN); +} + +static irqreturn_t mtk_nfc_irq(int irq, void *id) +{ + struct mtk_nfc *nfc = id; + u16 sta, ien; + + sta = nfi_readw(nfc, NFI_INTR_STA); + ien = nfi_readw(nfc, NFI_INTR_EN); + + if (!(sta & ien)) + return IRQ_NONE; + + nfi_writew(nfc, ~sta & ien, NFI_INTR_EN); + complete(&nfc->done); + + return IRQ_HANDLED; +} + +static int mtk_nfc_enable_clk(struct device *dev, struct mtk_nfc_clk *clk) +{ + int ret; + + ret = clk_prepare_enable(clk->nfi_clk); + if (ret) { + dev_err(dev, "failed to enable nfi clk\n"); + return ret; + } + + ret = clk_prepare_enable(clk->pad_clk); + if (ret) { + dev_err(dev, "failed to enable pad clk\n"); + clk_disable_unprepare(clk->nfi_clk); + return ret; + } + + return 0; +} + +static void mtk_nfc_disable_clk(struct mtk_nfc_clk *clk) +{ + clk_disable_unprepare(clk->nfi_clk); + clk_disable_unprepare(clk->pad_clk); +} + +static int mtk_nfc_ooblayout_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *oob_region) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip); + struct mtk_nfc_fdm *fdm = &mtk_nand->fdm; + u32 eccsteps; + + eccsteps = mtd->writesize / chip->ecc.size; + + if (section >= eccsteps) + return -ERANGE; + + oob_region->length = fdm->reg_size - fdm->ecc_size; + oob_region->offset = section * fdm->reg_size + fdm->ecc_size; + + return 0; +} + +static int mtk_nfc_ooblayout_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *oob_region) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct mtk_nfc_nand_chip *mtk_nand = to_mtk_nand(chip); + u32 eccsteps; + + if (section) + return -ERANGE; + + eccsteps = mtd->writesize / chip->ecc.size; + oob_region->offset = mtk_nand->fdm.reg_size * eccsteps; + oob_region->length = mtd->oobsize - oob_region->offset; + + return 0; +} + +static const struct mtd_ooblayout_ops mtk_nfc_ooblayout_ops = { + .free = mtk_nfc_ooblayout_free, + .ecc = mtk_nfc_ooblayout_ecc, +}; + +static void mtk_nfc_set_fdm(struct mtk_nfc_fdm *fdm, struct mtd_info *mtd) +{ + struct nand_chip *nand = mtd_to_nand(mtd); + struct mtk_nfc_nand_chip *chip = to_mtk_nand(nand); + struct mtk_nfc *nfc = nand_get_controller_data(nand); + u32 ecc_bytes; + + ecc_bytes = DIV_ROUND_UP(nand->ecc.strength * + mtk_ecc_get_parity_bits(nfc->ecc), 8); + + fdm->reg_size = chip->spare_per_sector - ecc_bytes; + if (fdm->reg_size > NFI_FDM_MAX_SIZE) + fdm->reg_size = NFI_FDM_MAX_SIZE; + + /* bad block mark storage */ + fdm->ecc_size = 1; +} + +static void mtk_nfc_set_bad_mark_ctl(struct mtk_nfc_bad_mark_ctl *bm_ctl, + struct mtd_info *mtd) +{ + struct nand_chip *nand = mtd_to_nand(mtd); + + if (mtd->writesize == 512) { + bm_ctl->bm_swap = mtk_nfc_no_bad_mark_swap; + } else { + bm_ctl->bm_swap = mtk_nfc_bad_mark_swap; + bm_ctl->sec = mtd->writesize / mtk_data_len(nand); + bm_ctl->pos = mtd->writesize % mtk_data_len(nand); + } +} + +static int mtk_nfc_set_spare_per_sector(u32 *sps, struct mtd_info *mtd) +{ + struct nand_chip *nand = mtd_to_nand(mtd); + struct mtk_nfc *nfc = nand_get_controller_data(nand); + const u8 *spare = nfc->caps->spare_size; + u32 eccsteps, i, closest_spare = 0; + + eccsteps = mtd->writesize / nand->ecc.size; + *sps = mtd->oobsize / eccsteps; + + if (nand->ecc.size == 1024) + *sps >>= 1; + + if (*sps < MTK_NFC_MIN_SPARE) + return -EINVAL; + + for (i = 0; i < nfc->caps->num_spare_size; i++) { + if (*sps >= spare[i] && spare[i] >= spare[closest_spare]) { + closest_spare = i; + if (*sps == spare[i]) + break; + } + } + + *sps = spare[closest_spare]; + + if (nand->ecc.size == 1024) + *sps <<= 1; + + return 0; +} + +static int mtk_nfc_ecc_init(struct device *dev, struct mtd_info *mtd) +{ + struct nand_chip *nand = mtd_to_nand(mtd); + struct mtk_nfc *nfc = nand_get_controller_data(nand); + u32 spare; + int free, ret; + + /* support only ecc hw mode */ + if (nand->ecc.mode != NAND_ECC_HW) { + dev_err(dev, "ecc.mode not supported\n"); + return -EINVAL; + } + + /* if optional dt settings not present */ + if (!nand->ecc.size || !nand->ecc.strength) { + /* use datasheet requirements */ + nand->ecc.strength = nand->ecc_strength_ds; + nand->ecc.size = nand->ecc_step_ds; + + /* + * align eccstrength and eccsize + * this controller only supports 512 and 1024 sizes + */ + if (nand->ecc.size < 1024) { + if (mtd->writesize > 512 && + nfc->caps->max_sector_size > 512) { + nand->ecc.size = 1024; + nand->ecc.strength <<= 1; + } else { + nand->ecc.size = 512; + } + } else { + nand->ecc.size = 1024; + } + + ret = mtk_nfc_set_spare_per_sector(&spare, mtd); + if (ret) + return ret; + + /* calculate oob bytes except ecc parity data */ + free = (nand->ecc.strength * mtk_ecc_get_parity_bits(nfc->ecc) + + 7) >> 3; + free = spare - free; + + /* + * enhance ecc strength if oob left is bigger than max FDM size + * or reduce ecc strength if oob size is not enough for ecc + * parity data. + */ + if (free > NFI_FDM_MAX_SIZE) { + spare -= NFI_FDM_MAX_SIZE; + nand->ecc.strength = (spare << 3) / + mtk_ecc_get_parity_bits(nfc->ecc); + } else if (free < 0) { + spare -= NFI_FDM_MIN_SIZE; + nand->ecc.strength = (spare << 3) / + mtk_ecc_get_parity_bits(nfc->ecc); + } + } + + mtk_ecc_adjust_strength(nfc->ecc, &nand->ecc.strength); + + dev_info(dev, "eccsize %d eccstrength %d\n", + nand->ecc.size, nand->ecc.strength); + + return 0; +} + +static int mtk_nfc_nand_chip_init(struct device *dev, struct mtk_nfc *nfc, + struct device_node *np) +{ + struct mtk_nfc_nand_chip *chip; + struct nand_chip *nand; + struct mtd_info *mtd; + int nsels, len; + u32 tmp; + int ret; + int i; + + if (!of_get_property(np, "reg", &nsels)) + return -ENODEV; + + nsels /= sizeof(u32); + if (!nsels || nsels > MTK_NAND_MAX_NSELS) { + dev_err(dev, "invalid reg property size %d\n", nsels); + return -EINVAL; + } + + chip = devm_kzalloc(dev, sizeof(*chip) + nsels * sizeof(u8), + GFP_KERNEL); + if (!chip) + return -ENOMEM; + + chip->nsels = nsels; + for (i = 0; i < nsels; i++) { + ret = of_property_read_u32_index(np, "reg", i, &tmp); + if (ret) { + dev_err(dev, "reg property failure : %d\n", ret); + return ret; + } + chip->sels[i] = tmp; + } + + nand = &chip->nand; + nand->controller = &nfc->controller; + + nand_set_flash_node(nand, np); + nand_set_controller_data(nand, nfc); + + nand->options |= NAND_USE_BOUNCE_BUFFER | NAND_SUBPAGE_READ; + nand->dev_ready = mtk_nfc_dev_ready; + nand->select_chip = mtk_nfc_select_chip; + nand->write_byte = mtk_nfc_write_byte; + nand->write_buf = mtk_nfc_write_buf; + nand->read_byte = mtk_nfc_read_byte; + nand->read_buf = mtk_nfc_read_buf; + nand->cmd_ctrl = mtk_nfc_cmd_ctrl; + nand->setup_data_interface = mtk_nfc_setup_data_interface; + + /* set default mode in case dt entry is missing */ + nand->ecc.mode = NAND_ECC_HW; + + nand->ecc.write_subpage = mtk_nfc_write_subpage_hwecc; + nand->ecc.write_page_raw = mtk_nfc_write_page_raw; + nand->ecc.write_page = mtk_nfc_write_page_hwecc; + nand->ecc.write_oob_raw = mtk_nfc_write_oob_std; + nand->ecc.write_oob = mtk_nfc_write_oob_std; + + nand->ecc.read_subpage = mtk_nfc_read_subpage_hwecc; + nand->ecc.read_page_raw = mtk_nfc_read_page_raw; + nand->ecc.read_page = mtk_nfc_read_page_hwecc; + nand->ecc.read_oob_raw = mtk_nfc_read_oob_std; + nand->ecc.read_oob = mtk_nfc_read_oob_std; + + mtd = nand_to_mtd(nand); + mtd->owner = THIS_MODULE; + mtd->dev.parent = dev; + mtd->name = MTK_NAME; + mtd_set_ooblayout(mtd, &mtk_nfc_ooblayout_ops); + + mtk_nfc_hw_init(nfc); + + ret = nand_scan_ident(mtd, nsels, NULL); + if (ret) + return ret; + + /* store bbt magic in page, cause OOB is not protected */ + if (nand->bbt_options & NAND_BBT_USE_FLASH) + nand->bbt_options |= NAND_BBT_NO_OOB; + + ret = mtk_nfc_ecc_init(dev, mtd); + if (ret) + return -EINVAL; + + if (nand->options & NAND_BUSWIDTH_16) { + dev_err(dev, "16bits buswidth not supported"); + return -EINVAL; + } + + ret = mtk_nfc_set_spare_per_sector(&chip->spare_per_sector, mtd); + if (ret) + return ret; + + mtk_nfc_set_fdm(&chip->fdm, mtd); + mtk_nfc_set_bad_mark_ctl(&chip->bad_mark, mtd); + + len = mtd->writesize + mtd->oobsize; + nfc->buffer = devm_kzalloc(dev, len, GFP_KERNEL); + if (!nfc->buffer) + return -ENOMEM; + + ret = nand_scan_tail(mtd); + if (ret) + return ret; + + ret = mtd_device_parse_register(mtd, NULL, NULL, NULL, 0); + if (ret) { + dev_err(dev, "mtd parse partition error\n"); + nand_release(mtd); + return ret; + } + + list_add_tail(&chip->node, &nfc->chips); + + return 0; +} + +static int mtk_nfc_nand_chips_init(struct device *dev, struct mtk_nfc *nfc) +{ + struct device_node *np = dev->of_node; + struct device_node *nand_np; + int ret; + + for_each_child_of_node(np, nand_np) { + ret = mtk_nfc_nand_chip_init(dev, nfc, nand_np); + if (ret) { + of_node_put(nand_np); + return ret; + } + } + + return 0; +} + +static const struct mtk_nfc_caps mtk_nfc_caps_mt2701 = { + .spare_size = spare_size_mt2701, + .num_spare_size = 16, + .pageformat_spare_shift = 4, + .nfi_clk_div = 1, + .max_sector = 16, + .max_sector_size = 1024, +}; + +static const struct mtk_nfc_caps mtk_nfc_caps_mt2712 = { + .spare_size = spare_size_mt2712, + .num_spare_size = 19, + .pageformat_spare_shift = 16, + .nfi_clk_div = 2, + .max_sector = 16, + .max_sector_size = 1024, +}; + +static const struct mtk_nfc_caps mtk_nfc_caps_mt7622 = { + .spare_size = spare_size_mt7622, + .num_spare_size = 4, + .pageformat_spare_shift = 4, + .nfi_clk_div = 1, + .max_sector = 8, + .max_sector_size = 512, +}; + +static const struct of_device_id mtk_nfc_id_table[] = { + { + .compatible = "mediatek,mt2701-nfc", + .data = &mtk_nfc_caps_mt2701, + }, { + .compatible = "mediatek,mt2712-nfc", + .data = &mtk_nfc_caps_mt2712, + }, { + .compatible = "mediatek,mt7622-nfc", + .data = &mtk_nfc_caps_mt7622, + }, + {} +}; +MODULE_DEVICE_TABLE(of, mtk_nfc_id_table); + +static int mtk_nfc_probe(struct platform_device *pdev) +{ + struct device *dev = &pdev->dev; + struct device_node *np = dev->of_node; + struct mtk_nfc *nfc; + struct resource *res; + const struct of_device_id *of_nfc_id = NULL; + int ret, irq; + + nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL); + if (!nfc) + return -ENOMEM; + + spin_lock_init(&nfc->controller.lock); + init_waitqueue_head(&nfc->controller.wq); + INIT_LIST_HEAD(&nfc->chips); + + /* probe defer if not ready */ + nfc->ecc = of_mtk_ecc_get(np); + if (IS_ERR(nfc->ecc)) + return PTR_ERR(nfc->ecc); + else if (!nfc->ecc) + return -ENODEV; + + nfc->dev = dev; + + res = platform_get_resource(pdev, IORESOURCE_MEM, 0); + nfc->regs = devm_ioremap_resource(dev, res); + if (IS_ERR(nfc->regs)) { + ret = PTR_ERR(nfc->regs); + goto release_ecc; + } + + nfc->clk.nfi_clk = devm_clk_get(dev, "nfi_clk"); + if (IS_ERR(nfc->clk.nfi_clk)) { + dev_err(dev, "no clk\n"); + ret = PTR_ERR(nfc->clk.nfi_clk); + goto release_ecc; + } + + nfc->clk.pad_clk = devm_clk_get(dev, "pad_clk"); + if (IS_ERR(nfc->clk.pad_clk)) { + dev_err(dev, "no pad clk\n"); + ret = PTR_ERR(nfc->clk.pad_clk); + goto release_ecc; + } + + ret = mtk_nfc_enable_clk(dev, &nfc->clk); + if (ret) + goto release_ecc; + + irq = platform_get_irq(pdev, 0); + if (irq < 0) { + dev_err(dev, "no nfi irq resource\n"); + ret = -EINVAL; + goto clk_disable; + } + + ret = devm_request_irq(dev, irq, mtk_nfc_irq, 0x0, "mtk-nand", nfc); + if (ret) { + dev_err(dev, "failed to request nfi irq\n"); + goto clk_disable; + } + + ret = dma_set_mask(dev, DMA_BIT_MASK(32)); + if (ret) { + dev_err(dev, "failed to set dma mask\n"); + goto clk_disable; + } + + of_nfc_id = of_match_device(mtk_nfc_id_table, &pdev->dev); + if (!of_nfc_id) { + ret = -ENODEV; + goto clk_disable; + } + + nfc->caps = of_nfc_id->data; + + platform_set_drvdata(pdev, nfc); + + ret = mtk_nfc_nand_chips_init(dev, nfc); + if (ret) { + dev_err(dev, "failed to init nand chips\n"); + goto clk_disable; + } + + return 0; + +clk_disable: + mtk_nfc_disable_clk(&nfc->clk); + +release_ecc: + mtk_ecc_release(nfc->ecc); + + return ret; +} + +static int mtk_nfc_remove(struct platform_device *pdev) +{ + struct mtk_nfc *nfc = platform_get_drvdata(pdev); + struct mtk_nfc_nand_chip *chip; + + while (!list_empty(&nfc->chips)) { + chip = list_first_entry(&nfc->chips, struct mtk_nfc_nand_chip, + node); + nand_release(nand_to_mtd(&chip->nand)); + list_del(&chip->node); + } + + mtk_ecc_release(nfc->ecc); + mtk_nfc_disable_clk(&nfc->clk); + + return 0; +} + +#ifdef CONFIG_PM_SLEEP +static int mtk_nfc_suspend(struct device *dev) +{ + struct mtk_nfc *nfc = dev_get_drvdata(dev); + + mtk_nfc_disable_clk(&nfc->clk); + + return 0; +} + +static int mtk_nfc_resume(struct device *dev) +{ + struct mtk_nfc *nfc = dev_get_drvdata(dev); + struct mtk_nfc_nand_chip *chip; + struct nand_chip *nand; + int ret; + u32 i; + + udelay(200); + + ret = mtk_nfc_enable_clk(dev, &nfc->clk); + if (ret) + return ret; + + /* reset NAND chip if VCC was powered off */ + list_for_each_entry(chip, &nfc->chips, node) { + nand = &chip->nand; + for (i = 0; i < chip->nsels; i++) + nand_reset(nand, i); + } + + return 0; +} + +static SIMPLE_DEV_PM_OPS(mtk_nfc_pm_ops, mtk_nfc_suspend, mtk_nfc_resume); +#endif + +static struct platform_driver mtk_nfc_driver = { + .probe = mtk_nfc_probe, + .remove = mtk_nfc_remove, + .driver = { + .name = MTK_NAME, + .of_match_table = mtk_nfc_id_table, +#ifdef CONFIG_PM_SLEEP + .pm = &mtk_nfc_pm_ops, +#endif + }, +}; + +module_platform_driver(mtk_nfc_driver); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Xiaolei Li "); +MODULE_DESCRIPTION("MTK Nand Flash Controller Driver"); diff --git a/drivers/mtd/nand/raw/mxc_nand.c b/drivers/mtd/nand/raw/mxc_nand.c new file mode 100644 index 000000000000..87b5ee66e501 --- /dev/null +++ b/drivers/mtd/nand/raw/mxc_nand.c @@ -0,0 +1,1966 @@ +/* + * Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved. + * Copyright 2008 Sascha Hauer, kernel@pengutronix.de + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License + * as published by the Free Software Foundation; either version 2 + * of the License, or (at your option) any later version. + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, + * MA 02110-1301, USA. + */ + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#include +#include + +#define DRIVER_NAME "mxc_nand" + +/* Addresses for NFC registers */ +#define NFC_V1_V2_BUF_SIZE (host->regs + 0x00) +#define NFC_V1_V2_BUF_ADDR (host->regs + 0x04) +#define NFC_V1_V2_FLASH_ADDR (host->regs + 0x06) +#define NFC_V1_V2_FLASH_CMD (host->regs + 0x08) +#define NFC_V1_V2_CONFIG (host->regs + 0x0a) +#define NFC_V1_V2_ECC_STATUS_RESULT (host->regs + 0x0c) +#define NFC_V1_V2_RSLTMAIN_AREA (host->regs + 0x0e) +#define NFC_V1_V2_RSLTSPARE_AREA (host->regs + 0x10) +#define NFC_V1_V2_WRPROT (host->regs + 0x12) +#define NFC_V1_UNLOCKSTART_BLKADDR (host->regs + 0x14) +#define NFC_V1_UNLOCKEND_BLKADDR (host->regs + 0x16) +#define NFC_V21_UNLOCKSTART_BLKADDR0 (host->regs + 0x20) +#define NFC_V21_UNLOCKSTART_BLKADDR1 (host->regs + 0x24) +#define NFC_V21_UNLOCKSTART_BLKADDR2 (host->regs + 0x28) +#define NFC_V21_UNLOCKSTART_BLKADDR3 (host->regs + 0x2c) +#define NFC_V21_UNLOCKEND_BLKADDR0 (host->regs + 0x22) +#define NFC_V21_UNLOCKEND_BLKADDR1 (host->regs + 0x26) +#define NFC_V21_UNLOCKEND_BLKADDR2 (host->regs + 0x2a) +#define NFC_V21_UNLOCKEND_BLKADDR3 (host->regs + 0x2e) +#define NFC_V1_V2_NF_WRPRST (host->regs + 0x18) +#define NFC_V1_V2_CONFIG1 (host->regs + 0x1a) +#define NFC_V1_V2_CONFIG2 (host->regs + 0x1c) + +#define NFC_V2_CONFIG1_ECC_MODE_4 (1 << 0) +#define NFC_V1_V2_CONFIG1_SP_EN (1 << 2) +#define NFC_V1_V2_CONFIG1_ECC_EN (1 << 3) +#define NFC_V1_V2_CONFIG1_INT_MSK (1 << 4) +#define NFC_V1_V2_CONFIG1_BIG (1 << 5) +#define NFC_V1_V2_CONFIG1_RST (1 << 6) +#define NFC_V1_V2_CONFIG1_CE (1 << 7) +#define NFC_V2_CONFIG1_ONE_CYCLE (1 << 8) +#define NFC_V2_CONFIG1_PPB(x) (((x) & 0x3) << 9) +#define NFC_V2_CONFIG1_FP_INT (1 << 11) + +#define NFC_V1_V2_CONFIG2_INT (1 << 15) + +/* + * Operation modes for the NFC. Valid for v1, v2 and v3 + * type controllers. + */ +#define NFC_CMD (1 << 0) +#define NFC_ADDR (1 << 1) +#define NFC_INPUT (1 << 2) +#define NFC_OUTPUT (1 << 3) +#define NFC_ID (1 << 4) +#define NFC_STATUS (1 << 5) + +#define NFC_V3_FLASH_CMD (host->regs_axi + 0x00) +#define NFC_V3_FLASH_ADDR0 (host->regs_axi + 0x04) + +#define NFC_V3_CONFIG1 (host->regs_axi + 0x34) +#define NFC_V3_CONFIG1_SP_EN (1 << 0) +#define NFC_V3_CONFIG1_RBA(x) (((x) & 0x7 ) << 4) + +#define NFC_V3_ECC_STATUS_RESULT (host->regs_axi + 0x38) + +#define NFC_V3_LAUNCH (host->regs_axi + 0x40) + +#define NFC_V3_WRPROT (host->regs_ip + 0x0) +#define NFC_V3_WRPROT_LOCK_TIGHT (1 << 0) +#define NFC_V3_WRPROT_LOCK (1 << 1) +#define NFC_V3_WRPROT_UNLOCK (1 << 2) +#define NFC_V3_WRPROT_BLS_UNLOCK (2 << 6) + +#define NFC_V3_WRPROT_UNLOCK_BLK_ADD0 (host->regs_ip + 0x04) + +#define NFC_V3_CONFIG2 (host->regs_ip + 0x24) +#define NFC_V3_CONFIG2_PS_512 (0 << 0) +#define NFC_V3_CONFIG2_PS_2048 (1 << 0) +#define NFC_V3_CONFIG2_PS_4096 (2 << 0) +#define NFC_V3_CONFIG2_ONE_CYCLE (1 << 2) +#define NFC_V3_CONFIG2_ECC_EN (1 << 3) +#define NFC_V3_CONFIG2_2CMD_PHASES (1 << 4) +#define NFC_V3_CONFIG2_NUM_ADDR_PHASE0 (1 << 5) +#define NFC_V3_CONFIG2_ECC_MODE_8 (1 << 6) +#define NFC_V3_CONFIG2_PPB(x, shift) (((x) & 0x3) << shift) +#define NFC_V3_CONFIG2_NUM_ADDR_PHASE1(x) (((x) & 0x3) << 12) +#define NFC_V3_CONFIG2_INT_MSK (1 << 15) +#define NFC_V3_CONFIG2_ST_CMD(x) (((x) & 0xff) << 24) +#define NFC_V3_CONFIG2_SPAS(x) (((x) & 0xff) << 16) + +#define NFC_V3_CONFIG3 (host->regs_ip + 0x28) +#define NFC_V3_CONFIG3_ADD_OP(x) (((x) & 0x3) << 0) +#define NFC_V3_CONFIG3_FW8 (1 << 3) +#define NFC_V3_CONFIG3_SBB(x) (((x) & 0x7) << 8) +#define NFC_V3_CONFIG3_NUM_OF_DEVICES(x) (((x) & 0x7) << 12) +#define NFC_V3_CONFIG3_RBB_MODE (1 << 15) +#define NFC_V3_CONFIG3_NO_SDMA (1 << 20) + +#define NFC_V3_IPC (host->regs_ip + 0x2C) +#define NFC_V3_IPC_CREQ (1 << 0) +#define NFC_V3_IPC_INT (1 << 31) + +#define NFC_V3_DELAY_LINE (host->regs_ip + 0x34) + +struct mxc_nand_host; + +struct mxc_nand_devtype_data { + void (*preset)(struct mtd_info *); + int (*read_page)(struct nand_chip *chip, void *buf, void *oob, bool ecc, + int page); + void (*send_cmd)(struct mxc_nand_host *, uint16_t, int); + void (*send_addr)(struct mxc_nand_host *, uint16_t, int); + void (*send_page)(struct mtd_info *, unsigned int); + void (*send_read_id)(struct mxc_nand_host *); + uint16_t (*get_dev_status)(struct mxc_nand_host *); + int (*check_int)(struct mxc_nand_host *); + void (*irq_control)(struct mxc_nand_host *, int); + u32 (*get_ecc_status)(struct mxc_nand_host *); + const struct mtd_ooblayout_ops *ooblayout; + void (*select_chip)(struct mtd_info *mtd, int chip); + int (*setup_data_interface)(struct mtd_info *mtd, int csline, + const struct nand_data_interface *conf); + void (*enable_hwecc)(struct nand_chip *chip, bool enable); + + /* + * On i.MX21 the CONFIG2:INT bit cannot be read if interrupts are masked + * (CONFIG1:INT_MSK is set). To handle this the driver uses + * enable_irq/disable_irq_nosync instead of CONFIG1:INT_MSK + */ + int irqpending_quirk; + int needs_ip; + + size_t regs_offset; + size_t spare0_offset; + size_t axi_offset; + + int spare_len; + int eccbytes; + int eccsize; + int ppb_shift; +}; + +struct mxc_nand_host { + struct nand_chip nand; + struct device *dev; + + void __iomem *spare0; + void __iomem *main_area0; + + void __iomem *base; + void __iomem *regs; + void __iomem *regs_axi; + void __iomem *regs_ip; + int status_request; + struct clk *clk; + int clk_act; + int irq; + int eccsize; + int used_oobsize; + int active_cs; + + struct completion op_completion; + + uint8_t *data_buf; + unsigned int buf_start; + + const struct mxc_nand_devtype_data *devtype_data; + struct mxc_nand_platform_data pdata; +}; + +static const char * const part_probes[] = { + "cmdlinepart", "RedBoot", "ofpart", NULL }; + +static void memcpy32_fromio(void *trg, const void __iomem *src, size_t size) +{ + int i; + u32 *t = trg; + const __iomem u32 *s = src; + + for (i = 0; i < (size >> 2); i++) + *t++ = __raw_readl(s++); +} + +static void memcpy16_fromio(void *trg, const void __iomem *src, size_t size) +{ + int i; + u16 *t = trg; + const __iomem u16 *s = src; + + /* We assume that src (IO) is always 32bit aligned */ + if (PTR_ALIGN(trg, 4) == trg && IS_ALIGNED(size, 4)) { + memcpy32_fromio(trg, src, size); + return; + } + + for (i = 0; i < (size >> 1); i++) + *t++ = __raw_readw(s++); +} + +static inline void memcpy32_toio(void __iomem *trg, const void *src, int size) +{ + /* __iowrite32_copy use 32bit size values so divide by 4 */ + __iowrite32_copy(trg, src, size / 4); +} + +static void memcpy16_toio(void __iomem *trg, const void *src, int size) +{ + int i; + __iomem u16 *t = trg; + const u16 *s = src; + + /* We assume that trg (IO) is always 32bit aligned */ + if (PTR_ALIGN(src, 4) == src && IS_ALIGNED(size, 4)) { + memcpy32_toio(trg, src, size); + return; + } + + for (i = 0; i < (size >> 1); i++) + __raw_writew(*s++, t++); +} + +/* + * The controller splits a page into data chunks of 512 bytes + partial oob. + * There are writesize / 512 such chunks, the size of the partial oob parts is + * oobsize / #chunks rounded down to a multiple of 2. The last oob chunk then + * contains additionally the byte lost by rounding (if any). + * This function handles the needed shuffling between host->data_buf (which + * holds a page in natural order, i.e. writesize bytes data + oobsize bytes + * spare) and the NFC buffer. + */ +static void copy_spare(struct mtd_info *mtd, bool bfrom, void *buf) +{ + struct nand_chip *this = mtd_to_nand(mtd); + struct mxc_nand_host *host = nand_get_controller_data(this); + u16 i, oob_chunk_size; + u16 num_chunks = mtd->writesize / 512; + + u8 *d = buf; + u8 __iomem *s = host->spare0; + u16 sparebuf_size = host->devtype_data->spare_len; + + /* size of oob chunk for all but possibly the last one */ + oob_chunk_size = (host->used_oobsize / num_chunks) & ~1; + + if (bfrom) { + for (i = 0; i < num_chunks - 1; i++) + memcpy16_fromio(d + i * oob_chunk_size, + s + i * sparebuf_size, + oob_chunk_size); + + /* the last chunk */ + memcpy16_fromio(d + i * oob_chunk_size, + s + i * sparebuf_size, + host->used_oobsize - i * oob_chunk_size); + } else { + for (i = 0; i < num_chunks - 1; i++) + memcpy16_toio(&s[i * sparebuf_size], + &d[i * oob_chunk_size], + oob_chunk_size); + + /* the last chunk */ + memcpy16_toio(&s[i * sparebuf_size], + &d[i * oob_chunk_size], + host->used_oobsize - i * oob_chunk_size); + } +} + +/* + * MXC NANDFC can only perform full page+spare or spare-only read/write. When + * the upper layers perform a read/write buf operation, the saved column address + * is used to index into the full page. So usually this function is called with + * column == 0 (unless no column cycle is needed indicated by column == -1) + */ +static void mxc_do_addr_cycle(struct mtd_info *mtd, int column, int page_addr) +{ + struct nand_chip *nand_chip = mtd_to_nand(mtd); + struct mxc_nand_host *host = nand_get_controller_data(nand_chip); + + /* Write out column address, if necessary */ + if (column != -1) { + host->devtype_data->send_addr(host, column & 0xff, + page_addr == -1); + if (mtd->writesize > 512) + /* another col addr cycle for 2k page */ + host->devtype_data->send_addr(host, + (column >> 8) & 0xff, + false); + } + + /* Write out page address, if necessary */ + if (page_addr != -1) { + /* paddr_0 - p_addr_7 */ + host->devtype_data->send_addr(host, (page_addr & 0xff), false); + + if (mtd->writesize > 512) { + if (mtd->size >= 0x10000000) { + /* paddr_8 - paddr_15 */ + host->devtype_data->send_addr(host, + (page_addr >> 8) & 0xff, + false); + host->devtype_data->send_addr(host, + (page_addr >> 16) & 0xff, + true); + } else + /* paddr_8 - paddr_15 */ + host->devtype_data->send_addr(host, + (page_addr >> 8) & 0xff, true); + } else { + if (nand_chip->options & NAND_ROW_ADDR_3) { + /* paddr_8 - paddr_15 */ + host->devtype_data->send_addr(host, + (page_addr >> 8) & 0xff, + false); + host->devtype_data->send_addr(host, + (page_addr >> 16) & 0xff, + true); + } else + /* paddr_8 - paddr_15 */ + host->devtype_data->send_addr(host, + (page_addr >> 8) & 0xff, true); + } + } +} + +static int check_int_v3(struct mxc_nand_host *host) +{ + uint32_t tmp; + + tmp = readl(NFC_V3_IPC); + if (!(tmp & NFC_V3_IPC_INT)) + return 0; + + tmp &= ~NFC_V3_IPC_INT; + writel(tmp, NFC_V3_IPC); + + return 1; +} + +static int check_int_v1_v2(struct mxc_nand_host *host) +{ + uint32_t tmp; + + tmp = readw(NFC_V1_V2_CONFIG2); + if (!(tmp & NFC_V1_V2_CONFIG2_INT)) + return 0; + + if (!host->devtype_data->irqpending_quirk) + writew(tmp & ~NFC_V1_V2_CONFIG2_INT, NFC_V1_V2_CONFIG2); + + return 1; +} + +static void irq_control_v1_v2(struct mxc_nand_host *host, int activate) +{ + uint16_t tmp; + + tmp = readw(NFC_V1_V2_CONFIG1); + + if (activate) + tmp &= ~NFC_V1_V2_CONFIG1_INT_MSK; + else + tmp |= NFC_V1_V2_CONFIG1_INT_MSK; + + writew(tmp, NFC_V1_V2_CONFIG1); +} + +static void irq_control_v3(struct mxc_nand_host *host, int activate) +{ + uint32_t tmp; + + tmp = readl(NFC_V3_CONFIG2); + + if (activate) + tmp &= ~NFC_V3_CONFIG2_INT_MSK; + else + tmp |= NFC_V3_CONFIG2_INT_MSK; + + writel(tmp, NFC_V3_CONFIG2); +} + +static void irq_control(struct mxc_nand_host *host, int activate) +{ + if (host->devtype_data->irqpending_quirk) { + if (activate) + enable_irq(host->irq); + else + disable_irq_nosync(host->irq); + } else { + host->devtype_data->irq_control(host, activate); + } +} + +static u32 get_ecc_status_v1(struct mxc_nand_host *host) +{ + return readw(NFC_V1_V2_ECC_STATUS_RESULT); +} + +static u32 get_ecc_status_v2(struct mxc_nand_host *host) +{ + return readl(NFC_V1_V2_ECC_STATUS_RESULT); +} + +static u32 get_ecc_status_v3(struct mxc_nand_host *host) +{ + return readl(NFC_V3_ECC_STATUS_RESULT); +} + +static irqreturn_t mxc_nfc_irq(int irq, void *dev_id) +{ + struct mxc_nand_host *host = dev_id; + + if (!host->devtype_data->check_int(host)) + return IRQ_NONE; + + irq_control(host, 0); + + complete(&host->op_completion); + + return IRQ_HANDLED; +} + +/* This function polls the NANDFC to wait for the basic operation to + * complete by checking the INT bit of config2 register. + */ +static int wait_op_done(struct mxc_nand_host *host, int useirq) +{ + int ret = 0; + + /* + * If operation is already complete, don't bother to setup an irq or a + * loop. + */ + if (host->devtype_data->check_int(host)) + return 0; + + if (useirq) { + unsigned long timeout; + + reinit_completion(&host->op_completion); + + irq_control(host, 1); + + timeout = wait_for_completion_timeout(&host->op_completion, HZ); + if (!timeout && !host->devtype_data->check_int(host)) { + dev_dbg(host->dev, "timeout waiting for irq\n"); + ret = -ETIMEDOUT; + } + } else { + int max_retries = 8000; + int done; + + do { + udelay(1); + + done = host->devtype_data->check_int(host); + if (done) + break; + + } while (--max_retries); + + if (!done) { + dev_dbg(host->dev, "timeout polling for completion\n"); + ret = -ETIMEDOUT; + } + } + + WARN_ONCE(ret < 0, "timeout! useirq=%d\n", useirq); + + return ret; +} + +static void send_cmd_v3(struct mxc_nand_host *host, uint16_t cmd, int useirq) +{ + /* fill command */ + writel(cmd, NFC_V3_FLASH_CMD); + + /* send out command */ + writel(NFC_CMD, NFC_V3_LAUNCH); + + /* Wait for operation to complete */ + wait_op_done(host, useirq); +} + +/* This function issues the specified command to the NAND device and + * waits for completion. */ +static void send_cmd_v1_v2(struct mxc_nand_host *host, uint16_t cmd, int useirq) +{ + dev_dbg(host->dev, "send_cmd(host, 0x%x, %d)\n", cmd, useirq); + + writew(cmd, NFC_V1_V2_FLASH_CMD); + writew(NFC_CMD, NFC_V1_V2_CONFIG2); + + if (host->devtype_data->irqpending_quirk && (cmd == NAND_CMD_RESET)) { + int max_retries = 100; + /* Reset completion is indicated by NFC_CONFIG2 */ + /* being set to 0 */ + while (max_retries-- > 0) { + if (readw(NFC_V1_V2_CONFIG2) == 0) { + break; + } + udelay(1); + } + if (max_retries < 0) + dev_dbg(host->dev, "%s: RESET failed\n", __func__); + } else { + /* Wait for operation to complete */ + wait_op_done(host, useirq); + } +} + +static void send_addr_v3(struct mxc_nand_host *host, uint16_t addr, int islast) +{ + /* fill address */ + writel(addr, NFC_V3_FLASH_ADDR0); + + /* send out address */ + writel(NFC_ADDR, NFC_V3_LAUNCH); + + wait_op_done(host, 0); +} + +/* This function sends an address (or partial address) to the + * NAND device. The address is used to select the source/destination for + * a NAND command. */ +static void send_addr_v1_v2(struct mxc_nand_host *host, uint16_t addr, int islast) +{ + dev_dbg(host->dev, "send_addr(host, 0x%x %d)\n", addr, islast); + + writew(addr, NFC_V1_V2_FLASH_ADDR); + writew(NFC_ADDR, NFC_V1_V2_CONFIG2); + + /* Wait for operation to complete */ + wait_op_done(host, islast); +} + +static void send_page_v3(struct mtd_info *mtd, unsigned int ops) +{ + struct nand_chip *nand_chip = mtd_to_nand(mtd); + struct mxc_nand_host *host = nand_get_controller_data(nand_chip); + uint32_t tmp; + + tmp = readl(NFC_V3_CONFIG1); + tmp &= ~(7 << 4); + writel(tmp, NFC_V3_CONFIG1); + + /* transfer data from NFC ram to nand */ + writel(ops, NFC_V3_LAUNCH); + + wait_op_done(host, false); +} + +static void send_page_v2(struct mtd_info *mtd, unsigned int ops) +{ + struct nand_chip *nand_chip = mtd_to_nand(mtd); + struct mxc_nand_host *host = nand_get_controller_data(nand_chip); + + /* NANDFC buffer 0 is used for page read/write */ + writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR); + + writew(ops, NFC_V1_V2_CONFIG2); + + /* Wait for operation to complete */ + wait_op_done(host, true); +} + +static void send_page_v1(struct mtd_info *mtd, unsigned int ops) +{ + struct nand_chip *nand_chip = mtd_to_nand(mtd); + struct mxc_nand_host *host = nand_get_controller_data(nand_chip); + int bufs, i; + + if (mtd->writesize > 512) + bufs = 4; + else + bufs = 1; + + for (i = 0; i < bufs; i++) { + + /* NANDFC buffer 0 is used for page read/write */ + writew((host->active_cs << 4) | i, NFC_V1_V2_BUF_ADDR); + + writew(ops, NFC_V1_V2_CONFIG2); + + /* Wait for operation to complete */ + wait_op_done(host, true); + } +} + +static void send_read_id_v3(struct mxc_nand_host *host) +{ + /* Read ID into main buffer */ + writel(NFC_ID, NFC_V3_LAUNCH); + + wait_op_done(host, true); + + memcpy32_fromio(host->data_buf, host->main_area0, 16); +} + +/* Request the NANDFC to perform a read of the NAND device ID. */ +static void send_read_id_v1_v2(struct mxc_nand_host *host) +{ + /* NANDFC buffer 0 is used for device ID output */ + writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR); + + writew(NFC_ID, NFC_V1_V2_CONFIG2); + + /* Wait for operation to complete */ + wait_op_done(host, true); + + memcpy32_fromio(host->data_buf, host->main_area0, 16); +} + +static uint16_t get_dev_status_v3(struct mxc_nand_host *host) +{ + writew(NFC_STATUS, NFC_V3_LAUNCH); + wait_op_done(host, true); + + return readl(NFC_V3_CONFIG1) >> 16; +} + +/* This function requests the NANDFC to perform a read of the + * NAND device status and returns the current status. */ +static uint16_t get_dev_status_v1_v2(struct mxc_nand_host *host) +{ + void __iomem *main_buf = host->main_area0; + uint32_t store; + uint16_t ret; + + writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR); + + /* + * The device status is stored in main_area0. To + * prevent corruption of the buffer save the value + * and restore it afterwards. + */ + store = readl(main_buf); + + writew(NFC_STATUS, NFC_V1_V2_CONFIG2); + wait_op_done(host, true); + + ret = readw(main_buf); + + writel(store, main_buf); + + return ret; +} + +static void mxc_nand_enable_hwecc_v1_v2(struct nand_chip *chip, bool enable) +{ + struct mxc_nand_host *host = nand_get_controller_data(chip); + uint16_t config1; + + if (chip->ecc.mode != NAND_ECC_HW) + return; + + config1 = readw(NFC_V1_V2_CONFIG1); + + if (enable) + config1 |= NFC_V1_V2_CONFIG1_ECC_EN; + else + config1 &= ~NFC_V1_V2_CONFIG1_ECC_EN; + + writew(config1, NFC_V1_V2_CONFIG1); +} + +static void mxc_nand_enable_hwecc_v3(struct nand_chip *chip, bool enable) +{ + struct mxc_nand_host *host = nand_get_controller_data(chip); + uint32_t config2; + + if (chip->ecc.mode != NAND_ECC_HW) + return; + + config2 = readl(NFC_V3_CONFIG2); + + if (enable) + config2 |= NFC_V3_CONFIG2_ECC_EN; + else + config2 &= ~NFC_V3_CONFIG2_ECC_EN; + + writel(config2, NFC_V3_CONFIG2); +} + +/* This functions is used by upper layer to checks if device is ready */ +static int mxc_nand_dev_ready(struct mtd_info *mtd) +{ + /* + * NFC handles R/B internally. Therefore, this function + * always returns status as ready. + */ + return 1; +} + +static int mxc_nand_read_page_v1(struct nand_chip *chip, void *buf, void *oob, + bool ecc, int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct mxc_nand_host *host = nand_get_controller_data(chip); + unsigned int bitflips_corrected = 0; + int no_subpages; + int i; + + host->devtype_data->enable_hwecc(chip, ecc); + + host->devtype_data->send_cmd(host, NAND_CMD_READ0, false); + mxc_do_addr_cycle(mtd, 0, page); + + if (mtd->writesize > 512) + host->devtype_data->send_cmd(host, NAND_CMD_READSTART, true); + + no_subpages = mtd->writesize >> 9; + + for (i = 0; i < no_subpages; i++) { + uint16_t ecc_stats; + + /* NANDFC buffer 0 is used for page read/write */ + writew((host->active_cs << 4) | i, NFC_V1_V2_BUF_ADDR); + + writew(NFC_OUTPUT, NFC_V1_V2_CONFIG2); + + /* Wait for operation to complete */ + wait_op_done(host, true); + + ecc_stats = get_ecc_status_v1(host); + + ecc_stats >>= 2; + + if (buf && ecc) { + switch (ecc_stats & 0x3) { + case 0: + default: + break; + case 1: + mtd->ecc_stats.corrected++; + bitflips_corrected = 1; + break; + case 2: + mtd->ecc_stats.failed++; + break; + } + } + } + + if (buf) + memcpy32_fromio(buf, host->main_area0, mtd->writesize); + if (oob) + copy_spare(mtd, true, oob); + + return bitflips_corrected; +} + +static int mxc_nand_read_page_v2_v3(struct nand_chip *chip, void *buf, + void *oob, bool ecc, int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct mxc_nand_host *host = nand_get_controller_data(chip); + unsigned int max_bitflips = 0; + u32 ecc_stat, err; + int no_subpages; + u8 ecc_bit_mask, err_limit; + + host->devtype_data->enable_hwecc(chip, ecc); + + host->devtype_data->send_cmd(host, NAND_CMD_READ0, false); + mxc_do_addr_cycle(mtd, 0, page); + + if (mtd->writesize > 512) + host->devtype_data->send_cmd(host, + NAND_CMD_READSTART, true); + + host->devtype_data->send_page(mtd, NFC_OUTPUT); + + if (buf) + memcpy32_fromio(buf, host->main_area0, mtd->writesize); + if (oob) + copy_spare(mtd, true, oob); + + ecc_bit_mask = (host->eccsize == 4) ? 0x7 : 0xf; + err_limit = (host->eccsize == 4) ? 0x4 : 0x8; + + no_subpages = mtd->writesize >> 9; + + ecc_stat = host->devtype_data->get_ecc_status(host); + + do { + err = ecc_stat & ecc_bit_mask; + if (err > err_limit) { + mtd->ecc_stats.failed++; + } else { + mtd->ecc_stats.corrected += err; + max_bitflips = max_t(unsigned int, max_bitflips, err); + } + + ecc_stat >>= 4; + } while (--no_subpages); + + return max_bitflips; +} + +static int mxc_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip, + uint8_t *buf, int oob_required, int page) +{ + struct mxc_nand_host *host = nand_get_controller_data(chip); + void *oob_buf; + + if (oob_required) + oob_buf = chip->oob_poi; + else + oob_buf = NULL; + + return host->devtype_data->read_page(chip, buf, oob_buf, 1, page); +} + +static int mxc_nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip, + uint8_t *buf, int oob_required, int page) +{ + struct mxc_nand_host *host = nand_get_controller_data(chip); + void *oob_buf; + + if (oob_required) + oob_buf = chip->oob_poi; + else + oob_buf = NULL; + + return host->devtype_data->read_page(chip, buf, oob_buf, 0, page); +} + +static int mxc_nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip, + int page) +{ + struct mxc_nand_host *host = nand_get_controller_data(chip); + + return host->devtype_data->read_page(chip, NULL, chip->oob_poi, 0, + page); +} + +static int mxc_nand_write_page(struct nand_chip *chip, const uint8_t *buf, + bool ecc, int page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct mxc_nand_host *host = nand_get_controller_data(chip); + + host->devtype_data->enable_hwecc(chip, ecc); + + host->devtype_data->send_cmd(host, NAND_CMD_SEQIN, false); + mxc_do_addr_cycle(mtd, 0, page); + + memcpy32_toio(host->main_area0, buf, mtd->writesize); + copy_spare(mtd, false, chip->oob_poi); + + host->devtype_data->send_page(mtd, NFC_INPUT); + host->devtype_data->send_cmd(host, NAND_CMD_PAGEPROG, true); + mxc_do_addr_cycle(mtd, 0, page); + + return 0; +} + +static int mxc_nand_write_page_ecc(struct mtd_info *mtd, struct nand_chip *chip, + const uint8_t *buf, int oob_required, + int page) +{ + return mxc_nand_write_page(chip, buf, true, page); +} + +static int mxc_nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip, + const uint8_t *buf, int oob_required, int page) +{ + return mxc_nand_write_page(chip, buf, false, page); +} + +static int mxc_nand_write_oob(struct mtd_info *mtd, struct nand_chip *chip, + int page) +{ + struct mxc_nand_host *host = nand_get_controller_data(chip); + + memset(host->data_buf, 0xff, mtd->writesize); + + return mxc_nand_write_page(chip, host->data_buf, false, page); +} + +static u_char mxc_nand_read_byte(struct mtd_info *mtd) +{ + struct nand_chip *nand_chip = mtd_to_nand(mtd); + struct mxc_nand_host *host = nand_get_controller_data(nand_chip); + uint8_t ret; + + /* Check for status request */ + if (host->status_request) + return host->devtype_data->get_dev_status(host) & 0xFF; + + if (nand_chip->options & NAND_BUSWIDTH_16) { + /* only take the lower byte of each word */ + ret = *(uint16_t *)(host->data_buf + host->buf_start); + + host->buf_start += 2; + } else { + ret = *(uint8_t *)(host->data_buf + host->buf_start); + host->buf_start++; + } + + dev_dbg(host->dev, "%s: ret=0x%hhx (start=%u)\n", __func__, ret, host->buf_start); + return ret; +} + +static uint16_t mxc_nand_read_word(struct mtd_info *mtd) +{ + struct nand_chip *nand_chip = mtd_to_nand(mtd); + struct mxc_nand_host *host = nand_get_controller_data(nand_chip); + uint16_t ret; + + ret = *(uint16_t *)(host->data_buf + host->buf_start); + host->buf_start += 2; + + return ret; +} + +/* Write data of length len to buffer buf. The data to be + * written on NAND Flash is first copied to RAMbuffer. After the Data Input + * Operation by the NFC, the data is written to NAND Flash */ +static void mxc_nand_write_buf(struct mtd_info *mtd, + const u_char *buf, int len) +{ + struct nand_chip *nand_chip = mtd_to_nand(mtd); + struct mxc_nand_host *host = nand_get_controller_data(nand_chip); + u16 col = host->buf_start; + int n = mtd->oobsize + mtd->writesize - col; + + n = min(n, len); + + memcpy(host->data_buf + col, buf, n); + + host->buf_start += n; +} + +/* Read the data buffer from the NAND Flash. To read the data from NAND + * Flash first the data output cycle is initiated by the NFC, which copies + * the data to RAMbuffer. This data of length len is then copied to buffer buf. + */ +static void mxc_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len) +{ + struct nand_chip *nand_chip = mtd_to_nand(mtd); + struct mxc_nand_host *host = nand_get_controller_data(nand_chip); + u16 col = host->buf_start; + int n = mtd->oobsize + mtd->writesize - col; + + n = min(n, len); + + memcpy(buf, host->data_buf + col, n); + + host->buf_start += n; +} + +/* This function is used by upper layer for select and + * deselect of the NAND chip */ +static void mxc_nand_select_chip_v1_v3(struct mtd_info *mtd, int chip) +{ + struct nand_chip *nand_chip = mtd_to_nand(mtd); + struct mxc_nand_host *host = nand_get_controller_data(nand_chip); + + if (chip == -1) { + /* Disable the NFC clock */ + if (host->clk_act) { + clk_disable_unprepare(host->clk); + host->clk_act = 0; + } + return; + } + + if (!host->clk_act) { + /* Enable the NFC clock */ + clk_prepare_enable(host->clk); + host->clk_act = 1; + } +} + +static void mxc_nand_select_chip_v2(struct mtd_info *mtd, int chip) +{ + struct nand_chip *nand_chip = mtd_to_nand(mtd); + struct mxc_nand_host *host = nand_get_controller_data(nand_chip); + + if (chip == -1) { + /* Disable the NFC clock */ + if (host->clk_act) { + clk_disable_unprepare(host->clk); + host->clk_act = 0; + } + return; + } + + if (!host->clk_act) { + /* Enable the NFC clock */ + clk_prepare_enable(host->clk); + host->clk_act = 1; + } + + host->active_cs = chip; + writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR); +} + +#define MXC_V1_ECCBYTES 5 + +static int mxc_v1_ooblayout_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *nand_chip = mtd_to_nand(mtd); + + if (section >= nand_chip->ecc.steps) + return -ERANGE; + + oobregion->offset = (section * 16) + 6; + oobregion->length = MXC_V1_ECCBYTES; + + return 0; +} + +static int mxc_v1_ooblayout_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *nand_chip = mtd_to_nand(mtd); + + if (section > nand_chip->ecc.steps) + return -ERANGE; + + if (!section) { + if (mtd->writesize <= 512) { + oobregion->offset = 0; + oobregion->length = 5; + } else { + oobregion->offset = 2; + oobregion->length = 4; + } + } else { + oobregion->offset = ((section - 1) * 16) + MXC_V1_ECCBYTES + 6; + if (section < nand_chip->ecc.steps) + oobregion->length = (section * 16) + 6 - + oobregion->offset; + else + oobregion->length = mtd->oobsize - oobregion->offset; + } + + return 0; +} + +static const struct mtd_ooblayout_ops mxc_v1_ooblayout_ops = { + .ecc = mxc_v1_ooblayout_ecc, + .free = mxc_v1_ooblayout_free, +}; + +static int mxc_v2_ooblayout_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *nand_chip = mtd_to_nand(mtd); + int stepsize = nand_chip->ecc.bytes == 9 ? 16 : 26; + + if (section >= nand_chip->ecc.steps) + return -ERANGE; + + oobregion->offset = (section * stepsize) + 7; + oobregion->length = nand_chip->ecc.bytes; + + return 0; +} + +static int mxc_v2_ooblayout_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *nand_chip = mtd_to_nand(mtd); + int stepsize = nand_chip->ecc.bytes == 9 ? 16 : 26; + + if (section >= nand_chip->ecc.steps) + return -ERANGE; + + if (!section) { + if (mtd->writesize <= 512) { + oobregion->offset = 0; + oobregion->length = 5; + } else { + oobregion->offset = 2; + oobregion->length = 4; + } + } else { + oobregion->offset = section * stepsize; + oobregion->length = 7; + } + + return 0; +} + +static const struct mtd_ooblayout_ops mxc_v2_ooblayout_ops = { + .ecc = mxc_v2_ooblayout_ecc, + .free = mxc_v2_ooblayout_free, +}; + +/* + * v2 and v3 type controllers can do 4bit or 8bit ecc depending + * on how much oob the nand chip has. For 8bit ecc we need at least + * 26 bytes of oob data per 512 byte block. + */ +static int get_eccsize(struct mtd_info *mtd) +{ + int oobbytes_per_512 = 0; + + oobbytes_per_512 = mtd->oobsize * 512 / mtd->writesize; + + if (oobbytes_per_512 < 26) + return 4; + else + return 8; +} + +static void preset_v1(struct mtd_info *mtd) +{ + struct nand_chip *nand_chip = mtd_to_nand(mtd); + struct mxc_nand_host *host = nand_get_controller_data(nand_chip); + uint16_t config1 = 0; + + if (nand_chip->ecc.mode == NAND_ECC_HW && mtd->writesize) + config1 |= NFC_V1_V2_CONFIG1_ECC_EN; + + if (!host->devtype_data->irqpending_quirk) + config1 |= NFC_V1_V2_CONFIG1_INT_MSK; + + host->eccsize = 1; + + writew(config1, NFC_V1_V2_CONFIG1); + /* preset operation */ + + /* Unlock the internal RAM Buffer */ + writew(0x2, NFC_V1_V2_CONFIG); + + /* Blocks to be unlocked */ + writew(0x0, NFC_V1_UNLOCKSTART_BLKADDR); + writew(0xffff, NFC_V1_UNLOCKEND_BLKADDR); + + /* Unlock Block Command for given address range */ + writew(0x4, NFC_V1_V2_WRPROT); +} + +static int mxc_nand_v2_setup_data_interface(struct mtd_info *mtd, int csline, + const struct nand_data_interface *conf) +{ + struct nand_chip *nand_chip = mtd_to_nand(mtd); + struct mxc_nand_host *host = nand_get_controller_data(nand_chip); + int tRC_min_ns, tRC_ps, ret; + unsigned long rate, rate_round; + const struct nand_sdr_timings *timings; + u16 config1; + + timings = nand_get_sdr_timings(conf); + if (IS_ERR(timings)) + return -ENOTSUPP; + + config1 = readw(NFC_V1_V2_CONFIG1); + + tRC_min_ns = timings->tRC_min / 1000; + rate = 1000000000 / tRC_min_ns; + + /* + * For tRC < 30ns we have to use EDO mode. In this case the controller + * does one access per clock cycle. Otherwise the controller does one + * access in two clock cycles, thus we have to double the rate to the + * controller. + */ + if (tRC_min_ns < 30) { + rate_round = clk_round_rate(host->clk, rate); + config1 |= NFC_V2_CONFIG1_ONE_CYCLE; + tRC_ps = 1000000000 / (rate_round / 1000); + } else { + rate *= 2; + rate_round = clk_round_rate(host->clk, rate); + config1 &= ~NFC_V2_CONFIG1_ONE_CYCLE; + tRC_ps = 1000000000 / (rate_round / 1000 / 2); + } + + /* + * The timing values compared against are from the i.MX25 Automotive + * datasheet, Table 50. NFC Timing Parameters + */ + if (timings->tCLS_min > tRC_ps - 1000 || + timings->tCLH_min > tRC_ps - 2000 || + timings->tCS_min > tRC_ps - 1000 || + timings->tCH_min > tRC_ps - 2000 || + timings->tWP_min > tRC_ps - 1500 || + timings->tALS_min > tRC_ps || + timings->tALH_min > tRC_ps - 3000 || + timings->tDS_min > tRC_ps || + timings->tDH_min > tRC_ps - 5000 || + timings->tWC_min > 2 * tRC_ps || + timings->tWH_min > tRC_ps - 2500 || + timings->tRR_min > 6 * tRC_ps || + timings->tRP_min > 3 * tRC_ps / 2 || + timings->tRC_min > 2 * tRC_ps || + timings->tREH_min > (tRC_ps / 2) - 2500) { + dev_dbg(host->dev, "Timing out of bounds\n"); + return -EINVAL; + } + + if (csline == NAND_DATA_IFACE_CHECK_ONLY) + return 0; + + ret = clk_set_rate(host->clk, rate); + if (ret) + return ret; + + writew(config1, NFC_V1_V2_CONFIG1); + + dev_dbg(host->dev, "Setting rate to %ldHz, %s mode\n", rate_round, + config1 & NFC_V2_CONFIG1_ONE_CYCLE ? "One cycle (EDO)" : + "normal"); + + return 0; +} + +static void preset_v2(struct mtd_info *mtd) +{ + struct nand_chip *nand_chip = mtd_to_nand(mtd); + struct mxc_nand_host *host = nand_get_controller_data(nand_chip); + uint16_t config1 = 0; + + config1 |= NFC_V2_CONFIG1_FP_INT; + + if (!host->devtype_data->irqpending_quirk) + config1 |= NFC_V1_V2_CONFIG1_INT_MSK; + + if (mtd->writesize) { + uint16_t pages_per_block = mtd->erasesize / mtd->writesize; + + if (nand_chip->ecc.mode == NAND_ECC_HW) + config1 |= NFC_V1_V2_CONFIG1_ECC_EN; + + host->eccsize = get_eccsize(mtd); + if (host->eccsize == 4) + config1 |= NFC_V2_CONFIG1_ECC_MODE_4; + + config1 |= NFC_V2_CONFIG1_PPB(ffs(pages_per_block) - 6); + } else { + host->eccsize = 1; + } + + writew(config1, NFC_V1_V2_CONFIG1); + /* preset operation */ + + /* Unlock the internal RAM Buffer */ + writew(0x2, NFC_V1_V2_CONFIG); + + /* Blocks to be unlocked */ + writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR0); + writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR1); + writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR2); + writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR3); + writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR0); + writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR1); + writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR2); + writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR3); + + /* Unlock Block Command for given address range */ + writew(0x4, NFC_V1_V2_WRPROT); +} + +static void preset_v3(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct mxc_nand_host *host = nand_get_controller_data(chip); + uint32_t config2, config3; + int i, addr_phases; + + writel(NFC_V3_CONFIG1_RBA(0), NFC_V3_CONFIG1); + writel(NFC_V3_IPC_CREQ, NFC_V3_IPC); + + /* Unlock the internal RAM Buffer */ + writel(NFC_V3_WRPROT_BLS_UNLOCK | NFC_V3_WRPROT_UNLOCK, + NFC_V3_WRPROT); + + /* Blocks to be unlocked */ + for (i = 0; i < NAND_MAX_CHIPS; i++) + writel(0xffff << 16, NFC_V3_WRPROT_UNLOCK_BLK_ADD0 + (i << 2)); + + writel(0, NFC_V3_IPC); + + config2 = NFC_V3_CONFIG2_ONE_CYCLE | + NFC_V3_CONFIG2_2CMD_PHASES | + NFC_V3_CONFIG2_SPAS(mtd->oobsize >> 1) | + NFC_V3_CONFIG2_ST_CMD(0x70) | + NFC_V3_CONFIG2_INT_MSK | + NFC_V3_CONFIG2_NUM_ADDR_PHASE0; + + addr_phases = fls(chip->pagemask) >> 3; + + if (mtd->writesize == 2048) { + config2 |= NFC_V3_CONFIG2_PS_2048; + config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases); + } else if (mtd->writesize == 4096) { + config2 |= NFC_V3_CONFIG2_PS_4096; + config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases); + } else { + config2 |= NFC_V3_CONFIG2_PS_512; + config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases - 1); + } + + if (mtd->writesize) { + if (chip->ecc.mode == NAND_ECC_HW) + config2 |= NFC_V3_CONFIG2_ECC_EN; + + config2 |= NFC_V3_CONFIG2_PPB( + ffs(mtd->erasesize / mtd->writesize) - 6, + host->devtype_data->ppb_shift); + host->eccsize = get_eccsize(mtd); + if (host->eccsize == 8) + config2 |= NFC_V3_CONFIG2_ECC_MODE_8; + } + + writel(config2, NFC_V3_CONFIG2); + + config3 = NFC_V3_CONFIG3_NUM_OF_DEVICES(0) | + NFC_V3_CONFIG3_NO_SDMA | + NFC_V3_CONFIG3_RBB_MODE | + NFC_V3_CONFIG3_SBB(6) | /* Reset default */ + NFC_V3_CONFIG3_ADD_OP(0); + + if (!(chip->options & NAND_BUSWIDTH_16)) + config3 |= NFC_V3_CONFIG3_FW8; + + writel(config3, NFC_V3_CONFIG3); + + writel(0, NFC_V3_DELAY_LINE); +} + +/* Used by the upper layer to write command to NAND Flash for + * different operations to be carried out on NAND Flash */ +static void mxc_nand_command(struct mtd_info *mtd, unsigned command, + int column, int page_addr) +{ + struct nand_chip *nand_chip = mtd_to_nand(mtd); + struct mxc_nand_host *host = nand_get_controller_data(nand_chip); + + dev_dbg(host->dev, "mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n", + command, column, page_addr); + + /* Reset command state information */ + host->status_request = false; + + /* Command pre-processing step */ + switch (command) { + case NAND_CMD_RESET: + host->devtype_data->preset(mtd); + host->devtype_data->send_cmd(host, command, false); + break; + + case NAND_CMD_STATUS: + host->buf_start = 0; + host->status_request = true; + + host->devtype_data->send_cmd(host, command, true); + WARN_ONCE(column != -1 || page_addr != -1, + "Unexpected column/row value (cmd=%u, col=%d, row=%d)\n", + command, column, page_addr); + mxc_do_addr_cycle(mtd, column, page_addr); + break; + + case NAND_CMD_READID: + host->devtype_data->send_cmd(host, command, true); + mxc_do_addr_cycle(mtd, column, page_addr); + host->devtype_data->send_read_id(host); + host->buf_start = 0; + break; + + case NAND_CMD_ERASE1: + case NAND_CMD_ERASE2: + host->devtype_data->send_cmd(host, command, false); + WARN_ONCE(column != -1, + "Unexpected column value (cmd=%u, col=%d)\n", + command, column); + mxc_do_addr_cycle(mtd, column, page_addr); + + break; + case NAND_CMD_PARAM: + host->devtype_data->send_cmd(host, command, false); + mxc_do_addr_cycle(mtd, column, page_addr); + host->devtype_data->send_page(mtd, NFC_OUTPUT); + memcpy32_fromio(host->data_buf, host->main_area0, 512); + host->buf_start = 0; + break; + default: + WARN_ONCE(1, "Unimplemented command (cmd=%u)\n", + command); + break; + } +} + +static int mxc_nand_onfi_set_features(struct mtd_info *mtd, + struct nand_chip *chip, int addr, + u8 *subfeature_param) +{ + struct nand_chip *nand_chip = mtd_to_nand(mtd); + struct mxc_nand_host *host = nand_get_controller_data(nand_chip); + int i; + + if (!chip->onfi_version || + !(le16_to_cpu(chip->onfi_params.opt_cmd) + & ONFI_OPT_CMD_SET_GET_FEATURES)) + return -EINVAL; + + host->buf_start = 0; + + for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i) + chip->write_byte(mtd, subfeature_param[i]); + + memcpy32_toio(host->main_area0, host->data_buf, mtd->writesize); + host->devtype_data->send_cmd(host, NAND_CMD_SET_FEATURES, false); + mxc_do_addr_cycle(mtd, addr, -1); + host->devtype_data->send_page(mtd, NFC_INPUT); + + return 0; +} + +static int mxc_nand_onfi_get_features(struct mtd_info *mtd, + struct nand_chip *chip, int addr, + u8 *subfeature_param) +{ + struct nand_chip *nand_chip = mtd_to_nand(mtd); + struct mxc_nand_host *host = nand_get_controller_data(nand_chip); + int i; + + if (!chip->onfi_version || + !(le16_to_cpu(chip->onfi_params.opt_cmd) + & ONFI_OPT_CMD_SET_GET_FEATURES)) + return -EINVAL; + + host->devtype_data->send_cmd(host, NAND_CMD_GET_FEATURES, false); + mxc_do_addr_cycle(mtd, addr, -1); + host->devtype_data->send_page(mtd, NFC_OUTPUT); + memcpy32_fromio(host->data_buf, host->main_area0, 512); + host->buf_start = 0; + + for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i) + *subfeature_param++ = chip->read_byte(mtd); + + return 0; +} + +/* + * The generic flash bbt decriptors overlap with our ecc + * hardware, so define some i.MX specific ones. + */ +static uint8_t bbt_pattern[] = { 'B', 'b', 't', '0' }; +static uint8_t mirror_pattern[] = { '1', 't', 'b', 'B' }; + +static struct nand_bbt_descr bbt_main_descr = { + .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE + | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, + .offs = 0, + .len = 4, + .veroffs = 4, + .maxblocks = 4, + .pattern = bbt_pattern, +}; + +static struct nand_bbt_descr bbt_mirror_descr = { + .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE + | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, + .offs = 0, + .len = 4, + .veroffs = 4, + .maxblocks = 4, + .pattern = mirror_pattern, +}; + +/* v1 + irqpending_quirk: i.MX21 */ +static const struct mxc_nand_devtype_data imx21_nand_devtype_data = { + .preset = preset_v1, + .read_page = mxc_nand_read_page_v1, + .send_cmd = send_cmd_v1_v2, + .send_addr = send_addr_v1_v2, + .send_page = send_page_v1, + .send_read_id = send_read_id_v1_v2, + .get_dev_status = get_dev_status_v1_v2, + .check_int = check_int_v1_v2, + .irq_control = irq_control_v1_v2, + .get_ecc_status = get_ecc_status_v1, + .ooblayout = &mxc_v1_ooblayout_ops, + .select_chip = mxc_nand_select_chip_v1_v3, + .enable_hwecc = mxc_nand_enable_hwecc_v1_v2, + .irqpending_quirk = 1, + .needs_ip = 0, + .regs_offset = 0xe00, + .spare0_offset = 0x800, + .spare_len = 16, + .eccbytes = 3, + .eccsize = 1, +}; + +/* v1 + !irqpending_quirk: i.MX27, i.MX31 */ +static const struct mxc_nand_devtype_data imx27_nand_devtype_data = { + .preset = preset_v1, + .read_page = mxc_nand_read_page_v1, + .send_cmd = send_cmd_v1_v2, + .send_addr = send_addr_v1_v2, + .send_page = send_page_v1, + .send_read_id = send_read_id_v1_v2, + .get_dev_status = get_dev_status_v1_v2, + .check_int = check_int_v1_v2, + .irq_control = irq_control_v1_v2, + .get_ecc_status = get_ecc_status_v1, + .ooblayout = &mxc_v1_ooblayout_ops, + .select_chip = mxc_nand_select_chip_v1_v3, + .enable_hwecc = mxc_nand_enable_hwecc_v1_v2, + .irqpending_quirk = 0, + .needs_ip = 0, + .regs_offset = 0xe00, + .spare0_offset = 0x800, + .axi_offset = 0, + .spare_len = 16, + .eccbytes = 3, + .eccsize = 1, +}; + +/* v21: i.MX25, i.MX35 */ +static const struct mxc_nand_devtype_data imx25_nand_devtype_data = { + .preset = preset_v2, + .read_page = mxc_nand_read_page_v2_v3, + .send_cmd = send_cmd_v1_v2, + .send_addr = send_addr_v1_v2, + .send_page = send_page_v2, + .send_read_id = send_read_id_v1_v2, + .get_dev_status = get_dev_status_v1_v2, + .check_int = check_int_v1_v2, + .irq_control = irq_control_v1_v2, + .get_ecc_status = get_ecc_status_v2, + .ooblayout = &mxc_v2_ooblayout_ops, + .select_chip = mxc_nand_select_chip_v2, + .setup_data_interface = mxc_nand_v2_setup_data_interface, + .enable_hwecc = mxc_nand_enable_hwecc_v1_v2, + .irqpending_quirk = 0, + .needs_ip = 0, + .regs_offset = 0x1e00, + .spare0_offset = 0x1000, + .axi_offset = 0, + .spare_len = 64, + .eccbytes = 9, + .eccsize = 0, +}; + +/* v3.2a: i.MX51 */ +static const struct mxc_nand_devtype_data imx51_nand_devtype_data = { + .preset = preset_v3, + .read_page = mxc_nand_read_page_v2_v3, + .send_cmd = send_cmd_v3, + .send_addr = send_addr_v3, + .send_page = send_page_v3, + .send_read_id = send_read_id_v3, + .get_dev_status = get_dev_status_v3, + .check_int = check_int_v3, + .irq_control = irq_control_v3, + .get_ecc_status = get_ecc_status_v3, + .ooblayout = &mxc_v2_ooblayout_ops, + .select_chip = mxc_nand_select_chip_v1_v3, + .enable_hwecc = mxc_nand_enable_hwecc_v3, + .irqpending_quirk = 0, + .needs_ip = 1, + .regs_offset = 0, + .spare0_offset = 0x1000, + .axi_offset = 0x1e00, + .spare_len = 64, + .eccbytes = 0, + .eccsize = 0, + .ppb_shift = 7, +}; + +/* v3.2b: i.MX53 */ +static const struct mxc_nand_devtype_data imx53_nand_devtype_data = { + .preset = preset_v3, + .read_page = mxc_nand_read_page_v2_v3, + .send_cmd = send_cmd_v3, + .send_addr = send_addr_v3, + .send_page = send_page_v3, + .send_read_id = send_read_id_v3, + .get_dev_status = get_dev_status_v3, + .check_int = check_int_v3, + .irq_control = irq_control_v3, + .get_ecc_status = get_ecc_status_v3, + .ooblayout = &mxc_v2_ooblayout_ops, + .select_chip = mxc_nand_select_chip_v1_v3, + .enable_hwecc = mxc_nand_enable_hwecc_v3, + .irqpending_quirk = 0, + .needs_ip = 1, + .regs_offset = 0, + .spare0_offset = 0x1000, + .axi_offset = 0x1e00, + .spare_len = 64, + .eccbytes = 0, + .eccsize = 0, + .ppb_shift = 8, +}; + +static inline int is_imx21_nfc(struct mxc_nand_host *host) +{ + return host->devtype_data == &imx21_nand_devtype_data; +} + +static inline int is_imx27_nfc(struct mxc_nand_host *host) +{ + return host->devtype_data == &imx27_nand_devtype_data; +} + +static inline int is_imx25_nfc(struct mxc_nand_host *host) +{ + return host->devtype_data == &imx25_nand_devtype_data; +} + +static inline int is_imx51_nfc(struct mxc_nand_host *host) +{ + return host->devtype_data == &imx51_nand_devtype_data; +} + +static inline int is_imx53_nfc(struct mxc_nand_host *host) +{ + return host->devtype_data == &imx53_nand_devtype_data; +} + +static const struct platform_device_id mxcnd_devtype[] = { + { + .name = "imx21-nand", + .driver_data = (kernel_ulong_t) &imx21_nand_devtype_data, + }, { + .name = "imx27-nand", + .driver_data = (kernel_ulong_t) &imx27_nand_devtype_data, + }, { + .name = "imx25-nand", + .driver_data = (kernel_ulong_t) &imx25_nand_devtype_data, + }, { + .name = "imx51-nand", + .driver_data = (kernel_ulong_t) &imx51_nand_devtype_data, + }, { + .name = "imx53-nand", + .driver_data = (kernel_ulong_t) &imx53_nand_devtype_data, + }, { + /* sentinel */ + } +}; +MODULE_DEVICE_TABLE(platform, mxcnd_devtype); + +#ifdef CONFIG_OF +static const struct of_device_id mxcnd_dt_ids[] = { + { + .compatible = "fsl,imx21-nand", + .data = &imx21_nand_devtype_data, + }, { + .compatible = "fsl,imx27-nand", + .data = &imx27_nand_devtype_data, + }, { + .compatible = "fsl,imx25-nand", + .data = &imx25_nand_devtype_data, + }, { + .compatible = "fsl,imx51-nand", + .data = &imx51_nand_devtype_data, + }, { + .compatible = "fsl,imx53-nand", + .data = &imx53_nand_devtype_data, + }, + { /* sentinel */ } +}; +MODULE_DEVICE_TABLE(of, mxcnd_dt_ids); + +static int __init mxcnd_probe_dt(struct mxc_nand_host *host) +{ + struct device_node *np = host->dev->of_node; + const struct of_device_id *of_id = + of_match_device(mxcnd_dt_ids, host->dev); + + if (!np) + return 1; + + host->devtype_data = of_id->data; + + return 0; +} +#else +static int __init mxcnd_probe_dt(struct mxc_nand_host *host) +{ + return 1; +} +#endif + +static int mxcnd_probe(struct platform_device *pdev) +{ + struct nand_chip *this; + struct mtd_info *mtd; + struct mxc_nand_host *host; + struct resource *res; + int err = 0; + + /* Allocate memory for MTD device structure and private data */ + host = devm_kzalloc(&pdev->dev, sizeof(struct mxc_nand_host), + GFP_KERNEL); + if (!host) + return -ENOMEM; + + /* allocate a temporary buffer for the nand_scan_ident() */ + host->data_buf = devm_kzalloc(&pdev->dev, PAGE_SIZE, GFP_KERNEL); + if (!host->data_buf) + return -ENOMEM; + + host->dev = &pdev->dev; + /* structures must be linked */ + this = &host->nand; + mtd = nand_to_mtd(this); + mtd->dev.parent = &pdev->dev; + mtd->name = DRIVER_NAME; + + /* 50 us command delay time */ + this->chip_delay = 5; + + nand_set_controller_data(this, host); + nand_set_flash_node(this, pdev->dev.of_node), + this->dev_ready = mxc_nand_dev_ready; + this->cmdfunc = mxc_nand_command; + this->read_byte = mxc_nand_read_byte; + this->read_word = mxc_nand_read_word; + this->write_buf = mxc_nand_write_buf; + this->read_buf = mxc_nand_read_buf; + this->onfi_set_features = mxc_nand_onfi_set_features; + this->onfi_get_features = mxc_nand_onfi_get_features; + + host->clk = devm_clk_get(&pdev->dev, NULL); + if (IS_ERR(host->clk)) + return PTR_ERR(host->clk); + + err = mxcnd_probe_dt(host); + if (err > 0) { + struct mxc_nand_platform_data *pdata = + dev_get_platdata(&pdev->dev); + if (pdata) { + host->pdata = *pdata; + host->devtype_data = (struct mxc_nand_devtype_data *) + pdev->id_entry->driver_data; + } else { + err = -ENODEV; + } + } + if (err < 0) + return err; + + this->setup_data_interface = host->devtype_data->setup_data_interface; + + if (host->devtype_data->needs_ip) { + res = platform_get_resource(pdev, IORESOURCE_MEM, 0); + host->regs_ip = devm_ioremap_resource(&pdev->dev, res); + if (IS_ERR(host->regs_ip)) + return PTR_ERR(host->regs_ip); + + res = platform_get_resource(pdev, IORESOURCE_MEM, 1); + } else { + res = platform_get_resource(pdev, IORESOURCE_MEM, 0); + } + + host->base = devm_ioremap_resource(&pdev->dev, res); + if (IS_ERR(host->base)) + return PTR_ERR(host->base); + + host->main_area0 = host->base; + + if (host->devtype_data->regs_offset) + host->regs = host->base + host->devtype_data->regs_offset; + host->spare0 = host->base + host->devtype_data->spare0_offset; + if (host->devtype_data->axi_offset) + host->regs_axi = host->base + host->devtype_data->axi_offset; + + this->ecc.bytes = host->devtype_data->eccbytes; + host->eccsize = host->devtype_data->eccsize; + + this->select_chip = host->devtype_data->select_chip; + this->ecc.size = 512; + mtd_set_ooblayout(mtd, host->devtype_data->ooblayout); + + if (host->pdata.hw_ecc) { + this->ecc.mode = NAND_ECC_HW; + } else { + this->ecc.mode = NAND_ECC_SOFT; + this->ecc.algo = NAND_ECC_HAMMING; + } + + /* NAND bus width determines access functions used by upper layer */ + if (host->pdata.width == 2) + this->options |= NAND_BUSWIDTH_16; + + /* update flash based bbt */ + if (host->pdata.flash_bbt) + this->bbt_options |= NAND_BBT_USE_FLASH; + + init_completion(&host->op_completion); + + host->irq = platform_get_irq(pdev, 0); + if (host->irq < 0) + return host->irq; + + /* + * Use host->devtype_data->irq_control() here instead of irq_control() + * because we must not disable_irq_nosync without having requested the + * irq. + */ + host->devtype_data->irq_control(host, 0); + + err = devm_request_irq(&pdev->dev, host->irq, mxc_nfc_irq, + 0, DRIVER_NAME, host); + if (err) + return err; + + err = clk_prepare_enable(host->clk); + if (err) + return err; + host->clk_act = 1; + + /* + * Now that we "own" the interrupt make sure the interrupt mask bit is + * cleared on i.MX21. Otherwise we can't read the interrupt status bit + * on this machine. + */ + if (host->devtype_data->irqpending_quirk) { + disable_irq_nosync(host->irq); + host->devtype_data->irq_control(host, 1); + } + + /* first scan to find the device and get the page size */ + err = nand_scan_ident(mtd, is_imx25_nfc(host) ? 4 : 1, NULL); + if (err) + goto escan; + + switch (this->ecc.mode) { + case NAND_ECC_HW: + this->ecc.read_page = mxc_nand_read_page; + this->ecc.read_page_raw = mxc_nand_read_page_raw; + this->ecc.read_oob = mxc_nand_read_oob; + this->ecc.write_page = mxc_nand_write_page_ecc; + this->ecc.write_page_raw = mxc_nand_write_page_raw; + this->ecc.write_oob = mxc_nand_write_oob; + break; + + case NAND_ECC_SOFT: + break; + + default: + err = -EINVAL; + goto escan; + } + + if (this->bbt_options & NAND_BBT_USE_FLASH) { + this->bbt_td = &bbt_main_descr; + this->bbt_md = &bbt_mirror_descr; + } + + /* allocate the right size buffer now */ + devm_kfree(&pdev->dev, (void *)host->data_buf); + host->data_buf = devm_kzalloc(&pdev->dev, mtd->writesize + mtd->oobsize, + GFP_KERNEL); + if (!host->data_buf) { + err = -ENOMEM; + goto escan; + } + + /* Call preset again, with correct writesize this time */ + host->devtype_data->preset(mtd); + + if (!this->ecc.bytes) { + if (host->eccsize == 8) + this->ecc.bytes = 18; + else if (host->eccsize == 4) + this->ecc.bytes = 9; + } + + /* + * Experimentation shows that i.MX NFC can only handle up to 218 oob + * bytes. Limit used_oobsize to 218 so as to not confuse copy_spare() + * into copying invalid data to/from the spare IO buffer, as this + * might cause ECC data corruption when doing sub-page write to a + * partially written page. + */ + host->used_oobsize = min(mtd->oobsize, 218U); + + if (this->ecc.mode == NAND_ECC_HW) { + if (is_imx21_nfc(host) || is_imx27_nfc(host)) + this->ecc.strength = 1; + else + this->ecc.strength = (host->eccsize == 4) ? 4 : 8; + } + + /* second phase scan */ + err = nand_scan_tail(mtd); + if (err) + goto escan; + + /* Register the partitions */ + mtd_device_parse_register(mtd, part_probes, + NULL, + host->pdata.parts, + host->pdata.nr_parts); + + platform_set_drvdata(pdev, host); + + return 0; + +escan: + if (host->clk_act) + clk_disable_unprepare(host->clk); + + return err; +} + +static int mxcnd_remove(struct platform_device *pdev) +{ + struct mxc_nand_host *host = platform_get_drvdata(pdev); + + nand_release(nand_to_mtd(&host->nand)); + if (host->clk_act) + clk_disable_unprepare(host->clk); + + return 0; +} + +static struct platform_driver mxcnd_driver = { + .driver = { + .name = DRIVER_NAME, + .of_match_table = of_match_ptr(mxcnd_dt_ids), + }, + .id_table = mxcnd_devtype, + .probe = mxcnd_probe, + .remove = mxcnd_remove, +}; +module_platform_driver(mxcnd_driver); + +MODULE_AUTHOR("Freescale Semiconductor, Inc."); +MODULE_DESCRIPTION("MXC NAND MTD driver"); +MODULE_LICENSE("GPL"); diff --git a/drivers/mtd/nand/raw/nand_amd.c b/drivers/mtd/nand/raw/nand_amd.c new file mode 100644 index 000000000000..22f060f38123 --- /dev/null +++ b/drivers/mtd/nand/raw/nand_amd.c @@ -0,0 +1,51 @@ +/* + * Copyright (C) 2017 Free Electrons + * Copyright (C) 2017 NextThing Co + * + * Author: Boris Brezillon + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + */ + +#include + +static void amd_nand_decode_id(struct nand_chip *chip) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + + nand_decode_ext_id(chip); + + /* + * Check for Spansion/AMD ID + repeating 5th, 6th byte since + * some Spansion chips have erasesize that conflicts with size + * listed in nand_ids table. + * Data sheet (5 byte ID): Spansion S30ML-P ORNAND (p.39) + */ + if (chip->id.data[4] != 0x00 && chip->id.data[5] == 0x00 && + chip->id.data[6] == 0x00 && chip->id.data[7] == 0x00 && + mtd->writesize == 512) { + mtd->erasesize = 128 * 1024; + mtd->erasesize <<= ((chip->id.data[3] & 0x03) << 1); + } +} + +static int amd_nand_init(struct nand_chip *chip) +{ + if (nand_is_slc(chip)) + chip->bbt_options |= NAND_BBT_SCAN2NDPAGE; + + return 0; +} + +const struct nand_manufacturer_ops amd_nand_manuf_ops = { + .detect = amd_nand_decode_id, + .init = amd_nand_init, +}; diff --git a/drivers/mtd/nand/raw/nand_base.c b/drivers/mtd/nand/raw/nand_base.c new file mode 100644 index 000000000000..e70ca16a5118 --- /dev/null +++ b/drivers/mtd/nand/raw/nand_base.c @@ -0,0 +1,6582 @@ +/* + * Overview: + * This is the generic MTD driver for NAND flash devices. It should be + * capable of working with almost all NAND chips currently available. + * + * Additional technical information is available on + * http://www.linux-mtd.infradead.org/doc/nand.html + * + * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com) + * 2002-2006 Thomas Gleixner (tglx@linutronix.de) + * + * Credits: + * David Woodhouse for adding multichip support + * + * Aleph One Ltd. and Toby Churchill Ltd. for supporting the + * rework for 2K page size chips + * + * TODO: + * Enable cached programming for 2k page size chips + * Check, if mtd->ecctype should be set to MTD_ECC_HW + * if we have HW ECC support. + * BBT table is not serialized, has to be fixed + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + * + */ + +#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +static int nand_get_device(struct mtd_info *mtd, int new_state); + +static int nand_do_write_oob(struct mtd_info *mtd, loff_t to, + struct mtd_oob_ops *ops); + +/* Define default oob placement schemes for large and small page devices */ +static int nand_ooblayout_ecc_sp(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct nand_ecc_ctrl *ecc = &chip->ecc; + + if (section > 1) + return -ERANGE; + + if (!section) { + oobregion->offset = 0; + if (mtd->oobsize == 16) + oobregion->length = 4; + else + oobregion->length = 3; + } else { + if (mtd->oobsize == 8) + return -ERANGE; + + oobregion->offset = 6; + oobregion->length = ecc->total - 4; + } + + return 0; +} + +static int nand_ooblayout_free_sp(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + if (section > 1) + return -ERANGE; + + if (mtd->oobsize == 16) { + if (section) + return -ERANGE; + + oobregion->length = 8; + oobregion->offset = 8; + } else { + oobregion->length = 2; + if (!section) + oobregion->offset = 3; + else + oobregion->offset = 6; + } + + return 0; +} + +const struct mtd_ooblayout_ops nand_ooblayout_sp_ops = { + .ecc = nand_ooblayout_ecc_sp, + .free = nand_ooblayout_free_sp, +}; +EXPORT_SYMBOL_GPL(nand_ooblayout_sp_ops); + +static int nand_ooblayout_ecc_lp(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct nand_ecc_ctrl *ecc = &chip->ecc; + + if (section || !ecc->total) + return -ERANGE; + + oobregion->length = ecc->total; + oobregion->offset = mtd->oobsize - oobregion->length; + + return 0; +} + +static int nand_ooblayout_free_lp(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct nand_ecc_ctrl *ecc = &chip->ecc; + + if (section) + return -ERANGE; + + oobregion->length = mtd->oobsize - ecc->total - 2; + oobregion->offset = 2; + + return 0; +} + +const struct mtd_ooblayout_ops nand_ooblayout_lp_ops = { + .ecc = nand_ooblayout_ecc_lp, + .free = nand_ooblayout_free_lp, +}; +EXPORT_SYMBOL_GPL(nand_ooblayout_lp_ops); + +/* + * Support the old "large page" layout used for 1-bit Hamming ECC where ECC + * are placed at a fixed offset. + */ +static int nand_ooblayout_ecc_lp_hamming(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct nand_ecc_ctrl *ecc = &chip->ecc; + + if (section) + return -ERANGE; + + switch (mtd->oobsize) { + case 64: + oobregion->offset = 40; + break; + case 128: + oobregion->offset = 80; + break; + default: + return -EINVAL; + } + + oobregion->length = ecc->total; + if (oobregion->offset + oobregion->length > mtd->oobsize) + return -ERANGE; + + return 0; +} + +static int nand_ooblayout_free_lp_hamming(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct nand_ecc_ctrl *ecc = &chip->ecc; + int ecc_offset = 0; + + if (section < 0 || section > 1) + return -ERANGE; + + switch (mtd->oobsize) { + case 64: + ecc_offset = 40; + break; + case 128: + ecc_offset = 80; + break; + default: + return -EINVAL; + } + + if (section == 0) { + oobregion->offset = 2; + oobregion->length = ecc_offset - 2; + } else { + oobregion->offset = ecc_offset + ecc->total; + oobregion->length = mtd->oobsize - oobregion->offset; + } + + return 0; +} + +static const struct mtd_ooblayout_ops nand_ooblayout_lp_hamming_ops = { + .ecc = nand_ooblayout_ecc_lp_hamming, + .free = nand_ooblayout_free_lp_hamming, +}; + +static int check_offs_len(struct mtd_info *mtd, + loff_t ofs, uint64_t len) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + int ret = 0; + + /* Start address must align on block boundary */ + if (ofs & ((1ULL << chip->phys_erase_shift) - 1)) { + pr_debug("%s: unaligned address\n", __func__); + ret = -EINVAL; + } + + /* Length must align on block boundary */ + if (len & ((1ULL << chip->phys_erase_shift) - 1)) { + pr_debug("%s: length not block aligned\n", __func__); + ret = -EINVAL; + } + + return ret; +} + +/** + * nand_release_device - [GENERIC] release chip + * @mtd: MTD device structure + * + * Release chip lock and wake up anyone waiting on the device. + */ +static void nand_release_device(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + + /* Release the controller and the chip */ + spin_lock(&chip->controller->lock); + chip->controller->active = NULL; + chip->state = FL_READY; + wake_up(&chip->controller->wq); + spin_unlock(&chip->controller->lock); +} + +/** + * nand_read_byte - [DEFAULT] read one byte from the chip + * @mtd: MTD device structure + * + * Default read function for 8bit buswidth + */ +static uint8_t nand_read_byte(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + return readb(chip->IO_ADDR_R); +} + +/** + * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip + * @mtd: MTD device structure + * + * Default read function for 16bit buswidth with endianness conversion. + * + */ +static uint8_t nand_read_byte16(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R)); +} + +/** + * nand_read_word - [DEFAULT] read one word from the chip + * @mtd: MTD device structure + * + * Default read function for 16bit buswidth without endianness conversion. + */ +static u16 nand_read_word(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + return readw(chip->IO_ADDR_R); +} + +/** + * nand_select_chip - [DEFAULT] control CE line + * @mtd: MTD device structure + * @chipnr: chipnumber to select, -1 for deselect + * + * Default select function for 1 chip devices. + */ +static void nand_select_chip(struct mtd_info *mtd, int chipnr) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + + switch (chipnr) { + case -1: + chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE); + break; + case 0: + break; + + default: + BUG(); + } +} + +/** + * nand_write_byte - [DEFAULT] write single byte to chip + * @mtd: MTD device structure + * @byte: value to write + * + * Default function to write a byte to I/O[7:0] + */ +static void nand_write_byte(struct mtd_info *mtd, uint8_t byte) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + + chip->write_buf(mtd, &byte, 1); +} + +/** + * nand_write_byte16 - [DEFAULT] write single byte to a chip with width 16 + * @mtd: MTD device structure + * @byte: value to write + * + * Default function to write a byte to I/O[7:0] on a 16-bit wide chip. + */ +static void nand_write_byte16(struct mtd_info *mtd, uint8_t byte) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + uint16_t word = byte; + + /* + * It's not entirely clear what should happen to I/O[15:8] when writing + * a byte. The ONFi spec (Revision 3.1; 2012-09-19, Section 2.16) reads: + * + * When the host supports a 16-bit bus width, only data is + * transferred at the 16-bit width. All address and command line + * transfers shall use only the lower 8-bits of the data bus. During + * command transfers, the host may place any value on the upper + * 8-bits of the data bus. During address transfers, the host shall + * set the upper 8-bits of the data bus to 00h. + * + * One user of the write_byte callback is nand_onfi_set_features. The + * four parameters are specified to be written to I/O[7:0], but this is + * neither an address nor a command transfer. Let's assume a 0 on the + * upper I/O lines is OK. + */ + chip->write_buf(mtd, (uint8_t *)&word, 2); +} + +/** + * nand_write_buf - [DEFAULT] write buffer to chip + * @mtd: MTD device structure + * @buf: data buffer + * @len: number of bytes to write + * + * Default write function for 8bit buswidth. + */ +static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + + iowrite8_rep(chip->IO_ADDR_W, buf, len); +} + +/** + * nand_read_buf - [DEFAULT] read chip data into buffer + * @mtd: MTD device structure + * @buf: buffer to store date + * @len: number of bytes to read + * + * Default read function for 8bit buswidth. + */ +static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + + ioread8_rep(chip->IO_ADDR_R, buf, len); +} + +/** + * nand_write_buf16 - [DEFAULT] write buffer to chip + * @mtd: MTD device structure + * @buf: data buffer + * @len: number of bytes to write + * + * Default write function for 16bit buswidth. + */ +static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + u16 *p = (u16 *) buf; + + iowrite16_rep(chip->IO_ADDR_W, p, len >> 1); +} + +/** + * nand_read_buf16 - [DEFAULT] read chip data into buffer + * @mtd: MTD device structure + * @buf: buffer to store date + * @len: number of bytes to read + * + * Default read function for 16bit buswidth. + */ +static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + u16 *p = (u16 *) buf; + + ioread16_rep(chip->IO_ADDR_R, p, len >> 1); +} + +/** + * nand_block_bad - [DEFAULT] Read bad block marker from the chip + * @mtd: MTD device structure + * @ofs: offset from device start + * + * Check, if the block is bad. + */ +static int nand_block_bad(struct mtd_info *mtd, loff_t ofs) +{ + int page, page_end, res; + struct nand_chip *chip = mtd_to_nand(mtd); + u8 bad; + + if (chip->bbt_options & NAND_BBT_SCANLASTPAGE) + ofs += mtd->erasesize - mtd->writesize; + + page = (int)(ofs >> chip->page_shift) & chip->pagemask; + page_end = page + (chip->bbt_options & NAND_BBT_SCAN2NDPAGE ? 2 : 1); + + for (; page < page_end; page++) { + res = chip->ecc.read_oob(mtd, chip, page); + if (res) + return res; + + bad = chip->oob_poi[chip->badblockpos]; + + if (likely(chip->badblockbits == 8)) + res = bad != 0xFF; + else + res = hweight8(bad) < chip->badblockbits; + if (res) + return res; + } + + return 0; +} + +/** + * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker + * @mtd: MTD device structure + * @ofs: offset from device start + * + * This is the default implementation, which can be overridden by a hardware + * specific driver. It provides the details for writing a bad block marker to a + * block. + */ +static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct mtd_oob_ops ops; + uint8_t buf[2] = { 0, 0 }; + int ret = 0, res, i = 0; + + memset(&ops, 0, sizeof(ops)); + ops.oobbuf = buf; + ops.ooboffs = chip->badblockpos; + if (chip->options & NAND_BUSWIDTH_16) { + ops.ooboffs &= ~0x01; + ops.len = ops.ooblen = 2; + } else { + ops.len = ops.ooblen = 1; + } + ops.mode = MTD_OPS_PLACE_OOB; + + /* Write to first/last page(s) if necessary */ + if (chip->bbt_options & NAND_BBT_SCANLASTPAGE) + ofs += mtd->erasesize - mtd->writesize; + do { + res = nand_do_write_oob(mtd, ofs, &ops); + if (!ret) + ret = res; + + i++; + ofs += mtd->writesize; + } while ((chip->bbt_options & NAND_BBT_SCAN2NDPAGE) && i < 2); + + return ret; +} + +/** + * nand_block_markbad_lowlevel - mark a block bad + * @mtd: MTD device structure + * @ofs: offset from device start + * + * This function performs the generic NAND bad block marking steps (i.e., bad + * block table(s) and/or marker(s)). We only allow the hardware driver to + * specify how to write bad block markers to OOB (chip->block_markbad). + * + * We try operations in the following order: + * + * (1) erase the affected block, to allow OOB marker to be written cleanly + * (2) write bad block marker to OOB area of affected block (unless flag + * NAND_BBT_NO_OOB_BBM is present) + * (3) update the BBT + * + * Note that we retain the first error encountered in (2) or (3), finish the + * procedures, and dump the error in the end. +*/ +static int nand_block_markbad_lowlevel(struct mtd_info *mtd, loff_t ofs) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + int res, ret = 0; + + if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) { + struct erase_info einfo; + + /* Attempt erase before marking OOB */ + memset(&einfo, 0, sizeof(einfo)); + einfo.mtd = mtd; + einfo.addr = ofs; + einfo.len = 1ULL << chip->phys_erase_shift; + nand_erase_nand(mtd, &einfo, 0); + + /* Write bad block marker to OOB */ + nand_get_device(mtd, FL_WRITING); + ret = chip->block_markbad(mtd, ofs); + nand_release_device(mtd); + } + + /* Mark block bad in BBT */ + if (chip->bbt) { + res = nand_markbad_bbt(mtd, ofs); + if (!ret) + ret = res; + } + + if (!ret) + mtd->ecc_stats.badblocks++; + + return ret; +} + +/** + * nand_check_wp - [GENERIC] check if the chip is write protected + * @mtd: MTD device structure + * + * Check, if the device is write protected. The function expects, that the + * device is already selected. + */ +static int nand_check_wp(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + u8 status; + int ret; + + /* Broken xD cards report WP despite being writable */ + if (chip->options & NAND_BROKEN_XD) + return 0; + + /* Check the WP bit */ + ret = nand_status_op(chip, &status); + if (ret) + return ret; + + return status & NAND_STATUS_WP ? 0 : 1; +} + +/** + * nand_block_isreserved - [GENERIC] Check if a block is marked reserved. + * @mtd: MTD device structure + * @ofs: offset from device start + * + * Check if the block is marked as reserved. + */ +static int nand_block_isreserved(struct mtd_info *mtd, loff_t ofs) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + + if (!chip->bbt) + return 0; + /* Return info from the table */ + return nand_isreserved_bbt(mtd, ofs); +} + +/** + * nand_block_checkbad - [GENERIC] Check if a block is marked bad + * @mtd: MTD device structure + * @ofs: offset from device start + * @allowbbt: 1, if its allowed to access the bbt area + * + * Check, if the block is bad. Either by reading the bad block table or + * calling of the scan function. + */ +static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int allowbbt) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + + if (!chip->bbt) + return chip->block_bad(mtd, ofs); + + /* Return info from the table */ + return nand_isbad_bbt(mtd, ofs, allowbbt); +} + +/** + * panic_nand_wait_ready - [GENERIC] Wait for the ready pin after commands. + * @mtd: MTD device structure + * @timeo: Timeout + * + * Helper function for nand_wait_ready used when needing to wait in interrupt + * context. + */ +static void panic_nand_wait_ready(struct mtd_info *mtd, unsigned long timeo) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + int i; + + /* Wait for the device to get ready */ + for (i = 0; i < timeo; i++) { + if (chip->dev_ready(mtd)) + break; + touch_softlockup_watchdog(); + mdelay(1); + } +} + +/** + * nand_wait_ready - [GENERIC] Wait for the ready pin after commands. + * @mtd: MTD device structure + * + * Wait for the ready pin after a command, and warn if a timeout occurs. + */ +void nand_wait_ready(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + unsigned long timeo = 400; + + if (in_interrupt() || oops_in_progress) + return panic_nand_wait_ready(mtd, timeo); + + /* Wait until command is processed or timeout occurs */ + timeo = jiffies + msecs_to_jiffies(timeo); + do { + if (chip->dev_ready(mtd)) + return; + cond_resched(); + } while (time_before(jiffies, timeo)); + + if (!chip->dev_ready(mtd)) + pr_warn_ratelimited("timeout while waiting for chip to become ready\n"); +} +EXPORT_SYMBOL_GPL(nand_wait_ready); + +/** + * nand_wait_status_ready - [GENERIC] Wait for the ready status after commands. + * @mtd: MTD device structure + * @timeo: Timeout in ms + * + * Wait for status ready (i.e. command done) or timeout. + */ +static void nand_wait_status_ready(struct mtd_info *mtd, unsigned long timeo) +{ + register struct nand_chip *chip = mtd_to_nand(mtd); + int ret; + + timeo = jiffies + msecs_to_jiffies(timeo); + do { + u8 status; + + ret = nand_read_data_op(chip, &status, sizeof(status), true); + if (ret) + return; + + if (status & NAND_STATUS_READY) + break; + touch_softlockup_watchdog(); + } while (time_before(jiffies, timeo)); +}; + +/** + * nand_soft_waitrdy - Poll STATUS reg until RDY bit is set to 1 + * @chip: NAND chip structure + * @timeout_ms: Timeout in ms + * + * Poll the STATUS register using ->exec_op() until the RDY bit becomes 1. + * If that does not happen whitin the specified timeout, -ETIMEDOUT is + * returned. + * + * This helper is intended to be used when the controller does not have access + * to the NAND R/B pin. + * + * Be aware that calling this helper from an ->exec_op() implementation means + * ->exec_op() must be re-entrant. + * + * Return 0 if the NAND chip is ready, a negative error otherwise. + */ +int nand_soft_waitrdy(struct nand_chip *chip, unsigned long timeout_ms) +{ + u8 status = 0; + int ret; + + if (!chip->exec_op) + return -ENOTSUPP; + + ret = nand_status_op(chip, NULL); + if (ret) + return ret; + + timeout_ms = jiffies + msecs_to_jiffies(timeout_ms); + do { + ret = nand_read_data_op(chip, &status, sizeof(status), true); + if (ret) + break; + + if (status & NAND_STATUS_READY) + break; + + /* + * Typical lowest execution time for a tR on most NANDs is 10us, + * use this as polling delay before doing something smarter (ie. + * deriving a delay from the timeout value, timeout_ms/ratio). + */ + udelay(10); + } while (time_before(jiffies, timeout_ms)); + + /* + * We have to exit READ_STATUS mode in order to read real data on the + * bus in case the WAITRDY instruction is preceding a DATA_IN + * instruction. + */ + nand_exit_status_op(chip); + + if (ret) + return ret; + + return status & NAND_STATUS_READY ? 0 : -ETIMEDOUT; +}; +EXPORT_SYMBOL_GPL(nand_soft_waitrdy); + +/** + * nand_command - [DEFAULT] Send command to NAND device + * @mtd: MTD device structure + * @command: the command to be sent + * @column: the column address for this command, -1 if none + * @page_addr: the page address for this command, -1 if none + * + * Send command to NAND device. This function is used for small page devices + * (512 Bytes per page). + */ +static void nand_command(struct mtd_info *mtd, unsigned int command, + int column, int page_addr) +{ + register struct nand_chip *chip = mtd_to_nand(mtd); + int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE; + + /* Write out the command to the device */ + if (command == NAND_CMD_SEQIN) { + int readcmd; + + if (column >= mtd->writesize) { + /* OOB area */ + column -= mtd->writesize; + readcmd = NAND_CMD_READOOB; + } else if (column < 256) { + /* First 256 bytes --> READ0 */ + readcmd = NAND_CMD_READ0; + } else { + column -= 256; + readcmd = NAND_CMD_READ1; + } + chip->cmd_ctrl(mtd, readcmd, ctrl); + ctrl &= ~NAND_CTRL_CHANGE; + } + if (command != NAND_CMD_NONE) + chip->cmd_ctrl(mtd, command, ctrl); + + /* Address cycle, when necessary */ + ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE; + /* Serially input address */ + if (column != -1) { + /* Adjust columns for 16 bit buswidth */ + if (chip->options & NAND_BUSWIDTH_16 && + !nand_opcode_8bits(command)) + column >>= 1; + chip->cmd_ctrl(mtd, column, ctrl); + ctrl &= ~NAND_CTRL_CHANGE; + } + if (page_addr != -1) { + chip->cmd_ctrl(mtd, page_addr, ctrl); + ctrl &= ~NAND_CTRL_CHANGE; + chip->cmd_ctrl(mtd, page_addr >> 8, ctrl); + if (chip->options & NAND_ROW_ADDR_3) + chip->cmd_ctrl(mtd, page_addr >> 16, ctrl); + } + chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE); + + /* + * Program and erase have their own busy handlers status and sequential + * in needs no delay + */ + switch (command) { + + case NAND_CMD_NONE: + case NAND_CMD_PAGEPROG: + case NAND_CMD_ERASE1: + case NAND_CMD_ERASE2: + case NAND_CMD_SEQIN: + case NAND_CMD_STATUS: + case NAND_CMD_READID: + case NAND_CMD_SET_FEATURES: + return; + + case NAND_CMD_RESET: + if (chip->dev_ready) + break; + udelay(chip->chip_delay); + chip->cmd_ctrl(mtd, NAND_CMD_STATUS, + NAND_CTRL_CLE | NAND_CTRL_CHANGE); + chip->cmd_ctrl(mtd, + NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE); + /* EZ-NAND can take upto 250ms as per ONFi v4.0 */ + nand_wait_status_ready(mtd, 250); + return; + + /* This applies to read commands */ + case NAND_CMD_READ0: + /* + * READ0 is sometimes used to exit GET STATUS mode. When this + * is the case no address cycles are requested, and we can use + * this information to detect that we should not wait for the + * device to be ready. + */ + if (column == -1 && page_addr == -1) + return; + + default: + /* + * If we don't have access to the busy pin, we apply the given + * command delay + */ + if (!chip->dev_ready) { + udelay(chip->chip_delay); + return; + } + } + /* + * Apply this short delay always to ensure that we do wait tWB in + * any case on any machine. + */ + ndelay(100); + + nand_wait_ready(mtd); +} + +static void nand_ccs_delay(struct nand_chip *chip) +{ + /* + * The controller already takes care of waiting for tCCS when the RNDIN + * or RNDOUT command is sent, return directly. + */ + if (!(chip->options & NAND_WAIT_TCCS)) + return; + + /* + * Wait tCCS_min if it is correctly defined, otherwise wait 500ns + * (which should be safe for all NANDs). + */ + if (chip->setup_data_interface) + ndelay(chip->data_interface.timings.sdr.tCCS_min / 1000); + else + ndelay(500); +} + +/** + * nand_command_lp - [DEFAULT] Send command to NAND large page device + * @mtd: MTD device structure + * @command: the command to be sent + * @column: the column address for this command, -1 if none + * @page_addr: the page address for this command, -1 if none + * + * Send command to NAND device. This is the version for the new large page + * devices. We don't have the separate regions as we have in the small page + * devices. We must emulate NAND_CMD_READOOB to keep the code compatible. + */ +static void nand_command_lp(struct mtd_info *mtd, unsigned int command, + int column, int page_addr) +{ + register struct nand_chip *chip = mtd_to_nand(mtd); + + /* Emulate NAND_CMD_READOOB */ + if (command == NAND_CMD_READOOB) { + column += mtd->writesize; + command = NAND_CMD_READ0; + } + + /* Command latch cycle */ + if (command != NAND_CMD_NONE) + chip->cmd_ctrl(mtd, command, + NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE); + + if (column != -1 || page_addr != -1) { + int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE; + + /* Serially input address */ + if (column != -1) { + /* Adjust columns for 16 bit buswidth */ + if (chip->options & NAND_BUSWIDTH_16 && + !nand_opcode_8bits(command)) + column >>= 1; + chip->cmd_ctrl(mtd, column, ctrl); + ctrl &= ~NAND_CTRL_CHANGE; + + /* Only output a single addr cycle for 8bits opcodes. */ + if (!nand_opcode_8bits(command)) + chip->cmd_ctrl(mtd, column >> 8, ctrl); + } + if (page_addr != -1) { + chip->cmd_ctrl(mtd, page_addr, ctrl); + chip->cmd_ctrl(mtd, page_addr >> 8, + NAND_NCE | NAND_ALE); + if (chip->options & NAND_ROW_ADDR_3) + chip->cmd_ctrl(mtd, page_addr >> 16, + NAND_NCE | NAND_ALE); + } + } + chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE); + + /* + * Program and erase have their own busy handlers status, sequential + * in and status need no delay. + */ + switch (command) { + + case NAND_CMD_NONE: + case NAND_CMD_CACHEDPROG: + case NAND_CMD_PAGEPROG: + case NAND_CMD_ERASE1: + case NAND_CMD_ERASE2: + case NAND_CMD_SEQIN: + case NAND_CMD_STATUS: + case NAND_CMD_READID: + case NAND_CMD_SET_FEATURES: + return; + + case NAND_CMD_RNDIN: + nand_ccs_delay(chip); + return; + + case NAND_CMD_RESET: + if (chip->dev_ready) + break; + udelay(chip->chip_delay); + chip->cmd_ctrl(mtd, NAND_CMD_STATUS, + NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE); + chip->cmd_ctrl(mtd, NAND_CMD_NONE, + NAND_NCE | NAND_CTRL_CHANGE); + /* EZ-NAND can take upto 250ms as per ONFi v4.0 */ + nand_wait_status_ready(mtd, 250); + return; + + case NAND_CMD_RNDOUT: + /* No ready / busy check necessary */ + chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART, + NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE); + chip->cmd_ctrl(mtd, NAND_CMD_NONE, + NAND_NCE | NAND_CTRL_CHANGE); + + nand_ccs_delay(chip); + return; + + case NAND_CMD_READ0: + /* + * READ0 is sometimes used to exit GET STATUS mode. When this + * is the case no address cycles are requested, and we can use + * this information to detect that READSTART should not be + * issued. + */ + if (column == -1 && page_addr == -1) + return; + + chip->cmd_ctrl(mtd, NAND_CMD_READSTART, + NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE); + chip->cmd_ctrl(mtd, NAND_CMD_NONE, + NAND_NCE | NAND_CTRL_CHANGE); + + /* This applies to read commands */ + default: + /* + * If we don't have access to the busy pin, we apply the given + * command delay. + */ + if (!chip->dev_ready) { + udelay(chip->chip_delay); + return; + } + } + + /* + * Apply this short delay always to ensure that we do wait tWB in + * any case on any machine. + */ + ndelay(100); + + nand_wait_ready(mtd); +} + +/** + * panic_nand_get_device - [GENERIC] Get chip for selected access + * @chip: the nand chip descriptor + * @mtd: MTD device structure + * @new_state: the state which is requested + * + * Used when in panic, no locks are taken. + */ +static void panic_nand_get_device(struct nand_chip *chip, + struct mtd_info *mtd, int new_state) +{ + /* Hardware controller shared among independent devices */ + chip->controller->active = chip; + chip->state = new_state; +} + +/** + * nand_get_device - [GENERIC] Get chip for selected access + * @mtd: MTD device structure + * @new_state: the state which is requested + * + * Get the device and lock it for exclusive access + */ +static int +nand_get_device(struct mtd_info *mtd, int new_state) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + spinlock_t *lock = &chip->controller->lock; + wait_queue_head_t *wq = &chip->controller->wq; + DECLARE_WAITQUEUE(wait, current); +retry: + spin_lock(lock); + + /* Hardware controller shared among independent devices */ + if (!chip->controller->active) + chip->controller->active = chip; + + if (chip->controller->active == chip && chip->state == FL_READY) { + chip->state = new_state; + spin_unlock(lock); + return 0; + } + if (new_state == FL_PM_SUSPENDED) { + if (chip->controller->active->state == FL_PM_SUSPENDED) { + chip->state = FL_PM_SUSPENDED; + spin_unlock(lock); + return 0; + } + } + set_current_state(TASK_UNINTERRUPTIBLE); + add_wait_queue(wq, &wait); + spin_unlock(lock); + schedule(); + remove_wait_queue(wq, &wait); + goto retry; +} + +/** + * panic_nand_wait - [GENERIC] wait until the command is done + * @mtd: MTD device structure + * @chip: NAND chip structure + * @timeo: timeout + * + * Wait for command done. This is a helper function for nand_wait used when + * we are in interrupt context. May happen when in panic and trying to write + * an oops through mtdoops. + */ +static void panic_nand_wait(struct mtd_info *mtd, struct nand_chip *chip, + unsigned long timeo) +{ + int i; + for (i = 0; i < timeo; i++) { + if (chip->dev_ready) { + if (chip->dev_ready(mtd)) + break; + } else { + int ret; + u8 status; + + ret = nand_read_data_op(chip, &status, sizeof(status), + true); + if (ret) + return; + + if (status & NAND_STATUS_READY) + break; + } + mdelay(1); + } +} + +/** + * nand_wait - [DEFAULT] wait until the command is done + * @mtd: MTD device structure + * @chip: NAND chip structure + * + * Wait for command done. This applies to erase and program only. + */ +static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip) +{ + + unsigned long timeo = 400; + u8 status; + int ret; + + /* + * Apply this short delay always to ensure that we do wait tWB in any + * case on any machine. + */ + ndelay(100); + + ret = nand_status_op(chip, NULL); + if (ret) + return ret; + + if (in_interrupt() || oops_in_progress) + panic_nand_wait(mtd, chip, timeo); + else { + timeo = jiffies + msecs_to_jiffies(timeo); + do { + if (chip->dev_ready) { + if (chip->dev_ready(mtd)) + break; + } else { + ret = nand_read_data_op(chip, &status, + sizeof(status), true); + if (ret) + return ret; + + if (status & NAND_STATUS_READY) + break; + } + cond_resched(); + } while (time_before(jiffies, timeo)); + } + + ret = nand_read_data_op(chip, &status, sizeof(status), true); + if (ret) + return ret; + + /* This can happen if in case of timeout or buggy dev_ready */ + WARN_ON(!(status & NAND_STATUS_READY)); + return status; +} + +/** + * nand_reset_data_interface - Reset data interface and timings + * @chip: The NAND chip + * @chipnr: Internal die id + * + * Reset the Data interface and timings to ONFI mode 0. + * + * Returns 0 for success or negative error code otherwise. + */ +static int nand_reset_data_interface(struct nand_chip *chip, int chipnr) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + int ret; + + if (!chip->setup_data_interface) + return 0; + + /* + * The ONFI specification says: + * " + * To transition from NV-DDR or NV-DDR2 to the SDR data + * interface, the host shall use the Reset (FFh) command + * using SDR timing mode 0. A device in any timing mode is + * required to recognize Reset (FFh) command issued in SDR + * timing mode 0. + * " + * + * Configure the data interface in SDR mode and set the + * timings to timing mode 0. + */ + + onfi_fill_data_interface(chip, NAND_SDR_IFACE, 0); + ret = chip->setup_data_interface(mtd, chipnr, &chip->data_interface); + if (ret) + pr_err("Failed to configure data interface to SDR timing mode 0\n"); + + return ret; +} + +/** + * nand_setup_data_interface - Setup the best data interface and timings + * @chip: The NAND chip + * @chipnr: Internal die id + * + * Find and configure the best data interface and NAND timings supported by + * the chip and the driver. + * First tries to retrieve supported timing modes from ONFI information, + * and if the NAND chip does not support ONFI, relies on the + * ->onfi_timing_mode_default specified in the nand_ids table. + * + * Returns 0 for success or negative error code otherwise. + */ +static int nand_setup_data_interface(struct nand_chip *chip, int chipnr) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + int ret; + + if (!chip->setup_data_interface) + return 0; + + /* + * Ensure the timing mode has been changed on the chip side + * before changing timings on the controller side. + */ + if (chip->onfi_version && + (le16_to_cpu(chip->onfi_params.opt_cmd) & + ONFI_OPT_CMD_SET_GET_FEATURES)) { + u8 tmode_param[ONFI_SUBFEATURE_PARAM_LEN] = { + chip->onfi_timing_mode_default, + }; + + ret = chip->onfi_set_features(mtd, chip, + ONFI_FEATURE_ADDR_TIMING_MODE, + tmode_param); + if (ret) + goto err; + } + + ret = chip->setup_data_interface(mtd, chipnr, &chip->data_interface); +err: + return ret; +} + +/** + * nand_init_data_interface - find the best data interface and timings + * @chip: The NAND chip + * + * Find the best data interface and NAND timings supported by the chip + * and the driver. + * First tries to retrieve supported timing modes from ONFI information, + * and if the NAND chip does not support ONFI, relies on the + * ->onfi_timing_mode_default specified in the nand_ids table. After this + * function nand_chip->data_interface is initialized with the best timing mode + * available. + * + * Returns 0 for success or negative error code otherwise. + */ +static int nand_init_data_interface(struct nand_chip *chip) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + int modes, mode, ret; + + if (!chip->setup_data_interface) + return 0; + + /* + * First try to identify the best timings from ONFI parameters and + * if the NAND does not support ONFI, fallback to the default ONFI + * timing mode. + */ + modes = onfi_get_async_timing_mode(chip); + if (modes == ONFI_TIMING_MODE_UNKNOWN) { + if (!chip->onfi_timing_mode_default) + return 0; + + modes = GENMASK(chip->onfi_timing_mode_default, 0); + } + + + for (mode = fls(modes) - 1; mode >= 0; mode--) { + ret = onfi_fill_data_interface(chip, NAND_SDR_IFACE, mode); + if (ret) + continue; + + /* + * Pass NAND_DATA_IFACE_CHECK_ONLY to only check if the + * controller supports the requested timings. + */ + ret = chip->setup_data_interface(mtd, + NAND_DATA_IFACE_CHECK_ONLY, + &chip->data_interface); + if (!ret) { + chip->onfi_timing_mode_default = mode; + break; + } + } + + return 0; +} + +/** + * nand_fill_column_cycles - fill the column cycles of an address + * @chip: The NAND chip + * @addrs: Array of address cycles to fill + * @offset_in_page: The offset in the page + * + * Fills the first or the first two bytes of the @addrs field depending + * on the NAND bus width and the page size. + * + * Returns the number of cycles needed to encode the column, or a negative + * error code in case one of the arguments is invalid. + */ +static int nand_fill_column_cycles(struct nand_chip *chip, u8 *addrs, + unsigned int offset_in_page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + + /* Make sure the offset is less than the actual page size. */ + if (offset_in_page > mtd->writesize + mtd->oobsize) + return -EINVAL; + + /* + * On small page NANDs, there's a dedicated command to access the OOB + * area, and the column address is relative to the start of the OOB + * area, not the start of the page. Asjust the address accordingly. + */ + if (mtd->writesize <= 512 && offset_in_page >= mtd->writesize) + offset_in_page -= mtd->writesize; + + /* + * The offset in page is expressed in bytes, if the NAND bus is 16-bit + * wide, then it must be divided by 2. + */ + if (chip->options & NAND_BUSWIDTH_16) { + if (WARN_ON(offset_in_page % 2)) + return -EINVAL; + + offset_in_page /= 2; + } + + addrs[0] = offset_in_page; + + /* + * Small page NANDs use 1 cycle for the columns, while large page NANDs + * need 2 + */ + if (mtd->writesize <= 512) + return 1; + + addrs[1] = offset_in_page >> 8; + + return 2; +} + +static int nand_sp_exec_read_page_op(struct nand_chip *chip, unsigned int page, + unsigned int offset_in_page, void *buf, + unsigned int len) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + const struct nand_sdr_timings *sdr = + nand_get_sdr_timings(&chip->data_interface); + u8 addrs[4]; + struct nand_op_instr instrs[] = { + NAND_OP_CMD(NAND_CMD_READ0, 0), + NAND_OP_ADDR(3, addrs, PSEC_TO_NSEC(sdr->tWB_max)), + NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tR_max), + PSEC_TO_NSEC(sdr->tRR_min)), + NAND_OP_DATA_IN(len, buf, 0), + }; + struct nand_operation op = NAND_OPERATION(instrs); + int ret; + + /* Drop the DATA_IN instruction if len is set to 0. */ + if (!len) + op.ninstrs--; + + if (offset_in_page >= mtd->writesize) + instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB; + else if (offset_in_page >= 256 && + !(chip->options & NAND_BUSWIDTH_16)) + instrs[0].ctx.cmd.opcode = NAND_CMD_READ1; + + ret = nand_fill_column_cycles(chip, addrs, offset_in_page); + if (ret < 0) + return ret; + + addrs[1] = page; + addrs[2] = page >> 8; + + if (chip->options & NAND_ROW_ADDR_3) { + addrs[3] = page >> 16; + instrs[1].ctx.addr.naddrs++; + } + + return nand_exec_op(chip, &op); +} + +static int nand_lp_exec_read_page_op(struct nand_chip *chip, unsigned int page, + unsigned int offset_in_page, void *buf, + unsigned int len) +{ + const struct nand_sdr_timings *sdr = + nand_get_sdr_timings(&chip->data_interface); + u8 addrs[5]; + struct nand_op_instr instrs[] = { + NAND_OP_CMD(NAND_CMD_READ0, 0), + NAND_OP_ADDR(4, addrs, 0), + NAND_OP_CMD(NAND_CMD_READSTART, PSEC_TO_NSEC(sdr->tWB_max)), + NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tR_max), + PSEC_TO_NSEC(sdr->tRR_min)), + NAND_OP_DATA_IN(len, buf, 0), + }; + struct nand_operation op = NAND_OPERATION(instrs); + int ret; + + /* Drop the DATA_IN instruction if len is set to 0. */ + if (!len) + op.ninstrs--; + + ret = nand_fill_column_cycles(chip, addrs, offset_in_page); + if (ret < 0) + return ret; + + addrs[2] = page; + addrs[3] = page >> 8; + + if (chip->options & NAND_ROW_ADDR_3) { + addrs[4] = page >> 16; + instrs[1].ctx.addr.naddrs++; + } + + return nand_exec_op(chip, &op); +} + +/** + * nand_read_page_op - Do a READ PAGE operation + * @chip: The NAND chip + * @page: page to read + * @offset_in_page: offset within the page + * @buf: buffer used to store the data + * @len: length of the buffer + * + * This function issues a READ PAGE operation. + * This function does not select/unselect the CS line. + * + * Returns 0 on success, a negative error code otherwise. + */ +int nand_read_page_op(struct nand_chip *chip, unsigned int page, + unsigned int offset_in_page, void *buf, unsigned int len) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + + if (len && !buf) + return -EINVAL; + + if (offset_in_page + len > mtd->writesize + mtd->oobsize) + return -EINVAL; + + if (chip->exec_op) { + if (mtd->writesize > 512) + return nand_lp_exec_read_page_op(chip, page, + offset_in_page, buf, + len); + + return nand_sp_exec_read_page_op(chip, page, offset_in_page, + buf, len); + } + + chip->cmdfunc(mtd, NAND_CMD_READ0, offset_in_page, page); + if (len) + chip->read_buf(mtd, buf, len); + + return 0; +} +EXPORT_SYMBOL_GPL(nand_read_page_op); + +/** + * nand_read_param_page_op - Do a READ PARAMETER PAGE operation + * @chip: The NAND chip + * @page: parameter page to read + * @buf: buffer used to store the data + * @len: length of the buffer + * + * This function issues a READ PARAMETER PAGE operation. + * This function does not select/unselect the CS line. + * + * Returns 0 on success, a negative error code otherwise. + */ +static int nand_read_param_page_op(struct nand_chip *chip, u8 page, void *buf, + unsigned int len) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + unsigned int i; + u8 *p = buf; + + if (len && !buf) + return -EINVAL; + + if (chip->exec_op) { + const struct nand_sdr_timings *sdr = + nand_get_sdr_timings(&chip->data_interface); + struct nand_op_instr instrs[] = { + NAND_OP_CMD(NAND_CMD_PARAM, 0), + NAND_OP_ADDR(1, &page, PSEC_TO_NSEC(sdr->tWB_max)), + NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tR_max), + PSEC_TO_NSEC(sdr->tRR_min)), + NAND_OP_8BIT_DATA_IN(len, buf, 0), + }; + struct nand_operation op = NAND_OPERATION(instrs); + + /* Drop the DATA_IN instruction if len is set to 0. */ + if (!len) + op.ninstrs--; + + return nand_exec_op(chip, &op); + } + + chip->cmdfunc(mtd, NAND_CMD_PARAM, page, -1); + for (i = 0; i < len; i++) + p[i] = chip->read_byte(mtd); + + return 0; +} + +/** + * nand_change_read_column_op - Do a CHANGE READ COLUMN operation + * @chip: The NAND chip + * @offset_in_page: offset within the page + * @buf: buffer used to store the data + * @len: length of the buffer + * @force_8bit: force 8-bit bus access + * + * This function issues a CHANGE READ COLUMN operation. + * This function does not select/unselect the CS line. + * + * Returns 0 on success, a negative error code otherwise. + */ +int nand_change_read_column_op(struct nand_chip *chip, + unsigned int offset_in_page, void *buf, + unsigned int len, bool force_8bit) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + + if (len && !buf) + return -EINVAL; + + if (offset_in_page + len > mtd->writesize + mtd->oobsize) + return -EINVAL; + + /* Small page NANDs do not support column change. */ + if (mtd->writesize <= 512) + return -ENOTSUPP; + + if (chip->exec_op) { + const struct nand_sdr_timings *sdr = + nand_get_sdr_timings(&chip->data_interface); + u8 addrs[2] = {}; + struct nand_op_instr instrs[] = { + NAND_OP_CMD(NAND_CMD_RNDOUT, 0), + NAND_OP_ADDR(2, addrs, 0), + NAND_OP_CMD(NAND_CMD_RNDOUTSTART, + PSEC_TO_NSEC(sdr->tCCS_min)), + NAND_OP_DATA_IN(len, buf, 0), + }; + struct nand_operation op = NAND_OPERATION(instrs); + int ret; + + ret = nand_fill_column_cycles(chip, addrs, offset_in_page); + if (ret < 0) + return ret; + + /* Drop the DATA_IN instruction if len is set to 0. */ + if (!len) + op.ninstrs--; + + instrs[3].ctx.data.force_8bit = force_8bit; + + return nand_exec_op(chip, &op); + } + + chip->cmdfunc(mtd, NAND_CMD_RNDOUT, offset_in_page, -1); + if (len) + chip->read_buf(mtd, buf, len); + + return 0; +} +EXPORT_SYMBOL_GPL(nand_change_read_column_op); + +/** + * nand_read_oob_op - Do a READ OOB operation + * @chip: The NAND chip + * @page: page to read + * @offset_in_oob: offset within the OOB area + * @buf: buffer used to store the data + * @len: length of the buffer + * + * This function issues a READ OOB operation. + * This function does not select/unselect the CS line. + * + * Returns 0 on success, a negative error code otherwise. + */ +int nand_read_oob_op(struct nand_chip *chip, unsigned int page, + unsigned int offset_in_oob, void *buf, unsigned int len) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + + if (len && !buf) + return -EINVAL; + + if (offset_in_oob + len > mtd->oobsize) + return -EINVAL; + + if (chip->exec_op) + return nand_read_page_op(chip, page, + mtd->writesize + offset_in_oob, + buf, len); + + chip->cmdfunc(mtd, NAND_CMD_READOOB, offset_in_oob, page); + if (len) + chip->read_buf(mtd, buf, len); + + return 0; +} +EXPORT_SYMBOL_GPL(nand_read_oob_op); + +static int nand_exec_prog_page_op(struct nand_chip *chip, unsigned int page, + unsigned int offset_in_page, const void *buf, + unsigned int len, bool prog) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + const struct nand_sdr_timings *sdr = + nand_get_sdr_timings(&chip->data_interface); + u8 addrs[5] = {}; + struct nand_op_instr instrs[] = { + /* + * The first instruction will be dropped if we're dealing + * with a large page NAND and adjusted if we're dealing + * with a small page NAND and the page offset is > 255. + */ + NAND_OP_CMD(NAND_CMD_READ0, 0), + NAND_OP_CMD(NAND_CMD_SEQIN, 0), + NAND_OP_ADDR(0, addrs, PSEC_TO_NSEC(sdr->tADL_min)), + NAND_OP_DATA_OUT(len, buf, 0), + NAND_OP_CMD(NAND_CMD_PAGEPROG, PSEC_TO_NSEC(sdr->tWB_max)), + NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tPROG_max), 0), + }; + struct nand_operation op = NAND_OPERATION(instrs); + int naddrs = nand_fill_column_cycles(chip, addrs, offset_in_page); + int ret; + u8 status; + + if (naddrs < 0) + return naddrs; + + addrs[naddrs++] = page; + addrs[naddrs++] = page >> 8; + if (chip->options & NAND_ROW_ADDR_3) + addrs[naddrs++] = page >> 16; + + instrs[2].ctx.addr.naddrs = naddrs; + + /* Drop the last two instructions if we're not programming the page. */ + if (!prog) { + op.ninstrs -= 2; + /* Also drop the DATA_OUT instruction if empty. */ + if (!len) + op.ninstrs--; + } + + if (mtd->writesize <= 512) { + /* + * Small pages need some more tweaking: we have to adjust the + * first instruction depending on the page offset we're trying + * to access. + */ + if (offset_in_page >= mtd->writesize) + instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB; + else if (offset_in_page >= 256 && + !(chip->options & NAND_BUSWIDTH_16)) + instrs[0].ctx.cmd.opcode = NAND_CMD_READ1; + } else { + /* + * Drop the first command if we're dealing with a large page + * NAND. + */ + op.instrs++; + op.ninstrs--; + } + + ret = nand_exec_op(chip, &op); + if (!prog || ret) + return ret; + + ret = nand_status_op(chip, &status); + if (ret) + return ret; + + return status; +} + +/** + * nand_prog_page_begin_op - starts a PROG PAGE operation + * @chip: The NAND chip + * @page: page to write + * @offset_in_page: offset within the page + * @buf: buffer containing the data to write to the page + * @len: length of the buffer + * + * This function issues the first half of a PROG PAGE operation. + * This function does not select/unselect the CS line. + * + * Returns 0 on success, a negative error code otherwise. + */ +int nand_prog_page_begin_op(struct nand_chip *chip, unsigned int page, + unsigned int offset_in_page, const void *buf, + unsigned int len) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + + if (len && !buf) + return -EINVAL; + + if (offset_in_page + len > mtd->writesize + mtd->oobsize) + return -EINVAL; + + if (chip->exec_op) + return nand_exec_prog_page_op(chip, page, offset_in_page, buf, + len, false); + + chip->cmdfunc(mtd, NAND_CMD_SEQIN, offset_in_page, page); + + if (buf) + chip->write_buf(mtd, buf, len); + + return 0; +} +EXPORT_SYMBOL_GPL(nand_prog_page_begin_op); + +/** + * nand_prog_page_end_op - ends a PROG PAGE operation + * @chip: The NAND chip + * + * This function issues the second half of a PROG PAGE operation. + * This function does not select/unselect the CS line. + * + * Returns 0 on success, a negative error code otherwise. + */ +int nand_prog_page_end_op(struct nand_chip *chip) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + int ret; + u8 status; + + if (chip->exec_op) { + const struct nand_sdr_timings *sdr = + nand_get_sdr_timings(&chip->data_interface); + struct nand_op_instr instrs[] = { + NAND_OP_CMD(NAND_CMD_PAGEPROG, + PSEC_TO_NSEC(sdr->tWB_max)), + NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tPROG_max), 0), + }; + struct nand_operation op = NAND_OPERATION(instrs); + + ret = nand_exec_op(chip, &op); + if (ret) + return ret; + + ret = nand_status_op(chip, &status); + if (ret) + return ret; + } else { + chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); + ret = chip->waitfunc(mtd, chip); + if (ret < 0) + return ret; + + status = ret; + } + + if (status & NAND_STATUS_FAIL) + return -EIO; + + return 0; +} +EXPORT_SYMBOL_GPL(nand_prog_page_end_op); + +/** + * nand_prog_page_op - Do a full PROG PAGE operation + * @chip: The NAND chip + * @page: page to write + * @offset_in_page: offset within the page + * @buf: buffer containing the data to write to the page + * @len: length of the buffer + * + * This function issues a full PROG PAGE operation. + * This function does not select/unselect the CS line. + * + * Returns 0 on success, a negative error code otherwise. + */ +int nand_prog_page_op(struct nand_chip *chip, unsigned int page, + unsigned int offset_in_page, const void *buf, + unsigned int len) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + int status; + + if (!len || !buf) + return -EINVAL; + + if (offset_in_page + len > mtd->writesize + mtd->oobsize) + return -EINVAL; + + if (chip->exec_op) { + status = nand_exec_prog_page_op(chip, page, offset_in_page, buf, + len, true); + } else { + chip->cmdfunc(mtd, NAND_CMD_SEQIN, offset_in_page, page); + chip->write_buf(mtd, buf, len); + chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); + status = chip->waitfunc(mtd, chip); + } + + if (status & NAND_STATUS_FAIL) + return -EIO; + + return 0; +} +EXPORT_SYMBOL_GPL(nand_prog_page_op); + +/** + * nand_change_write_column_op - Do a CHANGE WRITE COLUMN operation + * @chip: The NAND chip + * @offset_in_page: offset within the page + * @buf: buffer containing the data to send to the NAND + * @len: length of the buffer + * @force_8bit: force 8-bit bus access + * + * This function issues a CHANGE WRITE COLUMN operation. + * This function does not select/unselect the CS line. + * + * Returns 0 on success, a negative error code otherwise. + */ +int nand_change_write_column_op(struct nand_chip *chip, + unsigned int offset_in_page, + const void *buf, unsigned int len, + bool force_8bit) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + + if (len && !buf) + return -EINVAL; + + if (offset_in_page + len > mtd->writesize + mtd->oobsize) + return -EINVAL; + + /* Small page NANDs do not support column change. */ + if (mtd->writesize <= 512) + return -ENOTSUPP; + + if (chip->exec_op) { + const struct nand_sdr_timings *sdr = + nand_get_sdr_timings(&chip->data_interface); + u8 addrs[2]; + struct nand_op_instr instrs[] = { + NAND_OP_CMD(NAND_CMD_RNDIN, 0), + NAND_OP_ADDR(2, addrs, PSEC_TO_NSEC(sdr->tCCS_min)), + NAND_OP_DATA_OUT(len, buf, 0), + }; + struct nand_operation op = NAND_OPERATION(instrs); + int ret; + + ret = nand_fill_column_cycles(chip, addrs, offset_in_page); + if (ret < 0) + return ret; + + instrs[2].ctx.data.force_8bit = force_8bit; + + /* Drop the DATA_OUT instruction if len is set to 0. */ + if (!len) + op.ninstrs--; + + return nand_exec_op(chip, &op); + } + + chip->cmdfunc(mtd, NAND_CMD_RNDIN, offset_in_page, -1); + if (len) + chip->write_buf(mtd, buf, len); + + return 0; +} +EXPORT_SYMBOL_GPL(nand_change_write_column_op); + +/** + * nand_readid_op - Do a READID operation + * @chip: The NAND chip + * @addr: address cycle to pass after the READID command + * @buf: buffer used to store the ID + * @len: length of the buffer + * + * This function sends a READID command and reads back the ID returned by the + * NAND. + * This function does not select/unselect the CS line. + * + * Returns 0 on success, a negative error code otherwise. + */ +int nand_readid_op(struct nand_chip *chip, u8 addr, void *buf, + unsigned int len) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + unsigned int i; + u8 *id = buf; + + if (len && !buf) + return -EINVAL; + + if (chip->exec_op) { + const struct nand_sdr_timings *sdr = + nand_get_sdr_timings(&chip->data_interface); + struct nand_op_instr instrs[] = { + NAND_OP_CMD(NAND_CMD_READID, 0), + NAND_OP_ADDR(1, &addr, PSEC_TO_NSEC(sdr->tADL_min)), + NAND_OP_8BIT_DATA_IN(len, buf, 0), + }; + struct nand_operation op = NAND_OPERATION(instrs); + + /* Drop the DATA_IN instruction if len is set to 0. */ + if (!len) + op.ninstrs--; + + return nand_exec_op(chip, &op); + } + + chip->cmdfunc(mtd, NAND_CMD_READID, addr, -1); + + for (i = 0; i < len; i++) + id[i] = chip->read_byte(mtd); + + return 0; +} +EXPORT_SYMBOL_GPL(nand_readid_op); + +/** + * nand_status_op - Do a STATUS operation + * @chip: The NAND chip + * @status: out variable to store the NAND status + * + * This function sends a STATUS command and reads back the status returned by + * the NAND. + * This function does not select/unselect the CS line. + * + * Returns 0 on success, a negative error code otherwise. + */ +int nand_status_op(struct nand_chip *chip, u8 *status) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + + if (chip->exec_op) { + const struct nand_sdr_timings *sdr = + nand_get_sdr_timings(&chip->data_interface); + struct nand_op_instr instrs[] = { + NAND_OP_CMD(NAND_CMD_STATUS, + PSEC_TO_NSEC(sdr->tADL_min)), + NAND_OP_8BIT_DATA_IN(1, status, 0), + }; + struct nand_operation op = NAND_OPERATION(instrs); + + if (!status) + op.ninstrs--; + + return nand_exec_op(chip, &op); + } + + chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1); + if (status) + *status = chip->read_byte(mtd); + + return 0; +} +EXPORT_SYMBOL_GPL(nand_status_op); + +/** + * nand_exit_status_op - Exit a STATUS operation + * @chip: The NAND chip + * + * This function sends a READ0 command to cancel the effect of the STATUS + * command to avoid reading only the status until a new read command is sent. + * + * This function does not select/unselect the CS line. + * + * Returns 0 on success, a negative error code otherwise. + */ +int nand_exit_status_op(struct nand_chip *chip) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + + if (chip->exec_op) { + struct nand_op_instr instrs[] = { + NAND_OP_CMD(NAND_CMD_READ0, 0), + }; + struct nand_operation op = NAND_OPERATION(instrs); + + return nand_exec_op(chip, &op); + } + + chip->cmdfunc(mtd, NAND_CMD_READ0, -1, -1); + + return 0; +} +EXPORT_SYMBOL_GPL(nand_exit_status_op); + +/** + * nand_erase_op - Do an erase operation + * @chip: The NAND chip + * @eraseblock: block to erase + * + * This function sends an ERASE command and waits for the NAND to be ready + * before returning. + * This function does not select/unselect the CS line. + * + * Returns 0 on success, a negative error code otherwise. + */ +int nand_erase_op(struct nand_chip *chip, unsigned int eraseblock) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + unsigned int page = eraseblock << + (chip->phys_erase_shift - chip->page_shift); + int ret; + u8 status; + + if (chip->exec_op) { + const struct nand_sdr_timings *sdr = + nand_get_sdr_timings(&chip->data_interface); + u8 addrs[3] = { page, page >> 8, page >> 16 }; + struct nand_op_instr instrs[] = { + NAND_OP_CMD(NAND_CMD_ERASE1, 0), + NAND_OP_ADDR(2, addrs, 0), + NAND_OP_CMD(NAND_CMD_ERASE2, + PSEC_TO_MSEC(sdr->tWB_max)), + NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tBERS_max), 0), + }; + struct nand_operation op = NAND_OPERATION(instrs); + + if (chip->options & NAND_ROW_ADDR_3) + instrs[1].ctx.addr.naddrs++; + + ret = nand_exec_op(chip, &op); + if (ret) + return ret; + + ret = nand_status_op(chip, &status); + if (ret) + return ret; + } else { + chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page); + chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1); + + ret = chip->waitfunc(mtd, chip); + if (ret < 0) + return ret; + + status = ret; + } + + if (status & NAND_STATUS_FAIL) + return -EIO; + + return 0; +} +EXPORT_SYMBOL_GPL(nand_erase_op); + +/** + * nand_set_features_op - Do a SET FEATURES operation + * @chip: The NAND chip + * @feature: feature id + * @data: 4 bytes of data + * + * This function sends a SET FEATURES command and waits for the NAND to be + * ready before returning. + * This function does not select/unselect the CS line. + * + * Returns 0 on success, a negative error code otherwise. + */ +static int nand_set_features_op(struct nand_chip *chip, u8 feature, + const void *data) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + const u8 *params = data; + int i, ret; + u8 status; + + if (chip->exec_op) { + const struct nand_sdr_timings *sdr = + nand_get_sdr_timings(&chip->data_interface); + struct nand_op_instr instrs[] = { + NAND_OP_CMD(NAND_CMD_SET_FEATURES, 0), + NAND_OP_ADDR(1, &feature, PSEC_TO_NSEC(sdr->tADL_min)), + NAND_OP_8BIT_DATA_OUT(ONFI_SUBFEATURE_PARAM_LEN, data, + PSEC_TO_NSEC(sdr->tWB_max)), + NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tFEAT_max), 0), + }; + struct nand_operation op = NAND_OPERATION(instrs); + + ret = nand_exec_op(chip, &op); + if (ret) + return ret; + + ret = nand_status_op(chip, &status); + if (ret) + return ret; + } else { + chip->cmdfunc(mtd, NAND_CMD_SET_FEATURES, feature, -1); + for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i) + chip->write_byte(mtd, params[i]); + + ret = chip->waitfunc(mtd, chip); + if (ret < 0) + return ret; + + status = ret; + } + + if (status & NAND_STATUS_FAIL) + return -EIO; + + return 0; +} + +/** + * nand_get_features_op - Do a GET FEATURES operation + * @chip: The NAND chip + * @feature: feature id + * @data: 4 bytes of data + * + * This function sends a GET FEATURES command and waits for the NAND to be + * ready before returning. + * This function does not select/unselect the CS line. + * + * Returns 0 on success, a negative error code otherwise. + */ +static int nand_get_features_op(struct nand_chip *chip, u8 feature, + void *data) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + u8 *params = data; + int i; + + if (chip->exec_op) { + const struct nand_sdr_timings *sdr = + nand_get_sdr_timings(&chip->data_interface); + struct nand_op_instr instrs[] = { + NAND_OP_CMD(NAND_CMD_GET_FEATURES, 0), + NAND_OP_ADDR(1, &feature, PSEC_TO_NSEC(sdr->tWB_max)), + NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tFEAT_max), + PSEC_TO_NSEC(sdr->tRR_min)), + NAND_OP_8BIT_DATA_IN(ONFI_SUBFEATURE_PARAM_LEN, + data, 0), + }; + struct nand_operation op = NAND_OPERATION(instrs); + + return nand_exec_op(chip, &op); + } + + chip->cmdfunc(mtd, NAND_CMD_GET_FEATURES, feature, -1); + for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i) + params[i] = chip->read_byte(mtd); + + return 0; +} + +/** + * nand_reset_op - Do a reset operation + * @chip: The NAND chip + * + * This function sends a RESET command and waits for the NAND to be ready + * before returning. + * This function does not select/unselect the CS line. + * + * Returns 0 on success, a negative error code otherwise. + */ +int nand_reset_op(struct nand_chip *chip) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + + if (chip->exec_op) { + const struct nand_sdr_timings *sdr = + nand_get_sdr_timings(&chip->data_interface); + struct nand_op_instr instrs[] = { + NAND_OP_CMD(NAND_CMD_RESET, PSEC_TO_NSEC(sdr->tWB_max)), + NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tRST_max), 0), + }; + struct nand_operation op = NAND_OPERATION(instrs); + + return nand_exec_op(chip, &op); + } + + chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1); + + return 0; +} +EXPORT_SYMBOL_GPL(nand_reset_op); + +/** + * nand_read_data_op - Read data from the NAND + * @chip: The NAND chip + * @buf: buffer used to store the data + * @len: length of the buffer + * @force_8bit: force 8-bit bus access + * + * This function does a raw data read on the bus. Usually used after launching + * another NAND operation like nand_read_page_op(). + * This function does not select/unselect the CS line. + * + * Returns 0 on success, a negative error code otherwise. + */ +int nand_read_data_op(struct nand_chip *chip, void *buf, unsigned int len, + bool force_8bit) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + + if (!len || !buf) + return -EINVAL; + + if (chip->exec_op) { + struct nand_op_instr instrs[] = { + NAND_OP_DATA_IN(len, buf, 0), + }; + struct nand_operation op = NAND_OPERATION(instrs); + + instrs[0].ctx.data.force_8bit = force_8bit; + + return nand_exec_op(chip, &op); + } + + if (force_8bit) { + u8 *p = buf; + unsigned int i; + + for (i = 0; i < len; i++) + p[i] = chip->read_byte(mtd); + } else { + chip->read_buf(mtd, buf, len); + } + + return 0; +} +EXPORT_SYMBOL_GPL(nand_read_data_op); + +/** + * nand_write_data_op - Write data from the NAND + * @chip: The NAND chip + * @buf: buffer containing the data to send on the bus + * @len: length of the buffer + * @force_8bit: force 8-bit bus access + * + * This function does a raw data write on the bus. Usually used after launching + * another NAND operation like nand_write_page_begin_op(). + * This function does not select/unselect the CS line. + * + * Returns 0 on success, a negative error code otherwise. + */ +int nand_write_data_op(struct nand_chip *chip, const void *buf, + unsigned int len, bool force_8bit) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + + if (!len || !buf) + return -EINVAL; + + if (chip->exec_op) { + struct nand_op_instr instrs[] = { + NAND_OP_DATA_OUT(len, buf, 0), + }; + struct nand_operation op = NAND_OPERATION(instrs); + + instrs[0].ctx.data.force_8bit = force_8bit; + + return nand_exec_op(chip, &op); + } + + if (force_8bit) { + const u8 *p = buf; + unsigned int i; + + for (i = 0; i < len; i++) + chip->write_byte(mtd, p[i]); + } else { + chip->write_buf(mtd, buf, len); + } + + return 0; +} +EXPORT_SYMBOL_GPL(nand_write_data_op); + +/** + * struct nand_op_parser_ctx - Context used by the parser + * @instrs: array of all the instructions that must be addressed + * @ninstrs: length of the @instrs array + * @subop: Sub-operation to be passed to the NAND controller + * + * This structure is used by the core to split NAND operations into + * sub-operations that can be handled by the NAND controller. + */ +struct nand_op_parser_ctx { + const struct nand_op_instr *instrs; + unsigned int ninstrs; + struct nand_subop subop; +}; + +/** + * nand_op_parser_must_split_instr - Checks if an instruction must be split + * @pat: the parser pattern element that matches @instr + * @instr: pointer to the instruction to check + * @start_offset: this is an in/out parameter. If @instr has already been + * split, then @start_offset is the offset from which to start + * (either an address cycle or an offset in the data buffer). + * Conversely, if the function returns true (ie. instr must be + * split), this parameter is updated to point to the first + * data/address cycle that has not been taken care of. + * + * Some NAND controllers are limited and cannot send X address cycles with a + * unique operation, or cannot read/write more than Y bytes at the same time. + * In this case, split the instruction that does not fit in a single + * controller-operation into two or more chunks. + * + * Returns true if the instruction must be split, false otherwise. + * The @start_offset parameter is also updated to the offset at which the next + * bundle of instruction must start (if an address or a data instruction). + */ +static bool +nand_op_parser_must_split_instr(const struct nand_op_parser_pattern_elem *pat, + const struct nand_op_instr *instr, + unsigned int *start_offset) +{ + switch (pat->type) { + case NAND_OP_ADDR_INSTR: + if (!pat->ctx.addr.maxcycles) + break; + + if (instr->ctx.addr.naddrs - *start_offset > + pat->ctx.addr.maxcycles) { + *start_offset += pat->ctx.addr.maxcycles; + return true; + } + break; + + case NAND_OP_DATA_IN_INSTR: + case NAND_OP_DATA_OUT_INSTR: + if (!pat->ctx.data.maxlen) + break; + + if (instr->ctx.data.len - *start_offset > + pat->ctx.data.maxlen) { + *start_offset += pat->ctx.data.maxlen; + return true; + } + break; + + default: + break; + } + + return false; +} + +/** + * nand_op_parser_match_pat - Checks if a pattern matches the instructions + * remaining in the parser context + * @pat: the pattern to test + * @ctx: the parser context structure to match with the pattern @pat + * + * Check if @pat matches the set or a sub-set of instructions remaining in @ctx. + * Returns true if this is the case, false ortherwise. When true is returned, + * @ctx->subop is updated with the set of instructions to be passed to the + * controller driver. + */ +static bool +nand_op_parser_match_pat(const struct nand_op_parser_pattern *pat, + struct nand_op_parser_ctx *ctx) +{ + unsigned int instr_offset = ctx->subop.first_instr_start_off; + const struct nand_op_instr *end = ctx->instrs + ctx->ninstrs; + const struct nand_op_instr *instr = ctx->subop.instrs; + unsigned int i, ninstrs; + + for (i = 0, ninstrs = 0; i < pat->nelems && instr < end; i++) { + /* + * The pattern instruction does not match the operation + * instruction. If the instruction is marked optional in the + * pattern definition, we skip the pattern element and continue + * to the next one. If the element is mandatory, there's no + * match and we can return false directly. + */ + if (instr->type != pat->elems[i].type) { + if (!pat->elems[i].optional) + return false; + + continue; + } + + /* + * Now check the pattern element constraints. If the pattern is + * not able to handle the whole instruction in a single step, + * we have to split it. + * The last_instr_end_off value comes back updated to point to + * the position where we have to split the instruction (the + * start of the next subop chunk). + */ + if (nand_op_parser_must_split_instr(&pat->elems[i], instr, + &instr_offset)) { + ninstrs++; + i++; + break; + } + + instr++; + ninstrs++; + instr_offset = 0; + } + + /* + * This can happen if all instructions of a pattern are optional. + * Still, if there's not at least one instruction handled by this + * pattern, this is not a match, and we should try the next one (if + * any). + */ + if (!ninstrs) + return false; + + /* + * We had a match on the pattern head, but the pattern may be longer + * than the instructions we're asked to execute. We need to make sure + * there's no mandatory elements in the pattern tail. + */ + for (; i < pat->nelems; i++) { + if (!pat->elems[i].optional) + return false; + } + + /* + * We have a match: update the subop structure accordingly and return + * true. + */ + ctx->subop.ninstrs = ninstrs; + ctx->subop.last_instr_end_off = instr_offset; + + return true; +} + +#if IS_ENABLED(CONFIG_DYNAMIC_DEBUG) || defined(DEBUG) +static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx) +{ + const struct nand_op_instr *instr; + char *prefix = " "; + unsigned int i; + + pr_debug("executing subop:\n"); + + for (i = 0; i < ctx->ninstrs; i++) { + instr = &ctx->instrs[i]; + + if (instr == &ctx->subop.instrs[0]) + prefix = " ->"; + + switch (instr->type) { + case NAND_OP_CMD_INSTR: + pr_debug("%sCMD [0x%02x]\n", prefix, + instr->ctx.cmd.opcode); + break; + case NAND_OP_ADDR_INSTR: + pr_debug("%sADDR [%d cyc: %*ph]\n", prefix, + instr->ctx.addr.naddrs, + instr->ctx.addr.naddrs < 64 ? + instr->ctx.addr.naddrs : 64, + instr->ctx.addr.addrs); + break; + case NAND_OP_DATA_IN_INSTR: + pr_debug("%sDATA_IN [%d B%s]\n", prefix, + instr->ctx.data.len, + instr->ctx.data.force_8bit ? + ", force 8-bit" : ""); + break; + case NAND_OP_DATA_OUT_INSTR: + pr_debug("%sDATA_OUT [%d B%s]\n", prefix, + instr->ctx.data.len, + instr->ctx.data.force_8bit ? + ", force 8-bit" : ""); + break; + case NAND_OP_WAITRDY_INSTR: + pr_debug("%sWAITRDY [max %d ms]\n", prefix, + instr->ctx.waitrdy.timeout_ms); + break; + } + + if (instr == &ctx->subop.instrs[ctx->subop.ninstrs - 1]) + prefix = " "; + } +} +#else +static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx) +{ + /* NOP */ +} +#endif + +/** + * nand_op_parser_exec_op - exec_op parser + * @chip: the NAND chip + * @parser: patterns description provided by the controller driver + * @op: the NAND operation to address + * @check_only: when true, the function only checks if @op can be handled but + * does not execute the operation + * + * Helper function designed to ease integration of NAND controller drivers that + * only support a limited set of instruction sequences. The supported sequences + * are described in @parser, and the framework takes care of splitting @op into + * multiple sub-operations (if required) and pass them back to the ->exec() + * callback of the matching pattern if @check_only is set to false. + * + * NAND controller drivers should call this function from their own ->exec_op() + * implementation. + * + * Returns 0 on success, a negative error code otherwise. A failure can be + * caused by an unsupported operation (none of the supported patterns is able + * to handle the requested operation), or an error returned by one of the + * matching pattern->exec() hook. + */ +int nand_op_parser_exec_op(struct nand_chip *chip, + const struct nand_op_parser *parser, + const struct nand_operation *op, bool check_only) +{ + struct nand_op_parser_ctx ctx = { + .subop.instrs = op->instrs, + .instrs = op->instrs, + .ninstrs = op->ninstrs, + }; + unsigned int i; + + while (ctx.subop.instrs < op->instrs + op->ninstrs) { + int ret; + + for (i = 0; i < parser->npatterns; i++) { + const struct nand_op_parser_pattern *pattern; + + pattern = &parser->patterns[i]; + if (!nand_op_parser_match_pat(pattern, &ctx)) + continue; + + nand_op_parser_trace(&ctx); + + if (check_only) + break; + + ret = pattern->exec(chip, &ctx.subop); + if (ret) + return ret; + + break; + } + + if (i == parser->npatterns) { + pr_debug("->exec_op() parser: pattern not found!\n"); + return -ENOTSUPP; + } + + /* + * Update the context structure by pointing to the start of the + * next subop. + */ + ctx.subop.instrs = ctx.subop.instrs + ctx.subop.ninstrs; + if (ctx.subop.last_instr_end_off) + ctx.subop.instrs -= 1; + + ctx.subop.first_instr_start_off = ctx.subop.last_instr_end_off; + } + + return 0; +} +EXPORT_SYMBOL_GPL(nand_op_parser_exec_op); + +static bool nand_instr_is_data(const struct nand_op_instr *instr) +{ + return instr && (instr->type == NAND_OP_DATA_IN_INSTR || + instr->type == NAND_OP_DATA_OUT_INSTR); +} + +static bool nand_subop_instr_is_valid(const struct nand_subop *subop, + unsigned int instr_idx) +{ + return subop && instr_idx < subop->ninstrs; +} + +static int nand_subop_get_start_off(const struct nand_subop *subop, + unsigned int instr_idx) +{ + if (instr_idx) + return 0; + + return subop->first_instr_start_off; +} + +/** + * nand_subop_get_addr_start_off - Get the start offset in an address array + * @subop: The entire sub-operation + * @instr_idx: Index of the instruction inside the sub-operation + * + * During driver development, one could be tempted to directly use the + * ->addr.addrs field of address instructions. This is wrong as address + * instructions might be split. + * + * Given an address instruction, returns the offset of the first cycle to issue. + */ +int nand_subop_get_addr_start_off(const struct nand_subop *subop, + unsigned int instr_idx) +{ + if (!nand_subop_instr_is_valid(subop, instr_idx) || + subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR) + return -EINVAL; + + return nand_subop_get_start_off(subop, instr_idx); +} +EXPORT_SYMBOL_GPL(nand_subop_get_addr_start_off); + +/** + * nand_subop_get_num_addr_cyc - Get the remaining address cycles to assert + * @subop: The entire sub-operation + * @instr_idx: Index of the instruction inside the sub-operation + * + * During driver development, one could be tempted to directly use the + * ->addr->naddrs field of a data instruction. This is wrong as instructions + * might be split. + * + * Given an address instruction, returns the number of address cycle to issue. + */ +int nand_subop_get_num_addr_cyc(const struct nand_subop *subop, + unsigned int instr_idx) +{ + int start_off, end_off; + + if (!nand_subop_instr_is_valid(subop, instr_idx) || + subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR) + return -EINVAL; + + start_off = nand_subop_get_addr_start_off(subop, instr_idx); + + if (instr_idx == subop->ninstrs - 1 && + subop->last_instr_end_off) + end_off = subop->last_instr_end_off; + else + end_off = subop->instrs[instr_idx].ctx.addr.naddrs; + + return end_off - start_off; +} +EXPORT_SYMBOL_GPL(nand_subop_get_num_addr_cyc); + +/** + * nand_subop_get_data_start_off - Get the start offset in a data array + * @subop: The entire sub-operation + * @instr_idx: Index of the instruction inside the sub-operation + * + * During driver development, one could be tempted to directly use the + * ->data->buf.{in,out} field of data instructions. This is wrong as data + * instructions might be split. + * + * Given a data instruction, returns the offset to start from. + */ +int nand_subop_get_data_start_off(const struct nand_subop *subop, + unsigned int instr_idx) +{ + if (!nand_subop_instr_is_valid(subop, instr_idx) || + !nand_instr_is_data(&subop->instrs[instr_idx])) + return -EINVAL; + + return nand_subop_get_start_off(subop, instr_idx); +} +EXPORT_SYMBOL_GPL(nand_subop_get_data_start_off); + +/** + * nand_subop_get_data_len - Get the number of bytes to retrieve + * @subop: The entire sub-operation + * @instr_idx: Index of the instruction inside the sub-operation + * + * During driver development, one could be tempted to directly use the + * ->data->len field of a data instruction. This is wrong as data instructions + * might be split. + * + * Returns the length of the chunk of data to send/receive. + */ +int nand_subop_get_data_len(const struct nand_subop *subop, + unsigned int instr_idx) +{ + int start_off = 0, end_off; + + if (!nand_subop_instr_is_valid(subop, instr_idx) || + !nand_instr_is_data(&subop->instrs[instr_idx])) + return -EINVAL; + + start_off = nand_subop_get_data_start_off(subop, instr_idx); + + if (instr_idx == subop->ninstrs - 1 && + subop->last_instr_end_off) + end_off = subop->last_instr_end_off; + else + end_off = subop->instrs[instr_idx].ctx.data.len; + + return end_off - start_off; +} +EXPORT_SYMBOL_GPL(nand_subop_get_data_len); + +/** + * nand_reset - Reset and initialize a NAND device + * @chip: The NAND chip + * @chipnr: Internal die id + * + * Save the timings data structure, then apply SDR timings mode 0 (see + * nand_reset_data_interface for details), do the reset operation, and + * apply back the previous timings. + * + * Returns 0 on success, a negative error code otherwise. + */ +int nand_reset(struct nand_chip *chip, int chipnr) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct nand_data_interface saved_data_intf = chip->data_interface; + int ret; + + ret = nand_reset_data_interface(chip, chipnr); + if (ret) + return ret; + + /* + * The CS line has to be released before we can apply the new NAND + * interface settings, hence this weird ->select_chip() dance. + */ + chip->select_chip(mtd, chipnr); + ret = nand_reset_op(chip); + chip->select_chip(mtd, -1); + if (ret) + return ret; + + chip->select_chip(mtd, chipnr); + chip->data_interface = saved_data_intf; + ret = nand_setup_data_interface(chip, chipnr); + chip->select_chip(mtd, -1); + if (ret) + return ret; + + return 0; +} +EXPORT_SYMBOL_GPL(nand_reset); + +/** + * nand_check_erased_buf - check if a buffer contains (almost) only 0xff data + * @buf: buffer to test + * @len: buffer length + * @bitflips_threshold: maximum number of bitflips + * + * Check if a buffer contains only 0xff, which means the underlying region + * has been erased and is ready to be programmed. + * The bitflips_threshold specify the maximum number of bitflips before + * considering the region is not erased. + * Note: The logic of this function has been extracted from the memweight + * implementation, except that nand_check_erased_buf function exit before + * testing the whole buffer if the number of bitflips exceed the + * bitflips_threshold value. + * + * Returns a positive number of bitflips less than or equal to + * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the + * threshold. + */ +static int nand_check_erased_buf(void *buf, int len, int bitflips_threshold) +{ + const unsigned char *bitmap = buf; + int bitflips = 0; + int weight; + + for (; len && ((uintptr_t)bitmap) % sizeof(long); + len--, bitmap++) { + weight = hweight8(*bitmap); + bitflips += BITS_PER_BYTE - weight; + if (unlikely(bitflips > bitflips_threshold)) + return -EBADMSG; + } + + for (; len >= sizeof(long); + len -= sizeof(long), bitmap += sizeof(long)) { + unsigned long d = *((unsigned long *)bitmap); + if (d == ~0UL) + continue; + weight = hweight_long(d); + bitflips += BITS_PER_LONG - weight; + if (unlikely(bitflips > bitflips_threshold)) + return -EBADMSG; + } + + for (; len > 0; len--, bitmap++) { + weight = hweight8(*bitmap); + bitflips += BITS_PER_BYTE - weight; + if (unlikely(bitflips > bitflips_threshold)) + return -EBADMSG; + } + + return bitflips; +} + +/** + * nand_check_erased_ecc_chunk - check if an ECC chunk contains (almost) only + * 0xff data + * @data: data buffer to test + * @datalen: data length + * @ecc: ECC buffer + * @ecclen: ECC length + * @extraoob: extra OOB buffer + * @extraooblen: extra OOB length + * @bitflips_threshold: maximum number of bitflips + * + * Check if a data buffer and its associated ECC and OOB data contains only + * 0xff pattern, which means the underlying region has been erased and is + * ready to be programmed. + * The bitflips_threshold specify the maximum number of bitflips before + * considering the region as not erased. + * + * Note: + * 1/ ECC algorithms are working on pre-defined block sizes which are usually + * different from the NAND page size. When fixing bitflips, ECC engines will + * report the number of errors per chunk, and the NAND core infrastructure + * expect you to return the maximum number of bitflips for the whole page. + * This is why you should always use this function on a single chunk and + * not on the whole page. After checking each chunk you should update your + * max_bitflips value accordingly. + * 2/ When checking for bitflips in erased pages you should not only check + * the payload data but also their associated ECC data, because a user might + * have programmed almost all bits to 1 but a few. In this case, we + * shouldn't consider the chunk as erased, and checking ECC bytes prevent + * this case. + * 3/ The extraoob argument is optional, and should be used if some of your OOB + * data are protected by the ECC engine. + * It could also be used if you support subpages and want to attach some + * extra OOB data to an ECC chunk. + * + * Returns a positive number of bitflips less than or equal to + * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the + * threshold. In case of success, the passed buffers are filled with 0xff. + */ +int nand_check_erased_ecc_chunk(void *data, int datalen, + void *ecc, int ecclen, + void *extraoob, int extraooblen, + int bitflips_threshold) +{ + int data_bitflips = 0, ecc_bitflips = 0, extraoob_bitflips = 0; + + data_bitflips = nand_check_erased_buf(data, datalen, + bitflips_threshold); + if (data_bitflips < 0) + return data_bitflips; + + bitflips_threshold -= data_bitflips; + + ecc_bitflips = nand_check_erased_buf(ecc, ecclen, bitflips_threshold); + if (ecc_bitflips < 0) + return ecc_bitflips; + + bitflips_threshold -= ecc_bitflips; + + extraoob_bitflips = nand_check_erased_buf(extraoob, extraooblen, + bitflips_threshold); + if (extraoob_bitflips < 0) + return extraoob_bitflips; + + if (data_bitflips) + memset(data, 0xff, datalen); + + if (ecc_bitflips) + memset(ecc, 0xff, ecclen); + + if (extraoob_bitflips) + memset(extraoob, 0xff, extraooblen); + + return data_bitflips + ecc_bitflips + extraoob_bitflips; +} +EXPORT_SYMBOL(nand_check_erased_ecc_chunk); + +/** + * nand_read_page_raw - [INTERN] read raw page data without ecc + * @mtd: mtd info structure + * @chip: nand chip info structure + * @buf: buffer to store read data + * @oob_required: caller requires OOB data read to chip->oob_poi + * @page: page number to read + * + * Not for syndrome calculating ECC controllers, which use a special oob layout. + */ +int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip, + uint8_t *buf, int oob_required, int page) +{ + int ret; + + ret = nand_read_page_op(chip, page, 0, buf, mtd->writesize); + if (ret) + return ret; + + if (oob_required) { + ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, + false); + if (ret) + return ret; + } + + return 0; +} +EXPORT_SYMBOL(nand_read_page_raw); + +/** + * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc + * @mtd: mtd info structure + * @chip: nand chip info structure + * @buf: buffer to store read data + * @oob_required: caller requires OOB data read to chip->oob_poi + * @page: page number to read + * + * We need a special oob layout and handling even when OOB isn't used. + */ +static int nand_read_page_raw_syndrome(struct mtd_info *mtd, + struct nand_chip *chip, uint8_t *buf, + int oob_required, int page) +{ + int eccsize = chip->ecc.size; + int eccbytes = chip->ecc.bytes; + uint8_t *oob = chip->oob_poi; + int steps, size, ret; + + ret = nand_read_page_op(chip, page, 0, NULL, 0); + if (ret) + return ret; + + for (steps = chip->ecc.steps; steps > 0; steps--) { + ret = nand_read_data_op(chip, buf, eccsize, false); + if (ret) + return ret; + + buf += eccsize; + + if (chip->ecc.prepad) { + ret = nand_read_data_op(chip, oob, chip->ecc.prepad, + false); + if (ret) + return ret; + + oob += chip->ecc.prepad; + } + + ret = nand_read_data_op(chip, oob, eccbytes, false); + if (ret) + return ret; + + oob += eccbytes; + + if (chip->ecc.postpad) { + ret = nand_read_data_op(chip, oob, chip->ecc.postpad, + false); + if (ret) + return ret; + + oob += chip->ecc.postpad; + } + } + + size = mtd->oobsize - (oob - chip->oob_poi); + if (size) { + ret = nand_read_data_op(chip, oob, size, false); + if (ret) + return ret; + } + + return 0; +} + +/** + * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function + * @mtd: mtd info structure + * @chip: nand chip info structure + * @buf: buffer to store read data + * @oob_required: caller requires OOB data read to chip->oob_poi + * @page: page number to read + */ +static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip, + uint8_t *buf, int oob_required, int page) +{ + int i, eccsize = chip->ecc.size, ret; + int eccbytes = chip->ecc.bytes; + int eccsteps = chip->ecc.steps; + uint8_t *p = buf; + uint8_t *ecc_calc = chip->ecc.calc_buf; + uint8_t *ecc_code = chip->ecc.code_buf; + unsigned int max_bitflips = 0; + + chip->ecc.read_page_raw(mtd, chip, buf, 1, page); + + for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) + chip->ecc.calculate(mtd, p, &ecc_calc[i]); + + ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0, + chip->ecc.total); + if (ret) + return ret; + + eccsteps = chip->ecc.steps; + p = buf; + + for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { + int stat; + + stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]); + if (stat < 0) { + mtd->ecc_stats.failed++; + } else { + mtd->ecc_stats.corrected += stat; + max_bitflips = max_t(unsigned int, max_bitflips, stat); + } + } + return max_bitflips; +} + +/** + * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function + * @mtd: mtd info structure + * @chip: nand chip info structure + * @data_offs: offset of requested data within the page + * @readlen: data length + * @bufpoi: buffer to store read data + * @page: page number to read + */ +static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip, + uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi, + int page) +{ + int start_step, end_step, num_steps, ret; + uint8_t *p; + int data_col_addr, i, gaps = 0; + int datafrag_len, eccfrag_len, aligned_len, aligned_pos; + int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1; + int index, section = 0; + unsigned int max_bitflips = 0; + struct mtd_oob_region oobregion = { }; + + /* Column address within the page aligned to ECC size (256bytes) */ + start_step = data_offs / chip->ecc.size; + end_step = (data_offs + readlen - 1) / chip->ecc.size; + num_steps = end_step - start_step + 1; + index = start_step * chip->ecc.bytes; + + /* Data size aligned to ECC ecc.size */ + datafrag_len = num_steps * chip->ecc.size; + eccfrag_len = num_steps * chip->ecc.bytes; + + data_col_addr = start_step * chip->ecc.size; + /* If we read not a page aligned data */ + p = bufpoi + data_col_addr; + ret = nand_read_page_op(chip, page, data_col_addr, p, datafrag_len); + if (ret) + return ret; + + /* Calculate ECC */ + for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) + chip->ecc.calculate(mtd, p, &chip->ecc.calc_buf[i]); + + /* + * The performance is faster if we position offsets according to + * ecc.pos. Let's make sure that there are no gaps in ECC positions. + */ + ret = mtd_ooblayout_find_eccregion(mtd, index, §ion, &oobregion); + if (ret) + return ret; + + if (oobregion.length < eccfrag_len) + gaps = 1; + + if (gaps) { + ret = nand_change_read_column_op(chip, mtd->writesize, + chip->oob_poi, mtd->oobsize, + false); + if (ret) + return ret; + } else { + /* + * Send the command to read the particular ECC bytes take care + * about buswidth alignment in read_buf. + */ + aligned_pos = oobregion.offset & ~(busw - 1); + aligned_len = eccfrag_len; + if (oobregion.offset & (busw - 1)) + aligned_len++; + if ((oobregion.offset + (num_steps * chip->ecc.bytes)) & + (busw - 1)) + aligned_len++; + + ret = nand_change_read_column_op(chip, + mtd->writesize + aligned_pos, + &chip->oob_poi[aligned_pos], + aligned_len, false); + if (ret) + return ret; + } + + ret = mtd_ooblayout_get_eccbytes(mtd, chip->ecc.code_buf, + chip->oob_poi, index, eccfrag_len); + if (ret) + return ret; + + p = bufpoi + data_col_addr; + for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) { + int stat; + + stat = chip->ecc.correct(mtd, p, &chip->ecc.code_buf[i], + &chip->ecc.calc_buf[i]); + if (stat == -EBADMSG && + (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) { + /* check for empty pages with bitflips */ + stat = nand_check_erased_ecc_chunk(p, chip->ecc.size, + &chip->ecc.code_buf[i], + chip->ecc.bytes, + NULL, 0, + chip->ecc.strength); + } + + if (stat < 0) { + mtd->ecc_stats.failed++; + } else { + mtd->ecc_stats.corrected += stat; + max_bitflips = max_t(unsigned int, max_bitflips, stat); + } + } + return max_bitflips; +} + +/** + * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function + * @mtd: mtd info structure + * @chip: nand chip info structure + * @buf: buffer to store read data + * @oob_required: caller requires OOB data read to chip->oob_poi + * @page: page number to read + * + * Not for syndrome calculating ECC controllers which need a special oob layout. + */ +static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip, + uint8_t *buf, int oob_required, int page) +{ + int i, eccsize = chip->ecc.size, ret; + int eccbytes = chip->ecc.bytes; + int eccsteps = chip->ecc.steps; + uint8_t *p = buf; + uint8_t *ecc_calc = chip->ecc.calc_buf; + uint8_t *ecc_code = chip->ecc.code_buf; + unsigned int max_bitflips = 0; + + ret = nand_read_page_op(chip, page, 0, NULL, 0); + if (ret) + return ret; + + for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { + chip->ecc.hwctl(mtd, NAND_ECC_READ); + + ret = nand_read_data_op(chip, p, eccsize, false); + if (ret) + return ret; + + chip->ecc.calculate(mtd, p, &ecc_calc[i]); + } + + ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, false); + if (ret) + return ret; + + ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0, + chip->ecc.total); + if (ret) + return ret; + + eccsteps = chip->ecc.steps; + p = buf; + + for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { + int stat; + + stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]); + if (stat == -EBADMSG && + (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) { + /* check for empty pages with bitflips */ + stat = nand_check_erased_ecc_chunk(p, eccsize, + &ecc_code[i], eccbytes, + NULL, 0, + chip->ecc.strength); + } + + if (stat < 0) { + mtd->ecc_stats.failed++; + } else { + mtd->ecc_stats.corrected += stat; + max_bitflips = max_t(unsigned int, max_bitflips, stat); + } + } + return max_bitflips; +} + +/** + * nand_read_page_hwecc_oob_first - [REPLACEABLE] hw ecc, read oob first + * @mtd: mtd info structure + * @chip: nand chip info structure + * @buf: buffer to store read data + * @oob_required: caller requires OOB data read to chip->oob_poi + * @page: page number to read + * + * Hardware ECC for large page chips, require OOB to be read first. For this + * ECC mode, the write_page method is re-used from ECC_HW. These methods + * read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with + * multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from + * the data area, by overwriting the NAND manufacturer bad block markings. + */ +static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd, + struct nand_chip *chip, uint8_t *buf, int oob_required, int page) +{ + int i, eccsize = chip->ecc.size, ret; + int eccbytes = chip->ecc.bytes; + int eccsteps = chip->ecc.steps; + uint8_t *p = buf; + uint8_t *ecc_code = chip->ecc.code_buf; + uint8_t *ecc_calc = chip->ecc.calc_buf; + unsigned int max_bitflips = 0; + + /* Read the OOB area first */ + ret = nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize); + if (ret) + return ret; + + ret = nand_read_page_op(chip, page, 0, NULL, 0); + if (ret) + return ret; + + ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0, + chip->ecc.total); + if (ret) + return ret; + + for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { + int stat; + + chip->ecc.hwctl(mtd, NAND_ECC_READ); + + ret = nand_read_data_op(chip, p, eccsize, false); + if (ret) + return ret; + + chip->ecc.calculate(mtd, p, &ecc_calc[i]); + + stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL); + if (stat == -EBADMSG && + (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) { + /* check for empty pages with bitflips */ + stat = nand_check_erased_ecc_chunk(p, eccsize, + &ecc_code[i], eccbytes, + NULL, 0, + chip->ecc.strength); + } + + if (stat < 0) { + mtd->ecc_stats.failed++; + } else { + mtd->ecc_stats.corrected += stat; + max_bitflips = max_t(unsigned int, max_bitflips, stat); + } + } + return max_bitflips; +} + +/** + * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read + * @mtd: mtd info structure + * @chip: nand chip info structure + * @buf: buffer to store read data + * @oob_required: caller requires OOB data read to chip->oob_poi + * @page: page number to read + * + * The hw generator calculates the error syndrome automatically. Therefore we + * need a special oob layout and handling. + */ +static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip, + uint8_t *buf, int oob_required, int page) +{ + int ret, i, eccsize = chip->ecc.size; + int eccbytes = chip->ecc.bytes; + int eccsteps = chip->ecc.steps; + int eccpadbytes = eccbytes + chip->ecc.prepad + chip->ecc.postpad; + uint8_t *p = buf; + uint8_t *oob = chip->oob_poi; + unsigned int max_bitflips = 0; + + ret = nand_read_page_op(chip, page, 0, NULL, 0); + if (ret) + return ret; + + for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { + int stat; + + chip->ecc.hwctl(mtd, NAND_ECC_READ); + + ret = nand_read_data_op(chip, p, eccsize, false); + if (ret) + return ret; + + if (chip->ecc.prepad) { + ret = nand_read_data_op(chip, oob, chip->ecc.prepad, + false); + if (ret) + return ret; + + oob += chip->ecc.prepad; + } + + chip->ecc.hwctl(mtd, NAND_ECC_READSYN); + + ret = nand_read_data_op(chip, oob, eccbytes, false); + if (ret) + return ret; + + stat = chip->ecc.correct(mtd, p, oob, NULL); + + oob += eccbytes; + + if (chip->ecc.postpad) { + ret = nand_read_data_op(chip, oob, chip->ecc.postpad, + false); + if (ret) + return ret; + + oob += chip->ecc.postpad; + } + + if (stat == -EBADMSG && + (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) { + /* check for empty pages with bitflips */ + stat = nand_check_erased_ecc_chunk(p, chip->ecc.size, + oob - eccpadbytes, + eccpadbytes, + NULL, 0, + chip->ecc.strength); + } + + if (stat < 0) { + mtd->ecc_stats.failed++; + } else { + mtd->ecc_stats.corrected += stat; + max_bitflips = max_t(unsigned int, max_bitflips, stat); + } + } + + /* Calculate remaining oob bytes */ + i = mtd->oobsize - (oob - chip->oob_poi); + if (i) { + ret = nand_read_data_op(chip, oob, i, false); + if (ret) + return ret; + } + + return max_bitflips; +} + +/** + * nand_transfer_oob - [INTERN] Transfer oob to client buffer + * @mtd: mtd info structure + * @oob: oob destination address + * @ops: oob ops structure + * @len: size of oob to transfer + */ +static uint8_t *nand_transfer_oob(struct mtd_info *mtd, uint8_t *oob, + struct mtd_oob_ops *ops, size_t len) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + int ret; + + switch (ops->mode) { + + case MTD_OPS_PLACE_OOB: + case MTD_OPS_RAW: + memcpy(oob, chip->oob_poi + ops->ooboffs, len); + return oob + len; + + case MTD_OPS_AUTO_OOB: + ret = mtd_ooblayout_get_databytes(mtd, oob, chip->oob_poi, + ops->ooboffs, len); + BUG_ON(ret); + return oob + len; + + default: + BUG(); + } + return NULL; +} + +/** + * nand_setup_read_retry - [INTERN] Set the READ RETRY mode + * @mtd: MTD device structure + * @retry_mode: the retry mode to use + * + * Some vendors supply a special command to shift the Vt threshold, to be used + * when there are too many bitflips in a page (i.e., ECC error). After setting + * a new threshold, the host should retry reading the page. + */ +static int nand_setup_read_retry(struct mtd_info *mtd, int retry_mode) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + + pr_debug("setting READ RETRY mode %d\n", retry_mode); + + if (retry_mode >= chip->read_retries) + return -EINVAL; + + if (!chip->setup_read_retry) + return -EOPNOTSUPP; + + return chip->setup_read_retry(mtd, retry_mode); +} + +/** + * nand_do_read_ops - [INTERN] Read data with ECC + * @mtd: MTD device structure + * @from: offset to read from + * @ops: oob ops structure + * + * Internal function. Called with chip held. + */ +static int nand_do_read_ops(struct mtd_info *mtd, loff_t from, + struct mtd_oob_ops *ops) +{ + int chipnr, page, realpage, col, bytes, aligned, oob_required; + struct nand_chip *chip = mtd_to_nand(mtd); + int ret = 0; + uint32_t readlen = ops->len; + uint32_t oobreadlen = ops->ooblen; + uint32_t max_oobsize = mtd_oobavail(mtd, ops); + + uint8_t *bufpoi, *oob, *buf; + int use_bufpoi; + unsigned int max_bitflips = 0; + int retry_mode = 0; + bool ecc_fail = false; + + chipnr = (int)(from >> chip->chip_shift); + chip->select_chip(mtd, chipnr); + + realpage = (int)(from >> chip->page_shift); + page = realpage & chip->pagemask; + + col = (int)(from & (mtd->writesize - 1)); + + buf = ops->datbuf; + oob = ops->oobbuf; + oob_required = oob ? 1 : 0; + + while (1) { + unsigned int ecc_failures = mtd->ecc_stats.failed; + + bytes = min(mtd->writesize - col, readlen); + aligned = (bytes == mtd->writesize); + + if (!aligned) + use_bufpoi = 1; + else if (chip->options & NAND_USE_BOUNCE_BUFFER) + use_bufpoi = !virt_addr_valid(buf) || + !IS_ALIGNED((unsigned long)buf, + chip->buf_align); + else + use_bufpoi = 0; + + /* Is the current page in the buffer? */ + if (realpage != chip->pagebuf || oob) { + bufpoi = use_bufpoi ? chip->data_buf : buf; + + if (use_bufpoi && aligned) + pr_debug("%s: using read bounce buffer for buf@%p\n", + __func__, buf); + +read_retry: + /* + * Now read the page into the buffer. Absent an error, + * the read methods return max bitflips per ecc step. + */ + if (unlikely(ops->mode == MTD_OPS_RAW)) + ret = chip->ecc.read_page_raw(mtd, chip, bufpoi, + oob_required, + page); + else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) && + !oob) + ret = chip->ecc.read_subpage(mtd, chip, + col, bytes, bufpoi, + page); + else + ret = chip->ecc.read_page(mtd, chip, bufpoi, + oob_required, page); + if (ret < 0) { + if (use_bufpoi) + /* Invalidate page cache */ + chip->pagebuf = -1; + break; + } + + /* Transfer not aligned data */ + if (use_bufpoi) { + if (!NAND_HAS_SUBPAGE_READ(chip) && !oob && + !(mtd->ecc_stats.failed - ecc_failures) && + (ops->mode != MTD_OPS_RAW)) { + chip->pagebuf = realpage; + chip->pagebuf_bitflips = ret; + } else { + /* Invalidate page cache */ + chip->pagebuf = -1; + } + memcpy(buf, chip->data_buf + col, bytes); + } + + if (unlikely(oob)) { + int toread = min(oobreadlen, max_oobsize); + + if (toread) { + oob = nand_transfer_oob(mtd, + oob, ops, toread); + oobreadlen -= toread; + } + } + + if (chip->options & NAND_NEED_READRDY) { + /* Apply delay or wait for ready/busy pin */ + if (!chip->dev_ready) + udelay(chip->chip_delay); + else + nand_wait_ready(mtd); + } + + if (mtd->ecc_stats.failed - ecc_failures) { + if (retry_mode + 1 < chip->read_retries) { + retry_mode++; + ret = nand_setup_read_retry(mtd, + retry_mode); + if (ret < 0) + break; + + /* Reset failures; retry */ + mtd->ecc_stats.failed = ecc_failures; + goto read_retry; + } else { + /* No more retry modes; real failure */ + ecc_fail = true; + } + } + + buf += bytes; + max_bitflips = max_t(unsigned int, max_bitflips, ret); + } else { + memcpy(buf, chip->data_buf + col, bytes); + buf += bytes; + max_bitflips = max_t(unsigned int, max_bitflips, + chip->pagebuf_bitflips); + } + + readlen -= bytes; + + /* Reset to retry mode 0 */ + if (retry_mode) { + ret = nand_setup_read_retry(mtd, 0); + if (ret < 0) + break; + retry_mode = 0; + } + + if (!readlen) + break; + + /* For subsequent reads align to page boundary */ + col = 0; + /* Increment page address */ + realpage++; + + page = realpage & chip->pagemask; + /* Check, if we cross a chip boundary */ + if (!page) { + chipnr++; + chip->select_chip(mtd, -1); + chip->select_chip(mtd, chipnr); + } + } + chip->select_chip(mtd, -1); + + ops->retlen = ops->len - (size_t) readlen; + if (oob) + ops->oobretlen = ops->ooblen - oobreadlen; + + if (ret < 0) + return ret; + + if (ecc_fail) + return -EBADMSG; + + return max_bitflips; +} + +/** + * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function + * @mtd: mtd info structure + * @chip: nand chip info structure + * @page: page number to read + */ +int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip, int page) +{ + return nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize); +} +EXPORT_SYMBOL(nand_read_oob_std); + +/** + * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC + * with syndromes + * @mtd: mtd info structure + * @chip: nand chip info structure + * @page: page number to read + */ +int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip, + int page) +{ + int length = mtd->oobsize; + int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad; + int eccsize = chip->ecc.size; + uint8_t *bufpoi = chip->oob_poi; + int i, toread, sndrnd = 0, pos, ret; + + ret = nand_read_page_op(chip, page, chip->ecc.size, NULL, 0); + if (ret) + return ret; + + for (i = 0; i < chip->ecc.steps; i++) { + if (sndrnd) { + int ret; + + pos = eccsize + i * (eccsize + chunk); + if (mtd->writesize > 512) + ret = nand_change_read_column_op(chip, pos, + NULL, 0, + false); + else + ret = nand_read_page_op(chip, page, pos, NULL, + 0); + + if (ret) + return ret; + } else + sndrnd = 1; + toread = min_t(int, length, chunk); + + ret = nand_read_data_op(chip, bufpoi, toread, false); + if (ret) + return ret; + + bufpoi += toread; + length -= toread; + } + if (length > 0) { + ret = nand_read_data_op(chip, bufpoi, length, false); + if (ret) + return ret; + } + + return 0; +} +EXPORT_SYMBOL(nand_read_oob_syndrome); + +/** + * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function + * @mtd: mtd info structure + * @chip: nand chip info structure + * @page: page number to write + */ +int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip, int page) +{ + return nand_prog_page_op(chip, page, mtd->writesize, chip->oob_poi, + mtd->oobsize); +} +EXPORT_SYMBOL(nand_write_oob_std); + +/** + * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC + * with syndrome - only for large page flash + * @mtd: mtd info structure + * @chip: nand chip info structure + * @page: page number to write + */ +int nand_write_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip, + int page) +{ + int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad; + int eccsize = chip->ecc.size, length = mtd->oobsize; + int ret, i, len, pos, sndcmd = 0, steps = chip->ecc.steps; + const uint8_t *bufpoi = chip->oob_poi; + + /* + * data-ecc-data-ecc ... ecc-oob + * or + * data-pad-ecc-pad-data-pad .... ecc-pad-oob + */ + if (!chip->ecc.prepad && !chip->ecc.postpad) { + pos = steps * (eccsize + chunk); + steps = 0; + } else + pos = eccsize; + + ret = nand_prog_page_begin_op(chip, page, pos, NULL, 0); + if (ret) + return ret; + + for (i = 0; i < steps; i++) { + if (sndcmd) { + if (mtd->writesize <= 512) { + uint32_t fill = 0xFFFFFFFF; + + len = eccsize; + while (len > 0) { + int num = min_t(int, len, 4); + + ret = nand_write_data_op(chip, &fill, + num, false); + if (ret) + return ret; + + len -= num; + } + } else { + pos = eccsize + i * (eccsize + chunk); + ret = nand_change_write_column_op(chip, pos, + NULL, 0, + false); + if (ret) + return ret; + } + } else + sndcmd = 1; + len = min_t(int, length, chunk); + + ret = nand_write_data_op(chip, bufpoi, len, false); + if (ret) + return ret; + + bufpoi += len; + length -= len; + } + if (length > 0) { + ret = nand_write_data_op(chip, bufpoi, length, false); + if (ret) + return ret; + } + + return nand_prog_page_end_op(chip); +} +EXPORT_SYMBOL(nand_write_oob_syndrome); + +/** + * nand_do_read_oob - [INTERN] NAND read out-of-band + * @mtd: MTD device structure + * @from: offset to read from + * @ops: oob operations description structure + * + * NAND read out-of-band data from the spare area. + */ +static int nand_do_read_oob(struct mtd_info *mtd, loff_t from, + struct mtd_oob_ops *ops) +{ + unsigned int max_bitflips = 0; + int page, realpage, chipnr; + struct nand_chip *chip = mtd_to_nand(mtd); + struct mtd_ecc_stats stats; + int readlen = ops->ooblen; + int len; + uint8_t *buf = ops->oobbuf; + int ret = 0; + + pr_debug("%s: from = 0x%08Lx, len = %i\n", + __func__, (unsigned long long)from, readlen); + + stats = mtd->ecc_stats; + + len = mtd_oobavail(mtd, ops); + + chipnr = (int)(from >> chip->chip_shift); + chip->select_chip(mtd, chipnr); + + /* Shift to get page */ + realpage = (int)(from >> chip->page_shift); + page = realpage & chip->pagemask; + + while (1) { + if (ops->mode == MTD_OPS_RAW) + ret = chip->ecc.read_oob_raw(mtd, chip, page); + else + ret = chip->ecc.read_oob(mtd, chip, page); + + if (ret < 0) + break; + + len = min(len, readlen); + buf = nand_transfer_oob(mtd, buf, ops, len); + + if (chip->options & NAND_NEED_READRDY) { + /* Apply delay or wait for ready/busy pin */ + if (!chip->dev_ready) + udelay(chip->chip_delay); + else + nand_wait_ready(mtd); + } + + max_bitflips = max_t(unsigned int, max_bitflips, ret); + + readlen -= len; + if (!readlen) + break; + + /* Increment page address */ + realpage++; + + page = realpage & chip->pagemask; + /* Check, if we cross a chip boundary */ + if (!page) { + chipnr++; + chip->select_chip(mtd, -1); + chip->select_chip(mtd, chipnr); + } + } + chip->select_chip(mtd, -1); + + ops->oobretlen = ops->ooblen - readlen; + + if (ret < 0) + return ret; + + if (mtd->ecc_stats.failed - stats.failed) + return -EBADMSG; + + return max_bitflips; +} + +/** + * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band + * @mtd: MTD device structure + * @from: offset to read from + * @ops: oob operation description structure + * + * NAND read data and/or out-of-band data. + */ +static int nand_read_oob(struct mtd_info *mtd, loff_t from, + struct mtd_oob_ops *ops) +{ + int ret; + + ops->retlen = 0; + + if (ops->mode != MTD_OPS_PLACE_OOB && + ops->mode != MTD_OPS_AUTO_OOB && + ops->mode != MTD_OPS_RAW) + return -ENOTSUPP; + + nand_get_device(mtd, FL_READING); + + if (!ops->datbuf) + ret = nand_do_read_oob(mtd, from, ops); + else + ret = nand_do_read_ops(mtd, from, ops); + + nand_release_device(mtd); + return ret; +} + + +/** + * nand_write_page_raw - [INTERN] raw page write function + * @mtd: mtd info structure + * @chip: nand chip info structure + * @buf: data buffer + * @oob_required: must write chip->oob_poi to OOB + * @page: page number to write + * + * Not for syndrome calculating ECC controllers, which use a special oob layout. + */ +int nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip, + const uint8_t *buf, int oob_required, int page) +{ + int ret; + + ret = nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize); + if (ret) + return ret; + + if (oob_required) { + ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, + false); + if (ret) + return ret; + } + + return nand_prog_page_end_op(chip); +} +EXPORT_SYMBOL(nand_write_page_raw); + +/** + * nand_write_page_raw_syndrome - [INTERN] raw page write function + * @mtd: mtd info structure + * @chip: nand chip info structure + * @buf: data buffer + * @oob_required: must write chip->oob_poi to OOB + * @page: page number to write + * + * We need a special oob layout and handling even when ECC isn't checked. + */ +static int nand_write_page_raw_syndrome(struct mtd_info *mtd, + struct nand_chip *chip, + const uint8_t *buf, int oob_required, + int page) +{ + int eccsize = chip->ecc.size; + int eccbytes = chip->ecc.bytes; + uint8_t *oob = chip->oob_poi; + int steps, size, ret; + + ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0); + if (ret) + return ret; + + for (steps = chip->ecc.steps; steps > 0; steps--) { + ret = nand_write_data_op(chip, buf, eccsize, false); + if (ret) + return ret; + + buf += eccsize; + + if (chip->ecc.prepad) { + ret = nand_write_data_op(chip, oob, chip->ecc.prepad, + false); + if (ret) + return ret; + + oob += chip->ecc.prepad; + } + + ret = nand_write_data_op(chip, oob, eccbytes, false); + if (ret) + return ret; + + oob += eccbytes; + + if (chip->ecc.postpad) { + ret = nand_write_data_op(chip, oob, chip->ecc.postpad, + false); + if (ret) + return ret; + + oob += chip->ecc.postpad; + } + } + + size = mtd->oobsize - (oob - chip->oob_poi); + if (size) { + ret = nand_write_data_op(chip, oob, size, false); + if (ret) + return ret; + } + + return nand_prog_page_end_op(chip); +} +/** + * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function + * @mtd: mtd info structure + * @chip: nand chip info structure + * @buf: data buffer + * @oob_required: must write chip->oob_poi to OOB + * @page: page number to write + */ +static int nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip, + const uint8_t *buf, int oob_required, + int page) +{ + int i, eccsize = chip->ecc.size, ret; + int eccbytes = chip->ecc.bytes; + int eccsteps = chip->ecc.steps; + uint8_t *ecc_calc = chip->ecc.calc_buf; + const uint8_t *p = buf; + + /* Software ECC calculation */ + for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) + chip->ecc.calculate(mtd, p, &ecc_calc[i]); + + ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0, + chip->ecc.total); + if (ret) + return ret; + + return chip->ecc.write_page_raw(mtd, chip, buf, 1, page); +} + +/** + * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function + * @mtd: mtd info structure + * @chip: nand chip info structure + * @buf: data buffer + * @oob_required: must write chip->oob_poi to OOB + * @page: page number to write + */ +static int nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip, + const uint8_t *buf, int oob_required, + int page) +{ + int i, eccsize = chip->ecc.size, ret; + int eccbytes = chip->ecc.bytes; + int eccsteps = chip->ecc.steps; + uint8_t *ecc_calc = chip->ecc.calc_buf; + const uint8_t *p = buf; + + ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0); + if (ret) + return ret; + + for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { + chip->ecc.hwctl(mtd, NAND_ECC_WRITE); + + ret = nand_write_data_op(chip, p, eccsize, false); + if (ret) + return ret; + + chip->ecc.calculate(mtd, p, &ecc_calc[i]); + } + + ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0, + chip->ecc.total); + if (ret) + return ret; + + ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false); + if (ret) + return ret; + + return nand_prog_page_end_op(chip); +} + + +/** + * nand_write_subpage_hwecc - [REPLACEABLE] hardware ECC based subpage write + * @mtd: mtd info structure + * @chip: nand chip info structure + * @offset: column address of subpage within the page + * @data_len: data length + * @buf: data buffer + * @oob_required: must write chip->oob_poi to OOB + * @page: page number to write + */ +static int nand_write_subpage_hwecc(struct mtd_info *mtd, + struct nand_chip *chip, uint32_t offset, + uint32_t data_len, const uint8_t *buf, + int oob_required, int page) +{ + uint8_t *oob_buf = chip->oob_poi; + uint8_t *ecc_calc = chip->ecc.calc_buf; + int ecc_size = chip->ecc.size; + int ecc_bytes = chip->ecc.bytes; + int ecc_steps = chip->ecc.steps; + uint32_t start_step = offset / ecc_size; + uint32_t end_step = (offset + data_len - 1) / ecc_size; + int oob_bytes = mtd->oobsize / ecc_steps; + int step, ret; + + ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0); + if (ret) + return ret; + + for (step = 0; step < ecc_steps; step++) { + /* configure controller for WRITE access */ + chip->ecc.hwctl(mtd, NAND_ECC_WRITE); + + /* write data (untouched subpages already masked by 0xFF) */ + ret = nand_write_data_op(chip, buf, ecc_size, false); + if (ret) + return ret; + + /* mask ECC of un-touched subpages by padding 0xFF */ + if ((step < start_step) || (step > end_step)) + memset(ecc_calc, 0xff, ecc_bytes); + else + chip->ecc.calculate(mtd, buf, ecc_calc); + + /* mask OOB of un-touched subpages by padding 0xFF */ + /* if oob_required, preserve OOB metadata of written subpage */ + if (!oob_required || (step < start_step) || (step > end_step)) + memset(oob_buf, 0xff, oob_bytes); + + buf += ecc_size; + ecc_calc += ecc_bytes; + oob_buf += oob_bytes; + } + + /* copy calculated ECC for whole page to chip->buffer->oob */ + /* this include masked-value(0xFF) for unwritten subpages */ + ecc_calc = chip->ecc.calc_buf; + ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0, + chip->ecc.total); + if (ret) + return ret; + + /* write OOB buffer to NAND device */ + ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false); + if (ret) + return ret; + + return nand_prog_page_end_op(chip); +} + + +/** + * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write + * @mtd: mtd info structure + * @chip: nand chip info structure + * @buf: data buffer + * @oob_required: must write chip->oob_poi to OOB + * @page: page number to write + * + * The hw generator calculates the error syndrome automatically. Therefore we + * need a special oob layout and handling. + */ +static int nand_write_page_syndrome(struct mtd_info *mtd, + struct nand_chip *chip, + const uint8_t *buf, int oob_required, + int page) +{ + int i, eccsize = chip->ecc.size; + int eccbytes = chip->ecc.bytes; + int eccsteps = chip->ecc.steps; + const uint8_t *p = buf; + uint8_t *oob = chip->oob_poi; + int ret; + + ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0); + if (ret) + return ret; + + for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { + chip->ecc.hwctl(mtd, NAND_ECC_WRITE); + + ret = nand_write_data_op(chip, p, eccsize, false); + if (ret) + return ret; + + if (chip->ecc.prepad) { + ret = nand_write_data_op(chip, oob, chip->ecc.prepad, + false); + if (ret) + return ret; + + oob += chip->ecc.prepad; + } + + chip->ecc.calculate(mtd, p, oob); + + ret = nand_write_data_op(chip, oob, eccbytes, false); + if (ret) + return ret; + + oob += eccbytes; + + if (chip->ecc.postpad) { + ret = nand_write_data_op(chip, oob, chip->ecc.postpad, + false); + if (ret) + return ret; + + oob += chip->ecc.postpad; + } + } + + /* Calculate remaining oob bytes */ + i = mtd->oobsize - (oob - chip->oob_poi); + if (i) { + ret = nand_write_data_op(chip, oob, i, false); + if (ret) + return ret; + } + + return nand_prog_page_end_op(chip); +} + +/** + * nand_write_page - write one page + * @mtd: MTD device structure + * @chip: NAND chip descriptor + * @offset: address offset within the page + * @data_len: length of actual data to be written + * @buf: the data to write + * @oob_required: must write chip->oob_poi to OOB + * @page: page number to write + * @raw: use _raw version of write_page + */ +static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip, + uint32_t offset, int data_len, const uint8_t *buf, + int oob_required, int page, int raw) +{ + int status, subpage; + + if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && + chip->ecc.write_subpage) + subpage = offset || (data_len < mtd->writesize); + else + subpage = 0; + + if (unlikely(raw)) + status = chip->ecc.write_page_raw(mtd, chip, buf, + oob_required, page); + else if (subpage) + status = chip->ecc.write_subpage(mtd, chip, offset, data_len, + buf, oob_required, page); + else + status = chip->ecc.write_page(mtd, chip, buf, oob_required, + page); + + if (status < 0) + return status; + + return 0; +} + +/** + * nand_fill_oob - [INTERN] Transfer client buffer to oob + * @mtd: MTD device structure + * @oob: oob data buffer + * @len: oob data write length + * @ops: oob ops structure + */ +static uint8_t *nand_fill_oob(struct mtd_info *mtd, uint8_t *oob, size_t len, + struct mtd_oob_ops *ops) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + int ret; + + /* + * Initialise to all 0xFF, to avoid the possibility of left over OOB + * data from a previous OOB read. + */ + memset(chip->oob_poi, 0xff, mtd->oobsize); + + switch (ops->mode) { + + case MTD_OPS_PLACE_OOB: + case MTD_OPS_RAW: + memcpy(chip->oob_poi + ops->ooboffs, oob, len); + return oob + len; + + case MTD_OPS_AUTO_OOB: + ret = mtd_ooblayout_set_databytes(mtd, oob, chip->oob_poi, + ops->ooboffs, len); + BUG_ON(ret); + return oob + len; + + default: + BUG(); + } + return NULL; +} + +#define NOTALIGNED(x) ((x & (chip->subpagesize - 1)) != 0) + +/** + * nand_do_write_ops - [INTERN] NAND write with ECC + * @mtd: MTD device structure + * @to: offset to write to + * @ops: oob operations description structure + * + * NAND write with ECC. + */ +static int nand_do_write_ops(struct mtd_info *mtd, loff_t to, + struct mtd_oob_ops *ops) +{ + int chipnr, realpage, page, column; + struct nand_chip *chip = mtd_to_nand(mtd); + uint32_t writelen = ops->len; + + uint32_t oobwritelen = ops->ooblen; + uint32_t oobmaxlen = mtd_oobavail(mtd, ops); + + uint8_t *oob = ops->oobbuf; + uint8_t *buf = ops->datbuf; + int ret; + int oob_required = oob ? 1 : 0; + + ops->retlen = 0; + if (!writelen) + return 0; + + /* Reject writes, which are not page aligned */ + if (NOTALIGNED(to) || NOTALIGNED(ops->len)) { + pr_notice("%s: attempt to write non page aligned data\n", + __func__); + return -EINVAL; + } + + column = to & (mtd->writesize - 1); + + chipnr = (int)(to >> chip->chip_shift); + chip->select_chip(mtd, chipnr); + + /* Check, if it is write protected */ + if (nand_check_wp(mtd)) { + ret = -EIO; + goto err_out; + } + + realpage = (int)(to >> chip->page_shift); + page = realpage & chip->pagemask; + + /* Invalidate the page cache, when we write to the cached page */ + if (to <= ((loff_t)chip->pagebuf << chip->page_shift) && + ((loff_t)chip->pagebuf << chip->page_shift) < (to + ops->len)) + chip->pagebuf = -1; + + /* Don't allow multipage oob writes with offset */ + if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) { + ret = -EINVAL; + goto err_out; + } + + while (1) { + int bytes = mtd->writesize; + uint8_t *wbuf = buf; + int use_bufpoi; + int part_pagewr = (column || writelen < mtd->writesize); + + if (part_pagewr) + use_bufpoi = 1; + else if (chip->options & NAND_USE_BOUNCE_BUFFER) + use_bufpoi = !virt_addr_valid(buf) || + !IS_ALIGNED((unsigned long)buf, + chip->buf_align); + else + use_bufpoi = 0; + + /* Partial page write?, or need to use bounce buffer */ + if (use_bufpoi) { + pr_debug("%s: using write bounce buffer for buf@%p\n", + __func__, buf); + if (part_pagewr) + bytes = min_t(int, bytes - column, writelen); + chip->pagebuf = -1; + memset(chip->data_buf, 0xff, mtd->writesize); + memcpy(&chip->data_buf[column], buf, bytes); + wbuf = chip->data_buf; + } + + if (unlikely(oob)) { + size_t len = min(oobwritelen, oobmaxlen); + oob = nand_fill_oob(mtd, oob, len, ops); + oobwritelen -= len; + } else { + /* We still need to erase leftover OOB data */ + memset(chip->oob_poi, 0xff, mtd->oobsize); + } + + ret = nand_write_page(mtd, chip, column, bytes, wbuf, + oob_required, page, + (ops->mode == MTD_OPS_RAW)); + if (ret) + break; + + writelen -= bytes; + if (!writelen) + break; + + column = 0; + buf += bytes; + realpage++; + + page = realpage & chip->pagemask; + /* Check, if we cross a chip boundary */ + if (!page) { + chipnr++; + chip->select_chip(mtd, -1); + chip->select_chip(mtd, chipnr); + } + } + + ops->retlen = ops->len - writelen; + if (unlikely(oob)) + ops->oobretlen = ops->ooblen; + +err_out: + chip->select_chip(mtd, -1); + return ret; +} + +/** + * panic_nand_write - [MTD Interface] NAND write with ECC + * @mtd: MTD device structure + * @to: offset to write to + * @len: number of bytes to write + * @retlen: pointer to variable to store the number of written bytes + * @buf: the data to write + * + * NAND write with ECC. Used when performing writes in interrupt context, this + * may for example be called by mtdoops when writing an oops while in panic. + */ +static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len, + size_t *retlen, const uint8_t *buf) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + int chipnr = (int)(to >> chip->chip_shift); + struct mtd_oob_ops ops; + int ret; + + /* Grab the device */ + panic_nand_get_device(chip, mtd, FL_WRITING); + + chip->select_chip(mtd, chipnr); + + /* Wait for the device to get ready */ + panic_nand_wait(mtd, chip, 400); + + memset(&ops, 0, sizeof(ops)); + ops.len = len; + ops.datbuf = (uint8_t *)buf; + ops.mode = MTD_OPS_PLACE_OOB; + + ret = nand_do_write_ops(mtd, to, &ops); + + *retlen = ops.retlen; + return ret; +} + +/** + * nand_do_write_oob - [MTD Interface] NAND write out-of-band + * @mtd: MTD device structure + * @to: offset to write to + * @ops: oob operation description structure + * + * NAND write out-of-band. + */ +static int nand_do_write_oob(struct mtd_info *mtd, loff_t to, + struct mtd_oob_ops *ops) +{ + int chipnr, page, status, len; + struct nand_chip *chip = mtd_to_nand(mtd); + + pr_debug("%s: to = 0x%08x, len = %i\n", + __func__, (unsigned int)to, (int)ops->ooblen); + + len = mtd_oobavail(mtd, ops); + + /* Do not allow write past end of page */ + if ((ops->ooboffs + ops->ooblen) > len) { + pr_debug("%s: attempt to write past end of page\n", + __func__); + return -EINVAL; + } + + chipnr = (int)(to >> chip->chip_shift); + + /* + * Reset the chip. Some chips (like the Toshiba TC5832DC found in one + * of my DiskOnChip 2000 test units) will clear the whole data page too + * if we don't do this. I have no clue why, but I seem to have 'fixed' + * it in the doc2000 driver in August 1999. dwmw2. + */ + nand_reset(chip, chipnr); + + chip->select_chip(mtd, chipnr); + + /* Shift to get page */ + page = (int)(to >> chip->page_shift); + + /* Check, if it is write protected */ + if (nand_check_wp(mtd)) { + chip->select_chip(mtd, -1); + return -EROFS; + } + + /* Invalidate the page cache, if we write to the cached page */ + if (page == chip->pagebuf) + chip->pagebuf = -1; + + nand_fill_oob(mtd, ops->oobbuf, ops->ooblen, ops); + + if (ops->mode == MTD_OPS_RAW) + status = chip->ecc.write_oob_raw(mtd, chip, page & chip->pagemask); + else + status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask); + + chip->select_chip(mtd, -1); + + if (status) + return status; + + ops->oobretlen = ops->ooblen; + + return 0; +} + +/** + * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band + * @mtd: MTD device structure + * @to: offset to write to + * @ops: oob operation description structure + */ +static int nand_write_oob(struct mtd_info *mtd, loff_t to, + struct mtd_oob_ops *ops) +{ + int ret = -ENOTSUPP; + + ops->retlen = 0; + + nand_get_device(mtd, FL_WRITING); + + switch (ops->mode) { + case MTD_OPS_PLACE_OOB: + case MTD_OPS_AUTO_OOB: + case MTD_OPS_RAW: + break; + + default: + goto out; + } + + if (!ops->datbuf) + ret = nand_do_write_oob(mtd, to, ops); + else + ret = nand_do_write_ops(mtd, to, ops); + +out: + nand_release_device(mtd); + return ret; +} + +/** + * single_erase - [GENERIC] NAND standard block erase command function + * @mtd: MTD device structure + * @page: the page address of the block which will be erased + * + * Standard erase command for NAND chips. Returns NAND status. + */ +static int single_erase(struct mtd_info *mtd, int page) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + unsigned int eraseblock; + + /* Send commands to erase a block */ + eraseblock = page >> (chip->phys_erase_shift - chip->page_shift); + + return nand_erase_op(chip, eraseblock); +} + +/** + * nand_erase - [MTD Interface] erase block(s) + * @mtd: MTD device structure + * @instr: erase instruction + * + * Erase one ore more blocks. + */ +static int nand_erase(struct mtd_info *mtd, struct erase_info *instr) +{ + return nand_erase_nand(mtd, instr, 0); +} + +/** + * nand_erase_nand - [INTERN] erase block(s) + * @mtd: MTD device structure + * @instr: erase instruction + * @allowbbt: allow erasing the bbt area + * + * Erase one ore more blocks. + */ +int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr, + int allowbbt) +{ + int page, status, pages_per_block, ret, chipnr; + struct nand_chip *chip = mtd_to_nand(mtd); + loff_t len; + + pr_debug("%s: start = 0x%012llx, len = %llu\n", + __func__, (unsigned long long)instr->addr, + (unsigned long long)instr->len); + + if (check_offs_len(mtd, instr->addr, instr->len)) + return -EINVAL; + + /* Grab the lock and see if the device is available */ + nand_get_device(mtd, FL_ERASING); + + /* Shift to get first page */ + page = (int)(instr->addr >> chip->page_shift); + chipnr = (int)(instr->addr >> chip->chip_shift); + + /* Calculate pages in each block */ + pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift); + + /* Select the NAND device */ + chip->select_chip(mtd, chipnr); + + /* Check, if it is write protected */ + if (nand_check_wp(mtd)) { + pr_debug("%s: device is write protected!\n", + __func__); + instr->state = MTD_ERASE_FAILED; + goto erase_exit; + } + + /* Loop through the pages */ + len = instr->len; + + instr->state = MTD_ERASING; + + while (len) { + /* Check if we have a bad block, we do not erase bad blocks! */ + if (nand_block_checkbad(mtd, ((loff_t) page) << + chip->page_shift, allowbbt)) { + pr_warn("%s: attempt to erase a bad block at page 0x%08x\n", + __func__, page); + instr->state = MTD_ERASE_FAILED; + goto erase_exit; + } + + /* + * Invalidate the page cache, if we erase the block which + * contains the current cached page. + */ + if (page <= chip->pagebuf && chip->pagebuf < + (page + pages_per_block)) + chip->pagebuf = -1; + + status = chip->erase(mtd, page & chip->pagemask); + + /* See if block erase succeeded */ + if (status) { + pr_debug("%s: failed erase, page 0x%08x\n", + __func__, page); + instr->state = MTD_ERASE_FAILED; + instr->fail_addr = + ((loff_t)page << chip->page_shift); + goto erase_exit; + } + + /* Increment page address and decrement length */ + len -= (1ULL << chip->phys_erase_shift); + page += pages_per_block; + + /* Check, if we cross a chip boundary */ + if (len && !(page & chip->pagemask)) { + chipnr++; + chip->select_chip(mtd, -1); + chip->select_chip(mtd, chipnr); + } + } + instr->state = MTD_ERASE_DONE; + +erase_exit: + + ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO; + + /* Deselect and wake up anyone waiting on the device */ + chip->select_chip(mtd, -1); + nand_release_device(mtd); + + /* Do call back function */ + if (!ret) + mtd_erase_callback(instr); + + /* Return more or less happy */ + return ret; +} + +/** + * nand_sync - [MTD Interface] sync + * @mtd: MTD device structure + * + * Sync is actually a wait for chip ready function. + */ +static void nand_sync(struct mtd_info *mtd) +{ + pr_debug("%s: called\n", __func__); + + /* Grab the lock and see if the device is available */ + nand_get_device(mtd, FL_SYNCING); + /* Release it and go back */ + nand_release_device(mtd); +} + +/** + * nand_block_isbad - [MTD Interface] Check if block at offset is bad + * @mtd: MTD device structure + * @offs: offset relative to mtd start + */ +static int nand_block_isbad(struct mtd_info *mtd, loff_t offs) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + int chipnr = (int)(offs >> chip->chip_shift); + int ret; + + /* Select the NAND device */ + nand_get_device(mtd, FL_READING); + chip->select_chip(mtd, chipnr); + + ret = nand_block_checkbad(mtd, offs, 0); + + chip->select_chip(mtd, -1); + nand_release_device(mtd); + + return ret; +} + +/** + * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad + * @mtd: MTD device structure + * @ofs: offset relative to mtd start + */ +static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs) +{ + int ret; + + ret = nand_block_isbad(mtd, ofs); + if (ret) { + /* If it was bad already, return success and do nothing */ + if (ret > 0) + return 0; + return ret; + } + + return nand_block_markbad_lowlevel(mtd, ofs); +} + +/** + * nand_max_bad_blocks - [MTD Interface] Max number of bad blocks for an mtd + * @mtd: MTD device structure + * @ofs: offset relative to mtd start + * @len: length of mtd + */ +static int nand_max_bad_blocks(struct mtd_info *mtd, loff_t ofs, size_t len) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + u32 part_start_block; + u32 part_end_block; + u32 part_start_die; + u32 part_end_die; + + /* + * max_bb_per_die and blocks_per_die used to determine + * the maximum bad block count. + */ + if (!chip->max_bb_per_die || !chip->blocks_per_die) + return -ENOTSUPP; + + /* Get the start and end of the partition in erase blocks. */ + part_start_block = mtd_div_by_eb(ofs, mtd); + part_end_block = mtd_div_by_eb(len, mtd) + part_start_block - 1; + + /* Get the start and end LUNs of the partition. */ + part_start_die = part_start_block / chip->blocks_per_die; + part_end_die = part_end_block / chip->blocks_per_die; + + /* + * Look up the bad blocks per unit and multiply by the number of units + * that the partition spans. + */ + return chip->max_bb_per_die * (part_end_die - part_start_die + 1); +} + +/** + * nand_onfi_set_features- [REPLACEABLE] set features for ONFI nand + * @mtd: MTD device structure + * @chip: nand chip info structure + * @addr: feature address. + * @subfeature_param: the subfeature parameters, a four bytes array. + */ +static int nand_onfi_set_features(struct mtd_info *mtd, struct nand_chip *chip, + int addr, uint8_t *subfeature_param) +{ + if (!chip->onfi_version || + !(le16_to_cpu(chip->onfi_params.opt_cmd) + & ONFI_OPT_CMD_SET_GET_FEATURES)) + return -EINVAL; + + return nand_set_features_op(chip, addr, subfeature_param); +} + +/** + * nand_onfi_get_features- [REPLACEABLE] get features for ONFI nand + * @mtd: MTD device structure + * @chip: nand chip info structure + * @addr: feature address. + * @subfeature_param: the subfeature parameters, a four bytes array. + */ +static int nand_onfi_get_features(struct mtd_info *mtd, struct nand_chip *chip, + int addr, uint8_t *subfeature_param) +{ + if (!chip->onfi_version || + !(le16_to_cpu(chip->onfi_params.opt_cmd) + & ONFI_OPT_CMD_SET_GET_FEATURES)) + return -EINVAL; + + return nand_get_features_op(chip, addr, subfeature_param); +} + +/** + * nand_onfi_get_set_features_notsupp - set/get features stub returning + * -ENOTSUPP + * @mtd: MTD device structure + * @chip: nand chip info structure + * @addr: feature address. + * @subfeature_param: the subfeature parameters, a four bytes array. + * + * Should be used by NAND controller drivers that do not support the SET/GET + * FEATURES operations. + */ +int nand_onfi_get_set_features_notsupp(struct mtd_info *mtd, + struct nand_chip *chip, int addr, + u8 *subfeature_param) +{ + return -ENOTSUPP; +} +EXPORT_SYMBOL(nand_onfi_get_set_features_notsupp); + +/** + * nand_suspend - [MTD Interface] Suspend the NAND flash + * @mtd: MTD device structure + */ +static int nand_suspend(struct mtd_info *mtd) +{ + return nand_get_device(mtd, FL_PM_SUSPENDED); +} + +/** + * nand_resume - [MTD Interface] Resume the NAND flash + * @mtd: MTD device structure + */ +static void nand_resume(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + + if (chip->state == FL_PM_SUSPENDED) + nand_release_device(mtd); + else + pr_err("%s called for a chip which is not in suspended state\n", + __func__); +} + +/** + * nand_shutdown - [MTD Interface] Finish the current NAND operation and + * prevent further operations + * @mtd: MTD device structure + */ +static void nand_shutdown(struct mtd_info *mtd) +{ + nand_get_device(mtd, FL_PM_SUSPENDED); +} + +/* Set default functions */ +static void nand_set_defaults(struct nand_chip *chip) +{ + unsigned int busw = chip->options & NAND_BUSWIDTH_16; + + /* check for proper chip_delay setup, set 20us if not */ + if (!chip->chip_delay) + chip->chip_delay = 20; + + /* check, if a user supplied command function given */ + if (!chip->cmdfunc && !chip->exec_op) + chip->cmdfunc = nand_command; + + /* check, if a user supplied wait function given */ + if (chip->waitfunc == NULL) + chip->waitfunc = nand_wait; + + if (!chip->select_chip) + chip->select_chip = nand_select_chip; + + /* set for ONFI nand */ + if (!chip->onfi_set_features) + chip->onfi_set_features = nand_onfi_set_features; + if (!chip->onfi_get_features) + chip->onfi_get_features = nand_onfi_get_features; + + /* If called twice, pointers that depend on busw may need to be reset */ + if (!chip->read_byte || chip->read_byte == nand_read_byte) + chip->read_byte = busw ? nand_read_byte16 : nand_read_byte; + if (!chip->read_word) + chip->read_word = nand_read_word; + if (!chip->block_bad) + chip->block_bad = nand_block_bad; + if (!chip->block_markbad) + chip->block_markbad = nand_default_block_markbad; + if (!chip->write_buf || chip->write_buf == nand_write_buf) + chip->write_buf = busw ? nand_write_buf16 : nand_write_buf; + if (!chip->write_byte || chip->write_byte == nand_write_byte) + chip->write_byte = busw ? nand_write_byte16 : nand_write_byte; + if (!chip->read_buf || chip->read_buf == nand_read_buf) + chip->read_buf = busw ? nand_read_buf16 : nand_read_buf; + if (!chip->scan_bbt) + chip->scan_bbt = nand_default_bbt; + + if (!chip->controller) { + chip->controller = &chip->hwcontrol; + nand_hw_control_init(chip->controller); + } + + if (!chip->buf_align) + chip->buf_align = 1; +} + +/* Sanitize ONFI strings so we can safely print them */ +static void sanitize_string(uint8_t *s, size_t len) +{ + ssize_t i; + + /* Null terminate */ + s[len - 1] = 0; + + /* Remove non printable chars */ + for (i = 0; i < len - 1; i++) { + if (s[i] < ' ' || s[i] > 127) + s[i] = '?'; + } + + /* Remove trailing spaces */ + strim(s); +} + +static u16 onfi_crc16(u16 crc, u8 const *p, size_t len) +{ + int i; + while (len--) { + crc ^= *p++ << 8; + for (i = 0; i < 8; i++) + crc = (crc << 1) ^ ((crc & 0x8000) ? 0x8005 : 0); + } + + return crc; +} + +/* Parse the Extended Parameter Page. */ +static int nand_flash_detect_ext_param_page(struct nand_chip *chip, + struct nand_onfi_params *p) +{ + struct onfi_ext_param_page *ep; + struct onfi_ext_section *s; + struct onfi_ext_ecc_info *ecc; + uint8_t *cursor; + int ret; + int len; + int i; + + len = le16_to_cpu(p->ext_param_page_length) * 16; + ep = kmalloc(len, GFP_KERNEL); + if (!ep) + return -ENOMEM; + + /* Send our own NAND_CMD_PARAM. */ + ret = nand_read_param_page_op(chip, 0, NULL, 0); + if (ret) + goto ext_out; + + /* Use the Change Read Column command to skip the ONFI param pages. */ + ret = nand_change_read_column_op(chip, + sizeof(*p) * p->num_of_param_pages, + ep, len, true); + if (ret) + goto ext_out; + + ret = -EINVAL; + if ((onfi_crc16(ONFI_CRC_BASE, ((uint8_t *)ep) + 2, len - 2) + != le16_to_cpu(ep->crc))) { + pr_debug("fail in the CRC.\n"); + goto ext_out; + } + + /* + * Check the signature. + * Do not strictly follow the ONFI spec, maybe changed in future. + */ + if (strncmp(ep->sig, "EPPS", 4)) { + pr_debug("The signature is invalid.\n"); + goto ext_out; + } + + /* find the ECC section. */ + cursor = (uint8_t *)(ep + 1); + for (i = 0; i < ONFI_EXT_SECTION_MAX; i++) { + s = ep->sections + i; + if (s->type == ONFI_SECTION_TYPE_2) + break; + cursor += s->length * 16; + } + if (i == ONFI_EXT_SECTION_MAX) { + pr_debug("We can not find the ECC section.\n"); + goto ext_out; + } + + /* get the info we want. */ + ecc = (struct onfi_ext_ecc_info *)cursor; + + if (!ecc->codeword_size) { + pr_debug("Invalid codeword size\n"); + goto ext_out; + } + + chip->ecc_strength_ds = ecc->ecc_bits; + chip->ecc_step_ds = 1 << ecc->codeword_size; + ret = 0; + +ext_out: + kfree(ep); + return ret; +} + +/* + * Check if the NAND chip is ONFI compliant, returns 1 if it is, 0 otherwise. + */ +static int nand_flash_detect_onfi(struct nand_chip *chip) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct nand_onfi_params *p = &chip->onfi_params; + char id[4]; + int i, ret, val; + + /* Try ONFI for unknown chip or LP */ + ret = nand_readid_op(chip, 0x20, id, sizeof(id)); + if (ret || strncmp(id, "ONFI", 4)) + return 0; + + ret = nand_read_param_page_op(chip, 0, NULL, 0); + if (ret) + return 0; + + for (i = 0; i < 3; i++) { + ret = nand_read_data_op(chip, p, sizeof(*p), true); + if (ret) + return 0; + + if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 254) == + le16_to_cpu(p->crc)) { + break; + } + } + + if (i == 3) { + pr_err("Could not find valid ONFI parameter page; aborting\n"); + return 0; + } + + /* Check version */ + val = le16_to_cpu(p->revision); + if (val & (1 << 5)) + chip->onfi_version = 23; + else if (val & (1 << 4)) + chip->onfi_version = 22; + else if (val & (1 << 3)) + chip->onfi_version = 21; + else if (val & (1 << 2)) + chip->onfi_version = 20; + else if (val & (1 << 1)) + chip->onfi_version = 10; + + if (!chip->onfi_version) { + pr_info("unsupported ONFI version: %d\n", val); + return 0; + } + + sanitize_string(p->manufacturer, sizeof(p->manufacturer)); + sanitize_string(p->model, sizeof(p->model)); + if (!mtd->name) + mtd->name = p->model; + + mtd->writesize = le32_to_cpu(p->byte_per_page); + + /* + * pages_per_block and blocks_per_lun may not be a power-of-2 size + * (don't ask me who thought of this...). MTD assumes that these + * dimensions will be power-of-2, so just truncate the remaining area. + */ + mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1); + mtd->erasesize *= mtd->writesize; + + mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page); + + /* See erasesize comment */ + chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1); + chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count; + chip->bits_per_cell = p->bits_per_cell; + + chip->max_bb_per_die = le16_to_cpu(p->bb_per_lun); + chip->blocks_per_die = le32_to_cpu(p->blocks_per_lun); + + if (onfi_feature(chip) & ONFI_FEATURE_16_BIT_BUS) + chip->options |= NAND_BUSWIDTH_16; + + if (p->ecc_bits != 0xff) { + chip->ecc_strength_ds = p->ecc_bits; + chip->ecc_step_ds = 512; + } else if (chip->onfi_version >= 21 && + (onfi_feature(chip) & ONFI_FEATURE_EXT_PARAM_PAGE)) { + + /* + * The nand_flash_detect_ext_param_page() uses the + * Change Read Column command which maybe not supported + * by the chip->cmdfunc. So try to update the chip->cmdfunc + * now. We do not replace user supplied command function. + */ + if (mtd->writesize > 512 && chip->cmdfunc == nand_command) + chip->cmdfunc = nand_command_lp; + + /* The Extended Parameter Page is supported since ONFI 2.1. */ + if (nand_flash_detect_ext_param_page(chip, p)) + pr_warn("Failed to detect ONFI extended param page\n"); + } else { + pr_warn("Could not retrieve ONFI ECC requirements\n"); + } + + return 1; +} + +/* + * Check if the NAND chip is JEDEC compliant, returns 1 if it is, 0 otherwise. + */ +static int nand_flash_detect_jedec(struct nand_chip *chip) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct nand_jedec_params *p = &chip->jedec_params; + struct jedec_ecc_info *ecc; + char id[5]; + int i, val, ret; + + /* Try JEDEC for unknown chip or LP */ + ret = nand_readid_op(chip, 0x40, id, sizeof(id)); + if (ret || strncmp(id, "JEDEC", sizeof(id))) + return 0; + + ret = nand_read_param_page_op(chip, 0x40, NULL, 0); + if (ret) + return 0; + + for (i = 0; i < 3; i++) { + ret = nand_read_data_op(chip, p, sizeof(*p), true); + if (ret) + return 0; + + if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 510) == + le16_to_cpu(p->crc)) + break; + } + + if (i == 3) { + pr_err("Could not find valid JEDEC parameter page; aborting\n"); + return 0; + } + + /* Check version */ + val = le16_to_cpu(p->revision); + if (val & (1 << 2)) + chip->jedec_version = 10; + else if (val & (1 << 1)) + chip->jedec_version = 1; /* vendor specific version */ + + if (!chip->jedec_version) { + pr_info("unsupported JEDEC version: %d\n", val); + return 0; + } + + sanitize_string(p->manufacturer, sizeof(p->manufacturer)); + sanitize_string(p->model, sizeof(p->model)); + if (!mtd->name) + mtd->name = p->model; + + mtd->writesize = le32_to_cpu(p->byte_per_page); + + /* Please reference to the comment for nand_flash_detect_onfi. */ + mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1); + mtd->erasesize *= mtd->writesize; + + mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page); + + /* Please reference to the comment for nand_flash_detect_onfi. */ + chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1); + chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count; + chip->bits_per_cell = p->bits_per_cell; + + if (jedec_feature(chip) & JEDEC_FEATURE_16_BIT_BUS) + chip->options |= NAND_BUSWIDTH_16; + + /* ECC info */ + ecc = &p->ecc_info[0]; + + if (ecc->codeword_size >= 9) { + chip->ecc_strength_ds = ecc->ecc_bits; + chip->ecc_step_ds = 1 << ecc->codeword_size; + } else { + pr_warn("Invalid codeword size\n"); + } + + return 1; +} + +/* + * nand_id_has_period - Check if an ID string has a given wraparound period + * @id_data: the ID string + * @arrlen: the length of the @id_data array + * @period: the period of repitition + * + * Check if an ID string is repeated within a given sequence of bytes at + * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a + * period of 3). This is a helper function for nand_id_len(). Returns non-zero + * if the repetition has a period of @period; otherwise, returns zero. + */ +static int nand_id_has_period(u8 *id_data, int arrlen, int period) +{ + int i, j; + for (i = 0; i < period; i++) + for (j = i + period; j < arrlen; j += period) + if (id_data[i] != id_data[j]) + return 0; + return 1; +} + +/* + * nand_id_len - Get the length of an ID string returned by CMD_READID + * @id_data: the ID string + * @arrlen: the length of the @id_data array + + * Returns the length of the ID string, according to known wraparound/trailing + * zero patterns. If no pattern exists, returns the length of the array. + */ +static int nand_id_len(u8 *id_data, int arrlen) +{ + int last_nonzero, period; + + /* Find last non-zero byte */ + for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--) + if (id_data[last_nonzero]) + break; + + /* All zeros */ + if (last_nonzero < 0) + return 0; + + /* Calculate wraparound period */ + for (period = 1; period < arrlen; period++) + if (nand_id_has_period(id_data, arrlen, period)) + break; + + /* There's a repeated pattern */ + if (period < arrlen) + return period; + + /* There are trailing zeros */ + if (last_nonzero < arrlen - 1) + return last_nonzero + 1; + + /* No pattern detected */ + return arrlen; +} + +/* Extract the bits of per cell from the 3rd byte of the extended ID */ +static int nand_get_bits_per_cell(u8 cellinfo) +{ + int bits; + + bits = cellinfo & NAND_CI_CELLTYPE_MSK; + bits >>= NAND_CI_CELLTYPE_SHIFT; + return bits + 1; +} + +/* + * Many new NAND share similar device ID codes, which represent the size of the + * chip. The rest of the parameters must be decoded according to generic or + * manufacturer-specific "extended ID" decoding patterns. + */ +void nand_decode_ext_id(struct nand_chip *chip) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + int extid; + u8 *id_data = chip->id.data; + /* The 3rd id byte holds MLC / multichip data */ + chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]); + /* The 4th id byte is the important one */ + extid = id_data[3]; + + /* Calc pagesize */ + mtd->writesize = 1024 << (extid & 0x03); + extid >>= 2; + /* Calc oobsize */ + mtd->oobsize = (8 << (extid & 0x01)) * (mtd->writesize >> 9); + extid >>= 2; + /* Calc blocksize. Blocksize is multiples of 64KiB */ + mtd->erasesize = (64 * 1024) << (extid & 0x03); + extid >>= 2; + /* Get buswidth information */ + if (extid & 0x1) + chip->options |= NAND_BUSWIDTH_16; +} +EXPORT_SYMBOL_GPL(nand_decode_ext_id); + +/* + * Old devices have chip data hardcoded in the device ID table. nand_decode_id + * decodes a matching ID table entry and assigns the MTD size parameters for + * the chip. + */ +static void nand_decode_id(struct nand_chip *chip, struct nand_flash_dev *type) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + + mtd->erasesize = type->erasesize; + mtd->writesize = type->pagesize; + mtd->oobsize = mtd->writesize / 32; + + /* All legacy ID NAND are small-page, SLC */ + chip->bits_per_cell = 1; +} + +/* + * Set the bad block marker/indicator (BBM/BBI) patterns according to some + * heuristic patterns using various detected parameters (e.g., manufacturer, + * page size, cell-type information). + */ +static void nand_decode_bbm_options(struct nand_chip *chip) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + + /* Set the bad block position */ + if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16)) + chip->badblockpos = NAND_LARGE_BADBLOCK_POS; + else + chip->badblockpos = NAND_SMALL_BADBLOCK_POS; +} + +static inline bool is_full_id_nand(struct nand_flash_dev *type) +{ + return type->id_len; +} + +static bool find_full_id_nand(struct nand_chip *chip, + struct nand_flash_dev *type) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + u8 *id_data = chip->id.data; + + if (!strncmp(type->id, id_data, type->id_len)) { + mtd->writesize = type->pagesize; + mtd->erasesize = type->erasesize; + mtd->oobsize = type->oobsize; + + chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]); + chip->chipsize = (uint64_t)type->chipsize << 20; + chip->options |= type->options; + chip->ecc_strength_ds = NAND_ECC_STRENGTH(type); + chip->ecc_step_ds = NAND_ECC_STEP(type); + chip->onfi_timing_mode_default = + type->onfi_timing_mode_default; + + if (!mtd->name) + mtd->name = type->name; + + return true; + } + return false; +} + +/* + * Manufacturer detection. Only used when the NAND is not ONFI or JEDEC + * compliant and does not have a full-id or legacy-id entry in the nand_ids + * table. + */ +static void nand_manufacturer_detect(struct nand_chip *chip) +{ + /* + * Try manufacturer detection if available and use + * nand_decode_ext_id() otherwise. + */ + if (chip->manufacturer.desc && chip->manufacturer.desc->ops && + chip->manufacturer.desc->ops->detect) { + /* The 3rd id byte holds MLC / multichip data */ + chip->bits_per_cell = nand_get_bits_per_cell(chip->id.data[2]); + chip->manufacturer.desc->ops->detect(chip); + } else { + nand_decode_ext_id(chip); + } +} + +/* + * Manufacturer initialization. This function is called for all NANDs including + * ONFI and JEDEC compliant ones. + * Manufacturer drivers should put all their specific initialization code in + * their ->init() hook. + */ +static int nand_manufacturer_init(struct nand_chip *chip) +{ + if (!chip->manufacturer.desc || !chip->manufacturer.desc->ops || + !chip->manufacturer.desc->ops->init) + return 0; + + return chip->manufacturer.desc->ops->init(chip); +} + +/* + * Manufacturer cleanup. This function is called for all NANDs including + * ONFI and JEDEC compliant ones. + * Manufacturer drivers should put all their specific cleanup code in their + * ->cleanup() hook. + */ +static void nand_manufacturer_cleanup(struct nand_chip *chip) +{ + /* Release manufacturer private data */ + if (chip->manufacturer.desc && chip->manufacturer.desc->ops && + chip->manufacturer.desc->ops->cleanup) + chip->manufacturer.desc->ops->cleanup(chip); +} + +/* + * Get the flash and manufacturer id and lookup if the type is supported. + */ +static int nand_detect(struct nand_chip *chip, struct nand_flash_dev *type) +{ + const struct nand_manufacturer *manufacturer; + struct mtd_info *mtd = nand_to_mtd(chip); + int busw, ret; + u8 *id_data = chip->id.data; + u8 maf_id, dev_id; + + /* + * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx) + * after power-up. + */ + ret = nand_reset(chip, 0); + if (ret) + return ret; + + /* Select the device */ + chip->select_chip(mtd, 0); + + /* Send the command for reading device ID */ + ret = nand_readid_op(chip, 0, id_data, 2); + if (ret) + return ret; + + /* Read manufacturer and device IDs */ + maf_id = id_data[0]; + dev_id = id_data[1]; + + /* + * Try again to make sure, as some systems the bus-hold or other + * interface concerns can cause random data which looks like a + * possibly credible NAND flash to appear. If the two results do + * not match, ignore the device completely. + */ + + /* Read entire ID string */ + ret = nand_readid_op(chip, 0, id_data, sizeof(chip->id.data)); + if (ret) + return ret; + + if (id_data[0] != maf_id || id_data[1] != dev_id) { + pr_info("second ID read did not match %02x,%02x against %02x,%02x\n", + maf_id, dev_id, id_data[0], id_data[1]); + return -ENODEV; + } + + chip->id.len = nand_id_len(id_data, ARRAY_SIZE(chip->id.data)); + + /* Try to identify manufacturer */ + manufacturer = nand_get_manufacturer(maf_id); + chip->manufacturer.desc = manufacturer; + + if (!type) + type = nand_flash_ids; + + /* + * Save the NAND_BUSWIDTH_16 flag before letting auto-detection logic + * override it. + * This is required to make sure initial NAND bus width set by the + * NAND controller driver is coherent with the real NAND bus width + * (extracted by auto-detection code). + */ + busw = chip->options & NAND_BUSWIDTH_16; + + /* + * The flag is only set (never cleared), reset it to its default value + * before starting auto-detection. + */ + chip->options &= ~NAND_BUSWIDTH_16; + + for (; type->name != NULL; type++) { + if (is_full_id_nand(type)) { + if (find_full_id_nand(chip, type)) + goto ident_done; + } else if (dev_id == type->dev_id) { + break; + } + } + + chip->onfi_version = 0; + if (!type->name || !type->pagesize) { + /* Check if the chip is ONFI compliant */ + if (nand_flash_detect_onfi(chip)) + goto ident_done; + + /* Check if the chip is JEDEC compliant */ + if (nand_flash_detect_jedec(chip)) + goto ident_done; + } + + if (!type->name) + return -ENODEV; + + if (!mtd->name) + mtd->name = type->name; + + chip->chipsize = (uint64_t)type->chipsize << 20; + + if (!type->pagesize) + nand_manufacturer_detect(chip); + else + nand_decode_id(chip, type); + + /* Get chip options */ + chip->options |= type->options; + +ident_done: + + if (chip->options & NAND_BUSWIDTH_AUTO) { + WARN_ON(busw & NAND_BUSWIDTH_16); + nand_set_defaults(chip); + } else if (busw != (chip->options & NAND_BUSWIDTH_16)) { + /* + * Check, if buswidth is correct. Hardware drivers should set + * chip correct! + */ + pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n", + maf_id, dev_id); + pr_info("%s %s\n", nand_manufacturer_name(manufacturer), + mtd->name); + pr_warn("bus width %d instead of %d bits\n", busw ? 16 : 8, + (chip->options & NAND_BUSWIDTH_16) ? 16 : 8); + return -EINVAL; + } + + nand_decode_bbm_options(chip); + + /* Calculate the address shift from the page size */ + chip->page_shift = ffs(mtd->writesize) - 1; + /* Convert chipsize to number of pages per chip -1 */ + chip->pagemask = (chip->chipsize >> chip->page_shift) - 1; + + chip->bbt_erase_shift = chip->phys_erase_shift = + ffs(mtd->erasesize) - 1; + if (chip->chipsize & 0xffffffff) + chip->chip_shift = ffs((unsigned)chip->chipsize) - 1; + else { + chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32)); + chip->chip_shift += 32 - 1; + } + + if (chip->chip_shift - chip->page_shift > 16) + chip->options |= NAND_ROW_ADDR_3; + + chip->badblockbits = 8; + chip->erase = single_erase; + + /* Do not replace user supplied command function! */ + if (mtd->writesize > 512 && chip->cmdfunc == nand_command) + chip->cmdfunc = nand_command_lp; + + pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n", + maf_id, dev_id); + + if (chip->onfi_version) + pr_info("%s %s\n", nand_manufacturer_name(manufacturer), + chip->onfi_params.model); + else if (chip->jedec_version) + pr_info("%s %s\n", nand_manufacturer_name(manufacturer), + chip->jedec_params.model); + else + pr_info("%s %s\n", nand_manufacturer_name(manufacturer), + type->name); + + pr_info("%d MiB, %s, erase size: %d KiB, page size: %d, OOB size: %d\n", + (int)(chip->chipsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC", + mtd->erasesize >> 10, mtd->writesize, mtd->oobsize); + return 0; +} + +static const char * const nand_ecc_modes[] = { + [NAND_ECC_NONE] = "none", + [NAND_ECC_SOFT] = "soft", + [NAND_ECC_HW] = "hw", + [NAND_ECC_HW_SYNDROME] = "hw_syndrome", + [NAND_ECC_HW_OOB_FIRST] = "hw_oob_first", + [NAND_ECC_ON_DIE] = "on-die", +}; + +static int of_get_nand_ecc_mode(struct device_node *np) +{ + const char *pm; + int err, i; + + err = of_property_read_string(np, "nand-ecc-mode", &pm); + if (err < 0) + return err; + + for (i = 0; i < ARRAY_SIZE(nand_ecc_modes); i++) + if (!strcasecmp(pm, nand_ecc_modes[i])) + return i; + + /* + * For backward compatibility we support few obsoleted values that don't + * have their mappings into nand_ecc_modes_t anymore (they were merged + * with other enums). + */ + if (!strcasecmp(pm, "soft_bch")) + return NAND_ECC_SOFT; + + return -ENODEV; +} + +static const char * const nand_ecc_algos[] = { + [NAND_ECC_HAMMING] = "hamming", + [NAND_ECC_BCH] = "bch", +}; + +static int of_get_nand_ecc_algo(struct device_node *np) +{ + const char *pm; + int err, i; + + err = of_property_read_string(np, "nand-ecc-algo", &pm); + if (!err) { + for (i = NAND_ECC_HAMMING; i < ARRAY_SIZE(nand_ecc_algos); i++) + if (!strcasecmp(pm, nand_ecc_algos[i])) + return i; + return -ENODEV; + } + + /* + * For backward compatibility we also read "nand-ecc-mode" checking + * for some obsoleted values that were specifying ECC algorithm. + */ + err = of_property_read_string(np, "nand-ecc-mode", &pm); + if (err < 0) + return err; + + if (!strcasecmp(pm, "soft")) + return NAND_ECC_HAMMING; + else if (!strcasecmp(pm, "soft_bch")) + return NAND_ECC_BCH; + + return -ENODEV; +} + +static int of_get_nand_ecc_step_size(struct device_node *np) +{ + int ret; + u32 val; + + ret = of_property_read_u32(np, "nand-ecc-step-size", &val); + return ret ? ret : val; +} + +static int of_get_nand_ecc_strength(struct device_node *np) +{ + int ret; + u32 val; + + ret = of_property_read_u32(np, "nand-ecc-strength", &val); + return ret ? ret : val; +} + +static int of_get_nand_bus_width(struct device_node *np) +{ + u32 val; + + if (of_property_read_u32(np, "nand-bus-width", &val)) + return 8; + + switch (val) { + case 8: + case 16: + return val; + default: + return -EIO; + } +} + +static bool of_get_nand_on_flash_bbt(struct device_node *np) +{ + return of_property_read_bool(np, "nand-on-flash-bbt"); +} + +static int nand_dt_init(struct nand_chip *chip) +{ + struct device_node *dn = nand_get_flash_node(chip); + int ecc_mode, ecc_algo, ecc_strength, ecc_step; + + if (!dn) + return 0; + + if (of_get_nand_bus_width(dn) == 16) + chip->options |= NAND_BUSWIDTH_16; + + if (of_get_nand_on_flash_bbt(dn)) + chip->bbt_options |= NAND_BBT_USE_FLASH; + + ecc_mode = of_get_nand_ecc_mode(dn); + ecc_algo = of_get_nand_ecc_algo(dn); + ecc_strength = of_get_nand_ecc_strength(dn); + ecc_step = of_get_nand_ecc_step_size(dn); + + if (ecc_mode >= 0) + chip->ecc.mode = ecc_mode; + + if (ecc_algo >= 0) + chip->ecc.algo = ecc_algo; + + if (ecc_strength >= 0) + chip->ecc.strength = ecc_strength; + + if (ecc_step > 0) + chip->ecc.size = ecc_step; + + if (of_property_read_bool(dn, "nand-ecc-maximize")) + chip->ecc.options |= NAND_ECC_MAXIMIZE; + + return 0; +} + +/** + * nand_scan_ident - [NAND Interface] Scan for the NAND device + * @mtd: MTD device structure + * @maxchips: number of chips to scan for + * @table: alternative NAND ID table + * + * This is the first phase of the normal nand_scan() function. It reads the + * flash ID and sets up MTD fields accordingly. + * + */ +int nand_scan_ident(struct mtd_info *mtd, int maxchips, + struct nand_flash_dev *table) +{ + int i, nand_maf_id, nand_dev_id; + struct nand_chip *chip = mtd_to_nand(mtd); + int ret; + + /* Enforce the right timings for reset/detection */ + onfi_fill_data_interface(chip, NAND_SDR_IFACE, 0); + + ret = nand_dt_init(chip); + if (ret) + return ret; + + if (!mtd->name && mtd->dev.parent) + mtd->name = dev_name(mtd->dev.parent); + + /* + * ->cmdfunc() is legacy and will only be used if ->exec_op() is not + * populated. + */ + if (!chip->exec_op) { + /* + * Default functions assigned for ->cmdfunc() and + * ->select_chip() both expect ->cmd_ctrl() to be populated. + */ + if ((!chip->cmdfunc || !chip->select_chip) && !chip->cmd_ctrl) { + pr_err("->cmd_ctrl() should be provided\n"); + return -EINVAL; + } + } + + /* Set the default functions */ + nand_set_defaults(chip); + + /* Read the flash type */ + ret = nand_detect(chip, table); + if (ret) { + if (!(chip->options & NAND_SCAN_SILENT_NODEV)) + pr_warn("No NAND device found\n"); + chip->select_chip(mtd, -1); + return ret; + } + + nand_maf_id = chip->id.data[0]; + nand_dev_id = chip->id.data[1]; + + chip->select_chip(mtd, -1); + + /* Check for a chip array */ + for (i = 1; i < maxchips; i++) { + u8 id[2]; + + /* See comment in nand_get_flash_type for reset */ + nand_reset(chip, i); + + chip->select_chip(mtd, i); + /* Send the command for reading device ID */ + nand_readid_op(chip, 0, id, sizeof(id)); + /* Read manufacturer and device IDs */ + if (nand_maf_id != id[0] || nand_dev_id != id[1]) { + chip->select_chip(mtd, -1); + break; + } + chip->select_chip(mtd, -1); + } + if (i > 1) + pr_info("%d chips detected\n", i); + + /* Store the number of chips and calc total size for mtd */ + chip->numchips = i; + mtd->size = i * chip->chipsize; + + return 0; +} +EXPORT_SYMBOL(nand_scan_ident); + +static int nand_set_ecc_soft_ops(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct nand_ecc_ctrl *ecc = &chip->ecc; + + if (WARN_ON(ecc->mode != NAND_ECC_SOFT)) + return -EINVAL; + + switch (ecc->algo) { + case NAND_ECC_HAMMING: + ecc->calculate = nand_calculate_ecc; + ecc->correct = nand_correct_data; + ecc->read_page = nand_read_page_swecc; + ecc->read_subpage = nand_read_subpage; + ecc->write_page = nand_write_page_swecc; + ecc->read_page_raw = nand_read_page_raw; + ecc->write_page_raw = nand_write_page_raw; + ecc->read_oob = nand_read_oob_std; + ecc->write_oob = nand_write_oob_std; + if (!ecc->size) + ecc->size = 256; + ecc->bytes = 3; + ecc->strength = 1; + return 0; + case NAND_ECC_BCH: + if (!mtd_nand_has_bch()) { + WARN(1, "CONFIG_MTD_NAND_ECC_BCH not enabled\n"); + return -EINVAL; + } + ecc->calculate = nand_bch_calculate_ecc; + ecc->correct = nand_bch_correct_data; + ecc->read_page = nand_read_page_swecc; + ecc->read_subpage = nand_read_subpage; + ecc->write_page = nand_write_page_swecc; + ecc->read_page_raw = nand_read_page_raw; + ecc->write_page_raw = nand_write_page_raw; + ecc->read_oob = nand_read_oob_std; + ecc->write_oob = nand_write_oob_std; + + /* + * Board driver should supply ecc.size and ecc.strength + * values to select how many bits are correctable. + * Otherwise, default to 4 bits for large page devices. + */ + if (!ecc->size && (mtd->oobsize >= 64)) { + ecc->size = 512; + ecc->strength = 4; + } + + /* + * if no ecc placement scheme was provided pickup the default + * large page one. + */ + if (!mtd->ooblayout) { + /* handle large page devices only */ + if (mtd->oobsize < 64) { + WARN(1, "OOB layout is required when using software BCH on small pages\n"); + return -EINVAL; + } + + mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops); + + } + + /* + * We can only maximize ECC config when the default layout is + * used, otherwise we don't know how many bytes can really be + * used. + */ + if (mtd->ooblayout == &nand_ooblayout_lp_ops && + ecc->options & NAND_ECC_MAXIMIZE) { + int steps, bytes; + + /* Always prefer 1k blocks over 512bytes ones */ + ecc->size = 1024; + steps = mtd->writesize / ecc->size; + + /* Reserve 2 bytes for the BBM */ + bytes = (mtd->oobsize - 2) / steps; + ecc->strength = bytes * 8 / fls(8 * ecc->size); + } + + /* See nand_bch_init() for details. */ + ecc->bytes = 0; + ecc->priv = nand_bch_init(mtd); + if (!ecc->priv) { + WARN(1, "BCH ECC initialization failed!\n"); + return -EINVAL; + } + return 0; + default: + WARN(1, "Unsupported ECC algorithm!\n"); + return -EINVAL; + } +} + +/** + * nand_check_ecc_caps - check the sanity of preset ECC settings + * @chip: nand chip info structure + * @caps: ECC caps info structure + * @oobavail: OOB size that the ECC engine can use + * + * When ECC step size and strength are already set, check if they are supported + * by the controller and the calculated ECC bytes fit within the chip's OOB. + * On success, the calculated ECC bytes is set. + */ +int nand_check_ecc_caps(struct nand_chip *chip, + const struct nand_ecc_caps *caps, int oobavail) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + const struct nand_ecc_step_info *stepinfo; + int preset_step = chip->ecc.size; + int preset_strength = chip->ecc.strength; + int nsteps, ecc_bytes; + int i, j; + + if (WARN_ON(oobavail < 0)) + return -EINVAL; + + if (!preset_step || !preset_strength) + return -ENODATA; + + nsteps = mtd->writesize / preset_step; + + for (i = 0; i < caps->nstepinfos; i++) { + stepinfo = &caps->stepinfos[i]; + + if (stepinfo->stepsize != preset_step) + continue; + + for (j = 0; j < stepinfo->nstrengths; j++) { + if (stepinfo->strengths[j] != preset_strength) + continue; + + ecc_bytes = caps->calc_ecc_bytes(preset_step, + preset_strength); + if (WARN_ON_ONCE(ecc_bytes < 0)) + return ecc_bytes; + + if (ecc_bytes * nsteps > oobavail) { + pr_err("ECC (step, strength) = (%d, %d) does not fit in OOB", + preset_step, preset_strength); + return -ENOSPC; + } + + chip->ecc.bytes = ecc_bytes; + + return 0; + } + } + + pr_err("ECC (step, strength) = (%d, %d) not supported on this controller", + preset_step, preset_strength); + + return -ENOTSUPP; +} +EXPORT_SYMBOL_GPL(nand_check_ecc_caps); + +/** + * nand_match_ecc_req - meet the chip's requirement with least ECC bytes + * @chip: nand chip info structure + * @caps: ECC engine caps info structure + * @oobavail: OOB size that the ECC engine can use + * + * If a chip's ECC requirement is provided, try to meet it with the least + * number of ECC bytes (i.e. with the largest number of OOB-free bytes). + * On success, the chosen ECC settings are set. + */ +int nand_match_ecc_req(struct nand_chip *chip, + const struct nand_ecc_caps *caps, int oobavail) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + const struct nand_ecc_step_info *stepinfo; + int req_step = chip->ecc_step_ds; + int req_strength = chip->ecc_strength_ds; + int req_corr, step_size, strength, nsteps, ecc_bytes, ecc_bytes_total; + int best_step, best_strength, best_ecc_bytes; + int best_ecc_bytes_total = INT_MAX; + int i, j; + + if (WARN_ON(oobavail < 0)) + return -EINVAL; + + /* No information provided by the NAND chip */ + if (!req_step || !req_strength) + return -ENOTSUPP; + + /* number of correctable bits the chip requires in a page */ + req_corr = mtd->writesize / req_step * req_strength; + + for (i = 0; i < caps->nstepinfos; i++) { + stepinfo = &caps->stepinfos[i]; + step_size = stepinfo->stepsize; + + for (j = 0; j < stepinfo->nstrengths; j++) { + strength = stepinfo->strengths[j]; + + /* + * If both step size and strength are smaller than the + * chip's requirement, it is not easy to compare the + * resulted reliability. + */ + if (step_size < req_step && strength < req_strength) + continue; + + if (mtd->writesize % step_size) + continue; + + nsteps = mtd->writesize / step_size; + + ecc_bytes = caps->calc_ecc_bytes(step_size, strength); + if (WARN_ON_ONCE(ecc_bytes < 0)) + continue; + ecc_bytes_total = ecc_bytes * nsteps; + + if (ecc_bytes_total > oobavail || + strength * nsteps < req_corr) + continue; + + /* + * We assume the best is to meet the chip's requrement + * with the least number of ECC bytes. + */ + if (ecc_bytes_total < best_ecc_bytes_total) { + best_ecc_bytes_total = ecc_bytes_total; + best_step = step_size; + best_strength = strength; + best_ecc_bytes = ecc_bytes; + } + } + } + + if (best_ecc_bytes_total == INT_MAX) + return -ENOTSUPP; + + chip->ecc.size = best_step; + chip->ecc.strength = best_strength; + chip->ecc.bytes = best_ecc_bytes; + + return 0; +} +EXPORT_SYMBOL_GPL(nand_match_ecc_req); + +/** + * nand_maximize_ecc - choose the max ECC strength available + * @chip: nand chip info structure + * @caps: ECC engine caps info structure + * @oobavail: OOB size that the ECC engine can use + * + * Choose the max ECC strength that is supported on the controller, and can fit + * within the chip's OOB. On success, the chosen ECC settings are set. + */ +int nand_maximize_ecc(struct nand_chip *chip, + const struct nand_ecc_caps *caps, int oobavail) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + const struct nand_ecc_step_info *stepinfo; + int step_size, strength, nsteps, ecc_bytes, corr; + int best_corr = 0; + int best_step = 0; + int best_strength, best_ecc_bytes; + int i, j; + + if (WARN_ON(oobavail < 0)) + return -EINVAL; + + for (i = 0; i < caps->nstepinfos; i++) { + stepinfo = &caps->stepinfos[i]; + step_size = stepinfo->stepsize; + + /* If chip->ecc.size is already set, respect it */ + if (chip->ecc.size && step_size != chip->ecc.size) + continue; + + for (j = 0; j < stepinfo->nstrengths; j++) { + strength = stepinfo->strengths[j]; + + if (mtd->writesize % step_size) + continue; + + nsteps = mtd->writesize / step_size; + + ecc_bytes = caps->calc_ecc_bytes(step_size, strength); + if (WARN_ON_ONCE(ecc_bytes < 0)) + continue; + + if (ecc_bytes * nsteps > oobavail) + continue; + + corr = strength * nsteps; + + /* + * If the number of correctable bits is the same, + * bigger step_size has more reliability. + */ + if (corr > best_corr || + (corr == best_corr && step_size > best_step)) { + best_corr = corr; + best_step = step_size; + best_strength = strength; + best_ecc_bytes = ecc_bytes; + } + } + } + + if (!best_corr) + return -ENOTSUPP; + + chip->ecc.size = best_step; + chip->ecc.strength = best_strength; + chip->ecc.bytes = best_ecc_bytes; + + return 0; +} +EXPORT_SYMBOL_GPL(nand_maximize_ecc); + +/* + * Check if the chip configuration meet the datasheet requirements. + + * If our configuration corrects A bits per B bytes and the minimum + * required correction level is X bits per Y bytes, then we must ensure + * both of the following are true: + * + * (1) A / B >= X / Y + * (2) A >= X + * + * Requirement (1) ensures we can correct for the required bitflip density. + * Requirement (2) ensures we can correct even when all bitflips are clumped + * in the same sector. + */ +static bool nand_ecc_strength_good(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct nand_ecc_ctrl *ecc = &chip->ecc; + int corr, ds_corr; + + if (ecc->size == 0 || chip->ecc_step_ds == 0) + /* Not enough information */ + return true; + + /* + * We get the number of corrected bits per page to compare + * the correction density. + */ + corr = (mtd->writesize * ecc->strength) / ecc->size; + ds_corr = (mtd->writesize * chip->ecc_strength_ds) / chip->ecc_step_ds; + + return corr >= ds_corr && ecc->strength >= chip->ecc_strength_ds; +} + +/** + * nand_scan_tail - [NAND Interface] Scan for the NAND device + * @mtd: MTD device structure + * + * This is the second phase of the normal nand_scan() function. It fills out + * all the uninitialized function pointers with the defaults and scans for a + * bad block table if appropriate. + */ +int nand_scan_tail(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct nand_ecc_ctrl *ecc = &chip->ecc; + int ret, i; + + /* New bad blocks should be marked in OOB, flash-based BBT, or both */ + if (WARN_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) && + !(chip->bbt_options & NAND_BBT_USE_FLASH))) { + return -EINVAL; + } + + chip->data_buf = kmalloc(mtd->writesize + mtd->oobsize, GFP_KERNEL); + if (!chip->data_buf) + return -ENOMEM; + + /* + * FIXME: some NAND manufacturer drivers expect the first die to be + * selected when manufacturer->init() is called. They should be fixed + * to explictly select the relevant die when interacting with the NAND + * chip. + */ + chip->select_chip(mtd, 0); + ret = nand_manufacturer_init(chip); + chip->select_chip(mtd, -1); + if (ret) + goto err_free_buf; + + /* Set the internal oob buffer location, just after the page data */ + chip->oob_poi = chip->data_buf + mtd->writesize; + + /* + * If no default placement scheme is given, select an appropriate one. + */ + if (!mtd->ooblayout && + !(ecc->mode == NAND_ECC_SOFT && ecc->algo == NAND_ECC_BCH)) { + switch (mtd->oobsize) { + case 8: + case 16: + mtd_set_ooblayout(mtd, &nand_ooblayout_sp_ops); + break; + case 64: + case 128: + mtd_set_ooblayout(mtd, &nand_ooblayout_lp_hamming_ops); + break; + default: + /* + * Expose the whole OOB area to users if ECC_NONE + * is passed. We could do that for all kind of + * ->oobsize, but we must keep the old large/small + * page with ECC layout when ->oobsize <= 128 for + * compatibility reasons. + */ + if (ecc->mode == NAND_ECC_NONE) { + mtd_set_ooblayout(mtd, + &nand_ooblayout_lp_ops); + break; + } + + WARN(1, "No oob scheme defined for oobsize %d\n", + mtd->oobsize); + ret = -EINVAL; + goto err_nand_manuf_cleanup; + } + } + + /* + * Check ECC mode, default to software if 3byte/512byte hardware ECC is + * selected and we have 256 byte pagesize fallback to software ECC + */ + + switch (ecc->mode) { + case NAND_ECC_HW_OOB_FIRST: + /* Similar to NAND_ECC_HW, but a separate read_page handle */ + if (!ecc->calculate || !ecc->correct || !ecc->hwctl) { + WARN(1, "No ECC functions supplied; hardware ECC not possible\n"); + ret = -EINVAL; + goto err_nand_manuf_cleanup; + } + if (!ecc->read_page) + ecc->read_page = nand_read_page_hwecc_oob_first; + + case NAND_ECC_HW: + /* Use standard hwecc read page function? */ + if (!ecc->read_page) + ecc->read_page = nand_read_page_hwecc; + if (!ecc->write_page) + ecc->write_page = nand_write_page_hwecc; + if (!ecc->read_page_raw) + ecc->read_page_raw = nand_read_page_raw; + if (!ecc->write_page_raw) + ecc->write_page_raw = nand_write_page_raw; + if (!ecc->read_oob) + ecc->read_oob = nand_read_oob_std; + if (!ecc->write_oob) + ecc->write_oob = nand_write_oob_std; + if (!ecc->read_subpage) + ecc->read_subpage = nand_read_subpage; + if (!ecc->write_subpage && ecc->hwctl && ecc->calculate) + ecc->write_subpage = nand_write_subpage_hwecc; + + case NAND_ECC_HW_SYNDROME: + if ((!ecc->calculate || !ecc->correct || !ecc->hwctl) && + (!ecc->read_page || + ecc->read_page == nand_read_page_hwecc || + !ecc->write_page || + ecc->write_page == nand_write_page_hwecc)) { + WARN(1, "No ECC functions supplied; hardware ECC not possible\n"); + ret = -EINVAL; + goto err_nand_manuf_cleanup; + } + /* Use standard syndrome read/write page function? */ + if (!ecc->read_page) + ecc->read_page = nand_read_page_syndrome; + if (!ecc->write_page) + ecc->write_page = nand_write_page_syndrome; + if (!ecc->read_page_raw) + ecc->read_page_raw = nand_read_page_raw_syndrome; + if (!ecc->write_page_raw) + ecc->write_page_raw = nand_write_page_raw_syndrome; + if (!ecc->read_oob) + ecc->read_oob = nand_read_oob_syndrome; + if (!ecc->write_oob) + ecc->write_oob = nand_write_oob_syndrome; + + if (mtd->writesize >= ecc->size) { + if (!ecc->strength) { + WARN(1, "Driver must set ecc.strength when using hardware ECC\n"); + ret = -EINVAL; + goto err_nand_manuf_cleanup; + } + break; + } + pr_warn("%d byte HW ECC not possible on %d byte page size, fallback to SW ECC\n", + ecc->size, mtd->writesize); + ecc->mode = NAND_ECC_SOFT; + ecc->algo = NAND_ECC_HAMMING; + + case NAND_ECC_SOFT: + ret = nand_set_ecc_soft_ops(mtd); + if (ret) { + ret = -EINVAL; + goto err_nand_manuf_cleanup; + } + break; + + case NAND_ECC_ON_DIE: + if (!ecc->read_page || !ecc->write_page) { + WARN(1, "No ECC functions supplied; on-die ECC not possible\n"); + ret = -EINVAL; + goto err_nand_manuf_cleanup; + } + if (!ecc->read_oob) + ecc->read_oob = nand_read_oob_std; + if (!ecc->write_oob) + ecc->write_oob = nand_write_oob_std; + break; + + case NAND_ECC_NONE: + pr_warn("NAND_ECC_NONE selected by board driver. This is not recommended!\n"); + ecc->read_page = nand_read_page_raw; + ecc->write_page = nand_write_page_raw; + ecc->read_oob = nand_read_oob_std; + ecc->read_page_raw = nand_read_page_raw; + ecc->write_page_raw = nand_write_page_raw; + ecc->write_oob = nand_write_oob_std; + ecc->size = mtd->writesize; + ecc->bytes = 0; + ecc->strength = 0; + break; + + default: + WARN(1, "Invalid NAND_ECC_MODE %d\n", ecc->mode); + ret = -EINVAL; + goto err_nand_manuf_cleanup; + } + + if (ecc->correct || ecc->calculate) { + ecc->calc_buf = kmalloc(mtd->oobsize, GFP_KERNEL); + ecc->code_buf = kmalloc(mtd->oobsize, GFP_KERNEL); + if (!ecc->calc_buf || !ecc->code_buf) { + ret = -ENOMEM; + goto err_nand_manuf_cleanup; + } + } + + /* For many systems, the standard OOB write also works for raw */ + if (!ecc->read_oob_raw) + ecc->read_oob_raw = ecc->read_oob; + if (!ecc->write_oob_raw) + ecc->write_oob_raw = ecc->write_oob; + + /* propagate ecc info to mtd_info */ + mtd->ecc_strength = ecc->strength; + mtd->ecc_step_size = ecc->size; + + /* + * Set the number of read / write steps for one page depending on ECC + * mode. + */ + ecc->steps = mtd->writesize / ecc->size; + if (ecc->steps * ecc->size != mtd->writesize) { + WARN(1, "Invalid ECC parameters\n"); + ret = -EINVAL; + goto err_nand_manuf_cleanup; + } + ecc->total = ecc->steps * ecc->bytes; + if (ecc->total > mtd->oobsize) { + WARN(1, "Total number of ECC bytes exceeded oobsize\n"); + ret = -EINVAL; + goto err_nand_manuf_cleanup; + } + + /* + * The number of bytes available for a client to place data into + * the out of band area. + */ + ret = mtd_ooblayout_count_freebytes(mtd); + if (ret < 0) + ret = 0; + + mtd->oobavail = ret; + + /* ECC sanity check: warn if it's too weak */ + if (!nand_ecc_strength_good(mtd)) + pr_warn("WARNING: %s: the ECC used on your system is too weak compared to the one required by the NAND chip\n", + mtd->name); + + /* Allow subpage writes up to ecc.steps. Not possible for MLC flash */ + if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && nand_is_slc(chip)) { + switch (ecc->steps) { + case 2: + mtd->subpage_sft = 1; + break; + case 4: + case 8: + case 16: + mtd->subpage_sft = 2; + break; + } + } + chip->subpagesize = mtd->writesize >> mtd->subpage_sft; + + /* Initialize state */ + chip->state = FL_READY; + + /* Invalidate the pagebuffer reference */ + chip->pagebuf = -1; + + /* Large page NAND with SOFT_ECC should support subpage reads */ + switch (ecc->mode) { + case NAND_ECC_SOFT: + if (chip->page_shift > 9) + chip->options |= NAND_SUBPAGE_READ; + break; + + default: + break; + } + + /* Fill in remaining MTD driver data */ + mtd->type = nand_is_slc(chip) ? MTD_NANDFLASH : MTD_MLCNANDFLASH; + mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM : + MTD_CAP_NANDFLASH; + mtd->_erase = nand_erase; + mtd->_point = NULL; + mtd->_unpoint = NULL; + mtd->_panic_write = panic_nand_write; + mtd->_read_oob = nand_read_oob; + mtd->_write_oob = nand_write_oob; + mtd->_sync = nand_sync; + mtd->_lock = NULL; + mtd->_unlock = NULL; + mtd->_suspend = nand_suspend; + mtd->_resume = nand_resume; + mtd->_reboot = nand_shutdown; + mtd->_block_isreserved = nand_block_isreserved; + mtd->_block_isbad = nand_block_isbad; + mtd->_block_markbad = nand_block_markbad; + mtd->_max_bad_blocks = nand_max_bad_blocks; + mtd->writebufsize = mtd->writesize; + + /* + * Initialize bitflip_threshold to its default prior scan_bbt() call. + * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be + * properly set. + */ + if (!mtd->bitflip_threshold) + mtd->bitflip_threshold = DIV_ROUND_UP(mtd->ecc_strength * 3, 4); + + /* Initialize the ->data_interface field. */ + ret = nand_init_data_interface(chip); + if (ret) + goto err_nand_manuf_cleanup; + + /* Enter fastest possible mode on all dies. */ + for (i = 0; i < chip->numchips; i++) { + chip->select_chip(mtd, i); + ret = nand_setup_data_interface(chip, i); + chip->select_chip(mtd, -1); + + if (ret) + goto err_nand_manuf_cleanup; + } + + /* Check, if we should skip the bad block table scan */ + if (chip->options & NAND_SKIP_BBTSCAN) + return 0; + + /* Build bad block table */ + ret = chip->scan_bbt(mtd); + if (ret) + goto err_nand_manuf_cleanup; + + return 0; + + +err_nand_manuf_cleanup: + nand_manufacturer_cleanup(chip); + +err_free_buf: + kfree(chip->data_buf); + kfree(ecc->code_buf); + kfree(ecc->calc_buf); + + return ret; +} +EXPORT_SYMBOL(nand_scan_tail); + +/* + * is_module_text_address() isn't exported, and it's mostly a pointless + * test if this is a module _anyway_ -- they'd have to try _really_ hard + * to call us from in-kernel code if the core NAND support is modular. + */ +#ifdef MODULE +#define caller_is_module() (1) +#else +#define caller_is_module() \ + is_module_text_address((unsigned long)__builtin_return_address(0)) +#endif + +/** + * nand_scan - [NAND Interface] Scan for the NAND device + * @mtd: MTD device structure + * @maxchips: number of chips to scan for + * + * This fills out all the uninitialized function pointers with the defaults. + * The flash ID is read and the mtd/chip structures are filled with the + * appropriate values. + */ +int nand_scan(struct mtd_info *mtd, int maxchips) +{ + int ret; + + ret = nand_scan_ident(mtd, maxchips, NULL); + if (!ret) + ret = nand_scan_tail(mtd); + return ret; +} +EXPORT_SYMBOL(nand_scan); + +/** + * nand_cleanup - [NAND Interface] Free resources held by the NAND device + * @chip: NAND chip object + */ +void nand_cleanup(struct nand_chip *chip) +{ + if (chip->ecc.mode == NAND_ECC_SOFT && + chip->ecc.algo == NAND_ECC_BCH) + nand_bch_free((struct nand_bch_control *)chip->ecc.priv); + + /* Free bad block table memory */ + kfree(chip->bbt); + kfree(chip->data_buf); + kfree(chip->ecc.code_buf); + kfree(chip->ecc.calc_buf); + + /* Free bad block descriptor memory */ + if (chip->badblock_pattern && chip->badblock_pattern->options + & NAND_BBT_DYNAMICSTRUCT) + kfree(chip->badblock_pattern); + + /* Free manufacturer priv data. */ + nand_manufacturer_cleanup(chip); +} +EXPORT_SYMBOL_GPL(nand_cleanup); + +/** + * nand_release - [NAND Interface] Unregister the MTD device and free resources + * held by the NAND device + * @mtd: MTD device structure + */ +void nand_release(struct mtd_info *mtd) +{ + mtd_device_unregister(mtd); + nand_cleanup(mtd_to_nand(mtd)); +} +EXPORT_SYMBOL_GPL(nand_release); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Steven J. Hill "); +MODULE_AUTHOR("Thomas Gleixner "); +MODULE_DESCRIPTION("Generic NAND flash driver code"); diff --git a/drivers/mtd/nand/raw/nand_bbt.c b/drivers/mtd/nand/raw/nand_bbt.c new file mode 100644 index 000000000000..36092850be2c --- /dev/null +++ b/drivers/mtd/nand/raw/nand_bbt.c @@ -0,0 +1,1452 @@ +/* + * Overview: + * Bad block table support for the NAND driver + * + * Copyright © 2004 Thomas Gleixner (tglx@linutronix.de) + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + * + * Description: + * + * When nand_scan_bbt is called, then it tries to find the bad block table + * depending on the options in the BBT descriptor(s). If no flash based BBT + * (NAND_BBT_USE_FLASH) is specified then the device is scanned for factory + * marked good / bad blocks. This information is used to create a memory BBT. + * Once a new bad block is discovered then the "factory" information is updated + * on the device. + * If a flash based BBT is specified then the function first tries to find the + * BBT on flash. If a BBT is found then the contents are read and the memory + * based BBT is created. If a mirrored BBT is selected then the mirror is + * searched too and the versions are compared. If the mirror has a greater + * version number, then the mirror BBT is used to build the memory based BBT. + * If the tables are not versioned, then we "or" the bad block information. + * If one of the BBTs is out of date or does not exist it is (re)created. + * If no BBT exists at all then the device is scanned for factory marked + * good / bad blocks and the bad block tables are created. + * + * For manufacturer created BBTs like the one found on M-SYS DOC devices + * the BBT is searched and read but never created + * + * The auto generated bad block table is located in the last good blocks + * of the device. The table is mirrored, so it can be updated eventually. + * The table is marked in the OOB area with an ident pattern and a version + * number which indicates which of both tables is more up to date. If the NAND + * controller needs the complete OOB area for the ECC information then the + * option NAND_BBT_NO_OOB should be used (along with NAND_BBT_USE_FLASH, of + * course): it moves the ident pattern and the version byte into the data area + * and the OOB area will remain untouched. + * + * The table uses 2 bits per block + * 11b: block is good + * 00b: block is factory marked bad + * 01b, 10b: block is marked bad due to wear + * + * The memory bad block table uses the following scheme: + * 00b: block is good + * 01b: block is marked bad due to wear + * 10b: block is reserved (to protect the bbt area) + * 11b: block is factory marked bad + * + * Multichip devices like DOC store the bad block info per floor. + * + * Following assumptions are made: + * - bbts start at a page boundary, if autolocated on a block boundary + * - the space necessary for a bbt in FLASH does not exceed a block boundary + * + */ + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#define BBT_BLOCK_GOOD 0x00 +#define BBT_BLOCK_WORN 0x01 +#define BBT_BLOCK_RESERVED 0x02 +#define BBT_BLOCK_FACTORY_BAD 0x03 + +#define BBT_ENTRY_MASK 0x03 +#define BBT_ENTRY_SHIFT 2 + +static int nand_update_bbt(struct mtd_info *mtd, loff_t offs); + +static inline uint8_t bbt_get_entry(struct nand_chip *chip, int block) +{ + uint8_t entry = chip->bbt[block >> BBT_ENTRY_SHIFT]; + entry >>= (block & BBT_ENTRY_MASK) * 2; + return entry & BBT_ENTRY_MASK; +} + +static inline void bbt_mark_entry(struct nand_chip *chip, int block, + uint8_t mark) +{ + uint8_t msk = (mark & BBT_ENTRY_MASK) << ((block & BBT_ENTRY_MASK) * 2); + chip->bbt[block >> BBT_ENTRY_SHIFT] |= msk; +} + +static int check_pattern_no_oob(uint8_t *buf, struct nand_bbt_descr *td) +{ + if (memcmp(buf, td->pattern, td->len)) + return -1; + return 0; +} + +/** + * check_pattern - [GENERIC] check if a pattern is in the buffer + * @buf: the buffer to search + * @len: the length of buffer to search + * @paglen: the pagelength + * @td: search pattern descriptor + * + * Check for a pattern at the given place. Used to search bad block tables and + * good / bad block identifiers. + */ +static int check_pattern(uint8_t *buf, int len, int paglen, struct nand_bbt_descr *td) +{ + if (td->options & NAND_BBT_NO_OOB) + return check_pattern_no_oob(buf, td); + + /* Compare the pattern */ + if (memcmp(buf + paglen + td->offs, td->pattern, td->len)) + return -1; + + return 0; +} + +/** + * check_short_pattern - [GENERIC] check if a pattern is in the buffer + * @buf: the buffer to search + * @td: search pattern descriptor + * + * Check for a pattern at the given place. Used to search bad block tables and + * good / bad block identifiers. Same as check_pattern, but no optional empty + * check. + */ +static int check_short_pattern(uint8_t *buf, struct nand_bbt_descr *td) +{ + /* Compare the pattern */ + if (memcmp(buf + td->offs, td->pattern, td->len)) + return -1; + return 0; +} + +/** + * add_marker_len - compute the length of the marker in data area + * @td: BBT descriptor used for computation + * + * The length will be 0 if the marker is located in OOB area. + */ +static u32 add_marker_len(struct nand_bbt_descr *td) +{ + u32 len; + + if (!(td->options & NAND_BBT_NO_OOB)) + return 0; + + len = td->len; + if (td->options & NAND_BBT_VERSION) + len++; + return len; +} + +/** + * read_bbt - [GENERIC] Read the bad block table starting from page + * @mtd: MTD device structure + * @buf: temporary buffer + * @page: the starting page + * @num: the number of bbt descriptors to read + * @td: the bbt describtion table + * @offs: block number offset in the table + * + * Read the bad block table starting from page. + */ +static int read_bbt(struct mtd_info *mtd, uint8_t *buf, int page, int num, + struct nand_bbt_descr *td, int offs) +{ + int res, ret = 0, i, j, act = 0; + struct nand_chip *this = mtd_to_nand(mtd); + size_t retlen, len, totlen; + loff_t from; + int bits = td->options & NAND_BBT_NRBITS_MSK; + uint8_t msk = (uint8_t)((1 << bits) - 1); + u32 marker_len; + int reserved_block_code = td->reserved_block_code; + + totlen = (num * bits) >> 3; + marker_len = add_marker_len(td); + from = ((loff_t)page) << this->page_shift; + + while (totlen) { + len = min(totlen, (size_t)(1 << this->bbt_erase_shift)); + if (marker_len) { + /* + * In case the BBT marker is not in the OOB area it + * will be just in the first page. + */ + len -= marker_len; + from += marker_len; + marker_len = 0; + } + res = mtd_read(mtd, from, len, &retlen, buf); + if (res < 0) { + if (mtd_is_eccerr(res)) { + pr_info("nand_bbt: ECC error in BBT at 0x%012llx\n", + from & ~mtd->writesize); + return res; + } else if (mtd_is_bitflip(res)) { + pr_info("nand_bbt: corrected error in BBT at 0x%012llx\n", + from & ~mtd->writesize); + ret = res; + } else { + pr_info("nand_bbt: error reading BBT\n"); + return res; + } + } + + /* Analyse data */ + for (i = 0; i < len; i++) { + uint8_t dat = buf[i]; + for (j = 0; j < 8; j += bits, act++) { + uint8_t tmp = (dat >> j) & msk; + if (tmp == msk) + continue; + if (reserved_block_code && (tmp == reserved_block_code)) { + pr_info("nand_read_bbt: reserved block at 0x%012llx\n", + (loff_t)(offs + act) << + this->bbt_erase_shift); + bbt_mark_entry(this, offs + act, + BBT_BLOCK_RESERVED); + mtd->ecc_stats.bbtblocks++; + continue; + } + /* + * Leave it for now, if it's matured we can + * move this message to pr_debug. + */ + pr_info("nand_read_bbt: bad block at 0x%012llx\n", + (loff_t)(offs + act) << + this->bbt_erase_shift); + /* Factory marked bad or worn out? */ + if (tmp == 0) + bbt_mark_entry(this, offs + act, + BBT_BLOCK_FACTORY_BAD); + else + bbt_mark_entry(this, offs + act, + BBT_BLOCK_WORN); + mtd->ecc_stats.badblocks++; + } + } + totlen -= len; + from += len; + } + return ret; +} + +/** + * read_abs_bbt - [GENERIC] Read the bad block table starting at a given page + * @mtd: MTD device structure + * @buf: temporary buffer + * @td: descriptor for the bad block table + * @chip: read the table for a specific chip, -1 read all chips; applies only if + * NAND_BBT_PERCHIP option is set + * + * Read the bad block table for all chips starting at a given page. We assume + * that the bbt bits are in consecutive order. + */ +static int read_abs_bbt(struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *td, int chip) +{ + struct nand_chip *this = mtd_to_nand(mtd); + int res = 0, i; + + if (td->options & NAND_BBT_PERCHIP) { + int offs = 0; + for (i = 0; i < this->numchips; i++) { + if (chip == -1 || chip == i) + res = read_bbt(mtd, buf, td->pages[i], + this->chipsize >> this->bbt_erase_shift, + td, offs); + if (res) + return res; + offs += this->chipsize >> this->bbt_erase_shift; + } + } else { + res = read_bbt(mtd, buf, td->pages[0], + mtd->size >> this->bbt_erase_shift, td, 0); + if (res) + return res; + } + return 0; +} + +/* BBT marker is in the first page, no OOB */ +static int scan_read_data(struct mtd_info *mtd, uint8_t *buf, loff_t offs, + struct nand_bbt_descr *td) +{ + size_t retlen; + size_t len; + + len = td->len; + if (td->options & NAND_BBT_VERSION) + len++; + + return mtd_read(mtd, offs, len, &retlen, buf); +} + +/** + * scan_read_oob - [GENERIC] Scan data+OOB region to buffer + * @mtd: MTD device structure + * @buf: temporary buffer + * @offs: offset at which to scan + * @len: length of data region to read + * + * Scan read data from data+OOB. May traverse multiple pages, interleaving + * page,OOB,page,OOB,... in buf. Completes transfer and returns the "strongest" + * ECC condition (error or bitflip). May quit on the first (non-ECC) error. + */ +static int scan_read_oob(struct mtd_info *mtd, uint8_t *buf, loff_t offs, + size_t len) +{ + struct mtd_oob_ops ops; + int res, ret = 0; + + ops.mode = MTD_OPS_PLACE_OOB; + ops.ooboffs = 0; + ops.ooblen = mtd->oobsize; + + while (len > 0) { + ops.datbuf = buf; + ops.len = min(len, (size_t)mtd->writesize); + ops.oobbuf = buf + ops.len; + + res = mtd_read_oob(mtd, offs, &ops); + if (res) { + if (!mtd_is_bitflip_or_eccerr(res)) + return res; + else if (mtd_is_eccerr(res) || !ret) + ret = res; + } + + buf += mtd->oobsize + mtd->writesize; + len -= mtd->writesize; + offs += mtd->writesize; + } + return ret; +} + +static int scan_read(struct mtd_info *mtd, uint8_t *buf, loff_t offs, + size_t len, struct nand_bbt_descr *td) +{ + if (td->options & NAND_BBT_NO_OOB) + return scan_read_data(mtd, buf, offs, td); + else + return scan_read_oob(mtd, buf, offs, len); +} + +/* Scan write data with oob to flash */ +static int scan_write_bbt(struct mtd_info *mtd, loff_t offs, size_t len, + uint8_t *buf, uint8_t *oob) +{ + struct mtd_oob_ops ops; + + ops.mode = MTD_OPS_PLACE_OOB; + ops.ooboffs = 0; + ops.ooblen = mtd->oobsize; + ops.datbuf = buf; + ops.oobbuf = oob; + ops.len = len; + + return mtd_write_oob(mtd, offs, &ops); +} + +static u32 bbt_get_ver_offs(struct mtd_info *mtd, struct nand_bbt_descr *td) +{ + u32 ver_offs = td->veroffs; + + if (!(td->options & NAND_BBT_NO_OOB)) + ver_offs += mtd->writesize; + return ver_offs; +} + +/** + * read_abs_bbts - [GENERIC] Read the bad block table(s) for all chips starting at a given page + * @mtd: MTD device structure + * @buf: temporary buffer + * @td: descriptor for the bad block table + * @md: descriptor for the bad block table mirror + * + * Read the bad block table(s) for all chips starting at a given page. We + * assume that the bbt bits are in consecutive order. + */ +static void read_abs_bbts(struct mtd_info *mtd, uint8_t *buf, + struct nand_bbt_descr *td, struct nand_bbt_descr *md) +{ + struct nand_chip *this = mtd_to_nand(mtd); + + /* Read the primary version, if available */ + if (td->options & NAND_BBT_VERSION) { + scan_read(mtd, buf, (loff_t)td->pages[0] << this->page_shift, + mtd->writesize, td); + td->version[0] = buf[bbt_get_ver_offs(mtd, td)]; + pr_info("Bad block table at page %d, version 0x%02X\n", + td->pages[0], td->version[0]); + } + + /* Read the mirror version, if available */ + if (md && (md->options & NAND_BBT_VERSION)) { + scan_read(mtd, buf, (loff_t)md->pages[0] << this->page_shift, + mtd->writesize, md); + md->version[0] = buf[bbt_get_ver_offs(mtd, md)]; + pr_info("Bad block table at page %d, version 0x%02X\n", + md->pages[0], md->version[0]); + } +} + +/* Scan a given block partially */ +static int scan_block_fast(struct mtd_info *mtd, struct nand_bbt_descr *bd, + loff_t offs, uint8_t *buf, int numpages) +{ + struct mtd_oob_ops ops; + int j, ret; + + ops.ooblen = mtd->oobsize; + ops.oobbuf = buf; + ops.ooboffs = 0; + ops.datbuf = NULL; + ops.mode = MTD_OPS_PLACE_OOB; + + for (j = 0; j < numpages; j++) { + /* + * Read the full oob until read_oob is fixed to handle single + * byte reads for 16 bit buswidth. + */ + ret = mtd_read_oob(mtd, offs, &ops); + /* Ignore ECC errors when checking for BBM */ + if (ret && !mtd_is_bitflip_or_eccerr(ret)) + return ret; + + if (check_short_pattern(buf, bd)) + return 1; + + offs += mtd->writesize; + } + return 0; +} + +/** + * create_bbt - [GENERIC] Create a bad block table by scanning the device + * @mtd: MTD device structure + * @buf: temporary buffer + * @bd: descriptor for the good/bad block search pattern + * @chip: create the table for a specific chip, -1 read all chips; applies only + * if NAND_BBT_PERCHIP option is set + * + * Create a bad block table by scanning the device for the given good/bad block + * identify pattern. + */ +static int create_bbt(struct mtd_info *mtd, uint8_t *buf, + struct nand_bbt_descr *bd, int chip) +{ + struct nand_chip *this = mtd_to_nand(mtd); + int i, numblocks, numpages; + int startblock; + loff_t from; + + pr_info("Scanning device for bad blocks\n"); + + if (bd->options & NAND_BBT_SCAN2NDPAGE) + numpages = 2; + else + numpages = 1; + + if (chip == -1) { + numblocks = mtd->size >> this->bbt_erase_shift; + startblock = 0; + from = 0; + } else { + if (chip >= this->numchips) { + pr_warn("create_bbt(): chipnr (%d) > available chips (%d)\n", + chip + 1, this->numchips); + return -EINVAL; + } + numblocks = this->chipsize >> this->bbt_erase_shift; + startblock = chip * numblocks; + numblocks += startblock; + from = (loff_t)startblock << this->bbt_erase_shift; + } + + if (this->bbt_options & NAND_BBT_SCANLASTPAGE) + from += mtd->erasesize - (mtd->writesize * numpages); + + for (i = startblock; i < numblocks; i++) { + int ret; + + BUG_ON(bd->options & NAND_BBT_NO_OOB); + + ret = scan_block_fast(mtd, bd, from, buf, numpages); + if (ret < 0) + return ret; + + if (ret) { + bbt_mark_entry(this, i, BBT_BLOCK_FACTORY_BAD); + pr_warn("Bad eraseblock %d at 0x%012llx\n", + i, (unsigned long long)from); + mtd->ecc_stats.badblocks++; + } + + from += (1 << this->bbt_erase_shift); + } + return 0; +} + +/** + * search_bbt - [GENERIC] scan the device for a specific bad block table + * @mtd: MTD device structure + * @buf: temporary buffer + * @td: descriptor for the bad block table + * + * Read the bad block table by searching for a given ident pattern. Search is + * preformed either from the beginning up or from the end of the device + * downwards. The search starts always at the start of a block. If the option + * NAND_BBT_PERCHIP is given, each chip is searched for a bbt, which contains + * the bad block information of this chip. This is necessary to provide support + * for certain DOC devices. + * + * The bbt ident pattern resides in the oob area of the first page in a block. + */ +static int search_bbt(struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *td) +{ + struct nand_chip *this = mtd_to_nand(mtd); + int i, chips; + int startblock, block, dir; + int scanlen = mtd->writesize + mtd->oobsize; + int bbtblocks; + int blocktopage = this->bbt_erase_shift - this->page_shift; + + /* Search direction top -> down? */ + if (td->options & NAND_BBT_LASTBLOCK) { + startblock = (mtd->size >> this->bbt_erase_shift) - 1; + dir = -1; + } else { + startblock = 0; + dir = 1; + } + + /* Do we have a bbt per chip? */ + if (td->options & NAND_BBT_PERCHIP) { + chips = this->numchips; + bbtblocks = this->chipsize >> this->bbt_erase_shift; + startblock &= bbtblocks - 1; + } else { + chips = 1; + bbtblocks = mtd->size >> this->bbt_erase_shift; + } + + for (i = 0; i < chips; i++) { + /* Reset version information */ + td->version[i] = 0; + td->pages[i] = -1; + /* Scan the maximum number of blocks */ + for (block = 0; block < td->maxblocks; block++) { + + int actblock = startblock + dir * block; + loff_t offs = (loff_t)actblock << this->bbt_erase_shift; + + /* Read first page */ + scan_read(mtd, buf, offs, mtd->writesize, td); + if (!check_pattern(buf, scanlen, mtd->writesize, td)) { + td->pages[i] = actblock << blocktopage; + if (td->options & NAND_BBT_VERSION) { + offs = bbt_get_ver_offs(mtd, td); + td->version[i] = buf[offs]; + } + break; + } + } + startblock += this->chipsize >> this->bbt_erase_shift; + } + /* Check, if we found a bbt for each requested chip */ + for (i = 0; i < chips; i++) { + if (td->pages[i] == -1) + pr_warn("Bad block table not found for chip %d\n", i); + else + pr_info("Bad block table found at page %d, version 0x%02X\n", + td->pages[i], td->version[i]); + } + return 0; +} + +/** + * search_read_bbts - [GENERIC] scan the device for bad block table(s) + * @mtd: MTD device structure + * @buf: temporary buffer + * @td: descriptor for the bad block table + * @md: descriptor for the bad block table mirror + * + * Search and read the bad block table(s). + */ +static void search_read_bbts(struct mtd_info *mtd, uint8_t *buf, + struct nand_bbt_descr *td, + struct nand_bbt_descr *md) +{ + /* Search the primary table */ + search_bbt(mtd, buf, td); + + /* Search the mirror table */ + if (md) + search_bbt(mtd, buf, md); +} + +/** + * get_bbt_block - Get the first valid eraseblock suitable to store a BBT + * @this: the NAND device + * @td: the BBT description + * @md: the mirror BBT descriptor + * @chip: the CHIP selector + * + * This functions returns a positive block number pointing a valid eraseblock + * suitable to store a BBT (i.e. in the range reserved for BBT), or -ENOSPC if + * all blocks are already used of marked bad. If td->pages[chip] was already + * pointing to a valid block we re-use it, otherwise we search for the next + * valid one. + */ +static int get_bbt_block(struct nand_chip *this, struct nand_bbt_descr *td, + struct nand_bbt_descr *md, int chip) +{ + int startblock, dir, page, numblocks, i; + + /* + * There was already a version of the table, reuse the page. This + * applies for absolute placement too, as we have the page number in + * td->pages. + */ + if (td->pages[chip] != -1) + return td->pages[chip] >> + (this->bbt_erase_shift - this->page_shift); + + numblocks = (int)(this->chipsize >> this->bbt_erase_shift); + if (!(td->options & NAND_BBT_PERCHIP)) + numblocks *= this->numchips; + + /* + * Automatic placement of the bad block table. Search direction + * top -> down? + */ + if (td->options & NAND_BBT_LASTBLOCK) { + startblock = numblocks * (chip + 1) - 1; + dir = -1; + } else { + startblock = chip * numblocks; + dir = 1; + } + + for (i = 0; i < td->maxblocks; i++) { + int block = startblock + dir * i; + + /* Check, if the block is bad */ + switch (bbt_get_entry(this, block)) { + case BBT_BLOCK_WORN: + case BBT_BLOCK_FACTORY_BAD: + continue; + } + + page = block << (this->bbt_erase_shift - this->page_shift); + + /* Check, if the block is used by the mirror table */ + if (!md || md->pages[chip] != page) + return block; + } + + return -ENOSPC; +} + +/** + * mark_bbt_block_bad - Mark one of the block reserved for BBT bad + * @this: the NAND device + * @td: the BBT description + * @chip: the CHIP selector + * @block: the BBT block to mark + * + * Blocks reserved for BBT can become bad. This functions is an helper to mark + * such blocks as bad. It takes care of updating the in-memory BBT, marking the + * block as bad using a bad block marker and invalidating the associated + * td->pages[] entry. + */ +static void mark_bbt_block_bad(struct nand_chip *this, + struct nand_bbt_descr *td, + int chip, int block) +{ + struct mtd_info *mtd = nand_to_mtd(this); + loff_t to; + int res; + + bbt_mark_entry(this, block, BBT_BLOCK_WORN); + + to = (loff_t)block << this->bbt_erase_shift; + res = this->block_markbad(mtd, to); + if (res) + pr_warn("nand_bbt: error %d while marking block %d bad\n", + res, block); + + td->pages[chip] = -1; +} + +/** + * write_bbt - [GENERIC] (Re)write the bad block table + * @mtd: MTD device structure + * @buf: temporary buffer + * @td: descriptor for the bad block table + * @md: descriptor for the bad block table mirror + * @chipsel: selector for a specific chip, -1 for all + * + * (Re)write the bad block table. + */ +static int write_bbt(struct mtd_info *mtd, uint8_t *buf, + struct nand_bbt_descr *td, struct nand_bbt_descr *md, + int chipsel) +{ + struct nand_chip *this = mtd_to_nand(mtd); + struct erase_info einfo; + int i, res, chip = 0; + int bits, page, offs, numblocks, sft, sftmsk; + int nrchips, pageoffs, ooboffs; + uint8_t msk[4]; + uint8_t rcode = td->reserved_block_code; + size_t retlen, len = 0; + loff_t to; + struct mtd_oob_ops ops; + + ops.ooblen = mtd->oobsize; + ops.ooboffs = 0; + ops.datbuf = NULL; + ops.mode = MTD_OPS_PLACE_OOB; + + if (!rcode) + rcode = 0xff; + /* Write bad block table per chip rather than per device? */ + if (td->options & NAND_BBT_PERCHIP) { + numblocks = (int)(this->chipsize >> this->bbt_erase_shift); + /* Full device write or specific chip? */ + if (chipsel == -1) { + nrchips = this->numchips; + } else { + nrchips = chipsel + 1; + chip = chipsel; + } + } else { + numblocks = (int)(mtd->size >> this->bbt_erase_shift); + nrchips = 1; + } + + /* Loop through the chips */ + while (chip < nrchips) { + int block; + + block = get_bbt_block(this, td, md, chip); + if (block < 0) { + pr_err("No space left to write bad block table\n"); + res = block; + goto outerr; + } + + /* + * get_bbt_block() returns a block number, shift the value to + * get a page number. + */ + page = block << (this->bbt_erase_shift - this->page_shift); + + /* Set up shift count and masks for the flash table */ + bits = td->options & NAND_BBT_NRBITS_MSK; + msk[2] = ~rcode; + switch (bits) { + case 1: sft = 3; sftmsk = 0x07; msk[0] = 0x00; msk[1] = 0x01; + msk[3] = 0x01; + break; + case 2: sft = 2; sftmsk = 0x06; msk[0] = 0x00; msk[1] = 0x01; + msk[3] = 0x03; + break; + case 4: sft = 1; sftmsk = 0x04; msk[0] = 0x00; msk[1] = 0x0C; + msk[3] = 0x0f; + break; + case 8: sft = 0; sftmsk = 0x00; msk[0] = 0x00; msk[1] = 0x0F; + msk[3] = 0xff; + break; + default: return -EINVAL; + } + + to = ((loff_t)page) << this->page_shift; + + /* Must we save the block contents? */ + if (td->options & NAND_BBT_SAVECONTENT) { + /* Make it block aligned */ + to &= ~(((loff_t)1 << this->bbt_erase_shift) - 1); + len = 1 << this->bbt_erase_shift; + res = mtd_read(mtd, to, len, &retlen, buf); + if (res < 0) { + if (retlen != len) { + pr_info("nand_bbt: error reading block for writing the bad block table\n"); + return res; + } + pr_warn("nand_bbt: ECC error while reading block for writing bad block table\n"); + } + /* Read oob data */ + ops.ooblen = (len >> this->page_shift) * mtd->oobsize; + ops.oobbuf = &buf[len]; + res = mtd_read_oob(mtd, to + mtd->writesize, &ops); + if (res < 0 || ops.oobretlen != ops.ooblen) + goto outerr; + + /* Calc the byte offset in the buffer */ + pageoffs = page - (int)(to >> this->page_shift); + offs = pageoffs << this->page_shift; + /* Preset the bbt area with 0xff */ + memset(&buf[offs], 0xff, (size_t)(numblocks >> sft)); + ooboffs = len + (pageoffs * mtd->oobsize); + + } else if (td->options & NAND_BBT_NO_OOB) { + ooboffs = 0; + offs = td->len; + /* The version byte */ + if (td->options & NAND_BBT_VERSION) + offs++; + /* Calc length */ + len = (size_t)(numblocks >> sft); + len += offs; + /* Make it page aligned! */ + len = ALIGN(len, mtd->writesize); + /* Preset the buffer with 0xff */ + memset(buf, 0xff, len); + /* Pattern is located at the begin of first page */ + memcpy(buf, td->pattern, td->len); + } else { + /* Calc length */ + len = (size_t)(numblocks >> sft); + /* Make it page aligned! */ + len = ALIGN(len, mtd->writesize); + /* Preset the buffer with 0xff */ + memset(buf, 0xff, len + + (len >> this->page_shift)* mtd->oobsize); + offs = 0; + ooboffs = len; + /* Pattern is located in oob area of first page */ + memcpy(&buf[ooboffs + td->offs], td->pattern, td->len); + } + + if (td->options & NAND_BBT_VERSION) + buf[ooboffs + td->veroffs] = td->version[chip]; + + /* Walk through the memory table */ + for (i = 0; i < numblocks; i++) { + uint8_t dat; + int sftcnt = (i << (3 - sft)) & sftmsk; + dat = bbt_get_entry(this, chip * numblocks + i); + /* Do not store the reserved bbt blocks! */ + buf[offs + (i >> sft)] &= ~(msk[dat] << sftcnt); + } + + memset(&einfo, 0, sizeof(einfo)); + einfo.mtd = mtd; + einfo.addr = to; + einfo.len = 1 << this->bbt_erase_shift; + res = nand_erase_nand(mtd, &einfo, 1); + if (res < 0) { + pr_warn("nand_bbt: error while erasing BBT block %d\n", + res); + mark_bbt_block_bad(this, td, chip, block); + continue; + } + + res = scan_write_bbt(mtd, to, len, buf, + td->options & NAND_BBT_NO_OOB ? NULL : + &buf[len]); + if (res < 0) { + pr_warn("nand_bbt: error while writing BBT block %d\n", + res); + mark_bbt_block_bad(this, td, chip, block); + continue; + } + + pr_info("Bad block table written to 0x%012llx, version 0x%02X\n", + (unsigned long long)to, td->version[chip]); + + /* Mark it as used */ + td->pages[chip++] = page; + } + return 0; + + outerr: + pr_warn("nand_bbt: error while writing bad block table %d\n", res); + return res; +} + +/** + * nand_memory_bbt - [GENERIC] create a memory based bad block table + * @mtd: MTD device structure + * @bd: descriptor for the good/bad block search pattern + * + * The function creates a memory based bbt by scanning the device for + * manufacturer / software marked good / bad blocks. + */ +static inline int nand_memory_bbt(struct mtd_info *mtd, struct nand_bbt_descr *bd) +{ + struct nand_chip *this = mtd_to_nand(mtd); + + return create_bbt(mtd, this->data_buf, bd, -1); +} + +/** + * check_create - [GENERIC] create and write bbt(s) if necessary + * @mtd: MTD device structure + * @buf: temporary buffer + * @bd: descriptor for the good/bad block search pattern + * + * The function checks the results of the previous call to read_bbt and creates + * / updates the bbt(s) if necessary. Creation is necessary if no bbt was found + * for the chip/device. Update is necessary if one of the tables is missing or + * the version nr. of one table is less than the other. + */ +static int check_create(struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *bd) +{ + int i, chips, writeops, create, chipsel, res, res2; + struct nand_chip *this = mtd_to_nand(mtd); + struct nand_bbt_descr *td = this->bbt_td; + struct nand_bbt_descr *md = this->bbt_md; + struct nand_bbt_descr *rd, *rd2; + + /* Do we have a bbt per chip? */ + if (td->options & NAND_BBT_PERCHIP) + chips = this->numchips; + else + chips = 1; + + for (i = 0; i < chips; i++) { + writeops = 0; + create = 0; + rd = NULL; + rd2 = NULL; + res = res2 = 0; + /* Per chip or per device? */ + chipsel = (td->options & NAND_BBT_PERCHIP) ? i : -1; + /* Mirrored table available? */ + if (md) { + if (td->pages[i] == -1 && md->pages[i] == -1) { + create = 1; + writeops = 0x03; + } else if (td->pages[i] == -1) { + rd = md; + writeops = 0x01; + } else if (md->pages[i] == -1) { + rd = td; + writeops = 0x02; + } else if (td->version[i] == md->version[i]) { + rd = td; + if (!(td->options & NAND_BBT_VERSION)) + rd2 = md; + } else if (((int8_t)(td->version[i] - md->version[i])) > 0) { + rd = td; + writeops = 0x02; + } else { + rd = md; + writeops = 0x01; + } + } else { + if (td->pages[i] == -1) { + create = 1; + writeops = 0x01; + } else { + rd = td; + } + } + + if (create) { + /* Create the bad block table by scanning the device? */ + if (!(td->options & NAND_BBT_CREATE)) + continue; + + /* Create the table in memory by scanning the chip(s) */ + if (!(this->bbt_options & NAND_BBT_CREATE_EMPTY)) + create_bbt(mtd, buf, bd, chipsel); + + td->version[i] = 1; + if (md) + md->version[i] = 1; + } + + /* Read back first? */ + if (rd) { + res = read_abs_bbt(mtd, buf, rd, chipsel); + if (mtd_is_eccerr(res)) { + /* Mark table as invalid */ + rd->pages[i] = -1; + rd->version[i] = 0; + i--; + continue; + } + } + /* If they weren't versioned, read both */ + if (rd2) { + res2 = read_abs_bbt(mtd, buf, rd2, chipsel); + if (mtd_is_eccerr(res2)) { + /* Mark table as invalid */ + rd2->pages[i] = -1; + rd2->version[i] = 0; + i--; + continue; + } + } + + /* Scrub the flash table(s)? */ + if (mtd_is_bitflip(res) || mtd_is_bitflip(res2)) + writeops = 0x03; + + /* Update version numbers before writing */ + if (md) { + td->version[i] = max(td->version[i], md->version[i]); + md->version[i] = td->version[i]; + } + + /* Write the bad block table to the device? */ + if ((writeops & 0x01) && (td->options & NAND_BBT_WRITE)) { + res = write_bbt(mtd, buf, td, md, chipsel); + if (res < 0) + return res; + } + + /* Write the mirror bad block table to the device? */ + if ((writeops & 0x02) && md && (md->options & NAND_BBT_WRITE)) { + res = write_bbt(mtd, buf, md, td, chipsel); + if (res < 0) + return res; + } + } + return 0; +} + +/** + * mark_bbt_regions - [GENERIC] mark the bad block table regions + * @mtd: MTD device structure + * @td: bad block table descriptor + * + * The bad block table regions are marked as "bad" to prevent accidental + * erasures / writes. The regions are identified by the mark 0x02. + */ +static void mark_bbt_region(struct mtd_info *mtd, struct nand_bbt_descr *td) +{ + struct nand_chip *this = mtd_to_nand(mtd); + int i, j, chips, block, nrblocks, update; + uint8_t oldval; + + /* Do we have a bbt per chip? */ + if (td->options & NAND_BBT_PERCHIP) { + chips = this->numchips; + nrblocks = (int)(this->chipsize >> this->bbt_erase_shift); + } else { + chips = 1; + nrblocks = (int)(mtd->size >> this->bbt_erase_shift); + } + + for (i = 0; i < chips; i++) { + if ((td->options & NAND_BBT_ABSPAGE) || + !(td->options & NAND_BBT_WRITE)) { + if (td->pages[i] == -1) + continue; + block = td->pages[i] >> (this->bbt_erase_shift - this->page_shift); + oldval = bbt_get_entry(this, block); + bbt_mark_entry(this, block, BBT_BLOCK_RESERVED); + if ((oldval != BBT_BLOCK_RESERVED) && + td->reserved_block_code) + nand_update_bbt(mtd, (loff_t)block << + this->bbt_erase_shift); + continue; + } + update = 0; + if (td->options & NAND_BBT_LASTBLOCK) + block = ((i + 1) * nrblocks) - td->maxblocks; + else + block = i * nrblocks; + for (j = 0; j < td->maxblocks; j++) { + oldval = bbt_get_entry(this, block); + bbt_mark_entry(this, block, BBT_BLOCK_RESERVED); + if (oldval != BBT_BLOCK_RESERVED) + update = 1; + block++; + } + /* + * If we want reserved blocks to be recorded to flash, and some + * new ones have been marked, then we need to update the stored + * bbts. This should only happen once. + */ + if (update && td->reserved_block_code) + nand_update_bbt(mtd, (loff_t)(block - 1) << + this->bbt_erase_shift); + } +} + +/** + * verify_bbt_descr - verify the bad block description + * @mtd: MTD device structure + * @bd: the table to verify + * + * This functions performs a few sanity checks on the bad block description + * table. + */ +static void verify_bbt_descr(struct mtd_info *mtd, struct nand_bbt_descr *bd) +{ + struct nand_chip *this = mtd_to_nand(mtd); + u32 pattern_len; + u32 bits; + u32 table_size; + + if (!bd) + return; + + pattern_len = bd->len; + bits = bd->options & NAND_BBT_NRBITS_MSK; + + BUG_ON((this->bbt_options & NAND_BBT_NO_OOB) && + !(this->bbt_options & NAND_BBT_USE_FLASH)); + BUG_ON(!bits); + + if (bd->options & NAND_BBT_VERSION) + pattern_len++; + + if (bd->options & NAND_BBT_NO_OOB) { + BUG_ON(!(this->bbt_options & NAND_BBT_USE_FLASH)); + BUG_ON(!(this->bbt_options & NAND_BBT_NO_OOB)); + BUG_ON(bd->offs); + if (bd->options & NAND_BBT_VERSION) + BUG_ON(bd->veroffs != bd->len); + BUG_ON(bd->options & NAND_BBT_SAVECONTENT); + } + + if (bd->options & NAND_BBT_PERCHIP) + table_size = this->chipsize >> this->bbt_erase_shift; + else + table_size = mtd->size >> this->bbt_erase_shift; + table_size >>= 3; + table_size *= bits; + if (bd->options & NAND_BBT_NO_OOB) + table_size += pattern_len; + BUG_ON(table_size > (1 << this->bbt_erase_shift)); +} + +/** + * nand_scan_bbt - [NAND Interface] scan, find, read and maybe create bad block table(s) + * @mtd: MTD device structure + * @bd: descriptor for the good/bad block search pattern + * + * The function checks, if a bad block table(s) is/are already available. If + * not it scans the device for manufacturer marked good / bad blocks and writes + * the bad block table(s) to the selected place. + * + * The bad block table memory is allocated here. It must be freed by calling + * the nand_free_bbt function. + */ +static int nand_scan_bbt(struct mtd_info *mtd, struct nand_bbt_descr *bd) +{ + struct nand_chip *this = mtd_to_nand(mtd); + int len, res; + uint8_t *buf; + struct nand_bbt_descr *td = this->bbt_td; + struct nand_bbt_descr *md = this->bbt_md; + + len = (mtd->size >> (this->bbt_erase_shift + 2)) ? : 1; + /* + * Allocate memory (2bit per block) and clear the memory bad block + * table. + */ + this->bbt = kzalloc(len, GFP_KERNEL); + if (!this->bbt) + return -ENOMEM; + + /* + * If no primary table decriptor is given, scan the device to build a + * memory based bad block table. + */ + if (!td) { + if ((res = nand_memory_bbt(mtd, bd))) { + pr_err("nand_bbt: can't scan flash and build the RAM-based BBT\n"); + goto err; + } + return 0; + } + verify_bbt_descr(mtd, td); + verify_bbt_descr(mtd, md); + + /* Allocate a temporary buffer for one eraseblock incl. oob */ + len = (1 << this->bbt_erase_shift); + len += (len >> this->page_shift) * mtd->oobsize; + buf = vmalloc(len); + if (!buf) { + res = -ENOMEM; + goto err; + } + + /* Is the bbt at a given page? */ + if (td->options & NAND_BBT_ABSPAGE) { + read_abs_bbts(mtd, buf, td, md); + } else { + /* Search the bad block table using a pattern in oob */ + search_read_bbts(mtd, buf, td, md); + } + + res = check_create(mtd, buf, bd); + if (res) + goto err; + + /* Prevent the bbt regions from erasing / writing */ + mark_bbt_region(mtd, td); + if (md) + mark_bbt_region(mtd, md); + + vfree(buf); + return 0; + +err: + kfree(this->bbt); + this->bbt = NULL; + return res; +} + +/** + * nand_update_bbt - update bad block table(s) + * @mtd: MTD device structure + * @offs: the offset of the newly marked block + * + * The function updates the bad block table(s). + */ +static int nand_update_bbt(struct mtd_info *mtd, loff_t offs) +{ + struct nand_chip *this = mtd_to_nand(mtd); + int len, res = 0; + int chip, chipsel; + uint8_t *buf; + struct nand_bbt_descr *td = this->bbt_td; + struct nand_bbt_descr *md = this->bbt_md; + + if (!this->bbt || !td) + return -EINVAL; + + /* Allocate a temporary buffer for one eraseblock incl. oob */ + len = (1 << this->bbt_erase_shift); + len += (len >> this->page_shift) * mtd->oobsize; + buf = kmalloc(len, GFP_KERNEL); + if (!buf) + return -ENOMEM; + + /* Do we have a bbt per chip? */ + if (td->options & NAND_BBT_PERCHIP) { + chip = (int)(offs >> this->chip_shift); + chipsel = chip; + } else { + chip = 0; + chipsel = -1; + } + + td->version[chip]++; + if (md) + md->version[chip]++; + + /* Write the bad block table to the device? */ + if (td->options & NAND_BBT_WRITE) { + res = write_bbt(mtd, buf, td, md, chipsel); + if (res < 0) + goto out; + } + /* Write the mirror bad block table to the device? */ + if (md && (md->options & NAND_BBT_WRITE)) { + res = write_bbt(mtd, buf, md, td, chipsel); + } + + out: + kfree(buf); + return res; +} + +/* + * Define some generic bad / good block scan pattern which are used + * while scanning a device for factory marked good / bad blocks. + */ +static uint8_t scan_ff_pattern[] = { 0xff, 0xff }; + +/* Generic flash bbt descriptors */ +static uint8_t bbt_pattern[] = {'B', 'b', 't', '0' }; +static uint8_t mirror_pattern[] = {'1', 't', 'b', 'B' }; + +static struct nand_bbt_descr bbt_main_descr = { + .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE + | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, + .offs = 8, + .len = 4, + .veroffs = 12, + .maxblocks = NAND_BBT_SCAN_MAXBLOCKS, + .pattern = bbt_pattern +}; + +static struct nand_bbt_descr bbt_mirror_descr = { + .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE + | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, + .offs = 8, + .len = 4, + .veroffs = 12, + .maxblocks = NAND_BBT_SCAN_MAXBLOCKS, + .pattern = mirror_pattern +}; + +static struct nand_bbt_descr bbt_main_no_oob_descr = { + .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE + | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP + | NAND_BBT_NO_OOB, + .len = 4, + .veroffs = 4, + .maxblocks = NAND_BBT_SCAN_MAXBLOCKS, + .pattern = bbt_pattern +}; + +static struct nand_bbt_descr bbt_mirror_no_oob_descr = { + .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE + | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP + | NAND_BBT_NO_OOB, + .len = 4, + .veroffs = 4, + .maxblocks = NAND_BBT_SCAN_MAXBLOCKS, + .pattern = mirror_pattern +}; + +#define BADBLOCK_SCAN_MASK (~NAND_BBT_NO_OOB) +/** + * nand_create_badblock_pattern - [INTERN] Creates a BBT descriptor structure + * @this: NAND chip to create descriptor for + * + * This function allocates and initializes a nand_bbt_descr for BBM detection + * based on the properties of @this. The new descriptor is stored in + * this->badblock_pattern. Thus, this->badblock_pattern should be NULL when + * passed to this function. + */ +static int nand_create_badblock_pattern(struct nand_chip *this) +{ + struct nand_bbt_descr *bd; + if (this->badblock_pattern) { + pr_warn("Bad block pattern already allocated; not replacing\n"); + return -EINVAL; + } + bd = kzalloc(sizeof(*bd), GFP_KERNEL); + if (!bd) + return -ENOMEM; + bd->options = this->bbt_options & BADBLOCK_SCAN_MASK; + bd->offs = this->badblockpos; + bd->len = (this->options & NAND_BUSWIDTH_16) ? 2 : 1; + bd->pattern = scan_ff_pattern; + bd->options |= NAND_BBT_DYNAMICSTRUCT; + this->badblock_pattern = bd; + return 0; +} + +/** + * nand_default_bbt - [NAND Interface] Select a default bad block table for the device + * @mtd: MTD device structure + * + * This function selects the default bad block table support for the device and + * calls the nand_scan_bbt function. + */ +int nand_default_bbt(struct mtd_info *mtd) +{ + struct nand_chip *this = mtd_to_nand(mtd); + int ret; + + /* Is a flash based bad block table requested? */ + if (this->bbt_options & NAND_BBT_USE_FLASH) { + /* Use the default pattern descriptors */ + if (!this->bbt_td) { + if (this->bbt_options & NAND_BBT_NO_OOB) { + this->bbt_td = &bbt_main_no_oob_descr; + this->bbt_md = &bbt_mirror_no_oob_descr; + } else { + this->bbt_td = &bbt_main_descr; + this->bbt_md = &bbt_mirror_descr; + } + } + } else { + this->bbt_td = NULL; + this->bbt_md = NULL; + } + + if (!this->badblock_pattern) { + ret = nand_create_badblock_pattern(this); + if (ret) + return ret; + } + + return nand_scan_bbt(mtd, this->badblock_pattern); +} + +/** + * nand_isreserved_bbt - [NAND Interface] Check if a block is reserved + * @mtd: MTD device structure + * @offs: offset in the device + */ +int nand_isreserved_bbt(struct mtd_info *mtd, loff_t offs) +{ + struct nand_chip *this = mtd_to_nand(mtd); + int block; + + block = (int)(offs >> this->bbt_erase_shift); + return bbt_get_entry(this, block) == BBT_BLOCK_RESERVED; +} + +/** + * nand_isbad_bbt - [NAND Interface] Check if a block is bad + * @mtd: MTD device structure + * @offs: offset in the device + * @allowbbt: allow access to bad block table region + */ +int nand_isbad_bbt(struct mtd_info *mtd, loff_t offs, int allowbbt) +{ + struct nand_chip *this = mtd_to_nand(mtd); + int block, res; + + block = (int)(offs >> this->bbt_erase_shift); + res = bbt_get_entry(this, block); + + pr_debug("nand_isbad_bbt(): bbt info for offs 0x%08x: (block %d) 0x%02x\n", + (unsigned int)offs, block, res); + + switch (res) { + case BBT_BLOCK_GOOD: + return 0; + case BBT_BLOCK_WORN: + return 1; + case BBT_BLOCK_RESERVED: + return allowbbt ? 0 : 1; + } + return 1; +} + +/** + * nand_markbad_bbt - [NAND Interface] Mark a block bad in the BBT + * @mtd: MTD device structure + * @offs: offset of the bad block + */ +int nand_markbad_bbt(struct mtd_info *mtd, loff_t offs) +{ + struct nand_chip *this = mtd_to_nand(mtd); + int block, ret = 0; + + block = (int)(offs >> this->bbt_erase_shift); + + /* Mark bad block in memory */ + bbt_mark_entry(this, block, BBT_BLOCK_WORN); + + /* Update flash-based bad block table */ + if (this->bbt_options & NAND_BBT_USE_FLASH) + ret = nand_update_bbt(mtd, offs); + + return ret; +} diff --git a/drivers/mtd/nand/raw/nand_bch.c b/drivers/mtd/nand/raw/nand_bch.c new file mode 100644 index 000000000000..505441c9373b --- /dev/null +++ b/drivers/mtd/nand/raw/nand_bch.c @@ -0,0 +1,234 @@ +/* + * This file provides ECC correction for more than 1 bit per block of data, + * using binary BCH codes. It relies on the generic BCH library lib/bch.c. + * + * Copyright © 2011 Ivan Djelic + * + * This file is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License as published by the + * Free Software Foundation; either version 2 or (at your option) any + * later version. + * + * This file is distributed in the hope that it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License + * for more details. + * + * You should have received a copy of the GNU General Public License along + * with this file; if not, write to the Free Software Foundation, Inc., + * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. + */ + +#include +#include +#include +#include +#include +#include +#include +#include +#include + +/** + * struct nand_bch_control - private NAND BCH control structure + * @bch: BCH control structure + * @errloc: error location array + * @eccmask: XOR ecc mask, allows erased pages to be decoded as valid + */ +struct nand_bch_control { + struct bch_control *bch; + unsigned int *errloc; + unsigned char *eccmask; +}; + +/** + * nand_bch_calculate_ecc - [NAND Interface] Calculate ECC for data block + * @mtd: MTD block structure + * @buf: input buffer with raw data + * @code: output buffer with ECC + */ +int nand_bch_calculate_ecc(struct mtd_info *mtd, const unsigned char *buf, + unsigned char *code) +{ + const struct nand_chip *chip = mtd_to_nand(mtd); + struct nand_bch_control *nbc = chip->ecc.priv; + unsigned int i; + + memset(code, 0, chip->ecc.bytes); + encode_bch(nbc->bch, buf, chip->ecc.size, code); + + /* apply mask so that an erased page is a valid codeword */ + for (i = 0; i < chip->ecc.bytes; i++) + code[i] ^= nbc->eccmask[i]; + + return 0; +} +EXPORT_SYMBOL(nand_bch_calculate_ecc); + +/** + * nand_bch_correct_data - [NAND Interface] Detect and correct bit error(s) + * @mtd: MTD block structure + * @buf: raw data read from the chip + * @read_ecc: ECC from the chip + * @calc_ecc: the ECC calculated from raw data + * + * Detect and correct bit errors for a data byte block + */ +int nand_bch_correct_data(struct mtd_info *mtd, unsigned char *buf, + unsigned char *read_ecc, unsigned char *calc_ecc) +{ + const struct nand_chip *chip = mtd_to_nand(mtd); + struct nand_bch_control *nbc = chip->ecc.priv; + unsigned int *errloc = nbc->errloc; + int i, count; + + count = decode_bch(nbc->bch, NULL, chip->ecc.size, read_ecc, calc_ecc, + NULL, errloc); + if (count > 0) { + for (i = 0; i < count; i++) { + if (errloc[i] < (chip->ecc.size*8)) + /* error is located in data, correct it */ + buf[errloc[i] >> 3] ^= (1 << (errloc[i] & 7)); + /* else error in ecc, no action needed */ + + pr_debug("%s: corrected bitflip %u\n", __func__, + errloc[i]); + } + } else if (count < 0) { + printk(KERN_ERR "ecc unrecoverable error\n"); + count = -EBADMSG; + } + return count; +} +EXPORT_SYMBOL(nand_bch_correct_data); + +/** + * nand_bch_init - [NAND Interface] Initialize NAND BCH error correction + * @mtd: MTD block structure + * + * Returns: + * a pointer to a new NAND BCH control structure, or NULL upon failure + * + * Initialize NAND BCH error correction. Parameters @eccsize and @eccbytes + * are used to compute BCH parameters m (Galois field order) and t (error + * correction capability). @eccbytes should be equal to the number of bytes + * required to store m*t bits, where m is such that 2^m-1 > @eccsize*8. + * + * Example: to configure 4 bit correction per 512 bytes, you should pass + * @eccsize = 512 (thus, m=13 is the smallest integer such that 2^m-1 > 512*8) + * @eccbytes = 7 (7 bytes are required to store m*t = 13*4 = 52 bits) + */ +struct nand_bch_control *nand_bch_init(struct mtd_info *mtd) +{ + struct nand_chip *nand = mtd_to_nand(mtd); + unsigned int m, t, eccsteps, i; + struct nand_bch_control *nbc = NULL; + unsigned char *erased_page; + unsigned int eccsize = nand->ecc.size; + unsigned int eccbytes = nand->ecc.bytes; + unsigned int eccstrength = nand->ecc.strength; + + if (!eccbytes && eccstrength) { + eccbytes = DIV_ROUND_UP(eccstrength * fls(8 * eccsize), 8); + nand->ecc.bytes = eccbytes; + } + + if (!eccsize || !eccbytes) { + printk(KERN_WARNING "ecc parameters not supplied\n"); + goto fail; + } + + m = fls(1+8*eccsize); + t = (eccbytes*8)/m; + + nbc = kzalloc(sizeof(*nbc), GFP_KERNEL); + if (!nbc) + goto fail; + + nbc->bch = init_bch(m, t, 0); + if (!nbc->bch) + goto fail; + + /* verify that eccbytes has the expected value */ + if (nbc->bch->ecc_bytes != eccbytes) { + printk(KERN_WARNING "invalid eccbytes %u, should be %u\n", + eccbytes, nbc->bch->ecc_bytes); + goto fail; + } + + eccsteps = mtd->writesize/eccsize; + + /* Check that we have an oob layout description. */ + if (!mtd->ooblayout) { + pr_warn("missing oob scheme"); + goto fail; + } + + /* sanity checks */ + if (8*(eccsize+eccbytes) >= (1 << m)) { + printk(KERN_WARNING "eccsize %u is too large\n", eccsize); + goto fail; + } + + /* + * ecc->steps and ecc->total might be used by mtd->ooblayout->ecc(), + * which is called by mtd_ooblayout_count_eccbytes(). + * Make sure they are properly initialized before calling + * mtd_ooblayout_count_eccbytes(). + * FIXME: we should probably rework the sequencing in nand_scan_tail() + * to avoid setting those fields twice. + */ + nand->ecc.steps = eccsteps; + nand->ecc.total = eccsteps * eccbytes; + if (mtd_ooblayout_count_eccbytes(mtd) != (eccsteps*eccbytes)) { + printk(KERN_WARNING "invalid ecc layout\n"); + goto fail; + } + + nbc->eccmask = kmalloc(eccbytes, GFP_KERNEL); + nbc->errloc = kmalloc(t*sizeof(*nbc->errloc), GFP_KERNEL); + if (!nbc->eccmask || !nbc->errloc) + goto fail; + /* + * compute and store the inverted ecc of an erased ecc block + */ + erased_page = kmalloc(eccsize, GFP_KERNEL); + if (!erased_page) + goto fail; + + memset(erased_page, 0xff, eccsize); + memset(nbc->eccmask, 0, eccbytes); + encode_bch(nbc->bch, erased_page, eccsize, nbc->eccmask); + kfree(erased_page); + + for (i = 0; i < eccbytes; i++) + nbc->eccmask[i] ^= 0xff; + + if (!eccstrength) + nand->ecc.strength = (eccbytes * 8) / fls(8 * eccsize); + + return nbc; +fail: + nand_bch_free(nbc); + return NULL; +} +EXPORT_SYMBOL(nand_bch_init); + +/** + * nand_bch_free - [NAND Interface] Release NAND BCH ECC resources + * @nbc: NAND BCH control structure + */ +void nand_bch_free(struct nand_bch_control *nbc) +{ + if (nbc) { + free_bch(nbc->bch); + kfree(nbc->errloc); + kfree(nbc->eccmask); + kfree(nbc); + } +} +EXPORT_SYMBOL(nand_bch_free); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Ivan Djelic "); +MODULE_DESCRIPTION("NAND software BCH ECC support"); diff --git a/drivers/mtd/nand/raw/nand_ecc.c b/drivers/mtd/nand/raw/nand_ecc.c new file mode 100644 index 000000000000..3630f0fe8fa4 --- /dev/null +++ b/drivers/mtd/nand/raw/nand_ecc.c @@ -0,0 +1,531 @@ +/* + * This file contains an ECC algorithm that detects and corrects 1 bit + * errors in a 256 byte block of data. + * + * Copyright © 2008 Koninklijke Philips Electronics NV. + * Author: Frans Meulenbroeks + * + * Completely replaces the previous ECC implementation which was written by: + * Steven J. Hill (sjhill@realitydiluted.com) + * Thomas Gleixner (tglx@linutronix.de) + * + * Information on how this algorithm works and how it was developed + * can be found in Documentation/mtd/nand_ecc.txt + * + * This file is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License as published by the + * Free Software Foundation; either version 2 or (at your option) any + * later version. + * + * This file is distributed in the hope that it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License + * for more details. + * + * You should have received a copy of the GNU General Public License along + * with this file; if not, write to the Free Software Foundation, Inc., + * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. + * + */ + +/* + * The STANDALONE macro is useful when running the code outside the kernel + * e.g. when running the code in a testbed or a benchmark program. + * When STANDALONE is used, the module related macros are commented out + * as well as the linux include files. + * Instead a private definition of mtd_info is given to satisfy the compiler + * (the code does not use mtd_info, so the code does not care) + */ +#ifndef STANDALONE +#include +#include +#include +#include +#include +#include +#include +#else +#include +struct mtd_info; +#define EXPORT_SYMBOL(x) /* x */ + +#define MODULE_LICENSE(x) /* x */ +#define MODULE_AUTHOR(x) /* x */ +#define MODULE_DESCRIPTION(x) /* x */ + +#define pr_err printf +#endif + +/* + * invparity is a 256 byte table that contains the odd parity + * for each byte. So if the number of bits in a byte is even, + * the array element is 1, and when the number of bits is odd + * the array eleemnt is 0. + */ +static const char invparity[256] = { + 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, + 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, + 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, + 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, + 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, + 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, + 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, + 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, + 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, + 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, + 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, + 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, + 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, + 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, + 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, + 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1 +}; + +/* + * bitsperbyte contains the number of bits per byte + * this is only used for testing and repairing parity + * (a precalculated value slightly improves performance) + */ +static const char bitsperbyte[256] = { + 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, + 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, + 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, + 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, + 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, + 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, + 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, + 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, + 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, + 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, + 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, + 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, + 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, + 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, + 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, + 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8, +}; + +/* + * addressbits is a lookup table to filter out the bits from the xor-ed + * ECC data that identify the faulty location. + * this is only used for repairing parity + * see the comments in nand_correct_data for more details + */ +static const char addressbits[256] = { + 0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01, + 0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03, + 0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01, + 0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03, + 0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05, + 0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07, + 0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05, + 0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07, + 0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01, + 0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03, + 0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01, + 0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03, + 0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05, + 0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07, + 0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05, + 0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07, + 0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09, + 0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b, + 0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09, + 0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b, + 0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d, + 0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f, + 0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d, + 0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f, + 0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09, + 0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b, + 0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09, + 0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b, + 0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d, + 0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f, + 0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d, + 0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f +}; + +/** + * __nand_calculate_ecc - [NAND Interface] Calculate 3-byte ECC for 256/512-byte + * block + * @buf: input buffer with raw data + * @eccsize: data bytes per ECC step (256 or 512) + * @code: output buffer with ECC + */ +void __nand_calculate_ecc(const unsigned char *buf, unsigned int eccsize, + unsigned char *code) +{ + int i; + const uint32_t *bp = (uint32_t *)buf; + /* 256 or 512 bytes/ecc */ + const uint32_t eccsize_mult = eccsize >> 8; + uint32_t cur; /* current value in buffer */ + /* rp0..rp15..rp17 are the various accumulated parities (per byte) */ + uint32_t rp0, rp1, rp2, rp3, rp4, rp5, rp6, rp7; + uint32_t rp8, rp9, rp10, rp11, rp12, rp13, rp14, rp15, rp16; + uint32_t uninitialized_var(rp17); /* to make compiler happy */ + uint32_t par; /* the cumulative parity for all data */ + uint32_t tmppar; /* the cumulative parity for this iteration; + for rp12, rp14 and rp16 at the end of the + loop */ + + par = 0; + rp4 = 0; + rp6 = 0; + rp8 = 0; + rp10 = 0; + rp12 = 0; + rp14 = 0; + rp16 = 0; + + /* + * The loop is unrolled a number of times; + * This avoids if statements to decide on which rp value to update + * Also we process the data by longwords. + * Note: passing unaligned data might give a performance penalty. + * It is assumed that the buffers are aligned. + * tmppar is the cumulative sum of this iteration. + * needed for calculating rp12, rp14, rp16 and par + * also used as a performance improvement for rp6, rp8 and rp10 + */ + for (i = 0; i < eccsize_mult << 2; i++) { + cur = *bp++; + tmppar = cur; + rp4 ^= cur; + cur = *bp++; + tmppar ^= cur; + rp6 ^= tmppar; + cur = *bp++; + tmppar ^= cur; + rp4 ^= cur; + cur = *bp++; + tmppar ^= cur; + rp8 ^= tmppar; + + cur = *bp++; + tmppar ^= cur; + rp4 ^= cur; + rp6 ^= cur; + cur = *bp++; + tmppar ^= cur; + rp6 ^= cur; + cur = *bp++; + tmppar ^= cur; + rp4 ^= cur; + cur = *bp++; + tmppar ^= cur; + rp10 ^= tmppar; + + cur = *bp++; + tmppar ^= cur; + rp4 ^= cur; + rp6 ^= cur; + rp8 ^= cur; + cur = *bp++; + tmppar ^= cur; + rp6 ^= cur; + rp8 ^= cur; + cur = *bp++; + tmppar ^= cur; + rp4 ^= cur; + rp8 ^= cur; + cur = *bp++; + tmppar ^= cur; + rp8 ^= cur; + + cur = *bp++; + tmppar ^= cur; + rp4 ^= cur; + rp6 ^= cur; + cur = *bp++; + tmppar ^= cur; + rp6 ^= cur; + cur = *bp++; + tmppar ^= cur; + rp4 ^= cur; + cur = *bp++; + tmppar ^= cur; + + par ^= tmppar; + if ((i & 0x1) == 0) + rp12 ^= tmppar; + if ((i & 0x2) == 0) + rp14 ^= tmppar; + if (eccsize_mult == 2 && (i & 0x4) == 0) + rp16 ^= tmppar; + } + + /* + * handle the fact that we use longword operations + * we'll bring rp4..rp14..rp16 back to single byte entities by + * shifting and xoring first fold the upper and lower 16 bits, + * then the upper and lower 8 bits. + */ + rp4 ^= (rp4 >> 16); + rp4 ^= (rp4 >> 8); + rp4 &= 0xff; + rp6 ^= (rp6 >> 16); + rp6 ^= (rp6 >> 8); + rp6 &= 0xff; + rp8 ^= (rp8 >> 16); + rp8 ^= (rp8 >> 8); + rp8 &= 0xff; + rp10 ^= (rp10 >> 16); + rp10 ^= (rp10 >> 8); + rp10 &= 0xff; + rp12 ^= (rp12 >> 16); + rp12 ^= (rp12 >> 8); + rp12 &= 0xff; + rp14 ^= (rp14 >> 16); + rp14 ^= (rp14 >> 8); + rp14 &= 0xff; + if (eccsize_mult == 2) { + rp16 ^= (rp16 >> 16); + rp16 ^= (rp16 >> 8); + rp16 &= 0xff; + } + + /* + * we also need to calculate the row parity for rp0..rp3 + * This is present in par, because par is now + * rp3 rp3 rp2 rp2 in little endian and + * rp2 rp2 rp3 rp3 in big endian + * as well as + * rp1 rp0 rp1 rp0 in little endian and + * rp0 rp1 rp0 rp1 in big endian + * First calculate rp2 and rp3 + */ +#ifdef __BIG_ENDIAN + rp2 = (par >> 16); + rp2 ^= (rp2 >> 8); + rp2 &= 0xff; + rp3 = par & 0xffff; + rp3 ^= (rp3 >> 8); + rp3 &= 0xff; +#else + rp3 = (par >> 16); + rp3 ^= (rp3 >> 8); + rp3 &= 0xff; + rp2 = par & 0xffff; + rp2 ^= (rp2 >> 8); + rp2 &= 0xff; +#endif + + /* reduce par to 16 bits then calculate rp1 and rp0 */ + par ^= (par >> 16); +#ifdef __BIG_ENDIAN + rp0 = (par >> 8) & 0xff; + rp1 = (par & 0xff); +#else + rp1 = (par >> 8) & 0xff; + rp0 = (par & 0xff); +#endif + + /* finally reduce par to 8 bits */ + par ^= (par >> 8); + par &= 0xff; + + /* + * and calculate rp5..rp15..rp17 + * note that par = rp4 ^ rp5 and due to the commutative property + * of the ^ operator we can say: + * rp5 = (par ^ rp4); + * The & 0xff seems superfluous, but benchmarking learned that + * leaving it out gives slightly worse results. No idea why, probably + * it has to do with the way the pipeline in pentium is organized. + */ + rp5 = (par ^ rp4) & 0xff; + rp7 = (par ^ rp6) & 0xff; + rp9 = (par ^ rp8) & 0xff; + rp11 = (par ^ rp10) & 0xff; + rp13 = (par ^ rp12) & 0xff; + rp15 = (par ^ rp14) & 0xff; + if (eccsize_mult == 2) + rp17 = (par ^ rp16) & 0xff; + + /* + * Finally calculate the ECC bits. + * Again here it might seem that there are performance optimisations + * possible, but benchmarks showed that on the system this is developed + * the code below is the fastest + */ +#ifdef CONFIG_MTD_NAND_ECC_SMC + code[0] = + (invparity[rp7] << 7) | + (invparity[rp6] << 6) | + (invparity[rp5] << 5) | + (invparity[rp4] << 4) | + (invparity[rp3] << 3) | + (invparity[rp2] << 2) | + (invparity[rp1] << 1) | + (invparity[rp0]); + code[1] = + (invparity[rp15] << 7) | + (invparity[rp14] << 6) | + (invparity[rp13] << 5) | + (invparity[rp12] << 4) | + (invparity[rp11] << 3) | + (invparity[rp10] << 2) | + (invparity[rp9] << 1) | + (invparity[rp8]); +#else + code[1] = + (invparity[rp7] << 7) | + (invparity[rp6] << 6) | + (invparity[rp5] << 5) | + (invparity[rp4] << 4) | + (invparity[rp3] << 3) | + (invparity[rp2] << 2) | + (invparity[rp1] << 1) | + (invparity[rp0]); + code[0] = + (invparity[rp15] << 7) | + (invparity[rp14] << 6) | + (invparity[rp13] << 5) | + (invparity[rp12] << 4) | + (invparity[rp11] << 3) | + (invparity[rp10] << 2) | + (invparity[rp9] << 1) | + (invparity[rp8]); +#endif + if (eccsize_mult == 1) + code[2] = + (invparity[par & 0xf0] << 7) | + (invparity[par & 0x0f] << 6) | + (invparity[par & 0xcc] << 5) | + (invparity[par & 0x33] << 4) | + (invparity[par & 0xaa] << 3) | + (invparity[par & 0x55] << 2) | + 3; + else + code[2] = + (invparity[par & 0xf0] << 7) | + (invparity[par & 0x0f] << 6) | + (invparity[par & 0xcc] << 5) | + (invparity[par & 0x33] << 4) | + (invparity[par & 0xaa] << 3) | + (invparity[par & 0x55] << 2) | + (invparity[rp17] << 1) | + (invparity[rp16] << 0); +} +EXPORT_SYMBOL(__nand_calculate_ecc); + +/** + * nand_calculate_ecc - [NAND Interface] Calculate 3-byte ECC for 256/512-byte + * block + * @mtd: MTD block structure + * @buf: input buffer with raw data + * @code: output buffer with ECC + */ +int nand_calculate_ecc(struct mtd_info *mtd, const unsigned char *buf, + unsigned char *code) +{ + __nand_calculate_ecc(buf, + mtd_to_nand(mtd)->ecc.size, code); + + return 0; +} +EXPORT_SYMBOL(nand_calculate_ecc); + +/** + * __nand_correct_data - [NAND Interface] Detect and correct bit error(s) + * @buf: raw data read from the chip + * @read_ecc: ECC from the chip + * @calc_ecc: the ECC calculated from raw data + * @eccsize: data bytes per ECC step (256 or 512) + * + * Detect and correct a 1 bit error for eccsize byte block + */ +int __nand_correct_data(unsigned char *buf, + unsigned char *read_ecc, unsigned char *calc_ecc, + unsigned int eccsize) +{ + unsigned char b0, b1, b2, bit_addr; + unsigned int byte_addr; + /* 256 or 512 bytes/ecc */ + const uint32_t eccsize_mult = eccsize >> 8; + + /* + * b0 to b2 indicate which bit is faulty (if any) + * we might need the xor result more than once, + * so keep them in a local var + */ +#ifdef CONFIG_MTD_NAND_ECC_SMC + b0 = read_ecc[0] ^ calc_ecc[0]; + b1 = read_ecc[1] ^ calc_ecc[1]; +#else + b0 = read_ecc[1] ^ calc_ecc[1]; + b1 = read_ecc[0] ^ calc_ecc[0]; +#endif + b2 = read_ecc[2] ^ calc_ecc[2]; + + /* check if there are any bitfaults */ + + /* repeated if statements are slightly more efficient than switch ... */ + /* ordered in order of likelihood */ + + if ((b0 | b1 | b2) == 0) + return 0; /* no error */ + + if ((((b0 ^ (b0 >> 1)) & 0x55) == 0x55) && + (((b1 ^ (b1 >> 1)) & 0x55) == 0x55) && + ((eccsize_mult == 1 && ((b2 ^ (b2 >> 1)) & 0x54) == 0x54) || + (eccsize_mult == 2 && ((b2 ^ (b2 >> 1)) & 0x55) == 0x55))) { + /* single bit error */ + /* + * rp17/rp15/13/11/9/7/5/3/1 indicate which byte is the faulty + * byte, cp 5/3/1 indicate the faulty bit. + * A lookup table (called addressbits) is used to filter + * the bits from the byte they are in. + * A marginal optimisation is possible by having three + * different lookup tables. + * One as we have now (for b0), one for b2 + * (that would avoid the >> 1), and one for b1 (with all values + * << 4). However it was felt that introducing two more tables + * hardly justify the gain. + * + * The b2 shift is there to get rid of the lowest two bits. + * We could also do addressbits[b2] >> 1 but for the + * performance it does not make any difference + */ + if (eccsize_mult == 1) + byte_addr = (addressbits[b1] << 4) + addressbits[b0]; + else + byte_addr = (addressbits[b2 & 0x3] << 8) + + (addressbits[b1] << 4) + addressbits[b0]; + bit_addr = addressbits[b2 >> 2]; + /* flip the bit */ + buf[byte_addr] ^= (1 << bit_addr); + return 1; + + } + /* count nr of bits; use table lookup, faster than calculating it */ + if ((bitsperbyte[b0] + bitsperbyte[b1] + bitsperbyte[b2]) == 1) + return 1; /* error in ECC data; no action needed */ + + pr_err("%s: uncorrectable ECC error\n", __func__); + return -EBADMSG; +} +EXPORT_SYMBOL(__nand_correct_data); + +/** + * nand_correct_data - [NAND Interface] Detect and correct bit error(s) + * @mtd: MTD block structure + * @buf: raw data read from the chip + * @read_ecc: ECC from the chip + * @calc_ecc: the ECC calculated from raw data + * + * Detect and correct a 1 bit error for 256/512 byte block + */ +int nand_correct_data(struct mtd_info *mtd, unsigned char *buf, + unsigned char *read_ecc, unsigned char *calc_ecc) +{ + return __nand_correct_data(buf, read_ecc, calc_ecc, + mtd_to_nand(mtd)->ecc.size); +} +EXPORT_SYMBOL(nand_correct_data); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Frans Meulenbroeks "); +MODULE_DESCRIPTION("Generic NAND ECC support"); diff --git a/drivers/mtd/nand/raw/nand_hynix.c b/drivers/mtd/nand/raw/nand_hynix.c new file mode 100644 index 000000000000..d542908a0ebb --- /dev/null +++ b/drivers/mtd/nand/raw/nand_hynix.c @@ -0,0 +1,676 @@ +/* + * Copyright (C) 2017 Free Electrons + * Copyright (C) 2017 NextThing Co + * + * Author: Boris Brezillon + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + */ + +#include +#include +#include + +#define NAND_HYNIX_CMD_SET_PARAMS 0x36 +#define NAND_HYNIX_CMD_APPLY_PARAMS 0x16 + +#define NAND_HYNIX_1XNM_RR_REPEAT 8 + +/** + * struct hynix_read_retry - read-retry data + * @nregs: number of register to set when applying a new read-retry mode + * @regs: register offsets (NAND chip dependent) + * @values: array of values to set in registers. The array size is equal to + * (nregs * nmodes) + */ +struct hynix_read_retry { + int nregs; + const u8 *regs; + u8 values[0]; +}; + +/** + * struct hynix_nand - private Hynix NAND struct + * @nand_technology: manufacturing process expressed in picometer + * @read_retry: read-retry information + */ +struct hynix_nand { + const struct hynix_read_retry *read_retry; +}; + +/** + * struct hynix_read_retry_otp - structure describing how the read-retry OTP + * area + * @nregs: number of hynix private registers to set before reading the reading + * the OTP area + * @regs: registers that should be configured + * @values: values that should be set in regs + * @page: the address to pass to the READ_PAGE command. Depends on the NAND + * chip + * @size: size of the read-retry OTP section + */ +struct hynix_read_retry_otp { + int nregs; + const u8 *regs; + const u8 *values; + int page; + int size; +}; + +static bool hynix_nand_has_valid_jedecid(struct nand_chip *chip) +{ + u8 jedecid[5] = { }; + int ret; + + ret = nand_readid_op(chip, 0x40, jedecid, sizeof(jedecid)); + if (ret) + return false; + + return !strncmp("JEDEC", jedecid, sizeof(jedecid)); +} + +static int hynix_nand_cmd_op(struct nand_chip *chip, u8 cmd) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + + if (chip->exec_op) { + struct nand_op_instr instrs[] = { + NAND_OP_CMD(cmd, 0), + }; + struct nand_operation op = NAND_OPERATION(instrs); + + return nand_exec_op(chip, &op); + } + + chip->cmdfunc(mtd, cmd, -1, -1); + + return 0; +} + +static int hynix_nand_reg_write_op(struct nand_chip *chip, u8 addr, u8 val) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + u16 column = ((u16)addr << 8) | addr; + + chip->cmdfunc(mtd, NAND_CMD_NONE, column, -1); + chip->write_byte(mtd, val); + + return 0; +} + +static int hynix_nand_setup_read_retry(struct mtd_info *mtd, int retry_mode) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct hynix_nand *hynix = nand_get_manufacturer_data(chip); + const u8 *values; + int i, ret; + + values = hynix->read_retry->values + + (retry_mode * hynix->read_retry->nregs); + + /* Enter 'Set Hynix Parameters' mode */ + ret = hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_SET_PARAMS); + if (ret) + return ret; + + /* + * Configure the NAND in the requested read-retry mode. + * This is done by setting pre-defined values in internal NAND + * registers. + * + * The set of registers is NAND specific, and the values are either + * predefined or extracted from an OTP area on the NAND (values are + * probably tweaked at production in this case). + */ + for (i = 0; i < hynix->read_retry->nregs; i++) { + ret = hynix_nand_reg_write_op(chip, hynix->read_retry->regs[i], + values[i]); + if (ret) + return ret; + } + + /* Apply the new settings. */ + return hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_APPLY_PARAMS); +} + +/** + * hynix_get_majority - get the value that is occurring the most in a given + * set of values + * @in: the array of values to test + * @repeat: the size of the in array + * @out: pointer used to store the output value + * + * This function implements the 'majority check' logic that is supposed to + * overcome the unreliability of MLC NANDs when reading the OTP area storing + * the read-retry parameters. + * + * It's based on a pretty simple assumption: if we repeat the same value + * several times and then take the one that is occurring the most, we should + * find the correct value. + * Let's hope this dummy algorithm prevents us from losing the read-retry + * parameters. + */ +static int hynix_get_majority(const u8 *in, int repeat, u8 *out) +{ + int i, j, half = repeat / 2; + + /* + * We only test the first half of the in array because we must ensure + * that the value is at least occurring repeat / 2 times. + * + * This loop is suboptimal since we may count the occurrences of the + * same value several time, but we are doing that on small sets, which + * makes it acceptable. + */ + for (i = 0; i < half; i++) { + int cnt = 0; + u8 val = in[i]; + + /* Count all values that are matching the one at index i. */ + for (j = i + 1; j < repeat; j++) { + if (in[j] == val) + cnt++; + } + + /* We found a value occurring more than repeat / 2. */ + if (cnt > half) { + *out = val; + return 0; + } + } + + return -EIO; +} + +static int hynix_read_rr_otp(struct nand_chip *chip, + const struct hynix_read_retry_otp *info, + void *buf) +{ + int i, ret; + + ret = nand_reset_op(chip); + if (ret) + return ret; + + ret = hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_SET_PARAMS); + if (ret) + return ret; + + for (i = 0; i < info->nregs; i++) { + ret = hynix_nand_reg_write_op(chip, info->regs[i], + info->values[i]); + if (ret) + return ret; + } + + ret = hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_APPLY_PARAMS); + if (ret) + return ret; + + /* Sequence to enter OTP mode? */ + ret = hynix_nand_cmd_op(chip, 0x17); + if (ret) + return ret; + + ret = hynix_nand_cmd_op(chip, 0x4); + if (ret) + return ret; + + ret = hynix_nand_cmd_op(chip, 0x19); + if (ret) + return ret; + + /* Now read the page */ + ret = nand_read_page_op(chip, info->page, 0, buf, info->size); + if (ret) + return ret; + + /* Put everything back to normal */ + ret = nand_reset_op(chip); + if (ret) + return ret; + + ret = hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_SET_PARAMS); + if (ret) + return ret; + + ret = hynix_nand_reg_write_op(chip, 0x38, 0); + if (ret) + return ret; + + ret = hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_APPLY_PARAMS); + if (ret) + return ret; + + return nand_read_page_op(chip, 0, 0, NULL, 0); +} + +#define NAND_HYNIX_1XNM_RR_COUNT_OFFS 0 +#define NAND_HYNIX_1XNM_RR_REG_COUNT_OFFS 8 +#define NAND_HYNIX_1XNM_RR_SET_OFFS(x, setsize, inv) \ + (16 + ((((x) * 2) + ((inv) ? 1 : 0)) * (setsize))) + +static int hynix_mlc_1xnm_rr_value(const u8 *buf, int nmodes, int nregs, + int mode, int reg, bool inv, u8 *val) +{ + u8 tmp[NAND_HYNIX_1XNM_RR_REPEAT]; + int val_offs = (mode * nregs) + reg; + int set_size = nmodes * nregs; + int i, ret; + + for (i = 0; i < NAND_HYNIX_1XNM_RR_REPEAT; i++) { + int set_offs = NAND_HYNIX_1XNM_RR_SET_OFFS(i, set_size, inv); + + tmp[i] = buf[val_offs + set_offs]; + } + + ret = hynix_get_majority(tmp, NAND_HYNIX_1XNM_RR_REPEAT, val); + if (ret) + return ret; + + if (inv) + *val = ~*val; + + return 0; +} + +static u8 hynix_1xnm_mlc_read_retry_regs[] = { + 0xcc, 0xbf, 0xaa, 0xab, 0xcd, 0xad, 0xae, 0xaf +}; + +static int hynix_mlc_1xnm_rr_init(struct nand_chip *chip, + const struct hynix_read_retry_otp *info) +{ + struct hynix_nand *hynix = nand_get_manufacturer_data(chip); + struct hynix_read_retry *rr = NULL; + int ret, i, j; + u8 nregs, nmodes; + u8 *buf; + + buf = kmalloc(info->size, GFP_KERNEL); + if (!buf) + return -ENOMEM; + + ret = hynix_read_rr_otp(chip, info, buf); + if (ret) + goto out; + + ret = hynix_get_majority(buf, NAND_HYNIX_1XNM_RR_REPEAT, + &nmodes); + if (ret) + goto out; + + ret = hynix_get_majority(buf + NAND_HYNIX_1XNM_RR_REPEAT, + NAND_HYNIX_1XNM_RR_REPEAT, + &nregs); + if (ret) + goto out; + + rr = kzalloc(sizeof(*rr) + (nregs * nmodes), GFP_KERNEL); + if (!rr) { + ret = -ENOMEM; + goto out; + } + + for (i = 0; i < nmodes; i++) { + for (j = 0; j < nregs; j++) { + u8 *val = rr->values + (i * nregs); + + ret = hynix_mlc_1xnm_rr_value(buf, nmodes, nregs, i, j, + false, val); + if (!ret) + continue; + + ret = hynix_mlc_1xnm_rr_value(buf, nmodes, nregs, i, j, + true, val); + if (ret) + goto out; + } + } + + rr->nregs = nregs; + rr->regs = hynix_1xnm_mlc_read_retry_regs; + hynix->read_retry = rr; + chip->setup_read_retry = hynix_nand_setup_read_retry; + chip->read_retries = nmodes; + +out: + kfree(buf); + + if (ret) + kfree(rr); + + return ret; +} + +static const u8 hynix_mlc_1xnm_rr_otp_regs[] = { 0x38 }; +static const u8 hynix_mlc_1xnm_rr_otp_values[] = { 0x52 }; + +static const struct hynix_read_retry_otp hynix_mlc_1xnm_rr_otps[] = { + { + .nregs = ARRAY_SIZE(hynix_mlc_1xnm_rr_otp_regs), + .regs = hynix_mlc_1xnm_rr_otp_regs, + .values = hynix_mlc_1xnm_rr_otp_values, + .page = 0x21f, + .size = 784 + }, + { + .nregs = ARRAY_SIZE(hynix_mlc_1xnm_rr_otp_regs), + .regs = hynix_mlc_1xnm_rr_otp_regs, + .values = hynix_mlc_1xnm_rr_otp_values, + .page = 0x200, + .size = 528, + }, +}; + +static int hynix_nand_rr_init(struct nand_chip *chip) +{ + int i, ret = 0; + bool valid_jedecid; + + valid_jedecid = hynix_nand_has_valid_jedecid(chip); + + /* + * We only support read-retry for 1xnm NANDs, and those NANDs all + * expose a valid JEDEC ID. + */ + if (valid_jedecid) { + u8 nand_tech = chip->id.data[5] >> 4; + + /* 1xnm technology */ + if (nand_tech == 4) { + for (i = 0; i < ARRAY_SIZE(hynix_mlc_1xnm_rr_otps); + i++) { + /* + * FIXME: Hynix recommend to copy the + * read-retry OTP area into a normal page. + */ + ret = hynix_mlc_1xnm_rr_init(chip, + hynix_mlc_1xnm_rr_otps); + if (!ret) + break; + } + } + } + + if (ret) + pr_warn("failed to initialize read-retry infrastructure"); + + return 0; +} + +static void hynix_nand_extract_oobsize(struct nand_chip *chip, + bool valid_jedecid) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + u8 oobsize; + + oobsize = ((chip->id.data[3] >> 2) & 0x3) | + ((chip->id.data[3] >> 4) & 0x4); + + if (valid_jedecid) { + switch (oobsize) { + case 0: + mtd->oobsize = 2048; + break; + case 1: + mtd->oobsize = 1664; + break; + case 2: + mtd->oobsize = 1024; + break; + case 3: + mtd->oobsize = 640; + break; + default: + /* + * We should never reach this case, but if that + * happens, this probably means Hynix decided to use + * a different extended ID format, and we should find + * a way to support it. + */ + WARN(1, "Invalid OOB size"); + break; + } + } else { + switch (oobsize) { + case 0: + mtd->oobsize = 128; + break; + case 1: + mtd->oobsize = 224; + break; + case 2: + mtd->oobsize = 448; + break; + case 3: + mtd->oobsize = 64; + break; + case 4: + mtd->oobsize = 32; + break; + case 5: + mtd->oobsize = 16; + break; + case 6: + mtd->oobsize = 640; + break; + default: + /* + * We should never reach this case, but if that + * happens, this probably means Hynix decided to use + * a different extended ID format, and we should find + * a way to support it. + */ + WARN(1, "Invalid OOB size"); + break; + } + } +} + +static void hynix_nand_extract_ecc_requirements(struct nand_chip *chip, + bool valid_jedecid) +{ + u8 ecc_level = (chip->id.data[4] >> 4) & 0x7; + + if (valid_jedecid) { + /* Reference: H27UCG8T2E datasheet */ + chip->ecc_step_ds = 1024; + + switch (ecc_level) { + case 0: + chip->ecc_step_ds = 0; + chip->ecc_strength_ds = 0; + break; + case 1: + chip->ecc_strength_ds = 4; + break; + case 2: + chip->ecc_strength_ds = 24; + break; + case 3: + chip->ecc_strength_ds = 32; + break; + case 4: + chip->ecc_strength_ds = 40; + break; + case 5: + chip->ecc_strength_ds = 50; + break; + case 6: + chip->ecc_strength_ds = 60; + break; + default: + /* + * We should never reach this case, but if that + * happens, this probably means Hynix decided to use + * a different extended ID format, and we should find + * a way to support it. + */ + WARN(1, "Invalid ECC requirements"); + } + } else { + /* + * The ECC requirements field meaning depends on the + * NAND technology. + */ + u8 nand_tech = chip->id.data[5] & 0x7; + + if (nand_tech < 3) { + /* > 26nm, reference: H27UBG8T2A datasheet */ + if (ecc_level < 5) { + chip->ecc_step_ds = 512; + chip->ecc_strength_ds = 1 << ecc_level; + } else if (ecc_level < 7) { + if (ecc_level == 5) + chip->ecc_step_ds = 2048; + else + chip->ecc_step_ds = 1024; + chip->ecc_strength_ds = 24; + } else { + /* + * We should never reach this case, but if that + * happens, this probably means Hynix decided + * to use a different extended ID format, and + * we should find a way to support it. + */ + WARN(1, "Invalid ECC requirements"); + } + } else { + /* <= 26nm, reference: H27UBG8T2B datasheet */ + if (!ecc_level) { + chip->ecc_step_ds = 0; + chip->ecc_strength_ds = 0; + } else if (ecc_level < 5) { + chip->ecc_step_ds = 512; + chip->ecc_strength_ds = 1 << (ecc_level - 1); + } else { + chip->ecc_step_ds = 1024; + chip->ecc_strength_ds = 24 + + (8 * (ecc_level - 5)); + } + } + } +} + +static void hynix_nand_extract_scrambling_requirements(struct nand_chip *chip, + bool valid_jedecid) +{ + u8 nand_tech; + + /* We need scrambling on all TLC NANDs*/ + if (chip->bits_per_cell > 2) + chip->options |= NAND_NEED_SCRAMBLING; + + /* And on MLC NANDs with sub-3xnm process */ + if (valid_jedecid) { + nand_tech = chip->id.data[5] >> 4; + + /* < 3xnm */ + if (nand_tech > 0) + chip->options |= NAND_NEED_SCRAMBLING; + } else { + nand_tech = chip->id.data[5] & 0x7; + + /* < 32nm */ + if (nand_tech > 2) + chip->options |= NAND_NEED_SCRAMBLING; + } +} + +static void hynix_nand_decode_id(struct nand_chip *chip) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + bool valid_jedecid; + u8 tmp; + + /* + * Exclude all SLC NANDs from this advanced detection scheme. + * According to the ranges defined in several datasheets, it might + * appear that even SLC NANDs could fall in this extended ID scheme. + * If that the case rework the test to let SLC NANDs go through the + * detection process. + */ + if (chip->id.len < 6 || nand_is_slc(chip)) { + nand_decode_ext_id(chip); + return; + } + + /* Extract pagesize */ + mtd->writesize = 2048 << (chip->id.data[3] & 0x03); + + tmp = (chip->id.data[3] >> 4) & 0x3; + /* + * When bit7 is set that means we start counting at 1MiB, otherwise + * we start counting at 128KiB and shift this value the content of + * ID[3][4:5]. + * The only exception is when ID[3][4:5] == 3 and ID[3][7] == 0, in + * this case the erasesize is set to 768KiB. + */ + if (chip->id.data[3] & 0x80) + mtd->erasesize = SZ_1M << tmp; + else if (tmp == 3) + mtd->erasesize = SZ_512K + SZ_256K; + else + mtd->erasesize = SZ_128K << tmp; + + /* + * Modern Toggle DDR NANDs have a valid JEDECID even though they are + * not exposing a valid JEDEC parameter table. + * These NANDs use a different NAND ID scheme. + */ + valid_jedecid = hynix_nand_has_valid_jedecid(chip); + + hynix_nand_extract_oobsize(chip, valid_jedecid); + hynix_nand_extract_ecc_requirements(chip, valid_jedecid); + hynix_nand_extract_scrambling_requirements(chip, valid_jedecid); +} + +static void hynix_nand_cleanup(struct nand_chip *chip) +{ + struct hynix_nand *hynix = nand_get_manufacturer_data(chip); + + if (!hynix) + return; + + kfree(hynix->read_retry); + kfree(hynix); + nand_set_manufacturer_data(chip, NULL); +} + +static int hynix_nand_init(struct nand_chip *chip) +{ + struct hynix_nand *hynix; + int ret; + + if (!nand_is_slc(chip)) + chip->bbt_options |= NAND_BBT_SCANLASTPAGE; + else + chip->bbt_options |= NAND_BBT_SCAN2NDPAGE; + + hynix = kzalloc(sizeof(*hynix), GFP_KERNEL); + if (!hynix) + return -ENOMEM; + + nand_set_manufacturer_data(chip, hynix); + + ret = hynix_nand_rr_init(chip); + if (ret) + hynix_nand_cleanup(chip); + + return ret; +} + +const struct nand_manufacturer_ops hynix_nand_manuf_ops = { + .detect = hynix_nand_decode_id, + .init = hynix_nand_init, + .cleanup = hynix_nand_cleanup, +}; diff --git a/drivers/mtd/nand/raw/nand_ids.c b/drivers/mtd/nand/raw/nand_ids.c new file mode 100644 index 000000000000..5423c3bb388e --- /dev/null +++ b/drivers/mtd/nand/raw/nand_ids.c @@ -0,0 +1,207 @@ +/* + * Copyright (C) 2002 Thomas Gleixner (tglx@linutronix.de) + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + * + */ +#include +#include + +#define LP_OPTIONS 0 +#define LP_OPTIONS16 (LP_OPTIONS | NAND_BUSWIDTH_16) + +#define SP_OPTIONS NAND_NEED_READRDY +#define SP_OPTIONS16 (SP_OPTIONS | NAND_BUSWIDTH_16) + +/* + * The chip ID list: + * name, device ID, page size, chip size in MiB, eraseblock size, options + * + * If page size and eraseblock size are 0, the sizes are taken from the + * extended chip ID. + */ +struct nand_flash_dev nand_flash_ids[] = { + /* + * Some incompatible NAND chips share device ID's and so must be + * listed by full ID. We list them first so that we can easily identify + * the most specific match. + */ + {"TC58NVG0S3E 1G 3.3V 8-bit", + { .id = {0x98, 0xd1, 0x90, 0x15, 0x76, 0x14, 0x01, 0x00} }, + SZ_2K, SZ_128, SZ_128K, 0, 8, 64, NAND_ECC_INFO(1, SZ_512), + 2 }, + {"TC58NVG2S0F 4G 3.3V 8-bit", + { .id = {0x98, 0xdc, 0x90, 0x26, 0x76, 0x15, 0x01, 0x08} }, + SZ_4K, SZ_512, SZ_256K, 0, 8, 224, NAND_ECC_INFO(4, SZ_512) }, + {"TC58NVG2S0H 4G 3.3V 8-bit", + { .id = {0x98, 0xdc, 0x90, 0x26, 0x76, 0x16, 0x08, 0x00} }, + SZ_4K, SZ_512, SZ_256K, 0, 8, 256, NAND_ECC_INFO(8, SZ_512) }, + {"TC58NVG3S0F 8G 3.3V 8-bit", + { .id = {0x98, 0xd3, 0x90, 0x26, 0x76, 0x15, 0x02, 0x08} }, + SZ_4K, SZ_1K, SZ_256K, 0, 8, 232, NAND_ECC_INFO(4, SZ_512) }, + {"TC58NVG5D2 32G 3.3V 8-bit", + { .id = {0x98, 0xd7, 0x94, 0x32, 0x76, 0x56, 0x09, 0x00} }, + SZ_8K, SZ_4K, SZ_1M, 0, 8, 640, NAND_ECC_INFO(40, SZ_1K) }, + {"TC58NVG6D2 64G 3.3V 8-bit", + { .id = {0x98, 0xde, 0x94, 0x82, 0x76, 0x56, 0x04, 0x20} }, + SZ_8K, SZ_8K, SZ_2M, 0, 8, 640, NAND_ECC_INFO(40, SZ_1K) }, + {"SDTNRGAMA 64G 3.3V 8-bit", + { .id = {0x45, 0xde, 0x94, 0x93, 0x76, 0x50} }, + SZ_16K, SZ_8K, SZ_4M, 0, 6, 1280, NAND_ECC_INFO(40, SZ_1K) }, + {"H27UCG8T2ATR-BC 64G 3.3V 8-bit", + { .id = {0xad, 0xde, 0x94, 0xda, 0x74, 0xc4} }, + SZ_8K, SZ_8K, SZ_2M, NAND_NEED_SCRAMBLING, 6, 640, + NAND_ECC_INFO(40, SZ_1K), 4 }, + + LEGACY_ID_NAND("NAND 4MiB 5V 8-bit", 0x6B, 4, SZ_8K, SP_OPTIONS), + LEGACY_ID_NAND("NAND 4MiB 3,3V 8-bit", 0xE3, 4, SZ_8K, SP_OPTIONS), + LEGACY_ID_NAND("NAND 4MiB 3,3V 8-bit", 0xE5, 4, SZ_8K, SP_OPTIONS), + LEGACY_ID_NAND("NAND 8MiB 3,3V 8-bit", 0xD6, 8, SZ_8K, SP_OPTIONS), + LEGACY_ID_NAND("NAND 8MiB 3,3V 8-bit", 0xE6, 8, SZ_8K, SP_OPTIONS), + + LEGACY_ID_NAND("NAND 16MiB 1,8V 8-bit", 0x33, 16, SZ_16K, SP_OPTIONS), + LEGACY_ID_NAND("NAND 16MiB 3,3V 8-bit", 0x73, 16, SZ_16K, SP_OPTIONS), + LEGACY_ID_NAND("NAND 16MiB 1,8V 16-bit", 0x43, 16, SZ_16K, SP_OPTIONS16), + LEGACY_ID_NAND("NAND 16MiB 3,3V 16-bit", 0x53, 16, SZ_16K, SP_OPTIONS16), + + LEGACY_ID_NAND("NAND 32MiB 1,8V 8-bit", 0x35, 32, SZ_16K, SP_OPTIONS), + LEGACY_ID_NAND("NAND 32MiB 3,3V 8-bit", 0x75, 32, SZ_16K, SP_OPTIONS), + LEGACY_ID_NAND("NAND 32MiB 1,8V 16-bit", 0x45, 32, SZ_16K, SP_OPTIONS16), + LEGACY_ID_NAND("NAND 32MiB 3,3V 16-bit", 0x55, 32, SZ_16K, SP_OPTIONS16), + + LEGACY_ID_NAND("NAND 64MiB 1,8V 8-bit", 0x36, 64, SZ_16K, SP_OPTIONS), + LEGACY_ID_NAND("NAND 64MiB 3,3V 8-bit", 0x76, 64, SZ_16K, SP_OPTIONS), + LEGACY_ID_NAND("NAND 64MiB 1,8V 16-bit", 0x46, 64, SZ_16K, SP_OPTIONS16), + LEGACY_ID_NAND("NAND 64MiB 3,3V 16-bit", 0x56, 64, SZ_16K, SP_OPTIONS16), + + LEGACY_ID_NAND("NAND 128MiB 1,8V 8-bit", 0x78, 128, SZ_16K, SP_OPTIONS), + LEGACY_ID_NAND("NAND 128MiB 1,8V 8-bit", 0x39, 128, SZ_16K, SP_OPTIONS), + LEGACY_ID_NAND("NAND 128MiB 3,3V 8-bit", 0x79, 128, SZ_16K, SP_OPTIONS), + LEGACY_ID_NAND("NAND 128MiB 1,8V 16-bit", 0x72, 128, SZ_16K, SP_OPTIONS16), + LEGACY_ID_NAND("NAND 128MiB 1,8V 16-bit", 0x49, 128, SZ_16K, SP_OPTIONS16), + LEGACY_ID_NAND("NAND 128MiB 3,3V 16-bit", 0x74, 128, SZ_16K, SP_OPTIONS16), + LEGACY_ID_NAND("NAND 128MiB 3,3V 16-bit", 0x59, 128, SZ_16K, SP_OPTIONS16), + + LEGACY_ID_NAND("NAND 256MiB 3,3V 8-bit", 0x71, 256, SZ_16K, SP_OPTIONS), + + /* + * These are the new chips with large page size. Their page size and + * eraseblock size are determined from the extended ID bytes. + */ + + /* 512 Megabit */ + EXTENDED_ID_NAND("NAND 64MiB 1,8V 8-bit", 0xA2, 64, LP_OPTIONS), + EXTENDED_ID_NAND("NAND 64MiB 1,8V 8-bit", 0xA0, 64, LP_OPTIONS), + EXTENDED_ID_NAND("NAND 64MiB 3,3V 8-bit", 0xF2, 64, LP_OPTIONS), + EXTENDED_ID_NAND("NAND 64MiB 3,3V 8-bit", 0xD0, 64, LP_OPTIONS), + EXTENDED_ID_NAND("NAND 64MiB 3,3V 8-bit", 0xF0, 64, LP_OPTIONS), + EXTENDED_ID_NAND("NAND 64MiB 1,8V 16-bit", 0xB2, 64, LP_OPTIONS16), + EXTENDED_ID_NAND("NAND 64MiB 1,8V 16-bit", 0xB0, 64, LP_OPTIONS16), + EXTENDED_ID_NAND("NAND 64MiB 3,3V 16-bit", 0xC2, 64, LP_OPTIONS16), + EXTENDED_ID_NAND("NAND 64MiB 3,3V 16-bit", 0xC0, 64, LP_OPTIONS16), + + /* 1 Gigabit */ + EXTENDED_ID_NAND("NAND 128MiB 1,8V 8-bit", 0xA1, 128, LP_OPTIONS), + EXTENDED_ID_NAND("NAND 128MiB 3,3V 8-bit", 0xF1, 128, LP_OPTIONS), + EXTENDED_ID_NAND("NAND 128MiB 3,3V 8-bit", 0xD1, 128, LP_OPTIONS), + EXTENDED_ID_NAND("NAND 128MiB 1,8V 16-bit", 0xB1, 128, LP_OPTIONS16), + EXTENDED_ID_NAND("NAND 128MiB 3,3V 16-bit", 0xC1, 128, LP_OPTIONS16), + EXTENDED_ID_NAND("NAND 128MiB 1,8V 16-bit", 0xAD, 128, LP_OPTIONS16), + + /* 2 Gigabit */ + EXTENDED_ID_NAND("NAND 256MiB 1,8V 8-bit", 0xAA, 256, LP_OPTIONS), + EXTENDED_ID_NAND("NAND 256MiB 3,3V 8-bit", 0xDA, 256, LP_OPTIONS), + EXTENDED_ID_NAND("NAND 256MiB 1,8V 16-bit", 0xBA, 256, LP_OPTIONS16), + EXTENDED_ID_NAND("NAND 256MiB 3,3V 16-bit", 0xCA, 256, LP_OPTIONS16), + + /* 4 Gigabit */ + EXTENDED_ID_NAND("NAND 512MiB 1,8V 8-bit", 0xAC, 512, LP_OPTIONS), + EXTENDED_ID_NAND("NAND 512MiB 3,3V 8-bit", 0xDC, 512, LP_OPTIONS), + EXTENDED_ID_NAND("NAND 512MiB 1,8V 16-bit", 0xBC, 512, LP_OPTIONS16), + EXTENDED_ID_NAND("NAND 512MiB 3,3V 16-bit", 0xCC, 512, LP_OPTIONS16), + + /* 8 Gigabit */ + EXTENDED_ID_NAND("NAND 1GiB 1,8V 8-bit", 0xA3, 1024, LP_OPTIONS), + EXTENDED_ID_NAND("NAND 1GiB 3,3V 8-bit", 0xD3, 1024, LP_OPTIONS), + EXTENDED_ID_NAND("NAND 1GiB 1,8V 16-bit", 0xB3, 1024, LP_OPTIONS16), + EXTENDED_ID_NAND("NAND 1GiB 3,3V 16-bit", 0xC3, 1024, LP_OPTIONS16), + + /* 16 Gigabit */ + EXTENDED_ID_NAND("NAND 2GiB 1,8V 8-bit", 0xA5, 2048, LP_OPTIONS), + EXTENDED_ID_NAND("NAND 2GiB 3,3V 8-bit", 0xD5, 2048, LP_OPTIONS), + EXTENDED_ID_NAND("NAND 2GiB 1,8V 16-bit", 0xB5, 2048, LP_OPTIONS16), + EXTENDED_ID_NAND("NAND 2GiB 3,3V 16-bit", 0xC5, 2048, LP_OPTIONS16), + + /* 32 Gigabit */ + EXTENDED_ID_NAND("NAND 4GiB 1,8V 8-bit", 0xA7, 4096, LP_OPTIONS), + EXTENDED_ID_NAND("NAND 4GiB 3,3V 8-bit", 0xD7, 4096, LP_OPTIONS), + EXTENDED_ID_NAND("NAND 4GiB 1,8V 16-bit", 0xB7, 4096, LP_OPTIONS16), + EXTENDED_ID_NAND("NAND 4GiB 3,3V 16-bit", 0xC7, 4096, LP_OPTIONS16), + + /* 64 Gigabit */ + EXTENDED_ID_NAND("NAND 8GiB 1,8V 8-bit", 0xAE, 8192, LP_OPTIONS), + EXTENDED_ID_NAND("NAND 8GiB 3,3V 8-bit", 0xDE, 8192, LP_OPTIONS), + EXTENDED_ID_NAND("NAND 8GiB 1,8V 16-bit", 0xBE, 8192, LP_OPTIONS16), + EXTENDED_ID_NAND("NAND 8GiB 3,3V 16-bit", 0xCE, 8192, LP_OPTIONS16), + + /* 128 Gigabit */ + EXTENDED_ID_NAND("NAND 16GiB 1,8V 8-bit", 0x1A, 16384, LP_OPTIONS), + EXTENDED_ID_NAND("NAND 16GiB 3,3V 8-bit", 0x3A, 16384, LP_OPTIONS), + EXTENDED_ID_NAND("NAND 16GiB 1,8V 16-bit", 0x2A, 16384, LP_OPTIONS16), + EXTENDED_ID_NAND("NAND 16GiB 3,3V 16-bit", 0x4A, 16384, LP_OPTIONS16), + + /* 256 Gigabit */ + EXTENDED_ID_NAND("NAND 32GiB 1,8V 8-bit", 0x1C, 32768, LP_OPTIONS), + EXTENDED_ID_NAND("NAND 32GiB 3,3V 8-bit", 0x3C, 32768, LP_OPTIONS), + EXTENDED_ID_NAND("NAND 32GiB 1,8V 16-bit", 0x2C, 32768, LP_OPTIONS16), + EXTENDED_ID_NAND("NAND 32GiB 3,3V 16-bit", 0x4C, 32768, LP_OPTIONS16), + + /* 512 Gigabit */ + EXTENDED_ID_NAND("NAND 64GiB 1,8V 8-bit", 0x1E, 65536, LP_OPTIONS), + EXTENDED_ID_NAND("NAND 64GiB 3,3V 8-bit", 0x3E, 65536, LP_OPTIONS), + EXTENDED_ID_NAND("NAND 64GiB 1,8V 16-bit", 0x2E, 65536, LP_OPTIONS16), + EXTENDED_ID_NAND("NAND 64GiB 3,3V 16-bit", 0x4E, 65536, LP_OPTIONS16), + + {NULL} +}; + +/* Manufacturer IDs */ +static const struct nand_manufacturer nand_manufacturers[] = { + {NAND_MFR_TOSHIBA, "Toshiba", &toshiba_nand_manuf_ops}, + {NAND_MFR_ESMT, "ESMT"}, + {NAND_MFR_SAMSUNG, "Samsung", &samsung_nand_manuf_ops}, + {NAND_MFR_FUJITSU, "Fujitsu"}, + {NAND_MFR_NATIONAL, "National"}, + {NAND_MFR_RENESAS, "Renesas"}, + {NAND_MFR_STMICRO, "ST Micro"}, + {NAND_MFR_HYNIX, "Hynix", &hynix_nand_manuf_ops}, + {NAND_MFR_MICRON, "Micron", µn_nand_manuf_ops}, + {NAND_MFR_AMD, "AMD/Spansion", &amd_nand_manuf_ops}, + {NAND_MFR_MACRONIX, "Macronix", ¯onix_nand_manuf_ops}, + {NAND_MFR_EON, "Eon"}, + {NAND_MFR_SANDISK, "SanDisk"}, + {NAND_MFR_INTEL, "Intel"}, + {NAND_MFR_ATO, "ATO"}, + {NAND_MFR_WINBOND, "Winbond"}, +}; + +/** + * nand_get_manufacturer - Get manufacturer information from the manufacturer + * ID + * @id: manufacturer ID + * + * Returns a pointer a nand_manufacturer object if the manufacturer is defined + * in the NAND manufacturers database, NULL otherwise. + */ +const struct nand_manufacturer *nand_get_manufacturer(u8 id) +{ + int i; + + for (i = 0; i < ARRAY_SIZE(nand_manufacturers); i++) + if (nand_manufacturers[i].id == id) + return &nand_manufacturers[i]; + + return NULL; +} diff --git a/drivers/mtd/nand/raw/nand_macronix.c b/drivers/mtd/nand/raw/nand_macronix.c new file mode 100644 index 000000000000..d290ff2a6d2f --- /dev/null +++ b/drivers/mtd/nand/raw/nand_macronix.c @@ -0,0 +1,30 @@ +/* + * Copyright (C) 2017 Free Electrons + * Copyright (C) 2017 NextThing Co + * + * Author: Boris Brezillon + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + */ + +#include + +static int macronix_nand_init(struct nand_chip *chip) +{ + if (nand_is_slc(chip)) + chip->bbt_options |= NAND_BBT_SCAN2NDPAGE; + + return 0; +} + +const struct nand_manufacturer_ops macronix_nand_manuf_ops = { + .init = macronix_nand_init, +}; diff --git a/drivers/mtd/nand/raw/nand_micron.c b/drivers/mtd/nand/raw/nand_micron.c new file mode 100644 index 000000000000..02e109ae73f1 --- /dev/null +++ b/drivers/mtd/nand/raw/nand_micron.c @@ -0,0 +1,289 @@ +/* + * Copyright (C) 2017 Free Electrons + * Copyright (C) 2017 NextThing Co + * + * Author: Boris Brezillon + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + */ + +#include + +/* + * Special Micron status bit that indicates when the block has been + * corrected by on-die ECC and should be rewritten + */ +#define NAND_STATUS_WRITE_RECOMMENDED BIT(3) + +struct nand_onfi_vendor_micron { + u8 two_plane_read; + u8 read_cache; + u8 read_unique_id; + u8 dq_imped; + u8 dq_imped_num_settings; + u8 dq_imped_feat_addr; + u8 rb_pulldown_strength; + u8 rb_pulldown_strength_feat_addr; + u8 rb_pulldown_strength_num_settings; + u8 otp_mode; + u8 otp_page_start; + u8 otp_data_prot_addr; + u8 otp_num_pages; + u8 otp_feat_addr; + u8 read_retry_options; + u8 reserved[72]; + u8 param_revision; +} __packed; + +static int micron_nand_setup_read_retry(struct mtd_info *mtd, int retry_mode) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + u8 feature[ONFI_SUBFEATURE_PARAM_LEN] = {retry_mode}; + + return chip->onfi_set_features(mtd, chip, ONFI_FEATURE_ADDR_READ_RETRY, + feature); +} + +/* + * Configure chip properties from Micron vendor-specific ONFI table + */ +static int micron_nand_onfi_init(struct nand_chip *chip) +{ + struct nand_onfi_params *p = &chip->onfi_params; + struct nand_onfi_vendor_micron *micron = (void *)p->vendor; + + if (!chip->onfi_version) + return 0; + + if (le16_to_cpu(p->vendor_revision) < 1) + return 0; + + chip->read_retries = micron->read_retry_options; + chip->setup_read_retry = micron_nand_setup_read_retry; + + return 0; +} + +static int micron_nand_on_die_ooblayout_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + if (section >= 4) + return -ERANGE; + + oobregion->offset = (section * 16) + 8; + oobregion->length = 8; + + return 0; +} + +static int micron_nand_on_die_ooblayout_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + if (section >= 4) + return -ERANGE; + + oobregion->offset = (section * 16) + 2; + oobregion->length = 6; + + return 0; +} + +static const struct mtd_ooblayout_ops micron_nand_on_die_ooblayout_ops = { + .ecc = micron_nand_on_die_ooblayout_ecc, + .free = micron_nand_on_die_ooblayout_free, +}; + +static int micron_nand_on_die_ecc_setup(struct nand_chip *chip, bool enable) +{ + u8 feature[ONFI_SUBFEATURE_PARAM_LEN] = { 0, }; + + if (enable) + feature[0] |= ONFI_FEATURE_ON_DIE_ECC_EN; + + return chip->onfi_set_features(nand_to_mtd(chip), chip, + ONFI_FEATURE_ON_DIE_ECC, feature); +} + +static int +micron_nand_read_page_on_die_ecc(struct mtd_info *mtd, struct nand_chip *chip, + uint8_t *buf, int oob_required, + int page) +{ + u8 status; + int ret, max_bitflips = 0; + + ret = micron_nand_on_die_ecc_setup(chip, true); + if (ret) + return ret; + + ret = nand_read_page_op(chip, page, 0, NULL, 0); + if (ret) + goto out; + + ret = nand_status_op(chip, &status); + if (ret) + goto out; + + ret = nand_exit_status_op(chip); + if (ret) + goto out; + + if (status & NAND_STATUS_FAIL) + mtd->ecc_stats.failed++; + + /* + * The internal ECC doesn't tell us the number of bitflips + * that have been corrected, but tells us if it recommends to + * rewrite the block. If it's the case, then we pretend we had + * a number of bitflips equal to the ECC strength, which will + * hint the NAND core to rewrite the block. + */ + else if (status & NAND_STATUS_WRITE_RECOMMENDED) + max_bitflips = chip->ecc.strength; + + ret = nand_read_data_op(chip, buf, mtd->writesize, false); + if (!ret && oob_required) + ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, + false); + +out: + micron_nand_on_die_ecc_setup(chip, false); + + return ret ? ret : max_bitflips; +} + +static int +micron_nand_write_page_on_die_ecc(struct mtd_info *mtd, struct nand_chip *chip, + const uint8_t *buf, int oob_required, + int page) +{ + int ret; + + ret = micron_nand_on_die_ecc_setup(chip, true); + if (ret) + return ret; + + ret = nand_write_page_raw(mtd, chip, buf, oob_required, page); + micron_nand_on_die_ecc_setup(chip, false); + + return ret; +} + +enum { + /* The NAND flash doesn't support on-die ECC */ + MICRON_ON_DIE_UNSUPPORTED, + + /* + * The NAND flash supports on-die ECC and it can be + * enabled/disabled by a set features command. + */ + MICRON_ON_DIE_SUPPORTED, + + /* + * The NAND flash supports on-die ECC, and it cannot be + * disabled. + */ + MICRON_ON_DIE_MANDATORY, +}; + +/* + * Try to detect if the NAND support on-die ECC. To do this, we enable + * the feature, and read back if it has been enabled as expected. We + * also check if it can be disabled, because some Micron NANDs do not + * allow disabling the on-die ECC and we don't support such NANDs for + * now. + * + * This function also has the side effect of disabling on-die ECC if + * it had been left enabled by the firmware/bootloader. + */ +static int micron_supports_on_die_ecc(struct nand_chip *chip) +{ + u8 feature[ONFI_SUBFEATURE_PARAM_LEN] = { 0, }; + int ret; + + if (chip->onfi_version == 0) + return MICRON_ON_DIE_UNSUPPORTED; + + if (chip->bits_per_cell != 1) + return MICRON_ON_DIE_UNSUPPORTED; + + ret = micron_nand_on_die_ecc_setup(chip, true); + if (ret) + return MICRON_ON_DIE_UNSUPPORTED; + + chip->onfi_get_features(nand_to_mtd(chip), chip, + ONFI_FEATURE_ON_DIE_ECC, feature); + if ((feature[0] & ONFI_FEATURE_ON_DIE_ECC_EN) == 0) + return MICRON_ON_DIE_UNSUPPORTED; + + ret = micron_nand_on_die_ecc_setup(chip, false); + if (ret) + return MICRON_ON_DIE_UNSUPPORTED; + + chip->onfi_get_features(nand_to_mtd(chip), chip, + ONFI_FEATURE_ON_DIE_ECC, feature); + if (feature[0] & ONFI_FEATURE_ON_DIE_ECC_EN) + return MICRON_ON_DIE_MANDATORY; + + /* + * Some Micron NANDs have an on-die ECC of 4/512, some other + * 8/512. We only support the former. + */ + if (chip->onfi_params.ecc_bits != 4) + return MICRON_ON_DIE_UNSUPPORTED; + + return MICRON_ON_DIE_SUPPORTED; +} + +static int micron_nand_init(struct nand_chip *chip) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + int ondie; + int ret; + + ret = micron_nand_onfi_init(chip); + if (ret) + return ret; + + if (mtd->writesize == 2048) + chip->bbt_options |= NAND_BBT_SCAN2NDPAGE; + + ondie = micron_supports_on_die_ecc(chip); + + if (ondie == MICRON_ON_DIE_MANDATORY) { + pr_err("On-die ECC forcefully enabled, not supported\n"); + return -EINVAL; + } + + if (chip->ecc.mode == NAND_ECC_ON_DIE) { + if (ondie == MICRON_ON_DIE_UNSUPPORTED) { + pr_err("On-die ECC selected but not supported\n"); + return -EINVAL; + } + + chip->ecc.bytes = 8; + chip->ecc.size = 512; + chip->ecc.strength = 4; + chip->ecc.algo = NAND_ECC_BCH; + chip->ecc.read_page = micron_nand_read_page_on_die_ecc; + chip->ecc.write_page = micron_nand_write_page_on_die_ecc; + chip->ecc.read_page_raw = nand_read_page_raw; + chip->ecc.write_page_raw = nand_write_page_raw; + + mtd_set_ooblayout(mtd, µn_nand_on_die_ooblayout_ops); + } + + return 0; +} + +const struct nand_manufacturer_ops micron_nand_manuf_ops = { + .init = micron_nand_init, +}; diff --git a/drivers/mtd/nand/raw/nand_samsung.c b/drivers/mtd/nand/raw/nand_samsung.c new file mode 100644 index 000000000000..ef022f62f74c --- /dev/null +++ b/drivers/mtd/nand/raw/nand_samsung.c @@ -0,0 +1,134 @@ +/* + * Copyright (C) 2017 Free Electrons + * Copyright (C) 2017 NextThing Co + * + * Author: Boris Brezillon + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + */ + +#include + +static void samsung_nand_decode_id(struct nand_chip *chip) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + + /* New Samsung (6 byte ID): Samsung K9GAG08U0F (p.44) */ + if (chip->id.len == 6 && !nand_is_slc(chip) && + chip->id.data[5] != 0x00) { + u8 extid = chip->id.data[3]; + + /* Get pagesize */ + mtd->writesize = 2048 << (extid & 0x03); + + extid >>= 2; + + /* Get oobsize */ + switch (((extid >> 2) & 0x4) | (extid & 0x3)) { + case 1: + mtd->oobsize = 128; + break; + case 2: + mtd->oobsize = 218; + break; + case 3: + mtd->oobsize = 400; + break; + case 4: + mtd->oobsize = 436; + break; + case 5: + mtd->oobsize = 512; + break; + case 6: + mtd->oobsize = 640; + break; + default: + /* + * We should never reach this case, but if that + * happens, this probably means Samsung decided to use + * a different extended ID format, and we should find + * a way to support it. + */ + WARN(1, "Invalid OOB size value"); + break; + } + + /* Get blocksize */ + extid >>= 2; + mtd->erasesize = (128 * 1024) << + (((extid >> 1) & 0x04) | (extid & 0x03)); + + /* Extract ECC requirements from 5th id byte*/ + extid = (chip->id.data[4] >> 4) & 0x07; + if (extid < 5) { + chip->ecc_step_ds = 512; + chip->ecc_strength_ds = 1 << extid; + } else { + chip->ecc_step_ds = 1024; + switch (extid) { + case 5: + chip->ecc_strength_ds = 24; + break; + case 6: + chip->ecc_strength_ds = 40; + break; + case 7: + chip->ecc_strength_ds = 60; + break; + default: + WARN(1, "Could not decode ECC info"); + chip->ecc_step_ds = 0; + } + } + } else { + nand_decode_ext_id(chip); + + if (nand_is_slc(chip)) { + switch (chip->id.data[1]) { + /* K9F4G08U0D-S[I|C]B0(T00) */ + case 0xDC: + chip->ecc_step_ds = 512; + chip->ecc_strength_ds = 1; + break; + + /* K9F1G08U0E 21nm chips do not support subpage write */ + case 0xF1: + if (chip->id.len > 4 && + (chip->id.data[4] & GENMASK(1, 0)) == 0x1) + chip->options |= NAND_NO_SUBPAGE_WRITE; + break; + default: + break; + } + } + } +} + +static int samsung_nand_init(struct nand_chip *chip) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + + if (mtd->writesize > 512) + chip->options |= NAND_SAMSUNG_LP_OPTIONS; + + if (!nand_is_slc(chip)) + chip->bbt_options |= NAND_BBT_SCANLASTPAGE; + else + chip->bbt_options |= NAND_BBT_SCAN2NDPAGE; + + return 0; +} + +const struct nand_manufacturer_ops samsung_nand_manuf_ops = { + .detect = samsung_nand_decode_id, + .init = samsung_nand_init, +}; diff --git a/drivers/mtd/nand/raw/nand_timings.c b/drivers/mtd/nand/raw/nand_timings.c new file mode 100644 index 000000000000..9400d039ddbd --- /dev/null +++ b/drivers/mtd/nand/raw/nand_timings.c @@ -0,0 +1,324 @@ +/* + * Copyright (C) 2014 Free Electrons + * + * Author: Boris BREZILLON + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + * + */ +#include +#include +#include +#include + +static const struct nand_data_interface onfi_sdr_timings[] = { + /* Mode 0 */ + { + .type = NAND_SDR_IFACE, + .timings.sdr = { + .tCCS_min = 500000, + .tR_max = 200000000, + .tADL_min = 400000, + .tALH_min = 20000, + .tALS_min = 50000, + .tAR_min = 25000, + .tCEA_max = 100000, + .tCEH_min = 20000, + .tCH_min = 20000, + .tCHZ_max = 100000, + .tCLH_min = 20000, + .tCLR_min = 20000, + .tCLS_min = 50000, + .tCOH_min = 0, + .tCS_min = 70000, + .tDH_min = 20000, + .tDS_min = 40000, + .tFEAT_max = 1000000, + .tIR_min = 10000, + .tITC_max = 1000000, + .tRC_min = 100000, + .tREA_max = 40000, + .tREH_min = 30000, + .tRHOH_min = 0, + .tRHW_min = 200000, + .tRHZ_max = 200000, + .tRLOH_min = 0, + .tRP_min = 50000, + .tRR_min = 40000, + .tRST_max = 250000000000ULL, + .tWB_max = 200000, + .tWC_min = 100000, + .tWH_min = 30000, + .tWHR_min = 120000, + .tWP_min = 50000, + .tWW_min = 100000, + }, + }, + /* Mode 1 */ + { + .type = NAND_SDR_IFACE, + .timings.sdr = { + .tCCS_min = 500000, + .tR_max = 200000000, + .tADL_min = 400000, + .tALH_min = 10000, + .tALS_min = 25000, + .tAR_min = 10000, + .tCEA_max = 45000, + .tCEH_min = 20000, + .tCH_min = 10000, + .tCHZ_max = 50000, + .tCLH_min = 10000, + .tCLR_min = 10000, + .tCLS_min = 25000, + .tCOH_min = 15000, + .tCS_min = 35000, + .tDH_min = 10000, + .tDS_min = 20000, + .tFEAT_max = 1000000, + .tIR_min = 0, + .tITC_max = 1000000, + .tRC_min = 50000, + .tREA_max = 30000, + .tREH_min = 15000, + .tRHOH_min = 15000, + .tRHW_min = 100000, + .tRHZ_max = 100000, + .tRLOH_min = 0, + .tRP_min = 25000, + .tRR_min = 20000, + .tRST_max = 500000000, + .tWB_max = 100000, + .tWC_min = 45000, + .tWH_min = 15000, + .tWHR_min = 80000, + .tWP_min = 25000, + .tWW_min = 100000, + }, + }, + /* Mode 2 */ + { + .type = NAND_SDR_IFACE, + .timings.sdr = { + .tCCS_min = 500000, + .tR_max = 200000000, + .tADL_min = 400000, + .tALH_min = 10000, + .tALS_min = 15000, + .tAR_min = 10000, + .tCEA_max = 30000, + .tCEH_min = 20000, + .tCH_min = 10000, + .tCHZ_max = 50000, + .tCLH_min = 10000, + .tCLR_min = 10000, + .tCLS_min = 15000, + .tCOH_min = 15000, + .tCS_min = 25000, + .tDH_min = 5000, + .tDS_min = 15000, + .tFEAT_max = 1000000, + .tIR_min = 0, + .tITC_max = 1000000, + .tRC_min = 35000, + .tREA_max = 25000, + .tREH_min = 15000, + .tRHOH_min = 15000, + .tRHW_min = 100000, + .tRHZ_max = 100000, + .tRLOH_min = 0, + .tRR_min = 20000, + .tRST_max = 500000000, + .tWB_max = 100000, + .tRP_min = 17000, + .tWC_min = 35000, + .tWH_min = 15000, + .tWHR_min = 80000, + .tWP_min = 17000, + .tWW_min = 100000, + }, + }, + /* Mode 3 */ + { + .type = NAND_SDR_IFACE, + .timings.sdr = { + .tCCS_min = 500000, + .tR_max = 200000000, + .tADL_min = 400000, + .tALH_min = 5000, + .tALS_min = 10000, + .tAR_min = 10000, + .tCEA_max = 25000, + .tCEH_min = 20000, + .tCH_min = 5000, + .tCHZ_max = 50000, + .tCLH_min = 5000, + .tCLR_min = 10000, + .tCLS_min = 10000, + .tCOH_min = 15000, + .tCS_min = 25000, + .tDH_min = 5000, + .tDS_min = 10000, + .tFEAT_max = 1000000, + .tIR_min = 0, + .tITC_max = 1000000, + .tRC_min = 30000, + .tREA_max = 20000, + .tREH_min = 10000, + .tRHOH_min = 15000, + .tRHW_min = 100000, + .tRHZ_max = 100000, + .tRLOH_min = 0, + .tRP_min = 15000, + .tRR_min = 20000, + .tRST_max = 500000000, + .tWB_max = 100000, + .tWC_min = 30000, + .tWH_min = 10000, + .tWHR_min = 80000, + .tWP_min = 15000, + .tWW_min = 100000, + }, + }, + /* Mode 4 */ + { + .type = NAND_SDR_IFACE, + .timings.sdr = { + .tCCS_min = 500000, + .tR_max = 200000000, + .tADL_min = 400000, + .tALH_min = 5000, + .tALS_min = 10000, + .tAR_min = 10000, + .tCEA_max = 25000, + .tCEH_min = 20000, + .tCH_min = 5000, + .tCHZ_max = 30000, + .tCLH_min = 5000, + .tCLR_min = 10000, + .tCLS_min = 10000, + .tCOH_min = 15000, + .tCS_min = 20000, + .tDH_min = 5000, + .tDS_min = 10000, + .tFEAT_max = 1000000, + .tIR_min = 0, + .tITC_max = 1000000, + .tRC_min = 25000, + .tREA_max = 20000, + .tREH_min = 10000, + .tRHOH_min = 15000, + .tRHW_min = 100000, + .tRHZ_max = 100000, + .tRLOH_min = 5000, + .tRP_min = 12000, + .tRR_min = 20000, + .tRST_max = 500000000, + .tWB_max = 100000, + .tWC_min = 25000, + .tWH_min = 10000, + .tWHR_min = 80000, + .tWP_min = 12000, + .tWW_min = 100000, + }, + }, + /* Mode 5 */ + { + .type = NAND_SDR_IFACE, + .timings.sdr = { + .tCCS_min = 500000, + .tR_max = 200000000, + .tADL_min = 400000, + .tALH_min = 5000, + .tALS_min = 10000, + .tAR_min = 10000, + .tCEA_max = 25000, + .tCEH_min = 20000, + .tCH_min = 5000, + .tCHZ_max = 30000, + .tCLH_min = 5000, + .tCLR_min = 10000, + .tCLS_min = 10000, + .tCOH_min = 15000, + .tCS_min = 15000, + .tDH_min = 5000, + .tDS_min = 7000, + .tFEAT_max = 1000000, + .tIR_min = 0, + .tITC_max = 1000000, + .tRC_min = 20000, + .tREA_max = 16000, + .tREH_min = 7000, + .tRHOH_min = 15000, + .tRHW_min = 100000, + .tRHZ_max = 100000, + .tRLOH_min = 5000, + .tRP_min = 10000, + .tRR_min = 20000, + .tRST_max = 500000000, + .tWB_max = 100000, + .tWC_min = 20000, + .tWH_min = 7000, + .tWHR_min = 80000, + .tWP_min = 10000, + .tWW_min = 100000, + }, + }, +}; + +/** + * onfi_async_timing_mode_to_sdr_timings - [NAND Interface] Retrieve NAND + * timings according to the given ONFI timing mode + * @mode: ONFI timing mode + */ +const struct nand_sdr_timings *onfi_async_timing_mode_to_sdr_timings(int mode) +{ + if (mode < 0 || mode >= ARRAY_SIZE(onfi_sdr_timings)) + return ERR_PTR(-EINVAL); + + return &onfi_sdr_timings[mode].timings.sdr; +} +EXPORT_SYMBOL(onfi_async_timing_mode_to_sdr_timings); + +/** + * onfi_fill_data_interface - [NAND Interface] Initialize a data interface from + * given ONFI mode + * @mode: The ONFI timing mode + */ +int onfi_fill_data_interface(struct nand_chip *chip, + enum nand_data_interface_type type, + int timing_mode) +{ + struct nand_data_interface *iface = &chip->data_interface; + + if (type != NAND_SDR_IFACE) + return -EINVAL; + + if (timing_mode < 0 || timing_mode >= ARRAY_SIZE(onfi_sdr_timings)) + return -EINVAL; + + *iface = onfi_sdr_timings[timing_mode]; + + /* + * Initialize timings that cannot be deduced from timing mode: + * tR, tPROG, tCCS, ... + * These information are part of the ONFI parameter page. + */ + if (chip->onfi_version) { + struct nand_onfi_params *params = &chip->onfi_params; + struct nand_sdr_timings *timings = &iface->timings.sdr; + + /* microseconds -> picoseconds */ + timings->tPROG_max = 1000000ULL * le16_to_cpu(params->t_prog); + timings->tBERS_max = 1000000ULL * le16_to_cpu(params->t_bers); + timings->tR_max = 1000000ULL * le16_to_cpu(params->t_r); + + /* nanoseconds -> picoseconds */ + timings->tCCS_min = 1000UL * le16_to_cpu(params->t_ccs); + } + + return 0; +} +EXPORT_SYMBOL(onfi_fill_data_interface); diff --git a/drivers/mtd/nand/raw/nand_toshiba.c b/drivers/mtd/nand/raw/nand_toshiba.c new file mode 100644 index 000000000000..ab43f027cd23 --- /dev/null +++ b/drivers/mtd/nand/raw/nand_toshiba.c @@ -0,0 +1,77 @@ +/* + * Copyright (C) 2017 Free Electrons + * Copyright (C) 2017 NextThing Co + * + * Author: Boris Brezillon + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + */ + +#include + +static void toshiba_nand_decode_id(struct nand_chip *chip) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + + nand_decode_ext_id(chip); + + /* + * Toshiba 24nm raw SLC (i.e., not BENAND) have 32B OOB per + * 512B page. For Toshiba SLC, we decode the 5th/6th byte as + * follows: + * - ID byte 6, bits[2:0]: 100b -> 43nm, 101b -> 32nm, + * 110b -> 24nm + * - ID byte 5, bit[7]: 1 -> BENAND, 0 -> raw SLC + */ + if (chip->id.len >= 6 && nand_is_slc(chip) && + (chip->id.data[5] & 0x7) == 0x6 /* 24nm */ && + !(chip->id.data[4] & 0x80) /* !BENAND */) + mtd->oobsize = 32 * mtd->writesize >> 9; + + /* + * Extract ECC requirements from 6th id byte. + * For Toshiba SLC, ecc requrements are as follows: + * - 43nm: 1 bit ECC for each 512Byte is required. + * - 32nm: 4 bit ECC for each 512Byte is required. + * - 24nm: 8 bit ECC for each 512Byte is required. + */ + if (chip->id.len >= 6 && nand_is_slc(chip)) { + chip->ecc_step_ds = 512; + switch (chip->id.data[5] & 0x7) { + case 0x4: + chip->ecc_strength_ds = 1; + break; + case 0x5: + chip->ecc_strength_ds = 4; + break; + case 0x6: + chip->ecc_strength_ds = 8; + break; + default: + WARN(1, "Could not get ECC info"); + chip->ecc_step_ds = 0; + break; + } + } +} + +static int toshiba_nand_init(struct nand_chip *chip) +{ + if (nand_is_slc(chip)) + chip->bbt_options |= NAND_BBT_SCAN2NDPAGE; + + return 0; +} + +const struct nand_manufacturer_ops toshiba_nand_manuf_ops = { + .detect = toshiba_nand_decode_id, + .init = toshiba_nand_init, +}; diff --git a/drivers/mtd/nand/raw/nandsim.c b/drivers/mtd/nand/raw/nandsim.c new file mode 100644 index 000000000000..44322a363ba5 --- /dev/null +++ b/drivers/mtd/nand/raw/nandsim.c @@ -0,0 +1,2392 @@ +/* + * NAND flash simulator. + * + * Author: Artem B. Bityuckiy , + * + * Copyright (C) 2004 Nokia Corporation + * + * Note: NS means "NAND Simulator". + * Note: Input means input TO flash chip, output means output FROM chip. + * + * This program is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License as published by the + * Free Software Foundation; either version 2, or (at your option) any later + * version. + * + * This program is distributed in the hope that it will be useful, but + * WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General + * Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA + */ + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +/* Default simulator parameters values */ +#if !defined(CONFIG_NANDSIM_FIRST_ID_BYTE) || \ + !defined(CONFIG_NANDSIM_SECOND_ID_BYTE) || \ + !defined(CONFIG_NANDSIM_THIRD_ID_BYTE) || \ + !defined(CONFIG_NANDSIM_FOURTH_ID_BYTE) +#define CONFIG_NANDSIM_FIRST_ID_BYTE 0x98 +#define CONFIG_NANDSIM_SECOND_ID_BYTE 0x39 +#define CONFIG_NANDSIM_THIRD_ID_BYTE 0xFF /* No byte */ +#define CONFIG_NANDSIM_FOURTH_ID_BYTE 0xFF /* No byte */ +#endif + +#ifndef CONFIG_NANDSIM_ACCESS_DELAY +#define CONFIG_NANDSIM_ACCESS_DELAY 25 +#endif +#ifndef CONFIG_NANDSIM_PROGRAMM_DELAY +#define CONFIG_NANDSIM_PROGRAMM_DELAY 200 +#endif +#ifndef CONFIG_NANDSIM_ERASE_DELAY +#define CONFIG_NANDSIM_ERASE_DELAY 2 +#endif +#ifndef CONFIG_NANDSIM_OUTPUT_CYCLE +#define CONFIG_NANDSIM_OUTPUT_CYCLE 40 +#endif +#ifndef CONFIG_NANDSIM_INPUT_CYCLE +#define CONFIG_NANDSIM_INPUT_CYCLE 50 +#endif +#ifndef CONFIG_NANDSIM_BUS_WIDTH +#define CONFIG_NANDSIM_BUS_WIDTH 8 +#endif +#ifndef CONFIG_NANDSIM_DO_DELAYS +#define CONFIG_NANDSIM_DO_DELAYS 0 +#endif +#ifndef CONFIG_NANDSIM_LOG +#define CONFIG_NANDSIM_LOG 0 +#endif +#ifndef CONFIG_NANDSIM_DBG +#define CONFIG_NANDSIM_DBG 0 +#endif +#ifndef CONFIG_NANDSIM_MAX_PARTS +#define CONFIG_NANDSIM_MAX_PARTS 32 +#endif + +static uint access_delay = CONFIG_NANDSIM_ACCESS_DELAY; +static uint programm_delay = CONFIG_NANDSIM_PROGRAMM_DELAY; +static uint erase_delay = CONFIG_NANDSIM_ERASE_DELAY; +static uint output_cycle = CONFIG_NANDSIM_OUTPUT_CYCLE; +static uint input_cycle = CONFIG_NANDSIM_INPUT_CYCLE; +static uint bus_width = CONFIG_NANDSIM_BUS_WIDTH; +static uint do_delays = CONFIG_NANDSIM_DO_DELAYS; +static uint log = CONFIG_NANDSIM_LOG; +static uint dbg = CONFIG_NANDSIM_DBG; +static unsigned long parts[CONFIG_NANDSIM_MAX_PARTS]; +static unsigned int parts_num; +static char *badblocks = NULL; +static char *weakblocks = NULL; +static char *weakpages = NULL; +static unsigned int bitflips = 0; +static char *gravepages = NULL; +static unsigned int overridesize = 0; +static char *cache_file = NULL; +static unsigned int bbt; +static unsigned int bch; +static u_char id_bytes[8] = { + [0] = CONFIG_NANDSIM_FIRST_ID_BYTE, + [1] = CONFIG_NANDSIM_SECOND_ID_BYTE, + [2] = CONFIG_NANDSIM_THIRD_ID_BYTE, + [3] = CONFIG_NANDSIM_FOURTH_ID_BYTE, + [4 ... 7] = 0xFF, +}; + +module_param_array(id_bytes, byte, NULL, 0400); +module_param_named(first_id_byte, id_bytes[0], byte, 0400); +module_param_named(second_id_byte, id_bytes[1], byte, 0400); +module_param_named(third_id_byte, id_bytes[2], byte, 0400); +module_param_named(fourth_id_byte, id_bytes[3], byte, 0400); +module_param(access_delay, uint, 0400); +module_param(programm_delay, uint, 0400); +module_param(erase_delay, uint, 0400); +module_param(output_cycle, uint, 0400); +module_param(input_cycle, uint, 0400); +module_param(bus_width, uint, 0400); +module_param(do_delays, uint, 0400); +module_param(log, uint, 0400); +module_param(dbg, uint, 0400); +module_param_array(parts, ulong, &parts_num, 0400); +module_param(badblocks, charp, 0400); +module_param(weakblocks, charp, 0400); +module_param(weakpages, charp, 0400); +module_param(bitflips, uint, 0400); +module_param(gravepages, charp, 0400); +module_param(overridesize, uint, 0400); +module_param(cache_file, charp, 0400); +module_param(bbt, uint, 0400); +module_param(bch, uint, 0400); + +MODULE_PARM_DESC(id_bytes, "The ID bytes returned by NAND Flash 'read ID' command"); +MODULE_PARM_DESC(first_id_byte, "The first byte returned by NAND Flash 'read ID' command (manufacturer ID) (obsolete)"); +MODULE_PARM_DESC(second_id_byte, "The second byte returned by NAND Flash 'read ID' command (chip ID) (obsolete)"); +MODULE_PARM_DESC(third_id_byte, "The third byte returned by NAND Flash 'read ID' command (obsolete)"); +MODULE_PARM_DESC(fourth_id_byte, "The fourth byte returned by NAND Flash 'read ID' command (obsolete)"); +MODULE_PARM_DESC(access_delay, "Initial page access delay (microseconds)"); +MODULE_PARM_DESC(programm_delay, "Page programm delay (microseconds"); +MODULE_PARM_DESC(erase_delay, "Sector erase delay (milliseconds)"); +MODULE_PARM_DESC(output_cycle, "Word output (from flash) time (nanoseconds)"); +MODULE_PARM_DESC(input_cycle, "Word input (to flash) time (nanoseconds)"); +MODULE_PARM_DESC(bus_width, "Chip's bus width (8- or 16-bit)"); +MODULE_PARM_DESC(do_delays, "Simulate NAND delays using busy-waits if not zero"); +MODULE_PARM_DESC(log, "Perform logging if not zero"); +MODULE_PARM_DESC(dbg, "Output debug information if not zero"); +MODULE_PARM_DESC(parts, "Partition sizes (in erase blocks) separated by commas"); +/* Page and erase block positions for the following parameters are independent of any partitions */ +MODULE_PARM_DESC(badblocks, "Erase blocks that are initially marked bad, separated by commas"); +MODULE_PARM_DESC(weakblocks, "Weak erase blocks [: remaining erase cycles (defaults to 3)]" + " separated by commas e.g. 113:2 means eb 113" + " can be erased only twice before failing"); +MODULE_PARM_DESC(weakpages, "Weak pages [: maximum writes (defaults to 3)]" + " separated by commas e.g. 1401:2 means page 1401" + " can be written only twice before failing"); +MODULE_PARM_DESC(bitflips, "Maximum number of random bit flips per page (zero by default)"); +MODULE_PARM_DESC(gravepages, "Pages that lose data [: maximum reads (defaults to 3)]" + " separated by commas e.g. 1401:2 means page 1401" + " can be read only twice before failing"); +MODULE_PARM_DESC(overridesize, "Specifies the NAND Flash size overriding the ID bytes. " + "The size is specified in erase blocks and as the exponent of a power of two" + " e.g. 5 means a size of 32 erase blocks"); +MODULE_PARM_DESC(cache_file, "File to use to cache nand pages instead of memory"); +MODULE_PARM_DESC(bbt, "0 OOB, 1 BBT with marker in OOB, 2 BBT with marker in data area"); +MODULE_PARM_DESC(bch, "Enable BCH ecc and set how many bits should " + "be correctable in 512-byte blocks"); + +/* The largest possible page size */ +#define NS_LARGEST_PAGE_SIZE 4096 + +/* The prefix for simulator output */ +#define NS_OUTPUT_PREFIX "[nandsim]" + +/* Simulator's output macros (logging, debugging, warning, error) */ +#define NS_LOG(args...) \ + do { if (log) printk(KERN_DEBUG NS_OUTPUT_PREFIX " log: " args); } while(0) +#define NS_DBG(args...) \ + do { if (dbg) printk(KERN_DEBUG NS_OUTPUT_PREFIX " debug: " args); } while(0) +#define NS_WARN(args...) \ + do { printk(KERN_WARNING NS_OUTPUT_PREFIX " warning: " args); } while(0) +#define NS_ERR(args...) \ + do { printk(KERN_ERR NS_OUTPUT_PREFIX " error: " args); } while(0) +#define NS_INFO(args...) \ + do { printk(KERN_INFO NS_OUTPUT_PREFIX " " args); } while(0) + +/* Busy-wait delay macros (microseconds, milliseconds) */ +#define NS_UDELAY(us) \ + do { if (do_delays) udelay(us); } while(0) +#define NS_MDELAY(us) \ + do { if (do_delays) mdelay(us); } while(0) + +/* Is the nandsim structure initialized ? */ +#define NS_IS_INITIALIZED(ns) ((ns)->geom.totsz != 0) + +/* Good operation completion status */ +#define NS_STATUS_OK(ns) (NAND_STATUS_READY | (NAND_STATUS_WP * ((ns)->lines.wp == 0))) + +/* Operation failed completion status */ +#define NS_STATUS_FAILED(ns) (NAND_STATUS_FAIL | NS_STATUS_OK(ns)) + +/* Calculate the page offset in flash RAM image by (row, column) address */ +#define NS_RAW_OFFSET(ns) \ + (((ns)->regs.row * (ns)->geom.pgszoob) + (ns)->regs.column) + +/* Calculate the OOB offset in flash RAM image by (row, column) address */ +#define NS_RAW_OFFSET_OOB(ns) (NS_RAW_OFFSET(ns) + ns->geom.pgsz) + +/* After a command is input, the simulator goes to one of the following states */ +#define STATE_CMD_READ0 0x00000001 /* read data from the beginning of page */ +#define STATE_CMD_READ1 0x00000002 /* read data from the second half of page */ +#define STATE_CMD_READSTART 0x00000003 /* read data second command (large page devices) */ +#define STATE_CMD_PAGEPROG 0x00000004 /* start page program */ +#define STATE_CMD_READOOB 0x00000005 /* read OOB area */ +#define STATE_CMD_ERASE1 0x00000006 /* sector erase first command */ +#define STATE_CMD_STATUS 0x00000007 /* read status */ +#define STATE_CMD_SEQIN 0x00000009 /* sequential data input */ +#define STATE_CMD_READID 0x0000000A /* read ID */ +#define STATE_CMD_ERASE2 0x0000000B /* sector erase second command */ +#define STATE_CMD_RESET 0x0000000C /* reset */ +#define STATE_CMD_RNDOUT 0x0000000D /* random output command */ +#define STATE_CMD_RNDOUTSTART 0x0000000E /* random output start command */ +#define STATE_CMD_MASK 0x0000000F /* command states mask */ + +/* After an address is input, the simulator goes to one of these states */ +#define STATE_ADDR_PAGE 0x00000010 /* full (row, column) address is accepted */ +#define STATE_ADDR_SEC 0x00000020 /* sector address was accepted */ +#define STATE_ADDR_COLUMN 0x00000030 /* column address was accepted */ +#define STATE_ADDR_ZERO 0x00000040 /* one byte zero address was accepted */ +#define STATE_ADDR_MASK 0x00000070 /* address states mask */ + +/* During data input/output the simulator is in these states */ +#define STATE_DATAIN 0x00000100 /* waiting for data input */ +#define STATE_DATAIN_MASK 0x00000100 /* data input states mask */ + +#define STATE_DATAOUT 0x00001000 /* waiting for page data output */ +#define STATE_DATAOUT_ID 0x00002000 /* waiting for ID bytes output */ +#define STATE_DATAOUT_STATUS 0x00003000 /* waiting for status output */ +#define STATE_DATAOUT_MASK 0x00007000 /* data output states mask */ + +/* Previous operation is done, ready to accept new requests */ +#define STATE_READY 0x00000000 + +/* This state is used to mark that the next state isn't known yet */ +#define STATE_UNKNOWN 0x10000000 + +/* Simulator's actions bit masks */ +#define ACTION_CPY 0x00100000 /* copy page/OOB to the internal buffer */ +#define ACTION_PRGPAGE 0x00200000 /* program the internal buffer to flash */ +#define ACTION_SECERASE 0x00300000 /* erase sector */ +#define ACTION_ZEROOFF 0x00400000 /* don't add any offset to address */ +#define ACTION_HALFOFF 0x00500000 /* add to address half of page */ +#define ACTION_OOBOFF 0x00600000 /* add to address OOB offset */ +#define ACTION_MASK 0x00700000 /* action mask */ + +#define NS_OPER_NUM 13 /* Number of operations supported by the simulator */ +#define NS_OPER_STATES 6 /* Maximum number of states in operation */ + +#define OPT_ANY 0xFFFFFFFF /* any chip supports this operation */ +#define OPT_PAGE512 0x00000002 /* 512-byte page chips */ +#define OPT_PAGE2048 0x00000008 /* 2048-byte page chips */ +#define OPT_PAGE512_8BIT 0x00000040 /* 512-byte page chips with 8-bit bus width */ +#define OPT_PAGE4096 0x00000080 /* 4096-byte page chips */ +#define OPT_LARGEPAGE (OPT_PAGE2048 | OPT_PAGE4096) /* 2048 & 4096-byte page chips */ +#define OPT_SMALLPAGE (OPT_PAGE512) /* 512-byte page chips */ + +/* Remove action bits from state */ +#define NS_STATE(x) ((x) & ~ACTION_MASK) + +/* + * Maximum previous states which need to be saved. Currently saving is + * only needed for page program operation with preceded read command + * (which is only valid for 512-byte pages). + */ +#define NS_MAX_PREVSTATES 1 + +/* Maximum page cache pages needed to read or write a NAND page to the cache_file */ +#define NS_MAX_HELD_PAGES 16 + +/* + * A union to represent flash memory contents and flash buffer. + */ +union ns_mem { + u_char *byte; /* for byte access */ + uint16_t *word; /* for 16-bit word access */ +}; + +/* + * The structure which describes all the internal simulator data. + */ +struct nandsim { + struct mtd_partition partitions[CONFIG_NANDSIM_MAX_PARTS]; + unsigned int nbparts; + + uint busw; /* flash chip bus width (8 or 16) */ + u_char ids[8]; /* chip's ID bytes */ + uint32_t options; /* chip's characteristic bits */ + uint32_t state; /* current chip state */ + uint32_t nxstate; /* next expected state */ + + uint32_t *op; /* current operation, NULL operations isn't known yet */ + uint32_t pstates[NS_MAX_PREVSTATES]; /* previous states */ + uint16_t npstates; /* number of previous states saved */ + uint16_t stateidx; /* current state index */ + + /* The simulated NAND flash pages array */ + union ns_mem *pages; + + /* Slab allocator for nand pages */ + struct kmem_cache *nand_pages_slab; + + /* Internal buffer of page + OOB size bytes */ + union ns_mem buf; + + /* NAND flash "geometry" */ + struct { + uint64_t totsz; /* total flash size, bytes */ + uint32_t secsz; /* flash sector (erase block) size, bytes */ + uint pgsz; /* NAND flash page size, bytes */ + uint oobsz; /* page OOB area size, bytes */ + uint64_t totszoob; /* total flash size including OOB, bytes */ + uint pgszoob; /* page size including OOB , bytes*/ + uint secszoob; /* sector size including OOB, bytes */ + uint pgnum; /* total number of pages */ + uint pgsec; /* number of pages per sector */ + uint secshift; /* bits number in sector size */ + uint pgshift; /* bits number in page size */ + uint pgaddrbytes; /* bytes per page address */ + uint secaddrbytes; /* bytes per sector address */ + uint idbytes; /* the number ID bytes that this chip outputs */ + } geom; + + /* NAND flash internal registers */ + struct { + unsigned command; /* the command register */ + u_char status; /* the status register */ + uint row; /* the page number */ + uint column; /* the offset within page */ + uint count; /* internal counter */ + uint num; /* number of bytes which must be processed */ + uint off; /* fixed page offset */ + } regs; + + /* NAND flash lines state */ + struct { + int ce; /* chip Enable */ + int cle; /* command Latch Enable */ + int ale; /* address Latch Enable */ + int wp; /* write Protect */ + } lines; + + /* Fields needed when using a cache file */ + struct file *cfile; /* Open file */ + unsigned long *pages_written; /* Which pages have been written */ + void *file_buf; + struct page *held_pages[NS_MAX_HELD_PAGES]; + int held_cnt; +}; + +/* + * Operations array. To perform any operation the simulator must pass + * through the correspondent states chain. + */ +static struct nandsim_operations { + uint32_t reqopts; /* options which are required to perform the operation */ + uint32_t states[NS_OPER_STATES]; /* operation's states */ +} ops[NS_OPER_NUM] = { + /* Read page + OOB from the beginning */ + {OPT_SMALLPAGE, {STATE_CMD_READ0 | ACTION_ZEROOFF, STATE_ADDR_PAGE | ACTION_CPY, + STATE_DATAOUT, STATE_READY}}, + /* Read page + OOB from the second half */ + {OPT_PAGE512_8BIT, {STATE_CMD_READ1 | ACTION_HALFOFF, STATE_ADDR_PAGE | ACTION_CPY, + STATE_DATAOUT, STATE_READY}}, + /* Read OOB */ + {OPT_SMALLPAGE, {STATE_CMD_READOOB | ACTION_OOBOFF, STATE_ADDR_PAGE | ACTION_CPY, + STATE_DATAOUT, STATE_READY}}, + /* Program page starting from the beginning */ + {OPT_ANY, {STATE_CMD_SEQIN, STATE_ADDR_PAGE, STATE_DATAIN, + STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}}, + /* Program page starting from the beginning */ + {OPT_SMALLPAGE, {STATE_CMD_READ0, STATE_CMD_SEQIN | ACTION_ZEROOFF, STATE_ADDR_PAGE, + STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}}, + /* Program page starting from the second half */ + {OPT_PAGE512, {STATE_CMD_READ1, STATE_CMD_SEQIN | ACTION_HALFOFF, STATE_ADDR_PAGE, + STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}}, + /* Program OOB */ + {OPT_SMALLPAGE, {STATE_CMD_READOOB, STATE_CMD_SEQIN | ACTION_OOBOFF, STATE_ADDR_PAGE, + STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}}, + /* Erase sector */ + {OPT_ANY, {STATE_CMD_ERASE1, STATE_ADDR_SEC, STATE_CMD_ERASE2 | ACTION_SECERASE, STATE_READY}}, + /* Read status */ + {OPT_ANY, {STATE_CMD_STATUS, STATE_DATAOUT_STATUS, STATE_READY}}, + /* Read ID */ + {OPT_ANY, {STATE_CMD_READID, STATE_ADDR_ZERO, STATE_DATAOUT_ID, STATE_READY}}, + /* Large page devices read page */ + {OPT_LARGEPAGE, {STATE_CMD_READ0, STATE_ADDR_PAGE, STATE_CMD_READSTART | ACTION_CPY, + STATE_DATAOUT, STATE_READY}}, + /* Large page devices random page read */ + {OPT_LARGEPAGE, {STATE_CMD_RNDOUT, STATE_ADDR_COLUMN, STATE_CMD_RNDOUTSTART | ACTION_CPY, + STATE_DATAOUT, STATE_READY}}, +}; + +struct weak_block { + struct list_head list; + unsigned int erase_block_no; + unsigned int max_erases; + unsigned int erases_done; +}; + +static LIST_HEAD(weak_blocks); + +struct weak_page { + struct list_head list; + unsigned int page_no; + unsigned int max_writes; + unsigned int writes_done; +}; + +static LIST_HEAD(weak_pages); + +struct grave_page { + struct list_head list; + unsigned int page_no; + unsigned int max_reads; + unsigned int reads_done; +}; + +static LIST_HEAD(grave_pages); + +static unsigned long *erase_block_wear = NULL; +static unsigned int wear_eb_count = 0; +static unsigned long total_wear = 0; + +/* MTD structure for NAND controller */ +static struct mtd_info *nsmtd; + +static int nandsim_debugfs_show(struct seq_file *m, void *private) +{ + unsigned long wmin = -1, wmax = 0, avg; + unsigned long deciles[10], decile_max[10], tot = 0; + unsigned int i; + + /* Calc wear stats */ + for (i = 0; i < wear_eb_count; ++i) { + unsigned long wear = erase_block_wear[i]; + if (wear < wmin) + wmin = wear; + if (wear > wmax) + wmax = wear; + tot += wear; + } + + for (i = 0; i < 9; ++i) { + deciles[i] = 0; + decile_max[i] = (wmax * (i + 1) + 5) / 10; + } + deciles[9] = 0; + decile_max[9] = wmax; + for (i = 0; i < wear_eb_count; ++i) { + int d; + unsigned long wear = erase_block_wear[i]; + for (d = 0; d < 10; ++d) + if (wear <= decile_max[d]) { + deciles[d] += 1; + break; + } + } + avg = tot / wear_eb_count; + + /* Output wear report */ + seq_printf(m, "Total numbers of erases: %lu\n", tot); + seq_printf(m, "Number of erase blocks: %u\n", wear_eb_count); + seq_printf(m, "Average number of erases: %lu\n", avg); + seq_printf(m, "Maximum number of erases: %lu\n", wmax); + seq_printf(m, "Minimum number of erases: %lu\n", wmin); + for (i = 0; i < 10; ++i) { + unsigned long from = (i ? decile_max[i - 1] + 1 : 0); + if (from > decile_max[i]) + continue; + seq_printf(m, "Number of ebs with erase counts from %lu to %lu : %lu\n", + from, + decile_max[i], + deciles[i]); + } + + return 0; +} + +static int nandsim_debugfs_open(struct inode *inode, struct file *file) +{ + return single_open(file, nandsim_debugfs_show, inode->i_private); +} + +static const struct file_operations dfs_fops = { + .open = nandsim_debugfs_open, + .read = seq_read, + .llseek = seq_lseek, + .release = single_release, +}; + +/** + * nandsim_debugfs_create - initialize debugfs + * @dev: nandsim device description object + * + * This function creates all debugfs files for UBI device @ubi. Returns zero in + * case of success and a negative error code in case of failure. + */ +static int nandsim_debugfs_create(struct nandsim *dev) +{ + struct dentry *root = nsmtd->dbg.dfs_dir; + struct dentry *dent; + + /* + * Just skip debugfs initialization when the debugfs directory is + * missing. + */ + if (IS_ERR_OR_NULL(root)) { + if (IS_ENABLED(CONFIG_DEBUG_FS) && + !IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) + NS_WARN("CONFIG_MTD_PARTITIONED_MASTER must be enabled to expose debugfs stuff\n"); + return 0; + } + + dent = debugfs_create_file("nandsim_wear_report", S_IRUSR, + root, dev, &dfs_fops); + if (IS_ERR_OR_NULL(dent)) { + NS_ERR("cannot create \"nandsim_wear_report\" debugfs entry\n"); + return -1; + } + + return 0; +} + +/* + * Allocate array of page pointers, create slab allocation for an array + * and initialize the array by NULL pointers. + * + * RETURNS: 0 if success, -ENOMEM if memory alloc fails. + */ +static int __init alloc_device(struct nandsim *ns) +{ + struct file *cfile; + int i, err; + + if (cache_file) { + cfile = filp_open(cache_file, O_CREAT | O_RDWR | O_LARGEFILE, 0600); + if (IS_ERR(cfile)) + return PTR_ERR(cfile); + if (!(cfile->f_mode & FMODE_CAN_READ)) { + NS_ERR("alloc_device: cache file not readable\n"); + err = -EINVAL; + goto err_close; + } + if (!(cfile->f_mode & FMODE_CAN_WRITE)) { + NS_ERR("alloc_device: cache file not writeable\n"); + err = -EINVAL; + goto err_close; + } + ns->pages_written = vzalloc(BITS_TO_LONGS(ns->geom.pgnum) * + sizeof(unsigned long)); + if (!ns->pages_written) { + NS_ERR("alloc_device: unable to allocate pages written array\n"); + err = -ENOMEM; + goto err_close; + } + ns->file_buf = kmalloc(ns->geom.pgszoob, GFP_KERNEL); + if (!ns->file_buf) { + NS_ERR("alloc_device: unable to allocate file buf\n"); + err = -ENOMEM; + goto err_free; + } + ns->cfile = cfile; + return 0; + } + + ns->pages = vmalloc(ns->geom.pgnum * sizeof(union ns_mem)); + if (!ns->pages) { + NS_ERR("alloc_device: unable to allocate page array\n"); + return -ENOMEM; + } + for (i = 0; i < ns->geom.pgnum; i++) { + ns->pages[i].byte = NULL; + } + ns->nand_pages_slab = kmem_cache_create("nandsim", + ns->geom.pgszoob, 0, 0, NULL); + if (!ns->nand_pages_slab) { + NS_ERR("cache_create: unable to create kmem_cache\n"); + return -ENOMEM; + } + + return 0; + +err_free: + vfree(ns->pages_written); +err_close: + filp_close(cfile, NULL); + return err; +} + +/* + * Free any allocated pages, and free the array of page pointers. + */ +static void free_device(struct nandsim *ns) +{ + int i; + + if (ns->cfile) { + kfree(ns->file_buf); + vfree(ns->pages_written); + filp_close(ns->cfile, NULL); + return; + } + + if (ns->pages) { + for (i = 0; i < ns->geom.pgnum; i++) { + if (ns->pages[i].byte) + kmem_cache_free(ns->nand_pages_slab, + ns->pages[i].byte); + } + kmem_cache_destroy(ns->nand_pages_slab); + vfree(ns->pages); + } +} + +static char __init *get_partition_name(int i) +{ + return kasprintf(GFP_KERNEL, "NAND simulator partition %d", i); +} + +/* + * Initialize the nandsim structure. + * + * RETURNS: 0 if success, -ERRNO if failure. + */ +static int __init init_nandsim(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct nandsim *ns = nand_get_controller_data(chip); + int i, ret = 0; + uint64_t remains; + uint64_t next_offset; + + if (NS_IS_INITIALIZED(ns)) { + NS_ERR("init_nandsim: nandsim is already initialized\n"); + return -EIO; + } + + /* Force mtd to not do delays */ + chip->chip_delay = 0; + + /* Initialize the NAND flash parameters */ + ns->busw = chip->options & NAND_BUSWIDTH_16 ? 16 : 8; + ns->geom.totsz = mtd->size; + ns->geom.pgsz = mtd->writesize; + ns->geom.oobsz = mtd->oobsize; + ns->geom.secsz = mtd->erasesize; + ns->geom.pgszoob = ns->geom.pgsz + ns->geom.oobsz; + ns->geom.pgnum = div_u64(ns->geom.totsz, ns->geom.pgsz); + ns->geom.totszoob = ns->geom.totsz + (uint64_t)ns->geom.pgnum * ns->geom.oobsz; + ns->geom.secshift = ffs(ns->geom.secsz) - 1; + ns->geom.pgshift = chip->page_shift; + ns->geom.pgsec = ns->geom.secsz / ns->geom.pgsz; + ns->geom.secszoob = ns->geom.secsz + ns->geom.oobsz * ns->geom.pgsec; + ns->options = 0; + + if (ns->geom.pgsz == 512) { + ns->options |= OPT_PAGE512; + if (ns->busw == 8) + ns->options |= OPT_PAGE512_8BIT; + } else if (ns->geom.pgsz == 2048) { + ns->options |= OPT_PAGE2048; + } else if (ns->geom.pgsz == 4096) { + ns->options |= OPT_PAGE4096; + } else { + NS_ERR("init_nandsim: unknown page size %u\n", ns->geom.pgsz); + return -EIO; + } + + if (ns->options & OPT_SMALLPAGE) { + if (ns->geom.totsz <= (32 << 20)) { + ns->geom.pgaddrbytes = 3; + ns->geom.secaddrbytes = 2; + } else { + ns->geom.pgaddrbytes = 4; + ns->geom.secaddrbytes = 3; + } + } else { + if (ns->geom.totsz <= (128 << 20)) { + ns->geom.pgaddrbytes = 4; + ns->geom.secaddrbytes = 2; + } else { + ns->geom.pgaddrbytes = 5; + ns->geom.secaddrbytes = 3; + } + } + + /* Fill the partition_info structure */ + if (parts_num > ARRAY_SIZE(ns->partitions)) { + NS_ERR("too many partitions.\n"); + return -EINVAL; + } + remains = ns->geom.totsz; + next_offset = 0; + for (i = 0; i < parts_num; ++i) { + uint64_t part_sz = (uint64_t)parts[i] * ns->geom.secsz; + + if (!part_sz || part_sz > remains) { + NS_ERR("bad partition size.\n"); + return -EINVAL; + } + ns->partitions[i].name = get_partition_name(i); + if (!ns->partitions[i].name) { + NS_ERR("unable to allocate memory.\n"); + return -ENOMEM; + } + ns->partitions[i].offset = next_offset; + ns->partitions[i].size = part_sz; + next_offset += ns->partitions[i].size; + remains -= ns->partitions[i].size; + } + ns->nbparts = parts_num; + if (remains) { + if (parts_num + 1 > ARRAY_SIZE(ns->partitions)) { + NS_ERR("too many partitions.\n"); + return -EINVAL; + } + ns->partitions[i].name = get_partition_name(i); + if (!ns->partitions[i].name) { + NS_ERR("unable to allocate memory.\n"); + return -ENOMEM; + } + ns->partitions[i].offset = next_offset; + ns->partitions[i].size = remains; + ns->nbparts += 1; + } + + if (ns->busw == 16) + NS_WARN("16-bit flashes support wasn't tested\n"); + + printk("flash size: %llu MiB\n", + (unsigned long long)ns->geom.totsz >> 20); + printk("page size: %u bytes\n", ns->geom.pgsz); + printk("OOB area size: %u bytes\n", ns->geom.oobsz); + printk("sector size: %u KiB\n", ns->geom.secsz >> 10); + printk("pages number: %u\n", ns->geom.pgnum); + printk("pages per sector: %u\n", ns->geom.pgsec); + printk("bus width: %u\n", ns->busw); + printk("bits in sector size: %u\n", ns->geom.secshift); + printk("bits in page size: %u\n", ns->geom.pgshift); + printk("bits in OOB size: %u\n", ffs(ns->geom.oobsz) - 1); + printk("flash size with OOB: %llu KiB\n", + (unsigned long long)ns->geom.totszoob >> 10); + printk("page address bytes: %u\n", ns->geom.pgaddrbytes); + printk("sector address bytes: %u\n", ns->geom.secaddrbytes); + printk("options: %#x\n", ns->options); + + if ((ret = alloc_device(ns)) != 0) + return ret; + + /* Allocate / initialize the internal buffer */ + ns->buf.byte = kmalloc(ns->geom.pgszoob, GFP_KERNEL); + if (!ns->buf.byte) { + NS_ERR("init_nandsim: unable to allocate %u bytes for the internal buffer\n", + ns->geom.pgszoob); + return -ENOMEM; + } + memset(ns->buf.byte, 0xFF, ns->geom.pgszoob); + + return 0; +} + +/* + * Free the nandsim structure. + */ +static void free_nandsim(struct nandsim *ns) +{ + kfree(ns->buf.byte); + free_device(ns); + + return; +} + +static int parse_badblocks(struct nandsim *ns, struct mtd_info *mtd) +{ + char *w; + int zero_ok; + unsigned int erase_block_no; + loff_t offset; + + if (!badblocks) + return 0; + w = badblocks; + do { + zero_ok = (*w == '0' ? 1 : 0); + erase_block_no = simple_strtoul(w, &w, 0); + if (!zero_ok && !erase_block_no) { + NS_ERR("invalid badblocks.\n"); + return -EINVAL; + } + offset = (loff_t)erase_block_no * ns->geom.secsz; + if (mtd_block_markbad(mtd, offset)) { + NS_ERR("invalid badblocks.\n"); + return -EINVAL; + } + if (*w == ',') + w += 1; + } while (*w); + return 0; +} + +static int parse_weakblocks(void) +{ + char *w; + int zero_ok; + unsigned int erase_block_no; + unsigned int max_erases; + struct weak_block *wb; + + if (!weakblocks) + return 0; + w = weakblocks; + do { + zero_ok = (*w == '0' ? 1 : 0); + erase_block_no = simple_strtoul(w, &w, 0); + if (!zero_ok && !erase_block_no) { + NS_ERR("invalid weakblocks.\n"); + return -EINVAL; + } + max_erases = 3; + if (*w == ':') { + w += 1; + max_erases = simple_strtoul(w, &w, 0); + } + if (*w == ',') + w += 1; + wb = kzalloc(sizeof(*wb), GFP_KERNEL); + if (!wb) { + NS_ERR("unable to allocate memory.\n"); + return -ENOMEM; + } + wb->erase_block_no = erase_block_no; + wb->max_erases = max_erases; + list_add(&wb->list, &weak_blocks); + } while (*w); + return 0; +} + +static int erase_error(unsigned int erase_block_no) +{ + struct weak_block *wb; + + list_for_each_entry(wb, &weak_blocks, list) + if (wb->erase_block_no == erase_block_no) { + if (wb->erases_done >= wb->max_erases) + return 1; + wb->erases_done += 1; + return 0; + } + return 0; +} + +static int parse_weakpages(void) +{ + char *w; + int zero_ok; + unsigned int page_no; + unsigned int max_writes; + struct weak_page *wp; + + if (!weakpages) + return 0; + w = weakpages; + do { + zero_ok = (*w == '0' ? 1 : 0); + page_no = simple_strtoul(w, &w, 0); + if (!zero_ok && !page_no) { + NS_ERR("invalid weakpages.\n"); + return -EINVAL; + } + max_writes = 3; + if (*w == ':') { + w += 1; + max_writes = simple_strtoul(w, &w, 0); + } + if (*w == ',') + w += 1; + wp = kzalloc(sizeof(*wp), GFP_KERNEL); + if (!wp) { + NS_ERR("unable to allocate memory.\n"); + return -ENOMEM; + } + wp->page_no = page_no; + wp->max_writes = max_writes; + list_add(&wp->list, &weak_pages); + } while (*w); + return 0; +} + +static int write_error(unsigned int page_no) +{ + struct weak_page *wp; + + list_for_each_entry(wp, &weak_pages, list) + if (wp->page_no == page_no) { + if (wp->writes_done >= wp->max_writes) + return 1; + wp->writes_done += 1; + return 0; + } + return 0; +} + +static int parse_gravepages(void) +{ + char *g; + int zero_ok; + unsigned int page_no; + unsigned int max_reads; + struct grave_page *gp; + + if (!gravepages) + return 0; + g = gravepages; + do { + zero_ok = (*g == '0' ? 1 : 0); + page_no = simple_strtoul(g, &g, 0); + if (!zero_ok && !page_no) { + NS_ERR("invalid gravepagess.\n"); + return -EINVAL; + } + max_reads = 3; + if (*g == ':') { + g += 1; + max_reads = simple_strtoul(g, &g, 0); + } + if (*g == ',') + g += 1; + gp = kzalloc(sizeof(*gp), GFP_KERNEL); + if (!gp) { + NS_ERR("unable to allocate memory.\n"); + return -ENOMEM; + } + gp->page_no = page_no; + gp->max_reads = max_reads; + list_add(&gp->list, &grave_pages); + } while (*g); + return 0; +} + +static int read_error(unsigned int page_no) +{ + struct grave_page *gp; + + list_for_each_entry(gp, &grave_pages, list) + if (gp->page_no == page_no) { + if (gp->reads_done >= gp->max_reads) + return 1; + gp->reads_done += 1; + return 0; + } + return 0; +} + +static void free_lists(void) +{ + struct list_head *pos, *n; + list_for_each_safe(pos, n, &weak_blocks) { + list_del(pos); + kfree(list_entry(pos, struct weak_block, list)); + } + list_for_each_safe(pos, n, &weak_pages) { + list_del(pos); + kfree(list_entry(pos, struct weak_page, list)); + } + list_for_each_safe(pos, n, &grave_pages) { + list_del(pos); + kfree(list_entry(pos, struct grave_page, list)); + } + kfree(erase_block_wear); +} + +static int setup_wear_reporting(struct mtd_info *mtd) +{ + size_t mem; + + wear_eb_count = div_u64(mtd->size, mtd->erasesize); + mem = wear_eb_count * sizeof(unsigned long); + if (mem / sizeof(unsigned long) != wear_eb_count) { + NS_ERR("Too many erase blocks for wear reporting\n"); + return -ENOMEM; + } + erase_block_wear = kzalloc(mem, GFP_KERNEL); + if (!erase_block_wear) { + NS_ERR("Too many erase blocks for wear reporting\n"); + return -ENOMEM; + } + return 0; +} + +static void update_wear(unsigned int erase_block_no) +{ + if (!erase_block_wear) + return; + total_wear += 1; + /* + * TODO: Notify this through a debugfs entry, + * instead of showing an error message. + */ + if (total_wear == 0) + NS_ERR("Erase counter total overflow\n"); + erase_block_wear[erase_block_no] += 1; + if (erase_block_wear[erase_block_no] == 0) + NS_ERR("Erase counter overflow for erase block %u\n", erase_block_no); +} + +/* + * Returns the string representation of 'state' state. + */ +static char *get_state_name(uint32_t state) +{ + switch (NS_STATE(state)) { + case STATE_CMD_READ0: + return "STATE_CMD_READ0"; + case STATE_CMD_READ1: + return "STATE_CMD_READ1"; + case STATE_CMD_PAGEPROG: + return "STATE_CMD_PAGEPROG"; + case STATE_CMD_READOOB: + return "STATE_CMD_READOOB"; + case STATE_CMD_READSTART: + return "STATE_CMD_READSTART"; + case STATE_CMD_ERASE1: + return "STATE_CMD_ERASE1"; + case STATE_CMD_STATUS: + return "STATE_CMD_STATUS"; + case STATE_CMD_SEQIN: + return "STATE_CMD_SEQIN"; + case STATE_CMD_READID: + return "STATE_CMD_READID"; + case STATE_CMD_ERASE2: + return "STATE_CMD_ERASE2"; + case STATE_CMD_RESET: + return "STATE_CMD_RESET"; + case STATE_CMD_RNDOUT: + return "STATE_CMD_RNDOUT"; + case STATE_CMD_RNDOUTSTART: + return "STATE_CMD_RNDOUTSTART"; + case STATE_ADDR_PAGE: + return "STATE_ADDR_PAGE"; + case STATE_ADDR_SEC: + return "STATE_ADDR_SEC"; + case STATE_ADDR_ZERO: + return "STATE_ADDR_ZERO"; + case STATE_ADDR_COLUMN: + return "STATE_ADDR_COLUMN"; + case STATE_DATAIN: + return "STATE_DATAIN"; + case STATE_DATAOUT: + return "STATE_DATAOUT"; + case STATE_DATAOUT_ID: + return "STATE_DATAOUT_ID"; + case STATE_DATAOUT_STATUS: + return "STATE_DATAOUT_STATUS"; + case STATE_READY: + return "STATE_READY"; + case STATE_UNKNOWN: + return "STATE_UNKNOWN"; + } + + NS_ERR("get_state_name: unknown state, BUG\n"); + return NULL; +} + +/* + * Check if command is valid. + * + * RETURNS: 1 if wrong command, 0 if right. + */ +static int check_command(int cmd) +{ + switch (cmd) { + + case NAND_CMD_READ0: + case NAND_CMD_READ1: + case NAND_CMD_READSTART: + case NAND_CMD_PAGEPROG: + case NAND_CMD_READOOB: + case NAND_CMD_ERASE1: + case NAND_CMD_STATUS: + case NAND_CMD_SEQIN: + case NAND_CMD_READID: + case NAND_CMD_ERASE2: + case NAND_CMD_RESET: + case NAND_CMD_RNDOUT: + case NAND_CMD_RNDOUTSTART: + return 0; + + default: + return 1; + } +} + +/* + * Returns state after command is accepted by command number. + */ +static uint32_t get_state_by_command(unsigned command) +{ + switch (command) { + case NAND_CMD_READ0: + return STATE_CMD_READ0; + case NAND_CMD_READ1: + return STATE_CMD_READ1; + case NAND_CMD_PAGEPROG: + return STATE_CMD_PAGEPROG; + case NAND_CMD_READSTART: + return STATE_CMD_READSTART; + case NAND_CMD_READOOB: + return STATE_CMD_READOOB; + case NAND_CMD_ERASE1: + return STATE_CMD_ERASE1; + case NAND_CMD_STATUS: + return STATE_CMD_STATUS; + case NAND_CMD_SEQIN: + return STATE_CMD_SEQIN; + case NAND_CMD_READID: + return STATE_CMD_READID; + case NAND_CMD_ERASE2: + return STATE_CMD_ERASE2; + case NAND_CMD_RESET: + return STATE_CMD_RESET; + case NAND_CMD_RNDOUT: + return STATE_CMD_RNDOUT; + case NAND_CMD_RNDOUTSTART: + return STATE_CMD_RNDOUTSTART; + } + + NS_ERR("get_state_by_command: unknown command, BUG\n"); + return 0; +} + +/* + * Move an address byte to the correspondent internal register. + */ +static inline void accept_addr_byte(struct nandsim *ns, u_char bt) +{ + uint byte = (uint)bt; + + if (ns->regs.count < (ns->geom.pgaddrbytes - ns->geom.secaddrbytes)) + ns->regs.column |= (byte << 8 * ns->regs.count); + else { + ns->regs.row |= (byte << 8 * (ns->regs.count - + ns->geom.pgaddrbytes + + ns->geom.secaddrbytes)); + } + + return; +} + +/* + * Switch to STATE_READY state. + */ +static inline void switch_to_ready_state(struct nandsim *ns, u_char status) +{ + NS_DBG("switch_to_ready_state: switch to %s state\n", get_state_name(STATE_READY)); + + ns->state = STATE_READY; + ns->nxstate = STATE_UNKNOWN; + ns->op = NULL; + ns->npstates = 0; + ns->stateidx = 0; + ns->regs.num = 0; + ns->regs.count = 0; + ns->regs.off = 0; + ns->regs.row = 0; + ns->regs.column = 0; + ns->regs.status = status; +} + +/* + * If the operation isn't known yet, try to find it in the global array + * of supported operations. + * + * Operation can be unknown because of the following. + * 1. New command was accepted and this is the first call to find the + * correspondent states chain. In this case ns->npstates = 0; + * 2. There are several operations which begin with the same command(s) + * (for example program from the second half and read from the + * second half operations both begin with the READ1 command). In this + * case the ns->pstates[] array contains previous states. + * + * Thus, the function tries to find operation containing the following + * states (if the 'flag' parameter is 0): + * ns->pstates[0], ... ns->pstates[ns->npstates], ns->state + * + * If (one and only one) matching operation is found, it is accepted ( + * ns->ops, ns->state, ns->nxstate are initialized, ns->npstate is + * zeroed). + * + * If there are several matches, the current state is pushed to the + * ns->pstates. + * + * The operation can be unknown only while commands are input to the chip. + * As soon as address command is accepted, the operation must be known. + * In such situation the function is called with 'flag' != 0, and the + * operation is searched using the following pattern: + * ns->pstates[0], ... ns->pstates[ns->npstates],
+ * + * It is supposed that this pattern must either match one operation or + * none. There can't be ambiguity in that case. + * + * If no matches found, the function does the following: + * 1. if there are saved states present, try to ignore them and search + * again only using the last command. If nothing was found, switch + * to the STATE_READY state. + * 2. if there are no saved states, switch to the STATE_READY state. + * + * RETURNS: -2 - no matched operations found. + * -1 - several matches. + * 0 - operation is found. + */ +static int find_operation(struct nandsim *ns, uint32_t flag) +{ + int opsfound = 0; + int i, j, idx = 0; + + for (i = 0; i < NS_OPER_NUM; i++) { + + int found = 1; + + if (!(ns->options & ops[i].reqopts)) + /* Ignore operations we can't perform */ + continue; + + if (flag) { + if (!(ops[i].states[ns->npstates] & STATE_ADDR_MASK)) + continue; + } else { + if (NS_STATE(ns->state) != NS_STATE(ops[i].states[ns->npstates])) + continue; + } + + for (j = 0; j < ns->npstates; j++) + if (NS_STATE(ops[i].states[j]) != NS_STATE(ns->pstates[j]) + && (ns->options & ops[idx].reqopts)) { + found = 0; + break; + } + + if (found) { + idx = i; + opsfound += 1; + } + } + + if (opsfound == 1) { + /* Exact match */ + ns->op = &ops[idx].states[0]; + if (flag) { + /* + * In this case the find_operation function was + * called when address has just began input. But it isn't + * yet fully input and the current state must + * not be one of STATE_ADDR_*, but the STATE_ADDR_* + * state must be the next state (ns->nxstate). + */ + ns->stateidx = ns->npstates - 1; + } else { + ns->stateidx = ns->npstates; + } + ns->npstates = 0; + ns->state = ns->op[ns->stateidx]; + ns->nxstate = ns->op[ns->stateidx + 1]; + NS_DBG("find_operation: operation found, index: %d, state: %s, nxstate %s\n", + idx, get_state_name(ns->state), get_state_name(ns->nxstate)); + return 0; + } + + if (opsfound == 0) { + /* Nothing was found. Try to ignore previous commands (if any) and search again */ + if (ns->npstates != 0) { + NS_DBG("find_operation: no operation found, try again with state %s\n", + get_state_name(ns->state)); + ns->npstates = 0; + return find_operation(ns, 0); + + } + NS_DBG("find_operation: no operations found\n"); + switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); + return -2; + } + + if (flag) { + /* This shouldn't happen */ + NS_DBG("find_operation: BUG, operation must be known if address is input\n"); + return -2; + } + + NS_DBG("find_operation: there is still ambiguity\n"); + + ns->pstates[ns->npstates++] = ns->state; + + return -1; +} + +static void put_pages(struct nandsim *ns) +{ + int i; + + for (i = 0; i < ns->held_cnt; i++) + put_page(ns->held_pages[i]); +} + +/* Get page cache pages in advance to provide NOFS memory allocation */ +static int get_pages(struct nandsim *ns, struct file *file, size_t count, loff_t pos) +{ + pgoff_t index, start_index, end_index; + struct page *page; + struct address_space *mapping = file->f_mapping; + + start_index = pos >> PAGE_SHIFT; + end_index = (pos + count - 1) >> PAGE_SHIFT; + if (end_index - start_index + 1 > NS_MAX_HELD_PAGES) + return -EINVAL; + ns->held_cnt = 0; + for (index = start_index; index <= end_index; index++) { + page = find_get_page(mapping, index); + if (page == NULL) { + page = find_or_create_page(mapping, index, GFP_NOFS); + if (page == NULL) { + write_inode_now(mapping->host, 1); + page = find_or_create_page(mapping, index, GFP_NOFS); + } + if (page == NULL) { + put_pages(ns); + return -ENOMEM; + } + unlock_page(page); + } + ns->held_pages[ns->held_cnt++] = page; + } + return 0; +} + +static ssize_t read_file(struct nandsim *ns, struct file *file, void *buf, size_t count, loff_t pos) +{ + ssize_t tx; + int err; + unsigned int noreclaim_flag; + + err = get_pages(ns, file, count, pos); + if (err) + return err; + noreclaim_flag = memalloc_noreclaim_save(); + tx = kernel_read(file, buf, count, &pos); + memalloc_noreclaim_restore(noreclaim_flag); + put_pages(ns); + return tx; +} + +static ssize_t write_file(struct nandsim *ns, struct file *file, void *buf, size_t count, loff_t pos) +{ + ssize_t tx; + int err; + unsigned int noreclaim_flag; + + err = get_pages(ns, file, count, pos); + if (err) + return err; + noreclaim_flag = memalloc_noreclaim_save(); + tx = kernel_write(file, buf, count, &pos); + memalloc_noreclaim_restore(noreclaim_flag); + put_pages(ns); + return tx; +} + +/* + * Returns a pointer to the current page. + */ +static inline union ns_mem *NS_GET_PAGE(struct nandsim *ns) +{ + return &(ns->pages[ns->regs.row]); +} + +/* + * Retuns a pointer to the current byte, within the current page. + */ +static inline u_char *NS_PAGE_BYTE_OFF(struct nandsim *ns) +{ + return NS_GET_PAGE(ns)->byte + ns->regs.column + ns->regs.off; +} + +static int do_read_error(struct nandsim *ns, int num) +{ + unsigned int page_no = ns->regs.row; + + if (read_error(page_no)) { + prandom_bytes(ns->buf.byte, num); + NS_WARN("simulating read error in page %u\n", page_no); + return 1; + } + return 0; +} + +static void do_bit_flips(struct nandsim *ns, int num) +{ + if (bitflips && prandom_u32() < (1 << 22)) { + int flips = 1; + if (bitflips > 1) + flips = (prandom_u32() % (int) bitflips) + 1; + while (flips--) { + int pos = prandom_u32() % (num * 8); + ns->buf.byte[pos / 8] ^= (1 << (pos % 8)); + NS_WARN("read_page: flipping bit %d in page %d " + "reading from %d ecc: corrected=%u failed=%u\n", + pos, ns->regs.row, ns->regs.column + ns->regs.off, + nsmtd->ecc_stats.corrected, nsmtd->ecc_stats.failed); + } + } +} + +/* + * Fill the NAND buffer with data read from the specified page. + */ +static void read_page(struct nandsim *ns, int num) +{ + union ns_mem *mypage; + + if (ns->cfile) { + if (!test_bit(ns->regs.row, ns->pages_written)) { + NS_DBG("read_page: page %d not written\n", ns->regs.row); + memset(ns->buf.byte, 0xFF, num); + } else { + loff_t pos; + ssize_t tx; + + NS_DBG("read_page: page %d written, reading from %d\n", + ns->regs.row, ns->regs.column + ns->regs.off); + if (do_read_error(ns, num)) + return; + pos = (loff_t)NS_RAW_OFFSET(ns) + ns->regs.off; + tx = read_file(ns, ns->cfile, ns->buf.byte, num, pos); + if (tx != num) { + NS_ERR("read_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx); + return; + } + do_bit_flips(ns, num); + } + return; + } + + mypage = NS_GET_PAGE(ns); + if (mypage->byte == NULL) { + NS_DBG("read_page: page %d not allocated\n", ns->regs.row); + memset(ns->buf.byte, 0xFF, num); + } else { + NS_DBG("read_page: page %d allocated, reading from %d\n", + ns->regs.row, ns->regs.column + ns->regs.off); + if (do_read_error(ns, num)) + return; + memcpy(ns->buf.byte, NS_PAGE_BYTE_OFF(ns), num); + do_bit_flips(ns, num); + } +} + +/* + * Erase all pages in the specified sector. + */ +static void erase_sector(struct nandsim *ns) +{ + union ns_mem *mypage; + int i; + + if (ns->cfile) { + for (i = 0; i < ns->geom.pgsec; i++) + if (__test_and_clear_bit(ns->regs.row + i, + ns->pages_written)) { + NS_DBG("erase_sector: freeing page %d\n", ns->regs.row + i); + } + return; + } + + mypage = NS_GET_PAGE(ns); + for (i = 0; i < ns->geom.pgsec; i++) { + if (mypage->byte != NULL) { + NS_DBG("erase_sector: freeing page %d\n", ns->regs.row+i); + kmem_cache_free(ns->nand_pages_slab, mypage->byte); + mypage->byte = NULL; + } + mypage++; + } +} + +/* + * Program the specified page with the contents from the NAND buffer. + */ +static int prog_page(struct nandsim *ns, int num) +{ + int i; + union ns_mem *mypage; + u_char *pg_off; + + if (ns->cfile) { + loff_t off; + ssize_t tx; + int all; + + NS_DBG("prog_page: writing page %d\n", ns->regs.row); + pg_off = ns->file_buf + ns->regs.column + ns->regs.off; + off = (loff_t)NS_RAW_OFFSET(ns) + ns->regs.off; + if (!test_bit(ns->regs.row, ns->pages_written)) { + all = 1; + memset(ns->file_buf, 0xff, ns->geom.pgszoob); + } else { + all = 0; + tx = read_file(ns, ns->cfile, pg_off, num, off); + if (tx != num) { + NS_ERR("prog_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx); + return -1; + } + } + for (i = 0; i < num; i++) + pg_off[i] &= ns->buf.byte[i]; + if (all) { + loff_t pos = (loff_t)ns->regs.row * ns->geom.pgszoob; + tx = write_file(ns, ns->cfile, ns->file_buf, ns->geom.pgszoob, pos); + if (tx != ns->geom.pgszoob) { + NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx); + return -1; + } + __set_bit(ns->regs.row, ns->pages_written); + } else { + tx = write_file(ns, ns->cfile, pg_off, num, off); + if (tx != num) { + NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx); + return -1; + } + } + return 0; + } + + mypage = NS_GET_PAGE(ns); + if (mypage->byte == NULL) { + NS_DBG("prog_page: allocating page %d\n", ns->regs.row); + /* + * We allocate memory with GFP_NOFS because a flash FS may + * utilize this. If it is holding an FS lock, then gets here, + * then kernel memory alloc runs writeback which goes to the FS + * again and deadlocks. This was seen in practice. + */ + mypage->byte = kmem_cache_alloc(ns->nand_pages_slab, GFP_NOFS); + if (mypage->byte == NULL) { + NS_ERR("prog_page: error allocating memory for page %d\n", ns->regs.row); + return -1; + } + memset(mypage->byte, 0xFF, ns->geom.pgszoob); + } + + pg_off = NS_PAGE_BYTE_OFF(ns); + for (i = 0; i < num; i++) + pg_off[i] &= ns->buf.byte[i]; + + return 0; +} + +/* + * If state has any action bit, perform this action. + * + * RETURNS: 0 if success, -1 if error. + */ +static int do_state_action(struct nandsim *ns, uint32_t action) +{ + int num; + int busdiv = ns->busw == 8 ? 1 : 2; + unsigned int erase_block_no, page_no; + + action &= ACTION_MASK; + + /* Check that page address input is correct */ + if (action != ACTION_SECERASE && ns->regs.row >= ns->geom.pgnum) { + NS_WARN("do_state_action: wrong page number (%#x)\n", ns->regs.row); + return -1; + } + + switch (action) { + + case ACTION_CPY: + /* + * Copy page data to the internal buffer. + */ + + /* Column shouldn't be very large */ + if (ns->regs.column >= (ns->geom.pgszoob - ns->regs.off)) { + NS_ERR("do_state_action: column number is too large\n"); + break; + } + num = ns->geom.pgszoob - ns->regs.off - ns->regs.column; + read_page(ns, num); + + NS_DBG("do_state_action: (ACTION_CPY:) copy %d bytes to int buf, raw offset %d\n", + num, NS_RAW_OFFSET(ns) + ns->regs.off); + + if (ns->regs.off == 0) + NS_LOG("read page %d\n", ns->regs.row); + else if (ns->regs.off < ns->geom.pgsz) + NS_LOG("read page %d (second half)\n", ns->regs.row); + else + NS_LOG("read OOB of page %d\n", ns->regs.row); + + NS_UDELAY(access_delay); + NS_UDELAY(input_cycle * ns->geom.pgsz / 1000 / busdiv); + + break; + + case ACTION_SECERASE: + /* + * Erase sector. + */ + + if (ns->lines.wp) { + NS_ERR("do_state_action: device is write-protected, ignore sector erase\n"); + return -1; + } + + if (ns->regs.row >= ns->geom.pgnum - ns->geom.pgsec + || (ns->regs.row & ~(ns->geom.secsz - 1))) { + NS_ERR("do_state_action: wrong sector address (%#x)\n", ns->regs.row); + return -1; + } + + ns->regs.row = (ns->regs.row << + 8 * (ns->geom.pgaddrbytes - ns->geom.secaddrbytes)) | ns->regs.column; + ns->regs.column = 0; + + erase_block_no = ns->regs.row >> (ns->geom.secshift - ns->geom.pgshift); + + NS_DBG("do_state_action: erase sector at address %#x, off = %d\n", + ns->regs.row, NS_RAW_OFFSET(ns)); + NS_LOG("erase sector %u\n", erase_block_no); + + erase_sector(ns); + + NS_MDELAY(erase_delay); + + if (erase_block_wear) + update_wear(erase_block_no); + + if (erase_error(erase_block_no)) { + NS_WARN("simulating erase failure in erase block %u\n", erase_block_no); + return -1; + } + + break; + + case ACTION_PRGPAGE: + /* + * Program page - move internal buffer data to the page. + */ + + if (ns->lines.wp) { + NS_WARN("do_state_action: device is write-protected, programm\n"); + return -1; + } + + num = ns->geom.pgszoob - ns->regs.off - ns->regs.column; + if (num != ns->regs.count) { + NS_ERR("do_state_action: too few bytes were input (%d instead of %d)\n", + ns->regs.count, num); + return -1; + } + + if (prog_page(ns, num) == -1) + return -1; + + page_no = ns->regs.row; + + NS_DBG("do_state_action: copy %d bytes from int buf to (%#x, %#x), raw off = %d\n", + num, ns->regs.row, ns->regs.column, NS_RAW_OFFSET(ns) + ns->regs.off); + NS_LOG("programm page %d\n", ns->regs.row); + + NS_UDELAY(programm_delay); + NS_UDELAY(output_cycle * ns->geom.pgsz / 1000 / busdiv); + + if (write_error(page_no)) { + NS_WARN("simulating write failure in page %u\n", page_no); + return -1; + } + + break; + + case ACTION_ZEROOFF: + NS_DBG("do_state_action: set internal offset to 0\n"); + ns->regs.off = 0; + break; + + case ACTION_HALFOFF: + if (!(ns->options & OPT_PAGE512_8BIT)) { + NS_ERR("do_state_action: BUG! can't skip half of page for non-512" + "byte page size 8x chips\n"); + return -1; + } + NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz/2); + ns->regs.off = ns->geom.pgsz/2; + break; + + case ACTION_OOBOFF: + NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz); + ns->regs.off = ns->geom.pgsz; + break; + + default: + NS_DBG("do_state_action: BUG! unknown action\n"); + } + + return 0; +} + +/* + * Switch simulator's state. + */ +static void switch_state(struct nandsim *ns) +{ + if (ns->op) { + /* + * The current operation have already been identified. + * Just follow the states chain. + */ + + ns->stateidx += 1; + ns->state = ns->nxstate; + ns->nxstate = ns->op[ns->stateidx + 1]; + + NS_DBG("switch_state: operation is known, switch to the next state, " + "state: %s, nxstate: %s\n", + get_state_name(ns->state), get_state_name(ns->nxstate)); + + /* See, whether we need to do some action */ + if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) { + switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); + return; + } + + } else { + /* + * We don't yet know which operation we perform. + * Try to identify it. + */ + + /* + * The only event causing the switch_state function to + * be called with yet unknown operation is new command. + */ + ns->state = get_state_by_command(ns->regs.command); + + NS_DBG("switch_state: operation is unknown, try to find it\n"); + + if (find_operation(ns, 0) != 0) + return; + + if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) { + switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); + return; + } + } + + /* For 16x devices column means the page offset in words */ + if ((ns->nxstate & STATE_ADDR_MASK) && ns->busw == 16) { + NS_DBG("switch_state: double the column number for 16x device\n"); + ns->regs.column <<= 1; + } + + if (NS_STATE(ns->nxstate) == STATE_READY) { + /* + * The current state is the last. Return to STATE_READY + */ + + u_char status = NS_STATUS_OK(ns); + + /* In case of data states, see if all bytes were input/output */ + if ((ns->state & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK)) + && ns->regs.count != ns->regs.num) { + NS_WARN("switch_state: not all bytes were processed, %d left\n", + ns->regs.num - ns->regs.count); + status = NS_STATUS_FAILED(ns); + } + + NS_DBG("switch_state: operation complete, switch to STATE_READY state\n"); + + switch_to_ready_state(ns, status); + + return; + } else if (ns->nxstate & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK)) { + /* + * If the next state is data input/output, switch to it now + */ + + ns->state = ns->nxstate; + ns->nxstate = ns->op[++ns->stateidx + 1]; + ns->regs.num = ns->regs.count = 0; + + NS_DBG("switch_state: the next state is data I/O, switch, " + "state: %s, nxstate: %s\n", + get_state_name(ns->state), get_state_name(ns->nxstate)); + + /* + * Set the internal register to the count of bytes which + * are expected to be input or output + */ + switch (NS_STATE(ns->state)) { + case STATE_DATAIN: + case STATE_DATAOUT: + ns->regs.num = ns->geom.pgszoob - ns->regs.off - ns->regs.column; + break; + + case STATE_DATAOUT_ID: + ns->regs.num = ns->geom.idbytes; + break; + + case STATE_DATAOUT_STATUS: + ns->regs.count = ns->regs.num = 0; + break; + + default: + NS_ERR("switch_state: BUG! unknown data state\n"); + } + + } else if (ns->nxstate & STATE_ADDR_MASK) { + /* + * If the next state is address input, set the internal + * register to the number of expected address bytes + */ + + ns->regs.count = 0; + + switch (NS_STATE(ns->nxstate)) { + case STATE_ADDR_PAGE: + ns->regs.num = ns->geom.pgaddrbytes; + + break; + case STATE_ADDR_SEC: + ns->regs.num = ns->geom.secaddrbytes; + break; + + case STATE_ADDR_ZERO: + ns->regs.num = 1; + break; + + case STATE_ADDR_COLUMN: + /* Column address is always 2 bytes */ + ns->regs.num = ns->geom.pgaddrbytes - ns->geom.secaddrbytes; + break; + + default: + NS_ERR("switch_state: BUG! unknown address state\n"); + } + } else { + /* + * Just reset internal counters. + */ + + ns->regs.num = 0; + ns->regs.count = 0; + } +} + +static u_char ns_nand_read_byte(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct nandsim *ns = nand_get_controller_data(chip); + u_char outb = 0x00; + + /* Sanity and correctness checks */ + if (!ns->lines.ce) { + NS_ERR("read_byte: chip is disabled, return %#x\n", (uint)outb); + return outb; + } + if (ns->lines.ale || ns->lines.cle) { + NS_ERR("read_byte: ALE or CLE pin is high, return %#x\n", (uint)outb); + return outb; + } + if (!(ns->state & STATE_DATAOUT_MASK)) { + NS_WARN("read_byte: unexpected data output cycle, state is %s " + "return %#x\n", get_state_name(ns->state), (uint)outb); + return outb; + } + + /* Status register may be read as many times as it is wanted */ + if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS) { + NS_DBG("read_byte: return %#x status\n", ns->regs.status); + return ns->regs.status; + } + + /* Check if there is any data in the internal buffer which may be read */ + if (ns->regs.count == ns->regs.num) { + NS_WARN("read_byte: no more data to output, return %#x\n", (uint)outb); + return outb; + } + + switch (NS_STATE(ns->state)) { + case STATE_DATAOUT: + if (ns->busw == 8) { + outb = ns->buf.byte[ns->regs.count]; + ns->regs.count += 1; + } else { + outb = (u_char)cpu_to_le16(ns->buf.word[ns->regs.count >> 1]); + ns->regs.count += 2; + } + break; + case STATE_DATAOUT_ID: + NS_DBG("read_byte: read ID byte %d, total = %d\n", ns->regs.count, ns->regs.num); + outb = ns->ids[ns->regs.count]; + ns->regs.count += 1; + break; + default: + BUG(); + } + + if (ns->regs.count == ns->regs.num) { + NS_DBG("read_byte: all bytes were read\n"); + + if (NS_STATE(ns->nxstate) == STATE_READY) + switch_state(ns); + } + + return outb; +} + +static void ns_nand_write_byte(struct mtd_info *mtd, u_char byte) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct nandsim *ns = nand_get_controller_data(chip); + + /* Sanity and correctness checks */ + if (!ns->lines.ce) { + NS_ERR("write_byte: chip is disabled, ignore write\n"); + return; + } + if (ns->lines.ale && ns->lines.cle) { + NS_ERR("write_byte: ALE and CLE pins are high simultaneously, ignore write\n"); + return; + } + + if (ns->lines.cle == 1) { + /* + * The byte written is a command. + */ + + if (byte == NAND_CMD_RESET) { + NS_LOG("reset chip\n"); + switch_to_ready_state(ns, NS_STATUS_OK(ns)); + return; + } + + /* Check that the command byte is correct */ + if (check_command(byte)) { + NS_ERR("write_byte: unknown command %#x\n", (uint)byte); + return; + } + + if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS + || NS_STATE(ns->state) == STATE_DATAOUT) { + int row = ns->regs.row; + + switch_state(ns); + if (byte == NAND_CMD_RNDOUT) + ns->regs.row = row; + } + + /* Check if chip is expecting command */ + if (NS_STATE(ns->nxstate) != STATE_UNKNOWN && !(ns->nxstate & STATE_CMD_MASK)) { + /* Do not warn if only 2 id bytes are read */ + if (!(ns->regs.command == NAND_CMD_READID && + NS_STATE(ns->state) == STATE_DATAOUT_ID && ns->regs.count == 2)) { + /* + * We are in situation when something else (not command) + * was expected but command was input. In this case ignore + * previous command(s)/state(s) and accept the last one. + */ + NS_WARN("write_byte: command (%#x) wasn't expected, expected state is %s, " + "ignore previous states\n", (uint)byte, get_state_name(ns->nxstate)); + } + switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); + } + + NS_DBG("command byte corresponding to %s state accepted\n", + get_state_name(get_state_by_command(byte))); + ns->regs.command = byte; + switch_state(ns); + + } else if (ns->lines.ale == 1) { + /* + * The byte written is an address. + */ + + if (NS_STATE(ns->nxstate) == STATE_UNKNOWN) { + + NS_DBG("write_byte: operation isn't known yet, identify it\n"); + + if (find_operation(ns, 1) < 0) + return; + + if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) { + switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); + return; + } + + ns->regs.count = 0; + switch (NS_STATE(ns->nxstate)) { + case STATE_ADDR_PAGE: + ns->regs.num = ns->geom.pgaddrbytes; + break; + case STATE_ADDR_SEC: + ns->regs.num = ns->geom.secaddrbytes; + break; + case STATE_ADDR_ZERO: + ns->regs.num = 1; + break; + default: + BUG(); + } + } + + /* Check that chip is expecting address */ + if (!(ns->nxstate & STATE_ADDR_MASK)) { + NS_ERR("write_byte: address (%#x) isn't expected, expected state is %s, " + "switch to STATE_READY\n", (uint)byte, get_state_name(ns->nxstate)); + switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); + return; + } + + /* Check if this is expected byte */ + if (ns->regs.count == ns->regs.num) { + NS_ERR("write_byte: no more address bytes expected\n"); + switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); + return; + } + + accept_addr_byte(ns, byte); + + ns->regs.count += 1; + + NS_DBG("write_byte: address byte %#x was accepted (%d bytes input, %d expected)\n", + (uint)byte, ns->regs.count, ns->regs.num); + + if (ns->regs.count == ns->regs.num) { + NS_DBG("address (%#x, %#x) is accepted\n", ns->regs.row, ns->regs.column); + switch_state(ns); + } + + } else { + /* + * The byte written is an input data. + */ + + /* Check that chip is expecting data input */ + if (!(ns->state & STATE_DATAIN_MASK)) { + NS_ERR("write_byte: data input (%#x) isn't expected, state is %s, " + "switch to %s\n", (uint)byte, + get_state_name(ns->state), get_state_name(STATE_READY)); + switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); + return; + } + + /* Check if this is expected byte */ + if (ns->regs.count == ns->regs.num) { + NS_WARN("write_byte: %u input bytes has already been accepted, ignore write\n", + ns->regs.num); + return; + } + + if (ns->busw == 8) { + ns->buf.byte[ns->regs.count] = byte; + ns->regs.count += 1; + } else { + ns->buf.word[ns->regs.count >> 1] = cpu_to_le16((uint16_t)byte); + ns->regs.count += 2; + } + } + + return; +} + +static void ns_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int bitmask) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct nandsim *ns = nand_get_controller_data(chip); + + ns->lines.cle = bitmask & NAND_CLE ? 1 : 0; + ns->lines.ale = bitmask & NAND_ALE ? 1 : 0; + ns->lines.ce = bitmask & NAND_NCE ? 1 : 0; + + if (cmd != NAND_CMD_NONE) + ns_nand_write_byte(mtd, cmd); +} + +static int ns_device_ready(struct mtd_info *mtd) +{ + NS_DBG("device_ready\n"); + return 1; +} + +static uint16_t ns_nand_read_word(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + + NS_DBG("read_word\n"); + + return chip->read_byte(mtd) | (chip->read_byte(mtd) << 8); +} + +static void ns_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct nandsim *ns = nand_get_controller_data(chip); + + /* Check that chip is expecting data input */ + if (!(ns->state & STATE_DATAIN_MASK)) { + NS_ERR("write_buf: data input isn't expected, state is %s, " + "switch to STATE_READY\n", get_state_name(ns->state)); + switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); + return; + } + + /* Check if these are expected bytes */ + if (ns->regs.count + len > ns->regs.num) { + NS_ERR("write_buf: too many input bytes\n"); + switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); + return; + } + + memcpy(ns->buf.byte + ns->regs.count, buf, len); + ns->regs.count += len; + + if (ns->regs.count == ns->regs.num) { + NS_DBG("write_buf: %d bytes were written\n", ns->regs.count); + } +} + +static void ns_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct nandsim *ns = nand_get_controller_data(chip); + + /* Sanity and correctness checks */ + if (!ns->lines.ce) { + NS_ERR("read_buf: chip is disabled\n"); + return; + } + if (ns->lines.ale || ns->lines.cle) { + NS_ERR("read_buf: ALE or CLE pin is high\n"); + return; + } + if (!(ns->state & STATE_DATAOUT_MASK)) { + NS_WARN("read_buf: unexpected data output cycle, current state is %s\n", + get_state_name(ns->state)); + return; + } + + if (NS_STATE(ns->state) != STATE_DATAOUT) { + int i; + + for (i = 0; i < len; i++) + buf[i] = mtd_to_nand(mtd)->read_byte(mtd); + + return; + } + + /* Check if these are expected bytes */ + if (ns->regs.count + len > ns->regs.num) { + NS_ERR("read_buf: too many bytes to read\n"); + switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); + return; + } + + memcpy(buf, ns->buf.byte + ns->regs.count, len); + ns->regs.count += len; + + if (ns->regs.count == ns->regs.num) { + if (NS_STATE(ns->nxstate) == STATE_READY) + switch_state(ns); + } + + return; +} + +/* + * Module initialization function + */ +static int __init ns_init_module(void) +{ + struct nand_chip *chip; + struct nandsim *nand; + int retval = -ENOMEM, i; + + if (bus_width != 8 && bus_width != 16) { + NS_ERR("wrong bus width (%d), use only 8 or 16\n", bus_width); + return -EINVAL; + } + + /* Allocate and initialize mtd_info, nand_chip and nandsim structures */ + chip = kzalloc(sizeof(struct nand_chip) + sizeof(struct nandsim), + GFP_KERNEL); + if (!chip) { + NS_ERR("unable to allocate core structures.\n"); + return -ENOMEM; + } + nsmtd = nand_to_mtd(chip); + nand = (struct nandsim *)(chip + 1); + nand_set_controller_data(chip, (void *)nand); + + /* + * Register simulator's callbacks. + */ + chip->cmd_ctrl = ns_hwcontrol; + chip->read_byte = ns_nand_read_byte; + chip->dev_ready = ns_device_ready; + chip->write_buf = ns_nand_write_buf; + chip->read_buf = ns_nand_read_buf; + chip->read_word = ns_nand_read_word; + chip->ecc.mode = NAND_ECC_SOFT; + chip->ecc.algo = NAND_ECC_HAMMING; + /* The NAND_SKIP_BBTSCAN option is necessary for 'overridesize' */ + /* and 'badblocks' parameters to work */ + chip->options |= NAND_SKIP_BBTSCAN; + + switch (bbt) { + case 2: + chip->bbt_options |= NAND_BBT_NO_OOB; + case 1: + chip->bbt_options |= NAND_BBT_USE_FLASH; + case 0: + break; + default: + NS_ERR("bbt has to be 0..2\n"); + retval = -EINVAL; + goto error; + } + /* + * Perform minimum nandsim structure initialization to handle + * the initial ID read command correctly + */ + if (id_bytes[6] != 0xFF || id_bytes[7] != 0xFF) + nand->geom.idbytes = 8; + else if (id_bytes[4] != 0xFF || id_bytes[5] != 0xFF) + nand->geom.idbytes = 6; + else if (id_bytes[2] != 0xFF || id_bytes[3] != 0xFF) + nand->geom.idbytes = 4; + else + nand->geom.idbytes = 2; + nand->regs.status = NS_STATUS_OK(nand); + nand->nxstate = STATE_UNKNOWN; + nand->options |= OPT_PAGE512; /* temporary value */ + memcpy(nand->ids, id_bytes, sizeof(nand->ids)); + if (bus_width == 16) { + nand->busw = 16; + chip->options |= NAND_BUSWIDTH_16; + } + + nsmtd->owner = THIS_MODULE; + + if ((retval = parse_weakblocks()) != 0) + goto error; + + if ((retval = parse_weakpages()) != 0) + goto error; + + if ((retval = parse_gravepages()) != 0) + goto error; + + retval = nand_scan_ident(nsmtd, 1, NULL); + if (retval) { + NS_ERR("cannot scan NAND Simulator device\n"); + goto error; + } + + if (bch) { + unsigned int eccsteps, eccbytes; + if (!mtd_nand_has_bch()) { + NS_ERR("BCH ECC support is disabled\n"); + retval = -EINVAL; + goto error; + } + /* use 512-byte ecc blocks */ + eccsteps = nsmtd->writesize/512; + eccbytes = (bch*13+7)/8; + /* do not bother supporting small page devices */ + if ((nsmtd->oobsize < 64) || !eccsteps) { + NS_ERR("bch not available on small page devices\n"); + retval = -EINVAL; + goto error; + } + if ((eccbytes*eccsteps+2) > nsmtd->oobsize) { + NS_ERR("invalid bch value %u\n", bch); + retval = -EINVAL; + goto error; + } + chip->ecc.mode = NAND_ECC_SOFT; + chip->ecc.algo = NAND_ECC_BCH; + chip->ecc.size = 512; + chip->ecc.strength = bch; + chip->ecc.bytes = eccbytes; + NS_INFO("using %u-bit/%u bytes BCH ECC\n", bch, chip->ecc.size); + } + + retval = nand_scan_tail(nsmtd); + if (retval) { + NS_ERR("can't register NAND Simulator\n"); + goto error; + } + + if (overridesize) { + uint64_t new_size = (uint64_t)nsmtd->erasesize << overridesize; + if (new_size >> overridesize != nsmtd->erasesize) { + NS_ERR("overridesize is too big\n"); + retval = -EINVAL; + goto err_exit; + } + /* N.B. This relies on nand_scan not doing anything with the size before we change it */ + nsmtd->size = new_size; + chip->chipsize = new_size; + chip->chip_shift = ffs(nsmtd->erasesize) + overridesize - 1; + chip->pagemask = (chip->chipsize >> chip->page_shift) - 1; + } + + if ((retval = setup_wear_reporting(nsmtd)) != 0) + goto err_exit; + + if ((retval = init_nandsim(nsmtd)) != 0) + goto err_exit; + + if ((retval = chip->scan_bbt(nsmtd)) != 0) + goto err_exit; + + if ((retval = parse_badblocks(nand, nsmtd)) != 0) + goto err_exit; + + /* Register NAND partitions */ + retval = mtd_device_register(nsmtd, &nand->partitions[0], + nand->nbparts); + if (retval != 0) + goto err_exit; + + if ((retval = nandsim_debugfs_create(nand)) != 0) + goto err_exit; + + return 0; + +err_exit: + free_nandsim(nand); + nand_release(nsmtd); + for (i = 0;i < ARRAY_SIZE(nand->partitions); ++i) + kfree(nand->partitions[i].name); +error: + kfree(chip); + free_lists(); + + return retval; +} + +module_init(ns_init_module); + +/* + * Module clean-up function + */ +static void __exit ns_cleanup_module(void) +{ + struct nand_chip *chip = mtd_to_nand(nsmtd); + struct nandsim *ns = nand_get_controller_data(chip); + int i; + + free_nandsim(ns); /* Free nandsim private resources */ + nand_release(nsmtd); /* Unregister driver */ + for (i = 0;i < ARRAY_SIZE(ns->partitions); ++i) + kfree(ns->partitions[i].name); + kfree(mtd_to_nand(nsmtd)); /* Free other structures */ + free_lists(); +} + +module_exit(ns_cleanup_module); + +MODULE_LICENSE ("GPL"); +MODULE_AUTHOR ("Artem B. Bityuckiy"); +MODULE_DESCRIPTION ("The NAND flash simulator"); diff --git a/drivers/mtd/nand/raw/ndfc.c b/drivers/mtd/nand/raw/ndfc.c new file mode 100644 index 000000000000..d8a806894937 --- /dev/null +++ b/drivers/mtd/nand/raw/ndfc.c @@ -0,0 +1,286 @@ +/* + * Overview: + * Platform independent driver for NDFC (NanD Flash Controller) + * integrated into EP440 cores + * + * Ported to an OF platform driver by Sean MacLennan + * + * The NDFC supports multiple chips, but this driver only supports a + * single chip since I do not have access to any boards with + * multiple chips. + * + * Author: Thomas Gleixner + * + * Copyright 2006 IBM + * Copyright 2008 PIKA Technologies + * Sean MacLennan + * + * This program is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License as published by the + * Free Software Foundation; either version 2 of the License, or (at your + * option) any later version. + * + */ +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#define NDFC_MAX_CS 4 + +struct ndfc_controller { + struct platform_device *ofdev; + void __iomem *ndfcbase; + struct nand_chip chip; + int chip_select; + struct nand_hw_control ndfc_control; +}; + +static struct ndfc_controller ndfc_ctrl[NDFC_MAX_CS]; + +static void ndfc_select_chip(struct mtd_info *mtd, int chip) +{ + uint32_t ccr; + struct nand_chip *nchip = mtd_to_nand(mtd); + struct ndfc_controller *ndfc = nand_get_controller_data(nchip); + + ccr = in_be32(ndfc->ndfcbase + NDFC_CCR); + if (chip >= 0) { + ccr &= ~NDFC_CCR_BS_MASK; + ccr |= NDFC_CCR_BS(chip + ndfc->chip_select); + } else + ccr |= NDFC_CCR_RESET_CE; + out_be32(ndfc->ndfcbase + NDFC_CCR, ccr); +} + +static void ndfc_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct ndfc_controller *ndfc = nand_get_controller_data(chip); + + if (cmd == NAND_CMD_NONE) + return; + + if (ctrl & NAND_CLE) + writel(cmd & 0xFF, ndfc->ndfcbase + NDFC_CMD); + else + writel(cmd & 0xFF, ndfc->ndfcbase + NDFC_ALE); +} + +static int ndfc_ready(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct ndfc_controller *ndfc = nand_get_controller_data(chip); + + return in_be32(ndfc->ndfcbase + NDFC_STAT) & NDFC_STAT_IS_READY; +} + +static void ndfc_enable_hwecc(struct mtd_info *mtd, int mode) +{ + uint32_t ccr; + struct nand_chip *chip = mtd_to_nand(mtd); + struct ndfc_controller *ndfc = nand_get_controller_data(chip); + + ccr = in_be32(ndfc->ndfcbase + NDFC_CCR); + ccr |= NDFC_CCR_RESET_ECC; + out_be32(ndfc->ndfcbase + NDFC_CCR, ccr); + wmb(); +} + +static int ndfc_calculate_ecc(struct mtd_info *mtd, + const u_char *dat, u_char *ecc_code) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct ndfc_controller *ndfc = nand_get_controller_data(chip); + uint32_t ecc; + uint8_t *p = (uint8_t *)&ecc; + + wmb(); + ecc = in_be32(ndfc->ndfcbase + NDFC_ECC); + /* The NDFC uses Smart Media (SMC) bytes order */ + ecc_code[0] = p[1]; + ecc_code[1] = p[2]; + ecc_code[2] = p[3]; + + return 0; +} + +/* + * Speedups for buffer read/write/verify + * + * NDFC allows 32bit read/write of data. So we can speed up the buffer + * functions. No further checking, as nand_base will always read/write + * page aligned. + */ +static void ndfc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct ndfc_controller *ndfc = nand_get_controller_data(chip); + uint32_t *p = (uint32_t *) buf; + + for(;len > 0; len -= 4) + *p++ = in_be32(ndfc->ndfcbase + NDFC_DATA); +} + +static void ndfc_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct ndfc_controller *ndfc = nand_get_controller_data(chip); + uint32_t *p = (uint32_t *) buf; + + for(;len > 0; len -= 4) + out_be32(ndfc->ndfcbase + NDFC_DATA, *p++); +} + +/* + * Initialize chip structure + */ +static int ndfc_chip_init(struct ndfc_controller *ndfc, + struct device_node *node) +{ + struct device_node *flash_np; + struct nand_chip *chip = &ndfc->chip; + struct mtd_info *mtd = nand_to_mtd(chip); + int ret; + + chip->IO_ADDR_R = ndfc->ndfcbase + NDFC_DATA; + chip->IO_ADDR_W = ndfc->ndfcbase + NDFC_DATA; + chip->cmd_ctrl = ndfc_hwcontrol; + chip->dev_ready = ndfc_ready; + chip->select_chip = ndfc_select_chip; + chip->chip_delay = 50; + chip->controller = &ndfc->ndfc_control; + chip->read_buf = ndfc_read_buf; + chip->write_buf = ndfc_write_buf; + chip->ecc.correct = nand_correct_data; + chip->ecc.hwctl = ndfc_enable_hwecc; + chip->ecc.calculate = ndfc_calculate_ecc; + chip->ecc.mode = NAND_ECC_HW; + chip->ecc.size = 256; + chip->ecc.bytes = 3; + chip->ecc.strength = 1; + nand_set_controller_data(chip, ndfc); + + mtd->dev.parent = &ndfc->ofdev->dev; + + flash_np = of_get_next_child(node, NULL); + if (!flash_np) + return -ENODEV; + nand_set_flash_node(chip, flash_np); + + mtd->name = kasprintf(GFP_KERNEL, "%s.%s", dev_name(&ndfc->ofdev->dev), + flash_np->name); + if (!mtd->name) { + ret = -ENOMEM; + goto err; + } + + ret = nand_scan(mtd, 1); + if (ret) + goto err; + + ret = mtd_device_register(mtd, NULL, 0); + +err: + of_node_put(flash_np); + if (ret) + kfree(mtd->name); + return ret; +} + +static int ndfc_probe(struct platform_device *ofdev) +{ + struct ndfc_controller *ndfc; + const __be32 *reg; + u32 ccr; + u32 cs; + int err, len; + + /* Read the reg property to get the chip select */ + reg = of_get_property(ofdev->dev.of_node, "reg", &len); + if (reg == NULL || len != 12) { + dev_err(&ofdev->dev, "unable read reg property (%d)\n", len); + return -ENOENT; + } + + cs = be32_to_cpu(reg[0]); + if (cs >= NDFC_MAX_CS) { + dev_err(&ofdev->dev, "invalid CS number (%d)\n", cs); + return -EINVAL; + } + + ndfc = &ndfc_ctrl[cs]; + ndfc->chip_select = cs; + + nand_hw_control_init(&ndfc->ndfc_control); + ndfc->ofdev = ofdev; + dev_set_drvdata(&ofdev->dev, ndfc); + + ndfc->ndfcbase = of_iomap(ofdev->dev.of_node, 0); + if (!ndfc->ndfcbase) { + dev_err(&ofdev->dev, "failed to get memory\n"); + return -EIO; + } + + ccr = NDFC_CCR_BS(ndfc->chip_select); + + /* It is ok if ccr does not exist - just default to 0 */ + reg = of_get_property(ofdev->dev.of_node, "ccr", NULL); + if (reg) + ccr |= be32_to_cpup(reg); + + out_be32(ndfc->ndfcbase + NDFC_CCR, ccr); + + /* Set the bank settings if given */ + reg = of_get_property(ofdev->dev.of_node, "bank-settings", NULL); + if (reg) { + int offset = NDFC_BCFG0 + (ndfc->chip_select << 2); + out_be32(ndfc->ndfcbase + offset, be32_to_cpup(reg)); + } + + err = ndfc_chip_init(ndfc, ofdev->dev.of_node); + if (err) { + iounmap(ndfc->ndfcbase); + return err; + } + + return 0; +} + +static int ndfc_remove(struct platform_device *ofdev) +{ + struct ndfc_controller *ndfc = dev_get_drvdata(&ofdev->dev); + struct mtd_info *mtd = nand_to_mtd(&ndfc->chip); + + nand_release(mtd); + kfree(mtd->name); + + return 0; +} + +static const struct of_device_id ndfc_match[] = { + { .compatible = "ibm,ndfc", }, + {} +}; +MODULE_DEVICE_TABLE(of, ndfc_match); + +static struct platform_driver ndfc_driver = { + .driver = { + .name = "ndfc", + .of_match_table = ndfc_match, + }, + .probe = ndfc_probe, + .remove = ndfc_remove, +}; + +module_platform_driver(ndfc_driver); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Thomas Gleixner "); +MODULE_DESCRIPTION("OF Platform driver for NDFC"); diff --git a/drivers/mtd/nand/raw/nuc900_nand.c b/drivers/mtd/nand/raw/nuc900_nand.c new file mode 100644 index 000000000000..af5b32c9a791 --- /dev/null +++ b/drivers/mtd/nand/raw/nuc900_nand.c @@ -0,0 +1,306 @@ +/* + * Copyright © 2009 Nuvoton technology corporation. + * + * Wan ZongShun + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation;version 2 of the License. + * + */ + +#include +#include +#include +#include +#include +#include +#include +#include + +#include +#include +#include + +#define REG_FMICSR 0x00 +#define REG_SMCSR 0xa0 +#define REG_SMISR 0xac +#define REG_SMCMD 0xb0 +#define REG_SMADDR 0xb4 +#define REG_SMDATA 0xb8 + +#define RESET_FMI 0x01 +#define NAND_EN 0x08 +#define READYBUSY (0x01 << 18) + +#define SWRST 0x01 +#define PSIZE (0x01 << 3) +#define DMARWEN (0x03 << 1) +#define BUSWID (0x01 << 4) +#define ECC4EN (0x01 << 5) +#define WP (0x01 << 24) +#define NANDCS (0x01 << 25) +#define ENDADDR (0x01 << 31) + +#define read_data_reg(dev) \ + __raw_readl((dev)->reg + REG_SMDATA) + +#define write_data_reg(dev, val) \ + __raw_writel((val), (dev)->reg + REG_SMDATA) + +#define write_cmd_reg(dev, val) \ + __raw_writel((val), (dev)->reg + REG_SMCMD) + +#define write_addr_reg(dev, val) \ + __raw_writel((val), (dev)->reg + REG_SMADDR) + +struct nuc900_nand { + struct nand_chip chip; + void __iomem *reg; + struct clk *clk; + spinlock_t lock; +}; + +static inline struct nuc900_nand *mtd_to_nuc900(struct mtd_info *mtd) +{ + return container_of(mtd_to_nand(mtd), struct nuc900_nand, chip); +} + +static const struct mtd_partition partitions[] = { + { + .name = "NAND FS 0", + .offset = 0, + .size = 8 * 1024 * 1024 + }, + { + .name = "NAND FS 1", + .offset = MTDPART_OFS_APPEND, + .size = MTDPART_SIZ_FULL + } +}; + +static unsigned char nuc900_nand_read_byte(struct mtd_info *mtd) +{ + unsigned char ret; + struct nuc900_nand *nand = mtd_to_nuc900(mtd); + + ret = (unsigned char)read_data_reg(nand); + + return ret; +} + +static void nuc900_nand_read_buf(struct mtd_info *mtd, + unsigned char *buf, int len) +{ + int i; + struct nuc900_nand *nand = mtd_to_nuc900(mtd); + + for (i = 0; i < len; i++) + buf[i] = (unsigned char)read_data_reg(nand); +} + +static void nuc900_nand_write_buf(struct mtd_info *mtd, + const unsigned char *buf, int len) +{ + int i; + struct nuc900_nand *nand = mtd_to_nuc900(mtd); + + for (i = 0; i < len; i++) + write_data_reg(nand, buf[i]); +} + +static int nuc900_check_rb(struct nuc900_nand *nand) +{ + unsigned int val; + spin_lock(&nand->lock); + val = __raw_readl(nand->reg + REG_SMISR); + val &= READYBUSY; + spin_unlock(&nand->lock); + + return val; +} + +static int nuc900_nand_devready(struct mtd_info *mtd) +{ + struct nuc900_nand *nand = mtd_to_nuc900(mtd); + int ready; + + ready = (nuc900_check_rb(nand)) ? 1 : 0; + return ready; +} + +static void nuc900_nand_command_lp(struct mtd_info *mtd, unsigned int command, + int column, int page_addr) +{ + register struct nand_chip *chip = mtd_to_nand(mtd); + struct nuc900_nand *nand = mtd_to_nuc900(mtd); + + if (command == NAND_CMD_READOOB) { + column += mtd->writesize; + command = NAND_CMD_READ0; + } + + write_cmd_reg(nand, command & 0xff); + + if (column != -1 || page_addr != -1) { + + if (column != -1) { + if (chip->options & NAND_BUSWIDTH_16 && + !nand_opcode_8bits(command)) + column >>= 1; + write_addr_reg(nand, column); + write_addr_reg(nand, column >> 8 | ENDADDR); + } + if (page_addr != -1) { + write_addr_reg(nand, page_addr); + + if (chip->options & NAND_ROW_ADDR_3) { + write_addr_reg(nand, page_addr >> 8); + write_addr_reg(nand, page_addr >> 16 | ENDADDR); + } else { + write_addr_reg(nand, page_addr >> 8 | ENDADDR); + } + } + } + + switch (command) { + case NAND_CMD_CACHEDPROG: + case NAND_CMD_PAGEPROG: + case NAND_CMD_ERASE1: + case NAND_CMD_ERASE2: + case NAND_CMD_SEQIN: + case NAND_CMD_RNDIN: + case NAND_CMD_STATUS: + return; + + case NAND_CMD_RESET: + if (chip->dev_ready) + break; + udelay(chip->chip_delay); + + write_cmd_reg(nand, NAND_CMD_STATUS); + write_cmd_reg(nand, command); + + while (!nuc900_check_rb(nand)) + ; + + return; + + case NAND_CMD_RNDOUT: + write_cmd_reg(nand, NAND_CMD_RNDOUTSTART); + return; + + case NAND_CMD_READ0: + + write_cmd_reg(nand, NAND_CMD_READSTART); + default: + + if (!chip->dev_ready) { + udelay(chip->chip_delay); + return; + } + } + + /* Apply this short delay always to ensure that we do wait tWB in + * any case on any machine. */ + ndelay(100); + + while (!chip->dev_ready(mtd)) + ; +} + + +static void nuc900_nand_enable(struct nuc900_nand *nand) +{ + unsigned int val; + spin_lock(&nand->lock); + __raw_writel(RESET_FMI, (nand->reg + REG_FMICSR)); + + val = __raw_readl(nand->reg + REG_FMICSR); + + if (!(val & NAND_EN)) + __raw_writel(val | NAND_EN, nand->reg + REG_FMICSR); + + val = __raw_readl(nand->reg + REG_SMCSR); + + val &= ~(SWRST|PSIZE|DMARWEN|BUSWID|ECC4EN|NANDCS); + val |= WP; + + __raw_writel(val, nand->reg + REG_SMCSR); + + spin_unlock(&nand->lock); +} + +static int nuc900_nand_probe(struct platform_device *pdev) +{ + struct nuc900_nand *nuc900_nand; + struct nand_chip *chip; + struct mtd_info *mtd; + struct resource *res; + + nuc900_nand = devm_kzalloc(&pdev->dev, sizeof(struct nuc900_nand), + GFP_KERNEL); + if (!nuc900_nand) + return -ENOMEM; + chip = &(nuc900_nand->chip); + mtd = nand_to_mtd(chip); + + mtd->dev.parent = &pdev->dev; + spin_lock_init(&nuc900_nand->lock); + + nuc900_nand->clk = devm_clk_get(&pdev->dev, NULL); + if (IS_ERR(nuc900_nand->clk)) + return -ENOENT; + clk_enable(nuc900_nand->clk); + + chip->cmdfunc = nuc900_nand_command_lp; + chip->dev_ready = nuc900_nand_devready; + chip->read_byte = nuc900_nand_read_byte; + chip->write_buf = nuc900_nand_write_buf; + chip->read_buf = nuc900_nand_read_buf; + chip->chip_delay = 50; + chip->options = 0; + chip->ecc.mode = NAND_ECC_SOFT; + chip->ecc.algo = NAND_ECC_HAMMING; + + res = platform_get_resource(pdev, IORESOURCE_MEM, 0); + nuc900_nand->reg = devm_ioremap_resource(&pdev->dev, res); + if (IS_ERR(nuc900_nand->reg)) + return PTR_ERR(nuc900_nand->reg); + + nuc900_nand_enable(nuc900_nand); + + if (nand_scan(mtd, 1)) + return -ENXIO; + + mtd_device_register(mtd, partitions, ARRAY_SIZE(partitions)); + + platform_set_drvdata(pdev, nuc900_nand); + + return 0; +} + +static int nuc900_nand_remove(struct platform_device *pdev) +{ + struct nuc900_nand *nuc900_nand = platform_get_drvdata(pdev); + + nand_release(nand_to_mtd(&nuc900_nand->chip)); + clk_disable(nuc900_nand->clk); + + return 0; +} + +static struct platform_driver nuc900_nand_driver = { + .probe = nuc900_nand_probe, + .remove = nuc900_nand_remove, + .driver = { + .name = "nuc900-fmi", + }, +}; + +module_platform_driver(nuc900_nand_driver); + +MODULE_AUTHOR("Wan ZongShun "); +MODULE_DESCRIPTION("w90p910/NUC9xx nand driver!"); +MODULE_LICENSE("GPL"); +MODULE_ALIAS("platform:nuc900-fmi"); diff --git a/drivers/mtd/nand/raw/omap2.c b/drivers/mtd/nand/raw/omap2.c new file mode 100644 index 000000000000..8cdf7d3d8fa7 --- /dev/null +++ b/drivers/mtd/nand/raw/omap2.c @@ -0,0 +1,2316 @@ +/* + * Copyright © 2004 Texas Instruments, Jian Zhang + * Copyright © 2004 Micron Technology Inc. + * Copyright © 2004 David Brownell + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + */ + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#include +#include + +#include +#include + +#define DRIVER_NAME "omap2-nand" +#define OMAP_NAND_TIMEOUT_MS 5000 + +#define NAND_Ecc_P1e (1 << 0) +#define NAND_Ecc_P2e (1 << 1) +#define NAND_Ecc_P4e (1 << 2) +#define NAND_Ecc_P8e (1 << 3) +#define NAND_Ecc_P16e (1 << 4) +#define NAND_Ecc_P32e (1 << 5) +#define NAND_Ecc_P64e (1 << 6) +#define NAND_Ecc_P128e (1 << 7) +#define NAND_Ecc_P256e (1 << 8) +#define NAND_Ecc_P512e (1 << 9) +#define NAND_Ecc_P1024e (1 << 10) +#define NAND_Ecc_P2048e (1 << 11) + +#define NAND_Ecc_P1o (1 << 16) +#define NAND_Ecc_P2o (1 << 17) +#define NAND_Ecc_P4o (1 << 18) +#define NAND_Ecc_P8o (1 << 19) +#define NAND_Ecc_P16o (1 << 20) +#define NAND_Ecc_P32o (1 << 21) +#define NAND_Ecc_P64o (1 << 22) +#define NAND_Ecc_P128o (1 << 23) +#define NAND_Ecc_P256o (1 << 24) +#define NAND_Ecc_P512o (1 << 25) +#define NAND_Ecc_P1024o (1 << 26) +#define NAND_Ecc_P2048o (1 << 27) + +#define TF(value) (value ? 1 : 0) + +#define P2048e(a) (TF(a & NAND_Ecc_P2048e) << 0) +#define P2048o(a) (TF(a & NAND_Ecc_P2048o) << 1) +#define P1e(a) (TF(a & NAND_Ecc_P1e) << 2) +#define P1o(a) (TF(a & NAND_Ecc_P1o) << 3) +#define P2e(a) (TF(a & NAND_Ecc_P2e) << 4) +#define P2o(a) (TF(a & NAND_Ecc_P2o) << 5) +#define P4e(a) (TF(a & NAND_Ecc_P4e) << 6) +#define P4o(a) (TF(a & NAND_Ecc_P4o) << 7) + +#define P8e(a) (TF(a & NAND_Ecc_P8e) << 0) +#define P8o(a) (TF(a & NAND_Ecc_P8o) << 1) +#define P16e(a) (TF(a & NAND_Ecc_P16e) << 2) +#define P16o(a) (TF(a & NAND_Ecc_P16o) << 3) +#define P32e(a) (TF(a & NAND_Ecc_P32e) << 4) +#define P32o(a) (TF(a & NAND_Ecc_P32o) << 5) +#define P64e(a) (TF(a & NAND_Ecc_P64e) << 6) +#define P64o(a) (TF(a & NAND_Ecc_P64o) << 7) + +#define P128e(a) (TF(a & NAND_Ecc_P128e) << 0) +#define P128o(a) (TF(a & NAND_Ecc_P128o) << 1) +#define P256e(a) (TF(a & NAND_Ecc_P256e) << 2) +#define P256o(a) (TF(a & NAND_Ecc_P256o) << 3) +#define P512e(a) (TF(a & NAND_Ecc_P512e) << 4) +#define P512o(a) (TF(a & NAND_Ecc_P512o) << 5) +#define P1024e(a) (TF(a & NAND_Ecc_P1024e) << 6) +#define P1024o(a) (TF(a & NAND_Ecc_P1024o) << 7) + +#define P8e_s(a) (TF(a & NAND_Ecc_P8e) << 0) +#define P8o_s(a) (TF(a & NAND_Ecc_P8o) << 1) +#define P16e_s(a) (TF(a & NAND_Ecc_P16e) << 2) +#define P16o_s(a) (TF(a & NAND_Ecc_P16o) << 3) +#define P1e_s(a) (TF(a & NAND_Ecc_P1e) << 4) +#define P1o_s(a) (TF(a & NAND_Ecc_P1o) << 5) +#define P2e_s(a) (TF(a & NAND_Ecc_P2e) << 6) +#define P2o_s(a) (TF(a & NAND_Ecc_P2o) << 7) + +#define P4e_s(a) (TF(a & NAND_Ecc_P4e) << 0) +#define P4o_s(a) (TF(a & NAND_Ecc_P4o) << 1) + +#define PREFETCH_CONFIG1_CS_SHIFT 24 +#define ECC_CONFIG_CS_SHIFT 1 +#define CS_MASK 0x7 +#define ENABLE_PREFETCH (0x1 << 7) +#define DMA_MPU_MODE_SHIFT 2 +#define ECCSIZE0_SHIFT 12 +#define ECCSIZE1_SHIFT 22 +#define ECC1RESULTSIZE 0x1 +#define ECCCLEAR 0x100 +#define ECC1 0x1 +#define PREFETCH_FIFOTHRESHOLD_MAX 0x40 +#define PREFETCH_FIFOTHRESHOLD(val) ((val) << 8) +#define PREFETCH_STATUS_COUNT(val) (val & 0x00003fff) +#define PREFETCH_STATUS_FIFO_CNT(val) ((val >> 24) & 0x7F) +#define STATUS_BUFF_EMPTY 0x00000001 + +#define SECTOR_BYTES 512 +/* 4 bit padding to make byte aligned, 56 = 52 + 4 */ +#define BCH4_BIT_PAD 4 + +/* GPMC ecc engine settings for read */ +#define BCH_WRAPMODE_1 1 /* BCH wrap mode 1 */ +#define BCH8R_ECC_SIZE0 0x1a /* ecc_size0 = 26 */ +#define BCH8R_ECC_SIZE1 0x2 /* ecc_size1 = 2 */ +#define BCH4R_ECC_SIZE0 0xd /* ecc_size0 = 13 */ +#define BCH4R_ECC_SIZE1 0x3 /* ecc_size1 = 3 */ + +/* GPMC ecc engine settings for write */ +#define BCH_WRAPMODE_6 6 /* BCH wrap mode 6 */ +#define BCH_ECC_SIZE0 0x0 /* ecc_size0 = 0, no oob protection */ +#define BCH_ECC_SIZE1 0x20 /* ecc_size1 = 32 */ + +#define BADBLOCK_MARKER_LENGTH 2 + +static u_char bch16_vector[] = {0xf5, 0x24, 0x1c, 0xd0, 0x61, 0xb3, 0xf1, 0x55, + 0x2e, 0x2c, 0x86, 0xa3, 0xed, 0x36, 0x1b, 0x78, + 0x48, 0x76, 0xa9, 0x3b, 0x97, 0xd1, 0x7a, 0x93, + 0x07, 0x0e}; +static u_char bch8_vector[] = {0xf3, 0xdb, 0x14, 0x16, 0x8b, 0xd2, 0xbe, 0xcc, + 0xac, 0x6b, 0xff, 0x99, 0x7b}; +static u_char bch4_vector[] = {0x00, 0x6b, 0x31, 0xdd, 0x41, 0xbc, 0x10}; + +/* Shared among all NAND instances to synchronize access to the ECC Engine */ +static struct nand_hw_control omap_gpmc_controller = { + .lock = __SPIN_LOCK_UNLOCKED(omap_gpmc_controller.lock), + .wq = __WAIT_QUEUE_HEAD_INITIALIZER(omap_gpmc_controller.wq), +}; + +struct omap_nand_info { + struct nand_chip nand; + struct platform_device *pdev; + + int gpmc_cs; + bool dev_ready; + enum nand_io xfer_type; + int devsize; + enum omap_ecc ecc_opt; + struct device_node *elm_of_node; + + unsigned long phys_base; + struct completion comp; + struct dma_chan *dma; + int gpmc_irq_fifo; + int gpmc_irq_count; + enum { + OMAP_NAND_IO_READ = 0, /* read */ + OMAP_NAND_IO_WRITE, /* write */ + } iomode; + u_char *buf; + int buf_len; + /* Interface to GPMC */ + struct gpmc_nand_regs reg; + struct gpmc_nand_ops *ops; + bool flash_bbt; + /* fields specific for BCHx_HW ECC scheme */ + struct device *elm_dev; + /* NAND ready gpio */ + struct gpio_desc *ready_gpiod; +}; + +static inline struct omap_nand_info *mtd_to_omap(struct mtd_info *mtd) +{ + return container_of(mtd_to_nand(mtd), struct omap_nand_info, nand); +} + +/** + * omap_prefetch_enable - configures and starts prefetch transfer + * @cs: cs (chip select) number + * @fifo_th: fifo threshold to be used for read/ write + * @dma_mode: dma mode enable (1) or disable (0) + * @u32_count: number of bytes to be transferred + * @is_write: prefetch read(0) or write post(1) mode + */ +static int omap_prefetch_enable(int cs, int fifo_th, int dma_mode, + unsigned int u32_count, int is_write, struct omap_nand_info *info) +{ + u32 val; + + if (fifo_th > PREFETCH_FIFOTHRESHOLD_MAX) + return -1; + + if (readl(info->reg.gpmc_prefetch_control)) + return -EBUSY; + + /* Set the amount of bytes to be prefetched */ + writel(u32_count, info->reg.gpmc_prefetch_config2); + + /* Set dma/mpu mode, the prefetch read / post write and + * enable the engine. Set which cs is has requested for. + */ + val = ((cs << PREFETCH_CONFIG1_CS_SHIFT) | + PREFETCH_FIFOTHRESHOLD(fifo_th) | ENABLE_PREFETCH | + (dma_mode << DMA_MPU_MODE_SHIFT) | (is_write & 0x1)); + writel(val, info->reg.gpmc_prefetch_config1); + + /* Start the prefetch engine */ + writel(0x1, info->reg.gpmc_prefetch_control); + + return 0; +} + +/** + * omap_prefetch_reset - disables and stops the prefetch engine + */ +static int omap_prefetch_reset(int cs, struct omap_nand_info *info) +{ + u32 config1; + + /* check if the same module/cs is trying to reset */ + config1 = readl(info->reg.gpmc_prefetch_config1); + if (((config1 >> PREFETCH_CONFIG1_CS_SHIFT) & CS_MASK) != cs) + return -EINVAL; + + /* Stop the PFPW engine */ + writel(0x0, info->reg.gpmc_prefetch_control); + + /* Reset/disable the PFPW engine */ + writel(0x0, info->reg.gpmc_prefetch_config1); + + return 0; +} + +/** + * omap_hwcontrol - hardware specific access to control-lines + * @mtd: MTD device structure + * @cmd: command to device + * @ctrl: + * NAND_NCE: bit 0 -> don't care + * NAND_CLE: bit 1 -> Command Latch + * NAND_ALE: bit 2 -> Address Latch + * + * NOTE: boards may use different bits for these!! + */ +static void omap_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl) +{ + struct omap_nand_info *info = mtd_to_omap(mtd); + + if (cmd != NAND_CMD_NONE) { + if (ctrl & NAND_CLE) + writeb(cmd, info->reg.gpmc_nand_command); + + else if (ctrl & NAND_ALE) + writeb(cmd, info->reg.gpmc_nand_address); + + else /* NAND_NCE */ + writeb(cmd, info->reg.gpmc_nand_data); + } +} + +/** + * omap_read_buf8 - read data from NAND controller into buffer + * @mtd: MTD device structure + * @buf: buffer to store date + * @len: number of bytes to read + */ +static void omap_read_buf8(struct mtd_info *mtd, u_char *buf, int len) +{ + struct nand_chip *nand = mtd_to_nand(mtd); + + ioread8_rep(nand->IO_ADDR_R, buf, len); +} + +/** + * omap_write_buf8 - write buffer to NAND controller + * @mtd: MTD device structure + * @buf: data buffer + * @len: number of bytes to write + */ +static void omap_write_buf8(struct mtd_info *mtd, const u_char *buf, int len) +{ + struct omap_nand_info *info = mtd_to_omap(mtd); + u_char *p = (u_char *)buf; + bool status; + + while (len--) { + iowrite8(*p++, info->nand.IO_ADDR_W); + /* wait until buffer is available for write */ + do { + status = info->ops->nand_writebuffer_empty(); + } while (!status); + } +} + +/** + * omap_read_buf16 - read data from NAND controller into buffer + * @mtd: MTD device structure + * @buf: buffer to store date + * @len: number of bytes to read + */ +static void omap_read_buf16(struct mtd_info *mtd, u_char *buf, int len) +{ + struct nand_chip *nand = mtd_to_nand(mtd); + + ioread16_rep(nand->IO_ADDR_R, buf, len / 2); +} + +/** + * omap_write_buf16 - write buffer to NAND controller + * @mtd: MTD device structure + * @buf: data buffer + * @len: number of bytes to write + */ +static void omap_write_buf16(struct mtd_info *mtd, const u_char * buf, int len) +{ + struct omap_nand_info *info = mtd_to_omap(mtd); + u16 *p = (u16 *) buf; + bool status; + /* FIXME try bursts of writesw() or DMA ... */ + len >>= 1; + + while (len--) { + iowrite16(*p++, info->nand.IO_ADDR_W); + /* wait until buffer is available for write */ + do { + status = info->ops->nand_writebuffer_empty(); + } while (!status); + } +} + +/** + * omap_read_buf_pref - read data from NAND controller into buffer + * @mtd: MTD device structure + * @buf: buffer to store date + * @len: number of bytes to read + */ +static void omap_read_buf_pref(struct mtd_info *mtd, u_char *buf, int len) +{ + struct omap_nand_info *info = mtd_to_omap(mtd); + uint32_t r_count = 0; + int ret = 0; + u32 *p = (u32 *)buf; + + /* take care of subpage reads */ + if (len % 4) { + if (info->nand.options & NAND_BUSWIDTH_16) + omap_read_buf16(mtd, buf, len % 4); + else + omap_read_buf8(mtd, buf, len % 4); + p = (u32 *) (buf + len % 4); + len -= len % 4; + } + + /* configure and start prefetch transfer */ + ret = omap_prefetch_enable(info->gpmc_cs, + PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x0, info); + if (ret) { + /* PFPW engine is busy, use cpu copy method */ + if (info->nand.options & NAND_BUSWIDTH_16) + omap_read_buf16(mtd, (u_char *)p, len); + else + omap_read_buf8(mtd, (u_char *)p, len); + } else { + do { + r_count = readl(info->reg.gpmc_prefetch_status); + r_count = PREFETCH_STATUS_FIFO_CNT(r_count); + r_count = r_count >> 2; + ioread32_rep(info->nand.IO_ADDR_R, p, r_count); + p += r_count; + len -= r_count << 2; + } while (len); + /* disable and stop the PFPW engine */ + omap_prefetch_reset(info->gpmc_cs, info); + } +} + +/** + * omap_write_buf_pref - write buffer to NAND controller + * @mtd: MTD device structure + * @buf: data buffer + * @len: number of bytes to write + */ +static void omap_write_buf_pref(struct mtd_info *mtd, + const u_char *buf, int len) +{ + struct omap_nand_info *info = mtd_to_omap(mtd); + uint32_t w_count = 0; + int i = 0, ret = 0; + u16 *p = (u16 *)buf; + unsigned long tim, limit; + u32 val; + + /* take care of subpage writes */ + if (len % 2 != 0) { + writeb(*buf, info->nand.IO_ADDR_W); + p = (u16 *)(buf + 1); + len--; + } + + /* configure and start prefetch transfer */ + ret = omap_prefetch_enable(info->gpmc_cs, + PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x1, info); + if (ret) { + /* PFPW engine is busy, use cpu copy method */ + if (info->nand.options & NAND_BUSWIDTH_16) + omap_write_buf16(mtd, (u_char *)p, len); + else + omap_write_buf8(mtd, (u_char *)p, len); + } else { + while (len) { + w_count = readl(info->reg.gpmc_prefetch_status); + w_count = PREFETCH_STATUS_FIFO_CNT(w_count); + w_count = w_count >> 1; + for (i = 0; (i < w_count) && len; i++, len -= 2) + iowrite16(*p++, info->nand.IO_ADDR_W); + } + /* wait for data to flushed-out before reset the prefetch */ + tim = 0; + limit = (loops_per_jiffy * + msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS)); + do { + cpu_relax(); + val = readl(info->reg.gpmc_prefetch_status); + val = PREFETCH_STATUS_COUNT(val); + } while (val && (tim++ < limit)); + + /* disable and stop the PFPW engine */ + omap_prefetch_reset(info->gpmc_cs, info); + } +} + +/* + * omap_nand_dma_callback: callback on the completion of dma transfer + * @data: pointer to completion data structure + */ +static void omap_nand_dma_callback(void *data) +{ + complete((struct completion *) data); +} + +/* + * omap_nand_dma_transfer: configure and start dma transfer + * @mtd: MTD device structure + * @addr: virtual address in RAM of source/destination + * @len: number of data bytes to be transferred + * @is_write: flag for read/write operation + */ +static inline int omap_nand_dma_transfer(struct mtd_info *mtd, void *addr, + unsigned int len, int is_write) +{ + struct omap_nand_info *info = mtd_to_omap(mtd); + struct dma_async_tx_descriptor *tx; + enum dma_data_direction dir = is_write ? DMA_TO_DEVICE : + DMA_FROM_DEVICE; + struct scatterlist sg; + unsigned long tim, limit; + unsigned n; + int ret; + u32 val; + + if (!virt_addr_valid(addr)) + goto out_copy; + + sg_init_one(&sg, addr, len); + n = dma_map_sg(info->dma->device->dev, &sg, 1, dir); + if (n == 0) { + dev_err(&info->pdev->dev, + "Couldn't DMA map a %d byte buffer\n", len); + goto out_copy; + } + + tx = dmaengine_prep_slave_sg(info->dma, &sg, n, + is_write ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM, + DMA_PREP_INTERRUPT | DMA_CTRL_ACK); + if (!tx) + goto out_copy_unmap; + + tx->callback = omap_nand_dma_callback; + tx->callback_param = &info->comp; + dmaengine_submit(tx); + + init_completion(&info->comp); + + /* setup and start DMA using dma_addr */ + dma_async_issue_pending(info->dma); + + /* configure and start prefetch transfer */ + ret = omap_prefetch_enable(info->gpmc_cs, + PREFETCH_FIFOTHRESHOLD_MAX, 0x1, len, is_write, info); + if (ret) + /* PFPW engine is busy, use cpu copy method */ + goto out_copy_unmap; + + wait_for_completion(&info->comp); + tim = 0; + limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS)); + + do { + cpu_relax(); + val = readl(info->reg.gpmc_prefetch_status); + val = PREFETCH_STATUS_COUNT(val); + } while (val && (tim++ < limit)); + + /* disable and stop the PFPW engine */ + omap_prefetch_reset(info->gpmc_cs, info); + + dma_unmap_sg(info->dma->device->dev, &sg, 1, dir); + return 0; + +out_copy_unmap: + dma_unmap_sg(info->dma->device->dev, &sg, 1, dir); +out_copy: + if (info->nand.options & NAND_BUSWIDTH_16) + is_write == 0 ? omap_read_buf16(mtd, (u_char *) addr, len) + : omap_write_buf16(mtd, (u_char *) addr, len); + else + is_write == 0 ? omap_read_buf8(mtd, (u_char *) addr, len) + : omap_write_buf8(mtd, (u_char *) addr, len); + return 0; +} + +/** + * omap_read_buf_dma_pref - read data from NAND controller into buffer + * @mtd: MTD device structure + * @buf: buffer to store date + * @len: number of bytes to read + */ +static void omap_read_buf_dma_pref(struct mtd_info *mtd, u_char *buf, int len) +{ + if (len <= mtd->oobsize) + omap_read_buf_pref(mtd, buf, len); + else + /* start transfer in DMA mode */ + omap_nand_dma_transfer(mtd, buf, len, 0x0); +} + +/** + * omap_write_buf_dma_pref - write buffer to NAND controller + * @mtd: MTD device structure + * @buf: data buffer + * @len: number of bytes to write + */ +static void omap_write_buf_dma_pref(struct mtd_info *mtd, + const u_char *buf, int len) +{ + if (len <= mtd->oobsize) + omap_write_buf_pref(mtd, buf, len); + else + /* start transfer in DMA mode */ + omap_nand_dma_transfer(mtd, (u_char *) buf, len, 0x1); +} + +/* + * omap_nand_irq - GPMC irq handler + * @this_irq: gpmc irq number + * @dev: omap_nand_info structure pointer is passed here + */ +static irqreturn_t omap_nand_irq(int this_irq, void *dev) +{ + struct omap_nand_info *info = (struct omap_nand_info *) dev; + u32 bytes; + + bytes = readl(info->reg.gpmc_prefetch_status); + bytes = PREFETCH_STATUS_FIFO_CNT(bytes); + bytes = bytes & 0xFFFC; /* io in multiple of 4 bytes */ + if (info->iomode == OMAP_NAND_IO_WRITE) { /* checks for write io */ + if (this_irq == info->gpmc_irq_count) + goto done; + + if (info->buf_len && (info->buf_len < bytes)) + bytes = info->buf_len; + else if (!info->buf_len) + bytes = 0; + iowrite32_rep(info->nand.IO_ADDR_W, + (u32 *)info->buf, bytes >> 2); + info->buf = info->buf + bytes; + info->buf_len -= bytes; + + } else { + ioread32_rep(info->nand.IO_ADDR_R, + (u32 *)info->buf, bytes >> 2); + info->buf = info->buf + bytes; + + if (this_irq == info->gpmc_irq_count) + goto done; + } + + return IRQ_HANDLED; + +done: + complete(&info->comp); + + disable_irq_nosync(info->gpmc_irq_fifo); + disable_irq_nosync(info->gpmc_irq_count); + + return IRQ_HANDLED; +} + +/* + * omap_read_buf_irq_pref - read data from NAND controller into buffer + * @mtd: MTD device structure + * @buf: buffer to store date + * @len: number of bytes to read + */ +static void omap_read_buf_irq_pref(struct mtd_info *mtd, u_char *buf, int len) +{ + struct omap_nand_info *info = mtd_to_omap(mtd); + int ret = 0; + + if (len <= mtd->oobsize) { + omap_read_buf_pref(mtd, buf, len); + return; + } + + info->iomode = OMAP_NAND_IO_READ; + info->buf = buf; + init_completion(&info->comp); + + /* configure and start prefetch transfer */ + ret = omap_prefetch_enable(info->gpmc_cs, + PREFETCH_FIFOTHRESHOLD_MAX/2, 0x0, len, 0x0, info); + if (ret) + /* PFPW engine is busy, use cpu copy method */ + goto out_copy; + + info->buf_len = len; + + enable_irq(info->gpmc_irq_count); + enable_irq(info->gpmc_irq_fifo); + + /* waiting for read to complete */ + wait_for_completion(&info->comp); + + /* disable and stop the PFPW engine */ + omap_prefetch_reset(info->gpmc_cs, info); + return; + +out_copy: + if (info->nand.options & NAND_BUSWIDTH_16) + omap_read_buf16(mtd, buf, len); + else + omap_read_buf8(mtd, buf, len); +} + +/* + * omap_write_buf_irq_pref - write buffer to NAND controller + * @mtd: MTD device structure + * @buf: data buffer + * @len: number of bytes to write + */ +static void omap_write_buf_irq_pref(struct mtd_info *mtd, + const u_char *buf, int len) +{ + struct omap_nand_info *info = mtd_to_omap(mtd); + int ret = 0; + unsigned long tim, limit; + u32 val; + + if (len <= mtd->oobsize) { + omap_write_buf_pref(mtd, buf, len); + return; + } + + info->iomode = OMAP_NAND_IO_WRITE; + info->buf = (u_char *) buf; + init_completion(&info->comp); + + /* configure and start prefetch transfer : size=24 */ + ret = omap_prefetch_enable(info->gpmc_cs, + (PREFETCH_FIFOTHRESHOLD_MAX * 3) / 8, 0x0, len, 0x1, info); + if (ret) + /* PFPW engine is busy, use cpu copy method */ + goto out_copy; + + info->buf_len = len; + + enable_irq(info->gpmc_irq_count); + enable_irq(info->gpmc_irq_fifo); + + /* waiting for write to complete */ + wait_for_completion(&info->comp); + + /* wait for data to flushed-out before reset the prefetch */ + tim = 0; + limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS)); + do { + val = readl(info->reg.gpmc_prefetch_status); + val = PREFETCH_STATUS_COUNT(val); + cpu_relax(); + } while (val && (tim++ < limit)); + + /* disable and stop the PFPW engine */ + omap_prefetch_reset(info->gpmc_cs, info); + return; + +out_copy: + if (info->nand.options & NAND_BUSWIDTH_16) + omap_write_buf16(mtd, buf, len); + else + omap_write_buf8(mtd, buf, len); +} + +/** + * gen_true_ecc - This function will generate true ECC value + * @ecc_buf: buffer to store ecc code + * + * This generated true ECC value can be used when correcting + * data read from NAND flash memory core + */ +static void gen_true_ecc(u8 *ecc_buf) +{ + u32 tmp = ecc_buf[0] | (ecc_buf[1] << 16) | + ((ecc_buf[2] & 0xF0) << 20) | ((ecc_buf[2] & 0x0F) << 8); + + ecc_buf[0] = ~(P64o(tmp) | P64e(tmp) | P32o(tmp) | P32e(tmp) | + P16o(tmp) | P16e(tmp) | P8o(tmp) | P8e(tmp)); + ecc_buf[1] = ~(P1024o(tmp) | P1024e(tmp) | P512o(tmp) | P512e(tmp) | + P256o(tmp) | P256e(tmp) | P128o(tmp) | P128e(tmp)); + ecc_buf[2] = ~(P4o(tmp) | P4e(tmp) | P2o(tmp) | P2e(tmp) | P1o(tmp) | + P1e(tmp) | P2048o(tmp) | P2048e(tmp)); +} + +/** + * omap_compare_ecc - Detect (2 bits) and correct (1 bit) error in data + * @ecc_data1: ecc code from nand spare area + * @ecc_data2: ecc code from hardware register obtained from hardware ecc + * @page_data: page data + * + * This function compares two ECC's and indicates if there is an error. + * If the error can be corrected it will be corrected to the buffer. + * If there is no error, %0 is returned. If there is an error but it + * was corrected, %1 is returned. Otherwise, %-1 is returned. + */ +static int omap_compare_ecc(u8 *ecc_data1, /* read from NAND memory */ + u8 *ecc_data2, /* read from register */ + u8 *page_data) +{ + uint i; + u8 tmp0_bit[8], tmp1_bit[8], tmp2_bit[8]; + u8 comp0_bit[8], comp1_bit[8], comp2_bit[8]; + u8 ecc_bit[24]; + u8 ecc_sum = 0; + u8 find_bit = 0; + uint find_byte = 0; + int isEccFF; + + isEccFF = ((*(u32 *)ecc_data1 & 0xFFFFFF) == 0xFFFFFF); + + gen_true_ecc(ecc_data1); + gen_true_ecc(ecc_data2); + + for (i = 0; i <= 2; i++) { + *(ecc_data1 + i) = ~(*(ecc_data1 + i)); + *(ecc_data2 + i) = ~(*(ecc_data2 + i)); + } + + for (i = 0; i < 8; i++) { + tmp0_bit[i] = *ecc_data1 % 2; + *ecc_data1 = *ecc_data1 / 2; + } + + for (i = 0; i < 8; i++) { + tmp1_bit[i] = *(ecc_data1 + 1) % 2; + *(ecc_data1 + 1) = *(ecc_data1 + 1) / 2; + } + + for (i = 0; i < 8; i++) { + tmp2_bit[i] = *(ecc_data1 + 2) % 2; + *(ecc_data1 + 2) = *(ecc_data1 + 2) / 2; + } + + for (i = 0; i < 8; i++) { + comp0_bit[i] = *ecc_data2 % 2; + *ecc_data2 = *ecc_data2 / 2; + } + + for (i = 0; i < 8; i++) { + comp1_bit[i] = *(ecc_data2 + 1) % 2; + *(ecc_data2 + 1) = *(ecc_data2 + 1) / 2; + } + + for (i = 0; i < 8; i++) { + comp2_bit[i] = *(ecc_data2 + 2) % 2; + *(ecc_data2 + 2) = *(ecc_data2 + 2) / 2; + } + + for (i = 0; i < 6; i++) + ecc_bit[i] = tmp2_bit[i + 2] ^ comp2_bit[i + 2]; + + for (i = 0; i < 8; i++) + ecc_bit[i + 6] = tmp0_bit[i] ^ comp0_bit[i]; + + for (i = 0; i < 8; i++) + ecc_bit[i + 14] = tmp1_bit[i] ^ comp1_bit[i]; + + ecc_bit[22] = tmp2_bit[0] ^ comp2_bit[0]; + ecc_bit[23] = tmp2_bit[1] ^ comp2_bit[1]; + + for (i = 0; i < 24; i++) + ecc_sum += ecc_bit[i]; + + switch (ecc_sum) { + case 0: + /* Not reached because this function is not called if + * ECC values are equal + */ + return 0; + + case 1: + /* Uncorrectable error */ + pr_debug("ECC UNCORRECTED_ERROR 1\n"); + return -EBADMSG; + + case 11: + /* UN-Correctable error */ + pr_debug("ECC UNCORRECTED_ERROR B\n"); + return -EBADMSG; + + case 12: + /* Correctable error */ + find_byte = (ecc_bit[23] << 8) + + (ecc_bit[21] << 7) + + (ecc_bit[19] << 6) + + (ecc_bit[17] << 5) + + (ecc_bit[15] << 4) + + (ecc_bit[13] << 3) + + (ecc_bit[11] << 2) + + (ecc_bit[9] << 1) + + ecc_bit[7]; + + find_bit = (ecc_bit[5] << 2) + (ecc_bit[3] << 1) + ecc_bit[1]; + + pr_debug("Correcting single bit ECC error at offset: " + "%d, bit: %d\n", find_byte, find_bit); + + page_data[find_byte] ^= (1 << find_bit); + + return 1; + default: + if (isEccFF) { + if (ecc_data2[0] == 0 && + ecc_data2[1] == 0 && + ecc_data2[2] == 0) + return 0; + } + pr_debug("UNCORRECTED_ERROR default\n"); + return -EBADMSG; + } +} + +/** + * omap_correct_data - Compares the ECC read with HW generated ECC + * @mtd: MTD device structure + * @dat: page data + * @read_ecc: ecc read from nand flash + * @calc_ecc: ecc read from HW ECC registers + * + * Compares the ecc read from nand spare area with ECC registers values + * and if ECC's mismatched, it will call 'omap_compare_ecc' for error + * detection and correction. If there are no errors, %0 is returned. If + * there were errors and all of the errors were corrected, the number of + * corrected errors is returned. If uncorrectable errors exist, %-1 is + * returned. + */ +static int omap_correct_data(struct mtd_info *mtd, u_char *dat, + u_char *read_ecc, u_char *calc_ecc) +{ + struct omap_nand_info *info = mtd_to_omap(mtd); + int blockCnt = 0, i = 0, ret = 0; + int stat = 0; + + /* Ex NAND_ECC_HW12_2048 */ + if ((info->nand.ecc.mode == NAND_ECC_HW) && + (info->nand.ecc.size == 2048)) + blockCnt = 4; + else + blockCnt = 1; + + for (i = 0; i < blockCnt; i++) { + if (memcmp(read_ecc, calc_ecc, 3) != 0) { + ret = omap_compare_ecc(read_ecc, calc_ecc, dat); + if (ret < 0) + return ret; + /* keep track of the number of corrected errors */ + stat += ret; + } + read_ecc += 3; + calc_ecc += 3; + dat += 512; + } + return stat; +} + +/** + * omap_calcuate_ecc - Generate non-inverted ECC bytes. + * @mtd: MTD device structure + * @dat: The pointer to data on which ecc is computed + * @ecc_code: The ecc_code buffer + * + * Using noninverted ECC can be considered ugly since writing a blank + * page ie. padding will clear the ECC bytes. This is no problem as long + * nobody is trying to write data on the seemingly unused page. Reading + * an erased page will produce an ECC mismatch between generated and read + * ECC bytes that has to be dealt with separately. + */ +static int omap_calculate_ecc(struct mtd_info *mtd, const u_char *dat, + u_char *ecc_code) +{ + struct omap_nand_info *info = mtd_to_omap(mtd); + u32 val; + + val = readl(info->reg.gpmc_ecc_config); + if (((val >> ECC_CONFIG_CS_SHIFT) & CS_MASK) != info->gpmc_cs) + return -EINVAL; + + /* read ecc result */ + val = readl(info->reg.gpmc_ecc1_result); + *ecc_code++ = val; /* P128e, ..., P1e */ + *ecc_code++ = val >> 16; /* P128o, ..., P1o */ + /* P2048o, P1024o, P512o, P256o, P2048e, P1024e, P512e, P256e */ + *ecc_code++ = ((val >> 8) & 0x0f) | ((val >> 20) & 0xf0); + + return 0; +} + +/** + * omap_enable_hwecc - This function enables the hardware ecc functionality + * @mtd: MTD device structure + * @mode: Read/Write mode + */ +static void omap_enable_hwecc(struct mtd_info *mtd, int mode) +{ + struct omap_nand_info *info = mtd_to_omap(mtd); + struct nand_chip *chip = mtd_to_nand(mtd); + unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0; + u32 val; + + /* clear ecc and enable bits */ + val = ECCCLEAR | ECC1; + writel(val, info->reg.gpmc_ecc_control); + + /* program ecc and result sizes */ + val = ((((info->nand.ecc.size >> 1) - 1) << ECCSIZE1_SHIFT) | + ECC1RESULTSIZE); + writel(val, info->reg.gpmc_ecc_size_config); + + switch (mode) { + case NAND_ECC_READ: + case NAND_ECC_WRITE: + writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control); + break; + case NAND_ECC_READSYN: + writel(ECCCLEAR, info->reg.gpmc_ecc_control); + break; + default: + dev_info(&info->pdev->dev, + "error: unrecognized Mode[%d]!\n", mode); + break; + } + + /* (ECC 16 or 8 bit col) | ( CS ) | ECC Enable */ + val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1); + writel(val, info->reg.gpmc_ecc_config); +} + +/** + * omap_wait - wait until the command is done + * @mtd: MTD device structure + * @chip: NAND Chip structure + * + * Wait function is called during Program and erase operations and + * the way it is called from MTD layer, we should wait till the NAND + * chip is ready after the programming/erase operation has completed. + * + * Erase can take up to 400ms and program up to 20ms according to + * general NAND and SmartMedia specs + */ +static int omap_wait(struct mtd_info *mtd, struct nand_chip *chip) +{ + struct nand_chip *this = mtd_to_nand(mtd); + struct omap_nand_info *info = mtd_to_omap(mtd); + unsigned long timeo = jiffies; + int status, state = this->state; + + if (state == FL_ERASING) + timeo += msecs_to_jiffies(400); + else + timeo += msecs_to_jiffies(20); + + writeb(NAND_CMD_STATUS & 0xFF, info->reg.gpmc_nand_command); + while (time_before(jiffies, timeo)) { + status = readb(info->reg.gpmc_nand_data); + if (status & NAND_STATUS_READY) + break; + cond_resched(); + } + + status = readb(info->reg.gpmc_nand_data); + return status; +} + +/** + * omap_dev_ready - checks the NAND Ready GPIO line + * @mtd: MTD device structure + * + * Returns true if ready and false if busy. + */ +static int omap_dev_ready(struct mtd_info *mtd) +{ + struct omap_nand_info *info = mtd_to_omap(mtd); + + return gpiod_get_value(info->ready_gpiod); +} + +/** + * omap_enable_hwecc_bch - Program GPMC to perform BCH ECC calculation + * @mtd: MTD device structure + * @mode: Read/Write mode + * + * When using BCH with SW correction (i.e. no ELM), sector size is set + * to 512 bytes and we use BCH_WRAPMODE_6 wrapping mode + * for both reading and writing with: + * eccsize0 = 0 (no additional protected byte in spare area) + * eccsize1 = 32 (skip 32 nibbles = 16 bytes per sector in spare area) + */ +static void __maybe_unused omap_enable_hwecc_bch(struct mtd_info *mtd, int mode) +{ + unsigned int bch_type; + unsigned int dev_width, nsectors; + struct omap_nand_info *info = mtd_to_omap(mtd); + enum omap_ecc ecc_opt = info->ecc_opt; + struct nand_chip *chip = mtd_to_nand(mtd); + u32 val, wr_mode; + unsigned int ecc_size1, ecc_size0; + + /* GPMC configurations for calculating ECC */ + switch (ecc_opt) { + case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW: + bch_type = 0; + nsectors = 1; + wr_mode = BCH_WRAPMODE_6; + ecc_size0 = BCH_ECC_SIZE0; + ecc_size1 = BCH_ECC_SIZE1; + break; + case OMAP_ECC_BCH4_CODE_HW: + bch_type = 0; + nsectors = chip->ecc.steps; + if (mode == NAND_ECC_READ) { + wr_mode = BCH_WRAPMODE_1; + ecc_size0 = BCH4R_ECC_SIZE0; + ecc_size1 = BCH4R_ECC_SIZE1; + } else { + wr_mode = BCH_WRAPMODE_6; + ecc_size0 = BCH_ECC_SIZE0; + ecc_size1 = BCH_ECC_SIZE1; + } + break; + case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW: + bch_type = 1; + nsectors = 1; + wr_mode = BCH_WRAPMODE_6; + ecc_size0 = BCH_ECC_SIZE0; + ecc_size1 = BCH_ECC_SIZE1; + break; + case OMAP_ECC_BCH8_CODE_HW: + bch_type = 1; + nsectors = chip->ecc.steps; + if (mode == NAND_ECC_READ) { + wr_mode = BCH_WRAPMODE_1; + ecc_size0 = BCH8R_ECC_SIZE0; + ecc_size1 = BCH8R_ECC_SIZE1; + } else { + wr_mode = BCH_WRAPMODE_6; + ecc_size0 = BCH_ECC_SIZE0; + ecc_size1 = BCH_ECC_SIZE1; + } + break; + case OMAP_ECC_BCH16_CODE_HW: + bch_type = 0x2; + nsectors = chip->ecc.steps; + if (mode == NAND_ECC_READ) { + wr_mode = 0x01; + ecc_size0 = 52; /* ECC bits in nibbles per sector */ + ecc_size1 = 0; /* non-ECC bits in nibbles per sector */ + } else { + wr_mode = 0x01; + ecc_size0 = 0; /* extra bits in nibbles per sector */ + ecc_size1 = 52; /* OOB bits in nibbles per sector */ + } + break; + default: + return; + } + + writel(ECC1, info->reg.gpmc_ecc_control); + + /* Configure ecc size for BCH */ + val = (ecc_size1 << ECCSIZE1_SHIFT) | (ecc_size0 << ECCSIZE0_SHIFT); + writel(val, info->reg.gpmc_ecc_size_config); + + dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0; + + /* BCH configuration */ + val = ((1 << 16) | /* enable BCH */ + (bch_type << 12) | /* BCH4/BCH8/BCH16 */ + (wr_mode << 8) | /* wrap mode */ + (dev_width << 7) | /* bus width */ + (((nsectors-1) & 0x7) << 4) | /* number of sectors */ + (info->gpmc_cs << 1) | /* ECC CS */ + (0x1)); /* enable ECC */ + + writel(val, info->reg.gpmc_ecc_config); + + /* Clear ecc and enable bits */ + writel(ECCCLEAR | ECC1, info->reg.gpmc_ecc_control); +} + +static u8 bch4_polynomial[] = {0x28, 0x13, 0xcc, 0x39, 0x96, 0xac, 0x7f}; +static u8 bch8_polynomial[] = {0xef, 0x51, 0x2e, 0x09, 0xed, 0x93, 0x9a, 0xc2, + 0x97, 0x79, 0xe5, 0x24, 0xb5}; + +/** + * _omap_calculate_ecc_bch - Generate ECC bytes for one sector + * @mtd: MTD device structure + * @dat: The pointer to data on which ecc is computed + * @ecc_code: The ecc_code buffer + * @i: The sector number (for a multi sector page) + * + * Support calculating of BCH4/8/16 ECC vectors for one sector + * within a page. Sector number is in @i. + */ +static int _omap_calculate_ecc_bch(struct mtd_info *mtd, + const u_char *dat, u_char *ecc_calc, int i) +{ + struct omap_nand_info *info = mtd_to_omap(mtd); + int eccbytes = info->nand.ecc.bytes; + struct gpmc_nand_regs *gpmc_regs = &info->reg; + u8 *ecc_code; + unsigned long bch_val1, bch_val2, bch_val3, bch_val4; + u32 val; + int j; + + ecc_code = ecc_calc; + switch (info->ecc_opt) { + case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW: + case OMAP_ECC_BCH8_CODE_HW: + bch_val1 = readl(gpmc_regs->gpmc_bch_result0[i]); + bch_val2 = readl(gpmc_regs->gpmc_bch_result1[i]); + bch_val3 = readl(gpmc_regs->gpmc_bch_result2[i]); + bch_val4 = readl(gpmc_regs->gpmc_bch_result3[i]); + *ecc_code++ = (bch_val4 & 0xFF); + *ecc_code++ = ((bch_val3 >> 24) & 0xFF); + *ecc_code++ = ((bch_val3 >> 16) & 0xFF); + *ecc_code++ = ((bch_val3 >> 8) & 0xFF); + *ecc_code++ = (bch_val3 & 0xFF); + *ecc_code++ = ((bch_val2 >> 24) & 0xFF); + *ecc_code++ = ((bch_val2 >> 16) & 0xFF); + *ecc_code++ = ((bch_val2 >> 8) & 0xFF); + *ecc_code++ = (bch_val2 & 0xFF); + *ecc_code++ = ((bch_val1 >> 24) & 0xFF); + *ecc_code++ = ((bch_val1 >> 16) & 0xFF); + *ecc_code++ = ((bch_val1 >> 8) & 0xFF); + *ecc_code++ = (bch_val1 & 0xFF); + break; + case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW: + case OMAP_ECC_BCH4_CODE_HW: + bch_val1 = readl(gpmc_regs->gpmc_bch_result0[i]); + bch_val2 = readl(gpmc_regs->gpmc_bch_result1[i]); + *ecc_code++ = ((bch_val2 >> 12) & 0xFF); + *ecc_code++ = ((bch_val2 >> 4) & 0xFF); + *ecc_code++ = ((bch_val2 & 0xF) << 4) | + ((bch_val1 >> 28) & 0xF); + *ecc_code++ = ((bch_val1 >> 20) & 0xFF); + *ecc_code++ = ((bch_val1 >> 12) & 0xFF); + *ecc_code++ = ((bch_val1 >> 4) & 0xFF); + *ecc_code++ = ((bch_val1 & 0xF) << 4); + break; + case OMAP_ECC_BCH16_CODE_HW: + val = readl(gpmc_regs->gpmc_bch_result6[i]); + ecc_code[0] = ((val >> 8) & 0xFF); + ecc_code[1] = ((val >> 0) & 0xFF); + val = readl(gpmc_regs->gpmc_bch_result5[i]); + ecc_code[2] = ((val >> 24) & 0xFF); + ecc_code[3] = ((val >> 16) & 0xFF); + ecc_code[4] = ((val >> 8) & 0xFF); + ecc_code[5] = ((val >> 0) & 0xFF); + val = readl(gpmc_regs->gpmc_bch_result4[i]); + ecc_code[6] = ((val >> 24) & 0xFF); + ecc_code[7] = ((val >> 16) & 0xFF); + ecc_code[8] = ((val >> 8) & 0xFF); + ecc_code[9] = ((val >> 0) & 0xFF); + val = readl(gpmc_regs->gpmc_bch_result3[i]); + ecc_code[10] = ((val >> 24) & 0xFF); + ecc_code[11] = ((val >> 16) & 0xFF); + ecc_code[12] = ((val >> 8) & 0xFF); + ecc_code[13] = ((val >> 0) & 0xFF); + val = readl(gpmc_regs->gpmc_bch_result2[i]); + ecc_code[14] = ((val >> 24) & 0xFF); + ecc_code[15] = ((val >> 16) & 0xFF); + ecc_code[16] = ((val >> 8) & 0xFF); + ecc_code[17] = ((val >> 0) & 0xFF); + val = readl(gpmc_regs->gpmc_bch_result1[i]); + ecc_code[18] = ((val >> 24) & 0xFF); + ecc_code[19] = ((val >> 16) & 0xFF); + ecc_code[20] = ((val >> 8) & 0xFF); + ecc_code[21] = ((val >> 0) & 0xFF); + val = readl(gpmc_regs->gpmc_bch_result0[i]); + ecc_code[22] = ((val >> 24) & 0xFF); + ecc_code[23] = ((val >> 16) & 0xFF); + ecc_code[24] = ((val >> 8) & 0xFF); + ecc_code[25] = ((val >> 0) & 0xFF); + break; + default: + return -EINVAL; + } + + /* ECC scheme specific syndrome customizations */ + switch (info->ecc_opt) { + case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW: + /* Add constant polynomial to remainder, so that + * ECC of blank pages results in 0x0 on reading back + */ + for (j = 0; j < eccbytes; j++) + ecc_calc[j] ^= bch4_polynomial[j]; + break; + case OMAP_ECC_BCH4_CODE_HW: + /* Set 8th ECC byte as 0x0 for ROM compatibility */ + ecc_calc[eccbytes - 1] = 0x0; + break; + case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW: + /* Add constant polynomial to remainder, so that + * ECC of blank pages results in 0x0 on reading back + */ + for (j = 0; j < eccbytes; j++) + ecc_calc[j] ^= bch8_polynomial[j]; + break; + case OMAP_ECC_BCH8_CODE_HW: + /* Set 14th ECC byte as 0x0 for ROM compatibility */ + ecc_calc[eccbytes - 1] = 0x0; + break; + case OMAP_ECC_BCH16_CODE_HW: + break; + default: + return -EINVAL; + } + + return 0; +} + +/** + * omap_calculate_ecc_bch_sw - ECC generator for sector for SW based correction + * @mtd: MTD device structure + * @dat: The pointer to data on which ecc is computed + * @ecc_code: The ecc_code buffer + * + * Support calculating of BCH4/8/16 ECC vectors for one sector. This is used + * when SW based correction is required as ECC is required for one sector + * at a time. + */ +static int omap_calculate_ecc_bch_sw(struct mtd_info *mtd, + const u_char *dat, u_char *ecc_calc) +{ + return _omap_calculate_ecc_bch(mtd, dat, ecc_calc, 0); +} + +/** + * omap_calculate_ecc_bch_multi - Generate ECC for multiple sectors + * @mtd: MTD device structure + * @dat: The pointer to data on which ecc is computed + * @ecc_code: The ecc_code buffer + * + * Support calculating of BCH4/8/16 ecc vectors for the entire page in one go. + */ +static int omap_calculate_ecc_bch_multi(struct mtd_info *mtd, + const u_char *dat, u_char *ecc_calc) +{ + struct omap_nand_info *info = mtd_to_omap(mtd); + int eccbytes = info->nand.ecc.bytes; + unsigned long nsectors; + int i, ret; + + nsectors = ((readl(info->reg.gpmc_ecc_config) >> 4) & 0x7) + 1; + for (i = 0; i < nsectors; i++) { + ret = _omap_calculate_ecc_bch(mtd, dat, ecc_calc, i); + if (ret) + return ret; + + ecc_calc += eccbytes; + } + + return 0; +} + +/** + * erased_sector_bitflips - count bit flips + * @data: data sector buffer + * @oob: oob buffer + * @info: omap_nand_info + * + * Check the bit flips in erased page falls below correctable level. + * If falls below, report the page as erased with correctable bit + * flip, else report as uncorrectable page. + */ +static int erased_sector_bitflips(u_char *data, u_char *oob, + struct omap_nand_info *info) +{ + int flip_bits = 0, i; + + for (i = 0; i < info->nand.ecc.size; i++) { + flip_bits += hweight8(~data[i]); + if (flip_bits > info->nand.ecc.strength) + return 0; + } + + for (i = 0; i < info->nand.ecc.bytes - 1; i++) { + flip_bits += hweight8(~oob[i]); + if (flip_bits > info->nand.ecc.strength) + return 0; + } + + /* + * Bit flips falls in correctable level. + * Fill data area with 0xFF + */ + if (flip_bits) { + memset(data, 0xFF, info->nand.ecc.size); + memset(oob, 0xFF, info->nand.ecc.bytes); + } + + return flip_bits; +} + +/** + * omap_elm_correct_data - corrects page data area in case error reported + * @mtd: MTD device structure + * @data: page data + * @read_ecc: ecc read from nand flash + * @calc_ecc: ecc read from HW ECC registers + * + * Calculated ecc vector reported as zero in case of non-error pages. + * In case of non-zero ecc vector, first filter out erased-pages, and + * then process data via ELM to detect bit-flips. + */ +static int omap_elm_correct_data(struct mtd_info *mtd, u_char *data, + u_char *read_ecc, u_char *calc_ecc) +{ + struct omap_nand_info *info = mtd_to_omap(mtd); + struct nand_ecc_ctrl *ecc = &info->nand.ecc; + int eccsteps = info->nand.ecc.steps; + int i , j, stat = 0; + int eccflag, actual_eccbytes; + struct elm_errorvec err_vec[ERROR_VECTOR_MAX]; + u_char *ecc_vec = calc_ecc; + u_char *spare_ecc = read_ecc; + u_char *erased_ecc_vec; + u_char *buf; + int bitflip_count; + bool is_error_reported = false; + u32 bit_pos, byte_pos, error_max, pos; + int err; + + switch (info->ecc_opt) { + case OMAP_ECC_BCH4_CODE_HW: + /* omit 7th ECC byte reserved for ROM code compatibility */ + actual_eccbytes = ecc->bytes - 1; + erased_ecc_vec = bch4_vector; + break; + case OMAP_ECC_BCH8_CODE_HW: + /* omit 14th ECC byte reserved for ROM code compatibility */ + actual_eccbytes = ecc->bytes - 1; + erased_ecc_vec = bch8_vector; + break; + case OMAP_ECC_BCH16_CODE_HW: + actual_eccbytes = ecc->bytes; + erased_ecc_vec = bch16_vector; + break; + default: + dev_err(&info->pdev->dev, "invalid driver configuration\n"); + return -EINVAL; + } + + /* Initialize elm error vector to zero */ + memset(err_vec, 0, sizeof(err_vec)); + + for (i = 0; i < eccsteps ; i++) { + eccflag = 0; /* initialize eccflag */ + + /* + * Check any error reported, + * In case of error, non zero ecc reported. + */ + for (j = 0; j < actual_eccbytes; j++) { + if (calc_ecc[j] != 0) { + eccflag = 1; /* non zero ecc, error present */ + break; + } + } + + if (eccflag == 1) { + if (memcmp(calc_ecc, erased_ecc_vec, + actual_eccbytes) == 0) { + /* + * calc_ecc[] matches pattern for ECC(all 0xff) + * so this is definitely an erased-page + */ + } else { + buf = &data[info->nand.ecc.size * i]; + /* + * count number of 0-bits in read_buf. + * This check can be removed once a similar + * check is introduced in generic NAND driver + */ + bitflip_count = erased_sector_bitflips( + buf, read_ecc, info); + if (bitflip_count) { + /* + * number of 0-bits within ECC limits + * So this may be an erased-page + */ + stat += bitflip_count; + } else { + /* + * Too many 0-bits. It may be a + * - programmed-page, OR + * - erased-page with many bit-flips + * So this page requires check by ELM + */ + err_vec[i].error_reported = true; + is_error_reported = true; + } + } + } + + /* Update the ecc vector */ + calc_ecc += ecc->bytes; + read_ecc += ecc->bytes; + } + + /* Check if any error reported */ + if (!is_error_reported) + return stat; + + /* Decode BCH error using ELM module */ + elm_decode_bch_error_page(info->elm_dev, ecc_vec, err_vec); + + err = 0; + for (i = 0; i < eccsteps; i++) { + if (err_vec[i].error_uncorrectable) { + dev_err(&info->pdev->dev, + "uncorrectable bit-flips found\n"); + err = -EBADMSG; + } else if (err_vec[i].error_reported) { + for (j = 0; j < err_vec[i].error_count; j++) { + switch (info->ecc_opt) { + case OMAP_ECC_BCH4_CODE_HW: + /* Add 4 bits to take care of padding */ + pos = err_vec[i].error_loc[j] + + BCH4_BIT_PAD; + break; + case OMAP_ECC_BCH8_CODE_HW: + case OMAP_ECC_BCH16_CODE_HW: + pos = err_vec[i].error_loc[j]; + break; + default: + return -EINVAL; + } + error_max = (ecc->size + actual_eccbytes) * 8; + /* Calculate bit position of error */ + bit_pos = pos % 8; + + /* Calculate byte position of error */ + byte_pos = (error_max - pos - 1) / 8; + + if (pos < error_max) { + if (byte_pos < 512) { + pr_debug("bitflip@dat[%d]=%x\n", + byte_pos, data[byte_pos]); + data[byte_pos] ^= 1 << bit_pos; + } else { + pr_debug("bitflip@oob[%d]=%x\n", + (byte_pos - 512), + spare_ecc[byte_pos - 512]); + spare_ecc[byte_pos - 512] ^= + 1 << bit_pos; + } + } else { + dev_err(&info->pdev->dev, + "invalid bit-flip @ %d:%d\n", + byte_pos, bit_pos); + err = -EBADMSG; + } + } + } + + /* Update number of correctable errors */ + stat += err_vec[i].error_count; + + /* Update page data with sector size */ + data += ecc->size; + spare_ecc += ecc->bytes; + } + + return (err) ? err : stat; +} + +/** + * omap_write_page_bch - BCH ecc based write page function for entire page + * @mtd: mtd info structure + * @chip: nand chip info structure + * @buf: data buffer + * @oob_required: must write chip->oob_poi to OOB + * @page: page + * + * Custom write page method evolved to support multi sector writing in one shot + */ +static int omap_write_page_bch(struct mtd_info *mtd, struct nand_chip *chip, + const uint8_t *buf, int oob_required, int page) +{ + int ret; + uint8_t *ecc_calc = chip->ecc.calc_buf; + + nand_prog_page_begin_op(chip, page, 0, NULL, 0); + + /* Enable GPMC ecc engine */ + chip->ecc.hwctl(mtd, NAND_ECC_WRITE); + + /* Write data */ + chip->write_buf(mtd, buf, mtd->writesize); + + /* Update ecc vector from GPMC result registers */ + omap_calculate_ecc_bch_multi(mtd, buf, &ecc_calc[0]); + + ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0, + chip->ecc.total); + if (ret) + return ret; + + /* Write ecc vector to OOB area */ + chip->write_buf(mtd, chip->oob_poi, mtd->oobsize); + + return nand_prog_page_end_op(chip); +} + +/** + * omap_write_subpage_bch - BCH hardware ECC based subpage write + * @mtd: mtd info structure + * @chip: nand chip info structure + * @offset: column address of subpage within the page + * @data_len: data length + * @buf: data buffer + * @oob_required: must write chip->oob_poi to OOB + * @page: page number to write + * + * OMAP optimized subpage write method. + */ +static int omap_write_subpage_bch(struct mtd_info *mtd, + struct nand_chip *chip, u32 offset, + u32 data_len, const u8 *buf, + int oob_required, int page) +{ + u8 *ecc_calc = chip->ecc.calc_buf; + int ecc_size = chip->ecc.size; + int ecc_bytes = chip->ecc.bytes; + int ecc_steps = chip->ecc.steps; + u32 start_step = offset / ecc_size; + u32 end_step = (offset + data_len - 1) / ecc_size; + int step, ret = 0; + + /* + * Write entire page at one go as it would be optimal + * as ECC is calculated by hardware. + * ECC is calculated for all subpages but we choose + * only what we want. + */ + nand_prog_page_begin_op(chip, page, 0, NULL, 0); + + /* Enable GPMC ECC engine */ + chip->ecc.hwctl(mtd, NAND_ECC_WRITE); + + /* Write data */ + chip->write_buf(mtd, buf, mtd->writesize); + + for (step = 0; step < ecc_steps; step++) { + /* mask ECC of un-touched subpages by padding 0xFF */ + if (step < start_step || step > end_step) + memset(ecc_calc, 0xff, ecc_bytes); + else + ret = _omap_calculate_ecc_bch(mtd, buf, ecc_calc, step); + + if (ret) + return ret; + + buf += ecc_size; + ecc_calc += ecc_bytes; + } + + /* copy calculated ECC for whole page to chip->buffer->oob */ + /* this include masked-value(0xFF) for unwritten subpages */ + ecc_calc = chip->ecc.calc_buf; + ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0, + chip->ecc.total); + if (ret) + return ret; + + /* write OOB buffer to NAND device */ + chip->write_buf(mtd, chip->oob_poi, mtd->oobsize); + + return nand_prog_page_end_op(chip); +} + +/** + * omap_read_page_bch - BCH ecc based page read function for entire page + * @mtd: mtd info structure + * @chip: nand chip info structure + * @buf: buffer to store read data + * @oob_required: caller requires OOB data read to chip->oob_poi + * @page: page number to read + * + * For BCH ecc scheme, GPMC used for syndrome calculation and ELM module + * used for error correction. + * Custom method evolved to support ELM error correction & multi sector + * reading. On reading page data area is read along with OOB data with + * ecc engine enabled. ecc vector updated after read of OOB data. + * For non error pages ecc vector reported as zero. + */ +static int omap_read_page_bch(struct mtd_info *mtd, struct nand_chip *chip, + uint8_t *buf, int oob_required, int page) +{ + uint8_t *ecc_calc = chip->ecc.calc_buf; + uint8_t *ecc_code = chip->ecc.code_buf; + int stat, ret; + unsigned int max_bitflips = 0; + + nand_read_page_op(chip, page, 0, NULL, 0); + + /* Enable GPMC ecc engine */ + chip->ecc.hwctl(mtd, NAND_ECC_READ); + + /* Read data */ + chip->read_buf(mtd, buf, mtd->writesize); + + /* Read oob bytes */ + nand_change_read_column_op(chip, + mtd->writesize + BADBLOCK_MARKER_LENGTH, + chip->oob_poi + BADBLOCK_MARKER_LENGTH, + chip->ecc.total, false); + + /* Calculate ecc bytes */ + omap_calculate_ecc_bch_multi(mtd, buf, ecc_calc); + + ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0, + chip->ecc.total); + if (ret) + return ret; + + stat = chip->ecc.correct(mtd, buf, ecc_code, ecc_calc); + + if (stat < 0) { + mtd->ecc_stats.failed++; + } else { + mtd->ecc_stats.corrected += stat; + max_bitflips = max_t(unsigned int, max_bitflips, stat); + } + + return max_bitflips; +} + +/** + * is_elm_present - checks for presence of ELM module by scanning DT nodes + * @omap_nand_info: NAND device structure containing platform data + */ +static bool is_elm_present(struct omap_nand_info *info, + struct device_node *elm_node) +{ + struct platform_device *pdev; + + /* check whether elm-id is passed via DT */ + if (!elm_node) { + dev_err(&info->pdev->dev, "ELM devicetree node not found\n"); + return false; + } + pdev = of_find_device_by_node(elm_node); + /* check whether ELM device is registered */ + if (!pdev) { + dev_err(&info->pdev->dev, "ELM device not found\n"); + return false; + } + /* ELM module available, now configure it */ + info->elm_dev = &pdev->dev; + return true; +} + +static bool omap2_nand_ecc_check(struct omap_nand_info *info) +{ + bool ecc_needs_bch, ecc_needs_omap_bch, ecc_needs_elm; + + switch (info->ecc_opt) { + case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW: + case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW: + ecc_needs_omap_bch = false; + ecc_needs_bch = true; + ecc_needs_elm = false; + break; + case OMAP_ECC_BCH4_CODE_HW: + case OMAP_ECC_BCH8_CODE_HW: + case OMAP_ECC_BCH16_CODE_HW: + ecc_needs_omap_bch = true; + ecc_needs_bch = false; + ecc_needs_elm = true; + break; + default: + ecc_needs_omap_bch = false; + ecc_needs_bch = false; + ecc_needs_elm = false; + break; + } + + if (ecc_needs_bch && !IS_ENABLED(CONFIG_MTD_NAND_ECC_BCH)) { + dev_err(&info->pdev->dev, + "CONFIG_MTD_NAND_ECC_BCH not enabled\n"); + return false; + } + if (ecc_needs_omap_bch && !IS_ENABLED(CONFIG_MTD_NAND_OMAP_BCH)) { + dev_err(&info->pdev->dev, + "CONFIG_MTD_NAND_OMAP_BCH not enabled\n"); + return false; + } + if (ecc_needs_elm && !is_elm_present(info, info->elm_of_node)) { + dev_err(&info->pdev->dev, "ELM not available\n"); + return false; + } + + return true; +} + +static const char * const nand_xfer_types[] = { + [NAND_OMAP_PREFETCH_POLLED] = "prefetch-polled", + [NAND_OMAP_POLLED] = "polled", + [NAND_OMAP_PREFETCH_DMA] = "prefetch-dma", + [NAND_OMAP_PREFETCH_IRQ] = "prefetch-irq", +}; + +static int omap_get_dt_info(struct device *dev, struct omap_nand_info *info) +{ + struct device_node *child = dev->of_node; + int i; + const char *s; + u32 cs; + + if (of_property_read_u32(child, "reg", &cs) < 0) { + dev_err(dev, "reg not found in DT\n"); + return -EINVAL; + } + + info->gpmc_cs = cs; + + /* detect availability of ELM module. Won't be present pre-OMAP4 */ + info->elm_of_node = of_parse_phandle(child, "ti,elm-id", 0); + if (!info->elm_of_node) { + info->elm_of_node = of_parse_phandle(child, "elm_id", 0); + if (!info->elm_of_node) + dev_dbg(dev, "ti,elm-id not in DT\n"); + } + + /* select ecc-scheme for NAND */ + if (of_property_read_string(child, "ti,nand-ecc-opt", &s)) { + dev_err(dev, "ti,nand-ecc-opt not found\n"); + return -EINVAL; + } + + if (!strcmp(s, "sw")) { + info->ecc_opt = OMAP_ECC_HAM1_CODE_SW; + } else if (!strcmp(s, "ham1") || + !strcmp(s, "hw") || !strcmp(s, "hw-romcode")) { + info->ecc_opt = OMAP_ECC_HAM1_CODE_HW; + } else if (!strcmp(s, "bch4")) { + if (info->elm_of_node) + info->ecc_opt = OMAP_ECC_BCH4_CODE_HW; + else + info->ecc_opt = OMAP_ECC_BCH4_CODE_HW_DETECTION_SW; + } else if (!strcmp(s, "bch8")) { + if (info->elm_of_node) + info->ecc_opt = OMAP_ECC_BCH8_CODE_HW; + else + info->ecc_opt = OMAP_ECC_BCH8_CODE_HW_DETECTION_SW; + } else if (!strcmp(s, "bch16")) { + info->ecc_opt = OMAP_ECC_BCH16_CODE_HW; + } else { + dev_err(dev, "unrecognized value for ti,nand-ecc-opt\n"); + return -EINVAL; + } + + /* select data transfer mode */ + if (!of_property_read_string(child, "ti,nand-xfer-type", &s)) { + for (i = 0; i < ARRAY_SIZE(nand_xfer_types); i++) { + if (!strcasecmp(s, nand_xfer_types[i])) { + info->xfer_type = i; + return 0; + } + } + + dev_err(dev, "unrecognized value for ti,nand-xfer-type\n"); + return -EINVAL; + } + + return 0; +} + +static int omap_ooblayout_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct omap_nand_info *info = mtd_to_omap(mtd); + struct nand_chip *chip = &info->nand; + int off = BADBLOCK_MARKER_LENGTH; + + if (info->ecc_opt == OMAP_ECC_HAM1_CODE_HW && + !(chip->options & NAND_BUSWIDTH_16)) + off = 1; + + if (section) + return -ERANGE; + + oobregion->offset = off; + oobregion->length = chip->ecc.total; + + return 0; +} + +static int omap_ooblayout_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct omap_nand_info *info = mtd_to_omap(mtd); + struct nand_chip *chip = &info->nand; + int off = BADBLOCK_MARKER_LENGTH; + + if (info->ecc_opt == OMAP_ECC_HAM1_CODE_HW && + !(chip->options & NAND_BUSWIDTH_16)) + off = 1; + + if (section) + return -ERANGE; + + off += chip->ecc.total; + if (off >= mtd->oobsize) + return -ERANGE; + + oobregion->offset = off; + oobregion->length = mtd->oobsize - off; + + return 0; +} + +static const struct mtd_ooblayout_ops omap_ooblayout_ops = { + .ecc = omap_ooblayout_ecc, + .free = omap_ooblayout_free, +}; + +static int omap_sw_ooblayout_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + int off = BADBLOCK_MARKER_LENGTH; + + if (section >= chip->ecc.steps) + return -ERANGE; + + /* + * When SW correction is employed, one OMAP specific marker byte is + * reserved after each ECC step. + */ + oobregion->offset = off + (section * (chip->ecc.bytes + 1)); + oobregion->length = chip->ecc.bytes; + + return 0; +} + +static int omap_sw_ooblayout_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + int off = BADBLOCK_MARKER_LENGTH; + + if (section) + return -ERANGE; + + /* + * When SW correction is employed, one OMAP specific marker byte is + * reserved after each ECC step. + */ + off += ((chip->ecc.bytes + 1) * chip->ecc.steps); + if (off >= mtd->oobsize) + return -ERANGE; + + oobregion->offset = off; + oobregion->length = mtd->oobsize - off; + + return 0; +} + +static const struct mtd_ooblayout_ops omap_sw_ooblayout_ops = { + .ecc = omap_sw_ooblayout_ecc, + .free = omap_sw_ooblayout_free, +}; + +static int omap_nand_probe(struct platform_device *pdev) +{ + struct omap_nand_info *info; + struct mtd_info *mtd; + struct nand_chip *nand_chip; + int err; + dma_cap_mask_t mask; + struct resource *res; + struct device *dev = &pdev->dev; + int min_oobbytes = BADBLOCK_MARKER_LENGTH; + int oobbytes_per_step; + + info = devm_kzalloc(&pdev->dev, sizeof(struct omap_nand_info), + GFP_KERNEL); + if (!info) + return -ENOMEM; + + info->pdev = pdev; + + err = omap_get_dt_info(dev, info); + if (err) + return err; + + info->ops = gpmc_omap_get_nand_ops(&info->reg, info->gpmc_cs); + if (!info->ops) { + dev_err(&pdev->dev, "Failed to get GPMC->NAND interface\n"); + return -ENODEV; + } + + nand_chip = &info->nand; + mtd = nand_to_mtd(nand_chip); + mtd->dev.parent = &pdev->dev; + nand_chip->ecc.priv = NULL; + nand_set_flash_node(nand_chip, dev->of_node); + + if (!mtd->name) { + mtd->name = devm_kasprintf(&pdev->dev, GFP_KERNEL, + "omap2-nand.%d", info->gpmc_cs); + if (!mtd->name) { + dev_err(&pdev->dev, "Failed to set MTD name\n"); + return -ENOMEM; + } + } + + res = platform_get_resource(pdev, IORESOURCE_MEM, 0); + nand_chip->IO_ADDR_R = devm_ioremap_resource(&pdev->dev, res); + if (IS_ERR(nand_chip->IO_ADDR_R)) + return PTR_ERR(nand_chip->IO_ADDR_R); + + info->phys_base = res->start; + + nand_chip->controller = &omap_gpmc_controller; + + nand_chip->IO_ADDR_W = nand_chip->IO_ADDR_R; + nand_chip->cmd_ctrl = omap_hwcontrol; + + info->ready_gpiod = devm_gpiod_get_optional(&pdev->dev, "rb", + GPIOD_IN); + if (IS_ERR(info->ready_gpiod)) { + dev_err(dev, "failed to get ready gpio\n"); + return PTR_ERR(info->ready_gpiod); + } + + /* + * If RDY/BSY line is connected to OMAP then use the omap ready + * function and the generic nand_wait function which reads the status + * register after monitoring the RDY/BSY line. Otherwise use a standard + * chip delay which is slightly more than tR (AC Timing) of the NAND + * device and read status register until you get a failure or success + */ + if (info->ready_gpiod) { + nand_chip->dev_ready = omap_dev_ready; + nand_chip->chip_delay = 0; + } else { + nand_chip->waitfunc = omap_wait; + nand_chip->chip_delay = 50; + } + + if (info->flash_bbt) + nand_chip->bbt_options |= NAND_BBT_USE_FLASH; + + /* scan NAND device connected to chip controller */ + nand_chip->options |= info->devsize & NAND_BUSWIDTH_16; + err = nand_scan_ident(mtd, 1, NULL); + if (err) { + dev_err(&info->pdev->dev, + "scan failed, may be bus-width mismatch\n"); + goto return_error; + } + + if (nand_chip->bbt_options & NAND_BBT_USE_FLASH) + nand_chip->bbt_options |= NAND_BBT_NO_OOB; + else + nand_chip->options |= NAND_SKIP_BBTSCAN; + + /* re-populate low-level callbacks based on xfer modes */ + switch (info->xfer_type) { + case NAND_OMAP_PREFETCH_POLLED: + nand_chip->read_buf = omap_read_buf_pref; + nand_chip->write_buf = omap_write_buf_pref; + break; + + case NAND_OMAP_POLLED: + /* Use nand_base defaults for {read,write}_buf */ + break; + + case NAND_OMAP_PREFETCH_DMA: + dma_cap_zero(mask); + dma_cap_set(DMA_SLAVE, mask); + info->dma = dma_request_chan(pdev->dev.parent, "rxtx"); + + if (IS_ERR(info->dma)) { + dev_err(&pdev->dev, "DMA engine request failed\n"); + err = PTR_ERR(info->dma); + goto return_error; + } else { + struct dma_slave_config cfg; + + memset(&cfg, 0, sizeof(cfg)); + cfg.src_addr = info->phys_base; + cfg.dst_addr = info->phys_base; + cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; + cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; + cfg.src_maxburst = 16; + cfg.dst_maxburst = 16; + err = dmaengine_slave_config(info->dma, &cfg); + if (err) { + dev_err(&pdev->dev, "DMA engine slave config failed: %d\n", + err); + goto return_error; + } + nand_chip->read_buf = omap_read_buf_dma_pref; + nand_chip->write_buf = omap_write_buf_dma_pref; + } + break; + + case NAND_OMAP_PREFETCH_IRQ: + info->gpmc_irq_fifo = platform_get_irq(pdev, 0); + if (info->gpmc_irq_fifo <= 0) { + dev_err(&pdev->dev, "error getting fifo irq\n"); + err = -ENODEV; + goto return_error; + } + err = devm_request_irq(&pdev->dev, info->gpmc_irq_fifo, + omap_nand_irq, IRQF_SHARED, + "gpmc-nand-fifo", info); + if (err) { + dev_err(&pdev->dev, "requesting irq(%d) error:%d", + info->gpmc_irq_fifo, err); + info->gpmc_irq_fifo = 0; + goto return_error; + } + + info->gpmc_irq_count = platform_get_irq(pdev, 1); + if (info->gpmc_irq_count <= 0) { + dev_err(&pdev->dev, "error getting count irq\n"); + err = -ENODEV; + goto return_error; + } + err = devm_request_irq(&pdev->dev, info->gpmc_irq_count, + omap_nand_irq, IRQF_SHARED, + "gpmc-nand-count", info); + if (err) { + dev_err(&pdev->dev, "requesting irq(%d) error:%d", + info->gpmc_irq_count, err); + info->gpmc_irq_count = 0; + goto return_error; + } + + nand_chip->read_buf = omap_read_buf_irq_pref; + nand_chip->write_buf = omap_write_buf_irq_pref; + + break; + + default: + dev_err(&pdev->dev, + "xfer_type(%d) not supported!\n", info->xfer_type); + err = -EINVAL; + goto return_error; + } + + if (!omap2_nand_ecc_check(info)) { + err = -EINVAL; + goto return_error; + } + + /* + * Bail out earlier to let NAND_ECC_SOFT code create its own + * ooblayout instead of using ours. + */ + if (info->ecc_opt == OMAP_ECC_HAM1_CODE_SW) { + nand_chip->ecc.mode = NAND_ECC_SOFT; + nand_chip->ecc.algo = NAND_ECC_HAMMING; + goto scan_tail; + } + + /* populate MTD interface based on ECC scheme */ + switch (info->ecc_opt) { + case OMAP_ECC_HAM1_CODE_HW: + pr_info("nand: using OMAP_ECC_HAM1_CODE_HW\n"); + nand_chip->ecc.mode = NAND_ECC_HW; + nand_chip->ecc.bytes = 3; + nand_chip->ecc.size = 512; + nand_chip->ecc.strength = 1; + nand_chip->ecc.calculate = omap_calculate_ecc; + nand_chip->ecc.hwctl = omap_enable_hwecc; + nand_chip->ecc.correct = omap_correct_data; + mtd_set_ooblayout(mtd, &omap_ooblayout_ops); + oobbytes_per_step = nand_chip->ecc.bytes; + + if (!(nand_chip->options & NAND_BUSWIDTH_16)) + min_oobbytes = 1; + + break; + + case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW: + pr_info("nand: using OMAP_ECC_BCH4_CODE_HW_DETECTION_SW\n"); + nand_chip->ecc.mode = NAND_ECC_HW; + nand_chip->ecc.size = 512; + nand_chip->ecc.bytes = 7; + nand_chip->ecc.strength = 4; + nand_chip->ecc.hwctl = omap_enable_hwecc_bch; + nand_chip->ecc.correct = nand_bch_correct_data; + nand_chip->ecc.calculate = omap_calculate_ecc_bch_sw; + mtd_set_ooblayout(mtd, &omap_sw_ooblayout_ops); + /* Reserve one byte for the OMAP marker */ + oobbytes_per_step = nand_chip->ecc.bytes + 1; + /* software bch library is used for locating errors */ + nand_chip->ecc.priv = nand_bch_init(mtd); + if (!nand_chip->ecc.priv) { + dev_err(&info->pdev->dev, "unable to use BCH library\n"); + err = -EINVAL; + goto return_error; + } + break; + + case OMAP_ECC_BCH4_CODE_HW: + pr_info("nand: using OMAP_ECC_BCH4_CODE_HW ECC scheme\n"); + nand_chip->ecc.mode = NAND_ECC_HW; + nand_chip->ecc.size = 512; + /* 14th bit is kept reserved for ROM-code compatibility */ + nand_chip->ecc.bytes = 7 + 1; + nand_chip->ecc.strength = 4; + nand_chip->ecc.hwctl = omap_enable_hwecc_bch; + nand_chip->ecc.correct = omap_elm_correct_data; + nand_chip->ecc.read_page = omap_read_page_bch; + nand_chip->ecc.write_page = omap_write_page_bch; + nand_chip->ecc.write_subpage = omap_write_subpage_bch; + mtd_set_ooblayout(mtd, &omap_ooblayout_ops); + oobbytes_per_step = nand_chip->ecc.bytes; + + err = elm_config(info->elm_dev, BCH4_ECC, + mtd->writesize / nand_chip->ecc.size, + nand_chip->ecc.size, nand_chip->ecc.bytes); + if (err < 0) + goto return_error; + break; + + case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW: + pr_info("nand: using OMAP_ECC_BCH8_CODE_HW_DETECTION_SW\n"); + nand_chip->ecc.mode = NAND_ECC_HW; + nand_chip->ecc.size = 512; + nand_chip->ecc.bytes = 13; + nand_chip->ecc.strength = 8; + nand_chip->ecc.hwctl = omap_enable_hwecc_bch; + nand_chip->ecc.correct = nand_bch_correct_data; + nand_chip->ecc.calculate = omap_calculate_ecc_bch_sw; + mtd_set_ooblayout(mtd, &omap_sw_ooblayout_ops); + /* Reserve one byte for the OMAP marker */ + oobbytes_per_step = nand_chip->ecc.bytes + 1; + /* software bch library is used for locating errors */ + nand_chip->ecc.priv = nand_bch_init(mtd); + if (!nand_chip->ecc.priv) { + dev_err(&info->pdev->dev, "unable to use BCH library\n"); + err = -EINVAL; + goto return_error; + } + break; + + case OMAP_ECC_BCH8_CODE_HW: + pr_info("nand: using OMAP_ECC_BCH8_CODE_HW ECC scheme\n"); + nand_chip->ecc.mode = NAND_ECC_HW; + nand_chip->ecc.size = 512; + /* 14th bit is kept reserved for ROM-code compatibility */ + nand_chip->ecc.bytes = 13 + 1; + nand_chip->ecc.strength = 8; + nand_chip->ecc.hwctl = omap_enable_hwecc_bch; + nand_chip->ecc.correct = omap_elm_correct_data; + nand_chip->ecc.read_page = omap_read_page_bch; + nand_chip->ecc.write_page = omap_write_page_bch; + nand_chip->ecc.write_subpage = omap_write_subpage_bch; + mtd_set_ooblayout(mtd, &omap_ooblayout_ops); + oobbytes_per_step = nand_chip->ecc.bytes; + + err = elm_config(info->elm_dev, BCH8_ECC, + mtd->writesize / nand_chip->ecc.size, + nand_chip->ecc.size, nand_chip->ecc.bytes); + if (err < 0) + goto return_error; + + break; + + case OMAP_ECC_BCH16_CODE_HW: + pr_info("using OMAP_ECC_BCH16_CODE_HW ECC scheme\n"); + nand_chip->ecc.mode = NAND_ECC_HW; + nand_chip->ecc.size = 512; + nand_chip->ecc.bytes = 26; + nand_chip->ecc.strength = 16; + nand_chip->ecc.hwctl = omap_enable_hwecc_bch; + nand_chip->ecc.correct = omap_elm_correct_data; + nand_chip->ecc.read_page = omap_read_page_bch; + nand_chip->ecc.write_page = omap_write_page_bch; + nand_chip->ecc.write_subpage = omap_write_subpage_bch; + mtd_set_ooblayout(mtd, &omap_ooblayout_ops); + oobbytes_per_step = nand_chip->ecc.bytes; + + err = elm_config(info->elm_dev, BCH16_ECC, + mtd->writesize / nand_chip->ecc.size, + nand_chip->ecc.size, nand_chip->ecc.bytes); + if (err < 0) + goto return_error; + + break; + default: + dev_err(&info->pdev->dev, "invalid or unsupported ECC scheme\n"); + err = -EINVAL; + goto return_error; + } + + /* check if NAND device's OOB is enough to store ECC signatures */ + min_oobbytes += (oobbytes_per_step * + (mtd->writesize / nand_chip->ecc.size)); + if (mtd->oobsize < min_oobbytes) { + dev_err(&info->pdev->dev, + "not enough OOB bytes required = %d, available=%d\n", + min_oobbytes, mtd->oobsize); + err = -EINVAL; + goto return_error; + } + +scan_tail: + /* second phase scan */ + err = nand_scan_tail(mtd); + if (err) + goto return_error; + + err = mtd_device_register(mtd, NULL, 0); + if (err) + goto return_error; + + platform_set_drvdata(pdev, mtd); + + return 0; + +return_error: + if (!IS_ERR_OR_NULL(info->dma)) + dma_release_channel(info->dma); + if (nand_chip->ecc.priv) { + nand_bch_free(nand_chip->ecc.priv); + nand_chip->ecc.priv = NULL; + } + return err; +} + +static int omap_nand_remove(struct platform_device *pdev) +{ + struct mtd_info *mtd = platform_get_drvdata(pdev); + struct nand_chip *nand_chip = mtd_to_nand(mtd); + struct omap_nand_info *info = mtd_to_omap(mtd); + if (nand_chip->ecc.priv) { + nand_bch_free(nand_chip->ecc.priv); + nand_chip->ecc.priv = NULL; + } + if (info->dma) + dma_release_channel(info->dma); + nand_release(mtd); + return 0; +} + +static const struct of_device_id omap_nand_ids[] = { + { .compatible = "ti,omap2-nand", }, + {}, +}; +MODULE_DEVICE_TABLE(of, omap_nand_ids); + +static struct platform_driver omap_nand_driver = { + .probe = omap_nand_probe, + .remove = omap_nand_remove, + .driver = { + .name = DRIVER_NAME, + .of_match_table = of_match_ptr(omap_nand_ids), + }, +}; + +module_platform_driver(omap_nand_driver); + +MODULE_ALIAS("platform:" DRIVER_NAME); +MODULE_LICENSE("GPL"); +MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards"); diff --git a/drivers/mtd/nand/raw/omap_elm.c b/drivers/mtd/nand/raw/omap_elm.c new file mode 100644 index 000000000000..a3f32f939cc1 --- /dev/null +++ b/drivers/mtd/nand/raw/omap_elm.c @@ -0,0 +1,578 @@ +/* + * Error Location Module + * + * Copyright (C) 2012 Texas Instruments Incorporated - http://www.ti.com/ + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + */ + +#define DRIVER_NAME "omap-elm" + +#include +#include +#include +#include +#include +#include +#include +#include + +#define ELM_SYSCONFIG 0x010 +#define ELM_IRQSTATUS 0x018 +#define ELM_IRQENABLE 0x01c +#define ELM_LOCATION_CONFIG 0x020 +#define ELM_PAGE_CTRL 0x080 +#define ELM_SYNDROME_FRAGMENT_0 0x400 +#define ELM_SYNDROME_FRAGMENT_1 0x404 +#define ELM_SYNDROME_FRAGMENT_2 0x408 +#define ELM_SYNDROME_FRAGMENT_3 0x40c +#define ELM_SYNDROME_FRAGMENT_4 0x410 +#define ELM_SYNDROME_FRAGMENT_5 0x414 +#define ELM_SYNDROME_FRAGMENT_6 0x418 +#define ELM_LOCATION_STATUS 0x800 +#define ELM_ERROR_LOCATION_0 0x880 + +/* ELM Interrupt Status Register */ +#define INTR_STATUS_PAGE_VALID BIT(8) + +/* ELM Interrupt Enable Register */ +#define INTR_EN_PAGE_MASK BIT(8) + +/* ELM Location Configuration Register */ +#define ECC_BCH_LEVEL_MASK 0x3 + +/* ELM syndrome */ +#define ELM_SYNDROME_VALID BIT(16) + +/* ELM_LOCATION_STATUS Register */ +#define ECC_CORRECTABLE_MASK BIT(8) +#define ECC_NB_ERRORS_MASK 0x1f + +/* ELM_ERROR_LOCATION_0-15 Registers */ +#define ECC_ERROR_LOCATION_MASK 0x1fff + +#define ELM_ECC_SIZE 0x7ff + +#define SYNDROME_FRAGMENT_REG_SIZE 0x40 +#define ERROR_LOCATION_SIZE 0x100 + +struct elm_registers { + u32 elm_irqenable; + u32 elm_sysconfig; + u32 elm_location_config; + u32 elm_page_ctrl; + u32 elm_syndrome_fragment_6[ERROR_VECTOR_MAX]; + u32 elm_syndrome_fragment_5[ERROR_VECTOR_MAX]; + u32 elm_syndrome_fragment_4[ERROR_VECTOR_MAX]; + u32 elm_syndrome_fragment_3[ERROR_VECTOR_MAX]; + u32 elm_syndrome_fragment_2[ERROR_VECTOR_MAX]; + u32 elm_syndrome_fragment_1[ERROR_VECTOR_MAX]; + u32 elm_syndrome_fragment_0[ERROR_VECTOR_MAX]; +}; + +struct elm_info { + struct device *dev; + void __iomem *elm_base; + struct completion elm_completion; + struct list_head list; + enum bch_ecc bch_type; + struct elm_registers elm_regs; + int ecc_steps; + int ecc_syndrome_size; +}; + +static LIST_HEAD(elm_devices); + +static void elm_write_reg(struct elm_info *info, int offset, u32 val) +{ + writel(val, info->elm_base + offset); +} + +static u32 elm_read_reg(struct elm_info *info, int offset) +{ + return readl(info->elm_base + offset); +} + +/** + * elm_config - Configure ELM module + * @dev: ELM device + * @bch_type: Type of BCH ecc + */ +int elm_config(struct device *dev, enum bch_ecc bch_type, + int ecc_steps, int ecc_step_size, int ecc_syndrome_size) +{ + u32 reg_val; + struct elm_info *info = dev_get_drvdata(dev); + + if (!info) { + dev_err(dev, "Unable to configure elm - device not probed?\n"); + return -EPROBE_DEFER; + } + /* ELM cannot detect ECC errors for chunks > 1KB */ + if (ecc_step_size > ((ELM_ECC_SIZE + 1) / 2)) { + dev_err(dev, "unsupported config ecc-size=%d\n", ecc_step_size); + return -EINVAL; + } + /* ELM support 8 error syndrome process */ + if (ecc_steps > ERROR_VECTOR_MAX) { + dev_err(dev, "unsupported config ecc-step=%d\n", ecc_steps); + return -EINVAL; + } + + reg_val = (bch_type & ECC_BCH_LEVEL_MASK) | (ELM_ECC_SIZE << 16); + elm_write_reg(info, ELM_LOCATION_CONFIG, reg_val); + info->bch_type = bch_type; + info->ecc_steps = ecc_steps; + info->ecc_syndrome_size = ecc_syndrome_size; + + return 0; +} +EXPORT_SYMBOL(elm_config); + +/** + * elm_configure_page_mode - Enable/Disable page mode + * @info: elm info + * @index: index number of syndrome fragment vector + * @enable: enable/disable flag for page mode + * + * Enable page mode for syndrome fragment index + */ +static void elm_configure_page_mode(struct elm_info *info, int index, + bool enable) +{ + u32 reg_val; + + reg_val = elm_read_reg(info, ELM_PAGE_CTRL); + if (enable) + reg_val |= BIT(index); /* enable page mode */ + else + reg_val &= ~BIT(index); /* disable page mode */ + + elm_write_reg(info, ELM_PAGE_CTRL, reg_val); +} + +/** + * elm_load_syndrome - Load ELM syndrome reg + * @info: elm info + * @err_vec: elm error vectors + * @ecc: buffer with calculated ecc + * + * Load syndrome fragment registers with calculated ecc in reverse order. + */ +static void elm_load_syndrome(struct elm_info *info, + struct elm_errorvec *err_vec, u8 *ecc) +{ + int i, offset; + u32 val; + + for (i = 0; i < info->ecc_steps; i++) { + + /* Check error reported */ + if (err_vec[i].error_reported) { + elm_configure_page_mode(info, i, true); + offset = ELM_SYNDROME_FRAGMENT_0 + + SYNDROME_FRAGMENT_REG_SIZE * i; + switch (info->bch_type) { + case BCH8_ECC: + /* syndrome fragment 0 = ecc[9-12B] */ + val = cpu_to_be32(*(u32 *) &ecc[9]); + elm_write_reg(info, offset, val); + + /* syndrome fragment 1 = ecc[5-8B] */ + offset += 4; + val = cpu_to_be32(*(u32 *) &ecc[5]); + elm_write_reg(info, offset, val); + + /* syndrome fragment 2 = ecc[1-4B] */ + offset += 4; + val = cpu_to_be32(*(u32 *) &ecc[1]); + elm_write_reg(info, offset, val); + + /* syndrome fragment 3 = ecc[0B] */ + offset += 4; + val = ecc[0]; + elm_write_reg(info, offset, val); + break; + case BCH4_ECC: + /* syndrome fragment 0 = ecc[20-52b] bits */ + val = (cpu_to_be32(*(u32 *) &ecc[3]) >> 4) | + ((ecc[2] & 0xf) << 28); + elm_write_reg(info, offset, val); + + /* syndrome fragment 1 = ecc[0-20b] bits */ + offset += 4; + val = cpu_to_be32(*(u32 *) &ecc[0]) >> 12; + elm_write_reg(info, offset, val); + break; + case BCH16_ECC: + val = cpu_to_be32(*(u32 *) &ecc[22]); + elm_write_reg(info, offset, val); + offset += 4; + val = cpu_to_be32(*(u32 *) &ecc[18]); + elm_write_reg(info, offset, val); + offset += 4; + val = cpu_to_be32(*(u32 *) &ecc[14]); + elm_write_reg(info, offset, val); + offset += 4; + val = cpu_to_be32(*(u32 *) &ecc[10]); + elm_write_reg(info, offset, val); + offset += 4; + val = cpu_to_be32(*(u32 *) &ecc[6]); + elm_write_reg(info, offset, val); + offset += 4; + val = cpu_to_be32(*(u32 *) &ecc[2]); + elm_write_reg(info, offset, val); + offset += 4; + val = cpu_to_be32(*(u32 *) &ecc[0]) >> 16; + elm_write_reg(info, offset, val); + break; + default: + pr_err("invalid config bch_type\n"); + } + } + + /* Update ecc pointer with ecc byte size */ + ecc += info->ecc_syndrome_size; + } +} + +/** + * elm_start_processing - start elm syndrome processing + * @info: elm info + * @err_vec: elm error vectors + * + * Set syndrome valid bit for syndrome fragment registers for which + * elm syndrome fragment registers are loaded. This enables elm module + * to start processing syndrome vectors. + */ +static void elm_start_processing(struct elm_info *info, + struct elm_errorvec *err_vec) +{ + int i, offset; + u32 reg_val; + + /* + * Set syndrome vector valid, so that ELM module + * will process it for vectors error is reported + */ + for (i = 0; i < info->ecc_steps; i++) { + if (err_vec[i].error_reported) { + offset = ELM_SYNDROME_FRAGMENT_6 + + SYNDROME_FRAGMENT_REG_SIZE * i; + reg_val = elm_read_reg(info, offset); + reg_val |= ELM_SYNDROME_VALID; + elm_write_reg(info, offset, reg_val); + } + } +} + +/** + * elm_error_correction - locate correctable error position + * @info: elm info + * @err_vec: elm error vectors + * + * On completion of processing by elm module, error location status + * register updated with correctable/uncorrectable error information. + * In case of correctable errors, number of errors located from + * elm location status register & read the positions from + * elm error location register. + */ +static void elm_error_correction(struct elm_info *info, + struct elm_errorvec *err_vec) +{ + int i, j, errors = 0; + int offset; + u32 reg_val; + + for (i = 0; i < info->ecc_steps; i++) { + + /* Check error reported */ + if (err_vec[i].error_reported) { + offset = ELM_LOCATION_STATUS + ERROR_LOCATION_SIZE * i; + reg_val = elm_read_reg(info, offset); + + /* Check correctable error or not */ + if (reg_val & ECC_CORRECTABLE_MASK) { + offset = ELM_ERROR_LOCATION_0 + + ERROR_LOCATION_SIZE * i; + + /* Read count of correctable errors */ + err_vec[i].error_count = reg_val & + ECC_NB_ERRORS_MASK; + + /* Update the error locations in error vector */ + for (j = 0; j < err_vec[i].error_count; j++) { + + reg_val = elm_read_reg(info, offset); + err_vec[i].error_loc[j] = reg_val & + ECC_ERROR_LOCATION_MASK; + + /* Update error location register */ + offset += 4; + } + + errors += err_vec[i].error_count; + } else { + err_vec[i].error_uncorrectable = true; + } + + /* Clearing interrupts for processed error vectors */ + elm_write_reg(info, ELM_IRQSTATUS, BIT(i)); + + /* Disable page mode */ + elm_configure_page_mode(info, i, false); + } + } +} + +/** + * elm_decode_bch_error_page - Locate error position + * @dev: device pointer + * @ecc_calc: calculated ECC bytes from GPMC + * @err_vec: elm error vectors + * + * Called with one or more error reported vectors & vectors with + * error reported is updated in err_vec[].error_reported + */ +void elm_decode_bch_error_page(struct device *dev, u8 *ecc_calc, + struct elm_errorvec *err_vec) +{ + struct elm_info *info = dev_get_drvdata(dev); + u32 reg_val; + + /* Enable page mode interrupt */ + reg_val = elm_read_reg(info, ELM_IRQSTATUS); + elm_write_reg(info, ELM_IRQSTATUS, reg_val & INTR_STATUS_PAGE_VALID); + elm_write_reg(info, ELM_IRQENABLE, INTR_EN_PAGE_MASK); + + /* Load valid ecc byte to syndrome fragment register */ + elm_load_syndrome(info, err_vec, ecc_calc); + + /* Enable syndrome processing for which syndrome fragment is updated */ + elm_start_processing(info, err_vec); + + /* Wait for ELM module to finish locating error correction */ + wait_for_completion(&info->elm_completion); + + /* Disable page mode interrupt */ + reg_val = elm_read_reg(info, ELM_IRQENABLE); + elm_write_reg(info, ELM_IRQENABLE, reg_val & ~INTR_EN_PAGE_MASK); + elm_error_correction(info, err_vec); +} +EXPORT_SYMBOL(elm_decode_bch_error_page); + +static irqreturn_t elm_isr(int this_irq, void *dev_id) +{ + u32 reg_val; + struct elm_info *info = dev_id; + + reg_val = elm_read_reg(info, ELM_IRQSTATUS); + + /* All error vectors processed */ + if (reg_val & INTR_STATUS_PAGE_VALID) { + elm_write_reg(info, ELM_IRQSTATUS, + reg_val & INTR_STATUS_PAGE_VALID); + complete(&info->elm_completion); + return IRQ_HANDLED; + } + + return IRQ_NONE; +} + +static int elm_probe(struct platform_device *pdev) +{ + int ret = 0; + struct resource *res, *irq; + struct elm_info *info; + + info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL); + if (!info) + return -ENOMEM; + + info->dev = &pdev->dev; + + irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0); + if (!irq) { + dev_err(&pdev->dev, "no irq resource defined\n"); + return -ENODEV; + } + + res = platform_get_resource(pdev, IORESOURCE_MEM, 0); + info->elm_base = devm_ioremap_resource(&pdev->dev, res); + if (IS_ERR(info->elm_base)) + return PTR_ERR(info->elm_base); + + ret = devm_request_irq(&pdev->dev, irq->start, elm_isr, 0, + pdev->name, info); + if (ret) { + dev_err(&pdev->dev, "failure requesting %pr\n", irq); + return ret; + } + + pm_runtime_enable(&pdev->dev); + if (pm_runtime_get_sync(&pdev->dev) < 0) { + ret = -EINVAL; + pm_runtime_disable(&pdev->dev); + dev_err(&pdev->dev, "can't enable clock\n"); + return ret; + } + + init_completion(&info->elm_completion); + INIT_LIST_HEAD(&info->list); + list_add(&info->list, &elm_devices); + platform_set_drvdata(pdev, info); + return ret; +} + +static int elm_remove(struct platform_device *pdev) +{ + pm_runtime_put_sync(&pdev->dev); + pm_runtime_disable(&pdev->dev); + return 0; +} + +#ifdef CONFIG_PM_SLEEP +/** + * elm_context_save + * saves ELM configurations to preserve them across Hardware powered-down + */ +static int elm_context_save(struct elm_info *info) +{ + struct elm_registers *regs = &info->elm_regs; + enum bch_ecc bch_type = info->bch_type; + u32 offset = 0, i; + + regs->elm_irqenable = elm_read_reg(info, ELM_IRQENABLE); + regs->elm_sysconfig = elm_read_reg(info, ELM_SYSCONFIG); + regs->elm_location_config = elm_read_reg(info, ELM_LOCATION_CONFIG); + regs->elm_page_ctrl = elm_read_reg(info, ELM_PAGE_CTRL); + for (i = 0; i < ERROR_VECTOR_MAX; i++) { + offset = i * SYNDROME_FRAGMENT_REG_SIZE; + switch (bch_type) { + case BCH16_ECC: + regs->elm_syndrome_fragment_6[i] = elm_read_reg(info, + ELM_SYNDROME_FRAGMENT_6 + offset); + regs->elm_syndrome_fragment_5[i] = elm_read_reg(info, + ELM_SYNDROME_FRAGMENT_5 + offset); + regs->elm_syndrome_fragment_4[i] = elm_read_reg(info, + ELM_SYNDROME_FRAGMENT_4 + offset); + case BCH8_ECC: + regs->elm_syndrome_fragment_3[i] = elm_read_reg(info, + ELM_SYNDROME_FRAGMENT_3 + offset); + regs->elm_syndrome_fragment_2[i] = elm_read_reg(info, + ELM_SYNDROME_FRAGMENT_2 + offset); + case BCH4_ECC: + regs->elm_syndrome_fragment_1[i] = elm_read_reg(info, + ELM_SYNDROME_FRAGMENT_1 + offset); + regs->elm_syndrome_fragment_0[i] = elm_read_reg(info, + ELM_SYNDROME_FRAGMENT_0 + offset); + break; + default: + return -EINVAL; + } + /* ELM SYNDROME_VALID bit in SYNDROME_FRAGMENT_6[] needs + * to be saved for all BCH schemes*/ + regs->elm_syndrome_fragment_6[i] = elm_read_reg(info, + ELM_SYNDROME_FRAGMENT_6 + offset); + } + return 0; +} + +/** + * elm_context_restore + * writes configurations saved duing power-down back into ELM registers + */ +static int elm_context_restore(struct elm_info *info) +{ + struct elm_registers *regs = &info->elm_regs; + enum bch_ecc bch_type = info->bch_type; + u32 offset = 0, i; + + elm_write_reg(info, ELM_IRQENABLE, regs->elm_irqenable); + elm_write_reg(info, ELM_SYSCONFIG, regs->elm_sysconfig); + elm_write_reg(info, ELM_LOCATION_CONFIG, regs->elm_location_config); + elm_write_reg(info, ELM_PAGE_CTRL, regs->elm_page_ctrl); + for (i = 0; i < ERROR_VECTOR_MAX; i++) { + offset = i * SYNDROME_FRAGMENT_REG_SIZE; + switch (bch_type) { + case BCH16_ECC: + elm_write_reg(info, ELM_SYNDROME_FRAGMENT_6 + offset, + regs->elm_syndrome_fragment_6[i]); + elm_write_reg(info, ELM_SYNDROME_FRAGMENT_5 + offset, + regs->elm_syndrome_fragment_5[i]); + elm_write_reg(info, ELM_SYNDROME_FRAGMENT_4 + offset, + regs->elm_syndrome_fragment_4[i]); + case BCH8_ECC: + elm_write_reg(info, ELM_SYNDROME_FRAGMENT_3 + offset, + regs->elm_syndrome_fragment_3[i]); + elm_write_reg(info, ELM_SYNDROME_FRAGMENT_2 + offset, + regs->elm_syndrome_fragment_2[i]); + case BCH4_ECC: + elm_write_reg(info, ELM_SYNDROME_FRAGMENT_1 + offset, + regs->elm_syndrome_fragment_1[i]); + elm_write_reg(info, ELM_SYNDROME_FRAGMENT_0 + offset, + regs->elm_syndrome_fragment_0[i]); + break; + default: + return -EINVAL; + } + /* ELM_SYNDROME_VALID bit to be set in last to trigger FSM */ + elm_write_reg(info, ELM_SYNDROME_FRAGMENT_6 + offset, + regs->elm_syndrome_fragment_6[i] & + ELM_SYNDROME_VALID); + } + return 0; +} + +static int elm_suspend(struct device *dev) +{ + struct elm_info *info = dev_get_drvdata(dev); + elm_context_save(info); + pm_runtime_put_sync(dev); + return 0; +} + +static int elm_resume(struct device *dev) +{ + struct elm_info *info = dev_get_drvdata(dev); + pm_runtime_get_sync(dev); + elm_context_restore(info); + return 0; +} +#endif + +static SIMPLE_DEV_PM_OPS(elm_pm_ops, elm_suspend, elm_resume); + +#ifdef CONFIG_OF +static const struct of_device_id elm_of_match[] = { + { .compatible = "ti,am3352-elm" }, + {}, +}; +MODULE_DEVICE_TABLE(of, elm_of_match); +#endif + +static struct platform_driver elm_driver = { + .driver = { + .name = DRIVER_NAME, + .of_match_table = of_match_ptr(elm_of_match), + .pm = &elm_pm_ops, + }, + .probe = elm_probe, + .remove = elm_remove, +}; + +module_platform_driver(elm_driver); + +MODULE_DESCRIPTION("ELM driver for BCH error correction"); +MODULE_AUTHOR("Texas Instruments"); +MODULE_ALIAS("platform:" DRIVER_NAME); +MODULE_LICENSE("GPL v2"); diff --git a/drivers/mtd/nand/raw/orion_nand.c b/drivers/mtd/nand/raw/orion_nand.c new file mode 100644 index 000000000000..7825fd3ce66b --- /dev/null +++ b/drivers/mtd/nand/raw/orion_nand.c @@ -0,0 +1,232 @@ +/* + * NAND support for Marvell Orion SoC platforms + * + * Tzachi Perelstein + * + * This file is licensed under the terms of the GNU General Public + * License version 2. This program is licensed "as is" without any + * warranty of any kind, whether express or implied. + */ + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +struct orion_nand_info { + struct nand_chip chip; + struct clk *clk; +}; + +static void orion_nand_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl) +{ + struct nand_chip *nc = mtd_to_nand(mtd); + struct orion_nand_data *board = nand_get_controller_data(nc); + u32 offs; + + if (cmd == NAND_CMD_NONE) + return; + + if (ctrl & NAND_CLE) + offs = (1 << board->cle); + else if (ctrl & NAND_ALE) + offs = (1 << board->ale); + else + return; + + if (nc->options & NAND_BUSWIDTH_16) + offs <<= 1; + + writeb(cmd, nc->IO_ADDR_W + offs); +} + +static void orion_nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + void __iomem *io_base = chip->IO_ADDR_R; +#if __LINUX_ARM_ARCH__ >= 5 + uint64_t *buf64; +#endif + int i = 0; + + while (len && (unsigned long)buf & 7) { + *buf++ = readb(io_base); + len--; + } +#if __LINUX_ARM_ARCH__ >= 5 + buf64 = (uint64_t *)buf; + while (i < len/8) { + /* + * Since GCC has no proper constraint (PR 43518) + * force x variable to r2/r3 registers as ldrd instruction + * requires first register to be even. + */ + register uint64_t x asm ("r2"); + + asm volatile ("ldrd\t%0, [%1]" : "=&r" (x) : "r" (io_base)); + buf64[i++] = x; + } + i *= 8; +#else + readsl(io_base, buf, len/4); + i = len / 4 * 4; +#endif + while (i < len) + buf[i++] = readb(io_base); +} + +static int __init orion_nand_probe(struct platform_device *pdev) +{ + struct orion_nand_info *info; + struct mtd_info *mtd; + struct nand_chip *nc; + struct orion_nand_data *board; + struct resource *res; + void __iomem *io_base; + int ret = 0; + u32 val = 0; + + info = devm_kzalloc(&pdev->dev, + sizeof(struct orion_nand_info), + GFP_KERNEL); + if (!info) + return -ENOMEM; + nc = &info->chip; + mtd = nand_to_mtd(nc); + + res = platform_get_resource(pdev, IORESOURCE_MEM, 0); + io_base = devm_ioremap_resource(&pdev->dev, res); + + if (IS_ERR(io_base)) + return PTR_ERR(io_base); + + if (pdev->dev.of_node) { + board = devm_kzalloc(&pdev->dev, sizeof(struct orion_nand_data), + GFP_KERNEL); + if (!board) + return -ENOMEM; + if (!of_property_read_u32(pdev->dev.of_node, "cle", &val)) + board->cle = (u8)val; + else + board->cle = 0; + if (!of_property_read_u32(pdev->dev.of_node, "ale", &val)) + board->ale = (u8)val; + else + board->ale = 1; + if (!of_property_read_u32(pdev->dev.of_node, + "bank-width", &val)) + board->width = (u8)val * 8; + else + board->width = 8; + if (!of_property_read_u32(pdev->dev.of_node, + "chip-delay", &val)) + board->chip_delay = (u8)val; + } else { + board = dev_get_platdata(&pdev->dev); + } + + mtd->dev.parent = &pdev->dev; + + nand_set_controller_data(nc, board); + nand_set_flash_node(nc, pdev->dev.of_node); + nc->IO_ADDR_R = nc->IO_ADDR_W = io_base; + nc->cmd_ctrl = orion_nand_cmd_ctrl; + nc->read_buf = orion_nand_read_buf; + nc->ecc.mode = NAND_ECC_SOFT; + nc->ecc.algo = NAND_ECC_HAMMING; + + if (board->chip_delay) + nc->chip_delay = board->chip_delay; + + WARN(board->width > 16, + "%d bit bus width out of range", + board->width); + + if (board->width == 16) + nc->options |= NAND_BUSWIDTH_16; + + if (board->dev_ready) + nc->dev_ready = board->dev_ready; + + platform_set_drvdata(pdev, info); + + /* Not all platforms can gate the clock, so it is not + an error if the clock does not exists. */ + info->clk = devm_clk_get(&pdev->dev, NULL); + if (IS_ERR(info->clk)) { + ret = PTR_ERR(info->clk); + if (ret == -ENOENT) { + info->clk = NULL; + } else { + dev_err(&pdev->dev, "failed to get clock!\n"); + return ret; + } + } + + ret = clk_prepare_enable(info->clk); + if (ret) { + dev_err(&pdev->dev, "failed to prepare clock!\n"); + return ret; + } + + ret = nand_scan(mtd, 1); + if (ret) + goto no_dev; + + mtd->name = "orion_nand"; + ret = mtd_device_register(mtd, board->parts, board->nr_parts); + if (ret) { + nand_release(mtd); + goto no_dev; + } + + return 0; + +no_dev: + clk_disable_unprepare(info->clk); + return ret; +} + +static int orion_nand_remove(struct platform_device *pdev) +{ + struct orion_nand_info *info = platform_get_drvdata(pdev); + struct nand_chip *chip = &info->chip; + struct mtd_info *mtd = nand_to_mtd(chip); + + nand_release(mtd); + + clk_disable_unprepare(info->clk); + + return 0; +} + +#ifdef CONFIG_OF +static const struct of_device_id orion_nand_of_match_table[] = { + { .compatible = "marvell,orion-nand", }, + {}, +}; +MODULE_DEVICE_TABLE(of, orion_nand_of_match_table); +#endif + +static struct platform_driver orion_nand_driver = { + .remove = orion_nand_remove, + .driver = { + .name = "orion_nand", + .of_match_table = of_match_ptr(orion_nand_of_match_table), + }, +}; + +module_platform_driver_probe(orion_nand_driver, orion_nand_probe); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Tzachi Perelstein"); +MODULE_DESCRIPTION("NAND glue for Orion platforms"); +MODULE_ALIAS("platform:orion_nand"); diff --git a/drivers/mtd/nand/raw/oxnas_nand.c b/drivers/mtd/nand/raw/oxnas_nand.c new file mode 100644 index 000000000000..d649d5944826 --- /dev/null +++ b/drivers/mtd/nand/raw/oxnas_nand.c @@ -0,0 +1,206 @@ +/* + * Oxford Semiconductor OXNAS NAND driver + + * Copyright (C) 2016 Neil Armstrong + * Heavily based on plat_nand.c : + * Author: Vitaly Wool + * Copyright (C) 2013 Ma Haijun + * Copyright (C) 2012 John Crispin + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + * + */ + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +/* Nand commands */ +#define OXNAS_NAND_CMD_ALE BIT(18) +#define OXNAS_NAND_CMD_CLE BIT(19) + +#define OXNAS_NAND_MAX_CHIPS 1 + +struct oxnas_nand_ctrl { + struct nand_hw_control base; + void __iomem *io_base; + struct clk *clk; + struct nand_chip *chips[OXNAS_NAND_MAX_CHIPS]; +}; + +static uint8_t oxnas_nand_read_byte(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct oxnas_nand_ctrl *oxnas = nand_get_controller_data(chip); + + return readb(oxnas->io_base); +} + +static void oxnas_nand_read_buf(struct mtd_info *mtd, u8 *buf, int len) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct oxnas_nand_ctrl *oxnas = nand_get_controller_data(chip); + + ioread8_rep(oxnas->io_base, buf, len); +} + +static void oxnas_nand_write_buf(struct mtd_info *mtd, const u8 *buf, int len) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct oxnas_nand_ctrl *oxnas = nand_get_controller_data(chip); + + iowrite8_rep(oxnas->io_base, buf, len); +} + +/* Single CS command control */ +static void oxnas_nand_cmd_ctrl(struct mtd_info *mtd, int cmd, + unsigned int ctrl) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct oxnas_nand_ctrl *oxnas = nand_get_controller_data(chip); + + if (ctrl & NAND_CLE) + writeb(cmd, oxnas->io_base + OXNAS_NAND_CMD_CLE); + else if (ctrl & NAND_ALE) + writeb(cmd, oxnas->io_base + OXNAS_NAND_CMD_ALE); +} + +/* + * Probe for the NAND device. + */ +static int oxnas_nand_probe(struct platform_device *pdev) +{ + struct device_node *np = pdev->dev.of_node; + struct device_node *nand_np; + struct oxnas_nand_ctrl *oxnas; + struct nand_chip *chip; + struct mtd_info *mtd; + struct resource *res; + int nchips = 0; + int count = 0; + int err = 0; + + /* Allocate memory for the device structure (and zero it) */ + oxnas = devm_kzalloc(&pdev->dev, sizeof(*oxnas), + GFP_KERNEL); + if (!oxnas) + return -ENOMEM; + + nand_hw_control_init(&oxnas->base); + + res = platform_get_resource(pdev, IORESOURCE_MEM, 0); + oxnas->io_base = devm_ioremap_resource(&pdev->dev, res); + if (IS_ERR(oxnas->io_base)) + return PTR_ERR(oxnas->io_base); + + oxnas->clk = devm_clk_get(&pdev->dev, NULL); + if (IS_ERR(oxnas->clk)) + oxnas->clk = NULL; + + /* Only a single chip node is supported */ + count = of_get_child_count(np); + if (count > 1) + return -EINVAL; + + err = clk_prepare_enable(oxnas->clk); + if (err) + return err; + + device_reset_optional(&pdev->dev); + + for_each_child_of_node(np, nand_np) { + chip = devm_kzalloc(&pdev->dev, sizeof(struct nand_chip), + GFP_KERNEL); + if (!chip) { + err = -ENOMEM; + goto err_clk_unprepare; + } + + chip->controller = &oxnas->base; + + nand_set_flash_node(chip, nand_np); + nand_set_controller_data(chip, oxnas); + + mtd = nand_to_mtd(chip); + mtd->dev.parent = &pdev->dev; + mtd->priv = chip; + + chip->cmd_ctrl = oxnas_nand_cmd_ctrl; + chip->read_buf = oxnas_nand_read_buf; + chip->read_byte = oxnas_nand_read_byte; + chip->write_buf = oxnas_nand_write_buf; + chip->chip_delay = 30; + + /* Scan to find existence of the device */ + err = nand_scan(mtd, 1); + if (err) + goto err_clk_unprepare; + + err = mtd_device_register(mtd, NULL, 0); + if (err) { + nand_release(mtd); + goto err_clk_unprepare; + } + + oxnas->chips[nchips] = chip; + ++nchips; + } + + /* Exit if no chips found */ + if (!nchips) { + err = -ENODEV; + goto err_clk_unprepare; + } + + platform_set_drvdata(pdev, oxnas); + + return 0; + +err_clk_unprepare: + clk_disable_unprepare(oxnas->clk); + return err; +} + +static int oxnas_nand_remove(struct platform_device *pdev) +{ + struct oxnas_nand_ctrl *oxnas = platform_get_drvdata(pdev); + + if (oxnas->chips[0]) + nand_release(nand_to_mtd(oxnas->chips[0])); + + clk_disable_unprepare(oxnas->clk); + + return 0; +} + +static const struct of_device_id oxnas_nand_match[] = { + { .compatible = "oxsemi,ox820-nand" }, + {}, +}; +MODULE_DEVICE_TABLE(of, oxnas_nand_match); + +static struct platform_driver oxnas_nand_driver = { + .probe = oxnas_nand_probe, + .remove = oxnas_nand_remove, + .driver = { + .name = "oxnas_nand", + .of_match_table = oxnas_nand_match, + }, +}; + +module_platform_driver(oxnas_nand_driver); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Neil Armstrong "); +MODULE_DESCRIPTION("Oxnas NAND driver"); +MODULE_ALIAS("platform:oxnas_nand"); diff --git a/drivers/mtd/nand/raw/pasemi_nand.c b/drivers/mtd/nand/raw/pasemi_nand.c new file mode 100644 index 000000000000..a47a7e4bd25a --- /dev/null +++ b/drivers/mtd/nand/raw/pasemi_nand.c @@ -0,0 +1,232 @@ +/* + * Copyright (C) 2006-2007 PA Semi, Inc + * + * Author: Egor Martovetsky + * Maintained by: Olof Johansson + * + * Driver for the PWRficient onchip NAND flash interface + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA + */ + +#undef DEBUG + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#include + +#define LBICTRL_LPCCTL_NR 0x00004000 +#define CLE_PIN_CTL 15 +#define ALE_PIN_CTL 14 + +static unsigned int lpcctl; +static struct mtd_info *pasemi_nand_mtd; +static const char driver_name[] = "pasemi-nand"; + +static void pasemi_read_buf(struct mtd_info *mtd, u_char *buf, int len) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + + while (len > 0x800) { + memcpy_fromio(buf, chip->IO_ADDR_R, 0x800); + buf += 0x800; + len -= 0x800; + } + memcpy_fromio(buf, chip->IO_ADDR_R, len); +} + +static void pasemi_write_buf(struct mtd_info *mtd, const u_char *buf, int len) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + + while (len > 0x800) { + memcpy_toio(chip->IO_ADDR_R, buf, 0x800); + buf += 0x800; + len -= 0x800; + } + memcpy_toio(chip->IO_ADDR_R, buf, len); +} + +static void pasemi_hwcontrol(struct mtd_info *mtd, int cmd, + unsigned int ctrl) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + + if (cmd == NAND_CMD_NONE) + return; + + if (ctrl & NAND_CLE) + out_8(chip->IO_ADDR_W + (1 << CLE_PIN_CTL), cmd); + else + out_8(chip->IO_ADDR_W + (1 << ALE_PIN_CTL), cmd); + + /* Push out posted writes */ + eieio(); + inl(lpcctl); +} + +int pasemi_device_ready(struct mtd_info *mtd) +{ + return !!(inl(lpcctl) & LBICTRL_LPCCTL_NR); +} + +static int pasemi_nand_probe(struct platform_device *ofdev) +{ + struct device *dev = &ofdev->dev; + struct pci_dev *pdev; + struct device_node *np = dev->of_node; + struct resource res; + struct nand_chip *chip; + int err = 0; + + err = of_address_to_resource(np, 0, &res); + + if (err) + return -EINVAL; + + /* We only support one device at the moment */ + if (pasemi_nand_mtd) + return -ENODEV; + + dev_dbg(dev, "pasemi_nand at %pR\n", &res); + + /* Allocate memory for MTD device structure and private data */ + chip = kzalloc(sizeof(struct nand_chip), GFP_KERNEL); + if (!chip) { + err = -ENOMEM; + goto out; + } + + pasemi_nand_mtd = nand_to_mtd(chip); + + /* Link the private data with the MTD structure */ + pasemi_nand_mtd->dev.parent = dev; + + chip->IO_ADDR_R = of_iomap(np, 0); + chip->IO_ADDR_W = chip->IO_ADDR_R; + + if (!chip->IO_ADDR_R) { + err = -EIO; + goto out_mtd; + } + + pdev = pci_get_device(PCI_VENDOR_ID_PASEMI, 0xa008, NULL); + if (!pdev) { + err = -ENODEV; + goto out_ior; + } + + lpcctl = pci_resource_start(pdev, 0); + pci_dev_put(pdev); + + if (!request_region(lpcctl, 4, driver_name)) { + err = -EBUSY; + goto out_ior; + } + + chip->cmd_ctrl = pasemi_hwcontrol; + chip->dev_ready = pasemi_device_ready; + chip->read_buf = pasemi_read_buf; + chip->write_buf = pasemi_write_buf; + chip->chip_delay = 0; + chip->ecc.mode = NAND_ECC_SOFT; + chip->ecc.algo = NAND_ECC_HAMMING; + + /* Enable the following for a flash based bad block table */ + chip->bbt_options = NAND_BBT_USE_FLASH; + + /* Scan to find existence of the device */ + err = nand_scan(pasemi_nand_mtd, 1); + if (err) + goto out_lpc; + + if (mtd_device_register(pasemi_nand_mtd, NULL, 0)) { + dev_err(dev, "Unable to register MTD device\n"); + err = -ENODEV; + goto out_lpc; + } + + dev_info(dev, "PA Semi NAND flash at %pR, control at I/O %x\n", &res, + lpcctl); + + return 0; + + out_lpc: + release_region(lpcctl, 4); + out_ior: + iounmap(chip->IO_ADDR_R); + out_mtd: + kfree(chip); + out: + return err; +} + +static int pasemi_nand_remove(struct platform_device *ofdev) +{ + struct nand_chip *chip; + + if (!pasemi_nand_mtd) + return 0; + + chip = mtd_to_nand(pasemi_nand_mtd); + + /* Release resources, unregister device */ + nand_release(pasemi_nand_mtd); + + release_region(lpcctl, 4); + + iounmap(chip->IO_ADDR_R); + + /* Free the MTD device structure */ + kfree(chip); + + pasemi_nand_mtd = NULL; + + return 0; +} + +static const struct of_device_id pasemi_nand_match[] = +{ + { + .compatible = "pasemi,localbus-nand", + }, + {}, +}; + +MODULE_DEVICE_TABLE(of, pasemi_nand_match); + +static struct platform_driver pasemi_nand_driver = +{ + .driver = { + .name = driver_name, + .of_match_table = pasemi_nand_match, + }, + .probe = pasemi_nand_probe, + .remove = pasemi_nand_remove, +}; + +module_platform_driver(pasemi_nand_driver); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Egor Martovetsky "); +MODULE_DESCRIPTION("NAND flash interface driver for PA Semi PWRficient"); diff --git a/drivers/mtd/nand/raw/plat_nand.c b/drivers/mtd/nand/raw/plat_nand.c new file mode 100644 index 000000000000..925a1323604d --- /dev/null +++ b/drivers/mtd/nand/raw/plat_nand.c @@ -0,0 +1,144 @@ +/* + * Generic NAND driver + * + * Author: Vitaly Wool + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + * + */ + +#include +#include +#include +#include +#include +#include +#include +#include + +struct plat_nand_data { + struct nand_chip chip; + void __iomem *io_base; +}; + +/* + * Probe for the NAND device. + */ +static int plat_nand_probe(struct platform_device *pdev) +{ + struct platform_nand_data *pdata = dev_get_platdata(&pdev->dev); + struct plat_nand_data *data; + struct mtd_info *mtd; + struct resource *res; + const char **part_types; + int err = 0; + + if (!pdata) { + dev_err(&pdev->dev, "platform_nand_data is missing\n"); + return -EINVAL; + } + + if (pdata->chip.nr_chips < 1) { + dev_err(&pdev->dev, "invalid number of chips specified\n"); + return -EINVAL; + } + + /* Allocate memory for the device structure (and zero it) */ + data = devm_kzalloc(&pdev->dev, sizeof(struct plat_nand_data), + GFP_KERNEL); + if (!data) + return -ENOMEM; + + res = platform_get_resource(pdev, IORESOURCE_MEM, 0); + data->io_base = devm_ioremap_resource(&pdev->dev, res); + if (IS_ERR(data->io_base)) + return PTR_ERR(data->io_base); + + nand_set_flash_node(&data->chip, pdev->dev.of_node); + mtd = nand_to_mtd(&data->chip); + mtd->dev.parent = &pdev->dev; + + data->chip.IO_ADDR_R = data->io_base; + data->chip.IO_ADDR_W = data->io_base; + data->chip.cmd_ctrl = pdata->ctrl.cmd_ctrl; + data->chip.dev_ready = pdata->ctrl.dev_ready; + data->chip.select_chip = pdata->ctrl.select_chip; + data->chip.write_buf = pdata->ctrl.write_buf; + data->chip.read_buf = pdata->ctrl.read_buf; + data->chip.read_byte = pdata->ctrl.read_byte; + data->chip.chip_delay = pdata->chip.chip_delay; + data->chip.options |= pdata->chip.options; + data->chip.bbt_options |= pdata->chip.bbt_options; + + data->chip.ecc.hwctl = pdata->ctrl.hwcontrol; + data->chip.ecc.mode = NAND_ECC_SOFT; + data->chip.ecc.algo = NAND_ECC_HAMMING; + + platform_set_drvdata(pdev, data); + + /* Handle any platform specific setup */ + if (pdata->ctrl.probe) { + err = pdata->ctrl.probe(pdev); + if (err) + goto out; + } + + /* Scan to find existence of the device */ + err = nand_scan(mtd, pdata->chip.nr_chips); + if (err) + goto out; + + part_types = pdata->chip.part_probe_types; + + err = mtd_device_parse_register(mtd, part_types, NULL, + pdata->chip.partitions, + pdata->chip.nr_partitions); + + if (!err) + return err; + + nand_release(mtd); +out: + if (pdata->ctrl.remove) + pdata->ctrl.remove(pdev); + return err; +} + +/* + * Remove a NAND device. + */ +static int plat_nand_remove(struct platform_device *pdev) +{ + struct plat_nand_data *data = platform_get_drvdata(pdev); + struct platform_nand_data *pdata = dev_get_platdata(&pdev->dev); + + nand_release(nand_to_mtd(&data->chip)); + if (pdata->ctrl.remove) + pdata->ctrl.remove(pdev); + + return 0; +} + +static const struct of_device_id plat_nand_match[] = { + { .compatible = "gen_nand" }, + {}, +}; +MODULE_DEVICE_TABLE(of, plat_nand_match); + +static struct platform_driver plat_nand_driver = { + .probe = plat_nand_probe, + .remove = plat_nand_remove, + .driver = { + .name = "gen_nand", + .of_match_table = plat_nand_match, + }, +}; + +module_platform_driver(plat_nand_driver); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Vitaly Wool"); +MODULE_DESCRIPTION("Simple generic NAND driver"); +MODULE_ALIAS("platform:gen_nand"); diff --git a/drivers/mtd/nand/raw/pxa3xx_nand.c b/drivers/mtd/nand/raw/pxa3xx_nand.c new file mode 100644 index 000000000000..d75f30263d21 --- /dev/null +++ b/drivers/mtd/nand/raw/pxa3xx_nand.c @@ -0,0 +1,2103 @@ +/* + * Copyright © 2005 Intel Corporation + * Copyright © 2006 Marvell International Ltd. + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + * + * See Documentation/mtd/nand/pxa3xx-nand.txt for more details. + */ + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#define CHIP_DELAY_TIMEOUT msecs_to_jiffies(200) +#define NAND_STOP_DELAY msecs_to_jiffies(40) +#define PAGE_CHUNK_SIZE (2048) + +/* + * Define a buffer size for the initial command that detects the flash device: + * STATUS, READID and PARAM. + * ONFI param page is 256 bytes, and there are three redundant copies + * to be read. JEDEC param page is 512 bytes, and there are also three + * redundant copies to be read. + * Hence this buffer should be at least 512 x 3. Let's pick 2048. + */ +#define INIT_BUFFER_SIZE 2048 + +/* System control register and bit to enable NAND on some SoCs */ +#define GENCONF_SOC_DEVICE_MUX 0x208 +#define GENCONF_SOC_DEVICE_MUX_NFC_EN BIT(0) + +/* registers and bit definitions */ +#define NDCR (0x00) /* Control register */ +#define NDTR0CS0 (0x04) /* Timing Parameter 0 for CS0 */ +#define NDTR1CS0 (0x0C) /* Timing Parameter 1 for CS0 */ +#define NDSR (0x14) /* Status Register */ +#define NDPCR (0x18) /* Page Count Register */ +#define NDBDR0 (0x1C) /* Bad Block Register 0 */ +#define NDBDR1 (0x20) /* Bad Block Register 1 */ +#define NDECCCTRL (0x28) /* ECC control */ +#define NDDB (0x40) /* Data Buffer */ +#define NDCB0 (0x48) /* Command Buffer0 */ +#define NDCB1 (0x4C) /* Command Buffer1 */ +#define NDCB2 (0x50) /* Command Buffer2 */ + +#define NDCR_SPARE_EN (0x1 << 31) +#define NDCR_ECC_EN (0x1 << 30) +#define NDCR_DMA_EN (0x1 << 29) +#define NDCR_ND_RUN (0x1 << 28) +#define NDCR_DWIDTH_C (0x1 << 27) +#define NDCR_DWIDTH_M (0x1 << 26) +#define NDCR_PAGE_SZ (0x1 << 24) +#define NDCR_NCSX (0x1 << 23) +#define NDCR_ND_MODE (0x3 << 21) +#define NDCR_NAND_MODE (0x0) +#define NDCR_CLR_PG_CNT (0x1 << 20) +#define NFCV1_NDCR_ARB_CNTL (0x1 << 19) +#define NFCV2_NDCR_STOP_ON_UNCOR (0x1 << 19) +#define NDCR_RD_ID_CNT_MASK (0x7 << 16) +#define NDCR_RD_ID_CNT(x) (((x) << 16) & NDCR_RD_ID_CNT_MASK) + +#define NDCR_RA_START (0x1 << 15) +#define NDCR_PG_PER_BLK (0x1 << 14) +#define NDCR_ND_ARB_EN (0x1 << 12) +#define NDCR_INT_MASK (0xFFF) + +#define NDSR_MASK (0xfff) +#define NDSR_ERR_CNT_OFF (16) +#define NDSR_ERR_CNT_MASK (0x1f) +#define NDSR_ERR_CNT(sr) ((sr >> NDSR_ERR_CNT_OFF) & NDSR_ERR_CNT_MASK) +#define NDSR_RDY (0x1 << 12) +#define NDSR_FLASH_RDY (0x1 << 11) +#define NDSR_CS0_PAGED (0x1 << 10) +#define NDSR_CS1_PAGED (0x1 << 9) +#define NDSR_CS0_CMDD (0x1 << 8) +#define NDSR_CS1_CMDD (0x1 << 7) +#define NDSR_CS0_BBD (0x1 << 6) +#define NDSR_CS1_BBD (0x1 << 5) +#define NDSR_UNCORERR (0x1 << 4) +#define NDSR_CORERR (0x1 << 3) +#define NDSR_WRDREQ (0x1 << 2) +#define NDSR_RDDREQ (0x1 << 1) +#define NDSR_WRCMDREQ (0x1) + +#define NDCB0_LEN_OVRD (0x1 << 28) +#define NDCB0_ST_ROW_EN (0x1 << 26) +#define NDCB0_AUTO_RS (0x1 << 25) +#define NDCB0_CSEL (0x1 << 24) +#define NDCB0_EXT_CMD_TYPE_MASK (0x7 << 29) +#define NDCB0_EXT_CMD_TYPE(x) (((x) << 29) & NDCB0_EXT_CMD_TYPE_MASK) +#define NDCB0_CMD_TYPE_MASK (0x7 << 21) +#define NDCB0_CMD_TYPE(x) (((x) << 21) & NDCB0_CMD_TYPE_MASK) +#define NDCB0_NC (0x1 << 20) +#define NDCB0_DBC (0x1 << 19) +#define NDCB0_ADDR_CYC_MASK (0x7 << 16) +#define NDCB0_ADDR_CYC(x) (((x) << 16) & NDCB0_ADDR_CYC_MASK) +#define NDCB0_CMD2_MASK (0xff << 8) +#define NDCB0_CMD1_MASK (0xff) +#define NDCB0_ADDR_CYC_SHIFT (16) + +#define EXT_CMD_TYPE_DISPATCH 6 /* Command dispatch */ +#define EXT_CMD_TYPE_NAKED_RW 5 /* Naked read or Naked write */ +#define EXT_CMD_TYPE_READ 4 /* Read */ +#define EXT_CMD_TYPE_DISP_WR 4 /* Command dispatch with write */ +#define EXT_CMD_TYPE_FINAL 3 /* Final command */ +#define EXT_CMD_TYPE_LAST_RW 1 /* Last naked read/write */ +#define EXT_CMD_TYPE_MONO 0 /* Monolithic read/write */ + +/* + * This should be large enough to read 'ONFI' and 'JEDEC'. + * Let's use 7 bytes, which is the maximum ID count supported + * by the controller (see NDCR_RD_ID_CNT_MASK). + */ +#define READ_ID_BYTES 7 + +/* macros for registers read/write */ +#define nand_writel(info, off, val) \ + do { \ + dev_vdbg(&info->pdev->dev, \ + "%s():%d nand_writel(0x%x, 0x%04x)\n", \ + __func__, __LINE__, (val), (off)); \ + writel_relaxed((val), (info)->mmio_base + (off)); \ + } while (0) + +#define nand_readl(info, off) \ + ({ \ + unsigned int _v; \ + _v = readl_relaxed((info)->mmio_base + (off)); \ + dev_vdbg(&info->pdev->dev, \ + "%s():%d nand_readl(0x%04x) = 0x%x\n", \ + __func__, __LINE__, (off), _v); \ + _v; \ + }) + +/* error code and state */ +enum { + ERR_NONE = 0, + ERR_DMABUSERR = -1, + ERR_SENDCMD = -2, + ERR_UNCORERR = -3, + ERR_BBERR = -4, + ERR_CORERR = -5, +}; + +enum { + STATE_IDLE = 0, + STATE_PREPARED, + STATE_CMD_HANDLE, + STATE_DMA_READING, + STATE_DMA_WRITING, + STATE_DMA_DONE, + STATE_PIO_READING, + STATE_PIO_WRITING, + STATE_CMD_DONE, + STATE_READY, +}; + +enum pxa3xx_nand_variant { + PXA3XX_NAND_VARIANT_PXA, + PXA3XX_NAND_VARIANT_ARMADA370, + PXA3XX_NAND_VARIANT_ARMADA_8K, +}; + +struct pxa3xx_nand_host { + struct nand_chip chip; + void *info_data; + + /* page size of attached chip */ + int use_ecc; + int cs; + + /* calculated from pxa3xx_nand_flash data */ + unsigned int col_addr_cycles; + unsigned int row_addr_cycles; +}; + +struct pxa3xx_nand_info { + struct nand_hw_control controller; + struct platform_device *pdev; + + struct clk *clk; + void __iomem *mmio_base; + unsigned long mmio_phys; + struct completion cmd_complete, dev_ready; + + unsigned int buf_start; + unsigned int buf_count; + unsigned int buf_size; + unsigned int data_buff_pos; + unsigned int oob_buff_pos; + + /* DMA information */ + struct scatterlist sg; + enum dma_data_direction dma_dir; + struct dma_chan *dma_chan; + dma_cookie_t dma_cookie; + int drcmr_dat; + + unsigned char *data_buff; + unsigned char *oob_buff; + dma_addr_t data_buff_phys; + int data_dma_ch; + + struct pxa3xx_nand_host *host[NUM_CHIP_SELECT]; + unsigned int state; + + /* + * This driver supports NFCv1 (as found in PXA SoC) + * and NFCv2 (as found in Armada 370/XP SoC). + */ + enum pxa3xx_nand_variant variant; + + int cs; + int use_ecc; /* use HW ECC ? */ + int ecc_bch; /* using BCH ECC? */ + int use_dma; /* use DMA ? */ + int use_spare; /* use spare ? */ + int need_wait; + + /* Amount of real data per full chunk */ + unsigned int chunk_size; + + /* Amount of spare data per full chunk */ + unsigned int spare_size; + + /* Number of full chunks (i.e chunk_size + spare_size) */ + unsigned int nfullchunks; + + /* + * Total number of chunks. If equal to nfullchunks, then there + * are only full chunks. Otherwise, there is one last chunk of + * size (last_chunk_size + last_spare_size) + */ + unsigned int ntotalchunks; + + /* Amount of real data in the last chunk */ + unsigned int last_chunk_size; + + /* Amount of spare data in the last chunk */ + unsigned int last_spare_size; + + unsigned int ecc_size; + unsigned int ecc_err_cnt; + unsigned int max_bitflips; + int retcode; + + /* + * Variables only valid during command + * execution. step_chunk_size and step_spare_size is the + * amount of real data and spare data in the current + * chunk. cur_chunk is the current chunk being + * read/programmed. + */ + unsigned int step_chunk_size; + unsigned int step_spare_size; + unsigned int cur_chunk; + + /* cached register value */ + uint32_t reg_ndcr; + uint32_t ndtr0cs0; + uint32_t ndtr1cs0; + + /* generated NDCBx register values */ + uint32_t ndcb0; + uint32_t ndcb1; + uint32_t ndcb2; + uint32_t ndcb3; +}; + +static bool use_dma = 1; +module_param(use_dma, bool, 0444); +MODULE_PARM_DESC(use_dma, "enable DMA for data transferring to/from NAND HW"); + +struct pxa3xx_nand_timing { + unsigned int tCH; /* Enable signal hold time */ + unsigned int tCS; /* Enable signal setup time */ + unsigned int tWH; /* ND_nWE high duration */ + unsigned int tWP; /* ND_nWE pulse time */ + unsigned int tRH; /* ND_nRE high duration */ + unsigned int tRP; /* ND_nRE pulse width */ + unsigned int tR; /* ND_nWE high to ND_nRE low for read */ + unsigned int tWHR; /* ND_nWE high to ND_nRE low for status read */ + unsigned int tAR; /* ND_ALE low to ND_nRE low delay */ +}; + +struct pxa3xx_nand_flash { + uint32_t chip_id; + unsigned int flash_width; /* Width of Flash memory (DWIDTH_M) */ + unsigned int dfc_width; /* Width of flash controller(DWIDTH_C) */ + struct pxa3xx_nand_timing *timing; /* NAND Flash timing */ +}; + +static struct pxa3xx_nand_timing timing[] = { + { 40, 80, 60, 100, 80, 100, 90000, 400, 40, }, + { 10, 0, 20, 40, 30, 40, 11123, 110, 10, }, + { 10, 25, 15, 25, 15, 30, 25000, 60, 10, }, + { 10, 35, 15, 25, 15, 25, 25000, 60, 10, }, +}; + +static struct pxa3xx_nand_flash builtin_flash_types[] = { + { 0x46ec, 16, 16, &timing[1] }, + { 0xdaec, 8, 8, &timing[1] }, + { 0xd7ec, 8, 8, &timing[1] }, + { 0xa12c, 8, 8, &timing[2] }, + { 0xb12c, 16, 16, &timing[2] }, + { 0xdc2c, 8, 8, &timing[2] }, + { 0xcc2c, 16, 16, &timing[2] }, + { 0xba20, 16, 16, &timing[3] }, +}; + +static int pxa3xx_ooblayout_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct pxa3xx_nand_host *host = nand_get_controller_data(chip); + struct pxa3xx_nand_info *info = host->info_data; + int nchunks = mtd->writesize / info->chunk_size; + + if (section >= nchunks) + return -ERANGE; + + oobregion->offset = ((info->ecc_size + info->spare_size) * section) + + info->spare_size; + oobregion->length = info->ecc_size; + + return 0; +} + +static int pxa3xx_ooblayout_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct pxa3xx_nand_host *host = nand_get_controller_data(chip); + struct pxa3xx_nand_info *info = host->info_data; + int nchunks = mtd->writesize / info->chunk_size; + + if (section >= nchunks) + return -ERANGE; + + if (!info->spare_size) + return 0; + + oobregion->offset = section * (info->ecc_size + info->spare_size); + oobregion->length = info->spare_size; + if (!section) { + /* + * Bootrom looks in bytes 0 & 5 for bad blocks for the + * 4KB page / 4bit BCH combination. + */ + if (mtd->writesize == 4096 && info->chunk_size == 2048) { + oobregion->offset += 6; + oobregion->length -= 6; + } else { + oobregion->offset += 2; + oobregion->length -= 2; + } + } + + return 0; +} + +static const struct mtd_ooblayout_ops pxa3xx_ooblayout_ops = { + .ecc = pxa3xx_ooblayout_ecc, + .free = pxa3xx_ooblayout_free, +}; + +static u8 bbt_pattern[] = {'M', 'V', 'B', 'b', 't', '0' }; +static u8 bbt_mirror_pattern[] = {'1', 't', 'b', 'B', 'V', 'M' }; + +static struct nand_bbt_descr bbt_main_descr = { + .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE + | NAND_BBT_2BIT | NAND_BBT_VERSION, + .offs = 8, + .len = 6, + .veroffs = 14, + .maxblocks = 8, /* Last 8 blocks in each chip */ + .pattern = bbt_pattern +}; + +static struct nand_bbt_descr bbt_mirror_descr = { + .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE + | NAND_BBT_2BIT | NAND_BBT_VERSION, + .offs = 8, + .len = 6, + .veroffs = 14, + .maxblocks = 8, /* Last 8 blocks in each chip */ + .pattern = bbt_mirror_pattern +}; + +#define NDTR0_tCH(c) (min((c), 7) << 19) +#define NDTR0_tCS(c) (min((c), 7) << 16) +#define NDTR0_tWH(c) (min((c), 7) << 11) +#define NDTR0_tWP(c) (min((c), 7) << 8) +#define NDTR0_tRH(c) (min((c), 7) << 3) +#define NDTR0_tRP(c) (min((c), 7) << 0) + +#define NDTR1_tR(c) (min((c), 65535) << 16) +#define NDTR1_tWHR(c) (min((c), 15) << 4) +#define NDTR1_tAR(c) (min((c), 15) << 0) + +/* convert nano-seconds to nand flash controller clock cycles */ +#define ns2cycle(ns, clk) (int)((ns) * (clk / 1000000) / 1000) + +static const struct of_device_id pxa3xx_nand_dt_ids[] = { + { + .compatible = "marvell,pxa3xx-nand", + .data = (void *)PXA3XX_NAND_VARIANT_PXA, + }, + { + .compatible = "marvell,armada370-nand", + .data = (void *)PXA3XX_NAND_VARIANT_ARMADA370, + }, + { + .compatible = "marvell,armada-8k-nand", + .data = (void *)PXA3XX_NAND_VARIANT_ARMADA_8K, + }, + {} +}; +MODULE_DEVICE_TABLE(of, pxa3xx_nand_dt_ids); + +static enum pxa3xx_nand_variant +pxa3xx_nand_get_variant(struct platform_device *pdev) +{ + const struct of_device_id *of_id = + of_match_device(pxa3xx_nand_dt_ids, &pdev->dev); + if (!of_id) + return PXA3XX_NAND_VARIANT_PXA; + return (enum pxa3xx_nand_variant)of_id->data; +} + +static void pxa3xx_nand_set_timing(struct pxa3xx_nand_host *host, + const struct pxa3xx_nand_timing *t) +{ + struct pxa3xx_nand_info *info = host->info_data; + unsigned long nand_clk = clk_get_rate(info->clk); + uint32_t ndtr0, ndtr1; + + ndtr0 = NDTR0_tCH(ns2cycle(t->tCH, nand_clk)) | + NDTR0_tCS(ns2cycle(t->tCS, nand_clk)) | + NDTR0_tWH(ns2cycle(t->tWH, nand_clk)) | + NDTR0_tWP(ns2cycle(t->tWP, nand_clk)) | + NDTR0_tRH(ns2cycle(t->tRH, nand_clk)) | + NDTR0_tRP(ns2cycle(t->tRP, nand_clk)); + + ndtr1 = NDTR1_tR(ns2cycle(t->tR, nand_clk)) | + NDTR1_tWHR(ns2cycle(t->tWHR, nand_clk)) | + NDTR1_tAR(ns2cycle(t->tAR, nand_clk)); + + info->ndtr0cs0 = ndtr0; + info->ndtr1cs0 = ndtr1; + nand_writel(info, NDTR0CS0, ndtr0); + nand_writel(info, NDTR1CS0, ndtr1); +} + +static void pxa3xx_nand_set_sdr_timing(struct pxa3xx_nand_host *host, + const struct nand_sdr_timings *t) +{ + struct pxa3xx_nand_info *info = host->info_data; + struct nand_chip *chip = &host->chip; + unsigned long nand_clk = clk_get_rate(info->clk); + uint32_t ndtr0, ndtr1; + + u32 tCH_min = DIV_ROUND_UP(t->tCH_min, 1000); + u32 tCS_min = DIV_ROUND_UP(t->tCS_min, 1000); + u32 tWH_min = DIV_ROUND_UP(t->tWH_min, 1000); + u32 tWP_min = DIV_ROUND_UP(t->tWC_min - t->tWH_min, 1000); + u32 tREH_min = DIV_ROUND_UP(t->tREH_min, 1000); + u32 tRP_min = DIV_ROUND_UP(t->tRC_min - t->tREH_min, 1000); + u32 tR = chip->chip_delay * 1000; + u32 tWHR_min = DIV_ROUND_UP(t->tWHR_min, 1000); + u32 tAR_min = DIV_ROUND_UP(t->tAR_min, 1000); + + /* fallback to a default value if tR = 0 */ + if (!tR) + tR = 20000; + + ndtr0 = NDTR0_tCH(ns2cycle(tCH_min, nand_clk)) | + NDTR0_tCS(ns2cycle(tCS_min, nand_clk)) | + NDTR0_tWH(ns2cycle(tWH_min, nand_clk)) | + NDTR0_tWP(ns2cycle(tWP_min, nand_clk)) | + NDTR0_tRH(ns2cycle(tREH_min, nand_clk)) | + NDTR0_tRP(ns2cycle(tRP_min, nand_clk)); + + ndtr1 = NDTR1_tR(ns2cycle(tR, nand_clk)) | + NDTR1_tWHR(ns2cycle(tWHR_min, nand_clk)) | + NDTR1_tAR(ns2cycle(tAR_min, nand_clk)); + + info->ndtr0cs0 = ndtr0; + info->ndtr1cs0 = ndtr1; + nand_writel(info, NDTR0CS0, ndtr0); + nand_writel(info, NDTR1CS0, ndtr1); +} + +static int pxa3xx_nand_init_timings_compat(struct pxa3xx_nand_host *host, + unsigned int *flash_width, + unsigned int *dfc_width) +{ + struct nand_chip *chip = &host->chip; + struct pxa3xx_nand_info *info = host->info_data; + const struct pxa3xx_nand_flash *f = NULL; + int i, id, ntypes; + u8 idbuf[2]; + + ntypes = ARRAY_SIZE(builtin_flash_types); + + nand_readid_op(chip, 0, idbuf, sizeof(idbuf)); + id = idbuf[0] | (idbuf[1] << 8); + + for (i = 0; i < ntypes; i++) { + f = &builtin_flash_types[i]; + + if (f->chip_id == id) + break; + } + + if (i == ntypes) { + dev_err(&info->pdev->dev, "Error: timings not found\n"); + return -EINVAL; + } + + pxa3xx_nand_set_timing(host, f->timing); + + *flash_width = f->flash_width; + *dfc_width = f->dfc_width; + + return 0; +} + +static int pxa3xx_nand_init_timings_onfi(struct pxa3xx_nand_host *host, + int mode) +{ + const struct nand_sdr_timings *timings; + + mode = fls(mode) - 1; + if (mode < 0) + mode = 0; + + timings = onfi_async_timing_mode_to_sdr_timings(mode); + if (IS_ERR(timings)) + return PTR_ERR(timings); + + pxa3xx_nand_set_sdr_timing(host, timings); + + return 0; +} + +static int pxa3xx_nand_init(struct pxa3xx_nand_host *host) +{ + struct nand_chip *chip = &host->chip; + struct pxa3xx_nand_info *info = host->info_data; + unsigned int flash_width = 0, dfc_width = 0; + int mode, err; + + mode = onfi_get_async_timing_mode(chip); + if (mode == ONFI_TIMING_MODE_UNKNOWN) { + err = pxa3xx_nand_init_timings_compat(host, &flash_width, + &dfc_width); + if (err) + return err; + + if (flash_width == 16) { + info->reg_ndcr |= NDCR_DWIDTH_M; + chip->options |= NAND_BUSWIDTH_16; + } + + info->reg_ndcr |= (dfc_width == 16) ? NDCR_DWIDTH_C : 0; + } else { + err = pxa3xx_nand_init_timings_onfi(host, mode); + if (err) + return err; + } + + return 0; +} + +/** + * NOTE: it is a must to set ND_RUN firstly, then write + * command buffer, otherwise, it does not work. + * We enable all the interrupt at the same time, and + * let pxa3xx_nand_irq to handle all logic. + */ +static void pxa3xx_nand_start(struct pxa3xx_nand_info *info) +{ + uint32_t ndcr; + + ndcr = info->reg_ndcr; + + if (info->use_ecc) { + ndcr |= NDCR_ECC_EN; + if (info->ecc_bch) + nand_writel(info, NDECCCTRL, 0x1); + } else { + ndcr &= ~NDCR_ECC_EN; + if (info->ecc_bch) + nand_writel(info, NDECCCTRL, 0x0); + } + + if (info->use_dma) + ndcr |= NDCR_DMA_EN; + else + ndcr &= ~NDCR_DMA_EN; + + if (info->use_spare) + ndcr |= NDCR_SPARE_EN; + else + ndcr &= ~NDCR_SPARE_EN; + + ndcr |= NDCR_ND_RUN; + + /* clear status bits and run */ + nand_writel(info, NDSR, NDSR_MASK); + nand_writel(info, NDCR, 0); + nand_writel(info, NDCR, ndcr); +} + +static void pxa3xx_nand_stop(struct pxa3xx_nand_info *info) +{ + uint32_t ndcr; + int timeout = NAND_STOP_DELAY; + + /* wait RUN bit in NDCR become 0 */ + ndcr = nand_readl(info, NDCR); + while ((ndcr & NDCR_ND_RUN) && (timeout-- > 0)) { + ndcr = nand_readl(info, NDCR); + udelay(1); + } + + if (timeout <= 0) { + ndcr &= ~NDCR_ND_RUN; + nand_writel(info, NDCR, ndcr); + } + if (info->dma_chan) + dmaengine_terminate_all(info->dma_chan); + + /* clear status bits */ + nand_writel(info, NDSR, NDSR_MASK); +} + +static void __maybe_unused +enable_int(struct pxa3xx_nand_info *info, uint32_t int_mask) +{ + uint32_t ndcr; + + ndcr = nand_readl(info, NDCR); + nand_writel(info, NDCR, ndcr & ~int_mask); +} + +static void disable_int(struct pxa3xx_nand_info *info, uint32_t int_mask) +{ + uint32_t ndcr; + + ndcr = nand_readl(info, NDCR); + nand_writel(info, NDCR, ndcr | int_mask); +} + +static void drain_fifo(struct pxa3xx_nand_info *info, void *data, int len) +{ + if (info->ecc_bch) { + u32 val; + int ret; + + /* + * According to the datasheet, when reading from NDDB + * with BCH enabled, after each 32 bytes reads, we + * have to make sure that the NDSR.RDDREQ bit is set. + * + * Drain the FIFO 8 32 bits reads at a time, and skip + * the polling on the last read. + */ + while (len > 8) { + ioread32_rep(info->mmio_base + NDDB, data, 8); + + ret = readl_relaxed_poll_timeout(info->mmio_base + NDSR, val, + val & NDSR_RDDREQ, 1000, 5000); + if (ret) { + dev_err(&info->pdev->dev, + "Timeout on RDDREQ while draining the FIFO\n"); + return; + } + + data += 32; + len -= 8; + } + } + + ioread32_rep(info->mmio_base + NDDB, data, len); +} + +static void handle_data_pio(struct pxa3xx_nand_info *info) +{ + switch (info->state) { + case STATE_PIO_WRITING: + if (info->step_chunk_size) + writesl(info->mmio_base + NDDB, + info->data_buff + info->data_buff_pos, + DIV_ROUND_UP(info->step_chunk_size, 4)); + + if (info->step_spare_size) + writesl(info->mmio_base + NDDB, + info->oob_buff + info->oob_buff_pos, + DIV_ROUND_UP(info->step_spare_size, 4)); + break; + case STATE_PIO_READING: + if (info->step_chunk_size) + drain_fifo(info, + info->data_buff + info->data_buff_pos, + DIV_ROUND_UP(info->step_chunk_size, 4)); + + if (info->step_spare_size) + drain_fifo(info, + info->oob_buff + info->oob_buff_pos, + DIV_ROUND_UP(info->step_spare_size, 4)); + break; + default: + dev_err(&info->pdev->dev, "%s: invalid state %d\n", __func__, + info->state); + BUG(); + } + + /* Update buffer pointers for multi-page read/write */ + info->data_buff_pos += info->step_chunk_size; + info->oob_buff_pos += info->step_spare_size; +} + +static void pxa3xx_nand_data_dma_irq(void *data) +{ + struct pxa3xx_nand_info *info = data; + struct dma_tx_state state; + enum dma_status status; + + status = dmaengine_tx_status(info->dma_chan, info->dma_cookie, &state); + if (likely(status == DMA_COMPLETE)) { + info->state = STATE_DMA_DONE; + } else { + dev_err(&info->pdev->dev, "DMA error on data channel\n"); + info->retcode = ERR_DMABUSERR; + } + dma_unmap_sg(info->dma_chan->device->dev, &info->sg, 1, info->dma_dir); + + nand_writel(info, NDSR, NDSR_WRDREQ | NDSR_RDDREQ); + enable_int(info, NDCR_INT_MASK); +} + +static void start_data_dma(struct pxa3xx_nand_info *info) +{ + enum dma_transfer_direction direction; + struct dma_async_tx_descriptor *tx; + + switch (info->state) { + case STATE_DMA_WRITING: + info->dma_dir = DMA_TO_DEVICE; + direction = DMA_MEM_TO_DEV; + break; + case STATE_DMA_READING: + info->dma_dir = DMA_FROM_DEVICE; + direction = DMA_DEV_TO_MEM; + break; + default: + dev_err(&info->pdev->dev, "%s: invalid state %d\n", __func__, + info->state); + BUG(); + } + info->sg.length = info->chunk_size; + if (info->use_spare) + info->sg.length += info->spare_size + info->ecc_size; + dma_map_sg(info->dma_chan->device->dev, &info->sg, 1, info->dma_dir); + + tx = dmaengine_prep_slave_sg(info->dma_chan, &info->sg, 1, direction, + DMA_PREP_INTERRUPT); + if (!tx) { + dev_err(&info->pdev->dev, "prep_slave_sg() failed\n"); + return; + } + tx->callback = pxa3xx_nand_data_dma_irq; + tx->callback_param = info; + info->dma_cookie = dmaengine_submit(tx); + dma_async_issue_pending(info->dma_chan); + dev_dbg(&info->pdev->dev, "%s(dir=%d cookie=%x size=%u)\n", + __func__, direction, info->dma_cookie, info->sg.length); +} + +static irqreturn_t pxa3xx_nand_irq_thread(int irq, void *data) +{ + struct pxa3xx_nand_info *info = data; + + handle_data_pio(info); + + info->state = STATE_CMD_DONE; + nand_writel(info, NDSR, NDSR_WRDREQ | NDSR_RDDREQ); + + return IRQ_HANDLED; +} + +static irqreturn_t pxa3xx_nand_irq(int irq, void *devid) +{ + struct pxa3xx_nand_info *info = devid; + unsigned int status, is_completed = 0, is_ready = 0; + unsigned int ready, cmd_done; + irqreturn_t ret = IRQ_HANDLED; + + if (info->cs == 0) { + ready = NDSR_FLASH_RDY; + cmd_done = NDSR_CS0_CMDD; + } else { + ready = NDSR_RDY; + cmd_done = NDSR_CS1_CMDD; + } + + status = nand_readl(info, NDSR); + + if (status & NDSR_UNCORERR) + info->retcode = ERR_UNCORERR; + if (status & NDSR_CORERR) { + info->retcode = ERR_CORERR; + if ((info->variant == PXA3XX_NAND_VARIANT_ARMADA370 || + info->variant == PXA3XX_NAND_VARIANT_ARMADA_8K) && + info->ecc_bch) + info->ecc_err_cnt = NDSR_ERR_CNT(status); + else + info->ecc_err_cnt = 1; + + /* + * Each chunk composing a page is corrected independently, + * and we need to store maximum number of corrected bitflips + * to return it to the MTD layer in ecc.read_page(). + */ + info->max_bitflips = max_t(unsigned int, + info->max_bitflips, + info->ecc_err_cnt); + } + if (status & (NDSR_RDDREQ | NDSR_WRDREQ)) { + /* whether use dma to transfer data */ + if (info->use_dma) { + disable_int(info, NDCR_INT_MASK); + info->state = (status & NDSR_RDDREQ) ? + STATE_DMA_READING : STATE_DMA_WRITING; + start_data_dma(info); + goto NORMAL_IRQ_EXIT; + } else { + info->state = (status & NDSR_RDDREQ) ? + STATE_PIO_READING : STATE_PIO_WRITING; + ret = IRQ_WAKE_THREAD; + goto NORMAL_IRQ_EXIT; + } + } + if (status & cmd_done) { + info->state = STATE_CMD_DONE; + is_completed = 1; + } + if (status & ready) { + info->state = STATE_READY; + is_ready = 1; + } + + /* + * Clear all status bit before issuing the next command, which + * can and will alter the status bits and will deserve a new + * interrupt on its own. This lets the controller exit the IRQ + */ + nand_writel(info, NDSR, status); + + if (status & NDSR_WRCMDREQ) { + status &= ~NDSR_WRCMDREQ; + info->state = STATE_CMD_HANDLE; + + /* + * Command buffer registers NDCB{0-2} (and optionally NDCB3) + * must be loaded by writing directly either 12 or 16 + * bytes directly to NDCB0, four bytes at a time. + * + * Direct write access to NDCB1, NDCB2 and NDCB3 is ignored + * but each NDCBx register can be read. + */ + nand_writel(info, NDCB0, info->ndcb0); + nand_writel(info, NDCB0, info->ndcb1); + nand_writel(info, NDCB0, info->ndcb2); + + /* NDCB3 register is available in NFCv2 (Armada 370/XP SoC) */ + if (info->variant == PXA3XX_NAND_VARIANT_ARMADA370 || + info->variant == PXA3XX_NAND_VARIANT_ARMADA_8K) + nand_writel(info, NDCB0, info->ndcb3); + } + + if (is_completed) + complete(&info->cmd_complete); + if (is_ready) + complete(&info->dev_ready); +NORMAL_IRQ_EXIT: + return ret; +} + +static inline int is_buf_blank(uint8_t *buf, size_t len) +{ + for (; len > 0; len--) + if (*buf++ != 0xff) + return 0; + return 1; +} + +static void set_command_address(struct pxa3xx_nand_info *info, + unsigned int page_size, uint16_t column, int page_addr) +{ + /* small page addr setting */ + if (page_size < PAGE_CHUNK_SIZE) { + info->ndcb1 = ((page_addr & 0xFFFFFF) << 8) + | (column & 0xFF); + + info->ndcb2 = 0; + } else { + info->ndcb1 = ((page_addr & 0xFFFF) << 16) + | (column & 0xFFFF); + + if (page_addr & 0xFF0000) + info->ndcb2 = (page_addr & 0xFF0000) >> 16; + else + info->ndcb2 = 0; + } +} + +static void prepare_start_command(struct pxa3xx_nand_info *info, int command) +{ + struct pxa3xx_nand_host *host = info->host[info->cs]; + struct mtd_info *mtd = nand_to_mtd(&host->chip); + + /* reset data and oob column point to handle data */ + info->buf_start = 0; + info->buf_count = 0; + info->data_buff_pos = 0; + info->oob_buff_pos = 0; + info->step_chunk_size = 0; + info->step_spare_size = 0; + info->cur_chunk = 0; + info->use_ecc = 0; + info->use_spare = 1; + info->retcode = ERR_NONE; + info->ecc_err_cnt = 0; + info->ndcb3 = 0; + info->need_wait = 0; + + switch (command) { + case NAND_CMD_READ0: + case NAND_CMD_READOOB: + case NAND_CMD_PAGEPROG: + info->use_ecc = 1; + break; + case NAND_CMD_PARAM: + info->use_spare = 0; + break; + default: + info->ndcb1 = 0; + info->ndcb2 = 0; + break; + } + + /* + * If we are about to issue a read command, or about to set + * the write address, then clean the data buffer. + */ + if (command == NAND_CMD_READ0 || + command == NAND_CMD_READOOB || + command == NAND_CMD_SEQIN) { + + info->buf_count = mtd->writesize + mtd->oobsize; + memset(info->data_buff, 0xFF, info->buf_count); + } + +} + +static int prepare_set_command(struct pxa3xx_nand_info *info, int command, + int ext_cmd_type, uint16_t column, int page_addr) +{ + int addr_cycle, exec_cmd; + struct pxa3xx_nand_host *host; + struct mtd_info *mtd; + + host = info->host[info->cs]; + mtd = nand_to_mtd(&host->chip); + addr_cycle = 0; + exec_cmd = 1; + + if (info->cs != 0) + info->ndcb0 = NDCB0_CSEL; + else + info->ndcb0 = 0; + + if (command == NAND_CMD_SEQIN) + exec_cmd = 0; + + addr_cycle = NDCB0_ADDR_CYC(host->row_addr_cycles + + host->col_addr_cycles); + + switch (command) { + case NAND_CMD_READOOB: + case NAND_CMD_READ0: + info->buf_start = column; + info->ndcb0 |= NDCB0_CMD_TYPE(0) + | addr_cycle + | NAND_CMD_READ0; + + if (command == NAND_CMD_READOOB) + info->buf_start += mtd->writesize; + + if (info->cur_chunk < info->nfullchunks) { + info->step_chunk_size = info->chunk_size; + info->step_spare_size = info->spare_size; + } else { + info->step_chunk_size = info->last_chunk_size; + info->step_spare_size = info->last_spare_size; + } + + /* + * Multiple page read needs an 'extended command type' field, + * which is either naked-read or last-read according to the + * state. + */ + if (mtd->writesize == PAGE_CHUNK_SIZE) { + info->ndcb0 |= NDCB0_DBC | (NAND_CMD_READSTART << 8); + } else if (mtd->writesize > PAGE_CHUNK_SIZE) { + info->ndcb0 |= NDCB0_DBC | (NAND_CMD_READSTART << 8) + | NDCB0_LEN_OVRD + | NDCB0_EXT_CMD_TYPE(ext_cmd_type); + info->ndcb3 = info->step_chunk_size + + info->step_spare_size; + } + + set_command_address(info, mtd->writesize, column, page_addr); + break; + + case NAND_CMD_SEQIN: + + info->buf_start = column; + set_command_address(info, mtd->writesize, 0, page_addr); + + /* + * Multiple page programming needs to execute the initial + * SEQIN command that sets the page address. + */ + if (mtd->writesize > PAGE_CHUNK_SIZE) { + info->ndcb0 |= NDCB0_CMD_TYPE(0x1) + | NDCB0_EXT_CMD_TYPE(ext_cmd_type) + | addr_cycle + | command; + exec_cmd = 1; + } + break; + + case NAND_CMD_PAGEPROG: + if (is_buf_blank(info->data_buff, + (mtd->writesize + mtd->oobsize))) { + exec_cmd = 0; + break; + } + + if (info->cur_chunk < info->nfullchunks) { + info->step_chunk_size = info->chunk_size; + info->step_spare_size = info->spare_size; + } else { + info->step_chunk_size = info->last_chunk_size; + info->step_spare_size = info->last_spare_size; + } + + /* Second command setting for large pages */ + if (mtd->writesize > PAGE_CHUNK_SIZE) { + /* + * Multiple page write uses the 'extended command' + * field. This can be used to issue a command dispatch + * or a naked-write depending on the current stage. + */ + info->ndcb0 |= NDCB0_CMD_TYPE(0x1) + | NDCB0_LEN_OVRD + | NDCB0_EXT_CMD_TYPE(ext_cmd_type); + info->ndcb3 = info->step_chunk_size + + info->step_spare_size; + + /* + * This is the command dispatch that completes a chunked + * page program operation. + */ + if (info->cur_chunk == info->ntotalchunks) { + info->ndcb0 = NDCB0_CMD_TYPE(0x1) + | NDCB0_EXT_CMD_TYPE(ext_cmd_type) + | command; + info->ndcb1 = 0; + info->ndcb2 = 0; + info->ndcb3 = 0; + } + } else { + info->ndcb0 |= NDCB0_CMD_TYPE(0x1) + | NDCB0_AUTO_RS + | NDCB0_ST_ROW_EN + | NDCB0_DBC + | (NAND_CMD_PAGEPROG << 8) + | NAND_CMD_SEQIN + | addr_cycle; + } + break; + + case NAND_CMD_PARAM: + info->buf_count = INIT_BUFFER_SIZE; + info->ndcb0 |= NDCB0_CMD_TYPE(0) + | NDCB0_ADDR_CYC(1) + | NDCB0_LEN_OVRD + | command; + info->ndcb1 = (column & 0xFF); + info->ndcb3 = INIT_BUFFER_SIZE; + info->step_chunk_size = INIT_BUFFER_SIZE; + break; + + case NAND_CMD_READID: + info->buf_count = READ_ID_BYTES; + info->ndcb0 |= NDCB0_CMD_TYPE(3) + | NDCB0_ADDR_CYC(1) + | command; + info->ndcb1 = (column & 0xFF); + + info->step_chunk_size = 8; + break; + case NAND_CMD_STATUS: + info->buf_count = 1; + info->ndcb0 |= NDCB0_CMD_TYPE(4) + | NDCB0_ADDR_CYC(1) + | command; + + info->step_chunk_size = 8; + break; + + case NAND_CMD_ERASE1: + info->ndcb0 |= NDCB0_CMD_TYPE(2) + | NDCB0_AUTO_RS + | NDCB0_ADDR_CYC(3) + | NDCB0_DBC + | (NAND_CMD_ERASE2 << 8) + | NAND_CMD_ERASE1; + info->ndcb1 = page_addr; + info->ndcb2 = 0; + + break; + case NAND_CMD_RESET: + info->ndcb0 |= NDCB0_CMD_TYPE(5) + | command; + + break; + + case NAND_CMD_ERASE2: + exec_cmd = 0; + break; + + default: + exec_cmd = 0; + dev_err(&info->pdev->dev, "non-supported command %x\n", + command); + break; + } + + return exec_cmd; +} + +static void nand_cmdfunc(struct mtd_info *mtd, unsigned command, + int column, int page_addr) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct pxa3xx_nand_host *host = nand_get_controller_data(chip); + struct pxa3xx_nand_info *info = host->info_data; + int exec_cmd; + + /* + * if this is a x16 device ,then convert the input + * "byte" address into a "word" address appropriate + * for indexing a word-oriented device + */ + if (info->reg_ndcr & NDCR_DWIDTH_M) + column /= 2; + + /* + * There may be different NAND chip hooked to + * different chip select, so check whether + * chip select has been changed, if yes, reset the timing + */ + if (info->cs != host->cs) { + info->cs = host->cs; + nand_writel(info, NDTR0CS0, info->ndtr0cs0); + nand_writel(info, NDTR1CS0, info->ndtr1cs0); + } + + prepare_start_command(info, command); + + info->state = STATE_PREPARED; + exec_cmd = prepare_set_command(info, command, 0, column, page_addr); + + if (exec_cmd) { + init_completion(&info->cmd_complete); + init_completion(&info->dev_ready); + info->need_wait = 1; + pxa3xx_nand_start(info); + + if (!wait_for_completion_timeout(&info->cmd_complete, + CHIP_DELAY_TIMEOUT)) { + dev_err(&info->pdev->dev, "Wait time out!!!\n"); + /* Stop State Machine for next command cycle */ + pxa3xx_nand_stop(info); + } + } + info->state = STATE_IDLE; +} + +static void nand_cmdfunc_extended(struct mtd_info *mtd, + const unsigned command, + int column, int page_addr) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct pxa3xx_nand_host *host = nand_get_controller_data(chip); + struct pxa3xx_nand_info *info = host->info_data; + int exec_cmd, ext_cmd_type; + + /* + * if this is a x16 device then convert the input + * "byte" address into a "word" address appropriate + * for indexing a word-oriented device + */ + if (info->reg_ndcr & NDCR_DWIDTH_M) + column /= 2; + + /* + * There may be different NAND chip hooked to + * different chip select, so check whether + * chip select has been changed, if yes, reset the timing + */ + if (info->cs != host->cs) { + info->cs = host->cs; + nand_writel(info, NDTR0CS0, info->ndtr0cs0); + nand_writel(info, NDTR1CS0, info->ndtr1cs0); + } + + /* Select the extended command for the first command */ + switch (command) { + case NAND_CMD_READ0: + case NAND_CMD_READOOB: + ext_cmd_type = EXT_CMD_TYPE_MONO; + break; + case NAND_CMD_SEQIN: + ext_cmd_type = EXT_CMD_TYPE_DISPATCH; + break; + case NAND_CMD_PAGEPROG: + ext_cmd_type = EXT_CMD_TYPE_NAKED_RW; + break; + default: + ext_cmd_type = 0; + break; + } + + prepare_start_command(info, command); + + /* + * Prepare the "is ready" completion before starting a command + * transaction sequence. If the command is not executed the + * completion will be completed, see below. + * + * We can do that inside the loop because the command variable + * is invariant and thus so is the exec_cmd. + */ + info->need_wait = 1; + init_completion(&info->dev_ready); + do { + info->state = STATE_PREPARED; + + exec_cmd = prepare_set_command(info, command, ext_cmd_type, + column, page_addr); + if (!exec_cmd) { + info->need_wait = 0; + complete(&info->dev_ready); + break; + } + + init_completion(&info->cmd_complete); + pxa3xx_nand_start(info); + + if (!wait_for_completion_timeout(&info->cmd_complete, + CHIP_DELAY_TIMEOUT)) { + dev_err(&info->pdev->dev, "Wait time out!!!\n"); + /* Stop State Machine for next command cycle */ + pxa3xx_nand_stop(info); + break; + } + + /* Only a few commands need several steps */ + if (command != NAND_CMD_PAGEPROG && + command != NAND_CMD_READ0 && + command != NAND_CMD_READOOB) + break; + + info->cur_chunk++; + + /* Check if the sequence is complete */ + if (info->cur_chunk == info->ntotalchunks && command != NAND_CMD_PAGEPROG) + break; + + /* + * After a splitted program command sequence has issued + * the command dispatch, the command sequence is complete. + */ + if (info->cur_chunk == (info->ntotalchunks + 1) && + command == NAND_CMD_PAGEPROG && + ext_cmd_type == EXT_CMD_TYPE_DISPATCH) + break; + + if (command == NAND_CMD_READ0 || command == NAND_CMD_READOOB) { + /* Last read: issue a 'last naked read' */ + if (info->cur_chunk == info->ntotalchunks - 1) + ext_cmd_type = EXT_CMD_TYPE_LAST_RW; + else + ext_cmd_type = EXT_CMD_TYPE_NAKED_RW; + + /* + * If a splitted program command has no more data to transfer, + * the command dispatch must be issued to complete. + */ + } else if (command == NAND_CMD_PAGEPROG && + info->cur_chunk == info->ntotalchunks) { + ext_cmd_type = EXT_CMD_TYPE_DISPATCH; + } + } while (1); + + info->state = STATE_IDLE; +} + +static int pxa3xx_nand_write_page_hwecc(struct mtd_info *mtd, + struct nand_chip *chip, const uint8_t *buf, int oob_required, + int page) +{ + nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize); + chip->write_buf(mtd, chip->oob_poi, mtd->oobsize); + + return nand_prog_page_end_op(chip); +} + +static int pxa3xx_nand_read_page_hwecc(struct mtd_info *mtd, + struct nand_chip *chip, uint8_t *buf, int oob_required, + int page) +{ + struct pxa3xx_nand_host *host = nand_get_controller_data(chip); + struct pxa3xx_nand_info *info = host->info_data; + + nand_read_page_op(chip, page, 0, buf, mtd->writesize); + chip->read_buf(mtd, chip->oob_poi, mtd->oobsize); + + if (info->retcode == ERR_CORERR && info->use_ecc) { + mtd->ecc_stats.corrected += info->ecc_err_cnt; + + } else if (info->retcode == ERR_UNCORERR) { + /* + * for blank page (all 0xff), HW will calculate its ECC as + * 0, which is different from the ECC information within + * OOB, ignore such uncorrectable errors + */ + if (is_buf_blank(buf, mtd->writesize)) + info->retcode = ERR_NONE; + else + mtd->ecc_stats.failed++; + } + + return info->max_bitflips; +} + +static uint8_t pxa3xx_nand_read_byte(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct pxa3xx_nand_host *host = nand_get_controller_data(chip); + struct pxa3xx_nand_info *info = host->info_data; + char retval = 0xFF; + + if (info->buf_start < info->buf_count) + /* Has just send a new command? */ + retval = info->data_buff[info->buf_start++]; + + return retval; +} + +static u16 pxa3xx_nand_read_word(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct pxa3xx_nand_host *host = nand_get_controller_data(chip); + struct pxa3xx_nand_info *info = host->info_data; + u16 retval = 0xFFFF; + + if (!(info->buf_start & 0x01) && info->buf_start < info->buf_count) { + retval = *((u16 *)(info->data_buff+info->buf_start)); + info->buf_start += 2; + } + return retval; +} + +static void pxa3xx_nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct pxa3xx_nand_host *host = nand_get_controller_data(chip); + struct pxa3xx_nand_info *info = host->info_data; + int real_len = min_t(size_t, len, info->buf_count - info->buf_start); + + memcpy(buf, info->data_buff + info->buf_start, real_len); + info->buf_start += real_len; +} + +static void pxa3xx_nand_write_buf(struct mtd_info *mtd, + const uint8_t *buf, int len) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct pxa3xx_nand_host *host = nand_get_controller_data(chip); + struct pxa3xx_nand_info *info = host->info_data; + int real_len = min_t(size_t, len, info->buf_count - info->buf_start); + + memcpy(info->data_buff + info->buf_start, buf, real_len); + info->buf_start += real_len; +} + +static void pxa3xx_nand_select_chip(struct mtd_info *mtd, int chip) +{ + return; +} + +static int pxa3xx_nand_waitfunc(struct mtd_info *mtd, struct nand_chip *this) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct pxa3xx_nand_host *host = nand_get_controller_data(chip); + struct pxa3xx_nand_info *info = host->info_data; + + if (info->need_wait) { + info->need_wait = 0; + if (!wait_for_completion_timeout(&info->dev_ready, + CHIP_DELAY_TIMEOUT)) { + dev_err(&info->pdev->dev, "Ready time out!!!\n"); + return NAND_STATUS_FAIL; + } + } + + /* pxa3xx_nand_send_command has waited for command complete */ + if (this->state == FL_WRITING || this->state == FL_ERASING) { + if (info->retcode == ERR_NONE) + return 0; + else + return NAND_STATUS_FAIL; + } + + return NAND_STATUS_READY; +} + +static int pxa3xx_nand_config_ident(struct pxa3xx_nand_info *info) +{ + struct pxa3xx_nand_host *host = info->host[info->cs]; + struct platform_device *pdev = info->pdev; + struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(&pdev->dev); + const struct nand_sdr_timings *timings; + + /* Configure default flash values */ + info->chunk_size = PAGE_CHUNK_SIZE; + info->reg_ndcr = 0x0; /* enable all interrupts */ + info->reg_ndcr |= (pdata->enable_arbiter) ? NDCR_ND_ARB_EN : 0; + info->reg_ndcr |= NDCR_RD_ID_CNT(READ_ID_BYTES); + info->reg_ndcr |= NDCR_SPARE_EN; + + /* use the common timing to make a try */ + timings = onfi_async_timing_mode_to_sdr_timings(0); + if (IS_ERR(timings)) + return PTR_ERR(timings); + + pxa3xx_nand_set_sdr_timing(host, timings); + return 0; +} + +static void pxa3xx_nand_config_tail(struct pxa3xx_nand_info *info) +{ + struct pxa3xx_nand_host *host = info->host[info->cs]; + struct nand_chip *chip = &host->chip; + struct mtd_info *mtd = nand_to_mtd(chip); + + info->reg_ndcr |= (host->col_addr_cycles == 2) ? NDCR_RA_START : 0; + info->reg_ndcr |= (chip->page_shift == 6) ? NDCR_PG_PER_BLK : 0; + info->reg_ndcr |= (mtd->writesize == 2048) ? NDCR_PAGE_SZ : 0; +} + +static void pxa3xx_nand_detect_config(struct pxa3xx_nand_info *info) +{ + struct platform_device *pdev = info->pdev; + struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(&pdev->dev); + uint32_t ndcr = nand_readl(info, NDCR); + + /* Set an initial chunk size */ + info->chunk_size = ndcr & NDCR_PAGE_SZ ? 2048 : 512; + info->reg_ndcr = ndcr & + ~(NDCR_INT_MASK | NDCR_ND_ARB_EN | NFCV1_NDCR_ARB_CNTL); + info->reg_ndcr |= (pdata->enable_arbiter) ? NDCR_ND_ARB_EN : 0; + info->ndtr0cs0 = nand_readl(info, NDTR0CS0); + info->ndtr1cs0 = nand_readl(info, NDTR1CS0); +} + +static int pxa3xx_nand_init_buff(struct pxa3xx_nand_info *info) +{ + struct platform_device *pdev = info->pdev; + struct dma_slave_config config; + dma_cap_mask_t mask; + struct pxad_param param; + int ret; + + info->data_buff = kmalloc(info->buf_size, GFP_KERNEL); + if (info->data_buff == NULL) + return -ENOMEM; + if (use_dma == 0) + return 0; + + ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); + if (ret) + return ret; + + sg_init_one(&info->sg, info->data_buff, info->buf_size); + dma_cap_zero(mask); + dma_cap_set(DMA_SLAVE, mask); + param.prio = PXAD_PRIO_LOWEST; + param.drcmr = info->drcmr_dat; + info->dma_chan = dma_request_slave_channel_compat(mask, pxad_filter_fn, + ¶m, &pdev->dev, + "data"); + if (!info->dma_chan) { + dev_err(&pdev->dev, "unable to request data dma channel\n"); + return -ENODEV; + } + + memset(&config, 0, sizeof(config)); + config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; + config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; + config.src_addr = info->mmio_phys + NDDB; + config.dst_addr = info->mmio_phys + NDDB; + config.src_maxburst = 32; + config.dst_maxburst = 32; + ret = dmaengine_slave_config(info->dma_chan, &config); + if (ret < 0) { + dev_err(&info->pdev->dev, + "dma channel configuration failed: %d\n", + ret); + return ret; + } + + /* + * Now that DMA buffers are allocated we turn on + * DMA proper for I/O operations. + */ + info->use_dma = 1; + return 0; +} + +static void pxa3xx_nand_free_buff(struct pxa3xx_nand_info *info) +{ + if (info->use_dma) { + dmaengine_terminate_all(info->dma_chan); + dma_release_channel(info->dma_chan); + } + kfree(info->data_buff); +} + +static int pxa_ecc_init(struct pxa3xx_nand_info *info, + struct mtd_info *mtd, + int strength, int ecc_stepsize, int page_size) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct nand_ecc_ctrl *ecc = &chip->ecc; + + if (strength == 1 && ecc_stepsize == 512 && page_size == 2048) { + info->nfullchunks = 1; + info->ntotalchunks = 1; + info->chunk_size = 2048; + info->spare_size = 40; + info->ecc_size = 24; + ecc->mode = NAND_ECC_HW; + ecc->size = 512; + ecc->strength = 1; + + } else if (strength == 1 && ecc_stepsize == 512 && page_size == 512) { + info->nfullchunks = 1; + info->ntotalchunks = 1; + info->chunk_size = 512; + info->spare_size = 8; + info->ecc_size = 8; + ecc->mode = NAND_ECC_HW; + ecc->size = 512; + ecc->strength = 1; + + /* + * Required ECC: 4-bit correction per 512 bytes + * Select: 16-bit correction per 2048 bytes + */ + } else if (strength == 4 && ecc_stepsize == 512 && page_size == 2048) { + info->ecc_bch = 1; + info->nfullchunks = 1; + info->ntotalchunks = 1; + info->chunk_size = 2048; + info->spare_size = 32; + info->ecc_size = 32; + ecc->mode = NAND_ECC_HW; + ecc->size = info->chunk_size; + mtd_set_ooblayout(mtd, &pxa3xx_ooblayout_ops); + ecc->strength = 16; + + } else if (strength == 4 && ecc_stepsize == 512 && page_size == 4096) { + info->ecc_bch = 1; + info->nfullchunks = 2; + info->ntotalchunks = 2; + info->chunk_size = 2048; + info->spare_size = 32; + info->ecc_size = 32; + ecc->mode = NAND_ECC_HW; + ecc->size = info->chunk_size; + mtd_set_ooblayout(mtd, &pxa3xx_ooblayout_ops); + ecc->strength = 16; + + /* + * Required ECC: 8-bit correction per 512 bytes + * Select: 16-bit correction per 1024 bytes + */ + } else if (strength == 8 && ecc_stepsize == 512 && page_size == 4096) { + info->ecc_bch = 1; + info->nfullchunks = 4; + info->ntotalchunks = 5; + info->chunk_size = 1024; + info->spare_size = 0; + info->last_chunk_size = 0; + info->last_spare_size = 64; + info->ecc_size = 32; + ecc->mode = NAND_ECC_HW; + ecc->size = info->chunk_size; + mtd_set_ooblayout(mtd, &pxa3xx_ooblayout_ops); + ecc->strength = 16; + } else { + dev_err(&info->pdev->dev, + "ECC strength %d at page size %d is not supported\n", + strength, page_size); + return -ENODEV; + } + + dev_info(&info->pdev->dev, "ECC strength %d, ECC step size %d\n", + ecc->strength, ecc->size); + return 0; +} + +static int pxa3xx_nand_scan(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct pxa3xx_nand_host *host = nand_get_controller_data(chip); + struct pxa3xx_nand_info *info = host->info_data; + struct platform_device *pdev = info->pdev; + struct pxa3xx_nand_platform_data *pdata = dev_get_platdata(&pdev->dev); + int ret; + uint16_t ecc_strength, ecc_step; + + if (pdata->keep_config) { + pxa3xx_nand_detect_config(info); + } else { + ret = pxa3xx_nand_config_ident(info); + if (ret) + return ret; + } + + if (info->reg_ndcr & NDCR_DWIDTH_M) + chip->options |= NAND_BUSWIDTH_16; + + /* Device detection must be done with ECC disabled */ + if (info->variant == PXA3XX_NAND_VARIANT_ARMADA370 || + info->variant == PXA3XX_NAND_VARIANT_ARMADA_8K) + nand_writel(info, NDECCCTRL, 0x0); + + if (pdata->flash_bbt) + chip->bbt_options |= NAND_BBT_USE_FLASH; + + chip->ecc.strength = pdata->ecc_strength; + chip->ecc.size = pdata->ecc_step_size; + + ret = nand_scan_ident(mtd, 1, NULL); + if (ret) + return ret; + + if (!pdata->keep_config) { + ret = pxa3xx_nand_init(host); + if (ret) { + dev_err(&info->pdev->dev, "Failed to init nand: %d\n", + ret); + return ret; + } + } + + if (chip->bbt_options & NAND_BBT_USE_FLASH) { + /* + * We'll use a bad block table stored in-flash and don't + * allow writing the bad block marker to the flash. + */ + chip->bbt_options |= NAND_BBT_NO_OOB_BBM; + chip->bbt_td = &bbt_main_descr; + chip->bbt_md = &bbt_mirror_descr; + } + + /* + * If the page size is bigger than the FIFO size, let's check + * we are given the right variant and then switch to the extended + * (aka splitted) command handling, + */ + if (mtd->writesize > PAGE_CHUNK_SIZE) { + if (info->variant == PXA3XX_NAND_VARIANT_ARMADA370 || + info->variant == PXA3XX_NAND_VARIANT_ARMADA_8K) { + chip->cmdfunc = nand_cmdfunc_extended; + } else { + dev_err(&info->pdev->dev, + "unsupported page size on this variant\n"); + return -ENODEV; + } + } + + ecc_strength = chip->ecc.strength; + ecc_step = chip->ecc.size; + if (!ecc_strength || !ecc_step) { + ecc_strength = chip->ecc_strength_ds; + ecc_step = chip->ecc_step_ds; + } + + /* Set default ECC strength requirements on non-ONFI devices */ + if (ecc_strength < 1 && ecc_step < 1) { + ecc_strength = 1; + ecc_step = 512; + } + + ret = pxa_ecc_init(info, mtd, ecc_strength, + ecc_step, mtd->writesize); + if (ret) + return ret; + + /* calculate addressing information */ + if (mtd->writesize >= 2048) + host->col_addr_cycles = 2; + else + host->col_addr_cycles = 1; + + /* release the initial buffer */ + kfree(info->data_buff); + + /* allocate the real data + oob buffer */ + info->buf_size = mtd->writesize + mtd->oobsize; + ret = pxa3xx_nand_init_buff(info); + if (ret) + return ret; + info->oob_buff = info->data_buff + mtd->writesize; + + if ((mtd->size >> chip->page_shift) > 65536) + host->row_addr_cycles = 3; + else + host->row_addr_cycles = 2; + + if (!pdata->keep_config) + pxa3xx_nand_config_tail(info); + + return nand_scan_tail(mtd); +} + +static int alloc_nand_resource(struct platform_device *pdev) +{ + struct device_node *np = pdev->dev.of_node; + struct pxa3xx_nand_platform_data *pdata; + struct pxa3xx_nand_info *info; + struct pxa3xx_nand_host *host; + struct nand_chip *chip = NULL; + struct mtd_info *mtd; + struct resource *r; + int ret, irq, cs; + + pdata = dev_get_platdata(&pdev->dev); + if (pdata->num_cs <= 0) { + dev_err(&pdev->dev, "invalid number of chip selects\n"); + return -ENODEV; + } + + info = devm_kzalloc(&pdev->dev, + sizeof(*info) + sizeof(*host) * pdata->num_cs, + GFP_KERNEL); + if (!info) + return -ENOMEM; + + info->pdev = pdev; + info->variant = pxa3xx_nand_get_variant(pdev); + for (cs = 0; cs < pdata->num_cs; cs++) { + host = (void *)&info[1] + sizeof(*host) * cs; + chip = &host->chip; + nand_set_controller_data(chip, host); + mtd = nand_to_mtd(chip); + info->host[cs] = host; + host->cs = cs; + host->info_data = info; + mtd->dev.parent = &pdev->dev; + /* FIXME: all chips use the same device tree partitions */ + nand_set_flash_node(chip, np); + + nand_set_controller_data(chip, host); + chip->ecc.read_page = pxa3xx_nand_read_page_hwecc; + chip->ecc.write_page = pxa3xx_nand_write_page_hwecc; + chip->controller = &info->controller; + chip->waitfunc = pxa3xx_nand_waitfunc; + chip->select_chip = pxa3xx_nand_select_chip; + chip->read_word = pxa3xx_nand_read_word; + chip->read_byte = pxa3xx_nand_read_byte; + chip->read_buf = pxa3xx_nand_read_buf; + chip->write_buf = pxa3xx_nand_write_buf; + chip->options |= NAND_NO_SUBPAGE_WRITE; + chip->cmdfunc = nand_cmdfunc; + chip->onfi_set_features = nand_onfi_get_set_features_notsupp; + chip->onfi_get_features = nand_onfi_get_set_features_notsupp; + } + + nand_hw_control_init(chip->controller); + info->clk = devm_clk_get(&pdev->dev, NULL); + if (IS_ERR(info->clk)) { + ret = PTR_ERR(info->clk); + dev_err(&pdev->dev, "failed to get nand clock: %d\n", ret); + return ret; + } + ret = clk_prepare_enable(info->clk); + if (ret < 0) + return ret; + + if (!np && use_dma) { + r = platform_get_resource(pdev, IORESOURCE_DMA, 0); + if (r == NULL) { + dev_err(&pdev->dev, + "no resource defined for data DMA\n"); + ret = -ENXIO; + goto fail_disable_clk; + } + info->drcmr_dat = r->start; + } + + irq = platform_get_irq(pdev, 0); + if (irq < 0) { + dev_err(&pdev->dev, "no IRQ resource defined\n"); + ret = -ENXIO; + goto fail_disable_clk; + } + + r = platform_get_resource(pdev, IORESOURCE_MEM, 0); + info->mmio_base = devm_ioremap_resource(&pdev->dev, r); + if (IS_ERR(info->mmio_base)) { + ret = PTR_ERR(info->mmio_base); + dev_err(&pdev->dev, "failed to map register space: %d\n", ret); + goto fail_disable_clk; + } + info->mmio_phys = r->start; + + /* Allocate a buffer to allow flash detection */ + info->buf_size = INIT_BUFFER_SIZE; + info->data_buff = kmalloc(info->buf_size, GFP_KERNEL); + if (info->data_buff == NULL) { + ret = -ENOMEM; + goto fail_disable_clk; + } + + /* initialize all interrupts to be disabled */ + disable_int(info, NDSR_MASK); + + ret = request_threaded_irq(irq, pxa3xx_nand_irq, + pxa3xx_nand_irq_thread, IRQF_ONESHOT, + pdev->name, info); + if (ret < 0) { + dev_err(&pdev->dev, "failed to request IRQ: %d\n", ret); + goto fail_free_buf; + } + + platform_set_drvdata(pdev, info); + + return 0; + +fail_free_buf: + free_irq(irq, info); + kfree(info->data_buff); +fail_disable_clk: + clk_disable_unprepare(info->clk); + return ret; +} + +static int pxa3xx_nand_remove(struct platform_device *pdev) +{ + struct pxa3xx_nand_info *info = platform_get_drvdata(pdev); + struct pxa3xx_nand_platform_data *pdata; + int irq, cs; + + if (!info) + return 0; + + pdata = dev_get_platdata(&pdev->dev); + + irq = platform_get_irq(pdev, 0); + if (irq >= 0) + free_irq(irq, info); + pxa3xx_nand_free_buff(info); + + /* + * In the pxa3xx case, the DFI bus is shared between the SMC and NFC. + * In order to prevent a lockup of the system bus, the DFI bus + * arbitration is granted to SMC upon driver removal. This is done by + * setting the x_ARB_CNTL bit, which also prevents the NAND to have + * access to the bus anymore. + */ + nand_writel(info, NDCR, + (nand_readl(info, NDCR) & ~NDCR_ND_ARB_EN) | + NFCV1_NDCR_ARB_CNTL); + clk_disable_unprepare(info->clk); + + for (cs = 0; cs < pdata->num_cs; cs++) + nand_release(nand_to_mtd(&info->host[cs]->chip)); + return 0; +} + +static int pxa3xx_nand_probe_dt(struct platform_device *pdev) +{ + struct pxa3xx_nand_platform_data *pdata; + struct device_node *np = pdev->dev.of_node; + const struct of_device_id *of_id = + of_match_device(pxa3xx_nand_dt_ids, &pdev->dev); + + if (!of_id) + return 0; + + /* + * Some SoCs like A7k/A8k need to enable manually the NAND + * controller to avoid being bootloader dependent. This is done + * through the use of a single bit in the System Functions registers. + */ + if (pxa3xx_nand_get_variant(pdev) == PXA3XX_NAND_VARIANT_ARMADA_8K) { + struct regmap *sysctrl_base = syscon_regmap_lookup_by_phandle( + pdev->dev.of_node, "marvell,system-controller"); + u32 reg; + + if (IS_ERR(sysctrl_base)) + return PTR_ERR(sysctrl_base); + + regmap_read(sysctrl_base, GENCONF_SOC_DEVICE_MUX, ®); + reg |= GENCONF_SOC_DEVICE_MUX_NFC_EN; + regmap_write(sysctrl_base, GENCONF_SOC_DEVICE_MUX, reg); + } + + pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL); + if (!pdata) + return -ENOMEM; + + if (of_get_property(np, "marvell,nand-enable-arbiter", NULL)) + pdata->enable_arbiter = 1; + if (of_get_property(np, "marvell,nand-keep-config", NULL)) + pdata->keep_config = 1; + of_property_read_u32(np, "num-cs", &pdata->num_cs); + + pdev->dev.platform_data = pdata; + + return 0; +} + +static int pxa3xx_nand_probe(struct platform_device *pdev) +{ + struct pxa3xx_nand_platform_data *pdata; + struct pxa3xx_nand_info *info; + int ret, cs, probe_success, dma_available; + + dma_available = IS_ENABLED(CONFIG_ARM) && + (IS_ENABLED(CONFIG_ARCH_PXA) || IS_ENABLED(CONFIG_ARCH_MMP)); + if (use_dma && !dma_available) { + use_dma = 0; + dev_warn(&pdev->dev, + "This platform can't do DMA on this device\n"); + } + + ret = pxa3xx_nand_probe_dt(pdev); + if (ret) + return ret; + + pdata = dev_get_platdata(&pdev->dev); + if (!pdata) { + dev_err(&pdev->dev, "no platform data defined\n"); + return -ENODEV; + } + + ret = alloc_nand_resource(pdev); + if (ret) + return ret; + + info = platform_get_drvdata(pdev); + probe_success = 0; + for (cs = 0; cs < pdata->num_cs; cs++) { + struct mtd_info *mtd = nand_to_mtd(&info->host[cs]->chip); + + /* + * The mtd name matches the one used in 'mtdparts' kernel + * parameter. This name cannot be changed or otherwise + * user's mtd partitions configuration would get broken. + */ + mtd->name = "pxa3xx_nand-0"; + info->cs = cs; + ret = pxa3xx_nand_scan(mtd); + if (ret) { + dev_warn(&pdev->dev, "failed to scan nand at cs %d\n", + cs); + continue; + } + + ret = mtd_device_register(mtd, pdata->parts[cs], + pdata->nr_parts[cs]); + if (!ret) + probe_success = 1; + } + + if (!probe_success) { + pxa3xx_nand_remove(pdev); + return -ENODEV; + } + + return 0; +} + +#ifdef CONFIG_PM +static int pxa3xx_nand_suspend(struct device *dev) +{ + struct pxa3xx_nand_info *info = dev_get_drvdata(dev); + + if (info->state) { + dev_err(dev, "driver busy, state = %d\n", info->state); + return -EAGAIN; + } + + clk_disable(info->clk); + return 0; +} + +static int pxa3xx_nand_resume(struct device *dev) +{ + struct pxa3xx_nand_info *info = dev_get_drvdata(dev); + int ret; + + ret = clk_enable(info->clk); + if (ret < 0) + return ret; + + /* We don't want to handle interrupt without calling mtd routine */ + disable_int(info, NDCR_INT_MASK); + + /* + * Directly set the chip select to a invalid value, + * then the driver would reset the timing according + * to current chip select at the beginning of cmdfunc + */ + info->cs = 0xff; + + /* + * As the spec says, the NDSR would be updated to 0x1800 when + * doing the nand_clk disable/enable. + * To prevent it damaging state machine of the driver, clear + * all status before resume + */ + nand_writel(info, NDSR, NDSR_MASK); + + return 0; +} +#else +#define pxa3xx_nand_suspend NULL +#define pxa3xx_nand_resume NULL +#endif + +static const struct dev_pm_ops pxa3xx_nand_pm_ops = { + .suspend = pxa3xx_nand_suspend, + .resume = pxa3xx_nand_resume, +}; + +static struct platform_driver pxa3xx_nand_driver = { + .driver = { + .name = "pxa3xx-nand", + .of_match_table = pxa3xx_nand_dt_ids, + .pm = &pxa3xx_nand_pm_ops, + }, + .probe = pxa3xx_nand_probe, + .remove = pxa3xx_nand_remove, +}; + +module_platform_driver(pxa3xx_nand_driver); + +MODULE_LICENSE("GPL"); +MODULE_DESCRIPTION("PXA3xx NAND controller driver"); diff --git a/drivers/mtd/nand/raw/qcom_nandc.c b/drivers/mtd/nand/raw/qcom_nandc.c new file mode 100644 index 000000000000..563b759ffca6 --- /dev/null +++ b/drivers/mtd/nand/raw/qcom_nandc.c @@ -0,0 +1,2921 @@ +/* + * Copyright (c) 2016, The Linux Foundation. All rights reserved. + * + * This software is licensed under the terms of the GNU General Public + * License version 2, as published by the Free Software Foundation, and + * may be copied, distributed, and modified under those terms. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + */ + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include /* XXX: drivers shall never use this directly! */ + +/* NANDc reg offsets */ +#define NAND_FLASH_CMD 0x00 +#define NAND_ADDR0 0x04 +#define NAND_ADDR1 0x08 +#define NAND_FLASH_CHIP_SELECT 0x0c +#define NAND_EXEC_CMD 0x10 +#define NAND_FLASH_STATUS 0x14 +#define NAND_BUFFER_STATUS 0x18 +#define NAND_DEV0_CFG0 0x20 +#define NAND_DEV0_CFG1 0x24 +#define NAND_DEV0_ECC_CFG 0x28 +#define NAND_DEV1_ECC_CFG 0x2c +#define NAND_DEV1_CFG0 0x30 +#define NAND_DEV1_CFG1 0x34 +#define NAND_READ_ID 0x40 +#define NAND_READ_STATUS 0x44 +#define NAND_DEV_CMD0 0xa0 +#define NAND_DEV_CMD1 0xa4 +#define NAND_DEV_CMD2 0xa8 +#define NAND_DEV_CMD_VLD 0xac +#define SFLASHC_BURST_CFG 0xe0 +#define NAND_ERASED_CW_DETECT_CFG 0xe8 +#define NAND_ERASED_CW_DETECT_STATUS 0xec +#define NAND_EBI2_ECC_BUF_CFG 0xf0 +#define FLASH_BUF_ACC 0x100 + +#define NAND_CTRL 0xf00 +#define NAND_VERSION 0xf08 +#define NAND_READ_LOCATION_0 0xf20 +#define NAND_READ_LOCATION_1 0xf24 +#define NAND_READ_LOCATION_2 0xf28 +#define NAND_READ_LOCATION_3 0xf2c + +/* dummy register offsets, used by write_reg_dma */ +#define NAND_DEV_CMD1_RESTORE 0xdead +#define NAND_DEV_CMD_VLD_RESTORE 0xbeef + +/* NAND_FLASH_CMD bits */ +#define PAGE_ACC BIT(4) +#define LAST_PAGE BIT(5) + +/* NAND_FLASH_CHIP_SELECT bits */ +#define NAND_DEV_SEL 0 +#define DM_EN BIT(2) + +/* NAND_FLASH_STATUS bits */ +#define FS_OP_ERR BIT(4) +#define FS_READY_BSY_N BIT(5) +#define FS_MPU_ERR BIT(8) +#define FS_DEVICE_STS_ERR BIT(16) +#define FS_DEVICE_WP BIT(23) + +/* NAND_BUFFER_STATUS bits */ +#define BS_UNCORRECTABLE_BIT BIT(8) +#define BS_CORRECTABLE_ERR_MSK 0x1f + +/* NAND_DEVn_CFG0 bits */ +#define DISABLE_STATUS_AFTER_WRITE 4 +#define CW_PER_PAGE 6 +#define UD_SIZE_BYTES 9 +#define ECC_PARITY_SIZE_BYTES_RS 19 +#define SPARE_SIZE_BYTES 23 +#define NUM_ADDR_CYCLES 27 +#define STATUS_BFR_READ 30 +#define SET_RD_MODE_AFTER_STATUS 31 + +/* NAND_DEVn_CFG0 bits */ +#define DEV0_CFG1_ECC_DISABLE 0 +#define WIDE_FLASH 1 +#define NAND_RECOVERY_CYCLES 2 +#define CS_ACTIVE_BSY 5 +#define BAD_BLOCK_BYTE_NUM 6 +#define BAD_BLOCK_IN_SPARE_AREA 16 +#define WR_RD_BSY_GAP 17 +#define ENABLE_BCH_ECC 27 + +/* NAND_DEV0_ECC_CFG bits */ +#define ECC_CFG_ECC_DISABLE 0 +#define ECC_SW_RESET 1 +#define ECC_MODE 4 +#define ECC_PARITY_SIZE_BYTES_BCH 8 +#define ECC_NUM_DATA_BYTES 16 +#define ECC_FORCE_CLK_OPEN 30 + +/* NAND_DEV_CMD1 bits */ +#define READ_ADDR 0 + +/* NAND_DEV_CMD_VLD bits */ +#define READ_START_VLD BIT(0) +#define READ_STOP_VLD BIT(1) +#define WRITE_START_VLD BIT(2) +#define ERASE_START_VLD BIT(3) +#define SEQ_READ_START_VLD BIT(4) + +/* NAND_EBI2_ECC_BUF_CFG bits */ +#define NUM_STEPS 0 + +/* NAND_ERASED_CW_DETECT_CFG bits */ +#define ERASED_CW_ECC_MASK 1 +#define AUTO_DETECT_RES 0 +#define MASK_ECC (1 << ERASED_CW_ECC_MASK) +#define RESET_ERASED_DET (1 << AUTO_DETECT_RES) +#define ACTIVE_ERASED_DET (0 << AUTO_DETECT_RES) +#define CLR_ERASED_PAGE_DET (RESET_ERASED_DET | MASK_ECC) +#define SET_ERASED_PAGE_DET (ACTIVE_ERASED_DET | MASK_ECC) + +/* NAND_ERASED_CW_DETECT_STATUS bits */ +#define PAGE_ALL_ERASED BIT(7) +#define CODEWORD_ALL_ERASED BIT(6) +#define PAGE_ERASED BIT(5) +#define CODEWORD_ERASED BIT(4) +#define ERASED_PAGE (PAGE_ALL_ERASED | PAGE_ERASED) +#define ERASED_CW (CODEWORD_ALL_ERASED | CODEWORD_ERASED) + +/* NAND_READ_LOCATION_n bits */ +#define READ_LOCATION_OFFSET 0 +#define READ_LOCATION_SIZE 16 +#define READ_LOCATION_LAST 31 + +/* Version Mask */ +#define NAND_VERSION_MAJOR_MASK 0xf0000000 +#define NAND_VERSION_MAJOR_SHIFT 28 +#define NAND_VERSION_MINOR_MASK 0x0fff0000 +#define NAND_VERSION_MINOR_SHIFT 16 + +/* NAND OP_CMDs */ +#define PAGE_READ 0x2 +#define PAGE_READ_WITH_ECC 0x3 +#define PAGE_READ_WITH_ECC_SPARE 0x4 +#define PROGRAM_PAGE 0x6 +#define PAGE_PROGRAM_WITH_ECC 0x7 +#define PROGRAM_PAGE_SPARE 0x9 +#define BLOCK_ERASE 0xa +#define FETCH_ID 0xb +#define RESET_DEVICE 0xd + +/* Default Value for NAND_DEV_CMD_VLD */ +#define NAND_DEV_CMD_VLD_VAL (READ_START_VLD | WRITE_START_VLD | \ + ERASE_START_VLD | SEQ_READ_START_VLD) + +/* NAND_CTRL bits */ +#define BAM_MODE_EN BIT(0) + +/* + * the NAND controller performs reads/writes with ECC in 516 byte chunks. + * the driver calls the chunks 'step' or 'codeword' interchangeably + */ +#define NANDC_STEP_SIZE 512 + +/* + * the largest page size we support is 8K, this will have 16 steps/codewords + * of 512 bytes each + */ +#define MAX_NUM_STEPS (SZ_8K / NANDC_STEP_SIZE) + +/* we read at most 3 registers per codeword scan */ +#define MAX_REG_RD (3 * MAX_NUM_STEPS) + +/* ECC modes supported by the controller */ +#define ECC_NONE BIT(0) +#define ECC_RS_4BIT BIT(1) +#define ECC_BCH_4BIT BIT(2) +#define ECC_BCH_8BIT BIT(3) + +#define nandc_set_read_loc(nandc, reg, offset, size, is_last) \ +nandc_set_reg(nandc, NAND_READ_LOCATION_##reg, \ + ((offset) << READ_LOCATION_OFFSET) | \ + ((size) << READ_LOCATION_SIZE) | \ + ((is_last) << READ_LOCATION_LAST)) + +/* + * Returns the actual register address for all NAND_DEV_ registers + * (i.e. NAND_DEV_CMD0, NAND_DEV_CMD1, NAND_DEV_CMD2 and NAND_DEV_CMD_VLD) + */ +#define dev_cmd_reg_addr(nandc, reg) ((nandc)->props->dev_cmd_reg_start + (reg)) + +/* Returns the NAND register physical address */ +#define nandc_reg_phys(chip, offset) ((chip)->base_phys + (offset)) + +/* Returns the dma address for reg read buffer */ +#define reg_buf_dma_addr(chip, vaddr) \ + ((chip)->reg_read_dma + \ + ((uint8_t *)(vaddr) - (uint8_t *)(chip)->reg_read_buf)) + +#define QPIC_PER_CW_CMD_ELEMENTS 32 +#define QPIC_PER_CW_CMD_SGL 32 +#define QPIC_PER_CW_DATA_SGL 8 + +/* + * Flags used in DMA descriptor preparation helper functions + * (i.e. read_reg_dma/write_reg_dma/read_data_dma/write_data_dma) + */ +/* Don't set the EOT in current tx BAM sgl */ +#define NAND_BAM_NO_EOT BIT(0) +/* Set the NWD flag in current BAM sgl */ +#define NAND_BAM_NWD BIT(1) +/* Finish writing in the current BAM sgl and start writing in another BAM sgl */ +#define NAND_BAM_NEXT_SGL BIT(2) +/* + * Erased codeword status is being used two times in single transfer so this + * flag will determine the current value of erased codeword status register + */ +#define NAND_ERASED_CW_SET BIT(4) + +/* + * This data type corresponds to the BAM transaction which will be used for all + * NAND transfers. + * @bam_ce - the array of BAM command elements + * @cmd_sgl - sgl for NAND BAM command pipe + * @data_sgl - sgl for NAND BAM consumer/producer pipe + * @bam_ce_pos - the index in bam_ce which is available for next sgl + * @bam_ce_start - the index in bam_ce which marks the start position ce + * for current sgl. It will be used for size calculation + * for current sgl + * @cmd_sgl_pos - current index in command sgl. + * @cmd_sgl_start - start index in command sgl. + * @tx_sgl_pos - current index in data sgl for tx. + * @tx_sgl_start - start index in data sgl for tx. + * @rx_sgl_pos - current index in data sgl for rx. + * @rx_sgl_start - start index in data sgl for rx. + */ +struct bam_transaction { + struct bam_cmd_element *bam_ce; + struct scatterlist *cmd_sgl; + struct scatterlist *data_sgl; + u32 bam_ce_pos; + u32 bam_ce_start; + u32 cmd_sgl_pos; + u32 cmd_sgl_start; + u32 tx_sgl_pos; + u32 tx_sgl_start; + u32 rx_sgl_pos; + u32 rx_sgl_start; +}; + +/* + * This data type corresponds to the nand dma descriptor + * @list - list for desc_info + * @dir - DMA transfer direction + * @adm_sgl - sgl which will be used for single sgl dma descriptor. Only used by + * ADM + * @bam_sgl - sgl which will be used for dma descriptor. Only used by BAM + * @sgl_cnt - number of SGL in bam_sgl. Only used by BAM + * @dma_desc - low level DMA engine descriptor + */ +struct desc_info { + struct list_head node; + + enum dma_data_direction dir; + union { + struct scatterlist adm_sgl; + struct { + struct scatterlist *bam_sgl; + int sgl_cnt; + }; + }; + struct dma_async_tx_descriptor *dma_desc; +}; + +/* + * holds the current register values that we want to write. acts as a contiguous + * chunk of memory which we use to write the controller registers through DMA. + */ +struct nandc_regs { + __le32 cmd; + __le32 addr0; + __le32 addr1; + __le32 chip_sel; + __le32 exec; + + __le32 cfg0; + __le32 cfg1; + __le32 ecc_bch_cfg; + + __le32 clrflashstatus; + __le32 clrreadstatus; + + __le32 cmd1; + __le32 vld; + + __le32 orig_cmd1; + __le32 orig_vld; + + __le32 ecc_buf_cfg; + __le32 read_location0; + __le32 read_location1; + __le32 read_location2; + __le32 read_location3; + + __le32 erased_cw_detect_cfg_clr; + __le32 erased_cw_detect_cfg_set; +}; + +/* + * NAND controller data struct + * + * @controller: base controller structure + * @host_list: list containing all the chips attached to the + * controller + * @dev: parent device + * @base: MMIO base + * @base_phys: physical base address of controller registers + * @base_dma: dma base address of controller registers + * @core_clk: controller clock + * @aon_clk: another controller clock + * + * @chan: dma channel + * @cmd_crci: ADM DMA CRCI for command flow control + * @data_crci: ADM DMA CRCI for data flow control + * @desc_list: DMA descriptor list (list of desc_infos) + * + * @data_buffer: our local DMA buffer for page read/writes, + * used when we can't use the buffer provided + * by upper layers directly + * @buf_size/count/start: markers for chip->read_buf/write_buf functions + * @reg_read_buf: local buffer for reading back registers via DMA + * @reg_read_dma: contains dma address for register read buffer + * @reg_read_pos: marker for data read in reg_read_buf + * + * @regs: a contiguous chunk of memory for DMA register + * writes. contains the register values to be + * written to controller + * @cmd1/vld: some fixed controller register values + * @props: properties of current NAND controller, + * initialized via DT match data + * @max_cwperpage: maximum QPIC codewords required. calculated + * from all connected NAND devices pagesize + */ +struct qcom_nand_controller { + struct nand_hw_control controller; + struct list_head host_list; + + struct device *dev; + + void __iomem *base; + phys_addr_t base_phys; + dma_addr_t base_dma; + + struct clk *core_clk; + struct clk *aon_clk; + + union { + /* will be used only by QPIC for BAM DMA */ + struct { + struct dma_chan *tx_chan; + struct dma_chan *rx_chan; + struct dma_chan *cmd_chan; + }; + + /* will be used only by EBI2 for ADM DMA */ + struct { + struct dma_chan *chan; + unsigned int cmd_crci; + unsigned int data_crci; + }; + }; + + struct list_head desc_list; + struct bam_transaction *bam_txn; + + u8 *data_buffer; + int buf_size; + int buf_count; + int buf_start; + unsigned int max_cwperpage; + + __le32 *reg_read_buf; + dma_addr_t reg_read_dma; + int reg_read_pos; + + struct nandc_regs *regs; + + u32 cmd1, vld; + const struct qcom_nandc_props *props; +}; + +/* + * NAND chip structure + * + * @chip: base NAND chip structure + * @node: list node to add itself to host_list in + * qcom_nand_controller + * + * @cs: chip select value for this chip + * @cw_size: the number of bytes in a single step/codeword + * of a page, consisting of all data, ecc, spare + * and reserved bytes + * @cw_data: the number of bytes within a codeword protected + * by ECC + * @use_ecc: request the controller to use ECC for the + * upcoming read/write + * @bch_enabled: flag to tell whether BCH ECC mode is used + * @ecc_bytes_hw: ECC bytes used by controller hardware for this + * chip + * @status: value to be returned if NAND_CMD_STATUS command + * is executed + * @last_command: keeps track of last command on this chip. used + * for reading correct status + * + * @cfg0, cfg1, cfg0_raw..: NANDc register configurations needed for + * ecc/non-ecc mode for the current nand flash + * device + */ +struct qcom_nand_host { + struct nand_chip chip; + struct list_head node; + + int cs; + int cw_size; + int cw_data; + bool use_ecc; + bool bch_enabled; + int ecc_bytes_hw; + int spare_bytes; + int bbm_size; + u8 status; + int last_command; + + u32 cfg0, cfg1; + u32 cfg0_raw, cfg1_raw; + u32 ecc_buf_cfg; + u32 ecc_bch_cfg; + u32 clrflashstatus; + u32 clrreadstatus; +}; + +/* + * This data type corresponds to the NAND controller properties which varies + * among different NAND controllers. + * @ecc_modes - ecc mode for NAND + * @is_bam - whether NAND controller is using BAM + * @dev_cmd_reg_start - NAND_DEV_CMD_* registers starting offset + */ +struct qcom_nandc_props { + u32 ecc_modes; + bool is_bam; + u32 dev_cmd_reg_start; +}; + +/* Frees the BAM transaction memory */ +static void free_bam_transaction(struct qcom_nand_controller *nandc) +{ + struct bam_transaction *bam_txn = nandc->bam_txn; + + devm_kfree(nandc->dev, bam_txn); +} + +/* Allocates and Initializes the BAM transaction */ +static struct bam_transaction * +alloc_bam_transaction(struct qcom_nand_controller *nandc) +{ + struct bam_transaction *bam_txn; + size_t bam_txn_size; + unsigned int num_cw = nandc->max_cwperpage; + void *bam_txn_buf; + + bam_txn_size = + sizeof(*bam_txn) + num_cw * + ((sizeof(*bam_txn->bam_ce) * QPIC_PER_CW_CMD_ELEMENTS) + + (sizeof(*bam_txn->cmd_sgl) * QPIC_PER_CW_CMD_SGL) + + (sizeof(*bam_txn->data_sgl) * QPIC_PER_CW_DATA_SGL)); + + bam_txn_buf = devm_kzalloc(nandc->dev, bam_txn_size, GFP_KERNEL); + if (!bam_txn_buf) + return NULL; + + bam_txn = bam_txn_buf; + bam_txn_buf += sizeof(*bam_txn); + + bam_txn->bam_ce = bam_txn_buf; + bam_txn_buf += + sizeof(*bam_txn->bam_ce) * QPIC_PER_CW_CMD_ELEMENTS * num_cw; + + bam_txn->cmd_sgl = bam_txn_buf; + bam_txn_buf += + sizeof(*bam_txn->cmd_sgl) * QPIC_PER_CW_CMD_SGL * num_cw; + + bam_txn->data_sgl = bam_txn_buf; + + return bam_txn; +} + +/* Clears the BAM transaction indexes */ +static void clear_bam_transaction(struct qcom_nand_controller *nandc) +{ + struct bam_transaction *bam_txn = nandc->bam_txn; + + if (!nandc->props->is_bam) + return; + + bam_txn->bam_ce_pos = 0; + bam_txn->bam_ce_start = 0; + bam_txn->cmd_sgl_pos = 0; + bam_txn->cmd_sgl_start = 0; + bam_txn->tx_sgl_pos = 0; + bam_txn->tx_sgl_start = 0; + bam_txn->rx_sgl_pos = 0; + bam_txn->rx_sgl_start = 0; + + sg_init_table(bam_txn->cmd_sgl, nandc->max_cwperpage * + QPIC_PER_CW_CMD_SGL); + sg_init_table(bam_txn->data_sgl, nandc->max_cwperpage * + QPIC_PER_CW_DATA_SGL); +} + +static inline struct qcom_nand_host *to_qcom_nand_host(struct nand_chip *chip) +{ + return container_of(chip, struct qcom_nand_host, chip); +} + +static inline struct qcom_nand_controller * +get_qcom_nand_controller(struct nand_chip *chip) +{ + return container_of(chip->controller, struct qcom_nand_controller, + controller); +} + +static inline u32 nandc_read(struct qcom_nand_controller *nandc, int offset) +{ + return ioread32(nandc->base + offset); +} + +static inline void nandc_write(struct qcom_nand_controller *nandc, int offset, + u32 val) +{ + iowrite32(val, nandc->base + offset); +} + +static inline void nandc_read_buffer_sync(struct qcom_nand_controller *nandc, + bool is_cpu) +{ + if (!nandc->props->is_bam) + return; + + if (is_cpu) + dma_sync_single_for_cpu(nandc->dev, nandc->reg_read_dma, + MAX_REG_RD * + sizeof(*nandc->reg_read_buf), + DMA_FROM_DEVICE); + else + dma_sync_single_for_device(nandc->dev, nandc->reg_read_dma, + MAX_REG_RD * + sizeof(*nandc->reg_read_buf), + DMA_FROM_DEVICE); +} + +static __le32 *offset_to_nandc_reg(struct nandc_regs *regs, int offset) +{ + switch (offset) { + case NAND_FLASH_CMD: + return ®s->cmd; + case NAND_ADDR0: + return ®s->addr0; + case NAND_ADDR1: + return ®s->addr1; + case NAND_FLASH_CHIP_SELECT: + return ®s->chip_sel; + case NAND_EXEC_CMD: + return ®s->exec; + case NAND_FLASH_STATUS: + return ®s->clrflashstatus; + case NAND_DEV0_CFG0: + return ®s->cfg0; + case NAND_DEV0_CFG1: + return ®s->cfg1; + case NAND_DEV0_ECC_CFG: + return ®s->ecc_bch_cfg; + case NAND_READ_STATUS: + return ®s->clrreadstatus; + case NAND_DEV_CMD1: + return ®s->cmd1; + case NAND_DEV_CMD1_RESTORE: + return ®s->orig_cmd1; + case NAND_DEV_CMD_VLD: + return ®s->vld; + case NAND_DEV_CMD_VLD_RESTORE: + return ®s->orig_vld; + case NAND_EBI2_ECC_BUF_CFG: + return ®s->ecc_buf_cfg; + case NAND_READ_LOCATION_0: + return ®s->read_location0; + case NAND_READ_LOCATION_1: + return ®s->read_location1; + case NAND_READ_LOCATION_2: + return ®s->read_location2; + case NAND_READ_LOCATION_3: + return ®s->read_location3; + default: + return NULL; + } +} + +static void nandc_set_reg(struct qcom_nand_controller *nandc, int offset, + u32 val) +{ + struct nandc_regs *regs = nandc->regs; + __le32 *reg; + + reg = offset_to_nandc_reg(regs, offset); + + if (reg) + *reg = cpu_to_le32(val); +} + +/* helper to configure address register values */ +static void set_address(struct qcom_nand_host *host, u16 column, int page) +{ + struct nand_chip *chip = &host->chip; + struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); + + if (chip->options & NAND_BUSWIDTH_16) + column >>= 1; + + nandc_set_reg(nandc, NAND_ADDR0, page << 16 | column); + nandc_set_reg(nandc, NAND_ADDR1, page >> 16 & 0xff); +} + +/* + * update_rw_regs: set up read/write register values, these will be + * written to the NAND controller registers via DMA + * + * @num_cw: number of steps for the read/write operation + * @read: read or write operation + */ +static void update_rw_regs(struct qcom_nand_host *host, int num_cw, bool read) +{ + struct nand_chip *chip = &host->chip; + struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); + u32 cmd, cfg0, cfg1, ecc_bch_cfg; + + if (read) { + if (host->use_ecc) + cmd = PAGE_READ_WITH_ECC | PAGE_ACC | LAST_PAGE; + else + cmd = PAGE_READ | PAGE_ACC | LAST_PAGE; + } else { + cmd = PROGRAM_PAGE | PAGE_ACC | LAST_PAGE; + } + + if (host->use_ecc) { + cfg0 = (host->cfg0 & ~(7U << CW_PER_PAGE)) | + (num_cw - 1) << CW_PER_PAGE; + + cfg1 = host->cfg1; + ecc_bch_cfg = host->ecc_bch_cfg; + } else { + cfg0 = (host->cfg0_raw & ~(7U << CW_PER_PAGE)) | + (num_cw - 1) << CW_PER_PAGE; + + cfg1 = host->cfg1_raw; + ecc_bch_cfg = 1 << ECC_CFG_ECC_DISABLE; + } + + nandc_set_reg(nandc, NAND_FLASH_CMD, cmd); + nandc_set_reg(nandc, NAND_DEV0_CFG0, cfg0); + nandc_set_reg(nandc, NAND_DEV0_CFG1, cfg1); + nandc_set_reg(nandc, NAND_DEV0_ECC_CFG, ecc_bch_cfg); + nandc_set_reg(nandc, NAND_EBI2_ECC_BUF_CFG, host->ecc_buf_cfg); + nandc_set_reg(nandc, NAND_FLASH_STATUS, host->clrflashstatus); + nandc_set_reg(nandc, NAND_READ_STATUS, host->clrreadstatus); + nandc_set_reg(nandc, NAND_EXEC_CMD, 1); + + if (read) + nandc_set_read_loc(nandc, 0, 0, host->use_ecc ? + host->cw_data : host->cw_size, 1); +} + +/* + * Maps the scatter gather list for DMA transfer and forms the DMA descriptor + * for BAM. This descriptor will be added in the NAND DMA descriptor queue + * which will be submitted to DMA engine. + */ +static int prepare_bam_async_desc(struct qcom_nand_controller *nandc, + struct dma_chan *chan, + unsigned long flags) +{ + struct desc_info *desc; + struct scatterlist *sgl; + unsigned int sgl_cnt; + int ret; + struct bam_transaction *bam_txn = nandc->bam_txn; + enum dma_transfer_direction dir_eng; + struct dma_async_tx_descriptor *dma_desc; + + desc = kzalloc(sizeof(*desc), GFP_KERNEL); + if (!desc) + return -ENOMEM; + + if (chan == nandc->cmd_chan) { + sgl = &bam_txn->cmd_sgl[bam_txn->cmd_sgl_start]; + sgl_cnt = bam_txn->cmd_sgl_pos - bam_txn->cmd_sgl_start; + bam_txn->cmd_sgl_start = bam_txn->cmd_sgl_pos; + dir_eng = DMA_MEM_TO_DEV; + desc->dir = DMA_TO_DEVICE; + } else if (chan == nandc->tx_chan) { + sgl = &bam_txn->data_sgl[bam_txn->tx_sgl_start]; + sgl_cnt = bam_txn->tx_sgl_pos - bam_txn->tx_sgl_start; + bam_txn->tx_sgl_start = bam_txn->tx_sgl_pos; + dir_eng = DMA_MEM_TO_DEV; + desc->dir = DMA_TO_DEVICE; + } else { + sgl = &bam_txn->data_sgl[bam_txn->rx_sgl_start]; + sgl_cnt = bam_txn->rx_sgl_pos - bam_txn->rx_sgl_start; + bam_txn->rx_sgl_start = bam_txn->rx_sgl_pos; + dir_eng = DMA_DEV_TO_MEM; + desc->dir = DMA_FROM_DEVICE; + } + + sg_mark_end(sgl + sgl_cnt - 1); + ret = dma_map_sg(nandc->dev, sgl, sgl_cnt, desc->dir); + if (ret == 0) { + dev_err(nandc->dev, "failure in mapping desc\n"); + kfree(desc); + return -ENOMEM; + } + + desc->sgl_cnt = sgl_cnt; + desc->bam_sgl = sgl; + + dma_desc = dmaengine_prep_slave_sg(chan, sgl, sgl_cnt, dir_eng, + flags); + + if (!dma_desc) { + dev_err(nandc->dev, "failure in prep desc\n"); + dma_unmap_sg(nandc->dev, sgl, sgl_cnt, desc->dir); + kfree(desc); + return -EINVAL; + } + + desc->dma_desc = dma_desc; + + list_add_tail(&desc->node, &nandc->desc_list); + + return 0; +} + +/* + * Prepares the command descriptor for BAM DMA which will be used for NAND + * register reads and writes. The command descriptor requires the command + * to be formed in command element type so this function uses the command + * element from bam transaction ce array and fills the same with required + * data. A single SGL can contain multiple command elements so + * NAND_BAM_NEXT_SGL will be used for starting the separate SGL + * after the current command element. + */ +static int prep_bam_dma_desc_cmd(struct qcom_nand_controller *nandc, bool read, + int reg_off, const void *vaddr, + int size, unsigned int flags) +{ + int bam_ce_size; + int i, ret; + struct bam_cmd_element *bam_ce_buffer; + struct bam_transaction *bam_txn = nandc->bam_txn; + + bam_ce_buffer = &bam_txn->bam_ce[bam_txn->bam_ce_pos]; + + /* fill the command desc */ + for (i = 0; i < size; i++) { + if (read) + bam_prep_ce(&bam_ce_buffer[i], + nandc_reg_phys(nandc, reg_off + 4 * i), + BAM_READ_COMMAND, + reg_buf_dma_addr(nandc, + (__le32 *)vaddr + i)); + else + bam_prep_ce_le32(&bam_ce_buffer[i], + nandc_reg_phys(nandc, reg_off + 4 * i), + BAM_WRITE_COMMAND, + *((__le32 *)vaddr + i)); + } + + bam_txn->bam_ce_pos += size; + + /* use the separate sgl after this command */ + if (flags & NAND_BAM_NEXT_SGL) { + bam_ce_buffer = &bam_txn->bam_ce[bam_txn->bam_ce_start]; + bam_ce_size = (bam_txn->bam_ce_pos - + bam_txn->bam_ce_start) * + sizeof(struct bam_cmd_element); + sg_set_buf(&bam_txn->cmd_sgl[bam_txn->cmd_sgl_pos], + bam_ce_buffer, bam_ce_size); + bam_txn->cmd_sgl_pos++; + bam_txn->bam_ce_start = bam_txn->bam_ce_pos; + + if (flags & NAND_BAM_NWD) { + ret = prepare_bam_async_desc(nandc, nandc->cmd_chan, + DMA_PREP_FENCE | + DMA_PREP_CMD); + if (ret) + return ret; + } + } + + return 0; +} + +/* + * Prepares the data descriptor for BAM DMA which will be used for NAND + * data reads and writes. + */ +static int prep_bam_dma_desc_data(struct qcom_nand_controller *nandc, bool read, + const void *vaddr, + int size, unsigned int flags) +{ + int ret; + struct bam_transaction *bam_txn = nandc->bam_txn; + + if (read) { + sg_set_buf(&bam_txn->data_sgl[bam_txn->rx_sgl_pos], + vaddr, size); + bam_txn->rx_sgl_pos++; + } else { + sg_set_buf(&bam_txn->data_sgl[bam_txn->tx_sgl_pos], + vaddr, size); + bam_txn->tx_sgl_pos++; + + /* + * BAM will only set EOT for DMA_PREP_INTERRUPT so if this flag + * is not set, form the DMA descriptor + */ + if (!(flags & NAND_BAM_NO_EOT)) { + ret = prepare_bam_async_desc(nandc, nandc->tx_chan, + DMA_PREP_INTERRUPT); + if (ret) + return ret; + } + } + + return 0; +} + +static int prep_adm_dma_desc(struct qcom_nand_controller *nandc, bool read, + int reg_off, const void *vaddr, int size, + bool flow_control) +{ + struct desc_info *desc; + struct dma_async_tx_descriptor *dma_desc; + struct scatterlist *sgl; + struct dma_slave_config slave_conf; + enum dma_transfer_direction dir_eng; + int ret; + + desc = kzalloc(sizeof(*desc), GFP_KERNEL); + if (!desc) + return -ENOMEM; + + sgl = &desc->adm_sgl; + + sg_init_one(sgl, vaddr, size); + + if (read) { + dir_eng = DMA_DEV_TO_MEM; + desc->dir = DMA_FROM_DEVICE; + } else { + dir_eng = DMA_MEM_TO_DEV; + desc->dir = DMA_TO_DEVICE; + } + + ret = dma_map_sg(nandc->dev, sgl, 1, desc->dir); + if (ret == 0) { + ret = -ENOMEM; + goto err; + } + + memset(&slave_conf, 0x00, sizeof(slave_conf)); + + slave_conf.device_fc = flow_control; + if (read) { + slave_conf.src_maxburst = 16; + slave_conf.src_addr = nandc->base_dma + reg_off; + slave_conf.slave_id = nandc->data_crci; + } else { + slave_conf.dst_maxburst = 16; + slave_conf.dst_addr = nandc->base_dma + reg_off; + slave_conf.slave_id = nandc->cmd_crci; + } + + ret = dmaengine_slave_config(nandc->chan, &slave_conf); + if (ret) { + dev_err(nandc->dev, "failed to configure dma channel\n"); + goto err; + } + + dma_desc = dmaengine_prep_slave_sg(nandc->chan, sgl, 1, dir_eng, 0); + if (!dma_desc) { + dev_err(nandc->dev, "failed to prepare desc\n"); + ret = -EINVAL; + goto err; + } + + desc->dma_desc = dma_desc; + + list_add_tail(&desc->node, &nandc->desc_list); + + return 0; +err: + kfree(desc); + + return ret; +} + +/* + * read_reg_dma: prepares a descriptor to read a given number of + * contiguous registers to the reg_read_buf pointer + * + * @first: offset of the first register in the contiguous block + * @num_regs: number of registers to read + * @flags: flags to control DMA descriptor preparation + */ +static int read_reg_dma(struct qcom_nand_controller *nandc, int first, + int num_regs, unsigned int flags) +{ + bool flow_control = false; + void *vaddr; + + vaddr = nandc->reg_read_buf + nandc->reg_read_pos; + nandc->reg_read_pos += num_regs; + + if (first == NAND_DEV_CMD_VLD || first == NAND_DEV_CMD1) + first = dev_cmd_reg_addr(nandc, first); + + if (nandc->props->is_bam) + return prep_bam_dma_desc_cmd(nandc, true, first, vaddr, + num_regs, flags); + + if (first == NAND_READ_ID || first == NAND_FLASH_STATUS) + flow_control = true; + + return prep_adm_dma_desc(nandc, true, first, vaddr, + num_regs * sizeof(u32), flow_control); +} + +/* + * write_reg_dma: prepares a descriptor to write a given number of + * contiguous registers + * + * @first: offset of the first register in the contiguous block + * @num_regs: number of registers to write + * @flags: flags to control DMA descriptor preparation + */ +static int write_reg_dma(struct qcom_nand_controller *nandc, int first, + int num_regs, unsigned int flags) +{ + bool flow_control = false; + struct nandc_regs *regs = nandc->regs; + void *vaddr; + + vaddr = offset_to_nandc_reg(regs, first); + + if (first == NAND_ERASED_CW_DETECT_CFG) { + if (flags & NAND_ERASED_CW_SET) + vaddr = ®s->erased_cw_detect_cfg_set; + else + vaddr = ®s->erased_cw_detect_cfg_clr; + } + + if (first == NAND_EXEC_CMD) + flags |= NAND_BAM_NWD; + + if (first == NAND_DEV_CMD1_RESTORE || first == NAND_DEV_CMD1) + first = dev_cmd_reg_addr(nandc, NAND_DEV_CMD1); + + if (first == NAND_DEV_CMD_VLD_RESTORE || first == NAND_DEV_CMD_VLD) + first = dev_cmd_reg_addr(nandc, NAND_DEV_CMD_VLD); + + if (nandc->props->is_bam) + return prep_bam_dma_desc_cmd(nandc, false, first, vaddr, + num_regs, flags); + + if (first == NAND_FLASH_CMD) + flow_control = true; + + return prep_adm_dma_desc(nandc, false, first, vaddr, + num_regs * sizeof(u32), flow_control); +} + +/* + * read_data_dma: prepares a DMA descriptor to transfer data from the + * controller's internal buffer to the buffer 'vaddr' + * + * @reg_off: offset within the controller's data buffer + * @vaddr: virtual address of the buffer we want to write to + * @size: DMA transaction size in bytes + * @flags: flags to control DMA descriptor preparation + */ +static int read_data_dma(struct qcom_nand_controller *nandc, int reg_off, + const u8 *vaddr, int size, unsigned int flags) +{ + if (nandc->props->is_bam) + return prep_bam_dma_desc_data(nandc, true, vaddr, size, flags); + + return prep_adm_dma_desc(nandc, true, reg_off, vaddr, size, false); +} + +/* + * write_data_dma: prepares a DMA descriptor to transfer data from + * 'vaddr' to the controller's internal buffer + * + * @reg_off: offset within the controller's data buffer + * @vaddr: virtual address of the buffer we want to read from + * @size: DMA transaction size in bytes + * @flags: flags to control DMA descriptor preparation + */ +static int write_data_dma(struct qcom_nand_controller *nandc, int reg_off, + const u8 *vaddr, int size, unsigned int flags) +{ + if (nandc->props->is_bam) + return prep_bam_dma_desc_data(nandc, false, vaddr, size, flags); + + return prep_adm_dma_desc(nandc, false, reg_off, vaddr, size, false); +} + +/* + * Helper to prepare DMA descriptors for configuring registers + * before reading a NAND page. + */ +static void config_nand_page_read(struct qcom_nand_controller *nandc) +{ + write_reg_dma(nandc, NAND_ADDR0, 2, 0); + write_reg_dma(nandc, NAND_DEV0_CFG0, 3, 0); + write_reg_dma(nandc, NAND_EBI2_ECC_BUF_CFG, 1, 0); + write_reg_dma(nandc, NAND_ERASED_CW_DETECT_CFG, 1, 0); + write_reg_dma(nandc, NAND_ERASED_CW_DETECT_CFG, 1, + NAND_ERASED_CW_SET | NAND_BAM_NEXT_SGL); +} + +/* + * Helper to prepare DMA descriptors for configuring registers + * before reading each codeword in NAND page. + */ +static void config_nand_cw_read(struct qcom_nand_controller *nandc) +{ + if (nandc->props->is_bam) + write_reg_dma(nandc, NAND_READ_LOCATION_0, 4, + NAND_BAM_NEXT_SGL); + + write_reg_dma(nandc, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL); + write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL); + + read_reg_dma(nandc, NAND_FLASH_STATUS, 2, 0); + read_reg_dma(nandc, NAND_ERASED_CW_DETECT_STATUS, 1, + NAND_BAM_NEXT_SGL); +} + +/* + * Helper to prepare dma descriptors to configure registers needed for reading a + * single codeword in page + */ +static void config_nand_single_cw_page_read(struct qcom_nand_controller *nandc) +{ + config_nand_page_read(nandc); + config_nand_cw_read(nandc); +} + +/* + * Helper to prepare DMA descriptors used to configure registers needed for + * before writing a NAND page. + */ +static void config_nand_page_write(struct qcom_nand_controller *nandc) +{ + write_reg_dma(nandc, NAND_ADDR0, 2, 0); + write_reg_dma(nandc, NAND_DEV0_CFG0, 3, 0); + write_reg_dma(nandc, NAND_EBI2_ECC_BUF_CFG, 1, + NAND_BAM_NEXT_SGL); +} + +/* + * Helper to prepare DMA descriptors for configuring registers + * before writing each codeword in NAND page. + */ +static void config_nand_cw_write(struct qcom_nand_controller *nandc) +{ + write_reg_dma(nandc, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL); + write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL); + + read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL); + + write_reg_dma(nandc, NAND_FLASH_STATUS, 1, 0); + write_reg_dma(nandc, NAND_READ_STATUS, 1, NAND_BAM_NEXT_SGL); +} + +/* + * the following functions are used within chip->cmdfunc() to perform different + * NAND_CMD_* commands + */ + +/* sets up descriptors for NAND_CMD_PARAM */ +static int nandc_param(struct qcom_nand_host *host) +{ + struct nand_chip *chip = &host->chip; + struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); + + /* + * NAND_CMD_PARAM is called before we know much about the FLASH chip + * in use. we configure the controller to perform a raw read of 512 + * bytes to read onfi params + */ + nandc_set_reg(nandc, NAND_FLASH_CMD, PAGE_READ | PAGE_ACC | LAST_PAGE); + nandc_set_reg(nandc, NAND_ADDR0, 0); + nandc_set_reg(nandc, NAND_ADDR1, 0); + nandc_set_reg(nandc, NAND_DEV0_CFG0, 0 << CW_PER_PAGE + | 512 << UD_SIZE_BYTES + | 5 << NUM_ADDR_CYCLES + | 0 << SPARE_SIZE_BYTES); + nandc_set_reg(nandc, NAND_DEV0_CFG1, 7 << NAND_RECOVERY_CYCLES + | 0 << CS_ACTIVE_BSY + | 17 << BAD_BLOCK_BYTE_NUM + | 1 << BAD_BLOCK_IN_SPARE_AREA + | 2 << WR_RD_BSY_GAP + | 0 << WIDE_FLASH + | 1 << DEV0_CFG1_ECC_DISABLE); + nandc_set_reg(nandc, NAND_EBI2_ECC_BUF_CFG, 1 << ECC_CFG_ECC_DISABLE); + + /* configure CMD1 and VLD for ONFI param probing */ + nandc_set_reg(nandc, NAND_DEV_CMD_VLD, + (nandc->vld & ~READ_START_VLD)); + nandc_set_reg(nandc, NAND_DEV_CMD1, + (nandc->cmd1 & ~(0xFF << READ_ADDR)) + | NAND_CMD_PARAM << READ_ADDR); + + nandc_set_reg(nandc, NAND_EXEC_CMD, 1); + + nandc_set_reg(nandc, NAND_DEV_CMD1_RESTORE, nandc->cmd1); + nandc_set_reg(nandc, NAND_DEV_CMD_VLD_RESTORE, nandc->vld); + nandc_set_read_loc(nandc, 0, 0, 512, 1); + + write_reg_dma(nandc, NAND_DEV_CMD_VLD, 1, 0); + write_reg_dma(nandc, NAND_DEV_CMD1, 1, NAND_BAM_NEXT_SGL); + + nandc->buf_count = 512; + memset(nandc->data_buffer, 0xff, nandc->buf_count); + + config_nand_single_cw_page_read(nandc); + + read_data_dma(nandc, FLASH_BUF_ACC, nandc->data_buffer, + nandc->buf_count, 0); + + /* restore CMD1 and VLD regs */ + write_reg_dma(nandc, NAND_DEV_CMD1_RESTORE, 1, 0); + write_reg_dma(nandc, NAND_DEV_CMD_VLD_RESTORE, 1, NAND_BAM_NEXT_SGL); + + return 0; +} + +/* sets up descriptors for NAND_CMD_ERASE1 */ +static int erase_block(struct qcom_nand_host *host, int page_addr) +{ + struct nand_chip *chip = &host->chip; + struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); + + nandc_set_reg(nandc, NAND_FLASH_CMD, + BLOCK_ERASE | PAGE_ACC | LAST_PAGE); + nandc_set_reg(nandc, NAND_ADDR0, page_addr); + nandc_set_reg(nandc, NAND_ADDR1, 0); + nandc_set_reg(nandc, NAND_DEV0_CFG0, + host->cfg0_raw & ~(7 << CW_PER_PAGE)); + nandc_set_reg(nandc, NAND_DEV0_CFG1, host->cfg1_raw); + nandc_set_reg(nandc, NAND_EXEC_CMD, 1); + nandc_set_reg(nandc, NAND_FLASH_STATUS, host->clrflashstatus); + nandc_set_reg(nandc, NAND_READ_STATUS, host->clrreadstatus); + + write_reg_dma(nandc, NAND_FLASH_CMD, 3, NAND_BAM_NEXT_SGL); + write_reg_dma(nandc, NAND_DEV0_CFG0, 2, NAND_BAM_NEXT_SGL); + write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL); + + read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL); + + write_reg_dma(nandc, NAND_FLASH_STATUS, 1, 0); + write_reg_dma(nandc, NAND_READ_STATUS, 1, NAND_BAM_NEXT_SGL); + + return 0; +} + +/* sets up descriptors for NAND_CMD_READID */ +static int read_id(struct qcom_nand_host *host, int column) +{ + struct nand_chip *chip = &host->chip; + struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); + + if (column == -1) + return 0; + + nandc_set_reg(nandc, NAND_FLASH_CMD, FETCH_ID); + nandc_set_reg(nandc, NAND_ADDR0, column); + nandc_set_reg(nandc, NAND_ADDR1, 0); + nandc_set_reg(nandc, NAND_FLASH_CHIP_SELECT, + nandc->props->is_bam ? 0 : DM_EN); + nandc_set_reg(nandc, NAND_EXEC_CMD, 1); + + write_reg_dma(nandc, NAND_FLASH_CMD, 4, NAND_BAM_NEXT_SGL); + write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL); + + read_reg_dma(nandc, NAND_READ_ID, 1, NAND_BAM_NEXT_SGL); + + return 0; +} + +/* sets up descriptors for NAND_CMD_RESET */ +static int reset(struct qcom_nand_host *host) +{ + struct nand_chip *chip = &host->chip; + struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); + + nandc_set_reg(nandc, NAND_FLASH_CMD, RESET_DEVICE); + nandc_set_reg(nandc, NAND_EXEC_CMD, 1); + + write_reg_dma(nandc, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL); + write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL); + + read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL); + + return 0; +} + +/* helpers to submit/free our list of dma descriptors */ +static int submit_descs(struct qcom_nand_controller *nandc) +{ + struct desc_info *desc; + dma_cookie_t cookie = 0; + struct bam_transaction *bam_txn = nandc->bam_txn; + int r; + + if (nandc->props->is_bam) { + if (bam_txn->rx_sgl_pos > bam_txn->rx_sgl_start) { + r = prepare_bam_async_desc(nandc, nandc->rx_chan, 0); + if (r) + return r; + } + + if (bam_txn->tx_sgl_pos > bam_txn->tx_sgl_start) { + r = prepare_bam_async_desc(nandc, nandc->tx_chan, + DMA_PREP_INTERRUPT); + if (r) + return r; + } + + if (bam_txn->cmd_sgl_pos > bam_txn->cmd_sgl_start) { + r = prepare_bam_async_desc(nandc, nandc->cmd_chan, + DMA_PREP_CMD); + if (r) + return r; + } + } + + list_for_each_entry(desc, &nandc->desc_list, node) + cookie = dmaengine_submit(desc->dma_desc); + + if (nandc->props->is_bam) { + dma_async_issue_pending(nandc->tx_chan); + dma_async_issue_pending(nandc->rx_chan); + + if (dma_sync_wait(nandc->cmd_chan, cookie) != DMA_COMPLETE) + return -ETIMEDOUT; + } else { + if (dma_sync_wait(nandc->chan, cookie) != DMA_COMPLETE) + return -ETIMEDOUT; + } + + return 0; +} + +static void free_descs(struct qcom_nand_controller *nandc) +{ + struct desc_info *desc, *n; + + list_for_each_entry_safe(desc, n, &nandc->desc_list, node) { + list_del(&desc->node); + + if (nandc->props->is_bam) + dma_unmap_sg(nandc->dev, desc->bam_sgl, + desc->sgl_cnt, desc->dir); + else + dma_unmap_sg(nandc->dev, &desc->adm_sgl, 1, + desc->dir); + + kfree(desc); + } +} + +/* reset the register read buffer for next NAND operation */ +static void clear_read_regs(struct qcom_nand_controller *nandc) +{ + nandc->reg_read_pos = 0; + nandc_read_buffer_sync(nandc, false); +} + +static void pre_command(struct qcom_nand_host *host, int command) +{ + struct nand_chip *chip = &host->chip; + struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); + + nandc->buf_count = 0; + nandc->buf_start = 0; + host->use_ecc = false; + host->last_command = command; + + clear_read_regs(nandc); + + if (command == NAND_CMD_RESET || command == NAND_CMD_READID || + command == NAND_CMD_PARAM || command == NAND_CMD_ERASE1) + clear_bam_transaction(nandc); +} + +/* + * this is called after NAND_CMD_PAGEPROG and NAND_CMD_ERASE1 to set our + * privately maintained status byte, this status byte can be read after + * NAND_CMD_STATUS is called + */ +static void parse_erase_write_errors(struct qcom_nand_host *host, int command) +{ + struct nand_chip *chip = &host->chip; + struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); + struct nand_ecc_ctrl *ecc = &chip->ecc; + int num_cw; + int i; + + num_cw = command == NAND_CMD_PAGEPROG ? ecc->steps : 1; + nandc_read_buffer_sync(nandc, true); + + for (i = 0; i < num_cw; i++) { + u32 flash_status = le32_to_cpu(nandc->reg_read_buf[i]); + + if (flash_status & FS_MPU_ERR) + host->status &= ~NAND_STATUS_WP; + + if (flash_status & FS_OP_ERR || (i == (num_cw - 1) && + (flash_status & + FS_DEVICE_STS_ERR))) + host->status |= NAND_STATUS_FAIL; + } +} + +static void post_command(struct qcom_nand_host *host, int command) +{ + struct nand_chip *chip = &host->chip; + struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); + + switch (command) { + case NAND_CMD_READID: + nandc_read_buffer_sync(nandc, true); + memcpy(nandc->data_buffer, nandc->reg_read_buf, + nandc->buf_count); + break; + case NAND_CMD_PAGEPROG: + case NAND_CMD_ERASE1: + parse_erase_write_errors(host, command); + break; + default: + break; + } +} + +/* + * Implements chip->cmdfunc. It's only used for a limited set of commands. + * The rest of the commands wouldn't be called by upper layers. For example, + * NAND_CMD_READOOB would never be called because we have our own versions + * of read_oob ops for nand_ecc_ctrl. + */ +static void qcom_nandc_command(struct mtd_info *mtd, unsigned int command, + int column, int page_addr) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct qcom_nand_host *host = to_qcom_nand_host(chip); + struct nand_ecc_ctrl *ecc = &chip->ecc; + struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); + bool wait = false; + int ret = 0; + + pre_command(host, command); + + switch (command) { + case NAND_CMD_RESET: + ret = reset(host); + wait = true; + break; + + case NAND_CMD_READID: + nandc->buf_count = 4; + ret = read_id(host, column); + wait = true; + break; + + case NAND_CMD_PARAM: + ret = nandc_param(host); + wait = true; + break; + + case NAND_CMD_ERASE1: + ret = erase_block(host, page_addr); + wait = true; + break; + + case NAND_CMD_READ0: + /* we read the entire page for now */ + WARN_ON(column != 0); + + host->use_ecc = true; + set_address(host, 0, page_addr); + update_rw_regs(host, ecc->steps, true); + break; + + case NAND_CMD_SEQIN: + WARN_ON(column != 0); + set_address(host, 0, page_addr); + break; + + case NAND_CMD_PAGEPROG: + case NAND_CMD_STATUS: + case NAND_CMD_NONE: + default: + break; + } + + if (ret) { + dev_err(nandc->dev, "failure executing command %d\n", + command); + free_descs(nandc); + return; + } + + if (wait) { + ret = submit_descs(nandc); + if (ret) + dev_err(nandc->dev, + "failure submitting descs for command %d\n", + command); + } + + free_descs(nandc); + + post_command(host, command); +} + +/* + * when using BCH ECC, the HW flags an error in NAND_FLASH_STATUS if it read + * an erased CW, and reports an erased CW in NAND_ERASED_CW_DETECT_STATUS. + * + * when using RS ECC, the HW reports the same erros when reading an erased CW, + * but it notifies that it is an erased CW by placing special characters at + * certain offsets in the buffer. + * + * verify if the page is erased or not, and fix up the page for RS ECC by + * replacing the special characters with 0xff. + */ +static bool erased_chunk_check_and_fixup(u8 *data_buf, int data_len) +{ + u8 empty1, empty2; + + /* + * an erased page flags an error in NAND_FLASH_STATUS, check if the page + * is erased by looking for 0x54s at offsets 3 and 175 from the + * beginning of each codeword + */ + + empty1 = data_buf[3]; + empty2 = data_buf[175]; + + /* + * if the erased codework markers, if they exist override them with + * 0xffs + */ + if ((empty1 == 0x54 && empty2 == 0xff) || + (empty1 == 0xff && empty2 == 0x54)) { + data_buf[3] = 0xff; + data_buf[175] = 0xff; + } + + /* + * check if the entire chunk contains 0xffs or not. if it doesn't, then + * restore the original values at the special offsets + */ + if (memchr_inv(data_buf, 0xff, data_len)) { + data_buf[3] = empty1; + data_buf[175] = empty2; + + return false; + } + + return true; +} + +struct read_stats { + __le32 flash; + __le32 buffer; + __le32 erased_cw; +}; + +/* + * reads back status registers set by the controller to notify page read + * errors. this is equivalent to what 'ecc->correct()' would do. + */ +static int parse_read_errors(struct qcom_nand_host *host, u8 *data_buf, + u8 *oob_buf) +{ + struct nand_chip *chip = &host->chip; + struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); + struct mtd_info *mtd = nand_to_mtd(chip); + struct nand_ecc_ctrl *ecc = &chip->ecc; + unsigned int max_bitflips = 0; + struct read_stats *buf; + int i; + + buf = (struct read_stats *)nandc->reg_read_buf; + nandc_read_buffer_sync(nandc, true); + + for (i = 0; i < ecc->steps; i++, buf++) { + u32 flash, buffer, erased_cw; + int data_len, oob_len; + + if (i == (ecc->steps - 1)) { + data_len = ecc->size - ((ecc->steps - 1) << 2); + oob_len = ecc->steps << 2; + } else { + data_len = host->cw_data; + oob_len = 0; + } + + flash = le32_to_cpu(buf->flash); + buffer = le32_to_cpu(buf->buffer); + erased_cw = le32_to_cpu(buf->erased_cw); + + if (flash & (FS_OP_ERR | FS_MPU_ERR)) { + bool erased; + + /* ignore erased codeword errors */ + if (host->bch_enabled) { + erased = (erased_cw & ERASED_CW) == ERASED_CW ? + true : false; + } else { + erased = erased_chunk_check_and_fixup(data_buf, + data_len); + } + + if (erased) { + data_buf += data_len; + if (oob_buf) + oob_buf += oob_len + ecc->bytes; + continue; + } + + if (buffer & BS_UNCORRECTABLE_BIT) { + int ret, ecclen, extraooblen; + void *eccbuf; + + eccbuf = oob_buf ? oob_buf + oob_len : NULL; + ecclen = oob_buf ? host->ecc_bytes_hw : 0; + extraooblen = oob_buf ? oob_len : 0; + + /* + * make sure it isn't an erased page reported + * as not-erased by HW because of a few bitflips + */ + ret = nand_check_erased_ecc_chunk(data_buf, + data_len, eccbuf, ecclen, oob_buf, + extraooblen, ecc->strength); + if (ret < 0) { + mtd->ecc_stats.failed++; + } else { + mtd->ecc_stats.corrected += ret; + max_bitflips = + max_t(unsigned int, max_bitflips, ret); + } + } + } else { + unsigned int stat; + + stat = buffer & BS_CORRECTABLE_ERR_MSK; + mtd->ecc_stats.corrected += stat; + max_bitflips = max(max_bitflips, stat); + } + + data_buf += data_len; + if (oob_buf) + oob_buf += oob_len + ecc->bytes; + } + + return max_bitflips; +} + +/* + * helper to perform the actual page read operation, used by ecc->read_page(), + * ecc->read_oob() + */ +static int read_page_ecc(struct qcom_nand_host *host, u8 *data_buf, + u8 *oob_buf) +{ + struct nand_chip *chip = &host->chip; + struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); + struct nand_ecc_ctrl *ecc = &chip->ecc; + int i, ret; + + config_nand_page_read(nandc); + + /* queue cmd descs for each codeword */ + for (i = 0; i < ecc->steps; i++) { + int data_size, oob_size; + + if (i == (ecc->steps - 1)) { + data_size = ecc->size - ((ecc->steps - 1) << 2); + oob_size = (ecc->steps << 2) + host->ecc_bytes_hw + + host->spare_bytes; + } else { + data_size = host->cw_data; + oob_size = host->ecc_bytes_hw + host->spare_bytes; + } + + if (nandc->props->is_bam) { + if (data_buf && oob_buf) { + nandc_set_read_loc(nandc, 0, 0, data_size, 0); + nandc_set_read_loc(nandc, 1, data_size, + oob_size, 1); + } else if (data_buf) { + nandc_set_read_loc(nandc, 0, 0, data_size, 1); + } else { + nandc_set_read_loc(nandc, 0, data_size, + oob_size, 1); + } + } + + config_nand_cw_read(nandc); + + if (data_buf) + read_data_dma(nandc, FLASH_BUF_ACC, data_buf, + data_size, 0); + + /* + * when ecc is enabled, the controller doesn't read the real + * or dummy bad block markers in each chunk. To maintain a + * consistent layout across RAW and ECC reads, we just + * leave the real/dummy BBM offsets empty (i.e, filled with + * 0xffs) + */ + if (oob_buf) { + int j; + + for (j = 0; j < host->bbm_size; j++) + *oob_buf++ = 0xff; + + read_data_dma(nandc, FLASH_BUF_ACC + data_size, + oob_buf, oob_size, 0); + } + + if (data_buf) + data_buf += data_size; + if (oob_buf) + oob_buf += oob_size; + } + + ret = submit_descs(nandc); + if (ret) + dev_err(nandc->dev, "failure to read page/oob\n"); + + free_descs(nandc); + + return ret; +} + +/* + * a helper that copies the last step/codeword of a page (containing free oob) + * into our local buffer + */ +static int copy_last_cw(struct qcom_nand_host *host, int page) +{ + struct nand_chip *chip = &host->chip; + struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); + struct nand_ecc_ctrl *ecc = &chip->ecc; + int size; + int ret; + + clear_read_regs(nandc); + + size = host->use_ecc ? host->cw_data : host->cw_size; + + /* prepare a clean read buffer */ + memset(nandc->data_buffer, 0xff, size); + + set_address(host, host->cw_size * (ecc->steps - 1), page); + update_rw_regs(host, 1, true); + + config_nand_single_cw_page_read(nandc); + + read_data_dma(nandc, FLASH_BUF_ACC, nandc->data_buffer, size, 0); + + ret = submit_descs(nandc); + if (ret) + dev_err(nandc->dev, "failed to copy last codeword\n"); + + free_descs(nandc); + + return ret; +} + +/* implements ecc->read_page() */ +static int qcom_nandc_read_page(struct mtd_info *mtd, struct nand_chip *chip, + uint8_t *buf, int oob_required, int page) +{ + struct qcom_nand_host *host = to_qcom_nand_host(chip); + struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); + u8 *data_buf, *oob_buf = NULL; + int ret; + + nand_read_page_op(chip, page, 0, NULL, 0); + data_buf = buf; + oob_buf = oob_required ? chip->oob_poi : NULL; + + clear_bam_transaction(nandc); + ret = read_page_ecc(host, data_buf, oob_buf); + if (ret) { + dev_err(nandc->dev, "failure to read page\n"); + return ret; + } + + return parse_read_errors(host, data_buf, oob_buf); +} + +/* implements ecc->read_page_raw() */ +static int qcom_nandc_read_page_raw(struct mtd_info *mtd, + struct nand_chip *chip, uint8_t *buf, + int oob_required, int page) +{ + struct qcom_nand_host *host = to_qcom_nand_host(chip); + struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); + u8 *data_buf, *oob_buf; + struct nand_ecc_ctrl *ecc = &chip->ecc; + int i, ret; + int read_loc; + + nand_read_page_op(chip, page, 0, NULL, 0); + data_buf = buf; + oob_buf = chip->oob_poi; + + host->use_ecc = false; + + clear_bam_transaction(nandc); + update_rw_regs(host, ecc->steps, true); + config_nand_page_read(nandc); + + for (i = 0; i < ecc->steps; i++) { + int data_size1, data_size2, oob_size1, oob_size2; + int reg_off = FLASH_BUF_ACC; + + data_size1 = mtd->writesize - host->cw_size * (ecc->steps - 1); + oob_size1 = host->bbm_size; + + if (i == (ecc->steps - 1)) { + data_size2 = ecc->size - data_size1 - + ((ecc->steps - 1) << 2); + oob_size2 = (ecc->steps << 2) + host->ecc_bytes_hw + + host->spare_bytes; + } else { + data_size2 = host->cw_data - data_size1; + oob_size2 = host->ecc_bytes_hw + host->spare_bytes; + } + + if (nandc->props->is_bam) { + read_loc = 0; + nandc_set_read_loc(nandc, 0, read_loc, data_size1, 0); + read_loc += data_size1; + + nandc_set_read_loc(nandc, 1, read_loc, oob_size1, 0); + read_loc += oob_size1; + + nandc_set_read_loc(nandc, 2, read_loc, data_size2, 0); + read_loc += data_size2; + + nandc_set_read_loc(nandc, 3, read_loc, oob_size2, 1); + } + + config_nand_cw_read(nandc); + + read_data_dma(nandc, reg_off, data_buf, data_size1, 0); + reg_off += data_size1; + data_buf += data_size1; + + read_data_dma(nandc, reg_off, oob_buf, oob_size1, 0); + reg_off += oob_size1; + oob_buf += oob_size1; + + read_data_dma(nandc, reg_off, data_buf, data_size2, 0); + reg_off += data_size2; + data_buf += data_size2; + + read_data_dma(nandc, reg_off, oob_buf, oob_size2, 0); + oob_buf += oob_size2; + } + + ret = submit_descs(nandc); + if (ret) + dev_err(nandc->dev, "failure to read raw page\n"); + + free_descs(nandc); + + return 0; +} + +/* implements ecc->read_oob() */ +static int qcom_nandc_read_oob(struct mtd_info *mtd, struct nand_chip *chip, + int page) +{ + struct qcom_nand_host *host = to_qcom_nand_host(chip); + struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); + struct nand_ecc_ctrl *ecc = &chip->ecc; + int ret; + + clear_read_regs(nandc); + clear_bam_transaction(nandc); + + host->use_ecc = true; + set_address(host, 0, page); + update_rw_regs(host, ecc->steps, true); + + ret = read_page_ecc(host, NULL, chip->oob_poi); + if (ret) + dev_err(nandc->dev, "failure to read oob\n"); + + return ret; +} + +/* implements ecc->write_page() */ +static int qcom_nandc_write_page(struct mtd_info *mtd, struct nand_chip *chip, + const uint8_t *buf, int oob_required, int page) +{ + struct qcom_nand_host *host = to_qcom_nand_host(chip); + struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); + struct nand_ecc_ctrl *ecc = &chip->ecc; + u8 *data_buf, *oob_buf; + int i, ret; + + nand_prog_page_begin_op(chip, page, 0, NULL, 0); + + clear_read_regs(nandc); + clear_bam_transaction(nandc); + + data_buf = (u8 *)buf; + oob_buf = chip->oob_poi; + + host->use_ecc = true; + update_rw_regs(host, ecc->steps, false); + config_nand_page_write(nandc); + + for (i = 0; i < ecc->steps; i++) { + int data_size, oob_size; + + if (i == (ecc->steps - 1)) { + data_size = ecc->size - ((ecc->steps - 1) << 2); + oob_size = (ecc->steps << 2) + host->ecc_bytes_hw + + host->spare_bytes; + } else { + data_size = host->cw_data; + oob_size = ecc->bytes; + } + + + write_data_dma(nandc, FLASH_BUF_ACC, data_buf, data_size, + i == (ecc->steps - 1) ? NAND_BAM_NO_EOT : 0); + + /* + * when ECC is enabled, we don't really need to write anything + * to oob for the first n - 1 codewords since these oob regions + * just contain ECC bytes that's written by the controller + * itself. For the last codeword, we skip the bbm positions and + * write to the free oob area. + */ + if (i == (ecc->steps - 1)) { + oob_buf += host->bbm_size; + + write_data_dma(nandc, FLASH_BUF_ACC + data_size, + oob_buf, oob_size, 0); + } + + config_nand_cw_write(nandc); + + data_buf += data_size; + oob_buf += oob_size; + } + + ret = submit_descs(nandc); + if (ret) + dev_err(nandc->dev, "failure to write page\n"); + + free_descs(nandc); + + if (!ret) + ret = nand_prog_page_end_op(chip); + + return ret; +} + +/* implements ecc->write_page_raw() */ +static int qcom_nandc_write_page_raw(struct mtd_info *mtd, + struct nand_chip *chip, const uint8_t *buf, + int oob_required, int page) +{ + struct qcom_nand_host *host = to_qcom_nand_host(chip); + struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); + struct nand_ecc_ctrl *ecc = &chip->ecc; + u8 *data_buf, *oob_buf; + int i, ret; + + nand_prog_page_begin_op(chip, page, 0, NULL, 0); + clear_read_regs(nandc); + clear_bam_transaction(nandc); + + data_buf = (u8 *)buf; + oob_buf = chip->oob_poi; + + host->use_ecc = false; + update_rw_regs(host, ecc->steps, false); + config_nand_page_write(nandc); + + for (i = 0; i < ecc->steps; i++) { + int data_size1, data_size2, oob_size1, oob_size2; + int reg_off = FLASH_BUF_ACC; + + data_size1 = mtd->writesize - host->cw_size * (ecc->steps - 1); + oob_size1 = host->bbm_size; + + if (i == (ecc->steps - 1)) { + data_size2 = ecc->size - data_size1 - + ((ecc->steps - 1) << 2); + oob_size2 = (ecc->steps << 2) + host->ecc_bytes_hw + + host->spare_bytes; + } else { + data_size2 = host->cw_data - data_size1; + oob_size2 = host->ecc_bytes_hw + host->spare_bytes; + } + + write_data_dma(nandc, reg_off, data_buf, data_size1, + NAND_BAM_NO_EOT); + reg_off += data_size1; + data_buf += data_size1; + + write_data_dma(nandc, reg_off, oob_buf, oob_size1, + NAND_BAM_NO_EOT); + reg_off += oob_size1; + oob_buf += oob_size1; + + write_data_dma(nandc, reg_off, data_buf, data_size2, + NAND_BAM_NO_EOT); + reg_off += data_size2; + data_buf += data_size2; + + write_data_dma(nandc, reg_off, oob_buf, oob_size2, 0); + oob_buf += oob_size2; + + config_nand_cw_write(nandc); + } + + ret = submit_descs(nandc); + if (ret) + dev_err(nandc->dev, "failure to write raw page\n"); + + free_descs(nandc); + + if (!ret) + ret = nand_prog_page_end_op(chip); + + return ret; +} + +/* + * implements ecc->write_oob() + * + * the NAND controller cannot write only data or only oob within a codeword, + * since ecc is calculated for the combined codeword. we first copy the + * entire contents for the last codeword(data + oob), replace the old oob + * with the new one in chip->oob_poi, and then write the entire codeword. + * this read-copy-write operation results in a slight performance loss. + */ +static int qcom_nandc_write_oob(struct mtd_info *mtd, struct nand_chip *chip, + int page) +{ + struct qcom_nand_host *host = to_qcom_nand_host(chip); + struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); + struct nand_ecc_ctrl *ecc = &chip->ecc; + u8 *oob = chip->oob_poi; + int data_size, oob_size; + int ret; + + host->use_ecc = true; + + clear_bam_transaction(nandc); + ret = copy_last_cw(host, page); + if (ret) + return ret; + + clear_read_regs(nandc); + clear_bam_transaction(nandc); + + /* calculate the data and oob size for the last codeword/step */ + data_size = ecc->size - ((ecc->steps - 1) << 2); + oob_size = mtd->oobavail; + + /* override new oob content to last codeword */ + mtd_ooblayout_get_databytes(mtd, nandc->data_buffer + data_size, oob, + 0, mtd->oobavail); + + set_address(host, host->cw_size * (ecc->steps - 1), page); + update_rw_regs(host, 1, false); + + config_nand_page_write(nandc); + write_data_dma(nandc, FLASH_BUF_ACC, + nandc->data_buffer, data_size + oob_size, 0); + config_nand_cw_write(nandc); + + ret = submit_descs(nandc); + + free_descs(nandc); + + if (ret) { + dev_err(nandc->dev, "failure to write oob\n"); + return -EIO; + } + + return nand_prog_page_end_op(chip); +} + +static int qcom_nandc_block_bad(struct mtd_info *mtd, loff_t ofs) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct qcom_nand_host *host = to_qcom_nand_host(chip); + struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); + struct nand_ecc_ctrl *ecc = &chip->ecc; + int page, ret, bbpos, bad = 0; + u32 flash_status; + + page = (int)(ofs >> chip->page_shift) & chip->pagemask; + + /* + * configure registers for a raw sub page read, the address is set to + * the beginning of the last codeword, we don't care about reading ecc + * portion of oob. we just want the first few bytes from this codeword + * that contains the BBM + */ + host->use_ecc = false; + + clear_bam_transaction(nandc); + ret = copy_last_cw(host, page); + if (ret) + goto err; + + flash_status = le32_to_cpu(nandc->reg_read_buf[0]); + + if (flash_status & (FS_OP_ERR | FS_MPU_ERR)) { + dev_warn(nandc->dev, "error when trying to read BBM\n"); + goto err; + } + + bbpos = mtd->writesize - host->cw_size * (ecc->steps - 1); + + bad = nandc->data_buffer[bbpos] != 0xff; + + if (chip->options & NAND_BUSWIDTH_16) + bad = bad || (nandc->data_buffer[bbpos + 1] != 0xff); +err: + return bad; +} + +static int qcom_nandc_block_markbad(struct mtd_info *mtd, loff_t ofs) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct qcom_nand_host *host = to_qcom_nand_host(chip); + struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); + struct nand_ecc_ctrl *ecc = &chip->ecc; + int page, ret; + + clear_read_regs(nandc); + clear_bam_transaction(nandc); + + /* + * to mark the BBM as bad, we flash the entire last codeword with 0s. + * we don't care about the rest of the content in the codeword since + * we aren't going to use this block again + */ + memset(nandc->data_buffer, 0x00, host->cw_size); + + page = (int)(ofs >> chip->page_shift) & chip->pagemask; + + /* prepare write */ + host->use_ecc = false; + set_address(host, host->cw_size * (ecc->steps - 1), page); + update_rw_regs(host, 1, false); + + config_nand_page_write(nandc); + write_data_dma(nandc, FLASH_BUF_ACC, + nandc->data_buffer, host->cw_size, 0); + config_nand_cw_write(nandc); + + ret = submit_descs(nandc); + + free_descs(nandc); + + if (ret) { + dev_err(nandc->dev, "failure to update BBM\n"); + return -EIO; + } + + return nand_prog_page_end_op(chip); +} + +/* + * the three functions below implement chip->read_byte(), chip->read_buf() + * and chip->write_buf() respectively. these aren't used for + * reading/writing page data, they are used for smaller data like reading + * id, status etc + */ +static uint8_t qcom_nandc_read_byte(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct qcom_nand_host *host = to_qcom_nand_host(chip); + struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); + u8 *buf = nandc->data_buffer; + u8 ret = 0x0; + + if (host->last_command == NAND_CMD_STATUS) { + ret = host->status; + + host->status = NAND_STATUS_READY | NAND_STATUS_WP; + + return ret; + } + + if (nandc->buf_start < nandc->buf_count) + ret = buf[nandc->buf_start++]; + + return ret; +} + +static void qcom_nandc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); + int real_len = min_t(size_t, len, nandc->buf_count - nandc->buf_start); + + memcpy(buf, nandc->data_buffer + nandc->buf_start, real_len); + nandc->buf_start += real_len; +} + +static void qcom_nandc_write_buf(struct mtd_info *mtd, const uint8_t *buf, + int len) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); + int real_len = min_t(size_t, len, nandc->buf_count - nandc->buf_start); + + memcpy(nandc->data_buffer + nandc->buf_start, buf, real_len); + + nandc->buf_start += real_len; +} + +/* we support only one external chip for now */ +static void qcom_nandc_select_chip(struct mtd_info *mtd, int chipnr) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); + + if (chipnr <= 0) + return; + + dev_warn(nandc->dev, "invalid chip select\n"); +} + +/* + * NAND controller page layout info + * + * Layout with ECC enabled: + * + * |----------------------| |---------------------------------| + * | xx.......yy| | *********xx.......yy| + * | DATA xx..ECC..yy| | DATA **SPARE**xx..ECC..yy| + * | (516) xx.......yy| | (516-n*4) **(n*4)**xx.......yy| + * | xx.......yy| | *********xx.......yy| + * |----------------------| |---------------------------------| + * codeword 1,2..n-1 codeword n + * <---(528/532 Bytes)--> <-------(528/532 Bytes)---------> + * + * n = Number of codewords in the page + * . = ECC bytes + * * = Spare/free bytes + * x = Unused byte(s) + * y = Reserved byte(s) + * + * 2K page: n = 4, spare = 16 bytes + * 4K page: n = 8, spare = 32 bytes + * 8K page: n = 16, spare = 64 bytes + * + * the qcom nand controller operates at a sub page/codeword level. each + * codeword is 528 and 532 bytes for 4 bit and 8 bit ECC modes respectively. + * the number of ECC bytes vary based on the ECC strength and the bus width. + * + * the first n - 1 codewords contains 516 bytes of user data, the remaining + * 12/16 bytes consist of ECC and reserved data. The nth codeword contains + * both user data and spare(oobavail) bytes that sum up to 516 bytes. + * + * When we access a page with ECC enabled, the reserved bytes(s) are not + * accessible at all. When reading, we fill up these unreadable positions + * with 0xffs. When writing, the controller skips writing the inaccessible + * bytes. + * + * Layout with ECC disabled: + * + * |------------------------------| |---------------------------------------| + * | yy xx.......| | bb *********xx.......| + * | DATA1 yy DATA2 xx..ECC..| | DATA1 bb DATA2 **SPARE**xx..ECC..| + * | (size1) yy (size2) xx.......| | (size1) bb (size2) **(n*4)**xx.......| + * | yy xx.......| | bb *********xx.......| + * |------------------------------| |---------------------------------------| + * codeword 1,2..n-1 codeword n + * <-------(528/532 Bytes)------> <-----------(528/532 Bytes)-----------> + * + * n = Number of codewords in the page + * . = ECC bytes + * * = Spare/free bytes + * x = Unused byte(s) + * y = Dummy Bad Bock byte(s) + * b = Real Bad Block byte(s) + * size1/size2 = function of codeword size and 'n' + * + * when the ECC block is disabled, one reserved byte (or two for 16 bit bus + * width) is now accessible. For the first n - 1 codewords, these are dummy Bad + * Block Markers. In the last codeword, this position contains the real BBM + * + * In order to have a consistent layout between RAW and ECC modes, we assume + * the following OOB layout arrangement: + * + * |-----------| |--------------------| + * |yyxx.......| |bb*********xx.......| + * |yyxx..ECC..| |bb*FREEOOB*xx..ECC..| + * |yyxx.......| |bb*********xx.......| + * |yyxx.......| |bb*********xx.......| + * |-----------| |--------------------| + * first n - 1 nth OOB region + * OOB regions + * + * n = Number of codewords in the page + * . = ECC bytes + * * = FREE OOB bytes + * y = Dummy bad block byte(s) (inaccessible when ECC enabled) + * x = Unused byte(s) + * b = Real bad block byte(s) (inaccessible when ECC enabled) + * + * This layout is read as is when ECC is disabled. When ECC is enabled, the + * inaccessible Bad Block byte(s) are ignored when we write to a page/oob, + * and assumed as 0xffs when we read a page/oob. The ECC, unused and + * dummy/real bad block bytes are grouped as ecc bytes (i.e, ecc->bytes is + * the sum of the three). + */ +static int qcom_nand_ooblayout_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct qcom_nand_host *host = to_qcom_nand_host(chip); + struct nand_ecc_ctrl *ecc = &chip->ecc; + + if (section > 1) + return -ERANGE; + + if (!section) { + oobregion->length = (ecc->bytes * (ecc->steps - 1)) + + host->bbm_size; + oobregion->offset = 0; + } else { + oobregion->length = host->ecc_bytes_hw + host->spare_bytes; + oobregion->offset = mtd->oobsize - oobregion->length; + } + + return 0; +} + +static int qcom_nand_ooblayout_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct qcom_nand_host *host = to_qcom_nand_host(chip); + struct nand_ecc_ctrl *ecc = &chip->ecc; + + if (section) + return -ERANGE; + + oobregion->length = ecc->steps * 4; + oobregion->offset = ((ecc->steps - 1) * ecc->bytes) + host->bbm_size; + + return 0; +} + +static const struct mtd_ooblayout_ops qcom_nand_ooblayout_ops = { + .ecc = qcom_nand_ooblayout_ecc, + .free = qcom_nand_ooblayout_free, +}; + +static int qcom_nand_host_setup(struct qcom_nand_host *host) +{ + struct nand_chip *chip = &host->chip; + struct mtd_info *mtd = nand_to_mtd(chip); + struct nand_ecc_ctrl *ecc = &chip->ecc; + struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); + int cwperpage, bad_block_byte; + bool wide_bus; + int ecc_mode = 1; + + /* + * the controller requires each step consists of 512 bytes of data. + * bail out if DT has populated a wrong step size. + */ + if (ecc->size != NANDC_STEP_SIZE) { + dev_err(nandc->dev, "invalid ecc size\n"); + return -EINVAL; + } + + wide_bus = chip->options & NAND_BUSWIDTH_16 ? true : false; + + if (ecc->strength >= 8) { + /* 8 bit ECC defaults to BCH ECC on all platforms */ + host->bch_enabled = true; + ecc_mode = 1; + + if (wide_bus) { + host->ecc_bytes_hw = 14; + host->spare_bytes = 0; + host->bbm_size = 2; + } else { + host->ecc_bytes_hw = 13; + host->spare_bytes = 2; + host->bbm_size = 1; + } + } else { + /* + * if the controller supports BCH for 4 bit ECC, the controller + * uses lesser bytes for ECC. If RS is used, the ECC bytes is + * always 10 bytes + */ + if (nandc->props->ecc_modes & ECC_BCH_4BIT) { + /* BCH */ + host->bch_enabled = true; + ecc_mode = 0; + + if (wide_bus) { + host->ecc_bytes_hw = 8; + host->spare_bytes = 2; + host->bbm_size = 2; + } else { + host->ecc_bytes_hw = 7; + host->spare_bytes = 4; + host->bbm_size = 1; + } + } else { + /* RS */ + host->ecc_bytes_hw = 10; + + if (wide_bus) { + host->spare_bytes = 0; + host->bbm_size = 2; + } else { + host->spare_bytes = 1; + host->bbm_size = 1; + } + } + } + + /* + * we consider ecc->bytes as the sum of all the non-data content in a + * step. It gives us a clean representation of the oob area (even if + * all the bytes aren't used for ECC).It is always 16 bytes for 8 bit + * ECC and 12 bytes for 4 bit ECC + */ + ecc->bytes = host->ecc_bytes_hw + host->spare_bytes + host->bbm_size; + + ecc->read_page = qcom_nandc_read_page; + ecc->read_page_raw = qcom_nandc_read_page_raw; + ecc->read_oob = qcom_nandc_read_oob; + ecc->write_page = qcom_nandc_write_page; + ecc->write_page_raw = qcom_nandc_write_page_raw; + ecc->write_oob = qcom_nandc_write_oob; + + ecc->mode = NAND_ECC_HW; + + mtd_set_ooblayout(mtd, &qcom_nand_ooblayout_ops); + + cwperpage = mtd->writesize / ecc->size; + nandc->max_cwperpage = max_t(unsigned int, nandc->max_cwperpage, + cwperpage); + + /* + * DATA_UD_BYTES varies based on whether the read/write command protects + * spare data with ECC too. We protect spare data by default, so we set + * it to main + spare data, which are 512 and 4 bytes respectively. + */ + host->cw_data = 516; + + /* + * total bytes in a step, either 528 bytes for 4 bit ECC, or 532 bytes + * for 8 bit ECC + */ + host->cw_size = host->cw_data + ecc->bytes; + + if (ecc->bytes * (mtd->writesize / ecc->size) > mtd->oobsize) { + dev_err(nandc->dev, "ecc data doesn't fit in OOB area\n"); + return -EINVAL; + } + + bad_block_byte = mtd->writesize - host->cw_size * (cwperpage - 1) + 1; + + host->cfg0 = (cwperpage - 1) << CW_PER_PAGE + | host->cw_data << UD_SIZE_BYTES + | 0 << DISABLE_STATUS_AFTER_WRITE + | 5 << NUM_ADDR_CYCLES + | host->ecc_bytes_hw << ECC_PARITY_SIZE_BYTES_RS + | 0 << STATUS_BFR_READ + | 1 << SET_RD_MODE_AFTER_STATUS + | host->spare_bytes << SPARE_SIZE_BYTES; + + host->cfg1 = 7 << NAND_RECOVERY_CYCLES + | 0 << CS_ACTIVE_BSY + | bad_block_byte << BAD_BLOCK_BYTE_NUM + | 0 << BAD_BLOCK_IN_SPARE_AREA + | 2 << WR_RD_BSY_GAP + | wide_bus << WIDE_FLASH + | host->bch_enabled << ENABLE_BCH_ECC; + + host->cfg0_raw = (cwperpage - 1) << CW_PER_PAGE + | host->cw_size << UD_SIZE_BYTES + | 5 << NUM_ADDR_CYCLES + | 0 << SPARE_SIZE_BYTES; + + host->cfg1_raw = 7 << NAND_RECOVERY_CYCLES + | 0 << CS_ACTIVE_BSY + | 17 << BAD_BLOCK_BYTE_NUM + | 1 << BAD_BLOCK_IN_SPARE_AREA + | 2 << WR_RD_BSY_GAP + | wide_bus << WIDE_FLASH + | 1 << DEV0_CFG1_ECC_DISABLE; + + host->ecc_bch_cfg = !host->bch_enabled << ECC_CFG_ECC_DISABLE + | 0 << ECC_SW_RESET + | host->cw_data << ECC_NUM_DATA_BYTES + | 1 << ECC_FORCE_CLK_OPEN + | ecc_mode << ECC_MODE + | host->ecc_bytes_hw << ECC_PARITY_SIZE_BYTES_BCH; + + host->ecc_buf_cfg = 0x203 << NUM_STEPS; + + host->clrflashstatus = FS_READY_BSY_N; + host->clrreadstatus = 0xc0; + nandc->regs->erased_cw_detect_cfg_clr = + cpu_to_le32(CLR_ERASED_PAGE_DET); + nandc->regs->erased_cw_detect_cfg_set = + cpu_to_le32(SET_ERASED_PAGE_DET); + + dev_dbg(nandc->dev, + "cfg0 %x cfg1 %x ecc_buf_cfg %x ecc_bch cfg %x cw_size %d cw_data %d strength %d parity_bytes %d steps %d\n", + host->cfg0, host->cfg1, host->ecc_buf_cfg, host->ecc_bch_cfg, + host->cw_size, host->cw_data, ecc->strength, ecc->bytes, + cwperpage); + + return 0; +} + +static int qcom_nandc_alloc(struct qcom_nand_controller *nandc) +{ + int ret; + + ret = dma_set_coherent_mask(nandc->dev, DMA_BIT_MASK(32)); + if (ret) { + dev_err(nandc->dev, "failed to set DMA mask\n"); + return ret; + } + + /* + * we use the internal buffer for reading ONFI params, reading small + * data like ID and status, and preforming read-copy-write operations + * when writing to a codeword partially. 532 is the maximum possible + * size of a codeword for our nand controller + */ + nandc->buf_size = 532; + + nandc->data_buffer = devm_kzalloc(nandc->dev, nandc->buf_size, + GFP_KERNEL); + if (!nandc->data_buffer) + return -ENOMEM; + + nandc->regs = devm_kzalloc(nandc->dev, sizeof(*nandc->regs), + GFP_KERNEL); + if (!nandc->regs) + return -ENOMEM; + + nandc->reg_read_buf = devm_kzalloc(nandc->dev, + MAX_REG_RD * sizeof(*nandc->reg_read_buf), + GFP_KERNEL); + if (!nandc->reg_read_buf) + return -ENOMEM; + + if (nandc->props->is_bam) { + nandc->reg_read_dma = + dma_map_single(nandc->dev, nandc->reg_read_buf, + MAX_REG_RD * + sizeof(*nandc->reg_read_buf), + DMA_FROM_DEVICE); + if (dma_mapping_error(nandc->dev, nandc->reg_read_dma)) { + dev_err(nandc->dev, "failed to DMA MAP reg buffer\n"); + return -EIO; + } + + nandc->tx_chan = dma_request_slave_channel(nandc->dev, "tx"); + if (!nandc->tx_chan) { + dev_err(nandc->dev, "failed to request tx channel\n"); + return -ENODEV; + } + + nandc->rx_chan = dma_request_slave_channel(nandc->dev, "rx"); + if (!nandc->rx_chan) { + dev_err(nandc->dev, "failed to request rx channel\n"); + return -ENODEV; + } + + nandc->cmd_chan = dma_request_slave_channel(nandc->dev, "cmd"); + if (!nandc->cmd_chan) { + dev_err(nandc->dev, "failed to request cmd channel\n"); + return -ENODEV; + } + + /* + * Initially allocate BAM transaction to read ONFI param page. + * After detecting all the devices, this BAM transaction will + * be freed and the next BAM tranasction will be allocated with + * maximum codeword size + */ + nandc->max_cwperpage = 1; + nandc->bam_txn = alloc_bam_transaction(nandc); + if (!nandc->bam_txn) { + dev_err(nandc->dev, + "failed to allocate bam transaction\n"); + return -ENOMEM; + } + } else { + nandc->chan = dma_request_slave_channel(nandc->dev, "rxtx"); + if (!nandc->chan) { + dev_err(nandc->dev, + "failed to request slave channel\n"); + return -ENODEV; + } + } + + INIT_LIST_HEAD(&nandc->desc_list); + INIT_LIST_HEAD(&nandc->host_list); + + nand_hw_control_init(&nandc->controller); + + return 0; +} + +static void qcom_nandc_unalloc(struct qcom_nand_controller *nandc) +{ + if (nandc->props->is_bam) { + if (!dma_mapping_error(nandc->dev, nandc->reg_read_dma)) + dma_unmap_single(nandc->dev, nandc->reg_read_dma, + MAX_REG_RD * + sizeof(*nandc->reg_read_buf), + DMA_FROM_DEVICE); + + if (nandc->tx_chan) + dma_release_channel(nandc->tx_chan); + + if (nandc->rx_chan) + dma_release_channel(nandc->rx_chan); + + if (nandc->cmd_chan) + dma_release_channel(nandc->cmd_chan); + } else { + if (nandc->chan) + dma_release_channel(nandc->chan); + } +} + +/* one time setup of a few nand controller registers */ +static int qcom_nandc_setup(struct qcom_nand_controller *nandc) +{ + u32 nand_ctrl; + + /* kill onenand */ + nandc_write(nandc, SFLASHC_BURST_CFG, 0); + nandc_write(nandc, dev_cmd_reg_addr(nandc, NAND_DEV_CMD_VLD), + NAND_DEV_CMD_VLD_VAL); + + /* enable ADM or BAM DMA */ + if (nandc->props->is_bam) { + nand_ctrl = nandc_read(nandc, NAND_CTRL); + nandc_write(nandc, NAND_CTRL, nand_ctrl | BAM_MODE_EN); + } else { + nandc_write(nandc, NAND_FLASH_CHIP_SELECT, DM_EN); + } + + /* save the original values of these registers */ + nandc->cmd1 = nandc_read(nandc, dev_cmd_reg_addr(nandc, NAND_DEV_CMD1)); + nandc->vld = NAND_DEV_CMD_VLD_VAL; + + return 0; +} + +static int qcom_nand_host_init(struct qcom_nand_controller *nandc, + struct qcom_nand_host *host, + struct device_node *dn) +{ + struct nand_chip *chip = &host->chip; + struct mtd_info *mtd = nand_to_mtd(chip); + struct device *dev = nandc->dev; + int ret; + + ret = of_property_read_u32(dn, "reg", &host->cs); + if (ret) { + dev_err(dev, "can't get chip-select\n"); + return -ENXIO; + } + + nand_set_flash_node(chip, dn); + mtd->name = devm_kasprintf(dev, GFP_KERNEL, "qcom_nand.%d", host->cs); + if (!mtd->name) + return -ENOMEM; + + mtd->owner = THIS_MODULE; + mtd->dev.parent = dev; + + chip->cmdfunc = qcom_nandc_command; + chip->select_chip = qcom_nandc_select_chip; + chip->read_byte = qcom_nandc_read_byte; + chip->read_buf = qcom_nandc_read_buf; + chip->write_buf = qcom_nandc_write_buf; + chip->onfi_set_features = nand_onfi_get_set_features_notsupp; + chip->onfi_get_features = nand_onfi_get_set_features_notsupp; + + /* + * the bad block marker is readable only when we read the last codeword + * of a page with ECC disabled. currently, the nand_base and nand_bbt + * helpers don't allow us to read BB from a nand chip with ECC + * disabled (MTD_OPS_PLACE_OOB is set by default). use the block_bad + * and block_markbad helpers until we permanently switch to using + * MTD_OPS_RAW for all drivers (with the help of badblockbits) + */ + chip->block_bad = qcom_nandc_block_bad; + chip->block_markbad = qcom_nandc_block_markbad; + + chip->controller = &nandc->controller; + chip->options |= NAND_NO_SUBPAGE_WRITE | NAND_USE_BOUNCE_BUFFER | + NAND_SKIP_BBTSCAN; + + /* set up initial status value */ + host->status = NAND_STATUS_READY | NAND_STATUS_WP; + + ret = nand_scan_ident(mtd, 1, NULL); + if (ret) + return ret; + + ret = qcom_nand_host_setup(host); + + return ret; +} + +static int qcom_nand_mtd_register(struct qcom_nand_controller *nandc, + struct qcom_nand_host *host, + struct device_node *dn) +{ + struct nand_chip *chip = &host->chip; + struct mtd_info *mtd = nand_to_mtd(chip); + int ret; + + ret = nand_scan_tail(mtd); + if (ret) + return ret; + + ret = mtd_device_register(mtd, NULL, 0); + if (ret) + nand_cleanup(mtd_to_nand(mtd)); + + return ret; +} + +static int qcom_probe_nand_devices(struct qcom_nand_controller *nandc) +{ + struct device *dev = nandc->dev; + struct device_node *dn = dev->of_node, *child; + struct qcom_nand_host *host, *tmp; + int ret; + + for_each_available_child_of_node(dn, child) { + host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL); + if (!host) { + of_node_put(child); + return -ENOMEM; + } + + ret = qcom_nand_host_init(nandc, host, child); + if (ret) { + devm_kfree(dev, host); + continue; + } + + list_add_tail(&host->node, &nandc->host_list); + } + + if (list_empty(&nandc->host_list)) + return -ENODEV; + + if (nandc->props->is_bam) { + free_bam_transaction(nandc); + nandc->bam_txn = alloc_bam_transaction(nandc); + if (!nandc->bam_txn) { + dev_err(nandc->dev, + "failed to allocate bam transaction\n"); + return -ENOMEM; + } + } + + list_for_each_entry_safe(host, tmp, &nandc->host_list, node) { + ret = qcom_nand_mtd_register(nandc, host, child); + if (ret) { + list_del(&host->node); + devm_kfree(dev, host); + } + } + + if (list_empty(&nandc->host_list)) + return -ENODEV; + + return 0; +} + +/* parse custom DT properties here */ +static int qcom_nandc_parse_dt(struct platform_device *pdev) +{ + struct qcom_nand_controller *nandc = platform_get_drvdata(pdev); + struct device_node *np = nandc->dev->of_node; + int ret; + + if (!nandc->props->is_bam) { + ret = of_property_read_u32(np, "qcom,cmd-crci", + &nandc->cmd_crci); + if (ret) { + dev_err(nandc->dev, "command CRCI unspecified\n"); + return ret; + } + + ret = of_property_read_u32(np, "qcom,data-crci", + &nandc->data_crci); + if (ret) { + dev_err(nandc->dev, "data CRCI unspecified\n"); + return ret; + } + } + + return 0; +} + +static int qcom_nandc_probe(struct platform_device *pdev) +{ + struct qcom_nand_controller *nandc; + const void *dev_data; + struct device *dev = &pdev->dev; + struct resource *res; + int ret; + + nandc = devm_kzalloc(&pdev->dev, sizeof(*nandc), GFP_KERNEL); + if (!nandc) + return -ENOMEM; + + platform_set_drvdata(pdev, nandc); + nandc->dev = dev; + + dev_data = of_device_get_match_data(dev); + if (!dev_data) { + dev_err(&pdev->dev, "failed to get device data\n"); + return -ENODEV; + } + + nandc->props = dev_data; + + res = platform_get_resource(pdev, IORESOURCE_MEM, 0); + nandc->base = devm_ioremap_resource(dev, res); + if (IS_ERR(nandc->base)) + return PTR_ERR(nandc->base); + + nandc->base_phys = res->start; + nandc->base_dma = phys_to_dma(dev, (phys_addr_t)res->start); + + nandc->core_clk = devm_clk_get(dev, "core"); + if (IS_ERR(nandc->core_clk)) + return PTR_ERR(nandc->core_clk); + + nandc->aon_clk = devm_clk_get(dev, "aon"); + if (IS_ERR(nandc->aon_clk)) + return PTR_ERR(nandc->aon_clk); + + ret = qcom_nandc_parse_dt(pdev); + if (ret) + return ret; + + ret = qcom_nandc_alloc(nandc); + if (ret) + goto err_core_clk; + + ret = clk_prepare_enable(nandc->core_clk); + if (ret) + goto err_core_clk; + + ret = clk_prepare_enable(nandc->aon_clk); + if (ret) + goto err_aon_clk; + + ret = qcom_nandc_setup(nandc); + if (ret) + goto err_setup; + + ret = qcom_probe_nand_devices(nandc); + if (ret) + goto err_setup; + + return 0; + +err_setup: + clk_disable_unprepare(nandc->aon_clk); +err_aon_clk: + clk_disable_unprepare(nandc->core_clk); +err_core_clk: + qcom_nandc_unalloc(nandc); + + return ret; +} + +static int qcom_nandc_remove(struct platform_device *pdev) +{ + struct qcom_nand_controller *nandc = platform_get_drvdata(pdev); + struct qcom_nand_host *host; + + list_for_each_entry(host, &nandc->host_list, node) + nand_release(nand_to_mtd(&host->chip)); + + qcom_nandc_unalloc(nandc); + + clk_disable_unprepare(nandc->aon_clk); + clk_disable_unprepare(nandc->core_clk); + + return 0; +} + +static const struct qcom_nandc_props ipq806x_nandc_props = { + .ecc_modes = (ECC_RS_4BIT | ECC_BCH_8BIT), + .is_bam = false, + .dev_cmd_reg_start = 0x0, +}; + +static const struct qcom_nandc_props ipq4019_nandc_props = { + .ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT), + .is_bam = true, + .dev_cmd_reg_start = 0x0, +}; + +static const struct qcom_nandc_props ipq8074_nandc_props = { + .ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT), + .is_bam = true, + .dev_cmd_reg_start = 0x7000, +}; + +/* + * data will hold a struct pointer containing more differences once we support + * more controller variants + */ +static const struct of_device_id qcom_nandc_of_match[] = { + { + .compatible = "qcom,ipq806x-nand", + .data = &ipq806x_nandc_props, + }, + { + .compatible = "qcom,ipq4019-nand", + .data = &ipq4019_nandc_props, + }, + { + .compatible = "qcom,ipq8074-nand", + .data = &ipq8074_nandc_props, + }, + {} +}; +MODULE_DEVICE_TABLE(of, qcom_nandc_of_match); + +static struct platform_driver qcom_nandc_driver = { + .driver = { + .name = "qcom-nandc", + .of_match_table = qcom_nandc_of_match, + }, + .probe = qcom_nandc_probe, + .remove = qcom_nandc_remove, +}; +module_platform_driver(qcom_nandc_driver); + +MODULE_AUTHOR("Archit Taneja "); +MODULE_DESCRIPTION("Qualcomm NAND Controller driver"); +MODULE_LICENSE("GPL v2"); diff --git a/drivers/mtd/nand/raw/r852.c b/drivers/mtd/nand/raw/r852.c new file mode 100644 index 000000000000..595635b9e9de --- /dev/null +++ b/drivers/mtd/nand/raw/r852.c @@ -0,0 +1,1079 @@ +/* + * Copyright © 2009 - Maxim Levitsky + * driver for Ricoh xD readers + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + */ + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include "sm_common.h" +#include "r852.h" + + +static bool r852_enable_dma = 1; +module_param(r852_enable_dma, bool, S_IRUGO); +MODULE_PARM_DESC(r852_enable_dma, "Enable usage of the DMA (default)"); + +static int debug; +module_param(debug, int, S_IRUGO | S_IWUSR); +MODULE_PARM_DESC(debug, "Debug level (0-2)"); + +/* read register */ +static inline uint8_t r852_read_reg(struct r852_device *dev, int address) +{ + uint8_t reg = readb(dev->mmio + address); + return reg; +} + +/* write register */ +static inline void r852_write_reg(struct r852_device *dev, + int address, uint8_t value) +{ + writeb(value, dev->mmio + address); + mmiowb(); +} + + +/* read dword sized register */ +static inline uint32_t r852_read_reg_dword(struct r852_device *dev, int address) +{ + uint32_t reg = le32_to_cpu(readl(dev->mmio + address)); + return reg; +} + +/* write dword sized register */ +static inline void r852_write_reg_dword(struct r852_device *dev, + int address, uint32_t value) +{ + writel(cpu_to_le32(value), dev->mmio + address); + mmiowb(); +} + +/* returns pointer to our private structure */ +static inline struct r852_device *r852_get_dev(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + return nand_get_controller_data(chip); +} + + +/* check if controller supports dma */ +static void r852_dma_test(struct r852_device *dev) +{ + dev->dma_usable = (r852_read_reg(dev, R852_DMA_CAP) & + (R852_DMA1 | R852_DMA2)) == (R852_DMA1 | R852_DMA2); + + if (!dev->dma_usable) + message("Non dma capable device detected, dma disabled"); + + if (!r852_enable_dma) { + message("disabling dma on user request"); + dev->dma_usable = 0; + } +} + +/* + * Enable dma. Enables ether first or second stage of the DMA, + * Expects dev->dma_dir and dev->dma_state be set + */ +static void r852_dma_enable(struct r852_device *dev) +{ + uint8_t dma_reg, dma_irq_reg; + + /* Set up dma settings */ + dma_reg = r852_read_reg_dword(dev, R852_DMA_SETTINGS); + dma_reg &= ~(R852_DMA_READ | R852_DMA_INTERNAL | R852_DMA_MEMORY); + + if (dev->dma_dir) + dma_reg |= R852_DMA_READ; + + if (dev->dma_state == DMA_INTERNAL) { + dma_reg |= R852_DMA_INTERNAL; + /* Precaution to make sure HW doesn't write */ + /* to random kernel memory */ + r852_write_reg_dword(dev, R852_DMA_ADDR, + cpu_to_le32(dev->phys_bounce_buffer)); + } else { + dma_reg |= R852_DMA_MEMORY; + r852_write_reg_dword(dev, R852_DMA_ADDR, + cpu_to_le32(dev->phys_dma_addr)); + } + + /* Precaution: make sure write reached the device */ + r852_read_reg_dword(dev, R852_DMA_ADDR); + + r852_write_reg_dword(dev, R852_DMA_SETTINGS, dma_reg); + + /* Set dma irq */ + dma_irq_reg = r852_read_reg_dword(dev, R852_DMA_IRQ_ENABLE); + r852_write_reg_dword(dev, R852_DMA_IRQ_ENABLE, + dma_irq_reg | + R852_DMA_IRQ_INTERNAL | + R852_DMA_IRQ_ERROR | + R852_DMA_IRQ_MEMORY); +} + +/* + * Disable dma, called from the interrupt handler, which specifies + * success of the operation via 'error' argument + */ +static void r852_dma_done(struct r852_device *dev, int error) +{ + WARN_ON(dev->dma_stage == 0); + + r852_write_reg_dword(dev, R852_DMA_IRQ_STA, + r852_read_reg_dword(dev, R852_DMA_IRQ_STA)); + + r852_write_reg_dword(dev, R852_DMA_SETTINGS, 0); + r852_write_reg_dword(dev, R852_DMA_IRQ_ENABLE, 0); + + /* Precaution to make sure HW doesn't write to random kernel memory */ + r852_write_reg_dword(dev, R852_DMA_ADDR, + cpu_to_le32(dev->phys_bounce_buffer)); + r852_read_reg_dword(dev, R852_DMA_ADDR); + + dev->dma_error = error; + dev->dma_stage = 0; + + if (dev->phys_dma_addr && dev->phys_dma_addr != dev->phys_bounce_buffer) + pci_unmap_single(dev->pci_dev, dev->phys_dma_addr, R852_DMA_LEN, + dev->dma_dir ? PCI_DMA_FROMDEVICE : PCI_DMA_TODEVICE); +} + +/* + * Wait, till dma is done, which includes both phases of it + */ +static int r852_dma_wait(struct r852_device *dev) +{ + long timeout = wait_for_completion_timeout(&dev->dma_done, + msecs_to_jiffies(1000)); + if (!timeout) { + dbg("timeout waiting for DMA interrupt"); + return -ETIMEDOUT; + } + + return 0; +} + +/* + * Read/Write one page using dma. Only pages can be read (512 bytes) +*/ +static void r852_do_dma(struct r852_device *dev, uint8_t *buf, int do_read) +{ + int bounce = 0; + unsigned long flags; + int error; + + dev->dma_error = 0; + + /* Set dma direction */ + dev->dma_dir = do_read; + dev->dma_stage = 1; + reinit_completion(&dev->dma_done); + + dbg_verbose("doing dma %s ", do_read ? "read" : "write"); + + /* Set initial dma state: for reading first fill on board buffer, + from device, for writes first fill the buffer from memory*/ + dev->dma_state = do_read ? DMA_INTERNAL : DMA_MEMORY; + + /* if incoming buffer is not page aligned, we should do bounce */ + if ((unsigned long)buf & (R852_DMA_LEN-1)) + bounce = 1; + + if (!bounce) { + dev->phys_dma_addr = pci_map_single(dev->pci_dev, (void *)buf, + R852_DMA_LEN, + (do_read ? PCI_DMA_FROMDEVICE : PCI_DMA_TODEVICE)); + + if (pci_dma_mapping_error(dev->pci_dev, dev->phys_dma_addr)) + bounce = 1; + } + + if (bounce) { + dbg_verbose("dma: using bounce buffer"); + dev->phys_dma_addr = dev->phys_bounce_buffer; + if (!do_read) + memcpy(dev->bounce_buffer, buf, R852_DMA_LEN); + } + + /* Enable DMA */ + spin_lock_irqsave(&dev->irqlock, flags); + r852_dma_enable(dev); + spin_unlock_irqrestore(&dev->irqlock, flags); + + /* Wait till complete */ + error = r852_dma_wait(dev); + + if (error) { + r852_dma_done(dev, error); + return; + } + + if (do_read && bounce) + memcpy((void *)buf, dev->bounce_buffer, R852_DMA_LEN); +} + +/* + * Program data lines of the nand chip to send data to it + */ +static void r852_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) +{ + struct r852_device *dev = r852_get_dev(mtd); + uint32_t reg; + + /* Don't allow any access to hardware if we suspect card removal */ + if (dev->card_unstable) + return; + + /* Special case for whole sector read */ + if (len == R852_DMA_LEN && dev->dma_usable) { + r852_do_dma(dev, (uint8_t *)buf, 0); + return; + } + + /* write DWORD chinks - faster */ + while (len >= 4) { + reg = buf[0] | buf[1] << 8 | buf[2] << 16 | buf[3] << 24; + r852_write_reg_dword(dev, R852_DATALINE, reg); + buf += 4; + len -= 4; + + } + + /* write rest */ + while (len > 0) { + r852_write_reg(dev, R852_DATALINE, *buf++); + len--; + } +} + +/* + * Read data lines of the nand chip to retrieve data + */ +static void r852_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) +{ + struct r852_device *dev = r852_get_dev(mtd); + uint32_t reg; + + if (dev->card_unstable) { + /* since we can't signal error here, at least, return + predictable buffer */ + memset(buf, 0, len); + return; + } + + /* special case for whole sector read */ + if (len == R852_DMA_LEN && dev->dma_usable) { + r852_do_dma(dev, buf, 1); + return; + } + + /* read in dword sized chunks */ + while (len >= 4) { + + reg = r852_read_reg_dword(dev, R852_DATALINE); + *buf++ = reg & 0xFF; + *buf++ = (reg >> 8) & 0xFF; + *buf++ = (reg >> 16) & 0xFF; + *buf++ = (reg >> 24) & 0xFF; + len -= 4; + } + + /* read the reset by bytes */ + while (len--) + *buf++ = r852_read_reg(dev, R852_DATALINE); +} + +/* + * Read one byte from nand chip + */ +static uint8_t r852_read_byte(struct mtd_info *mtd) +{ + struct r852_device *dev = r852_get_dev(mtd); + + /* Same problem as in r852_read_buf.... */ + if (dev->card_unstable) + return 0; + + return r852_read_reg(dev, R852_DATALINE); +} + +/* + * Control several chip lines & send commands + */ +static void r852_cmdctl(struct mtd_info *mtd, int dat, unsigned int ctrl) +{ + struct r852_device *dev = r852_get_dev(mtd); + + if (dev->card_unstable) + return; + + if (ctrl & NAND_CTRL_CHANGE) { + + dev->ctlreg &= ~(R852_CTL_DATA | R852_CTL_COMMAND | + R852_CTL_ON | R852_CTL_CARDENABLE); + + if (ctrl & NAND_ALE) + dev->ctlreg |= R852_CTL_DATA; + + if (ctrl & NAND_CLE) + dev->ctlreg |= R852_CTL_COMMAND; + + if (ctrl & NAND_NCE) + dev->ctlreg |= (R852_CTL_CARDENABLE | R852_CTL_ON); + else + dev->ctlreg &= ~R852_CTL_WRITE; + + /* when write is stareted, enable write access */ + if (dat == NAND_CMD_ERASE1) + dev->ctlreg |= R852_CTL_WRITE; + + r852_write_reg(dev, R852_CTL, dev->ctlreg); + } + + /* HACK: NAND_CMD_SEQIN is called without NAND_CTRL_CHANGE, but we need + to set write mode */ + if (dat == NAND_CMD_SEQIN && (dev->ctlreg & R852_CTL_COMMAND)) { + dev->ctlreg |= R852_CTL_WRITE; + r852_write_reg(dev, R852_CTL, dev->ctlreg); + } + + if (dat != NAND_CMD_NONE) + r852_write_reg(dev, R852_DATALINE, dat); +} + +/* + * Wait till card is ready. + * based on nand_wait, but returns errors on DMA error + */ +static int r852_wait(struct mtd_info *mtd, struct nand_chip *chip) +{ + struct r852_device *dev = nand_get_controller_data(chip); + + unsigned long timeout; + u8 status; + + timeout = jiffies + (chip->state == FL_ERASING ? + msecs_to_jiffies(400) : msecs_to_jiffies(20)); + + while (time_before(jiffies, timeout)) + if (chip->dev_ready(mtd)) + break; + + nand_status_op(chip, &status); + + /* Unfortunelly, no way to send detailed error status... */ + if (dev->dma_error) { + status |= NAND_STATUS_FAIL; + dev->dma_error = 0; + } + return status; +} + +/* + * Check if card is ready + */ + +static int r852_ready(struct mtd_info *mtd) +{ + struct r852_device *dev = r852_get_dev(mtd); + return !(r852_read_reg(dev, R852_CARD_STA) & R852_CARD_STA_BUSY); +} + + +/* + * Set ECC engine mode +*/ + +static void r852_ecc_hwctl(struct mtd_info *mtd, int mode) +{ + struct r852_device *dev = r852_get_dev(mtd); + + if (dev->card_unstable) + return; + + switch (mode) { + case NAND_ECC_READ: + case NAND_ECC_WRITE: + /* enable ecc generation/check*/ + dev->ctlreg |= R852_CTL_ECC_ENABLE; + + /* flush ecc buffer */ + r852_write_reg(dev, R852_CTL, + dev->ctlreg | R852_CTL_ECC_ACCESS); + + r852_read_reg_dword(dev, R852_DATALINE); + r852_write_reg(dev, R852_CTL, dev->ctlreg); + return; + + case NAND_ECC_READSYN: + /* disable ecc generation */ + dev->ctlreg &= ~R852_CTL_ECC_ENABLE; + r852_write_reg(dev, R852_CTL, dev->ctlreg); + } +} + +/* + * Calculate ECC, only used for writes + */ + +static int r852_ecc_calculate(struct mtd_info *mtd, const uint8_t *dat, + uint8_t *ecc_code) +{ + struct r852_device *dev = r852_get_dev(mtd); + struct sm_oob *oob = (struct sm_oob *)ecc_code; + uint32_t ecc1, ecc2; + + if (dev->card_unstable) + return 0; + + dev->ctlreg &= ~R852_CTL_ECC_ENABLE; + r852_write_reg(dev, R852_CTL, dev->ctlreg | R852_CTL_ECC_ACCESS); + + ecc1 = r852_read_reg_dword(dev, R852_DATALINE); + ecc2 = r852_read_reg_dword(dev, R852_DATALINE); + + oob->ecc1[0] = (ecc1) & 0xFF; + oob->ecc1[1] = (ecc1 >> 8) & 0xFF; + oob->ecc1[2] = (ecc1 >> 16) & 0xFF; + + oob->ecc2[0] = (ecc2) & 0xFF; + oob->ecc2[1] = (ecc2 >> 8) & 0xFF; + oob->ecc2[2] = (ecc2 >> 16) & 0xFF; + + r852_write_reg(dev, R852_CTL, dev->ctlreg); + return 0; +} + +/* + * Correct the data using ECC, hw did almost everything for us + */ + +static int r852_ecc_correct(struct mtd_info *mtd, uint8_t *dat, + uint8_t *read_ecc, uint8_t *calc_ecc) +{ + uint32_t ecc_reg; + uint8_t ecc_status, err_byte; + int i, error = 0; + + struct r852_device *dev = r852_get_dev(mtd); + + if (dev->card_unstable) + return 0; + + if (dev->dma_error) { + dev->dma_error = 0; + return -EIO; + } + + r852_write_reg(dev, R852_CTL, dev->ctlreg | R852_CTL_ECC_ACCESS); + ecc_reg = r852_read_reg_dword(dev, R852_DATALINE); + r852_write_reg(dev, R852_CTL, dev->ctlreg); + + for (i = 0 ; i <= 1 ; i++) { + + ecc_status = (ecc_reg >> 8) & 0xFF; + + /* ecc uncorrectable error */ + if (ecc_status & R852_ECC_FAIL) { + dbg("ecc: unrecoverable error, in half %d", i); + error = -EBADMSG; + goto exit; + } + + /* correctable error */ + if (ecc_status & R852_ECC_CORRECTABLE) { + + err_byte = ecc_reg & 0xFF; + dbg("ecc: recoverable error, " + "in half %d, byte %d, bit %d", i, + err_byte, ecc_status & R852_ECC_ERR_BIT_MSK); + + dat[err_byte] ^= + 1 << (ecc_status & R852_ECC_ERR_BIT_MSK); + error++; + } + + dat += 256; + ecc_reg >>= 16; + } +exit: + return error; +} + +/* + * This is copy of nand_read_oob_std + * nand_read_oob_syndrome assumes we can send column address - we can't + */ +static int r852_read_oob(struct mtd_info *mtd, struct nand_chip *chip, + int page) +{ + return nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize); +} + +/* + * Start the nand engine + */ + +static void r852_engine_enable(struct r852_device *dev) +{ + if (r852_read_reg_dword(dev, R852_HW) & R852_HW_UNKNOWN) { + r852_write_reg(dev, R852_CTL, R852_CTL_RESET | R852_CTL_ON); + r852_write_reg_dword(dev, R852_HW, R852_HW_ENABLED); + } else { + r852_write_reg_dword(dev, R852_HW, R852_HW_ENABLED); + r852_write_reg(dev, R852_CTL, R852_CTL_RESET | R852_CTL_ON); + } + msleep(300); + r852_write_reg(dev, R852_CTL, 0); +} + + +/* + * Stop the nand engine + */ + +static void r852_engine_disable(struct r852_device *dev) +{ + r852_write_reg_dword(dev, R852_HW, 0); + r852_write_reg(dev, R852_CTL, R852_CTL_RESET); +} + +/* + * Test if card is present + */ + +static void r852_card_update_present(struct r852_device *dev) +{ + unsigned long flags; + uint8_t reg; + + spin_lock_irqsave(&dev->irqlock, flags); + reg = r852_read_reg(dev, R852_CARD_STA); + dev->card_detected = !!(reg & R852_CARD_STA_PRESENT); + spin_unlock_irqrestore(&dev->irqlock, flags); +} + +/* + * Update card detection IRQ state according to current card state + * which is read in r852_card_update_present + */ +static void r852_update_card_detect(struct r852_device *dev) +{ + int card_detect_reg = r852_read_reg(dev, R852_CARD_IRQ_ENABLE); + dev->card_unstable = 0; + + card_detect_reg &= ~(R852_CARD_IRQ_REMOVE | R852_CARD_IRQ_INSERT); + card_detect_reg |= R852_CARD_IRQ_GENABLE; + + card_detect_reg |= dev->card_detected ? + R852_CARD_IRQ_REMOVE : R852_CARD_IRQ_INSERT; + + r852_write_reg(dev, R852_CARD_IRQ_ENABLE, card_detect_reg); +} + +static ssize_t r852_media_type_show(struct device *sys_dev, + struct device_attribute *attr, char *buf) +{ + struct mtd_info *mtd = container_of(sys_dev, struct mtd_info, dev); + struct r852_device *dev = r852_get_dev(mtd); + char *data = dev->sm ? "smartmedia" : "xd"; + + strcpy(buf, data); + return strlen(data); +} + +static DEVICE_ATTR(media_type, S_IRUGO, r852_media_type_show, NULL); + + +/* Detect properties of card in slot */ +static void r852_update_media_status(struct r852_device *dev) +{ + uint8_t reg; + unsigned long flags; + int readonly; + + spin_lock_irqsave(&dev->irqlock, flags); + if (!dev->card_detected) { + message("card removed"); + spin_unlock_irqrestore(&dev->irqlock, flags); + return ; + } + + readonly = r852_read_reg(dev, R852_CARD_STA) & R852_CARD_STA_RO; + reg = r852_read_reg(dev, R852_DMA_CAP); + dev->sm = (reg & (R852_DMA1 | R852_DMA2)) && (reg & R852_SMBIT); + + message("detected %s %s card in slot", + dev->sm ? "SmartMedia" : "xD", + readonly ? "readonly" : "writeable"); + + dev->readonly = readonly; + spin_unlock_irqrestore(&dev->irqlock, flags); +} + +/* + * Register the nand device + * Called when the card is detected + */ +static int r852_register_nand_device(struct r852_device *dev) +{ + struct mtd_info *mtd = nand_to_mtd(dev->chip); + + WARN_ON(dev->card_registred); + + mtd->dev.parent = &dev->pci_dev->dev; + + if (dev->readonly) + dev->chip->options |= NAND_ROM; + + r852_engine_enable(dev); + + if (sm_register_device(mtd, dev->sm)) + goto error1; + + if (device_create_file(&mtd->dev, &dev_attr_media_type)) { + message("can't create media type sysfs attribute"); + goto error3; + } + + dev->card_registred = 1; + return 0; +error3: + nand_release(mtd); +error1: + /* Force card redetect */ + dev->card_detected = 0; + return -1; +} + +/* + * Unregister the card + */ + +static void r852_unregister_nand_device(struct r852_device *dev) +{ + struct mtd_info *mtd = nand_to_mtd(dev->chip); + + if (!dev->card_registred) + return; + + device_remove_file(&mtd->dev, &dev_attr_media_type); + nand_release(mtd); + r852_engine_disable(dev); + dev->card_registred = 0; +} + +/* Card state updater */ +static void r852_card_detect_work(struct work_struct *work) +{ + struct r852_device *dev = + container_of(work, struct r852_device, card_detect_work.work); + + r852_card_update_present(dev); + r852_update_card_detect(dev); + dev->card_unstable = 0; + + /* False alarm */ + if (dev->card_detected == dev->card_registred) + goto exit; + + /* Read media properties */ + r852_update_media_status(dev); + + /* Register the card */ + if (dev->card_detected) + r852_register_nand_device(dev); + else + r852_unregister_nand_device(dev); +exit: + r852_update_card_detect(dev); +} + +/* Ack + disable IRQ generation */ +static void r852_disable_irqs(struct r852_device *dev) +{ + uint8_t reg; + reg = r852_read_reg(dev, R852_CARD_IRQ_ENABLE); + r852_write_reg(dev, R852_CARD_IRQ_ENABLE, reg & ~R852_CARD_IRQ_MASK); + + reg = r852_read_reg_dword(dev, R852_DMA_IRQ_ENABLE); + r852_write_reg_dword(dev, R852_DMA_IRQ_ENABLE, + reg & ~R852_DMA_IRQ_MASK); + + r852_write_reg(dev, R852_CARD_IRQ_STA, R852_CARD_IRQ_MASK); + r852_write_reg_dword(dev, R852_DMA_IRQ_STA, R852_DMA_IRQ_MASK); +} + +/* Interrupt handler */ +static irqreturn_t r852_irq(int irq, void *data) +{ + struct r852_device *dev = (struct r852_device *)data; + + uint8_t card_status, dma_status; + unsigned long flags; + irqreturn_t ret = IRQ_NONE; + + spin_lock_irqsave(&dev->irqlock, flags); + + /* handle card detection interrupts first */ + card_status = r852_read_reg(dev, R852_CARD_IRQ_STA); + r852_write_reg(dev, R852_CARD_IRQ_STA, card_status); + + if (card_status & (R852_CARD_IRQ_INSERT|R852_CARD_IRQ_REMOVE)) { + + ret = IRQ_HANDLED; + dev->card_detected = !!(card_status & R852_CARD_IRQ_INSERT); + + /* we shouldn't receive any interrupts if we wait for card + to settle */ + WARN_ON(dev->card_unstable); + + /* disable irqs while card is unstable */ + /* this will timeout DMA if active, but better that garbage */ + r852_disable_irqs(dev); + + if (dev->card_unstable) + goto out; + + /* let, card state to settle a bit, and then do the work */ + dev->card_unstable = 1; + queue_delayed_work(dev->card_workqueue, + &dev->card_detect_work, msecs_to_jiffies(100)); + goto out; + } + + + /* Handle dma interrupts */ + dma_status = r852_read_reg_dword(dev, R852_DMA_IRQ_STA); + r852_write_reg_dword(dev, R852_DMA_IRQ_STA, dma_status); + + if (dma_status & R852_DMA_IRQ_MASK) { + + ret = IRQ_HANDLED; + + if (dma_status & R852_DMA_IRQ_ERROR) { + dbg("received dma error IRQ"); + r852_dma_done(dev, -EIO); + complete(&dev->dma_done); + goto out; + } + + /* received DMA interrupt out of nowhere? */ + WARN_ON_ONCE(dev->dma_stage == 0); + + if (dev->dma_stage == 0) + goto out; + + /* done device access */ + if (dev->dma_state == DMA_INTERNAL && + (dma_status & R852_DMA_IRQ_INTERNAL)) { + + dev->dma_state = DMA_MEMORY; + dev->dma_stage++; + } + + /* done memory DMA */ + if (dev->dma_state == DMA_MEMORY && + (dma_status & R852_DMA_IRQ_MEMORY)) { + dev->dma_state = DMA_INTERNAL; + dev->dma_stage++; + } + + /* Enable 2nd half of dma dance */ + if (dev->dma_stage == 2) + r852_dma_enable(dev); + + /* Operation done */ + if (dev->dma_stage == 3) { + r852_dma_done(dev, 0); + complete(&dev->dma_done); + } + goto out; + } + + /* Handle unknown interrupts */ + if (dma_status) + dbg("bad dma IRQ status = %x", dma_status); + + if (card_status & ~R852_CARD_STA_CD) + dbg("strange card status = %x", card_status); + +out: + spin_unlock_irqrestore(&dev->irqlock, flags); + return ret; +} + +static int r852_probe(struct pci_dev *pci_dev, const struct pci_device_id *id) +{ + int error; + struct nand_chip *chip; + struct r852_device *dev; + + /* pci initialization */ + error = pci_enable_device(pci_dev); + + if (error) + goto error1; + + pci_set_master(pci_dev); + + error = pci_set_dma_mask(pci_dev, DMA_BIT_MASK(32)); + if (error) + goto error2; + + error = pci_request_regions(pci_dev, DRV_NAME); + + if (error) + goto error3; + + error = -ENOMEM; + + /* init nand chip, but register it only on card insert */ + chip = kzalloc(sizeof(struct nand_chip), GFP_KERNEL); + + if (!chip) + goto error4; + + /* commands */ + chip->cmd_ctrl = r852_cmdctl; + chip->waitfunc = r852_wait; + chip->dev_ready = r852_ready; + + /* I/O */ + chip->read_byte = r852_read_byte; + chip->read_buf = r852_read_buf; + chip->write_buf = r852_write_buf; + + /* ecc */ + chip->ecc.mode = NAND_ECC_HW_SYNDROME; + chip->ecc.size = R852_DMA_LEN; + chip->ecc.bytes = SM_OOB_SIZE; + chip->ecc.strength = 2; + chip->ecc.hwctl = r852_ecc_hwctl; + chip->ecc.calculate = r852_ecc_calculate; + chip->ecc.correct = r852_ecc_correct; + + /* TODO: hack */ + chip->ecc.read_oob = r852_read_oob; + + /* init our device structure */ + dev = kzalloc(sizeof(struct r852_device), GFP_KERNEL); + + if (!dev) + goto error5; + + nand_set_controller_data(chip, dev); + dev->chip = chip; + dev->pci_dev = pci_dev; + pci_set_drvdata(pci_dev, dev); + + dev->bounce_buffer = pci_alloc_consistent(pci_dev, R852_DMA_LEN, + &dev->phys_bounce_buffer); + + if (!dev->bounce_buffer) + goto error6; + + + error = -ENODEV; + dev->mmio = pci_ioremap_bar(pci_dev, 0); + + if (!dev->mmio) + goto error7; + + error = -ENOMEM; + dev->tmp_buffer = kzalloc(SM_SECTOR_SIZE, GFP_KERNEL); + + if (!dev->tmp_buffer) + goto error8; + + init_completion(&dev->dma_done); + + dev->card_workqueue = create_freezable_workqueue(DRV_NAME); + + if (!dev->card_workqueue) + goto error9; + + INIT_DELAYED_WORK(&dev->card_detect_work, r852_card_detect_work); + + /* shutdown everything - precation */ + r852_engine_disable(dev); + r852_disable_irqs(dev); + + r852_dma_test(dev); + + dev->irq = pci_dev->irq; + spin_lock_init(&dev->irqlock); + + dev->card_detected = 0; + r852_card_update_present(dev); + + /*register irq handler*/ + error = -ENODEV; + if (request_irq(pci_dev->irq, &r852_irq, IRQF_SHARED, + DRV_NAME, dev)) + goto error10; + + /* kick initial present test */ + queue_delayed_work(dev->card_workqueue, + &dev->card_detect_work, 0); + + + printk(KERN_NOTICE DRV_NAME ": driver loaded successfully\n"); + return 0; + +error10: + destroy_workqueue(dev->card_workqueue); +error9: + kfree(dev->tmp_buffer); +error8: + pci_iounmap(pci_dev, dev->mmio); +error7: + pci_free_consistent(pci_dev, R852_DMA_LEN, + dev->bounce_buffer, dev->phys_bounce_buffer); +error6: + kfree(dev); +error5: + kfree(chip); +error4: + pci_release_regions(pci_dev); +error3: +error2: + pci_disable_device(pci_dev); +error1: + return error; +} + +static void r852_remove(struct pci_dev *pci_dev) +{ + struct r852_device *dev = pci_get_drvdata(pci_dev); + + /* Stop detect workqueue - + we are going to unregister the device anyway*/ + cancel_delayed_work_sync(&dev->card_detect_work); + destroy_workqueue(dev->card_workqueue); + + /* Unregister the device, this might make more IO */ + r852_unregister_nand_device(dev); + + /* Stop interrupts */ + r852_disable_irqs(dev); + free_irq(dev->irq, dev); + + /* Cleanup */ + kfree(dev->tmp_buffer); + pci_iounmap(pci_dev, dev->mmio); + pci_free_consistent(pci_dev, R852_DMA_LEN, + dev->bounce_buffer, dev->phys_bounce_buffer); + + kfree(dev->chip); + kfree(dev); + + /* Shutdown the PCI device */ + pci_release_regions(pci_dev); + pci_disable_device(pci_dev); +} + +static void r852_shutdown(struct pci_dev *pci_dev) +{ + struct r852_device *dev = pci_get_drvdata(pci_dev); + + cancel_delayed_work_sync(&dev->card_detect_work); + r852_disable_irqs(dev); + synchronize_irq(dev->irq); + pci_disable_device(pci_dev); +} + +#ifdef CONFIG_PM_SLEEP +static int r852_suspend(struct device *device) +{ + struct r852_device *dev = pci_get_drvdata(to_pci_dev(device)); + + if (dev->ctlreg & R852_CTL_CARDENABLE) + return -EBUSY; + + /* First make sure the detect work is gone */ + cancel_delayed_work_sync(&dev->card_detect_work); + + /* Turn off the interrupts and stop the device */ + r852_disable_irqs(dev); + r852_engine_disable(dev); + + /* If card was pulled off just during the suspend, which is very + unlikely, we will remove it on resume, it too late now + anyway... */ + dev->card_unstable = 0; + return 0; +} + +static int r852_resume(struct device *device) +{ + struct r852_device *dev = pci_get_drvdata(to_pci_dev(device)); + struct mtd_info *mtd = nand_to_mtd(dev->chip); + + r852_disable_irqs(dev); + r852_card_update_present(dev); + r852_engine_disable(dev); + + + /* If card status changed, just do the work */ + if (dev->card_detected != dev->card_registred) { + dbg("card was %s during low power state", + dev->card_detected ? "added" : "removed"); + + queue_delayed_work(dev->card_workqueue, + &dev->card_detect_work, msecs_to_jiffies(1000)); + return 0; + } + + /* Otherwise, initialize the card */ + if (dev->card_registred) { + r852_engine_enable(dev); + dev->chip->select_chip(mtd, 0); + nand_reset_op(dev->chip); + dev->chip->select_chip(mtd, -1); + } + + /* Program card detection IRQ */ + r852_update_card_detect(dev); + return 0; +} +#endif + +static const struct pci_device_id r852_pci_id_tbl[] = { + + { PCI_VDEVICE(RICOH, 0x0852), }, + { }, +}; + +MODULE_DEVICE_TABLE(pci, r852_pci_id_tbl); + +static SIMPLE_DEV_PM_OPS(r852_pm_ops, r852_suspend, r852_resume); + +static struct pci_driver r852_pci_driver = { + .name = DRV_NAME, + .id_table = r852_pci_id_tbl, + .probe = r852_probe, + .remove = r852_remove, + .shutdown = r852_shutdown, + .driver.pm = &r852_pm_ops, +}; + +module_pci_driver(r852_pci_driver); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Maxim Levitsky "); +MODULE_DESCRIPTION("Ricoh 85xx xD/smartmedia card reader driver"); diff --git a/drivers/mtd/nand/raw/r852.h b/drivers/mtd/nand/raw/r852.h new file mode 100644 index 000000000000..8713c57f6207 --- /dev/null +++ b/drivers/mtd/nand/raw/r852.h @@ -0,0 +1,160 @@ +/* + * Copyright © 2009 - Maxim Levitsky + * driver for Ricoh xD readers + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + */ + +#include +#include +#include +#include +#include + + +/* nand interface + ecc + byte write/read does one cycle on nand data lines. + dword write/read does 4 cycles + if R852_CTL_ECC_ACCESS is set in R852_CTL, then dword read reads + results of ecc correction, if DMA read was done before. + If write was done two dword reads read generated ecc checksums +*/ +#define R852_DATALINE 0x00 + +/* control register */ +#define R852_CTL 0x04 +#define R852_CTL_COMMAND 0x01 /* send command (#CLE)*/ +#define R852_CTL_DATA 0x02 /* read/write data (#ALE)*/ +#define R852_CTL_ON 0x04 /* only seem to controls the hd led, */ + /* but has to be set on start...*/ +#define R852_CTL_RESET 0x08 /* unknown, set only on start once*/ +#define R852_CTL_CARDENABLE 0x10 /* probably (#CE) - always set*/ +#define R852_CTL_ECC_ENABLE 0x20 /* enable ecc engine */ +#define R852_CTL_ECC_ACCESS 0x40 /* read/write ecc via reg #0*/ +#define R852_CTL_WRITE 0x80 /* set when performing writes (#WP) */ + +/* card detection status */ +#define R852_CARD_STA 0x05 + +#define R852_CARD_STA_CD 0x01 /* state of #CD line, same as 0x04 */ +#define R852_CARD_STA_RO 0x02 /* card is readonly */ +#define R852_CARD_STA_PRESENT 0x04 /* card is present (#CD) */ +#define R852_CARD_STA_ABSENT 0x08 /* card is absent */ +#define R852_CARD_STA_BUSY 0x80 /* card is busy - (#R/B) */ + +/* card detection irq status & enable*/ +#define R852_CARD_IRQ_STA 0x06 /* IRQ status */ +#define R852_CARD_IRQ_ENABLE 0x07 /* IRQ enable */ + +#define R852_CARD_IRQ_CD 0x01 /* fire when #CD lights, same as 0x04*/ +#define R852_CARD_IRQ_REMOVE 0x04 /* detect card removal */ +#define R852_CARD_IRQ_INSERT 0x08 /* detect card insert */ +#define R852_CARD_IRQ_UNK1 0x10 /* unknown */ +#define R852_CARD_IRQ_GENABLE 0x80 /* general enable */ +#define R852_CARD_IRQ_MASK 0x1D + + + +/* hardware enable */ +#define R852_HW 0x08 +#define R852_HW_ENABLED 0x01 /* hw enabled */ +#define R852_HW_UNKNOWN 0x80 + + +/* dma capabilities */ +#define R852_DMA_CAP 0x09 +#define R852_SMBIT 0x20 /* if set with bit #6 or bit #7, then */ + /* hw is smartmedia */ +#define R852_DMA1 0x40 /* if set w/bit #7, dma is supported */ +#define R852_DMA2 0x80 /* if set w/bit #6, dma is supported */ + + +/* physical DMA address - 32 bit value*/ +#define R852_DMA_ADDR 0x0C + + +/* dma settings */ +#define R852_DMA_SETTINGS 0x10 +#define R852_DMA_MEMORY 0x01 /* (memory <-> internal hw buffer) */ +#define R852_DMA_READ 0x02 /* 0 = write, 1 = read */ +#define R852_DMA_INTERNAL 0x04 /* (internal hw buffer <-> card) */ + +/* dma IRQ status */ +#define R852_DMA_IRQ_STA 0x14 + +/* dma IRQ enable */ +#define R852_DMA_IRQ_ENABLE 0x18 + +#define R852_DMA_IRQ_MEMORY 0x01 /* (memory <-> internal hw buffer) */ +#define R852_DMA_IRQ_ERROR 0x02 /* error did happen */ +#define R852_DMA_IRQ_INTERNAL 0x04 /* (internal hw buffer <-> card) */ +#define R852_DMA_IRQ_MASK 0x07 /* mask of all IRQ bits */ + + +/* ECC syndrome format - read from reg #0 will return two copies of these for + each half of the page. + first byte is error byte location, and second, bit location + flags */ +#define R852_ECC_ERR_BIT_MSK 0x07 /* error bit location */ +#define R852_ECC_CORRECT 0x10 /* no errors - (guessed) */ +#define R852_ECC_CORRECTABLE 0x20 /* correctable error exist */ +#define R852_ECC_FAIL 0x40 /* non correctable error detected */ + +#define R852_DMA_LEN 512 + +#define DMA_INTERNAL 0 +#define DMA_MEMORY 1 + +struct r852_device { + void __iomem *mmio; /* mmio */ + struct nand_chip *chip; /* nand chip backpointer */ + struct pci_dev *pci_dev; /* pci backpointer */ + + /* dma area */ + dma_addr_t phys_dma_addr; /* bus address of buffer*/ + struct completion dma_done; /* data transfer done */ + + dma_addr_t phys_bounce_buffer; /* bus address of bounce buffer */ + uint8_t *bounce_buffer; /* virtual address of bounce buffer */ + + int dma_dir; /* 1 = read, 0 = write */ + int dma_stage; /* 0 - idle, 1 - first step, + 2 - second step */ + + int dma_state; /* 0 = internal, 1 = memory */ + int dma_error; /* dma errors */ + int dma_usable; /* is it possible to use dma */ + + /* card status area */ + struct delayed_work card_detect_work; + struct workqueue_struct *card_workqueue; + int card_registred; /* card registered with mtd */ + int card_detected; /* card detected in slot */ + int card_unstable; /* whenever the card is inserted, + is not known yet */ + int readonly; /* card is readonly */ + int sm; /* Is card smartmedia */ + + /* interrupt handling */ + spinlock_t irqlock; /* IRQ protecting lock */ + int irq; /* irq num */ + /* misc */ + void *tmp_buffer; /* temporary buffer */ + uint8_t ctlreg; /* cached contents of control reg */ +}; + +#define DRV_NAME "r852" + + +#define dbg(format, ...) \ + if (debug) \ + printk(KERN_DEBUG DRV_NAME ": " format "\n", ## __VA_ARGS__) + +#define dbg_verbose(format, ...) \ + if (debug > 1) \ + printk(KERN_DEBUG DRV_NAME ": " format "\n", ## __VA_ARGS__) + + +#define message(format, ...) \ + printk(KERN_INFO DRV_NAME ": " format "\n", ## __VA_ARGS__) diff --git a/drivers/mtd/nand/raw/s3c2410.c b/drivers/mtd/nand/raw/s3c2410.c new file mode 100644 index 000000000000..b5bc5f106c09 --- /dev/null +++ b/drivers/mtd/nand/raw/s3c2410.c @@ -0,0 +1,1295 @@ +/* + * Copyright © 2004-2008 Simtec Electronics + * http://armlinux.simtec.co.uk/ + * Ben Dooks + * + * Samsung S3C2410/S3C2440/S3C2412 NAND driver + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA +*/ + +#define pr_fmt(fmt) "nand-s3c2410: " fmt + +#ifdef CONFIG_MTD_NAND_S3C2410_DEBUG +#define DEBUG +#endif + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#include +#include +#include +#include + +#include + +#define S3C2410_NFREG(x) (x) + +#define S3C2410_NFCONF S3C2410_NFREG(0x00) +#define S3C2410_NFCMD S3C2410_NFREG(0x04) +#define S3C2410_NFADDR S3C2410_NFREG(0x08) +#define S3C2410_NFDATA S3C2410_NFREG(0x0C) +#define S3C2410_NFSTAT S3C2410_NFREG(0x10) +#define S3C2410_NFECC S3C2410_NFREG(0x14) +#define S3C2440_NFCONT S3C2410_NFREG(0x04) +#define S3C2440_NFCMD S3C2410_NFREG(0x08) +#define S3C2440_NFADDR S3C2410_NFREG(0x0C) +#define S3C2440_NFDATA S3C2410_NFREG(0x10) +#define S3C2440_NFSTAT S3C2410_NFREG(0x20) +#define S3C2440_NFMECC0 S3C2410_NFREG(0x2C) +#define S3C2412_NFSTAT S3C2410_NFREG(0x28) +#define S3C2412_NFMECC0 S3C2410_NFREG(0x34) +#define S3C2410_NFCONF_EN (1<<15) +#define S3C2410_NFCONF_INITECC (1<<12) +#define S3C2410_NFCONF_nFCE (1<<11) +#define S3C2410_NFCONF_TACLS(x) ((x)<<8) +#define S3C2410_NFCONF_TWRPH0(x) ((x)<<4) +#define S3C2410_NFCONF_TWRPH1(x) ((x)<<0) +#define S3C2410_NFSTAT_BUSY (1<<0) +#define S3C2440_NFCONF_TACLS(x) ((x)<<12) +#define S3C2440_NFCONF_TWRPH0(x) ((x)<<8) +#define S3C2440_NFCONF_TWRPH1(x) ((x)<<4) +#define S3C2440_NFCONT_INITECC (1<<4) +#define S3C2440_NFCONT_nFCE (1<<1) +#define S3C2440_NFCONT_ENABLE (1<<0) +#define S3C2440_NFSTAT_READY (1<<0) +#define S3C2412_NFCONF_NANDBOOT (1<<31) +#define S3C2412_NFCONT_INIT_MAIN_ECC (1<<5) +#define S3C2412_NFCONT_nFCE0 (1<<1) +#define S3C2412_NFSTAT_READY (1<<0) + +/* new oob placement block for use with hardware ecc generation + */ +static int s3c2410_ooblayout_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + if (section) + return -ERANGE; + + oobregion->offset = 0; + oobregion->length = 3; + + return 0; +} + +static int s3c2410_ooblayout_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + if (section) + return -ERANGE; + + oobregion->offset = 8; + oobregion->length = 8; + + return 0; +} + +static const struct mtd_ooblayout_ops s3c2410_ooblayout_ops = { + .ecc = s3c2410_ooblayout_ecc, + .free = s3c2410_ooblayout_free, +}; + +/* controller and mtd information */ + +struct s3c2410_nand_info; + +/** + * struct s3c2410_nand_mtd - driver MTD structure + * @mtd: The MTD instance to pass to the MTD layer. + * @chip: The NAND chip information. + * @set: The platform information supplied for this set of NAND chips. + * @info: Link back to the hardware information. + * @scan_res: The result from calling nand_scan_ident(). +*/ +struct s3c2410_nand_mtd { + struct nand_chip chip; + struct s3c2410_nand_set *set; + struct s3c2410_nand_info *info; + int scan_res; +}; + +enum s3c_cpu_type { + TYPE_S3C2410, + TYPE_S3C2412, + TYPE_S3C2440, +}; + +enum s3c_nand_clk_state { + CLOCK_DISABLE = 0, + CLOCK_ENABLE, + CLOCK_SUSPEND, +}; + +/* overview of the s3c2410 nand state */ + +/** + * struct s3c2410_nand_info - NAND controller state. + * @mtds: An array of MTD instances on this controoler. + * @platform: The platform data for this board. + * @device: The platform device we bound to. + * @clk: The clock resource for this controller. + * @regs: The area mapped for the hardware registers. + * @sel_reg: Pointer to the register controlling the NAND selection. + * @sel_bit: The bit in @sel_reg to select the NAND chip. + * @mtd_count: The number of MTDs created from this controller. + * @save_sel: The contents of @sel_reg to be saved over suspend. + * @clk_rate: The clock rate from @clk. + * @clk_state: The current clock state. + * @cpu_type: The exact type of this controller. + */ +struct s3c2410_nand_info { + /* mtd info */ + struct nand_hw_control controller; + struct s3c2410_nand_mtd *mtds; + struct s3c2410_platform_nand *platform; + + /* device info */ + struct device *device; + struct clk *clk; + void __iomem *regs; + void __iomem *sel_reg; + int sel_bit; + int mtd_count; + unsigned long save_sel; + unsigned long clk_rate; + enum s3c_nand_clk_state clk_state; + + enum s3c_cpu_type cpu_type; + +#ifdef CONFIG_ARM_S3C24XX_CPUFREQ + struct notifier_block freq_transition; +#endif +}; + +struct s3c24XX_nand_devtype_data { + enum s3c_cpu_type type; +}; + +static const struct s3c24XX_nand_devtype_data s3c2410_nand_devtype_data = { + .type = TYPE_S3C2410, +}; + +static const struct s3c24XX_nand_devtype_data s3c2412_nand_devtype_data = { + .type = TYPE_S3C2412, +}; + +static const struct s3c24XX_nand_devtype_data s3c2440_nand_devtype_data = { + .type = TYPE_S3C2440, +}; + +/* conversion functions */ + +static struct s3c2410_nand_mtd *s3c2410_nand_mtd_toours(struct mtd_info *mtd) +{ + return container_of(mtd_to_nand(mtd), struct s3c2410_nand_mtd, + chip); +} + +static struct s3c2410_nand_info *s3c2410_nand_mtd_toinfo(struct mtd_info *mtd) +{ + return s3c2410_nand_mtd_toours(mtd)->info; +} + +static struct s3c2410_nand_info *to_nand_info(struct platform_device *dev) +{ + return platform_get_drvdata(dev); +} + +static struct s3c2410_platform_nand *to_nand_plat(struct platform_device *dev) +{ + return dev_get_platdata(&dev->dev); +} + +static inline int allow_clk_suspend(struct s3c2410_nand_info *info) +{ +#ifdef CONFIG_MTD_NAND_S3C2410_CLKSTOP + return 1; +#else + return 0; +#endif +} + +/** + * s3c2410_nand_clk_set_state - Enable, disable or suspend NAND clock. + * @info: The controller instance. + * @new_state: State to which clock should be set. + */ +static void s3c2410_nand_clk_set_state(struct s3c2410_nand_info *info, + enum s3c_nand_clk_state new_state) +{ + if (!allow_clk_suspend(info) && new_state == CLOCK_SUSPEND) + return; + + if (info->clk_state == CLOCK_ENABLE) { + if (new_state != CLOCK_ENABLE) + clk_disable_unprepare(info->clk); + } else { + if (new_state == CLOCK_ENABLE) + clk_prepare_enable(info->clk); + } + + info->clk_state = new_state; +} + +/* timing calculations */ + +#define NS_IN_KHZ 1000000 + +/** + * s3c_nand_calc_rate - calculate timing data. + * @wanted: The cycle time in nanoseconds. + * @clk: The clock rate in kHz. + * @max: The maximum divider value. + * + * Calculate the timing value from the given parameters. + */ +static int s3c_nand_calc_rate(int wanted, unsigned long clk, int max) +{ + int result; + + result = DIV_ROUND_UP((wanted * clk), NS_IN_KHZ); + + pr_debug("result %d from %ld, %d\n", result, clk, wanted); + + if (result > max) { + pr_err("%d ns is too big for current clock rate %ld\n", + wanted, clk); + return -1; + } + + if (result < 1) + result = 1; + + return result; +} + +#define to_ns(ticks, clk) (((ticks) * NS_IN_KHZ) / (unsigned int)(clk)) + +/* controller setup */ + +/** + * s3c2410_nand_setrate - setup controller timing information. + * @info: The controller instance. + * + * Given the information supplied by the platform, calculate and set + * the necessary timing registers in the hardware to generate the + * necessary timing cycles to the hardware. + */ +static int s3c2410_nand_setrate(struct s3c2410_nand_info *info) +{ + struct s3c2410_platform_nand *plat = info->platform; + int tacls_max = (info->cpu_type == TYPE_S3C2412) ? 8 : 4; + int tacls, twrph0, twrph1; + unsigned long clkrate = clk_get_rate(info->clk); + unsigned long uninitialized_var(set), cfg, uninitialized_var(mask); + unsigned long flags; + + /* calculate the timing information for the controller */ + + info->clk_rate = clkrate; + clkrate /= 1000; /* turn clock into kHz for ease of use */ + + if (plat != NULL) { + tacls = s3c_nand_calc_rate(plat->tacls, clkrate, tacls_max); + twrph0 = s3c_nand_calc_rate(plat->twrph0, clkrate, 8); + twrph1 = s3c_nand_calc_rate(plat->twrph1, clkrate, 8); + } else { + /* default timings */ + tacls = tacls_max; + twrph0 = 8; + twrph1 = 8; + } + + if (tacls < 0 || twrph0 < 0 || twrph1 < 0) { + dev_err(info->device, "cannot get suitable timings\n"); + return -EINVAL; + } + + dev_info(info->device, "Tacls=%d, %dns Twrph0=%d %dns, Twrph1=%d %dns\n", + tacls, to_ns(tacls, clkrate), twrph0, to_ns(twrph0, clkrate), + twrph1, to_ns(twrph1, clkrate)); + + switch (info->cpu_type) { + case TYPE_S3C2410: + mask = (S3C2410_NFCONF_TACLS(3) | + S3C2410_NFCONF_TWRPH0(7) | + S3C2410_NFCONF_TWRPH1(7)); + set = S3C2410_NFCONF_EN; + set |= S3C2410_NFCONF_TACLS(tacls - 1); + set |= S3C2410_NFCONF_TWRPH0(twrph0 - 1); + set |= S3C2410_NFCONF_TWRPH1(twrph1 - 1); + break; + + case TYPE_S3C2440: + case TYPE_S3C2412: + mask = (S3C2440_NFCONF_TACLS(tacls_max - 1) | + S3C2440_NFCONF_TWRPH0(7) | + S3C2440_NFCONF_TWRPH1(7)); + + set = S3C2440_NFCONF_TACLS(tacls - 1); + set |= S3C2440_NFCONF_TWRPH0(twrph0 - 1); + set |= S3C2440_NFCONF_TWRPH1(twrph1 - 1); + break; + + default: + BUG(); + } + + local_irq_save(flags); + + cfg = readl(info->regs + S3C2410_NFCONF); + cfg &= ~mask; + cfg |= set; + writel(cfg, info->regs + S3C2410_NFCONF); + + local_irq_restore(flags); + + dev_dbg(info->device, "NF_CONF is 0x%lx\n", cfg); + + return 0; +} + +/** + * s3c2410_nand_inithw - basic hardware initialisation + * @info: The hardware state. + * + * Do the basic initialisation of the hardware, using s3c2410_nand_setrate() + * to setup the hardware access speeds and set the controller to be enabled. +*/ +static int s3c2410_nand_inithw(struct s3c2410_nand_info *info) +{ + int ret; + + ret = s3c2410_nand_setrate(info); + if (ret < 0) + return ret; + + switch (info->cpu_type) { + case TYPE_S3C2410: + default: + break; + + case TYPE_S3C2440: + case TYPE_S3C2412: + /* enable the controller and de-assert nFCE */ + + writel(S3C2440_NFCONT_ENABLE, info->regs + S3C2440_NFCONT); + } + + return 0; +} + +/** + * s3c2410_nand_select_chip - select the given nand chip + * @mtd: The MTD instance for this chip. + * @chip: The chip number. + * + * This is called by the MTD layer to either select a given chip for the + * @mtd instance, or to indicate that the access has finished and the + * chip can be de-selected. + * + * The routine ensures that the nFCE line is correctly setup, and any + * platform specific selection code is called to route nFCE to the specific + * chip. + */ +static void s3c2410_nand_select_chip(struct mtd_info *mtd, int chip) +{ + struct s3c2410_nand_info *info; + struct s3c2410_nand_mtd *nmtd; + struct nand_chip *this = mtd_to_nand(mtd); + unsigned long cur; + + nmtd = nand_get_controller_data(this); + info = nmtd->info; + + if (chip != -1) + s3c2410_nand_clk_set_state(info, CLOCK_ENABLE); + + cur = readl(info->sel_reg); + + if (chip == -1) { + cur |= info->sel_bit; + } else { + if (nmtd->set != NULL && chip > nmtd->set->nr_chips) { + dev_err(info->device, "invalid chip %d\n", chip); + return; + } + + if (info->platform != NULL) { + if (info->platform->select_chip != NULL) + (info->platform->select_chip) (nmtd->set, chip); + } + + cur &= ~info->sel_bit; + } + + writel(cur, info->sel_reg); + + if (chip == -1) + s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND); +} + +/* s3c2410_nand_hwcontrol + * + * Issue command and address cycles to the chip +*/ + +static void s3c2410_nand_hwcontrol(struct mtd_info *mtd, int cmd, + unsigned int ctrl) +{ + struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); + + if (cmd == NAND_CMD_NONE) + return; + + if (ctrl & NAND_CLE) + writeb(cmd, info->regs + S3C2410_NFCMD); + else + writeb(cmd, info->regs + S3C2410_NFADDR); +} + +/* command and control functions */ + +static void s3c2440_nand_hwcontrol(struct mtd_info *mtd, int cmd, + unsigned int ctrl) +{ + struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); + + if (cmd == NAND_CMD_NONE) + return; + + if (ctrl & NAND_CLE) + writeb(cmd, info->regs + S3C2440_NFCMD); + else + writeb(cmd, info->regs + S3C2440_NFADDR); +} + +/* s3c2410_nand_devready() + * + * returns 0 if the nand is busy, 1 if it is ready +*/ + +static int s3c2410_nand_devready(struct mtd_info *mtd) +{ + struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); + return readb(info->regs + S3C2410_NFSTAT) & S3C2410_NFSTAT_BUSY; +} + +static int s3c2440_nand_devready(struct mtd_info *mtd) +{ + struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); + return readb(info->regs + S3C2440_NFSTAT) & S3C2440_NFSTAT_READY; +} + +static int s3c2412_nand_devready(struct mtd_info *mtd) +{ + struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); + return readb(info->regs + S3C2412_NFSTAT) & S3C2412_NFSTAT_READY; +} + +/* ECC handling functions */ + +static int s3c2410_nand_correct_data(struct mtd_info *mtd, u_char *dat, + u_char *read_ecc, u_char *calc_ecc) +{ + struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); + unsigned int diff0, diff1, diff2; + unsigned int bit, byte; + + pr_debug("%s(%p,%p,%p,%p)\n", __func__, mtd, dat, read_ecc, calc_ecc); + + diff0 = read_ecc[0] ^ calc_ecc[0]; + diff1 = read_ecc[1] ^ calc_ecc[1]; + diff2 = read_ecc[2] ^ calc_ecc[2]; + + pr_debug("%s: rd %*phN calc %*phN diff %02x%02x%02x\n", + __func__, 3, read_ecc, 3, calc_ecc, + diff0, diff1, diff2); + + if (diff0 == 0 && diff1 == 0 && diff2 == 0) + return 0; /* ECC is ok */ + + /* sometimes people do not think about using the ECC, so check + * to see if we have an 0xff,0xff,0xff read ECC and then ignore + * the error, on the assumption that this is an un-eccd page. + */ + if (read_ecc[0] == 0xff && read_ecc[1] == 0xff && read_ecc[2] == 0xff + && info->platform->ignore_unset_ecc) + return 0; + + /* Can we correct this ECC (ie, one row and column change). + * Note, this is similar to the 256 error code on smartmedia */ + + if (((diff0 ^ (diff0 >> 1)) & 0x55) == 0x55 && + ((diff1 ^ (diff1 >> 1)) & 0x55) == 0x55 && + ((diff2 ^ (diff2 >> 1)) & 0x55) == 0x55) { + /* calculate the bit position of the error */ + + bit = ((diff2 >> 3) & 1) | + ((diff2 >> 4) & 2) | + ((diff2 >> 5) & 4); + + /* calculate the byte position of the error */ + + byte = ((diff2 << 7) & 0x100) | + ((diff1 << 0) & 0x80) | + ((diff1 << 1) & 0x40) | + ((diff1 << 2) & 0x20) | + ((diff1 << 3) & 0x10) | + ((diff0 >> 4) & 0x08) | + ((diff0 >> 3) & 0x04) | + ((diff0 >> 2) & 0x02) | + ((diff0 >> 1) & 0x01); + + dev_dbg(info->device, "correcting error bit %d, byte %d\n", + bit, byte); + + dat[byte] ^= (1 << bit); + return 1; + } + + /* if there is only one bit difference in the ECC, then + * one of only a row or column parity has changed, which + * means the error is most probably in the ECC itself */ + + diff0 |= (diff1 << 8); + diff0 |= (diff2 << 16); + + /* equal to "(diff0 & ~(1 << __ffs(diff0)))" */ + if ((diff0 & (diff0 - 1)) == 0) + return 1; + + return -1; +} + +/* ECC functions + * + * These allow the s3c2410 and s3c2440 to use the controller's ECC + * generator block to ECC the data as it passes through] +*/ + +static void s3c2410_nand_enable_hwecc(struct mtd_info *mtd, int mode) +{ + struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); + unsigned long ctrl; + + ctrl = readl(info->regs + S3C2410_NFCONF); + ctrl |= S3C2410_NFCONF_INITECC; + writel(ctrl, info->regs + S3C2410_NFCONF); +} + +static void s3c2412_nand_enable_hwecc(struct mtd_info *mtd, int mode) +{ + struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); + unsigned long ctrl; + + ctrl = readl(info->regs + S3C2440_NFCONT); + writel(ctrl | S3C2412_NFCONT_INIT_MAIN_ECC, + info->regs + S3C2440_NFCONT); +} + +static void s3c2440_nand_enable_hwecc(struct mtd_info *mtd, int mode) +{ + struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); + unsigned long ctrl; + + ctrl = readl(info->regs + S3C2440_NFCONT); + writel(ctrl | S3C2440_NFCONT_INITECC, info->regs + S3C2440_NFCONT); +} + +static int s3c2410_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, + u_char *ecc_code) +{ + struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); + + ecc_code[0] = readb(info->regs + S3C2410_NFECC + 0); + ecc_code[1] = readb(info->regs + S3C2410_NFECC + 1); + ecc_code[2] = readb(info->regs + S3C2410_NFECC + 2); + + pr_debug("%s: returning ecc %*phN\n", __func__, 3, ecc_code); + + return 0; +} + +static int s3c2412_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, + u_char *ecc_code) +{ + struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); + unsigned long ecc = readl(info->regs + S3C2412_NFMECC0); + + ecc_code[0] = ecc; + ecc_code[1] = ecc >> 8; + ecc_code[2] = ecc >> 16; + + pr_debug("%s: returning ecc %*phN\n", __func__, 3, ecc_code); + + return 0; +} + +static int s3c2440_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, + u_char *ecc_code) +{ + struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); + unsigned long ecc = readl(info->regs + S3C2440_NFMECC0); + + ecc_code[0] = ecc; + ecc_code[1] = ecc >> 8; + ecc_code[2] = ecc >> 16; + + pr_debug("%s: returning ecc %06lx\n", __func__, ecc & 0xffffff); + + return 0; +} + +/* over-ride the standard functions for a little more speed. We can + * use read/write block to move the data buffers to/from the controller +*/ + +static void s3c2410_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len) +{ + struct nand_chip *this = mtd_to_nand(mtd); + readsb(this->IO_ADDR_R, buf, len); +} + +static void s3c2440_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len) +{ + struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); + + readsl(info->regs + S3C2440_NFDATA, buf, len >> 2); + + /* cleanup if we've got less than a word to do */ + if (len & 3) { + buf += len & ~3; + + for (; len & 3; len--) + *buf++ = readb(info->regs + S3C2440_NFDATA); + } +} + +static void s3c2410_nand_write_buf(struct mtd_info *mtd, const u_char *buf, + int len) +{ + struct nand_chip *this = mtd_to_nand(mtd); + writesb(this->IO_ADDR_W, buf, len); +} + +static void s3c2440_nand_write_buf(struct mtd_info *mtd, const u_char *buf, + int len) +{ + struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); + + writesl(info->regs + S3C2440_NFDATA, buf, len >> 2); + + /* cleanup any fractional write */ + if (len & 3) { + buf += len & ~3; + + for (; len & 3; len--, buf++) + writeb(*buf, info->regs + S3C2440_NFDATA); + } +} + +/* cpufreq driver support */ + +#ifdef CONFIG_ARM_S3C24XX_CPUFREQ + +static int s3c2410_nand_cpufreq_transition(struct notifier_block *nb, + unsigned long val, void *data) +{ + struct s3c2410_nand_info *info; + unsigned long newclk; + + info = container_of(nb, struct s3c2410_nand_info, freq_transition); + newclk = clk_get_rate(info->clk); + + if ((val == CPUFREQ_POSTCHANGE && newclk < info->clk_rate) || + (val == CPUFREQ_PRECHANGE && newclk > info->clk_rate)) { + s3c2410_nand_setrate(info); + } + + return 0; +} + +static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info *info) +{ + info->freq_transition.notifier_call = s3c2410_nand_cpufreq_transition; + + return cpufreq_register_notifier(&info->freq_transition, + CPUFREQ_TRANSITION_NOTIFIER); +} + +static inline void +s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info *info) +{ + cpufreq_unregister_notifier(&info->freq_transition, + CPUFREQ_TRANSITION_NOTIFIER); +} + +#else +static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info *info) +{ + return 0; +} + +static inline void +s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info *info) +{ +} +#endif + +/* device management functions */ + +static int s3c24xx_nand_remove(struct platform_device *pdev) +{ + struct s3c2410_nand_info *info = to_nand_info(pdev); + + if (info == NULL) + return 0; + + s3c2410_nand_cpufreq_deregister(info); + + /* Release all our mtds and their partitions, then go through + * freeing the resources used + */ + + if (info->mtds != NULL) { + struct s3c2410_nand_mtd *ptr = info->mtds; + int mtdno; + + for (mtdno = 0; mtdno < info->mtd_count; mtdno++, ptr++) { + pr_debug("releasing mtd %d (%p)\n", mtdno, ptr); + nand_release(nand_to_mtd(&ptr->chip)); + } + } + + /* free the common resources */ + + if (!IS_ERR(info->clk)) + s3c2410_nand_clk_set_state(info, CLOCK_DISABLE); + + return 0; +} + +static int s3c2410_nand_add_partition(struct s3c2410_nand_info *info, + struct s3c2410_nand_mtd *mtd, + struct s3c2410_nand_set *set) +{ + if (set) { + struct mtd_info *mtdinfo = nand_to_mtd(&mtd->chip); + + mtdinfo->name = set->name; + + return mtd_device_parse_register(mtdinfo, NULL, NULL, + set->partitions, set->nr_partitions); + } + + return -ENODEV; +} + +static int s3c2410_nand_setup_data_interface(struct mtd_info *mtd, int csline, + const struct nand_data_interface *conf) +{ + struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); + struct s3c2410_platform_nand *pdata = info->platform; + const struct nand_sdr_timings *timings; + int tacls; + + timings = nand_get_sdr_timings(conf); + if (IS_ERR(timings)) + return -ENOTSUPP; + + tacls = timings->tCLS_min - timings->tWP_min; + if (tacls < 0) + tacls = 0; + + pdata->tacls = DIV_ROUND_UP(tacls, 1000); + pdata->twrph0 = DIV_ROUND_UP(timings->tWP_min, 1000); + pdata->twrph1 = DIV_ROUND_UP(timings->tCLH_min, 1000); + + return s3c2410_nand_setrate(info); +} + +/** + * s3c2410_nand_init_chip - initialise a single instance of an chip + * @info: The base NAND controller the chip is on. + * @nmtd: The new controller MTD instance to fill in. + * @set: The information passed from the board specific platform data. + * + * Initialise the given @nmtd from the information in @info and @set. This + * readies the structure for use with the MTD layer functions by ensuring + * all pointers are setup and the necessary control routines selected. + */ +static void s3c2410_nand_init_chip(struct s3c2410_nand_info *info, + struct s3c2410_nand_mtd *nmtd, + struct s3c2410_nand_set *set) +{ + struct device_node *np = info->device->of_node; + struct nand_chip *chip = &nmtd->chip; + void __iomem *regs = info->regs; + + nand_set_flash_node(chip, set->of_node); + + chip->write_buf = s3c2410_nand_write_buf; + chip->read_buf = s3c2410_nand_read_buf; + chip->select_chip = s3c2410_nand_select_chip; + chip->chip_delay = 50; + nand_set_controller_data(chip, nmtd); + chip->options = set->options; + chip->controller = &info->controller; + + /* + * let's keep behavior unchanged for legacy boards booting via pdata and + * auto-detect timings only when booting with a device tree. + */ + if (np) + chip->setup_data_interface = s3c2410_nand_setup_data_interface; + + switch (info->cpu_type) { + case TYPE_S3C2410: + chip->IO_ADDR_W = regs + S3C2410_NFDATA; + info->sel_reg = regs + S3C2410_NFCONF; + info->sel_bit = S3C2410_NFCONF_nFCE; + chip->cmd_ctrl = s3c2410_nand_hwcontrol; + chip->dev_ready = s3c2410_nand_devready; + break; + + case TYPE_S3C2440: + chip->IO_ADDR_W = regs + S3C2440_NFDATA; + info->sel_reg = regs + S3C2440_NFCONT; + info->sel_bit = S3C2440_NFCONT_nFCE; + chip->cmd_ctrl = s3c2440_nand_hwcontrol; + chip->dev_ready = s3c2440_nand_devready; + chip->read_buf = s3c2440_nand_read_buf; + chip->write_buf = s3c2440_nand_write_buf; + break; + + case TYPE_S3C2412: + chip->IO_ADDR_W = regs + S3C2440_NFDATA; + info->sel_reg = regs + S3C2440_NFCONT; + info->sel_bit = S3C2412_NFCONT_nFCE0; + chip->cmd_ctrl = s3c2440_nand_hwcontrol; + chip->dev_ready = s3c2412_nand_devready; + + if (readl(regs + S3C2410_NFCONF) & S3C2412_NFCONF_NANDBOOT) + dev_info(info->device, "System booted from NAND\n"); + + break; + } + + chip->IO_ADDR_R = chip->IO_ADDR_W; + + nmtd->info = info; + nmtd->set = set; + + chip->ecc.mode = info->platform->ecc_mode; + + /* + * If you use u-boot BBT creation code, specifying this flag will + * let the kernel fish out the BBT from the NAND. + */ + if (set->flash_bbt) + chip->bbt_options |= NAND_BBT_USE_FLASH; +} + +/** + * s3c2410_nand_update_chip - post probe update + * @info: The controller instance. + * @nmtd: The driver version of the MTD instance. + * + * This routine is called after the chip probe has successfully completed + * and the relevant per-chip information updated. This call ensure that + * we update the internal state accordingly. + * + * The internal state is currently limited to the ECC state information. +*/ +static int s3c2410_nand_update_chip(struct s3c2410_nand_info *info, + struct s3c2410_nand_mtd *nmtd) +{ + struct nand_chip *chip = &nmtd->chip; + + switch (chip->ecc.mode) { + + case NAND_ECC_NONE: + dev_info(info->device, "ECC disabled\n"); + break; + + case NAND_ECC_SOFT: + /* + * This driver expects Hamming based ECC when ecc_mode is set + * to NAND_ECC_SOFT. Force ecc.algo to NAND_ECC_HAMMING to + * avoid adding an extra ecc_algo field to + * s3c2410_platform_nand. + */ + chip->ecc.algo = NAND_ECC_HAMMING; + dev_info(info->device, "soft ECC\n"); + break; + + case NAND_ECC_HW: + chip->ecc.calculate = s3c2410_nand_calculate_ecc; + chip->ecc.correct = s3c2410_nand_correct_data; + chip->ecc.strength = 1; + + switch (info->cpu_type) { + case TYPE_S3C2410: + chip->ecc.hwctl = s3c2410_nand_enable_hwecc; + chip->ecc.calculate = s3c2410_nand_calculate_ecc; + break; + + case TYPE_S3C2412: + chip->ecc.hwctl = s3c2412_nand_enable_hwecc; + chip->ecc.calculate = s3c2412_nand_calculate_ecc; + break; + + case TYPE_S3C2440: + chip->ecc.hwctl = s3c2440_nand_enable_hwecc; + chip->ecc.calculate = s3c2440_nand_calculate_ecc; + break; + } + + dev_dbg(info->device, "chip %p => page shift %d\n", + chip, chip->page_shift); + + /* change the behaviour depending on whether we are using + * the large or small page nand device */ + if (chip->page_shift > 10) { + chip->ecc.size = 256; + chip->ecc.bytes = 3; + } else { + chip->ecc.size = 512; + chip->ecc.bytes = 3; + mtd_set_ooblayout(nand_to_mtd(chip), + &s3c2410_ooblayout_ops); + } + + dev_info(info->device, "hardware ECC\n"); + break; + + default: + dev_err(info->device, "invalid ECC mode!\n"); + return -EINVAL; + } + + if (chip->bbt_options & NAND_BBT_USE_FLASH) + chip->options |= NAND_SKIP_BBTSCAN; + + return 0; +} + +static const struct of_device_id s3c24xx_nand_dt_ids[] = { + { + .compatible = "samsung,s3c2410-nand", + .data = &s3c2410_nand_devtype_data, + }, { + /* also compatible with s3c6400 */ + .compatible = "samsung,s3c2412-nand", + .data = &s3c2412_nand_devtype_data, + }, { + .compatible = "samsung,s3c2440-nand", + .data = &s3c2440_nand_devtype_data, + }, + { /* sentinel */ } +}; +MODULE_DEVICE_TABLE(of, s3c24xx_nand_dt_ids); + +static int s3c24xx_nand_probe_dt(struct platform_device *pdev) +{ + const struct s3c24XX_nand_devtype_data *devtype_data; + struct s3c2410_platform_nand *pdata; + struct s3c2410_nand_info *info = platform_get_drvdata(pdev); + struct device_node *np = pdev->dev.of_node, *child; + struct s3c2410_nand_set *sets; + + devtype_data = of_device_get_match_data(&pdev->dev); + if (!devtype_data) + return -ENODEV; + + info->cpu_type = devtype_data->type; + + pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL); + if (!pdata) + return -ENOMEM; + + pdev->dev.platform_data = pdata; + + pdata->nr_sets = of_get_child_count(np); + if (!pdata->nr_sets) + return 0; + + sets = devm_kzalloc(&pdev->dev, sizeof(*sets) * pdata->nr_sets, + GFP_KERNEL); + if (!sets) + return -ENOMEM; + + pdata->sets = sets; + + for_each_available_child_of_node(np, child) { + sets->name = (char *)child->name; + sets->of_node = child; + sets->nr_chips = 1; + + of_node_get(child); + + sets++; + } + + return 0; +} + +static int s3c24xx_nand_probe_pdata(struct platform_device *pdev) +{ + struct s3c2410_nand_info *info = platform_get_drvdata(pdev); + + info->cpu_type = platform_get_device_id(pdev)->driver_data; + + return 0; +} + +/* s3c24xx_nand_probe + * + * called by device layer when it finds a device matching + * one our driver can handled. This code checks to see if + * it can allocate all necessary resources then calls the + * nand layer to look for devices +*/ +static int s3c24xx_nand_probe(struct platform_device *pdev) +{ + struct s3c2410_platform_nand *plat; + struct s3c2410_nand_info *info; + struct s3c2410_nand_mtd *nmtd; + struct s3c2410_nand_set *sets; + struct resource *res; + int err = 0; + int size; + int nr_sets; + int setno; + + info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL); + if (info == NULL) { + err = -ENOMEM; + goto exit_error; + } + + platform_set_drvdata(pdev, info); + + nand_hw_control_init(&info->controller); + + /* get the clock source and enable it */ + + info->clk = devm_clk_get(&pdev->dev, "nand"); + if (IS_ERR(info->clk)) { + dev_err(&pdev->dev, "failed to get clock\n"); + err = -ENOENT; + goto exit_error; + } + + s3c2410_nand_clk_set_state(info, CLOCK_ENABLE); + + if (pdev->dev.of_node) + err = s3c24xx_nand_probe_dt(pdev); + else + err = s3c24xx_nand_probe_pdata(pdev); + + if (err) + goto exit_error; + + plat = to_nand_plat(pdev); + + /* allocate and map the resource */ + + /* currently we assume we have the one resource */ + res = pdev->resource; + size = resource_size(res); + + info->device = &pdev->dev; + info->platform = plat; + + info->regs = devm_ioremap_resource(&pdev->dev, res); + if (IS_ERR(info->regs)) { + err = PTR_ERR(info->regs); + goto exit_error; + } + + dev_dbg(&pdev->dev, "mapped registers at %p\n", info->regs); + + sets = (plat != NULL) ? plat->sets : NULL; + nr_sets = (plat != NULL) ? plat->nr_sets : 1; + + info->mtd_count = nr_sets; + + /* allocate our information */ + + size = nr_sets * sizeof(*info->mtds); + info->mtds = devm_kzalloc(&pdev->dev, size, GFP_KERNEL); + if (info->mtds == NULL) { + err = -ENOMEM; + goto exit_error; + } + + /* initialise all possible chips */ + + nmtd = info->mtds; + + for (setno = 0; setno < nr_sets; setno++, nmtd++) { + struct mtd_info *mtd = nand_to_mtd(&nmtd->chip); + + pr_debug("initialising set %d (%p, info %p)\n", + setno, nmtd, info); + + mtd->dev.parent = &pdev->dev; + s3c2410_nand_init_chip(info, nmtd, sets); + + nmtd->scan_res = nand_scan_ident(mtd, + (sets) ? sets->nr_chips : 1, + NULL); + + if (nmtd->scan_res == 0) { + err = s3c2410_nand_update_chip(info, nmtd); + if (err < 0) + goto exit_error; + nand_scan_tail(mtd); + s3c2410_nand_add_partition(info, nmtd, sets); + } + + if (sets != NULL) + sets++; + } + + /* initialise the hardware */ + err = s3c2410_nand_inithw(info); + if (err != 0) + goto exit_error; + + err = s3c2410_nand_cpufreq_register(info); + if (err < 0) { + dev_err(&pdev->dev, "failed to init cpufreq support\n"); + goto exit_error; + } + + if (allow_clk_suspend(info)) { + dev_info(&pdev->dev, "clock idle support enabled\n"); + s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND); + } + + return 0; + + exit_error: + s3c24xx_nand_remove(pdev); + + if (err == 0) + err = -EINVAL; + return err; +} + +/* PM Support */ +#ifdef CONFIG_PM + +static int s3c24xx_nand_suspend(struct platform_device *dev, pm_message_t pm) +{ + struct s3c2410_nand_info *info = platform_get_drvdata(dev); + + if (info) { + info->save_sel = readl(info->sel_reg); + + /* For the moment, we must ensure nFCE is high during + * the time we are suspended. This really should be + * handled by suspending the MTDs we are using, but + * that is currently not the case. */ + + writel(info->save_sel | info->sel_bit, info->sel_reg); + + s3c2410_nand_clk_set_state(info, CLOCK_DISABLE); + } + + return 0; +} + +static int s3c24xx_nand_resume(struct platform_device *dev) +{ + struct s3c2410_nand_info *info = platform_get_drvdata(dev); + unsigned long sel; + + if (info) { + s3c2410_nand_clk_set_state(info, CLOCK_ENABLE); + s3c2410_nand_inithw(info); + + /* Restore the state of the nFCE line. */ + + sel = readl(info->sel_reg); + sel &= ~info->sel_bit; + sel |= info->save_sel & info->sel_bit; + writel(sel, info->sel_reg); + + s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND); + } + + return 0; +} + +#else +#define s3c24xx_nand_suspend NULL +#define s3c24xx_nand_resume NULL +#endif + +/* driver device registration */ + +static const struct platform_device_id s3c24xx_driver_ids[] = { + { + .name = "s3c2410-nand", + .driver_data = TYPE_S3C2410, + }, { + .name = "s3c2440-nand", + .driver_data = TYPE_S3C2440, + }, { + .name = "s3c2412-nand", + .driver_data = TYPE_S3C2412, + }, { + .name = "s3c6400-nand", + .driver_data = TYPE_S3C2412, /* compatible with 2412 */ + }, + { } +}; + +MODULE_DEVICE_TABLE(platform, s3c24xx_driver_ids); + +static struct platform_driver s3c24xx_nand_driver = { + .probe = s3c24xx_nand_probe, + .remove = s3c24xx_nand_remove, + .suspend = s3c24xx_nand_suspend, + .resume = s3c24xx_nand_resume, + .id_table = s3c24xx_driver_ids, + .driver = { + .name = "s3c24xx-nand", + .of_match_table = s3c24xx_nand_dt_ids, + }, +}; + +module_platform_driver(s3c24xx_nand_driver); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Ben Dooks "); +MODULE_DESCRIPTION("S3C24XX MTD NAND driver"); diff --git a/drivers/mtd/nand/raw/sh_flctl.c b/drivers/mtd/nand/raw/sh_flctl.c new file mode 100644 index 000000000000..c4e7755448e6 --- /dev/null +++ b/drivers/mtd/nand/raw/sh_flctl.c @@ -0,0 +1,1250 @@ +/* + * SuperH FLCTL nand controller + * + * Copyright (c) 2008 Renesas Solutions Corp. + * Copyright (c) 2008 Atom Create Engineering Co., Ltd. + * + * Based on fsl_elbc_nand.c, Copyright (c) 2006-2007 Freescale Semiconductor + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; version 2 of the License. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA + * + */ + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#include +#include +#include +#include + +static int flctl_4secc_ooblayout_sp_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + + if (section) + return -ERANGE; + + oobregion->offset = 0; + oobregion->length = chip->ecc.bytes; + + return 0; +} + +static int flctl_4secc_ooblayout_sp_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + if (section) + return -ERANGE; + + oobregion->offset = 12; + oobregion->length = 4; + + return 0; +} + +static const struct mtd_ooblayout_ops flctl_4secc_oob_smallpage_ops = { + .ecc = flctl_4secc_ooblayout_sp_ecc, + .free = flctl_4secc_ooblayout_sp_free, +}; + +static int flctl_4secc_ooblayout_lp_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + + if (section >= chip->ecc.steps) + return -ERANGE; + + oobregion->offset = (section * 16) + 6; + oobregion->length = chip->ecc.bytes; + + return 0; +} + +static int flctl_4secc_ooblayout_lp_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + + if (section >= chip->ecc.steps) + return -ERANGE; + + oobregion->offset = section * 16; + oobregion->length = 6; + + if (!section) { + oobregion->offset += 2; + oobregion->length -= 2; + } + + return 0; +} + +static const struct mtd_ooblayout_ops flctl_4secc_oob_largepage_ops = { + .ecc = flctl_4secc_ooblayout_lp_ecc, + .free = flctl_4secc_ooblayout_lp_free, +}; + +static uint8_t scan_ff_pattern[] = { 0xff, 0xff }; + +static struct nand_bbt_descr flctl_4secc_smallpage = { + .options = NAND_BBT_SCAN2NDPAGE, + .offs = 11, + .len = 1, + .pattern = scan_ff_pattern, +}; + +static struct nand_bbt_descr flctl_4secc_largepage = { + .options = NAND_BBT_SCAN2NDPAGE, + .offs = 0, + .len = 2, + .pattern = scan_ff_pattern, +}; + +static void empty_fifo(struct sh_flctl *flctl) +{ + writel(flctl->flintdmacr_base | AC1CLR | AC0CLR, FLINTDMACR(flctl)); + writel(flctl->flintdmacr_base, FLINTDMACR(flctl)); +} + +static void start_translation(struct sh_flctl *flctl) +{ + writeb(TRSTRT, FLTRCR(flctl)); +} + +static void timeout_error(struct sh_flctl *flctl, const char *str) +{ + dev_err(&flctl->pdev->dev, "Timeout occurred in %s\n", str); +} + +static void wait_completion(struct sh_flctl *flctl) +{ + uint32_t timeout = LOOP_TIMEOUT_MAX; + + while (timeout--) { + if (readb(FLTRCR(flctl)) & TREND) { + writeb(0x0, FLTRCR(flctl)); + return; + } + udelay(1); + } + + timeout_error(flctl, __func__); + writeb(0x0, FLTRCR(flctl)); +} + +static void flctl_dma_complete(void *param) +{ + struct sh_flctl *flctl = param; + + complete(&flctl->dma_complete); +} + +static void flctl_release_dma(struct sh_flctl *flctl) +{ + if (flctl->chan_fifo0_rx) { + dma_release_channel(flctl->chan_fifo0_rx); + flctl->chan_fifo0_rx = NULL; + } + if (flctl->chan_fifo0_tx) { + dma_release_channel(flctl->chan_fifo0_tx); + flctl->chan_fifo0_tx = NULL; + } +} + +static void flctl_setup_dma(struct sh_flctl *flctl) +{ + dma_cap_mask_t mask; + struct dma_slave_config cfg; + struct platform_device *pdev = flctl->pdev; + struct sh_flctl_platform_data *pdata = dev_get_platdata(&pdev->dev); + int ret; + + if (!pdata) + return; + + if (pdata->slave_id_fifo0_tx <= 0 || pdata->slave_id_fifo0_rx <= 0) + return; + + /* We can only either use DMA for both Tx and Rx or not use it at all */ + dma_cap_zero(mask); + dma_cap_set(DMA_SLAVE, mask); + + flctl->chan_fifo0_tx = dma_request_channel(mask, shdma_chan_filter, + (void *)(uintptr_t)pdata->slave_id_fifo0_tx); + dev_dbg(&pdev->dev, "%s: TX: got channel %p\n", __func__, + flctl->chan_fifo0_tx); + + if (!flctl->chan_fifo0_tx) + return; + + memset(&cfg, 0, sizeof(cfg)); + cfg.direction = DMA_MEM_TO_DEV; + cfg.dst_addr = flctl->fifo; + cfg.src_addr = 0; + ret = dmaengine_slave_config(flctl->chan_fifo0_tx, &cfg); + if (ret < 0) + goto err; + + flctl->chan_fifo0_rx = dma_request_channel(mask, shdma_chan_filter, + (void *)(uintptr_t)pdata->slave_id_fifo0_rx); + dev_dbg(&pdev->dev, "%s: RX: got channel %p\n", __func__, + flctl->chan_fifo0_rx); + + if (!flctl->chan_fifo0_rx) + goto err; + + cfg.direction = DMA_DEV_TO_MEM; + cfg.dst_addr = 0; + cfg.src_addr = flctl->fifo; + ret = dmaengine_slave_config(flctl->chan_fifo0_rx, &cfg); + if (ret < 0) + goto err; + + init_completion(&flctl->dma_complete); + + return; + +err: + flctl_release_dma(flctl); +} + +static void set_addr(struct mtd_info *mtd, int column, int page_addr) +{ + struct sh_flctl *flctl = mtd_to_flctl(mtd); + uint32_t addr = 0; + + if (column == -1) { + addr = page_addr; /* ERASE1 */ + } else if (page_addr != -1) { + /* SEQIN, READ0, etc.. */ + if (flctl->chip.options & NAND_BUSWIDTH_16) + column >>= 1; + if (flctl->page_size) { + addr = column & 0x0FFF; + addr |= (page_addr & 0xff) << 16; + addr |= ((page_addr >> 8) & 0xff) << 24; + /* big than 128MB */ + if (flctl->rw_ADRCNT == ADRCNT2_E) { + uint32_t addr2; + addr2 = (page_addr >> 16) & 0xff; + writel(addr2, FLADR2(flctl)); + } + } else { + addr = column; + addr |= (page_addr & 0xff) << 8; + addr |= ((page_addr >> 8) & 0xff) << 16; + addr |= ((page_addr >> 16) & 0xff) << 24; + } + } + writel(addr, FLADR(flctl)); +} + +static void wait_rfifo_ready(struct sh_flctl *flctl) +{ + uint32_t timeout = LOOP_TIMEOUT_MAX; + + while (timeout--) { + uint32_t val; + /* check FIFO */ + val = readl(FLDTCNTR(flctl)) >> 16; + if (val & 0xFF) + return; + udelay(1); + } + timeout_error(flctl, __func__); +} + +static void wait_wfifo_ready(struct sh_flctl *flctl) +{ + uint32_t len, timeout = LOOP_TIMEOUT_MAX; + + while (timeout--) { + /* check FIFO */ + len = (readl(FLDTCNTR(flctl)) >> 16) & 0xFF; + if (len >= 4) + return; + udelay(1); + } + timeout_error(flctl, __func__); +} + +static enum flctl_ecc_res_t wait_recfifo_ready + (struct sh_flctl *flctl, int sector_number) +{ + uint32_t timeout = LOOP_TIMEOUT_MAX; + void __iomem *ecc_reg[4]; + int i; + int state = FL_SUCCESS; + uint32_t data, size; + + /* + * First this loops checks in FLDTCNTR if we are ready to read out the + * oob data. This is the case if either all went fine without errors or + * if the bottom part of the loop corrected the errors or marked them as + * uncorrectable and the controller is given time to push the data into + * the FIFO. + */ + while (timeout--) { + /* check if all is ok and we can read out the OOB */ + size = readl(FLDTCNTR(flctl)) >> 24; + if ((size & 0xFF) == 4) + return state; + + /* check if a correction code has been calculated */ + if (!(readl(FL4ECCCR(flctl)) & _4ECCEND)) { + /* + * either we wait for the fifo to be filled or a + * correction pattern is being generated + */ + udelay(1); + continue; + } + + /* check for an uncorrectable error */ + if (readl(FL4ECCCR(flctl)) & _4ECCFA) { + /* check if we face a non-empty page */ + for (i = 0; i < 512; i++) { + if (flctl->done_buff[i] != 0xff) { + state = FL_ERROR; /* can't correct */ + break; + } + } + + if (state == FL_SUCCESS) + dev_dbg(&flctl->pdev->dev, + "reading empty sector %d, ecc error ignored\n", + sector_number); + + writel(0, FL4ECCCR(flctl)); + continue; + } + + /* start error correction */ + ecc_reg[0] = FL4ECCRESULT0(flctl); + ecc_reg[1] = FL4ECCRESULT1(flctl); + ecc_reg[2] = FL4ECCRESULT2(flctl); + ecc_reg[3] = FL4ECCRESULT3(flctl); + + for (i = 0; i < 3; i++) { + uint8_t org; + unsigned int index; + + data = readl(ecc_reg[i]); + + if (flctl->page_size) + index = (512 * sector_number) + + (data >> 16); + else + index = data >> 16; + + org = flctl->done_buff[index]; + flctl->done_buff[index] = org ^ (data & 0xFF); + } + state = FL_REPAIRABLE; + writel(0, FL4ECCCR(flctl)); + } + + timeout_error(flctl, __func__); + return FL_TIMEOUT; /* timeout */ +} + +static void wait_wecfifo_ready(struct sh_flctl *flctl) +{ + uint32_t timeout = LOOP_TIMEOUT_MAX; + uint32_t len; + + while (timeout--) { + /* check FLECFIFO */ + len = (readl(FLDTCNTR(flctl)) >> 24) & 0xFF; + if (len >= 4) + return; + udelay(1); + } + timeout_error(flctl, __func__); +} + +static int flctl_dma_fifo0_transfer(struct sh_flctl *flctl, unsigned long *buf, + int len, enum dma_data_direction dir) +{ + struct dma_async_tx_descriptor *desc = NULL; + struct dma_chan *chan; + enum dma_transfer_direction tr_dir; + dma_addr_t dma_addr; + dma_cookie_t cookie; + uint32_t reg; + int ret; + + if (dir == DMA_FROM_DEVICE) { + chan = flctl->chan_fifo0_rx; + tr_dir = DMA_DEV_TO_MEM; + } else { + chan = flctl->chan_fifo0_tx; + tr_dir = DMA_MEM_TO_DEV; + } + + dma_addr = dma_map_single(chan->device->dev, buf, len, dir); + + if (!dma_mapping_error(chan->device->dev, dma_addr)) + desc = dmaengine_prep_slave_single(chan, dma_addr, len, + tr_dir, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); + + if (desc) { + reg = readl(FLINTDMACR(flctl)); + reg |= DREQ0EN; + writel(reg, FLINTDMACR(flctl)); + + desc->callback = flctl_dma_complete; + desc->callback_param = flctl; + cookie = dmaengine_submit(desc); + if (dma_submit_error(cookie)) { + ret = dma_submit_error(cookie); + dev_warn(&flctl->pdev->dev, + "DMA submit failed, falling back to PIO\n"); + goto out; + } + + dma_async_issue_pending(chan); + } else { + /* DMA failed, fall back to PIO */ + flctl_release_dma(flctl); + dev_warn(&flctl->pdev->dev, + "DMA failed, falling back to PIO\n"); + ret = -EIO; + goto out; + } + + ret = + wait_for_completion_timeout(&flctl->dma_complete, + msecs_to_jiffies(3000)); + + if (ret <= 0) { + dmaengine_terminate_all(chan); + dev_err(&flctl->pdev->dev, "wait_for_completion_timeout\n"); + } + +out: + reg = readl(FLINTDMACR(flctl)); + reg &= ~DREQ0EN; + writel(reg, FLINTDMACR(flctl)); + + dma_unmap_single(chan->device->dev, dma_addr, len, dir); + + /* ret > 0 is success */ + return ret; +} + +static void read_datareg(struct sh_flctl *flctl, int offset) +{ + unsigned long data; + unsigned long *buf = (unsigned long *)&flctl->done_buff[offset]; + + wait_completion(flctl); + + data = readl(FLDATAR(flctl)); + *buf = le32_to_cpu(data); +} + +static void read_fiforeg(struct sh_flctl *flctl, int rlen, int offset) +{ + int i, len_4align; + unsigned long *buf = (unsigned long *)&flctl->done_buff[offset]; + + len_4align = (rlen + 3) / 4; + + /* initiate DMA transfer */ + if (flctl->chan_fifo0_rx && rlen >= 32 && + flctl_dma_fifo0_transfer(flctl, buf, rlen, DMA_DEV_TO_MEM) > 0) + goto convert; /* DMA success */ + + /* do polling transfer */ + for (i = 0; i < len_4align; i++) { + wait_rfifo_ready(flctl); + buf[i] = readl(FLDTFIFO(flctl)); + } + +convert: + for (i = 0; i < len_4align; i++) + buf[i] = be32_to_cpu(buf[i]); +} + +static enum flctl_ecc_res_t read_ecfiforeg + (struct sh_flctl *flctl, uint8_t *buff, int sector) +{ + int i; + enum flctl_ecc_res_t res; + unsigned long *ecc_buf = (unsigned long *)buff; + + res = wait_recfifo_ready(flctl , sector); + + if (res != FL_ERROR) { + for (i = 0; i < 4; i++) { + ecc_buf[i] = readl(FLECFIFO(flctl)); + ecc_buf[i] = be32_to_cpu(ecc_buf[i]); + } + } + + return res; +} + +static void write_fiforeg(struct sh_flctl *flctl, int rlen, + unsigned int offset) +{ + int i, len_4align; + unsigned long *buf = (unsigned long *)&flctl->done_buff[offset]; + + len_4align = (rlen + 3) / 4; + for (i = 0; i < len_4align; i++) { + wait_wfifo_ready(flctl); + writel(cpu_to_be32(buf[i]), FLDTFIFO(flctl)); + } +} + +static void write_ec_fiforeg(struct sh_flctl *flctl, int rlen, + unsigned int offset) +{ + int i, len_4align; + unsigned long *buf = (unsigned long *)&flctl->done_buff[offset]; + + len_4align = (rlen + 3) / 4; + + for (i = 0; i < len_4align; i++) + buf[i] = cpu_to_be32(buf[i]); + + /* initiate DMA transfer */ + if (flctl->chan_fifo0_tx && rlen >= 32 && + flctl_dma_fifo0_transfer(flctl, buf, rlen, DMA_MEM_TO_DEV) > 0) + return; /* DMA success */ + + /* do polling transfer */ + for (i = 0; i < len_4align; i++) { + wait_wecfifo_ready(flctl); + writel(buf[i], FLECFIFO(flctl)); + } +} + +static void set_cmd_regs(struct mtd_info *mtd, uint32_t cmd, uint32_t flcmcdr_val) +{ + struct sh_flctl *flctl = mtd_to_flctl(mtd); + uint32_t flcmncr_val = flctl->flcmncr_base & ~SEL_16BIT; + uint32_t flcmdcr_val, addr_len_bytes = 0; + + /* Set SNAND bit if page size is 2048byte */ + if (flctl->page_size) + flcmncr_val |= SNAND_E; + else + flcmncr_val &= ~SNAND_E; + + /* default FLCMDCR val */ + flcmdcr_val = DOCMD1_E | DOADR_E; + + /* Set for FLCMDCR */ + switch (cmd) { + case NAND_CMD_ERASE1: + addr_len_bytes = flctl->erase_ADRCNT; + flcmdcr_val |= DOCMD2_E; + break; + case NAND_CMD_READ0: + case NAND_CMD_READOOB: + case NAND_CMD_RNDOUT: + addr_len_bytes = flctl->rw_ADRCNT; + flcmdcr_val |= CDSRC_E; + if (flctl->chip.options & NAND_BUSWIDTH_16) + flcmncr_val |= SEL_16BIT; + break; + case NAND_CMD_SEQIN: + /* This case is that cmd is READ0 or READ1 or READ00 */ + flcmdcr_val &= ~DOADR_E; /* ONLY execute 1st cmd */ + break; + case NAND_CMD_PAGEPROG: + addr_len_bytes = flctl->rw_ADRCNT; + flcmdcr_val |= DOCMD2_E | CDSRC_E | SELRW; + if (flctl->chip.options & NAND_BUSWIDTH_16) + flcmncr_val |= SEL_16BIT; + break; + case NAND_CMD_READID: + flcmncr_val &= ~SNAND_E; + flcmdcr_val |= CDSRC_E; + addr_len_bytes = ADRCNT_1; + break; + case NAND_CMD_STATUS: + case NAND_CMD_RESET: + flcmncr_val &= ~SNAND_E; + flcmdcr_val &= ~(DOADR_E | DOSR_E); + break; + default: + break; + } + + /* Set address bytes parameter */ + flcmdcr_val |= addr_len_bytes; + + /* Now actually write */ + writel(flcmncr_val, FLCMNCR(flctl)); + writel(flcmdcr_val, FLCMDCR(flctl)); + writel(flcmcdr_val, FLCMCDR(flctl)); +} + +static int flctl_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip, + uint8_t *buf, int oob_required, int page) +{ + nand_read_page_op(chip, page, 0, buf, mtd->writesize); + if (oob_required) + chip->read_buf(mtd, chip->oob_poi, mtd->oobsize); + return 0; +} + +static int flctl_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip, + const uint8_t *buf, int oob_required, + int page) +{ + nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize); + chip->write_buf(mtd, chip->oob_poi, mtd->oobsize); + return nand_prog_page_end_op(chip); +} + +static void execmd_read_page_sector(struct mtd_info *mtd, int page_addr) +{ + struct sh_flctl *flctl = mtd_to_flctl(mtd); + int sector, page_sectors; + enum flctl_ecc_res_t ecc_result; + + page_sectors = flctl->page_size ? 4 : 1; + + set_cmd_regs(mtd, NAND_CMD_READ0, + (NAND_CMD_READSTART << 8) | NAND_CMD_READ0); + + writel(readl(FLCMNCR(flctl)) | ACM_SACCES_MODE | _4ECCCORRECT, + FLCMNCR(flctl)); + writel(readl(FLCMDCR(flctl)) | page_sectors, FLCMDCR(flctl)); + writel(page_addr << 2, FLADR(flctl)); + + empty_fifo(flctl); + start_translation(flctl); + + for (sector = 0; sector < page_sectors; sector++) { + read_fiforeg(flctl, 512, 512 * sector); + + ecc_result = read_ecfiforeg(flctl, + &flctl->done_buff[mtd->writesize + 16 * sector], + sector); + + switch (ecc_result) { + case FL_REPAIRABLE: + dev_info(&flctl->pdev->dev, + "applied ecc on page 0x%x", page_addr); + mtd->ecc_stats.corrected++; + break; + case FL_ERROR: + dev_warn(&flctl->pdev->dev, + "page 0x%x contains corrupted data\n", + page_addr); + mtd->ecc_stats.failed++; + break; + default: + ; + } + } + + wait_completion(flctl); + + writel(readl(FLCMNCR(flctl)) & ~(ACM_SACCES_MODE | _4ECCCORRECT), + FLCMNCR(flctl)); +} + +static void execmd_read_oob(struct mtd_info *mtd, int page_addr) +{ + struct sh_flctl *flctl = mtd_to_flctl(mtd); + int page_sectors = flctl->page_size ? 4 : 1; + int i; + + set_cmd_regs(mtd, NAND_CMD_READ0, + (NAND_CMD_READSTART << 8) | NAND_CMD_READ0); + + empty_fifo(flctl); + + for (i = 0; i < page_sectors; i++) { + set_addr(mtd, (512 + 16) * i + 512 , page_addr); + writel(16, FLDTCNTR(flctl)); + + start_translation(flctl); + read_fiforeg(flctl, 16, 16 * i); + wait_completion(flctl); + } +} + +static void execmd_write_page_sector(struct mtd_info *mtd) +{ + struct sh_flctl *flctl = mtd_to_flctl(mtd); + int page_addr = flctl->seqin_page_addr; + int sector, page_sectors; + + page_sectors = flctl->page_size ? 4 : 1; + + set_cmd_regs(mtd, NAND_CMD_PAGEPROG, + (NAND_CMD_PAGEPROG << 8) | NAND_CMD_SEQIN); + + empty_fifo(flctl); + writel(readl(FLCMNCR(flctl)) | ACM_SACCES_MODE, FLCMNCR(flctl)); + writel(readl(FLCMDCR(flctl)) | page_sectors, FLCMDCR(flctl)); + writel(page_addr << 2, FLADR(flctl)); + start_translation(flctl); + + for (sector = 0; sector < page_sectors; sector++) { + write_fiforeg(flctl, 512, 512 * sector); + write_ec_fiforeg(flctl, 16, mtd->writesize + 16 * sector); + } + + wait_completion(flctl); + writel(readl(FLCMNCR(flctl)) & ~ACM_SACCES_MODE, FLCMNCR(flctl)); +} + +static void execmd_write_oob(struct mtd_info *mtd) +{ + struct sh_flctl *flctl = mtd_to_flctl(mtd); + int page_addr = flctl->seqin_page_addr; + int sector, page_sectors; + + page_sectors = flctl->page_size ? 4 : 1; + + set_cmd_regs(mtd, NAND_CMD_PAGEPROG, + (NAND_CMD_PAGEPROG << 8) | NAND_CMD_SEQIN); + + for (sector = 0; sector < page_sectors; sector++) { + empty_fifo(flctl); + set_addr(mtd, sector * 528 + 512, page_addr); + writel(16, FLDTCNTR(flctl)); /* set read size */ + + start_translation(flctl); + write_fiforeg(flctl, 16, 16 * sector); + wait_completion(flctl); + } +} + +static void flctl_cmdfunc(struct mtd_info *mtd, unsigned int command, + int column, int page_addr) +{ + struct sh_flctl *flctl = mtd_to_flctl(mtd); + uint32_t read_cmd = 0; + + pm_runtime_get_sync(&flctl->pdev->dev); + + flctl->read_bytes = 0; + if (command != NAND_CMD_PAGEPROG) + flctl->index = 0; + + switch (command) { + case NAND_CMD_READ1: + case NAND_CMD_READ0: + if (flctl->hwecc) { + /* read page with hwecc */ + execmd_read_page_sector(mtd, page_addr); + break; + } + if (flctl->page_size) + set_cmd_regs(mtd, command, (NAND_CMD_READSTART << 8) + | command); + else + set_cmd_regs(mtd, command, command); + + set_addr(mtd, 0, page_addr); + + flctl->read_bytes = mtd->writesize + mtd->oobsize; + if (flctl->chip.options & NAND_BUSWIDTH_16) + column >>= 1; + flctl->index += column; + goto read_normal_exit; + + case NAND_CMD_READOOB: + if (flctl->hwecc) { + /* read page with hwecc */ + execmd_read_oob(mtd, page_addr); + break; + } + + if (flctl->page_size) { + set_cmd_regs(mtd, command, (NAND_CMD_READSTART << 8) + | NAND_CMD_READ0); + set_addr(mtd, mtd->writesize, page_addr); + } else { + set_cmd_regs(mtd, command, command); + set_addr(mtd, 0, page_addr); + } + flctl->read_bytes = mtd->oobsize; + goto read_normal_exit; + + case NAND_CMD_RNDOUT: + if (flctl->hwecc) + break; + + if (flctl->page_size) + set_cmd_regs(mtd, command, (NAND_CMD_RNDOUTSTART << 8) + | command); + else + set_cmd_regs(mtd, command, command); + + set_addr(mtd, column, 0); + + flctl->read_bytes = mtd->writesize + mtd->oobsize - column; + goto read_normal_exit; + + case NAND_CMD_READID: + set_cmd_regs(mtd, command, command); + + /* READID is always performed using an 8-bit bus */ + if (flctl->chip.options & NAND_BUSWIDTH_16) + column <<= 1; + set_addr(mtd, column, 0); + + flctl->read_bytes = 8; + writel(flctl->read_bytes, FLDTCNTR(flctl)); /* set read size */ + empty_fifo(flctl); + start_translation(flctl); + read_fiforeg(flctl, flctl->read_bytes, 0); + wait_completion(flctl); + break; + + case NAND_CMD_ERASE1: + flctl->erase1_page_addr = page_addr; + break; + + case NAND_CMD_ERASE2: + set_cmd_regs(mtd, NAND_CMD_ERASE1, + (command << 8) | NAND_CMD_ERASE1); + set_addr(mtd, -1, flctl->erase1_page_addr); + start_translation(flctl); + wait_completion(flctl); + break; + + case NAND_CMD_SEQIN: + if (!flctl->page_size) { + /* output read command */ + if (column >= mtd->writesize) { + column -= mtd->writesize; + read_cmd = NAND_CMD_READOOB; + } else if (column < 256) { + read_cmd = NAND_CMD_READ0; + } else { + column -= 256; + read_cmd = NAND_CMD_READ1; + } + } + flctl->seqin_column = column; + flctl->seqin_page_addr = page_addr; + flctl->seqin_read_cmd = read_cmd; + break; + + case NAND_CMD_PAGEPROG: + empty_fifo(flctl); + if (!flctl->page_size) { + set_cmd_regs(mtd, NAND_CMD_SEQIN, + flctl->seqin_read_cmd); + set_addr(mtd, -1, -1); + writel(0, FLDTCNTR(flctl)); /* set 0 size */ + start_translation(flctl); + wait_completion(flctl); + } + if (flctl->hwecc) { + /* write page with hwecc */ + if (flctl->seqin_column == mtd->writesize) + execmd_write_oob(mtd); + else if (!flctl->seqin_column) + execmd_write_page_sector(mtd); + else + printk(KERN_ERR "Invalid address !?\n"); + break; + } + set_cmd_regs(mtd, command, (command << 8) | NAND_CMD_SEQIN); + set_addr(mtd, flctl->seqin_column, flctl->seqin_page_addr); + writel(flctl->index, FLDTCNTR(flctl)); /* set write size */ + start_translation(flctl); + write_fiforeg(flctl, flctl->index, 0); + wait_completion(flctl); + break; + + case NAND_CMD_STATUS: + set_cmd_regs(mtd, command, command); + set_addr(mtd, -1, -1); + + flctl->read_bytes = 1; + writel(flctl->read_bytes, FLDTCNTR(flctl)); /* set read size */ + start_translation(flctl); + read_datareg(flctl, 0); /* read and end */ + break; + + case NAND_CMD_RESET: + set_cmd_regs(mtd, command, command); + set_addr(mtd, -1, -1); + + writel(0, FLDTCNTR(flctl)); /* set 0 size */ + start_translation(flctl); + wait_completion(flctl); + break; + + default: + break; + } + goto runtime_exit; + +read_normal_exit: + writel(flctl->read_bytes, FLDTCNTR(flctl)); /* set read size */ + empty_fifo(flctl); + start_translation(flctl); + read_fiforeg(flctl, flctl->read_bytes, 0); + wait_completion(flctl); +runtime_exit: + pm_runtime_put_sync(&flctl->pdev->dev); + return; +} + +static void flctl_select_chip(struct mtd_info *mtd, int chipnr) +{ + struct sh_flctl *flctl = mtd_to_flctl(mtd); + int ret; + + switch (chipnr) { + case -1: + flctl->flcmncr_base &= ~CE0_ENABLE; + + pm_runtime_get_sync(&flctl->pdev->dev); + writel(flctl->flcmncr_base, FLCMNCR(flctl)); + + if (flctl->qos_request) { + dev_pm_qos_remove_request(&flctl->pm_qos); + flctl->qos_request = 0; + } + + pm_runtime_put_sync(&flctl->pdev->dev); + break; + case 0: + flctl->flcmncr_base |= CE0_ENABLE; + + if (!flctl->qos_request) { + ret = dev_pm_qos_add_request(&flctl->pdev->dev, + &flctl->pm_qos, + DEV_PM_QOS_RESUME_LATENCY, + 100); + if (ret < 0) + dev_err(&flctl->pdev->dev, + "PM QoS request failed: %d\n", ret); + flctl->qos_request = 1; + } + + if (flctl->holden) { + pm_runtime_get_sync(&flctl->pdev->dev); + writel(HOLDEN, FLHOLDCR(flctl)); + pm_runtime_put_sync(&flctl->pdev->dev); + } + break; + default: + BUG(); + } +} + +static void flctl_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) +{ + struct sh_flctl *flctl = mtd_to_flctl(mtd); + + memcpy(&flctl->done_buff[flctl->index], buf, len); + flctl->index += len; +} + +static uint8_t flctl_read_byte(struct mtd_info *mtd) +{ + struct sh_flctl *flctl = mtd_to_flctl(mtd); + uint8_t data; + + data = flctl->done_buff[flctl->index]; + flctl->index++; + return data; +} + +static uint16_t flctl_read_word(struct mtd_info *mtd) +{ + struct sh_flctl *flctl = mtd_to_flctl(mtd); + uint16_t *buf = (uint16_t *)&flctl->done_buff[flctl->index]; + + flctl->index += 2; + return *buf; +} + +static void flctl_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) +{ + struct sh_flctl *flctl = mtd_to_flctl(mtd); + + memcpy(buf, &flctl->done_buff[flctl->index], len); + flctl->index += len; +} + +static int flctl_chip_init_tail(struct mtd_info *mtd) +{ + struct sh_flctl *flctl = mtd_to_flctl(mtd); + struct nand_chip *chip = &flctl->chip; + + if (mtd->writesize == 512) { + flctl->page_size = 0; + if (chip->chipsize > (32 << 20)) { + /* big than 32MB */ + flctl->rw_ADRCNT = ADRCNT_4; + flctl->erase_ADRCNT = ADRCNT_3; + } else if (chip->chipsize > (2 << 16)) { + /* big than 128KB */ + flctl->rw_ADRCNT = ADRCNT_3; + flctl->erase_ADRCNT = ADRCNT_2; + } else { + flctl->rw_ADRCNT = ADRCNT_2; + flctl->erase_ADRCNT = ADRCNT_1; + } + } else { + flctl->page_size = 1; + if (chip->chipsize > (128 << 20)) { + /* big than 128MB */ + flctl->rw_ADRCNT = ADRCNT2_E; + flctl->erase_ADRCNT = ADRCNT_3; + } else if (chip->chipsize > (8 << 16)) { + /* big than 512KB */ + flctl->rw_ADRCNT = ADRCNT_4; + flctl->erase_ADRCNT = ADRCNT_2; + } else { + flctl->rw_ADRCNT = ADRCNT_3; + flctl->erase_ADRCNT = ADRCNT_1; + } + } + + if (flctl->hwecc) { + if (mtd->writesize == 512) { + mtd_set_ooblayout(mtd, &flctl_4secc_oob_smallpage_ops); + chip->badblock_pattern = &flctl_4secc_smallpage; + } else { + mtd_set_ooblayout(mtd, &flctl_4secc_oob_largepage_ops); + chip->badblock_pattern = &flctl_4secc_largepage; + } + + chip->ecc.size = 512; + chip->ecc.bytes = 10; + chip->ecc.strength = 4; + chip->ecc.read_page = flctl_read_page_hwecc; + chip->ecc.write_page = flctl_write_page_hwecc; + chip->ecc.mode = NAND_ECC_HW; + + /* 4 symbols ECC enabled */ + flctl->flcmncr_base |= _4ECCEN; + } else { + chip->ecc.mode = NAND_ECC_SOFT; + chip->ecc.algo = NAND_ECC_HAMMING; + } + + return 0; +} + +static irqreturn_t flctl_handle_flste(int irq, void *dev_id) +{ + struct sh_flctl *flctl = dev_id; + + dev_err(&flctl->pdev->dev, "flste irq: %x\n", readl(FLINTDMACR(flctl))); + writel(flctl->flintdmacr_base, FLINTDMACR(flctl)); + + return IRQ_HANDLED; +} + +struct flctl_soc_config { + unsigned long flcmncr_val; + unsigned has_hwecc:1; + unsigned use_holden:1; +}; + +static struct flctl_soc_config flctl_sh7372_config = { + .flcmncr_val = CLK_16B_12L_4H | TYPESEL_SET | SHBUSSEL, + .has_hwecc = 1, + .use_holden = 1, +}; + +static const struct of_device_id of_flctl_match[] = { + { .compatible = "renesas,shmobile-flctl-sh7372", + .data = &flctl_sh7372_config }, + {}, +}; +MODULE_DEVICE_TABLE(of, of_flctl_match); + +static struct sh_flctl_platform_data *flctl_parse_dt(struct device *dev) +{ + const struct flctl_soc_config *config; + struct sh_flctl_platform_data *pdata; + + config = of_device_get_match_data(dev); + if (!config) { + dev_err(dev, "%s: no OF configuration attached\n", __func__); + return NULL; + } + + pdata = devm_kzalloc(dev, sizeof(struct sh_flctl_platform_data), + GFP_KERNEL); + if (!pdata) + return NULL; + + /* set SoC specific options */ + pdata->flcmncr_val = config->flcmncr_val; + pdata->has_hwecc = config->has_hwecc; + pdata->use_holden = config->use_holden; + + return pdata; +} + +static int flctl_probe(struct platform_device *pdev) +{ + struct resource *res; + struct sh_flctl *flctl; + struct mtd_info *flctl_mtd; + struct nand_chip *nand; + struct sh_flctl_platform_data *pdata; + int ret; + int irq; + + flctl = devm_kzalloc(&pdev->dev, sizeof(struct sh_flctl), GFP_KERNEL); + if (!flctl) + return -ENOMEM; + + res = platform_get_resource(pdev, IORESOURCE_MEM, 0); + flctl->reg = devm_ioremap_resource(&pdev->dev, res); + if (IS_ERR(flctl->reg)) + return PTR_ERR(flctl->reg); + flctl->fifo = res->start + 0x24; /* FLDTFIFO */ + + irq = platform_get_irq(pdev, 0); + if (irq < 0) { + dev_err(&pdev->dev, "failed to get flste irq data: %d\n", irq); + return irq; + } + + ret = devm_request_irq(&pdev->dev, irq, flctl_handle_flste, IRQF_SHARED, + "flste", flctl); + if (ret) { + dev_err(&pdev->dev, "request interrupt failed.\n"); + return ret; + } + + if (pdev->dev.of_node) + pdata = flctl_parse_dt(&pdev->dev); + else + pdata = dev_get_platdata(&pdev->dev); + + if (!pdata) { + dev_err(&pdev->dev, "no setup data defined\n"); + return -EINVAL; + } + + platform_set_drvdata(pdev, flctl); + nand = &flctl->chip; + flctl_mtd = nand_to_mtd(nand); + nand_set_flash_node(nand, pdev->dev.of_node); + flctl_mtd->dev.parent = &pdev->dev; + flctl->pdev = pdev; + flctl->hwecc = pdata->has_hwecc; + flctl->holden = pdata->use_holden; + flctl->flcmncr_base = pdata->flcmncr_val; + flctl->flintdmacr_base = flctl->hwecc ? (STERINTE | ECERB) : STERINTE; + + /* Set address of hardware control function */ + /* 20 us command delay time */ + nand->chip_delay = 20; + + nand->read_byte = flctl_read_byte; + nand->read_word = flctl_read_word; + nand->write_buf = flctl_write_buf; + nand->read_buf = flctl_read_buf; + nand->select_chip = flctl_select_chip; + nand->cmdfunc = flctl_cmdfunc; + nand->onfi_set_features = nand_onfi_get_set_features_notsupp; + nand->onfi_get_features = nand_onfi_get_set_features_notsupp; + + if (pdata->flcmncr_val & SEL_16BIT) + nand->options |= NAND_BUSWIDTH_16; + + pm_runtime_enable(&pdev->dev); + pm_runtime_resume(&pdev->dev); + + flctl_setup_dma(flctl); + + ret = nand_scan_ident(flctl_mtd, 1, NULL); + if (ret) + goto err_chip; + + if (nand->options & NAND_BUSWIDTH_16) { + /* + * NAND_BUSWIDTH_16 may have been set by nand_scan_ident(). + * Add the SEL_16BIT flag in pdata->flcmncr_val and re-assign + * flctl->flcmncr_base to pdata->flcmncr_val. + */ + pdata->flcmncr_val |= SEL_16BIT; + flctl->flcmncr_base = pdata->flcmncr_val; + } + + ret = flctl_chip_init_tail(flctl_mtd); + if (ret) + goto err_chip; + + ret = nand_scan_tail(flctl_mtd); + if (ret) + goto err_chip; + + ret = mtd_device_register(flctl_mtd, pdata->parts, pdata->nr_parts); + + return 0; + +err_chip: + flctl_release_dma(flctl); + pm_runtime_disable(&pdev->dev); + return ret; +} + +static int flctl_remove(struct platform_device *pdev) +{ + struct sh_flctl *flctl = platform_get_drvdata(pdev); + + flctl_release_dma(flctl); + nand_release(nand_to_mtd(&flctl->chip)); + pm_runtime_disable(&pdev->dev); + + return 0; +} + +static struct platform_driver flctl_driver = { + .remove = flctl_remove, + .driver = { + .name = "sh_flctl", + .of_match_table = of_match_ptr(of_flctl_match), + }, +}; + +module_platform_driver_probe(flctl_driver, flctl_probe); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Yoshihiro Shimoda"); +MODULE_DESCRIPTION("SuperH FLCTL driver"); +MODULE_ALIAS("platform:sh_flctl"); diff --git a/drivers/mtd/nand/raw/sharpsl.c b/drivers/mtd/nand/raw/sharpsl.c new file mode 100644 index 000000000000..e93df02c825e --- /dev/null +++ b/drivers/mtd/nand/raw/sharpsl.c @@ -0,0 +1,233 @@ +/* + * Copyright (C) 2004 Richard Purdie + * Copyright (C) 2008 Dmitry Baryshkov + * + * Based on Sharp's NAND driver sharp_sl.c + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + * + */ + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#include +#include +#include + +struct sharpsl_nand { + struct nand_chip chip; + + void __iomem *io; +}; + +static inline struct sharpsl_nand *mtd_to_sharpsl(struct mtd_info *mtd) +{ + return container_of(mtd_to_nand(mtd), struct sharpsl_nand, chip); +} + +/* register offset */ +#define ECCLPLB 0x00 /* line parity 7 - 0 bit */ +#define ECCLPUB 0x04 /* line parity 15 - 8 bit */ +#define ECCCP 0x08 /* column parity 5 - 0 bit */ +#define ECCCNTR 0x0C /* ECC byte counter */ +#define ECCCLRR 0x10 /* cleare ECC */ +#define FLASHIO 0x14 /* Flash I/O */ +#define FLASHCTL 0x18 /* Flash Control */ + +/* Flash control bit */ +#define FLRYBY (1 << 5) +#define FLCE1 (1 << 4) +#define FLWP (1 << 3) +#define FLALE (1 << 2) +#define FLCLE (1 << 1) +#define FLCE0 (1 << 0) + +/* + * hardware specific access to control-lines + * ctrl: + * NAND_CNE: bit 0 -> ! bit 0 & 4 + * NAND_CLE: bit 1 -> bit 1 + * NAND_ALE: bit 2 -> bit 2 + * + */ +static void sharpsl_nand_hwcontrol(struct mtd_info *mtd, int cmd, + unsigned int ctrl) +{ + struct sharpsl_nand *sharpsl = mtd_to_sharpsl(mtd); + struct nand_chip *chip = mtd_to_nand(mtd); + + if (ctrl & NAND_CTRL_CHANGE) { + unsigned char bits = ctrl & 0x07; + + bits |= (ctrl & 0x01) << 4; + + bits ^= 0x11; + + writeb((readb(sharpsl->io + FLASHCTL) & ~0x17) | bits, sharpsl->io + FLASHCTL); + } + + if (cmd != NAND_CMD_NONE) + writeb(cmd, chip->IO_ADDR_W); +} + +static int sharpsl_nand_dev_ready(struct mtd_info *mtd) +{ + struct sharpsl_nand *sharpsl = mtd_to_sharpsl(mtd); + return !((readb(sharpsl->io + FLASHCTL) & FLRYBY) == 0); +} + +static void sharpsl_nand_enable_hwecc(struct mtd_info *mtd, int mode) +{ + struct sharpsl_nand *sharpsl = mtd_to_sharpsl(mtd); + writeb(0, sharpsl->io + ECCCLRR); +} + +static int sharpsl_nand_calculate_ecc(struct mtd_info *mtd, const u_char * dat, u_char * ecc_code) +{ + struct sharpsl_nand *sharpsl = mtd_to_sharpsl(mtd); + ecc_code[0] = ~readb(sharpsl->io + ECCLPUB); + ecc_code[1] = ~readb(sharpsl->io + ECCLPLB); + ecc_code[2] = (~readb(sharpsl->io + ECCCP) << 2) | 0x03; + return readb(sharpsl->io + ECCCNTR) != 0; +} + +/* + * Main initialization routine + */ +static int sharpsl_nand_probe(struct platform_device *pdev) +{ + struct nand_chip *this; + struct mtd_info *mtd; + struct resource *r; + int err = 0; + struct sharpsl_nand *sharpsl; + struct sharpsl_nand_platform_data *data = dev_get_platdata(&pdev->dev); + + if (!data) { + dev_err(&pdev->dev, "no platform data!\n"); + return -EINVAL; + } + + /* Allocate memory for MTD device structure and private data */ + sharpsl = kzalloc(sizeof(struct sharpsl_nand), GFP_KERNEL); + if (!sharpsl) + return -ENOMEM; + + r = platform_get_resource(pdev, IORESOURCE_MEM, 0); + if (!r) { + dev_err(&pdev->dev, "no io memory resource defined!\n"); + err = -ENODEV; + goto err_get_res; + } + + /* map physical address */ + sharpsl->io = ioremap(r->start, resource_size(r)); + if (!sharpsl->io) { + dev_err(&pdev->dev, "ioremap to access Sharp SL NAND chip failed\n"); + err = -EIO; + goto err_ioremap; + } + + /* Get pointer to private data */ + this = (struct nand_chip *)(&sharpsl->chip); + + /* Link the private data with the MTD structure */ + mtd = nand_to_mtd(this); + mtd->dev.parent = &pdev->dev; + mtd_set_ooblayout(mtd, data->ecc_layout); + + platform_set_drvdata(pdev, sharpsl); + + /* + * PXA initialize + */ + writeb(readb(sharpsl->io + FLASHCTL) | FLWP, sharpsl->io + FLASHCTL); + + /* Set address of NAND IO lines */ + this->IO_ADDR_R = sharpsl->io + FLASHIO; + this->IO_ADDR_W = sharpsl->io + FLASHIO; + /* Set address of hardware control function */ + this->cmd_ctrl = sharpsl_nand_hwcontrol; + this->dev_ready = sharpsl_nand_dev_ready; + /* 15 us command delay time */ + this->chip_delay = 15; + /* set eccmode using hardware ECC */ + this->ecc.mode = NAND_ECC_HW; + this->ecc.size = 256; + this->ecc.bytes = 3; + this->ecc.strength = 1; + this->badblock_pattern = data->badblock_pattern; + this->ecc.hwctl = sharpsl_nand_enable_hwecc; + this->ecc.calculate = sharpsl_nand_calculate_ecc; + this->ecc.correct = nand_correct_data; + + /* Scan to find existence of the device */ + err = nand_scan(mtd, 1); + if (err) + goto err_scan; + + /* Register the partitions */ + mtd->name = "sharpsl-nand"; + + err = mtd_device_parse_register(mtd, data->part_parsers, NULL, + data->partitions, data->nr_partitions); + if (err) + goto err_add; + + /* Return happy */ + return 0; + +err_add: + nand_release(mtd); + +err_scan: + iounmap(sharpsl->io); +err_ioremap: +err_get_res: + kfree(sharpsl); + return err; +} + +/* + * Clean up routine + */ +static int sharpsl_nand_remove(struct platform_device *pdev) +{ + struct sharpsl_nand *sharpsl = platform_get_drvdata(pdev); + + /* Release resources, unregister device */ + nand_release(nand_to_mtd(&sharpsl->chip)); + + iounmap(sharpsl->io); + + /* Free the MTD device structure */ + kfree(sharpsl); + + return 0; +} + +static struct platform_driver sharpsl_nand_driver = { + .driver = { + .name = "sharpsl-nand", + }, + .probe = sharpsl_nand_probe, + .remove = sharpsl_nand_remove, +}; + +module_platform_driver(sharpsl_nand_driver); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Richard Purdie "); +MODULE_DESCRIPTION("Device specific logic for NAND flash on Sharp SL-C7xx Series"); diff --git a/drivers/mtd/nand/raw/sm_common.c b/drivers/mtd/nand/raw/sm_common.c new file mode 100644 index 000000000000..c378705c6e2b --- /dev/null +++ b/drivers/mtd/nand/raw/sm_common.c @@ -0,0 +1,202 @@ +/* + * Copyright © 2009 - Maxim Levitsky + * Common routines & support for xD format + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + */ +#include +#include +#include +#include +#include "sm_common.h" + +static int oob_sm_ooblayout_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + if (section > 1) + return -ERANGE; + + oobregion->length = 3; + oobregion->offset = ((section + 1) * 8) - 3; + + return 0; +} + +static int oob_sm_ooblayout_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + switch (section) { + case 0: + /* reserved */ + oobregion->offset = 0; + oobregion->length = 4; + break; + case 1: + /* LBA1 */ + oobregion->offset = 6; + oobregion->length = 2; + break; + case 2: + /* LBA2 */ + oobregion->offset = 11; + oobregion->length = 2; + break; + default: + return -ERANGE; + } + + return 0; +} + +static const struct mtd_ooblayout_ops oob_sm_ops = { + .ecc = oob_sm_ooblayout_ecc, + .free = oob_sm_ooblayout_free, +}; + +/* NOTE: This layout is is not compatabable with SmartMedia, */ +/* because the 256 byte devices have page depenent oob layout */ +/* However it does preserve the bad block markers */ +/* If you use smftl, it will bypass this and work correctly */ +/* If you not, then you break SmartMedia compliance anyway */ + +static int oob_sm_small_ooblayout_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + if (section) + return -ERANGE; + + oobregion->length = 3; + oobregion->offset = 0; + + return 0; +} + +static int oob_sm_small_ooblayout_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + switch (section) { + case 0: + /* reserved */ + oobregion->offset = 3; + oobregion->length = 2; + break; + case 1: + /* LBA1 */ + oobregion->offset = 6; + oobregion->length = 2; + break; + default: + return -ERANGE; + } + + return 0; +} + +static const struct mtd_ooblayout_ops oob_sm_small_ops = { + .ecc = oob_sm_small_ooblayout_ecc, + .free = oob_sm_small_ooblayout_free, +}; + +static int sm_block_markbad(struct mtd_info *mtd, loff_t ofs) +{ + struct mtd_oob_ops ops; + struct sm_oob oob; + int ret; + + memset(&oob, -1, SM_OOB_SIZE); + oob.block_status = 0x0F; + + /* As long as this function is called on erase block boundaries + it will work correctly for 256 byte nand */ + ops.mode = MTD_OPS_PLACE_OOB; + ops.ooboffs = 0; + ops.ooblen = mtd->oobsize; + ops.oobbuf = (void *)&oob; + ops.datbuf = NULL; + + + ret = mtd_write_oob(mtd, ofs, &ops); + if (ret < 0 || ops.oobretlen != SM_OOB_SIZE) { + printk(KERN_NOTICE + "sm_common: can't mark sector at %i as bad\n", + (int)ofs); + return -EIO; + } + + return 0; +} + +static struct nand_flash_dev nand_smartmedia_flash_ids[] = { + LEGACY_ID_NAND("SmartMedia 2MiB 3,3V ROM", 0x5d, 2, SZ_8K, NAND_ROM), + LEGACY_ID_NAND("SmartMedia 4MiB 3,3V", 0xe3, 4, SZ_8K, 0), + LEGACY_ID_NAND("SmartMedia 4MiB 3,3/5V", 0xe5, 4, SZ_8K, 0), + LEGACY_ID_NAND("SmartMedia 4MiB 5V", 0x6b, 4, SZ_8K, 0), + LEGACY_ID_NAND("SmartMedia 4MiB 3,3V ROM", 0xd5, 4, SZ_8K, NAND_ROM), + LEGACY_ID_NAND("SmartMedia 8MiB 3,3V", 0xe6, 8, SZ_8K, 0), + LEGACY_ID_NAND("SmartMedia 8MiB 3,3V ROM", 0xd6, 8, SZ_8K, NAND_ROM), + LEGACY_ID_NAND("SmartMedia 16MiB 3,3V", 0x73, 16, SZ_16K, 0), + LEGACY_ID_NAND("SmartMedia 16MiB 3,3V ROM", 0x57, 16, SZ_16K, NAND_ROM), + LEGACY_ID_NAND("SmartMedia 32MiB 3,3V", 0x75, 32, SZ_16K, 0), + LEGACY_ID_NAND("SmartMedia 32MiB 3,3V ROM", 0x58, 32, SZ_16K, NAND_ROM), + LEGACY_ID_NAND("SmartMedia 64MiB 3,3V", 0x76, 64, SZ_16K, 0), + LEGACY_ID_NAND("SmartMedia 64MiB 3,3V ROM", 0xd9, 64, SZ_16K, NAND_ROM), + LEGACY_ID_NAND("SmartMedia 128MiB 3,3V", 0x79, 128, SZ_16K, 0), + LEGACY_ID_NAND("SmartMedia 128MiB 3,3V ROM", 0xda, 128, SZ_16K, NAND_ROM), + LEGACY_ID_NAND("SmartMedia 256MiB 3, 3V", 0x71, 256, SZ_16K, 0), + LEGACY_ID_NAND("SmartMedia 256MiB 3,3V ROM", 0x5b, 256, SZ_16K, NAND_ROM), + {NULL} +}; + +static struct nand_flash_dev nand_xd_flash_ids[] = { + LEGACY_ID_NAND("xD 16MiB 3,3V", 0x73, 16, SZ_16K, 0), + LEGACY_ID_NAND("xD 32MiB 3,3V", 0x75, 32, SZ_16K, 0), + LEGACY_ID_NAND("xD 64MiB 3,3V", 0x76, 64, SZ_16K, 0), + LEGACY_ID_NAND("xD 128MiB 3,3V", 0x79, 128, SZ_16K, 0), + LEGACY_ID_NAND("xD 256MiB 3,3V", 0x71, 256, SZ_16K, NAND_BROKEN_XD), + LEGACY_ID_NAND("xD 512MiB 3,3V", 0xdc, 512, SZ_16K, NAND_BROKEN_XD), + LEGACY_ID_NAND("xD 1GiB 3,3V", 0xd3, 1024, SZ_16K, NAND_BROKEN_XD), + LEGACY_ID_NAND("xD 2GiB 3,3V", 0xd5, 2048, SZ_16K, NAND_BROKEN_XD), + {NULL} +}; + +int sm_register_device(struct mtd_info *mtd, int smartmedia) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + int ret; + + chip->options |= NAND_SKIP_BBTSCAN; + + /* Scan for card properties */ + ret = nand_scan_ident(mtd, 1, smartmedia ? + nand_smartmedia_flash_ids : nand_xd_flash_ids); + + if (ret) + return ret; + + /* Bad block marker position */ + chip->badblockpos = 0x05; + chip->badblockbits = 7; + chip->block_markbad = sm_block_markbad; + + /* ECC layout */ + if (mtd->writesize == SM_SECTOR_SIZE) + mtd_set_ooblayout(mtd, &oob_sm_ops); + else if (mtd->writesize == SM_SMALL_PAGE) + mtd_set_ooblayout(mtd, &oob_sm_small_ops); + else + return -ENODEV; + + ret = nand_scan_tail(mtd); + + if (ret) + return ret; + + return mtd_device_register(mtd, NULL, 0); +} +EXPORT_SYMBOL_GPL(sm_register_device); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Maxim Levitsky "); +MODULE_DESCRIPTION("Common SmartMedia/xD functions"); diff --git a/drivers/mtd/nand/raw/sm_common.h b/drivers/mtd/nand/raw/sm_common.h new file mode 100644 index 000000000000..1581671b05ae --- /dev/null +++ b/drivers/mtd/nand/raw/sm_common.h @@ -0,0 +1,61 @@ +/* + * Copyright © 2009 - Maxim Levitsky + * Common routines & support for SmartMedia/xD format + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + */ +#include +#include + +/* Full oob structure as written on the flash */ +struct sm_oob { + uint32_t reserved; + uint8_t data_status; + uint8_t block_status; + uint8_t lba_copy1[2]; + uint8_t ecc2[3]; + uint8_t lba_copy2[2]; + uint8_t ecc1[3]; +} __packed; + + +/* one sector is always 512 bytes, but it can consist of two nand pages */ +#define SM_SECTOR_SIZE 512 + +/* oob area is also 16 bytes, but might be from two pages */ +#define SM_OOB_SIZE 16 + +/* This is maximum zone size, and all devices that have more that one zone + have this size */ +#define SM_MAX_ZONE_SIZE 1024 + +/* support for small page nand */ +#define SM_SMALL_PAGE 256 +#define SM_SMALL_OOB_SIZE 8 + + +int sm_register_device(struct mtd_info *mtd, int smartmedia); + + +static inline int sm_sector_valid(struct sm_oob *oob) +{ + return hweight16(oob->data_status) >= 5; +} + +static inline int sm_block_valid(struct sm_oob *oob) +{ + return hweight16(oob->block_status) >= 7; +} + +static inline int sm_block_erased(struct sm_oob *oob) +{ + static const uint32_t erased_pattern[4] = { + 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF }; + + /* First test for erased block */ + if (!memcmp(oob, erased_pattern, sizeof(*oob))) + return 1; + return 0; +} diff --git a/drivers/mtd/nand/raw/socrates_nand.c b/drivers/mtd/nand/raw/socrates_nand.c new file mode 100644 index 000000000000..9824a9923583 --- /dev/null +++ b/drivers/mtd/nand/raw/socrates_nand.c @@ -0,0 +1,241 @@ +/* + * Copyright © 2008 Ilya Yanok, Emcraft Systems + * + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + * + */ + +#include +#include +#include +#include +#include +#include +#include +#include + +#define FPGA_NAND_CMD_MASK (0x7 << 28) +#define FPGA_NAND_CMD_COMMAND (0x0 << 28) +#define FPGA_NAND_CMD_ADDR (0x1 << 28) +#define FPGA_NAND_CMD_READ (0x2 << 28) +#define FPGA_NAND_CMD_WRITE (0x3 << 28) +#define FPGA_NAND_BUSY (0x1 << 15) +#define FPGA_NAND_ENABLE (0x1 << 31) +#define FPGA_NAND_DATA_SHIFT 16 + +struct socrates_nand_host { + struct nand_chip nand_chip; + void __iomem *io_base; + struct device *dev; +}; + +/** + * socrates_nand_write_buf - write buffer to chip + * @mtd: MTD device structure + * @buf: data buffer + * @len: number of bytes to write + */ +static void socrates_nand_write_buf(struct mtd_info *mtd, + const uint8_t *buf, int len) +{ + int i; + struct nand_chip *this = mtd_to_nand(mtd); + struct socrates_nand_host *host = nand_get_controller_data(this); + + for (i = 0; i < len; i++) { + out_be32(host->io_base, FPGA_NAND_ENABLE | + FPGA_NAND_CMD_WRITE | + (buf[i] << FPGA_NAND_DATA_SHIFT)); + } +} + +/** + * socrates_nand_read_buf - read chip data into buffer + * @mtd: MTD device structure + * @buf: buffer to store date + * @len: number of bytes to read + */ +static void socrates_nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) +{ + int i; + struct nand_chip *this = mtd_to_nand(mtd); + struct socrates_nand_host *host = nand_get_controller_data(this); + uint32_t val; + + val = FPGA_NAND_ENABLE | FPGA_NAND_CMD_READ; + + out_be32(host->io_base, val); + for (i = 0; i < len; i++) { + buf[i] = (in_be32(host->io_base) >> + FPGA_NAND_DATA_SHIFT) & 0xff; + } +} + +/** + * socrates_nand_read_byte - read one byte from the chip + * @mtd: MTD device structure + */ +static uint8_t socrates_nand_read_byte(struct mtd_info *mtd) +{ + uint8_t byte; + socrates_nand_read_buf(mtd, &byte, sizeof(byte)); + return byte; +} + +/** + * socrates_nand_read_word - read one word from the chip + * @mtd: MTD device structure + */ +static uint16_t socrates_nand_read_word(struct mtd_info *mtd) +{ + uint16_t word; + socrates_nand_read_buf(mtd, (uint8_t *)&word, sizeof(word)); + return word; +} + +/* + * Hardware specific access to control-lines + */ +static void socrates_nand_cmd_ctrl(struct mtd_info *mtd, int cmd, + unsigned int ctrl) +{ + struct nand_chip *nand_chip = mtd_to_nand(mtd); + struct socrates_nand_host *host = nand_get_controller_data(nand_chip); + uint32_t val; + + if (cmd == NAND_CMD_NONE) + return; + + if (ctrl & NAND_CLE) + val = FPGA_NAND_CMD_COMMAND; + else + val = FPGA_NAND_CMD_ADDR; + + if (ctrl & NAND_NCE) + val |= FPGA_NAND_ENABLE; + + val |= (cmd & 0xff) << FPGA_NAND_DATA_SHIFT; + + out_be32(host->io_base, val); +} + +/* + * Read the Device Ready pin. + */ +static int socrates_nand_device_ready(struct mtd_info *mtd) +{ + struct nand_chip *nand_chip = mtd_to_nand(mtd); + struct socrates_nand_host *host = nand_get_controller_data(nand_chip); + + if (in_be32(host->io_base) & FPGA_NAND_BUSY) + return 0; /* busy */ + return 1; +} + +/* + * Probe for the NAND device. + */ +static int socrates_nand_probe(struct platform_device *ofdev) +{ + struct socrates_nand_host *host; + struct mtd_info *mtd; + struct nand_chip *nand_chip; + int res; + + /* Allocate memory for the device structure (and zero it) */ + host = devm_kzalloc(&ofdev->dev, sizeof(*host), GFP_KERNEL); + if (!host) + return -ENOMEM; + + host->io_base = of_iomap(ofdev->dev.of_node, 0); + if (host->io_base == NULL) { + dev_err(&ofdev->dev, "ioremap failed\n"); + return -EIO; + } + + nand_chip = &host->nand_chip; + mtd = nand_to_mtd(nand_chip); + host->dev = &ofdev->dev; + + /* link the private data structures */ + nand_set_controller_data(nand_chip, host); + nand_set_flash_node(nand_chip, ofdev->dev.of_node); + mtd->name = "socrates_nand"; + mtd->dev.parent = &ofdev->dev; + + /*should never be accessed directly */ + nand_chip->IO_ADDR_R = (void *)0xdeadbeef; + nand_chip->IO_ADDR_W = (void *)0xdeadbeef; + + nand_chip->cmd_ctrl = socrates_nand_cmd_ctrl; + nand_chip->read_byte = socrates_nand_read_byte; + nand_chip->read_word = socrates_nand_read_word; + nand_chip->write_buf = socrates_nand_write_buf; + nand_chip->read_buf = socrates_nand_read_buf; + nand_chip->dev_ready = socrates_nand_device_ready; + + nand_chip->ecc.mode = NAND_ECC_SOFT; /* enable ECC */ + nand_chip->ecc.algo = NAND_ECC_HAMMING; + + /* TODO: I have no idea what real delay is. */ + nand_chip->chip_delay = 20; /* 20us command delay time */ + + dev_set_drvdata(&ofdev->dev, host); + + res = nand_scan(mtd, 1); + if (res) + goto out; + + res = mtd_device_register(mtd, NULL, 0); + if (!res) + return res; + + nand_release(mtd); + +out: + iounmap(host->io_base); + return res; +} + +/* + * Remove a NAND device. + */ +static int socrates_nand_remove(struct platform_device *ofdev) +{ + struct socrates_nand_host *host = dev_get_drvdata(&ofdev->dev); + struct mtd_info *mtd = nand_to_mtd(&host->nand_chip); + + nand_release(mtd); + + iounmap(host->io_base); + + return 0; +} + +static const struct of_device_id socrates_nand_match[] = +{ + { + .compatible = "abb,socrates-nand", + }, + {}, +}; + +MODULE_DEVICE_TABLE(of, socrates_nand_match); + +static struct platform_driver socrates_nand_driver = { + .driver = { + .name = "socrates_nand", + .of_match_table = socrates_nand_match, + }, + .probe = socrates_nand_probe, + .remove = socrates_nand_remove, +}; + +module_platform_driver(socrates_nand_driver); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Ilya Yanok"); +MODULE_DESCRIPTION("NAND driver for Socrates board"); diff --git a/drivers/mtd/nand/raw/sunxi_nand.c b/drivers/mtd/nand/raw/sunxi_nand.c new file mode 100644 index 000000000000..f5a55c63935c --- /dev/null +++ b/drivers/mtd/nand/raw/sunxi_nand.c @@ -0,0 +1,2321 @@ +/* + * Copyright (C) 2013 Boris BREZILLON + * + * Derived from: + * https://github.com/yuq/sunxi-nfc-mtd + * Copyright (C) 2013 Qiang Yu + * + * https://github.com/hno/Allwinner-Info + * Copyright (C) 2013 Henrik Nordström + * + * Copyright (C) 2013 Dmitriy B. + * Copyright (C) 2013 Sergey Lapin + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + */ + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#define NFC_REG_CTL 0x0000 +#define NFC_REG_ST 0x0004 +#define NFC_REG_INT 0x0008 +#define NFC_REG_TIMING_CTL 0x000C +#define NFC_REG_TIMING_CFG 0x0010 +#define NFC_REG_ADDR_LOW 0x0014 +#define NFC_REG_ADDR_HIGH 0x0018 +#define NFC_REG_SECTOR_NUM 0x001C +#define NFC_REG_CNT 0x0020 +#define NFC_REG_CMD 0x0024 +#define NFC_REG_RCMD_SET 0x0028 +#define NFC_REG_WCMD_SET 0x002C +#define NFC_REG_IO_DATA 0x0030 +#define NFC_REG_ECC_CTL 0x0034 +#define NFC_REG_ECC_ST 0x0038 +#define NFC_REG_DEBUG 0x003C +#define NFC_REG_ECC_ERR_CNT(x) ((0x0040 + (x)) & ~0x3) +#define NFC_REG_USER_DATA(x) (0x0050 + ((x) * 4)) +#define NFC_REG_SPARE_AREA 0x00A0 +#define NFC_REG_PAT_ID 0x00A4 +#define NFC_RAM0_BASE 0x0400 +#define NFC_RAM1_BASE 0x0800 + +/* define bit use in NFC_CTL */ +#define NFC_EN BIT(0) +#define NFC_RESET BIT(1) +#define NFC_BUS_WIDTH_MSK BIT(2) +#define NFC_BUS_WIDTH_8 (0 << 2) +#define NFC_BUS_WIDTH_16 (1 << 2) +#define NFC_RB_SEL_MSK BIT(3) +#define NFC_RB_SEL(x) ((x) << 3) +#define NFC_CE_SEL_MSK GENMASK(26, 24) +#define NFC_CE_SEL(x) ((x) << 24) +#define NFC_CE_CTL BIT(6) +#define NFC_PAGE_SHIFT_MSK GENMASK(11, 8) +#define NFC_PAGE_SHIFT(x) (((x) < 10 ? 0 : (x) - 10) << 8) +#define NFC_SAM BIT(12) +#define NFC_RAM_METHOD BIT(14) +#define NFC_DEBUG_CTL BIT(31) + +/* define bit use in NFC_ST */ +#define NFC_RB_B2R BIT(0) +#define NFC_CMD_INT_FLAG BIT(1) +#define NFC_DMA_INT_FLAG BIT(2) +#define NFC_CMD_FIFO_STATUS BIT(3) +#define NFC_STA BIT(4) +#define NFC_NATCH_INT_FLAG BIT(5) +#define NFC_RB_STATE(x) BIT(x + 8) + +/* define bit use in NFC_INT */ +#define NFC_B2R_INT_ENABLE BIT(0) +#define NFC_CMD_INT_ENABLE BIT(1) +#define NFC_DMA_INT_ENABLE BIT(2) +#define NFC_INT_MASK (NFC_B2R_INT_ENABLE | \ + NFC_CMD_INT_ENABLE | \ + NFC_DMA_INT_ENABLE) + +/* define bit use in NFC_TIMING_CTL */ +#define NFC_TIMING_CTL_EDO BIT(8) + +/* define NFC_TIMING_CFG register layout */ +#define NFC_TIMING_CFG(tWB, tADL, tWHR, tRHW, tCAD) \ + (((tWB) & 0x3) | (((tADL) & 0x3) << 2) | \ + (((tWHR) & 0x3) << 4) | (((tRHW) & 0x3) << 6) | \ + (((tCAD) & 0x7) << 8)) + +/* define bit use in NFC_CMD */ +#define NFC_CMD_LOW_BYTE_MSK GENMASK(7, 0) +#define NFC_CMD_HIGH_BYTE_MSK GENMASK(15, 8) +#define NFC_CMD(x) (x) +#define NFC_ADR_NUM_MSK GENMASK(18, 16) +#define NFC_ADR_NUM(x) (((x) - 1) << 16) +#define NFC_SEND_ADR BIT(19) +#define NFC_ACCESS_DIR BIT(20) +#define NFC_DATA_TRANS BIT(21) +#define NFC_SEND_CMD1 BIT(22) +#define NFC_WAIT_FLAG BIT(23) +#define NFC_SEND_CMD2 BIT(24) +#define NFC_SEQ BIT(25) +#define NFC_DATA_SWAP_METHOD BIT(26) +#define NFC_ROW_AUTO_INC BIT(27) +#define NFC_SEND_CMD3 BIT(28) +#define NFC_SEND_CMD4 BIT(29) +#define NFC_CMD_TYPE_MSK GENMASK(31, 30) +#define NFC_NORMAL_OP (0 << 30) +#define NFC_ECC_OP (1 << 30) +#define NFC_PAGE_OP (2 << 30) + +/* define bit use in NFC_RCMD_SET */ +#define NFC_READ_CMD_MSK GENMASK(7, 0) +#define NFC_RND_READ_CMD0_MSK GENMASK(15, 8) +#define NFC_RND_READ_CMD1_MSK GENMASK(23, 16) + +/* define bit use in NFC_WCMD_SET */ +#define NFC_PROGRAM_CMD_MSK GENMASK(7, 0) +#define NFC_RND_WRITE_CMD_MSK GENMASK(15, 8) +#define NFC_READ_CMD0_MSK GENMASK(23, 16) +#define NFC_READ_CMD1_MSK GENMASK(31, 24) + +/* define bit use in NFC_ECC_CTL */ +#define NFC_ECC_EN BIT(0) +#define NFC_ECC_PIPELINE BIT(3) +#define NFC_ECC_EXCEPTION BIT(4) +#define NFC_ECC_BLOCK_SIZE_MSK BIT(5) +#define NFC_ECC_BLOCK_512 BIT(5) +#define NFC_RANDOM_EN BIT(9) +#define NFC_RANDOM_DIRECTION BIT(10) +#define NFC_ECC_MODE_MSK GENMASK(15, 12) +#define NFC_ECC_MODE(x) ((x) << 12) +#define NFC_RANDOM_SEED_MSK GENMASK(30, 16) +#define NFC_RANDOM_SEED(x) ((x) << 16) + +/* define bit use in NFC_ECC_ST */ +#define NFC_ECC_ERR(x) BIT(x) +#define NFC_ECC_ERR_MSK GENMASK(15, 0) +#define NFC_ECC_PAT_FOUND(x) BIT(x + 16) +#define NFC_ECC_ERR_CNT(b, x) (((x) >> (((b) % 4) * 8)) & 0xff) + +#define NFC_DEFAULT_TIMEOUT_MS 1000 + +#define NFC_SRAM_SIZE 1024 + +#define NFC_MAX_CS 7 + +/* + * Ready/Busy detection type: describes the Ready/Busy detection modes + * + * @RB_NONE: no external detection available, rely on STATUS command + * and software timeouts + * @RB_NATIVE: use sunxi NAND controller Ready/Busy support. The Ready/Busy + * pin of the NAND flash chip must be connected to one of the + * native NAND R/B pins (those which can be muxed to the NAND + * Controller) + * @RB_GPIO: use a simple GPIO to handle Ready/Busy status. The Ready/Busy + * pin of the NAND flash chip must be connected to a GPIO capable + * pin. + */ +enum sunxi_nand_rb_type { + RB_NONE, + RB_NATIVE, + RB_GPIO, +}; + +/* + * Ready/Busy structure: stores information related to Ready/Busy detection + * + * @type: the Ready/Busy detection mode + * @info: information related to the R/B detection mode. Either a gpio + * id or a native R/B id (those supported by the NAND controller). + */ +struct sunxi_nand_rb { + enum sunxi_nand_rb_type type; + union { + int gpio; + int nativeid; + } info; +}; + +/* + * Chip Select structure: stores information related to NAND Chip Select + * + * @cs: the NAND CS id used to communicate with a NAND Chip + * @rb: the Ready/Busy description + */ +struct sunxi_nand_chip_sel { + u8 cs; + struct sunxi_nand_rb rb; +}; + +/* + * sunxi HW ECC infos: stores information related to HW ECC support + * + * @mode: the sunxi ECC mode field deduced from ECC requirements + */ +struct sunxi_nand_hw_ecc { + int mode; +}; + +/* + * NAND chip structure: stores NAND chip device related information + * + * @node: used to store NAND chips into a list + * @nand: base NAND chip structure + * @mtd: base MTD structure + * @clk_rate: clk_rate required for this NAND chip + * @timing_cfg TIMING_CFG register value for this NAND chip + * @selected: current active CS + * @nsels: number of CS lines required by the NAND chip + * @sels: array of CS lines descriptions + */ +struct sunxi_nand_chip { + struct list_head node; + struct nand_chip nand; + unsigned long clk_rate; + u32 timing_cfg; + u32 timing_ctl; + int selected; + int addr_cycles; + u32 addr[2]; + int cmd_cycles; + u8 cmd[2]; + int nsels; + struct sunxi_nand_chip_sel sels[0]; +}; + +static inline struct sunxi_nand_chip *to_sunxi_nand(struct nand_chip *nand) +{ + return container_of(nand, struct sunxi_nand_chip, nand); +} + +/* + * NAND Controller structure: stores sunxi NAND controller information + * + * @controller: base controller structure + * @dev: parent device (used to print error messages) + * @regs: NAND controller registers + * @ahb_clk: NAND Controller AHB clock + * @mod_clk: NAND Controller mod clock + * @assigned_cs: bitmask describing already assigned CS lines + * @clk_rate: NAND controller current clock rate + * @chips: a list containing all the NAND chips attached to + * this NAND controller + * @complete: a completion object used to wait for NAND + * controller events + */ +struct sunxi_nfc { + struct nand_hw_control controller; + struct device *dev; + void __iomem *regs; + struct clk *ahb_clk; + struct clk *mod_clk; + struct reset_control *reset; + unsigned long assigned_cs; + unsigned long clk_rate; + struct list_head chips; + struct completion complete; + struct dma_chan *dmac; +}; + +static inline struct sunxi_nfc *to_sunxi_nfc(struct nand_hw_control *ctrl) +{ + return container_of(ctrl, struct sunxi_nfc, controller); +} + +static irqreturn_t sunxi_nfc_interrupt(int irq, void *dev_id) +{ + struct sunxi_nfc *nfc = dev_id; + u32 st = readl(nfc->regs + NFC_REG_ST); + u32 ien = readl(nfc->regs + NFC_REG_INT); + + if (!(ien & st)) + return IRQ_NONE; + + if ((ien & st) == ien) + complete(&nfc->complete); + + writel(st & NFC_INT_MASK, nfc->regs + NFC_REG_ST); + writel(~st & ien & NFC_INT_MASK, nfc->regs + NFC_REG_INT); + + return IRQ_HANDLED; +} + +static int sunxi_nfc_wait_events(struct sunxi_nfc *nfc, u32 events, + bool use_polling, unsigned int timeout_ms) +{ + int ret; + + if (events & ~NFC_INT_MASK) + return -EINVAL; + + if (!timeout_ms) + timeout_ms = NFC_DEFAULT_TIMEOUT_MS; + + if (!use_polling) { + init_completion(&nfc->complete); + + writel(events, nfc->regs + NFC_REG_INT); + + ret = wait_for_completion_timeout(&nfc->complete, + msecs_to_jiffies(timeout_ms)); + if (!ret) + ret = -ETIMEDOUT; + else + ret = 0; + + writel(0, nfc->regs + NFC_REG_INT); + } else { + u32 status; + + ret = readl_poll_timeout(nfc->regs + NFC_REG_ST, status, + (status & events) == events, 1, + timeout_ms * 1000); + } + + writel(events & NFC_INT_MASK, nfc->regs + NFC_REG_ST); + + if (ret) + dev_err(nfc->dev, "wait interrupt timedout\n"); + + return ret; +} + +static int sunxi_nfc_wait_cmd_fifo_empty(struct sunxi_nfc *nfc) +{ + u32 status; + int ret; + + ret = readl_poll_timeout(nfc->regs + NFC_REG_ST, status, + !(status & NFC_CMD_FIFO_STATUS), 1, + NFC_DEFAULT_TIMEOUT_MS * 1000); + if (ret) + dev_err(nfc->dev, "wait for empty cmd FIFO timedout\n"); + + return ret; +} + +static int sunxi_nfc_rst(struct sunxi_nfc *nfc) +{ + u32 ctl; + int ret; + + writel(0, nfc->regs + NFC_REG_ECC_CTL); + writel(NFC_RESET, nfc->regs + NFC_REG_CTL); + + ret = readl_poll_timeout(nfc->regs + NFC_REG_CTL, ctl, + !(ctl & NFC_RESET), 1, + NFC_DEFAULT_TIMEOUT_MS * 1000); + if (ret) + dev_err(nfc->dev, "wait for NAND controller reset timedout\n"); + + return ret; +} + +static int sunxi_nfc_dma_op_prepare(struct mtd_info *mtd, const void *buf, + int chunksize, int nchunks, + enum dma_data_direction ddir, + struct scatterlist *sg) +{ + struct nand_chip *nand = mtd_to_nand(mtd); + struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller); + struct dma_async_tx_descriptor *dmad; + enum dma_transfer_direction tdir; + dma_cookie_t dmat; + int ret; + + if (ddir == DMA_FROM_DEVICE) + tdir = DMA_DEV_TO_MEM; + else + tdir = DMA_MEM_TO_DEV; + + sg_init_one(sg, buf, nchunks * chunksize); + ret = dma_map_sg(nfc->dev, sg, 1, ddir); + if (!ret) + return -ENOMEM; + + dmad = dmaengine_prep_slave_sg(nfc->dmac, sg, 1, tdir, DMA_CTRL_ACK); + if (!dmad) { + ret = -EINVAL; + goto err_unmap_buf; + } + + writel(readl(nfc->regs + NFC_REG_CTL) | NFC_RAM_METHOD, + nfc->regs + NFC_REG_CTL); + writel(nchunks, nfc->regs + NFC_REG_SECTOR_NUM); + writel(chunksize, nfc->regs + NFC_REG_CNT); + dmat = dmaengine_submit(dmad); + + ret = dma_submit_error(dmat); + if (ret) + goto err_clr_dma_flag; + + return 0; + +err_clr_dma_flag: + writel(readl(nfc->regs + NFC_REG_CTL) & ~NFC_RAM_METHOD, + nfc->regs + NFC_REG_CTL); + +err_unmap_buf: + dma_unmap_sg(nfc->dev, sg, 1, ddir); + return ret; +} + +static void sunxi_nfc_dma_op_cleanup(struct mtd_info *mtd, + enum dma_data_direction ddir, + struct scatterlist *sg) +{ + struct nand_chip *nand = mtd_to_nand(mtd); + struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller); + + dma_unmap_sg(nfc->dev, sg, 1, ddir); + writel(readl(nfc->regs + NFC_REG_CTL) & ~NFC_RAM_METHOD, + nfc->regs + NFC_REG_CTL); +} + +static int sunxi_nfc_dev_ready(struct mtd_info *mtd) +{ + struct nand_chip *nand = mtd_to_nand(mtd); + struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand); + struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller); + struct sunxi_nand_rb *rb; + int ret; + + if (sunxi_nand->selected < 0) + return 0; + + rb = &sunxi_nand->sels[sunxi_nand->selected].rb; + + switch (rb->type) { + case RB_NATIVE: + ret = !!(readl(nfc->regs + NFC_REG_ST) & + NFC_RB_STATE(rb->info.nativeid)); + break; + case RB_GPIO: + ret = gpio_get_value(rb->info.gpio); + break; + case RB_NONE: + default: + ret = 0; + dev_err(nfc->dev, "cannot check R/B NAND status!\n"); + break; + } + + return ret; +} + +static void sunxi_nfc_select_chip(struct mtd_info *mtd, int chip) +{ + struct nand_chip *nand = mtd_to_nand(mtd); + struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand); + struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller); + struct sunxi_nand_chip_sel *sel; + u32 ctl; + + if (chip > 0 && chip >= sunxi_nand->nsels) + return; + + if (chip == sunxi_nand->selected) + return; + + ctl = readl(nfc->regs + NFC_REG_CTL) & + ~(NFC_PAGE_SHIFT_MSK | NFC_CE_SEL_MSK | NFC_RB_SEL_MSK | NFC_EN); + + if (chip >= 0) { + sel = &sunxi_nand->sels[chip]; + + ctl |= NFC_CE_SEL(sel->cs) | NFC_EN | + NFC_PAGE_SHIFT(nand->page_shift); + if (sel->rb.type == RB_NONE) { + nand->dev_ready = NULL; + } else { + nand->dev_ready = sunxi_nfc_dev_ready; + if (sel->rb.type == RB_NATIVE) + ctl |= NFC_RB_SEL(sel->rb.info.nativeid); + } + + writel(mtd->writesize, nfc->regs + NFC_REG_SPARE_AREA); + + if (nfc->clk_rate != sunxi_nand->clk_rate) { + clk_set_rate(nfc->mod_clk, sunxi_nand->clk_rate); + nfc->clk_rate = sunxi_nand->clk_rate; + } + } + + writel(sunxi_nand->timing_ctl, nfc->regs + NFC_REG_TIMING_CTL); + writel(sunxi_nand->timing_cfg, nfc->regs + NFC_REG_TIMING_CFG); + writel(ctl, nfc->regs + NFC_REG_CTL); + + sunxi_nand->selected = chip; +} + +static void sunxi_nfc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) +{ + struct nand_chip *nand = mtd_to_nand(mtd); + struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand); + struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller); + int ret; + int cnt; + int offs = 0; + u32 tmp; + + while (len > offs) { + bool poll = false; + + cnt = min(len - offs, NFC_SRAM_SIZE); + + ret = sunxi_nfc_wait_cmd_fifo_empty(nfc); + if (ret) + break; + + writel(cnt, nfc->regs + NFC_REG_CNT); + tmp = NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD; + writel(tmp, nfc->regs + NFC_REG_CMD); + + /* Arbitrary limit for polling mode */ + if (cnt < 64) + poll = true; + + ret = sunxi_nfc_wait_events(nfc, NFC_CMD_INT_FLAG, poll, 0); + if (ret) + break; + + if (buf) + memcpy_fromio(buf + offs, nfc->regs + NFC_RAM0_BASE, + cnt); + offs += cnt; + } +} + +static void sunxi_nfc_write_buf(struct mtd_info *mtd, const uint8_t *buf, + int len) +{ + struct nand_chip *nand = mtd_to_nand(mtd); + struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand); + struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller); + int ret; + int cnt; + int offs = 0; + u32 tmp; + + while (len > offs) { + bool poll = false; + + cnt = min(len - offs, NFC_SRAM_SIZE); + + ret = sunxi_nfc_wait_cmd_fifo_empty(nfc); + if (ret) + break; + + writel(cnt, nfc->regs + NFC_REG_CNT); + memcpy_toio(nfc->regs + NFC_RAM0_BASE, buf + offs, cnt); + tmp = NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD | + NFC_ACCESS_DIR; + writel(tmp, nfc->regs + NFC_REG_CMD); + + /* Arbitrary limit for polling mode */ + if (cnt < 64) + poll = true; + + ret = sunxi_nfc_wait_events(nfc, NFC_CMD_INT_FLAG, poll, 0); + if (ret) + break; + + offs += cnt; + } +} + +static uint8_t sunxi_nfc_read_byte(struct mtd_info *mtd) +{ + uint8_t ret; + + sunxi_nfc_read_buf(mtd, &ret, 1); + + return ret; +} + +static void sunxi_nfc_cmd_ctrl(struct mtd_info *mtd, int dat, + unsigned int ctrl) +{ + struct nand_chip *nand = mtd_to_nand(mtd); + struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand); + struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller); + int ret; + + if (dat == NAND_CMD_NONE && (ctrl & NAND_NCE) && + !(ctrl & (NAND_CLE | NAND_ALE))) { + u32 cmd = 0; + + if (!sunxi_nand->addr_cycles && !sunxi_nand->cmd_cycles) + return; + + if (sunxi_nand->cmd_cycles--) + cmd |= NFC_SEND_CMD1 | sunxi_nand->cmd[0]; + + if (sunxi_nand->cmd_cycles--) { + cmd |= NFC_SEND_CMD2; + writel(sunxi_nand->cmd[1], + nfc->regs + NFC_REG_RCMD_SET); + } + + sunxi_nand->cmd_cycles = 0; + + if (sunxi_nand->addr_cycles) { + cmd |= NFC_SEND_ADR | + NFC_ADR_NUM(sunxi_nand->addr_cycles); + writel(sunxi_nand->addr[0], + nfc->regs + NFC_REG_ADDR_LOW); + } + + if (sunxi_nand->addr_cycles > 4) + writel(sunxi_nand->addr[1], + nfc->regs + NFC_REG_ADDR_HIGH); + + ret = sunxi_nfc_wait_cmd_fifo_empty(nfc); + if (ret) + return; + + writel(cmd, nfc->regs + NFC_REG_CMD); + sunxi_nand->addr[0] = 0; + sunxi_nand->addr[1] = 0; + sunxi_nand->addr_cycles = 0; + sunxi_nfc_wait_events(nfc, NFC_CMD_INT_FLAG, true, 0); + } + + if (ctrl & NAND_CLE) { + sunxi_nand->cmd[sunxi_nand->cmd_cycles++] = dat; + } else if (ctrl & NAND_ALE) { + sunxi_nand->addr[sunxi_nand->addr_cycles / 4] |= + dat << ((sunxi_nand->addr_cycles % 4) * 8); + sunxi_nand->addr_cycles++; + } +} + +/* These seed values have been extracted from Allwinner's BSP */ +static const u16 sunxi_nfc_randomizer_page_seeds[] = { + 0x2b75, 0x0bd0, 0x5ca3, 0x62d1, 0x1c93, 0x07e9, 0x2162, 0x3a72, + 0x0d67, 0x67f9, 0x1be7, 0x077d, 0x032f, 0x0dac, 0x2716, 0x2436, + 0x7922, 0x1510, 0x3860, 0x5287, 0x480f, 0x4252, 0x1789, 0x5a2d, + 0x2a49, 0x5e10, 0x437f, 0x4b4e, 0x2f45, 0x216e, 0x5cb7, 0x7130, + 0x2a3f, 0x60e4, 0x4dc9, 0x0ef0, 0x0f52, 0x1bb9, 0x6211, 0x7a56, + 0x226d, 0x4ea7, 0x6f36, 0x3692, 0x38bf, 0x0c62, 0x05eb, 0x4c55, + 0x60f4, 0x728c, 0x3b6f, 0x2037, 0x7f69, 0x0936, 0x651a, 0x4ceb, + 0x6218, 0x79f3, 0x383f, 0x18d9, 0x4f05, 0x5c82, 0x2912, 0x6f17, + 0x6856, 0x5938, 0x1007, 0x61ab, 0x3e7f, 0x57c2, 0x542f, 0x4f62, + 0x7454, 0x2eac, 0x7739, 0x42d4, 0x2f90, 0x435a, 0x2e52, 0x2064, + 0x637c, 0x66ad, 0x2c90, 0x0bad, 0x759c, 0x0029, 0x0986, 0x7126, + 0x1ca7, 0x1605, 0x386a, 0x27f5, 0x1380, 0x6d75, 0x24c3, 0x0f8e, + 0x2b7a, 0x1418, 0x1fd1, 0x7dc1, 0x2d8e, 0x43af, 0x2267, 0x7da3, + 0x4e3d, 0x1338, 0x50db, 0x454d, 0x764d, 0x40a3, 0x42e6, 0x262b, + 0x2d2e, 0x1aea, 0x2e17, 0x173d, 0x3a6e, 0x71bf, 0x25f9, 0x0a5d, + 0x7c57, 0x0fbe, 0x46ce, 0x4939, 0x6b17, 0x37bb, 0x3e91, 0x76db, +}; + +/* + * sunxi_nfc_randomizer_ecc512_seeds and sunxi_nfc_randomizer_ecc1024_seeds + * have been generated using + * sunxi_nfc_randomizer_step(seed, (step_size * 8) + 15), which is what + * the randomizer engine does internally before de/scrambling OOB data. + * + * Those tables are statically defined to avoid calculating randomizer state + * at runtime. + */ +static const u16 sunxi_nfc_randomizer_ecc512_seeds[] = { + 0x3346, 0x367f, 0x1f18, 0x769a, 0x4f64, 0x068c, 0x2ef1, 0x6b64, + 0x28a9, 0x15d7, 0x30f8, 0x3659, 0x53db, 0x7c5f, 0x71d4, 0x4409, + 0x26eb, 0x03cc, 0x655d, 0x47d4, 0x4daa, 0x0877, 0x712d, 0x3617, + 0x3264, 0x49aa, 0x7f9e, 0x588e, 0x4fbc, 0x7176, 0x7f91, 0x6c6d, + 0x4b95, 0x5fb7, 0x3844, 0x4037, 0x0184, 0x081b, 0x0ee8, 0x5b91, + 0x293d, 0x1f71, 0x0e6f, 0x402b, 0x5122, 0x1e52, 0x22be, 0x3d2d, + 0x75bc, 0x7c60, 0x6291, 0x1a2f, 0x61d4, 0x74aa, 0x4140, 0x29ab, + 0x472d, 0x2852, 0x017e, 0x15e8, 0x5ec2, 0x17cf, 0x7d0f, 0x06b8, + 0x117a, 0x6b94, 0x789b, 0x3126, 0x6ac5, 0x5be7, 0x150f, 0x51f8, + 0x7889, 0x0aa5, 0x663d, 0x77e8, 0x0b87, 0x3dcb, 0x360d, 0x218b, + 0x512f, 0x7dc9, 0x6a4d, 0x630a, 0x3547, 0x1dd2, 0x5aea, 0x69a5, + 0x7bfa, 0x5e4f, 0x1519, 0x6430, 0x3a0e, 0x5eb3, 0x5425, 0x0c7a, + 0x5540, 0x3670, 0x63c1, 0x31e9, 0x5a39, 0x2de7, 0x5979, 0x2891, + 0x1562, 0x014b, 0x5b05, 0x2756, 0x5a34, 0x13aa, 0x6cb5, 0x2c36, + 0x5e72, 0x1306, 0x0861, 0x15ef, 0x1ee8, 0x5a37, 0x7ac4, 0x45dd, + 0x44c4, 0x7266, 0x2f41, 0x3ccc, 0x045e, 0x7d40, 0x7c66, 0x0fa0, +}; + +static const u16 sunxi_nfc_randomizer_ecc1024_seeds[] = { + 0x2cf5, 0x35f1, 0x63a4, 0x5274, 0x2bd2, 0x778b, 0x7285, 0x32b6, + 0x6a5c, 0x70d6, 0x757d, 0x6769, 0x5375, 0x1e81, 0x0cf3, 0x3982, + 0x6787, 0x042a, 0x6c49, 0x1925, 0x56a8, 0x40a9, 0x063e, 0x7bd9, + 0x4dbf, 0x55ec, 0x672e, 0x7334, 0x5185, 0x4d00, 0x232a, 0x7e07, + 0x445d, 0x6b92, 0x528f, 0x4255, 0x53ba, 0x7d82, 0x2a2e, 0x3a4e, + 0x75eb, 0x450c, 0x6844, 0x1b5d, 0x581a, 0x4cc6, 0x0379, 0x37b2, + 0x419f, 0x0e92, 0x6b27, 0x5624, 0x01e3, 0x07c1, 0x44a5, 0x130c, + 0x13e8, 0x5910, 0x0876, 0x60c5, 0x54e3, 0x5b7f, 0x2269, 0x509f, + 0x7665, 0x36fd, 0x3e9a, 0x0579, 0x6295, 0x14ef, 0x0a81, 0x1bcc, + 0x4b16, 0x64db, 0x0514, 0x4f07, 0x0591, 0x3576, 0x6853, 0x0d9e, + 0x259f, 0x38b7, 0x64fb, 0x3094, 0x4693, 0x6ddd, 0x29bb, 0x0bc8, + 0x3f47, 0x490e, 0x0c0e, 0x7933, 0x3c9e, 0x5840, 0x398d, 0x3e68, + 0x4af1, 0x71f5, 0x57cf, 0x1121, 0x64eb, 0x3579, 0x15ac, 0x584d, + 0x5f2a, 0x47e2, 0x6528, 0x6eac, 0x196e, 0x6b96, 0x0450, 0x0179, + 0x609c, 0x06e1, 0x4626, 0x42c7, 0x273e, 0x486f, 0x0705, 0x1601, + 0x145b, 0x407e, 0x062b, 0x57a5, 0x53f9, 0x5659, 0x4410, 0x3ccd, +}; + +static u16 sunxi_nfc_randomizer_step(u16 state, int count) +{ + state &= 0x7fff; + + /* + * This loop is just a simple implementation of a Fibonacci LFSR using + * the x16 + x15 + 1 polynomial. + */ + while (count--) + state = ((state >> 1) | + (((state ^ (state >> 1)) & 1) << 14)) & 0x7fff; + + return state; +} + +static u16 sunxi_nfc_randomizer_state(struct mtd_info *mtd, int page, bool ecc) +{ + const u16 *seeds = sunxi_nfc_randomizer_page_seeds; + int mod = mtd_div_by_ws(mtd->erasesize, mtd); + + if (mod > ARRAY_SIZE(sunxi_nfc_randomizer_page_seeds)) + mod = ARRAY_SIZE(sunxi_nfc_randomizer_page_seeds); + + if (ecc) { + if (mtd->ecc_step_size == 512) + seeds = sunxi_nfc_randomizer_ecc512_seeds; + else + seeds = sunxi_nfc_randomizer_ecc1024_seeds; + } + + return seeds[page % mod]; +} + +static void sunxi_nfc_randomizer_config(struct mtd_info *mtd, + int page, bool ecc) +{ + struct nand_chip *nand = mtd_to_nand(mtd); + struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller); + u32 ecc_ctl = readl(nfc->regs + NFC_REG_ECC_CTL); + u16 state; + + if (!(nand->options & NAND_NEED_SCRAMBLING)) + return; + + ecc_ctl = readl(nfc->regs + NFC_REG_ECC_CTL); + state = sunxi_nfc_randomizer_state(mtd, page, ecc); + ecc_ctl = readl(nfc->regs + NFC_REG_ECC_CTL) & ~NFC_RANDOM_SEED_MSK; + writel(ecc_ctl | NFC_RANDOM_SEED(state), nfc->regs + NFC_REG_ECC_CTL); +} + +static void sunxi_nfc_randomizer_enable(struct mtd_info *mtd) +{ + struct nand_chip *nand = mtd_to_nand(mtd); + struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller); + + if (!(nand->options & NAND_NEED_SCRAMBLING)) + return; + + writel(readl(nfc->regs + NFC_REG_ECC_CTL) | NFC_RANDOM_EN, + nfc->regs + NFC_REG_ECC_CTL); +} + +static void sunxi_nfc_randomizer_disable(struct mtd_info *mtd) +{ + struct nand_chip *nand = mtd_to_nand(mtd); + struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller); + + if (!(nand->options & NAND_NEED_SCRAMBLING)) + return; + + writel(readl(nfc->regs + NFC_REG_ECC_CTL) & ~NFC_RANDOM_EN, + nfc->regs + NFC_REG_ECC_CTL); +} + +static void sunxi_nfc_randomize_bbm(struct mtd_info *mtd, int page, u8 *bbm) +{ + u16 state = sunxi_nfc_randomizer_state(mtd, page, true); + + bbm[0] ^= state; + bbm[1] ^= sunxi_nfc_randomizer_step(state, 8); +} + +static void sunxi_nfc_randomizer_write_buf(struct mtd_info *mtd, + const uint8_t *buf, int len, + bool ecc, int page) +{ + sunxi_nfc_randomizer_config(mtd, page, ecc); + sunxi_nfc_randomizer_enable(mtd); + sunxi_nfc_write_buf(mtd, buf, len); + sunxi_nfc_randomizer_disable(mtd); +} + +static void sunxi_nfc_randomizer_read_buf(struct mtd_info *mtd, uint8_t *buf, + int len, bool ecc, int page) +{ + sunxi_nfc_randomizer_config(mtd, page, ecc); + sunxi_nfc_randomizer_enable(mtd); + sunxi_nfc_read_buf(mtd, buf, len); + sunxi_nfc_randomizer_disable(mtd); +} + +static void sunxi_nfc_hw_ecc_enable(struct mtd_info *mtd) +{ + struct nand_chip *nand = mtd_to_nand(mtd); + struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller); + struct sunxi_nand_hw_ecc *data = nand->ecc.priv; + u32 ecc_ctl; + + ecc_ctl = readl(nfc->regs + NFC_REG_ECC_CTL); + ecc_ctl &= ~(NFC_ECC_MODE_MSK | NFC_ECC_PIPELINE | + NFC_ECC_BLOCK_SIZE_MSK); + ecc_ctl |= NFC_ECC_EN | NFC_ECC_MODE(data->mode) | NFC_ECC_EXCEPTION | + NFC_ECC_PIPELINE; + + if (nand->ecc.size == 512) + ecc_ctl |= NFC_ECC_BLOCK_512; + + writel(ecc_ctl, nfc->regs + NFC_REG_ECC_CTL); +} + +static void sunxi_nfc_hw_ecc_disable(struct mtd_info *mtd) +{ + struct nand_chip *nand = mtd_to_nand(mtd); + struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller); + + writel(readl(nfc->regs + NFC_REG_ECC_CTL) & ~NFC_ECC_EN, + nfc->regs + NFC_REG_ECC_CTL); +} + +static inline void sunxi_nfc_user_data_to_buf(u32 user_data, u8 *buf) +{ + buf[0] = user_data; + buf[1] = user_data >> 8; + buf[2] = user_data >> 16; + buf[3] = user_data >> 24; +} + +static inline u32 sunxi_nfc_buf_to_user_data(const u8 *buf) +{ + return buf[0] | (buf[1] << 8) | (buf[2] << 16) | (buf[3] << 24); +} + +static void sunxi_nfc_hw_ecc_get_prot_oob_bytes(struct mtd_info *mtd, u8 *oob, + int step, bool bbm, int page) +{ + struct nand_chip *nand = mtd_to_nand(mtd); + struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller); + + sunxi_nfc_user_data_to_buf(readl(nfc->regs + NFC_REG_USER_DATA(step)), + oob); + + /* De-randomize the Bad Block Marker. */ + if (bbm && (nand->options & NAND_NEED_SCRAMBLING)) + sunxi_nfc_randomize_bbm(mtd, page, oob); +} + +static void sunxi_nfc_hw_ecc_set_prot_oob_bytes(struct mtd_info *mtd, + const u8 *oob, int step, + bool bbm, int page) +{ + struct nand_chip *nand = mtd_to_nand(mtd); + struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller); + u8 user_data[4]; + + /* Randomize the Bad Block Marker. */ + if (bbm && (nand->options & NAND_NEED_SCRAMBLING)) { + memcpy(user_data, oob, sizeof(user_data)); + sunxi_nfc_randomize_bbm(mtd, page, user_data); + oob = user_data; + } + + writel(sunxi_nfc_buf_to_user_data(oob), + nfc->regs + NFC_REG_USER_DATA(step)); +} + +static void sunxi_nfc_hw_ecc_update_stats(struct mtd_info *mtd, + unsigned int *max_bitflips, int ret) +{ + if (ret < 0) { + mtd->ecc_stats.failed++; + } else { + mtd->ecc_stats.corrected += ret; + *max_bitflips = max_t(unsigned int, *max_bitflips, ret); + } +} + +static int sunxi_nfc_hw_ecc_correct(struct mtd_info *mtd, u8 *data, u8 *oob, + int step, u32 status, bool *erased) +{ + struct nand_chip *nand = mtd_to_nand(mtd); + struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller); + struct nand_ecc_ctrl *ecc = &nand->ecc; + u32 tmp; + + *erased = false; + + if (status & NFC_ECC_ERR(step)) + return -EBADMSG; + + if (status & NFC_ECC_PAT_FOUND(step)) { + u8 pattern; + + if (unlikely(!(readl(nfc->regs + NFC_REG_PAT_ID) & 0x1))) { + pattern = 0x0; + } else { + pattern = 0xff; + *erased = true; + } + + if (data) + memset(data, pattern, ecc->size); + + if (oob) + memset(oob, pattern, ecc->bytes + 4); + + return 0; + } + + tmp = readl(nfc->regs + NFC_REG_ECC_ERR_CNT(step)); + + return NFC_ECC_ERR_CNT(step, tmp); +} + +static int sunxi_nfc_hw_ecc_read_chunk(struct mtd_info *mtd, + u8 *data, int data_off, + u8 *oob, int oob_off, + int *cur_off, + unsigned int *max_bitflips, + bool bbm, bool oob_required, int page) +{ + struct nand_chip *nand = mtd_to_nand(mtd); + struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller); + struct nand_ecc_ctrl *ecc = &nand->ecc; + int raw_mode = 0; + bool erased; + int ret; + + if (*cur_off != data_off) + nand_change_read_column_op(nand, data_off, NULL, 0, false); + + sunxi_nfc_randomizer_read_buf(mtd, NULL, ecc->size, false, page); + + if (data_off + ecc->size != oob_off) + nand_change_read_column_op(nand, oob_off, NULL, 0, false); + + ret = sunxi_nfc_wait_cmd_fifo_empty(nfc); + if (ret) + return ret; + + sunxi_nfc_randomizer_enable(mtd); + writel(NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD | NFC_ECC_OP, + nfc->regs + NFC_REG_CMD); + + ret = sunxi_nfc_wait_events(nfc, NFC_CMD_INT_FLAG, false, 0); + sunxi_nfc_randomizer_disable(mtd); + if (ret) + return ret; + + *cur_off = oob_off + ecc->bytes + 4; + + ret = sunxi_nfc_hw_ecc_correct(mtd, data, oob_required ? oob : NULL, 0, + readl(nfc->regs + NFC_REG_ECC_ST), + &erased); + if (erased) + return 1; + + if (ret < 0) { + /* + * Re-read the data with the randomizer disabled to identify + * bitflips in erased pages. + */ + if (nand->options & NAND_NEED_SCRAMBLING) + nand_change_read_column_op(nand, data_off, data, + ecc->size, false); + else + memcpy_fromio(data, nfc->regs + NFC_RAM0_BASE, + ecc->size); + + nand_change_read_column_op(nand, oob_off, oob, ecc->bytes + 4, + false); + + ret = nand_check_erased_ecc_chunk(data, ecc->size, + oob, ecc->bytes + 4, + NULL, 0, ecc->strength); + if (ret >= 0) + raw_mode = 1; + } else { + memcpy_fromio(data, nfc->regs + NFC_RAM0_BASE, ecc->size); + + if (oob_required) { + nand_change_read_column_op(nand, oob_off, NULL, 0, + false); + sunxi_nfc_randomizer_read_buf(mtd, oob, ecc->bytes + 4, + true, page); + + sunxi_nfc_hw_ecc_get_prot_oob_bytes(mtd, oob, 0, + bbm, page); + } + } + + sunxi_nfc_hw_ecc_update_stats(mtd, max_bitflips, ret); + + return raw_mode; +} + +static void sunxi_nfc_hw_ecc_read_extra_oob(struct mtd_info *mtd, + u8 *oob, int *cur_off, + bool randomize, int page) +{ + struct nand_chip *nand = mtd_to_nand(mtd); + struct nand_ecc_ctrl *ecc = &nand->ecc; + int offset = ((ecc->bytes + 4) * ecc->steps); + int len = mtd->oobsize - offset; + + if (len <= 0) + return; + + if (!cur_off || *cur_off != offset) + nand_change_read_column_op(nand, mtd->writesize, NULL, 0, + false); + + if (!randomize) + sunxi_nfc_read_buf(mtd, oob + offset, len); + else + sunxi_nfc_randomizer_read_buf(mtd, oob + offset, len, + false, page); + + if (cur_off) + *cur_off = mtd->oobsize + mtd->writesize; +} + +static int sunxi_nfc_hw_ecc_read_chunks_dma(struct mtd_info *mtd, uint8_t *buf, + int oob_required, int page, + int nchunks) +{ + struct nand_chip *nand = mtd_to_nand(mtd); + bool randomized = nand->options & NAND_NEED_SCRAMBLING; + struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller); + struct nand_ecc_ctrl *ecc = &nand->ecc; + unsigned int max_bitflips = 0; + int ret, i, raw_mode = 0; + struct scatterlist sg; + u32 status; + + ret = sunxi_nfc_wait_cmd_fifo_empty(nfc); + if (ret) + return ret; + + ret = sunxi_nfc_dma_op_prepare(mtd, buf, ecc->size, nchunks, + DMA_FROM_DEVICE, &sg); + if (ret) + return ret; + + sunxi_nfc_hw_ecc_enable(mtd); + sunxi_nfc_randomizer_config(mtd, page, false); + sunxi_nfc_randomizer_enable(mtd); + + writel((NAND_CMD_RNDOUTSTART << 16) | (NAND_CMD_RNDOUT << 8) | + NAND_CMD_READSTART, nfc->regs + NFC_REG_RCMD_SET); + + dma_async_issue_pending(nfc->dmac); + + writel(NFC_PAGE_OP | NFC_DATA_SWAP_METHOD | NFC_DATA_TRANS, + nfc->regs + NFC_REG_CMD); + + ret = sunxi_nfc_wait_events(nfc, NFC_CMD_INT_FLAG, false, 0); + if (ret) + dmaengine_terminate_all(nfc->dmac); + + sunxi_nfc_randomizer_disable(mtd); + sunxi_nfc_hw_ecc_disable(mtd); + + sunxi_nfc_dma_op_cleanup(mtd, DMA_FROM_DEVICE, &sg); + + if (ret) + return ret; + + status = readl(nfc->regs + NFC_REG_ECC_ST); + + for (i = 0; i < nchunks; i++) { + int data_off = i * ecc->size; + int oob_off = i * (ecc->bytes + 4); + u8 *data = buf + data_off; + u8 *oob = nand->oob_poi + oob_off; + bool erased; + + ret = sunxi_nfc_hw_ecc_correct(mtd, randomized ? data : NULL, + oob_required ? oob : NULL, + i, status, &erased); + + /* ECC errors are handled in the second loop. */ + if (ret < 0) + continue; + + if (oob_required && !erased) { + /* TODO: use DMA to retrieve OOB */ + nand_change_read_column_op(nand, + mtd->writesize + oob_off, + oob, ecc->bytes + 4, false); + + sunxi_nfc_hw_ecc_get_prot_oob_bytes(mtd, oob, i, + !i, page); + } + + if (erased) + raw_mode = 1; + + sunxi_nfc_hw_ecc_update_stats(mtd, &max_bitflips, ret); + } + + if (status & NFC_ECC_ERR_MSK) { + for (i = 0; i < nchunks; i++) { + int data_off = i * ecc->size; + int oob_off = i * (ecc->bytes + 4); + u8 *data = buf + data_off; + u8 *oob = nand->oob_poi + oob_off; + + if (!(status & NFC_ECC_ERR(i))) + continue; + + /* + * Re-read the data with the randomizer disabled to + * identify bitflips in erased pages. + * TODO: use DMA to read page in raw mode + */ + if (randomized) + nand_change_read_column_op(nand, data_off, + data, ecc->size, + false); + + /* TODO: use DMA to retrieve OOB */ + nand_change_read_column_op(nand, + mtd->writesize + oob_off, + oob, ecc->bytes + 4, false); + + ret = nand_check_erased_ecc_chunk(data, ecc->size, + oob, ecc->bytes + 4, + NULL, 0, + ecc->strength); + if (ret >= 0) + raw_mode = 1; + + sunxi_nfc_hw_ecc_update_stats(mtd, &max_bitflips, ret); + } + } + + if (oob_required) + sunxi_nfc_hw_ecc_read_extra_oob(mtd, nand->oob_poi, + NULL, !raw_mode, + page); + + return max_bitflips; +} + +static int sunxi_nfc_hw_ecc_write_chunk(struct mtd_info *mtd, + const u8 *data, int data_off, + const u8 *oob, int oob_off, + int *cur_off, bool bbm, + int page) +{ + struct nand_chip *nand = mtd_to_nand(mtd); + struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller); + struct nand_ecc_ctrl *ecc = &nand->ecc; + int ret; + + if (data_off != *cur_off) + nand_change_write_column_op(nand, data_off, NULL, 0, false); + + sunxi_nfc_randomizer_write_buf(mtd, data, ecc->size, false, page); + + if (data_off + ecc->size != oob_off) + nand_change_write_column_op(nand, oob_off, NULL, 0, false); + + ret = sunxi_nfc_wait_cmd_fifo_empty(nfc); + if (ret) + return ret; + + sunxi_nfc_randomizer_enable(mtd); + sunxi_nfc_hw_ecc_set_prot_oob_bytes(mtd, oob, 0, bbm, page); + + writel(NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD | + NFC_ACCESS_DIR | NFC_ECC_OP, + nfc->regs + NFC_REG_CMD); + + ret = sunxi_nfc_wait_events(nfc, NFC_CMD_INT_FLAG, false, 0); + sunxi_nfc_randomizer_disable(mtd); + if (ret) + return ret; + + *cur_off = oob_off + ecc->bytes + 4; + + return 0; +} + +static void sunxi_nfc_hw_ecc_write_extra_oob(struct mtd_info *mtd, + u8 *oob, int *cur_off, + int page) +{ + struct nand_chip *nand = mtd_to_nand(mtd); + struct nand_ecc_ctrl *ecc = &nand->ecc; + int offset = ((ecc->bytes + 4) * ecc->steps); + int len = mtd->oobsize - offset; + + if (len <= 0) + return; + + if (!cur_off || *cur_off != offset) + nand_change_write_column_op(nand, offset + mtd->writesize, + NULL, 0, false); + + sunxi_nfc_randomizer_write_buf(mtd, oob + offset, len, false, page); + + if (cur_off) + *cur_off = mtd->oobsize + mtd->writesize; +} + +static int sunxi_nfc_hw_ecc_read_page(struct mtd_info *mtd, + struct nand_chip *chip, uint8_t *buf, + int oob_required, int page) +{ + struct nand_ecc_ctrl *ecc = &chip->ecc; + unsigned int max_bitflips = 0; + int ret, i, cur_off = 0; + bool raw_mode = false; + + nand_read_page_op(chip, page, 0, NULL, 0); + + sunxi_nfc_hw_ecc_enable(mtd); + + for (i = 0; i < ecc->steps; i++) { + int data_off = i * ecc->size; + int oob_off = i * (ecc->bytes + 4); + u8 *data = buf + data_off; + u8 *oob = chip->oob_poi + oob_off; + + ret = sunxi_nfc_hw_ecc_read_chunk(mtd, data, data_off, oob, + oob_off + mtd->writesize, + &cur_off, &max_bitflips, + !i, oob_required, page); + if (ret < 0) + return ret; + else if (ret) + raw_mode = true; + } + + if (oob_required) + sunxi_nfc_hw_ecc_read_extra_oob(mtd, chip->oob_poi, &cur_off, + !raw_mode, page); + + sunxi_nfc_hw_ecc_disable(mtd); + + return max_bitflips; +} + +static int sunxi_nfc_hw_ecc_read_page_dma(struct mtd_info *mtd, + struct nand_chip *chip, u8 *buf, + int oob_required, int page) +{ + int ret; + + nand_read_page_op(chip, page, 0, NULL, 0); + + ret = sunxi_nfc_hw_ecc_read_chunks_dma(mtd, buf, oob_required, page, + chip->ecc.steps); + if (ret >= 0) + return ret; + + /* Fallback to PIO mode */ + return sunxi_nfc_hw_ecc_read_page(mtd, chip, buf, oob_required, page); +} + +static int sunxi_nfc_hw_ecc_read_subpage(struct mtd_info *mtd, + struct nand_chip *chip, + u32 data_offs, u32 readlen, + u8 *bufpoi, int page) +{ + struct nand_ecc_ctrl *ecc = &chip->ecc; + int ret, i, cur_off = 0; + unsigned int max_bitflips = 0; + + nand_read_page_op(chip, page, 0, NULL, 0); + + sunxi_nfc_hw_ecc_enable(mtd); + + for (i = data_offs / ecc->size; + i < DIV_ROUND_UP(data_offs + readlen, ecc->size); i++) { + int data_off = i * ecc->size; + int oob_off = i * (ecc->bytes + 4); + u8 *data = bufpoi + data_off; + u8 *oob = chip->oob_poi + oob_off; + + ret = sunxi_nfc_hw_ecc_read_chunk(mtd, data, data_off, + oob, + oob_off + mtd->writesize, + &cur_off, &max_bitflips, !i, + false, page); + if (ret < 0) + return ret; + } + + sunxi_nfc_hw_ecc_disable(mtd); + + return max_bitflips; +} + +static int sunxi_nfc_hw_ecc_read_subpage_dma(struct mtd_info *mtd, + struct nand_chip *chip, + u32 data_offs, u32 readlen, + u8 *buf, int page) +{ + int nchunks = DIV_ROUND_UP(data_offs + readlen, chip->ecc.size); + int ret; + + nand_read_page_op(chip, page, 0, NULL, 0); + + ret = sunxi_nfc_hw_ecc_read_chunks_dma(mtd, buf, false, page, nchunks); + if (ret >= 0) + return ret; + + /* Fallback to PIO mode */ + return sunxi_nfc_hw_ecc_read_subpage(mtd, chip, data_offs, readlen, + buf, page); +} + +static int sunxi_nfc_hw_ecc_write_page(struct mtd_info *mtd, + struct nand_chip *chip, + const uint8_t *buf, int oob_required, + int page) +{ + struct nand_ecc_ctrl *ecc = &chip->ecc; + int ret, i, cur_off = 0; + + nand_prog_page_begin_op(chip, page, 0, NULL, 0); + + sunxi_nfc_hw_ecc_enable(mtd); + + for (i = 0; i < ecc->steps; i++) { + int data_off = i * ecc->size; + int oob_off = i * (ecc->bytes + 4); + const u8 *data = buf + data_off; + const u8 *oob = chip->oob_poi + oob_off; + + ret = sunxi_nfc_hw_ecc_write_chunk(mtd, data, data_off, oob, + oob_off + mtd->writesize, + &cur_off, !i, page); + if (ret) + return ret; + } + + if (oob_required || (chip->options & NAND_NEED_SCRAMBLING)) + sunxi_nfc_hw_ecc_write_extra_oob(mtd, chip->oob_poi, + &cur_off, page); + + sunxi_nfc_hw_ecc_disable(mtd); + + return nand_prog_page_end_op(chip); +} + +static int sunxi_nfc_hw_ecc_write_subpage(struct mtd_info *mtd, + struct nand_chip *chip, + u32 data_offs, u32 data_len, + const u8 *buf, int oob_required, + int page) +{ + struct nand_ecc_ctrl *ecc = &chip->ecc; + int ret, i, cur_off = 0; + + nand_prog_page_begin_op(chip, page, 0, NULL, 0); + + sunxi_nfc_hw_ecc_enable(mtd); + + for (i = data_offs / ecc->size; + i < DIV_ROUND_UP(data_offs + data_len, ecc->size); i++) { + int data_off = i * ecc->size; + int oob_off = i * (ecc->bytes + 4); + const u8 *data = buf + data_off; + const u8 *oob = chip->oob_poi + oob_off; + + ret = sunxi_nfc_hw_ecc_write_chunk(mtd, data, data_off, oob, + oob_off + mtd->writesize, + &cur_off, !i, page); + if (ret) + return ret; + } + + sunxi_nfc_hw_ecc_disable(mtd); + + return nand_prog_page_end_op(chip); +} + +static int sunxi_nfc_hw_ecc_write_page_dma(struct mtd_info *mtd, + struct nand_chip *chip, + const u8 *buf, + int oob_required, + int page) +{ + struct nand_chip *nand = mtd_to_nand(mtd); + struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller); + struct nand_ecc_ctrl *ecc = &nand->ecc; + struct scatterlist sg; + int ret, i; + + ret = sunxi_nfc_wait_cmd_fifo_empty(nfc); + if (ret) + return ret; + + ret = sunxi_nfc_dma_op_prepare(mtd, buf, ecc->size, ecc->steps, + DMA_TO_DEVICE, &sg); + if (ret) + goto pio_fallback; + + for (i = 0; i < ecc->steps; i++) { + const u8 *oob = nand->oob_poi + (i * (ecc->bytes + 4)); + + sunxi_nfc_hw_ecc_set_prot_oob_bytes(mtd, oob, i, !i, page); + } + + nand_prog_page_begin_op(chip, page, 0, NULL, 0); + + sunxi_nfc_hw_ecc_enable(mtd); + sunxi_nfc_randomizer_config(mtd, page, false); + sunxi_nfc_randomizer_enable(mtd); + + writel((NAND_CMD_RNDIN << 8) | NAND_CMD_PAGEPROG, + nfc->regs + NFC_REG_RCMD_SET); + + dma_async_issue_pending(nfc->dmac); + + writel(NFC_PAGE_OP | NFC_DATA_SWAP_METHOD | + NFC_DATA_TRANS | NFC_ACCESS_DIR, + nfc->regs + NFC_REG_CMD); + + ret = sunxi_nfc_wait_events(nfc, NFC_CMD_INT_FLAG, false, 0); + if (ret) + dmaengine_terminate_all(nfc->dmac); + + sunxi_nfc_randomizer_disable(mtd); + sunxi_nfc_hw_ecc_disable(mtd); + + sunxi_nfc_dma_op_cleanup(mtd, DMA_TO_DEVICE, &sg); + + if (ret) + return ret; + + if (oob_required || (chip->options & NAND_NEED_SCRAMBLING)) + /* TODO: use DMA to transfer extra OOB bytes ? */ + sunxi_nfc_hw_ecc_write_extra_oob(mtd, chip->oob_poi, + NULL, page); + + return nand_prog_page_end_op(chip); + +pio_fallback: + return sunxi_nfc_hw_ecc_write_page(mtd, chip, buf, oob_required, page); +} + +static int sunxi_nfc_hw_syndrome_ecc_read_page(struct mtd_info *mtd, + struct nand_chip *chip, + uint8_t *buf, int oob_required, + int page) +{ + struct nand_ecc_ctrl *ecc = &chip->ecc; + unsigned int max_bitflips = 0; + int ret, i, cur_off = 0; + bool raw_mode = false; + + nand_read_page_op(chip, page, 0, NULL, 0); + + sunxi_nfc_hw_ecc_enable(mtd); + + for (i = 0; i < ecc->steps; i++) { + int data_off = i * (ecc->size + ecc->bytes + 4); + int oob_off = data_off + ecc->size; + u8 *data = buf + (i * ecc->size); + u8 *oob = chip->oob_poi + (i * (ecc->bytes + 4)); + + ret = sunxi_nfc_hw_ecc_read_chunk(mtd, data, data_off, oob, + oob_off, &cur_off, + &max_bitflips, !i, + oob_required, + page); + if (ret < 0) + return ret; + else if (ret) + raw_mode = true; + } + + if (oob_required) + sunxi_nfc_hw_ecc_read_extra_oob(mtd, chip->oob_poi, &cur_off, + !raw_mode, page); + + sunxi_nfc_hw_ecc_disable(mtd); + + return max_bitflips; +} + +static int sunxi_nfc_hw_syndrome_ecc_write_page(struct mtd_info *mtd, + struct nand_chip *chip, + const uint8_t *buf, + int oob_required, int page) +{ + struct nand_ecc_ctrl *ecc = &chip->ecc; + int ret, i, cur_off = 0; + + nand_prog_page_begin_op(chip, page, 0, NULL, 0); + + sunxi_nfc_hw_ecc_enable(mtd); + + for (i = 0; i < ecc->steps; i++) { + int data_off = i * (ecc->size + ecc->bytes + 4); + int oob_off = data_off + ecc->size; + const u8 *data = buf + (i * ecc->size); + const u8 *oob = chip->oob_poi + (i * (ecc->bytes + 4)); + + ret = sunxi_nfc_hw_ecc_write_chunk(mtd, data, data_off, + oob, oob_off, &cur_off, + false, page); + if (ret) + return ret; + } + + if (oob_required || (chip->options & NAND_NEED_SCRAMBLING)) + sunxi_nfc_hw_ecc_write_extra_oob(mtd, chip->oob_poi, + &cur_off, page); + + sunxi_nfc_hw_ecc_disable(mtd); + + return nand_prog_page_end_op(chip); +} + +static int sunxi_nfc_hw_common_ecc_read_oob(struct mtd_info *mtd, + struct nand_chip *chip, + int page) +{ + chip->pagebuf = -1; + + return chip->ecc.read_page(mtd, chip, chip->data_buf, 1, page); +} + +static int sunxi_nfc_hw_common_ecc_write_oob(struct mtd_info *mtd, + struct nand_chip *chip, + int page) +{ + int ret; + + chip->pagebuf = -1; + + memset(chip->data_buf, 0xff, mtd->writesize); + ret = chip->ecc.write_page(mtd, chip, chip->data_buf, 1, page); + if (ret) + return ret; + + /* Send command to program the OOB data */ + return nand_prog_page_end_op(chip); +} + +static const s32 tWB_lut[] = {6, 12, 16, 20}; +static const s32 tRHW_lut[] = {4, 8, 12, 20}; + +static int _sunxi_nand_lookup_timing(const s32 *lut, int lut_size, u32 duration, + u32 clk_period) +{ + u32 clk_cycles = DIV_ROUND_UP(duration, clk_period); + int i; + + for (i = 0; i < lut_size; i++) { + if (clk_cycles <= lut[i]) + return i; + } + + /* Doesn't fit */ + return -EINVAL; +} + +#define sunxi_nand_lookup_timing(l, p, c) \ + _sunxi_nand_lookup_timing(l, ARRAY_SIZE(l), p, c) + +static int sunxi_nfc_setup_data_interface(struct mtd_info *mtd, int csline, + const struct nand_data_interface *conf) +{ + struct nand_chip *nand = mtd_to_nand(mtd); + struct sunxi_nand_chip *chip = to_sunxi_nand(nand); + struct sunxi_nfc *nfc = to_sunxi_nfc(chip->nand.controller); + const struct nand_sdr_timings *timings; + u32 min_clk_period = 0; + s32 tWB, tADL, tWHR, tRHW, tCAD; + long real_clk_rate; + + timings = nand_get_sdr_timings(conf); + if (IS_ERR(timings)) + return -ENOTSUPP; + + /* T1 <=> tCLS */ + if (timings->tCLS_min > min_clk_period) + min_clk_period = timings->tCLS_min; + + /* T2 <=> tCLH */ + if (timings->tCLH_min > min_clk_period) + min_clk_period = timings->tCLH_min; + + /* T3 <=> tCS */ + if (timings->tCS_min > min_clk_period) + min_clk_period = timings->tCS_min; + + /* T4 <=> tCH */ + if (timings->tCH_min > min_clk_period) + min_clk_period = timings->tCH_min; + + /* T5 <=> tWP */ + if (timings->tWP_min > min_clk_period) + min_clk_period = timings->tWP_min; + + /* T6 <=> tWH */ + if (timings->tWH_min > min_clk_period) + min_clk_period = timings->tWH_min; + + /* T7 <=> tALS */ + if (timings->tALS_min > min_clk_period) + min_clk_period = timings->tALS_min; + + /* T8 <=> tDS */ + if (timings->tDS_min > min_clk_period) + min_clk_period = timings->tDS_min; + + /* T9 <=> tDH */ + if (timings->tDH_min > min_clk_period) + min_clk_period = timings->tDH_min; + + /* T10 <=> tRR */ + if (timings->tRR_min > (min_clk_period * 3)) + min_clk_period = DIV_ROUND_UP(timings->tRR_min, 3); + + /* T11 <=> tALH */ + if (timings->tALH_min > min_clk_period) + min_clk_period = timings->tALH_min; + + /* T12 <=> tRP */ + if (timings->tRP_min > min_clk_period) + min_clk_period = timings->tRP_min; + + /* T13 <=> tREH */ + if (timings->tREH_min > min_clk_period) + min_clk_period = timings->tREH_min; + + /* T14 <=> tRC */ + if (timings->tRC_min > (min_clk_period * 2)) + min_clk_period = DIV_ROUND_UP(timings->tRC_min, 2); + + /* T15 <=> tWC */ + if (timings->tWC_min > (min_clk_period * 2)) + min_clk_period = DIV_ROUND_UP(timings->tWC_min, 2); + + /* T16 - T19 + tCAD */ + if (timings->tWB_max > (min_clk_period * 20)) + min_clk_period = DIV_ROUND_UP(timings->tWB_max, 20); + + if (timings->tADL_min > (min_clk_period * 32)) + min_clk_period = DIV_ROUND_UP(timings->tADL_min, 32); + + if (timings->tWHR_min > (min_clk_period * 32)) + min_clk_period = DIV_ROUND_UP(timings->tWHR_min, 32); + + if (timings->tRHW_min > (min_clk_period * 20)) + min_clk_period = DIV_ROUND_UP(timings->tRHW_min, 20); + + tWB = sunxi_nand_lookup_timing(tWB_lut, timings->tWB_max, + min_clk_period); + if (tWB < 0) { + dev_err(nfc->dev, "unsupported tWB\n"); + return tWB; + } + + tADL = DIV_ROUND_UP(timings->tADL_min, min_clk_period) >> 3; + if (tADL > 3) { + dev_err(nfc->dev, "unsupported tADL\n"); + return -EINVAL; + } + + tWHR = DIV_ROUND_UP(timings->tWHR_min, min_clk_period) >> 3; + if (tWHR > 3) { + dev_err(nfc->dev, "unsupported tWHR\n"); + return -EINVAL; + } + + tRHW = sunxi_nand_lookup_timing(tRHW_lut, timings->tRHW_min, + min_clk_period); + if (tRHW < 0) { + dev_err(nfc->dev, "unsupported tRHW\n"); + return tRHW; + } + + if (csline == NAND_DATA_IFACE_CHECK_ONLY) + return 0; + + /* + * TODO: according to ONFI specs this value only applies for DDR NAND, + * but Allwinner seems to set this to 0x7. Mimic them for now. + */ + tCAD = 0x7; + + /* TODO: A83 has some more bits for CDQSS, CS, CLHZ, CCS, WC */ + chip->timing_cfg = NFC_TIMING_CFG(tWB, tADL, tWHR, tRHW, tCAD); + + /* Convert min_clk_period from picoseconds to nanoseconds */ + min_clk_period = DIV_ROUND_UP(min_clk_period, 1000); + + /* + * Unlike what is stated in Allwinner datasheet, the clk_rate should + * be set to (1 / min_clk_period), and not (2 / min_clk_period). + * This new formula was verified with a scope and validated by + * Allwinner engineers. + */ + chip->clk_rate = NSEC_PER_SEC / min_clk_period; + real_clk_rate = clk_round_rate(nfc->mod_clk, chip->clk_rate); + if (real_clk_rate <= 0) { + dev_err(nfc->dev, "Unable to round clk %lu\n", chip->clk_rate); + return -EINVAL; + } + + /* + * ONFI specification 3.1, paragraph 4.15.2 dictates that EDO data + * output cycle timings shall be used if the host drives tRC less than + * 30 ns. + */ + min_clk_period = NSEC_PER_SEC / real_clk_rate; + chip->timing_ctl = ((min_clk_period * 2) < 30) ? + NFC_TIMING_CTL_EDO : 0; + + return 0; +} + +static int sunxi_nand_ooblayout_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *nand = mtd_to_nand(mtd); + struct nand_ecc_ctrl *ecc = &nand->ecc; + + if (section >= ecc->steps) + return -ERANGE; + + oobregion->offset = section * (ecc->bytes + 4) + 4; + oobregion->length = ecc->bytes; + + return 0; +} + +static int sunxi_nand_ooblayout_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + struct nand_chip *nand = mtd_to_nand(mtd); + struct nand_ecc_ctrl *ecc = &nand->ecc; + + if (section > ecc->steps) + return -ERANGE; + + /* + * The first 2 bytes are used for BB markers, hence we + * only have 2 bytes available in the first user data + * section. + */ + if (!section && ecc->mode == NAND_ECC_HW) { + oobregion->offset = 2; + oobregion->length = 2; + + return 0; + } + + oobregion->offset = section * (ecc->bytes + 4); + + if (section < ecc->steps) + oobregion->length = 4; + else + oobregion->offset = mtd->oobsize - oobregion->offset; + + return 0; +} + +static const struct mtd_ooblayout_ops sunxi_nand_ooblayout_ops = { + .ecc = sunxi_nand_ooblayout_ecc, + .free = sunxi_nand_ooblayout_free, +}; + +static int sunxi_nand_hw_common_ecc_ctrl_init(struct mtd_info *mtd, + struct nand_ecc_ctrl *ecc, + struct device_node *np) +{ + static const u8 strengths[] = { 16, 24, 28, 32, 40, 48, 56, 60, 64 }; + struct nand_chip *nand = mtd_to_nand(mtd); + struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand); + struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller); + struct sunxi_nand_hw_ecc *data; + int nsectors; + int ret; + int i; + + if (ecc->options & NAND_ECC_MAXIMIZE) { + int bytes; + + ecc->size = 1024; + nsectors = mtd->writesize / ecc->size; + + /* Reserve 2 bytes for the BBM */ + bytes = (mtd->oobsize - 2) / nsectors; + + /* 4 non-ECC bytes are added before each ECC bytes section */ + bytes -= 4; + + /* and bytes has to be even. */ + if (bytes % 2) + bytes--; + + ecc->strength = bytes * 8 / fls(8 * ecc->size); + + for (i = 0; i < ARRAY_SIZE(strengths); i++) { + if (strengths[i] > ecc->strength) + break; + } + + if (!i) + ecc->strength = 0; + else + ecc->strength = strengths[i - 1]; + } + + if (ecc->size != 512 && ecc->size != 1024) + return -EINVAL; + + data = kzalloc(sizeof(*data), GFP_KERNEL); + if (!data) + return -ENOMEM; + + /* Prefer 1k ECC chunk over 512 ones */ + if (ecc->size == 512 && mtd->writesize > 512) { + ecc->size = 1024; + ecc->strength *= 2; + } + + /* Add ECC info retrieval from DT */ + for (i = 0; i < ARRAY_SIZE(strengths); i++) { + if (ecc->strength <= strengths[i]) { + /* + * Update ecc->strength value with the actual strength + * that will be used by the ECC engine. + */ + ecc->strength = strengths[i]; + break; + } + } + + if (i >= ARRAY_SIZE(strengths)) { + dev_err(nfc->dev, "unsupported strength\n"); + ret = -ENOTSUPP; + goto err; + } + + data->mode = i; + + /* HW ECC always request ECC bytes for 1024 bytes blocks */ + ecc->bytes = DIV_ROUND_UP(ecc->strength * fls(8 * 1024), 8); + + /* HW ECC always work with even numbers of ECC bytes */ + ecc->bytes = ALIGN(ecc->bytes, 2); + + nsectors = mtd->writesize / ecc->size; + + if (mtd->oobsize < ((ecc->bytes + 4) * nsectors)) { + ret = -EINVAL; + goto err; + } + + ecc->read_oob = sunxi_nfc_hw_common_ecc_read_oob; + ecc->write_oob = sunxi_nfc_hw_common_ecc_write_oob; + mtd_set_ooblayout(mtd, &sunxi_nand_ooblayout_ops); + ecc->priv = data; + + return 0; + +err: + kfree(data); + + return ret; +} + +static void sunxi_nand_hw_common_ecc_ctrl_cleanup(struct nand_ecc_ctrl *ecc) +{ + kfree(ecc->priv); +} + +static int sunxi_nand_hw_ecc_ctrl_init(struct mtd_info *mtd, + struct nand_ecc_ctrl *ecc, + struct device_node *np) +{ + struct nand_chip *nand = mtd_to_nand(mtd); + struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand); + struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller); + int ret; + + ret = sunxi_nand_hw_common_ecc_ctrl_init(mtd, ecc, np); + if (ret) + return ret; + + if (nfc->dmac) { + ecc->read_page = sunxi_nfc_hw_ecc_read_page_dma; + ecc->read_subpage = sunxi_nfc_hw_ecc_read_subpage_dma; + ecc->write_page = sunxi_nfc_hw_ecc_write_page_dma; + nand->options |= NAND_USE_BOUNCE_BUFFER; + } else { + ecc->read_page = sunxi_nfc_hw_ecc_read_page; + ecc->read_subpage = sunxi_nfc_hw_ecc_read_subpage; + ecc->write_page = sunxi_nfc_hw_ecc_write_page; + } + + /* TODO: support DMA for raw accesses and subpage write */ + ecc->write_subpage = sunxi_nfc_hw_ecc_write_subpage; + ecc->read_oob_raw = nand_read_oob_std; + ecc->write_oob_raw = nand_write_oob_std; + + return 0; +} + +static int sunxi_nand_hw_syndrome_ecc_ctrl_init(struct mtd_info *mtd, + struct nand_ecc_ctrl *ecc, + struct device_node *np) +{ + int ret; + + ret = sunxi_nand_hw_common_ecc_ctrl_init(mtd, ecc, np); + if (ret) + return ret; + + ecc->prepad = 4; + ecc->read_page = sunxi_nfc_hw_syndrome_ecc_read_page; + ecc->write_page = sunxi_nfc_hw_syndrome_ecc_write_page; + ecc->read_oob_raw = nand_read_oob_syndrome; + ecc->write_oob_raw = nand_write_oob_syndrome; + + return 0; +} + +static void sunxi_nand_ecc_cleanup(struct nand_ecc_ctrl *ecc) +{ + switch (ecc->mode) { + case NAND_ECC_HW: + case NAND_ECC_HW_SYNDROME: + sunxi_nand_hw_common_ecc_ctrl_cleanup(ecc); + break; + case NAND_ECC_NONE: + default: + break; + } +} + +static int sunxi_nand_ecc_init(struct mtd_info *mtd, struct nand_ecc_ctrl *ecc, + struct device_node *np) +{ + struct nand_chip *nand = mtd_to_nand(mtd); + int ret; + + if (!ecc->size) { + ecc->size = nand->ecc_step_ds; + ecc->strength = nand->ecc_strength_ds; + } + + if (!ecc->size || !ecc->strength) + return -EINVAL; + + switch (ecc->mode) { + case NAND_ECC_HW: + ret = sunxi_nand_hw_ecc_ctrl_init(mtd, ecc, np); + if (ret) + return ret; + break; + case NAND_ECC_HW_SYNDROME: + ret = sunxi_nand_hw_syndrome_ecc_ctrl_init(mtd, ecc, np); + if (ret) + return ret; + break; + case NAND_ECC_NONE: + case NAND_ECC_SOFT: + break; + default: + return -EINVAL; + } + + return 0; +} + +static int sunxi_nand_chip_init(struct device *dev, struct sunxi_nfc *nfc, + struct device_node *np) +{ + struct sunxi_nand_chip *chip; + struct mtd_info *mtd; + struct nand_chip *nand; + int nsels; + int ret; + int i; + u32 tmp; + + if (!of_get_property(np, "reg", &nsels)) + return -EINVAL; + + nsels /= sizeof(u32); + if (!nsels) { + dev_err(dev, "invalid reg property size\n"); + return -EINVAL; + } + + chip = devm_kzalloc(dev, + sizeof(*chip) + + (nsels * sizeof(struct sunxi_nand_chip_sel)), + GFP_KERNEL); + if (!chip) { + dev_err(dev, "could not allocate chip\n"); + return -ENOMEM; + } + + chip->nsels = nsels; + chip->selected = -1; + + for (i = 0; i < nsels; i++) { + ret = of_property_read_u32_index(np, "reg", i, &tmp); + if (ret) { + dev_err(dev, "could not retrieve reg property: %d\n", + ret); + return ret; + } + + if (tmp > NFC_MAX_CS) { + dev_err(dev, + "invalid reg value: %u (max CS = 7)\n", + tmp); + return -EINVAL; + } + + if (test_and_set_bit(tmp, &nfc->assigned_cs)) { + dev_err(dev, "CS %d already assigned\n", tmp); + return -EINVAL; + } + + chip->sels[i].cs = tmp; + + if (!of_property_read_u32_index(np, "allwinner,rb", i, &tmp) && + tmp < 2) { + chip->sels[i].rb.type = RB_NATIVE; + chip->sels[i].rb.info.nativeid = tmp; + } else { + ret = of_get_named_gpio(np, "rb-gpios", i); + if (ret >= 0) { + tmp = ret; + chip->sels[i].rb.type = RB_GPIO; + chip->sels[i].rb.info.gpio = tmp; + ret = devm_gpio_request(dev, tmp, "nand-rb"); + if (ret) + return ret; + + ret = gpio_direction_input(tmp); + if (ret) + return ret; + } else { + chip->sels[i].rb.type = RB_NONE; + } + } + } + + nand = &chip->nand; + /* Default tR value specified in the ONFI spec (chapter 4.15.1) */ + nand->chip_delay = 200; + nand->controller = &nfc->controller; + /* + * Set the ECC mode to the default value in case nothing is specified + * in the DT. + */ + nand->ecc.mode = NAND_ECC_HW; + nand_set_flash_node(nand, np); + nand->select_chip = sunxi_nfc_select_chip; + nand->cmd_ctrl = sunxi_nfc_cmd_ctrl; + nand->read_buf = sunxi_nfc_read_buf; + nand->write_buf = sunxi_nfc_write_buf; + nand->read_byte = sunxi_nfc_read_byte; + nand->setup_data_interface = sunxi_nfc_setup_data_interface; + + mtd = nand_to_mtd(nand); + mtd->dev.parent = dev; + + ret = nand_scan_ident(mtd, nsels, NULL); + if (ret) + return ret; + + if (nand->bbt_options & NAND_BBT_USE_FLASH) + nand->bbt_options |= NAND_BBT_NO_OOB; + + if (nand->options & NAND_NEED_SCRAMBLING) + nand->options |= NAND_NO_SUBPAGE_WRITE; + + nand->options |= NAND_SUBPAGE_READ; + + ret = sunxi_nand_ecc_init(mtd, &nand->ecc, np); + if (ret) { + dev_err(dev, "ECC init failed: %d\n", ret); + return ret; + } + + ret = nand_scan_tail(mtd); + if (ret) { + dev_err(dev, "nand_scan_tail failed: %d\n", ret); + return ret; + } + + ret = mtd_device_register(mtd, NULL, 0); + if (ret) { + dev_err(dev, "failed to register mtd device: %d\n", ret); + nand_release(mtd); + return ret; + } + + list_add_tail(&chip->node, &nfc->chips); + + return 0; +} + +static int sunxi_nand_chips_init(struct device *dev, struct sunxi_nfc *nfc) +{ + struct device_node *np = dev->of_node; + struct device_node *nand_np; + int nchips = of_get_child_count(np); + int ret; + + if (nchips > 8) { + dev_err(dev, "too many NAND chips: %d (max = 8)\n", nchips); + return -EINVAL; + } + + for_each_child_of_node(np, nand_np) { + ret = sunxi_nand_chip_init(dev, nfc, nand_np); + if (ret) { + of_node_put(nand_np); + return ret; + } + } + + return 0; +} + +static void sunxi_nand_chips_cleanup(struct sunxi_nfc *nfc) +{ + struct sunxi_nand_chip *chip; + + while (!list_empty(&nfc->chips)) { + chip = list_first_entry(&nfc->chips, struct sunxi_nand_chip, + node); + nand_release(nand_to_mtd(&chip->nand)); + sunxi_nand_ecc_cleanup(&chip->nand.ecc); + list_del(&chip->node); + } +} + +static int sunxi_nfc_probe(struct platform_device *pdev) +{ + struct device *dev = &pdev->dev; + struct resource *r; + struct sunxi_nfc *nfc; + int irq; + int ret; + + nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL); + if (!nfc) + return -ENOMEM; + + nfc->dev = dev; + nand_hw_control_init(&nfc->controller); + INIT_LIST_HEAD(&nfc->chips); + + r = platform_get_resource(pdev, IORESOURCE_MEM, 0); + nfc->regs = devm_ioremap_resource(dev, r); + if (IS_ERR(nfc->regs)) + return PTR_ERR(nfc->regs); + + irq = platform_get_irq(pdev, 0); + if (irq < 0) { + dev_err(dev, "failed to retrieve irq\n"); + return irq; + } + + nfc->ahb_clk = devm_clk_get(dev, "ahb"); + if (IS_ERR(nfc->ahb_clk)) { + dev_err(dev, "failed to retrieve ahb clk\n"); + return PTR_ERR(nfc->ahb_clk); + } + + ret = clk_prepare_enable(nfc->ahb_clk); + if (ret) + return ret; + + nfc->mod_clk = devm_clk_get(dev, "mod"); + if (IS_ERR(nfc->mod_clk)) { + dev_err(dev, "failed to retrieve mod clk\n"); + ret = PTR_ERR(nfc->mod_clk); + goto out_ahb_clk_unprepare; + } + + ret = clk_prepare_enable(nfc->mod_clk); + if (ret) + goto out_ahb_clk_unprepare; + + nfc->reset = devm_reset_control_get_optional_exclusive(dev, "ahb"); + if (IS_ERR(nfc->reset)) { + ret = PTR_ERR(nfc->reset); + goto out_mod_clk_unprepare; + } + + ret = reset_control_deassert(nfc->reset); + if (ret) { + dev_err(dev, "reset err %d\n", ret); + goto out_mod_clk_unprepare; + } + + ret = sunxi_nfc_rst(nfc); + if (ret) + goto out_ahb_reset_reassert; + + writel(0, nfc->regs + NFC_REG_INT); + ret = devm_request_irq(dev, irq, sunxi_nfc_interrupt, + 0, "sunxi-nand", nfc); + if (ret) + goto out_ahb_reset_reassert; + + nfc->dmac = dma_request_slave_channel(dev, "rxtx"); + if (nfc->dmac) { + struct dma_slave_config dmac_cfg = { }; + + dmac_cfg.src_addr = r->start + NFC_REG_IO_DATA; + dmac_cfg.dst_addr = dmac_cfg.src_addr; + dmac_cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; + dmac_cfg.dst_addr_width = dmac_cfg.src_addr_width; + dmac_cfg.src_maxburst = 4; + dmac_cfg.dst_maxburst = 4; + dmaengine_slave_config(nfc->dmac, &dmac_cfg); + } else { + dev_warn(dev, "failed to request rxtx DMA channel\n"); + } + + platform_set_drvdata(pdev, nfc); + + ret = sunxi_nand_chips_init(dev, nfc); + if (ret) { + dev_err(dev, "failed to init nand chips\n"); + goto out_release_dmac; + } + + return 0; + +out_release_dmac: + if (nfc->dmac) + dma_release_channel(nfc->dmac); +out_ahb_reset_reassert: + reset_control_assert(nfc->reset); +out_mod_clk_unprepare: + clk_disable_unprepare(nfc->mod_clk); +out_ahb_clk_unprepare: + clk_disable_unprepare(nfc->ahb_clk); + + return ret; +} + +static int sunxi_nfc_remove(struct platform_device *pdev) +{ + struct sunxi_nfc *nfc = platform_get_drvdata(pdev); + + sunxi_nand_chips_cleanup(nfc); + + reset_control_assert(nfc->reset); + + if (nfc->dmac) + dma_release_channel(nfc->dmac); + clk_disable_unprepare(nfc->mod_clk); + clk_disable_unprepare(nfc->ahb_clk); + + return 0; +} + +static const struct of_device_id sunxi_nfc_ids[] = { + { .compatible = "allwinner,sun4i-a10-nand" }, + { /* sentinel */ } +}; +MODULE_DEVICE_TABLE(of, sunxi_nfc_ids); + +static struct platform_driver sunxi_nfc_driver = { + .driver = { + .name = "sunxi_nand", + .of_match_table = sunxi_nfc_ids, + }, + .probe = sunxi_nfc_probe, + .remove = sunxi_nfc_remove, +}; +module_platform_driver(sunxi_nfc_driver); + +MODULE_LICENSE("GPL v2"); +MODULE_AUTHOR("Boris BREZILLON"); +MODULE_DESCRIPTION("Allwinner NAND Flash Controller driver"); +MODULE_ALIAS("platform:sunxi_nand"); diff --git a/drivers/mtd/nand/raw/tango_nand.c b/drivers/mtd/nand/raw/tango_nand.c new file mode 100644 index 000000000000..c5bee00b7f5e --- /dev/null +++ b/drivers/mtd/nand/raw/tango_nand.c @@ -0,0 +1,688 @@ +/* + * Copyright (C) 2016 Sigma Designs + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License + * version 2 as published by the Free Software Foundation. + */ + +#include +#include +#include +#include +#include +#include +#include +#include +#include + +/* Offsets relative to chip->base */ +#define PBUS_CMD 0 +#define PBUS_ADDR 4 +#define PBUS_DATA 8 + +/* Offsets relative to reg_base */ +#define NFC_STATUS 0x00 +#define NFC_FLASH_CMD 0x04 +#define NFC_DEVICE_CFG 0x08 +#define NFC_TIMING1 0x0c +#define NFC_TIMING2 0x10 +#define NFC_XFER_CFG 0x14 +#define NFC_PKT_0_CFG 0x18 +#define NFC_PKT_N_CFG 0x1c +#define NFC_BB_CFG 0x20 +#define NFC_ADDR_PAGE 0x24 +#define NFC_ADDR_OFFSET 0x28 +#define NFC_XFER_STATUS 0x2c + +/* NFC_STATUS values */ +#define CMD_READY BIT(31) + +/* NFC_FLASH_CMD values */ +#define NFC_READ 1 +#define NFC_WRITE 2 + +/* NFC_XFER_STATUS values */ +#define PAGE_IS_EMPTY BIT(16) + +/* Offsets relative to mem_base */ +#define METADATA 0x000 +#define ERROR_REPORT 0x1c0 + +/* + * Error reports are split in two bytes: + * byte 0 for the first packet in the page (PKT_0) + * byte 1 for other packets in the page (PKT_N, for N > 0) + * ERR_COUNT_PKT_N is the max error count over all but the first packet. + */ +#define ERR_COUNT_PKT_0(v) (((v) >> 0) & 0x3f) +#define ERR_COUNT_PKT_N(v) (((v) >> 8) & 0x3f) +#define DECODE_FAIL_PKT_0(v) (((v) & BIT(7)) == 0) +#define DECODE_FAIL_PKT_N(v) (((v) & BIT(15)) == 0) + +/* Offsets relative to pbus_base */ +#define PBUS_CS_CTRL 0x83c +#define PBUS_PAD_MODE 0x8f0 + +/* PBUS_CS_CTRL values */ +#define PBUS_IORDY BIT(31) + +/* + * PBUS_PAD_MODE values + * In raw mode, the driver communicates directly with the NAND chips. + * In NFC mode, the NAND Flash controller manages the communication. + * We use NFC mode for read and write; raw mode for everything else. + */ +#define MODE_RAW 0 +#define MODE_NFC BIT(31) + +#define METADATA_SIZE 4 +#define BBM_SIZE 6 +#define FIELD_ORDER 15 + +#define MAX_CS 4 + +struct tango_nfc { + struct nand_hw_control hw; + void __iomem *reg_base; + void __iomem *mem_base; + void __iomem *pbus_base; + struct tango_chip *chips[MAX_CS]; + struct dma_chan *chan; + int freq_kHz; +}; + +#define to_tango_nfc(ptr) container_of(ptr, struct tango_nfc, hw) + +struct tango_chip { + struct nand_chip nand_chip; + void __iomem *base; + u32 timing1; + u32 timing2; + u32 xfer_cfg; + u32 pkt_0_cfg; + u32 pkt_n_cfg; + u32 bb_cfg; +}; + +#define to_tango_chip(ptr) container_of(ptr, struct tango_chip, nand_chip) + +#define XFER_CFG(cs, page_count, steps, metadata_size) \ + ((cs) << 24 | (page_count) << 16 | (steps) << 8 | (metadata_size)) + +#define PKT_CFG(size, strength) ((size) << 16 | (strength)) + +#define BB_CFG(bb_offset, bb_size) ((bb_offset) << 16 | (bb_size)) + +#define TIMING(t0, t1, t2, t3) ((t0) << 24 | (t1) << 16 | (t2) << 8 | (t3)) + +static void tango_cmd_ctrl(struct mtd_info *mtd, int dat, unsigned int ctrl) +{ + struct tango_chip *tchip = to_tango_chip(mtd_to_nand(mtd)); + + if (ctrl & NAND_CLE) + writeb_relaxed(dat, tchip->base + PBUS_CMD); + + if (ctrl & NAND_ALE) + writeb_relaxed(dat, tchip->base + PBUS_ADDR); +} + +static int tango_dev_ready(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct tango_nfc *nfc = to_tango_nfc(chip->controller); + + return readl_relaxed(nfc->pbus_base + PBUS_CS_CTRL) & PBUS_IORDY; +} + +static u8 tango_read_byte(struct mtd_info *mtd) +{ + struct tango_chip *tchip = to_tango_chip(mtd_to_nand(mtd)); + + return readb_relaxed(tchip->base + PBUS_DATA); +} + +static void tango_read_buf(struct mtd_info *mtd, u8 *buf, int len) +{ + struct tango_chip *tchip = to_tango_chip(mtd_to_nand(mtd)); + + ioread8_rep(tchip->base + PBUS_DATA, buf, len); +} + +static void tango_write_buf(struct mtd_info *mtd, const u8 *buf, int len) +{ + struct tango_chip *tchip = to_tango_chip(mtd_to_nand(mtd)); + + iowrite8_rep(tchip->base + PBUS_DATA, buf, len); +} + +static void tango_select_chip(struct mtd_info *mtd, int idx) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct tango_nfc *nfc = to_tango_nfc(chip->controller); + struct tango_chip *tchip = to_tango_chip(chip); + + if (idx < 0) + return; /* No "chip unselect" function */ + + writel_relaxed(tchip->timing1, nfc->reg_base + NFC_TIMING1); + writel_relaxed(tchip->timing2, nfc->reg_base + NFC_TIMING2); + writel_relaxed(tchip->xfer_cfg, nfc->reg_base + NFC_XFER_CFG); + writel_relaxed(tchip->pkt_0_cfg, nfc->reg_base + NFC_PKT_0_CFG); + writel_relaxed(tchip->pkt_n_cfg, nfc->reg_base + NFC_PKT_N_CFG); + writel_relaxed(tchip->bb_cfg, nfc->reg_base + NFC_BB_CFG); +} + +/* + * The controller does not check for bitflips in erased pages, + * therefore software must check instead. + */ +static int check_erased_page(struct nand_chip *chip, u8 *buf) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + u8 *meta = chip->oob_poi + BBM_SIZE; + u8 *ecc = chip->oob_poi + BBM_SIZE + METADATA_SIZE; + const int ecc_size = chip->ecc.bytes; + const int pkt_size = chip->ecc.size; + int i, res, meta_len, bitflips = 0; + + for (i = 0; i < chip->ecc.steps; ++i) { + meta_len = i ? 0 : METADATA_SIZE; + res = nand_check_erased_ecc_chunk(buf, pkt_size, ecc, ecc_size, + meta, meta_len, + chip->ecc.strength); + if (res < 0) + mtd->ecc_stats.failed++; + else + mtd->ecc_stats.corrected += res; + + bitflips = max(res, bitflips); + buf += pkt_size; + ecc += ecc_size; + } + + return bitflips; +} + +static int decode_error_report(struct nand_chip *chip) +{ + u32 status, res; + struct mtd_info *mtd = nand_to_mtd(chip); + struct tango_nfc *nfc = to_tango_nfc(chip->controller); + + status = readl_relaxed(nfc->reg_base + NFC_XFER_STATUS); + if (status & PAGE_IS_EMPTY) + return 0; + + res = readl_relaxed(nfc->mem_base + ERROR_REPORT); + + if (DECODE_FAIL_PKT_0(res) || DECODE_FAIL_PKT_N(res)) + return -EBADMSG; + + /* ERR_COUNT_PKT_N is max, not sum, but that's all we have */ + mtd->ecc_stats.corrected += + ERR_COUNT_PKT_0(res) + ERR_COUNT_PKT_N(res); + + return max(ERR_COUNT_PKT_0(res), ERR_COUNT_PKT_N(res)); +} + +static void tango_dma_callback(void *arg) +{ + complete(arg); +} + +static int do_dma(struct tango_nfc *nfc, enum dma_data_direction dir, int cmd, + const void *buf, int len, int page) +{ + void __iomem *addr = nfc->reg_base + NFC_STATUS; + struct dma_chan *chan = nfc->chan; + struct dma_async_tx_descriptor *desc; + enum dma_transfer_direction tdir; + struct scatterlist sg; + struct completion tx_done; + int err = -EIO; + u32 res, val; + + sg_init_one(&sg, buf, len); + if (dma_map_sg(chan->device->dev, &sg, 1, dir) != 1) + return -EIO; + + tdir = dir == DMA_TO_DEVICE ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM; + desc = dmaengine_prep_slave_sg(chan, &sg, 1, tdir, DMA_PREP_INTERRUPT); + if (!desc) + goto dma_unmap; + + desc->callback = tango_dma_callback; + desc->callback_param = &tx_done; + init_completion(&tx_done); + + writel_relaxed(MODE_NFC, nfc->pbus_base + PBUS_PAD_MODE); + + writel_relaxed(page, nfc->reg_base + NFC_ADDR_PAGE); + writel_relaxed(0, nfc->reg_base + NFC_ADDR_OFFSET); + writel_relaxed(cmd, nfc->reg_base + NFC_FLASH_CMD); + + dmaengine_submit(desc); + dma_async_issue_pending(chan); + + res = wait_for_completion_timeout(&tx_done, HZ); + if (res > 0) + err = readl_poll_timeout(addr, val, val & CMD_READY, 0, 1000); + + writel_relaxed(MODE_RAW, nfc->pbus_base + PBUS_PAD_MODE); + +dma_unmap: + dma_unmap_sg(chan->device->dev, &sg, 1, dir); + + return err; +} + +static int tango_read_page(struct mtd_info *mtd, struct nand_chip *chip, + u8 *buf, int oob_required, int page) +{ + struct tango_nfc *nfc = to_tango_nfc(chip->controller); + int err, res, len = mtd->writesize; + + if (oob_required) + chip->ecc.read_oob(mtd, chip, page); + + err = do_dma(nfc, DMA_FROM_DEVICE, NFC_READ, buf, len, page); + if (err) + return err; + + res = decode_error_report(chip); + if (res < 0) { + chip->ecc.read_oob_raw(mtd, chip, page); + res = check_erased_page(chip, buf); + } + + return res; +} + +static int tango_write_page(struct mtd_info *mtd, struct nand_chip *chip, + const u8 *buf, int oob_required, int page) +{ + struct tango_nfc *nfc = to_tango_nfc(chip->controller); + int err, status, len = mtd->writesize; + + /* Calling tango_write_oob() would send PAGEPROG twice */ + if (oob_required) + return -ENOTSUPP; + + writel_relaxed(0xffffffff, nfc->mem_base + METADATA); + err = do_dma(nfc, DMA_TO_DEVICE, NFC_WRITE, buf, len, page); + if (err) + return err; + + status = chip->waitfunc(mtd, chip); + if (status & NAND_STATUS_FAIL) + return -EIO; + + return 0; +} + +static void aux_read(struct nand_chip *chip, u8 **buf, int len, int *pos) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + + *pos += len; + + if (!*buf) { + /* skip over "len" bytes */ + nand_change_read_column_op(chip, *pos, NULL, 0, false); + } else { + tango_read_buf(mtd, *buf, len); + *buf += len; + } +} + +static void aux_write(struct nand_chip *chip, const u8 **buf, int len, int *pos) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + + *pos += len; + + if (!*buf) { + /* skip over "len" bytes */ + nand_change_write_column_op(chip, *pos, NULL, 0, false); + } else { + tango_write_buf(mtd, *buf, len); + *buf += len; + } +} + +/* + * Physical page layout (not drawn to scale) + * + * NB: Bad Block Marker area splits PKT_N in two (N1, N2). + * + * +---+-----------------+-------+-----+-----------+-----+----+-------+ + * | M | PKT_0 | ECC_0 | ... | N1 | BBM | N2 | ECC_N | + * +---+-----------------+-------+-----+-----------+-----+----+-------+ + * + * Logical page layout: + * + * +-----+---+-------+-----+-------+ + * oob = | BBM | M | ECC_0 | ... | ECC_N | + * +-----+---+-------+-----+-------+ + * + * +-----------------+-----+-----------------+ + * buf = | PKT_0 | ... | PKT_N | + * +-----------------+-----+-----------------+ + */ +static void raw_read(struct nand_chip *chip, u8 *buf, u8 *oob) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + u8 *oob_orig = oob; + const int page_size = mtd->writesize; + const int ecc_size = chip->ecc.bytes; + const int pkt_size = chip->ecc.size; + int pos = 0; /* position within physical page */ + int rem = page_size; /* bytes remaining until BBM area */ + + if (oob) + oob += BBM_SIZE; + + aux_read(chip, &oob, METADATA_SIZE, &pos); + + while (rem > pkt_size) { + aux_read(chip, &buf, pkt_size, &pos); + aux_read(chip, &oob, ecc_size, &pos); + rem = page_size - pos; + } + + aux_read(chip, &buf, rem, &pos); + aux_read(chip, &oob_orig, BBM_SIZE, &pos); + aux_read(chip, &buf, pkt_size - rem, &pos); + aux_read(chip, &oob, ecc_size, &pos); +} + +static void raw_write(struct nand_chip *chip, const u8 *buf, const u8 *oob) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + const u8 *oob_orig = oob; + const int page_size = mtd->writesize; + const int ecc_size = chip->ecc.bytes; + const int pkt_size = chip->ecc.size; + int pos = 0; /* position within physical page */ + int rem = page_size; /* bytes remaining until BBM area */ + + if (oob) + oob += BBM_SIZE; + + aux_write(chip, &oob, METADATA_SIZE, &pos); + + while (rem > pkt_size) { + aux_write(chip, &buf, pkt_size, &pos); + aux_write(chip, &oob, ecc_size, &pos); + rem = page_size - pos; + } + + aux_write(chip, &buf, rem, &pos); + aux_write(chip, &oob_orig, BBM_SIZE, &pos); + aux_write(chip, &buf, pkt_size - rem, &pos); + aux_write(chip, &oob, ecc_size, &pos); +} + +static int tango_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip, + u8 *buf, int oob_required, int page) +{ + nand_read_page_op(chip, page, 0, NULL, 0); + raw_read(chip, buf, chip->oob_poi); + return 0; +} + +static int tango_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip, + const u8 *buf, int oob_required, int page) +{ + nand_prog_page_begin_op(chip, page, 0, NULL, 0); + raw_write(chip, buf, chip->oob_poi); + return nand_prog_page_end_op(chip); +} + +static int tango_read_oob(struct mtd_info *mtd, struct nand_chip *chip, + int page) +{ + nand_read_page_op(chip, page, 0, NULL, 0); + raw_read(chip, NULL, chip->oob_poi); + return 0; +} + +static int tango_write_oob(struct mtd_info *mtd, struct nand_chip *chip, + int page) +{ + nand_prog_page_begin_op(chip, page, 0, NULL, 0); + raw_write(chip, NULL, chip->oob_poi); + return nand_prog_page_end_op(chip); +} + +static int oob_ecc(struct mtd_info *mtd, int idx, struct mtd_oob_region *res) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct nand_ecc_ctrl *ecc = &chip->ecc; + + if (idx >= ecc->steps) + return -ERANGE; + + res->offset = BBM_SIZE + METADATA_SIZE + ecc->bytes * idx; + res->length = ecc->bytes; + + return 0; +} + +static int oob_free(struct mtd_info *mtd, int idx, struct mtd_oob_region *res) +{ + return -ERANGE; /* no free space in spare area */ +} + +static const struct mtd_ooblayout_ops tango_nand_ooblayout_ops = { + .ecc = oob_ecc, + .free = oob_free, +}; + +static u32 to_ticks(int kHz, int ps) +{ + return DIV_ROUND_UP_ULL((u64)kHz * ps, NSEC_PER_SEC); +} + +static int tango_set_timings(struct mtd_info *mtd, int csline, + const struct nand_data_interface *conf) +{ + const struct nand_sdr_timings *sdr = nand_get_sdr_timings(conf); + struct nand_chip *chip = mtd_to_nand(mtd); + struct tango_nfc *nfc = to_tango_nfc(chip->controller); + struct tango_chip *tchip = to_tango_chip(chip); + u32 Trdy, Textw, Twc, Twpw, Tacc, Thold, Trpw, Textr; + int kHz = nfc->freq_kHz; + + if (IS_ERR(sdr)) + return PTR_ERR(sdr); + + if (csline == NAND_DATA_IFACE_CHECK_ONLY) + return 0; + + Trdy = to_ticks(kHz, sdr->tCEA_max - sdr->tREA_max); + Textw = to_ticks(kHz, sdr->tWB_max); + Twc = to_ticks(kHz, sdr->tWC_min); + Twpw = to_ticks(kHz, sdr->tWC_min - sdr->tWP_min); + + Tacc = to_ticks(kHz, sdr->tREA_max); + Thold = to_ticks(kHz, sdr->tREH_min); + Trpw = to_ticks(kHz, sdr->tRC_min - sdr->tREH_min); + Textr = to_ticks(kHz, sdr->tRHZ_max); + + tchip->timing1 = TIMING(Trdy, Textw, Twc, Twpw); + tchip->timing2 = TIMING(Tacc, Thold, Trpw, Textr); + + return 0; +} + +static int chip_init(struct device *dev, struct device_node *np) +{ + u32 cs; + int err, res; + struct mtd_info *mtd; + struct nand_chip *chip; + struct tango_chip *tchip; + struct nand_ecc_ctrl *ecc; + struct tango_nfc *nfc = dev_get_drvdata(dev); + + tchip = devm_kzalloc(dev, sizeof(*tchip), GFP_KERNEL); + if (!tchip) + return -ENOMEM; + + res = of_property_count_u32_elems(np, "reg"); + if (res < 0) + return res; + + if (res != 1) + return -ENOTSUPP; /* Multi-CS chips are not supported */ + + err = of_property_read_u32_index(np, "reg", 0, &cs); + if (err) + return err; + + if (cs >= MAX_CS) + return -EINVAL; + + chip = &tchip->nand_chip; + ecc = &chip->ecc; + mtd = nand_to_mtd(chip); + + chip->read_byte = tango_read_byte; + chip->write_buf = tango_write_buf; + chip->read_buf = tango_read_buf; + chip->select_chip = tango_select_chip; + chip->cmd_ctrl = tango_cmd_ctrl; + chip->dev_ready = tango_dev_ready; + chip->setup_data_interface = tango_set_timings; + chip->options = NAND_USE_BOUNCE_BUFFER | + NAND_NO_SUBPAGE_WRITE | + NAND_WAIT_TCCS; + chip->controller = &nfc->hw; + tchip->base = nfc->pbus_base + (cs * 256); + + nand_set_flash_node(chip, np); + mtd_set_ooblayout(mtd, &tango_nand_ooblayout_ops); + mtd->dev.parent = dev; + + err = nand_scan_ident(mtd, 1, NULL); + if (err) + return err; + + ecc->mode = NAND_ECC_HW; + ecc->algo = NAND_ECC_BCH; + ecc->bytes = DIV_ROUND_UP(ecc->strength * FIELD_ORDER, BITS_PER_BYTE); + + ecc->read_page_raw = tango_read_page_raw; + ecc->write_page_raw = tango_write_page_raw; + ecc->read_page = tango_read_page; + ecc->write_page = tango_write_page; + ecc->read_oob = tango_read_oob; + ecc->write_oob = tango_write_oob; + + err = nand_scan_tail(mtd); + if (err) + return err; + + tchip->xfer_cfg = XFER_CFG(cs, 1, ecc->steps, METADATA_SIZE); + tchip->pkt_0_cfg = PKT_CFG(ecc->size + METADATA_SIZE, ecc->strength); + tchip->pkt_n_cfg = PKT_CFG(ecc->size, ecc->strength); + tchip->bb_cfg = BB_CFG(mtd->writesize, BBM_SIZE); + + err = mtd_device_register(mtd, NULL, 0); + if (err) + return err; + + nfc->chips[cs] = tchip; + + return 0; +} + +static int tango_nand_remove(struct platform_device *pdev) +{ + int cs; + struct tango_nfc *nfc = platform_get_drvdata(pdev); + + dma_release_channel(nfc->chan); + + for (cs = 0; cs < MAX_CS; ++cs) { + if (nfc->chips[cs]) + nand_release(nand_to_mtd(&nfc->chips[cs]->nand_chip)); + } + + return 0; +} + +static int tango_nand_probe(struct platform_device *pdev) +{ + int err; + struct clk *clk; + struct resource *res; + struct tango_nfc *nfc; + struct device_node *np; + + nfc = devm_kzalloc(&pdev->dev, sizeof(*nfc), GFP_KERNEL); + if (!nfc) + return -ENOMEM; + + res = platform_get_resource(pdev, IORESOURCE_MEM, 0); + nfc->reg_base = devm_ioremap_resource(&pdev->dev, res); + if (IS_ERR(nfc->reg_base)) + return PTR_ERR(nfc->reg_base); + + res = platform_get_resource(pdev, IORESOURCE_MEM, 1); + nfc->mem_base = devm_ioremap_resource(&pdev->dev, res); + if (IS_ERR(nfc->mem_base)) + return PTR_ERR(nfc->mem_base); + + res = platform_get_resource(pdev, IORESOURCE_MEM, 2); + nfc->pbus_base = devm_ioremap_resource(&pdev->dev, res); + if (IS_ERR(nfc->pbus_base)) + return PTR_ERR(nfc->pbus_base); + + writel_relaxed(MODE_RAW, nfc->pbus_base + PBUS_PAD_MODE); + + clk = clk_get(&pdev->dev, NULL); + if (IS_ERR(clk)) + return PTR_ERR(clk); + + nfc->chan = dma_request_chan(&pdev->dev, "rxtx"); + if (IS_ERR(nfc->chan)) + return PTR_ERR(nfc->chan); + + platform_set_drvdata(pdev, nfc); + nand_hw_control_init(&nfc->hw); + nfc->freq_kHz = clk_get_rate(clk) / 1000; + + for_each_child_of_node(pdev->dev.of_node, np) { + err = chip_init(&pdev->dev, np); + if (err) { + tango_nand_remove(pdev); + return err; + } + } + + return 0; +} + +static const struct of_device_id tango_nand_ids[] = { + { .compatible = "sigma,smp8758-nand" }, + { /* sentinel */ } +}; +MODULE_DEVICE_TABLE(of, tango_nand_ids); + +static struct platform_driver tango_nand_driver = { + .probe = tango_nand_probe, + .remove = tango_nand_remove, + .driver = { + .name = "tango-nand", + .of_match_table = tango_nand_ids, + }, +}; + +module_platform_driver(tango_nand_driver); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Sigma Designs"); +MODULE_DESCRIPTION("Tango4 NAND Flash controller driver"); diff --git a/drivers/mtd/nand/raw/tmio_nand.c b/drivers/mtd/nand/raw/tmio_nand.c new file mode 100644 index 000000000000..dcaa924502de --- /dev/null +++ b/drivers/mtd/nand/raw/tmio_nand.c @@ -0,0 +1,513 @@ +/* + * Toshiba TMIO NAND flash controller driver + * + * Slightly murky pre-git history of the driver: + * + * Copyright (c) Ian Molton 2004, 2005, 2008 + * Original work, independent of sharps code. Included hardware ECC support. + * Hard ECC did not work for writes in the early revisions. + * Copyright (c) Dirk Opfer 2005. + * Modifications developed from sharps code but + * NOT containing any, ported onto Ians base. + * Copyright (c) Chris Humbert 2005 + * Copyright (c) Dmitry Baryshkov 2008 + * Minor fixes + * + * Parts copyright Sebastian Carlier + * + * This file is licensed under + * the terms of the GNU General Public License version 2. This program + * is licensed "as is" without any warranty of any kind, whether express + * or implied. + * + */ + + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +/*--------------------------------------------------------------------------*/ + +/* + * NAND Flash Host Controller Configuration Register + */ +#define CCR_COMMAND 0x04 /* w Command */ +#define CCR_BASE 0x10 /* l NAND Flash Control Reg Base Addr */ +#define CCR_INTP 0x3d /* b Interrupt Pin */ +#define CCR_INTE 0x48 /* b Interrupt Enable */ +#define CCR_EC 0x4a /* b Event Control */ +#define CCR_ICC 0x4c /* b Internal Clock Control */ +#define CCR_ECCC 0x5b /* b ECC Control */ +#define CCR_NFTC 0x60 /* b NAND Flash Transaction Control */ +#define CCR_NFM 0x61 /* b NAND Flash Monitor */ +#define CCR_NFPSC 0x62 /* b NAND Flash Power Supply Control */ +#define CCR_NFDC 0x63 /* b NAND Flash Detect Control */ + +/* + * NAND Flash Control Register + */ +#define FCR_DATA 0x00 /* bwl Data Register */ +#define FCR_MODE 0x04 /* b Mode Register */ +#define FCR_STATUS 0x05 /* b Status Register */ +#define FCR_ISR 0x06 /* b Interrupt Status Register */ +#define FCR_IMR 0x07 /* b Interrupt Mask Register */ + +/* FCR_MODE Register Command List */ +#define FCR_MODE_DATA 0x94 /* Data Data_Mode */ +#define FCR_MODE_COMMAND 0x95 /* Data Command_Mode */ +#define FCR_MODE_ADDRESS 0x96 /* Data Address_Mode */ + +#define FCR_MODE_HWECC_CALC 0xB4 /* HW-ECC Data */ +#define FCR_MODE_HWECC_RESULT 0xD4 /* HW-ECC Calc result Read_Mode */ +#define FCR_MODE_HWECC_RESET 0xF4 /* HW-ECC Reset */ + +#define FCR_MODE_POWER_ON 0x0C /* Power Supply ON to SSFDC card */ +#define FCR_MODE_POWER_OFF 0x08 /* Power Supply OFF to SSFDC card */ + +#define FCR_MODE_LED_OFF 0x00 /* LED OFF */ +#define FCR_MODE_LED_ON 0x04 /* LED ON */ + +#define FCR_MODE_EJECT_ON 0x68 /* Ejection events active */ +#define FCR_MODE_EJECT_OFF 0x08 /* Ejection events ignored */ + +#define FCR_MODE_LOCK 0x6C /* Lock_Mode. Eject Switch Invalid */ +#define FCR_MODE_UNLOCK 0x0C /* UnLock_Mode. Eject Switch is valid */ + +#define FCR_MODE_CONTROLLER_ID 0x40 /* Controller ID Read */ +#define FCR_MODE_STANDBY 0x00 /* SSFDC card Changes Standby State */ + +#define FCR_MODE_WE 0x80 +#define FCR_MODE_ECC1 0x40 +#define FCR_MODE_ECC0 0x20 +#define FCR_MODE_CE 0x10 +#define FCR_MODE_PCNT1 0x08 +#define FCR_MODE_PCNT0 0x04 +#define FCR_MODE_ALE 0x02 +#define FCR_MODE_CLE 0x01 + +#define FCR_STATUS_BUSY 0x80 + +/*--------------------------------------------------------------------------*/ + +struct tmio_nand { + struct nand_chip chip; + + struct platform_device *dev; + + void __iomem *ccr; + void __iomem *fcr; + unsigned long fcr_base; + + unsigned int irq; + + /* for tmio_nand_read_byte */ + u8 read; + unsigned read_good:1; +}; + +static inline struct tmio_nand *mtd_to_tmio(struct mtd_info *mtd) +{ + return container_of(mtd_to_nand(mtd), struct tmio_nand, chip); +} + + +/*--------------------------------------------------------------------------*/ + +static void tmio_nand_hwcontrol(struct mtd_info *mtd, int cmd, + unsigned int ctrl) +{ + struct tmio_nand *tmio = mtd_to_tmio(mtd); + struct nand_chip *chip = mtd_to_nand(mtd); + + if (ctrl & NAND_CTRL_CHANGE) { + u8 mode; + + if (ctrl & NAND_NCE) { + mode = FCR_MODE_DATA; + + if (ctrl & NAND_CLE) + mode |= FCR_MODE_CLE; + else + mode &= ~FCR_MODE_CLE; + + if (ctrl & NAND_ALE) + mode |= FCR_MODE_ALE; + else + mode &= ~FCR_MODE_ALE; + } else { + mode = FCR_MODE_STANDBY; + } + + tmio_iowrite8(mode, tmio->fcr + FCR_MODE); + tmio->read_good = 0; + } + + if (cmd != NAND_CMD_NONE) + tmio_iowrite8(cmd, chip->IO_ADDR_W); +} + +static int tmio_nand_dev_ready(struct mtd_info *mtd) +{ + struct tmio_nand *tmio = mtd_to_tmio(mtd); + + return !(tmio_ioread8(tmio->fcr + FCR_STATUS) & FCR_STATUS_BUSY); +} + +static irqreturn_t tmio_irq(int irq, void *__tmio) +{ + struct tmio_nand *tmio = __tmio; + struct nand_chip *nand_chip = &tmio->chip; + + /* disable RDYREQ interrupt */ + tmio_iowrite8(0x00, tmio->fcr + FCR_IMR); + + if (unlikely(!waitqueue_active(&nand_chip->controller->wq))) + dev_warn(&tmio->dev->dev, "spurious interrupt\n"); + + wake_up(&nand_chip->controller->wq); + return IRQ_HANDLED; +} + +/* + *The TMIO core has a RDYREQ interrupt on the posedge of #SMRB. + *This interrupt is normally disabled, but for long operations like + *erase and write, we enable it to wake us up. The irq handler + *disables the interrupt. + */ +static int +tmio_nand_wait(struct mtd_info *mtd, struct nand_chip *nand_chip) +{ + struct tmio_nand *tmio = mtd_to_tmio(mtd); + long timeout; + u8 status; + + /* enable RDYREQ interrupt */ + tmio_iowrite8(0x0f, tmio->fcr + FCR_ISR); + tmio_iowrite8(0x81, tmio->fcr + FCR_IMR); + + timeout = wait_event_timeout(nand_chip->controller->wq, + tmio_nand_dev_ready(mtd), + msecs_to_jiffies(nand_chip->state == FL_ERASING ? 400 : 20)); + + if (unlikely(!tmio_nand_dev_ready(mtd))) { + tmio_iowrite8(0x00, tmio->fcr + FCR_IMR); + dev_warn(&tmio->dev->dev, "still busy with %s after %d ms\n", + nand_chip->state == FL_ERASING ? "erase" : "program", + nand_chip->state == FL_ERASING ? 400 : 20); + + } else if (unlikely(!timeout)) { + tmio_iowrite8(0x00, tmio->fcr + FCR_IMR); + dev_warn(&tmio->dev->dev, "timeout waiting for interrupt\n"); + } + + nand_status_op(nand_chip, &status); + return status; +} + +/* + *The TMIO controller combines two 8-bit data bytes into one 16-bit + *word. This function separates them so nand_base.c works as expected, + *especially its NAND_CMD_READID routines. + * + *To prevent stale data from being read, tmio_nand_hwcontrol() clears + *tmio->read_good. + */ +static u_char tmio_nand_read_byte(struct mtd_info *mtd) +{ + struct tmio_nand *tmio = mtd_to_tmio(mtd); + unsigned int data; + + if (tmio->read_good--) + return tmio->read; + + data = tmio_ioread16(tmio->fcr + FCR_DATA); + tmio->read = data >> 8; + return data; +} + +/* + *The TMIO controller converts an 8-bit NAND interface to a 16-bit + *bus interface, so all data reads and writes must be 16-bit wide. + *Thus, we implement 16-bit versions of the read, write, and verify + *buffer functions. + */ +static void +tmio_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len) +{ + struct tmio_nand *tmio = mtd_to_tmio(mtd); + + tmio_iowrite16_rep(tmio->fcr + FCR_DATA, buf, len >> 1); +} + +static void tmio_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len) +{ + struct tmio_nand *tmio = mtd_to_tmio(mtd); + + tmio_ioread16_rep(tmio->fcr + FCR_DATA, buf, len >> 1); +} + +static void tmio_nand_enable_hwecc(struct mtd_info *mtd, int mode) +{ + struct tmio_nand *tmio = mtd_to_tmio(mtd); + + tmio_iowrite8(FCR_MODE_HWECC_RESET, tmio->fcr + FCR_MODE); + tmio_ioread8(tmio->fcr + FCR_DATA); /* dummy read */ + tmio_iowrite8(FCR_MODE_HWECC_CALC, tmio->fcr + FCR_MODE); +} + +static int tmio_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, + u_char *ecc_code) +{ + struct tmio_nand *tmio = mtd_to_tmio(mtd); + unsigned int ecc; + + tmio_iowrite8(FCR_MODE_HWECC_RESULT, tmio->fcr + FCR_MODE); + + ecc = tmio_ioread16(tmio->fcr + FCR_DATA); + ecc_code[1] = ecc; /* 000-255 LP7-0 */ + ecc_code[0] = ecc >> 8; /* 000-255 LP15-8 */ + ecc = tmio_ioread16(tmio->fcr + FCR_DATA); + ecc_code[2] = ecc; /* 000-255 CP5-0,11b */ + ecc_code[4] = ecc >> 8; /* 256-511 LP7-0 */ + ecc = tmio_ioread16(tmio->fcr + FCR_DATA); + ecc_code[3] = ecc; /* 256-511 LP15-8 */ + ecc_code[5] = ecc >> 8; /* 256-511 CP5-0,11b */ + + tmio_iowrite8(FCR_MODE_DATA, tmio->fcr + FCR_MODE); + return 0; +} + +static int tmio_nand_correct_data(struct mtd_info *mtd, unsigned char *buf, + unsigned char *read_ecc, unsigned char *calc_ecc) +{ + int r0, r1; + + /* assume ecc.size = 512 and ecc.bytes = 6 */ + r0 = __nand_correct_data(buf, read_ecc, calc_ecc, 256); + if (r0 < 0) + return r0; + r1 = __nand_correct_data(buf + 256, read_ecc + 3, calc_ecc + 3, 256); + if (r1 < 0) + return r1; + return r0 + r1; +} + +static int tmio_hw_init(struct platform_device *dev, struct tmio_nand *tmio) +{ + const struct mfd_cell *cell = mfd_get_cell(dev); + int ret; + + if (cell->enable) { + ret = cell->enable(dev); + if (ret) + return ret; + } + + /* (4Ch) CLKRUN Enable 1st spcrunc */ + tmio_iowrite8(0x81, tmio->ccr + CCR_ICC); + + /* (10h)BaseAddress 0x1000 spba.spba2 */ + tmio_iowrite16(tmio->fcr_base, tmio->ccr + CCR_BASE); + tmio_iowrite16(tmio->fcr_base >> 16, tmio->ccr + CCR_BASE + 2); + + /* (04h)Command Register I/O spcmd */ + tmio_iowrite8(0x02, tmio->ccr + CCR_COMMAND); + + /* (62h) Power Supply Control ssmpwc */ + /* HardPowerOFF - SuspendOFF - PowerSupplyWait_4MS */ + tmio_iowrite8(0x02, tmio->ccr + CCR_NFPSC); + + /* (63h) Detect Control ssmdtc */ + tmio_iowrite8(0x02, tmio->ccr + CCR_NFDC); + + /* Interrupt status register clear sintst */ + tmio_iowrite8(0x0f, tmio->fcr + FCR_ISR); + + /* After power supply, Media are reset smode */ + tmio_iowrite8(FCR_MODE_POWER_ON, tmio->fcr + FCR_MODE); + tmio_iowrite8(FCR_MODE_COMMAND, tmio->fcr + FCR_MODE); + tmio_iowrite8(NAND_CMD_RESET, tmio->fcr + FCR_DATA); + + /* Standby Mode smode */ + tmio_iowrite8(FCR_MODE_STANDBY, tmio->fcr + FCR_MODE); + + mdelay(5); + + return 0; +} + +static void tmio_hw_stop(struct platform_device *dev, struct tmio_nand *tmio) +{ + const struct mfd_cell *cell = mfd_get_cell(dev); + + tmio_iowrite8(FCR_MODE_POWER_OFF, tmio->fcr + FCR_MODE); + if (cell->disable) + cell->disable(dev); +} + +static int tmio_probe(struct platform_device *dev) +{ + struct tmio_nand_data *data = dev_get_platdata(&dev->dev); + struct resource *fcr = platform_get_resource(dev, + IORESOURCE_MEM, 0); + struct resource *ccr = platform_get_resource(dev, + IORESOURCE_MEM, 1); + int irq = platform_get_irq(dev, 0); + struct tmio_nand *tmio; + struct mtd_info *mtd; + struct nand_chip *nand_chip; + int retval; + + if (data == NULL) + dev_warn(&dev->dev, "NULL platform data!\n"); + + tmio = devm_kzalloc(&dev->dev, sizeof(*tmio), GFP_KERNEL); + if (!tmio) + return -ENOMEM; + + tmio->dev = dev; + + platform_set_drvdata(dev, tmio); + nand_chip = &tmio->chip; + mtd = nand_to_mtd(nand_chip); + mtd->name = "tmio-nand"; + mtd->dev.parent = &dev->dev; + + tmio->ccr = devm_ioremap(&dev->dev, ccr->start, resource_size(ccr)); + if (!tmio->ccr) + return -EIO; + + tmio->fcr_base = fcr->start & 0xfffff; + tmio->fcr = devm_ioremap(&dev->dev, fcr->start, resource_size(fcr)); + if (!tmio->fcr) + return -EIO; + + retval = tmio_hw_init(dev, tmio); + if (retval) + return retval; + + /* Set address of NAND IO lines */ + nand_chip->IO_ADDR_R = tmio->fcr; + nand_chip->IO_ADDR_W = tmio->fcr; + + /* Set address of hardware control function */ + nand_chip->cmd_ctrl = tmio_nand_hwcontrol; + nand_chip->dev_ready = tmio_nand_dev_ready; + nand_chip->read_byte = tmio_nand_read_byte; + nand_chip->write_buf = tmio_nand_write_buf; + nand_chip->read_buf = tmio_nand_read_buf; + + /* set eccmode using hardware ECC */ + nand_chip->ecc.mode = NAND_ECC_HW; + nand_chip->ecc.size = 512; + nand_chip->ecc.bytes = 6; + nand_chip->ecc.strength = 2; + nand_chip->ecc.hwctl = tmio_nand_enable_hwecc; + nand_chip->ecc.calculate = tmio_nand_calculate_ecc; + nand_chip->ecc.correct = tmio_nand_correct_data; + + if (data) + nand_chip->badblock_pattern = data->badblock_pattern; + + /* 15 us command delay time */ + nand_chip->chip_delay = 15; + + retval = devm_request_irq(&dev->dev, irq, &tmio_irq, 0, + dev_name(&dev->dev), tmio); + if (retval) { + dev_err(&dev->dev, "request_irq error %d\n", retval); + goto err_irq; + } + + tmio->irq = irq; + nand_chip->waitfunc = tmio_nand_wait; + + /* Scan to find existence of the device */ + retval = nand_scan(mtd, 1); + if (retval) + goto err_irq; + + /* Register the partitions */ + retval = mtd_device_parse_register(mtd, + data ? data->part_parsers : NULL, + NULL, + data ? data->partition : NULL, + data ? data->num_partitions : 0); + if (!retval) + return retval; + + nand_release(mtd); + +err_irq: + tmio_hw_stop(dev, tmio); + return retval; +} + +static int tmio_remove(struct platform_device *dev) +{ + struct tmio_nand *tmio = platform_get_drvdata(dev); + + nand_release(nand_to_mtd(&tmio->chip)); + tmio_hw_stop(dev, tmio); + return 0; +} + +#ifdef CONFIG_PM +static int tmio_suspend(struct platform_device *dev, pm_message_t state) +{ + const struct mfd_cell *cell = mfd_get_cell(dev); + + if (cell->suspend) + cell->suspend(dev); + + tmio_hw_stop(dev, platform_get_drvdata(dev)); + return 0; +} + +static int tmio_resume(struct platform_device *dev) +{ + const struct mfd_cell *cell = mfd_get_cell(dev); + + /* FIXME - is this required or merely another attack of the broken + * SHARP platform? Looks suspicious. + */ + tmio_hw_init(dev, platform_get_drvdata(dev)); + + if (cell->resume) + cell->resume(dev); + + return 0; +} +#else +#define tmio_suspend NULL +#define tmio_resume NULL +#endif + +static struct platform_driver tmio_driver = { + .driver.name = "tmio-nand", + .driver.owner = THIS_MODULE, + .probe = tmio_probe, + .remove = tmio_remove, + .suspend = tmio_suspend, + .resume = tmio_resume, +}; + +module_platform_driver(tmio_driver); + +MODULE_LICENSE("GPL v2"); +MODULE_AUTHOR("Ian Molton, Dirk Opfer, Chris Humbert, Dmitry Baryshkov"); +MODULE_DESCRIPTION("NAND flash driver on Toshiba Mobile IO controller"); +MODULE_ALIAS("platform:tmio-nand"); diff --git a/drivers/mtd/nand/raw/txx9ndfmc.c b/drivers/mtd/nand/raw/txx9ndfmc.c new file mode 100644 index 000000000000..b567d212fe7d --- /dev/null +++ b/drivers/mtd/nand/raw/txx9ndfmc.c @@ -0,0 +1,423 @@ +/* + * TXx9 NAND flash memory controller driver + * Based on RBTX49xx patch from CELF patch archive. + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + * + * (C) Copyright TOSHIBA CORPORATION 2004-2007 + * All Rights Reserved. + */ +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +/* TXX9 NDFMC Registers */ +#define TXX9_NDFDTR 0x00 +#define TXX9_NDFMCR 0x04 +#define TXX9_NDFSR 0x08 +#define TXX9_NDFISR 0x0c +#define TXX9_NDFIMR 0x10 +#define TXX9_NDFSPR 0x14 +#define TXX9_NDFRSTR 0x18 /* not TX4939 */ + +/* NDFMCR : NDFMC Mode Control */ +#define TXX9_NDFMCR_WE 0x80 +#define TXX9_NDFMCR_ECC_ALL 0x60 +#define TXX9_NDFMCR_ECC_RESET 0x60 +#define TXX9_NDFMCR_ECC_READ 0x40 +#define TXX9_NDFMCR_ECC_ON 0x20 +#define TXX9_NDFMCR_ECC_OFF 0x00 +#define TXX9_NDFMCR_CE 0x10 +#define TXX9_NDFMCR_BSPRT 0x04 /* TX4925/TX4926 only */ +#define TXX9_NDFMCR_ALE 0x02 +#define TXX9_NDFMCR_CLE 0x01 +/* TX4939 only */ +#define TXX9_NDFMCR_X16 0x0400 +#define TXX9_NDFMCR_DMAREQ_MASK 0x0300 +#define TXX9_NDFMCR_DMAREQ_NODMA 0x0000 +#define TXX9_NDFMCR_DMAREQ_128 0x0100 +#define TXX9_NDFMCR_DMAREQ_256 0x0200 +#define TXX9_NDFMCR_DMAREQ_512 0x0300 +#define TXX9_NDFMCR_CS_MASK 0x0c +#define TXX9_NDFMCR_CS(ch) ((ch) << 2) + +/* NDFMCR : NDFMC Status */ +#define TXX9_NDFSR_BUSY 0x80 +/* TX4939 only */ +#define TXX9_NDFSR_DMARUN 0x40 + +/* NDFMCR : NDFMC Reset */ +#define TXX9_NDFRSTR_RST 0x01 + +struct txx9ndfmc_priv { + struct platform_device *dev; + struct nand_chip chip; + int cs; + const char *mtdname; +}; + +#define MAX_TXX9NDFMC_DEV 4 +struct txx9ndfmc_drvdata { + struct mtd_info *mtds[MAX_TXX9NDFMC_DEV]; + void __iomem *base; + unsigned char hold; /* in gbusclock */ + unsigned char spw; /* in gbusclock */ + struct nand_hw_control hw_control; +}; + +static struct platform_device *mtd_to_platdev(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct txx9ndfmc_priv *txx9_priv = nand_get_controller_data(chip); + return txx9_priv->dev; +} + +static void __iomem *ndregaddr(struct platform_device *dev, unsigned int reg) +{ + struct txx9ndfmc_drvdata *drvdata = platform_get_drvdata(dev); + struct txx9ndfmc_platform_data *plat = dev_get_platdata(&dev->dev); + + return drvdata->base + (reg << plat->shift); +} + +static u32 txx9ndfmc_read(struct platform_device *dev, unsigned int reg) +{ + return __raw_readl(ndregaddr(dev, reg)); +} + +static void txx9ndfmc_write(struct platform_device *dev, + u32 val, unsigned int reg) +{ + __raw_writel(val, ndregaddr(dev, reg)); +} + +static uint8_t txx9ndfmc_read_byte(struct mtd_info *mtd) +{ + struct platform_device *dev = mtd_to_platdev(mtd); + + return txx9ndfmc_read(dev, TXX9_NDFDTR); +} + +static void txx9ndfmc_write_buf(struct mtd_info *mtd, const uint8_t *buf, + int len) +{ + struct platform_device *dev = mtd_to_platdev(mtd); + void __iomem *ndfdtr = ndregaddr(dev, TXX9_NDFDTR); + u32 mcr = txx9ndfmc_read(dev, TXX9_NDFMCR); + + txx9ndfmc_write(dev, mcr | TXX9_NDFMCR_WE, TXX9_NDFMCR); + while (len--) + __raw_writel(*buf++, ndfdtr); + txx9ndfmc_write(dev, mcr, TXX9_NDFMCR); +} + +static void txx9ndfmc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) +{ + struct platform_device *dev = mtd_to_platdev(mtd); + void __iomem *ndfdtr = ndregaddr(dev, TXX9_NDFDTR); + + while (len--) + *buf++ = __raw_readl(ndfdtr); +} + +static void txx9ndfmc_cmd_ctrl(struct mtd_info *mtd, int cmd, + unsigned int ctrl) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct txx9ndfmc_priv *txx9_priv = nand_get_controller_data(chip); + struct platform_device *dev = txx9_priv->dev; + struct txx9ndfmc_platform_data *plat = dev_get_platdata(&dev->dev); + + if (ctrl & NAND_CTRL_CHANGE) { + u32 mcr = txx9ndfmc_read(dev, TXX9_NDFMCR); + + mcr &= ~(TXX9_NDFMCR_CLE | TXX9_NDFMCR_ALE | TXX9_NDFMCR_CE); + mcr |= ctrl & NAND_CLE ? TXX9_NDFMCR_CLE : 0; + mcr |= ctrl & NAND_ALE ? TXX9_NDFMCR_ALE : 0; + /* TXX9_NDFMCR_CE bit is 0:high 1:low */ + mcr |= ctrl & NAND_NCE ? TXX9_NDFMCR_CE : 0; + if (txx9_priv->cs >= 0 && (ctrl & NAND_NCE)) { + mcr &= ~TXX9_NDFMCR_CS_MASK; + mcr |= TXX9_NDFMCR_CS(txx9_priv->cs); + } + txx9ndfmc_write(dev, mcr, TXX9_NDFMCR); + } + if (cmd != NAND_CMD_NONE) + txx9ndfmc_write(dev, cmd & 0xff, TXX9_NDFDTR); + if (plat->flags & NDFMC_PLAT_FLAG_DUMMYWRITE) { + /* dummy write to update external latch */ + if ((ctrl & NAND_CTRL_CHANGE) && cmd == NAND_CMD_NONE) + txx9ndfmc_write(dev, 0, TXX9_NDFDTR); + } + mmiowb(); +} + +static int txx9ndfmc_dev_ready(struct mtd_info *mtd) +{ + struct platform_device *dev = mtd_to_platdev(mtd); + + return !(txx9ndfmc_read(dev, TXX9_NDFSR) & TXX9_NDFSR_BUSY); +} + +static int txx9ndfmc_calculate_ecc(struct mtd_info *mtd, const uint8_t *dat, + uint8_t *ecc_code) +{ + struct platform_device *dev = mtd_to_platdev(mtd); + struct nand_chip *chip = mtd_to_nand(mtd); + int eccbytes; + u32 mcr = txx9ndfmc_read(dev, TXX9_NDFMCR); + + mcr &= ~TXX9_NDFMCR_ECC_ALL; + txx9ndfmc_write(dev, mcr | TXX9_NDFMCR_ECC_OFF, TXX9_NDFMCR); + txx9ndfmc_write(dev, mcr | TXX9_NDFMCR_ECC_READ, TXX9_NDFMCR); + for (eccbytes = chip->ecc.bytes; eccbytes > 0; eccbytes -= 3) { + ecc_code[1] = txx9ndfmc_read(dev, TXX9_NDFDTR); + ecc_code[0] = txx9ndfmc_read(dev, TXX9_NDFDTR); + ecc_code[2] = txx9ndfmc_read(dev, TXX9_NDFDTR); + ecc_code += 3; + } + txx9ndfmc_write(dev, mcr | TXX9_NDFMCR_ECC_OFF, TXX9_NDFMCR); + return 0; +} + +static int txx9ndfmc_correct_data(struct mtd_info *mtd, unsigned char *buf, + unsigned char *read_ecc, unsigned char *calc_ecc) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + int eccsize; + int corrected = 0; + int stat; + + for (eccsize = chip->ecc.size; eccsize > 0; eccsize -= 256) { + stat = __nand_correct_data(buf, read_ecc, calc_ecc, 256); + if (stat < 0) + return stat; + corrected += stat; + buf += 256; + read_ecc += 3; + calc_ecc += 3; + } + return corrected; +} + +static void txx9ndfmc_enable_hwecc(struct mtd_info *mtd, int mode) +{ + struct platform_device *dev = mtd_to_platdev(mtd); + u32 mcr = txx9ndfmc_read(dev, TXX9_NDFMCR); + + mcr &= ~TXX9_NDFMCR_ECC_ALL; + txx9ndfmc_write(dev, mcr | TXX9_NDFMCR_ECC_RESET, TXX9_NDFMCR); + txx9ndfmc_write(dev, mcr | TXX9_NDFMCR_ECC_OFF, TXX9_NDFMCR); + txx9ndfmc_write(dev, mcr | TXX9_NDFMCR_ECC_ON, TXX9_NDFMCR); +} + +static void txx9ndfmc_initialize(struct platform_device *dev) +{ + struct txx9ndfmc_platform_data *plat = dev_get_platdata(&dev->dev); + struct txx9ndfmc_drvdata *drvdata = platform_get_drvdata(dev); + int tmout = 100; + + if (plat->flags & NDFMC_PLAT_FLAG_NO_RSTR) + ; /* no NDFRSTR. Write to NDFSPR resets the NDFMC. */ + else { + /* reset NDFMC */ + txx9ndfmc_write(dev, + txx9ndfmc_read(dev, TXX9_NDFRSTR) | + TXX9_NDFRSTR_RST, + TXX9_NDFRSTR); + while (txx9ndfmc_read(dev, TXX9_NDFRSTR) & TXX9_NDFRSTR_RST) { + if (--tmout == 0) { + dev_err(&dev->dev, "reset failed.\n"); + break; + } + udelay(1); + } + } + /* setup Hold Time, Strobe Pulse Width */ + txx9ndfmc_write(dev, (drvdata->hold << 4) | drvdata->spw, TXX9_NDFSPR); + txx9ndfmc_write(dev, + (plat->flags & NDFMC_PLAT_FLAG_USE_BSPRT) ? + TXX9_NDFMCR_BSPRT : 0, TXX9_NDFMCR); +} + +#define TXX9NDFMC_NS_TO_CYC(gbusclk, ns) \ + DIV_ROUND_UP((ns) * DIV_ROUND_UP(gbusclk, 1000), 1000000) + +static int txx9ndfmc_nand_scan(struct mtd_info *mtd) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + int ret; + + ret = nand_scan_ident(mtd, 1, NULL); + if (!ret) { + if (mtd->writesize >= 512) { + /* Hardware ECC 6 byte ECC per 512 Byte data */ + chip->ecc.size = 512; + chip->ecc.bytes = 6; + } + ret = nand_scan_tail(mtd); + } + return ret; +} + +static int __init txx9ndfmc_probe(struct platform_device *dev) +{ + struct txx9ndfmc_platform_data *plat = dev_get_platdata(&dev->dev); + int hold, spw; + int i; + struct txx9ndfmc_drvdata *drvdata; + unsigned long gbusclk = plat->gbus_clock; + struct resource *res; + + drvdata = devm_kzalloc(&dev->dev, sizeof(*drvdata), GFP_KERNEL); + if (!drvdata) + return -ENOMEM; + res = platform_get_resource(dev, IORESOURCE_MEM, 0); + drvdata->base = devm_ioremap_resource(&dev->dev, res); + if (IS_ERR(drvdata->base)) + return PTR_ERR(drvdata->base); + + hold = plat->hold ?: 20; /* tDH */ + spw = plat->spw ?: 90; /* max(tREADID, tWP, tRP) */ + + hold = TXX9NDFMC_NS_TO_CYC(gbusclk, hold); + spw = TXX9NDFMC_NS_TO_CYC(gbusclk, spw); + if (plat->flags & NDFMC_PLAT_FLAG_HOLDADD) + hold -= 2; /* actual hold time : (HOLD + 2) BUSCLK */ + spw -= 1; /* actual wait time : (SPW + 1) BUSCLK */ + hold = clamp(hold, 1, 15); + drvdata->hold = hold; + spw = clamp(spw, 1, 15); + drvdata->spw = spw; + dev_info(&dev->dev, "CLK:%ldMHz HOLD:%d SPW:%d\n", + (gbusclk + 500000) / 1000000, hold, spw); + + nand_hw_control_init(&drvdata->hw_control); + + platform_set_drvdata(dev, drvdata); + txx9ndfmc_initialize(dev); + + for (i = 0; i < MAX_TXX9NDFMC_DEV; i++) { + struct txx9ndfmc_priv *txx9_priv; + struct nand_chip *chip; + struct mtd_info *mtd; + + if (!(plat->ch_mask & (1 << i))) + continue; + txx9_priv = kzalloc(sizeof(struct txx9ndfmc_priv), + GFP_KERNEL); + if (!txx9_priv) + continue; + chip = &txx9_priv->chip; + mtd = nand_to_mtd(chip); + mtd->dev.parent = &dev->dev; + + chip->read_byte = txx9ndfmc_read_byte; + chip->read_buf = txx9ndfmc_read_buf; + chip->write_buf = txx9ndfmc_write_buf; + chip->cmd_ctrl = txx9ndfmc_cmd_ctrl; + chip->dev_ready = txx9ndfmc_dev_ready; + chip->ecc.calculate = txx9ndfmc_calculate_ecc; + chip->ecc.correct = txx9ndfmc_correct_data; + chip->ecc.hwctl = txx9ndfmc_enable_hwecc; + chip->ecc.mode = NAND_ECC_HW; + /* txx9ndfmc_nand_scan will overwrite ecc.size and ecc.bytes */ + chip->ecc.size = 256; + chip->ecc.bytes = 3; + chip->ecc.strength = 1; + chip->chip_delay = 100; + chip->controller = &drvdata->hw_control; + + nand_set_controller_data(chip, txx9_priv); + txx9_priv->dev = dev; + + if (plat->ch_mask != 1) { + txx9_priv->cs = i; + txx9_priv->mtdname = kasprintf(GFP_KERNEL, "%s.%u", + dev_name(&dev->dev), i); + } else { + txx9_priv->cs = -1; + txx9_priv->mtdname = kstrdup(dev_name(&dev->dev), + GFP_KERNEL); + } + if (!txx9_priv->mtdname) { + kfree(txx9_priv); + dev_err(&dev->dev, "Unable to allocate MTD name.\n"); + continue; + } + if (plat->wide_mask & (1 << i)) + chip->options |= NAND_BUSWIDTH_16; + + if (txx9ndfmc_nand_scan(mtd)) { + kfree(txx9_priv->mtdname); + kfree(txx9_priv); + continue; + } + mtd->name = txx9_priv->mtdname; + + mtd_device_parse_register(mtd, NULL, NULL, NULL, 0); + drvdata->mtds[i] = mtd; + } + + return 0; +} + +static int __exit txx9ndfmc_remove(struct platform_device *dev) +{ + struct txx9ndfmc_drvdata *drvdata = platform_get_drvdata(dev); + int i; + + if (!drvdata) + return 0; + for (i = 0; i < MAX_TXX9NDFMC_DEV; i++) { + struct mtd_info *mtd = drvdata->mtds[i]; + struct nand_chip *chip; + struct txx9ndfmc_priv *txx9_priv; + + if (!mtd) + continue; + chip = mtd_to_nand(mtd); + txx9_priv = nand_get_controller_data(chip); + + nand_release(mtd); + kfree(txx9_priv->mtdname); + kfree(txx9_priv); + } + return 0; +} + +#ifdef CONFIG_PM +static int txx9ndfmc_resume(struct platform_device *dev) +{ + if (platform_get_drvdata(dev)) + txx9ndfmc_initialize(dev); + return 0; +} +#else +#define txx9ndfmc_resume NULL +#endif + +static struct platform_driver txx9ndfmc_driver = { + .remove = __exit_p(txx9ndfmc_remove), + .resume = txx9ndfmc_resume, + .driver = { + .name = "txx9ndfmc", + }, +}; + +module_platform_driver_probe(txx9ndfmc_driver, txx9ndfmc_probe); + +MODULE_LICENSE("GPL"); +MODULE_DESCRIPTION("TXx9 SoC NAND flash controller driver"); +MODULE_ALIAS("platform:txx9ndfmc"); diff --git a/drivers/mtd/nand/raw/vf610_nfc.c b/drivers/mtd/nand/raw/vf610_nfc.c new file mode 100644 index 000000000000..5d7a1f8f580f --- /dev/null +++ b/drivers/mtd/nand/raw/vf610_nfc.c @@ -0,0 +1,835 @@ +/* + * Copyright 2009-2015 Freescale Semiconductor, Inc. and others + * + * Description: MPC5125, VF610, MCF54418 and Kinetis K70 Nand driver. + * Jason ported to M54418TWR and MVFA5 (VF610). + * Authors: Stefan Agner + * Bill Pringlemeir + * Shaohui Xie + * Jason Jin + * + * Based on original driver mpc5121_nfc.c. + * + * This is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * Limitations: + * - Untested on MPC5125 and M54418. + * - DMA and pipelining not used. + * - 2K pages or less. + * - HW ECC: Only 2K page with 64+ OOB. + * - HW ECC: Only 24 and 32-bit error correction implemented. + */ + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#define DRV_NAME "vf610_nfc" + +/* Register Offsets */ +#define NFC_FLASH_CMD1 0x3F00 +#define NFC_FLASH_CMD2 0x3F04 +#define NFC_COL_ADDR 0x3F08 +#define NFC_ROW_ADDR 0x3F0c +#define NFC_ROW_ADDR_INC 0x3F14 +#define NFC_FLASH_STATUS1 0x3F18 +#define NFC_FLASH_STATUS2 0x3F1c +#define NFC_CACHE_SWAP 0x3F28 +#define NFC_SECTOR_SIZE 0x3F2c +#define NFC_FLASH_CONFIG 0x3F30 +#define NFC_IRQ_STATUS 0x3F38 + +/* Addresses for NFC MAIN RAM BUFFER areas */ +#define NFC_MAIN_AREA(n) ((n) * 0x1000) + +#define PAGE_2K 0x0800 +#define OOB_64 0x0040 +#define OOB_MAX 0x0100 + +/* + * NFC_CMD2[CODE] values. See section: + * - 31.4.7 Flash Command Code Description, Vybrid manual + * - 23.8.6 Flash Command Sequencer, MPC5125 manual + * + * Briefly these are bitmasks of controller cycles. + */ +#define READ_PAGE_CMD_CODE 0x7EE0 +#define READ_ONFI_PARAM_CMD_CODE 0x4860 +#define PROGRAM_PAGE_CMD_CODE 0x7FC0 +#define ERASE_CMD_CODE 0x4EC0 +#define READ_ID_CMD_CODE 0x4804 +#define RESET_CMD_CODE 0x4040 +#define STATUS_READ_CMD_CODE 0x4068 + +/* NFC ECC mode define */ +#define ECC_BYPASS 0 +#define ECC_45_BYTE 6 +#define ECC_60_BYTE 7 + +/*** Register Mask and bit definitions */ + +/* NFC_FLASH_CMD1 Field */ +#define CMD_BYTE2_MASK 0xFF000000 +#define CMD_BYTE2_SHIFT 24 + +/* NFC_FLASH_CM2 Field */ +#define CMD_BYTE1_MASK 0xFF000000 +#define CMD_BYTE1_SHIFT 24 +#define CMD_CODE_MASK 0x00FFFF00 +#define CMD_CODE_SHIFT 8 +#define BUFNO_MASK 0x00000006 +#define BUFNO_SHIFT 1 +#define START_BIT BIT(0) + +/* NFC_COL_ADDR Field */ +#define COL_ADDR_MASK 0x0000FFFF +#define COL_ADDR_SHIFT 0 + +/* NFC_ROW_ADDR Field */ +#define ROW_ADDR_MASK 0x00FFFFFF +#define ROW_ADDR_SHIFT 0 +#define ROW_ADDR_CHIP_SEL_RB_MASK 0xF0000000 +#define ROW_ADDR_CHIP_SEL_RB_SHIFT 28 +#define ROW_ADDR_CHIP_SEL_MASK 0x0F000000 +#define ROW_ADDR_CHIP_SEL_SHIFT 24 + +/* NFC_FLASH_STATUS2 Field */ +#define STATUS_BYTE1_MASK 0x000000FF + +/* NFC_FLASH_CONFIG Field */ +#define CONFIG_ECC_SRAM_ADDR_MASK 0x7FC00000 +#define CONFIG_ECC_SRAM_ADDR_SHIFT 22 +#define CONFIG_ECC_SRAM_REQ_BIT BIT(21) +#define CONFIG_DMA_REQ_BIT BIT(20) +#define CONFIG_ECC_MODE_MASK 0x000E0000 +#define CONFIG_ECC_MODE_SHIFT 17 +#define CONFIG_FAST_FLASH_BIT BIT(16) +#define CONFIG_16BIT BIT(7) +#define CONFIG_BOOT_MODE_BIT BIT(6) +#define CONFIG_ADDR_AUTO_INCR_BIT BIT(5) +#define CONFIG_BUFNO_AUTO_INCR_BIT BIT(4) +#define CONFIG_PAGE_CNT_MASK 0xF +#define CONFIG_PAGE_CNT_SHIFT 0 + +/* NFC_IRQ_STATUS Field */ +#define IDLE_IRQ_BIT BIT(29) +#define IDLE_EN_BIT BIT(20) +#define CMD_DONE_CLEAR_BIT BIT(18) +#define IDLE_CLEAR_BIT BIT(17) + +/* + * ECC status - seems to consume 8 bytes (double word). The documented + * status byte is located in the lowest byte of the second word (which is + * the 4th or 7th byte depending on endianness). + * Calculate an offset to store the ECC status at the end of the buffer. + */ +#define ECC_SRAM_ADDR (PAGE_2K + OOB_MAX - 8) + +#define ECC_STATUS 0x4 +#define ECC_STATUS_MASK 0x80 +#define ECC_STATUS_ERR_COUNT 0x3F + +enum vf610_nfc_alt_buf { + ALT_BUF_DATA = 0, + ALT_BUF_ID = 1, + ALT_BUF_STAT = 2, + ALT_BUF_ONFI = 3, +}; + +enum vf610_nfc_variant { + NFC_VFC610 = 1, +}; + +struct vf610_nfc { + struct nand_chip chip; + struct device *dev; + void __iomem *regs; + struct completion cmd_done; + uint buf_offset; + int write_sz; + /* Status and ID are in alternate locations. */ + enum vf610_nfc_alt_buf alt_buf; + enum vf610_nfc_variant variant; + struct clk *clk; + bool use_hw_ecc; + u32 ecc_mode; +}; + +static inline struct vf610_nfc *mtd_to_nfc(struct mtd_info *mtd) +{ + return container_of(mtd_to_nand(mtd), struct vf610_nfc, chip); +} + +static inline u32 vf610_nfc_read(struct vf610_nfc *nfc, uint reg) +{ + return readl(nfc->regs + reg); +} + +static inline void vf610_nfc_write(struct vf610_nfc *nfc, uint reg, u32 val) +{ + writel(val, nfc->regs + reg); +} + +static inline void vf610_nfc_set(struct vf610_nfc *nfc, uint reg, u32 bits) +{ + vf610_nfc_write(nfc, reg, vf610_nfc_read(nfc, reg) | bits); +} + +static inline void vf610_nfc_clear(struct vf610_nfc *nfc, uint reg, u32 bits) +{ + vf610_nfc_write(nfc, reg, vf610_nfc_read(nfc, reg) & ~bits); +} + +static inline void vf610_nfc_set_field(struct vf610_nfc *nfc, u32 reg, + u32 mask, u32 shift, u32 val) +{ + vf610_nfc_write(nfc, reg, + (vf610_nfc_read(nfc, reg) & (~mask)) | val << shift); +} + +static inline void vf610_nfc_memcpy(void *dst, const void __iomem *src, + size_t n) +{ + /* + * Use this accessor for the internal SRAM buffers. On the ARM + * Freescale Vybrid SoC it's known that the driver can treat + * the SRAM buffer as if it's memory. Other platform might need + * to treat the buffers differently. + * + * For the time being, use memcpy + */ + memcpy(dst, src, n); +} + +/* Clear flags for upcoming command */ +static inline void vf610_nfc_clear_status(struct vf610_nfc *nfc) +{ + u32 tmp = vf610_nfc_read(nfc, NFC_IRQ_STATUS); + + tmp |= CMD_DONE_CLEAR_BIT | IDLE_CLEAR_BIT; + vf610_nfc_write(nfc, NFC_IRQ_STATUS, tmp); +} + +static void vf610_nfc_done(struct vf610_nfc *nfc) +{ + unsigned long timeout = msecs_to_jiffies(100); + + /* + * Barrier is needed after this write. This write need + * to be done before reading the next register the first + * time. + * vf610_nfc_set implicates such a barrier by using writel + * to write to the register. + */ + vf610_nfc_set(nfc, NFC_IRQ_STATUS, IDLE_EN_BIT); + vf610_nfc_set(nfc, NFC_FLASH_CMD2, START_BIT); + + if (!wait_for_completion_timeout(&nfc->cmd_done, timeout)) + dev_warn(nfc->dev, "Timeout while waiting for BUSY.\n"); + + vf610_nfc_clear_status(nfc); +} + +static u8 vf610_nfc_get_id(struct vf610_nfc *nfc, int col) +{ + u32 flash_id; + + if (col < 4) { + flash_id = vf610_nfc_read(nfc, NFC_FLASH_STATUS1); + flash_id >>= (3 - col) * 8; + } else { + flash_id = vf610_nfc_read(nfc, NFC_FLASH_STATUS2); + flash_id >>= 24; + } + + return flash_id & 0xff; +} + +static u8 vf610_nfc_get_status(struct vf610_nfc *nfc) +{ + return vf610_nfc_read(nfc, NFC_FLASH_STATUS2) & STATUS_BYTE1_MASK; +} + +static void vf610_nfc_send_command(struct vf610_nfc *nfc, u32 cmd_byte1, + u32 cmd_code) +{ + u32 tmp; + + vf610_nfc_clear_status(nfc); + + tmp = vf610_nfc_read(nfc, NFC_FLASH_CMD2); + tmp &= ~(CMD_BYTE1_MASK | CMD_CODE_MASK | BUFNO_MASK); + tmp |= cmd_byte1 << CMD_BYTE1_SHIFT; + tmp |= cmd_code << CMD_CODE_SHIFT; + vf610_nfc_write(nfc, NFC_FLASH_CMD2, tmp); +} + +static void vf610_nfc_send_commands(struct vf610_nfc *nfc, u32 cmd_byte1, + u32 cmd_byte2, u32 cmd_code) +{ + u32 tmp; + + vf610_nfc_send_command(nfc, cmd_byte1, cmd_code); + + tmp = vf610_nfc_read(nfc, NFC_FLASH_CMD1); + tmp &= ~CMD_BYTE2_MASK; + tmp |= cmd_byte2 << CMD_BYTE2_SHIFT; + vf610_nfc_write(nfc, NFC_FLASH_CMD1, tmp); +} + +static irqreturn_t vf610_nfc_irq(int irq, void *data) +{ + struct mtd_info *mtd = data; + struct vf610_nfc *nfc = mtd_to_nfc(mtd); + + vf610_nfc_clear(nfc, NFC_IRQ_STATUS, IDLE_EN_BIT); + complete(&nfc->cmd_done); + + return IRQ_HANDLED; +} + +static void vf610_nfc_addr_cycle(struct vf610_nfc *nfc, int column, int page) +{ + if (column != -1) { + if (nfc->chip.options & NAND_BUSWIDTH_16) + column = column / 2; + vf610_nfc_set_field(nfc, NFC_COL_ADDR, COL_ADDR_MASK, + COL_ADDR_SHIFT, column); + } + if (page != -1) + vf610_nfc_set_field(nfc, NFC_ROW_ADDR, ROW_ADDR_MASK, + ROW_ADDR_SHIFT, page); +} + +static inline void vf610_nfc_ecc_mode(struct vf610_nfc *nfc, int ecc_mode) +{ + vf610_nfc_set_field(nfc, NFC_FLASH_CONFIG, + CONFIG_ECC_MODE_MASK, + CONFIG_ECC_MODE_SHIFT, ecc_mode); +} + +static inline void vf610_nfc_transfer_size(struct vf610_nfc *nfc, int size) +{ + vf610_nfc_write(nfc, NFC_SECTOR_SIZE, size); +} + +static void vf610_nfc_command(struct mtd_info *mtd, unsigned command, + int column, int page) +{ + struct vf610_nfc *nfc = mtd_to_nfc(mtd); + int trfr_sz = nfc->chip.options & NAND_BUSWIDTH_16 ? 1 : 0; + + nfc->buf_offset = max(column, 0); + nfc->alt_buf = ALT_BUF_DATA; + + switch (command) { + case NAND_CMD_SEQIN: + /* Use valid column/page from preread... */ + vf610_nfc_addr_cycle(nfc, column, page); + nfc->buf_offset = 0; + + /* + * SEQIN => data => PAGEPROG sequence is done by the controller + * hence we do not need to issue the command here... + */ + return; + case NAND_CMD_PAGEPROG: + trfr_sz += nfc->write_sz; + vf610_nfc_transfer_size(nfc, trfr_sz); + vf610_nfc_send_commands(nfc, NAND_CMD_SEQIN, + command, PROGRAM_PAGE_CMD_CODE); + if (nfc->use_hw_ecc) + vf610_nfc_ecc_mode(nfc, nfc->ecc_mode); + else + vf610_nfc_ecc_mode(nfc, ECC_BYPASS); + break; + + case NAND_CMD_RESET: + vf610_nfc_transfer_size(nfc, 0); + vf610_nfc_send_command(nfc, command, RESET_CMD_CODE); + break; + + case NAND_CMD_READOOB: + trfr_sz += mtd->oobsize; + column = mtd->writesize; + vf610_nfc_transfer_size(nfc, trfr_sz); + vf610_nfc_send_commands(nfc, NAND_CMD_READ0, + NAND_CMD_READSTART, READ_PAGE_CMD_CODE); + vf610_nfc_addr_cycle(nfc, column, page); + vf610_nfc_ecc_mode(nfc, ECC_BYPASS); + break; + + case NAND_CMD_READ0: + trfr_sz += mtd->writesize + mtd->oobsize; + vf610_nfc_transfer_size(nfc, trfr_sz); + vf610_nfc_send_commands(nfc, NAND_CMD_READ0, + NAND_CMD_READSTART, READ_PAGE_CMD_CODE); + vf610_nfc_addr_cycle(nfc, column, page); + vf610_nfc_ecc_mode(nfc, nfc->ecc_mode); + break; + + case NAND_CMD_PARAM: + nfc->alt_buf = ALT_BUF_ONFI; + trfr_sz = 3 * sizeof(struct nand_onfi_params); + vf610_nfc_transfer_size(nfc, trfr_sz); + vf610_nfc_send_command(nfc, command, READ_ONFI_PARAM_CMD_CODE); + vf610_nfc_addr_cycle(nfc, -1, column); + vf610_nfc_ecc_mode(nfc, ECC_BYPASS); + break; + + case NAND_CMD_ERASE1: + vf610_nfc_transfer_size(nfc, 0); + vf610_nfc_send_commands(nfc, command, + NAND_CMD_ERASE2, ERASE_CMD_CODE); + vf610_nfc_addr_cycle(nfc, column, page); + break; + + case NAND_CMD_READID: + nfc->alt_buf = ALT_BUF_ID; + nfc->buf_offset = 0; + vf610_nfc_transfer_size(nfc, 0); + vf610_nfc_send_command(nfc, command, READ_ID_CMD_CODE); + vf610_nfc_addr_cycle(nfc, -1, column); + break; + + case NAND_CMD_STATUS: + nfc->alt_buf = ALT_BUF_STAT; + vf610_nfc_transfer_size(nfc, 0); + vf610_nfc_send_command(nfc, command, STATUS_READ_CMD_CODE); + break; + default: + return; + } + + vf610_nfc_done(nfc); + + nfc->use_hw_ecc = false; + nfc->write_sz = 0; +} + +static void vf610_nfc_read_buf(struct mtd_info *mtd, u_char *buf, int len) +{ + struct vf610_nfc *nfc = mtd_to_nfc(mtd); + uint c = nfc->buf_offset; + + /* Alternate buffers are only supported through read_byte */ + WARN_ON(nfc->alt_buf); + + vf610_nfc_memcpy(buf, nfc->regs + NFC_MAIN_AREA(0) + c, len); + + nfc->buf_offset += len; +} + +static void vf610_nfc_write_buf(struct mtd_info *mtd, const uint8_t *buf, + int len) +{ + struct vf610_nfc *nfc = mtd_to_nfc(mtd); + uint c = nfc->buf_offset; + uint l; + + l = min_t(uint, len, mtd->writesize + mtd->oobsize - c); + vf610_nfc_memcpy(nfc->regs + NFC_MAIN_AREA(0) + c, buf, l); + + nfc->write_sz += l; + nfc->buf_offset += l; +} + +static uint8_t vf610_nfc_read_byte(struct mtd_info *mtd) +{ + struct vf610_nfc *nfc = mtd_to_nfc(mtd); + u8 tmp; + uint c = nfc->buf_offset; + + switch (nfc->alt_buf) { + case ALT_BUF_ID: + tmp = vf610_nfc_get_id(nfc, c); + break; + case ALT_BUF_STAT: + tmp = vf610_nfc_get_status(nfc); + break; +#ifdef __LITTLE_ENDIAN + case ALT_BUF_ONFI: + /* Reverse byte since the controller uses big endianness */ + c = nfc->buf_offset ^ 0x3; + /* fall-through */ +#endif + default: + tmp = *((u8 *)(nfc->regs + NFC_MAIN_AREA(0) + c)); + break; + } + nfc->buf_offset++; + return tmp; +} + +static u16 vf610_nfc_read_word(struct mtd_info *mtd) +{ + u16 tmp; + + vf610_nfc_read_buf(mtd, (u_char *)&tmp, sizeof(tmp)); + return tmp; +} + +/* If not provided, upper layers apply a fixed delay. */ +static int vf610_nfc_dev_ready(struct mtd_info *mtd) +{ + /* NFC handles R/B internally; always ready. */ + return 1; +} + +/* + * This function supports Vybrid only (MPC5125 would have full RB and four CS) + */ +static void vf610_nfc_select_chip(struct mtd_info *mtd, int chip) +{ + struct vf610_nfc *nfc = mtd_to_nfc(mtd); + u32 tmp = vf610_nfc_read(nfc, NFC_ROW_ADDR); + + /* Vybrid only (MPC5125 would have full RB and four CS) */ + if (nfc->variant != NFC_VFC610) + return; + + tmp &= ~(ROW_ADDR_CHIP_SEL_RB_MASK | ROW_ADDR_CHIP_SEL_MASK); + + if (chip >= 0) { + tmp |= 1 << ROW_ADDR_CHIP_SEL_RB_SHIFT; + tmp |= BIT(chip) << ROW_ADDR_CHIP_SEL_SHIFT; + } + + vf610_nfc_write(nfc, NFC_ROW_ADDR, tmp); +} + +static inline int vf610_nfc_correct_data(struct mtd_info *mtd, uint8_t *dat, + uint8_t *oob, int page) +{ + struct vf610_nfc *nfc = mtd_to_nfc(mtd); + u32 ecc_status_off = NFC_MAIN_AREA(0) + ECC_SRAM_ADDR + ECC_STATUS; + u8 ecc_status; + u8 ecc_count; + int flips_threshold = nfc->chip.ecc.strength / 2; + + ecc_status = vf610_nfc_read(nfc, ecc_status_off) & 0xff; + ecc_count = ecc_status & ECC_STATUS_ERR_COUNT; + + if (!(ecc_status & ECC_STATUS_MASK)) + return ecc_count; + + /* Read OOB without ECC unit enabled */ + vf610_nfc_command(mtd, NAND_CMD_READOOB, 0, page); + vf610_nfc_read_buf(mtd, oob, mtd->oobsize); + + /* + * On an erased page, bit count (including OOB) should be zero or + * at least less then half of the ECC strength. + */ + return nand_check_erased_ecc_chunk(dat, nfc->chip.ecc.size, oob, + mtd->oobsize, NULL, 0, + flips_threshold); +} + +static int vf610_nfc_read_page(struct mtd_info *mtd, struct nand_chip *chip, + uint8_t *buf, int oob_required, int page) +{ + int eccsize = chip->ecc.size; + int stat; + + nand_read_page_op(chip, page, 0, buf, eccsize); + if (oob_required) + vf610_nfc_read_buf(mtd, chip->oob_poi, mtd->oobsize); + + stat = vf610_nfc_correct_data(mtd, buf, chip->oob_poi, page); + + if (stat < 0) { + mtd->ecc_stats.failed++; + return 0; + } else { + mtd->ecc_stats.corrected += stat; + return stat; + } +} + +static int vf610_nfc_write_page(struct mtd_info *mtd, struct nand_chip *chip, + const uint8_t *buf, int oob_required, int page) +{ + struct vf610_nfc *nfc = mtd_to_nfc(mtd); + + nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize); + if (oob_required) + vf610_nfc_write_buf(mtd, chip->oob_poi, mtd->oobsize); + + /* Always write whole page including OOB due to HW ECC */ + nfc->use_hw_ecc = true; + nfc->write_sz = mtd->writesize + mtd->oobsize; + + return nand_prog_page_end_op(chip); +} + +static const struct of_device_id vf610_nfc_dt_ids[] = { + { .compatible = "fsl,vf610-nfc", .data = (void *)NFC_VFC610 }, + { /* sentinel */ } +}; +MODULE_DEVICE_TABLE(of, vf610_nfc_dt_ids); + +static void vf610_nfc_preinit_controller(struct vf610_nfc *nfc) +{ + vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT); + vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_ADDR_AUTO_INCR_BIT); + vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_BUFNO_AUTO_INCR_BIT); + vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_BOOT_MODE_BIT); + vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_DMA_REQ_BIT); + vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_FAST_FLASH_BIT); + + /* Disable virtual pages, only one elementary transfer unit */ + vf610_nfc_set_field(nfc, NFC_FLASH_CONFIG, CONFIG_PAGE_CNT_MASK, + CONFIG_PAGE_CNT_SHIFT, 1); +} + +static void vf610_nfc_init_controller(struct vf610_nfc *nfc) +{ + if (nfc->chip.options & NAND_BUSWIDTH_16) + vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT); + else + vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT); + + if (nfc->chip.ecc.mode == NAND_ECC_HW) { + /* Set ECC status offset in SRAM */ + vf610_nfc_set_field(nfc, NFC_FLASH_CONFIG, + CONFIG_ECC_SRAM_ADDR_MASK, + CONFIG_ECC_SRAM_ADDR_SHIFT, + ECC_SRAM_ADDR >> 3); + + /* Enable ECC status in SRAM */ + vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_ECC_SRAM_REQ_BIT); + } +} + +static int vf610_nfc_probe(struct platform_device *pdev) +{ + struct vf610_nfc *nfc; + struct resource *res; + struct mtd_info *mtd; + struct nand_chip *chip; + struct device_node *child; + const struct of_device_id *of_id; + int err; + int irq; + + nfc = devm_kzalloc(&pdev->dev, sizeof(*nfc), GFP_KERNEL); + if (!nfc) + return -ENOMEM; + + nfc->dev = &pdev->dev; + chip = &nfc->chip; + mtd = nand_to_mtd(chip); + + mtd->owner = THIS_MODULE; + mtd->dev.parent = nfc->dev; + mtd->name = DRV_NAME; + + irq = platform_get_irq(pdev, 0); + if (irq <= 0) + return -EINVAL; + + res = platform_get_resource(pdev, IORESOURCE_MEM, 0); + nfc->regs = devm_ioremap_resource(nfc->dev, res); + if (IS_ERR(nfc->regs)) + return PTR_ERR(nfc->regs); + + nfc->clk = devm_clk_get(&pdev->dev, NULL); + if (IS_ERR(nfc->clk)) + return PTR_ERR(nfc->clk); + + err = clk_prepare_enable(nfc->clk); + if (err) { + dev_err(nfc->dev, "Unable to enable clock!\n"); + return err; + } + + of_id = of_match_device(vf610_nfc_dt_ids, &pdev->dev); + nfc->variant = (enum vf610_nfc_variant)of_id->data; + + for_each_available_child_of_node(nfc->dev->of_node, child) { + if (of_device_is_compatible(child, "fsl,vf610-nfc-nandcs")) { + + if (nand_get_flash_node(chip)) { + dev_err(nfc->dev, + "Only one NAND chip supported!\n"); + err = -EINVAL; + goto err_disable_clk; + } + + nand_set_flash_node(chip, child); + } + } + + if (!nand_get_flash_node(chip)) { + dev_err(nfc->dev, "NAND chip sub-node missing!\n"); + err = -ENODEV; + goto err_disable_clk; + } + + chip->dev_ready = vf610_nfc_dev_ready; + chip->cmdfunc = vf610_nfc_command; + chip->read_byte = vf610_nfc_read_byte; + chip->read_word = vf610_nfc_read_word; + chip->read_buf = vf610_nfc_read_buf; + chip->write_buf = vf610_nfc_write_buf; + chip->select_chip = vf610_nfc_select_chip; + chip->onfi_set_features = nand_onfi_get_set_features_notsupp; + chip->onfi_get_features = nand_onfi_get_set_features_notsupp; + + chip->options |= NAND_NO_SUBPAGE_WRITE; + + init_completion(&nfc->cmd_done); + + err = devm_request_irq(nfc->dev, irq, vf610_nfc_irq, 0, DRV_NAME, mtd); + if (err) { + dev_err(nfc->dev, "Error requesting IRQ!\n"); + goto err_disable_clk; + } + + vf610_nfc_preinit_controller(nfc); + + /* first scan to find the device and get the page size */ + err = nand_scan_ident(mtd, 1, NULL); + if (err) + goto err_disable_clk; + + vf610_nfc_init_controller(nfc); + + /* Bad block options. */ + if (chip->bbt_options & NAND_BBT_USE_FLASH) + chip->bbt_options |= NAND_BBT_NO_OOB; + + /* Single buffer only, max 256 OOB minus ECC status */ + if (mtd->writesize + mtd->oobsize > PAGE_2K + OOB_MAX - 8) { + dev_err(nfc->dev, "Unsupported flash page size\n"); + err = -ENXIO; + goto err_disable_clk; + } + + if (chip->ecc.mode == NAND_ECC_HW) { + if (mtd->writesize != PAGE_2K && mtd->oobsize < 64) { + dev_err(nfc->dev, "Unsupported flash with hwecc\n"); + err = -ENXIO; + goto err_disable_clk; + } + + if (chip->ecc.size != mtd->writesize) { + dev_err(nfc->dev, "Step size needs to be page size\n"); + err = -ENXIO; + goto err_disable_clk; + } + + /* Only 64 byte ECC layouts known */ + if (mtd->oobsize > 64) + mtd->oobsize = 64; + + /* + * mtd->ecclayout is not specified here because we're using the + * default large page ECC layout defined in NAND core. + */ + if (chip->ecc.strength == 32) { + nfc->ecc_mode = ECC_60_BYTE; + chip->ecc.bytes = 60; + } else if (chip->ecc.strength == 24) { + nfc->ecc_mode = ECC_45_BYTE; + chip->ecc.bytes = 45; + } else { + dev_err(nfc->dev, "Unsupported ECC strength\n"); + err = -ENXIO; + goto err_disable_clk; + } + + chip->ecc.read_page = vf610_nfc_read_page; + chip->ecc.write_page = vf610_nfc_write_page; + + chip->ecc.size = PAGE_2K; + } + + /* second phase scan */ + err = nand_scan_tail(mtd); + if (err) + goto err_disable_clk; + + platform_set_drvdata(pdev, mtd); + + /* Register device in MTD */ + err = mtd_device_register(mtd, NULL, 0); + if (err) + goto err_cleanup_nand; + return 0; + +err_cleanup_nand: + nand_cleanup(chip); +err_disable_clk: + clk_disable_unprepare(nfc->clk); + return err; +} + +static int vf610_nfc_remove(struct platform_device *pdev) +{ + struct mtd_info *mtd = platform_get_drvdata(pdev); + struct vf610_nfc *nfc = mtd_to_nfc(mtd); + + nand_release(mtd); + clk_disable_unprepare(nfc->clk); + return 0; +} + +#ifdef CONFIG_PM_SLEEP +static int vf610_nfc_suspend(struct device *dev) +{ + struct mtd_info *mtd = dev_get_drvdata(dev); + struct vf610_nfc *nfc = mtd_to_nfc(mtd); + + clk_disable_unprepare(nfc->clk); + return 0; +} + +static int vf610_nfc_resume(struct device *dev) +{ + int err; + + struct mtd_info *mtd = dev_get_drvdata(dev); + struct vf610_nfc *nfc = mtd_to_nfc(mtd); + + err = clk_prepare_enable(nfc->clk); + if (err) + return err; + + vf610_nfc_preinit_controller(nfc); + vf610_nfc_init_controller(nfc); + return 0; +} +#endif + +static SIMPLE_DEV_PM_OPS(vf610_nfc_pm_ops, vf610_nfc_suspend, vf610_nfc_resume); + +static struct platform_driver vf610_nfc_driver = { + .driver = { + .name = DRV_NAME, + .of_match_table = vf610_nfc_dt_ids, + .pm = &vf610_nfc_pm_ops, + }, + .probe = vf610_nfc_probe, + .remove = vf610_nfc_remove, +}; + +module_platform_driver(vf610_nfc_driver); + +MODULE_AUTHOR("Stefan Agner "); +MODULE_DESCRIPTION("Freescale VF610/MPC5125 NFC MTD NAND driver"); +MODULE_LICENSE("GPL"); diff --git a/drivers/mtd/nand/raw/xway_nand.c b/drivers/mtd/nand/raw/xway_nand.c new file mode 100644 index 000000000000..9926b4e3d69d --- /dev/null +++ b/drivers/mtd/nand/raw/xway_nand.c @@ -0,0 +1,245 @@ +/* + * This program is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License version 2 as published + * by the Free Software Foundation. + * + * Copyright © 2012 John Crispin + * Copyright © 2016 Hauke Mehrtens + */ + +#include +#include +#include + +#include + +/* nand registers */ +#define EBU_ADDSEL1 0x24 +#define EBU_NAND_CON 0xB0 +#define EBU_NAND_WAIT 0xB4 +#define NAND_WAIT_RD BIT(0) /* NAND flash status output */ +#define NAND_WAIT_WR_C BIT(3) /* NAND Write/Read complete */ +#define EBU_NAND_ECC0 0xB8 +#define EBU_NAND_ECC_AC 0xBC + +/* + * nand commands + * The pins of the NAND chip are selected based on the address bits of the + * "register" read and write. There are no special registers, but an + * address range and the lower address bits are used to activate the + * correct line. For example when the bit (1 << 2) is set in the address + * the ALE pin will be activated. + */ +#define NAND_CMD_ALE BIT(2) /* address latch enable */ +#define NAND_CMD_CLE BIT(3) /* command latch enable */ +#define NAND_CMD_CS BIT(4) /* chip select */ +#define NAND_CMD_SE BIT(5) /* spare area access latch */ +#define NAND_CMD_WP BIT(6) /* write protect */ +#define NAND_WRITE_CMD (NAND_CMD_CS | NAND_CMD_CLE) +#define NAND_WRITE_ADDR (NAND_CMD_CS | NAND_CMD_ALE) +#define NAND_WRITE_DATA (NAND_CMD_CS) +#define NAND_READ_DATA (NAND_CMD_CS) + +/* we need to tel the ebu which addr we mapped the nand to */ +#define ADDSEL1_MASK(x) (x << 4) +#define ADDSEL1_REGEN 1 + +/* we need to tell the EBU that we have nand attached and set it up properly */ +#define BUSCON1_SETUP (1 << 22) +#define BUSCON1_BCGEN_RES (0x3 << 12) +#define BUSCON1_WAITWRC2 (2 << 8) +#define BUSCON1_WAITRDC2 (2 << 6) +#define BUSCON1_HOLDC1 (1 << 4) +#define BUSCON1_RECOVC1 (1 << 2) +#define BUSCON1_CMULT4 1 + +#define NAND_CON_CE (1 << 20) +#define NAND_CON_OUT_CS1 (1 << 10) +#define NAND_CON_IN_CS1 (1 << 8) +#define NAND_CON_PRE_P (1 << 7) +#define NAND_CON_WP_P (1 << 6) +#define NAND_CON_SE_P (1 << 5) +#define NAND_CON_CS_P (1 << 4) +#define NAND_CON_CSMUX (1 << 1) +#define NAND_CON_NANDM 1 + +struct xway_nand_data { + struct nand_chip chip; + unsigned long csflags; + void __iomem *nandaddr; +}; + +static u8 xway_readb(struct mtd_info *mtd, int op) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct xway_nand_data *data = nand_get_controller_data(chip); + + return readb(data->nandaddr + op); +} + +static void xway_writeb(struct mtd_info *mtd, int op, u8 value) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct xway_nand_data *data = nand_get_controller_data(chip); + + writeb(value, data->nandaddr + op); +} + +static void xway_select_chip(struct mtd_info *mtd, int select) +{ + struct nand_chip *chip = mtd_to_nand(mtd); + struct xway_nand_data *data = nand_get_controller_data(chip); + + switch (select) { + case -1: + ltq_ebu_w32_mask(NAND_CON_CE, 0, EBU_NAND_CON); + ltq_ebu_w32_mask(NAND_CON_NANDM, 0, EBU_NAND_CON); + spin_unlock_irqrestore(&ebu_lock, data->csflags); + break; + case 0: + spin_lock_irqsave(&ebu_lock, data->csflags); + ltq_ebu_w32_mask(0, NAND_CON_NANDM, EBU_NAND_CON); + ltq_ebu_w32_mask(0, NAND_CON_CE, EBU_NAND_CON); + break; + default: + BUG(); + } +} + +static void xway_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl) +{ + if (cmd == NAND_CMD_NONE) + return; + + if (ctrl & NAND_CLE) + xway_writeb(mtd, NAND_WRITE_CMD, cmd); + else if (ctrl & NAND_ALE) + xway_writeb(mtd, NAND_WRITE_ADDR, cmd); + + while ((ltq_ebu_r32(EBU_NAND_WAIT) & NAND_WAIT_WR_C) == 0) + ; +} + +static int xway_dev_ready(struct mtd_info *mtd) +{ + return ltq_ebu_r32(EBU_NAND_WAIT) & NAND_WAIT_RD; +} + +static unsigned char xway_read_byte(struct mtd_info *mtd) +{ + return xway_readb(mtd, NAND_READ_DATA); +} + +static void xway_read_buf(struct mtd_info *mtd, u_char *buf, int len) +{ + int i; + + for (i = 0; i < len; i++) + buf[i] = xway_readb(mtd, NAND_WRITE_DATA); +} + +static void xway_write_buf(struct mtd_info *mtd, const u_char *buf, int len) +{ + int i; + + for (i = 0; i < len; i++) + xway_writeb(mtd, NAND_WRITE_DATA, buf[i]); +} + +/* + * Probe for the NAND device. + */ +static int xway_nand_probe(struct platform_device *pdev) +{ + struct xway_nand_data *data; + struct mtd_info *mtd; + struct resource *res; + int err; + u32 cs; + u32 cs_flag = 0; + + /* Allocate memory for the device structure (and zero it) */ + data = devm_kzalloc(&pdev->dev, sizeof(struct xway_nand_data), + GFP_KERNEL); + if (!data) + return -ENOMEM; + + res = platform_get_resource(pdev, IORESOURCE_MEM, 0); + data->nandaddr = devm_ioremap_resource(&pdev->dev, res); + if (IS_ERR(data->nandaddr)) + return PTR_ERR(data->nandaddr); + + nand_set_flash_node(&data->chip, pdev->dev.of_node); + mtd = nand_to_mtd(&data->chip); + mtd->dev.parent = &pdev->dev; + + data->chip.cmd_ctrl = xway_cmd_ctrl; + data->chip.dev_ready = xway_dev_ready; + data->chip.select_chip = xway_select_chip; + data->chip.write_buf = xway_write_buf; + data->chip.read_buf = xway_read_buf; + data->chip.read_byte = xway_read_byte; + data->chip.chip_delay = 30; + + data->chip.ecc.mode = NAND_ECC_SOFT; + data->chip.ecc.algo = NAND_ECC_HAMMING; + + platform_set_drvdata(pdev, data); + nand_set_controller_data(&data->chip, data); + + /* load our CS from the DT. Either we find a valid 1 or default to 0 */ + err = of_property_read_u32(pdev->dev.of_node, "lantiq,cs", &cs); + if (!err && cs == 1) + cs_flag = NAND_CON_IN_CS1 | NAND_CON_OUT_CS1; + + /* setup the EBU to run in NAND mode on our base addr */ + ltq_ebu_w32(CPHYSADDR(data->nandaddr) + | ADDSEL1_MASK(3) | ADDSEL1_REGEN, EBU_ADDSEL1); + + ltq_ebu_w32(BUSCON1_SETUP | BUSCON1_BCGEN_RES | BUSCON1_WAITWRC2 + | BUSCON1_WAITRDC2 | BUSCON1_HOLDC1 | BUSCON1_RECOVC1 + | BUSCON1_CMULT4, LTQ_EBU_BUSCON1); + + ltq_ebu_w32(NAND_CON_NANDM | NAND_CON_CSMUX | NAND_CON_CS_P + | NAND_CON_SE_P | NAND_CON_WP_P | NAND_CON_PRE_P + | cs_flag, EBU_NAND_CON); + + /* Scan to find existence of the device */ + err = nand_scan(mtd, 1); + if (err) + return err; + + err = mtd_device_register(mtd, NULL, 0); + if (err) + nand_release(mtd); + + return err; +} + +/* + * Remove a NAND device. + */ +static int xway_nand_remove(struct platform_device *pdev) +{ + struct xway_nand_data *data = platform_get_drvdata(pdev); + + nand_release(nand_to_mtd(&data->chip)); + + return 0; +} + +static const struct of_device_id xway_nand_match[] = { + { .compatible = "lantiq,nand-xway" }, + {}, +}; + +static struct platform_driver xway_nand_driver = { + .probe = xway_nand_probe, + .remove = xway_nand_remove, + .driver = { + .name = "lantiq,nand-xway", + .of_match_table = xway_nand_match, + }, +}; + +builtin_platform_driver(xway_nand_driver); diff --git a/drivers/mtd/nand/s3c2410.c b/drivers/mtd/nand/s3c2410.c deleted file mode 100644 index b5bc5f106c09..000000000000 --- a/drivers/mtd/nand/s3c2410.c +++ /dev/null @@ -1,1295 +0,0 @@ -/* - * Copyright © 2004-2008 Simtec Electronics - * http://armlinux.simtec.co.uk/ - * Ben Dooks - * - * Samsung S3C2410/S3C2440/S3C2412 NAND driver - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation; either version 2 of the License, or - * (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License - * along with this program; if not, write to the Free Software - * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA -*/ - -#define pr_fmt(fmt) "nand-s3c2410: " fmt - -#ifdef CONFIG_MTD_NAND_S3C2410_DEBUG -#define DEBUG -#endif - -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include - -#include -#include -#include -#include - -#include - -#define S3C2410_NFREG(x) (x) - -#define S3C2410_NFCONF S3C2410_NFREG(0x00) -#define S3C2410_NFCMD S3C2410_NFREG(0x04) -#define S3C2410_NFADDR S3C2410_NFREG(0x08) -#define S3C2410_NFDATA S3C2410_NFREG(0x0C) -#define S3C2410_NFSTAT S3C2410_NFREG(0x10) -#define S3C2410_NFECC S3C2410_NFREG(0x14) -#define S3C2440_NFCONT S3C2410_NFREG(0x04) -#define S3C2440_NFCMD S3C2410_NFREG(0x08) -#define S3C2440_NFADDR S3C2410_NFREG(0x0C) -#define S3C2440_NFDATA S3C2410_NFREG(0x10) -#define S3C2440_NFSTAT S3C2410_NFREG(0x20) -#define S3C2440_NFMECC0 S3C2410_NFREG(0x2C) -#define S3C2412_NFSTAT S3C2410_NFREG(0x28) -#define S3C2412_NFMECC0 S3C2410_NFREG(0x34) -#define S3C2410_NFCONF_EN (1<<15) -#define S3C2410_NFCONF_INITECC (1<<12) -#define S3C2410_NFCONF_nFCE (1<<11) -#define S3C2410_NFCONF_TACLS(x) ((x)<<8) -#define S3C2410_NFCONF_TWRPH0(x) ((x)<<4) -#define S3C2410_NFCONF_TWRPH1(x) ((x)<<0) -#define S3C2410_NFSTAT_BUSY (1<<0) -#define S3C2440_NFCONF_TACLS(x) ((x)<<12) -#define S3C2440_NFCONF_TWRPH0(x) ((x)<<8) -#define S3C2440_NFCONF_TWRPH1(x) ((x)<<4) -#define S3C2440_NFCONT_INITECC (1<<4) -#define S3C2440_NFCONT_nFCE (1<<1) -#define S3C2440_NFCONT_ENABLE (1<<0) -#define S3C2440_NFSTAT_READY (1<<0) -#define S3C2412_NFCONF_NANDBOOT (1<<31) -#define S3C2412_NFCONT_INIT_MAIN_ECC (1<<5) -#define S3C2412_NFCONT_nFCE0 (1<<1) -#define S3C2412_NFSTAT_READY (1<<0) - -/* new oob placement block for use with hardware ecc generation - */ -static int s3c2410_ooblayout_ecc(struct mtd_info *mtd, int section, - struct mtd_oob_region *oobregion) -{ - if (section) - return -ERANGE; - - oobregion->offset = 0; - oobregion->length = 3; - - return 0; -} - -static int s3c2410_ooblayout_free(struct mtd_info *mtd, int section, - struct mtd_oob_region *oobregion) -{ - if (section) - return -ERANGE; - - oobregion->offset = 8; - oobregion->length = 8; - - return 0; -} - -static const struct mtd_ooblayout_ops s3c2410_ooblayout_ops = { - .ecc = s3c2410_ooblayout_ecc, - .free = s3c2410_ooblayout_free, -}; - -/* controller and mtd information */ - -struct s3c2410_nand_info; - -/** - * struct s3c2410_nand_mtd - driver MTD structure - * @mtd: The MTD instance to pass to the MTD layer. - * @chip: The NAND chip information. - * @set: The platform information supplied for this set of NAND chips. - * @info: Link back to the hardware information. - * @scan_res: The result from calling nand_scan_ident(). -*/ -struct s3c2410_nand_mtd { - struct nand_chip chip; - struct s3c2410_nand_set *set; - struct s3c2410_nand_info *info; - int scan_res; -}; - -enum s3c_cpu_type { - TYPE_S3C2410, - TYPE_S3C2412, - TYPE_S3C2440, -}; - -enum s3c_nand_clk_state { - CLOCK_DISABLE = 0, - CLOCK_ENABLE, - CLOCK_SUSPEND, -}; - -/* overview of the s3c2410 nand state */ - -/** - * struct s3c2410_nand_info - NAND controller state. - * @mtds: An array of MTD instances on this controoler. - * @platform: The platform data for this board. - * @device: The platform device we bound to. - * @clk: The clock resource for this controller. - * @regs: The area mapped for the hardware registers. - * @sel_reg: Pointer to the register controlling the NAND selection. - * @sel_bit: The bit in @sel_reg to select the NAND chip. - * @mtd_count: The number of MTDs created from this controller. - * @save_sel: The contents of @sel_reg to be saved over suspend. - * @clk_rate: The clock rate from @clk. - * @clk_state: The current clock state. - * @cpu_type: The exact type of this controller. - */ -struct s3c2410_nand_info { - /* mtd info */ - struct nand_hw_control controller; - struct s3c2410_nand_mtd *mtds; - struct s3c2410_platform_nand *platform; - - /* device info */ - struct device *device; - struct clk *clk; - void __iomem *regs; - void __iomem *sel_reg; - int sel_bit; - int mtd_count; - unsigned long save_sel; - unsigned long clk_rate; - enum s3c_nand_clk_state clk_state; - - enum s3c_cpu_type cpu_type; - -#ifdef CONFIG_ARM_S3C24XX_CPUFREQ - struct notifier_block freq_transition; -#endif -}; - -struct s3c24XX_nand_devtype_data { - enum s3c_cpu_type type; -}; - -static const struct s3c24XX_nand_devtype_data s3c2410_nand_devtype_data = { - .type = TYPE_S3C2410, -}; - -static const struct s3c24XX_nand_devtype_data s3c2412_nand_devtype_data = { - .type = TYPE_S3C2412, -}; - -static const struct s3c24XX_nand_devtype_data s3c2440_nand_devtype_data = { - .type = TYPE_S3C2440, -}; - -/* conversion functions */ - -static struct s3c2410_nand_mtd *s3c2410_nand_mtd_toours(struct mtd_info *mtd) -{ - return container_of(mtd_to_nand(mtd), struct s3c2410_nand_mtd, - chip); -} - -static struct s3c2410_nand_info *s3c2410_nand_mtd_toinfo(struct mtd_info *mtd) -{ - return s3c2410_nand_mtd_toours(mtd)->info; -} - -static struct s3c2410_nand_info *to_nand_info(struct platform_device *dev) -{ - return platform_get_drvdata(dev); -} - -static struct s3c2410_platform_nand *to_nand_plat(struct platform_device *dev) -{ - return dev_get_platdata(&dev->dev); -} - -static inline int allow_clk_suspend(struct s3c2410_nand_info *info) -{ -#ifdef CONFIG_MTD_NAND_S3C2410_CLKSTOP - return 1; -#else - return 0; -#endif -} - -/** - * s3c2410_nand_clk_set_state - Enable, disable or suspend NAND clock. - * @info: The controller instance. - * @new_state: State to which clock should be set. - */ -static void s3c2410_nand_clk_set_state(struct s3c2410_nand_info *info, - enum s3c_nand_clk_state new_state) -{ - if (!allow_clk_suspend(info) && new_state == CLOCK_SUSPEND) - return; - - if (info->clk_state == CLOCK_ENABLE) { - if (new_state != CLOCK_ENABLE) - clk_disable_unprepare(info->clk); - } else { - if (new_state == CLOCK_ENABLE) - clk_prepare_enable(info->clk); - } - - info->clk_state = new_state; -} - -/* timing calculations */ - -#define NS_IN_KHZ 1000000 - -/** - * s3c_nand_calc_rate - calculate timing data. - * @wanted: The cycle time in nanoseconds. - * @clk: The clock rate in kHz. - * @max: The maximum divider value. - * - * Calculate the timing value from the given parameters. - */ -static int s3c_nand_calc_rate(int wanted, unsigned long clk, int max) -{ - int result; - - result = DIV_ROUND_UP((wanted * clk), NS_IN_KHZ); - - pr_debug("result %d from %ld, %d\n", result, clk, wanted); - - if (result > max) { - pr_err("%d ns is too big for current clock rate %ld\n", - wanted, clk); - return -1; - } - - if (result < 1) - result = 1; - - return result; -} - -#define to_ns(ticks, clk) (((ticks) * NS_IN_KHZ) / (unsigned int)(clk)) - -/* controller setup */ - -/** - * s3c2410_nand_setrate - setup controller timing information. - * @info: The controller instance. - * - * Given the information supplied by the platform, calculate and set - * the necessary timing registers in the hardware to generate the - * necessary timing cycles to the hardware. - */ -static int s3c2410_nand_setrate(struct s3c2410_nand_info *info) -{ - struct s3c2410_platform_nand *plat = info->platform; - int tacls_max = (info->cpu_type == TYPE_S3C2412) ? 8 : 4; - int tacls, twrph0, twrph1; - unsigned long clkrate = clk_get_rate(info->clk); - unsigned long uninitialized_var(set), cfg, uninitialized_var(mask); - unsigned long flags; - - /* calculate the timing information for the controller */ - - info->clk_rate = clkrate; - clkrate /= 1000; /* turn clock into kHz for ease of use */ - - if (plat != NULL) { - tacls = s3c_nand_calc_rate(plat->tacls, clkrate, tacls_max); - twrph0 = s3c_nand_calc_rate(plat->twrph0, clkrate, 8); - twrph1 = s3c_nand_calc_rate(plat->twrph1, clkrate, 8); - } else { - /* default timings */ - tacls = tacls_max; - twrph0 = 8; - twrph1 = 8; - } - - if (tacls < 0 || twrph0 < 0 || twrph1 < 0) { - dev_err(info->device, "cannot get suitable timings\n"); - return -EINVAL; - } - - dev_info(info->device, "Tacls=%d, %dns Twrph0=%d %dns, Twrph1=%d %dns\n", - tacls, to_ns(tacls, clkrate), twrph0, to_ns(twrph0, clkrate), - twrph1, to_ns(twrph1, clkrate)); - - switch (info->cpu_type) { - case TYPE_S3C2410: - mask = (S3C2410_NFCONF_TACLS(3) | - S3C2410_NFCONF_TWRPH0(7) | - S3C2410_NFCONF_TWRPH1(7)); - set = S3C2410_NFCONF_EN; - set |= S3C2410_NFCONF_TACLS(tacls - 1); - set |= S3C2410_NFCONF_TWRPH0(twrph0 - 1); - set |= S3C2410_NFCONF_TWRPH1(twrph1 - 1); - break; - - case TYPE_S3C2440: - case TYPE_S3C2412: - mask = (S3C2440_NFCONF_TACLS(tacls_max - 1) | - S3C2440_NFCONF_TWRPH0(7) | - S3C2440_NFCONF_TWRPH1(7)); - - set = S3C2440_NFCONF_TACLS(tacls - 1); - set |= S3C2440_NFCONF_TWRPH0(twrph0 - 1); - set |= S3C2440_NFCONF_TWRPH1(twrph1 - 1); - break; - - default: - BUG(); - } - - local_irq_save(flags); - - cfg = readl(info->regs + S3C2410_NFCONF); - cfg &= ~mask; - cfg |= set; - writel(cfg, info->regs + S3C2410_NFCONF); - - local_irq_restore(flags); - - dev_dbg(info->device, "NF_CONF is 0x%lx\n", cfg); - - return 0; -} - -/** - * s3c2410_nand_inithw - basic hardware initialisation - * @info: The hardware state. - * - * Do the basic initialisation of the hardware, using s3c2410_nand_setrate() - * to setup the hardware access speeds and set the controller to be enabled. -*/ -static int s3c2410_nand_inithw(struct s3c2410_nand_info *info) -{ - int ret; - - ret = s3c2410_nand_setrate(info); - if (ret < 0) - return ret; - - switch (info->cpu_type) { - case TYPE_S3C2410: - default: - break; - - case TYPE_S3C2440: - case TYPE_S3C2412: - /* enable the controller and de-assert nFCE */ - - writel(S3C2440_NFCONT_ENABLE, info->regs + S3C2440_NFCONT); - } - - return 0; -} - -/** - * s3c2410_nand_select_chip - select the given nand chip - * @mtd: The MTD instance for this chip. - * @chip: The chip number. - * - * This is called by the MTD layer to either select a given chip for the - * @mtd instance, or to indicate that the access has finished and the - * chip can be de-selected. - * - * The routine ensures that the nFCE line is correctly setup, and any - * platform specific selection code is called to route nFCE to the specific - * chip. - */ -static void s3c2410_nand_select_chip(struct mtd_info *mtd, int chip) -{ - struct s3c2410_nand_info *info; - struct s3c2410_nand_mtd *nmtd; - struct nand_chip *this = mtd_to_nand(mtd); - unsigned long cur; - - nmtd = nand_get_controller_data(this); - info = nmtd->info; - - if (chip != -1) - s3c2410_nand_clk_set_state(info, CLOCK_ENABLE); - - cur = readl(info->sel_reg); - - if (chip == -1) { - cur |= info->sel_bit; - } else { - if (nmtd->set != NULL && chip > nmtd->set->nr_chips) { - dev_err(info->device, "invalid chip %d\n", chip); - return; - } - - if (info->platform != NULL) { - if (info->platform->select_chip != NULL) - (info->platform->select_chip) (nmtd->set, chip); - } - - cur &= ~info->sel_bit; - } - - writel(cur, info->sel_reg); - - if (chip == -1) - s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND); -} - -/* s3c2410_nand_hwcontrol - * - * Issue command and address cycles to the chip -*/ - -static void s3c2410_nand_hwcontrol(struct mtd_info *mtd, int cmd, - unsigned int ctrl) -{ - struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); - - if (cmd == NAND_CMD_NONE) - return; - - if (ctrl & NAND_CLE) - writeb(cmd, info->regs + S3C2410_NFCMD); - else - writeb(cmd, info->regs + S3C2410_NFADDR); -} - -/* command and control functions */ - -static void s3c2440_nand_hwcontrol(struct mtd_info *mtd, int cmd, - unsigned int ctrl) -{ - struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); - - if (cmd == NAND_CMD_NONE) - return; - - if (ctrl & NAND_CLE) - writeb(cmd, info->regs + S3C2440_NFCMD); - else - writeb(cmd, info->regs + S3C2440_NFADDR); -} - -/* s3c2410_nand_devready() - * - * returns 0 if the nand is busy, 1 if it is ready -*/ - -static int s3c2410_nand_devready(struct mtd_info *mtd) -{ - struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); - return readb(info->regs + S3C2410_NFSTAT) & S3C2410_NFSTAT_BUSY; -} - -static int s3c2440_nand_devready(struct mtd_info *mtd) -{ - struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); - return readb(info->regs + S3C2440_NFSTAT) & S3C2440_NFSTAT_READY; -} - -static int s3c2412_nand_devready(struct mtd_info *mtd) -{ - struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); - return readb(info->regs + S3C2412_NFSTAT) & S3C2412_NFSTAT_READY; -} - -/* ECC handling functions */ - -static int s3c2410_nand_correct_data(struct mtd_info *mtd, u_char *dat, - u_char *read_ecc, u_char *calc_ecc) -{ - struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); - unsigned int diff0, diff1, diff2; - unsigned int bit, byte; - - pr_debug("%s(%p,%p,%p,%p)\n", __func__, mtd, dat, read_ecc, calc_ecc); - - diff0 = read_ecc[0] ^ calc_ecc[0]; - diff1 = read_ecc[1] ^ calc_ecc[1]; - diff2 = read_ecc[2] ^ calc_ecc[2]; - - pr_debug("%s: rd %*phN calc %*phN diff %02x%02x%02x\n", - __func__, 3, read_ecc, 3, calc_ecc, - diff0, diff1, diff2); - - if (diff0 == 0 && diff1 == 0 && diff2 == 0) - return 0; /* ECC is ok */ - - /* sometimes people do not think about using the ECC, so check - * to see if we have an 0xff,0xff,0xff read ECC and then ignore - * the error, on the assumption that this is an un-eccd page. - */ - if (read_ecc[0] == 0xff && read_ecc[1] == 0xff && read_ecc[2] == 0xff - && info->platform->ignore_unset_ecc) - return 0; - - /* Can we correct this ECC (ie, one row and column change). - * Note, this is similar to the 256 error code on smartmedia */ - - if (((diff0 ^ (diff0 >> 1)) & 0x55) == 0x55 && - ((diff1 ^ (diff1 >> 1)) & 0x55) == 0x55 && - ((diff2 ^ (diff2 >> 1)) & 0x55) == 0x55) { - /* calculate the bit position of the error */ - - bit = ((diff2 >> 3) & 1) | - ((diff2 >> 4) & 2) | - ((diff2 >> 5) & 4); - - /* calculate the byte position of the error */ - - byte = ((diff2 << 7) & 0x100) | - ((diff1 << 0) & 0x80) | - ((diff1 << 1) & 0x40) | - ((diff1 << 2) & 0x20) | - ((diff1 << 3) & 0x10) | - ((diff0 >> 4) & 0x08) | - ((diff0 >> 3) & 0x04) | - ((diff0 >> 2) & 0x02) | - ((diff0 >> 1) & 0x01); - - dev_dbg(info->device, "correcting error bit %d, byte %d\n", - bit, byte); - - dat[byte] ^= (1 << bit); - return 1; - } - - /* if there is only one bit difference in the ECC, then - * one of only a row or column parity has changed, which - * means the error is most probably in the ECC itself */ - - diff0 |= (diff1 << 8); - diff0 |= (diff2 << 16); - - /* equal to "(diff0 & ~(1 << __ffs(diff0)))" */ - if ((diff0 & (diff0 - 1)) == 0) - return 1; - - return -1; -} - -/* ECC functions - * - * These allow the s3c2410 and s3c2440 to use the controller's ECC - * generator block to ECC the data as it passes through] -*/ - -static void s3c2410_nand_enable_hwecc(struct mtd_info *mtd, int mode) -{ - struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); - unsigned long ctrl; - - ctrl = readl(info->regs + S3C2410_NFCONF); - ctrl |= S3C2410_NFCONF_INITECC; - writel(ctrl, info->regs + S3C2410_NFCONF); -} - -static void s3c2412_nand_enable_hwecc(struct mtd_info *mtd, int mode) -{ - struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); - unsigned long ctrl; - - ctrl = readl(info->regs + S3C2440_NFCONT); - writel(ctrl | S3C2412_NFCONT_INIT_MAIN_ECC, - info->regs + S3C2440_NFCONT); -} - -static void s3c2440_nand_enable_hwecc(struct mtd_info *mtd, int mode) -{ - struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); - unsigned long ctrl; - - ctrl = readl(info->regs + S3C2440_NFCONT); - writel(ctrl | S3C2440_NFCONT_INITECC, info->regs + S3C2440_NFCONT); -} - -static int s3c2410_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, - u_char *ecc_code) -{ - struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); - - ecc_code[0] = readb(info->regs + S3C2410_NFECC + 0); - ecc_code[1] = readb(info->regs + S3C2410_NFECC + 1); - ecc_code[2] = readb(info->regs + S3C2410_NFECC + 2); - - pr_debug("%s: returning ecc %*phN\n", __func__, 3, ecc_code); - - return 0; -} - -static int s3c2412_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, - u_char *ecc_code) -{ - struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); - unsigned long ecc = readl(info->regs + S3C2412_NFMECC0); - - ecc_code[0] = ecc; - ecc_code[1] = ecc >> 8; - ecc_code[2] = ecc >> 16; - - pr_debug("%s: returning ecc %*phN\n", __func__, 3, ecc_code); - - return 0; -} - -static int s3c2440_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, - u_char *ecc_code) -{ - struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); - unsigned long ecc = readl(info->regs + S3C2440_NFMECC0); - - ecc_code[0] = ecc; - ecc_code[1] = ecc >> 8; - ecc_code[2] = ecc >> 16; - - pr_debug("%s: returning ecc %06lx\n", __func__, ecc & 0xffffff); - - return 0; -} - -/* over-ride the standard functions for a little more speed. We can - * use read/write block to move the data buffers to/from the controller -*/ - -static void s3c2410_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len) -{ - struct nand_chip *this = mtd_to_nand(mtd); - readsb(this->IO_ADDR_R, buf, len); -} - -static void s3c2440_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len) -{ - struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); - - readsl(info->regs + S3C2440_NFDATA, buf, len >> 2); - - /* cleanup if we've got less than a word to do */ - if (len & 3) { - buf += len & ~3; - - for (; len & 3; len--) - *buf++ = readb(info->regs + S3C2440_NFDATA); - } -} - -static void s3c2410_nand_write_buf(struct mtd_info *mtd, const u_char *buf, - int len) -{ - struct nand_chip *this = mtd_to_nand(mtd); - writesb(this->IO_ADDR_W, buf, len); -} - -static void s3c2440_nand_write_buf(struct mtd_info *mtd, const u_char *buf, - int len) -{ - struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); - - writesl(info->regs + S3C2440_NFDATA, buf, len >> 2); - - /* cleanup any fractional write */ - if (len & 3) { - buf += len & ~3; - - for (; len & 3; len--, buf++) - writeb(*buf, info->regs + S3C2440_NFDATA); - } -} - -/* cpufreq driver support */ - -#ifdef CONFIG_ARM_S3C24XX_CPUFREQ - -static int s3c2410_nand_cpufreq_transition(struct notifier_block *nb, - unsigned long val, void *data) -{ - struct s3c2410_nand_info *info; - unsigned long newclk; - - info = container_of(nb, struct s3c2410_nand_info, freq_transition); - newclk = clk_get_rate(info->clk); - - if ((val == CPUFREQ_POSTCHANGE && newclk < info->clk_rate) || - (val == CPUFREQ_PRECHANGE && newclk > info->clk_rate)) { - s3c2410_nand_setrate(info); - } - - return 0; -} - -static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info *info) -{ - info->freq_transition.notifier_call = s3c2410_nand_cpufreq_transition; - - return cpufreq_register_notifier(&info->freq_transition, - CPUFREQ_TRANSITION_NOTIFIER); -} - -static inline void -s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info *info) -{ - cpufreq_unregister_notifier(&info->freq_transition, - CPUFREQ_TRANSITION_NOTIFIER); -} - -#else -static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info *info) -{ - return 0; -} - -static inline void -s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info *info) -{ -} -#endif - -/* device management functions */ - -static int s3c24xx_nand_remove(struct platform_device *pdev) -{ - struct s3c2410_nand_info *info = to_nand_info(pdev); - - if (info == NULL) - return 0; - - s3c2410_nand_cpufreq_deregister(info); - - /* Release all our mtds and their partitions, then go through - * freeing the resources used - */ - - if (info->mtds != NULL) { - struct s3c2410_nand_mtd *ptr = info->mtds; - int mtdno; - - for (mtdno = 0; mtdno < info->mtd_count; mtdno++, ptr++) { - pr_debug("releasing mtd %d (%p)\n", mtdno, ptr); - nand_release(nand_to_mtd(&ptr->chip)); - } - } - - /* free the common resources */ - - if (!IS_ERR(info->clk)) - s3c2410_nand_clk_set_state(info, CLOCK_DISABLE); - - return 0; -} - -static int s3c2410_nand_add_partition(struct s3c2410_nand_info *info, - struct s3c2410_nand_mtd *mtd, - struct s3c2410_nand_set *set) -{ - if (set) { - struct mtd_info *mtdinfo = nand_to_mtd(&mtd->chip); - - mtdinfo->name = set->name; - - return mtd_device_parse_register(mtdinfo, NULL, NULL, - set->partitions, set->nr_partitions); - } - - return -ENODEV; -} - -static int s3c2410_nand_setup_data_interface(struct mtd_info *mtd, int csline, - const struct nand_data_interface *conf) -{ - struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); - struct s3c2410_platform_nand *pdata = info->platform; - const struct nand_sdr_timings *timings; - int tacls; - - timings = nand_get_sdr_timings(conf); - if (IS_ERR(timings)) - return -ENOTSUPP; - - tacls = timings->tCLS_min - timings->tWP_min; - if (tacls < 0) - tacls = 0; - - pdata->tacls = DIV_ROUND_UP(tacls, 1000); - pdata->twrph0 = DIV_ROUND_UP(timings->tWP_min, 1000); - pdata->twrph1 = DIV_ROUND_UP(timings->tCLH_min, 1000); - - return s3c2410_nand_setrate(info); -} - -/** - * s3c2410_nand_init_chip - initialise a single instance of an chip - * @info: The base NAND controller the chip is on. - * @nmtd: The new controller MTD instance to fill in. - * @set: The information passed from the board specific platform data. - * - * Initialise the given @nmtd from the information in @info and @set. This - * readies the structure for use with the MTD layer functions by ensuring - * all pointers are setup and the necessary control routines selected. - */ -static void s3c2410_nand_init_chip(struct s3c2410_nand_info *info, - struct s3c2410_nand_mtd *nmtd, - struct s3c2410_nand_set *set) -{ - struct device_node *np = info->device->of_node; - struct nand_chip *chip = &nmtd->chip; - void __iomem *regs = info->regs; - - nand_set_flash_node(chip, set->of_node); - - chip->write_buf = s3c2410_nand_write_buf; - chip->read_buf = s3c2410_nand_read_buf; - chip->select_chip = s3c2410_nand_select_chip; - chip->chip_delay = 50; - nand_set_controller_data(chip, nmtd); - chip->options = set->options; - chip->controller = &info->controller; - - /* - * let's keep behavior unchanged for legacy boards booting via pdata and - * auto-detect timings only when booting with a device tree. - */ - if (np) - chip->setup_data_interface = s3c2410_nand_setup_data_interface; - - switch (info->cpu_type) { - case TYPE_S3C2410: - chip->IO_ADDR_W = regs + S3C2410_NFDATA; - info->sel_reg = regs + S3C2410_NFCONF; - info->sel_bit = S3C2410_NFCONF_nFCE; - chip->cmd_ctrl = s3c2410_nand_hwcontrol; - chip->dev_ready = s3c2410_nand_devready; - break; - - case TYPE_S3C2440: - chip->IO_ADDR_W = regs + S3C2440_NFDATA; - info->sel_reg = regs + S3C2440_NFCONT; - info->sel_bit = S3C2440_NFCONT_nFCE; - chip->cmd_ctrl = s3c2440_nand_hwcontrol; - chip->dev_ready = s3c2440_nand_devready; - chip->read_buf = s3c2440_nand_read_buf; - chip->write_buf = s3c2440_nand_write_buf; - break; - - case TYPE_S3C2412: - chip->IO_ADDR_W = regs + S3C2440_NFDATA; - info->sel_reg = regs + S3C2440_NFCONT; - info->sel_bit = S3C2412_NFCONT_nFCE0; - chip->cmd_ctrl = s3c2440_nand_hwcontrol; - chip->dev_ready = s3c2412_nand_devready; - - if (readl(regs + S3C2410_NFCONF) & S3C2412_NFCONF_NANDBOOT) - dev_info(info->device, "System booted from NAND\n"); - - break; - } - - chip->IO_ADDR_R = chip->IO_ADDR_W; - - nmtd->info = info; - nmtd->set = set; - - chip->ecc.mode = info->platform->ecc_mode; - - /* - * If you use u-boot BBT creation code, specifying this flag will - * let the kernel fish out the BBT from the NAND. - */ - if (set->flash_bbt) - chip->bbt_options |= NAND_BBT_USE_FLASH; -} - -/** - * s3c2410_nand_update_chip - post probe update - * @info: The controller instance. - * @nmtd: The driver version of the MTD instance. - * - * This routine is called after the chip probe has successfully completed - * and the relevant per-chip information updated. This call ensure that - * we update the internal state accordingly. - * - * The internal state is currently limited to the ECC state information. -*/ -static int s3c2410_nand_update_chip(struct s3c2410_nand_info *info, - struct s3c2410_nand_mtd *nmtd) -{ - struct nand_chip *chip = &nmtd->chip; - - switch (chip->ecc.mode) { - - case NAND_ECC_NONE: - dev_info(info->device, "ECC disabled\n"); - break; - - case NAND_ECC_SOFT: - /* - * This driver expects Hamming based ECC when ecc_mode is set - * to NAND_ECC_SOFT. Force ecc.algo to NAND_ECC_HAMMING to - * avoid adding an extra ecc_algo field to - * s3c2410_platform_nand. - */ - chip->ecc.algo = NAND_ECC_HAMMING; - dev_info(info->device, "soft ECC\n"); - break; - - case NAND_ECC_HW: - chip->ecc.calculate = s3c2410_nand_calculate_ecc; - chip->ecc.correct = s3c2410_nand_correct_data; - chip->ecc.strength = 1; - - switch (info->cpu_type) { - case TYPE_S3C2410: - chip->ecc.hwctl = s3c2410_nand_enable_hwecc; - chip->ecc.calculate = s3c2410_nand_calculate_ecc; - break; - - case TYPE_S3C2412: - chip->ecc.hwctl = s3c2412_nand_enable_hwecc; - chip->ecc.calculate = s3c2412_nand_calculate_ecc; - break; - - case TYPE_S3C2440: - chip->ecc.hwctl = s3c2440_nand_enable_hwecc; - chip->ecc.calculate = s3c2440_nand_calculate_ecc; - break; - } - - dev_dbg(info->device, "chip %p => page shift %d\n", - chip, chip->page_shift); - - /* change the behaviour depending on whether we are using - * the large or small page nand device */ - if (chip->page_shift > 10) { - chip->ecc.size = 256; - chip->ecc.bytes = 3; - } else { - chip->ecc.size = 512; - chip->ecc.bytes = 3; - mtd_set_ooblayout(nand_to_mtd(chip), - &s3c2410_ooblayout_ops); - } - - dev_info(info->device, "hardware ECC\n"); - break; - - default: - dev_err(info->device, "invalid ECC mode!\n"); - return -EINVAL; - } - - if (chip->bbt_options & NAND_BBT_USE_FLASH) - chip->options |= NAND_SKIP_BBTSCAN; - - return 0; -} - -static const struct of_device_id s3c24xx_nand_dt_ids[] = { - { - .compatible = "samsung,s3c2410-nand", - .data = &s3c2410_nand_devtype_data, - }, { - /* also compatible with s3c6400 */ - .compatible = "samsung,s3c2412-nand", - .data = &s3c2412_nand_devtype_data, - }, { - .compatible = "samsung,s3c2440-nand", - .data = &s3c2440_nand_devtype_data, - }, - { /* sentinel */ } -}; -MODULE_DEVICE_TABLE(of, s3c24xx_nand_dt_ids); - -static int s3c24xx_nand_probe_dt(struct platform_device *pdev) -{ - const struct s3c24XX_nand_devtype_data *devtype_data; - struct s3c2410_platform_nand *pdata; - struct s3c2410_nand_info *info = platform_get_drvdata(pdev); - struct device_node *np = pdev->dev.of_node, *child; - struct s3c2410_nand_set *sets; - - devtype_data = of_device_get_match_data(&pdev->dev); - if (!devtype_data) - return -ENODEV; - - info->cpu_type = devtype_data->type; - - pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL); - if (!pdata) - return -ENOMEM; - - pdev->dev.platform_data = pdata; - - pdata->nr_sets = of_get_child_count(np); - if (!pdata->nr_sets) - return 0; - - sets = devm_kzalloc(&pdev->dev, sizeof(*sets) * pdata->nr_sets, - GFP_KERNEL); - if (!sets) - return -ENOMEM; - - pdata->sets = sets; - - for_each_available_child_of_node(np, child) { - sets->name = (char *)child->name; - sets->of_node = child; - sets->nr_chips = 1; - - of_node_get(child); - - sets++; - } - - return 0; -} - -static int s3c24xx_nand_probe_pdata(struct platform_device *pdev) -{ - struct s3c2410_nand_info *info = platform_get_drvdata(pdev); - - info->cpu_type = platform_get_device_id(pdev)->driver_data; - - return 0; -} - -/* s3c24xx_nand_probe - * - * called by device layer when it finds a device matching - * one our driver can handled. This code checks to see if - * it can allocate all necessary resources then calls the - * nand layer to look for devices -*/ -static int s3c24xx_nand_probe(struct platform_device *pdev) -{ - struct s3c2410_platform_nand *plat; - struct s3c2410_nand_info *info; - struct s3c2410_nand_mtd *nmtd; - struct s3c2410_nand_set *sets; - struct resource *res; - int err = 0; - int size; - int nr_sets; - int setno; - - info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL); - if (info == NULL) { - err = -ENOMEM; - goto exit_error; - } - - platform_set_drvdata(pdev, info); - - nand_hw_control_init(&info->controller); - - /* get the clock source and enable it */ - - info->clk = devm_clk_get(&pdev->dev, "nand"); - if (IS_ERR(info->clk)) { - dev_err(&pdev->dev, "failed to get clock\n"); - err = -ENOENT; - goto exit_error; - } - - s3c2410_nand_clk_set_state(info, CLOCK_ENABLE); - - if (pdev->dev.of_node) - err = s3c24xx_nand_probe_dt(pdev); - else - err = s3c24xx_nand_probe_pdata(pdev); - - if (err) - goto exit_error; - - plat = to_nand_plat(pdev); - - /* allocate and map the resource */ - - /* currently we assume we have the one resource */ - res = pdev->resource; - size = resource_size(res); - - info->device = &pdev->dev; - info->platform = plat; - - info->regs = devm_ioremap_resource(&pdev->dev, res); - if (IS_ERR(info->regs)) { - err = PTR_ERR(info->regs); - goto exit_error; - } - - dev_dbg(&pdev->dev, "mapped registers at %p\n", info->regs); - - sets = (plat != NULL) ? plat->sets : NULL; - nr_sets = (plat != NULL) ? plat->nr_sets : 1; - - info->mtd_count = nr_sets; - - /* allocate our information */ - - size = nr_sets * sizeof(*info->mtds); - info->mtds = devm_kzalloc(&pdev->dev, size, GFP_KERNEL); - if (info->mtds == NULL) { - err = -ENOMEM; - goto exit_error; - } - - /* initialise all possible chips */ - - nmtd = info->mtds; - - for (setno = 0; setno < nr_sets; setno++, nmtd++) { - struct mtd_info *mtd = nand_to_mtd(&nmtd->chip); - - pr_debug("initialising set %d (%p, info %p)\n", - setno, nmtd, info); - - mtd->dev.parent = &pdev->dev; - s3c2410_nand_init_chip(info, nmtd, sets); - - nmtd->scan_res = nand_scan_ident(mtd, - (sets) ? sets->nr_chips : 1, - NULL); - - if (nmtd->scan_res == 0) { - err = s3c2410_nand_update_chip(info, nmtd); - if (err < 0) - goto exit_error; - nand_scan_tail(mtd); - s3c2410_nand_add_partition(info, nmtd, sets); - } - - if (sets != NULL) - sets++; - } - - /* initialise the hardware */ - err = s3c2410_nand_inithw(info); - if (err != 0) - goto exit_error; - - err = s3c2410_nand_cpufreq_register(info); - if (err < 0) { - dev_err(&pdev->dev, "failed to init cpufreq support\n"); - goto exit_error; - } - - if (allow_clk_suspend(info)) { - dev_info(&pdev->dev, "clock idle support enabled\n"); - s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND); - } - - return 0; - - exit_error: - s3c24xx_nand_remove(pdev); - - if (err == 0) - err = -EINVAL; - return err; -} - -/* PM Support */ -#ifdef CONFIG_PM - -static int s3c24xx_nand_suspend(struct platform_device *dev, pm_message_t pm) -{ - struct s3c2410_nand_info *info = platform_get_drvdata(dev); - - if (info) { - info->save_sel = readl(info->sel_reg); - - /* For the moment, we must ensure nFCE is high during - * the time we are suspended. This really should be - * handled by suspending the MTDs we are using, but - * that is currently not the case. */ - - writel(info->save_sel | info->sel_bit, info->sel_reg); - - s3c2410_nand_clk_set_state(info, CLOCK_DISABLE); - } - - return 0; -} - -static int s3c24xx_nand_resume(struct platform_device *dev) -{ - struct s3c2410_nand_info *info = platform_get_drvdata(dev); - unsigned long sel; - - if (info) { - s3c2410_nand_clk_set_state(info, CLOCK_ENABLE); - s3c2410_nand_inithw(info); - - /* Restore the state of the nFCE line. */ - - sel = readl(info->sel_reg); - sel &= ~info->sel_bit; - sel |= info->save_sel & info->sel_bit; - writel(sel, info->sel_reg); - - s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND); - } - - return 0; -} - -#else -#define s3c24xx_nand_suspend NULL -#define s3c24xx_nand_resume NULL -#endif - -/* driver device registration */ - -static const struct platform_device_id s3c24xx_driver_ids[] = { - { - .name = "s3c2410-nand", - .driver_data = TYPE_S3C2410, - }, { - .name = "s3c2440-nand", - .driver_data = TYPE_S3C2440, - }, { - .name = "s3c2412-nand", - .driver_data = TYPE_S3C2412, - }, { - .name = "s3c6400-nand", - .driver_data = TYPE_S3C2412, /* compatible with 2412 */ - }, - { } -}; - -MODULE_DEVICE_TABLE(platform, s3c24xx_driver_ids); - -static struct platform_driver s3c24xx_nand_driver = { - .probe = s3c24xx_nand_probe, - .remove = s3c24xx_nand_remove, - .suspend = s3c24xx_nand_suspend, - .resume = s3c24xx_nand_resume, - .id_table = s3c24xx_driver_ids, - .driver = { - .name = "s3c24xx-nand", - .of_match_table = s3c24xx_nand_dt_ids, - }, -}; - -module_platform_driver(s3c24xx_nand_driver); - -MODULE_LICENSE("GPL"); -MODULE_AUTHOR("Ben Dooks "); -MODULE_DESCRIPTION("S3C24XX MTD NAND driver"); diff --git a/drivers/mtd/nand/sh_flctl.c b/drivers/mtd/nand/sh_flctl.c deleted file mode 100644 index c4e7755448e6..000000000000 --- a/drivers/mtd/nand/sh_flctl.c +++ /dev/null @@ -1,1250 +0,0 @@ -/* - * SuperH FLCTL nand controller - * - * Copyright (c) 2008 Renesas Solutions Corp. - * Copyright (c) 2008 Atom Create Engineering Co., Ltd. - * - * Based on fsl_elbc_nand.c, Copyright (c) 2006-2007 Freescale Semiconductor - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation; version 2 of the License. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License - * along with this program; if not, write to the Free Software - * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA - * - */ - -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include - -#include -#include -#include -#include - -static int flctl_4secc_ooblayout_sp_ecc(struct mtd_info *mtd, int section, - struct mtd_oob_region *oobregion) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - - if (section) - return -ERANGE; - - oobregion->offset = 0; - oobregion->length = chip->ecc.bytes; - - return 0; -} - -static int flctl_4secc_ooblayout_sp_free(struct mtd_info *mtd, int section, - struct mtd_oob_region *oobregion) -{ - if (section) - return -ERANGE; - - oobregion->offset = 12; - oobregion->length = 4; - - return 0; -} - -static const struct mtd_ooblayout_ops flctl_4secc_oob_smallpage_ops = { - .ecc = flctl_4secc_ooblayout_sp_ecc, - .free = flctl_4secc_ooblayout_sp_free, -}; - -static int flctl_4secc_ooblayout_lp_ecc(struct mtd_info *mtd, int section, - struct mtd_oob_region *oobregion) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - - if (section >= chip->ecc.steps) - return -ERANGE; - - oobregion->offset = (section * 16) + 6; - oobregion->length = chip->ecc.bytes; - - return 0; -} - -static int flctl_4secc_ooblayout_lp_free(struct mtd_info *mtd, int section, - struct mtd_oob_region *oobregion) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - - if (section >= chip->ecc.steps) - return -ERANGE; - - oobregion->offset = section * 16; - oobregion->length = 6; - - if (!section) { - oobregion->offset += 2; - oobregion->length -= 2; - } - - return 0; -} - -static const struct mtd_ooblayout_ops flctl_4secc_oob_largepage_ops = { - .ecc = flctl_4secc_ooblayout_lp_ecc, - .free = flctl_4secc_ooblayout_lp_free, -}; - -static uint8_t scan_ff_pattern[] = { 0xff, 0xff }; - -static struct nand_bbt_descr flctl_4secc_smallpage = { - .options = NAND_BBT_SCAN2NDPAGE, - .offs = 11, - .len = 1, - .pattern = scan_ff_pattern, -}; - -static struct nand_bbt_descr flctl_4secc_largepage = { - .options = NAND_BBT_SCAN2NDPAGE, - .offs = 0, - .len = 2, - .pattern = scan_ff_pattern, -}; - -static void empty_fifo(struct sh_flctl *flctl) -{ - writel(flctl->flintdmacr_base | AC1CLR | AC0CLR, FLINTDMACR(flctl)); - writel(flctl->flintdmacr_base, FLINTDMACR(flctl)); -} - -static void start_translation(struct sh_flctl *flctl) -{ - writeb(TRSTRT, FLTRCR(flctl)); -} - -static void timeout_error(struct sh_flctl *flctl, const char *str) -{ - dev_err(&flctl->pdev->dev, "Timeout occurred in %s\n", str); -} - -static void wait_completion(struct sh_flctl *flctl) -{ - uint32_t timeout = LOOP_TIMEOUT_MAX; - - while (timeout--) { - if (readb(FLTRCR(flctl)) & TREND) { - writeb(0x0, FLTRCR(flctl)); - return; - } - udelay(1); - } - - timeout_error(flctl, __func__); - writeb(0x0, FLTRCR(flctl)); -} - -static void flctl_dma_complete(void *param) -{ - struct sh_flctl *flctl = param; - - complete(&flctl->dma_complete); -} - -static void flctl_release_dma(struct sh_flctl *flctl) -{ - if (flctl->chan_fifo0_rx) { - dma_release_channel(flctl->chan_fifo0_rx); - flctl->chan_fifo0_rx = NULL; - } - if (flctl->chan_fifo0_tx) { - dma_release_channel(flctl->chan_fifo0_tx); - flctl->chan_fifo0_tx = NULL; - } -} - -static void flctl_setup_dma(struct sh_flctl *flctl) -{ - dma_cap_mask_t mask; - struct dma_slave_config cfg; - struct platform_device *pdev = flctl->pdev; - struct sh_flctl_platform_data *pdata = dev_get_platdata(&pdev->dev); - int ret; - - if (!pdata) - return; - - if (pdata->slave_id_fifo0_tx <= 0 || pdata->slave_id_fifo0_rx <= 0) - return; - - /* We can only either use DMA for both Tx and Rx or not use it at all */ - dma_cap_zero(mask); - dma_cap_set(DMA_SLAVE, mask); - - flctl->chan_fifo0_tx = dma_request_channel(mask, shdma_chan_filter, - (void *)(uintptr_t)pdata->slave_id_fifo0_tx); - dev_dbg(&pdev->dev, "%s: TX: got channel %p\n", __func__, - flctl->chan_fifo0_tx); - - if (!flctl->chan_fifo0_tx) - return; - - memset(&cfg, 0, sizeof(cfg)); - cfg.direction = DMA_MEM_TO_DEV; - cfg.dst_addr = flctl->fifo; - cfg.src_addr = 0; - ret = dmaengine_slave_config(flctl->chan_fifo0_tx, &cfg); - if (ret < 0) - goto err; - - flctl->chan_fifo0_rx = dma_request_channel(mask, shdma_chan_filter, - (void *)(uintptr_t)pdata->slave_id_fifo0_rx); - dev_dbg(&pdev->dev, "%s: RX: got channel %p\n", __func__, - flctl->chan_fifo0_rx); - - if (!flctl->chan_fifo0_rx) - goto err; - - cfg.direction = DMA_DEV_TO_MEM; - cfg.dst_addr = 0; - cfg.src_addr = flctl->fifo; - ret = dmaengine_slave_config(flctl->chan_fifo0_rx, &cfg); - if (ret < 0) - goto err; - - init_completion(&flctl->dma_complete); - - return; - -err: - flctl_release_dma(flctl); -} - -static void set_addr(struct mtd_info *mtd, int column, int page_addr) -{ - struct sh_flctl *flctl = mtd_to_flctl(mtd); - uint32_t addr = 0; - - if (column == -1) { - addr = page_addr; /* ERASE1 */ - } else if (page_addr != -1) { - /* SEQIN, READ0, etc.. */ - if (flctl->chip.options & NAND_BUSWIDTH_16) - column >>= 1; - if (flctl->page_size) { - addr = column & 0x0FFF; - addr |= (page_addr & 0xff) << 16; - addr |= ((page_addr >> 8) & 0xff) << 24; - /* big than 128MB */ - if (flctl->rw_ADRCNT == ADRCNT2_E) { - uint32_t addr2; - addr2 = (page_addr >> 16) & 0xff; - writel(addr2, FLADR2(flctl)); - } - } else { - addr = column; - addr |= (page_addr & 0xff) << 8; - addr |= ((page_addr >> 8) & 0xff) << 16; - addr |= ((page_addr >> 16) & 0xff) << 24; - } - } - writel(addr, FLADR(flctl)); -} - -static void wait_rfifo_ready(struct sh_flctl *flctl) -{ - uint32_t timeout = LOOP_TIMEOUT_MAX; - - while (timeout--) { - uint32_t val; - /* check FIFO */ - val = readl(FLDTCNTR(flctl)) >> 16; - if (val & 0xFF) - return; - udelay(1); - } - timeout_error(flctl, __func__); -} - -static void wait_wfifo_ready(struct sh_flctl *flctl) -{ - uint32_t len, timeout = LOOP_TIMEOUT_MAX; - - while (timeout--) { - /* check FIFO */ - len = (readl(FLDTCNTR(flctl)) >> 16) & 0xFF; - if (len >= 4) - return; - udelay(1); - } - timeout_error(flctl, __func__); -} - -static enum flctl_ecc_res_t wait_recfifo_ready - (struct sh_flctl *flctl, int sector_number) -{ - uint32_t timeout = LOOP_TIMEOUT_MAX; - void __iomem *ecc_reg[4]; - int i; - int state = FL_SUCCESS; - uint32_t data, size; - - /* - * First this loops checks in FLDTCNTR if we are ready to read out the - * oob data. This is the case if either all went fine without errors or - * if the bottom part of the loop corrected the errors or marked them as - * uncorrectable and the controller is given time to push the data into - * the FIFO. - */ - while (timeout--) { - /* check if all is ok and we can read out the OOB */ - size = readl(FLDTCNTR(flctl)) >> 24; - if ((size & 0xFF) == 4) - return state; - - /* check if a correction code has been calculated */ - if (!(readl(FL4ECCCR(flctl)) & _4ECCEND)) { - /* - * either we wait for the fifo to be filled or a - * correction pattern is being generated - */ - udelay(1); - continue; - } - - /* check for an uncorrectable error */ - if (readl(FL4ECCCR(flctl)) & _4ECCFA) { - /* check if we face a non-empty page */ - for (i = 0; i < 512; i++) { - if (flctl->done_buff[i] != 0xff) { - state = FL_ERROR; /* can't correct */ - break; - } - } - - if (state == FL_SUCCESS) - dev_dbg(&flctl->pdev->dev, - "reading empty sector %d, ecc error ignored\n", - sector_number); - - writel(0, FL4ECCCR(flctl)); - continue; - } - - /* start error correction */ - ecc_reg[0] = FL4ECCRESULT0(flctl); - ecc_reg[1] = FL4ECCRESULT1(flctl); - ecc_reg[2] = FL4ECCRESULT2(flctl); - ecc_reg[3] = FL4ECCRESULT3(flctl); - - for (i = 0; i < 3; i++) { - uint8_t org; - unsigned int index; - - data = readl(ecc_reg[i]); - - if (flctl->page_size) - index = (512 * sector_number) + - (data >> 16); - else - index = data >> 16; - - org = flctl->done_buff[index]; - flctl->done_buff[index] = org ^ (data & 0xFF); - } - state = FL_REPAIRABLE; - writel(0, FL4ECCCR(flctl)); - } - - timeout_error(flctl, __func__); - return FL_TIMEOUT; /* timeout */ -} - -static void wait_wecfifo_ready(struct sh_flctl *flctl) -{ - uint32_t timeout = LOOP_TIMEOUT_MAX; - uint32_t len; - - while (timeout--) { - /* check FLECFIFO */ - len = (readl(FLDTCNTR(flctl)) >> 24) & 0xFF; - if (len >= 4) - return; - udelay(1); - } - timeout_error(flctl, __func__); -} - -static int flctl_dma_fifo0_transfer(struct sh_flctl *flctl, unsigned long *buf, - int len, enum dma_data_direction dir) -{ - struct dma_async_tx_descriptor *desc = NULL; - struct dma_chan *chan; - enum dma_transfer_direction tr_dir; - dma_addr_t dma_addr; - dma_cookie_t cookie; - uint32_t reg; - int ret; - - if (dir == DMA_FROM_DEVICE) { - chan = flctl->chan_fifo0_rx; - tr_dir = DMA_DEV_TO_MEM; - } else { - chan = flctl->chan_fifo0_tx; - tr_dir = DMA_MEM_TO_DEV; - } - - dma_addr = dma_map_single(chan->device->dev, buf, len, dir); - - if (!dma_mapping_error(chan->device->dev, dma_addr)) - desc = dmaengine_prep_slave_single(chan, dma_addr, len, - tr_dir, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); - - if (desc) { - reg = readl(FLINTDMACR(flctl)); - reg |= DREQ0EN; - writel(reg, FLINTDMACR(flctl)); - - desc->callback = flctl_dma_complete; - desc->callback_param = flctl; - cookie = dmaengine_submit(desc); - if (dma_submit_error(cookie)) { - ret = dma_submit_error(cookie); - dev_warn(&flctl->pdev->dev, - "DMA submit failed, falling back to PIO\n"); - goto out; - } - - dma_async_issue_pending(chan); - } else { - /* DMA failed, fall back to PIO */ - flctl_release_dma(flctl); - dev_warn(&flctl->pdev->dev, - "DMA failed, falling back to PIO\n"); - ret = -EIO; - goto out; - } - - ret = - wait_for_completion_timeout(&flctl->dma_complete, - msecs_to_jiffies(3000)); - - if (ret <= 0) { - dmaengine_terminate_all(chan); - dev_err(&flctl->pdev->dev, "wait_for_completion_timeout\n"); - } - -out: - reg = readl(FLINTDMACR(flctl)); - reg &= ~DREQ0EN; - writel(reg, FLINTDMACR(flctl)); - - dma_unmap_single(chan->device->dev, dma_addr, len, dir); - - /* ret > 0 is success */ - return ret; -} - -static void read_datareg(struct sh_flctl *flctl, int offset) -{ - unsigned long data; - unsigned long *buf = (unsigned long *)&flctl->done_buff[offset]; - - wait_completion(flctl); - - data = readl(FLDATAR(flctl)); - *buf = le32_to_cpu(data); -} - -static void read_fiforeg(struct sh_flctl *flctl, int rlen, int offset) -{ - int i, len_4align; - unsigned long *buf = (unsigned long *)&flctl->done_buff[offset]; - - len_4align = (rlen + 3) / 4; - - /* initiate DMA transfer */ - if (flctl->chan_fifo0_rx && rlen >= 32 && - flctl_dma_fifo0_transfer(flctl, buf, rlen, DMA_DEV_TO_MEM) > 0) - goto convert; /* DMA success */ - - /* do polling transfer */ - for (i = 0; i < len_4align; i++) { - wait_rfifo_ready(flctl); - buf[i] = readl(FLDTFIFO(flctl)); - } - -convert: - for (i = 0; i < len_4align; i++) - buf[i] = be32_to_cpu(buf[i]); -} - -static enum flctl_ecc_res_t read_ecfiforeg - (struct sh_flctl *flctl, uint8_t *buff, int sector) -{ - int i; - enum flctl_ecc_res_t res; - unsigned long *ecc_buf = (unsigned long *)buff; - - res = wait_recfifo_ready(flctl , sector); - - if (res != FL_ERROR) { - for (i = 0; i < 4; i++) { - ecc_buf[i] = readl(FLECFIFO(flctl)); - ecc_buf[i] = be32_to_cpu(ecc_buf[i]); - } - } - - return res; -} - -static void write_fiforeg(struct sh_flctl *flctl, int rlen, - unsigned int offset) -{ - int i, len_4align; - unsigned long *buf = (unsigned long *)&flctl->done_buff[offset]; - - len_4align = (rlen + 3) / 4; - for (i = 0; i < len_4align; i++) { - wait_wfifo_ready(flctl); - writel(cpu_to_be32(buf[i]), FLDTFIFO(flctl)); - } -} - -static void write_ec_fiforeg(struct sh_flctl *flctl, int rlen, - unsigned int offset) -{ - int i, len_4align; - unsigned long *buf = (unsigned long *)&flctl->done_buff[offset]; - - len_4align = (rlen + 3) / 4; - - for (i = 0; i < len_4align; i++) - buf[i] = cpu_to_be32(buf[i]); - - /* initiate DMA transfer */ - if (flctl->chan_fifo0_tx && rlen >= 32 && - flctl_dma_fifo0_transfer(flctl, buf, rlen, DMA_MEM_TO_DEV) > 0) - return; /* DMA success */ - - /* do polling transfer */ - for (i = 0; i < len_4align; i++) { - wait_wecfifo_ready(flctl); - writel(buf[i], FLECFIFO(flctl)); - } -} - -static void set_cmd_regs(struct mtd_info *mtd, uint32_t cmd, uint32_t flcmcdr_val) -{ - struct sh_flctl *flctl = mtd_to_flctl(mtd); - uint32_t flcmncr_val = flctl->flcmncr_base & ~SEL_16BIT; - uint32_t flcmdcr_val, addr_len_bytes = 0; - - /* Set SNAND bit if page size is 2048byte */ - if (flctl->page_size) - flcmncr_val |= SNAND_E; - else - flcmncr_val &= ~SNAND_E; - - /* default FLCMDCR val */ - flcmdcr_val = DOCMD1_E | DOADR_E; - - /* Set for FLCMDCR */ - switch (cmd) { - case NAND_CMD_ERASE1: - addr_len_bytes = flctl->erase_ADRCNT; - flcmdcr_val |= DOCMD2_E; - break; - case NAND_CMD_READ0: - case NAND_CMD_READOOB: - case NAND_CMD_RNDOUT: - addr_len_bytes = flctl->rw_ADRCNT; - flcmdcr_val |= CDSRC_E; - if (flctl->chip.options & NAND_BUSWIDTH_16) - flcmncr_val |= SEL_16BIT; - break; - case NAND_CMD_SEQIN: - /* This case is that cmd is READ0 or READ1 or READ00 */ - flcmdcr_val &= ~DOADR_E; /* ONLY execute 1st cmd */ - break; - case NAND_CMD_PAGEPROG: - addr_len_bytes = flctl->rw_ADRCNT; - flcmdcr_val |= DOCMD2_E | CDSRC_E | SELRW; - if (flctl->chip.options & NAND_BUSWIDTH_16) - flcmncr_val |= SEL_16BIT; - break; - case NAND_CMD_READID: - flcmncr_val &= ~SNAND_E; - flcmdcr_val |= CDSRC_E; - addr_len_bytes = ADRCNT_1; - break; - case NAND_CMD_STATUS: - case NAND_CMD_RESET: - flcmncr_val &= ~SNAND_E; - flcmdcr_val &= ~(DOADR_E | DOSR_E); - break; - default: - break; - } - - /* Set address bytes parameter */ - flcmdcr_val |= addr_len_bytes; - - /* Now actually write */ - writel(flcmncr_val, FLCMNCR(flctl)); - writel(flcmdcr_val, FLCMDCR(flctl)); - writel(flcmcdr_val, FLCMCDR(flctl)); -} - -static int flctl_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip, - uint8_t *buf, int oob_required, int page) -{ - nand_read_page_op(chip, page, 0, buf, mtd->writesize); - if (oob_required) - chip->read_buf(mtd, chip->oob_poi, mtd->oobsize); - return 0; -} - -static int flctl_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip, - const uint8_t *buf, int oob_required, - int page) -{ - nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize); - chip->write_buf(mtd, chip->oob_poi, mtd->oobsize); - return nand_prog_page_end_op(chip); -} - -static void execmd_read_page_sector(struct mtd_info *mtd, int page_addr) -{ - struct sh_flctl *flctl = mtd_to_flctl(mtd); - int sector, page_sectors; - enum flctl_ecc_res_t ecc_result; - - page_sectors = flctl->page_size ? 4 : 1; - - set_cmd_regs(mtd, NAND_CMD_READ0, - (NAND_CMD_READSTART << 8) | NAND_CMD_READ0); - - writel(readl(FLCMNCR(flctl)) | ACM_SACCES_MODE | _4ECCCORRECT, - FLCMNCR(flctl)); - writel(readl(FLCMDCR(flctl)) | page_sectors, FLCMDCR(flctl)); - writel(page_addr << 2, FLADR(flctl)); - - empty_fifo(flctl); - start_translation(flctl); - - for (sector = 0; sector < page_sectors; sector++) { - read_fiforeg(flctl, 512, 512 * sector); - - ecc_result = read_ecfiforeg(flctl, - &flctl->done_buff[mtd->writesize + 16 * sector], - sector); - - switch (ecc_result) { - case FL_REPAIRABLE: - dev_info(&flctl->pdev->dev, - "applied ecc on page 0x%x", page_addr); - mtd->ecc_stats.corrected++; - break; - case FL_ERROR: - dev_warn(&flctl->pdev->dev, - "page 0x%x contains corrupted data\n", - page_addr); - mtd->ecc_stats.failed++; - break; - default: - ; - } - } - - wait_completion(flctl); - - writel(readl(FLCMNCR(flctl)) & ~(ACM_SACCES_MODE | _4ECCCORRECT), - FLCMNCR(flctl)); -} - -static void execmd_read_oob(struct mtd_info *mtd, int page_addr) -{ - struct sh_flctl *flctl = mtd_to_flctl(mtd); - int page_sectors = flctl->page_size ? 4 : 1; - int i; - - set_cmd_regs(mtd, NAND_CMD_READ0, - (NAND_CMD_READSTART << 8) | NAND_CMD_READ0); - - empty_fifo(flctl); - - for (i = 0; i < page_sectors; i++) { - set_addr(mtd, (512 + 16) * i + 512 , page_addr); - writel(16, FLDTCNTR(flctl)); - - start_translation(flctl); - read_fiforeg(flctl, 16, 16 * i); - wait_completion(flctl); - } -} - -static void execmd_write_page_sector(struct mtd_info *mtd) -{ - struct sh_flctl *flctl = mtd_to_flctl(mtd); - int page_addr = flctl->seqin_page_addr; - int sector, page_sectors; - - page_sectors = flctl->page_size ? 4 : 1; - - set_cmd_regs(mtd, NAND_CMD_PAGEPROG, - (NAND_CMD_PAGEPROG << 8) | NAND_CMD_SEQIN); - - empty_fifo(flctl); - writel(readl(FLCMNCR(flctl)) | ACM_SACCES_MODE, FLCMNCR(flctl)); - writel(readl(FLCMDCR(flctl)) | page_sectors, FLCMDCR(flctl)); - writel(page_addr << 2, FLADR(flctl)); - start_translation(flctl); - - for (sector = 0; sector < page_sectors; sector++) { - write_fiforeg(flctl, 512, 512 * sector); - write_ec_fiforeg(flctl, 16, mtd->writesize + 16 * sector); - } - - wait_completion(flctl); - writel(readl(FLCMNCR(flctl)) & ~ACM_SACCES_MODE, FLCMNCR(flctl)); -} - -static void execmd_write_oob(struct mtd_info *mtd) -{ - struct sh_flctl *flctl = mtd_to_flctl(mtd); - int page_addr = flctl->seqin_page_addr; - int sector, page_sectors; - - page_sectors = flctl->page_size ? 4 : 1; - - set_cmd_regs(mtd, NAND_CMD_PAGEPROG, - (NAND_CMD_PAGEPROG << 8) | NAND_CMD_SEQIN); - - for (sector = 0; sector < page_sectors; sector++) { - empty_fifo(flctl); - set_addr(mtd, sector * 528 + 512, page_addr); - writel(16, FLDTCNTR(flctl)); /* set read size */ - - start_translation(flctl); - write_fiforeg(flctl, 16, 16 * sector); - wait_completion(flctl); - } -} - -static void flctl_cmdfunc(struct mtd_info *mtd, unsigned int command, - int column, int page_addr) -{ - struct sh_flctl *flctl = mtd_to_flctl(mtd); - uint32_t read_cmd = 0; - - pm_runtime_get_sync(&flctl->pdev->dev); - - flctl->read_bytes = 0; - if (command != NAND_CMD_PAGEPROG) - flctl->index = 0; - - switch (command) { - case NAND_CMD_READ1: - case NAND_CMD_READ0: - if (flctl->hwecc) { - /* read page with hwecc */ - execmd_read_page_sector(mtd, page_addr); - break; - } - if (flctl->page_size) - set_cmd_regs(mtd, command, (NAND_CMD_READSTART << 8) - | command); - else - set_cmd_regs(mtd, command, command); - - set_addr(mtd, 0, page_addr); - - flctl->read_bytes = mtd->writesize + mtd->oobsize; - if (flctl->chip.options & NAND_BUSWIDTH_16) - column >>= 1; - flctl->index += column; - goto read_normal_exit; - - case NAND_CMD_READOOB: - if (flctl->hwecc) { - /* read page with hwecc */ - execmd_read_oob(mtd, page_addr); - break; - } - - if (flctl->page_size) { - set_cmd_regs(mtd, command, (NAND_CMD_READSTART << 8) - | NAND_CMD_READ0); - set_addr(mtd, mtd->writesize, page_addr); - } else { - set_cmd_regs(mtd, command, command); - set_addr(mtd, 0, page_addr); - } - flctl->read_bytes = mtd->oobsize; - goto read_normal_exit; - - case NAND_CMD_RNDOUT: - if (flctl->hwecc) - break; - - if (flctl->page_size) - set_cmd_regs(mtd, command, (NAND_CMD_RNDOUTSTART << 8) - | command); - else - set_cmd_regs(mtd, command, command); - - set_addr(mtd, column, 0); - - flctl->read_bytes = mtd->writesize + mtd->oobsize - column; - goto read_normal_exit; - - case NAND_CMD_READID: - set_cmd_regs(mtd, command, command); - - /* READID is always performed using an 8-bit bus */ - if (flctl->chip.options & NAND_BUSWIDTH_16) - column <<= 1; - set_addr(mtd, column, 0); - - flctl->read_bytes = 8; - writel(flctl->read_bytes, FLDTCNTR(flctl)); /* set read size */ - empty_fifo(flctl); - start_translation(flctl); - read_fiforeg(flctl, flctl->read_bytes, 0); - wait_completion(flctl); - break; - - case NAND_CMD_ERASE1: - flctl->erase1_page_addr = page_addr; - break; - - case NAND_CMD_ERASE2: - set_cmd_regs(mtd, NAND_CMD_ERASE1, - (command << 8) | NAND_CMD_ERASE1); - set_addr(mtd, -1, flctl->erase1_page_addr); - start_translation(flctl); - wait_completion(flctl); - break; - - case NAND_CMD_SEQIN: - if (!flctl->page_size) { - /* output read command */ - if (column >= mtd->writesize) { - column -= mtd->writesize; - read_cmd = NAND_CMD_READOOB; - } else if (column < 256) { - read_cmd = NAND_CMD_READ0; - } else { - column -= 256; - read_cmd = NAND_CMD_READ1; - } - } - flctl->seqin_column = column; - flctl->seqin_page_addr = page_addr; - flctl->seqin_read_cmd = read_cmd; - break; - - case NAND_CMD_PAGEPROG: - empty_fifo(flctl); - if (!flctl->page_size) { - set_cmd_regs(mtd, NAND_CMD_SEQIN, - flctl->seqin_read_cmd); - set_addr(mtd, -1, -1); - writel(0, FLDTCNTR(flctl)); /* set 0 size */ - start_translation(flctl); - wait_completion(flctl); - } - if (flctl->hwecc) { - /* write page with hwecc */ - if (flctl->seqin_column == mtd->writesize) - execmd_write_oob(mtd); - else if (!flctl->seqin_column) - execmd_write_page_sector(mtd); - else - printk(KERN_ERR "Invalid address !?\n"); - break; - } - set_cmd_regs(mtd, command, (command << 8) | NAND_CMD_SEQIN); - set_addr(mtd, flctl->seqin_column, flctl->seqin_page_addr); - writel(flctl->index, FLDTCNTR(flctl)); /* set write size */ - start_translation(flctl); - write_fiforeg(flctl, flctl->index, 0); - wait_completion(flctl); - break; - - case NAND_CMD_STATUS: - set_cmd_regs(mtd, command, command); - set_addr(mtd, -1, -1); - - flctl->read_bytes = 1; - writel(flctl->read_bytes, FLDTCNTR(flctl)); /* set read size */ - start_translation(flctl); - read_datareg(flctl, 0); /* read and end */ - break; - - case NAND_CMD_RESET: - set_cmd_regs(mtd, command, command); - set_addr(mtd, -1, -1); - - writel(0, FLDTCNTR(flctl)); /* set 0 size */ - start_translation(flctl); - wait_completion(flctl); - break; - - default: - break; - } - goto runtime_exit; - -read_normal_exit: - writel(flctl->read_bytes, FLDTCNTR(flctl)); /* set read size */ - empty_fifo(flctl); - start_translation(flctl); - read_fiforeg(flctl, flctl->read_bytes, 0); - wait_completion(flctl); -runtime_exit: - pm_runtime_put_sync(&flctl->pdev->dev); - return; -} - -static void flctl_select_chip(struct mtd_info *mtd, int chipnr) -{ - struct sh_flctl *flctl = mtd_to_flctl(mtd); - int ret; - - switch (chipnr) { - case -1: - flctl->flcmncr_base &= ~CE0_ENABLE; - - pm_runtime_get_sync(&flctl->pdev->dev); - writel(flctl->flcmncr_base, FLCMNCR(flctl)); - - if (flctl->qos_request) { - dev_pm_qos_remove_request(&flctl->pm_qos); - flctl->qos_request = 0; - } - - pm_runtime_put_sync(&flctl->pdev->dev); - break; - case 0: - flctl->flcmncr_base |= CE0_ENABLE; - - if (!flctl->qos_request) { - ret = dev_pm_qos_add_request(&flctl->pdev->dev, - &flctl->pm_qos, - DEV_PM_QOS_RESUME_LATENCY, - 100); - if (ret < 0) - dev_err(&flctl->pdev->dev, - "PM QoS request failed: %d\n", ret); - flctl->qos_request = 1; - } - - if (flctl->holden) { - pm_runtime_get_sync(&flctl->pdev->dev); - writel(HOLDEN, FLHOLDCR(flctl)); - pm_runtime_put_sync(&flctl->pdev->dev); - } - break; - default: - BUG(); - } -} - -static void flctl_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) -{ - struct sh_flctl *flctl = mtd_to_flctl(mtd); - - memcpy(&flctl->done_buff[flctl->index], buf, len); - flctl->index += len; -} - -static uint8_t flctl_read_byte(struct mtd_info *mtd) -{ - struct sh_flctl *flctl = mtd_to_flctl(mtd); - uint8_t data; - - data = flctl->done_buff[flctl->index]; - flctl->index++; - return data; -} - -static uint16_t flctl_read_word(struct mtd_info *mtd) -{ - struct sh_flctl *flctl = mtd_to_flctl(mtd); - uint16_t *buf = (uint16_t *)&flctl->done_buff[flctl->index]; - - flctl->index += 2; - return *buf; -} - -static void flctl_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) -{ - struct sh_flctl *flctl = mtd_to_flctl(mtd); - - memcpy(buf, &flctl->done_buff[flctl->index], len); - flctl->index += len; -} - -static int flctl_chip_init_tail(struct mtd_info *mtd) -{ - struct sh_flctl *flctl = mtd_to_flctl(mtd); - struct nand_chip *chip = &flctl->chip; - - if (mtd->writesize == 512) { - flctl->page_size = 0; - if (chip->chipsize > (32 << 20)) { - /* big than 32MB */ - flctl->rw_ADRCNT = ADRCNT_4; - flctl->erase_ADRCNT = ADRCNT_3; - } else if (chip->chipsize > (2 << 16)) { - /* big than 128KB */ - flctl->rw_ADRCNT = ADRCNT_3; - flctl->erase_ADRCNT = ADRCNT_2; - } else { - flctl->rw_ADRCNT = ADRCNT_2; - flctl->erase_ADRCNT = ADRCNT_1; - } - } else { - flctl->page_size = 1; - if (chip->chipsize > (128 << 20)) { - /* big than 128MB */ - flctl->rw_ADRCNT = ADRCNT2_E; - flctl->erase_ADRCNT = ADRCNT_3; - } else if (chip->chipsize > (8 << 16)) { - /* big than 512KB */ - flctl->rw_ADRCNT = ADRCNT_4; - flctl->erase_ADRCNT = ADRCNT_2; - } else { - flctl->rw_ADRCNT = ADRCNT_3; - flctl->erase_ADRCNT = ADRCNT_1; - } - } - - if (flctl->hwecc) { - if (mtd->writesize == 512) { - mtd_set_ooblayout(mtd, &flctl_4secc_oob_smallpage_ops); - chip->badblock_pattern = &flctl_4secc_smallpage; - } else { - mtd_set_ooblayout(mtd, &flctl_4secc_oob_largepage_ops); - chip->badblock_pattern = &flctl_4secc_largepage; - } - - chip->ecc.size = 512; - chip->ecc.bytes = 10; - chip->ecc.strength = 4; - chip->ecc.read_page = flctl_read_page_hwecc; - chip->ecc.write_page = flctl_write_page_hwecc; - chip->ecc.mode = NAND_ECC_HW; - - /* 4 symbols ECC enabled */ - flctl->flcmncr_base |= _4ECCEN; - } else { - chip->ecc.mode = NAND_ECC_SOFT; - chip->ecc.algo = NAND_ECC_HAMMING; - } - - return 0; -} - -static irqreturn_t flctl_handle_flste(int irq, void *dev_id) -{ - struct sh_flctl *flctl = dev_id; - - dev_err(&flctl->pdev->dev, "flste irq: %x\n", readl(FLINTDMACR(flctl))); - writel(flctl->flintdmacr_base, FLINTDMACR(flctl)); - - return IRQ_HANDLED; -} - -struct flctl_soc_config { - unsigned long flcmncr_val; - unsigned has_hwecc:1; - unsigned use_holden:1; -}; - -static struct flctl_soc_config flctl_sh7372_config = { - .flcmncr_val = CLK_16B_12L_4H | TYPESEL_SET | SHBUSSEL, - .has_hwecc = 1, - .use_holden = 1, -}; - -static const struct of_device_id of_flctl_match[] = { - { .compatible = "renesas,shmobile-flctl-sh7372", - .data = &flctl_sh7372_config }, - {}, -}; -MODULE_DEVICE_TABLE(of, of_flctl_match); - -static struct sh_flctl_platform_data *flctl_parse_dt(struct device *dev) -{ - const struct flctl_soc_config *config; - struct sh_flctl_platform_data *pdata; - - config = of_device_get_match_data(dev); - if (!config) { - dev_err(dev, "%s: no OF configuration attached\n", __func__); - return NULL; - } - - pdata = devm_kzalloc(dev, sizeof(struct sh_flctl_platform_data), - GFP_KERNEL); - if (!pdata) - return NULL; - - /* set SoC specific options */ - pdata->flcmncr_val = config->flcmncr_val; - pdata->has_hwecc = config->has_hwecc; - pdata->use_holden = config->use_holden; - - return pdata; -} - -static int flctl_probe(struct platform_device *pdev) -{ - struct resource *res; - struct sh_flctl *flctl; - struct mtd_info *flctl_mtd; - struct nand_chip *nand; - struct sh_flctl_platform_data *pdata; - int ret; - int irq; - - flctl = devm_kzalloc(&pdev->dev, sizeof(struct sh_flctl), GFP_KERNEL); - if (!flctl) - return -ENOMEM; - - res = platform_get_resource(pdev, IORESOURCE_MEM, 0); - flctl->reg = devm_ioremap_resource(&pdev->dev, res); - if (IS_ERR(flctl->reg)) - return PTR_ERR(flctl->reg); - flctl->fifo = res->start + 0x24; /* FLDTFIFO */ - - irq = platform_get_irq(pdev, 0); - if (irq < 0) { - dev_err(&pdev->dev, "failed to get flste irq data: %d\n", irq); - return irq; - } - - ret = devm_request_irq(&pdev->dev, irq, flctl_handle_flste, IRQF_SHARED, - "flste", flctl); - if (ret) { - dev_err(&pdev->dev, "request interrupt failed.\n"); - return ret; - } - - if (pdev->dev.of_node) - pdata = flctl_parse_dt(&pdev->dev); - else - pdata = dev_get_platdata(&pdev->dev); - - if (!pdata) { - dev_err(&pdev->dev, "no setup data defined\n"); - return -EINVAL; - } - - platform_set_drvdata(pdev, flctl); - nand = &flctl->chip; - flctl_mtd = nand_to_mtd(nand); - nand_set_flash_node(nand, pdev->dev.of_node); - flctl_mtd->dev.parent = &pdev->dev; - flctl->pdev = pdev; - flctl->hwecc = pdata->has_hwecc; - flctl->holden = pdata->use_holden; - flctl->flcmncr_base = pdata->flcmncr_val; - flctl->flintdmacr_base = flctl->hwecc ? (STERINTE | ECERB) : STERINTE; - - /* Set address of hardware control function */ - /* 20 us command delay time */ - nand->chip_delay = 20; - - nand->read_byte = flctl_read_byte; - nand->read_word = flctl_read_word; - nand->write_buf = flctl_write_buf; - nand->read_buf = flctl_read_buf; - nand->select_chip = flctl_select_chip; - nand->cmdfunc = flctl_cmdfunc; - nand->onfi_set_features = nand_onfi_get_set_features_notsupp; - nand->onfi_get_features = nand_onfi_get_set_features_notsupp; - - if (pdata->flcmncr_val & SEL_16BIT) - nand->options |= NAND_BUSWIDTH_16; - - pm_runtime_enable(&pdev->dev); - pm_runtime_resume(&pdev->dev); - - flctl_setup_dma(flctl); - - ret = nand_scan_ident(flctl_mtd, 1, NULL); - if (ret) - goto err_chip; - - if (nand->options & NAND_BUSWIDTH_16) { - /* - * NAND_BUSWIDTH_16 may have been set by nand_scan_ident(). - * Add the SEL_16BIT flag in pdata->flcmncr_val and re-assign - * flctl->flcmncr_base to pdata->flcmncr_val. - */ - pdata->flcmncr_val |= SEL_16BIT; - flctl->flcmncr_base = pdata->flcmncr_val; - } - - ret = flctl_chip_init_tail(flctl_mtd); - if (ret) - goto err_chip; - - ret = nand_scan_tail(flctl_mtd); - if (ret) - goto err_chip; - - ret = mtd_device_register(flctl_mtd, pdata->parts, pdata->nr_parts); - - return 0; - -err_chip: - flctl_release_dma(flctl); - pm_runtime_disable(&pdev->dev); - return ret; -} - -static int flctl_remove(struct platform_device *pdev) -{ - struct sh_flctl *flctl = platform_get_drvdata(pdev); - - flctl_release_dma(flctl); - nand_release(nand_to_mtd(&flctl->chip)); - pm_runtime_disable(&pdev->dev); - - return 0; -} - -static struct platform_driver flctl_driver = { - .remove = flctl_remove, - .driver = { - .name = "sh_flctl", - .of_match_table = of_match_ptr(of_flctl_match), - }, -}; - -module_platform_driver_probe(flctl_driver, flctl_probe); - -MODULE_LICENSE("GPL"); -MODULE_AUTHOR("Yoshihiro Shimoda"); -MODULE_DESCRIPTION("SuperH FLCTL driver"); -MODULE_ALIAS("platform:sh_flctl"); diff --git a/drivers/mtd/nand/sharpsl.c b/drivers/mtd/nand/sharpsl.c deleted file mode 100644 index e93df02c825e..000000000000 --- a/drivers/mtd/nand/sharpsl.c +++ /dev/null @@ -1,233 +0,0 @@ -/* - * Copyright (C) 2004 Richard Purdie - * Copyright (C) 2008 Dmitry Baryshkov - * - * Based on Sharp's NAND driver sharp_sl.c - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License version 2 as - * published by the Free Software Foundation. - * - */ - -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include - -#include -#include -#include - -struct sharpsl_nand { - struct nand_chip chip; - - void __iomem *io; -}; - -static inline struct sharpsl_nand *mtd_to_sharpsl(struct mtd_info *mtd) -{ - return container_of(mtd_to_nand(mtd), struct sharpsl_nand, chip); -} - -/* register offset */ -#define ECCLPLB 0x00 /* line parity 7 - 0 bit */ -#define ECCLPUB 0x04 /* line parity 15 - 8 bit */ -#define ECCCP 0x08 /* column parity 5 - 0 bit */ -#define ECCCNTR 0x0C /* ECC byte counter */ -#define ECCCLRR 0x10 /* cleare ECC */ -#define FLASHIO 0x14 /* Flash I/O */ -#define FLASHCTL 0x18 /* Flash Control */ - -/* Flash control bit */ -#define FLRYBY (1 << 5) -#define FLCE1 (1 << 4) -#define FLWP (1 << 3) -#define FLALE (1 << 2) -#define FLCLE (1 << 1) -#define FLCE0 (1 << 0) - -/* - * hardware specific access to control-lines - * ctrl: - * NAND_CNE: bit 0 -> ! bit 0 & 4 - * NAND_CLE: bit 1 -> bit 1 - * NAND_ALE: bit 2 -> bit 2 - * - */ -static void sharpsl_nand_hwcontrol(struct mtd_info *mtd, int cmd, - unsigned int ctrl) -{ - struct sharpsl_nand *sharpsl = mtd_to_sharpsl(mtd); - struct nand_chip *chip = mtd_to_nand(mtd); - - if (ctrl & NAND_CTRL_CHANGE) { - unsigned char bits = ctrl & 0x07; - - bits |= (ctrl & 0x01) << 4; - - bits ^= 0x11; - - writeb((readb(sharpsl->io + FLASHCTL) & ~0x17) | bits, sharpsl->io + FLASHCTL); - } - - if (cmd != NAND_CMD_NONE) - writeb(cmd, chip->IO_ADDR_W); -} - -static int sharpsl_nand_dev_ready(struct mtd_info *mtd) -{ - struct sharpsl_nand *sharpsl = mtd_to_sharpsl(mtd); - return !((readb(sharpsl->io + FLASHCTL) & FLRYBY) == 0); -} - -static void sharpsl_nand_enable_hwecc(struct mtd_info *mtd, int mode) -{ - struct sharpsl_nand *sharpsl = mtd_to_sharpsl(mtd); - writeb(0, sharpsl->io + ECCCLRR); -} - -static int sharpsl_nand_calculate_ecc(struct mtd_info *mtd, const u_char * dat, u_char * ecc_code) -{ - struct sharpsl_nand *sharpsl = mtd_to_sharpsl(mtd); - ecc_code[0] = ~readb(sharpsl->io + ECCLPUB); - ecc_code[1] = ~readb(sharpsl->io + ECCLPLB); - ecc_code[2] = (~readb(sharpsl->io + ECCCP) << 2) | 0x03; - return readb(sharpsl->io + ECCCNTR) != 0; -} - -/* - * Main initialization routine - */ -static int sharpsl_nand_probe(struct platform_device *pdev) -{ - struct nand_chip *this; - struct mtd_info *mtd; - struct resource *r; - int err = 0; - struct sharpsl_nand *sharpsl; - struct sharpsl_nand_platform_data *data = dev_get_platdata(&pdev->dev); - - if (!data) { - dev_err(&pdev->dev, "no platform data!\n"); - return -EINVAL; - } - - /* Allocate memory for MTD device structure and private data */ - sharpsl = kzalloc(sizeof(struct sharpsl_nand), GFP_KERNEL); - if (!sharpsl) - return -ENOMEM; - - r = platform_get_resource(pdev, IORESOURCE_MEM, 0); - if (!r) { - dev_err(&pdev->dev, "no io memory resource defined!\n"); - err = -ENODEV; - goto err_get_res; - } - - /* map physical address */ - sharpsl->io = ioremap(r->start, resource_size(r)); - if (!sharpsl->io) { - dev_err(&pdev->dev, "ioremap to access Sharp SL NAND chip failed\n"); - err = -EIO; - goto err_ioremap; - } - - /* Get pointer to private data */ - this = (struct nand_chip *)(&sharpsl->chip); - - /* Link the private data with the MTD structure */ - mtd = nand_to_mtd(this); - mtd->dev.parent = &pdev->dev; - mtd_set_ooblayout(mtd, data->ecc_layout); - - platform_set_drvdata(pdev, sharpsl); - - /* - * PXA initialize - */ - writeb(readb(sharpsl->io + FLASHCTL) | FLWP, sharpsl->io + FLASHCTL); - - /* Set address of NAND IO lines */ - this->IO_ADDR_R = sharpsl->io + FLASHIO; - this->IO_ADDR_W = sharpsl->io + FLASHIO; - /* Set address of hardware control function */ - this->cmd_ctrl = sharpsl_nand_hwcontrol; - this->dev_ready = sharpsl_nand_dev_ready; - /* 15 us command delay time */ - this->chip_delay = 15; - /* set eccmode using hardware ECC */ - this->ecc.mode = NAND_ECC_HW; - this->ecc.size = 256; - this->ecc.bytes = 3; - this->ecc.strength = 1; - this->badblock_pattern = data->badblock_pattern; - this->ecc.hwctl = sharpsl_nand_enable_hwecc; - this->ecc.calculate = sharpsl_nand_calculate_ecc; - this->ecc.correct = nand_correct_data; - - /* Scan to find existence of the device */ - err = nand_scan(mtd, 1); - if (err) - goto err_scan; - - /* Register the partitions */ - mtd->name = "sharpsl-nand"; - - err = mtd_device_parse_register(mtd, data->part_parsers, NULL, - data->partitions, data->nr_partitions); - if (err) - goto err_add; - - /* Return happy */ - return 0; - -err_add: - nand_release(mtd); - -err_scan: - iounmap(sharpsl->io); -err_ioremap: -err_get_res: - kfree(sharpsl); - return err; -} - -/* - * Clean up routine - */ -static int sharpsl_nand_remove(struct platform_device *pdev) -{ - struct sharpsl_nand *sharpsl = platform_get_drvdata(pdev); - - /* Release resources, unregister device */ - nand_release(nand_to_mtd(&sharpsl->chip)); - - iounmap(sharpsl->io); - - /* Free the MTD device structure */ - kfree(sharpsl); - - return 0; -} - -static struct platform_driver sharpsl_nand_driver = { - .driver = { - .name = "sharpsl-nand", - }, - .probe = sharpsl_nand_probe, - .remove = sharpsl_nand_remove, -}; - -module_platform_driver(sharpsl_nand_driver); - -MODULE_LICENSE("GPL"); -MODULE_AUTHOR("Richard Purdie "); -MODULE_DESCRIPTION("Device specific logic for NAND flash on Sharp SL-C7xx Series"); diff --git a/drivers/mtd/nand/sm_common.c b/drivers/mtd/nand/sm_common.c deleted file mode 100644 index c378705c6e2b..000000000000 --- a/drivers/mtd/nand/sm_common.c +++ /dev/null @@ -1,202 +0,0 @@ -/* - * Copyright © 2009 - Maxim Levitsky - * Common routines & support for xD format - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License version 2 as - * published by the Free Software Foundation. - */ -#include -#include -#include -#include -#include "sm_common.h" - -static int oob_sm_ooblayout_ecc(struct mtd_info *mtd, int section, - struct mtd_oob_region *oobregion) -{ - if (section > 1) - return -ERANGE; - - oobregion->length = 3; - oobregion->offset = ((section + 1) * 8) - 3; - - return 0; -} - -static int oob_sm_ooblayout_free(struct mtd_info *mtd, int section, - struct mtd_oob_region *oobregion) -{ - switch (section) { - case 0: - /* reserved */ - oobregion->offset = 0; - oobregion->length = 4; - break; - case 1: - /* LBA1 */ - oobregion->offset = 6; - oobregion->length = 2; - break; - case 2: - /* LBA2 */ - oobregion->offset = 11; - oobregion->length = 2; - break; - default: - return -ERANGE; - } - - return 0; -} - -static const struct mtd_ooblayout_ops oob_sm_ops = { - .ecc = oob_sm_ooblayout_ecc, - .free = oob_sm_ooblayout_free, -}; - -/* NOTE: This layout is is not compatabable with SmartMedia, */ -/* because the 256 byte devices have page depenent oob layout */ -/* However it does preserve the bad block markers */ -/* If you use smftl, it will bypass this and work correctly */ -/* If you not, then you break SmartMedia compliance anyway */ - -static int oob_sm_small_ooblayout_ecc(struct mtd_info *mtd, int section, - struct mtd_oob_region *oobregion) -{ - if (section) - return -ERANGE; - - oobregion->length = 3; - oobregion->offset = 0; - - return 0; -} - -static int oob_sm_small_ooblayout_free(struct mtd_info *mtd, int section, - struct mtd_oob_region *oobregion) -{ - switch (section) { - case 0: - /* reserved */ - oobregion->offset = 3; - oobregion->length = 2; - break; - case 1: - /* LBA1 */ - oobregion->offset = 6; - oobregion->length = 2; - break; - default: - return -ERANGE; - } - - return 0; -} - -static const struct mtd_ooblayout_ops oob_sm_small_ops = { - .ecc = oob_sm_small_ooblayout_ecc, - .free = oob_sm_small_ooblayout_free, -}; - -static int sm_block_markbad(struct mtd_info *mtd, loff_t ofs) -{ - struct mtd_oob_ops ops; - struct sm_oob oob; - int ret; - - memset(&oob, -1, SM_OOB_SIZE); - oob.block_status = 0x0F; - - /* As long as this function is called on erase block boundaries - it will work correctly for 256 byte nand */ - ops.mode = MTD_OPS_PLACE_OOB; - ops.ooboffs = 0; - ops.ooblen = mtd->oobsize; - ops.oobbuf = (void *)&oob; - ops.datbuf = NULL; - - - ret = mtd_write_oob(mtd, ofs, &ops); - if (ret < 0 || ops.oobretlen != SM_OOB_SIZE) { - printk(KERN_NOTICE - "sm_common: can't mark sector at %i as bad\n", - (int)ofs); - return -EIO; - } - - return 0; -} - -static struct nand_flash_dev nand_smartmedia_flash_ids[] = { - LEGACY_ID_NAND("SmartMedia 2MiB 3,3V ROM", 0x5d, 2, SZ_8K, NAND_ROM), - LEGACY_ID_NAND("SmartMedia 4MiB 3,3V", 0xe3, 4, SZ_8K, 0), - LEGACY_ID_NAND("SmartMedia 4MiB 3,3/5V", 0xe5, 4, SZ_8K, 0), - LEGACY_ID_NAND("SmartMedia 4MiB 5V", 0x6b, 4, SZ_8K, 0), - LEGACY_ID_NAND("SmartMedia 4MiB 3,3V ROM", 0xd5, 4, SZ_8K, NAND_ROM), - LEGACY_ID_NAND("SmartMedia 8MiB 3,3V", 0xe6, 8, SZ_8K, 0), - LEGACY_ID_NAND("SmartMedia 8MiB 3,3V ROM", 0xd6, 8, SZ_8K, NAND_ROM), - LEGACY_ID_NAND("SmartMedia 16MiB 3,3V", 0x73, 16, SZ_16K, 0), - LEGACY_ID_NAND("SmartMedia 16MiB 3,3V ROM", 0x57, 16, SZ_16K, NAND_ROM), - LEGACY_ID_NAND("SmartMedia 32MiB 3,3V", 0x75, 32, SZ_16K, 0), - LEGACY_ID_NAND("SmartMedia 32MiB 3,3V ROM", 0x58, 32, SZ_16K, NAND_ROM), - LEGACY_ID_NAND("SmartMedia 64MiB 3,3V", 0x76, 64, SZ_16K, 0), - LEGACY_ID_NAND("SmartMedia 64MiB 3,3V ROM", 0xd9, 64, SZ_16K, NAND_ROM), - LEGACY_ID_NAND("SmartMedia 128MiB 3,3V", 0x79, 128, SZ_16K, 0), - LEGACY_ID_NAND("SmartMedia 128MiB 3,3V ROM", 0xda, 128, SZ_16K, NAND_ROM), - LEGACY_ID_NAND("SmartMedia 256MiB 3, 3V", 0x71, 256, SZ_16K, 0), - LEGACY_ID_NAND("SmartMedia 256MiB 3,3V ROM", 0x5b, 256, SZ_16K, NAND_ROM), - {NULL} -}; - -static struct nand_flash_dev nand_xd_flash_ids[] = { - LEGACY_ID_NAND("xD 16MiB 3,3V", 0x73, 16, SZ_16K, 0), - LEGACY_ID_NAND("xD 32MiB 3,3V", 0x75, 32, SZ_16K, 0), - LEGACY_ID_NAND("xD 64MiB 3,3V", 0x76, 64, SZ_16K, 0), - LEGACY_ID_NAND("xD 128MiB 3,3V", 0x79, 128, SZ_16K, 0), - LEGACY_ID_NAND("xD 256MiB 3,3V", 0x71, 256, SZ_16K, NAND_BROKEN_XD), - LEGACY_ID_NAND("xD 512MiB 3,3V", 0xdc, 512, SZ_16K, NAND_BROKEN_XD), - LEGACY_ID_NAND("xD 1GiB 3,3V", 0xd3, 1024, SZ_16K, NAND_BROKEN_XD), - LEGACY_ID_NAND("xD 2GiB 3,3V", 0xd5, 2048, SZ_16K, NAND_BROKEN_XD), - {NULL} -}; - -int sm_register_device(struct mtd_info *mtd, int smartmedia) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - int ret; - - chip->options |= NAND_SKIP_BBTSCAN; - - /* Scan for card properties */ - ret = nand_scan_ident(mtd, 1, smartmedia ? - nand_smartmedia_flash_ids : nand_xd_flash_ids); - - if (ret) - return ret; - - /* Bad block marker position */ - chip->badblockpos = 0x05; - chip->badblockbits = 7; - chip->block_markbad = sm_block_markbad; - - /* ECC layout */ - if (mtd->writesize == SM_SECTOR_SIZE) - mtd_set_ooblayout(mtd, &oob_sm_ops); - else if (mtd->writesize == SM_SMALL_PAGE) - mtd_set_ooblayout(mtd, &oob_sm_small_ops); - else - return -ENODEV; - - ret = nand_scan_tail(mtd); - - if (ret) - return ret; - - return mtd_device_register(mtd, NULL, 0); -} -EXPORT_SYMBOL_GPL(sm_register_device); - -MODULE_LICENSE("GPL"); -MODULE_AUTHOR("Maxim Levitsky "); -MODULE_DESCRIPTION("Common SmartMedia/xD functions"); diff --git a/drivers/mtd/nand/sm_common.h b/drivers/mtd/nand/sm_common.h deleted file mode 100644 index 1581671b05ae..000000000000 --- a/drivers/mtd/nand/sm_common.h +++ /dev/null @@ -1,61 +0,0 @@ -/* - * Copyright © 2009 - Maxim Levitsky - * Common routines & support for SmartMedia/xD format - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License version 2 as - * published by the Free Software Foundation. - */ -#include -#include - -/* Full oob structure as written on the flash */ -struct sm_oob { - uint32_t reserved; - uint8_t data_status; - uint8_t block_status; - uint8_t lba_copy1[2]; - uint8_t ecc2[3]; - uint8_t lba_copy2[2]; - uint8_t ecc1[3]; -} __packed; - - -/* one sector is always 512 bytes, but it can consist of two nand pages */ -#define SM_SECTOR_SIZE 512 - -/* oob area is also 16 bytes, but might be from two pages */ -#define SM_OOB_SIZE 16 - -/* This is maximum zone size, and all devices that have more that one zone - have this size */ -#define SM_MAX_ZONE_SIZE 1024 - -/* support for small page nand */ -#define SM_SMALL_PAGE 256 -#define SM_SMALL_OOB_SIZE 8 - - -int sm_register_device(struct mtd_info *mtd, int smartmedia); - - -static inline int sm_sector_valid(struct sm_oob *oob) -{ - return hweight16(oob->data_status) >= 5; -} - -static inline int sm_block_valid(struct sm_oob *oob) -{ - return hweight16(oob->block_status) >= 7; -} - -static inline int sm_block_erased(struct sm_oob *oob) -{ - static const uint32_t erased_pattern[4] = { - 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF }; - - /* First test for erased block */ - if (!memcmp(oob, erased_pattern, sizeof(*oob))) - return 1; - return 0; -} diff --git a/drivers/mtd/nand/socrates_nand.c b/drivers/mtd/nand/socrates_nand.c deleted file mode 100644 index 9824a9923583..000000000000 --- a/drivers/mtd/nand/socrates_nand.c +++ /dev/null @@ -1,241 +0,0 @@ -/* - * Copyright © 2008 Ilya Yanok, Emcraft Systems - * - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License version 2 as - * published by the Free Software Foundation. - * - */ - -#include -#include -#include -#include -#include -#include -#include -#include - -#define FPGA_NAND_CMD_MASK (0x7 << 28) -#define FPGA_NAND_CMD_COMMAND (0x0 << 28) -#define FPGA_NAND_CMD_ADDR (0x1 << 28) -#define FPGA_NAND_CMD_READ (0x2 << 28) -#define FPGA_NAND_CMD_WRITE (0x3 << 28) -#define FPGA_NAND_BUSY (0x1 << 15) -#define FPGA_NAND_ENABLE (0x1 << 31) -#define FPGA_NAND_DATA_SHIFT 16 - -struct socrates_nand_host { - struct nand_chip nand_chip; - void __iomem *io_base; - struct device *dev; -}; - -/** - * socrates_nand_write_buf - write buffer to chip - * @mtd: MTD device structure - * @buf: data buffer - * @len: number of bytes to write - */ -static void socrates_nand_write_buf(struct mtd_info *mtd, - const uint8_t *buf, int len) -{ - int i; - struct nand_chip *this = mtd_to_nand(mtd); - struct socrates_nand_host *host = nand_get_controller_data(this); - - for (i = 0; i < len; i++) { - out_be32(host->io_base, FPGA_NAND_ENABLE | - FPGA_NAND_CMD_WRITE | - (buf[i] << FPGA_NAND_DATA_SHIFT)); - } -} - -/** - * socrates_nand_read_buf - read chip data into buffer - * @mtd: MTD device structure - * @buf: buffer to store date - * @len: number of bytes to read - */ -static void socrates_nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) -{ - int i; - struct nand_chip *this = mtd_to_nand(mtd); - struct socrates_nand_host *host = nand_get_controller_data(this); - uint32_t val; - - val = FPGA_NAND_ENABLE | FPGA_NAND_CMD_READ; - - out_be32(host->io_base, val); - for (i = 0; i < len; i++) { - buf[i] = (in_be32(host->io_base) >> - FPGA_NAND_DATA_SHIFT) & 0xff; - } -} - -/** - * socrates_nand_read_byte - read one byte from the chip - * @mtd: MTD device structure - */ -static uint8_t socrates_nand_read_byte(struct mtd_info *mtd) -{ - uint8_t byte; - socrates_nand_read_buf(mtd, &byte, sizeof(byte)); - return byte; -} - -/** - * socrates_nand_read_word - read one word from the chip - * @mtd: MTD device structure - */ -static uint16_t socrates_nand_read_word(struct mtd_info *mtd) -{ - uint16_t word; - socrates_nand_read_buf(mtd, (uint8_t *)&word, sizeof(word)); - return word; -} - -/* - * Hardware specific access to control-lines - */ -static void socrates_nand_cmd_ctrl(struct mtd_info *mtd, int cmd, - unsigned int ctrl) -{ - struct nand_chip *nand_chip = mtd_to_nand(mtd); - struct socrates_nand_host *host = nand_get_controller_data(nand_chip); - uint32_t val; - - if (cmd == NAND_CMD_NONE) - return; - - if (ctrl & NAND_CLE) - val = FPGA_NAND_CMD_COMMAND; - else - val = FPGA_NAND_CMD_ADDR; - - if (ctrl & NAND_NCE) - val |= FPGA_NAND_ENABLE; - - val |= (cmd & 0xff) << FPGA_NAND_DATA_SHIFT; - - out_be32(host->io_base, val); -} - -/* - * Read the Device Ready pin. - */ -static int socrates_nand_device_ready(struct mtd_info *mtd) -{ - struct nand_chip *nand_chip = mtd_to_nand(mtd); - struct socrates_nand_host *host = nand_get_controller_data(nand_chip); - - if (in_be32(host->io_base) & FPGA_NAND_BUSY) - return 0; /* busy */ - return 1; -} - -/* - * Probe for the NAND device. - */ -static int socrates_nand_probe(struct platform_device *ofdev) -{ - struct socrates_nand_host *host; - struct mtd_info *mtd; - struct nand_chip *nand_chip; - int res; - - /* Allocate memory for the device structure (and zero it) */ - host = devm_kzalloc(&ofdev->dev, sizeof(*host), GFP_KERNEL); - if (!host) - return -ENOMEM; - - host->io_base = of_iomap(ofdev->dev.of_node, 0); - if (host->io_base == NULL) { - dev_err(&ofdev->dev, "ioremap failed\n"); - return -EIO; - } - - nand_chip = &host->nand_chip; - mtd = nand_to_mtd(nand_chip); - host->dev = &ofdev->dev; - - /* link the private data structures */ - nand_set_controller_data(nand_chip, host); - nand_set_flash_node(nand_chip, ofdev->dev.of_node); - mtd->name = "socrates_nand"; - mtd->dev.parent = &ofdev->dev; - - /*should never be accessed directly */ - nand_chip->IO_ADDR_R = (void *)0xdeadbeef; - nand_chip->IO_ADDR_W = (void *)0xdeadbeef; - - nand_chip->cmd_ctrl = socrates_nand_cmd_ctrl; - nand_chip->read_byte = socrates_nand_read_byte; - nand_chip->read_word = socrates_nand_read_word; - nand_chip->write_buf = socrates_nand_write_buf; - nand_chip->read_buf = socrates_nand_read_buf; - nand_chip->dev_ready = socrates_nand_device_ready; - - nand_chip->ecc.mode = NAND_ECC_SOFT; /* enable ECC */ - nand_chip->ecc.algo = NAND_ECC_HAMMING; - - /* TODO: I have no idea what real delay is. */ - nand_chip->chip_delay = 20; /* 20us command delay time */ - - dev_set_drvdata(&ofdev->dev, host); - - res = nand_scan(mtd, 1); - if (res) - goto out; - - res = mtd_device_register(mtd, NULL, 0); - if (!res) - return res; - - nand_release(mtd); - -out: - iounmap(host->io_base); - return res; -} - -/* - * Remove a NAND device. - */ -static int socrates_nand_remove(struct platform_device *ofdev) -{ - struct socrates_nand_host *host = dev_get_drvdata(&ofdev->dev); - struct mtd_info *mtd = nand_to_mtd(&host->nand_chip); - - nand_release(mtd); - - iounmap(host->io_base); - - return 0; -} - -static const struct of_device_id socrates_nand_match[] = -{ - { - .compatible = "abb,socrates-nand", - }, - {}, -}; - -MODULE_DEVICE_TABLE(of, socrates_nand_match); - -static struct platform_driver socrates_nand_driver = { - .driver = { - .name = "socrates_nand", - .of_match_table = socrates_nand_match, - }, - .probe = socrates_nand_probe, - .remove = socrates_nand_remove, -}; - -module_platform_driver(socrates_nand_driver); - -MODULE_LICENSE("GPL"); -MODULE_AUTHOR("Ilya Yanok"); -MODULE_DESCRIPTION("NAND driver for Socrates board"); diff --git a/drivers/mtd/nand/sunxi_nand.c b/drivers/mtd/nand/sunxi_nand.c deleted file mode 100644 index f5a55c63935c..000000000000 --- a/drivers/mtd/nand/sunxi_nand.c +++ /dev/null @@ -1,2321 +0,0 @@ -/* - * Copyright (C) 2013 Boris BREZILLON - * - * Derived from: - * https://github.com/yuq/sunxi-nfc-mtd - * Copyright (C) 2013 Qiang Yu - * - * https://github.com/hno/Allwinner-Info - * Copyright (C) 2013 Henrik Nordström - * - * Copyright (C) 2013 Dmitriy B. - * Copyright (C) 2013 Sergey Lapin - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation; either version 2 of the License, or - * (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - */ - -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include - -#define NFC_REG_CTL 0x0000 -#define NFC_REG_ST 0x0004 -#define NFC_REG_INT 0x0008 -#define NFC_REG_TIMING_CTL 0x000C -#define NFC_REG_TIMING_CFG 0x0010 -#define NFC_REG_ADDR_LOW 0x0014 -#define NFC_REG_ADDR_HIGH 0x0018 -#define NFC_REG_SECTOR_NUM 0x001C -#define NFC_REG_CNT 0x0020 -#define NFC_REG_CMD 0x0024 -#define NFC_REG_RCMD_SET 0x0028 -#define NFC_REG_WCMD_SET 0x002C -#define NFC_REG_IO_DATA 0x0030 -#define NFC_REG_ECC_CTL 0x0034 -#define NFC_REG_ECC_ST 0x0038 -#define NFC_REG_DEBUG 0x003C -#define NFC_REG_ECC_ERR_CNT(x) ((0x0040 + (x)) & ~0x3) -#define NFC_REG_USER_DATA(x) (0x0050 + ((x) * 4)) -#define NFC_REG_SPARE_AREA 0x00A0 -#define NFC_REG_PAT_ID 0x00A4 -#define NFC_RAM0_BASE 0x0400 -#define NFC_RAM1_BASE 0x0800 - -/* define bit use in NFC_CTL */ -#define NFC_EN BIT(0) -#define NFC_RESET BIT(1) -#define NFC_BUS_WIDTH_MSK BIT(2) -#define NFC_BUS_WIDTH_8 (0 << 2) -#define NFC_BUS_WIDTH_16 (1 << 2) -#define NFC_RB_SEL_MSK BIT(3) -#define NFC_RB_SEL(x) ((x) << 3) -#define NFC_CE_SEL_MSK GENMASK(26, 24) -#define NFC_CE_SEL(x) ((x) << 24) -#define NFC_CE_CTL BIT(6) -#define NFC_PAGE_SHIFT_MSK GENMASK(11, 8) -#define NFC_PAGE_SHIFT(x) (((x) < 10 ? 0 : (x) - 10) << 8) -#define NFC_SAM BIT(12) -#define NFC_RAM_METHOD BIT(14) -#define NFC_DEBUG_CTL BIT(31) - -/* define bit use in NFC_ST */ -#define NFC_RB_B2R BIT(0) -#define NFC_CMD_INT_FLAG BIT(1) -#define NFC_DMA_INT_FLAG BIT(2) -#define NFC_CMD_FIFO_STATUS BIT(3) -#define NFC_STA BIT(4) -#define NFC_NATCH_INT_FLAG BIT(5) -#define NFC_RB_STATE(x) BIT(x + 8) - -/* define bit use in NFC_INT */ -#define NFC_B2R_INT_ENABLE BIT(0) -#define NFC_CMD_INT_ENABLE BIT(1) -#define NFC_DMA_INT_ENABLE BIT(2) -#define NFC_INT_MASK (NFC_B2R_INT_ENABLE | \ - NFC_CMD_INT_ENABLE | \ - NFC_DMA_INT_ENABLE) - -/* define bit use in NFC_TIMING_CTL */ -#define NFC_TIMING_CTL_EDO BIT(8) - -/* define NFC_TIMING_CFG register layout */ -#define NFC_TIMING_CFG(tWB, tADL, tWHR, tRHW, tCAD) \ - (((tWB) & 0x3) | (((tADL) & 0x3) << 2) | \ - (((tWHR) & 0x3) << 4) | (((tRHW) & 0x3) << 6) | \ - (((tCAD) & 0x7) << 8)) - -/* define bit use in NFC_CMD */ -#define NFC_CMD_LOW_BYTE_MSK GENMASK(7, 0) -#define NFC_CMD_HIGH_BYTE_MSK GENMASK(15, 8) -#define NFC_CMD(x) (x) -#define NFC_ADR_NUM_MSK GENMASK(18, 16) -#define NFC_ADR_NUM(x) (((x) - 1) << 16) -#define NFC_SEND_ADR BIT(19) -#define NFC_ACCESS_DIR BIT(20) -#define NFC_DATA_TRANS BIT(21) -#define NFC_SEND_CMD1 BIT(22) -#define NFC_WAIT_FLAG BIT(23) -#define NFC_SEND_CMD2 BIT(24) -#define NFC_SEQ BIT(25) -#define NFC_DATA_SWAP_METHOD BIT(26) -#define NFC_ROW_AUTO_INC BIT(27) -#define NFC_SEND_CMD3 BIT(28) -#define NFC_SEND_CMD4 BIT(29) -#define NFC_CMD_TYPE_MSK GENMASK(31, 30) -#define NFC_NORMAL_OP (0 << 30) -#define NFC_ECC_OP (1 << 30) -#define NFC_PAGE_OP (2 << 30) - -/* define bit use in NFC_RCMD_SET */ -#define NFC_READ_CMD_MSK GENMASK(7, 0) -#define NFC_RND_READ_CMD0_MSK GENMASK(15, 8) -#define NFC_RND_READ_CMD1_MSK GENMASK(23, 16) - -/* define bit use in NFC_WCMD_SET */ -#define NFC_PROGRAM_CMD_MSK GENMASK(7, 0) -#define NFC_RND_WRITE_CMD_MSK GENMASK(15, 8) -#define NFC_READ_CMD0_MSK GENMASK(23, 16) -#define NFC_READ_CMD1_MSK GENMASK(31, 24) - -/* define bit use in NFC_ECC_CTL */ -#define NFC_ECC_EN BIT(0) -#define NFC_ECC_PIPELINE BIT(3) -#define NFC_ECC_EXCEPTION BIT(4) -#define NFC_ECC_BLOCK_SIZE_MSK BIT(5) -#define NFC_ECC_BLOCK_512 BIT(5) -#define NFC_RANDOM_EN BIT(9) -#define NFC_RANDOM_DIRECTION BIT(10) -#define NFC_ECC_MODE_MSK GENMASK(15, 12) -#define NFC_ECC_MODE(x) ((x) << 12) -#define NFC_RANDOM_SEED_MSK GENMASK(30, 16) -#define NFC_RANDOM_SEED(x) ((x) << 16) - -/* define bit use in NFC_ECC_ST */ -#define NFC_ECC_ERR(x) BIT(x) -#define NFC_ECC_ERR_MSK GENMASK(15, 0) -#define NFC_ECC_PAT_FOUND(x) BIT(x + 16) -#define NFC_ECC_ERR_CNT(b, x) (((x) >> (((b) % 4) * 8)) & 0xff) - -#define NFC_DEFAULT_TIMEOUT_MS 1000 - -#define NFC_SRAM_SIZE 1024 - -#define NFC_MAX_CS 7 - -/* - * Ready/Busy detection type: describes the Ready/Busy detection modes - * - * @RB_NONE: no external detection available, rely on STATUS command - * and software timeouts - * @RB_NATIVE: use sunxi NAND controller Ready/Busy support. The Ready/Busy - * pin of the NAND flash chip must be connected to one of the - * native NAND R/B pins (those which can be muxed to the NAND - * Controller) - * @RB_GPIO: use a simple GPIO to handle Ready/Busy status. The Ready/Busy - * pin of the NAND flash chip must be connected to a GPIO capable - * pin. - */ -enum sunxi_nand_rb_type { - RB_NONE, - RB_NATIVE, - RB_GPIO, -}; - -/* - * Ready/Busy structure: stores information related to Ready/Busy detection - * - * @type: the Ready/Busy detection mode - * @info: information related to the R/B detection mode. Either a gpio - * id or a native R/B id (those supported by the NAND controller). - */ -struct sunxi_nand_rb { - enum sunxi_nand_rb_type type; - union { - int gpio; - int nativeid; - } info; -}; - -/* - * Chip Select structure: stores information related to NAND Chip Select - * - * @cs: the NAND CS id used to communicate with a NAND Chip - * @rb: the Ready/Busy description - */ -struct sunxi_nand_chip_sel { - u8 cs; - struct sunxi_nand_rb rb; -}; - -/* - * sunxi HW ECC infos: stores information related to HW ECC support - * - * @mode: the sunxi ECC mode field deduced from ECC requirements - */ -struct sunxi_nand_hw_ecc { - int mode; -}; - -/* - * NAND chip structure: stores NAND chip device related information - * - * @node: used to store NAND chips into a list - * @nand: base NAND chip structure - * @mtd: base MTD structure - * @clk_rate: clk_rate required for this NAND chip - * @timing_cfg TIMING_CFG register value for this NAND chip - * @selected: current active CS - * @nsels: number of CS lines required by the NAND chip - * @sels: array of CS lines descriptions - */ -struct sunxi_nand_chip { - struct list_head node; - struct nand_chip nand; - unsigned long clk_rate; - u32 timing_cfg; - u32 timing_ctl; - int selected; - int addr_cycles; - u32 addr[2]; - int cmd_cycles; - u8 cmd[2]; - int nsels; - struct sunxi_nand_chip_sel sels[0]; -}; - -static inline struct sunxi_nand_chip *to_sunxi_nand(struct nand_chip *nand) -{ - return container_of(nand, struct sunxi_nand_chip, nand); -} - -/* - * NAND Controller structure: stores sunxi NAND controller information - * - * @controller: base controller structure - * @dev: parent device (used to print error messages) - * @regs: NAND controller registers - * @ahb_clk: NAND Controller AHB clock - * @mod_clk: NAND Controller mod clock - * @assigned_cs: bitmask describing already assigned CS lines - * @clk_rate: NAND controller current clock rate - * @chips: a list containing all the NAND chips attached to - * this NAND controller - * @complete: a completion object used to wait for NAND - * controller events - */ -struct sunxi_nfc { - struct nand_hw_control controller; - struct device *dev; - void __iomem *regs; - struct clk *ahb_clk; - struct clk *mod_clk; - struct reset_control *reset; - unsigned long assigned_cs; - unsigned long clk_rate; - struct list_head chips; - struct completion complete; - struct dma_chan *dmac; -}; - -static inline struct sunxi_nfc *to_sunxi_nfc(struct nand_hw_control *ctrl) -{ - return container_of(ctrl, struct sunxi_nfc, controller); -} - -static irqreturn_t sunxi_nfc_interrupt(int irq, void *dev_id) -{ - struct sunxi_nfc *nfc = dev_id; - u32 st = readl(nfc->regs + NFC_REG_ST); - u32 ien = readl(nfc->regs + NFC_REG_INT); - - if (!(ien & st)) - return IRQ_NONE; - - if ((ien & st) == ien) - complete(&nfc->complete); - - writel(st & NFC_INT_MASK, nfc->regs + NFC_REG_ST); - writel(~st & ien & NFC_INT_MASK, nfc->regs + NFC_REG_INT); - - return IRQ_HANDLED; -} - -static int sunxi_nfc_wait_events(struct sunxi_nfc *nfc, u32 events, - bool use_polling, unsigned int timeout_ms) -{ - int ret; - - if (events & ~NFC_INT_MASK) - return -EINVAL; - - if (!timeout_ms) - timeout_ms = NFC_DEFAULT_TIMEOUT_MS; - - if (!use_polling) { - init_completion(&nfc->complete); - - writel(events, nfc->regs + NFC_REG_INT); - - ret = wait_for_completion_timeout(&nfc->complete, - msecs_to_jiffies(timeout_ms)); - if (!ret) - ret = -ETIMEDOUT; - else - ret = 0; - - writel(0, nfc->regs + NFC_REG_INT); - } else { - u32 status; - - ret = readl_poll_timeout(nfc->regs + NFC_REG_ST, status, - (status & events) == events, 1, - timeout_ms * 1000); - } - - writel(events & NFC_INT_MASK, nfc->regs + NFC_REG_ST); - - if (ret) - dev_err(nfc->dev, "wait interrupt timedout\n"); - - return ret; -} - -static int sunxi_nfc_wait_cmd_fifo_empty(struct sunxi_nfc *nfc) -{ - u32 status; - int ret; - - ret = readl_poll_timeout(nfc->regs + NFC_REG_ST, status, - !(status & NFC_CMD_FIFO_STATUS), 1, - NFC_DEFAULT_TIMEOUT_MS * 1000); - if (ret) - dev_err(nfc->dev, "wait for empty cmd FIFO timedout\n"); - - return ret; -} - -static int sunxi_nfc_rst(struct sunxi_nfc *nfc) -{ - u32 ctl; - int ret; - - writel(0, nfc->regs + NFC_REG_ECC_CTL); - writel(NFC_RESET, nfc->regs + NFC_REG_CTL); - - ret = readl_poll_timeout(nfc->regs + NFC_REG_CTL, ctl, - !(ctl & NFC_RESET), 1, - NFC_DEFAULT_TIMEOUT_MS * 1000); - if (ret) - dev_err(nfc->dev, "wait for NAND controller reset timedout\n"); - - return ret; -} - -static int sunxi_nfc_dma_op_prepare(struct mtd_info *mtd, const void *buf, - int chunksize, int nchunks, - enum dma_data_direction ddir, - struct scatterlist *sg) -{ - struct nand_chip *nand = mtd_to_nand(mtd); - struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller); - struct dma_async_tx_descriptor *dmad; - enum dma_transfer_direction tdir; - dma_cookie_t dmat; - int ret; - - if (ddir == DMA_FROM_DEVICE) - tdir = DMA_DEV_TO_MEM; - else - tdir = DMA_MEM_TO_DEV; - - sg_init_one(sg, buf, nchunks * chunksize); - ret = dma_map_sg(nfc->dev, sg, 1, ddir); - if (!ret) - return -ENOMEM; - - dmad = dmaengine_prep_slave_sg(nfc->dmac, sg, 1, tdir, DMA_CTRL_ACK); - if (!dmad) { - ret = -EINVAL; - goto err_unmap_buf; - } - - writel(readl(nfc->regs + NFC_REG_CTL) | NFC_RAM_METHOD, - nfc->regs + NFC_REG_CTL); - writel(nchunks, nfc->regs + NFC_REG_SECTOR_NUM); - writel(chunksize, nfc->regs + NFC_REG_CNT); - dmat = dmaengine_submit(dmad); - - ret = dma_submit_error(dmat); - if (ret) - goto err_clr_dma_flag; - - return 0; - -err_clr_dma_flag: - writel(readl(nfc->regs + NFC_REG_CTL) & ~NFC_RAM_METHOD, - nfc->regs + NFC_REG_CTL); - -err_unmap_buf: - dma_unmap_sg(nfc->dev, sg, 1, ddir); - return ret; -} - -static void sunxi_nfc_dma_op_cleanup(struct mtd_info *mtd, - enum dma_data_direction ddir, - struct scatterlist *sg) -{ - struct nand_chip *nand = mtd_to_nand(mtd); - struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller); - - dma_unmap_sg(nfc->dev, sg, 1, ddir); - writel(readl(nfc->regs + NFC_REG_CTL) & ~NFC_RAM_METHOD, - nfc->regs + NFC_REG_CTL); -} - -static int sunxi_nfc_dev_ready(struct mtd_info *mtd) -{ - struct nand_chip *nand = mtd_to_nand(mtd); - struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand); - struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller); - struct sunxi_nand_rb *rb; - int ret; - - if (sunxi_nand->selected < 0) - return 0; - - rb = &sunxi_nand->sels[sunxi_nand->selected].rb; - - switch (rb->type) { - case RB_NATIVE: - ret = !!(readl(nfc->regs + NFC_REG_ST) & - NFC_RB_STATE(rb->info.nativeid)); - break; - case RB_GPIO: - ret = gpio_get_value(rb->info.gpio); - break; - case RB_NONE: - default: - ret = 0; - dev_err(nfc->dev, "cannot check R/B NAND status!\n"); - break; - } - - return ret; -} - -static void sunxi_nfc_select_chip(struct mtd_info *mtd, int chip) -{ - struct nand_chip *nand = mtd_to_nand(mtd); - struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand); - struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller); - struct sunxi_nand_chip_sel *sel; - u32 ctl; - - if (chip > 0 && chip >= sunxi_nand->nsels) - return; - - if (chip == sunxi_nand->selected) - return; - - ctl = readl(nfc->regs + NFC_REG_CTL) & - ~(NFC_PAGE_SHIFT_MSK | NFC_CE_SEL_MSK | NFC_RB_SEL_MSK | NFC_EN); - - if (chip >= 0) { - sel = &sunxi_nand->sels[chip]; - - ctl |= NFC_CE_SEL(sel->cs) | NFC_EN | - NFC_PAGE_SHIFT(nand->page_shift); - if (sel->rb.type == RB_NONE) { - nand->dev_ready = NULL; - } else { - nand->dev_ready = sunxi_nfc_dev_ready; - if (sel->rb.type == RB_NATIVE) - ctl |= NFC_RB_SEL(sel->rb.info.nativeid); - } - - writel(mtd->writesize, nfc->regs + NFC_REG_SPARE_AREA); - - if (nfc->clk_rate != sunxi_nand->clk_rate) { - clk_set_rate(nfc->mod_clk, sunxi_nand->clk_rate); - nfc->clk_rate = sunxi_nand->clk_rate; - } - } - - writel(sunxi_nand->timing_ctl, nfc->regs + NFC_REG_TIMING_CTL); - writel(sunxi_nand->timing_cfg, nfc->regs + NFC_REG_TIMING_CFG); - writel(ctl, nfc->regs + NFC_REG_CTL); - - sunxi_nand->selected = chip; -} - -static void sunxi_nfc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) -{ - struct nand_chip *nand = mtd_to_nand(mtd); - struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand); - struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller); - int ret; - int cnt; - int offs = 0; - u32 tmp; - - while (len > offs) { - bool poll = false; - - cnt = min(len - offs, NFC_SRAM_SIZE); - - ret = sunxi_nfc_wait_cmd_fifo_empty(nfc); - if (ret) - break; - - writel(cnt, nfc->regs + NFC_REG_CNT); - tmp = NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD; - writel(tmp, nfc->regs + NFC_REG_CMD); - - /* Arbitrary limit for polling mode */ - if (cnt < 64) - poll = true; - - ret = sunxi_nfc_wait_events(nfc, NFC_CMD_INT_FLAG, poll, 0); - if (ret) - break; - - if (buf) - memcpy_fromio(buf + offs, nfc->regs + NFC_RAM0_BASE, - cnt); - offs += cnt; - } -} - -static void sunxi_nfc_write_buf(struct mtd_info *mtd, const uint8_t *buf, - int len) -{ - struct nand_chip *nand = mtd_to_nand(mtd); - struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand); - struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller); - int ret; - int cnt; - int offs = 0; - u32 tmp; - - while (len > offs) { - bool poll = false; - - cnt = min(len - offs, NFC_SRAM_SIZE); - - ret = sunxi_nfc_wait_cmd_fifo_empty(nfc); - if (ret) - break; - - writel(cnt, nfc->regs + NFC_REG_CNT); - memcpy_toio(nfc->regs + NFC_RAM0_BASE, buf + offs, cnt); - tmp = NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD | - NFC_ACCESS_DIR; - writel(tmp, nfc->regs + NFC_REG_CMD); - - /* Arbitrary limit for polling mode */ - if (cnt < 64) - poll = true; - - ret = sunxi_nfc_wait_events(nfc, NFC_CMD_INT_FLAG, poll, 0); - if (ret) - break; - - offs += cnt; - } -} - -static uint8_t sunxi_nfc_read_byte(struct mtd_info *mtd) -{ - uint8_t ret; - - sunxi_nfc_read_buf(mtd, &ret, 1); - - return ret; -} - -static void sunxi_nfc_cmd_ctrl(struct mtd_info *mtd, int dat, - unsigned int ctrl) -{ - struct nand_chip *nand = mtd_to_nand(mtd); - struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand); - struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller); - int ret; - - if (dat == NAND_CMD_NONE && (ctrl & NAND_NCE) && - !(ctrl & (NAND_CLE | NAND_ALE))) { - u32 cmd = 0; - - if (!sunxi_nand->addr_cycles && !sunxi_nand->cmd_cycles) - return; - - if (sunxi_nand->cmd_cycles--) - cmd |= NFC_SEND_CMD1 | sunxi_nand->cmd[0]; - - if (sunxi_nand->cmd_cycles--) { - cmd |= NFC_SEND_CMD2; - writel(sunxi_nand->cmd[1], - nfc->regs + NFC_REG_RCMD_SET); - } - - sunxi_nand->cmd_cycles = 0; - - if (sunxi_nand->addr_cycles) { - cmd |= NFC_SEND_ADR | - NFC_ADR_NUM(sunxi_nand->addr_cycles); - writel(sunxi_nand->addr[0], - nfc->regs + NFC_REG_ADDR_LOW); - } - - if (sunxi_nand->addr_cycles > 4) - writel(sunxi_nand->addr[1], - nfc->regs + NFC_REG_ADDR_HIGH); - - ret = sunxi_nfc_wait_cmd_fifo_empty(nfc); - if (ret) - return; - - writel(cmd, nfc->regs + NFC_REG_CMD); - sunxi_nand->addr[0] = 0; - sunxi_nand->addr[1] = 0; - sunxi_nand->addr_cycles = 0; - sunxi_nfc_wait_events(nfc, NFC_CMD_INT_FLAG, true, 0); - } - - if (ctrl & NAND_CLE) { - sunxi_nand->cmd[sunxi_nand->cmd_cycles++] = dat; - } else if (ctrl & NAND_ALE) { - sunxi_nand->addr[sunxi_nand->addr_cycles / 4] |= - dat << ((sunxi_nand->addr_cycles % 4) * 8); - sunxi_nand->addr_cycles++; - } -} - -/* These seed values have been extracted from Allwinner's BSP */ -static const u16 sunxi_nfc_randomizer_page_seeds[] = { - 0x2b75, 0x0bd0, 0x5ca3, 0x62d1, 0x1c93, 0x07e9, 0x2162, 0x3a72, - 0x0d67, 0x67f9, 0x1be7, 0x077d, 0x032f, 0x0dac, 0x2716, 0x2436, - 0x7922, 0x1510, 0x3860, 0x5287, 0x480f, 0x4252, 0x1789, 0x5a2d, - 0x2a49, 0x5e10, 0x437f, 0x4b4e, 0x2f45, 0x216e, 0x5cb7, 0x7130, - 0x2a3f, 0x60e4, 0x4dc9, 0x0ef0, 0x0f52, 0x1bb9, 0x6211, 0x7a56, - 0x226d, 0x4ea7, 0x6f36, 0x3692, 0x38bf, 0x0c62, 0x05eb, 0x4c55, - 0x60f4, 0x728c, 0x3b6f, 0x2037, 0x7f69, 0x0936, 0x651a, 0x4ceb, - 0x6218, 0x79f3, 0x383f, 0x18d9, 0x4f05, 0x5c82, 0x2912, 0x6f17, - 0x6856, 0x5938, 0x1007, 0x61ab, 0x3e7f, 0x57c2, 0x542f, 0x4f62, - 0x7454, 0x2eac, 0x7739, 0x42d4, 0x2f90, 0x435a, 0x2e52, 0x2064, - 0x637c, 0x66ad, 0x2c90, 0x0bad, 0x759c, 0x0029, 0x0986, 0x7126, - 0x1ca7, 0x1605, 0x386a, 0x27f5, 0x1380, 0x6d75, 0x24c3, 0x0f8e, - 0x2b7a, 0x1418, 0x1fd1, 0x7dc1, 0x2d8e, 0x43af, 0x2267, 0x7da3, - 0x4e3d, 0x1338, 0x50db, 0x454d, 0x764d, 0x40a3, 0x42e6, 0x262b, - 0x2d2e, 0x1aea, 0x2e17, 0x173d, 0x3a6e, 0x71bf, 0x25f9, 0x0a5d, - 0x7c57, 0x0fbe, 0x46ce, 0x4939, 0x6b17, 0x37bb, 0x3e91, 0x76db, -}; - -/* - * sunxi_nfc_randomizer_ecc512_seeds and sunxi_nfc_randomizer_ecc1024_seeds - * have been generated using - * sunxi_nfc_randomizer_step(seed, (step_size * 8) + 15), which is what - * the randomizer engine does internally before de/scrambling OOB data. - * - * Those tables are statically defined to avoid calculating randomizer state - * at runtime. - */ -static const u16 sunxi_nfc_randomizer_ecc512_seeds[] = { - 0x3346, 0x367f, 0x1f18, 0x769a, 0x4f64, 0x068c, 0x2ef1, 0x6b64, - 0x28a9, 0x15d7, 0x30f8, 0x3659, 0x53db, 0x7c5f, 0x71d4, 0x4409, - 0x26eb, 0x03cc, 0x655d, 0x47d4, 0x4daa, 0x0877, 0x712d, 0x3617, - 0x3264, 0x49aa, 0x7f9e, 0x588e, 0x4fbc, 0x7176, 0x7f91, 0x6c6d, - 0x4b95, 0x5fb7, 0x3844, 0x4037, 0x0184, 0x081b, 0x0ee8, 0x5b91, - 0x293d, 0x1f71, 0x0e6f, 0x402b, 0x5122, 0x1e52, 0x22be, 0x3d2d, - 0x75bc, 0x7c60, 0x6291, 0x1a2f, 0x61d4, 0x74aa, 0x4140, 0x29ab, - 0x472d, 0x2852, 0x017e, 0x15e8, 0x5ec2, 0x17cf, 0x7d0f, 0x06b8, - 0x117a, 0x6b94, 0x789b, 0x3126, 0x6ac5, 0x5be7, 0x150f, 0x51f8, - 0x7889, 0x0aa5, 0x663d, 0x77e8, 0x0b87, 0x3dcb, 0x360d, 0x218b, - 0x512f, 0x7dc9, 0x6a4d, 0x630a, 0x3547, 0x1dd2, 0x5aea, 0x69a5, - 0x7bfa, 0x5e4f, 0x1519, 0x6430, 0x3a0e, 0x5eb3, 0x5425, 0x0c7a, - 0x5540, 0x3670, 0x63c1, 0x31e9, 0x5a39, 0x2de7, 0x5979, 0x2891, - 0x1562, 0x014b, 0x5b05, 0x2756, 0x5a34, 0x13aa, 0x6cb5, 0x2c36, - 0x5e72, 0x1306, 0x0861, 0x15ef, 0x1ee8, 0x5a37, 0x7ac4, 0x45dd, - 0x44c4, 0x7266, 0x2f41, 0x3ccc, 0x045e, 0x7d40, 0x7c66, 0x0fa0, -}; - -static const u16 sunxi_nfc_randomizer_ecc1024_seeds[] = { - 0x2cf5, 0x35f1, 0x63a4, 0x5274, 0x2bd2, 0x778b, 0x7285, 0x32b6, - 0x6a5c, 0x70d6, 0x757d, 0x6769, 0x5375, 0x1e81, 0x0cf3, 0x3982, - 0x6787, 0x042a, 0x6c49, 0x1925, 0x56a8, 0x40a9, 0x063e, 0x7bd9, - 0x4dbf, 0x55ec, 0x672e, 0x7334, 0x5185, 0x4d00, 0x232a, 0x7e07, - 0x445d, 0x6b92, 0x528f, 0x4255, 0x53ba, 0x7d82, 0x2a2e, 0x3a4e, - 0x75eb, 0x450c, 0x6844, 0x1b5d, 0x581a, 0x4cc6, 0x0379, 0x37b2, - 0x419f, 0x0e92, 0x6b27, 0x5624, 0x01e3, 0x07c1, 0x44a5, 0x130c, - 0x13e8, 0x5910, 0x0876, 0x60c5, 0x54e3, 0x5b7f, 0x2269, 0x509f, - 0x7665, 0x36fd, 0x3e9a, 0x0579, 0x6295, 0x14ef, 0x0a81, 0x1bcc, - 0x4b16, 0x64db, 0x0514, 0x4f07, 0x0591, 0x3576, 0x6853, 0x0d9e, - 0x259f, 0x38b7, 0x64fb, 0x3094, 0x4693, 0x6ddd, 0x29bb, 0x0bc8, - 0x3f47, 0x490e, 0x0c0e, 0x7933, 0x3c9e, 0x5840, 0x398d, 0x3e68, - 0x4af1, 0x71f5, 0x57cf, 0x1121, 0x64eb, 0x3579, 0x15ac, 0x584d, - 0x5f2a, 0x47e2, 0x6528, 0x6eac, 0x196e, 0x6b96, 0x0450, 0x0179, - 0x609c, 0x06e1, 0x4626, 0x42c7, 0x273e, 0x486f, 0x0705, 0x1601, - 0x145b, 0x407e, 0x062b, 0x57a5, 0x53f9, 0x5659, 0x4410, 0x3ccd, -}; - -static u16 sunxi_nfc_randomizer_step(u16 state, int count) -{ - state &= 0x7fff; - - /* - * This loop is just a simple implementation of a Fibonacci LFSR using - * the x16 + x15 + 1 polynomial. - */ - while (count--) - state = ((state >> 1) | - (((state ^ (state >> 1)) & 1) << 14)) & 0x7fff; - - return state; -} - -static u16 sunxi_nfc_randomizer_state(struct mtd_info *mtd, int page, bool ecc) -{ - const u16 *seeds = sunxi_nfc_randomizer_page_seeds; - int mod = mtd_div_by_ws(mtd->erasesize, mtd); - - if (mod > ARRAY_SIZE(sunxi_nfc_randomizer_page_seeds)) - mod = ARRAY_SIZE(sunxi_nfc_randomizer_page_seeds); - - if (ecc) { - if (mtd->ecc_step_size == 512) - seeds = sunxi_nfc_randomizer_ecc512_seeds; - else - seeds = sunxi_nfc_randomizer_ecc1024_seeds; - } - - return seeds[page % mod]; -} - -static void sunxi_nfc_randomizer_config(struct mtd_info *mtd, - int page, bool ecc) -{ - struct nand_chip *nand = mtd_to_nand(mtd); - struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller); - u32 ecc_ctl = readl(nfc->regs + NFC_REG_ECC_CTL); - u16 state; - - if (!(nand->options & NAND_NEED_SCRAMBLING)) - return; - - ecc_ctl = readl(nfc->regs + NFC_REG_ECC_CTL); - state = sunxi_nfc_randomizer_state(mtd, page, ecc); - ecc_ctl = readl(nfc->regs + NFC_REG_ECC_CTL) & ~NFC_RANDOM_SEED_MSK; - writel(ecc_ctl | NFC_RANDOM_SEED(state), nfc->regs + NFC_REG_ECC_CTL); -} - -static void sunxi_nfc_randomizer_enable(struct mtd_info *mtd) -{ - struct nand_chip *nand = mtd_to_nand(mtd); - struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller); - - if (!(nand->options & NAND_NEED_SCRAMBLING)) - return; - - writel(readl(nfc->regs + NFC_REG_ECC_CTL) | NFC_RANDOM_EN, - nfc->regs + NFC_REG_ECC_CTL); -} - -static void sunxi_nfc_randomizer_disable(struct mtd_info *mtd) -{ - struct nand_chip *nand = mtd_to_nand(mtd); - struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller); - - if (!(nand->options & NAND_NEED_SCRAMBLING)) - return; - - writel(readl(nfc->regs + NFC_REG_ECC_CTL) & ~NFC_RANDOM_EN, - nfc->regs + NFC_REG_ECC_CTL); -} - -static void sunxi_nfc_randomize_bbm(struct mtd_info *mtd, int page, u8 *bbm) -{ - u16 state = sunxi_nfc_randomizer_state(mtd, page, true); - - bbm[0] ^= state; - bbm[1] ^= sunxi_nfc_randomizer_step(state, 8); -} - -static void sunxi_nfc_randomizer_write_buf(struct mtd_info *mtd, - const uint8_t *buf, int len, - bool ecc, int page) -{ - sunxi_nfc_randomizer_config(mtd, page, ecc); - sunxi_nfc_randomizer_enable(mtd); - sunxi_nfc_write_buf(mtd, buf, len); - sunxi_nfc_randomizer_disable(mtd); -} - -static void sunxi_nfc_randomizer_read_buf(struct mtd_info *mtd, uint8_t *buf, - int len, bool ecc, int page) -{ - sunxi_nfc_randomizer_config(mtd, page, ecc); - sunxi_nfc_randomizer_enable(mtd); - sunxi_nfc_read_buf(mtd, buf, len); - sunxi_nfc_randomizer_disable(mtd); -} - -static void sunxi_nfc_hw_ecc_enable(struct mtd_info *mtd) -{ - struct nand_chip *nand = mtd_to_nand(mtd); - struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller); - struct sunxi_nand_hw_ecc *data = nand->ecc.priv; - u32 ecc_ctl; - - ecc_ctl = readl(nfc->regs + NFC_REG_ECC_CTL); - ecc_ctl &= ~(NFC_ECC_MODE_MSK | NFC_ECC_PIPELINE | - NFC_ECC_BLOCK_SIZE_MSK); - ecc_ctl |= NFC_ECC_EN | NFC_ECC_MODE(data->mode) | NFC_ECC_EXCEPTION | - NFC_ECC_PIPELINE; - - if (nand->ecc.size == 512) - ecc_ctl |= NFC_ECC_BLOCK_512; - - writel(ecc_ctl, nfc->regs + NFC_REG_ECC_CTL); -} - -static void sunxi_nfc_hw_ecc_disable(struct mtd_info *mtd) -{ - struct nand_chip *nand = mtd_to_nand(mtd); - struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller); - - writel(readl(nfc->regs + NFC_REG_ECC_CTL) & ~NFC_ECC_EN, - nfc->regs + NFC_REG_ECC_CTL); -} - -static inline void sunxi_nfc_user_data_to_buf(u32 user_data, u8 *buf) -{ - buf[0] = user_data; - buf[1] = user_data >> 8; - buf[2] = user_data >> 16; - buf[3] = user_data >> 24; -} - -static inline u32 sunxi_nfc_buf_to_user_data(const u8 *buf) -{ - return buf[0] | (buf[1] << 8) | (buf[2] << 16) | (buf[3] << 24); -} - -static void sunxi_nfc_hw_ecc_get_prot_oob_bytes(struct mtd_info *mtd, u8 *oob, - int step, bool bbm, int page) -{ - struct nand_chip *nand = mtd_to_nand(mtd); - struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller); - - sunxi_nfc_user_data_to_buf(readl(nfc->regs + NFC_REG_USER_DATA(step)), - oob); - - /* De-randomize the Bad Block Marker. */ - if (bbm && (nand->options & NAND_NEED_SCRAMBLING)) - sunxi_nfc_randomize_bbm(mtd, page, oob); -} - -static void sunxi_nfc_hw_ecc_set_prot_oob_bytes(struct mtd_info *mtd, - const u8 *oob, int step, - bool bbm, int page) -{ - struct nand_chip *nand = mtd_to_nand(mtd); - struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller); - u8 user_data[4]; - - /* Randomize the Bad Block Marker. */ - if (bbm && (nand->options & NAND_NEED_SCRAMBLING)) { - memcpy(user_data, oob, sizeof(user_data)); - sunxi_nfc_randomize_bbm(mtd, page, user_data); - oob = user_data; - } - - writel(sunxi_nfc_buf_to_user_data(oob), - nfc->regs + NFC_REG_USER_DATA(step)); -} - -static void sunxi_nfc_hw_ecc_update_stats(struct mtd_info *mtd, - unsigned int *max_bitflips, int ret) -{ - if (ret < 0) { - mtd->ecc_stats.failed++; - } else { - mtd->ecc_stats.corrected += ret; - *max_bitflips = max_t(unsigned int, *max_bitflips, ret); - } -} - -static int sunxi_nfc_hw_ecc_correct(struct mtd_info *mtd, u8 *data, u8 *oob, - int step, u32 status, bool *erased) -{ - struct nand_chip *nand = mtd_to_nand(mtd); - struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller); - struct nand_ecc_ctrl *ecc = &nand->ecc; - u32 tmp; - - *erased = false; - - if (status & NFC_ECC_ERR(step)) - return -EBADMSG; - - if (status & NFC_ECC_PAT_FOUND(step)) { - u8 pattern; - - if (unlikely(!(readl(nfc->regs + NFC_REG_PAT_ID) & 0x1))) { - pattern = 0x0; - } else { - pattern = 0xff; - *erased = true; - } - - if (data) - memset(data, pattern, ecc->size); - - if (oob) - memset(oob, pattern, ecc->bytes + 4); - - return 0; - } - - tmp = readl(nfc->regs + NFC_REG_ECC_ERR_CNT(step)); - - return NFC_ECC_ERR_CNT(step, tmp); -} - -static int sunxi_nfc_hw_ecc_read_chunk(struct mtd_info *mtd, - u8 *data, int data_off, - u8 *oob, int oob_off, - int *cur_off, - unsigned int *max_bitflips, - bool bbm, bool oob_required, int page) -{ - struct nand_chip *nand = mtd_to_nand(mtd); - struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller); - struct nand_ecc_ctrl *ecc = &nand->ecc; - int raw_mode = 0; - bool erased; - int ret; - - if (*cur_off != data_off) - nand_change_read_column_op(nand, data_off, NULL, 0, false); - - sunxi_nfc_randomizer_read_buf(mtd, NULL, ecc->size, false, page); - - if (data_off + ecc->size != oob_off) - nand_change_read_column_op(nand, oob_off, NULL, 0, false); - - ret = sunxi_nfc_wait_cmd_fifo_empty(nfc); - if (ret) - return ret; - - sunxi_nfc_randomizer_enable(mtd); - writel(NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD | NFC_ECC_OP, - nfc->regs + NFC_REG_CMD); - - ret = sunxi_nfc_wait_events(nfc, NFC_CMD_INT_FLAG, false, 0); - sunxi_nfc_randomizer_disable(mtd); - if (ret) - return ret; - - *cur_off = oob_off + ecc->bytes + 4; - - ret = sunxi_nfc_hw_ecc_correct(mtd, data, oob_required ? oob : NULL, 0, - readl(nfc->regs + NFC_REG_ECC_ST), - &erased); - if (erased) - return 1; - - if (ret < 0) { - /* - * Re-read the data with the randomizer disabled to identify - * bitflips in erased pages. - */ - if (nand->options & NAND_NEED_SCRAMBLING) - nand_change_read_column_op(nand, data_off, data, - ecc->size, false); - else - memcpy_fromio(data, nfc->regs + NFC_RAM0_BASE, - ecc->size); - - nand_change_read_column_op(nand, oob_off, oob, ecc->bytes + 4, - false); - - ret = nand_check_erased_ecc_chunk(data, ecc->size, - oob, ecc->bytes + 4, - NULL, 0, ecc->strength); - if (ret >= 0) - raw_mode = 1; - } else { - memcpy_fromio(data, nfc->regs + NFC_RAM0_BASE, ecc->size); - - if (oob_required) { - nand_change_read_column_op(nand, oob_off, NULL, 0, - false); - sunxi_nfc_randomizer_read_buf(mtd, oob, ecc->bytes + 4, - true, page); - - sunxi_nfc_hw_ecc_get_prot_oob_bytes(mtd, oob, 0, - bbm, page); - } - } - - sunxi_nfc_hw_ecc_update_stats(mtd, max_bitflips, ret); - - return raw_mode; -} - -static void sunxi_nfc_hw_ecc_read_extra_oob(struct mtd_info *mtd, - u8 *oob, int *cur_off, - bool randomize, int page) -{ - struct nand_chip *nand = mtd_to_nand(mtd); - struct nand_ecc_ctrl *ecc = &nand->ecc; - int offset = ((ecc->bytes + 4) * ecc->steps); - int len = mtd->oobsize - offset; - - if (len <= 0) - return; - - if (!cur_off || *cur_off != offset) - nand_change_read_column_op(nand, mtd->writesize, NULL, 0, - false); - - if (!randomize) - sunxi_nfc_read_buf(mtd, oob + offset, len); - else - sunxi_nfc_randomizer_read_buf(mtd, oob + offset, len, - false, page); - - if (cur_off) - *cur_off = mtd->oobsize + mtd->writesize; -} - -static int sunxi_nfc_hw_ecc_read_chunks_dma(struct mtd_info *mtd, uint8_t *buf, - int oob_required, int page, - int nchunks) -{ - struct nand_chip *nand = mtd_to_nand(mtd); - bool randomized = nand->options & NAND_NEED_SCRAMBLING; - struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller); - struct nand_ecc_ctrl *ecc = &nand->ecc; - unsigned int max_bitflips = 0; - int ret, i, raw_mode = 0; - struct scatterlist sg; - u32 status; - - ret = sunxi_nfc_wait_cmd_fifo_empty(nfc); - if (ret) - return ret; - - ret = sunxi_nfc_dma_op_prepare(mtd, buf, ecc->size, nchunks, - DMA_FROM_DEVICE, &sg); - if (ret) - return ret; - - sunxi_nfc_hw_ecc_enable(mtd); - sunxi_nfc_randomizer_config(mtd, page, false); - sunxi_nfc_randomizer_enable(mtd); - - writel((NAND_CMD_RNDOUTSTART << 16) | (NAND_CMD_RNDOUT << 8) | - NAND_CMD_READSTART, nfc->regs + NFC_REG_RCMD_SET); - - dma_async_issue_pending(nfc->dmac); - - writel(NFC_PAGE_OP | NFC_DATA_SWAP_METHOD | NFC_DATA_TRANS, - nfc->regs + NFC_REG_CMD); - - ret = sunxi_nfc_wait_events(nfc, NFC_CMD_INT_FLAG, false, 0); - if (ret) - dmaengine_terminate_all(nfc->dmac); - - sunxi_nfc_randomizer_disable(mtd); - sunxi_nfc_hw_ecc_disable(mtd); - - sunxi_nfc_dma_op_cleanup(mtd, DMA_FROM_DEVICE, &sg); - - if (ret) - return ret; - - status = readl(nfc->regs + NFC_REG_ECC_ST); - - for (i = 0; i < nchunks; i++) { - int data_off = i * ecc->size; - int oob_off = i * (ecc->bytes + 4); - u8 *data = buf + data_off; - u8 *oob = nand->oob_poi + oob_off; - bool erased; - - ret = sunxi_nfc_hw_ecc_correct(mtd, randomized ? data : NULL, - oob_required ? oob : NULL, - i, status, &erased); - - /* ECC errors are handled in the second loop. */ - if (ret < 0) - continue; - - if (oob_required && !erased) { - /* TODO: use DMA to retrieve OOB */ - nand_change_read_column_op(nand, - mtd->writesize + oob_off, - oob, ecc->bytes + 4, false); - - sunxi_nfc_hw_ecc_get_prot_oob_bytes(mtd, oob, i, - !i, page); - } - - if (erased) - raw_mode = 1; - - sunxi_nfc_hw_ecc_update_stats(mtd, &max_bitflips, ret); - } - - if (status & NFC_ECC_ERR_MSK) { - for (i = 0; i < nchunks; i++) { - int data_off = i * ecc->size; - int oob_off = i * (ecc->bytes + 4); - u8 *data = buf + data_off; - u8 *oob = nand->oob_poi + oob_off; - - if (!(status & NFC_ECC_ERR(i))) - continue; - - /* - * Re-read the data with the randomizer disabled to - * identify bitflips in erased pages. - * TODO: use DMA to read page in raw mode - */ - if (randomized) - nand_change_read_column_op(nand, data_off, - data, ecc->size, - false); - - /* TODO: use DMA to retrieve OOB */ - nand_change_read_column_op(nand, - mtd->writesize + oob_off, - oob, ecc->bytes + 4, false); - - ret = nand_check_erased_ecc_chunk(data, ecc->size, - oob, ecc->bytes + 4, - NULL, 0, - ecc->strength); - if (ret >= 0) - raw_mode = 1; - - sunxi_nfc_hw_ecc_update_stats(mtd, &max_bitflips, ret); - } - } - - if (oob_required) - sunxi_nfc_hw_ecc_read_extra_oob(mtd, nand->oob_poi, - NULL, !raw_mode, - page); - - return max_bitflips; -} - -static int sunxi_nfc_hw_ecc_write_chunk(struct mtd_info *mtd, - const u8 *data, int data_off, - const u8 *oob, int oob_off, - int *cur_off, bool bbm, - int page) -{ - struct nand_chip *nand = mtd_to_nand(mtd); - struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller); - struct nand_ecc_ctrl *ecc = &nand->ecc; - int ret; - - if (data_off != *cur_off) - nand_change_write_column_op(nand, data_off, NULL, 0, false); - - sunxi_nfc_randomizer_write_buf(mtd, data, ecc->size, false, page); - - if (data_off + ecc->size != oob_off) - nand_change_write_column_op(nand, oob_off, NULL, 0, false); - - ret = sunxi_nfc_wait_cmd_fifo_empty(nfc); - if (ret) - return ret; - - sunxi_nfc_randomizer_enable(mtd); - sunxi_nfc_hw_ecc_set_prot_oob_bytes(mtd, oob, 0, bbm, page); - - writel(NFC_DATA_TRANS | NFC_DATA_SWAP_METHOD | - NFC_ACCESS_DIR | NFC_ECC_OP, - nfc->regs + NFC_REG_CMD); - - ret = sunxi_nfc_wait_events(nfc, NFC_CMD_INT_FLAG, false, 0); - sunxi_nfc_randomizer_disable(mtd); - if (ret) - return ret; - - *cur_off = oob_off + ecc->bytes + 4; - - return 0; -} - -static void sunxi_nfc_hw_ecc_write_extra_oob(struct mtd_info *mtd, - u8 *oob, int *cur_off, - int page) -{ - struct nand_chip *nand = mtd_to_nand(mtd); - struct nand_ecc_ctrl *ecc = &nand->ecc; - int offset = ((ecc->bytes + 4) * ecc->steps); - int len = mtd->oobsize - offset; - - if (len <= 0) - return; - - if (!cur_off || *cur_off != offset) - nand_change_write_column_op(nand, offset + mtd->writesize, - NULL, 0, false); - - sunxi_nfc_randomizer_write_buf(mtd, oob + offset, len, false, page); - - if (cur_off) - *cur_off = mtd->oobsize + mtd->writesize; -} - -static int sunxi_nfc_hw_ecc_read_page(struct mtd_info *mtd, - struct nand_chip *chip, uint8_t *buf, - int oob_required, int page) -{ - struct nand_ecc_ctrl *ecc = &chip->ecc; - unsigned int max_bitflips = 0; - int ret, i, cur_off = 0; - bool raw_mode = false; - - nand_read_page_op(chip, page, 0, NULL, 0); - - sunxi_nfc_hw_ecc_enable(mtd); - - for (i = 0; i < ecc->steps; i++) { - int data_off = i * ecc->size; - int oob_off = i * (ecc->bytes + 4); - u8 *data = buf + data_off; - u8 *oob = chip->oob_poi + oob_off; - - ret = sunxi_nfc_hw_ecc_read_chunk(mtd, data, data_off, oob, - oob_off + mtd->writesize, - &cur_off, &max_bitflips, - !i, oob_required, page); - if (ret < 0) - return ret; - else if (ret) - raw_mode = true; - } - - if (oob_required) - sunxi_nfc_hw_ecc_read_extra_oob(mtd, chip->oob_poi, &cur_off, - !raw_mode, page); - - sunxi_nfc_hw_ecc_disable(mtd); - - return max_bitflips; -} - -static int sunxi_nfc_hw_ecc_read_page_dma(struct mtd_info *mtd, - struct nand_chip *chip, u8 *buf, - int oob_required, int page) -{ - int ret; - - nand_read_page_op(chip, page, 0, NULL, 0); - - ret = sunxi_nfc_hw_ecc_read_chunks_dma(mtd, buf, oob_required, page, - chip->ecc.steps); - if (ret >= 0) - return ret; - - /* Fallback to PIO mode */ - return sunxi_nfc_hw_ecc_read_page(mtd, chip, buf, oob_required, page); -} - -static int sunxi_nfc_hw_ecc_read_subpage(struct mtd_info *mtd, - struct nand_chip *chip, - u32 data_offs, u32 readlen, - u8 *bufpoi, int page) -{ - struct nand_ecc_ctrl *ecc = &chip->ecc; - int ret, i, cur_off = 0; - unsigned int max_bitflips = 0; - - nand_read_page_op(chip, page, 0, NULL, 0); - - sunxi_nfc_hw_ecc_enable(mtd); - - for (i = data_offs / ecc->size; - i < DIV_ROUND_UP(data_offs + readlen, ecc->size); i++) { - int data_off = i * ecc->size; - int oob_off = i * (ecc->bytes + 4); - u8 *data = bufpoi + data_off; - u8 *oob = chip->oob_poi + oob_off; - - ret = sunxi_nfc_hw_ecc_read_chunk(mtd, data, data_off, - oob, - oob_off + mtd->writesize, - &cur_off, &max_bitflips, !i, - false, page); - if (ret < 0) - return ret; - } - - sunxi_nfc_hw_ecc_disable(mtd); - - return max_bitflips; -} - -static int sunxi_nfc_hw_ecc_read_subpage_dma(struct mtd_info *mtd, - struct nand_chip *chip, - u32 data_offs, u32 readlen, - u8 *buf, int page) -{ - int nchunks = DIV_ROUND_UP(data_offs + readlen, chip->ecc.size); - int ret; - - nand_read_page_op(chip, page, 0, NULL, 0); - - ret = sunxi_nfc_hw_ecc_read_chunks_dma(mtd, buf, false, page, nchunks); - if (ret >= 0) - return ret; - - /* Fallback to PIO mode */ - return sunxi_nfc_hw_ecc_read_subpage(mtd, chip, data_offs, readlen, - buf, page); -} - -static int sunxi_nfc_hw_ecc_write_page(struct mtd_info *mtd, - struct nand_chip *chip, - const uint8_t *buf, int oob_required, - int page) -{ - struct nand_ecc_ctrl *ecc = &chip->ecc; - int ret, i, cur_off = 0; - - nand_prog_page_begin_op(chip, page, 0, NULL, 0); - - sunxi_nfc_hw_ecc_enable(mtd); - - for (i = 0; i < ecc->steps; i++) { - int data_off = i * ecc->size; - int oob_off = i * (ecc->bytes + 4); - const u8 *data = buf + data_off; - const u8 *oob = chip->oob_poi + oob_off; - - ret = sunxi_nfc_hw_ecc_write_chunk(mtd, data, data_off, oob, - oob_off + mtd->writesize, - &cur_off, !i, page); - if (ret) - return ret; - } - - if (oob_required || (chip->options & NAND_NEED_SCRAMBLING)) - sunxi_nfc_hw_ecc_write_extra_oob(mtd, chip->oob_poi, - &cur_off, page); - - sunxi_nfc_hw_ecc_disable(mtd); - - return nand_prog_page_end_op(chip); -} - -static int sunxi_nfc_hw_ecc_write_subpage(struct mtd_info *mtd, - struct nand_chip *chip, - u32 data_offs, u32 data_len, - const u8 *buf, int oob_required, - int page) -{ - struct nand_ecc_ctrl *ecc = &chip->ecc; - int ret, i, cur_off = 0; - - nand_prog_page_begin_op(chip, page, 0, NULL, 0); - - sunxi_nfc_hw_ecc_enable(mtd); - - for (i = data_offs / ecc->size; - i < DIV_ROUND_UP(data_offs + data_len, ecc->size); i++) { - int data_off = i * ecc->size; - int oob_off = i * (ecc->bytes + 4); - const u8 *data = buf + data_off; - const u8 *oob = chip->oob_poi + oob_off; - - ret = sunxi_nfc_hw_ecc_write_chunk(mtd, data, data_off, oob, - oob_off + mtd->writesize, - &cur_off, !i, page); - if (ret) - return ret; - } - - sunxi_nfc_hw_ecc_disable(mtd); - - return nand_prog_page_end_op(chip); -} - -static int sunxi_nfc_hw_ecc_write_page_dma(struct mtd_info *mtd, - struct nand_chip *chip, - const u8 *buf, - int oob_required, - int page) -{ - struct nand_chip *nand = mtd_to_nand(mtd); - struct sunxi_nfc *nfc = to_sunxi_nfc(nand->controller); - struct nand_ecc_ctrl *ecc = &nand->ecc; - struct scatterlist sg; - int ret, i; - - ret = sunxi_nfc_wait_cmd_fifo_empty(nfc); - if (ret) - return ret; - - ret = sunxi_nfc_dma_op_prepare(mtd, buf, ecc->size, ecc->steps, - DMA_TO_DEVICE, &sg); - if (ret) - goto pio_fallback; - - for (i = 0; i < ecc->steps; i++) { - const u8 *oob = nand->oob_poi + (i * (ecc->bytes + 4)); - - sunxi_nfc_hw_ecc_set_prot_oob_bytes(mtd, oob, i, !i, page); - } - - nand_prog_page_begin_op(chip, page, 0, NULL, 0); - - sunxi_nfc_hw_ecc_enable(mtd); - sunxi_nfc_randomizer_config(mtd, page, false); - sunxi_nfc_randomizer_enable(mtd); - - writel((NAND_CMD_RNDIN << 8) | NAND_CMD_PAGEPROG, - nfc->regs + NFC_REG_RCMD_SET); - - dma_async_issue_pending(nfc->dmac); - - writel(NFC_PAGE_OP | NFC_DATA_SWAP_METHOD | - NFC_DATA_TRANS | NFC_ACCESS_DIR, - nfc->regs + NFC_REG_CMD); - - ret = sunxi_nfc_wait_events(nfc, NFC_CMD_INT_FLAG, false, 0); - if (ret) - dmaengine_terminate_all(nfc->dmac); - - sunxi_nfc_randomizer_disable(mtd); - sunxi_nfc_hw_ecc_disable(mtd); - - sunxi_nfc_dma_op_cleanup(mtd, DMA_TO_DEVICE, &sg); - - if (ret) - return ret; - - if (oob_required || (chip->options & NAND_NEED_SCRAMBLING)) - /* TODO: use DMA to transfer extra OOB bytes ? */ - sunxi_nfc_hw_ecc_write_extra_oob(mtd, chip->oob_poi, - NULL, page); - - return nand_prog_page_end_op(chip); - -pio_fallback: - return sunxi_nfc_hw_ecc_write_page(mtd, chip, buf, oob_required, page); -} - -static int sunxi_nfc_hw_syndrome_ecc_read_page(struct mtd_info *mtd, - struct nand_chip *chip, - uint8_t *buf, int oob_required, - int page) -{ - struct nand_ecc_ctrl *ecc = &chip->ecc; - unsigned int max_bitflips = 0; - int ret, i, cur_off = 0; - bool raw_mode = false; - - nand_read_page_op(chip, page, 0, NULL, 0); - - sunxi_nfc_hw_ecc_enable(mtd); - - for (i = 0; i < ecc->steps; i++) { - int data_off = i * (ecc->size + ecc->bytes + 4); - int oob_off = data_off + ecc->size; - u8 *data = buf + (i * ecc->size); - u8 *oob = chip->oob_poi + (i * (ecc->bytes + 4)); - - ret = sunxi_nfc_hw_ecc_read_chunk(mtd, data, data_off, oob, - oob_off, &cur_off, - &max_bitflips, !i, - oob_required, - page); - if (ret < 0) - return ret; - else if (ret) - raw_mode = true; - } - - if (oob_required) - sunxi_nfc_hw_ecc_read_extra_oob(mtd, chip->oob_poi, &cur_off, - !raw_mode, page); - - sunxi_nfc_hw_ecc_disable(mtd); - - return max_bitflips; -} - -static int sunxi_nfc_hw_syndrome_ecc_write_page(struct mtd_info *mtd, - struct nand_chip *chip, - const uint8_t *buf, - int oob_required, int page) -{ - struct nand_ecc_ctrl *ecc = &chip->ecc; - int ret, i, cur_off = 0; - - nand_prog_page_begin_op(chip, page, 0, NULL, 0); - - sunxi_nfc_hw_ecc_enable(mtd); - - for (i = 0; i < ecc->steps; i++) { - int data_off = i * (ecc->size + ecc->bytes + 4); - int oob_off = data_off + ecc->size; - const u8 *data = buf + (i * ecc->size); - const u8 *oob = chip->oob_poi + (i * (ecc->bytes + 4)); - - ret = sunxi_nfc_hw_ecc_write_chunk(mtd, data, data_off, - oob, oob_off, &cur_off, - false, page); - if (ret) - return ret; - } - - if (oob_required || (chip->options & NAND_NEED_SCRAMBLING)) - sunxi_nfc_hw_ecc_write_extra_oob(mtd, chip->oob_poi, - &cur_off, page); - - sunxi_nfc_hw_ecc_disable(mtd); - - return nand_prog_page_end_op(chip); -} - -static int sunxi_nfc_hw_common_ecc_read_oob(struct mtd_info *mtd, - struct nand_chip *chip, - int page) -{ - chip->pagebuf = -1; - - return chip->ecc.read_page(mtd, chip, chip->data_buf, 1, page); -} - -static int sunxi_nfc_hw_common_ecc_write_oob(struct mtd_info *mtd, - struct nand_chip *chip, - int page) -{ - int ret; - - chip->pagebuf = -1; - - memset(chip->data_buf, 0xff, mtd->writesize); - ret = chip->ecc.write_page(mtd, chip, chip->data_buf, 1, page); - if (ret) - return ret; - - /* Send command to program the OOB data */ - return nand_prog_page_end_op(chip); -} - -static const s32 tWB_lut[] = {6, 12, 16, 20}; -static const s32 tRHW_lut[] = {4, 8, 12, 20}; - -static int _sunxi_nand_lookup_timing(const s32 *lut, int lut_size, u32 duration, - u32 clk_period) -{ - u32 clk_cycles = DIV_ROUND_UP(duration, clk_period); - int i; - - for (i = 0; i < lut_size; i++) { - if (clk_cycles <= lut[i]) - return i; - } - - /* Doesn't fit */ - return -EINVAL; -} - -#define sunxi_nand_lookup_timing(l, p, c) \ - _sunxi_nand_lookup_timing(l, ARRAY_SIZE(l), p, c) - -static int sunxi_nfc_setup_data_interface(struct mtd_info *mtd, int csline, - const struct nand_data_interface *conf) -{ - struct nand_chip *nand = mtd_to_nand(mtd); - struct sunxi_nand_chip *chip = to_sunxi_nand(nand); - struct sunxi_nfc *nfc = to_sunxi_nfc(chip->nand.controller); - const struct nand_sdr_timings *timings; - u32 min_clk_period = 0; - s32 tWB, tADL, tWHR, tRHW, tCAD; - long real_clk_rate; - - timings = nand_get_sdr_timings(conf); - if (IS_ERR(timings)) - return -ENOTSUPP; - - /* T1 <=> tCLS */ - if (timings->tCLS_min > min_clk_period) - min_clk_period = timings->tCLS_min; - - /* T2 <=> tCLH */ - if (timings->tCLH_min > min_clk_period) - min_clk_period = timings->tCLH_min; - - /* T3 <=> tCS */ - if (timings->tCS_min > min_clk_period) - min_clk_period = timings->tCS_min; - - /* T4 <=> tCH */ - if (timings->tCH_min > min_clk_period) - min_clk_period = timings->tCH_min; - - /* T5 <=> tWP */ - if (timings->tWP_min > min_clk_period) - min_clk_period = timings->tWP_min; - - /* T6 <=> tWH */ - if (timings->tWH_min > min_clk_period) - min_clk_period = timings->tWH_min; - - /* T7 <=> tALS */ - if (timings->tALS_min > min_clk_period) - min_clk_period = timings->tALS_min; - - /* T8 <=> tDS */ - if (timings->tDS_min > min_clk_period) - min_clk_period = timings->tDS_min; - - /* T9 <=> tDH */ - if (timings->tDH_min > min_clk_period) - min_clk_period = timings->tDH_min; - - /* T10 <=> tRR */ - if (timings->tRR_min > (min_clk_period * 3)) - min_clk_period = DIV_ROUND_UP(timings->tRR_min, 3); - - /* T11 <=> tALH */ - if (timings->tALH_min > min_clk_period) - min_clk_period = timings->tALH_min; - - /* T12 <=> tRP */ - if (timings->tRP_min > min_clk_period) - min_clk_period = timings->tRP_min; - - /* T13 <=> tREH */ - if (timings->tREH_min > min_clk_period) - min_clk_period = timings->tREH_min; - - /* T14 <=> tRC */ - if (timings->tRC_min > (min_clk_period * 2)) - min_clk_period = DIV_ROUND_UP(timings->tRC_min, 2); - - /* T15 <=> tWC */ - if (timings->tWC_min > (min_clk_period * 2)) - min_clk_period = DIV_ROUND_UP(timings->tWC_min, 2); - - /* T16 - T19 + tCAD */ - if (timings->tWB_max > (min_clk_period * 20)) - min_clk_period = DIV_ROUND_UP(timings->tWB_max, 20); - - if (timings->tADL_min > (min_clk_period * 32)) - min_clk_period = DIV_ROUND_UP(timings->tADL_min, 32); - - if (timings->tWHR_min > (min_clk_period * 32)) - min_clk_period = DIV_ROUND_UP(timings->tWHR_min, 32); - - if (timings->tRHW_min > (min_clk_period * 20)) - min_clk_period = DIV_ROUND_UP(timings->tRHW_min, 20); - - tWB = sunxi_nand_lookup_timing(tWB_lut, timings->tWB_max, - min_clk_period); - if (tWB < 0) { - dev_err(nfc->dev, "unsupported tWB\n"); - return tWB; - } - - tADL = DIV_ROUND_UP(timings->tADL_min, min_clk_period) >> 3; - if (tADL > 3) { - dev_err(nfc->dev, "unsupported tADL\n"); - return -EINVAL; - } - - tWHR = DIV_ROUND_UP(timings->tWHR_min, min_clk_period) >> 3; - if (tWHR > 3) { - dev_err(nfc->dev, "unsupported tWHR\n"); - return -EINVAL; - } - - tRHW = sunxi_nand_lookup_timing(tRHW_lut, timings->tRHW_min, - min_clk_period); - if (tRHW < 0) { - dev_err(nfc->dev, "unsupported tRHW\n"); - return tRHW; - } - - if (csline == NAND_DATA_IFACE_CHECK_ONLY) - return 0; - - /* - * TODO: according to ONFI specs this value only applies for DDR NAND, - * but Allwinner seems to set this to 0x7. Mimic them for now. - */ - tCAD = 0x7; - - /* TODO: A83 has some more bits for CDQSS, CS, CLHZ, CCS, WC */ - chip->timing_cfg = NFC_TIMING_CFG(tWB, tADL, tWHR, tRHW, tCAD); - - /* Convert min_clk_period from picoseconds to nanoseconds */ - min_clk_period = DIV_ROUND_UP(min_clk_period, 1000); - - /* - * Unlike what is stated in Allwinner datasheet, the clk_rate should - * be set to (1 / min_clk_period), and not (2 / min_clk_period). - * This new formula was verified with a scope and validated by - * Allwinner engineers. - */ - chip->clk_rate = NSEC_PER_SEC / min_clk_period; - real_clk_rate = clk_round_rate(nfc->mod_clk, chip->clk_rate); - if (real_clk_rate <= 0) { - dev_err(nfc->dev, "Unable to round clk %lu\n", chip->clk_rate); - return -EINVAL; - } - - /* - * ONFI specification 3.1, paragraph 4.15.2 dictates that EDO data - * output cycle timings shall be used if the host drives tRC less than - * 30 ns. - */ - min_clk_period = NSEC_PER_SEC / real_clk_rate; - chip->timing_ctl = ((min_clk_period * 2) < 30) ? - NFC_TIMING_CTL_EDO : 0; - - return 0; -} - -static int sunxi_nand_ooblayout_ecc(struct mtd_info *mtd, int section, - struct mtd_oob_region *oobregion) -{ - struct nand_chip *nand = mtd_to_nand(mtd); - struct nand_ecc_ctrl *ecc = &nand->ecc; - - if (section >= ecc->steps) - return -ERANGE; - - oobregion->offset = section * (ecc->bytes + 4) + 4; - oobregion->length = ecc->bytes; - - return 0; -} - -static int sunxi_nand_ooblayout_free(struct mtd_info *mtd, int section, - struct mtd_oob_region *oobregion) -{ - struct nand_chip *nand = mtd_to_nand(mtd); - struct nand_ecc_ctrl *ecc = &nand->ecc; - - if (section > ecc->steps) - return -ERANGE; - - /* - * The first 2 bytes are used for BB markers, hence we - * only have 2 bytes available in the first user data - * section. - */ - if (!section && ecc->mode == NAND_ECC_HW) { - oobregion->offset = 2; - oobregion->length = 2; - - return 0; - } - - oobregion->offset = section * (ecc->bytes + 4); - - if (section < ecc->steps) - oobregion->length = 4; - else - oobregion->offset = mtd->oobsize - oobregion->offset; - - return 0; -} - -static const struct mtd_ooblayout_ops sunxi_nand_ooblayout_ops = { - .ecc = sunxi_nand_ooblayout_ecc, - .free = sunxi_nand_ooblayout_free, -}; - -static int sunxi_nand_hw_common_ecc_ctrl_init(struct mtd_info *mtd, - struct nand_ecc_ctrl *ecc, - struct device_node *np) -{ - static const u8 strengths[] = { 16, 24, 28, 32, 40, 48, 56, 60, 64 }; - struct nand_chip *nand = mtd_to_nand(mtd); - struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand); - struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller); - struct sunxi_nand_hw_ecc *data; - int nsectors; - int ret; - int i; - - if (ecc->options & NAND_ECC_MAXIMIZE) { - int bytes; - - ecc->size = 1024; - nsectors = mtd->writesize / ecc->size; - - /* Reserve 2 bytes for the BBM */ - bytes = (mtd->oobsize - 2) / nsectors; - - /* 4 non-ECC bytes are added before each ECC bytes section */ - bytes -= 4; - - /* and bytes has to be even. */ - if (bytes % 2) - bytes--; - - ecc->strength = bytes * 8 / fls(8 * ecc->size); - - for (i = 0; i < ARRAY_SIZE(strengths); i++) { - if (strengths[i] > ecc->strength) - break; - } - - if (!i) - ecc->strength = 0; - else - ecc->strength = strengths[i - 1]; - } - - if (ecc->size != 512 && ecc->size != 1024) - return -EINVAL; - - data = kzalloc(sizeof(*data), GFP_KERNEL); - if (!data) - return -ENOMEM; - - /* Prefer 1k ECC chunk over 512 ones */ - if (ecc->size == 512 && mtd->writesize > 512) { - ecc->size = 1024; - ecc->strength *= 2; - } - - /* Add ECC info retrieval from DT */ - for (i = 0; i < ARRAY_SIZE(strengths); i++) { - if (ecc->strength <= strengths[i]) { - /* - * Update ecc->strength value with the actual strength - * that will be used by the ECC engine. - */ - ecc->strength = strengths[i]; - break; - } - } - - if (i >= ARRAY_SIZE(strengths)) { - dev_err(nfc->dev, "unsupported strength\n"); - ret = -ENOTSUPP; - goto err; - } - - data->mode = i; - - /* HW ECC always request ECC bytes for 1024 bytes blocks */ - ecc->bytes = DIV_ROUND_UP(ecc->strength * fls(8 * 1024), 8); - - /* HW ECC always work with even numbers of ECC bytes */ - ecc->bytes = ALIGN(ecc->bytes, 2); - - nsectors = mtd->writesize / ecc->size; - - if (mtd->oobsize < ((ecc->bytes + 4) * nsectors)) { - ret = -EINVAL; - goto err; - } - - ecc->read_oob = sunxi_nfc_hw_common_ecc_read_oob; - ecc->write_oob = sunxi_nfc_hw_common_ecc_write_oob; - mtd_set_ooblayout(mtd, &sunxi_nand_ooblayout_ops); - ecc->priv = data; - - return 0; - -err: - kfree(data); - - return ret; -} - -static void sunxi_nand_hw_common_ecc_ctrl_cleanup(struct nand_ecc_ctrl *ecc) -{ - kfree(ecc->priv); -} - -static int sunxi_nand_hw_ecc_ctrl_init(struct mtd_info *mtd, - struct nand_ecc_ctrl *ecc, - struct device_node *np) -{ - struct nand_chip *nand = mtd_to_nand(mtd); - struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand); - struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller); - int ret; - - ret = sunxi_nand_hw_common_ecc_ctrl_init(mtd, ecc, np); - if (ret) - return ret; - - if (nfc->dmac) { - ecc->read_page = sunxi_nfc_hw_ecc_read_page_dma; - ecc->read_subpage = sunxi_nfc_hw_ecc_read_subpage_dma; - ecc->write_page = sunxi_nfc_hw_ecc_write_page_dma; - nand->options |= NAND_USE_BOUNCE_BUFFER; - } else { - ecc->read_page = sunxi_nfc_hw_ecc_read_page; - ecc->read_subpage = sunxi_nfc_hw_ecc_read_subpage; - ecc->write_page = sunxi_nfc_hw_ecc_write_page; - } - - /* TODO: support DMA for raw accesses and subpage write */ - ecc->write_subpage = sunxi_nfc_hw_ecc_write_subpage; - ecc->read_oob_raw = nand_read_oob_std; - ecc->write_oob_raw = nand_write_oob_std; - - return 0; -} - -static int sunxi_nand_hw_syndrome_ecc_ctrl_init(struct mtd_info *mtd, - struct nand_ecc_ctrl *ecc, - struct device_node *np) -{ - int ret; - - ret = sunxi_nand_hw_common_ecc_ctrl_init(mtd, ecc, np); - if (ret) - return ret; - - ecc->prepad = 4; - ecc->read_page = sunxi_nfc_hw_syndrome_ecc_read_page; - ecc->write_page = sunxi_nfc_hw_syndrome_ecc_write_page; - ecc->read_oob_raw = nand_read_oob_syndrome; - ecc->write_oob_raw = nand_write_oob_syndrome; - - return 0; -} - -static void sunxi_nand_ecc_cleanup(struct nand_ecc_ctrl *ecc) -{ - switch (ecc->mode) { - case NAND_ECC_HW: - case NAND_ECC_HW_SYNDROME: - sunxi_nand_hw_common_ecc_ctrl_cleanup(ecc); - break; - case NAND_ECC_NONE: - default: - break; - } -} - -static int sunxi_nand_ecc_init(struct mtd_info *mtd, struct nand_ecc_ctrl *ecc, - struct device_node *np) -{ - struct nand_chip *nand = mtd_to_nand(mtd); - int ret; - - if (!ecc->size) { - ecc->size = nand->ecc_step_ds; - ecc->strength = nand->ecc_strength_ds; - } - - if (!ecc->size || !ecc->strength) - return -EINVAL; - - switch (ecc->mode) { - case NAND_ECC_HW: - ret = sunxi_nand_hw_ecc_ctrl_init(mtd, ecc, np); - if (ret) - return ret; - break; - case NAND_ECC_HW_SYNDROME: - ret = sunxi_nand_hw_syndrome_ecc_ctrl_init(mtd, ecc, np); - if (ret) - return ret; - break; - case NAND_ECC_NONE: - case NAND_ECC_SOFT: - break; - default: - return -EINVAL; - } - - return 0; -} - -static int sunxi_nand_chip_init(struct device *dev, struct sunxi_nfc *nfc, - struct device_node *np) -{ - struct sunxi_nand_chip *chip; - struct mtd_info *mtd; - struct nand_chip *nand; - int nsels; - int ret; - int i; - u32 tmp; - - if (!of_get_property(np, "reg", &nsels)) - return -EINVAL; - - nsels /= sizeof(u32); - if (!nsels) { - dev_err(dev, "invalid reg property size\n"); - return -EINVAL; - } - - chip = devm_kzalloc(dev, - sizeof(*chip) + - (nsels * sizeof(struct sunxi_nand_chip_sel)), - GFP_KERNEL); - if (!chip) { - dev_err(dev, "could not allocate chip\n"); - return -ENOMEM; - } - - chip->nsels = nsels; - chip->selected = -1; - - for (i = 0; i < nsels; i++) { - ret = of_property_read_u32_index(np, "reg", i, &tmp); - if (ret) { - dev_err(dev, "could not retrieve reg property: %d\n", - ret); - return ret; - } - - if (tmp > NFC_MAX_CS) { - dev_err(dev, - "invalid reg value: %u (max CS = 7)\n", - tmp); - return -EINVAL; - } - - if (test_and_set_bit(tmp, &nfc->assigned_cs)) { - dev_err(dev, "CS %d already assigned\n", tmp); - return -EINVAL; - } - - chip->sels[i].cs = tmp; - - if (!of_property_read_u32_index(np, "allwinner,rb", i, &tmp) && - tmp < 2) { - chip->sels[i].rb.type = RB_NATIVE; - chip->sels[i].rb.info.nativeid = tmp; - } else { - ret = of_get_named_gpio(np, "rb-gpios", i); - if (ret >= 0) { - tmp = ret; - chip->sels[i].rb.type = RB_GPIO; - chip->sels[i].rb.info.gpio = tmp; - ret = devm_gpio_request(dev, tmp, "nand-rb"); - if (ret) - return ret; - - ret = gpio_direction_input(tmp); - if (ret) - return ret; - } else { - chip->sels[i].rb.type = RB_NONE; - } - } - } - - nand = &chip->nand; - /* Default tR value specified in the ONFI spec (chapter 4.15.1) */ - nand->chip_delay = 200; - nand->controller = &nfc->controller; - /* - * Set the ECC mode to the default value in case nothing is specified - * in the DT. - */ - nand->ecc.mode = NAND_ECC_HW; - nand_set_flash_node(nand, np); - nand->select_chip = sunxi_nfc_select_chip; - nand->cmd_ctrl = sunxi_nfc_cmd_ctrl; - nand->read_buf = sunxi_nfc_read_buf; - nand->write_buf = sunxi_nfc_write_buf; - nand->read_byte = sunxi_nfc_read_byte; - nand->setup_data_interface = sunxi_nfc_setup_data_interface; - - mtd = nand_to_mtd(nand); - mtd->dev.parent = dev; - - ret = nand_scan_ident(mtd, nsels, NULL); - if (ret) - return ret; - - if (nand->bbt_options & NAND_BBT_USE_FLASH) - nand->bbt_options |= NAND_BBT_NO_OOB; - - if (nand->options & NAND_NEED_SCRAMBLING) - nand->options |= NAND_NO_SUBPAGE_WRITE; - - nand->options |= NAND_SUBPAGE_READ; - - ret = sunxi_nand_ecc_init(mtd, &nand->ecc, np); - if (ret) { - dev_err(dev, "ECC init failed: %d\n", ret); - return ret; - } - - ret = nand_scan_tail(mtd); - if (ret) { - dev_err(dev, "nand_scan_tail failed: %d\n", ret); - return ret; - } - - ret = mtd_device_register(mtd, NULL, 0); - if (ret) { - dev_err(dev, "failed to register mtd device: %d\n", ret); - nand_release(mtd); - return ret; - } - - list_add_tail(&chip->node, &nfc->chips); - - return 0; -} - -static int sunxi_nand_chips_init(struct device *dev, struct sunxi_nfc *nfc) -{ - struct device_node *np = dev->of_node; - struct device_node *nand_np; - int nchips = of_get_child_count(np); - int ret; - - if (nchips > 8) { - dev_err(dev, "too many NAND chips: %d (max = 8)\n", nchips); - return -EINVAL; - } - - for_each_child_of_node(np, nand_np) { - ret = sunxi_nand_chip_init(dev, nfc, nand_np); - if (ret) { - of_node_put(nand_np); - return ret; - } - } - - return 0; -} - -static void sunxi_nand_chips_cleanup(struct sunxi_nfc *nfc) -{ - struct sunxi_nand_chip *chip; - - while (!list_empty(&nfc->chips)) { - chip = list_first_entry(&nfc->chips, struct sunxi_nand_chip, - node); - nand_release(nand_to_mtd(&chip->nand)); - sunxi_nand_ecc_cleanup(&chip->nand.ecc); - list_del(&chip->node); - } -} - -static int sunxi_nfc_probe(struct platform_device *pdev) -{ - struct device *dev = &pdev->dev; - struct resource *r; - struct sunxi_nfc *nfc; - int irq; - int ret; - - nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL); - if (!nfc) - return -ENOMEM; - - nfc->dev = dev; - nand_hw_control_init(&nfc->controller); - INIT_LIST_HEAD(&nfc->chips); - - r = platform_get_resource(pdev, IORESOURCE_MEM, 0); - nfc->regs = devm_ioremap_resource(dev, r); - if (IS_ERR(nfc->regs)) - return PTR_ERR(nfc->regs); - - irq = platform_get_irq(pdev, 0); - if (irq < 0) { - dev_err(dev, "failed to retrieve irq\n"); - return irq; - } - - nfc->ahb_clk = devm_clk_get(dev, "ahb"); - if (IS_ERR(nfc->ahb_clk)) { - dev_err(dev, "failed to retrieve ahb clk\n"); - return PTR_ERR(nfc->ahb_clk); - } - - ret = clk_prepare_enable(nfc->ahb_clk); - if (ret) - return ret; - - nfc->mod_clk = devm_clk_get(dev, "mod"); - if (IS_ERR(nfc->mod_clk)) { - dev_err(dev, "failed to retrieve mod clk\n"); - ret = PTR_ERR(nfc->mod_clk); - goto out_ahb_clk_unprepare; - } - - ret = clk_prepare_enable(nfc->mod_clk); - if (ret) - goto out_ahb_clk_unprepare; - - nfc->reset = devm_reset_control_get_optional_exclusive(dev, "ahb"); - if (IS_ERR(nfc->reset)) { - ret = PTR_ERR(nfc->reset); - goto out_mod_clk_unprepare; - } - - ret = reset_control_deassert(nfc->reset); - if (ret) { - dev_err(dev, "reset err %d\n", ret); - goto out_mod_clk_unprepare; - } - - ret = sunxi_nfc_rst(nfc); - if (ret) - goto out_ahb_reset_reassert; - - writel(0, nfc->regs + NFC_REG_INT); - ret = devm_request_irq(dev, irq, sunxi_nfc_interrupt, - 0, "sunxi-nand", nfc); - if (ret) - goto out_ahb_reset_reassert; - - nfc->dmac = dma_request_slave_channel(dev, "rxtx"); - if (nfc->dmac) { - struct dma_slave_config dmac_cfg = { }; - - dmac_cfg.src_addr = r->start + NFC_REG_IO_DATA; - dmac_cfg.dst_addr = dmac_cfg.src_addr; - dmac_cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; - dmac_cfg.dst_addr_width = dmac_cfg.src_addr_width; - dmac_cfg.src_maxburst = 4; - dmac_cfg.dst_maxburst = 4; - dmaengine_slave_config(nfc->dmac, &dmac_cfg); - } else { - dev_warn(dev, "failed to request rxtx DMA channel\n"); - } - - platform_set_drvdata(pdev, nfc); - - ret = sunxi_nand_chips_init(dev, nfc); - if (ret) { - dev_err(dev, "failed to init nand chips\n"); - goto out_release_dmac; - } - - return 0; - -out_release_dmac: - if (nfc->dmac) - dma_release_channel(nfc->dmac); -out_ahb_reset_reassert: - reset_control_assert(nfc->reset); -out_mod_clk_unprepare: - clk_disable_unprepare(nfc->mod_clk); -out_ahb_clk_unprepare: - clk_disable_unprepare(nfc->ahb_clk); - - return ret; -} - -static int sunxi_nfc_remove(struct platform_device *pdev) -{ - struct sunxi_nfc *nfc = platform_get_drvdata(pdev); - - sunxi_nand_chips_cleanup(nfc); - - reset_control_assert(nfc->reset); - - if (nfc->dmac) - dma_release_channel(nfc->dmac); - clk_disable_unprepare(nfc->mod_clk); - clk_disable_unprepare(nfc->ahb_clk); - - return 0; -} - -static const struct of_device_id sunxi_nfc_ids[] = { - { .compatible = "allwinner,sun4i-a10-nand" }, - { /* sentinel */ } -}; -MODULE_DEVICE_TABLE(of, sunxi_nfc_ids); - -static struct platform_driver sunxi_nfc_driver = { - .driver = { - .name = "sunxi_nand", - .of_match_table = sunxi_nfc_ids, - }, - .probe = sunxi_nfc_probe, - .remove = sunxi_nfc_remove, -}; -module_platform_driver(sunxi_nfc_driver); - -MODULE_LICENSE("GPL v2"); -MODULE_AUTHOR("Boris BREZILLON"); -MODULE_DESCRIPTION("Allwinner NAND Flash Controller driver"); -MODULE_ALIAS("platform:sunxi_nand"); diff --git a/drivers/mtd/nand/tango_nand.c b/drivers/mtd/nand/tango_nand.c deleted file mode 100644 index c5bee00b7f5e..000000000000 --- a/drivers/mtd/nand/tango_nand.c +++ /dev/null @@ -1,688 +0,0 @@ -/* - * Copyright (C) 2016 Sigma Designs - * - * This program is free software; you can redistribute it and/or - * modify it under the terms of the GNU General Public License - * version 2 as published by the Free Software Foundation. - */ - -#include -#include -#include -#include -#include -#include -#include -#include -#include - -/* Offsets relative to chip->base */ -#define PBUS_CMD 0 -#define PBUS_ADDR 4 -#define PBUS_DATA 8 - -/* Offsets relative to reg_base */ -#define NFC_STATUS 0x00 -#define NFC_FLASH_CMD 0x04 -#define NFC_DEVICE_CFG 0x08 -#define NFC_TIMING1 0x0c -#define NFC_TIMING2 0x10 -#define NFC_XFER_CFG 0x14 -#define NFC_PKT_0_CFG 0x18 -#define NFC_PKT_N_CFG 0x1c -#define NFC_BB_CFG 0x20 -#define NFC_ADDR_PAGE 0x24 -#define NFC_ADDR_OFFSET 0x28 -#define NFC_XFER_STATUS 0x2c - -/* NFC_STATUS values */ -#define CMD_READY BIT(31) - -/* NFC_FLASH_CMD values */ -#define NFC_READ 1 -#define NFC_WRITE 2 - -/* NFC_XFER_STATUS values */ -#define PAGE_IS_EMPTY BIT(16) - -/* Offsets relative to mem_base */ -#define METADATA 0x000 -#define ERROR_REPORT 0x1c0 - -/* - * Error reports are split in two bytes: - * byte 0 for the first packet in the page (PKT_0) - * byte 1 for other packets in the page (PKT_N, for N > 0) - * ERR_COUNT_PKT_N is the max error count over all but the first packet. - */ -#define ERR_COUNT_PKT_0(v) (((v) >> 0) & 0x3f) -#define ERR_COUNT_PKT_N(v) (((v) >> 8) & 0x3f) -#define DECODE_FAIL_PKT_0(v) (((v) & BIT(7)) == 0) -#define DECODE_FAIL_PKT_N(v) (((v) & BIT(15)) == 0) - -/* Offsets relative to pbus_base */ -#define PBUS_CS_CTRL 0x83c -#define PBUS_PAD_MODE 0x8f0 - -/* PBUS_CS_CTRL values */ -#define PBUS_IORDY BIT(31) - -/* - * PBUS_PAD_MODE values - * In raw mode, the driver communicates directly with the NAND chips. - * In NFC mode, the NAND Flash controller manages the communication. - * We use NFC mode for read and write; raw mode for everything else. - */ -#define MODE_RAW 0 -#define MODE_NFC BIT(31) - -#define METADATA_SIZE 4 -#define BBM_SIZE 6 -#define FIELD_ORDER 15 - -#define MAX_CS 4 - -struct tango_nfc { - struct nand_hw_control hw; - void __iomem *reg_base; - void __iomem *mem_base; - void __iomem *pbus_base; - struct tango_chip *chips[MAX_CS]; - struct dma_chan *chan; - int freq_kHz; -}; - -#define to_tango_nfc(ptr) container_of(ptr, struct tango_nfc, hw) - -struct tango_chip { - struct nand_chip nand_chip; - void __iomem *base; - u32 timing1; - u32 timing2; - u32 xfer_cfg; - u32 pkt_0_cfg; - u32 pkt_n_cfg; - u32 bb_cfg; -}; - -#define to_tango_chip(ptr) container_of(ptr, struct tango_chip, nand_chip) - -#define XFER_CFG(cs, page_count, steps, metadata_size) \ - ((cs) << 24 | (page_count) << 16 | (steps) << 8 | (metadata_size)) - -#define PKT_CFG(size, strength) ((size) << 16 | (strength)) - -#define BB_CFG(bb_offset, bb_size) ((bb_offset) << 16 | (bb_size)) - -#define TIMING(t0, t1, t2, t3) ((t0) << 24 | (t1) << 16 | (t2) << 8 | (t3)) - -static void tango_cmd_ctrl(struct mtd_info *mtd, int dat, unsigned int ctrl) -{ - struct tango_chip *tchip = to_tango_chip(mtd_to_nand(mtd)); - - if (ctrl & NAND_CLE) - writeb_relaxed(dat, tchip->base + PBUS_CMD); - - if (ctrl & NAND_ALE) - writeb_relaxed(dat, tchip->base + PBUS_ADDR); -} - -static int tango_dev_ready(struct mtd_info *mtd) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct tango_nfc *nfc = to_tango_nfc(chip->controller); - - return readl_relaxed(nfc->pbus_base + PBUS_CS_CTRL) & PBUS_IORDY; -} - -static u8 tango_read_byte(struct mtd_info *mtd) -{ - struct tango_chip *tchip = to_tango_chip(mtd_to_nand(mtd)); - - return readb_relaxed(tchip->base + PBUS_DATA); -} - -static void tango_read_buf(struct mtd_info *mtd, u8 *buf, int len) -{ - struct tango_chip *tchip = to_tango_chip(mtd_to_nand(mtd)); - - ioread8_rep(tchip->base + PBUS_DATA, buf, len); -} - -static void tango_write_buf(struct mtd_info *mtd, const u8 *buf, int len) -{ - struct tango_chip *tchip = to_tango_chip(mtd_to_nand(mtd)); - - iowrite8_rep(tchip->base + PBUS_DATA, buf, len); -} - -static void tango_select_chip(struct mtd_info *mtd, int idx) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct tango_nfc *nfc = to_tango_nfc(chip->controller); - struct tango_chip *tchip = to_tango_chip(chip); - - if (idx < 0) - return; /* No "chip unselect" function */ - - writel_relaxed(tchip->timing1, nfc->reg_base + NFC_TIMING1); - writel_relaxed(tchip->timing2, nfc->reg_base + NFC_TIMING2); - writel_relaxed(tchip->xfer_cfg, nfc->reg_base + NFC_XFER_CFG); - writel_relaxed(tchip->pkt_0_cfg, nfc->reg_base + NFC_PKT_0_CFG); - writel_relaxed(tchip->pkt_n_cfg, nfc->reg_base + NFC_PKT_N_CFG); - writel_relaxed(tchip->bb_cfg, nfc->reg_base + NFC_BB_CFG); -} - -/* - * The controller does not check for bitflips in erased pages, - * therefore software must check instead. - */ -static int check_erased_page(struct nand_chip *chip, u8 *buf) -{ - struct mtd_info *mtd = nand_to_mtd(chip); - u8 *meta = chip->oob_poi + BBM_SIZE; - u8 *ecc = chip->oob_poi + BBM_SIZE + METADATA_SIZE; - const int ecc_size = chip->ecc.bytes; - const int pkt_size = chip->ecc.size; - int i, res, meta_len, bitflips = 0; - - for (i = 0; i < chip->ecc.steps; ++i) { - meta_len = i ? 0 : METADATA_SIZE; - res = nand_check_erased_ecc_chunk(buf, pkt_size, ecc, ecc_size, - meta, meta_len, - chip->ecc.strength); - if (res < 0) - mtd->ecc_stats.failed++; - else - mtd->ecc_stats.corrected += res; - - bitflips = max(res, bitflips); - buf += pkt_size; - ecc += ecc_size; - } - - return bitflips; -} - -static int decode_error_report(struct nand_chip *chip) -{ - u32 status, res; - struct mtd_info *mtd = nand_to_mtd(chip); - struct tango_nfc *nfc = to_tango_nfc(chip->controller); - - status = readl_relaxed(nfc->reg_base + NFC_XFER_STATUS); - if (status & PAGE_IS_EMPTY) - return 0; - - res = readl_relaxed(nfc->mem_base + ERROR_REPORT); - - if (DECODE_FAIL_PKT_0(res) || DECODE_FAIL_PKT_N(res)) - return -EBADMSG; - - /* ERR_COUNT_PKT_N is max, not sum, but that's all we have */ - mtd->ecc_stats.corrected += - ERR_COUNT_PKT_0(res) + ERR_COUNT_PKT_N(res); - - return max(ERR_COUNT_PKT_0(res), ERR_COUNT_PKT_N(res)); -} - -static void tango_dma_callback(void *arg) -{ - complete(arg); -} - -static int do_dma(struct tango_nfc *nfc, enum dma_data_direction dir, int cmd, - const void *buf, int len, int page) -{ - void __iomem *addr = nfc->reg_base + NFC_STATUS; - struct dma_chan *chan = nfc->chan; - struct dma_async_tx_descriptor *desc; - enum dma_transfer_direction tdir; - struct scatterlist sg; - struct completion tx_done; - int err = -EIO; - u32 res, val; - - sg_init_one(&sg, buf, len); - if (dma_map_sg(chan->device->dev, &sg, 1, dir) != 1) - return -EIO; - - tdir = dir == DMA_TO_DEVICE ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM; - desc = dmaengine_prep_slave_sg(chan, &sg, 1, tdir, DMA_PREP_INTERRUPT); - if (!desc) - goto dma_unmap; - - desc->callback = tango_dma_callback; - desc->callback_param = &tx_done; - init_completion(&tx_done); - - writel_relaxed(MODE_NFC, nfc->pbus_base + PBUS_PAD_MODE); - - writel_relaxed(page, nfc->reg_base + NFC_ADDR_PAGE); - writel_relaxed(0, nfc->reg_base + NFC_ADDR_OFFSET); - writel_relaxed(cmd, nfc->reg_base + NFC_FLASH_CMD); - - dmaengine_submit(desc); - dma_async_issue_pending(chan); - - res = wait_for_completion_timeout(&tx_done, HZ); - if (res > 0) - err = readl_poll_timeout(addr, val, val & CMD_READY, 0, 1000); - - writel_relaxed(MODE_RAW, nfc->pbus_base + PBUS_PAD_MODE); - -dma_unmap: - dma_unmap_sg(chan->device->dev, &sg, 1, dir); - - return err; -} - -static int tango_read_page(struct mtd_info *mtd, struct nand_chip *chip, - u8 *buf, int oob_required, int page) -{ - struct tango_nfc *nfc = to_tango_nfc(chip->controller); - int err, res, len = mtd->writesize; - - if (oob_required) - chip->ecc.read_oob(mtd, chip, page); - - err = do_dma(nfc, DMA_FROM_DEVICE, NFC_READ, buf, len, page); - if (err) - return err; - - res = decode_error_report(chip); - if (res < 0) { - chip->ecc.read_oob_raw(mtd, chip, page); - res = check_erased_page(chip, buf); - } - - return res; -} - -static int tango_write_page(struct mtd_info *mtd, struct nand_chip *chip, - const u8 *buf, int oob_required, int page) -{ - struct tango_nfc *nfc = to_tango_nfc(chip->controller); - int err, status, len = mtd->writesize; - - /* Calling tango_write_oob() would send PAGEPROG twice */ - if (oob_required) - return -ENOTSUPP; - - writel_relaxed(0xffffffff, nfc->mem_base + METADATA); - err = do_dma(nfc, DMA_TO_DEVICE, NFC_WRITE, buf, len, page); - if (err) - return err; - - status = chip->waitfunc(mtd, chip); - if (status & NAND_STATUS_FAIL) - return -EIO; - - return 0; -} - -static void aux_read(struct nand_chip *chip, u8 **buf, int len, int *pos) -{ - struct mtd_info *mtd = nand_to_mtd(chip); - - *pos += len; - - if (!*buf) { - /* skip over "len" bytes */ - nand_change_read_column_op(chip, *pos, NULL, 0, false); - } else { - tango_read_buf(mtd, *buf, len); - *buf += len; - } -} - -static void aux_write(struct nand_chip *chip, const u8 **buf, int len, int *pos) -{ - struct mtd_info *mtd = nand_to_mtd(chip); - - *pos += len; - - if (!*buf) { - /* skip over "len" bytes */ - nand_change_write_column_op(chip, *pos, NULL, 0, false); - } else { - tango_write_buf(mtd, *buf, len); - *buf += len; - } -} - -/* - * Physical page layout (not drawn to scale) - * - * NB: Bad Block Marker area splits PKT_N in two (N1, N2). - * - * +---+-----------------+-------+-----+-----------+-----+----+-------+ - * | M | PKT_0 | ECC_0 | ... | N1 | BBM | N2 | ECC_N | - * +---+-----------------+-------+-----+-----------+-----+----+-------+ - * - * Logical page layout: - * - * +-----+---+-------+-----+-------+ - * oob = | BBM | M | ECC_0 | ... | ECC_N | - * +-----+---+-------+-----+-------+ - * - * +-----------------+-----+-----------------+ - * buf = | PKT_0 | ... | PKT_N | - * +-----------------+-----+-----------------+ - */ -static void raw_read(struct nand_chip *chip, u8 *buf, u8 *oob) -{ - struct mtd_info *mtd = nand_to_mtd(chip); - u8 *oob_orig = oob; - const int page_size = mtd->writesize; - const int ecc_size = chip->ecc.bytes; - const int pkt_size = chip->ecc.size; - int pos = 0; /* position within physical page */ - int rem = page_size; /* bytes remaining until BBM area */ - - if (oob) - oob += BBM_SIZE; - - aux_read(chip, &oob, METADATA_SIZE, &pos); - - while (rem > pkt_size) { - aux_read(chip, &buf, pkt_size, &pos); - aux_read(chip, &oob, ecc_size, &pos); - rem = page_size - pos; - } - - aux_read(chip, &buf, rem, &pos); - aux_read(chip, &oob_orig, BBM_SIZE, &pos); - aux_read(chip, &buf, pkt_size - rem, &pos); - aux_read(chip, &oob, ecc_size, &pos); -} - -static void raw_write(struct nand_chip *chip, const u8 *buf, const u8 *oob) -{ - struct mtd_info *mtd = nand_to_mtd(chip); - const u8 *oob_orig = oob; - const int page_size = mtd->writesize; - const int ecc_size = chip->ecc.bytes; - const int pkt_size = chip->ecc.size; - int pos = 0; /* position within physical page */ - int rem = page_size; /* bytes remaining until BBM area */ - - if (oob) - oob += BBM_SIZE; - - aux_write(chip, &oob, METADATA_SIZE, &pos); - - while (rem > pkt_size) { - aux_write(chip, &buf, pkt_size, &pos); - aux_write(chip, &oob, ecc_size, &pos); - rem = page_size - pos; - } - - aux_write(chip, &buf, rem, &pos); - aux_write(chip, &oob_orig, BBM_SIZE, &pos); - aux_write(chip, &buf, pkt_size - rem, &pos); - aux_write(chip, &oob, ecc_size, &pos); -} - -static int tango_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip, - u8 *buf, int oob_required, int page) -{ - nand_read_page_op(chip, page, 0, NULL, 0); - raw_read(chip, buf, chip->oob_poi); - return 0; -} - -static int tango_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip, - const u8 *buf, int oob_required, int page) -{ - nand_prog_page_begin_op(chip, page, 0, NULL, 0); - raw_write(chip, buf, chip->oob_poi); - return nand_prog_page_end_op(chip); -} - -static int tango_read_oob(struct mtd_info *mtd, struct nand_chip *chip, - int page) -{ - nand_read_page_op(chip, page, 0, NULL, 0); - raw_read(chip, NULL, chip->oob_poi); - return 0; -} - -static int tango_write_oob(struct mtd_info *mtd, struct nand_chip *chip, - int page) -{ - nand_prog_page_begin_op(chip, page, 0, NULL, 0); - raw_write(chip, NULL, chip->oob_poi); - return nand_prog_page_end_op(chip); -} - -static int oob_ecc(struct mtd_info *mtd, int idx, struct mtd_oob_region *res) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct nand_ecc_ctrl *ecc = &chip->ecc; - - if (idx >= ecc->steps) - return -ERANGE; - - res->offset = BBM_SIZE + METADATA_SIZE + ecc->bytes * idx; - res->length = ecc->bytes; - - return 0; -} - -static int oob_free(struct mtd_info *mtd, int idx, struct mtd_oob_region *res) -{ - return -ERANGE; /* no free space in spare area */ -} - -static const struct mtd_ooblayout_ops tango_nand_ooblayout_ops = { - .ecc = oob_ecc, - .free = oob_free, -}; - -static u32 to_ticks(int kHz, int ps) -{ - return DIV_ROUND_UP_ULL((u64)kHz * ps, NSEC_PER_SEC); -} - -static int tango_set_timings(struct mtd_info *mtd, int csline, - const struct nand_data_interface *conf) -{ - const struct nand_sdr_timings *sdr = nand_get_sdr_timings(conf); - struct nand_chip *chip = mtd_to_nand(mtd); - struct tango_nfc *nfc = to_tango_nfc(chip->controller); - struct tango_chip *tchip = to_tango_chip(chip); - u32 Trdy, Textw, Twc, Twpw, Tacc, Thold, Trpw, Textr; - int kHz = nfc->freq_kHz; - - if (IS_ERR(sdr)) - return PTR_ERR(sdr); - - if (csline == NAND_DATA_IFACE_CHECK_ONLY) - return 0; - - Trdy = to_ticks(kHz, sdr->tCEA_max - sdr->tREA_max); - Textw = to_ticks(kHz, sdr->tWB_max); - Twc = to_ticks(kHz, sdr->tWC_min); - Twpw = to_ticks(kHz, sdr->tWC_min - sdr->tWP_min); - - Tacc = to_ticks(kHz, sdr->tREA_max); - Thold = to_ticks(kHz, sdr->tREH_min); - Trpw = to_ticks(kHz, sdr->tRC_min - sdr->tREH_min); - Textr = to_ticks(kHz, sdr->tRHZ_max); - - tchip->timing1 = TIMING(Trdy, Textw, Twc, Twpw); - tchip->timing2 = TIMING(Tacc, Thold, Trpw, Textr); - - return 0; -} - -static int chip_init(struct device *dev, struct device_node *np) -{ - u32 cs; - int err, res; - struct mtd_info *mtd; - struct nand_chip *chip; - struct tango_chip *tchip; - struct nand_ecc_ctrl *ecc; - struct tango_nfc *nfc = dev_get_drvdata(dev); - - tchip = devm_kzalloc(dev, sizeof(*tchip), GFP_KERNEL); - if (!tchip) - return -ENOMEM; - - res = of_property_count_u32_elems(np, "reg"); - if (res < 0) - return res; - - if (res != 1) - return -ENOTSUPP; /* Multi-CS chips are not supported */ - - err = of_property_read_u32_index(np, "reg", 0, &cs); - if (err) - return err; - - if (cs >= MAX_CS) - return -EINVAL; - - chip = &tchip->nand_chip; - ecc = &chip->ecc; - mtd = nand_to_mtd(chip); - - chip->read_byte = tango_read_byte; - chip->write_buf = tango_write_buf; - chip->read_buf = tango_read_buf; - chip->select_chip = tango_select_chip; - chip->cmd_ctrl = tango_cmd_ctrl; - chip->dev_ready = tango_dev_ready; - chip->setup_data_interface = tango_set_timings; - chip->options = NAND_USE_BOUNCE_BUFFER | - NAND_NO_SUBPAGE_WRITE | - NAND_WAIT_TCCS; - chip->controller = &nfc->hw; - tchip->base = nfc->pbus_base + (cs * 256); - - nand_set_flash_node(chip, np); - mtd_set_ooblayout(mtd, &tango_nand_ooblayout_ops); - mtd->dev.parent = dev; - - err = nand_scan_ident(mtd, 1, NULL); - if (err) - return err; - - ecc->mode = NAND_ECC_HW; - ecc->algo = NAND_ECC_BCH; - ecc->bytes = DIV_ROUND_UP(ecc->strength * FIELD_ORDER, BITS_PER_BYTE); - - ecc->read_page_raw = tango_read_page_raw; - ecc->write_page_raw = tango_write_page_raw; - ecc->read_page = tango_read_page; - ecc->write_page = tango_write_page; - ecc->read_oob = tango_read_oob; - ecc->write_oob = tango_write_oob; - - err = nand_scan_tail(mtd); - if (err) - return err; - - tchip->xfer_cfg = XFER_CFG(cs, 1, ecc->steps, METADATA_SIZE); - tchip->pkt_0_cfg = PKT_CFG(ecc->size + METADATA_SIZE, ecc->strength); - tchip->pkt_n_cfg = PKT_CFG(ecc->size, ecc->strength); - tchip->bb_cfg = BB_CFG(mtd->writesize, BBM_SIZE); - - err = mtd_device_register(mtd, NULL, 0); - if (err) - return err; - - nfc->chips[cs] = tchip; - - return 0; -} - -static int tango_nand_remove(struct platform_device *pdev) -{ - int cs; - struct tango_nfc *nfc = platform_get_drvdata(pdev); - - dma_release_channel(nfc->chan); - - for (cs = 0; cs < MAX_CS; ++cs) { - if (nfc->chips[cs]) - nand_release(nand_to_mtd(&nfc->chips[cs]->nand_chip)); - } - - return 0; -} - -static int tango_nand_probe(struct platform_device *pdev) -{ - int err; - struct clk *clk; - struct resource *res; - struct tango_nfc *nfc; - struct device_node *np; - - nfc = devm_kzalloc(&pdev->dev, sizeof(*nfc), GFP_KERNEL); - if (!nfc) - return -ENOMEM; - - res = platform_get_resource(pdev, IORESOURCE_MEM, 0); - nfc->reg_base = devm_ioremap_resource(&pdev->dev, res); - if (IS_ERR(nfc->reg_base)) - return PTR_ERR(nfc->reg_base); - - res = platform_get_resource(pdev, IORESOURCE_MEM, 1); - nfc->mem_base = devm_ioremap_resource(&pdev->dev, res); - if (IS_ERR(nfc->mem_base)) - return PTR_ERR(nfc->mem_base); - - res = platform_get_resource(pdev, IORESOURCE_MEM, 2); - nfc->pbus_base = devm_ioremap_resource(&pdev->dev, res); - if (IS_ERR(nfc->pbus_base)) - return PTR_ERR(nfc->pbus_base); - - writel_relaxed(MODE_RAW, nfc->pbus_base + PBUS_PAD_MODE); - - clk = clk_get(&pdev->dev, NULL); - if (IS_ERR(clk)) - return PTR_ERR(clk); - - nfc->chan = dma_request_chan(&pdev->dev, "rxtx"); - if (IS_ERR(nfc->chan)) - return PTR_ERR(nfc->chan); - - platform_set_drvdata(pdev, nfc); - nand_hw_control_init(&nfc->hw); - nfc->freq_kHz = clk_get_rate(clk) / 1000; - - for_each_child_of_node(pdev->dev.of_node, np) { - err = chip_init(&pdev->dev, np); - if (err) { - tango_nand_remove(pdev); - return err; - } - } - - return 0; -} - -static const struct of_device_id tango_nand_ids[] = { - { .compatible = "sigma,smp8758-nand" }, - { /* sentinel */ } -}; -MODULE_DEVICE_TABLE(of, tango_nand_ids); - -static struct platform_driver tango_nand_driver = { - .probe = tango_nand_probe, - .remove = tango_nand_remove, - .driver = { - .name = "tango-nand", - .of_match_table = tango_nand_ids, - }, -}; - -module_platform_driver(tango_nand_driver); - -MODULE_LICENSE("GPL"); -MODULE_AUTHOR("Sigma Designs"); -MODULE_DESCRIPTION("Tango4 NAND Flash controller driver"); diff --git a/drivers/mtd/nand/tmio_nand.c b/drivers/mtd/nand/tmio_nand.c deleted file mode 100644 index dcaa924502de..000000000000 --- a/drivers/mtd/nand/tmio_nand.c +++ /dev/null @@ -1,513 +0,0 @@ -/* - * Toshiba TMIO NAND flash controller driver - * - * Slightly murky pre-git history of the driver: - * - * Copyright (c) Ian Molton 2004, 2005, 2008 - * Original work, independent of sharps code. Included hardware ECC support. - * Hard ECC did not work for writes in the early revisions. - * Copyright (c) Dirk Opfer 2005. - * Modifications developed from sharps code but - * NOT containing any, ported onto Ians base. - * Copyright (c) Chris Humbert 2005 - * Copyright (c) Dmitry Baryshkov 2008 - * Minor fixes - * - * Parts copyright Sebastian Carlier - * - * This file is licensed under - * the terms of the GNU General Public License version 2. This program - * is licensed "as is" without any warranty of any kind, whether express - * or implied. - * - */ - - -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include - -/*--------------------------------------------------------------------------*/ - -/* - * NAND Flash Host Controller Configuration Register - */ -#define CCR_COMMAND 0x04 /* w Command */ -#define CCR_BASE 0x10 /* l NAND Flash Control Reg Base Addr */ -#define CCR_INTP 0x3d /* b Interrupt Pin */ -#define CCR_INTE 0x48 /* b Interrupt Enable */ -#define CCR_EC 0x4a /* b Event Control */ -#define CCR_ICC 0x4c /* b Internal Clock Control */ -#define CCR_ECCC 0x5b /* b ECC Control */ -#define CCR_NFTC 0x60 /* b NAND Flash Transaction Control */ -#define CCR_NFM 0x61 /* b NAND Flash Monitor */ -#define CCR_NFPSC 0x62 /* b NAND Flash Power Supply Control */ -#define CCR_NFDC 0x63 /* b NAND Flash Detect Control */ - -/* - * NAND Flash Control Register - */ -#define FCR_DATA 0x00 /* bwl Data Register */ -#define FCR_MODE 0x04 /* b Mode Register */ -#define FCR_STATUS 0x05 /* b Status Register */ -#define FCR_ISR 0x06 /* b Interrupt Status Register */ -#define FCR_IMR 0x07 /* b Interrupt Mask Register */ - -/* FCR_MODE Register Command List */ -#define FCR_MODE_DATA 0x94 /* Data Data_Mode */ -#define FCR_MODE_COMMAND 0x95 /* Data Command_Mode */ -#define FCR_MODE_ADDRESS 0x96 /* Data Address_Mode */ - -#define FCR_MODE_HWECC_CALC 0xB4 /* HW-ECC Data */ -#define FCR_MODE_HWECC_RESULT 0xD4 /* HW-ECC Calc result Read_Mode */ -#define FCR_MODE_HWECC_RESET 0xF4 /* HW-ECC Reset */ - -#define FCR_MODE_POWER_ON 0x0C /* Power Supply ON to SSFDC card */ -#define FCR_MODE_POWER_OFF 0x08 /* Power Supply OFF to SSFDC card */ - -#define FCR_MODE_LED_OFF 0x00 /* LED OFF */ -#define FCR_MODE_LED_ON 0x04 /* LED ON */ - -#define FCR_MODE_EJECT_ON 0x68 /* Ejection events active */ -#define FCR_MODE_EJECT_OFF 0x08 /* Ejection events ignored */ - -#define FCR_MODE_LOCK 0x6C /* Lock_Mode. Eject Switch Invalid */ -#define FCR_MODE_UNLOCK 0x0C /* UnLock_Mode. Eject Switch is valid */ - -#define FCR_MODE_CONTROLLER_ID 0x40 /* Controller ID Read */ -#define FCR_MODE_STANDBY 0x00 /* SSFDC card Changes Standby State */ - -#define FCR_MODE_WE 0x80 -#define FCR_MODE_ECC1 0x40 -#define FCR_MODE_ECC0 0x20 -#define FCR_MODE_CE 0x10 -#define FCR_MODE_PCNT1 0x08 -#define FCR_MODE_PCNT0 0x04 -#define FCR_MODE_ALE 0x02 -#define FCR_MODE_CLE 0x01 - -#define FCR_STATUS_BUSY 0x80 - -/*--------------------------------------------------------------------------*/ - -struct tmio_nand { - struct nand_chip chip; - - struct platform_device *dev; - - void __iomem *ccr; - void __iomem *fcr; - unsigned long fcr_base; - - unsigned int irq; - - /* for tmio_nand_read_byte */ - u8 read; - unsigned read_good:1; -}; - -static inline struct tmio_nand *mtd_to_tmio(struct mtd_info *mtd) -{ - return container_of(mtd_to_nand(mtd), struct tmio_nand, chip); -} - - -/*--------------------------------------------------------------------------*/ - -static void tmio_nand_hwcontrol(struct mtd_info *mtd, int cmd, - unsigned int ctrl) -{ - struct tmio_nand *tmio = mtd_to_tmio(mtd); - struct nand_chip *chip = mtd_to_nand(mtd); - - if (ctrl & NAND_CTRL_CHANGE) { - u8 mode; - - if (ctrl & NAND_NCE) { - mode = FCR_MODE_DATA; - - if (ctrl & NAND_CLE) - mode |= FCR_MODE_CLE; - else - mode &= ~FCR_MODE_CLE; - - if (ctrl & NAND_ALE) - mode |= FCR_MODE_ALE; - else - mode &= ~FCR_MODE_ALE; - } else { - mode = FCR_MODE_STANDBY; - } - - tmio_iowrite8(mode, tmio->fcr + FCR_MODE); - tmio->read_good = 0; - } - - if (cmd != NAND_CMD_NONE) - tmio_iowrite8(cmd, chip->IO_ADDR_W); -} - -static int tmio_nand_dev_ready(struct mtd_info *mtd) -{ - struct tmio_nand *tmio = mtd_to_tmio(mtd); - - return !(tmio_ioread8(tmio->fcr + FCR_STATUS) & FCR_STATUS_BUSY); -} - -static irqreturn_t tmio_irq(int irq, void *__tmio) -{ - struct tmio_nand *tmio = __tmio; - struct nand_chip *nand_chip = &tmio->chip; - - /* disable RDYREQ interrupt */ - tmio_iowrite8(0x00, tmio->fcr + FCR_IMR); - - if (unlikely(!waitqueue_active(&nand_chip->controller->wq))) - dev_warn(&tmio->dev->dev, "spurious interrupt\n"); - - wake_up(&nand_chip->controller->wq); - return IRQ_HANDLED; -} - -/* - *The TMIO core has a RDYREQ interrupt on the posedge of #SMRB. - *This interrupt is normally disabled, but for long operations like - *erase and write, we enable it to wake us up. The irq handler - *disables the interrupt. - */ -static int -tmio_nand_wait(struct mtd_info *mtd, struct nand_chip *nand_chip) -{ - struct tmio_nand *tmio = mtd_to_tmio(mtd); - long timeout; - u8 status; - - /* enable RDYREQ interrupt */ - tmio_iowrite8(0x0f, tmio->fcr + FCR_ISR); - tmio_iowrite8(0x81, tmio->fcr + FCR_IMR); - - timeout = wait_event_timeout(nand_chip->controller->wq, - tmio_nand_dev_ready(mtd), - msecs_to_jiffies(nand_chip->state == FL_ERASING ? 400 : 20)); - - if (unlikely(!tmio_nand_dev_ready(mtd))) { - tmio_iowrite8(0x00, tmio->fcr + FCR_IMR); - dev_warn(&tmio->dev->dev, "still busy with %s after %d ms\n", - nand_chip->state == FL_ERASING ? "erase" : "program", - nand_chip->state == FL_ERASING ? 400 : 20); - - } else if (unlikely(!timeout)) { - tmio_iowrite8(0x00, tmio->fcr + FCR_IMR); - dev_warn(&tmio->dev->dev, "timeout waiting for interrupt\n"); - } - - nand_status_op(nand_chip, &status); - return status; -} - -/* - *The TMIO controller combines two 8-bit data bytes into one 16-bit - *word. This function separates them so nand_base.c works as expected, - *especially its NAND_CMD_READID routines. - * - *To prevent stale data from being read, tmio_nand_hwcontrol() clears - *tmio->read_good. - */ -static u_char tmio_nand_read_byte(struct mtd_info *mtd) -{ - struct tmio_nand *tmio = mtd_to_tmio(mtd); - unsigned int data; - - if (tmio->read_good--) - return tmio->read; - - data = tmio_ioread16(tmio->fcr + FCR_DATA); - tmio->read = data >> 8; - return data; -} - -/* - *The TMIO controller converts an 8-bit NAND interface to a 16-bit - *bus interface, so all data reads and writes must be 16-bit wide. - *Thus, we implement 16-bit versions of the read, write, and verify - *buffer functions. - */ -static void -tmio_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len) -{ - struct tmio_nand *tmio = mtd_to_tmio(mtd); - - tmio_iowrite16_rep(tmio->fcr + FCR_DATA, buf, len >> 1); -} - -static void tmio_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len) -{ - struct tmio_nand *tmio = mtd_to_tmio(mtd); - - tmio_ioread16_rep(tmio->fcr + FCR_DATA, buf, len >> 1); -} - -static void tmio_nand_enable_hwecc(struct mtd_info *mtd, int mode) -{ - struct tmio_nand *tmio = mtd_to_tmio(mtd); - - tmio_iowrite8(FCR_MODE_HWECC_RESET, tmio->fcr + FCR_MODE); - tmio_ioread8(tmio->fcr + FCR_DATA); /* dummy read */ - tmio_iowrite8(FCR_MODE_HWECC_CALC, tmio->fcr + FCR_MODE); -} - -static int tmio_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, - u_char *ecc_code) -{ - struct tmio_nand *tmio = mtd_to_tmio(mtd); - unsigned int ecc; - - tmio_iowrite8(FCR_MODE_HWECC_RESULT, tmio->fcr + FCR_MODE); - - ecc = tmio_ioread16(tmio->fcr + FCR_DATA); - ecc_code[1] = ecc; /* 000-255 LP7-0 */ - ecc_code[0] = ecc >> 8; /* 000-255 LP15-8 */ - ecc = tmio_ioread16(tmio->fcr + FCR_DATA); - ecc_code[2] = ecc; /* 000-255 CP5-0,11b */ - ecc_code[4] = ecc >> 8; /* 256-511 LP7-0 */ - ecc = tmio_ioread16(tmio->fcr + FCR_DATA); - ecc_code[3] = ecc; /* 256-511 LP15-8 */ - ecc_code[5] = ecc >> 8; /* 256-511 CP5-0,11b */ - - tmio_iowrite8(FCR_MODE_DATA, tmio->fcr + FCR_MODE); - return 0; -} - -static int tmio_nand_correct_data(struct mtd_info *mtd, unsigned char *buf, - unsigned char *read_ecc, unsigned char *calc_ecc) -{ - int r0, r1; - - /* assume ecc.size = 512 and ecc.bytes = 6 */ - r0 = __nand_correct_data(buf, read_ecc, calc_ecc, 256); - if (r0 < 0) - return r0; - r1 = __nand_correct_data(buf + 256, read_ecc + 3, calc_ecc + 3, 256); - if (r1 < 0) - return r1; - return r0 + r1; -} - -static int tmio_hw_init(struct platform_device *dev, struct tmio_nand *tmio) -{ - const struct mfd_cell *cell = mfd_get_cell(dev); - int ret; - - if (cell->enable) { - ret = cell->enable(dev); - if (ret) - return ret; - } - - /* (4Ch) CLKRUN Enable 1st spcrunc */ - tmio_iowrite8(0x81, tmio->ccr + CCR_ICC); - - /* (10h)BaseAddress 0x1000 spba.spba2 */ - tmio_iowrite16(tmio->fcr_base, tmio->ccr + CCR_BASE); - tmio_iowrite16(tmio->fcr_base >> 16, tmio->ccr + CCR_BASE + 2); - - /* (04h)Command Register I/O spcmd */ - tmio_iowrite8(0x02, tmio->ccr + CCR_COMMAND); - - /* (62h) Power Supply Control ssmpwc */ - /* HardPowerOFF - SuspendOFF - PowerSupplyWait_4MS */ - tmio_iowrite8(0x02, tmio->ccr + CCR_NFPSC); - - /* (63h) Detect Control ssmdtc */ - tmio_iowrite8(0x02, tmio->ccr + CCR_NFDC); - - /* Interrupt status register clear sintst */ - tmio_iowrite8(0x0f, tmio->fcr + FCR_ISR); - - /* After power supply, Media are reset smode */ - tmio_iowrite8(FCR_MODE_POWER_ON, tmio->fcr + FCR_MODE); - tmio_iowrite8(FCR_MODE_COMMAND, tmio->fcr + FCR_MODE); - tmio_iowrite8(NAND_CMD_RESET, tmio->fcr + FCR_DATA); - - /* Standby Mode smode */ - tmio_iowrite8(FCR_MODE_STANDBY, tmio->fcr + FCR_MODE); - - mdelay(5); - - return 0; -} - -static void tmio_hw_stop(struct platform_device *dev, struct tmio_nand *tmio) -{ - const struct mfd_cell *cell = mfd_get_cell(dev); - - tmio_iowrite8(FCR_MODE_POWER_OFF, tmio->fcr + FCR_MODE); - if (cell->disable) - cell->disable(dev); -} - -static int tmio_probe(struct platform_device *dev) -{ - struct tmio_nand_data *data = dev_get_platdata(&dev->dev); - struct resource *fcr = platform_get_resource(dev, - IORESOURCE_MEM, 0); - struct resource *ccr = platform_get_resource(dev, - IORESOURCE_MEM, 1); - int irq = platform_get_irq(dev, 0); - struct tmio_nand *tmio; - struct mtd_info *mtd; - struct nand_chip *nand_chip; - int retval; - - if (data == NULL) - dev_warn(&dev->dev, "NULL platform data!\n"); - - tmio = devm_kzalloc(&dev->dev, sizeof(*tmio), GFP_KERNEL); - if (!tmio) - return -ENOMEM; - - tmio->dev = dev; - - platform_set_drvdata(dev, tmio); - nand_chip = &tmio->chip; - mtd = nand_to_mtd(nand_chip); - mtd->name = "tmio-nand"; - mtd->dev.parent = &dev->dev; - - tmio->ccr = devm_ioremap(&dev->dev, ccr->start, resource_size(ccr)); - if (!tmio->ccr) - return -EIO; - - tmio->fcr_base = fcr->start & 0xfffff; - tmio->fcr = devm_ioremap(&dev->dev, fcr->start, resource_size(fcr)); - if (!tmio->fcr) - return -EIO; - - retval = tmio_hw_init(dev, tmio); - if (retval) - return retval; - - /* Set address of NAND IO lines */ - nand_chip->IO_ADDR_R = tmio->fcr; - nand_chip->IO_ADDR_W = tmio->fcr; - - /* Set address of hardware control function */ - nand_chip->cmd_ctrl = tmio_nand_hwcontrol; - nand_chip->dev_ready = tmio_nand_dev_ready; - nand_chip->read_byte = tmio_nand_read_byte; - nand_chip->write_buf = tmio_nand_write_buf; - nand_chip->read_buf = tmio_nand_read_buf; - - /* set eccmode using hardware ECC */ - nand_chip->ecc.mode = NAND_ECC_HW; - nand_chip->ecc.size = 512; - nand_chip->ecc.bytes = 6; - nand_chip->ecc.strength = 2; - nand_chip->ecc.hwctl = tmio_nand_enable_hwecc; - nand_chip->ecc.calculate = tmio_nand_calculate_ecc; - nand_chip->ecc.correct = tmio_nand_correct_data; - - if (data) - nand_chip->badblock_pattern = data->badblock_pattern; - - /* 15 us command delay time */ - nand_chip->chip_delay = 15; - - retval = devm_request_irq(&dev->dev, irq, &tmio_irq, 0, - dev_name(&dev->dev), tmio); - if (retval) { - dev_err(&dev->dev, "request_irq error %d\n", retval); - goto err_irq; - } - - tmio->irq = irq; - nand_chip->waitfunc = tmio_nand_wait; - - /* Scan to find existence of the device */ - retval = nand_scan(mtd, 1); - if (retval) - goto err_irq; - - /* Register the partitions */ - retval = mtd_device_parse_register(mtd, - data ? data->part_parsers : NULL, - NULL, - data ? data->partition : NULL, - data ? data->num_partitions : 0); - if (!retval) - return retval; - - nand_release(mtd); - -err_irq: - tmio_hw_stop(dev, tmio); - return retval; -} - -static int tmio_remove(struct platform_device *dev) -{ - struct tmio_nand *tmio = platform_get_drvdata(dev); - - nand_release(nand_to_mtd(&tmio->chip)); - tmio_hw_stop(dev, tmio); - return 0; -} - -#ifdef CONFIG_PM -static int tmio_suspend(struct platform_device *dev, pm_message_t state) -{ - const struct mfd_cell *cell = mfd_get_cell(dev); - - if (cell->suspend) - cell->suspend(dev); - - tmio_hw_stop(dev, platform_get_drvdata(dev)); - return 0; -} - -static int tmio_resume(struct platform_device *dev) -{ - const struct mfd_cell *cell = mfd_get_cell(dev); - - /* FIXME - is this required or merely another attack of the broken - * SHARP platform? Looks suspicious. - */ - tmio_hw_init(dev, platform_get_drvdata(dev)); - - if (cell->resume) - cell->resume(dev); - - return 0; -} -#else -#define tmio_suspend NULL -#define tmio_resume NULL -#endif - -static struct platform_driver tmio_driver = { - .driver.name = "tmio-nand", - .driver.owner = THIS_MODULE, - .probe = tmio_probe, - .remove = tmio_remove, - .suspend = tmio_suspend, - .resume = tmio_resume, -}; - -module_platform_driver(tmio_driver); - -MODULE_LICENSE("GPL v2"); -MODULE_AUTHOR("Ian Molton, Dirk Opfer, Chris Humbert, Dmitry Baryshkov"); -MODULE_DESCRIPTION("NAND flash driver on Toshiba Mobile IO controller"); -MODULE_ALIAS("platform:tmio-nand"); diff --git a/drivers/mtd/nand/txx9ndfmc.c b/drivers/mtd/nand/txx9ndfmc.c deleted file mode 100644 index b567d212fe7d..000000000000 --- a/drivers/mtd/nand/txx9ndfmc.c +++ /dev/null @@ -1,423 +0,0 @@ -/* - * TXx9 NAND flash memory controller driver - * Based on RBTX49xx patch from CELF patch archive. - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License version 2 as - * published by the Free Software Foundation. - * - * (C) Copyright TOSHIBA CORPORATION 2004-2007 - * All Rights Reserved. - */ -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include - -/* TXX9 NDFMC Registers */ -#define TXX9_NDFDTR 0x00 -#define TXX9_NDFMCR 0x04 -#define TXX9_NDFSR 0x08 -#define TXX9_NDFISR 0x0c -#define TXX9_NDFIMR 0x10 -#define TXX9_NDFSPR 0x14 -#define TXX9_NDFRSTR 0x18 /* not TX4939 */ - -/* NDFMCR : NDFMC Mode Control */ -#define TXX9_NDFMCR_WE 0x80 -#define TXX9_NDFMCR_ECC_ALL 0x60 -#define TXX9_NDFMCR_ECC_RESET 0x60 -#define TXX9_NDFMCR_ECC_READ 0x40 -#define TXX9_NDFMCR_ECC_ON 0x20 -#define TXX9_NDFMCR_ECC_OFF 0x00 -#define TXX9_NDFMCR_CE 0x10 -#define TXX9_NDFMCR_BSPRT 0x04 /* TX4925/TX4926 only */ -#define TXX9_NDFMCR_ALE 0x02 -#define TXX9_NDFMCR_CLE 0x01 -/* TX4939 only */ -#define TXX9_NDFMCR_X16 0x0400 -#define TXX9_NDFMCR_DMAREQ_MASK 0x0300 -#define TXX9_NDFMCR_DMAREQ_NODMA 0x0000 -#define TXX9_NDFMCR_DMAREQ_128 0x0100 -#define TXX9_NDFMCR_DMAREQ_256 0x0200 -#define TXX9_NDFMCR_DMAREQ_512 0x0300 -#define TXX9_NDFMCR_CS_MASK 0x0c -#define TXX9_NDFMCR_CS(ch) ((ch) << 2) - -/* NDFMCR : NDFMC Status */ -#define TXX9_NDFSR_BUSY 0x80 -/* TX4939 only */ -#define TXX9_NDFSR_DMARUN 0x40 - -/* NDFMCR : NDFMC Reset */ -#define TXX9_NDFRSTR_RST 0x01 - -struct txx9ndfmc_priv { - struct platform_device *dev; - struct nand_chip chip; - int cs; - const char *mtdname; -}; - -#define MAX_TXX9NDFMC_DEV 4 -struct txx9ndfmc_drvdata { - struct mtd_info *mtds[MAX_TXX9NDFMC_DEV]; - void __iomem *base; - unsigned char hold; /* in gbusclock */ - unsigned char spw; /* in gbusclock */ - struct nand_hw_control hw_control; -}; - -static struct platform_device *mtd_to_platdev(struct mtd_info *mtd) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct txx9ndfmc_priv *txx9_priv = nand_get_controller_data(chip); - return txx9_priv->dev; -} - -static void __iomem *ndregaddr(struct platform_device *dev, unsigned int reg) -{ - struct txx9ndfmc_drvdata *drvdata = platform_get_drvdata(dev); - struct txx9ndfmc_platform_data *plat = dev_get_platdata(&dev->dev); - - return drvdata->base + (reg << plat->shift); -} - -static u32 txx9ndfmc_read(struct platform_device *dev, unsigned int reg) -{ - return __raw_readl(ndregaddr(dev, reg)); -} - -static void txx9ndfmc_write(struct platform_device *dev, - u32 val, unsigned int reg) -{ - __raw_writel(val, ndregaddr(dev, reg)); -} - -static uint8_t txx9ndfmc_read_byte(struct mtd_info *mtd) -{ - struct platform_device *dev = mtd_to_platdev(mtd); - - return txx9ndfmc_read(dev, TXX9_NDFDTR); -} - -static void txx9ndfmc_write_buf(struct mtd_info *mtd, const uint8_t *buf, - int len) -{ - struct platform_device *dev = mtd_to_platdev(mtd); - void __iomem *ndfdtr = ndregaddr(dev, TXX9_NDFDTR); - u32 mcr = txx9ndfmc_read(dev, TXX9_NDFMCR); - - txx9ndfmc_write(dev, mcr | TXX9_NDFMCR_WE, TXX9_NDFMCR); - while (len--) - __raw_writel(*buf++, ndfdtr); - txx9ndfmc_write(dev, mcr, TXX9_NDFMCR); -} - -static void txx9ndfmc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) -{ - struct platform_device *dev = mtd_to_platdev(mtd); - void __iomem *ndfdtr = ndregaddr(dev, TXX9_NDFDTR); - - while (len--) - *buf++ = __raw_readl(ndfdtr); -} - -static void txx9ndfmc_cmd_ctrl(struct mtd_info *mtd, int cmd, - unsigned int ctrl) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct txx9ndfmc_priv *txx9_priv = nand_get_controller_data(chip); - struct platform_device *dev = txx9_priv->dev; - struct txx9ndfmc_platform_data *plat = dev_get_platdata(&dev->dev); - - if (ctrl & NAND_CTRL_CHANGE) { - u32 mcr = txx9ndfmc_read(dev, TXX9_NDFMCR); - - mcr &= ~(TXX9_NDFMCR_CLE | TXX9_NDFMCR_ALE | TXX9_NDFMCR_CE); - mcr |= ctrl & NAND_CLE ? TXX9_NDFMCR_CLE : 0; - mcr |= ctrl & NAND_ALE ? TXX9_NDFMCR_ALE : 0; - /* TXX9_NDFMCR_CE bit is 0:high 1:low */ - mcr |= ctrl & NAND_NCE ? TXX9_NDFMCR_CE : 0; - if (txx9_priv->cs >= 0 && (ctrl & NAND_NCE)) { - mcr &= ~TXX9_NDFMCR_CS_MASK; - mcr |= TXX9_NDFMCR_CS(txx9_priv->cs); - } - txx9ndfmc_write(dev, mcr, TXX9_NDFMCR); - } - if (cmd != NAND_CMD_NONE) - txx9ndfmc_write(dev, cmd & 0xff, TXX9_NDFDTR); - if (plat->flags & NDFMC_PLAT_FLAG_DUMMYWRITE) { - /* dummy write to update external latch */ - if ((ctrl & NAND_CTRL_CHANGE) && cmd == NAND_CMD_NONE) - txx9ndfmc_write(dev, 0, TXX9_NDFDTR); - } - mmiowb(); -} - -static int txx9ndfmc_dev_ready(struct mtd_info *mtd) -{ - struct platform_device *dev = mtd_to_platdev(mtd); - - return !(txx9ndfmc_read(dev, TXX9_NDFSR) & TXX9_NDFSR_BUSY); -} - -static int txx9ndfmc_calculate_ecc(struct mtd_info *mtd, const uint8_t *dat, - uint8_t *ecc_code) -{ - struct platform_device *dev = mtd_to_platdev(mtd); - struct nand_chip *chip = mtd_to_nand(mtd); - int eccbytes; - u32 mcr = txx9ndfmc_read(dev, TXX9_NDFMCR); - - mcr &= ~TXX9_NDFMCR_ECC_ALL; - txx9ndfmc_write(dev, mcr | TXX9_NDFMCR_ECC_OFF, TXX9_NDFMCR); - txx9ndfmc_write(dev, mcr | TXX9_NDFMCR_ECC_READ, TXX9_NDFMCR); - for (eccbytes = chip->ecc.bytes; eccbytes > 0; eccbytes -= 3) { - ecc_code[1] = txx9ndfmc_read(dev, TXX9_NDFDTR); - ecc_code[0] = txx9ndfmc_read(dev, TXX9_NDFDTR); - ecc_code[2] = txx9ndfmc_read(dev, TXX9_NDFDTR); - ecc_code += 3; - } - txx9ndfmc_write(dev, mcr | TXX9_NDFMCR_ECC_OFF, TXX9_NDFMCR); - return 0; -} - -static int txx9ndfmc_correct_data(struct mtd_info *mtd, unsigned char *buf, - unsigned char *read_ecc, unsigned char *calc_ecc) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - int eccsize; - int corrected = 0; - int stat; - - for (eccsize = chip->ecc.size; eccsize > 0; eccsize -= 256) { - stat = __nand_correct_data(buf, read_ecc, calc_ecc, 256); - if (stat < 0) - return stat; - corrected += stat; - buf += 256; - read_ecc += 3; - calc_ecc += 3; - } - return corrected; -} - -static void txx9ndfmc_enable_hwecc(struct mtd_info *mtd, int mode) -{ - struct platform_device *dev = mtd_to_platdev(mtd); - u32 mcr = txx9ndfmc_read(dev, TXX9_NDFMCR); - - mcr &= ~TXX9_NDFMCR_ECC_ALL; - txx9ndfmc_write(dev, mcr | TXX9_NDFMCR_ECC_RESET, TXX9_NDFMCR); - txx9ndfmc_write(dev, mcr | TXX9_NDFMCR_ECC_OFF, TXX9_NDFMCR); - txx9ndfmc_write(dev, mcr | TXX9_NDFMCR_ECC_ON, TXX9_NDFMCR); -} - -static void txx9ndfmc_initialize(struct platform_device *dev) -{ - struct txx9ndfmc_platform_data *plat = dev_get_platdata(&dev->dev); - struct txx9ndfmc_drvdata *drvdata = platform_get_drvdata(dev); - int tmout = 100; - - if (plat->flags & NDFMC_PLAT_FLAG_NO_RSTR) - ; /* no NDFRSTR. Write to NDFSPR resets the NDFMC. */ - else { - /* reset NDFMC */ - txx9ndfmc_write(dev, - txx9ndfmc_read(dev, TXX9_NDFRSTR) | - TXX9_NDFRSTR_RST, - TXX9_NDFRSTR); - while (txx9ndfmc_read(dev, TXX9_NDFRSTR) & TXX9_NDFRSTR_RST) { - if (--tmout == 0) { - dev_err(&dev->dev, "reset failed.\n"); - break; - } - udelay(1); - } - } - /* setup Hold Time, Strobe Pulse Width */ - txx9ndfmc_write(dev, (drvdata->hold << 4) | drvdata->spw, TXX9_NDFSPR); - txx9ndfmc_write(dev, - (plat->flags & NDFMC_PLAT_FLAG_USE_BSPRT) ? - TXX9_NDFMCR_BSPRT : 0, TXX9_NDFMCR); -} - -#define TXX9NDFMC_NS_TO_CYC(gbusclk, ns) \ - DIV_ROUND_UP((ns) * DIV_ROUND_UP(gbusclk, 1000), 1000000) - -static int txx9ndfmc_nand_scan(struct mtd_info *mtd) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - int ret; - - ret = nand_scan_ident(mtd, 1, NULL); - if (!ret) { - if (mtd->writesize >= 512) { - /* Hardware ECC 6 byte ECC per 512 Byte data */ - chip->ecc.size = 512; - chip->ecc.bytes = 6; - } - ret = nand_scan_tail(mtd); - } - return ret; -} - -static int __init txx9ndfmc_probe(struct platform_device *dev) -{ - struct txx9ndfmc_platform_data *plat = dev_get_platdata(&dev->dev); - int hold, spw; - int i; - struct txx9ndfmc_drvdata *drvdata; - unsigned long gbusclk = plat->gbus_clock; - struct resource *res; - - drvdata = devm_kzalloc(&dev->dev, sizeof(*drvdata), GFP_KERNEL); - if (!drvdata) - return -ENOMEM; - res = platform_get_resource(dev, IORESOURCE_MEM, 0); - drvdata->base = devm_ioremap_resource(&dev->dev, res); - if (IS_ERR(drvdata->base)) - return PTR_ERR(drvdata->base); - - hold = plat->hold ?: 20; /* tDH */ - spw = plat->spw ?: 90; /* max(tREADID, tWP, tRP) */ - - hold = TXX9NDFMC_NS_TO_CYC(gbusclk, hold); - spw = TXX9NDFMC_NS_TO_CYC(gbusclk, spw); - if (plat->flags & NDFMC_PLAT_FLAG_HOLDADD) - hold -= 2; /* actual hold time : (HOLD + 2) BUSCLK */ - spw -= 1; /* actual wait time : (SPW + 1) BUSCLK */ - hold = clamp(hold, 1, 15); - drvdata->hold = hold; - spw = clamp(spw, 1, 15); - drvdata->spw = spw; - dev_info(&dev->dev, "CLK:%ldMHz HOLD:%d SPW:%d\n", - (gbusclk + 500000) / 1000000, hold, spw); - - nand_hw_control_init(&drvdata->hw_control); - - platform_set_drvdata(dev, drvdata); - txx9ndfmc_initialize(dev); - - for (i = 0; i < MAX_TXX9NDFMC_DEV; i++) { - struct txx9ndfmc_priv *txx9_priv; - struct nand_chip *chip; - struct mtd_info *mtd; - - if (!(plat->ch_mask & (1 << i))) - continue; - txx9_priv = kzalloc(sizeof(struct txx9ndfmc_priv), - GFP_KERNEL); - if (!txx9_priv) - continue; - chip = &txx9_priv->chip; - mtd = nand_to_mtd(chip); - mtd->dev.parent = &dev->dev; - - chip->read_byte = txx9ndfmc_read_byte; - chip->read_buf = txx9ndfmc_read_buf; - chip->write_buf = txx9ndfmc_write_buf; - chip->cmd_ctrl = txx9ndfmc_cmd_ctrl; - chip->dev_ready = txx9ndfmc_dev_ready; - chip->ecc.calculate = txx9ndfmc_calculate_ecc; - chip->ecc.correct = txx9ndfmc_correct_data; - chip->ecc.hwctl = txx9ndfmc_enable_hwecc; - chip->ecc.mode = NAND_ECC_HW; - /* txx9ndfmc_nand_scan will overwrite ecc.size and ecc.bytes */ - chip->ecc.size = 256; - chip->ecc.bytes = 3; - chip->ecc.strength = 1; - chip->chip_delay = 100; - chip->controller = &drvdata->hw_control; - - nand_set_controller_data(chip, txx9_priv); - txx9_priv->dev = dev; - - if (plat->ch_mask != 1) { - txx9_priv->cs = i; - txx9_priv->mtdname = kasprintf(GFP_KERNEL, "%s.%u", - dev_name(&dev->dev), i); - } else { - txx9_priv->cs = -1; - txx9_priv->mtdname = kstrdup(dev_name(&dev->dev), - GFP_KERNEL); - } - if (!txx9_priv->mtdname) { - kfree(txx9_priv); - dev_err(&dev->dev, "Unable to allocate MTD name.\n"); - continue; - } - if (plat->wide_mask & (1 << i)) - chip->options |= NAND_BUSWIDTH_16; - - if (txx9ndfmc_nand_scan(mtd)) { - kfree(txx9_priv->mtdname); - kfree(txx9_priv); - continue; - } - mtd->name = txx9_priv->mtdname; - - mtd_device_parse_register(mtd, NULL, NULL, NULL, 0); - drvdata->mtds[i] = mtd; - } - - return 0; -} - -static int __exit txx9ndfmc_remove(struct platform_device *dev) -{ - struct txx9ndfmc_drvdata *drvdata = platform_get_drvdata(dev); - int i; - - if (!drvdata) - return 0; - for (i = 0; i < MAX_TXX9NDFMC_DEV; i++) { - struct mtd_info *mtd = drvdata->mtds[i]; - struct nand_chip *chip; - struct txx9ndfmc_priv *txx9_priv; - - if (!mtd) - continue; - chip = mtd_to_nand(mtd); - txx9_priv = nand_get_controller_data(chip); - - nand_release(mtd); - kfree(txx9_priv->mtdname); - kfree(txx9_priv); - } - return 0; -} - -#ifdef CONFIG_PM -static int txx9ndfmc_resume(struct platform_device *dev) -{ - if (platform_get_drvdata(dev)) - txx9ndfmc_initialize(dev); - return 0; -} -#else -#define txx9ndfmc_resume NULL -#endif - -static struct platform_driver txx9ndfmc_driver = { - .remove = __exit_p(txx9ndfmc_remove), - .resume = txx9ndfmc_resume, - .driver = { - .name = "txx9ndfmc", - }, -}; - -module_platform_driver_probe(txx9ndfmc_driver, txx9ndfmc_probe); - -MODULE_LICENSE("GPL"); -MODULE_DESCRIPTION("TXx9 SoC NAND flash controller driver"); -MODULE_ALIAS("platform:txx9ndfmc"); diff --git a/drivers/mtd/nand/vf610_nfc.c b/drivers/mtd/nand/vf610_nfc.c deleted file mode 100644 index 5d7a1f8f580f..000000000000 --- a/drivers/mtd/nand/vf610_nfc.c +++ /dev/null @@ -1,835 +0,0 @@ -/* - * Copyright 2009-2015 Freescale Semiconductor, Inc. and others - * - * Description: MPC5125, VF610, MCF54418 and Kinetis K70 Nand driver. - * Jason ported to M54418TWR and MVFA5 (VF610). - * Authors: Stefan Agner - * Bill Pringlemeir - * Shaohui Xie - * Jason Jin - * - * Based on original driver mpc5121_nfc.c. - * - * This is free software; you can redistribute it and/or modify it - * under the terms of the GNU General Public License as published by - * the Free Software Foundation; either version 2 of the License, or - * (at your option) any later version. - * - * Limitations: - * - Untested on MPC5125 and M54418. - * - DMA and pipelining not used. - * - 2K pages or less. - * - HW ECC: Only 2K page with 64+ OOB. - * - HW ECC: Only 24 and 32-bit error correction implemented. - */ - -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include - -#define DRV_NAME "vf610_nfc" - -/* Register Offsets */ -#define NFC_FLASH_CMD1 0x3F00 -#define NFC_FLASH_CMD2 0x3F04 -#define NFC_COL_ADDR 0x3F08 -#define NFC_ROW_ADDR 0x3F0c -#define NFC_ROW_ADDR_INC 0x3F14 -#define NFC_FLASH_STATUS1 0x3F18 -#define NFC_FLASH_STATUS2 0x3F1c -#define NFC_CACHE_SWAP 0x3F28 -#define NFC_SECTOR_SIZE 0x3F2c -#define NFC_FLASH_CONFIG 0x3F30 -#define NFC_IRQ_STATUS 0x3F38 - -/* Addresses for NFC MAIN RAM BUFFER areas */ -#define NFC_MAIN_AREA(n) ((n) * 0x1000) - -#define PAGE_2K 0x0800 -#define OOB_64 0x0040 -#define OOB_MAX 0x0100 - -/* - * NFC_CMD2[CODE] values. See section: - * - 31.4.7 Flash Command Code Description, Vybrid manual - * - 23.8.6 Flash Command Sequencer, MPC5125 manual - * - * Briefly these are bitmasks of controller cycles. - */ -#define READ_PAGE_CMD_CODE 0x7EE0 -#define READ_ONFI_PARAM_CMD_CODE 0x4860 -#define PROGRAM_PAGE_CMD_CODE 0x7FC0 -#define ERASE_CMD_CODE 0x4EC0 -#define READ_ID_CMD_CODE 0x4804 -#define RESET_CMD_CODE 0x4040 -#define STATUS_READ_CMD_CODE 0x4068 - -/* NFC ECC mode define */ -#define ECC_BYPASS 0 -#define ECC_45_BYTE 6 -#define ECC_60_BYTE 7 - -/*** Register Mask and bit definitions */ - -/* NFC_FLASH_CMD1 Field */ -#define CMD_BYTE2_MASK 0xFF000000 -#define CMD_BYTE2_SHIFT 24 - -/* NFC_FLASH_CM2 Field */ -#define CMD_BYTE1_MASK 0xFF000000 -#define CMD_BYTE1_SHIFT 24 -#define CMD_CODE_MASK 0x00FFFF00 -#define CMD_CODE_SHIFT 8 -#define BUFNO_MASK 0x00000006 -#define BUFNO_SHIFT 1 -#define START_BIT BIT(0) - -/* NFC_COL_ADDR Field */ -#define COL_ADDR_MASK 0x0000FFFF -#define COL_ADDR_SHIFT 0 - -/* NFC_ROW_ADDR Field */ -#define ROW_ADDR_MASK 0x00FFFFFF -#define ROW_ADDR_SHIFT 0 -#define ROW_ADDR_CHIP_SEL_RB_MASK 0xF0000000 -#define ROW_ADDR_CHIP_SEL_RB_SHIFT 28 -#define ROW_ADDR_CHIP_SEL_MASK 0x0F000000 -#define ROW_ADDR_CHIP_SEL_SHIFT 24 - -/* NFC_FLASH_STATUS2 Field */ -#define STATUS_BYTE1_MASK 0x000000FF - -/* NFC_FLASH_CONFIG Field */ -#define CONFIG_ECC_SRAM_ADDR_MASK 0x7FC00000 -#define CONFIG_ECC_SRAM_ADDR_SHIFT 22 -#define CONFIG_ECC_SRAM_REQ_BIT BIT(21) -#define CONFIG_DMA_REQ_BIT BIT(20) -#define CONFIG_ECC_MODE_MASK 0x000E0000 -#define CONFIG_ECC_MODE_SHIFT 17 -#define CONFIG_FAST_FLASH_BIT BIT(16) -#define CONFIG_16BIT BIT(7) -#define CONFIG_BOOT_MODE_BIT BIT(6) -#define CONFIG_ADDR_AUTO_INCR_BIT BIT(5) -#define CONFIG_BUFNO_AUTO_INCR_BIT BIT(4) -#define CONFIG_PAGE_CNT_MASK 0xF -#define CONFIG_PAGE_CNT_SHIFT 0 - -/* NFC_IRQ_STATUS Field */ -#define IDLE_IRQ_BIT BIT(29) -#define IDLE_EN_BIT BIT(20) -#define CMD_DONE_CLEAR_BIT BIT(18) -#define IDLE_CLEAR_BIT BIT(17) - -/* - * ECC status - seems to consume 8 bytes (double word). The documented - * status byte is located in the lowest byte of the second word (which is - * the 4th or 7th byte depending on endianness). - * Calculate an offset to store the ECC status at the end of the buffer. - */ -#define ECC_SRAM_ADDR (PAGE_2K + OOB_MAX - 8) - -#define ECC_STATUS 0x4 -#define ECC_STATUS_MASK 0x80 -#define ECC_STATUS_ERR_COUNT 0x3F - -enum vf610_nfc_alt_buf { - ALT_BUF_DATA = 0, - ALT_BUF_ID = 1, - ALT_BUF_STAT = 2, - ALT_BUF_ONFI = 3, -}; - -enum vf610_nfc_variant { - NFC_VFC610 = 1, -}; - -struct vf610_nfc { - struct nand_chip chip; - struct device *dev; - void __iomem *regs; - struct completion cmd_done; - uint buf_offset; - int write_sz; - /* Status and ID are in alternate locations. */ - enum vf610_nfc_alt_buf alt_buf; - enum vf610_nfc_variant variant; - struct clk *clk; - bool use_hw_ecc; - u32 ecc_mode; -}; - -static inline struct vf610_nfc *mtd_to_nfc(struct mtd_info *mtd) -{ - return container_of(mtd_to_nand(mtd), struct vf610_nfc, chip); -} - -static inline u32 vf610_nfc_read(struct vf610_nfc *nfc, uint reg) -{ - return readl(nfc->regs + reg); -} - -static inline void vf610_nfc_write(struct vf610_nfc *nfc, uint reg, u32 val) -{ - writel(val, nfc->regs + reg); -} - -static inline void vf610_nfc_set(struct vf610_nfc *nfc, uint reg, u32 bits) -{ - vf610_nfc_write(nfc, reg, vf610_nfc_read(nfc, reg) | bits); -} - -static inline void vf610_nfc_clear(struct vf610_nfc *nfc, uint reg, u32 bits) -{ - vf610_nfc_write(nfc, reg, vf610_nfc_read(nfc, reg) & ~bits); -} - -static inline void vf610_nfc_set_field(struct vf610_nfc *nfc, u32 reg, - u32 mask, u32 shift, u32 val) -{ - vf610_nfc_write(nfc, reg, - (vf610_nfc_read(nfc, reg) & (~mask)) | val << shift); -} - -static inline void vf610_nfc_memcpy(void *dst, const void __iomem *src, - size_t n) -{ - /* - * Use this accessor for the internal SRAM buffers. On the ARM - * Freescale Vybrid SoC it's known that the driver can treat - * the SRAM buffer as if it's memory. Other platform might need - * to treat the buffers differently. - * - * For the time being, use memcpy - */ - memcpy(dst, src, n); -} - -/* Clear flags for upcoming command */ -static inline void vf610_nfc_clear_status(struct vf610_nfc *nfc) -{ - u32 tmp = vf610_nfc_read(nfc, NFC_IRQ_STATUS); - - tmp |= CMD_DONE_CLEAR_BIT | IDLE_CLEAR_BIT; - vf610_nfc_write(nfc, NFC_IRQ_STATUS, tmp); -} - -static void vf610_nfc_done(struct vf610_nfc *nfc) -{ - unsigned long timeout = msecs_to_jiffies(100); - - /* - * Barrier is needed after this write. This write need - * to be done before reading the next register the first - * time. - * vf610_nfc_set implicates such a barrier by using writel - * to write to the register. - */ - vf610_nfc_set(nfc, NFC_IRQ_STATUS, IDLE_EN_BIT); - vf610_nfc_set(nfc, NFC_FLASH_CMD2, START_BIT); - - if (!wait_for_completion_timeout(&nfc->cmd_done, timeout)) - dev_warn(nfc->dev, "Timeout while waiting for BUSY.\n"); - - vf610_nfc_clear_status(nfc); -} - -static u8 vf610_nfc_get_id(struct vf610_nfc *nfc, int col) -{ - u32 flash_id; - - if (col < 4) { - flash_id = vf610_nfc_read(nfc, NFC_FLASH_STATUS1); - flash_id >>= (3 - col) * 8; - } else { - flash_id = vf610_nfc_read(nfc, NFC_FLASH_STATUS2); - flash_id >>= 24; - } - - return flash_id & 0xff; -} - -static u8 vf610_nfc_get_status(struct vf610_nfc *nfc) -{ - return vf610_nfc_read(nfc, NFC_FLASH_STATUS2) & STATUS_BYTE1_MASK; -} - -static void vf610_nfc_send_command(struct vf610_nfc *nfc, u32 cmd_byte1, - u32 cmd_code) -{ - u32 tmp; - - vf610_nfc_clear_status(nfc); - - tmp = vf610_nfc_read(nfc, NFC_FLASH_CMD2); - tmp &= ~(CMD_BYTE1_MASK | CMD_CODE_MASK | BUFNO_MASK); - tmp |= cmd_byte1 << CMD_BYTE1_SHIFT; - tmp |= cmd_code << CMD_CODE_SHIFT; - vf610_nfc_write(nfc, NFC_FLASH_CMD2, tmp); -} - -static void vf610_nfc_send_commands(struct vf610_nfc *nfc, u32 cmd_byte1, - u32 cmd_byte2, u32 cmd_code) -{ - u32 tmp; - - vf610_nfc_send_command(nfc, cmd_byte1, cmd_code); - - tmp = vf610_nfc_read(nfc, NFC_FLASH_CMD1); - tmp &= ~CMD_BYTE2_MASK; - tmp |= cmd_byte2 << CMD_BYTE2_SHIFT; - vf610_nfc_write(nfc, NFC_FLASH_CMD1, tmp); -} - -static irqreturn_t vf610_nfc_irq(int irq, void *data) -{ - struct mtd_info *mtd = data; - struct vf610_nfc *nfc = mtd_to_nfc(mtd); - - vf610_nfc_clear(nfc, NFC_IRQ_STATUS, IDLE_EN_BIT); - complete(&nfc->cmd_done); - - return IRQ_HANDLED; -} - -static void vf610_nfc_addr_cycle(struct vf610_nfc *nfc, int column, int page) -{ - if (column != -1) { - if (nfc->chip.options & NAND_BUSWIDTH_16) - column = column / 2; - vf610_nfc_set_field(nfc, NFC_COL_ADDR, COL_ADDR_MASK, - COL_ADDR_SHIFT, column); - } - if (page != -1) - vf610_nfc_set_field(nfc, NFC_ROW_ADDR, ROW_ADDR_MASK, - ROW_ADDR_SHIFT, page); -} - -static inline void vf610_nfc_ecc_mode(struct vf610_nfc *nfc, int ecc_mode) -{ - vf610_nfc_set_field(nfc, NFC_FLASH_CONFIG, - CONFIG_ECC_MODE_MASK, - CONFIG_ECC_MODE_SHIFT, ecc_mode); -} - -static inline void vf610_nfc_transfer_size(struct vf610_nfc *nfc, int size) -{ - vf610_nfc_write(nfc, NFC_SECTOR_SIZE, size); -} - -static void vf610_nfc_command(struct mtd_info *mtd, unsigned command, - int column, int page) -{ - struct vf610_nfc *nfc = mtd_to_nfc(mtd); - int trfr_sz = nfc->chip.options & NAND_BUSWIDTH_16 ? 1 : 0; - - nfc->buf_offset = max(column, 0); - nfc->alt_buf = ALT_BUF_DATA; - - switch (command) { - case NAND_CMD_SEQIN: - /* Use valid column/page from preread... */ - vf610_nfc_addr_cycle(nfc, column, page); - nfc->buf_offset = 0; - - /* - * SEQIN => data => PAGEPROG sequence is done by the controller - * hence we do not need to issue the command here... - */ - return; - case NAND_CMD_PAGEPROG: - trfr_sz += nfc->write_sz; - vf610_nfc_transfer_size(nfc, trfr_sz); - vf610_nfc_send_commands(nfc, NAND_CMD_SEQIN, - command, PROGRAM_PAGE_CMD_CODE); - if (nfc->use_hw_ecc) - vf610_nfc_ecc_mode(nfc, nfc->ecc_mode); - else - vf610_nfc_ecc_mode(nfc, ECC_BYPASS); - break; - - case NAND_CMD_RESET: - vf610_nfc_transfer_size(nfc, 0); - vf610_nfc_send_command(nfc, command, RESET_CMD_CODE); - break; - - case NAND_CMD_READOOB: - trfr_sz += mtd->oobsize; - column = mtd->writesize; - vf610_nfc_transfer_size(nfc, trfr_sz); - vf610_nfc_send_commands(nfc, NAND_CMD_READ0, - NAND_CMD_READSTART, READ_PAGE_CMD_CODE); - vf610_nfc_addr_cycle(nfc, column, page); - vf610_nfc_ecc_mode(nfc, ECC_BYPASS); - break; - - case NAND_CMD_READ0: - trfr_sz += mtd->writesize + mtd->oobsize; - vf610_nfc_transfer_size(nfc, trfr_sz); - vf610_nfc_send_commands(nfc, NAND_CMD_READ0, - NAND_CMD_READSTART, READ_PAGE_CMD_CODE); - vf610_nfc_addr_cycle(nfc, column, page); - vf610_nfc_ecc_mode(nfc, nfc->ecc_mode); - break; - - case NAND_CMD_PARAM: - nfc->alt_buf = ALT_BUF_ONFI; - trfr_sz = 3 * sizeof(struct nand_onfi_params); - vf610_nfc_transfer_size(nfc, trfr_sz); - vf610_nfc_send_command(nfc, command, READ_ONFI_PARAM_CMD_CODE); - vf610_nfc_addr_cycle(nfc, -1, column); - vf610_nfc_ecc_mode(nfc, ECC_BYPASS); - break; - - case NAND_CMD_ERASE1: - vf610_nfc_transfer_size(nfc, 0); - vf610_nfc_send_commands(nfc, command, - NAND_CMD_ERASE2, ERASE_CMD_CODE); - vf610_nfc_addr_cycle(nfc, column, page); - break; - - case NAND_CMD_READID: - nfc->alt_buf = ALT_BUF_ID; - nfc->buf_offset = 0; - vf610_nfc_transfer_size(nfc, 0); - vf610_nfc_send_command(nfc, command, READ_ID_CMD_CODE); - vf610_nfc_addr_cycle(nfc, -1, column); - break; - - case NAND_CMD_STATUS: - nfc->alt_buf = ALT_BUF_STAT; - vf610_nfc_transfer_size(nfc, 0); - vf610_nfc_send_command(nfc, command, STATUS_READ_CMD_CODE); - break; - default: - return; - } - - vf610_nfc_done(nfc); - - nfc->use_hw_ecc = false; - nfc->write_sz = 0; -} - -static void vf610_nfc_read_buf(struct mtd_info *mtd, u_char *buf, int len) -{ - struct vf610_nfc *nfc = mtd_to_nfc(mtd); - uint c = nfc->buf_offset; - - /* Alternate buffers are only supported through read_byte */ - WARN_ON(nfc->alt_buf); - - vf610_nfc_memcpy(buf, nfc->regs + NFC_MAIN_AREA(0) + c, len); - - nfc->buf_offset += len; -} - -static void vf610_nfc_write_buf(struct mtd_info *mtd, const uint8_t *buf, - int len) -{ - struct vf610_nfc *nfc = mtd_to_nfc(mtd); - uint c = nfc->buf_offset; - uint l; - - l = min_t(uint, len, mtd->writesize + mtd->oobsize - c); - vf610_nfc_memcpy(nfc->regs + NFC_MAIN_AREA(0) + c, buf, l); - - nfc->write_sz += l; - nfc->buf_offset += l; -} - -static uint8_t vf610_nfc_read_byte(struct mtd_info *mtd) -{ - struct vf610_nfc *nfc = mtd_to_nfc(mtd); - u8 tmp; - uint c = nfc->buf_offset; - - switch (nfc->alt_buf) { - case ALT_BUF_ID: - tmp = vf610_nfc_get_id(nfc, c); - break; - case ALT_BUF_STAT: - tmp = vf610_nfc_get_status(nfc); - break; -#ifdef __LITTLE_ENDIAN - case ALT_BUF_ONFI: - /* Reverse byte since the controller uses big endianness */ - c = nfc->buf_offset ^ 0x3; - /* fall-through */ -#endif - default: - tmp = *((u8 *)(nfc->regs + NFC_MAIN_AREA(0) + c)); - break; - } - nfc->buf_offset++; - return tmp; -} - -static u16 vf610_nfc_read_word(struct mtd_info *mtd) -{ - u16 tmp; - - vf610_nfc_read_buf(mtd, (u_char *)&tmp, sizeof(tmp)); - return tmp; -} - -/* If not provided, upper layers apply a fixed delay. */ -static int vf610_nfc_dev_ready(struct mtd_info *mtd) -{ - /* NFC handles R/B internally; always ready. */ - return 1; -} - -/* - * This function supports Vybrid only (MPC5125 would have full RB and four CS) - */ -static void vf610_nfc_select_chip(struct mtd_info *mtd, int chip) -{ - struct vf610_nfc *nfc = mtd_to_nfc(mtd); - u32 tmp = vf610_nfc_read(nfc, NFC_ROW_ADDR); - - /* Vybrid only (MPC5125 would have full RB and four CS) */ - if (nfc->variant != NFC_VFC610) - return; - - tmp &= ~(ROW_ADDR_CHIP_SEL_RB_MASK | ROW_ADDR_CHIP_SEL_MASK); - - if (chip >= 0) { - tmp |= 1 << ROW_ADDR_CHIP_SEL_RB_SHIFT; - tmp |= BIT(chip) << ROW_ADDR_CHIP_SEL_SHIFT; - } - - vf610_nfc_write(nfc, NFC_ROW_ADDR, tmp); -} - -static inline int vf610_nfc_correct_data(struct mtd_info *mtd, uint8_t *dat, - uint8_t *oob, int page) -{ - struct vf610_nfc *nfc = mtd_to_nfc(mtd); - u32 ecc_status_off = NFC_MAIN_AREA(0) + ECC_SRAM_ADDR + ECC_STATUS; - u8 ecc_status; - u8 ecc_count; - int flips_threshold = nfc->chip.ecc.strength / 2; - - ecc_status = vf610_nfc_read(nfc, ecc_status_off) & 0xff; - ecc_count = ecc_status & ECC_STATUS_ERR_COUNT; - - if (!(ecc_status & ECC_STATUS_MASK)) - return ecc_count; - - /* Read OOB without ECC unit enabled */ - vf610_nfc_command(mtd, NAND_CMD_READOOB, 0, page); - vf610_nfc_read_buf(mtd, oob, mtd->oobsize); - - /* - * On an erased page, bit count (including OOB) should be zero or - * at least less then half of the ECC strength. - */ - return nand_check_erased_ecc_chunk(dat, nfc->chip.ecc.size, oob, - mtd->oobsize, NULL, 0, - flips_threshold); -} - -static int vf610_nfc_read_page(struct mtd_info *mtd, struct nand_chip *chip, - uint8_t *buf, int oob_required, int page) -{ - int eccsize = chip->ecc.size; - int stat; - - nand_read_page_op(chip, page, 0, buf, eccsize); - if (oob_required) - vf610_nfc_read_buf(mtd, chip->oob_poi, mtd->oobsize); - - stat = vf610_nfc_correct_data(mtd, buf, chip->oob_poi, page); - - if (stat < 0) { - mtd->ecc_stats.failed++; - return 0; - } else { - mtd->ecc_stats.corrected += stat; - return stat; - } -} - -static int vf610_nfc_write_page(struct mtd_info *mtd, struct nand_chip *chip, - const uint8_t *buf, int oob_required, int page) -{ - struct vf610_nfc *nfc = mtd_to_nfc(mtd); - - nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize); - if (oob_required) - vf610_nfc_write_buf(mtd, chip->oob_poi, mtd->oobsize); - - /* Always write whole page including OOB due to HW ECC */ - nfc->use_hw_ecc = true; - nfc->write_sz = mtd->writesize + mtd->oobsize; - - return nand_prog_page_end_op(chip); -} - -static const struct of_device_id vf610_nfc_dt_ids[] = { - { .compatible = "fsl,vf610-nfc", .data = (void *)NFC_VFC610 }, - { /* sentinel */ } -}; -MODULE_DEVICE_TABLE(of, vf610_nfc_dt_ids); - -static void vf610_nfc_preinit_controller(struct vf610_nfc *nfc) -{ - vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT); - vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_ADDR_AUTO_INCR_BIT); - vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_BUFNO_AUTO_INCR_BIT); - vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_BOOT_MODE_BIT); - vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_DMA_REQ_BIT); - vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_FAST_FLASH_BIT); - - /* Disable virtual pages, only one elementary transfer unit */ - vf610_nfc_set_field(nfc, NFC_FLASH_CONFIG, CONFIG_PAGE_CNT_MASK, - CONFIG_PAGE_CNT_SHIFT, 1); -} - -static void vf610_nfc_init_controller(struct vf610_nfc *nfc) -{ - if (nfc->chip.options & NAND_BUSWIDTH_16) - vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT); - else - vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT); - - if (nfc->chip.ecc.mode == NAND_ECC_HW) { - /* Set ECC status offset in SRAM */ - vf610_nfc_set_field(nfc, NFC_FLASH_CONFIG, - CONFIG_ECC_SRAM_ADDR_MASK, - CONFIG_ECC_SRAM_ADDR_SHIFT, - ECC_SRAM_ADDR >> 3); - - /* Enable ECC status in SRAM */ - vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_ECC_SRAM_REQ_BIT); - } -} - -static int vf610_nfc_probe(struct platform_device *pdev) -{ - struct vf610_nfc *nfc; - struct resource *res; - struct mtd_info *mtd; - struct nand_chip *chip; - struct device_node *child; - const struct of_device_id *of_id; - int err; - int irq; - - nfc = devm_kzalloc(&pdev->dev, sizeof(*nfc), GFP_KERNEL); - if (!nfc) - return -ENOMEM; - - nfc->dev = &pdev->dev; - chip = &nfc->chip; - mtd = nand_to_mtd(chip); - - mtd->owner = THIS_MODULE; - mtd->dev.parent = nfc->dev; - mtd->name = DRV_NAME; - - irq = platform_get_irq(pdev, 0); - if (irq <= 0) - return -EINVAL; - - res = platform_get_resource(pdev, IORESOURCE_MEM, 0); - nfc->regs = devm_ioremap_resource(nfc->dev, res); - if (IS_ERR(nfc->regs)) - return PTR_ERR(nfc->regs); - - nfc->clk = devm_clk_get(&pdev->dev, NULL); - if (IS_ERR(nfc->clk)) - return PTR_ERR(nfc->clk); - - err = clk_prepare_enable(nfc->clk); - if (err) { - dev_err(nfc->dev, "Unable to enable clock!\n"); - return err; - } - - of_id = of_match_device(vf610_nfc_dt_ids, &pdev->dev); - nfc->variant = (enum vf610_nfc_variant)of_id->data; - - for_each_available_child_of_node(nfc->dev->of_node, child) { - if (of_device_is_compatible(child, "fsl,vf610-nfc-nandcs")) { - - if (nand_get_flash_node(chip)) { - dev_err(nfc->dev, - "Only one NAND chip supported!\n"); - err = -EINVAL; - goto err_disable_clk; - } - - nand_set_flash_node(chip, child); - } - } - - if (!nand_get_flash_node(chip)) { - dev_err(nfc->dev, "NAND chip sub-node missing!\n"); - err = -ENODEV; - goto err_disable_clk; - } - - chip->dev_ready = vf610_nfc_dev_ready; - chip->cmdfunc = vf610_nfc_command; - chip->read_byte = vf610_nfc_read_byte; - chip->read_word = vf610_nfc_read_word; - chip->read_buf = vf610_nfc_read_buf; - chip->write_buf = vf610_nfc_write_buf; - chip->select_chip = vf610_nfc_select_chip; - chip->onfi_set_features = nand_onfi_get_set_features_notsupp; - chip->onfi_get_features = nand_onfi_get_set_features_notsupp; - - chip->options |= NAND_NO_SUBPAGE_WRITE; - - init_completion(&nfc->cmd_done); - - err = devm_request_irq(nfc->dev, irq, vf610_nfc_irq, 0, DRV_NAME, mtd); - if (err) { - dev_err(nfc->dev, "Error requesting IRQ!\n"); - goto err_disable_clk; - } - - vf610_nfc_preinit_controller(nfc); - - /* first scan to find the device and get the page size */ - err = nand_scan_ident(mtd, 1, NULL); - if (err) - goto err_disable_clk; - - vf610_nfc_init_controller(nfc); - - /* Bad block options. */ - if (chip->bbt_options & NAND_BBT_USE_FLASH) - chip->bbt_options |= NAND_BBT_NO_OOB; - - /* Single buffer only, max 256 OOB minus ECC status */ - if (mtd->writesize + mtd->oobsize > PAGE_2K + OOB_MAX - 8) { - dev_err(nfc->dev, "Unsupported flash page size\n"); - err = -ENXIO; - goto err_disable_clk; - } - - if (chip->ecc.mode == NAND_ECC_HW) { - if (mtd->writesize != PAGE_2K && mtd->oobsize < 64) { - dev_err(nfc->dev, "Unsupported flash with hwecc\n"); - err = -ENXIO; - goto err_disable_clk; - } - - if (chip->ecc.size != mtd->writesize) { - dev_err(nfc->dev, "Step size needs to be page size\n"); - err = -ENXIO; - goto err_disable_clk; - } - - /* Only 64 byte ECC layouts known */ - if (mtd->oobsize > 64) - mtd->oobsize = 64; - - /* - * mtd->ecclayout is not specified here because we're using the - * default large page ECC layout defined in NAND core. - */ - if (chip->ecc.strength == 32) { - nfc->ecc_mode = ECC_60_BYTE; - chip->ecc.bytes = 60; - } else if (chip->ecc.strength == 24) { - nfc->ecc_mode = ECC_45_BYTE; - chip->ecc.bytes = 45; - } else { - dev_err(nfc->dev, "Unsupported ECC strength\n"); - err = -ENXIO; - goto err_disable_clk; - } - - chip->ecc.read_page = vf610_nfc_read_page; - chip->ecc.write_page = vf610_nfc_write_page; - - chip->ecc.size = PAGE_2K; - } - - /* second phase scan */ - err = nand_scan_tail(mtd); - if (err) - goto err_disable_clk; - - platform_set_drvdata(pdev, mtd); - - /* Register device in MTD */ - err = mtd_device_register(mtd, NULL, 0); - if (err) - goto err_cleanup_nand; - return 0; - -err_cleanup_nand: - nand_cleanup(chip); -err_disable_clk: - clk_disable_unprepare(nfc->clk); - return err; -} - -static int vf610_nfc_remove(struct platform_device *pdev) -{ - struct mtd_info *mtd = platform_get_drvdata(pdev); - struct vf610_nfc *nfc = mtd_to_nfc(mtd); - - nand_release(mtd); - clk_disable_unprepare(nfc->clk); - return 0; -} - -#ifdef CONFIG_PM_SLEEP -static int vf610_nfc_suspend(struct device *dev) -{ - struct mtd_info *mtd = dev_get_drvdata(dev); - struct vf610_nfc *nfc = mtd_to_nfc(mtd); - - clk_disable_unprepare(nfc->clk); - return 0; -} - -static int vf610_nfc_resume(struct device *dev) -{ - int err; - - struct mtd_info *mtd = dev_get_drvdata(dev); - struct vf610_nfc *nfc = mtd_to_nfc(mtd); - - err = clk_prepare_enable(nfc->clk); - if (err) - return err; - - vf610_nfc_preinit_controller(nfc); - vf610_nfc_init_controller(nfc); - return 0; -} -#endif - -static SIMPLE_DEV_PM_OPS(vf610_nfc_pm_ops, vf610_nfc_suspend, vf610_nfc_resume); - -static struct platform_driver vf610_nfc_driver = { - .driver = { - .name = DRV_NAME, - .of_match_table = vf610_nfc_dt_ids, - .pm = &vf610_nfc_pm_ops, - }, - .probe = vf610_nfc_probe, - .remove = vf610_nfc_remove, -}; - -module_platform_driver(vf610_nfc_driver); - -MODULE_AUTHOR("Stefan Agner "); -MODULE_DESCRIPTION("Freescale VF610/MPC5125 NFC MTD NAND driver"); -MODULE_LICENSE("GPL"); diff --git a/drivers/mtd/nand/xway_nand.c b/drivers/mtd/nand/xway_nand.c deleted file mode 100644 index 9926b4e3d69d..000000000000 --- a/drivers/mtd/nand/xway_nand.c +++ /dev/null @@ -1,245 +0,0 @@ -/* - * This program is free software; you can redistribute it and/or modify it - * under the terms of the GNU General Public License version 2 as published - * by the Free Software Foundation. - * - * Copyright © 2012 John Crispin - * Copyright © 2016 Hauke Mehrtens - */ - -#include -#include -#include - -#include - -/* nand registers */ -#define EBU_ADDSEL1 0x24 -#define EBU_NAND_CON 0xB0 -#define EBU_NAND_WAIT 0xB4 -#define NAND_WAIT_RD BIT(0) /* NAND flash status output */ -#define NAND_WAIT_WR_C BIT(3) /* NAND Write/Read complete */ -#define EBU_NAND_ECC0 0xB8 -#define EBU_NAND_ECC_AC 0xBC - -/* - * nand commands - * The pins of the NAND chip are selected based on the address bits of the - * "register" read and write. There are no special registers, but an - * address range and the lower address bits are used to activate the - * correct line. For example when the bit (1 << 2) is set in the address - * the ALE pin will be activated. - */ -#define NAND_CMD_ALE BIT(2) /* address latch enable */ -#define NAND_CMD_CLE BIT(3) /* command latch enable */ -#define NAND_CMD_CS BIT(4) /* chip select */ -#define NAND_CMD_SE BIT(5) /* spare area access latch */ -#define NAND_CMD_WP BIT(6) /* write protect */ -#define NAND_WRITE_CMD (NAND_CMD_CS | NAND_CMD_CLE) -#define NAND_WRITE_ADDR (NAND_CMD_CS | NAND_CMD_ALE) -#define NAND_WRITE_DATA (NAND_CMD_CS) -#define NAND_READ_DATA (NAND_CMD_CS) - -/* we need to tel the ebu which addr we mapped the nand to */ -#define ADDSEL1_MASK(x) (x << 4) -#define ADDSEL1_REGEN 1 - -/* we need to tell the EBU that we have nand attached and set it up properly */ -#define BUSCON1_SETUP (1 << 22) -#define BUSCON1_BCGEN_RES (0x3 << 12) -#define BUSCON1_WAITWRC2 (2 << 8) -#define BUSCON1_WAITRDC2 (2 << 6) -#define BUSCON1_HOLDC1 (1 << 4) -#define BUSCON1_RECOVC1 (1 << 2) -#define BUSCON1_CMULT4 1 - -#define NAND_CON_CE (1 << 20) -#define NAND_CON_OUT_CS1 (1 << 10) -#define NAND_CON_IN_CS1 (1 << 8) -#define NAND_CON_PRE_P (1 << 7) -#define NAND_CON_WP_P (1 << 6) -#define NAND_CON_SE_P (1 << 5) -#define NAND_CON_CS_P (1 << 4) -#define NAND_CON_CSMUX (1 << 1) -#define NAND_CON_NANDM 1 - -struct xway_nand_data { - struct nand_chip chip; - unsigned long csflags; - void __iomem *nandaddr; -}; - -static u8 xway_readb(struct mtd_info *mtd, int op) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct xway_nand_data *data = nand_get_controller_data(chip); - - return readb(data->nandaddr + op); -} - -static void xway_writeb(struct mtd_info *mtd, int op, u8 value) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct xway_nand_data *data = nand_get_controller_data(chip); - - writeb(value, data->nandaddr + op); -} - -static void xway_select_chip(struct mtd_info *mtd, int select) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - struct xway_nand_data *data = nand_get_controller_data(chip); - - switch (select) { - case -1: - ltq_ebu_w32_mask(NAND_CON_CE, 0, EBU_NAND_CON); - ltq_ebu_w32_mask(NAND_CON_NANDM, 0, EBU_NAND_CON); - spin_unlock_irqrestore(&ebu_lock, data->csflags); - break; - case 0: - spin_lock_irqsave(&ebu_lock, data->csflags); - ltq_ebu_w32_mask(0, NAND_CON_NANDM, EBU_NAND_CON); - ltq_ebu_w32_mask(0, NAND_CON_CE, EBU_NAND_CON); - break; - default: - BUG(); - } -} - -static void xway_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl) -{ - if (cmd == NAND_CMD_NONE) - return; - - if (ctrl & NAND_CLE) - xway_writeb(mtd, NAND_WRITE_CMD, cmd); - else if (ctrl & NAND_ALE) - xway_writeb(mtd, NAND_WRITE_ADDR, cmd); - - while ((ltq_ebu_r32(EBU_NAND_WAIT) & NAND_WAIT_WR_C) == 0) - ; -} - -static int xway_dev_ready(struct mtd_info *mtd) -{ - return ltq_ebu_r32(EBU_NAND_WAIT) & NAND_WAIT_RD; -} - -static unsigned char xway_read_byte(struct mtd_info *mtd) -{ - return xway_readb(mtd, NAND_READ_DATA); -} - -static void xway_read_buf(struct mtd_info *mtd, u_char *buf, int len) -{ - int i; - - for (i = 0; i < len; i++) - buf[i] = xway_readb(mtd, NAND_WRITE_DATA); -} - -static void xway_write_buf(struct mtd_info *mtd, const u_char *buf, int len) -{ - int i; - - for (i = 0; i < len; i++) - xway_writeb(mtd, NAND_WRITE_DATA, buf[i]); -} - -/* - * Probe for the NAND device. - */ -static int xway_nand_probe(struct platform_device *pdev) -{ - struct xway_nand_data *data; - struct mtd_info *mtd; - struct resource *res; - int err; - u32 cs; - u32 cs_flag = 0; - - /* Allocate memory for the device structure (and zero it) */ - data = devm_kzalloc(&pdev->dev, sizeof(struct xway_nand_data), - GFP_KERNEL); - if (!data) - return -ENOMEM; - - res = platform_get_resource(pdev, IORESOURCE_MEM, 0); - data->nandaddr = devm_ioremap_resource(&pdev->dev, res); - if (IS_ERR(data->nandaddr)) - return PTR_ERR(data->nandaddr); - - nand_set_flash_node(&data->chip, pdev->dev.of_node); - mtd = nand_to_mtd(&data->chip); - mtd->dev.parent = &pdev->dev; - - data->chip.cmd_ctrl = xway_cmd_ctrl; - data->chip.dev_ready = xway_dev_ready; - data->chip.select_chip = xway_select_chip; - data->chip.write_buf = xway_write_buf; - data->chip.read_buf = xway_read_buf; - data->chip.read_byte = xway_read_byte; - data->chip.chip_delay = 30; - - data->chip.ecc.mode = NAND_ECC_SOFT; - data->chip.ecc.algo = NAND_ECC_HAMMING; - - platform_set_drvdata(pdev, data); - nand_set_controller_data(&data->chip, data); - - /* load our CS from the DT. Either we find a valid 1 or default to 0 */ - err = of_property_read_u32(pdev->dev.of_node, "lantiq,cs", &cs); - if (!err && cs == 1) - cs_flag = NAND_CON_IN_CS1 | NAND_CON_OUT_CS1; - - /* setup the EBU to run in NAND mode on our base addr */ - ltq_ebu_w32(CPHYSADDR(data->nandaddr) - | ADDSEL1_MASK(3) | ADDSEL1_REGEN, EBU_ADDSEL1); - - ltq_ebu_w32(BUSCON1_SETUP | BUSCON1_BCGEN_RES | BUSCON1_WAITWRC2 - | BUSCON1_WAITRDC2 | BUSCON1_HOLDC1 | BUSCON1_RECOVC1 - | BUSCON1_CMULT4, LTQ_EBU_BUSCON1); - - ltq_ebu_w32(NAND_CON_NANDM | NAND_CON_CSMUX | NAND_CON_CS_P - | NAND_CON_SE_P | NAND_CON_WP_P | NAND_CON_PRE_P - | cs_flag, EBU_NAND_CON); - - /* Scan to find existence of the device */ - err = nand_scan(mtd, 1); - if (err) - return err; - - err = mtd_device_register(mtd, NULL, 0); - if (err) - nand_release(mtd); - - return err; -} - -/* - * Remove a NAND device. - */ -static int xway_nand_remove(struct platform_device *pdev) -{ - struct xway_nand_data *data = platform_get_drvdata(pdev); - - nand_release(nand_to_mtd(&data->chip)); - - return 0; -} - -static const struct of_device_id xway_nand_match[] = { - { .compatible = "lantiq,nand-xway" }, - {}, -}; - -static struct platform_driver xway_nand_driver = { - .probe = xway_nand_probe, - .remove = xway_nand_remove, - .driver = { - .name = "lantiq,nand-xway", - .of_match_table = xway_nand_match, - }, -}; - -builtin_platform_driver(xway_nand_driver); diff --git a/drivers/mtd/sm_ftl.c b/drivers/mtd/sm_ftl.c index 4237c7cebf02..fa176f5937bb 100644 --- a/drivers/mtd/sm_ftl.c +++ b/drivers/mtd/sm_ftl.c @@ -17,7 +17,7 @@ #include #include #include -#include "nand/sm_common.h" +#include "nand/raw/sm_common.h" #include "sm_ftl.h" -- cgit v1.2.3-58-ga151 From 9c3736a3de21d916a6af0594418b85a112f4bef6 Mon Sep 17 00:00:00 2001 From: Boris Brezillon Date: Mon, 5 Feb 2018 23:02:05 +0100 Subject: mtd: nand: Add core infrastructure to deal with NAND devices Add an intermediate layer to abstract NAND device interface so that some logic can be shared between SPI NANDs, parallel/raw NANDs, OneNANDs, ... Signed-off-by: Boris Brezillon --- drivers/mtd/nand/Kconfig | 3 + drivers/mtd/nand/Makefile | 3 + drivers/mtd/nand/bbt.c | 130 +++++++++ drivers/mtd/nand/core.c | 244 ++++++++++++++++ include/linux/mtd/nand.h | 731 ++++++++++++++++++++++++++++++++++++++++++++++ 5 files changed, 1111 insertions(+) create mode 100644 drivers/mtd/nand/bbt.c create mode 100644 drivers/mtd/nand/core.c create mode 100644 include/linux/mtd/nand.h diff --git a/drivers/mtd/nand/Kconfig b/drivers/mtd/nand/Kconfig index 6d5373471809..1c1a1f487e20 100644 --- a/drivers/mtd/nand/Kconfig +++ b/drivers/mtd/nand/Kconfig @@ -1 +1,4 @@ +config MTD_NAND_CORE + tristate + source "drivers/mtd/nand/raw/Kconfig" diff --git a/drivers/mtd/nand/Makefile b/drivers/mtd/nand/Makefile index 32af7168c5ba..a72d3cb0f325 100644 --- a/drivers/mtd/nand/Makefile +++ b/drivers/mtd/nand/Makefile @@ -1,3 +1,6 @@ # SPDX-License-Identifier: GPL-2.0 +nandcore-objs := core.o bbt.o +obj-$(CONFIG_MTD_NAND_CORE) += nandcore.o + obj-y += raw/ diff --git a/drivers/mtd/nand/bbt.c b/drivers/mtd/nand/bbt.c new file mode 100644 index 000000000000..56cde38b92c0 --- /dev/null +++ b/drivers/mtd/nand/bbt.c @@ -0,0 +1,130 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Copyright (c) 2017 Free Electrons + * + * Authors: + * Boris Brezillon + * Peter Pan + */ + +#define pr_fmt(fmt) "nand-bbt: " fmt + +#include +#include + +/** + * nanddev_bbt_init() - Initialize the BBT (Bad Block Table) + * @nand: NAND device + * + * Initialize the in-memory BBT. + * + * Return: 0 in case of success, a negative error code otherwise. + */ +int nanddev_bbt_init(struct nand_device *nand) +{ + unsigned int bits_per_block = fls(NAND_BBT_BLOCK_NUM_STATUS); + unsigned int nblocks = nanddev_neraseblocks(nand); + unsigned int nwords = DIV_ROUND_UP(nblocks * bits_per_block, + BITS_PER_LONG); + + nand->bbt.cache = kzalloc(nwords, GFP_KERNEL); + if (!nand->bbt.cache) + return -ENOMEM; + + return 0; +} +EXPORT_SYMBOL_GPL(nanddev_bbt_init); + +/** + * nanddev_bbt_cleanup() - Cleanup the BBT (Bad Block Table) + * @nand: NAND device + * + * Undoes what has been done in nanddev_bbt_init() + */ +void nanddev_bbt_cleanup(struct nand_device *nand) +{ + kfree(nand->bbt.cache); +} +EXPORT_SYMBOL_GPL(nanddev_bbt_cleanup); + +/** + * nanddev_bbt_update() - Update a BBT + * @nand: nand device + * + * Update the BBT. Currently a NOP function since on-flash bbt is not yet + * supported. + * + * Return: 0 in case of success, a negative error code otherwise. + */ +int nanddev_bbt_update(struct nand_device *nand) +{ + return 0; +} +EXPORT_SYMBOL_GPL(nanddev_bbt_update); + +/** + * nanddev_bbt_get_block_status() - Return the status of an eraseblock + * @nand: nand device + * @entry: the BBT entry + * + * Return: a positive number nand_bbt_block_status status or -%ERANGE if @entry + * is bigger than the BBT size. + */ +int nanddev_bbt_get_block_status(const struct nand_device *nand, + unsigned int entry) +{ + unsigned int bits_per_block = fls(NAND_BBT_BLOCK_NUM_STATUS); + unsigned long *pos = nand->bbt.cache + + ((entry * bits_per_block) / BITS_PER_LONG); + unsigned int offs = (entry * bits_per_block) % BITS_PER_LONG; + unsigned long status; + + if (entry >= nanddev_neraseblocks(nand)) + return -ERANGE; + + status = pos[0] >> offs; + if (bits_per_block + offs > BITS_PER_LONG) + status |= pos[1] << (BITS_PER_LONG - offs); + + return status & GENMASK(bits_per_block - 1, 0); +} +EXPORT_SYMBOL_GPL(nanddev_bbt_get_block_status); + +/** + * nanddev_bbt_set_block_status() - Update the status of an eraseblock in the + * in-memory BBT + * @nand: nand device + * @entry: the BBT entry to update + * @status: the new status + * + * Update an entry of the in-memory BBT. If you want to push the updated BBT + * the NAND you should call nanddev_bbt_update(). + * + * Return: 0 in case of success or -%ERANGE if @entry is bigger than the BBT + * size. + */ +int nanddev_bbt_set_block_status(struct nand_device *nand, unsigned int entry, + enum nand_bbt_block_status status) +{ + unsigned int bits_per_block = fls(NAND_BBT_BLOCK_NUM_STATUS); + unsigned long *pos = nand->bbt.cache + + ((entry * bits_per_block) / BITS_PER_LONG); + unsigned int offs = (entry * bits_per_block) % BITS_PER_LONG; + unsigned long val = status & GENMASK(bits_per_block - 1, 0); + + if (entry >= nanddev_neraseblocks(nand)) + return -ERANGE; + + pos[0] &= ~GENMASK(offs + bits_per_block - 1, offs); + pos[0] |= val << offs; + + if (bits_per_block + offs > BITS_PER_LONG) { + unsigned int rbits = bits_per_block + offs - BITS_PER_LONG; + + pos[1] &= ~GENMASK(rbits - 1, 0); + pos[1] |= val >> rbits; + } + + return 0; +} +EXPORT_SYMBOL_GPL(nanddev_bbt_set_block_status); diff --git a/drivers/mtd/nand/core.c b/drivers/mtd/nand/core.c new file mode 100644 index 000000000000..f237a688f8e9 --- /dev/null +++ b/drivers/mtd/nand/core.c @@ -0,0 +1,244 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Copyright (c) 2017 Free Electrons + * + * Authors: + * Boris Brezillon + * Peter Pan + */ + +#define pr_fmt(fmt) "nand: " fmt + +#include +#include + +/** + * nanddev_isbad() - Check if a block is bad + * @nand: NAND device + * @pos: position pointing to the block we want to check + * + * Return: true if the block is bad, false otherwise. + */ +bool nanddev_isbad(struct nand_device *nand, const struct nand_pos *pos) +{ + if (nanddev_bbt_is_initialized(nand)) { + unsigned int entry; + int status; + + entry = nanddev_bbt_pos_to_entry(nand, pos); + status = nanddev_bbt_get_block_status(nand, entry); + /* Lazy block status retrieval */ + if (status == NAND_BBT_BLOCK_STATUS_UNKNOWN) { + if (nand->ops->isbad(nand, pos)) + status = NAND_BBT_BLOCK_FACTORY_BAD; + else + status = NAND_BBT_BLOCK_GOOD; + + nanddev_bbt_set_block_status(nand, entry, status); + } + + if (status == NAND_BBT_BLOCK_WORN || + status == NAND_BBT_BLOCK_FACTORY_BAD) + return true; + + return false; + } + + return nand->ops->isbad(nand, pos); +} +EXPORT_SYMBOL_GPL(nanddev_isbad); + +/** + * nanddev_markbad() - Mark a block as bad + * @nand: NAND device + * @block: block to mark bad + * + * Mark a block bad. This function is updating the BBT if available and + * calls the low-level markbad hook (nand->ops->markbad()). + * + * Return: 0 in case of success, a negative error code otherwise. + */ +int nanddev_markbad(struct nand_device *nand, const struct nand_pos *pos) +{ + struct mtd_info *mtd = nanddev_to_mtd(nand); + unsigned int entry; + int ret = 0; + + if (nanddev_isbad(nand, pos)) + return 0; + + ret = nand->ops->markbad(nand, pos); + if (ret) + pr_warn("failed to write BBM to block @%llx (err = %d)\n", + nanddev_pos_to_offs(nand, pos), ret); + + if (!nanddev_bbt_is_initialized(nand)) + goto out; + + entry = nanddev_bbt_pos_to_entry(nand, pos); + ret = nanddev_bbt_set_block_status(nand, entry, NAND_BBT_BLOCK_WORN); + if (ret) + goto out; + + ret = nanddev_bbt_update(nand); + +out: + if (!ret) + mtd->ecc_stats.badblocks++; + + return ret; +} +EXPORT_SYMBOL_GPL(nanddev_markbad); + +/** + * nanddev_isreserved() - Check whether an eraseblock is reserved or not + * @nand: NAND device + * @pos: NAND position to test + * + * Checks whether the eraseblock pointed by @pos is reserved or not. + * + * Return: true if the eraseblock is reserved, false otherwise. + */ +bool nanddev_isreserved(struct nand_device *nand, const struct nand_pos *pos) +{ + unsigned int entry; + int status; + + if (!nanddev_bbt_is_initialized(nand)) + return false; + + /* Return info from the table */ + entry = nanddev_bbt_pos_to_entry(nand, pos); + status = nanddev_bbt_get_block_status(nand, entry); + return status == NAND_BBT_BLOCK_RESERVED; +} +EXPORT_SYMBOL_GPL(nanddev_isreserved); + +/** + * nanddev_erase() - Erase a NAND portion + * @nand: NAND device + * @block: eraseblock to erase + * + * Erases @block if it's not bad. + * + * Return: 0 in case of success, a negative error code otherwise. + */ +int nanddev_erase(struct nand_device *nand, const struct nand_pos *pos) +{ + if (nanddev_isbad(nand, pos) || nanddev_isreserved(nand, pos)) { + pr_warn("attempt to erase a bad/reserved block @%llx\n", + nanddev_pos_to_offs(nand, pos)); + return -EIO; + } + + return nand->ops->erase(nand, pos); +} +EXPORT_SYMBOL_GPL(nanddev_erase); + +/** + * nanddev_mtd_erase() - Generic mtd->_erase() implementation for NAND devices + * @mtd: MTD device + * @einfo: erase request + * + * This is a simple mtd->_erase() implementation iterating over all blocks + * concerned by @einfo and calling nand->ops->erase() on each of them. + * + * Note that mtd->_erase should not be directly assigned to this helper, + * because there's no locking here. NAND specialized layers should instead + * implement there own wrapper around nanddev_mtd_erase() taking the + * appropriate lock before calling nanddev_mtd_erase(). + * + * Return: 0 in case of success, a negative error code otherwise. + */ +int nanddev_mtd_erase(struct mtd_info *mtd, struct erase_info *einfo) +{ + struct nand_device *nand = mtd_to_nanddev(mtd); + struct nand_pos pos, last; + int ret; + + nanddev_offs_to_pos(nand, einfo->addr, &pos); + nanddev_offs_to_pos(nand, einfo->addr + einfo->len - 1, &last); + while (nanddev_pos_cmp(&pos, &last) <= 0) { + ret = nanddev_erase(nand, &pos); + if (ret) { + einfo->fail_addr = nanddev_pos_to_offs(nand, &pos); + einfo->state = MTD_ERASE_FAILED; + + return ret; + } + + nanddev_pos_next_eraseblock(nand, &pos); + } + + einfo->state = MTD_ERASE_DONE; + + return 0; +} +EXPORT_SYMBOL_GPL(nanddev_mtd_erase); + +/** + * nanddev_init() - Initialize a NAND device + * @nand: NAND device + * @memorg: NAND memory organization descriptor + * @ops: NAND device operations + * + * Initializes a NAND device object. Consistency checks are done on @memorg and + * @ops. Also takes care of initializing the BBT. + * + * Return: 0 in case of success, a negative error code otherwise. + */ +int nanddev_init(struct nand_device *nand, const struct nand_ops *ops, + struct module *owner) +{ + struct mtd_info *mtd = nanddev_to_mtd(nand); + struct nand_memory_organization *memorg = nanddev_get_memorg(nand); + + if (!nand || !ops) + return -EINVAL; + + if (!ops->erase || !ops->markbad || !ops->isbad) + return -EINVAL; + + if (!memorg->bits_per_cell || !memorg->pagesize || + !memorg->pages_per_eraseblock || !memorg->eraseblocks_per_lun || + !memorg->planes_per_lun || !memorg->luns_per_target || + !memorg->ntargets) + return -EINVAL; + + nand->rowconv.eraseblock_addr_shift = + fls(memorg->pages_per_eraseblock - 1); + nand->rowconv.lun_addr_shift = fls(memorg->eraseblocks_per_lun - 1) + + nand->rowconv.eraseblock_addr_shift; + + nand->ops = ops; + + mtd->type = memorg->bits_per_cell == 1 ? + MTD_NANDFLASH : MTD_MLCNANDFLASH; + mtd->flags = MTD_CAP_NANDFLASH; + mtd->erasesize = memorg->pagesize * memorg->pages_per_eraseblock; + mtd->writesize = memorg->pagesize; + mtd->writebufsize = memorg->pagesize; + mtd->oobsize = memorg->oobsize; + mtd->size = nanddev_size(nand); + mtd->owner = owner; + + return nanddev_bbt_init(nand); +} +EXPORT_SYMBOL_GPL(nanddev_init); + +/** + * nanddev_cleanup() - Release resources allocated in nanddev_init() + * @nand: NAND device + * + * Basically undoes what has been done in nanddev_init(). + */ +void nanddev_cleanup(struct nand_device *nand) +{ + if (nanddev_bbt_is_initialized(nand)) + nanddev_bbt_cleanup(nand); +} +EXPORT_SYMBOL_GPL(nanddev_cleanup); + +MODULE_DESCRIPTION("Generic NAND framework"); +MODULE_AUTHOR("Boris Brezillon "); +MODULE_LICENSE("GPL v2"); diff --git a/include/linux/mtd/nand.h b/include/linux/mtd/nand.h new file mode 100644 index 000000000000..792ea5c26329 --- /dev/null +++ b/include/linux/mtd/nand.h @@ -0,0 +1,731 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +/* + * Copyright 2017 - Free Electrons + * + * Authors: + * Boris Brezillon + * Peter Pan + */ + +#ifndef __LINUX_MTD_NAND_H +#define __LINUX_MTD_NAND_H + +#include + +/** + * struct nand_memory_organization - Memory organization structure + * @bits_per_cell: number of bits per NAND cell + * @pagesize: page size + * @oobsize: OOB area size + * @pages_per_eraseblock: number of pages per eraseblock + * @eraseblocks_per_lun: number of eraseblocks per LUN (Logical Unit Number) + * @planes_per_lun: number of planes per LUN + * @luns_per_target: number of LUN per target (target is a synonym for die) + * @ntargets: total number of targets exposed by the NAND device + */ +struct nand_memory_organization { + unsigned int bits_per_cell; + unsigned int pagesize; + unsigned int oobsize; + unsigned int pages_per_eraseblock; + unsigned int eraseblocks_per_lun; + unsigned int planes_per_lun; + unsigned int luns_per_target; + unsigned int ntargets; +}; + +#define NAND_MEMORG(bpc, ps, os, ppe, epl, ppl, lpt, nt) \ + { \ + .bits_per_cell = (bpc), \ + .pagesize = (ps), \ + .oobsize = (os), \ + .pages_per_eraseblock = (ppe), \ + .eraseblocks_per_lun = (epl), \ + .planes_per_lun = (ppl), \ + .luns_per_target = (lpt), \ + .ntargets = (nt), \ + } + +/** + * struct nand_row_converter - Information needed to convert an absolute offset + * into a row address + * @lun_addr_shift: position of the LUN identifier in the row address + * @eraseblock_addr_shift: position of the eraseblock identifier in the row + * address + */ +struct nand_row_converter { + unsigned int lun_addr_shift; + unsigned int eraseblock_addr_shift; +}; + +/** + * struct nand_pos - NAND position object + * @target: the NAND target/die + * @lun: the LUN identifier + * @plane: the plane within the LUN + * @eraseblock: the eraseblock within the LUN + * @page: the page within the LUN + * + * These information are usually used by specific sub-layers to select the + * appropriate target/die and generate a row address to pass to the device. + */ +struct nand_pos { + unsigned int target; + unsigned int lun; + unsigned int plane; + unsigned int eraseblock; + unsigned int page; +}; + +/** + * struct nand_page_io_req - NAND I/O request object + * @pos: the position this I/O request is targeting + * @dataoffs: the offset within the page + * @datalen: number of data bytes to read from/write to this page + * @databuf: buffer to store data in or get data from + * @ooboffs: the OOB offset within the page + * @ooblen: the number of OOB bytes to read from/write to this page + * @oobbuf: buffer to store OOB data in or get OOB data from + * + * This object is used to pass per-page I/O requests to NAND sub-layers. This + * way all useful information are already formatted in a useful way and + * specific NAND layers can focus on translating these information into + * specific commands/operations. + */ +struct nand_page_io_req { + struct nand_pos pos; + unsigned int dataoffs; + unsigned int datalen; + union { + const void *out; + void *in; + } databuf; + unsigned int ooboffs; + unsigned int ooblen; + union { + const void *out; + void *in; + } oobbuf; +}; + +/** + * struct nand_ecc_req - NAND ECC requirements + * @strength: ECC strength + * @step_size: ECC step/block size + */ +struct nand_ecc_req { + unsigned int strength; + unsigned int step_size; +}; + +#define NAND_ECCREQ(str, stp) { .strength = (str), .step_size = (stp) } + +/** + * struct nand_bbt - bad block table object + * @cache: in memory BBT cache + */ +struct nand_bbt { + unsigned long *cache; +}; + +struct nand_device; + +/** + * struct nand_ops - NAND operations + * @erase: erase a specific block. No need to check if the block is bad before + * erasing, this has been taken care of by the generic NAND layer + * @markbad: mark a specific block bad. No need to check if the block is + * already marked bad, this has been taken care of by the generic + * NAND layer. This method should just write the BBM (Bad Block + * Marker) so that future call to struct_nand_ops->isbad() return + * true + * @isbad: check whether a block is bad or not. This method should just read + * the BBM and return whether the block is bad or not based on what it + * reads + * + * These are all low level operations that should be implemented by specialized + * NAND layers (SPI NAND, raw NAND, ...). + */ +struct nand_ops { + int (*erase)(struct nand_device *nand, const struct nand_pos *pos); + int (*markbad)(struct nand_device *nand, const struct nand_pos *pos); + bool (*isbad)(struct nand_device *nand, const struct nand_pos *pos); +}; + +/** + * struct nand_device - NAND device + * @mtd: MTD instance attached to the NAND device + * @memorg: memory layout + * @eccreq: ECC requirements + * @rowconv: position to row address converter + * @bbt: bad block table info + * @ops: NAND operations attached to the NAND device + * + * Generic NAND object. Specialized NAND layers (raw NAND, SPI NAND, OneNAND) + * should declare their own NAND object embedding a nand_device struct (that's + * how inheritance is done). + * struct_nand_device->memorg and struct_nand_device->eccreq should be filled + * at device detection time to reflect the NAND device + * capabilities/requirements. Once this is done nanddev_init() can be called. + * It will take care of converting NAND information into MTD ones, which means + * the specialized NAND layers should never manually tweak + * struct_nand_device->mtd except for the ->_read/write() hooks. + */ +struct nand_device { + struct mtd_info mtd; + struct nand_memory_organization memorg; + struct nand_ecc_req eccreq; + struct nand_row_converter rowconv; + struct nand_bbt bbt; + const struct nand_ops *ops; +}; + +/** + * struct nand_io_iter - NAND I/O iterator + * @req: current I/O request + * @oobbytes_per_page: maximum number of OOB bytes per page + * @dataleft: remaining number of data bytes to read/write + * @oobleft: remaining number of OOB bytes to read/write + * + * Can be used by specialized NAND layers to iterate over all pages covered + * by an MTD I/O request, which should greatly simplifies the boiler-plate + * code needed to read/write data from/to a NAND device. + */ +struct nand_io_iter { + struct nand_page_io_req req; + unsigned int oobbytes_per_page; + unsigned int dataleft; + unsigned int oobleft; +}; + +/** + * mtd_to_nanddev() - Get the NAND device attached to the MTD instance + * @mtd: MTD instance + * + * Return: the NAND device embedding @mtd. + */ +static inline struct nand_device *mtd_to_nanddev(struct mtd_info *mtd) +{ + return container_of(mtd, struct nand_device, mtd); +} + +/** + * nanddev_to_mtd() - Get the MTD device attached to a NAND device + * @nand: NAND device + * + * Return: the MTD device embedded in @nand. + */ +static inline struct mtd_info *nanddev_to_mtd(struct nand_device *nand) +{ + return &nand->mtd; +} + +/* + * nanddev_bits_per_cell() - Get the number of bits per cell + * @nand: NAND device + * + * Return: the number of bits per cell. + */ +static inline unsigned int nanddev_bits_per_cell(const struct nand_device *nand) +{ + return nand->memorg.bits_per_cell; +} + +/** + * nanddev_page_size() - Get NAND page size + * @nand: NAND device + * + * Return: the page size. + */ +static inline size_t nanddev_page_size(const struct nand_device *nand) +{ + return nand->memorg.pagesize; +} + +/** + * nanddev_per_page_oobsize() - Get NAND OOB size + * @nand: NAND device + * + * Return: the OOB size. + */ +static inline unsigned int +nanddev_per_page_oobsize(const struct nand_device *nand) +{ + return nand->memorg.oobsize; +} + +/** + * nanddev_pages_per_eraseblock() - Get the number of pages per eraseblock + * @nand: NAND device + * + * Return: the number of pages per eraseblock. + */ +static inline unsigned int +nanddev_pages_per_eraseblock(const struct nand_device *nand) +{ + return nand->memorg.pages_per_eraseblock; +} + +/** + * nanddev_per_page_oobsize() - Get NAND erase block size + * @nand: NAND device + * + * Return: the eraseblock size. + */ +static inline size_t nanddev_eraseblock_size(const struct nand_device *nand) +{ + return nand->memorg.pagesize * nand->memorg.pages_per_eraseblock; +} + +/** + * nanddev_eraseblocks_per_lun() - Get the number of eraseblocks per LUN + * @nand: NAND device + * + * Return: the number of eraseblocks per LUN. + */ +static inline unsigned int +nanddev_eraseblocks_per_lun(const struct nand_device *nand) +{ + return nand->memorg.eraseblocks_per_lun; +} + +/** + * nanddev_target_size() - Get the total size provided by a single target/die + * @nand: NAND device + * + * Return: the total size exposed by a single target/die in bytes. + */ +static inline u64 nanddev_target_size(const struct nand_device *nand) +{ + return (u64)nand->memorg.luns_per_target * + nand->memorg.eraseblocks_per_lun * + nand->memorg.pages_per_eraseblock * + nand->memorg.pagesize; +} + +/** + * nanddev_ntarget() - Get the total of targets + * @nand: NAND device + * + * Return: the number of targets/dies exposed by @nand. + */ +static inline unsigned int nanddev_ntargets(const struct nand_device *nand) +{ + return nand->memorg.ntargets; +} + +/** + * nanddev_neraseblocks() - Get the total number of erasablocks + * @nand: NAND device + * + * Return: the total number of eraseblocks exposed by @nand. + */ +static inline unsigned int nanddev_neraseblocks(const struct nand_device *nand) +{ + return (u64)nand->memorg.luns_per_target * + nand->memorg.eraseblocks_per_lun * + nand->memorg.pages_per_eraseblock; +} + +/** + * nanddev_size() - Get NAND size + * @nand: NAND device + * + * Return: the total size (in bytes) exposed by @nand. + */ +static inline u64 nanddev_size(const struct nand_device *nand) +{ + return nanddev_target_size(nand) * nanddev_ntargets(nand); +} + +/** + * nanddev_get_memorg() - Extract memory organization info from a NAND device + * @nand: NAND device + * + * This can be used by the upper layer to fill the memorg info before calling + * nanddev_init(). + * + * Return: the memorg object embedded in the NAND device. + */ +static inline struct nand_memory_organization * +nanddev_get_memorg(struct nand_device *nand) +{ + return &nand->memorg; +} + +int nanddev_init(struct nand_device *nand, const struct nand_ops *ops, + struct module *owner); +void nanddev_cleanup(struct nand_device *nand); + +/** + * nanddev_register() - Register a NAND device + * @nand: NAND device + * + * Register a NAND device. + * This function is just a wrapper around mtd_device_register() + * registering the MTD device embedded in @nand. + * + * Return: 0 in case of success, a negative error code otherwise. + */ +static inline int nanddev_register(struct nand_device *nand) +{ + return mtd_device_register(&nand->mtd, NULL, 0); +} + +/** + * nanddev_unregister() - Unregister a NAND device + * @nand: NAND device + * + * Unregister a NAND device. + * This function is just a wrapper around mtd_device_unregister() + * unregistering the MTD device embedded in @nand. + * + * Return: 0 in case of success, a negative error code otherwise. + */ +static inline int nanddev_unregister(struct nand_device *nand) +{ + return mtd_device_unregister(&nand->mtd); +} + +/** + * nanddev_set_of_node() - Attach a DT node to a NAND device + * @nand: NAND device + * @np: DT node + * + * Attach a DT node to a NAND device. + */ +static inline void nanddev_set_of_node(struct nand_device *nand, + struct device_node *np) +{ + mtd_set_of_node(&nand->mtd, np); +} + +/** + * nanddev_get_of_node() - Retrieve the DT node attached to a NAND device + * @nand: NAND device + * + * Return: the DT node attached to @nand. + */ +static inline struct device_node *nanddev_get_of_node(struct nand_device *nand) +{ + return mtd_get_of_node(&nand->mtd); +} + +/** + * nanddev_offs_to_pos() - Convert an absolute NAND offset into a NAND position + * @nand: NAND device + * @offs: absolute NAND offset (usually passed by the MTD layer) + * @pos: a NAND position object to fill in + * + * Converts @offs into a nand_pos representation. + * + * Return: the offset within the NAND page pointed by @pos. + */ +static inline unsigned int nanddev_offs_to_pos(struct nand_device *nand, + loff_t offs, + struct nand_pos *pos) +{ + unsigned int pageoffs; + u64 tmp = offs; + + pageoffs = do_div(tmp, nand->memorg.pagesize); + pos->page = do_div(tmp, nand->memorg.pages_per_eraseblock); + pos->eraseblock = do_div(tmp, nand->memorg.eraseblocks_per_lun); + pos->plane = pos->eraseblock % nand->memorg.planes_per_lun; + pos->lun = do_div(tmp, nand->memorg.luns_per_target); + pos->target = tmp; + + return pageoffs; +} + +/** + * nanddev_pos_cmp() - Compare two NAND positions + * @a: First NAND position + * @b: Second NAND position + * + * Compares two NAND positions. + * + * Return: -1 if @a < @b, 0 if @a == @b and 1 if @a > @b. + */ +static inline int nanddev_pos_cmp(const struct nand_pos *a, + const struct nand_pos *b) +{ + if (a->target != b->target) + return a->target < b->target ? -1 : 1; + + if (a->lun != b->lun) + return a->lun < b->lun ? -1 : 1; + + if (a->eraseblock != b->eraseblock) + return a->eraseblock < b->eraseblock ? -1 : 1; + + if (a->page != b->page) + return a->page < b->page ? -1 : 1; + + return 0; +} + +/** + * nanddev_pos_to_offs() - Convert a NAND position into an absolute offset + * @nand: NAND device + * @pos: the NAND position to convert + * + * Converts @pos NAND position into an absolute offset. + * + * Return: the absolute offset. Note that @pos points to the beginning of a + * page, if one wants to point to a specific offset within this page + * the returned offset has to be adjusted manually. + */ +static inline loff_t nanddev_pos_to_offs(struct nand_device *nand, + const struct nand_pos *pos) +{ + unsigned int npages; + + npages = pos->page + + ((pos->eraseblock + + (pos->lun + + (pos->target * nand->memorg.luns_per_target)) * + nand->memorg.eraseblocks_per_lun) * + nand->memorg.pages_per_eraseblock); + + return (loff_t)npages * nand->memorg.pagesize; +} + +/** + * nanddev_pos_to_row() - Extract a row address from a NAND position + * @nand: NAND device + * @pos: the position to convert + * + * Converts a NAND position into a row address that can then be passed to the + * device. + * + * Return: the row address extracted from @pos. + */ +static inline unsigned int nanddev_pos_to_row(struct nand_device *nand, + const struct nand_pos *pos) +{ + return (pos->lun << nand->rowconv.lun_addr_shift) | + (pos->eraseblock << nand->rowconv.eraseblock_addr_shift) | + pos->page; +} + +/** + * nanddev_pos_next_target() - Move a position to the next target/die + * @nand: NAND device + * @pos: the position to update + * + * Updates @pos to point to the start of the next target/die. Useful when you + * want to iterate over all targets/dies of a NAND device. + */ +static inline void nanddev_pos_next_target(struct nand_device *nand, + struct nand_pos *pos) +{ + pos->page = 0; + pos->plane = 0; + pos->eraseblock = 0; + pos->lun = 0; + pos->target++; +} + +/** + * nanddev_pos_next_lun() - Move a position to the next LUN + * @nand: NAND device + * @pos: the position to update + * + * Updates @pos to point to the start of the next LUN. Useful when you want to + * iterate over all LUNs of a NAND device. + */ +static inline void nanddev_pos_next_lun(struct nand_device *nand, + struct nand_pos *pos) +{ + if (pos->lun >= nand->memorg.luns_per_target - 1) + return nanddev_pos_next_target(nand, pos); + + pos->lun++; + pos->page = 0; + pos->plane = 0; + pos->eraseblock = 0; +} + +/** + * nanddev_pos_next_eraseblock() - Move a position to the next eraseblock + * @nand: NAND device + * @pos: the position to update + * + * Updates @pos to point to the start of the next eraseblock. Useful when you + * want to iterate over all eraseblocks of a NAND device. + */ +static inline void nanddev_pos_next_eraseblock(struct nand_device *nand, + struct nand_pos *pos) +{ + if (pos->eraseblock >= nand->memorg.eraseblocks_per_lun - 1) + return nanddev_pos_next_lun(nand, pos); + + pos->eraseblock++; + pos->page = 0; + pos->plane = pos->eraseblock % nand->memorg.planes_per_lun; +} + +/** + * nanddev_pos_next_eraseblock() - Move a position to the next page + * @nand: NAND device + * @pos: the position to update + * + * Updates @pos to point to the start of the next page. Useful when you want to + * iterate over all pages of a NAND device. + */ +static inline void nanddev_pos_next_page(struct nand_device *nand, + struct nand_pos *pos) +{ + if (pos->page >= nand->memorg.pages_per_eraseblock - 1) + return nanddev_pos_next_eraseblock(nand, pos); + + pos->page++; +} + +/** + * nand_io_iter_init - Initialize a NAND I/O iterator + * @nand: NAND device + * @offs: absolute offset + * @req: MTD request + * @iter: NAND I/O iterator + * + * Initializes a NAND iterator based on the information passed by the MTD + * layer. + */ +static inline void nanddev_io_iter_init(struct nand_device *nand, + loff_t offs, struct mtd_oob_ops *req, + struct nand_io_iter *iter) +{ + struct mtd_info *mtd = nanddev_to_mtd(nand); + + iter->req.dataoffs = nanddev_offs_to_pos(nand, offs, &iter->req.pos); + iter->req.ooboffs = req->ooboffs; + iter->oobbytes_per_page = mtd_oobavail(mtd, req); + iter->dataleft = req->len; + iter->oobleft = req->ooblen; + iter->req.databuf.in = req->datbuf; + iter->req.datalen = min_t(unsigned int, + nand->memorg.pagesize - iter->req.dataoffs, + iter->dataleft); + iter->req.oobbuf.in = req->oobbuf; + iter->req.ooblen = min_t(unsigned int, + iter->oobbytes_per_page - iter->req.ooboffs, + iter->oobleft); +} + +/** + * nand_io_iter_next_page - Move to the next page + * @nand: NAND device + * @iter: NAND I/O iterator + * + * Updates the @iter to point to the next page. + */ +static inline void nanddev_io_iter_next_page(struct nand_device *nand, + struct nand_io_iter *iter) +{ + nanddev_pos_next_page(nand, &iter->req.pos); + iter->dataleft -= iter->req.datalen; + iter->req.databuf.in += iter->req.datalen; + iter->oobleft -= iter->req.ooblen; + iter->req.oobbuf.in += iter->req.ooblen; + iter->req.dataoffs = 0; + iter->req.ooboffs = 0; + iter->req.datalen = min_t(unsigned int, nand->memorg.pagesize, + iter->dataleft); + iter->req.ooblen = min_t(unsigned int, iter->oobbytes_per_page, + iter->oobleft); +} + +/** + * nand_io_iter_end - Should end iteration or not + * @nand: NAND device + * @iter: NAND I/O iterator + * + * Check whether @iter has reached the end of the NAND portion it was asked to + * iterate on or not. + * + * Return: true if @iter has reached the end of the iteration request, false + * otherwise. + */ +static inline bool nanddev_io_iter_end(struct nand_device *nand, + const struct nand_io_iter *iter) +{ + if (iter->dataleft || iter->oobleft) + return false; + + return true; +} + +/** + * nand_io_for_each_page - Iterate over all NAND pages contained in an MTD I/O + * request + * @nand: NAND device + * @start: start address to read/write from + * @req: MTD I/O request + * @iter: NAND I/O iterator + * + * Should be used for iterate over pages that are contained in an MTD request. + */ +#define nanddev_io_for_each_page(nand, start, req, iter) \ + for (nanddev_io_iter_init(nand, start, req, iter); \ + !nanddev_io_iter_end(nand, iter); \ + nanddev_io_iter_next_page(nand, iter)) + +bool nanddev_isbad(struct nand_device *nand, const struct nand_pos *pos); +bool nanddev_isreserved(struct nand_device *nand, const struct nand_pos *pos); +int nanddev_erase(struct nand_device *nand, const struct nand_pos *pos); +int nanddev_markbad(struct nand_device *nand, const struct nand_pos *pos); + +/* BBT related functions */ +enum nand_bbt_block_status { + NAND_BBT_BLOCK_STATUS_UNKNOWN, + NAND_BBT_BLOCK_GOOD, + NAND_BBT_BLOCK_WORN, + NAND_BBT_BLOCK_RESERVED, + NAND_BBT_BLOCK_FACTORY_BAD, + NAND_BBT_BLOCK_NUM_STATUS, +}; + +int nanddev_bbt_init(struct nand_device *nand); +void nanddev_bbt_cleanup(struct nand_device *nand); +int nanddev_bbt_update(struct nand_device *nand); +int nanddev_bbt_get_block_status(const struct nand_device *nand, + unsigned int entry); +int nanddev_bbt_set_block_status(struct nand_device *nand, unsigned int entry, + enum nand_bbt_block_status status); +int nanddev_bbt_markbad(struct nand_device *nand, unsigned int block); + +/** + * nanddev_bbt_pos_to_entry() - Convert a NAND position into a BBT entry + * @nand: NAND device + * @pos: the NAND position we want to get BBT entry for + * + * Return the BBT entry used to store information about the eraseblock pointed + * by @pos. + * + * Return: the BBT entry storing information about eraseblock pointed by @pos. + */ +static inline unsigned int nanddev_bbt_pos_to_entry(struct nand_device *nand, + const struct nand_pos *pos) +{ + return pos->eraseblock + + ((pos->lun + (pos->target * nand->memorg.luns_per_target)) * + nand->memorg.eraseblocks_per_lun); +} + +/** + * nanddev_bbt_is_initialized() - Check if the BBT has been initialized + * @nand: NAND device + * + * Return: true if the BBT has been initialized, false otherwise. + */ +static inline bool nanddev_bbt_is_initialized(struct nand_device *nand) +{ + return !!nand->bbt.cache; +} + +/* MTD -> NAND helper functions. */ +int nanddev_mtd_erase(struct mtd_info *mtd, struct erase_info *einfo); + +#endif /* __LINUX_MTD_NAND_H */ -- cgit v1.2.3-58-ga151 From 4df6ed4f0ac9a1bb776eabb5a669321b68296ff2 Mon Sep 17 00:00:00 2001 From: Miquel Raynal Date: Fri, 16 Feb 2018 15:22:47 +0100 Subject: mtd: nand: fsmc: get rid of IO_ADDR_[R|W] Remove the use of IO_ADDR_[R|W] in the fsmc_nand driver. Instead, use a pointer to the control registers to avoid doing several arithmetic operations (including a multiplication) each time a control register is read or written. All references to IO_ADDR_[R|W] are not entirely removed from the driver as, at this time, these values are needed by the NAND core in the default ->read/write_byte/word() hooks. These references will be entirely removed when switching to ->exec_op(), that does not make use of these hooks anymore. Signed-off-by: Miquel Raynal Signed-off-by: Boris Brezillon --- drivers/mtd/nand/raw/fsmc_nand.c | 100 ++++++++++++++++----------------------- 1 file changed, 42 insertions(+), 58 deletions(-) diff --git a/drivers/mtd/nand/raw/fsmc_nand.c b/drivers/mtd/nand/raw/fsmc_nand.c index 7e66268f8154..75a825dc5a4c 100644 --- a/drivers/mtd/nand/raw/fsmc_nand.c +++ b/drivers/mtd/nand/raw/fsmc_nand.c @@ -103,10 +103,6 @@ #define ECC3 0x1C #define FSMC_NAND_BANK_SZ 0x20 -#define FSMC_NAND_REG(base, bank, reg) (base + FSMC_NOR_REG_SIZE + \ - (FSMC_NAND_BANK_SZ * (bank)) + \ - reg) - #define FSMC_BUSY_WAIT_TIMEOUT (1 * HZ) struct fsmc_nand_timings { @@ -143,7 +139,7 @@ enum access_mode { * @data_va: NAND port for Data. * @cmd_va: NAND port for Command. * @addr_va: NAND port for Address. - * @regs_va: FSMC regs base address. + * @regs_va: Registers base address for a given bank. */ struct fsmc_nand_data { u32 pid; @@ -265,8 +261,6 @@ static void fsmc_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl) { struct nand_chip *this = mtd_to_nand(mtd); struct fsmc_nand_data *host = mtd_to_fsmc(mtd); - void __iomem *regs = host->regs_va; - unsigned int bank = host->bank; if (ctrl & NAND_CTRL_CHANGE) { u32 pc; @@ -282,12 +276,12 @@ static void fsmc_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl) this->IO_ADDR_W = host->data_va; } - pc = readl(FSMC_NAND_REG(regs, bank, PC)); + pc = readl(host->regs_va + PC); if (ctrl & NAND_NCE) pc |= FSMC_ENABLE; else pc &= ~FSMC_ENABLE; - writel_relaxed(pc, FSMC_NAND_REG(regs, bank, PC)); + writel_relaxed(pc, host->regs_va + PC); } mb(); @@ -307,8 +301,6 @@ static void fsmc_nand_setup(struct fsmc_nand_data *host, { uint32_t value = FSMC_DEVTYPE_NAND | FSMC_ENABLE | FSMC_WAITON; uint32_t tclr, tar, thiz, thold, twait, tset; - unsigned int bank = host->bank; - void __iomem *regs = host->regs_va; tclr = (tims->tclr & FSMC_TCLR_MASK) << FSMC_TCLR_SHIFT; tar = (tims->tar & FSMC_TAR_MASK) << FSMC_TAR_SHIFT; @@ -318,18 +310,14 @@ static void fsmc_nand_setup(struct fsmc_nand_data *host, tset = (tims->tset & FSMC_TSET_MASK) << FSMC_TSET_SHIFT; if (host->nand.options & NAND_BUSWIDTH_16) - writel_relaxed(value | FSMC_DEVWID_16, - FSMC_NAND_REG(regs, bank, PC)); + writel_relaxed(value | FSMC_DEVWID_16, host->regs_va + PC); else - writel_relaxed(value | FSMC_DEVWID_8, - FSMC_NAND_REG(regs, bank, PC)); - - writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) | tclr | tar, - FSMC_NAND_REG(regs, bank, PC)); - writel_relaxed(thiz | thold | twait | tset, - FSMC_NAND_REG(regs, bank, COMM)); - writel_relaxed(thiz | thold | twait | tset, - FSMC_NAND_REG(regs, bank, ATTRIB)); + writel_relaxed(value | FSMC_DEVWID_8, host->regs_va + PC); + + writel_relaxed(readl(host->regs_va + PC) | tclr | tar, + host->regs_va + PC); + writel_relaxed(thiz | thold | twait | tset, host->regs_va + COMM); + writel_relaxed(thiz | thold | twait | tset, host->regs_va + ATTRIB); } static int fsmc_calc_timings(struct fsmc_nand_data *host, @@ -419,15 +407,13 @@ static int fsmc_setup_data_interface(struct mtd_info *mtd, int csline, static void fsmc_enable_hwecc(struct mtd_info *mtd, int mode) { struct fsmc_nand_data *host = mtd_to_fsmc(mtd); - void __iomem *regs = host->regs_va; - uint32_t bank = host->bank; - - writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) & ~FSMC_ECCPLEN_256, - FSMC_NAND_REG(regs, bank, PC)); - writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) & ~FSMC_ECCEN, - FSMC_NAND_REG(regs, bank, PC)); - writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) | FSMC_ECCEN, - FSMC_NAND_REG(regs, bank, PC)); + + writel_relaxed(readl(host->regs_va + PC) & ~FSMC_ECCPLEN_256, + host->regs_va + PC); + writel_relaxed(readl(host->regs_va + PC) & ~FSMC_ECCEN, + host->regs_va + PC); + writel_relaxed(readl(host->regs_va + PC) | FSMC_ECCEN, + host->regs_va + PC); } /* @@ -439,13 +425,11 @@ static int fsmc_read_hwecc_ecc4(struct mtd_info *mtd, const uint8_t *data, uint8_t *ecc) { struct fsmc_nand_data *host = mtd_to_fsmc(mtd); - void __iomem *regs = host->regs_va; - uint32_t bank = host->bank; uint32_t ecc_tmp; unsigned long deadline = jiffies + FSMC_BUSY_WAIT_TIMEOUT; do { - if (readl_relaxed(FSMC_NAND_REG(regs, bank, STS)) & FSMC_CODE_RDY) + if (readl_relaxed(host->regs_va + STS) & FSMC_CODE_RDY) break; else cond_resched(); @@ -456,25 +440,25 @@ static int fsmc_read_hwecc_ecc4(struct mtd_info *mtd, const uint8_t *data, return -ETIMEDOUT; } - ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC1)); + ecc_tmp = readl_relaxed(host->regs_va + ECC1); ecc[0] = (uint8_t) (ecc_tmp >> 0); ecc[1] = (uint8_t) (ecc_tmp >> 8); ecc[2] = (uint8_t) (ecc_tmp >> 16); ecc[3] = (uint8_t) (ecc_tmp >> 24); - ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC2)); + ecc_tmp = readl_relaxed(host->regs_va + ECC2); ecc[4] = (uint8_t) (ecc_tmp >> 0); ecc[5] = (uint8_t) (ecc_tmp >> 8); ecc[6] = (uint8_t) (ecc_tmp >> 16); ecc[7] = (uint8_t) (ecc_tmp >> 24); - ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC3)); + ecc_tmp = readl_relaxed(host->regs_va + ECC3); ecc[8] = (uint8_t) (ecc_tmp >> 0); ecc[9] = (uint8_t) (ecc_tmp >> 8); ecc[10] = (uint8_t) (ecc_tmp >> 16); ecc[11] = (uint8_t) (ecc_tmp >> 24); - ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, STS)); + ecc_tmp = readl_relaxed(host->regs_va + STS); ecc[12] = (uint8_t) (ecc_tmp >> 16); return 0; @@ -489,11 +473,9 @@ static int fsmc_read_hwecc_ecc1(struct mtd_info *mtd, const uint8_t *data, uint8_t *ecc) { struct fsmc_nand_data *host = mtd_to_fsmc(mtd); - void __iomem *regs = host->regs_va; - uint32_t bank = host->bank; uint32_t ecc_tmp; - ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC1)); + ecc_tmp = readl_relaxed(host->regs_va + ECC1); ecc[0] = (uint8_t) (ecc_tmp >> 0); ecc[1] = (uint8_t) (ecc_tmp >> 8); ecc[2] = (uint8_t) (ecc_tmp >> 16); @@ -598,18 +580,18 @@ unmap_dma: */ static void fsmc_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) { + struct fsmc_nand_data *host = mtd_to_fsmc(mtd); int i; - struct nand_chip *chip = mtd_to_nand(mtd); if (IS_ALIGNED((uint32_t)buf, sizeof(uint32_t)) && IS_ALIGNED(len, sizeof(uint32_t))) { uint32_t *p = (uint32_t *)buf; len = len >> 2; for (i = 0; i < len; i++) - writel_relaxed(p[i], chip->IO_ADDR_W); + writel_relaxed(p[i], host->data_va); } else { for (i = 0; i < len; i++) - writeb_relaxed(buf[i], chip->IO_ADDR_W); + writeb_relaxed(buf[i], host->data_va); } } @@ -621,18 +603,18 @@ static void fsmc_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) */ static void fsmc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) { + struct fsmc_nand_data *host = mtd_to_fsmc(mtd); int i; - struct nand_chip *chip = mtd_to_nand(mtd); if (IS_ALIGNED((uint32_t)buf, sizeof(uint32_t)) && IS_ALIGNED(len, sizeof(uint32_t))) { uint32_t *p = (uint32_t *)buf; len = len >> 2; for (i = 0; i < len; i++) - p[i] = readl_relaxed(chip->IO_ADDR_R); + p[i] = readl_relaxed(host->data_va); } else { for (i = 0; i < len; i++) - buf[i] = readb_relaxed(chip->IO_ADDR_R); + buf[i] = readb_relaxed(host->data_va); } } @@ -754,13 +736,11 @@ static int fsmc_bch8_correct_data(struct mtd_info *mtd, uint8_t *dat, { struct nand_chip *chip = mtd_to_nand(mtd); struct fsmc_nand_data *host = mtd_to_fsmc(mtd); - void __iomem *regs = host->regs_va; - unsigned int bank = host->bank; uint32_t err_idx[8]; uint32_t num_err, i; uint32_t ecc1, ecc2, ecc3, ecc4; - num_err = (readl_relaxed(FSMC_NAND_REG(regs, bank, STS)) >> 10) & 0xF; + num_err = (readl_relaxed(host->regs_va + STS) >> 10) & 0xF; /* no bit flipping */ if (likely(num_err == 0)) @@ -803,10 +783,10 @@ static int fsmc_bch8_correct_data(struct mtd_info *mtd, uint8_t *dat, * uint64_t array and error offset indexes are populated in err_idx * array */ - ecc1 = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC1)); - ecc2 = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC2)); - ecc3 = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC3)); - ecc4 = readl_relaxed(FSMC_NAND_REG(regs, bank, STS)); + ecc1 = readl_relaxed(host->regs_va + ECC1); + ecc2 = readl_relaxed(host->regs_va + ECC2); + ecc3 = readl_relaxed(host->regs_va + ECC3); + ecc4 = readl_relaxed(host->regs_va + STS); err_idx[0] = (ecc1 >> 0) & 0x1FFF; err_idx[1] = (ecc1 >> 13) & 0x1FFF; @@ -889,6 +869,7 @@ static int __init fsmc_nand_probe(struct platform_device *pdev) struct mtd_info *mtd; struct nand_chip *nand; struct resource *res; + void __iomem *base; dma_cap_mask_t mask; int ret = 0; u32 pid; @@ -923,9 +904,12 @@ static int __init fsmc_nand_probe(struct platform_device *pdev) return PTR_ERR(host->cmd_va); res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "fsmc_regs"); - host->regs_va = devm_ioremap_resource(&pdev->dev, res); - if (IS_ERR(host->regs_va)) - return PTR_ERR(host->regs_va); + base = devm_ioremap_resource(&pdev->dev, res); + if (IS_ERR(base)) + return PTR_ERR(base); + + host->regs_va = base + FSMC_NOR_REG_SIZE + + (host->bank * FSMC_NAND_BANK_SZ); host->clk = devm_clk_get(&pdev->dev, NULL); if (IS_ERR(host->clk)) { @@ -942,7 +926,7 @@ static int __init fsmc_nand_probe(struct platform_device *pdev) * AMBA PrimeCell bus. However it is not a PrimeCell. */ for (pid = 0, i = 0; i < 4; i++) - pid |= (readl(host->regs_va + resource_size(res) - 0x20 + 4 * i) & 255) << (i * 8); + pid |= (readl(base + resource_size(res) - 0x20 + 4 * i) & 255) << (i * 8); host->pid = pid; dev_info(&pdev->dev, "FSMC device partno %03x, manufacturer %02x, " "revision %02x, config %02x\n", -- cgit v1.2.3-58-ga151 From 4da712e702941daa849ccd7fbcaa677dce7855b2 Mon Sep 17 00:00:00 2001 From: Miquel Raynal Date: Fri, 16 Feb 2018 15:22:48 +0100 Subject: mtd: nand: fsmc: use ->exec_op() Remove the deprecated ->cmd_ctrl() implementation to use ->exec_op() in the fsmc_nand driver. Implement the ->select_chip() hook to avoid having to support the hack from the core that send a NAND_CMD_NONE with NAND_NCE to signal a deassertion of nCE. Also get rid of the last references to ->IO_ADDR_[R|W] that are not used anymore. Signed-off-by: Miquel Raynal Signed-off-by: Boris Brezillon --- drivers/mtd/nand/raw/fsmc_nand.c | 150 ++++++++++++++++++++++++++------------- 1 file changed, 99 insertions(+), 51 deletions(-) diff --git a/drivers/mtd/nand/raw/fsmc_nand.c b/drivers/mtd/nand/raw/fsmc_nand.c index 75a825dc5a4c..28c48dcc514e 100644 --- a/drivers/mtd/nand/raw/fsmc_nand.c +++ b/drivers/mtd/nand/raw/fsmc_nand.c @@ -253,43 +253,6 @@ static inline struct fsmc_nand_data *mtd_to_fsmc(struct mtd_info *mtd) return container_of(mtd_to_nand(mtd), struct fsmc_nand_data, nand); } -/* - * fsmc_cmd_ctrl - For facilitaing Hardware access - * This routine allows hardware specific access to control-lines(ALE,CLE) - */ -static void fsmc_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl) -{ - struct nand_chip *this = mtd_to_nand(mtd); - struct fsmc_nand_data *host = mtd_to_fsmc(mtd); - - if (ctrl & NAND_CTRL_CHANGE) { - u32 pc; - - if (ctrl & NAND_CLE) { - this->IO_ADDR_R = host->cmd_va; - this->IO_ADDR_W = host->cmd_va; - } else if (ctrl & NAND_ALE) { - this->IO_ADDR_R = host->addr_va; - this->IO_ADDR_W = host->addr_va; - } else { - this->IO_ADDR_R = host->data_va; - this->IO_ADDR_W = host->data_va; - } - - pc = readl(host->regs_va + PC); - if (ctrl & NAND_NCE) - pc |= FSMC_ENABLE; - else - pc &= ~FSMC_ENABLE; - writel_relaxed(pc, host->regs_va + PC); - } - - mb(); - - if (cmd != NAND_CMD_NONE) - writeb_relaxed(cmd, this->IO_ADDR_W); -} - /* * fsmc_nand_setup - FSMC (Flexible Static Memory Controller) init routine * @@ -645,6 +608,102 @@ static void fsmc_write_buf_dma(struct mtd_info *mtd, const uint8_t *buf, dma_xfer(host, (void *)buf, len, DMA_TO_DEVICE); } +/* fsmc_select_chip - assert or deassert nCE */ +static void fsmc_select_chip(struct mtd_info *mtd, int chipnr) +{ + struct fsmc_nand_data *host = mtd_to_fsmc(mtd); + u32 pc; + + /* Support only one CS */ + if (chipnr > 0) + return; + + pc = readl(host->regs_va + PC); + if (chipnr < 0) + writel_relaxed(pc & ~FSMC_ENABLE, host->regs_va + PC); + else + writel_relaxed(pc | FSMC_ENABLE, host->regs_va + PC); + + /* nCE line must be asserted before starting any operation */ + mb(); +} + +/* + * fsmc_exec_op - hook called by the core to execute NAND operations + * + * This controller is simple enough and thus does not need to use the parser + * provided by the core, instead, handle every situation here. + */ +static int fsmc_exec_op(struct nand_chip *chip, const struct nand_operation *op, + bool check_only) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + struct fsmc_nand_data *host = mtd_to_fsmc(mtd); + const struct nand_op_instr *instr = NULL; + int ret = 0; + unsigned int op_id; + int i; + + pr_debug("Executing operation [%d instructions]:\n", op->ninstrs); + for (op_id = 0; op_id < op->ninstrs; op_id++) { + instr = &op->instrs[op_id]; + + switch (instr->type) { + case NAND_OP_CMD_INSTR: + pr_debug(" ->CMD [0x%02x]\n", + instr->ctx.cmd.opcode); + + writeb_relaxed(instr->ctx.cmd.opcode, host->cmd_va); + break; + + case NAND_OP_ADDR_INSTR: + pr_debug(" ->ADDR [%d cyc]", + instr->ctx.addr.naddrs); + + for (i = 0; i < instr->ctx.addr.naddrs; i++) + writeb_relaxed(instr->ctx.addr.addrs[i], + host->addr_va); + break; + + case NAND_OP_DATA_IN_INSTR: + pr_debug(" ->DATA_IN [%d B%s]\n", instr->ctx.data.len, + instr->ctx.data.force_8bit ? + ", force 8-bit" : ""); + + if (host->mode == USE_DMA_ACCESS) + fsmc_read_buf_dma(mtd, instr->ctx.data.buf.in, + instr->ctx.data.len); + else + fsmc_read_buf(mtd, instr->ctx.data.buf.in, + instr->ctx.data.len); + break; + + case NAND_OP_DATA_OUT_INSTR: + pr_debug(" ->DATA_OUT [%d B%s]\n", instr->ctx.data.len, + instr->ctx.data.force_8bit ? + ", force 8-bit" : ""); + + if (host->mode == USE_DMA_ACCESS) + fsmc_write_buf_dma(mtd, instr->ctx.data.buf.out, + instr->ctx.data.len); + else + fsmc_write_buf(mtd, instr->ctx.data.buf.out, + instr->ctx.data.len); + break; + + case NAND_OP_WAITRDY_INSTR: + pr_debug(" ->WAITRDY [max %d ms]\n", + instr->ctx.waitrdy.timeout_ms); + + ret = nand_soft_waitrdy(chip, + instr->ctx.waitrdy.timeout_ms); + break; + } + } + + return ret; +} + /* * fsmc_read_page_hwecc * @mtd: mtd info structure @@ -944,9 +1003,8 @@ static int __init fsmc_nand_probe(struct platform_device *pdev) nand_set_flash_node(nand, pdev->dev.of_node); mtd->dev.parent = &pdev->dev; - nand->IO_ADDR_R = host->data_va; - nand->IO_ADDR_W = host->data_va; - nand->cmd_ctrl = fsmc_cmd_ctrl; + nand->exec_op = fsmc_exec_op; + nand->select_chip = fsmc_select_chip; nand->chip_delay = 30; /* @@ -958,8 +1016,7 @@ static int __init fsmc_nand_probe(struct platform_device *pdev) nand->ecc.size = 512; nand->badblockbits = 7; - switch (host->mode) { - case USE_DMA_ACCESS: + if (host->mode == USE_DMA_ACCESS) { dma_cap_zero(mask); dma_cap_set(DMA_MEMCPY, mask); host->read_dma_chan = dma_request_channel(mask, filter, NULL); @@ -972,15 +1029,6 @@ static int __init fsmc_nand_probe(struct platform_device *pdev) dev_err(&pdev->dev, "Unable to get write dma channel\n"); goto err_req_write_chnl; } - nand->read_buf = fsmc_read_buf_dma; - nand->write_buf = fsmc_write_buf_dma; - break; - - default: - case USE_WORD_ACCESS: - nand->read_buf = fsmc_read_buf; - nand->write_buf = fsmc_write_buf; - break; } if (host->dev_timings) -- cgit v1.2.3-58-ga151 From 645be665a5932829239eea151c042dd5a6481e62 Mon Sep 17 00:00:00 2001 From: Miquel Raynal Date: Mon, 19 Feb 2018 23:57:59 +0100 Subject: MAINTAINERS: Update email address for Miquel Raynal Free Electrons is now Bootlin. Signed-off-by: Miquel Raynal Signed-off-by: Boris Brezillon --- .mailmap | 1 + MAINTAINERS | 2 +- 2 files changed, 2 insertions(+), 1 deletion(-) diff --git a/.mailmap b/.mailmap index e18cab73e209..6cc2d5a94cc2 100644 --- a/.mailmap +++ b/.mailmap @@ -126,6 +126,7 @@ Mayuresh Janorkar Michael Buesch Michel Dänzer Miodrag Dinic +Miquel Raynal Mitesh shah Mohit Kumar Morten Welinder diff --git a/MAINTAINERS b/MAINTAINERS index 34b2e9ed6d3d..ab9c367f03c7 100644 --- a/MAINTAINERS +++ b/MAINTAINERS @@ -8471,7 +8471,7 @@ S: Odd Fixes F: drivers/net/wireless/marvell/mwl8k.c MARVELL NAND CONTROLLER DRIVER -M: Miquel Raynal +M: Miquel Raynal L: linux-mtd@lists.infradead.org S: Maintained F: drivers/mtd/nand/raw/marvell_nand.c -- cgit v1.2.3-58-ga151 From d8757f4c59c9fafe5a1ce75a237164f268904b18 Mon Sep 17 00:00:00 2001 From: Boris Brezillon Date: Fri, 16 Feb 2018 11:44:49 +0100 Subject: Update Boris Brezillon email address Free Electrons is now Bootlin. Signed-off-by: Boris Brezillon --- .mailmap | 6 +++--- MAINTAINERS | 10 +++++----- 2 files changed, 8 insertions(+), 8 deletions(-) diff --git a/.mailmap b/.mailmap index 6cc2d5a94cc2..85b28e8eb8ee 100644 --- a/.mailmap +++ b/.mailmap @@ -33,9 +33,9 @@ Axel Lin Ben Gardner Ben M Cahill Björn Steinbrink -Boris Brezillon -Boris Brezillon -Boris Brezillon +Boris Brezillon +Boris Brezillon +Boris Brezillon Brian Avery Brian King Christoph Hellwig diff --git a/MAINTAINERS b/MAINTAINERS index ab9c367f03c7..14890e5d3708 100644 --- a/MAINTAINERS +++ b/MAINTAINERS @@ -1232,7 +1232,7 @@ F: arch/arm/boot/dts/aspeed-* F: drivers/*/*aspeed* ARM/ATMEL AT91 Clock Support -M: Boris Brezillon +M: Boris Brezillon S: Maintained F: drivers/clk/at91 @@ -4644,7 +4644,7 @@ F: Documentation/gpu/meson.rst T: git git://anongit.freedesktop.org/drm/drm-misc DRM DRIVERS FOR ATMEL HLCDC -M: Boris Brezillon +M: Boris Brezillon L: dri-devel@lists.freedesktop.org S: Supported F: drivers/gpu/drm/atmel-hlcdc/ @@ -8412,7 +8412,7 @@ F: include/uapi/drm/armada_drm.h F: Documentation/devicetree/bindings/display/armada/ MARVELL CRYPTO DRIVER -M: Boris Brezillon +M: Boris Brezillon M: Arnaud Ebalard F: drivers/crypto/marvell/ S: Maintained @@ -9034,7 +9034,7 @@ F: mm/ MEMORY TECHNOLOGY DEVICES (MTD) M: David Woodhouse M: Brian Norris -M: Boris Brezillon +M: Boris Brezillon M: Marek Vasut M: Richard Weinberger M: Cyrille Pitchen @@ -9452,7 +9452,7 @@ S: Supported F: drivers/net/ethernet/myricom/myri10ge/ NAND FLASH SUBSYSTEM -M: Boris Brezillon +M: Boris Brezillon R: Richard Weinberger L: linux-mtd@lists.infradead.org W: http://www.linux-mtd.infradead.org/ -- cgit v1.2.3-58-ga151 From 801492c508f617d5bdc383b98b4a49d7de90c154 Mon Sep 17 00:00:00 2001 From: Boris Brezillon Date: Sun, 18 Feb 2018 17:05:15 +0100 Subject: mtd: onenand: Get rid of comments giving the file path inside the file itself Some files add a comment giving the path of the file inside the Linux tree, which is pretty useless since the reader had to find the file to open it. Getting rid of these comments will also allow us to easily move these files around when needed. Signed-off-by: Boris Brezillon --- drivers/mtd/onenand/generic.c | 2 -- drivers/mtd/onenand/omap2.c | 2 -- drivers/mtd/onenand/onenand_base.c | 2 -- drivers/mtd/onenand/onenand_bbt.c | 2 -- 4 files changed, 8 deletions(-) diff --git a/drivers/mtd/onenand/generic.c b/drivers/mtd/onenand/generic.c index 125da34d8ff9..d5ccaf943b91 100644 --- a/drivers/mtd/onenand/generic.c +++ b/drivers/mtd/onenand/generic.c @@ -1,6 +1,4 @@ /* - * linux/drivers/mtd/onenand/generic.c - * * Copyright (c) 2005 Samsung Electronics * Kyungmin Park * diff --git a/drivers/mtd/onenand/omap2.c b/drivers/mtd/onenand/omap2.c index 87c34f607a75..9c159f0dd9a6 100644 --- a/drivers/mtd/onenand/omap2.c +++ b/drivers/mtd/onenand/omap2.c @@ -1,6 +1,4 @@ /* - * linux/drivers/mtd/onenand/omap2.c - * * OneNAND driver for OMAP2 / OMAP3 * * Copyright © 2005-2006 Nokia Corporation diff --git a/drivers/mtd/onenand/onenand_base.c b/drivers/mtd/onenand/onenand_base.c index 979f4031f23c..05907b1b4098 100644 --- a/drivers/mtd/onenand/onenand_base.c +++ b/drivers/mtd/onenand/onenand_base.c @@ -1,6 +1,4 @@ /* - * linux/drivers/mtd/onenand/onenand_base.c - * * Copyright © 2005-2009 Samsung Electronics * Copyright © 2007 Nokia Corporation * diff --git a/drivers/mtd/onenand/onenand_bbt.c b/drivers/mtd/onenand/onenand_bbt.c index 420260c25ca0..dde20487937d 100644 --- a/drivers/mtd/onenand/onenand_bbt.c +++ b/drivers/mtd/onenand/onenand_bbt.c @@ -1,7 +1,5 @@ // SPDX-License-Identifier: GPL-2.0 /* - * linux/drivers/mtd/onenand/onenand_bbt.c - * * Bad Block Table support for the OneNAND driver * * Copyright(c) 2005 Samsung Electronics -- cgit v1.2.3-58-ga151 From 26777d37216c976cf6fd196700133a38aa2c4b0f Mon Sep 17 00:00:00 2001 From: Boris Brezillon Date: Sun, 18 Feb 2018 17:05:16 +0100 Subject: mtd: Move onenand code base to drivers/mtd/nand/onenand Move onenand code base to the drivers/mtd/nand directory in the hope that someday someone will patch it to use the generic NAND helpers. If it never happens, at least we'll have all NAND related support in a single directory and not spread over the drivers/mtd/ directory. Signed-off-by: Boris Brezillon --- MAINTAINERS | 2 +- drivers/mtd/Kconfig | 2 - drivers/mtd/Makefile | 2 +- drivers/mtd/nand/Kconfig | 2 + drivers/mtd/nand/Makefile | 1 + drivers/mtd/nand/onenand/Kconfig | 71 + drivers/mtd/nand/onenand/Makefile | 14 + drivers/mtd/nand/onenand/generic.c | 116 + drivers/mtd/nand/onenand/omap2.c | 660 +++++ drivers/mtd/nand/onenand/onenand_base.c | 4031 +++++++++++++++++++++++++++++++ drivers/mtd/nand/onenand/onenand_bbt.c | 248 ++ drivers/mtd/nand/onenand/samsung.c | 1012 ++++++++ drivers/mtd/nand/onenand/samsung.h | 59 + drivers/mtd/onenand/Kconfig | 71 - drivers/mtd/onenand/Makefile | 14 - drivers/mtd/onenand/generic.c | 116 - drivers/mtd/onenand/omap2.c | 660 ----- drivers/mtd/onenand/onenand_base.c | 4031 ------------------------------- drivers/mtd/onenand/onenand_bbt.c | 248 -- drivers/mtd/onenand/samsung.c | 1012 -------- drivers/mtd/onenand/samsung.h | 59 - 21 files changed, 6216 insertions(+), 6215 deletions(-) create mode 100644 drivers/mtd/nand/onenand/Kconfig create mode 100644 drivers/mtd/nand/onenand/Makefile create mode 100644 drivers/mtd/nand/onenand/generic.c create mode 100644 drivers/mtd/nand/onenand/omap2.c create mode 100644 drivers/mtd/nand/onenand/onenand_base.c create mode 100644 drivers/mtd/nand/onenand/onenand_bbt.c create mode 100644 drivers/mtd/nand/onenand/samsung.c create mode 100644 drivers/mtd/nand/onenand/samsung.h delete mode 100644 drivers/mtd/onenand/Kconfig delete mode 100644 drivers/mtd/onenand/Makefile delete mode 100644 drivers/mtd/onenand/generic.c delete mode 100644 drivers/mtd/onenand/omap2.c delete mode 100644 drivers/mtd/onenand/onenand_base.c delete mode 100644 drivers/mtd/onenand/onenand_bbt.c delete mode 100644 drivers/mtd/onenand/samsung.c delete mode 100644 drivers/mtd/onenand/samsung.h diff --git a/MAINTAINERS b/MAINTAINERS index d5ebb8a1a7c2..d262f177c65b 100644 --- a/MAINTAINERS +++ b/MAINTAINERS @@ -10206,7 +10206,7 @@ ONENAND FLASH DRIVER M: Kyungmin Park L: linux-mtd@lists.infradead.org S: Maintained -F: drivers/mtd/onenand/ +F: drivers/mtd/nand/onenand/ F: include/linux/mtd/onenand*.h ONSTREAM SCSI TAPE DRIVER diff --git a/drivers/mtd/Kconfig b/drivers/mtd/Kconfig index 2a8ac6829d42..46ab7feec6b6 100644 --- a/drivers/mtd/Kconfig +++ b/drivers/mtd/Kconfig @@ -333,8 +333,6 @@ source "drivers/mtd/devices/Kconfig" source "drivers/mtd/nand/Kconfig" -source "drivers/mtd/onenand/Kconfig" - source "drivers/mtd/lpddr/Kconfig" source "drivers/mtd/spi-nor/Kconfig" diff --git a/drivers/mtd/Makefile b/drivers/mtd/Makefile index d6f8f625e1ff..93473d215a38 100644 --- a/drivers/mtd/Makefile +++ b/drivers/mtd/Makefile @@ -32,7 +32,7 @@ obj-$(CONFIG_MTD_SWAP) += mtdswap.o nftl-objs := nftlcore.o nftlmount.o inftl-objs := inftlcore.o inftlmount.o -obj-y += chips/ lpddr/ maps/ devices/ nand/ onenand/ tests/ +obj-y += chips/ lpddr/ maps/ devices/ nand/ tests/ obj-$(CONFIG_MTD_SPI_NOR) += spi-nor/ obj-$(CONFIG_MTD_UBI) += ubi/ diff --git a/drivers/mtd/nand/Kconfig b/drivers/mtd/nand/Kconfig index 1c1a1f487e20..88c7d3b4ff8b 100644 --- a/drivers/mtd/nand/Kconfig +++ b/drivers/mtd/nand/Kconfig @@ -1,4 +1,6 @@ config MTD_NAND_CORE tristate +source "drivers/mtd/nand/onenand/Kconfig" + source "drivers/mtd/nand/raw/Kconfig" diff --git a/drivers/mtd/nand/Makefile b/drivers/mtd/nand/Makefile index a72d3cb0f325..3f0cb87f1a57 100644 --- a/drivers/mtd/nand/Makefile +++ b/drivers/mtd/nand/Makefile @@ -3,4 +3,5 @@ nandcore-objs := core.o bbt.o obj-$(CONFIG_MTD_NAND_CORE) += nandcore.o +obj-y += onenand/ obj-y += raw/ diff --git a/drivers/mtd/nand/onenand/Kconfig b/drivers/mtd/nand/onenand/Kconfig new file mode 100644 index 000000000000..9dc15748947b --- /dev/null +++ b/drivers/mtd/nand/onenand/Kconfig @@ -0,0 +1,71 @@ +menuconfig MTD_ONENAND + tristate "OneNAND Device Support" + depends on MTD + depends on HAS_IOMEM + help + This enables support for accessing all type of OneNAND flash + devices. + +if MTD_ONENAND + +config MTD_ONENAND_VERIFY_WRITE + bool "Verify OneNAND page writes" + help + This adds an extra check when data is written to the flash. The + OneNAND flash device internally checks only bits transitioning + from 1 to 0. There is a rare possibility that even though the + device thinks the write was successful, a bit could have been + flipped accidentally due to device wear or something else. + +config MTD_ONENAND_GENERIC + tristate "OneNAND Flash device via platform device driver" + help + Support for OneNAND flash via platform device driver. + +config MTD_ONENAND_OMAP2 + tristate "OneNAND on OMAP2/OMAP3 support" + depends on ARCH_OMAP2 || ARCH_OMAP3 + depends on OF || COMPILE_TEST + help + Support for a OneNAND flash device connected to an OMAP2/OMAP3 SoC + via the GPMC memory controller. + Enable dmaengine and gpiolib for better performance. + +config MTD_ONENAND_SAMSUNG + tristate "OneNAND on Samsung SOC controller support" + depends on ARCH_S3C64XX || ARCH_S5PV210 || ARCH_EXYNOS4 + help + Support for a OneNAND flash device connected to an Samsung SOC. + S3C64XX uses command mapping method. + S5PC110/S5PC210 use generic OneNAND method. + +config MTD_ONENAND_OTP + bool "OneNAND OTP Support" + help + One Block of the NAND Flash Array memory is reserved as + a One-Time Programmable Block memory area. + Also, 1st Block of NAND Flash Array can be used as OTP. + + The OTP block can be read, programmed and locked using the same + operations as any other NAND Flash Array memory block. + OTP block cannot be erased. + + OTP block is fully-guaranteed to be a valid block. + +config MTD_ONENAND_2X_PROGRAM + bool "OneNAND 2X program support" + help + The 2X Program is an extension of Program Operation. + Since the device is equipped with two DataRAMs, and two-plane NAND + Flash memory array, these two component enables simultaneous program + of 4KiB. Plane1 has only even blocks such as block0, block2, block4 + while Plane2 has only odd blocks such as block1, block3, block5. + So MTD regards it as 4KiB page size and 256KiB block size + + Now the following chips support it. (KFXXX16Q2M) + Demux: KFG2G16Q2M, KFH4G16Q2M, KFW8G16Q2M, + Mux: KFM2G16Q2M, KFN4G16Q2M, + + And more recent chips + +endif # MTD_ONENAND diff --git a/drivers/mtd/nand/onenand/Makefile b/drivers/mtd/nand/onenand/Makefile new file mode 100644 index 000000000000..f8b624aca9cc --- /dev/null +++ b/drivers/mtd/nand/onenand/Makefile @@ -0,0 +1,14 @@ +# SPDX-License-Identifier: GPL-2.0 +# +# Makefile for the OneNAND MTD +# + +# Core functionality. +obj-$(CONFIG_MTD_ONENAND) += onenand.o + +# Board specific. +obj-$(CONFIG_MTD_ONENAND_GENERIC) += generic.o +obj-$(CONFIG_MTD_ONENAND_OMAP2) += omap2.o +obj-$(CONFIG_MTD_ONENAND_SAMSUNG) += samsung.o + +onenand-objs = onenand_base.o onenand_bbt.o diff --git a/drivers/mtd/nand/onenand/generic.c b/drivers/mtd/nand/onenand/generic.c new file mode 100644 index 000000000000..d5ccaf943b91 --- /dev/null +++ b/drivers/mtd/nand/onenand/generic.c @@ -0,0 +1,116 @@ +/* + * Copyright (c) 2005 Samsung Electronics + * Kyungmin Park + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + * + * Overview: + * This is a device driver for the OneNAND flash for generic boards. + */ + +#include +#include +#include +#include +#include +#include +#include + +/* + * Note: Driver name and platform data format have been updated! + * + * This version of the driver is named "onenand-flash" and takes struct + * onenand_platform_data as platform data. The old ARM-specific version + * with the name "onenand" used to take struct flash_platform_data. + */ +#define DRIVER_NAME "onenand-flash" + +struct onenand_info { + struct mtd_info mtd; + struct onenand_chip onenand; +}; + +static int generic_onenand_probe(struct platform_device *pdev) +{ + struct onenand_info *info; + struct onenand_platform_data *pdata = dev_get_platdata(&pdev->dev); + struct resource *res = pdev->resource; + unsigned long size = resource_size(res); + int err; + + info = kzalloc(sizeof(struct onenand_info), GFP_KERNEL); + if (!info) + return -ENOMEM; + + if (!request_mem_region(res->start, size, dev_name(&pdev->dev))) { + err = -EBUSY; + goto out_free_info; + } + + info->onenand.base = ioremap(res->start, size); + if (!info->onenand.base) { + err = -ENOMEM; + goto out_release_mem_region; + } + + info->onenand.mmcontrol = pdata ? pdata->mmcontrol : NULL; + info->onenand.irq = platform_get_irq(pdev, 0); + + info->mtd.dev.parent = &pdev->dev; + info->mtd.priv = &info->onenand; + + if (onenand_scan(&info->mtd, 1)) { + err = -ENXIO; + goto out_iounmap; + } + + err = mtd_device_parse_register(&info->mtd, NULL, NULL, + pdata ? pdata->parts : NULL, + pdata ? pdata->nr_parts : 0); + + platform_set_drvdata(pdev, info); + + return 0; + +out_iounmap: + iounmap(info->onenand.base); +out_release_mem_region: + release_mem_region(res->start, size); +out_free_info: + kfree(info); + + return err; +} + +static int generic_onenand_remove(struct platform_device *pdev) +{ + struct onenand_info *info = platform_get_drvdata(pdev); + struct resource *res = pdev->resource; + unsigned long size = resource_size(res); + + if (info) { + onenand_release(&info->mtd); + release_mem_region(res->start, size); + iounmap(info->onenand.base); + kfree(info); + } + + return 0; +} + +static struct platform_driver generic_onenand_driver = { + .driver = { + .name = DRIVER_NAME, + }, + .probe = generic_onenand_probe, + .remove = generic_onenand_remove, +}; + +module_platform_driver(generic_onenand_driver); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Kyungmin Park "); +MODULE_DESCRIPTION("Glue layer for OneNAND flash on generic boards"); +MODULE_ALIAS("platform:" DRIVER_NAME); diff --git a/drivers/mtd/nand/onenand/omap2.c b/drivers/mtd/nand/onenand/omap2.c new file mode 100644 index 000000000000..9c159f0dd9a6 --- /dev/null +++ b/drivers/mtd/nand/onenand/omap2.c @@ -0,0 +1,660 @@ +/* + * OneNAND driver for OMAP2 / OMAP3 + * + * Copyright © 2005-2006 Nokia Corporation + * + * Author: Jarkko Lavinen and Juha Yrjölä + * IRQ and DMA support written by Timo Teras + * + * This program is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License version 2 as published by + * the Free Software Foundation. + * + * This program is distributed in the hope that it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for + * more details. + * + * You should have received a copy of the GNU General Public License along with + * this program; see the file COPYING. If not, write to the Free Software + * Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. + * + */ + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#include + +#define DRIVER_NAME "omap2-onenand" + +#define ONENAND_BUFRAM_SIZE (1024 * 5) + +struct omap2_onenand { + struct platform_device *pdev; + int gpmc_cs; + unsigned long phys_base; + struct gpio_desc *int_gpiod; + struct mtd_info mtd; + struct onenand_chip onenand; + struct completion irq_done; + struct completion dma_done; + struct dma_chan *dma_chan; +}; + +static void omap2_onenand_dma_complete_func(void *completion) +{ + complete(completion); +} + +static irqreturn_t omap2_onenand_interrupt(int irq, void *dev_id) +{ + struct omap2_onenand *c = dev_id; + + complete(&c->irq_done); + + return IRQ_HANDLED; +} + +static inline unsigned short read_reg(struct omap2_onenand *c, int reg) +{ + return readw(c->onenand.base + reg); +} + +static inline void write_reg(struct omap2_onenand *c, unsigned short value, + int reg) +{ + writew(value, c->onenand.base + reg); +} + +static int omap2_onenand_set_cfg(struct omap2_onenand *c, + bool sr, bool sw, + int latency, int burst_len) +{ + unsigned short reg = ONENAND_SYS_CFG1_RDY | ONENAND_SYS_CFG1_INT; + + reg |= latency << ONENAND_SYS_CFG1_BRL_SHIFT; + + switch (burst_len) { + case 0: /* continuous */ + break; + case 4: + reg |= ONENAND_SYS_CFG1_BL_4; + break; + case 8: + reg |= ONENAND_SYS_CFG1_BL_8; + break; + case 16: + reg |= ONENAND_SYS_CFG1_BL_16; + break; + case 32: + reg |= ONENAND_SYS_CFG1_BL_32; + break; + default: + return -EINVAL; + } + + if (latency > 5) + reg |= ONENAND_SYS_CFG1_HF; + if (latency > 7) + reg |= ONENAND_SYS_CFG1_VHF; + if (sr) + reg |= ONENAND_SYS_CFG1_SYNC_READ; + if (sw) + reg |= ONENAND_SYS_CFG1_SYNC_WRITE; + + write_reg(c, reg, ONENAND_REG_SYS_CFG1); + + return 0; +} + +static int omap2_onenand_get_freq(int ver) +{ + switch ((ver >> 4) & 0xf) { + case 0: + return 40; + case 1: + return 54; + case 2: + return 66; + case 3: + return 83; + case 4: + return 104; + } + + return -EINVAL; +} + +static void wait_err(char *msg, int state, unsigned int ctrl, unsigned int intr) +{ + printk(KERN_ERR "onenand_wait: %s! state %d ctrl 0x%04x intr 0x%04x\n", + msg, state, ctrl, intr); +} + +static void wait_warn(char *msg, int state, unsigned int ctrl, + unsigned int intr) +{ + printk(KERN_WARNING "onenand_wait: %s! state %d ctrl 0x%04x " + "intr 0x%04x\n", msg, state, ctrl, intr); +} + +static int omap2_onenand_wait(struct mtd_info *mtd, int state) +{ + struct omap2_onenand *c = container_of(mtd, struct omap2_onenand, mtd); + struct onenand_chip *this = mtd->priv; + unsigned int intr = 0; + unsigned int ctrl, ctrl_mask; + unsigned long timeout; + u32 syscfg; + + if (state == FL_RESETING || state == FL_PREPARING_ERASE || + state == FL_VERIFYING_ERASE) { + int i = 21; + unsigned int intr_flags = ONENAND_INT_MASTER; + + switch (state) { + case FL_RESETING: + intr_flags |= ONENAND_INT_RESET; + break; + case FL_PREPARING_ERASE: + intr_flags |= ONENAND_INT_ERASE; + break; + case FL_VERIFYING_ERASE: + i = 101; + break; + } + + while (--i) { + udelay(1); + intr = read_reg(c, ONENAND_REG_INTERRUPT); + if (intr & ONENAND_INT_MASTER) + break; + } + ctrl = read_reg(c, ONENAND_REG_CTRL_STATUS); + if (ctrl & ONENAND_CTRL_ERROR) { + wait_err("controller error", state, ctrl, intr); + return -EIO; + } + if ((intr & intr_flags) == intr_flags) + return 0; + /* Continue in wait for interrupt branch */ + } + + if (state != FL_READING) { + int result; + + /* Turn interrupts on */ + syscfg = read_reg(c, ONENAND_REG_SYS_CFG1); + if (!(syscfg & ONENAND_SYS_CFG1_IOBE)) { + syscfg |= ONENAND_SYS_CFG1_IOBE; + write_reg(c, syscfg, ONENAND_REG_SYS_CFG1); + /* Add a delay to let GPIO settle */ + syscfg = read_reg(c, ONENAND_REG_SYS_CFG1); + } + + reinit_completion(&c->irq_done); + result = gpiod_get_value(c->int_gpiod); + if (result < 0) { + ctrl = read_reg(c, ONENAND_REG_CTRL_STATUS); + intr = read_reg(c, ONENAND_REG_INTERRUPT); + wait_err("gpio error", state, ctrl, intr); + return result; + } else if (result == 0) { + int retry_cnt = 0; +retry: + if (!wait_for_completion_io_timeout(&c->irq_done, + msecs_to_jiffies(20))) { + /* Timeout after 20ms */ + ctrl = read_reg(c, ONENAND_REG_CTRL_STATUS); + if (ctrl & ONENAND_CTRL_ONGO && + !this->ongoing) { + /* + * The operation seems to be still going + * so give it some more time. + */ + retry_cnt += 1; + if (retry_cnt < 3) + goto retry; + intr = read_reg(c, + ONENAND_REG_INTERRUPT); + wait_err("timeout", state, ctrl, intr); + return -EIO; + } + intr = read_reg(c, ONENAND_REG_INTERRUPT); + if ((intr & ONENAND_INT_MASTER) == 0) + wait_warn("timeout", state, ctrl, intr); + } + } + } else { + int retry_cnt = 0; + + /* Turn interrupts off */ + syscfg = read_reg(c, ONENAND_REG_SYS_CFG1); + syscfg &= ~ONENAND_SYS_CFG1_IOBE; + write_reg(c, syscfg, ONENAND_REG_SYS_CFG1); + + timeout = jiffies + msecs_to_jiffies(20); + while (1) { + if (time_before(jiffies, timeout)) { + intr = read_reg(c, ONENAND_REG_INTERRUPT); + if (intr & ONENAND_INT_MASTER) + break; + } else { + /* Timeout after 20ms */ + ctrl = read_reg(c, ONENAND_REG_CTRL_STATUS); + if (ctrl & ONENAND_CTRL_ONGO) { + /* + * The operation seems to be still going + * so give it some more time. + */ + retry_cnt += 1; + if (retry_cnt < 3) { + timeout = jiffies + + msecs_to_jiffies(20); + continue; + } + } + break; + } + } + } + + intr = read_reg(c, ONENAND_REG_INTERRUPT); + ctrl = read_reg(c, ONENAND_REG_CTRL_STATUS); + + if (intr & ONENAND_INT_READ) { + int ecc = read_reg(c, ONENAND_REG_ECC_STATUS); + + if (ecc) { + unsigned int addr1, addr8; + + addr1 = read_reg(c, ONENAND_REG_START_ADDRESS1); + addr8 = read_reg(c, ONENAND_REG_START_ADDRESS8); + if (ecc & ONENAND_ECC_2BIT_ALL) { + printk(KERN_ERR "onenand_wait: ECC error = " + "0x%04x, addr1 %#x, addr8 %#x\n", + ecc, addr1, addr8); + mtd->ecc_stats.failed++; + return -EBADMSG; + } else if (ecc & ONENAND_ECC_1BIT_ALL) { + printk(KERN_NOTICE "onenand_wait: correctable " + "ECC error = 0x%04x, addr1 %#x, " + "addr8 %#x\n", ecc, addr1, addr8); + mtd->ecc_stats.corrected++; + } + } + } else if (state == FL_READING) { + wait_err("timeout", state, ctrl, intr); + return -EIO; + } + + if (ctrl & ONENAND_CTRL_ERROR) { + wait_err("controller error", state, ctrl, intr); + if (ctrl & ONENAND_CTRL_LOCK) + printk(KERN_ERR "onenand_wait: " + "Device is write protected!!!\n"); + return -EIO; + } + + ctrl_mask = 0xFE9F; + if (this->ongoing) + ctrl_mask &= ~0x8000; + + if (ctrl & ctrl_mask) + wait_warn("unexpected controller status", state, ctrl, intr); + + return 0; +} + +static inline int omap2_onenand_bufferram_offset(struct mtd_info *mtd, int area) +{ + struct onenand_chip *this = mtd->priv; + + if (ONENAND_CURRENT_BUFFERRAM(this)) { + if (area == ONENAND_DATARAM) + return this->writesize; + if (area == ONENAND_SPARERAM) + return mtd->oobsize; + } + + return 0; +} + +static inline int omap2_onenand_dma_transfer(struct omap2_onenand *c, + dma_addr_t src, dma_addr_t dst, + size_t count) +{ + struct dma_async_tx_descriptor *tx; + dma_cookie_t cookie; + + tx = dmaengine_prep_dma_memcpy(c->dma_chan, dst, src, count, 0); + if (!tx) { + dev_err(&c->pdev->dev, "Failed to prepare DMA memcpy\n"); + return -EIO; + } + + reinit_completion(&c->dma_done); + + tx->callback = omap2_onenand_dma_complete_func; + tx->callback_param = &c->dma_done; + + cookie = tx->tx_submit(tx); + if (dma_submit_error(cookie)) { + dev_err(&c->pdev->dev, "Failed to do DMA tx_submit\n"); + return -EIO; + } + + dma_async_issue_pending(c->dma_chan); + + if (!wait_for_completion_io_timeout(&c->dma_done, + msecs_to_jiffies(20))) { + dmaengine_terminate_sync(c->dma_chan); + return -ETIMEDOUT; + } + + return 0; +} + +static int omap2_onenand_read_bufferram(struct mtd_info *mtd, int area, + unsigned char *buffer, int offset, + size_t count) +{ + struct omap2_onenand *c = container_of(mtd, struct omap2_onenand, mtd); + struct onenand_chip *this = mtd->priv; + dma_addr_t dma_src, dma_dst; + int bram_offset; + void *buf = (void *)buffer; + size_t xtra; + int ret; + + bram_offset = omap2_onenand_bufferram_offset(mtd, area) + area + offset; + if (bram_offset & 3 || (size_t)buf & 3 || count < 384) + goto out_copy; + + /* panic_write() may be in an interrupt context */ + if (in_interrupt() || oops_in_progress) + goto out_copy; + + if (buf >= high_memory) { + struct page *p1; + + if (((size_t)buf & PAGE_MASK) != + ((size_t)(buf + count - 1) & PAGE_MASK)) + goto out_copy; + p1 = vmalloc_to_page(buf); + if (!p1) + goto out_copy; + buf = page_address(p1) + ((size_t)buf & ~PAGE_MASK); + } + + xtra = count & 3; + if (xtra) { + count -= xtra; + memcpy(buf + count, this->base + bram_offset + count, xtra); + } + + dma_src = c->phys_base + bram_offset; + dma_dst = dma_map_single(&c->pdev->dev, buf, count, DMA_FROM_DEVICE); + if (dma_mapping_error(&c->pdev->dev, dma_dst)) { + dev_err(&c->pdev->dev, + "Couldn't DMA map a %d byte buffer\n", + count); + goto out_copy; + } + + ret = omap2_onenand_dma_transfer(c, dma_src, dma_dst, count); + dma_unmap_single(&c->pdev->dev, dma_dst, count, DMA_FROM_DEVICE); + + if (ret) { + dev_err(&c->pdev->dev, "timeout waiting for DMA\n"); + goto out_copy; + } + + return 0; + +out_copy: + memcpy(buf, this->base + bram_offset, count); + return 0; +} + +static int omap2_onenand_write_bufferram(struct mtd_info *mtd, int area, + const unsigned char *buffer, + int offset, size_t count) +{ + struct omap2_onenand *c = container_of(mtd, struct omap2_onenand, mtd); + struct onenand_chip *this = mtd->priv; + dma_addr_t dma_src, dma_dst; + int bram_offset; + void *buf = (void *)buffer; + int ret; + + bram_offset = omap2_onenand_bufferram_offset(mtd, area) + area + offset; + if (bram_offset & 3 || (size_t)buf & 3 || count < 384) + goto out_copy; + + /* panic_write() may be in an interrupt context */ + if (in_interrupt() || oops_in_progress) + goto out_copy; + + if (buf >= high_memory) { + struct page *p1; + + if (((size_t)buf & PAGE_MASK) != + ((size_t)(buf + count - 1) & PAGE_MASK)) + goto out_copy; + p1 = vmalloc_to_page(buf); + if (!p1) + goto out_copy; + buf = page_address(p1) + ((size_t)buf & ~PAGE_MASK); + } + + dma_src = dma_map_single(&c->pdev->dev, buf, count, DMA_TO_DEVICE); + dma_dst = c->phys_base + bram_offset; + if (dma_mapping_error(&c->pdev->dev, dma_src)) { + dev_err(&c->pdev->dev, + "Couldn't DMA map a %d byte buffer\n", + count); + return -1; + } + + ret = omap2_onenand_dma_transfer(c, dma_src, dma_dst, count); + dma_unmap_single(&c->pdev->dev, dma_src, count, DMA_TO_DEVICE); + + if (ret) { + dev_err(&c->pdev->dev, "timeout waiting for DMA\n"); + goto out_copy; + } + + return 0; + +out_copy: + memcpy(this->base + bram_offset, buf, count); + return 0; +} + +static void omap2_onenand_shutdown(struct platform_device *pdev) +{ + struct omap2_onenand *c = dev_get_drvdata(&pdev->dev); + + /* With certain content in the buffer RAM, the OMAP boot ROM code + * can recognize the flash chip incorrectly. Zero it out before + * soft reset. + */ + memset((__force void *)c->onenand.base, 0, ONENAND_BUFRAM_SIZE); +} + +static int omap2_onenand_probe(struct platform_device *pdev) +{ + u32 val; + dma_cap_mask_t mask; + int freq, latency, r; + struct resource *res; + struct omap2_onenand *c; + struct gpmc_onenand_info info; + struct device *dev = &pdev->dev; + struct device_node *np = dev->of_node; + + res = platform_get_resource(pdev, IORESOURCE_MEM, 0); + if (!res) { + dev_err(dev, "error getting memory resource\n"); + return -EINVAL; + } + + r = of_property_read_u32(np, "reg", &val); + if (r) { + dev_err(dev, "reg not found in DT\n"); + return r; + } + + c = devm_kzalloc(dev, sizeof(struct omap2_onenand), GFP_KERNEL); + if (!c) + return -ENOMEM; + + init_completion(&c->irq_done); + init_completion(&c->dma_done); + c->gpmc_cs = val; + c->phys_base = res->start; + + c->onenand.base = devm_ioremap_resource(dev, res); + if (IS_ERR(c->onenand.base)) + return PTR_ERR(c->onenand.base); + + c->int_gpiod = devm_gpiod_get_optional(dev, "int", GPIOD_IN); + if (IS_ERR(c->int_gpiod)) { + r = PTR_ERR(c->int_gpiod); + /* Just try again if this happens */ + if (r != -EPROBE_DEFER) + dev_err(dev, "error getting gpio: %d\n", r); + return r; + } + + if (c->int_gpiod) { + r = devm_request_irq(dev, gpiod_to_irq(c->int_gpiod), + omap2_onenand_interrupt, + IRQF_TRIGGER_RISING, "onenand", c); + if (r) + return r; + + c->onenand.wait = omap2_onenand_wait; + } + + dma_cap_zero(mask); + dma_cap_set(DMA_MEMCPY, mask); + + c->dma_chan = dma_request_channel(mask, NULL, NULL); + if (c->dma_chan) { + c->onenand.read_bufferram = omap2_onenand_read_bufferram; + c->onenand.write_bufferram = omap2_onenand_write_bufferram; + } + + c->pdev = pdev; + c->mtd.priv = &c->onenand; + c->mtd.dev.parent = dev; + mtd_set_of_node(&c->mtd, dev->of_node); + + dev_info(dev, "initializing on CS%d (0x%08lx), va %p, %s mode\n", + c->gpmc_cs, c->phys_base, c->onenand.base, + c->dma_chan ? "DMA" : "PIO"); + + if ((r = onenand_scan(&c->mtd, 1)) < 0) + goto err_release_dma; + + freq = omap2_onenand_get_freq(c->onenand.version_id); + if (freq > 0) { + switch (freq) { + case 104: + latency = 7; + break; + case 83: + latency = 6; + break; + case 66: + latency = 5; + break; + case 56: + latency = 4; + break; + default: /* 40 MHz or lower */ + latency = 3; + break; + } + + r = gpmc_omap_onenand_set_timings(dev, c->gpmc_cs, + freq, latency, &info); + if (r) + goto err_release_onenand; + + r = omap2_onenand_set_cfg(c, info.sync_read, info.sync_write, + latency, info.burst_len); + if (r) + goto err_release_onenand; + + if (info.sync_read || info.sync_write) + dev_info(dev, "optimized timings for %d MHz\n", freq); + } + + r = mtd_device_register(&c->mtd, NULL, 0); + if (r) + goto err_release_onenand; + + platform_set_drvdata(pdev, c); + + return 0; + +err_release_onenand: + onenand_release(&c->mtd); +err_release_dma: + if (c->dma_chan) + dma_release_channel(c->dma_chan); + + return r; +} + +static int omap2_onenand_remove(struct platform_device *pdev) +{ + struct omap2_onenand *c = dev_get_drvdata(&pdev->dev); + + onenand_release(&c->mtd); + if (c->dma_chan) + dma_release_channel(c->dma_chan); + omap2_onenand_shutdown(pdev); + + return 0; +} + +static const struct of_device_id omap2_onenand_id_table[] = { + { .compatible = "ti,omap2-onenand", }, + {}, +}; +MODULE_DEVICE_TABLE(of, omap2_onenand_id_table); + +static struct platform_driver omap2_onenand_driver = { + .probe = omap2_onenand_probe, + .remove = omap2_onenand_remove, + .shutdown = omap2_onenand_shutdown, + .driver = { + .name = DRIVER_NAME, + .of_match_table = omap2_onenand_id_table, + }, +}; + +module_platform_driver(omap2_onenand_driver); + +MODULE_ALIAS("platform:" DRIVER_NAME); +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Jarkko Lavinen "); +MODULE_DESCRIPTION("Glue layer for OneNAND flash on OMAP2 / OMAP3"); diff --git a/drivers/mtd/nand/onenand/onenand_base.c b/drivers/mtd/nand/onenand/onenand_base.c new file mode 100644 index 000000000000..05907b1b4098 --- /dev/null +++ b/drivers/mtd/nand/onenand/onenand_base.c @@ -0,0 +1,4031 @@ +/* + * Copyright © 2005-2009 Samsung Electronics + * Copyright © 2007 Nokia Corporation + * + * Kyungmin Park + * + * Credits: + * Adrian Hunter : + * auto-placement support, read-while load support, various fixes + * + * Vishak G , Rohit Hagargundgi + * Flex-OneNAND support + * Amul Kumar Saha + * OTP support + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + */ + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#include + +/* + * Multiblock erase if number of blocks to erase is 2 or more. + * Maximum number of blocks for simultaneous erase is 64. + */ +#define MB_ERASE_MIN_BLK_COUNT 2 +#define MB_ERASE_MAX_BLK_COUNT 64 + +/* Default Flex-OneNAND boundary and lock respectively */ +static int flex_bdry[MAX_DIES * 2] = { -1, 0, -1, 0 }; + +module_param_array(flex_bdry, int, NULL, 0400); +MODULE_PARM_DESC(flex_bdry, "SLC Boundary information for Flex-OneNAND" + "Syntax:flex_bdry=DIE_BDRY,LOCK,..." + "DIE_BDRY: SLC boundary of the die" + "LOCK: Locking information for SLC boundary" + " : 0->Set boundary in unlocked status" + " : 1->Set boundary in locked status"); + +/* Default OneNAND/Flex-OneNAND OTP options*/ +static int otp; + +module_param(otp, int, 0400); +MODULE_PARM_DESC(otp, "Corresponding behaviour of OneNAND in OTP" + "Syntax : otp=LOCK_TYPE" + "LOCK_TYPE : Keys issued, for specific OTP Lock type" + " : 0 -> Default (No Blocks Locked)" + " : 1 -> OTP Block lock" + " : 2 -> 1st Block lock" + " : 3 -> BOTH OTP Block and 1st Block lock"); + +/* + * flexonenand_oob_128 - oob info for Flex-Onenand with 4KB page + * For now, we expose only 64 out of 80 ecc bytes + */ +static int flexonenand_ooblayout_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + if (section > 7) + return -ERANGE; + + oobregion->offset = (section * 16) + 6; + oobregion->length = 10; + + return 0; +} + +static int flexonenand_ooblayout_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + if (section > 7) + return -ERANGE; + + oobregion->offset = (section * 16) + 2; + oobregion->length = 4; + + return 0; +} + +static const struct mtd_ooblayout_ops flexonenand_ooblayout_ops = { + .ecc = flexonenand_ooblayout_ecc, + .free = flexonenand_ooblayout_free, +}; + +/* + * onenand_oob_128 - oob info for OneNAND with 4KB page + * + * Based on specification: + * 4Gb M-die OneNAND Flash (KFM4G16Q4M, KFN8G16Q4M). Rev. 1.3, Apr. 2010 + * + */ +static int onenand_ooblayout_128_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + if (section > 7) + return -ERANGE; + + oobregion->offset = (section * 16) + 7; + oobregion->length = 9; + + return 0; +} + +static int onenand_ooblayout_128_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + if (section >= 8) + return -ERANGE; + + /* + * free bytes are using the spare area fields marked as + * "Managed by internal ECC logic for Logical Sector Number area" + */ + oobregion->offset = (section * 16) + 2; + oobregion->length = 3; + + return 0; +} + +static const struct mtd_ooblayout_ops onenand_oob_128_ooblayout_ops = { + .ecc = onenand_ooblayout_128_ecc, + .free = onenand_ooblayout_128_free, +}; + +/** + * onenand_oob_32_64 - oob info for large (2KB) page + */ +static int onenand_ooblayout_32_64_ecc(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + if (section > 3) + return -ERANGE; + + oobregion->offset = (section * 16) + 8; + oobregion->length = 5; + + return 0; +} + +static int onenand_ooblayout_32_64_free(struct mtd_info *mtd, int section, + struct mtd_oob_region *oobregion) +{ + int sections = (mtd->oobsize / 32) * 2; + + if (section >= sections) + return -ERANGE; + + if (section & 1) { + oobregion->offset = ((section - 1) * 16) + 14; + oobregion->length = 2; + } else { + oobregion->offset = (section * 16) + 2; + oobregion->length = 3; + } + + return 0; +} + +static const struct mtd_ooblayout_ops onenand_oob_32_64_ooblayout_ops = { + .ecc = onenand_ooblayout_32_64_ecc, + .free = onenand_ooblayout_32_64_free, +}; + +static const unsigned char ffchars[] = { + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 16 */ + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 32 */ + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 48 */ + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 64 */ + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 80 */ + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 96 */ + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 112 */ + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 128 */ +}; + +/** + * onenand_readw - [OneNAND Interface] Read OneNAND register + * @param addr address to read + * + * Read OneNAND register + */ +static unsigned short onenand_readw(void __iomem *addr) +{ + return readw(addr); +} + +/** + * onenand_writew - [OneNAND Interface] Write OneNAND register with value + * @param value value to write + * @param addr address to write + * + * Write OneNAND register with value + */ +static void onenand_writew(unsigned short value, void __iomem *addr) +{ + writew(value, addr); +} + +/** + * onenand_block_address - [DEFAULT] Get block address + * @param this onenand chip data structure + * @param block the block + * @return translated block address if DDP, otherwise same + * + * Setup Start Address 1 Register (F100h) + */ +static int onenand_block_address(struct onenand_chip *this, int block) +{ + /* Device Flash Core select, NAND Flash Block Address */ + if (block & this->density_mask) + return ONENAND_DDP_CHIP1 | (block ^ this->density_mask); + + return block; +} + +/** + * onenand_bufferram_address - [DEFAULT] Get bufferram address + * @param this onenand chip data structure + * @param block the block + * @return set DBS value if DDP, otherwise 0 + * + * Setup Start Address 2 Register (F101h) for DDP + */ +static int onenand_bufferram_address(struct onenand_chip *this, int block) +{ + /* Device BufferRAM Select */ + if (block & this->density_mask) + return ONENAND_DDP_CHIP1; + + return ONENAND_DDP_CHIP0; +} + +/** + * onenand_page_address - [DEFAULT] Get page address + * @param page the page address + * @param sector the sector address + * @return combined page and sector address + * + * Setup Start Address 8 Register (F107h) + */ +static int onenand_page_address(int page, int sector) +{ + /* Flash Page Address, Flash Sector Address */ + int fpa, fsa; + + fpa = page & ONENAND_FPA_MASK; + fsa = sector & ONENAND_FSA_MASK; + + return ((fpa << ONENAND_FPA_SHIFT) | fsa); +} + +/** + * onenand_buffer_address - [DEFAULT] Get buffer address + * @param dataram1 DataRAM index + * @param sectors the sector address + * @param count the number of sectors + * @return the start buffer value + * + * Setup Start Buffer Register (F200h) + */ +static int onenand_buffer_address(int dataram1, int sectors, int count) +{ + int bsa, bsc; + + /* BufferRAM Sector Address */ + bsa = sectors & ONENAND_BSA_MASK; + + if (dataram1) + bsa |= ONENAND_BSA_DATARAM1; /* DataRAM1 */ + else + bsa |= ONENAND_BSA_DATARAM0; /* DataRAM0 */ + + /* BufferRAM Sector Count */ + bsc = count & ONENAND_BSC_MASK; + + return ((bsa << ONENAND_BSA_SHIFT) | bsc); +} + +/** + * flexonenand_block- For given address return block number + * @param this - OneNAND device structure + * @param addr - Address for which block number is needed + */ +static unsigned flexonenand_block(struct onenand_chip *this, loff_t addr) +{ + unsigned boundary, blk, die = 0; + + if (ONENAND_IS_DDP(this) && addr >= this->diesize[0]) { + die = 1; + addr -= this->diesize[0]; + } + + boundary = this->boundary[die]; + + blk = addr >> (this->erase_shift - 1); + if (blk > boundary) + blk = (blk + boundary + 1) >> 1; + + blk += die ? this->density_mask : 0; + return blk; +} + +inline unsigned onenand_block(struct onenand_chip *this, loff_t addr) +{ + if (!FLEXONENAND(this)) + return addr >> this->erase_shift; + return flexonenand_block(this, addr); +} + +/** + * flexonenand_addr - Return address of the block + * @this: OneNAND device structure + * @block: Block number on Flex-OneNAND + * + * Return address of the block + */ +static loff_t flexonenand_addr(struct onenand_chip *this, int block) +{ + loff_t ofs = 0; + int die = 0, boundary; + + if (ONENAND_IS_DDP(this) && block >= this->density_mask) { + block -= this->density_mask; + die = 1; + ofs = this->diesize[0]; + } + + boundary = this->boundary[die]; + ofs += (loff_t)block << (this->erase_shift - 1); + if (block > (boundary + 1)) + ofs += (loff_t)(block - boundary - 1) << (this->erase_shift - 1); + return ofs; +} + +loff_t onenand_addr(struct onenand_chip *this, int block) +{ + if (!FLEXONENAND(this)) + return (loff_t)block << this->erase_shift; + return flexonenand_addr(this, block); +} +EXPORT_SYMBOL(onenand_addr); + +/** + * onenand_get_density - [DEFAULT] Get OneNAND density + * @param dev_id OneNAND device ID + * + * Get OneNAND density from device ID + */ +static inline int onenand_get_density(int dev_id) +{ + int density = dev_id >> ONENAND_DEVICE_DENSITY_SHIFT; + return (density & ONENAND_DEVICE_DENSITY_MASK); +} + +/** + * flexonenand_region - [Flex-OneNAND] Return erase region of addr + * @param mtd MTD device structure + * @param addr address whose erase region needs to be identified + */ +int flexonenand_region(struct mtd_info *mtd, loff_t addr) +{ + int i; + + for (i = 0; i < mtd->numeraseregions; i++) + if (addr < mtd->eraseregions[i].offset) + break; + return i - 1; +} +EXPORT_SYMBOL(flexonenand_region); + +/** + * onenand_command - [DEFAULT] Send command to OneNAND device + * @param mtd MTD device structure + * @param cmd the command to be sent + * @param addr offset to read from or write to + * @param len number of bytes to read or write + * + * Send command to OneNAND device. This function is used for middle/large page + * devices (1KB/2KB Bytes per page) + */ +static int onenand_command(struct mtd_info *mtd, int cmd, loff_t addr, size_t len) +{ + struct onenand_chip *this = mtd->priv; + int value, block, page; + + /* Address translation */ + switch (cmd) { + case ONENAND_CMD_UNLOCK: + case ONENAND_CMD_LOCK: + case ONENAND_CMD_LOCK_TIGHT: + case ONENAND_CMD_UNLOCK_ALL: + block = -1; + page = -1; + break; + + case FLEXONENAND_CMD_PI_ACCESS: + /* addr contains die index */ + block = addr * this->density_mask; + page = -1; + break; + + case ONENAND_CMD_ERASE: + case ONENAND_CMD_MULTIBLOCK_ERASE: + case ONENAND_CMD_ERASE_VERIFY: + case ONENAND_CMD_BUFFERRAM: + case ONENAND_CMD_OTP_ACCESS: + block = onenand_block(this, addr); + page = -1; + break; + + case FLEXONENAND_CMD_READ_PI: + cmd = ONENAND_CMD_READ; + block = addr * this->density_mask; + page = 0; + break; + + default: + block = onenand_block(this, addr); + if (FLEXONENAND(this)) + page = (int) (addr - onenand_addr(this, block))>>\ + this->page_shift; + else + page = (int) (addr >> this->page_shift); + if (ONENAND_IS_2PLANE(this)) { + /* Make the even block number */ + block &= ~1; + /* Is it the odd plane? */ + if (addr & this->writesize) + block++; + page >>= 1; + } + page &= this->page_mask; + break; + } + + /* NOTE: The setting order of the registers is very important! */ + if (cmd == ONENAND_CMD_BUFFERRAM) { + /* Select DataRAM for DDP */ + value = onenand_bufferram_address(this, block); + this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2); + + if (ONENAND_IS_2PLANE(this) || ONENAND_IS_4KB_PAGE(this)) + /* It is always BufferRAM0 */ + ONENAND_SET_BUFFERRAM0(this); + else + /* Switch to the next data buffer */ + ONENAND_SET_NEXT_BUFFERRAM(this); + + return 0; + } + + if (block != -1) { + /* Write 'DFS, FBA' of Flash */ + value = onenand_block_address(this, block); + this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1); + + /* Select DataRAM for DDP */ + value = onenand_bufferram_address(this, block); + this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2); + } + + if (page != -1) { + /* Now we use page size operation */ + int sectors = 0, count = 0; + int dataram; + + switch (cmd) { + case FLEXONENAND_CMD_RECOVER_LSB: + case ONENAND_CMD_READ: + case ONENAND_CMD_READOOB: + if (ONENAND_IS_4KB_PAGE(this)) + /* It is always BufferRAM0 */ + dataram = ONENAND_SET_BUFFERRAM0(this); + else + dataram = ONENAND_SET_NEXT_BUFFERRAM(this); + break; + + default: + if (ONENAND_IS_2PLANE(this) && cmd == ONENAND_CMD_PROG) + cmd = ONENAND_CMD_2X_PROG; + dataram = ONENAND_CURRENT_BUFFERRAM(this); + break; + } + + /* Write 'FPA, FSA' of Flash */ + value = onenand_page_address(page, sectors); + this->write_word(value, this->base + ONENAND_REG_START_ADDRESS8); + + /* Write 'BSA, BSC' of DataRAM */ + value = onenand_buffer_address(dataram, sectors, count); + this->write_word(value, this->base + ONENAND_REG_START_BUFFER); + } + + /* Interrupt clear */ + this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT); + + /* Write command */ + this->write_word(cmd, this->base + ONENAND_REG_COMMAND); + + return 0; +} + +/** + * onenand_read_ecc - return ecc status + * @param this onenand chip structure + */ +static inline int onenand_read_ecc(struct onenand_chip *this) +{ + int ecc, i, result = 0; + + if (!FLEXONENAND(this) && !ONENAND_IS_4KB_PAGE(this)) + return this->read_word(this->base + ONENAND_REG_ECC_STATUS); + + for (i = 0; i < 4; i++) { + ecc = this->read_word(this->base + ONENAND_REG_ECC_STATUS + i*2); + if (likely(!ecc)) + continue; + if (ecc & FLEXONENAND_UNCORRECTABLE_ERROR) + return ONENAND_ECC_2BIT_ALL; + else + result = ONENAND_ECC_1BIT_ALL; + } + + return result; +} + +/** + * onenand_wait - [DEFAULT] wait until the command is done + * @param mtd MTD device structure + * @param state state to select the max. timeout value + * + * Wait for command done. This applies to all OneNAND command + * Read can take up to 30us, erase up to 2ms and program up to 350us + * according to general OneNAND specs + */ +static int onenand_wait(struct mtd_info *mtd, int state) +{ + struct onenand_chip * this = mtd->priv; + unsigned long timeout; + unsigned int flags = ONENAND_INT_MASTER; + unsigned int interrupt = 0; + unsigned int ctrl; + + /* The 20 msec is enough */ + timeout = jiffies + msecs_to_jiffies(20); + while (time_before(jiffies, timeout)) { + interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT); + + if (interrupt & flags) + break; + + if (state != FL_READING && state != FL_PREPARING_ERASE) + cond_resched(); + } + /* To get correct interrupt status in timeout case */ + interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT); + + ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS); + + /* + * In the Spec. it checks the controller status first + * However if you get the correct information in case of + * power off recovery (POR) test, it should read ECC status first + */ + if (interrupt & ONENAND_INT_READ) { + int ecc = onenand_read_ecc(this); + if (ecc) { + if (ecc & ONENAND_ECC_2BIT_ALL) { + printk(KERN_ERR "%s: ECC error = 0x%04x\n", + __func__, ecc); + mtd->ecc_stats.failed++; + return -EBADMSG; + } else if (ecc & ONENAND_ECC_1BIT_ALL) { + printk(KERN_DEBUG "%s: correctable ECC error = 0x%04x\n", + __func__, ecc); + mtd->ecc_stats.corrected++; + } + } + } else if (state == FL_READING) { + printk(KERN_ERR "%s: read timeout! ctrl=0x%04x intr=0x%04x\n", + __func__, ctrl, interrupt); + return -EIO; + } + + if (state == FL_PREPARING_ERASE && !(interrupt & ONENAND_INT_ERASE)) { + printk(KERN_ERR "%s: mb erase timeout! ctrl=0x%04x intr=0x%04x\n", + __func__, ctrl, interrupt); + return -EIO; + } + + if (!(interrupt & ONENAND_INT_MASTER)) { + printk(KERN_ERR "%s: timeout! ctrl=0x%04x intr=0x%04x\n", + __func__, ctrl, interrupt); + return -EIO; + } + + /* If there's controller error, it's a real error */ + if (ctrl & ONENAND_CTRL_ERROR) { + printk(KERN_ERR "%s: controller error = 0x%04x\n", + __func__, ctrl); + if (ctrl & ONENAND_CTRL_LOCK) + printk(KERN_ERR "%s: it's locked error.\n", __func__); + return -EIO; + } + + return 0; +} + +/* + * onenand_interrupt - [DEFAULT] onenand interrupt handler + * @param irq onenand interrupt number + * @param dev_id interrupt data + * + * complete the work + */ +static irqreturn_t onenand_interrupt(int irq, void *data) +{ + struct onenand_chip *this = data; + + /* To handle shared interrupt */ + if (!this->complete.done) + complete(&this->complete); + + return IRQ_HANDLED; +} + +/* + * onenand_interrupt_wait - [DEFAULT] wait until the command is done + * @param mtd MTD device structure + * @param state state to select the max. timeout value + * + * Wait for command done. + */ +static int onenand_interrupt_wait(struct mtd_info *mtd, int state) +{ + struct onenand_chip *this = mtd->priv; + + wait_for_completion(&this->complete); + + return onenand_wait(mtd, state); +} + +/* + * onenand_try_interrupt_wait - [DEFAULT] try interrupt wait + * @param mtd MTD device structure + * @param state state to select the max. timeout value + * + * Try interrupt based wait (It is used one-time) + */ +static int onenand_try_interrupt_wait(struct mtd_info *mtd, int state) +{ + struct onenand_chip *this = mtd->priv; + unsigned long remain, timeout; + + /* We use interrupt wait first */ + this->wait = onenand_interrupt_wait; + + timeout = msecs_to_jiffies(100); + remain = wait_for_completion_timeout(&this->complete, timeout); + if (!remain) { + printk(KERN_INFO "OneNAND: There's no interrupt. " + "We use the normal wait\n"); + + /* Release the irq */ + free_irq(this->irq, this); + + this->wait = onenand_wait; + } + + return onenand_wait(mtd, state); +} + +/* + * onenand_setup_wait - [OneNAND Interface] setup onenand wait method + * @param mtd MTD device structure + * + * There's two method to wait onenand work + * 1. polling - read interrupt status register + * 2. interrupt - use the kernel interrupt method + */ +static void onenand_setup_wait(struct mtd_info *mtd) +{ + struct onenand_chip *this = mtd->priv; + int syscfg; + + init_completion(&this->complete); + + if (this->irq <= 0) { + this->wait = onenand_wait; + return; + } + + if (request_irq(this->irq, &onenand_interrupt, + IRQF_SHARED, "onenand", this)) { + /* If we can't get irq, use the normal wait */ + this->wait = onenand_wait; + return; + } + + /* Enable interrupt */ + syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1); + syscfg |= ONENAND_SYS_CFG1_IOBE; + this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1); + + this->wait = onenand_try_interrupt_wait; +} + +/** + * onenand_bufferram_offset - [DEFAULT] BufferRAM offset + * @param mtd MTD data structure + * @param area BufferRAM area + * @return offset given area + * + * Return BufferRAM offset given area + */ +static inline int onenand_bufferram_offset(struct mtd_info *mtd, int area) +{ + struct onenand_chip *this = mtd->priv; + + if (ONENAND_CURRENT_BUFFERRAM(this)) { + /* Note: the 'this->writesize' is a real page size */ + if (area == ONENAND_DATARAM) + return this->writesize; + if (area == ONENAND_SPARERAM) + return mtd->oobsize; + } + + return 0; +} + +/** + * onenand_read_bufferram - [OneNAND Interface] Read the bufferram area + * @param mtd MTD data structure + * @param area BufferRAM area + * @param buffer the databuffer to put/get data + * @param offset offset to read from or write to + * @param count number of bytes to read/write + * + * Read the BufferRAM area + */ +static int onenand_read_bufferram(struct mtd_info *mtd, int area, + unsigned char *buffer, int offset, size_t count) +{ + struct onenand_chip *this = mtd->priv; + void __iomem *bufferram; + + bufferram = this->base + area; + + bufferram += onenand_bufferram_offset(mtd, area); + + if (ONENAND_CHECK_BYTE_ACCESS(count)) { + unsigned short word; + + /* Align with word(16-bit) size */ + count--; + + /* Read word and save byte */ + word = this->read_word(bufferram + offset + count); + buffer[count] = (word & 0xff); + } + + memcpy(buffer, bufferram + offset, count); + + return 0; +} + +/** + * onenand_sync_read_bufferram - [OneNAND Interface] Read the bufferram area with Sync. Burst mode + * @param mtd MTD data structure + * @param area BufferRAM area + * @param buffer the databuffer to put/get data + * @param offset offset to read from or write to + * @param count number of bytes to read/write + * + * Read the BufferRAM area with Sync. Burst Mode + */ +static int onenand_sync_read_bufferram(struct mtd_info *mtd, int area, + unsigned char *buffer, int offset, size_t count) +{ + struct onenand_chip *this = mtd->priv; + void __iomem *bufferram; + + bufferram = this->base + area; + + bufferram += onenand_bufferram_offset(mtd, area); + + this->mmcontrol(mtd, ONENAND_SYS_CFG1_SYNC_READ); + + if (ONENAND_CHECK_BYTE_ACCESS(count)) { + unsigned short word; + + /* Align with word(16-bit) size */ + count--; + + /* Read word and save byte */ + word = this->read_word(bufferram + offset + count); + buffer[count] = (word & 0xff); + } + + memcpy(buffer, bufferram + offset, count); + + this->mmcontrol(mtd, 0); + + return 0; +} + +/** + * onenand_write_bufferram - [OneNAND Interface] Write the bufferram area + * @param mtd MTD data structure + * @param area BufferRAM area + * @param buffer the databuffer to put/get data + * @param offset offset to read from or write to + * @param count number of bytes to read/write + * + * Write the BufferRAM area + */ +static int onenand_write_bufferram(struct mtd_info *mtd, int area, + const unsigned char *buffer, int offset, size_t count) +{ + struct onenand_chip *this = mtd->priv; + void __iomem *bufferram; + + bufferram = this->base + area; + + bufferram += onenand_bufferram_offset(mtd, area); + + if (ONENAND_CHECK_BYTE_ACCESS(count)) { + unsigned short word; + int byte_offset; + + /* Align with word(16-bit) size */ + count--; + + /* Calculate byte access offset */ + byte_offset = offset + count; + + /* Read word and save byte */ + word = this->read_word(bufferram + byte_offset); + word = (word & ~0xff) | buffer[count]; + this->write_word(word, bufferram + byte_offset); + } + + memcpy(bufferram + offset, buffer, count); + + return 0; +} + +/** + * onenand_get_2x_blockpage - [GENERIC] Get blockpage at 2x program mode + * @param mtd MTD data structure + * @param addr address to check + * @return blockpage address + * + * Get blockpage address at 2x program mode + */ +static int onenand_get_2x_blockpage(struct mtd_info *mtd, loff_t addr) +{ + struct onenand_chip *this = mtd->priv; + int blockpage, block, page; + + /* Calculate the even block number */ + block = (int) (addr >> this->erase_shift) & ~1; + /* Is it the odd plane? */ + if (addr & this->writesize) + block++; + page = (int) (addr >> (this->page_shift + 1)) & this->page_mask; + blockpage = (block << 7) | page; + + return blockpage; +} + +/** + * onenand_check_bufferram - [GENERIC] Check BufferRAM information + * @param mtd MTD data structure + * @param addr address to check + * @return 1 if there are valid data, otherwise 0 + * + * Check bufferram if there is data we required + */ +static int onenand_check_bufferram(struct mtd_info *mtd, loff_t addr) +{ + struct onenand_chip *this = mtd->priv; + int blockpage, found = 0; + unsigned int i; + + if (ONENAND_IS_2PLANE(this)) + blockpage = onenand_get_2x_blockpage(mtd, addr); + else + blockpage = (int) (addr >> this->page_shift); + + /* Is there valid data? */ + i = ONENAND_CURRENT_BUFFERRAM(this); + if (this->bufferram[i].blockpage == blockpage) + found = 1; + else { + /* Check another BufferRAM */ + i = ONENAND_NEXT_BUFFERRAM(this); + if (this->bufferram[i].blockpage == blockpage) { + ONENAND_SET_NEXT_BUFFERRAM(this); + found = 1; + } + } + + if (found && ONENAND_IS_DDP(this)) { + /* Select DataRAM for DDP */ + int block = onenand_block(this, addr); + int value = onenand_bufferram_address(this, block); + this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2); + } + + return found; +} + +/** + * onenand_update_bufferram - [GENERIC] Update BufferRAM information + * @param mtd MTD data structure + * @param addr address to update + * @param valid valid flag + * + * Update BufferRAM information + */ +static void onenand_update_bufferram(struct mtd_info *mtd, loff_t addr, + int valid) +{ + struct onenand_chip *this = mtd->priv; + int blockpage; + unsigned int i; + + if (ONENAND_IS_2PLANE(this)) + blockpage = onenand_get_2x_blockpage(mtd, addr); + else + blockpage = (int) (addr >> this->page_shift); + + /* Invalidate another BufferRAM */ + i = ONENAND_NEXT_BUFFERRAM(this); + if (this->bufferram[i].blockpage == blockpage) + this->bufferram[i].blockpage = -1; + + /* Update BufferRAM */ + i = ONENAND_CURRENT_BUFFERRAM(this); + if (valid) + this->bufferram[i].blockpage = blockpage; + else + this->bufferram[i].blockpage = -1; +} + +/** + * onenand_invalidate_bufferram - [GENERIC] Invalidate BufferRAM information + * @param mtd MTD data structure + * @param addr start address to invalidate + * @param len length to invalidate + * + * Invalidate BufferRAM information + */ +static void onenand_invalidate_bufferram(struct mtd_info *mtd, loff_t addr, + unsigned int len) +{ + struct onenand_chip *this = mtd->priv; + int i; + loff_t end_addr = addr + len; + + /* Invalidate BufferRAM */ + for (i = 0; i < MAX_BUFFERRAM; i++) { + loff_t buf_addr = this->bufferram[i].blockpage << this->page_shift; + if (buf_addr >= addr && buf_addr < end_addr) + this->bufferram[i].blockpage = -1; + } +} + +/** + * onenand_get_device - [GENERIC] Get chip for selected access + * @param mtd MTD device structure + * @param new_state the state which is requested + * + * Get the device and lock it for exclusive access + */ +static int onenand_get_device(struct mtd_info *mtd, int new_state) +{ + struct onenand_chip *this = mtd->priv; + DECLARE_WAITQUEUE(wait, current); + + /* + * Grab the lock and see if the device is available + */ + while (1) { + spin_lock(&this->chip_lock); + if (this->state == FL_READY) { + this->state = new_state; + spin_unlock(&this->chip_lock); + if (new_state != FL_PM_SUSPENDED && this->enable) + this->enable(mtd); + break; + } + if (new_state == FL_PM_SUSPENDED) { + spin_unlock(&this->chip_lock); + return (this->state == FL_PM_SUSPENDED) ? 0 : -EAGAIN; + } + set_current_state(TASK_UNINTERRUPTIBLE); + add_wait_queue(&this->wq, &wait); + spin_unlock(&this->chip_lock); + schedule(); + remove_wait_queue(&this->wq, &wait); + } + + return 0; +} + +/** + * onenand_release_device - [GENERIC] release chip + * @param mtd MTD device structure + * + * Deselect, release chip lock and wake up anyone waiting on the device + */ +static void onenand_release_device(struct mtd_info *mtd) +{ + struct onenand_chip *this = mtd->priv; + + if (this->state != FL_PM_SUSPENDED && this->disable) + this->disable(mtd); + /* Release the chip */ + spin_lock(&this->chip_lock); + this->state = FL_READY; + wake_up(&this->wq); + spin_unlock(&this->chip_lock); +} + +/** + * onenand_transfer_auto_oob - [INTERN] oob auto-placement transfer + * @param mtd MTD device structure + * @param buf destination address + * @param column oob offset to read from + * @param thislen oob length to read + */ +static int onenand_transfer_auto_oob(struct mtd_info *mtd, uint8_t *buf, int column, + int thislen) +{ + struct onenand_chip *this = mtd->priv; + int ret; + + this->read_bufferram(mtd, ONENAND_SPARERAM, this->oob_buf, 0, + mtd->oobsize); + ret = mtd_ooblayout_get_databytes(mtd, buf, this->oob_buf, + column, thislen); + if (ret) + return ret; + + return 0; +} + +/** + * onenand_recover_lsb - [Flex-OneNAND] Recover LSB page data + * @param mtd MTD device structure + * @param addr address to recover + * @param status return value from onenand_wait / onenand_bbt_wait + * + * MLC NAND Flash cell has paired pages - LSB page and MSB page. LSB page has + * lower page address and MSB page has higher page address in paired pages. + * If power off occurs during MSB page program, the paired LSB page data can + * become corrupt. LSB page recovery read is a way to read LSB page though page + * data are corrupted. When uncorrectable error occurs as a result of LSB page + * read after power up, issue LSB page recovery read. + */ +static int onenand_recover_lsb(struct mtd_info *mtd, loff_t addr, int status) +{ + struct onenand_chip *this = mtd->priv; + int i; + + /* Recovery is only for Flex-OneNAND */ + if (!FLEXONENAND(this)) + return status; + + /* check if we failed due to uncorrectable error */ + if (!mtd_is_eccerr(status) && status != ONENAND_BBT_READ_ECC_ERROR) + return status; + + /* check if address lies in MLC region */ + i = flexonenand_region(mtd, addr); + if (mtd->eraseregions[i].erasesize < (1 << this->erase_shift)) + return status; + + /* We are attempting to reread, so decrement stats.failed + * which was incremented by onenand_wait due to read failure + */ + printk(KERN_INFO "%s: Attempting to recover from uncorrectable read\n", + __func__); + mtd->ecc_stats.failed--; + + /* Issue the LSB page recovery command */ + this->command(mtd, FLEXONENAND_CMD_RECOVER_LSB, addr, this->writesize); + return this->wait(mtd, FL_READING); +} + +/** + * onenand_mlc_read_ops_nolock - MLC OneNAND read main and/or out-of-band + * @param mtd MTD device structure + * @param from offset to read from + * @param ops: oob operation description structure + * + * MLC OneNAND / Flex-OneNAND has 4KB page size and 4KB dataram. + * So, read-while-load is not present. + */ +static int onenand_mlc_read_ops_nolock(struct mtd_info *mtd, loff_t from, + struct mtd_oob_ops *ops) +{ + struct onenand_chip *this = mtd->priv; + struct mtd_ecc_stats stats; + size_t len = ops->len; + size_t ooblen = ops->ooblen; + u_char *buf = ops->datbuf; + u_char *oobbuf = ops->oobbuf; + int read = 0, column, thislen; + int oobread = 0, oobcolumn, thisooblen, oobsize; + int ret = 0; + int writesize = this->writesize; + + pr_debug("%s: from = 0x%08x, len = %i\n", __func__, (unsigned int)from, + (int)len); + + oobsize = mtd_oobavail(mtd, ops); + oobcolumn = from & (mtd->oobsize - 1); + + /* Do not allow reads past end of device */ + if (from + len > mtd->size) { + printk(KERN_ERR "%s: Attempt read beyond end of device\n", + __func__); + ops->retlen = 0; + ops->oobretlen = 0; + return -EINVAL; + } + + stats = mtd->ecc_stats; + + while (read < len) { + cond_resched(); + + thislen = min_t(int, writesize, len - read); + + column = from & (writesize - 1); + if (column + thislen > writesize) + thislen = writesize - column; + + if (!onenand_check_bufferram(mtd, from)) { + this->command(mtd, ONENAND_CMD_READ, from, writesize); + + ret = this->wait(mtd, FL_READING); + if (unlikely(ret)) + ret = onenand_recover_lsb(mtd, from, ret); + onenand_update_bufferram(mtd, from, !ret); + if (mtd_is_eccerr(ret)) + ret = 0; + if (ret) + break; + } + + this->read_bufferram(mtd, ONENAND_DATARAM, buf, column, thislen); + if (oobbuf) { + thisooblen = oobsize - oobcolumn; + thisooblen = min_t(int, thisooblen, ooblen - oobread); + + if (ops->mode == MTD_OPS_AUTO_OOB) + onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen); + else + this->read_bufferram(mtd, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen); + oobread += thisooblen; + oobbuf += thisooblen; + oobcolumn = 0; + } + + read += thislen; + if (read == len) + break; + + from += thislen; + buf += thislen; + } + + /* + * Return success, if no ECC failures, else -EBADMSG + * fs driver will take care of that, because + * retlen == desired len and result == -EBADMSG + */ + ops->retlen = read; + ops->oobretlen = oobread; + + if (ret) + return ret; + + if (mtd->ecc_stats.failed - stats.failed) + return -EBADMSG; + + /* return max bitflips per ecc step; ONENANDs correct 1 bit only */ + return mtd->ecc_stats.corrected != stats.corrected ? 1 : 0; +} + +/** + * onenand_read_ops_nolock - [OneNAND Interface] OneNAND read main and/or out-of-band + * @param mtd MTD device structure + * @param from offset to read from + * @param ops: oob operation description structure + * + * OneNAND read main and/or out-of-band data + */ +static int onenand_read_ops_nolock(struct mtd_info *mtd, loff_t from, + struct mtd_oob_ops *ops) +{ + struct onenand_chip *this = mtd->priv; + struct mtd_ecc_stats stats; + size_t len = ops->len; + size_t ooblen = ops->ooblen; + u_char *buf = ops->datbuf; + u_char *oobbuf = ops->oobbuf; + int read = 0, column, thislen; + int oobread = 0, oobcolumn, thisooblen, oobsize; + int ret = 0, boundary = 0; + int writesize = this->writesize; + + pr_debug("%s: from = 0x%08x, len = %i\n", __func__, (unsigned int)from, + (int)len); + + oobsize = mtd_oobavail(mtd, ops); + oobcolumn = from & (mtd->oobsize - 1); + + /* Do not allow reads past end of device */ + if ((from + len) > mtd->size) { + printk(KERN_ERR "%s: Attempt read beyond end of device\n", + __func__); + ops->retlen = 0; + ops->oobretlen = 0; + return -EINVAL; + } + + stats = mtd->ecc_stats; + + /* Read-while-load method */ + + /* Do first load to bufferRAM */ + if (read < len) { + if (!onenand_check_bufferram(mtd, from)) { + this->command(mtd, ONENAND_CMD_READ, from, writesize); + ret = this->wait(mtd, FL_READING); + onenand_update_bufferram(mtd, from, !ret); + if (mtd_is_eccerr(ret)) + ret = 0; + } + } + + thislen = min_t(int, writesize, len - read); + column = from & (writesize - 1); + if (column + thislen > writesize) + thislen = writesize - column; + + while (!ret) { + /* If there is more to load then start next load */ + from += thislen; + if (read + thislen < len) { + this->command(mtd, ONENAND_CMD_READ, from, writesize); + /* + * Chip boundary handling in DDP + * Now we issued chip 1 read and pointed chip 1 + * bufferram so we have to point chip 0 bufferram. + */ + if (ONENAND_IS_DDP(this) && + unlikely(from == (this->chipsize >> 1))) { + this->write_word(ONENAND_DDP_CHIP0, this->base + ONENAND_REG_START_ADDRESS2); + boundary = 1; + } else + boundary = 0; + ONENAND_SET_PREV_BUFFERRAM(this); + } + /* While load is going, read from last bufferRAM */ + this->read_bufferram(mtd, ONENAND_DATARAM, buf, column, thislen); + + /* Read oob area if needed */ + if (oobbuf) { + thisooblen = oobsize - oobcolumn; + thisooblen = min_t(int, thisooblen, ooblen - oobread); + + if (ops->mode == MTD_OPS_AUTO_OOB) + onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen); + else + this->read_bufferram(mtd, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen); + oobread += thisooblen; + oobbuf += thisooblen; + oobcolumn = 0; + } + + /* See if we are done */ + read += thislen; + if (read == len) + break; + /* Set up for next read from bufferRAM */ + if (unlikely(boundary)) + this->write_word(ONENAND_DDP_CHIP1, this->base + ONENAND_REG_START_ADDRESS2); + ONENAND_SET_NEXT_BUFFERRAM(this); + buf += thislen; + thislen = min_t(int, writesize, len - read); + column = 0; + cond_resched(); + /* Now wait for load */ + ret = this->wait(mtd, FL_READING); + onenand_update_bufferram(mtd, from, !ret); + if (mtd_is_eccerr(ret)) + ret = 0; + } + + /* + * Return success, if no ECC failures, else -EBADMSG + * fs driver will take care of that, because + * retlen == desired len and result == -EBADMSG + */ + ops->retlen = read; + ops->oobretlen = oobread; + + if (ret) + return ret; + + if (mtd->ecc_stats.failed - stats.failed) + return -EBADMSG; + + /* return max bitflips per ecc step; ONENANDs correct 1 bit only */ + return mtd->ecc_stats.corrected != stats.corrected ? 1 : 0; +} + +/** + * onenand_read_oob_nolock - [MTD Interface] OneNAND read out-of-band + * @param mtd MTD device structure + * @param from offset to read from + * @param ops: oob operation description structure + * + * OneNAND read out-of-band data from the spare area + */ +static int onenand_read_oob_nolock(struct mtd_info *mtd, loff_t from, + struct mtd_oob_ops *ops) +{ + struct onenand_chip *this = mtd->priv; + struct mtd_ecc_stats stats; + int read = 0, thislen, column, oobsize; + size_t len = ops->ooblen; + unsigned int mode = ops->mode; + u_char *buf = ops->oobbuf; + int ret = 0, readcmd; + + from += ops->ooboffs; + + pr_debug("%s: from = 0x%08x, len = %i\n", __func__, (unsigned int)from, + (int)len); + + /* Initialize return length value */ + ops->oobretlen = 0; + + if (mode == MTD_OPS_AUTO_OOB) + oobsize = mtd->oobavail; + else + oobsize = mtd->oobsize; + + column = from & (mtd->oobsize - 1); + + if (unlikely(column >= oobsize)) { + printk(KERN_ERR "%s: Attempted to start read outside oob\n", + __func__); + return -EINVAL; + } + + stats = mtd->ecc_stats; + + readcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB; + + while (read < len) { + cond_resched(); + + thislen = oobsize - column; + thislen = min_t(int, thislen, len); + + this->command(mtd, readcmd, from, mtd->oobsize); + + onenand_update_bufferram(mtd, from, 0); + + ret = this->wait(mtd, FL_READING); + if (unlikely(ret)) + ret = onenand_recover_lsb(mtd, from, ret); + + if (ret && !mtd_is_eccerr(ret)) { + printk(KERN_ERR "%s: read failed = 0x%x\n", + __func__, ret); + break; + } + + if (mode == MTD_OPS_AUTO_OOB) + onenand_transfer_auto_oob(mtd, buf, column, thislen); + else + this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen); + + read += thislen; + + if (read == len) + break; + + buf += thislen; + + /* Read more? */ + if (read < len) { + /* Page size */ + from += mtd->writesize; + column = 0; + } + } + + ops->oobretlen = read; + + if (ret) + return ret; + + if (mtd->ecc_stats.failed - stats.failed) + return -EBADMSG; + + return 0; +} + +/** + * onenand_read_oob - [MTD Interface] Read main and/or out-of-band + * @param mtd: MTD device structure + * @param from: offset to read from + * @param ops: oob operation description structure + + * Read main and/or out-of-band + */ +static int onenand_read_oob(struct mtd_info *mtd, loff_t from, + struct mtd_oob_ops *ops) +{ + struct onenand_chip *this = mtd->priv; + int ret; + + switch (ops->mode) { + case MTD_OPS_PLACE_OOB: + case MTD_OPS_AUTO_OOB: + break; + case MTD_OPS_RAW: + /* Not implemented yet */ + default: + return -EINVAL; + } + + onenand_get_device(mtd, FL_READING); + if (ops->datbuf) + ret = ONENAND_IS_4KB_PAGE(this) ? + onenand_mlc_read_ops_nolock(mtd, from, ops) : + onenand_read_ops_nolock(mtd, from, ops); + else + ret = onenand_read_oob_nolock(mtd, from, ops); + onenand_release_device(mtd); + + return ret; +} + +/** + * onenand_bbt_wait - [DEFAULT] wait until the command is done + * @param mtd MTD device structure + * @param state state to select the max. timeout value + * + * Wait for command done. + */ +static int onenand_bbt_wait(struct mtd_info *mtd, int state) +{ + struct onenand_chip *this = mtd->priv; + unsigned long timeout; + unsigned int interrupt, ctrl, ecc, addr1, addr8; + + /* The 20 msec is enough */ + timeout = jiffies + msecs_to_jiffies(20); + while (time_before(jiffies, timeout)) { + interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT); + if (interrupt & ONENAND_INT_MASTER) + break; + } + /* To get correct interrupt status in timeout case */ + interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT); + ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS); + addr1 = this->read_word(this->base + ONENAND_REG_START_ADDRESS1); + addr8 = this->read_word(this->base + ONENAND_REG_START_ADDRESS8); + + if (interrupt & ONENAND_INT_READ) { + ecc = onenand_read_ecc(this); + if (ecc & ONENAND_ECC_2BIT_ALL) { + printk(KERN_DEBUG "%s: ecc 0x%04x ctrl 0x%04x " + "intr 0x%04x addr1 %#x addr8 %#x\n", + __func__, ecc, ctrl, interrupt, addr1, addr8); + return ONENAND_BBT_READ_ECC_ERROR; + } + } else { + printk(KERN_ERR "%s: read timeout! ctrl 0x%04x " + "intr 0x%04x addr1 %#x addr8 %#x\n", + __func__, ctrl, interrupt, addr1, addr8); + return ONENAND_BBT_READ_FATAL_ERROR; + } + + /* Initial bad block case: 0x2400 or 0x0400 */ + if (ctrl & ONENAND_CTRL_ERROR) { + printk(KERN_DEBUG "%s: ctrl 0x%04x intr 0x%04x addr1 %#x " + "addr8 %#x\n", __func__, ctrl, interrupt, addr1, addr8); + return ONENAND_BBT_READ_ERROR; + } + + return 0; +} + +/** + * onenand_bbt_read_oob - [MTD Interface] OneNAND read out-of-band for bbt scan + * @param mtd MTD device structure + * @param from offset to read from + * @param ops oob operation description structure + * + * OneNAND read out-of-band data from the spare area for bbt scan + */ +int onenand_bbt_read_oob(struct mtd_info *mtd, loff_t from, + struct mtd_oob_ops *ops) +{ + struct onenand_chip *this = mtd->priv; + int read = 0, thislen, column; + int ret = 0, readcmd; + size_t len = ops->ooblen; + u_char *buf = ops->oobbuf; + + pr_debug("%s: from = 0x%08x, len = %zi\n", __func__, (unsigned int)from, + len); + + /* Initialize return value */ + ops->oobretlen = 0; + + /* Do not allow reads past end of device */ + if (unlikely((from + len) > mtd->size)) { + printk(KERN_ERR "%s: Attempt read beyond end of device\n", + __func__); + return ONENAND_BBT_READ_FATAL_ERROR; + } + + /* Grab the lock and see if the device is available */ + onenand_get_device(mtd, FL_READING); + + column = from & (mtd->oobsize - 1); + + readcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB; + + while (read < len) { + cond_resched(); + + thislen = mtd->oobsize - column; + thislen = min_t(int, thislen, len); + + this->command(mtd, readcmd, from, mtd->oobsize); + + onenand_update_bufferram(mtd, from, 0); + + ret = this->bbt_wait(mtd, FL_READING); + if (unlikely(ret)) + ret = onenand_recover_lsb(mtd, from, ret); + + if (ret) + break; + + this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen); + read += thislen; + if (read == len) + break; + + buf += thislen; + + /* Read more? */ + if (read < len) { + /* Update Page size */ + from += this->writesize; + column = 0; + } + } + + /* Deselect and wake up anyone waiting on the device */ + onenand_release_device(mtd); + + ops->oobretlen = read; + return ret; +} + +#ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE +/** + * onenand_verify_oob - [GENERIC] verify the oob contents after a write + * @param mtd MTD device structure + * @param buf the databuffer to verify + * @param to offset to read from + */ +static int onenand_verify_oob(struct mtd_info *mtd, const u_char *buf, loff_t to) +{ + struct onenand_chip *this = mtd->priv; + u_char *oob_buf = this->oob_buf; + int status, i, readcmd; + + readcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB; + + this->command(mtd, readcmd, to, mtd->oobsize); + onenand_update_bufferram(mtd, to, 0); + status = this->wait(mtd, FL_READING); + if (status) + return status; + + this->read_bufferram(mtd, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize); + for (i = 0; i < mtd->oobsize; i++) + if (buf[i] != 0xFF && buf[i] != oob_buf[i]) + return -EBADMSG; + + return 0; +} + +/** + * onenand_verify - [GENERIC] verify the chip contents after a write + * @param mtd MTD device structure + * @param buf the databuffer to verify + * @param addr offset to read from + * @param len number of bytes to read and compare + */ +static int onenand_verify(struct mtd_info *mtd, const u_char *buf, loff_t addr, size_t len) +{ + struct onenand_chip *this = mtd->priv; + int ret = 0; + int thislen, column; + + column = addr & (this->writesize - 1); + + while (len != 0) { + thislen = min_t(int, this->writesize - column, len); + + this->command(mtd, ONENAND_CMD_READ, addr, this->writesize); + + onenand_update_bufferram(mtd, addr, 0); + + ret = this->wait(mtd, FL_READING); + if (ret) + return ret; + + onenand_update_bufferram(mtd, addr, 1); + + this->read_bufferram(mtd, ONENAND_DATARAM, this->verify_buf, 0, mtd->writesize); + + if (memcmp(buf, this->verify_buf + column, thislen)) + return -EBADMSG; + + len -= thislen; + buf += thislen; + addr += thislen; + column = 0; + } + + return 0; +} +#else +#define onenand_verify(...) (0) +#define onenand_verify_oob(...) (0) +#endif + +#define NOTALIGNED(x) ((x & (this->subpagesize - 1)) != 0) + +static void onenand_panic_wait(struct mtd_info *mtd) +{ + struct onenand_chip *this = mtd->priv; + unsigned int interrupt; + int i; + + for (i = 0; i < 2000; i++) { + interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT); + if (interrupt & ONENAND_INT_MASTER) + break; + udelay(10); + } +} + +/** + * onenand_panic_write - [MTD Interface] write buffer to FLASH in a panic context + * @param mtd MTD device structure + * @param to offset to write to + * @param len number of bytes to write + * @param retlen pointer to variable to store the number of written bytes + * @param buf the data to write + * + * Write with ECC + */ +static int onenand_panic_write(struct mtd_info *mtd, loff_t to, size_t len, + size_t *retlen, const u_char *buf) +{ + struct onenand_chip *this = mtd->priv; + int column, subpage; + int written = 0; + + if (this->state == FL_PM_SUSPENDED) + return -EBUSY; + + /* Wait for any existing operation to clear */ + onenand_panic_wait(mtd); + + pr_debug("%s: to = 0x%08x, len = %i\n", __func__, (unsigned int)to, + (int)len); + + /* Reject writes, which are not page aligned */ + if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) { + printk(KERN_ERR "%s: Attempt to write not page aligned data\n", + __func__); + return -EINVAL; + } + + column = to & (mtd->writesize - 1); + + /* Loop until all data write */ + while (written < len) { + int thislen = min_t(int, mtd->writesize - column, len - written); + u_char *wbuf = (u_char *) buf; + + this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen); + + /* Partial page write */ + subpage = thislen < mtd->writesize; + if (subpage) { + memset(this->page_buf, 0xff, mtd->writesize); + memcpy(this->page_buf + column, buf, thislen); + wbuf = this->page_buf; + } + + this->write_bufferram(mtd, ONENAND_DATARAM, wbuf, 0, mtd->writesize); + this->write_bufferram(mtd, ONENAND_SPARERAM, ffchars, 0, mtd->oobsize); + + this->command(mtd, ONENAND_CMD_PROG, to, mtd->writesize); + + onenand_panic_wait(mtd); + + /* In partial page write we don't update bufferram */ + onenand_update_bufferram(mtd, to, !subpage); + if (ONENAND_IS_2PLANE(this)) { + ONENAND_SET_BUFFERRAM1(this); + onenand_update_bufferram(mtd, to + this->writesize, !subpage); + } + + written += thislen; + + if (written == len) + break; + + column = 0; + to += thislen; + buf += thislen; + } + + *retlen = written; + return 0; +} + +/** + * onenand_fill_auto_oob - [INTERN] oob auto-placement transfer + * @param mtd MTD device structure + * @param oob_buf oob buffer + * @param buf source address + * @param column oob offset to write to + * @param thislen oob length to write + */ +static int onenand_fill_auto_oob(struct mtd_info *mtd, u_char *oob_buf, + const u_char *buf, int column, int thislen) +{ + return mtd_ooblayout_set_databytes(mtd, buf, oob_buf, column, thislen); +} + +/** + * onenand_write_ops_nolock - [OneNAND Interface] write main and/or out-of-band + * @param mtd MTD device structure + * @param to offset to write to + * @param ops oob operation description structure + * + * Write main and/or oob with ECC + */ +static int onenand_write_ops_nolock(struct mtd_info *mtd, loff_t to, + struct mtd_oob_ops *ops) +{ + struct onenand_chip *this = mtd->priv; + int written = 0, column, thislen = 0, subpage = 0; + int prev = 0, prevlen = 0, prev_subpage = 0, first = 1; + int oobwritten = 0, oobcolumn, thisooblen, oobsize; + size_t len = ops->len; + size_t ooblen = ops->ooblen; + const u_char *buf = ops->datbuf; + const u_char *oob = ops->oobbuf; + u_char *oobbuf; + int ret = 0, cmd; + + pr_debug("%s: to = 0x%08x, len = %i\n", __func__, (unsigned int)to, + (int)len); + + /* Initialize retlen, in case of early exit */ + ops->retlen = 0; + ops->oobretlen = 0; + + /* Reject writes, which are not page aligned */ + if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) { + printk(KERN_ERR "%s: Attempt to write not page aligned data\n", + __func__); + return -EINVAL; + } + + /* Check zero length */ + if (!len) + return 0; + oobsize = mtd_oobavail(mtd, ops); + oobcolumn = to & (mtd->oobsize - 1); + + column = to & (mtd->writesize - 1); + + /* Loop until all data write */ + while (1) { + if (written < len) { + u_char *wbuf = (u_char *) buf; + + thislen = min_t(int, mtd->writesize - column, len - written); + thisooblen = min_t(int, oobsize - oobcolumn, ooblen - oobwritten); + + cond_resched(); + + this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen); + + /* Partial page write */ + subpage = thislen < mtd->writesize; + if (subpage) { + memset(this->page_buf, 0xff, mtd->writesize); + memcpy(this->page_buf + column, buf, thislen); + wbuf = this->page_buf; + } + + this->write_bufferram(mtd, ONENAND_DATARAM, wbuf, 0, mtd->writesize); + + if (oob) { + oobbuf = this->oob_buf; + + /* We send data to spare ram with oobsize + * to prevent byte access */ + memset(oobbuf, 0xff, mtd->oobsize); + if (ops->mode == MTD_OPS_AUTO_OOB) + onenand_fill_auto_oob(mtd, oobbuf, oob, oobcolumn, thisooblen); + else + memcpy(oobbuf + oobcolumn, oob, thisooblen); + + oobwritten += thisooblen; + oob += thisooblen; + oobcolumn = 0; + } else + oobbuf = (u_char *) ffchars; + + this->write_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize); + } else + ONENAND_SET_NEXT_BUFFERRAM(this); + + /* + * 2 PLANE, MLC, and Flex-OneNAND do not support + * write-while-program feature. + */ + if (!ONENAND_IS_2PLANE(this) && !ONENAND_IS_4KB_PAGE(this) && !first) { + ONENAND_SET_PREV_BUFFERRAM(this); + + ret = this->wait(mtd, FL_WRITING); + + /* In partial page write we don't update bufferram */ + onenand_update_bufferram(mtd, prev, !ret && !prev_subpage); + if (ret) { + written -= prevlen; + printk(KERN_ERR "%s: write failed %d\n", + __func__, ret); + break; + } + + if (written == len) { + /* Only check verify write turn on */ + ret = onenand_verify(mtd, buf - len, to - len, len); + if (ret) + printk(KERN_ERR "%s: verify failed %d\n", + __func__, ret); + break; + } + + ONENAND_SET_NEXT_BUFFERRAM(this); + } + + this->ongoing = 0; + cmd = ONENAND_CMD_PROG; + + /* Exclude 1st OTP and OTP blocks for cache program feature */ + if (ONENAND_IS_CACHE_PROGRAM(this) && + likely(onenand_block(this, to) != 0) && + ONENAND_IS_4KB_PAGE(this) && + ((written + thislen) < len)) { + cmd = ONENAND_CMD_2X_CACHE_PROG; + this->ongoing = 1; + } + + this->command(mtd, cmd, to, mtd->writesize); + + /* + * 2 PLANE, MLC, and Flex-OneNAND wait here + */ + if (ONENAND_IS_2PLANE(this) || ONENAND_IS_4KB_PAGE(this)) { + ret = this->wait(mtd, FL_WRITING); + + /* In partial page write we don't update bufferram */ + onenand_update_bufferram(mtd, to, !ret && !subpage); + if (ret) { + printk(KERN_ERR "%s: write failed %d\n", + __func__, ret); + break; + } + + /* Only check verify write turn on */ + ret = onenand_verify(mtd, buf, to, thislen); + if (ret) { + printk(KERN_ERR "%s: verify failed %d\n", + __func__, ret); + break; + } + + written += thislen; + + if (written == len) + break; + + } else + written += thislen; + + column = 0; + prev_subpage = subpage; + prev = to; + prevlen = thislen; + to += thislen; + buf += thislen; + first = 0; + } + + /* In error case, clear all bufferrams */ + if (written != len) + onenand_invalidate_bufferram(mtd, 0, -1); + + ops->retlen = written; + ops->oobretlen = oobwritten; + + return ret; +} + + +/** + * onenand_write_oob_nolock - [INTERN] OneNAND write out-of-band + * @param mtd MTD device structure + * @param to offset to write to + * @param len number of bytes to write + * @param retlen pointer to variable to store the number of written bytes + * @param buf the data to write + * @param mode operation mode + * + * OneNAND write out-of-band + */ +static int onenand_write_oob_nolock(struct mtd_info *mtd, loff_t to, + struct mtd_oob_ops *ops) +{ + struct onenand_chip *this = mtd->priv; + int column, ret = 0, oobsize; + int written = 0, oobcmd; + u_char *oobbuf; + size_t len = ops->ooblen; + const u_char *buf = ops->oobbuf; + unsigned int mode = ops->mode; + + to += ops->ooboffs; + + pr_debug("%s: to = 0x%08x, len = %i\n", __func__, (unsigned int)to, + (int)len); + + /* Initialize retlen, in case of early exit */ + ops->oobretlen = 0; + + if (mode == MTD_OPS_AUTO_OOB) + oobsize = mtd->oobavail; + else + oobsize = mtd->oobsize; + + column = to & (mtd->oobsize - 1); + + if (unlikely(column >= oobsize)) { + printk(KERN_ERR "%s: Attempted to start write outside oob\n", + __func__); + return -EINVAL; + } + + /* For compatibility with NAND: Do not allow write past end of page */ + if (unlikely(column + len > oobsize)) { + printk(KERN_ERR "%s: Attempt to write past end of page\n", + __func__); + return -EINVAL; + } + + oobbuf = this->oob_buf; + + oobcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_PROG : ONENAND_CMD_PROGOOB; + + /* Loop until all data write */ + while (written < len) { + int thislen = min_t(int, oobsize, len - written); + + cond_resched(); + + this->command(mtd, ONENAND_CMD_BUFFERRAM, to, mtd->oobsize); + + /* We send data to spare ram with oobsize + * to prevent byte access */ + memset(oobbuf, 0xff, mtd->oobsize); + if (mode == MTD_OPS_AUTO_OOB) + onenand_fill_auto_oob(mtd, oobbuf, buf, column, thislen); + else + memcpy(oobbuf + column, buf, thislen); + this->write_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize); + + if (ONENAND_IS_4KB_PAGE(this)) { + /* Set main area of DataRAM to 0xff*/ + memset(this->page_buf, 0xff, mtd->writesize); + this->write_bufferram(mtd, ONENAND_DATARAM, + this->page_buf, 0, mtd->writesize); + } + + this->command(mtd, oobcmd, to, mtd->oobsize); + + onenand_update_bufferram(mtd, to, 0); + if (ONENAND_IS_2PLANE(this)) { + ONENAND_SET_BUFFERRAM1(this); + onenand_update_bufferram(mtd, to + this->writesize, 0); + } + + ret = this->wait(mtd, FL_WRITING); + if (ret) { + printk(KERN_ERR "%s: write failed %d\n", __func__, ret); + break; + } + + ret = onenand_verify_oob(mtd, oobbuf, to); + if (ret) { + printk(KERN_ERR "%s: verify failed %d\n", + __func__, ret); + break; + } + + written += thislen; + if (written == len) + break; + + to += mtd->writesize; + buf += thislen; + column = 0; + } + + ops->oobretlen = written; + + return ret; +} + +/** + * onenand_write_oob - [MTD Interface] NAND write data and/or out-of-band + * @param mtd: MTD device structure + * @param to: offset to write + * @param ops: oob operation description structure + */ +static int onenand_write_oob(struct mtd_info *mtd, loff_t to, + struct mtd_oob_ops *ops) +{ + int ret; + + switch (ops->mode) { + case MTD_OPS_PLACE_OOB: + case MTD_OPS_AUTO_OOB: + break; + case MTD_OPS_RAW: + /* Not implemented yet */ + default: + return -EINVAL; + } + + onenand_get_device(mtd, FL_WRITING); + if (ops->datbuf) + ret = onenand_write_ops_nolock(mtd, to, ops); + else + ret = onenand_write_oob_nolock(mtd, to, ops); + onenand_release_device(mtd); + + return ret; +} + +/** + * onenand_block_isbad_nolock - [GENERIC] Check if a block is marked bad + * @param mtd MTD device structure + * @param ofs offset from device start + * @param allowbbt 1, if its allowed to access the bbt area + * + * Check, if the block is bad. Either by reading the bad block table or + * calling of the scan function. + */ +static int onenand_block_isbad_nolock(struct mtd_info *mtd, loff_t ofs, int allowbbt) +{ + struct onenand_chip *this = mtd->priv; + struct bbm_info *bbm = this->bbm; + + /* Return info from the table */ + return bbm->isbad_bbt(mtd, ofs, allowbbt); +} + + +static int onenand_multiblock_erase_verify(struct mtd_info *mtd, + struct erase_info *instr) +{ + struct onenand_chip *this = mtd->priv; + loff_t addr = instr->addr; + int len = instr->len; + unsigned int block_size = (1 << this->erase_shift); + int ret = 0; + + while (len) { + this->command(mtd, ONENAND_CMD_ERASE_VERIFY, addr, block_size); + ret = this->wait(mtd, FL_VERIFYING_ERASE); + if (ret) { + printk(KERN_ERR "%s: Failed verify, block %d\n", + __func__, onenand_block(this, addr)); + instr->state = MTD_ERASE_FAILED; + instr->fail_addr = addr; + return -1; + } + len -= block_size; + addr += block_size; + } + return 0; +} + +/** + * onenand_multiblock_erase - [INTERN] erase block(s) using multiblock erase + * @param mtd MTD device structure + * @param instr erase instruction + * @param region erase region + * + * Erase one or more blocks up to 64 block at a time + */ +static int onenand_multiblock_erase(struct mtd_info *mtd, + struct erase_info *instr, + unsigned int block_size) +{ + struct onenand_chip *this = mtd->priv; + loff_t addr = instr->addr; + int len = instr->len; + int eb_count = 0; + int ret = 0; + int bdry_block = 0; + + instr->state = MTD_ERASING; + + if (ONENAND_IS_DDP(this)) { + loff_t bdry_addr = this->chipsize >> 1; + if (addr < bdry_addr && (addr + len) > bdry_addr) + bdry_block = bdry_addr >> this->erase_shift; + } + + /* Pre-check bbs */ + while (len) { + /* Check if we have a bad block, we do not erase bad blocks */ + if (onenand_block_isbad_nolock(mtd, addr, 0)) { + printk(KERN_WARNING "%s: attempt to erase a bad block " + "at addr 0x%012llx\n", + __func__, (unsigned long long) addr); + instr->state = MTD_ERASE_FAILED; + return -EIO; + } + len -= block_size; + addr += block_size; + } + + len = instr->len; + addr = instr->addr; + + /* loop over 64 eb batches */ + while (len) { + struct erase_info verify_instr = *instr; + int max_eb_count = MB_ERASE_MAX_BLK_COUNT; + + verify_instr.addr = addr; + verify_instr.len = 0; + + /* do not cross chip boundary */ + if (bdry_block) { + int this_block = (addr >> this->erase_shift); + + if (this_block < bdry_block) { + max_eb_count = min(max_eb_count, + (bdry_block - this_block)); + } + } + + eb_count = 0; + + while (len > block_size && eb_count < (max_eb_count - 1)) { + this->command(mtd, ONENAND_CMD_MULTIBLOCK_ERASE, + addr, block_size); + onenand_invalidate_bufferram(mtd, addr, block_size); + + ret = this->wait(mtd, FL_PREPARING_ERASE); + if (ret) { + printk(KERN_ERR "%s: Failed multiblock erase, " + "block %d\n", __func__, + onenand_block(this, addr)); + instr->state = MTD_ERASE_FAILED; + instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN; + return -EIO; + } + + len -= block_size; + addr += block_size; + eb_count++; + } + + /* last block of 64-eb series */ + cond_resched(); + this->command(mtd, ONENAND_CMD_ERASE, addr, block_size); + onenand_invalidate_bufferram(mtd, addr, block_size); + + ret = this->wait(mtd, FL_ERASING); + /* Check if it is write protected */ + if (ret) { + printk(KERN_ERR "%s: Failed erase, block %d\n", + __func__, onenand_block(this, addr)); + instr->state = MTD_ERASE_FAILED; + instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN; + return -EIO; + } + + len -= block_size; + addr += block_size; + eb_count++; + + /* verify */ + verify_instr.len = eb_count * block_size; + if (onenand_multiblock_erase_verify(mtd, &verify_instr)) { + instr->state = verify_instr.state; + instr->fail_addr = verify_instr.fail_addr; + return -EIO; + } + + } + return 0; +} + + +/** + * onenand_block_by_block_erase - [INTERN] erase block(s) using regular erase + * @param mtd MTD device structure + * @param instr erase instruction + * @param region erase region + * @param block_size erase block size + * + * Erase one or more blocks one block at a time + */ +static int onenand_block_by_block_erase(struct mtd_info *mtd, + struct erase_info *instr, + struct mtd_erase_region_info *region, + unsigned int block_size) +{ + struct onenand_chip *this = mtd->priv; + loff_t addr = instr->addr; + int len = instr->len; + loff_t region_end = 0; + int ret = 0; + + if (region) { + /* region is set for Flex-OneNAND */ + region_end = region->offset + region->erasesize * region->numblocks; + } + + instr->state = MTD_ERASING; + + /* Loop through the blocks */ + while (len) { + cond_resched(); + + /* Check if we have a bad block, we do not erase bad blocks */ + if (onenand_block_isbad_nolock(mtd, addr, 0)) { + printk(KERN_WARNING "%s: attempt to erase a bad block " + "at addr 0x%012llx\n", + __func__, (unsigned long long) addr); + instr->state = MTD_ERASE_FAILED; + return -EIO; + } + + this->command(mtd, ONENAND_CMD_ERASE, addr, block_size); + + onenand_invalidate_bufferram(mtd, addr, block_size); + + ret = this->wait(mtd, FL_ERASING); + /* Check, if it is write protected */ + if (ret) { + printk(KERN_ERR "%s: Failed erase, block %d\n", + __func__, onenand_block(this, addr)); + instr->state = MTD_ERASE_FAILED; + instr->fail_addr = addr; + return -EIO; + } + + len -= block_size; + addr += block_size; + + if (region && addr == region_end) { + if (!len) + break; + region++; + + block_size = region->erasesize; + region_end = region->offset + region->erasesize * region->numblocks; + + if (len & (block_size - 1)) { + /* FIXME: This should be handled at MTD partitioning level. */ + printk(KERN_ERR "%s: Unaligned address\n", + __func__); + return -EIO; + } + } + } + return 0; +} + +/** + * onenand_erase - [MTD Interface] erase block(s) + * @param mtd MTD device structure + * @param instr erase instruction + * + * Erase one or more blocks + */ +static int onenand_erase(struct mtd_info *mtd, struct erase_info *instr) +{ + struct onenand_chip *this = mtd->priv; + unsigned int block_size; + loff_t addr = instr->addr; + loff_t len = instr->len; + int ret = 0; + struct mtd_erase_region_info *region = NULL; + loff_t region_offset = 0; + + pr_debug("%s: start=0x%012llx, len=%llu\n", __func__, + (unsigned long long)instr->addr, + (unsigned long long)instr->len); + + if (FLEXONENAND(this)) { + /* Find the eraseregion of this address */ + int i = flexonenand_region(mtd, addr); + + region = &mtd->eraseregions[i]; + block_size = region->erasesize; + + /* Start address within region must align on block boundary. + * Erase region's start offset is always block start address. + */ + region_offset = region->offset; + } else + block_size = 1 << this->erase_shift; + + /* Start address must align on block boundary */ + if (unlikely((addr - region_offset) & (block_size - 1))) { + printk(KERN_ERR "%s: Unaligned address\n", __func__); + return -EINVAL; + } + + /* Length must align on block boundary */ + if (unlikely(len & (block_size - 1))) { + printk(KERN_ERR "%s: Length not block aligned\n", __func__); + return -EINVAL; + } + + /* Grab the lock and see if the device is available */ + onenand_get_device(mtd, FL_ERASING); + + if (ONENAND_IS_4KB_PAGE(this) || region || + instr->len < MB_ERASE_MIN_BLK_COUNT * block_size) { + /* region is set for Flex-OneNAND (no mb erase) */ + ret = onenand_block_by_block_erase(mtd, instr, + region, block_size); + } else { + ret = onenand_multiblock_erase(mtd, instr, block_size); + } + + /* Deselect and wake up anyone waiting on the device */ + onenand_release_device(mtd); + + /* Do call back function */ + if (!ret) { + instr->state = MTD_ERASE_DONE; + mtd_erase_callback(instr); + } + + return ret; +} + +/** + * onenand_sync - [MTD Interface] sync + * @param mtd MTD device structure + * + * Sync is actually a wait for chip ready function + */ +static void onenand_sync(struct mtd_info *mtd) +{ + pr_debug("%s: called\n", __func__); + + /* Grab the lock and see if the device is available */ + onenand_get_device(mtd, FL_SYNCING); + + /* Release it and go back */ + onenand_release_device(mtd); +} + +/** + * onenand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad + * @param mtd MTD device structure + * @param ofs offset relative to mtd start + * + * Check whether the block is bad + */ +static int onenand_block_isbad(struct mtd_info *mtd, loff_t ofs) +{ + int ret; + + onenand_get_device(mtd, FL_READING); + ret = onenand_block_isbad_nolock(mtd, ofs, 0); + onenand_release_device(mtd); + return ret; +} + +/** + * onenand_default_block_markbad - [DEFAULT] mark a block bad + * @param mtd MTD device structure + * @param ofs offset from device start + * + * This is the default implementation, which can be overridden by + * a hardware specific driver. + */ +static int onenand_default_block_markbad(struct mtd_info *mtd, loff_t ofs) +{ + struct onenand_chip *this = mtd->priv; + struct bbm_info *bbm = this->bbm; + u_char buf[2] = {0, 0}; + struct mtd_oob_ops ops = { + .mode = MTD_OPS_PLACE_OOB, + .ooblen = 2, + .oobbuf = buf, + .ooboffs = 0, + }; + int block; + + /* Get block number */ + block = onenand_block(this, ofs); + if (bbm->bbt) + bbm->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1); + + /* We write two bytes, so we don't have to mess with 16-bit access */ + ofs += mtd->oobsize + (bbm->badblockpos & ~0x01); + /* FIXME : What to do when marking SLC block in partition + * with MLC erasesize? For now, it is not advisable to + * create partitions containing both SLC and MLC regions. + */ + return onenand_write_oob_nolock(mtd, ofs, &ops); +} + +/** + * onenand_block_markbad - [MTD Interface] Mark the block at the given offset as bad + * @param mtd MTD device structure + * @param ofs offset relative to mtd start + * + * Mark the block as bad + */ +static int onenand_block_markbad(struct mtd_info *mtd, loff_t ofs) +{ + struct onenand_chip *this = mtd->priv; + int ret; + + ret = onenand_block_isbad(mtd, ofs); + if (ret) { + /* If it was bad already, return success and do nothing */ + if (ret > 0) + return 0; + return ret; + } + + onenand_get_device(mtd, FL_WRITING); + ret = this->block_markbad(mtd, ofs); + onenand_release_device(mtd); + return ret; +} + +/** + * onenand_do_lock_cmd - [OneNAND Interface] Lock or unlock block(s) + * @param mtd MTD device structure + * @param ofs offset relative to mtd start + * @param len number of bytes to lock or unlock + * @param cmd lock or unlock command + * + * Lock or unlock one or more blocks + */ +static int onenand_do_lock_cmd(struct mtd_info *mtd, loff_t ofs, size_t len, int cmd) +{ + struct onenand_chip *this = mtd->priv; + int start, end, block, value, status; + int wp_status_mask; + + start = onenand_block(this, ofs); + end = onenand_block(this, ofs + len) - 1; + + if (cmd == ONENAND_CMD_LOCK) + wp_status_mask = ONENAND_WP_LS; + else + wp_status_mask = ONENAND_WP_US; + + /* Continuous lock scheme */ + if (this->options & ONENAND_HAS_CONT_LOCK) { + /* Set start block address */ + this->write_word(start, this->base + ONENAND_REG_START_BLOCK_ADDRESS); + /* Set end block address */ + this->write_word(end, this->base + ONENAND_REG_END_BLOCK_ADDRESS); + /* Write lock command */ + this->command(mtd, cmd, 0, 0); + + /* There's no return value */ + this->wait(mtd, FL_LOCKING); + + /* Sanity check */ + while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS) + & ONENAND_CTRL_ONGO) + continue; + + /* Check lock status */ + status = this->read_word(this->base + ONENAND_REG_WP_STATUS); + if (!(status & wp_status_mask)) + printk(KERN_ERR "%s: wp status = 0x%x\n", + __func__, status); + + return 0; + } + + /* Block lock scheme */ + for (block = start; block < end + 1; block++) { + /* Set block address */ + value = onenand_block_address(this, block); + this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1); + /* Select DataRAM for DDP */ + value = onenand_bufferram_address(this, block); + this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2); + /* Set start block address */ + this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS); + /* Write lock command */ + this->command(mtd, cmd, 0, 0); + + /* There's no return value */ + this->wait(mtd, FL_LOCKING); + + /* Sanity check */ + while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS) + & ONENAND_CTRL_ONGO) + continue; + + /* Check lock status */ + status = this->read_word(this->base + ONENAND_REG_WP_STATUS); + if (!(status & wp_status_mask)) + printk(KERN_ERR "%s: block = %d, wp status = 0x%x\n", + __func__, block, status); + } + + return 0; +} + +/** + * onenand_lock - [MTD Interface] Lock block(s) + * @param mtd MTD device structure + * @param ofs offset relative to mtd start + * @param len number of bytes to unlock + * + * Lock one or more blocks + */ +static int onenand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) +{ + int ret; + + onenand_get_device(mtd, FL_LOCKING); + ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_LOCK); + onenand_release_device(mtd); + return ret; +} + +/** + * onenand_unlock - [MTD Interface] Unlock block(s) + * @param mtd MTD device structure + * @param ofs offset relative to mtd start + * @param len number of bytes to unlock + * + * Unlock one or more blocks + */ +static int onenand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) +{ + int ret; + + onenand_get_device(mtd, FL_LOCKING); + ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK); + onenand_release_device(mtd); + return ret; +} + +/** + * onenand_check_lock_status - [OneNAND Interface] Check lock status + * @param this onenand chip data structure + * + * Check lock status + */ +static int onenand_check_lock_status(struct onenand_chip *this) +{ + unsigned int value, block, status; + unsigned int end; + + end = this->chipsize >> this->erase_shift; + for (block = 0; block < end; block++) { + /* Set block address */ + value = onenand_block_address(this, block); + this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1); + /* Select DataRAM for DDP */ + value = onenand_bufferram_address(this, block); + this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2); + /* Set start block address */ + this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS); + + /* Check lock status */ + status = this->read_word(this->base + ONENAND_REG_WP_STATUS); + if (!(status & ONENAND_WP_US)) { + printk(KERN_ERR "%s: block = %d, wp status = 0x%x\n", + __func__, block, status); + return 0; + } + } + + return 1; +} + +/** + * onenand_unlock_all - [OneNAND Interface] unlock all blocks + * @param mtd MTD device structure + * + * Unlock all blocks + */ +static void onenand_unlock_all(struct mtd_info *mtd) +{ + struct onenand_chip *this = mtd->priv; + loff_t ofs = 0; + loff_t len = mtd->size; + + if (this->options & ONENAND_HAS_UNLOCK_ALL) { + /* Set start block address */ + this->write_word(0, this->base + ONENAND_REG_START_BLOCK_ADDRESS); + /* Write unlock command */ + this->command(mtd, ONENAND_CMD_UNLOCK_ALL, 0, 0); + + /* There's no return value */ + this->wait(mtd, FL_LOCKING); + + /* Sanity check */ + while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS) + & ONENAND_CTRL_ONGO) + continue; + + /* Don't check lock status */ + if (this->options & ONENAND_SKIP_UNLOCK_CHECK) + return; + + /* Check lock status */ + if (onenand_check_lock_status(this)) + return; + + /* Workaround for all block unlock in DDP */ + if (ONENAND_IS_DDP(this) && !FLEXONENAND(this)) { + /* All blocks on another chip */ + ofs = this->chipsize >> 1; + len = this->chipsize >> 1; + } + } + + onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK); +} + +#ifdef CONFIG_MTD_ONENAND_OTP + +/** + * onenand_otp_command - Send OTP specific command to OneNAND device + * @param mtd MTD device structure + * @param cmd the command to be sent + * @param addr offset to read from or write to + * @param len number of bytes to read or write + */ +static int onenand_otp_command(struct mtd_info *mtd, int cmd, loff_t addr, + size_t len) +{ + struct onenand_chip *this = mtd->priv; + int value, block, page; + + /* Address translation */ + switch (cmd) { + case ONENAND_CMD_OTP_ACCESS: + block = (int) (addr >> this->erase_shift); + page = -1; + break; + + default: + block = (int) (addr >> this->erase_shift); + page = (int) (addr >> this->page_shift); + + if (ONENAND_IS_2PLANE(this)) { + /* Make the even block number */ + block &= ~1; + /* Is it the odd plane? */ + if (addr & this->writesize) + block++; + page >>= 1; + } + page &= this->page_mask; + break; + } + + if (block != -1) { + /* Write 'DFS, FBA' of Flash */ + value = onenand_block_address(this, block); + this->write_word(value, this->base + + ONENAND_REG_START_ADDRESS1); + } + + if (page != -1) { + /* Now we use page size operation */ + int sectors = 4, count = 4; + int dataram; + + switch (cmd) { + default: + if (ONENAND_IS_2PLANE(this) && cmd == ONENAND_CMD_PROG) + cmd = ONENAND_CMD_2X_PROG; + dataram = ONENAND_CURRENT_BUFFERRAM(this); + break; + } + + /* Write 'FPA, FSA' of Flash */ + value = onenand_page_address(page, sectors); + this->write_word(value, this->base + + ONENAND_REG_START_ADDRESS8); + + /* Write 'BSA, BSC' of DataRAM */ + value = onenand_buffer_address(dataram, sectors, count); + this->write_word(value, this->base + ONENAND_REG_START_BUFFER); + } + + /* Interrupt clear */ + this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT); + + /* Write command */ + this->write_word(cmd, this->base + ONENAND_REG_COMMAND); + + return 0; +} + +/** + * onenand_otp_write_oob_nolock - [INTERN] OneNAND write out-of-band, specific to OTP + * @param mtd MTD device structure + * @param to offset to write to + * @param len number of bytes to write + * @param retlen pointer to variable to store the number of written bytes + * @param buf the data to write + * + * OneNAND write out-of-band only for OTP + */ +static int onenand_otp_write_oob_nolock(struct mtd_info *mtd, loff_t to, + struct mtd_oob_ops *ops) +{ + struct onenand_chip *this = mtd->priv; + int column, ret = 0, oobsize; + int written = 0; + u_char *oobbuf; + size_t len = ops->ooblen; + const u_char *buf = ops->oobbuf; + int block, value, status; + + to += ops->ooboffs; + + /* Initialize retlen, in case of early exit */ + ops->oobretlen = 0; + + oobsize = mtd->oobsize; + + column = to & (mtd->oobsize - 1); + + oobbuf = this->oob_buf; + + /* Loop until all data write */ + while (written < len) { + int thislen = min_t(int, oobsize, len - written); + + cond_resched(); + + block = (int) (to >> this->erase_shift); + /* + * Write 'DFS, FBA' of Flash + * Add: F100h DQ=DFS, FBA + */ + + value = onenand_block_address(this, block); + this->write_word(value, this->base + + ONENAND_REG_START_ADDRESS1); + + /* + * Select DataRAM for DDP + * Add: F101h DQ=DBS + */ + + value = onenand_bufferram_address(this, block); + this->write_word(value, this->base + + ONENAND_REG_START_ADDRESS2); + ONENAND_SET_NEXT_BUFFERRAM(this); + + /* + * Enter OTP access mode + */ + this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0); + this->wait(mtd, FL_OTPING); + + /* We send data to spare ram with oobsize + * to prevent byte access */ + memcpy(oobbuf + column, buf, thislen); + + /* + * Write Data into DataRAM + * Add: 8th Word + * in sector0/spare/page0 + * DQ=XXFCh + */ + this->write_bufferram(mtd, ONENAND_SPARERAM, + oobbuf, 0, mtd->oobsize); + + onenand_otp_command(mtd, ONENAND_CMD_PROGOOB, to, mtd->oobsize); + onenand_update_bufferram(mtd, to, 0); + if (ONENAND_IS_2PLANE(this)) { + ONENAND_SET_BUFFERRAM1(this); + onenand_update_bufferram(mtd, to + this->writesize, 0); + } + + ret = this->wait(mtd, FL_WRITING); + if (ret) { + printk(KERN_ERR "%s: write failed %d\n", __func__, ret); + break; + } + + /* Exit OTP access mode */ + this->command(mtd, ONENAND_CMD_RESET, 0, 0); + this->wait(mtd, FL_RESETING); + + status = this->read_word(this->base + ONENAND_REG_CTRL_STATUS); + status &= 0x60; + + if (status == 0x60) { + printk(KERN_DEBUG "\nBLOCK\tSTATUS\n"); + printk(KERN_DEBUG "1st Block\tLOCKED\n"); + printk(KERN_DEBUG "OTP Block\tLOCKED\n"); + } else if (status == 0x20) { + printk(KERN_DEBUG "\nBLOCK\tSTATUS\n"); + printk(KERN_DEBUG "1st Block\tLOCKED\n"); + printk(KERN_DEBUG "OTP Block\tUN-LOCKED\n"); + } else if (status == 0x40) { + printk(KERN_DEBUG "\nBLOCK\tSTATUS\n"); + printk(KERN_DEBUG "1st Block\tUN-LOCKED\n"); + printk(KERN_DEBUG "OTP Block\tLOCKED\n"); + } else { + printk(KERN_DEBUG "Reboot to check\n"); + } + + written += thislen; + if (written == len) + break; + + to += mtd->writesize; + buf += thislen; + column = 0; + } + + ops->oobretlen = written; + + return ret; +} + +/* Internal OTP operation */ +typedef int (*otp_op_t)(struct mtd_info *mtd, loff_t form, size_t len, + size_t *retlen, u_char *buf); + +/** + * do_otp_read - [DEFAULT] Read OTP block area + * @param mtd MTD device structure + * @param from The offset to read + * @param len number of bytes to read + * @param retlen pointer to variable to store the number of readbytes + * @param buf the databuffer to put/get data + * + * Read OTP block area. + */ +static int do_otp_read(struct mtd_info *mtd, loff_t from, size_t len, + size_t *retlen, u_char *buf) +{ + struct onenand_chip *this = mtd->priv; + struct mtd_oob_ops ops = { + .len = len, + .ooblen = 0, + .datbuf = buf, + .oobbuf = NULL, + }; + int ret; + + /* Enter OTP access mode */ + this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0); + this->wait(mtd, FL_OTPING); + + ret = ONENAND_IS_4KB_PAGE(this) ? + onenand_mlc_read_ops_nolock(mtd, from, &ops) : + onenand_read_ops_nolock(mtd, from, &ops); + + /* Exit OTP access mode */ + this->command(mtd, ONENAND_CMD_RESET, 0, 0); + this->wait(mtd, FL_RESETING); + + return ret; +} + +/** + * do_otp_write - [DEFAULT] Write OTP block area + * @param mtd MTD device structure + * @param to The offset to write + * @param len number of bytes to write + * @param retlen pointer to variable to store the number of write bytes + * @param buf the databuffer to put/get data + * + * Write OTP block area. + */ +static int do_otp_write(struct mtd_info *mtd, loff_t to, size_t len, + size_t *retlen, u_char *buf) +{ + struct onenand_chip *this = mtd->priv; + unsigned char *pbuf = buf; + int ret; + struct mtd_oob_ops ops; + + /* Force buffer page aligned */ + if (len < mtd->writesize) { + memcpy(this->page_buf, buf, len); + memset(this->page_buf + len, 0xff, mtd->writesize - len); + pbuf = this->page_buf; + len = mtd->writesize; + } + + /* Enter OTP access mode */ + this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0); + this->wait(mtd, FL_OTPING); + + ops.len = len; + ops.ooblen = 0; + ops.datbuf = pbuf; + ops.oobbuf = NULL; + ret = onenand_write_ops_nolock(mtd, to, &ops); + *retlen = ops.retlen; + + /* Exit OTP access mode */ + this->command(mtd, ONENAND_CMD_RESET, 0, 0); + this->wait(mtd, FL_RESETING); + + return ret; +} + +/** + * do_otp_lock - [DEFAULT] Lock OTP block area + * @param mtd MTD device structure + * @param from The offset to lock + * @param len number of bytes to lock + * @param retlen pointer to variable to store the number of lock bytes + * @param buf the databuffer to put/get data + * + * Lock OTP block area. + */ +static int do_otp_lock(struct mtd_info *mtd, loff_t from, size_t len, + size_t *retlen, u_char *buf) +{ + struct onenand_chip *this = mtd->priv; + struct mtd_oob_ops ops; + int ret; + + if (FLEXONENAND(this)) { + + /* Enter OTP access mode */ + this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0); + this->wait(mtd, FL_OTPING); + /* + * For Flex-OneNAND, we write lock mark to 1st word of sector 4 of + * main area of page 49. + */ + ops.len = mtd->writesize; + ops.ooblen = 0; + ops.datbuf = buf; + ops.oobbuf = NULL; + ret = onenand_write_ops_nolock(mtd, mtd->writesize * 49, &ops); + *retlen = ops.retlen; + + /* Exit OTP access mode */ + this->command(mtd, ONENAND_CMD_RESET, 0, 0); + this->wait(mtd, FL_RESETING); + } else { + ops.mode = MTD_OPS_PLACE_OOB; + ops.ooblen = len; + ops.oobbuf = buf; + ops.ooboffs = 0; + ret = onenand_otp_write_oob_nolock(mtd, from, &ops); + *retlen = ops.oobretlen; + } + + return ret; +} + +/** + * onenand_otp_walk - [DEFAULT] Handle OTP operation + * @param mtd MTD device structure + * @param from The offset to read/write + * @param len number of bytes to read/write + * @param retlen pointer to variable to store the number of read bytes + * @param buf the databuffer to put/get data + * @param action do given action + * @param mode specify user and factory + * + * Handle OTP operation. + */ +static int onenand_otp_walk(struct mtd_info *mtd, loff_t from, size_t len, + size_t *retlen, u_char *buf, + otp_op_t action, int mode) +{ + struct onenand_chip *this = mtd->priv; + int otp_pages; + int density; + int ret = 0; + + *retlen = 0; + + density = onenand_get_density(this->device_id); + if (density < ONENAND_DEVICE_DENSITY_512Mb) + otp_pages = 20; + else + otp_pages = 50; + + if (mode == MTD_OTP_FACTORY) { + from += mtd->writesize * otp_pages; + otp_pages = ONENAND_PAGES_PER_BLOCK - otp_pages; + } + + /* Check User/Factory boundary */ + if (mode == MTD_OTP_USER) { + if (mtd->writesize * otp_pages < from + len) + return 0; + } else { + if (mtd->writesize * otp_pages < len) + return 0; + } + + onenand_get_device(mtd, FL_OTPING); + while (len > 0 && otp_pages > 0) { + if (!action) { /* OTP Info functions */ + struct otp_info *otpinfo; + + len -= sizeof(struct otp_info); + if (len <= 0) { + ret = -ENOSPC; + break; + } + + otpinfo = (struct otp_info *) buf; + otpinfo->start = from; + otpinfo->length = mtd->writesize; + otpinfo->locked = 0; + + from += mtd->writesize; + buf += sizeof(struct otp_info); + *retlen += sizeof(struct otp_info); + } else { + size_t tmp_retlen; + + ret = action(mtd, from, len, &tmp_retlen, buf); + if (ret) + break; + + buf += tmp_retlen; + len -= tmp_retlen; + *retlen += tmp_retlen; + + } + otp_pages--; + } + onenand_release_device(mtd); + + return ret; +} + +/** + * onenand_get_fact_prot_info - [MTD Interface] Read factory OTP info + * @param mtd MTD device structure + * @param len number of bytes to read + * @param retlen pointer to variable to store the number of read bytes + * @param buf the databuffer to put/get data + * + * Read factory OTP info. + */ +static int onenand_get_fact_prot_info(struct mtd_info *mtd, size_t len, + size_t *retlen, struct otp_info *buf) +{ + return onenand_otp_walk(mtd, 0, len, retlen, (u_char *) buf, NULL, + MTD_OTP_FACTORY); +} + +/** + * onenand_read_fact_prot_reg - [MTD Interface] Read factory OTP area + * @param mtd MTD device structure + * @param from The offset to read + * @param len number of bytes to read + * @param retlen pointer to variable to store the number of read bytes + * @param buf the databuffer to put/get data + * + * Read factory OTP area. + */ +static int onenand_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, + size_t len, size_t *retlen, u_char *buf) +{ + return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_FACTORY); +} + +/** + * onenand_get_user_prot_info - [MTD Interface] Read user OTP info + * @param mtd MTD device structure + * @param retlen pointer to variable to store the number of read bytes + * @param len number of bytes to read + * @param buf the databuffer to put/get data + * + * Read user OTP info. + */ +static int onenand_get_user_prot_info(struct mtd_info *mtd, size_t len, + size_t *retlen, struct otp_info *buf) +{ + return onenand_otp_walk(mtd, 0, len, retlen, (u_char *) buf, NULL, + MTD_OTP_USER); +} + +/** + * onenand_read_user_prot_reg - [MTD Interface] Read user OTP area + * @param mtd MTD device structure + * @param from The offset to read + * @param len number of bytes to read + * @param retlen pointer to variable to store the number of read bytes + * @param buf the databuffer to put/get data + * + * Read user OTP area. + */ +static int onenand_read_user_prot_reg(struct mtd_info *mtd, loff_t from, + size_t len, size_t *retlen, u_char *buf) +{ + return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_USER); +} + +/** + * onenand_write_user_prot_reg - [MTD Interface] Write user OTP area + * @param mtd MTD device structure + * @param from The offset to write + * @param len number of bytes to write + * @param retlen pointer to variable to store the number of write bytes + * @param buf the databuffer to put/get data + * + * Write user OTP area. + */ +static int onenand_write_user_prot_reg(struct mtd_info *mtd, loff_t from, + size_t len, size_t *retlen, u_char *buf) +{ + return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_write, MTD_OTP_USER); +} + +/** + * onenand_lock_user_prot_reg - [MTD Interface] Lock user OTP area + * @param mtd MTD device structure + * @param from The offset to lock + * @param len number of bytes to unlock + * + * Write lock mark on spare area in page 0 in OTP block + */ +static int onenand_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, + size_t len) +{ + struct onenand_chip *this = mtd->priv; + u_char *buf = FLEXONENAND(this) ? this->page_buf : this->oob_buf; + size_t retlen; + int ret; + unsigned int otp_lock_offset = ONENAND_OTP_LOCK_OFFSET; + + memset(buf, 0xff, FLEXONENAND(this) ? this->writesize + : mtd->oobsize); + /* + * Write lock mark to 8th word of sector0 of page0 of the spare0. + * We write 16 bytes spare area instead of 2 bytes. + * For Flex-OneNAND, we write lock mark to 1st word of sector 4 of + * main area of page 49. + */ + + from = 0; + len = FLEXONENAND(this) ? mtd->writesize : 16; + + /* + * Note: OTP lock operation + * OTP block : 0xXXFC XX 1111 1100 + * 1st block : 0xXXF3 (If chip support) XX 1111 0011 + * Both : 0xXXF0 (If chip support) XX 1111 0000 + */ + if (FLEXONENAND(this)) + otp_lock_offset = FLEXONENAND_OTP_LOCK_OFFSET; + + /* ONENAND_OTP_AREA | ONENAND_OTP_BLOCK0 | ONENAND_OTP_AREA_BLOCK0 */ + if (otp == 1) + buf[otp_lock_offset] = 0xFC; + else if (otp == 2) + buf[otp_lock_offset] = 0xF3; + else if (otp == 3) + buf[otp_lock_offset] = 0xF0; + else if (otp != 0) + printk(KERN_DEBUG "[OneNAND] Invalid option selected for OTP\n"); + + ret = onenand_otp_walk(mtd, from, len, &retlen, buf, do_otp_lock, MTD_OTP_USER); + + return ret ? : retlen; +} + +#endif /* CONFIG_MTD_ONENAND_OTP */ + +/** + * onenand_check_features - Check and set OneNAND features + * @param mtd MTD data structure + * + * Check and set OneNAND features + * - lock scheme + * - two plane + */ +static void onenand_check_features(struct mtd_info *mtd) +{ + struct onenand_chip *this = mtd->priv; + unsigned int density, process, numbufs; + + /* Lock scheme depends on density and process */ + density = onenand_get_density(this->device_id); + process = this->version_id >> ONENAND_VERSION_PROCESS_SHIFT; + numbufs = this->read_word(this->base + ONENAND_REG_NUM_BUFFERS) >> 8; + + /* Lock scheme */ + switch (density) { + case ONENAND_DEVICE_DENSITY_4Gb: + if (ONENAND_IS_DDP(this)) + this->options |= ONENAND_HAS_2PLANE; + else if (numbufs == 1) { + this->options |= ONENAND_HAS_4KB_PAGE; + this->options |= ONENAND_HAS_CACHE_PROGRAM; + /* + * There are two different 4KiB pagesize chips + * and no way to detect it by H/W config values. + * + * To detect the correct NOP for each chips, + * It should check the version ID as workaround. + * + * Now it has as following + * KFM4G16Q4M has NOP 4 with version ID 0x0131 + * KFM4G16Q5M has NOP 1 with versoin ID 0x013e + */ + if ((this->version_id & 0xf) == 0xe) + this->options |= ONENAND_HAS_NOP_1; + } + + case ONENAND_DEVICE_DENSITY_2Gb: + /* 2Gb DDP does not have 2 plane */ + if (!ONENAND_IS_DDP(this)) + this->options |= ONENAND_HAS_2PLANE; + this->options |= ONENAND_HAS_UNLOCK_ALL; + + case ONENAND_DEVICE_DENSITY_1Gb: + /* A-Die has all block unlock */ + if (process) + this->options |= ONENAND_HAS_UNLOCK_ALL; + break; + + default: + /* Some OneNAND has continuous lock scheme */ + if (!process) + this->options |= ONENAND_HAS_CONT_LOCK; + break; + } + + /* The MLC has 4KiB pagesize. */ + if (ONENAND_IS_MLC(this)) + this->options |= ONENAND_HAS_4KB_PAGE; + + if (ONENAND_IS_4KB_PAGE(this)) + this->options &= ~ONENAND_HAS_2PLANE; + + if (FLEXONENAND(this)) { + this->options &= ~ONENAND_HAS_CONT_LOCK; + this->options |= ONENAND_HAS_UNLOCK_ALL; + } + + if (this->options & ONENAND_HAS_CONT_LOCK) + printk(KERN_DEBUG "Lock scheme is Continuous Lock\n"); + if (this->options & ONENAND_HAS_UNLOCK_ALL) + printk(KERN_DEBUG "Chip support all block unlock\n"); + if (this->options & ONENAND_HAS_2PLANE) + printk(KERN_DEBUG "Chip has 2 plane\n"); + if (this->options & ONENAND_HAS_4KB_PAGE) + printk(KERN_DEBUG "Chip has 4KiB pagesize\n"); + if (this->options & ONENAND_HAS_CACHE_PROGRAM) + printk(KERN_DEBUG "Chip has cache program feature\n"); +} + +/** + * onenand_print_device_info - Print device & version ID + * @param device device ID + * @param version version ID + * + * Print device & version ID + */ +static void onenand_print_device_info(int device, int version) +{ + int vcc, demuxed, ddp, density, flexonenand; + + vcc = device & ONENAND_DEVICE_VCC_MASK; + demuxed = device & ONENAND_DEVICE_IS_DEMUX; + ddp = device & ONENAND_DEVICE_IS_DDP; + density = onenand_get_density(device); + flexonenand = device & DEVICE_IS_FLEXONENAND; + printk(KERN_INFO "%s%sOneNAND%s %dMB %sV 16-bit (0x%02x)\n", + demuxed ? "" : "Muxed ", + flexonenand ? "Flex-" : "", + ddp ? "(DDP)" : "", + (16 << density), + vcc ? "2.65/3.3" : "1.8", + device); + printk(KERN_INFO "OneNAND version = 0x%04x\n", version); +} + +static const struct onenand_manufacturers onenand_manuf_ids[] = { + {ONENAND_MFR_SAMSUNG, "Samsung"}, + {ONENAND_MFR_NUMONYX, "Numonyx"}, +}; + +/** + * onenand_check_maf - Check manufacturer ID + * @param manuf manufacturer ID + * + * Check manufacturer ID + */ +static int onenand_check_maf(int manuf) +{ + int size = ARRAY_SIZE(onenand_manuf_ids); + char *name; + int i; + + for (i = 0; i < size; i++) + if (manuf == onenand_manuf_ids[i].id) + break; + + if (i < size) + name = onenand_manuf_ids[i].name; + else + name = "Unknown"; + + printk(KERN_DEBUG "OneNAND Manufacturer: %s (0x%0x)\n", name, manuf); + + return (i == size); +} + +/** +* flexonenand_get_boundary - Reads the SLC boundary +* @param onenand_info - onenand info structure +**/ +static int flexonenand_get_boundary(struct mtd_info *mtd) +{ + struct onenand_chip *this = mtd->priv; + unsigned die, bdry; + int syscfg, locked; + + /* Disable ECC */ + syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1); + this->write_word((syscfg | 0x0100), this->base + ONENAND_REG_SYS_CFG1); + + for (die = 0; die < this->dies; die++) { + this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0); + this->wait(mtd, FL_SYNCING); + + this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0); + this->wait(mtd, FL_READING); + + bdry = this->read_word(this->base + ONENAND_DATARAM); + if ((bdry >> FLEXONENAND_PI_UNLOCK_SHIFT) == 3) + locked = 0; + else + locked = 1; + this->boundary[die] = bdry & FLEXONENAND_PI_MASK; + + this->command(mtd, ONENAND_CMD_RESET, 0, 0); + this->wait(mtd, FL_RESETING); + + printk(KERN_INFO "Die %d boundary: %d%s\n", die, + this->boundary[die], locked ? "(Locked)" : "(Unlocked)"); + } + + /* Enable ECC */ + this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1); + return 0; +} + +/** + * flexonenand_get_size - Fill up fields in onenand_chip and mtd_info + * boundary[], diesize[], mtd->size, mtd->erasesize + * @param mtd - MTD device structure + */ +static void flexonenand_get_size(struct mtd_info *mtd) +{ + struct onenand_chip *this = mtd->priv; + int die, i, eraseshift, density; + int blksperdie, maxbdry; + loff_t ofs; + + density = onenand_get_density(this->device_id); + blksperdie = ((loff_t)(16 << density) << 20) >> (this->erase_shift); + blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0; + maxbdry = blksperdie - 1; + eraseshift = this->erase_shift - 1; + + mtd->numeraseregions = this->dies << 1; + + /* This fills up the device boundary */ + flexonenand_get_boundary(mtd); + die = ofs = 0; + i = -1; + for (; die < this->dies; die++) { + if (!die || this->boundary[die-1] != maxbdry) { + i++; + mtd->eraseregions[i].offset = ofs; + mtd->eraseregions[i].erasesize = 1 << eraseshift; + mtd->eraseregions[i].numblocks = + this->boundary[die] + 1; + ofs += mtd->eraseregions[i].numblocks << eraseshift; + eraseshift++; + } else { + mtd->numeraseregions -= 1; + mtd->eraseregions[i].numblocks += + this->boundary[die] + 1; + ofs += (this->boundary[die] + 1) << (eraseshift - 1); + } + if (this->boundary[die] != maxbdry) { + i++; + mtd->eraseregions[i].offset = ofs; + mtd->eraseregions[i].erasesize = 1 << eraseshift; + mtd->eraseregions[i].numblocks = maxbdry ^ + this->boundary[die]; + ofs += mtd->eraseregions[i].numblocks << eraseshift; + eraseshift--; + } else + mtd->numeraseregions -= 1; + } + + /* Expose MLC erase size except when all blocks are SLC */ + mtd->erasesize = 1 << this->erase_shift; + if (mtd->numeraseregions == 1) + mtd->erasesize >>= 1; + + printk(KERN_INFO "Device has %d eraseregions\n", mtd->numeraseregions); + for (i = 0; i < mtd->numeraseregions; i++) + printk(KERN_INFO "[offset: 0x%08x, erasesize: 0x%05x," + " numblocks: %04u]\n", + (unsigned int) mtd->eraseregions[i].offset, + mtd->eraseregions[i].erasesize, + mtd->eraseregions[i].numblocks); + + for (die = 0, mtd->size = 0; die < this->dies; die++) { + this->diesize[die] = (loff_t)blksperdie << this->erase_shift; + this->diesize[die] -= (loff_t)(this->boundary[die] + 1) + << (this->erase_shift - 1); + mtd->size += this->diesize[die]; + } +} + +/** + * flexonenand_check_blocks_erased - Check if blocks are erased + * @param mtd_info - mtd info structure + * @param start - first erase block to check + * @param end - last erase block to check + * + * Converting an unerased block from MLC to SLC + * causes byte values to change. Since both data and its ECC + * have changed, reads on the block give uncorrectable error. + * This might lead to the block being detected as bad. + * + * Avoid this by ensuring that the block to be converted is + * erased. + */ +static int flexonenand_check_blocks_erased(struct mtd_info *mtd, int start, int end) +{ + struct onenand_chip *this = mtd->priv; + int i, ret; + int block; + struct mtd_oob_ops ops = { + .mode = MTD_OPS_PLACE_OOB, + .ooboffs = 0, + .ooblen = mtd->oobsize, + .datbuf = NULL, + .oobbuf = this->oob_buf, + }; + loff_t addr; + + printk(KERN_DEBUG "Check blocks from %d to %d\n", start, end); + + for (block = start; block <= end; block++) { + addr = flexonenand_addr(this, block); + if (onenand_block_isbad_nolock(mtd, addr, 0)) + continue; + + /* + * Since main area write results in ECC write to spare, + * it is sufficient to check only ECC bytes for change. + */ + ret = onenand_read_oob_nolock(mtd, addr, &ops); + if (ret) + return ret; + + for (i = 0; i < mtd->oobsize; i++) + if (this->oob_buf[i] != 0xff) + break; + + if (i != mtd->oobsize) { + printk(KERN_WARNING "%s: Block %d not erased.\n", + __func__, block); + return 1; + } + } + + return 0; +} + +/** + * flexonenand_set_boundary - Writes the SLC boundary + * @param mtd - mtd info structure + */ +static int flexonenand_set_boundary(struct mtd_info *mtd, int die, + int boundary, int lock) +{ + struct onenand_chip *this = mtd->priv; + int ret, density, blksperdie, old, new, thisboundary; + loff_t addr; + + /* Change only once for SDP Flex-OneNAND */ + if (die && (!ONENAND_IS_DDP(this))) + return 0; + + /* boundary value of -1 indicates no required change */ + if (boundary < 0 || boundary == this->boundary[die]) + return 0; + + density = onenand_get_density(this->device_id); + blksperdie = ((16 << density) << 20) >> this->erase_shift; + blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0; + + if (boundary >= blksperdie) { + printk(KERN_ERR "%s: Invalid boundary value. " + "Boundary not changed.\n", __func__); + return -EINVAL; + } + + /* Check if converting blocks are erased */ + old = this->boundary[die] + (die * this->density_mask); + new = boundary + (die * this->density_mask); + ret = flexonenand_check_blocks_erased(mtd, min(old, new) + 1, max(old, new)); + if (ret) { + printk(KERN_ERR "%s: Please erase blocks " + "before boundary change\n", __func__); + return ret; + } + + this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0); + this->wait(mtd, FL_SYNCING); + + /* Check is boundary is locked */ + this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0); + this->wait(mtd, FL_READING); + + thisboundary = this->read_word(this->base + ONENAND_DATARAM); + if ((thisboundary >> FLEXONENAND_PI_UNLOCK_SHIFT) != 3) { + printk(KERN_ERR "%s: boundary locked\n", __func__); + ret = 1; + goto out; + } + + printk(KERN_INFO "Changing die %d boundary: %d%s\n", + die, boundary, lock ? "(Locked)" : "(Unlocked)"); + + addr = die ? this->diesize[0] : 0; + + boundary &= FLEXONENAND_PI_MASK; + boundary |= lock ? 0 : (3 << FLEXONENAND_PI_UNLOCK_SHIFT); + + this->command(mtd, ONENAND_CMD_ERASE, addr, 0); + ret = this->wait(mtd, FL_ERASING); + if (ret) { + printk(KERN_ERR "%s: Failed PI erase for Die %d\n", + __func__, die); + goto out; + } + + this->write_word(boundary, this->base + ONENAND_DATARAM); + this->command(mtd, ONENAND_CMD_PROG, addr, 0); + ret = this->wait(mtd, FL_WRITING); + if (ret) { + printk(KERN_ERR "%s: Failed PI write for Die %d\n", + __func__, die); + goto out; + } + + this->command(mtd, FLEXONENAND_CMD_PI_UPDATE, die, 0); + ret = this->wait(mtd, FL_WRITING); +out: + this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_REG_COMMAND); + this->wait(mtd, FL_RESETING); + if (!ret) + /* Recalculate device size on boundary change*/ + flexonenand_get_size(mtd); + + return ret; +} + +/** + * onenand_chip_probe - [OneNAND Interface] The generic chip probe + * @param mtd MTD device structure + * + * OneNAND detection method: + * Compare the values from command with ones from register + */ +static int onenand_chip_probe(struct mtd_info *mtd) +{ + struct onenand_chip *this = mtd->priv; + int bram_maf_id, bram_dev_id, maf_id, dev_id; + int syscfg; + + /* Save system configuration 1 */ + syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1); + /* Clear Sync. Burst Read mode to read BootRAM */ + this->write_word((syscfg & ~ONENAND_SYS_CFG1_SYNC_READ & ~ONENAND_SYS_CFG1_SYNC_WRITE), this->base + ONENAND_REG_SYS_CFG1); + + /* Send the command for reading device ID from BootRAM */ + this->write_word(ONENAND_CMD_READID, this->base + ONENAND_BOOTRAM); + + /* Read manufacturer and device IDs from BootRAM */ + bram_maf_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x0); + bram_dev_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x2); + + /* Reset OneNAND to read default register values */ + this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_BOOTRAM); + /* Wait reset */ + this->wait(mtd, FL_RESETING); + + /* Restore system configuration 1 */ + this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1); + + /* Check manufacturer ID */ + if (onenand_check_maf(bram_maf_id)) + return -ENXIO; + + /* Read manufacturer and device IDs from Register */ + maf_id = this->read_word(this->base + ONENAND_REG_MANUFACTURER_ID); + dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID); + + /* Check OneNAND device */ + if (maf_id != bram_maf_id || dev_id != bram_dev_id) + return -ENXIO; + + return 0; +} + +/** + * onenand_probe - [OneNAND Interface] Probe the OneNAND device + * @param mtd MTD device structure + */ +static int onenand_probe(struct mtd_info *mtd) +{ + struct onenand_chip *this = mtd->priv; + int dev_id, ver_id; + int density; + int ret; + + ret = this->chip_probe(mtd); + if (ret) + return ret; + + /* Device and version IDs from Register */ + dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID); + ver_id = this->read_word(this->base + ONENAND_REG_VERSION_ID); + this->technology = this->read_word(this->base + ONENAND_REG_TECHNOLOGY); + + /* Flash device information */ + onenand_print_device_info(dev_id, ver_id); + this->device_id = dev_id; + this->version_id = ver_id; + + /* Check OneNAND features */ + onenand_check_features(mtd); + + density = onenand_get_density(dev_id); + if (FLEXONENAND(this)) { + this->dies = ONENAND_IS_DDP(this) ? 2 : 1; + /* Maximum possible erase regions */ + mtd->numeraseregions = this->dies << 1; + mtd->eraseregions = kzalloc(sizeof(struct mtd_erase_region_info) + * (this->dies << 1), GFP_KERNEL); + if (!mtd->eraseregions) + return -ENOMEM; + } + + /* + * For Flex-OneNAND, chipsize represents maximum possible device size. + * mtd->size represents the actual device size. + */ + this->chipsize = (16 << density) << 20; + + /* OneNAND page size & block size */ + /* The data buffer size is equal to page size */ + mtd->writesize = this->read_word(this->base + ONENAND_REG_DATA_BUFFER_SIZE); + /* We use the full BufferRAM */ + if (ONENAND_IS_4KB_PAGE(this)) + mtd->writesize <<= 1; + + mtd->oobsize = mtd->writesize >> 5; + /* Pages per a block are always 64 in OneNAND */ + mtd->erasesize = mtd->writesize << 6; + /* + * Flex-OneNAND SLC area has 64 pages per block. + * Flex-OneNAND MLC area has 128 pages per block. + * Expose MLC erase size to find erase_shift and page_mask. + */ + if (FLEXONENAND(this)) + mtd->erasesize <<= 1; + + this->erase_shift = ffs(mtd->erasesize) - 1; + this->page_shift = ffs(mtd->writesize) - 1; + this->page_mask = (1 << (this->erase_shift - this->page_shift)) - 1; + /* Set density mask. it is used for DDP */ + if (ONENAND_IS_DDP(this)) + this->density_mask = this->chipsize >> (this->erase_shift + 1); + /* It's real page size */ + this->writesize = mtd->writesize; + + /* REVISIT: Multichip handling */ + + if (FLEXONENAND(this)) + flexonenand_get_size(mtd); + else + mtd->size = this->chipsize; + + /* + * We emulate the 4KiB page and 256KiB erase block size + * But oobsize is still 64 bytes. + * It is only valid if you turn on 2X program support, + * Otherwise it will be ignored by compiler. + */ + if (ONENAND_IS_2PLANE(this)) { + mtd->writesize <<= 1; + mtd->erasesize <<= 1; + } + + return 0; +} + +/** + * onenand_suspend - [MTD Interface] Suspend the OneNAND flash + * @param mtd MTD device structure + */ +static int onenand_suspend(struct mtd_info *mtd) +{ + return onenand_get_device(mtd, FL_PM_SUSPENDED); +} + +/** + * onenand_resume - [MTD Interface] Resume the OneNAND flash + * @param mtd MTD device structure + */ +static void onenand_resume(struct mtd_info *mtd) +{ + struct onenand_chip *this = mtd->priv; + + if (this->state == FL_PM_SUSPENDED) + onenand_release_device(mtd); + else + printk(KERN_ERR "%s: resume() called for the chip which is not " + "in suspended state\n", __func__); +} + +/** + * onenand_scan - [OneNAND Interface] Scan for the OneNAND device + * @param mtd MTD device structure + * @param maxchips Number of chips to scan for + * + * This fills out all the not initialized function pointers + * with the defaults. + * The flash ID is read and the mtd/chip structures are + * filled with the appropriate values. + */ +int onenand_scan(struct mtd_info *mtd, int maxchips) +{ + int i, ret; + struct onenand_chip *this = mtd->priv; + + if (!this->read_word) + this->read_word = onenand_readw; + if (!this->write_word) + this->write_word = onenand_writew; + + if (!this->command) + this->command = onenand_command; + if (!this->wait) + onenand_setup_wait(mtd); + if (!this->bbt_wait) + this->bbt_wait = onenand_bbt_wait; + if (!this->unlock_all) + this->unlock_all = onenand_unlock_all; + + if (!this->chip_probe) + this->chip_probe = onenand_chip_probe; + + if (!this->read_bufferram) + this->read_bufferram = onenand_read_bufferram; + if (!this->write_bufferram) + this->write_bufferram = onenand_write_bufferram; + + if (!this->block_markbad) + this->block_markbad = onenand_default_block_markbad; + if (!this->scan_bbt) + this->scan_bbt = onenand_default_bbt; + + if (onenand_probe(mtd)) + return -ENXIO; + + /* Set Sync. Burst Read after probing */ + if (this->mmcontrol) { + printk(KERN_INFO "OneNAND Sync. Burst Read support\n"); + this->read_bufferram = onenand_sync_read_bufferram; + } + + /* Allocate buffers, if necessary */ + if (!this->page_buf) { + this->page_buf = kzalloc(mtd->writesize, GFP_KERNEL); + if (!this->page_buf) + return -ENOMEM; +#ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE + this->verify_buf = kzalloc(mtd->writesize, GFP_KERNEL); + if (!this->verify_buf) { + kfree(this->page_buf); + return -ENOMEM; + } +#endif + this->options |= ONENAND_PAGEBUF_ALLOC; + } + if (!this->oob_buf) { + this->oob_buf = kzalloc(mtd->oobsize, GFP_KERNEL); + if (!this->oob_buf) { + if (this->options & ONENAND_PAGEBUF_ALLOC) { + this->options &= ~ONENAND_PAGEBUF_ALLOC; + kfree(this->page_buf); + } + return -ENOMEM; + } + this->options |= ONENAND_OOBBUF_ALLOC; + } + + this->state = FL_READY; + init_waitqueue_head(&this->wq); + spin_lock_init(&this->chip_lock); + + /* + * Allow subpage writes up to oobsize. + */ + switch (mtd->oobsize) { + case 128: + if (FLEXONENAND(this)) { + mtd_set_ooblayout(mtd, &flexonenand_ooblayout_ops); + mtd->subpage_sft = 0; + } else { + mtd_set_ooblayout(mtd, &onenand_oob_128_ooblayout_ops); + mtd->subpage_sft = 2; + } + if (ONENAND_IS_NOP_1(this)) + mtd->subpage_sft = 0; + break; + case 64: + mtd_set_ooblayout(mtd, &onenand_oob_32_64_ooblayout_ops); + mtd->subpage_sft = 2; + break; + + case 32: + mtd_set_ooblayout(mtd, &onenand_oob_32_64_ooblayout_ops); + mtd->subpage_sft = 1; + break; + + default: + printk(KERN_WARNING "%s: No OOB scheme defined for oobsize %d\n", + __func__, mtd->oobsize); + mtd->subpage_sft = 0; + /* To prevent kernel oops */ + mtd_set_ooblayout(mtd, &onenand_oob_32_64_ooblayout_ops); + break; + } + + this->subpagesize = mtd->writesize >> mtd->subpage_sft; + + /* + * The number of bytes available for a client to place data into + * the out of band area + */ + ret = mtd_ooblayout_count_freebytes(mtd); + if (ret < 0) + ret = 0; + + mtd->oobavail = ret; + + mtd->ecc_strength = 1; + + /* Fill in remaining MTD driver data */ + mtd->type = ONENAND_IS_MLC(this) ? MTD_MLCNANDFLASH : MTD_NANDFLASH; + mtd->flags = MTD_CAP_NANDFLASH; + mtd->_erase = onenand_erase; + mtd->_point = NULL; + mtd->_unpoint = NULL; + mtd->_read_oob = onenand_read_oob; + mtd->_write_oob = onenand_write_oob; + mtd->_panic_write = onenand_panic_write; +#ifdef CONFIG_MTD_ONENAND_OTP + mtd->_get_fact_prot_info = onenand_get_fact_prot_info; + mtd->_read_fact_prot_reg = onenand_read_fact_prot_reg; + mtd->_get_user_prot_info = onenand_get_user_prot_info; + mtd->_read_user_prot_reg = onenand_read_user_prot_reg; + mtd->_write_user_prot_reg = onenand_write_user_prot_reg; + mtd->_lock_user_prot_reg = onenand_lock_user_prot_reg; +#endif + mtd->_sync = onenand_sync; + mtd->_lock = onenand_lock; + mtd->_unlock = onenand_unlock; + mtd->_suspend = onenand_suspend; + mtd->_resume = onenand_resume; + mtd->_block_isbad = onenand_block_isbad; + mtd->_block_markbad = onenand_block_markbad; + mtd->owner = THIS_MODULE; + mtd->writebufsize = mtd->writesize; + + /* Unlock whole block */ + if (!(this->options & ONENAND_SKIP_INITIAL_UNLOCKING)) + this->unlock_all(mtd); + + ret = this->scan_bbt(mtd); + if ((!FLEXONENAND(this)) || ret) + return ret; + + /* Change Flex-OneNAND boundaries if required */ + for (i = 0; i < MAX_DIES; i++) + flexonenand_set_boundary(mtd, i, flex_bdry[2 * i], + flex_bdry[(2 * i) + 1]); + + return 0; +} + +/** + * onenand_release - [OneNAND Interface] Free resources held by the OneNAND device + * @param mtd MTD device structure + */ +void onenand_release(struct mtd_info *mtd) +{ + struct onenand_chip *this = mtd->priv; + + /* Deregister partitions */ + mtd_device_unregister(mtd); + + /* Free bad block table memory, if allocated */ + if (this->bbm) { + struct bbm_info *bbm = this->bbm; + kfree(bbm->bbt); + kfree(this->bbm); + } + /* Buffers allocated by onenand_scan */ + if (this->options & ONENAND_PAGEBUF_ALLOC) { + kfree(this->page_buf); +#ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE + kfree(this->verify_buf); +#endif + } + if (this->options & ONENAND_OOBBUF_ALLOC) + kfree(this->oob_buf); + kfree(mtd->eraseregions); +} + +EXPORT_SYMBOL_GPL(onenand_scan); +EXPORT_SYMBOL_GPL(onenand_release); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Kyungmin Park "); +MODULE_DESCRIPTION("Generic OneNAND flash driver code"); diff --git a/drivers/mtd/nand/onenand/onenand_bbt.c b/drivers/mtd/nand/onenand/onenand_bbt.c new file mode 100644 index 000000000000..dde20487937d --- /dev/null +++ b/drivers/mtd/nand/onenand/onenand_bbt.c @@ -0,0 +1,248 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Bad Block Table support for the OneNAND driver + * + * Copyright(c) 2005 Samsung Electronics + * Kyungmin Park + * + * Derived from nand_bbt.c + * + * TODO: + * Split BBT core and chip specific BBT. + */ + +#include +#include +#include +#include + +/** + * check_short_pattern - [GENERIC] check if a pattern is in the buffer + * @param buf the buffer to search + * @param len the length of buffer to search + * @param paglen the pagelength + * @param td search pattern descriptor + * + * Check for a pattern at the given place. Used to search bad block + * tables and good / bad block identifiers. Same as check_pattern, but + * no optional empty check and the pattern is expected to start + * at offset 0. + * + */ +static int check_short_pattern(uint8_t *buf, int len, int paglen, struct nand_bbt_descr *td) +{ + int i; + uint8_t *p = buf; + + /* Compare the pattern */ + for (i = 0; i < td->len; i++) { + if (p[i] != td->pattern[i]) + return -1; + } + return 0; +} + +/** + * create_bbt - [GENERIC] Create a bad block table by scanning the device + * @param mtd MTD device structure + * @param buf temporary buffer + * @param bd descriptor for the good/bad block search pattern + * @param chip create the table for a specific chip, -1 read all chips. + * Applies only if NAND_BBT_PERCHIP option is set + * + * Create a bad block table by scanning the device + * for the given good/bad block identify pattern + */ +static int create_bbt(struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *bd, int chip) +{ + struct onenand_chip *this = mtd->priv; + struct bbm_info *bbm = this->bbm; + int i, j, numblocks, len, scanlen; + int startblock; + loff_t from; + size_t readlen, ooblen; + struct mtd_oob_ops ops; + int rgn; + + printk(KERN_INFO "Scanning device for bad blocks\n"); + + len = 2; + + /* We need only read few bytes from the OOB area */ + scanlen = ooblen = 0; + readlen = bd->len; + + /* chip == -1 case only */ + /* Note that numblocks is 2 * (real numblocks) here; + * see i += 2 below as it makses shifting and masking less painful + */ + numblocks = this->chipsize >> (bbm->bbt_erase_shift - 1); + startblock = 0; + from = 0; + + ops.mode = MTD_OPS_PLACE_OOB; + ops.ooblen = readlen; + ops.oobbuf = buf; + ops.len = ops.ooboffs = ops.retlen = ops.oobretlen = 0; + + for (i = startblock; i < numblocks; ) { + int ret; + + for (j = 0; j < len; j++) { + /* No need to read pages fully, + * just read required OOB bytes */ + ret = onenand_bbt_read_oob(mtd, + from + j * this->writesize + bd->offs, &ops); + + /* If it is a initial bad block, just ignore it */ + if (ret == ONENAND_BBT_READ_FATAL_ERROR) + return -EIO; + + if (ret || check_short_pattern(&buf[j * scanlen], + scanlen, this->writesize, bd)) { + bbm->bbt[i >> 3] |= 0x03 << (i & 0x6); + printk(KERN_INFO "OneNAND eraseblock %d is an " + "initial bad block\n", i >> 1); + mtd->ecc_stats.badblocks++; + break; + } + } + i += 2; + + if (FLEXONENAND(this)) { + rgn = flexonenand_region(mtd, from); + from += mtd->eraseregions[rgn].erasesize; + } else + from += (1 << bbm->bbt_erase_shift); + } + + return 0; +} + + +/** + * onenand_memory_bbt - [GENERIC] create a memory based bad block table + * @param mtd MTD device structure + * @param bd descriptor for the good/bad block search pattern + * + * The function creates a memory based bbt by scanning the device + * for manufacturer / software marked good / bad blocks + */ +static inline int onenand_memory_bbt (struct mtd_info *mtd, struct nand_bbt_descr *bd) +{ + struct onenand_chip *this = mtd->priv; + + return create_bbt(mtd, this->page_buf, bd, -1); +} + +/** + * onenand_isbad_bbt - [OneNAND Interface] Check if a block is bad + * @param mtd MTD device structure + * @param offs offset in the device + * @param allowbbt allow access to bad block table region + */ +static int onenand_isbad_bbt(struct mtd_info *mtd, loff_t offs, int allowbbt) +{ + struct onenand_chip *this = mtd->priv; + struct bbm_info *bbm = this->bbm; + int block; + uint8_t res; + + /* Get block number * 2 */ + block = (int) (onenand_block(this, offs) << 1); + res = (bbm->bbt[block >> 3] >> (block & 0x06)) & 0x03; + + pr_debug("onenand_isbad_bbt: bbt info for offs 0x%08x: (block %d) 0x%02x\n", + (unsigned int) offs, block >> 1, res); + + switch ((int) res) { + case 0x00: return 0; + case 0x01: return 1; + case 0x02: return allowbbt ? 0 : 1; + } + + return 1; +} + +/** + * onenand_scan_bbt - [OneNAND Interface] scan, find, read and maybe create bad block table(s) + * @param mtd MTD device structure + * @param bd descriptor for the good/bad block search pattern + * + * The function checks, if a bad block table(s) is/are already + * available. If not it scans the device for manufacturer + * marked good / bad blocks and writes the bad block table(s) to + * the selected place. + * + * The bad block table memory is allocated here. It is freed + * by the onenand_release function. + * + */ +static int onenand_scan_bbt(struct mtd_info *mtd, struct nand_bbt_descr *bd) +{ + struct onenand_chip *this = mtd->priv; + struct bbm_info *bbm = this->bbm; + int len, ret = 0; + + len = this->chipsize >> (this->erase_shift + 2); + /* Allocate memory (2bit per block) and clear the memory bad block table */ + bbm->bbt = kzalloc(len, GFP_KERNEL); + if (!bbm->bbt) + return -ENOMEM; + + /* Set the bad block position */ + bbm->badblockpos = ONENAND_BADBLOCK_POS; + + /* Set erase shift */ + bbm->bbt_erase_shift = this->erase_shift; + + if (!bbm->isbad_bbt) + bbm->isbad_bbt = onenand_isbad_bbt; + + /* Scan the device to build a memory based bad block table */ + if ((ret = onenand_memory_bbt(mtd, bd))) { + printk(KERN_ERR "onenand_scan_bbt: Can't scan flash and build the RAM-based BBT\n"); + kfree(bbm->bbt); + bbm->bbt = NULL; + } + + return ret; +} + +/* + * Define some generic bad / good block scan pattern which are used + * while scanning a device for factory marked good / bad blocks. + */ +static uint8_t scan_ff_pattern[] = { 0xff, 0xff }; + +static struct nand_bbt_descr largepage_memorybased = { + .options = 0, + .offs = 0, + .len = 2, + .pattern = scan_ff_pattern, +}; + +/** + * onenand_default_bbt - [OneNAND Interface] Select a default bad block table for the device + * @param mtd MTD device structure + * + * This function selects the default bad block table + * support for the device and calls the onenand_scan_bbt function + */ +int onenand_default_bbt(struct mtd_info *mtd) +{ + struct onenand_chip *this = mtd->priv; + struct bbm_info *bbm; + + this->bbm = kzalloc(sizeof(struct bbm_info), GFP_KERNEL); + if (!this->bbm) + return -ENOMEM; + + bbm = this->bbm; + + /* 1KB page has same configuration as 2KB page */ + if (!bbm->badblock_pattern) + bbm->badblock_pattern = &largepage_memorybased; + + return onenand_scan_bbt(mtd, bbm->badblock_pattern); +} diff --git a/drivers/mtd/nand/onenand/samsung.c b/drivers/mtd/nand/onenand/samsung.c new file mode 100644 index 000000000000..2e9d076e445a --- /dev/null +++ b/drivers/mtd/nand/onenand/samsung.c @@ -0,0 +1,1012 @@ +/* + * Samsung S3C64XX/S5PC1XX OneNAND driver + * + * Copyright © 2008-2010 Samsung Electronics + * Kyungmin Park + * Marek Szyprowski + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + * + * Implementation: + * S3C64XX: emulate the pseudo BufferRAM + * S5PC110: use DMA + */ + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#include "samsung.h" + +enum soc_type { + TYPE_S3C6400, + TYPE_S3C6410, + TYPE_S5PC110, +}; + +#define ONENAND_ERASE_STATUS 0x00 +#define ONENAND_MULTI_ERASE_SET 0x01 +#define ONENAND_ERASE_START 0x03 +#define ONENAND_UNLOCK_START 0x08 +#define ONENAND_UNLOCK_END 0x09 +#define ONENAND_LOCK_START 0x0A +#define ONENAND_LOCK_END 0x0B +#define ONENAND_LOCK_TIGHT_START 0x0C +#define ONENAND_LOCK_TIGHT_END 0x0D +#define ONENAND_UNLOCK_ALL 0x0E +#define ONENAND_OTP_ACCESS 0x12 +#define ONENAND_SPARE_ACCESS_ONLY 0x13 +#define ONENAND_MAIN_ACCESS_ONLY 0x14 +#define ONENAND_ERASE_VERIFY 0x15 +#define ONENAND_MAIN_SPARE_ACCESS 0x16 +#define ONENAND_PIPELINE_READ 0x4000 + +#define MAP_00 (0x0) +#define MAP_01 (0x1) +#define MAP_10 (0x2) +#define MAP_11 (0x3) + +#define S3C64XX_CMD_MAP_SHIFT 24 + +#define S3C6400_FBA_SHIFT 10 +#define S3C6400_FPA_SHIFT 4 +#define S3C6400_FSA_SHIFT 2 + +#define S3C6410_FBA_SHIFT 12 +#define S3C6410_FPA_SHIFT 6 +#define S3C6410_FSA_SHIFT 4 + +/* S5PC110 specific definitions */ +#define S5PC110_DMA_SRC_ADDR 0x400 +#define S5PC110_DMA_SRC_CFG 0x404 +#define S5PC110_DMA_DST_ADDR 0x408 +#define S5PC110_DMA_DST_CFG 0x40C +#define S5PC110_DMA_TRANS_SIZE 0x414 +#define S5PC110_DMA_TRANS_CMD 0x418 +#define S5PC110_DMA_TRANS_STATUS 0x41C +#define S5PC110_DMA_TRANS_DIR 0x420 +#define S5PC110_INTC_DMA_CLR 0x1004 +#define S5PC110_INTC_ONENAND_CLR 0x1008 +#define S5PC110_INTC_DMA_MASK 0x1024 +#define S5PC110_INTC_ONENAND_MASK 0x1028 +#define S5PC110_INTC_DMA_PEND 0x1044 +#define S5PC110_INTC_ONENAND_PEND 0x1048 +#define S5PC110_INTC_DMA_STATUS 0x1064 +#define S5PC110_INTC_ONENAND_STATUS 0x1068 + +#define S5PC110_INTC_DMA_TD (1 << 24) +#define S5PC110_INTC_DMA_TE (1 << 16) + +#define S5PC110_DMA_CFG_SINGLE (0x0 << 16) +#define S5PC110_DMA_CFG_4BURST (0x2 << 16) +#define S5PC110_DMA_CFG_8BURST (0x3 << 16) +#define S5PC110_DMA_CFG_16BURST (0x4 << 16) + +#define S5PC110_DMA_CFG_INC (0x0 << 8) +#define S5PC110_DMA_CFG_CNT (0x1 << 8) + +#define S5PC110_DMA_CFG_8BIT (0x0 << 0) +#define S5PC110_DMA_CFG_16BIT (0x1 << 0) +#define S5PC110_DMA_CFG_32BIT (0x2 << 0) + +#define S5PC110_DMA_SRC_CFG_READ (S5PC110_DMA_CFG_16BURST | \ + S5PC110_DMA_CFG_INC | \ + S5PC110_DMA_CFG_16BIT) +#define S5PC110_DMA_DST_CFG_READ (S5PC110_DMA_CFG_16BURST | \ + S5PC110_DMA_CFG_INC | \ + S5PC110_DMA_CFG_32BIT) +#define S5PC110_DMA_SRC_CFG_WRITE (S5PC110_DMA_CFG_16BURST | \ + S5PC110_DMA_CFG_INC | \ + S5PC110_DMA_CFG_32BIT) +#define S5PC110_DMA_DST_CFG_WRITE (S5PC110_DMA_CFG_16BURST | \ + S5PC110_DMA_CFG_INC | \ + S5PC110_DMA_CFG_16BIT) + +#define S5PC110_DMA_TRANS_CMD_TDC (0x1 << 18) +#define S5PC110_DMA_TRANS_CMD_TEC (0x1 << 16) +#define S5PC110_DMA_TRANS_CMD_TR (0x1 << 0) + +#define S5PC110_DMA_TRANS_STATUS_TD (0x1 << 18) +#define S5PC110_DMA_TRANS_STATUS_TB (0x1 << 17) +#define S5PC110_DMA_TRANS_STATUS_TE (0x1 << 16) + +#define S5PC110_DMA_DIR_READ 0x0 +#define S5PC110_DMA_DIR_WRITE 0x1 + +struct s3c_onenand { + struct mtd_info *mtd; + struct platform_device *pdev; + enum soc_type type; + void __iomem *base; + void __iomem *ahb_addr; + int bootram_command; + void *page_buf; + void *oob_buf; + unsigned int (*mem_addr)(int fba, int fpa, int fsa); + unsigned int (*cmd_map)(unsigned int type, unsigned int val); + void __iomem *dma_addr; + unsigned long phys_base; + struct completion complete; +}; + +#define CMD_MAP_00(dev, addr) (dev->cmd_map(MAP_00, ((addr) << 1))) +#define CMD_MAP_01(dev, mem_addr) (dev->cmd_map(MAP_01, (mem_addr))) +#define CMD_MAP_10(dev, mem_addr) (dev->cmd_map(MAP_10, (mem_addr))) +#define CMD_MAP_11(dev, addr) (dev->cmd_map(MAP_11, ((addr) << 2))) + +static struct s3c_onenand *onenand; + +static inline int s3c_read_reg(int offset) +{ + return readl(onenand->base + offset); +} + +static inline void s3c_write_reg(int value, int offset) +{ + writel(value, onenand->base + offset); +} + +static inline int s3c_read_cmd(unsigned int cmd) +{ + return readl(onenand->ahb_addr + cmd); +} + +static inline void s3c_write_cmd(int value, unsigned int cmd) +{ + writel(value, onenand->ahb_addr + cmd); +} + +#ifdef SAMSUNG_DEBUG +static void s3c_dump_reg(void) +{ + int i; + + for (i = 0; i < 0x400; i += 0x40) { + printk(KERN_INFO "0x%08X: 0x%08x 0x%08x 0x%08x 0x%08x\n", + (unsigned int) onenand->base + i, + s3c_read_reg(i), s3c_read_reg(i + 0x10), + s3c_read_reg(i + 0x20), s3c_read_reg(i + 0x30)); + } +} +#endif + +static unsigned int s3c64xx_cmd_map(unsigned type, unsigned val) +{ + return (type << S3C64XX_CMD_MAP_SHIFT) | val; +} + +static unsigned int s3c6400_mem_addr(int fba, int fpa, int fsa) +{ + return (fba << S3C6400_FBA_SHIFT) | (fpa << S3C6400_FPA_SHIFT) | + (fsa << S3C6400_FSA_SHIFT); +} + +static unsigned int s3c6410_mem_addr(int fba, int fpa, int fsa) +{ + return (fba << S3C6410_FBA_SHIFT) | (fpa << S3C6410_FPA_SHIFT) | + (fsa << S3C6410_FSA_SHIFT); +} + +static void s3c_onenand_reset(void) +{ + unsigned long timeout = 0x10000; + int stat; + + s3c_write_reg(ONENAND_MEM_RESET_COLD, MEM_RESET_OFFSET); + while (1 && timeout--) { + stat = s3c_read_reg(INT_ERR_STAT_OFFSET); + if (stat & RST_CMP) + break; + } + stat = s3c_read_reg(INT_ERR_STAT_OFFSET); + s3c_write_reg(stat, INT_ERR_ACK_OFFSET); + + /* Clear interrupt */ + s3c_write_reg(0x0, INT_ERR_ACK_OFFSET); + /* Clear the ECC status */ + s3c_write_reg(0x0, ECC_ERR_STAT_OFFSET); +} + +static unsigned short s3c_onenand_readw(void __iomem *addr) +{ + struct onenand_chip *this = onenand->mtd->priv; + struct device *dev = &onenand->pdev->dev; + int reg = addr - this->base; + int word_addr = reg >> 1; + int value; + + /* It's used for probing time */ + switch (reg) { + case ONENAND_REG_MANUFACTURER_ID: + return s3c_read_reg(MANUFACT_ID_OFFSET); + case ONENAND_REG_DEVICE_ID: + return s3c_read_reg(DEVICE_ID_OFFSET); + case ONENAND_REG_VERSION_ID: + return s3c_read_reg(FLASH_VER_ID_OFFSET); + case ONENAND_REG_DATA_BUFFER_SIZE: + return s3c_read_reg(DATA_BUF_SIZE_OFFSET); + case ONENAND_REG_TECHNOLOGY: + return s3c_read_reg(TECH_OFFSET); + case ONENAND_REG_SYS_CFG1: + return s3c_read_reg(MEM_CFG_OFFSET); + + /* Used at unlock all status */ + case ONENAND_REG_CTRL_STATUS: + return 0; + + case ONENAND_REG_WP_STATUS: + return ONENAND_WP_US; + + default: + break; + } + + /* BootRAM access control */ + if ((unsigned int) addr < ONENAND_DATARAM && onenand->bootram_command) { + if (word_addr == 0) + return s3c_read_reg(MANUFACT_ID_OFFSET); + if (word_addr == 1) + return s3c_read_reg(DEVICE_ID_OFFSET); + if (word_addr == 2) + return s3c_read_reg(FLASH_VER_ID_OFFSET); + } + + value = s3c_read_cmd(CMD_MAP_11(onenand, word_addr)) & 0xffff; + dev_info(dev, "%s: Illegal access at reg 0x%x, value 0x%x\n", __func__, + word_addr, value); + return value; +} + +static void s3c_onenand_writew(unsigned short value, void __iomem *addr) +{ + struct onenand_chip *this = onenand->mtd->priv; + struct device *dev = &onenand->pdev->dev; + unsigned int reg = addr - this->base; + unsigned int word_addr = reg >> 1; + + /* It's used for probing time */ + switch (reg) { + case ONENAND_REG_SYS_CFG1: + s3c_write_reg(value, MEM_CFG_OFFSET); + return; + + case ONENAND_REG_START_ADDRESS1: + case ONENAND_REG_START_ADDRESS2: + return; + + /* Lock/lock-tight/unlock/unlock_all */ + case ONENAND_REG_START_BLOCK_ADDRESS: + return; + + default: + break; + } + + /* BootRAM access control */ + if ((unsigned int)addr < ONENAND_DATARAM) { + if (value == ONENAND_CMD_READID) { + onenand->bootram_command = 1; + return; + } + if (value == ONENAND_CMD_RESET) { + s3c_write_reg(ONENAND_MEM_RESET_COLD, MEM_RESET_OFFSET); + onenand->bootram_command = 0; + return; + } + } + + dev_info(dev, "%s: Illegal access at reg 0x%x, value 0x%x\n", __func__, + word_addr, value); + + s3c_write_cmd(value, CMD_MAP_11(onenand, word_addr)); +} + +static int s3c_onenand_wait(struct mtd_info *mtd, int state) +{ + struct device *dev = &onenand->pdev->dev; + unsigned int flags = INT_ACT; + unsigned int stat, ecc; + unsigned long timeout; + + switch (state) { + case FL_READING: + flags |= BLK_RW_CMP | LOAD_CMP; + break; + case FL_WRITING: + flags |= BLK_RW_CMP | PGM_CMP; + break; + case FL_ERASING: + flags |= BLK_RW_CMP | ERS_CMP; + break; + case FL_LOCKING: + flags |= BLK_RW_CMP; + break; + default: + break; + } + + /* The 20 msec is enough */ + timeout = jiffies + msecs_to_jiffies(20); + while (time_before(jiffies, timeout)) { + stat = s3c_read_reg(INT_ERR_STAT_OFFSET); + if (stat & flags) + break; + + if (state != FL_READING) + cond_resched(); + } + /* To get correct interrupt status in timeout case */ + stat = s3c_read_reg(INT_ERR_STAT_OFFSET); + s3c_write_reg(stat, INT_ERR_ACK_OFFSET); + + /* + * In the Spec. it checks the controller status first + * However if you get the correct information in case of + * power off recovery (POR) test, it should read ECC status first + */ + if (stat & LOAD_CMP) { + ecc = s3c_read_reg(ECC_ERR_STAT_OFFSET); + if (ecc & ONENAND_ECC_4BIT_UNCORRECTABLE) { + dev_info(dev, "%s: ECC error = 0x%04x\n", __func__, + ecc); + mtd->ecc_stats.failed++; + return -EBADMSG; + } + } + + if (stat & (LOCKED_BLK | ERS_FAIL | PGM_FAIL | LD_FAIL_ECC_ERR)) { + dev_info(dev, "%s: controller error = 0x%04x\n", __func__, + stat); + if (stat & LOCKED_BLK) + dev_info(dev, "%s: it's locked error = 0x%04x\n", + __func__, stat); + + return -EIO; + } + + return 0; +} + +static int s3c_onenand_command(struct mtd_info *mtd, int cmd, loff_t addr, + size_t len) +{ + struct onenand_chip *this = mtd->priv; + unsigned int *m, *s; + int fba, fpa, fsa = 0; + unsigned int mem_addr, cmd_map_01, cmd_map_10; + int i, mcount, scount; + int index; + + fba = (int) (addr >> this->erase_shift); + fpa = (int) (addr >> this->page_shift); + fpa &= this->page_mask; + + mem_addr = onenand->mem_addr(fba, fpa, fsa); + cmd_map_01 = CMD_MAP_01(onenand, mem_addr); + cmd_map_10 = CMD_MAP_10(onenand, mem_addr); + + switch (cmd) { + case ONENAND_CMD_READ: + case ONENAND_CMD_READOOB: + case ONENAND_CMD_BUFFERRAM: + ONENAND_SET_NEXT_BUFFERRAM(this); + default: + break; + } + + index = ONENAND_CURRENT_BUFFERRAM(this); + + /* + * Emulate Two BufferRAMs and access with 4 bytes pointer + */ + m = onenand->page_buf; + s = onenand->oob_buf; + + if (index) { + m += (this->writesize >> 2); + s += (mtd->oobsize >> 2); + } + + mcount = mtd->writesize >> 2; + scount = mtd->oobsize >> 2; + + switch (cmd) { + case ONENAND_CMD_READ: + /* Main */ + for (i = 0; i < mcount; i++) + *m++ = s3c_read_cmd(cmd_map_01); + return 0; + + case ONENAND_CMD_READOOB: + s3c_write_reg(TSRF, TRANS_SPARE_OFFSET); + /* Main */ + for (i = 0; i < mcount; i++) + *m++ = s3c_read_cmd(cmd_map_01); + + /* Spare */ + for (i = 0; i < scount; i++) + *s++ = s3c_read_cmd(cmd_map_01); + + s3c_write_reg(0, TRANS_SPARE_OFFSET); + return 0; + + case ONENAND_CMD_PROG: + /* Main */ + for (i = 0; i < mcount; i++) + s3c_write_cmd(*m++, cmd_map_01); + return 0; + + case ONENAND_CMD_PROGOOB: + s3c_write_reg(TSRF, TRANS_SPARE_OFFSET); + + /* Main - dummy write */ + for (i = 0; i < mcount; i++) + s3c_write_cmd(0xffffffff, cmd_map_01); + + /* Spare */ + for (i = 0; i < scount; i++) + s3c_write_cmd(*s++, cmd_map_01); + + s3c_write_reg(0, TRANS_SPARE_OFFSET); + return 0; + + case ONENAND_CMD_UNLOCK_ALL: + s3c_write_cmd(ONENAND_UNLOCK_ALL, cmd_map_10); + return 0; + + case ONENAND_CMD_ERASE: + s3c_write_cmd(ONENAND_ERASE_START, cmd_map_10); + return 0; + + default: + break; + } + + return 0; +} + +static unsigned char *s3c_get_bufferram(struct mtd_info *mtd, int area) +{ + struct onenand_chip *this = mtd->priv; + int index = ONENAND_CURRENT_BUFFERRAM(this); + unsigned char *p; + + if (area == ONENAND_DATARAM) { + p = onenand->page_buf; + if (index == 1) + p += this->writesize; + } else { + p = onenand->oob_buf; + if (index == 1) + p += mtd->oobsize; + } + + return p; +} + +static int onenand_read_bufferram(struct mtd_info *mtd, int area, + unsigned char *buffer, int offset, + size_t count) +{ + unsigned char *p; + + p = s3c_get_bufferram(mtd, area); + memcpy(buffer, p + offset, count); + return 0; +} + +static int onenand_write_bufferram(struct mtd_info *mtd, int area, + const unsigned char *buffer, int offset, + size_t count) +{ + unsigned char *p; + + p = s3c_get_bufferram(mtd, area); + memcpy(p + offset, buffer, count); + return 0; +} + +static int (*s5pc110_dma_ops)(dma_addr_t dst, dma_addr_t src, size_t count, int direction); + +static int s5pc110_dma_poll(dma_addr_t dst, dma_addr_t src, size_t count, int direction) +{ + void __iomem *base = onenand->dma_addr; + int status; + unsigned long timeout; + + writel(src, base + S5PC110_DMA_SRC_ADDR); + writel(dst, base + S5PC110_DMA_DST_ADDR); + + if (direction == S5PC110_DMA_DIR_READ) { + writel(S5PC110_DMA_SRC_CFG_READ, base + S5PC110_DMA_SRC_CFG); + writel(S5PC110_DMA_DST_CFG_READ, base + S5PC110_DMA_DST_CFG); + } else { + writel(S5PC110_DMA_SRC_CFG_WRITE, base + S5PC110_DMA_SRC_CFG); + writel(S5PC110_DMA_DST_CFG_WRITE, base + S5PC110_DMA_DST_CFG); + } + + writel(count, base + S5PC110_DMA_TRANS_SIZE); + writel(direction, base + S5PC110_DMA_TRANS_DIR); + + writel(S5PC110_DMA_TRANS_CMD_TR, base + S5PC110_DMA_TRANS_CMD); + + /* + * There's no exact timeout values at Spec. + * In real case it takes under 1 msec. + * So 20 msecs are enough. + */ + timeout = jiffies + msecs_to_jiffies(20); + + do { + status = readl(base + S5PC110_DMA_TRANS_STATUS); + if (status & S5PC110_DMA_TRANS_STATUS_TE) { + writel(S5PC110_DMA_TRANS_CMD_TEC, + base + S5PC110_DMA_TRANS_CMD); + return -EIO; + } + } while (!(status & S5PC110_DMA_TRANS_STATUS_TD) && + time_before(jiffies, timeout)); + + writel(S5PC110_DMA_TRANS_CMD_TDC, base + S5PC110_DMA_TRANS_CMD); + + return 0; +} + +static irqreturn_t s5pc110_onenand_irq(int irq, void *data) +{ + void __iomem *base = onenand->dma_addr; + int status, cmd = 0; + + status = readl(base + S5PC110_INTC_DMA_STATUS); + + if (likely(status & S5PC110_INTC_DMA_TD)) + cmd = S5PC110_DMA_TRANS_CMD_TDC; + + if (unlikely(status & S5PC110_INTC_DMA_TE)) + cmd = S5PC110_DMA_TRANS_CMD_TEC; + + writel(cmd, base + S5PC110_DMA_TRANS_CMD); + writel(status, base + S5PC110_INTC_DMA_CLR); + + if (!onenand->complete.done) + complete(&onenand->complete); + + return IRQ_HANDLED; +} + +static int s5pc110_dma_irq(dma_addr_t dst, dma_addr_t src, size_t count, int direction) +{ + void __iomem *base = onenand->dma_addr; + int status; + + status = readl(base + S5PC110_INTC_DMA_MASK); + if (status) { + status &= ~(S5PC110_INTC_DMA_TD | S5PC110_INTC_DMA_TE); + writel(status, base + S5PC110_INTC_DMA_MASK); + } + + writel(src, base + S5PC110_DMA_SRC_ADDR); + writel(dst, base + S5PC110_DMA_DST_ADDR); + + if (direction == S5PC110_DMA_DIR_READ) { + writel(S5PC110_DMA_SRC_CFG_READ, base + S5PC110_DMA_SRC_CFG); + writel(S5PC110_DMA_DST_CFG_READ, base + S5PC110_DMA_DST_CFG); + } else { + writel(S5PC110_DMA_SRC_CFG_WRITE, base + S5PC110_DMA_SRC_CFG); + writel(S5PC110_DMA_DST_CFG_WRITE, base + S5PC110_DMA_DST_CFG); + } + + writel(count, base + S5PC110_DMA_TRANS_SIZE); + writel(direction, base + S5PC110_DMA_TRANS_DIR); + + writel(S5PC110_DMA_TRANS_CMD_TR, base + S5PC110_DMA_TRANS_CMD); + + wait_for_completion_timeout(&onenand->complete, msecs_to_jiffies(20)); + + return 0; +} + +static int s5pc110_read_bufferram(struct mtd_info *mtd, int area, + unsigned char *buffer, int offset, size_t count) +{ + struct onenand_chip *this = mtd->priv; + void __iomem *p; + void *buf = (void *) buffer; + dma_addr_t dma_src, dma_dst; + int err, ofs, page_dma = 0; + struct device *dev = &onenand->pdev->dev; + + p = this->base + area; + if (ONENAND_CURRENT_BUFFERRAM(this)) { + if (area == ONENAND_DATARAM) + p += this->writesize; + else + p += mtd->oobsize; + } + + if (offset & 3 || (size_t) buf & 3 || + !onenand->dma_addr || count != mtd->writesize) + goto normal; + + /* Handle vmalloc address */ + if (buf >= high_memory) { + struct page *page; + + if (((size_t) buf & PAGE_MASK) != + ((size_t) (buf + count - 1) & PAGE_MASK)) + goto normal; + page = vmalloc_to_page(buf); + if (!page) + goto normal; + + /* Page offset */ + ofs = ((size_t) buf & ~PAGE_MASK); + page_dma = 1; + + /* DMA routine */ + dma_src = onenand->phys_base + (p - this->base); + dma_dst = dma_map_page(dev, page, ofs, count, DMA_FROM_DEVICE); + } else { + /* DMA routine */ + dma_src = onenand->phys_base + (p - this->base); + dma_dst = dma_map_single(dev, buf, count, DMA_FROM_DEVICE); + } + if (dma_mapping_error(dev, dma_dst)) { + dev_err(dev, "Couldn't map a %d byte buffer for DMA\n", count); + goto normal; + } + err = s5pc110_dma_ops(dma_dst, dma_src, + count, S5PC110_DMA_DIR_READ); + + if (page_dma) + dma_unmap_page(dev, dma_dst, count, DMA_FROM_DEVICE); + else + dma_unmap_single(dev, dma_dst, count, DMA_FROM_DEVICE); + + if (!err) + return 0; + +normal: + if (count != mtd->writesize) { + /* Copy the bufferram to memory to prevent unaligned access */ + memcpy(this->page_buf, p, mtd->writesize); + p = this->page_buf + offset; + } + + memcpy(buffer, p, count); + + return 0; +} + +static int s5pc110_chip_probe(struct mtd_info *mtd) +{ + /* Now just return 0 */ + return 0; +} + +static int s3c_onenand_bbt_wait(struct mtd_info *mtd, int state) +{ + unsigned int flags = INT_ACT | LOAD_CMP; + unsigned int stat; + unsigned long timeout; + + /* The 20 msec is enough */ + timeout = jiffies + msecs_to_jiffies(20); + while (time_before(jiffies, timeout)) { + stat = s3c_read_reg(INT_ERR_STAT_OFFSET); + if (stat & flags) + break; + } + /* To get correct interrupt status in timeout case */ + stat = s3c_read_reg(INT_ERR_STAT_OFFSET); + s3c_write_reg(stat, INT_ERR_ACK_OFFSET); + + if (stat & LD_FAIL_ECC_ERR) { + s3c_onenand_reset(); + return ONENAND_BBT_READ_ERROR; + } + + if (stat & LOAD_CMP) { + int ecc = s3c_read_reg(ECC_ERR_STAT_OFFSET); + if (ecc & ONENAND_ECC_4BIT_UNCORRECTABLE) { + s3c_onenand_reset(); + return ONENAND_BBT_READ_ERROR; + } + } + + return 0; +} + +static void s3c_onenand_check_lock_status(struct mtd_info *mtd) +{ + struct onenand_chip *this = mtd->priv; + struct device *dev = &onenand->pdev->dev; + unsigned int block, end; + int tmp; + + end = this->chipsize >> this->erase_shift; + + for (block = 0; block < end; block++) { + unsigned int mem_addr = onenand->mem_addr(block, 0, 0); + tmp = s3c_read_cmd(CMD_MAP_01(onenand, mem_addr)); + + if (s3c_read_reg(INT_ERR_STAT_OFFSET) & LOCKED_BLK) { + dev_err(dev, "block %d is write-protected!\n", block); + s3c_write_reg(LOCKED_BLK, INT_ERR_ACK_OFFSET); + } + } +} + +static void s3c_onenand_do_lock_cmd(struct mtd_info *mtd, loff_t ofs, + size_t len, int cmd) +{ + struct onenand_chip *this = mtd->priv; + int start, end, start_mem_addr, end_mem_addr; + + start = ofs >> this->erase_shift; + start_mem_addr = onenand->mem_addr(start, 0, 0); + end = start + (len >> this->erase_shift) - 1; + end_mem_addr = onenand->mem_addr(end, 0, 0); + + if (cmd == ONENAND_CMD_LOCK) { + s3c_write_cmd(ONENAND_LOCK_START, CMD_MAP_10(onenand, + start_mem_addr)); + s3c_write_cmd(ONENAND_LOCK_END, CMD_MAP_10(onenand, + end_mem_addr)); + } else { + s3c_write_cmd(ONENAND_UNLOCK_START, CMD_MAP_10(onenand, + start_mem_addr)); + s3c_write_cmd(ONENAND_UNLOCK_END, CMD_MAP_10(onenand, + end_mem_addr)); + } + + this->wait(mtd, FL_LOCKING); +} + +static void s3c_unlock_all(struct mtd_info *mtd) +{ + struct onenand_chip *this = mtd->priv; + loff_t ofs = 0; + size_t len = this->chipsize; + + if (this->options & ONENAND_HAS_UNLOCK_ALL) { + /* Write unlock command */ + this->command(mtd, ONENAND_CMD_UNLOCK_ALL, 0, 0); + + /* No need to check return value */ + this->wait(mtd, FL_LOCKING); + + /* Workaround for all block unlock in DDP */ + if (!ONENAND_IS_DDP(this)) { + s3c_onenand_check_lock_status(mtd); + return; + } + + /* All blocks on another chip */ + ofs = this->chipsize >> 1; + len = this->chipsize >> 1; + } + + s3c_onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK); + + s3c_onenand_check_lock_status(mtd); +} + +static void s3c_onenand_setup(struct mtd_info *mtd) +{ + struct onenand_chip *this = mtd->priv; + + onenand->mtd = mtd; + + if (onenand->type == TYPE_S3C6400) { + onenand->mem_addr = s3c6400_mem_addr; + onenand->cmd_map = s3c64xx_cmd_map; + } else if (onenand->type == TYPE_S3C6410) { + onenand->mem_addr = s3c6410_mem_addr; + onenand->cmd_map = s3c64xx_cmd_map; + } else if (onenand->type == TYPE_S5PC110) { + /* Use generic onenand functions */ + this->read_bufferram = s5pc110_read_bufferram; + this->chip_probe = s5pc110_chip_probe; + return; + } else { + BUG(); + } + + this->read_word = s3c_onenand_readw; + this->write_word = s3c_onenand_writew; + + this->wait = s3c_onenand_wait; + this->bbt_wait = s3c_onenand_bbt_wait; + this->unlock_all = s3c_unlock_all; + this->command = s3c_onenand_command; + + this->read_bufferram = onenand_read_bufferram; + this->write_bufferram = onenand_write_bufferram; +} + +static int s3c_onenand_probe(struct platform_device *pdev) +{ + struct onenand_platform_data *pdata; + struct onenand_chip *this; + struct mtd_info *mtd; + struct resource *r; + int size, err; + + pdata = dev_get_platdata(&pdev->dev); + /* No need to check pdata. the platform data is optional */ + + size = sizeof(struct mtd_info) + sizeof(struct onenand_chip); + mtd = devm_kzalloc(&pdev->dev, size, GFP_KERNEL); + if (!mtd) + return -ENOMEM; + + onenand = devm_kzalloc(&pdev->dev, sizeof(struct s3c_onenand), + GFP_KERNEL); + if (!onenand) + return -ENOMEM; + + this = (struct onenand_chip *) &mtd[1]; + mtd->priv = this; + mtd->dev.parent = &pdev->dev; + onenand->pdev = pdev; + onenand->type = platform_get_device_id(pdev)->driver_data; + + s3c_onenand_setup(mtd); + + r = platform_get_resource(pdev, IORESOURCE_MEM, 0); + onenand->base = devm_ioremap_resource(&pdev->dev, r); + if (IS_ERR(onenand->base)) + return PTR_ERR(onenand->base); + + onenand->phys_base = r->start; + + /* Set onenand_chip also */ + this->base = onenand->base; + + /* Use runtime badblock check */ + this->options |= ONENAND_SKIP_UNLOCK_CHECK; + + if (onenand->type != TYPE_S5PC110) { + r = platform_get_resource(pdev, IORESOURCE_MEM, 1); + onenand->ahb_addr = devm_ioremap_resource(&pdev->dev, r); + if (IS_ERR(onenand->ahb_addr)) + return PTR_ERR(onenand->ahb_addr); + + /* Allocate 4KiB BufferRAM */ + onenand->page_buf = devm_kzalloc(&pdev->dev, SZ_4K, + GFP_KERNEL); + if (!onenand->page_buf) + return -ENOMEM; + + /* Allocate 128 SpareRAM */ + onenand->oob_buf = devm_kzalloc(&pdev->dev, 128, GFP_KERNEL); + if (!onenand->oob_buf) + return -ENOMEM; + + /* S3C doesn't handle subpage write */ + mtd->subpage_sft = 0; + this->subpagesize = mtd->writesize; + + } else { /* S5PC110 */ + r = platform_get_resource(pdev, IORESOURCE_MEM, 1); + onenand->dma_addr = devm_ioremap_resource(&pdev->dev, r); + if (IS_ERR(onenand->dma_addr)) + return PTR_ERR(onenand->dma_addr); + + s5pc110_dma_ops = s5pc110_dma_poll; + /* Interrupt support */ + r = platform_get_resource(pdev, IORESOURCE_IRQ, 0); + if (r) { + init_completion(&onenand->complete); + s5pc110_dma_ops = s5pc110_dma_irq; + err = devm_request_irq(&pdev->dev, r->start, + s5pc110_onenand_irq, + IRQF_SHARED, "onenand", + &onenand); + if (err) { + dev_err(&pdev->dev, "failed to get irq\n"); + return err; + } + } + } + + err = onenand_scan(mtd, 1); + if (err) + return err; + + if (onenand->type != TYPE_S5PC110) { + /* S3C doesn't handle subpage write */ + mtd->subpage_sft = 0; + this->subpagesize = mtd->writesize; + } + + if (s3c_read_reg(MEM_CFG_OFFSET) & ONENAND_SYS_CFG1_SYNC_READ) + dev_info(&onenand->pdev->dev, "OneNAND Sync. Burst Read enabled\n"); + + err = mtd_device_parse_register(mtd, NULL, NULL, + pdata ? pdata->parts : NULL, + pdata ? pdata->nr_parts : 0); + if (err) { + dev_err(&pdev->dev, "failed to parse partitions and register the MTD device\n"); + onenand_release(mtd); + return err; + } + + platform_set_drvdata(pdev, mtd); + + return 0; +} + +static int s3c_onenand_remove(struct platform_device *pdev) +{ + struct mtd_info *mtd = platform_get_drvdata(pdev); + + onenand_release(mtd); + + return 0; +} + +static int s3c_pm_ops_suspend(struct device *dev) +{ + struct platform_device *pdev = to_platform_device(dev); + struct mtd_info *mtd = platform_get_drvdata(pdev); + struct onenand_chip *this = mtd->priv; + + this->wait(mtd, FL_PM_SUSPENDED); + return 0; +} + +static int s3c_pm_ops_resume(struct device *dev) +{ + struct platform_device *pdev = to_platform_device(dev); + struct mtd_info *mtd = platform_get_drvdata(pdev); + struct onenand_chip *this = mtd->priv; + + this->unlock_all(mtd); + return 0; +} + +static const struct dev_pm_ops s3c_pm_ops = { + .suspend = s3c_pm_ops_suspend, + .resume = s3c_pm_ops_resume, +}; + +static const struct platform_device_id s3c_onenand_driver_ids[] = { + { + .name = "s3c6400-onenand", + .driver_data = TYPE_S3C6400, + }, { + .name = "s3c6410-onenand", + .driver_data = TYPE_S3C6410, + }, { + .name = "s5pc110-onenand", + .driver_data = TYPE_S5PC110, + }, { }, +}; +MODULE_DEVICE_TABLE(platform, s3c_onenand_driver_ids); + +static struct platform_driver s3c_onenand_driver = { + .driver = { + .name = "samsung-onenand", + .pm = &s3c_pm_ops, + }, + .id_table = s3c_onenand_driver_ids, + .probe = s3c_onenand_probe, + .remove = s3c_onenand_remove, +}; + +module_platform_driver(s3c_onenand_driver); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Kyungmin Park "); +MODULE_DESCRIPTION("Samsung OneNAND controller support"); diff --git a/drivers/mtd/nand/onenand/samsung.h b/drivers/mtd/nand/onenand/samsung.h new file mode 100644 index 000000000000..9016dc0136a8 --- /dev/null +++ b/drivers/mtd/nand/onenand/samsung.h @@ -0,0 +1,59 @@ +/* + * Copyright (C) 2008-2010 Samsung Electronics + * Kyungmin Park + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + */ +#ifndef __SAMSUNG_ONENAND_H__ +#define __SAMSUNG_ONENAND_H__ + +/* + * OneNAND Controller + */ +#define MEM_CFG_OFFSET 0x0000 +#define BURST_LEN_OFFSET 0x0010 +#define MEM_RESET_OFFSET 0x0020 +#define INT_ERR_STAT_OFFSET 0x0030 +#define INT_ERR_MASK_OFFSET 0x0040 +#define INT_ERR_ACK_OFFSET 0x0050 +#define ECC_ERR_STAT_OFFSET 0x0060 +#define MANUFACT_ID_OFFSET 0x0070 +#define DEVICE_ID_OFFSET 0x0080 +#define DATA_BUF_SIZE_OFFSET 0x0090 +#define BOOT_BUF_SIZE_OFFSET 0x00A0 +#define BUF_AMOUNT_OFFSET 0x00B0 +#define TECH_OFFSET 0x00C0 +#define FBA_WIDTH_OFFSET 0x00D0 +#define FPA_WIDTH_OFFSET 0x00E0 +#define FSA_WIDTH_OFFSET 0x00F0 +#define TRANS_SPARE_OFFSET 0x0140 +#define DBS_DFS_WIDTH_OFFSET 0x0160 +#define INT_PIN_ENABLE_OFFSET 0x01A0 +#define ACC_CLOCK_OFFSET 0x01C0 +#define FLASH_VER_ID_OFFSET 0x01F0 +#define FLASH_AUX_CNTRL_OFFSET 0x0300 /* s3c64xx only */ + +#define ONENAND_MEM_RESET_HOT 0x3 +#define ONENAND_MEM_RESET_COLD 0x2 +#define ONENAND_MEM_RESET_WARM 0x1 + +#define CACHE_OP_ERR (1 << 13) +#define RST_CMP (1 << 12) +#define RDY_ACT (1 << 11) +#define INT_ACT (1 << 10) +#define UNSUP_CMD (1 << 9) +#define LOCKED_BLK (1 << 8) +#define BLK_RW_CMP (1 << 7) +#define ERS_CMP (1 << 6) +#define PGM_CMP (1 << 5) +#define LOAD_CMP (1 << 4) +#define ERS_FAIL (1 << 3) +#define PGM_FAIL (1 << 2) +#define INT_TO (1 << 1) +#define LD_FAIL_ECC_ERR (1 << 0) + +#define TSRF (1 << 0) + +#endif diff --git a/drivers/mtd/onenand/Kconfig b/drivers/mtd/onenand/Kconfig deleted file mode 100644 index 9dc15748947b..000000000000 --- a/drivers/mtd/onenand/Kconfig +++ /dev/null @@ -1,71 +0,0 @@ -menuconfig MTD_ONENAND - tristate "OneNAND Device Support" - depends on MTD - depends on HAS_IOMEM - help - This enables support for accessing all type of OneNAND flash - devices. - -if MTD_ONENAND - -config MTD_ONENAND_VERIFY_WRITE - bool "Verify OneNAND page writes" - help - This adds an extra check when data is written to the flash. The - OneNAND flash device internally checks only bits transitioning - from 1 to 0. There is a rare possibility that even though the - device thinks the write was successful, a bit could have been - flipped accidentally due to device wear or something else. - -config MTD_ONENAND_GENERIC - tristate "OneNAND Flash device via platform device driver" - help - Support for OneNAND flash via platform device driver. - -config MTD_ONENAND_OMAP2 - tristate "OneNAND on OMAP2/OMAP3 support" - depends on ARCH_OMAP2 || ARCH_OMAP3 - depends on OF || COMPILE_TEST - help - Support for a OneNAND flash device connected to an OMAP2/OMAP3 SoC - via the GPMC memory controller. - Enable dmaengine and gpiolib for better performance. - -config MTD_ONENAND_SAMSUNG - tristate "OneNAND on Samsung SOC controller support" - depends on ARCH_S3C64XX || ARCH_S5PV210 || ARCH_EXYNOS4 - help - Support for a OneNAND flash device connected to an Samsung SOC. - S3C64XX uses command mapping method. - S5PC110/S5PC210 use generic OneNAND method. - -config MTD_ONENAND_OTP - bool "OneNAND OTP Support" - help - One Block of the NAND Flash Array memory is reserved as - a One-Time Programmable Block memory area. - Also, 1st Block of NAND Flash Array can be used as OTP. - - The OTP block can be read, programmed and locked using the same - operations as any other NAND Flash Array memory block. - OTP block cannot be erased. - - OTP block is fully-guaranteed to be a valid block. - -config MTD_ONENAND_2X_PROGRAM - bool "OneNAND 2X program support" - help - The 2X Program is an extension of Program Operation. - Since the device is equipped with two DataRAMs, and two-plane NAND - Flash memory array, these two component enables simultaneous program - of 4KiB. Plane1 has only even blocks such as block0, block2, block4 - while Plane2 has only odd blocks such as block1, block3, block5. - So MTD regards it as 4KiB page size and 256KiB block size - - Now the following chips support it. (KFXXX16Q2M) - Demux: KFG2G16Q2M, KFH4G16Q2M, KFW8G16Q2M, - Mux: KFM2G16Q2M, KFN4G16Q2M, - - And more recent chips - -endif # MTD_ONENAND diff --git a/drivers/mtd/onenand/Makefile b/drivers/mtd/onenand/Makefile deleted file mode 100644 index f8b624aca9cc..000000000000 --- a/drivers/mtd/onenand/Makefile +++ /dev/null @@ -1,14 +0,0 @@ -# SPDX-License-Identifier: GPL-2.0 -# -# Makefile for the OneNAND MTD -# - -# Core functionality. -obj-$(CONFIG_MTD_ONENAND) += onenand.o - -# Board specific. -obj-$(CONFIG_MTD_ONENAND_GENERIC) += generic.o -obj-$(CONFIG_MTD_ONENAND_OMAP2) += omap2.o -obj-$(CONFIG_MTD_ONENAND_SAMSUNG) += samsung.o - -onenand-objs = onenand_base.o onenand_bbt.o diff --git a/drivers/mtd/onenand/generic.c b/drivers/mtd/onenand/generic.c deleted file mode 100644 index d5ccaf943b91..000000000000 --- a/drivers/mtd/onenand/generic.c +++ /dev/null @@ -1,116 +0,0 @@ -/* - * Copyright (c) 2005 Samsung Electronics - * Kyungmin Park - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License version 2 as - * published by the Free Software Foundation. - * - * Overview: - * This is a device driver for the OneNAND flash for generic boards. - */ - -#include -#include -#include -#include -#include -#include -#include - -/* - * Note: Driver name and platform data format have been updated! - * - * This version of the driver is named "onenand-flash" and takes struct - * onenand_platform_data as platform data. The old ARM-specific version - * with the name "onenand" used to take struct flash_platform_data. - */ -#define DRIVER_NAME "onenand-flash" - -struct onenand_info { - struct mtd_info mtd; - struct onenand_chip onenand; -}; - -static int generic_onenand_probe(struct platform_device *pdev) -{ - struct onenand_info *info; - struct onenand_platform_data *pdata = dev_get_platdata(&pdev->dev); - struct resource *res = pdev->resource; - unsigned long size = resource_size(res); - int err; - - info = kzalloc(sizeof(struct onenand_info), GFP_KERNEL); - if (!info) - return -ENOMEM; - - if (!request_mem_region(res->start, size, dev_name(&pdev->dev))) { - err = -EBUSY; - goto out_free_info; - } - - info->onenand.base = ioremap(res->start, size); - if (!info->onenand.base) { - err = -ENOMEM; - goto out_release_mem_region; - } - - info->onenand.mmcontrol = pdata ? pdata->mmcontrol : NULL; - info->onenand.irq = platform_get_irq(pdev, 0); - - info->mtd.dev.parent = &pdev->dev; - info->mtd.priv = &info->onenand; - - if (onenand_scan(&info->mtd, 1)) { - err = -ENXIO; - goto out_iounmap; - } - - err = mtd_device_parse_register(&info->mtd, NULL, NULL, - pdata ? pdata->parts : NULL, - pdata ? pdata->nr_parts : 0); - - platform_set_drvdata(pdev, info); - - return 0; - -out_iounmap: - iounmap(info->onenand.base); -out_release_mem_region: - release_mem_region(res->start, size); -out_free_info: - kfree(info); - - return err; -} - -static int generic_onenand_remove(struct platform_device *pdev) -{ - struct onenand_info *info = platform_get_drvdata(pdev); - struct resource *res = pdev->resource; - unsigned long size = resource_size(res); - - if (info) { - onenand_release(&info->mtd); - release_mem_region(res->start, size); - iounmap(info->onenand.base); - kfree(info); - } - - return 0; -} - -static struct platform_driver generic_onenand_driver = { - .driver = { - .name = DRIVER_NAME, - }, - .probe = generic_onenand_probe, - .remove = generic_onenand_remove, -}; - -module_platform_driver(generic_onenand_driver); - -MODULE_LICENSE("GPL"); -MODULE_AUTHOR("Kyungmin Park "); -MODULE_DESCRIPTION("Glue layer for OneNAND flash on generic boards"); -MODULE_ALIAS("platform:" DRIVER_NAME); diff --git a/drivers/mtd/onenand/omap2.c b/drivers/mtd/onenand/omap2.c deleted file mode 100644 index 9c159f0dd9a6..000000000000 --- a/drivers/mtd/onenand/omap2.c +++ /dev/null @@ -1,660 +0,0 @@ -/* - * OneNAND driver for OMAP2 / OMAP3 - * - * Copyright © 2005-2006 Nokia Corporation - * - * Author: Jarkko Lavinen and Juha Yrjölä - * IRQ and DMA support written by Timo Teras - * - * This program is free software; you can redistribute it and/or modify it - * under the terms of the GNU General Public License version 2 as published by - * the Free Software Foundation. - * - * This program is distributed in the hope that it will be useful, but WITHOUT - * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or - * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for - * more details. - * - * You should have received a copy of the GNU General Public License along with - * this program; see the file COPYING. If not, write to the Free Software - * Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. - * - */ - -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include - -#include - -#define DRIVER_NAME "omap2-onenand" - -#define ONENAND_BUFRAM_SIZE (1024 * 5) - -struct omap2_onenand { - struct platform_device *pdev; - int gpmc_cs; - unsigned long phys_base; - struct gpio_desc *int_gpiod; - struct mtd_info mtd; - struct onenand_chip onenand; - struct completion irq_done; - struct completion dma_done; - struct dma_chan *dma_chan; -}; - -static void omap2_onenand_dma_complete_func(void *completion) -{ - complete(completion); -} - -static irqreturn_t omap2_onenand_interrupt(int irq, void *dev_id) -{ - struct omap2_onenand *c = dev_id; - - complete(&c->irq_done); - - return IRQ_HANDLED; -} - -static inline unsigned short read_reg(struct omap2_onenand *c, int reg) -{ - return readw(c->onenand.base + reg); -} - -static inline void write_reg(struct omap2_onenand *c, unsigned short value, - int reg) -{ - writew(value, c->onenand.base + reg); -} - -static int omap2_onenand_set_cfg(struct omap2_onenand *c, - bool sr, bool sw, - int latency, int burst_len) -{ - unsigned short reg = ONENAND_SYS_CFG1_RDY | ONENAND_SYS_CFG1_INT; - - reg |= latency << ONENAND_SYS_CFG1_BRL_SHIFT; - - switch (burst_len) { - case 0: /* continuous */ - break; - case 4: - reg |= ONENAND_SYS_CFG1_BL_4; - break; - case 8: - reg |= ONENAND_SYS_CFG1_BL_8; - break; - case 16: - reg |= ONENAND_SYS_CFG1_BL_16; - break; - case 32: - reg |= ONENAND_SYS_CFG1_BL_32; - break; - default: - return -EINVAL; - } - - if (latency > 5) - reg |= ONENAND_SYS_CFG1_HF; - if (latency > 7) - reg |= ONENAND_SYS_CFG1_VHF; - if (sr) - reg |= ONENAND_SYS_CFG1_SYNC_READ; - if (sw) - reg |= ONENAND_SYS_CFG1_SYNC_WRITE; - - write_reg(c, reg, ONENAND_REG_SYS_CFG1); - - return 0; -} - -static int omap2_onenand_get_freq(int ver) -{ - switch ((ver >> 4) & 0xf) { - case 0: - return 40; - case 1: - return 54; - case 2: - return 66; - case 3: - return 83; - case 4: - return 104; - } - - return -EINVAL; -} - -static void wait_err(char *msg, int state, unsigned int ctrl, unsigned int intr) -{ - printk(KERN_ERR "onenand_wait: %s! state %d ctrl 0x%04x intr 0x%04x\n", - msg, state, ctrl, intr); -} - -static void wait_warn(char *msg, int state, unsigned int ctrl, - unsigned int intr) -{ - printk(KERN_WARNING "onenand_wait: %s! state %d ctrl 0x%04x " - "intr 0x%04x\n", msg, state, ctrl, intr); -} - -static int omap2_onenand_wait(struct mtd_info *mtd, int state) -{ - struct omap2_onenand *c = container_of(mtd, struct omap2_onenand, mtd); - struct onenand_chip *this = mtd->priv; - unsigned int intr = 0; - unsigned int ctrl, ctrl_mask; - unsigned long timeout; - u32 syscfg; - - if (state == FL_RESETING || state == FL_PREPARING_ERASE || - state == FL_VERIFYING_ERASE) { - int i = 21; - unsigned int intr_flags = ONENAND_INT_MASTER; - - switch (state) { - case FL_RESETING: - intr_flags |= ONENAND_INT_RESET; - break; - case FL_PREPARING_ERASE: - intr_flags |= ONENAND_INT_ERASE; - break; - case FL_VERIFYING_ERASE: - i = 101; - break; - } - - while (--i) { - udelay(1); - intr = read_reg(c, ONENAND_REG_INTERRUPT); - if (intr & ONENAND_INT_MASTER) - break; - } - ctrl = read_reg(c, ONENAND_REG_CTRL_STATUS); - if (ctrl & ONENAND_CTRL_ERROR) { - wait_err("controller error", state, ctrl, intr); - return -EIO; - } - if ((intr & intr_flags) == intr_flags) - return 0; - /* Continue in wait for interrupt branch */ - } - - if (state != FL_READING) { - int result; - - /* Turn interrupts on */ - syscfg = read_reg(c, ONENAND_REG_SYS_CFG1); - if (!(syscfg & ONENAND_SYS_CFG1_IOBE)) { - syscfg |= ONENAND_SYS_CFG1_IOBE; - write_reg(c, syscfg, ONENAND_REG_SYS_CFG1); - /* Add a delay to let GPIO settle */ - syscfg = read_reg(c, ONENAND_REG_SYS_CFG1); - } - - reinit_completion(&c->irq_done); - result = gpiod_get_value(c->int_gpiod); - if (result < 0) { - ctrl = read_reg(c, ONENAND_REG_CTRL_STATUS); - intr = read_reg(c, ONENAND_REG_INTERRUPT); - wait_err("gpio error", state, ctrl, intr); - return result; - } else if (result == 0) { - int retry_cnt = 0; -retry: - if (!wait_for_completion_io_timeout(&c->irq_done, - msecs_to_jiffies(20))) { - /* Timeout after 20ms */ - ctrl = read_reg(c, ONENAND_REG_CTRL_STATUS); - if (ctrl & ONENAND_CTRL_ONGO && - !this->ongoing) { - /* - * The operation seems to be still going - * so give it some more time. - */ - retry_cnt += 1; - if (retry_cnt < 3) - goto retry; - intr = read_reg(c, - ONENAND_REG_INTERRUPT); - wait_err("timeout", state, ctrl, intr); - return -EIO; - } - intr = read_reg(c, ONENAND_REG_INTERRUPT); - if ((intr & ONENAND_INT_MASTER) == 0) - wait_warn("timeout", state, ctrl, intr); - } - } - } else { - int retry_cnt = 0; - - /* Turn interrupts off */ - syscfg = read_reg(c, ONENAND_REG_SYS_CFG1); - syscfg &= ~ONENAND_SYS_CFG1_IOBE; - write_reg(c, syscfg, ONENAND_REG_SYS_CFG1); - - timeout = jiffies + msecs_to_jiffies(20); - while (1) { - if (time_before(jiffies, timeout)) { - intr = read_reg(c, ONENAND_REG_INTERRUPT); - if (intr & ONENAND_INT_MASTER) - break; - } else { - /* Timeout after 20ms */ - ctrl = read_reg(c, ONENAND_REG_CTRL_STATUS); - if (ctrl & ONENAND_CTRL_ONGO) { - /* - * The operation seems to be still going - * so give it some more time. - */ - retry_cnt += 1; - if (retry_cnt < 3) { - timeout = jiffies + - msecs_to_jiffies(20); - continue; - } - } - break; - } - } - } - - intr = read_reg(c, ONENAND_REG_INTERRUPT); - ctrl = read_reg(c, ONENAND_REG_CTRL_STATUS); - - if (intr & ONENAND_INT_READ) { - int ecc = read_reg(c, ONENAND_REG_ECC_STATUS); - - if (ecc) { - unsigned int addr1, addr8; - - addr1 = read_reg(c, ONENAND_REG_START_ADDRESS1); - addr8 = read_reg(c, ONENAND_REG_START_ADDRESS8); - if (ecc & ONENAND_ECC_2BIT_ALL) { - printk(KERN_ERR "onenand_wait: ECC error = " - "0x%04x, addr1 %#x, addr8 %#x\n", - ecc, addr1, addr8); - mtd->ecc_stats.failed++; - return -EBADMSG; - } else if (ecc & ONENAND_ECC_1BIT_ALL) { - printk(KERN_NOTICE "onenand_wait: correctable " - "ECC error = 0x%04x, addr1 %#x, " - "addr8 %#x\n", ecc, addr1, addr8); - mtd->ecc_stats.corrected++; - } - } - } else if (state == FL_READING) { - wait_err("timeout", state, ctrl, intr); - return -EIO; - } - - if (ctrl & ONENAND_CTRL_ERROR) { - wait_err("controller error", state, ctrl, intr); - if (ctrl & ONENAND_CTRL_LOCK) - printk(KERN_ERR "onenand_wait: " - "Device is write protected!!!\n"); - return -EIO; - } - - ctrl_mask = 0xFE9F; - if (this->ongoing) - ctrl_mask &= ~0x8000; - - if (ctrl & ctrl_mask) - wait_warn("unexpected controller status", state, ctrl, intr); - - return 0; -} - -static inline int omap2_onenand_bufferram_offset(struct mtd_info *mtd, int area) -{ - struct onenand_chip *this = mtd->priv; - - if (ONENAND_CURRENT_BUFFERRAM(this)) { - if (area == ONENAND_DATARAM) - return this->writesize; - if (area == ONENAND_SPARERAM) - return mtd->oobsize; - } - - return 0; -} - -static inline int omap2_onenand_dma_transfer(struct omap2_onenand *c, - dma_addr_t src, dma_addr_t dst, - size_t count) -{ - struct dma_async_tx_descriptor *tx; - dma_cookie_t cookie; - - tx = dmaengine_prep_dma_memcpy(c->dma_chan, dst, src, count, 0); - if (!tx) { - dev_err(&c->pdev->dev, "Failed to prepare DMA memcpy\n"); - return -EIO; - } - - reinit_completion(&c->dma_done); - - tx->callback = omap2_onenand_dma_complete_func; - tx->callback_param = &c->dma_done; - - cookie = tx->tx_submit(tx); - if (dma_submit_error(cookie)) { - dev_err(&c->pdev->dev, "Failed to do DMA tx_submit\n"); - return -EIO; - } - - dma_async_issue_pending(c->dma_chan); - - if (!wait_for_completion_io_timeout(&c->dma_done, - msecs_to_jiffies(20))) { - dmaengine_terminate_sync(c->dma_chan); - return -ETIMEDOUT; - } - - return 0; -} - -static int omap2_onenand_read_bufferram(struct mtd_info *mtd, int area, - unsigned char *buffer, int offset, - size_t count) -{ - struct omap2_onenand *c = container_of(mtd, struct omap2_onenand, mtd); - struct onenand_chip *this = mtd->priv; - dma_addr_t dma_src, dma_dst; - int bram_offset; - void *buf = (void *)buffer; - size_t xtra; - int ret; - - bram_offset = omap2_onenand_bufferram_offset(mtd, area) + area + offset; - if (bram_offset & 3 || (size_t)buf & 3 || count < 384) - goto out_copy; - - /* panic_write() may be in an interrupt context */ - if (in_interrupt() || oops_in_progress) - goto out_copy; - - if (buf >= high_memory) { - struct page *p1; - - if (((size_t)buf & PAGE_MASK) != - ((size_t)(buf + count - 1) & PAGE_MASK)) - goto out_copy; - p1 = vmalloc_to_page(buf); - if (!p1) - goto out_copy; - buf = page_address(p1) + ((size_t)buf & ~PAGE_MASK); - } - - xtra = count & 3; - if (xtra) { - count -= xtra; - memcpy(buf + count, this->base + bram_offset + count, xtra); - } - - dma_src = c->phys_base + bram_offset; - dma_dst = dma_map_single(&c->pdev->dev, buf, count, DMA_FROM_DEVICE); - if (dma_mapping_error(&c->pdev->dev, dma_dst)) { - dev_err(&c->pdev->dev, - "Couldn't DMA map a %d byte buffer\n", - count); - goto out_copy; - } - - ret = omap2_onenand_dma_transfer(c, dma_src, dma_dst, count); - dma_unmap_single(&c->pdev->dev, dma_dst, count, DMA_FROM_DEVICE); - - if (ret) { - dev_err(&c->pdev->dev, "timeout waiting for DMA\n"); - goto out_copy; - } - - return 0; - -out_copy: - memcpy(buf, this->base + bram_offset, count); - return 0; -} - -static int omap2_onenand_write_bufferram(struct mtd_info *mtd, int area, - const unsigned char *buffer, - int offset, size_t count) -{ - struct omap2_onenand *c = container_of(mtd, struct omap2_onenand, mtd); - struct onenand_chip *this = mtd->priv; - dma_addr_t dma_src, dma_dst; - int bram_offset; - void *buf = (void *)buffer; - int ret; - - bram_offset = omap2_onenand_bufferram_offset(mtd, area) + area + offset; - if (bram_offset & 3 || (size_t)buf & 3 || count < 384) - goto out_copy; - - /* panic_write() may be in an interrupt context */ - if (in_interrupt() || oops_in_progress) - goto out_copy; - - if (buf >= high_memory) { - struct page *p1; - - if (((size_t)buf & PAGE_MASK) != - ((size_t)(buf + count - 1) & PAGE_MASK)) - goto out_copy; - p1 = vmalloc_to_page(buf); - if (!p1) - goto out_copy; - buf = page_address(p1) + ((size_t)buf & ~PAGE_MASK); - } - - dma_src = dma_map_single(&c->pdev->dev, buf, count, DMA_TO_DEVICE); - dma_dst = c->phys_base + bram_offset; - if (dma_mapping_error(&c->pdev->dev, dma_src)) { - dev_err(&c->pdev->dev, - "Couldn't DMA map a %d byte buffer\n", - count); - return -1; - } - - ret = omap2_onenand_dma_transfer(c, dma_src, dma_dst, count); - dma_unmap_single(&c->pdev->dev, dma_src, count, DMA_TO_DEVICE); - - if (ret) { - dev_err(&c->pdev->dev, "timeout waiting for DMA\n"); - goto out_copy; - } - - return 0; - -out_copy: - memcpy(this->base + bram_offset, buf, count); - return 0; -} - -static void omap2_onenand_shutdown(struct platform_device *pdev) -{ - struct omap2_onenand *c = dev_get_drvdata(&pdev->dev); - - /* With certain content in the buffer RAM, the OMAP boot ROM code - * can recognize the flash chip incorrectly. Zero it out before - * soft reset. - */ - memset((__force void *)c->onenand.base, 0, ONENAND_BUFRAM_SIZE); -} - -static int omap2_onenand_probe(struct platform_device *pdev) -{ - u32 val; - dma_cap_mask_t mask; - int freq, latency, r; - struct resource *res; - struct omap2_onenand *c; - struct gpmc_onenand_info info; - struct device *dev = &pdev->dev; - struct device_node *np = dev->of_node; - - res = platform_get_resource(pdev, IORESOURCE_MEM, 0); - if (!res) { - dev_err(dev, "error getting memory resource\n"); - return -EINVAL; - } - - r = of_property_read_u32(np, "reg", &val); - if (r) { - dev_err(dev, "reg not found in DT\n"); - return r; - } - - c = devm_kzalloc(dev, sizeof(struct omap2_onenand), GFP_KERNEL); - if (!c) - return -ENOMEM; - - init_completion(&c->irq_done); - init_completion(&c->dma_done); - c->gpmc_cs = val; - c->phys_base = res->start; - - c->onenand.base = devm_ioremap_resource(dev, res); - if (IS_ERR(c->onenand.base)) - return PTR_ERR(c->onenand.base); - - c->int_gpiod = devm_gpiod_get_optional(dev, "int", GPIOD_IN); - if (IS_ERR(c->int_gpiod)) { - r = PTR_ERR(c->int_gpiod); - /* Just try again if this happens */ - if (r != -EPROBE_DEFER) - dev_err(dev, "error getting gpio: %d\n", r); - return r; - } - - if (c->int_gpiod) { - r = devm_request_irq(dev, gpiod_to_irq(c->int_gpiod), - omap2_onenand_interrupt, - IRQF_TRIGGER_RISING, "onenand", c); - if (r) - return r; - - c->onenand.wait = omap2_onenand_wait; - } - - dma_cap_zero(mask); - dma_cap_set(DMA_MEMCPY, mask); - - c->dma_chan = dma_request_channel(mask, NULL, NULL); - if (c->dma_chan) { - c->onenand.read_bufferram = omap2_onenand_read_bufferram; - c->onenand.write_bufferram = omap2_onenand_write_bufferram; - } - - c->pdev = pdev; - c->mtd.priv = &c->onenand; - c->mtd.dev.parent = dev; - mtd_set_of_node(&c->mtd, dev->of_node); - - dev_info(dev, "initializing on CS%d (0x%08lx), va %p, %s mode\n", - c->gpmc_cs, c->phys_base, c->onenand.base, - c->dma_chan ? "DMA" : "PIO"); - - if ((r = onenand_scan(&c->mtd, 1)) < 0) - goto err_release_dma; - - freq = omap2_onenand_get_freq(c->onenand.version_id); - if (freq > 0) { - switch (freq) { - case 104: - latency = 7; - break; - case 83: - latency = 6; - break; - case 66: - latency = 5; - break; - case 56: - latency = 4; - break; - default: /* 40 MHz or lower */ - latency = 3; - break; - } - - r = gpmc_omap_onenand_set_timings(dev, c->gpmc_cs, - freq, latency, &info); - if (r) - goto err_release_onenand; - - r = omap2_onenand_set_cfg(c, info.sync_read, info.sync_write, - latency, info.burst_len); - if (r) - goto err_release_onenand; - - if (info.sync_read || info.sync_write) - dev_info(dev, "optimized timings for %d MHz\n", freq); - } - - r = mtd_device_register(&c->mtd, NULL, 0); - if (r) - goto err_release_onenand; - - platform_set_drvdata(pdev, c); - - return 0; - -err_release_onenand: - onenand_release(&c->mtd); -err_release_dma: - if (c->dma_chan) - dma_release_channel(c->dma_chan); - - return r; -} - -static int omap2_onenand_remove(struct platform_device *pdev) -{ - struct omap2_onenand *c = dev_get_drvdata(&pdev->dev); - - onenand_release(&c->mtd); - if (c->dma_chan) - dma_release_channel(c->dma_chan); - omap2_onenand_shutdown(pdev); - - return 0; -} - -static const struct of_device_id omap2_onenand_id_table[] = { - { .compatible = "ti,omap2-onenand", }, - {}, -}; -MODULE_DEVICE_TABLE(of, omap2_onenand_id_table); - -static struct platform_driver omap2_onenand_driver = { - .probe = omap2_onenand_probe, - .remove = omap2_onenand_remove, - .shutdown = omap2_onenand_shutdown, - .driver = { - .name = DRIVER_NAME, - .of_match_table = omap2_onenand_id_table, - }, -}; - -module_platform_driver(omap2_onenand_driver); - -MODULE_ALIAS("platform:" DRIVER_NAME); -MODULE_LICENSE("GPL"); -MODULE_AUTHOR("Jarkko Lavinen "); -MODULE_DESCRIPTION("Glue layer for OneNAND flash on OMAP2 / OMAP3"); diff --git a/drivers/mtd/onenand/onenand_base.c b/drivers/mtd/onenand/onenand_base.c deleted file mode 100644 index 05907b1b4098..000000000000 --- a/drivers/mtd/onenand/onenand_base.c +++ /dev/null @@ -1,4031 +0,0 @@ -/* - * Copyright © 2005-2009 Samsung Electronics - * Copyright © 2007 Nokia Corporation - * - * Kyungmin Park - * - * Credits: - * Adrian Hunter : - * auto-placement support, read-while load support, various fixes - * - * Vishak G , Rohit Hagargundgi - * Flex-OneNAND support - * Amul Kumar Saha - * OTP support - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License version 2 as - * published by the Free Software Foundation. - */ - -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include - -#include - -/* - * Multiblock erase if number of blocks to erase is 2 or more. - * Maximum number of blocks for simultaneous erase is 64. - */ -#define MB_ERASE_MIN_BLK_COUNT 2 -#define MB_ERASE_MAX_BLK_COUNT 64 - -/* Default Flex-OneNAND boundary and lock respectively */ -static int flex_bdry[MAX_DIES * 2] = { -1, 0, -1, 0 }; - -module_param_array(flex_bdry, int, NULL, 0400); -MODULE_PARM_DESC(flex_bdry, "SLC Boundary information for Flex-OneNAND" - "Syntax:flex_bdry=DIE_BDRY,LOCK,..." - "DIE_BDRY: SLC boundary of the die" - "LOCK: Locking information for SLC boundary" - " : 0->Set boundary in unlocked status" - " : 1->Set boundary in locked status"); - -/* Default OneNAND/Flex-OneNAND OTP options*/ -static int otp; - -module_param(otp, int, 0400); -MODULE_PARM_DESC(otp, "Corresponding behaviour of OneNAND in OTP" - "Syntax : otp=LOCK_TYPE" - "LOCK_TYPE : Keys issued, for specific OTP Lock type" - " : 0 -> Default (No Blocks Locked)" - " : 1 -> OTP Block lock" - " : 2 -> 1st Block lock" - " : 3 -> BOTH OTP Block and 1st Block lock"); - -/* - * flexonenand_oob_128 - oob info for Flex-Onenand with 4KB page - * For now, we expose only 64 out of 80 ecc bytes - */ -static int flexonenand_ooblayout_ecc(struct mtd_info *mtd, int section, - struct mtd_oob_region *oobregion) -{ - if (section > 7) - return -ERANGE; - - oobregion->offset = (section * 16) + 6; - oobregion->length = 10; - - return 0; -} - -static int flexonenand_ooblayout_free(struct mtd_info *mtd, int section, - struct mtd_oob_region *oobregion) -{ - if (section > 7) - return -ERANGE; - - oobregion->offset = (section * 16) + 2; - oobregion->length = 4; - - return 0; -} - -static const struct mtd_ooblayout_ops flexonenand_ooblayout_ops = { - .ecc = flexonenand_ooblayout_ecc, - .free = flexonenand_ooblayout_free, -}; - -/* - * onenand_oob_128 - oob info for OneNAND with 4KB page - * - * Based on specification: - * 4Gb M-die OneNAND Flash (KFM4G16Q4M, KFN8G16Q4M). Rev. 1.3, Apr. 2010 - * - */ -static int onenand_ooblayout_128_ecc(struct mtd_info *mtd, int section, - struct mtd_oob_region *oobregion) -{ - if (section > 7) - return -ERANGE; - - oobregion->offset = (section * 16) + 7; - oobregion->length = 9; - - return 0; -} - -static int onenand_ooblayout_128_free(struct mtd_info *mtd, int section, - struct mtd_oob_region *oobregion) -{ - if (section >= 8) - return -ERANGE; - - /* - * free bytes are using the spare area fields marked as - * "Managed by internal ECC logic for Logical Sector Number area" - */ - oobregion->offset = (section * 16) + 2; - oobregion->length = 3; - - return 0; -} - -static const struct mtd_ooblayout_ops onenand_oob_128_ooblayout_ops = { - .ecc = onenand_ooblayout_128_ecc, - .free = onenand_ooblayout_128_free, -}; - -/** - * onenand_oob_32_64 - oob info for large (2KB) page - */ -static int onenand_ooblayout_32_64_ecc(struct mtd_info *mtd, int section, - struct mtd_oob_region *oobregion) -{ - if (section > 3) - return -ERANGE; - - oobregion->offset = (section * 16) + 8; - oobregion->length = 5; - - return 0; -} - -static int onenand_ooblayout_32_64_free(struct mtd_info *mtd, int section, - struct mtd_oob_region *oobregion) -{ - int sections = (mtd->oobsize / 32) * 2; - - if (section >= sections) - return -ERANGE; - - if (section & 1) { - oobregion->offset = ((section - 1) * 16) + 14; - oobregion->length = 2; - } else { - oobregion->offset = (section * 16) + 2; - oobregion->length = 3; - } - - return 0; -} - -static const struct mtd_ooblayout_ops onenand_oob_32_64_ooblayout_ops = { - .ecc = onenand_ooblayout_32_64_ecc, - .free = onenand_ooblayout_32_64_free, -}; - -static const unsigned char ffchars[] = { - 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, - 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 16 */ - 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, - 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 32 */ - 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, - 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 48 */ - 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, - 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 64 */ - 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, - 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 80 */ - 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, - 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 96 */ - 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, - 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 112 */ - 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, - 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 128 */ -}; - -/** - * onenand_readw - [OneNAND Interface] Read OneNAND register - * @param addr address to read - * - * Read OneNAND register - */ -static unsigned short onenand_readw(void __iomem *addr) -{ - return readw(addr); -} - -/** - * onenand_writew - [OneNAND Interface] Write OneNAND register with value - * @param value value to write - * @param addr address to write - * - * Write OneNAND register with value - */ -static void onenand_writew(unsigned short value, void __iomem *addr) -{ - writew(value, addr); -} - -/** - * onenand_block_address - [DEFAULT] Get block address - * @param this onenand chip data structure - * @param block the block - * @return translated block address if DDP, otherwise same - * - * Setup Start Address 1 Register (F100h) - */ -static int onenand_block_address(struct onenand_chip *this, int block) -{ - /* Device Flash Core select, NAND Flash Block Address */ - if (block & this->density_mask) - return ONENAND_DDP_CHIP1 | (block ^ this->density_mask); - - return block; -} - -/** - * onenand_bufferram_address - [DEFAULT] Get bufferram address - * @param this onenand chip data structure - * @param block the block - * @return set DBS value if DDP, otherwise 0 - * - * Setup Start Address 2 Register (F101h) for DDP - */ -static int onenand_bufferram_address(struct onenand_chip *this, int block) -{ - /* Device BufferRAM Select */ - if (block & this->density_mask) - return ONENAND_DDP_CHIP1; - - return ONENAND_DDP_CHIP0; -} - -/** - * onenand_page_address - [DEFAULT] Get page address - * @param page the page address - * @param sector the sector address - * @return combined page and sector address - * - * Setup Start Address 8 Register (F107h) - */ -static int onenand_page_address(int page, int sector) -{ - /* Flash Page Address, Flash Sector Address */ - int fpa, fsa; - - fpa = page & ONENAND_FPA_MASK; - fsa = sector & ONENAND_FSA_MASK; - - return ((fpa << ONENAND_FPA_SHIFT) | fsa); -} - -/** - * onenand_buffer_address - [DEFAULT] Get buffer address - * @param dataram1 DataRAM index - * @param sectors the sector address - * @param count the number of sectors - * @return the start buffer value - * - * Setup Start Buffer Register (F200h) - */ -static int onenand_buffer_address(int dataram1, int sectors, int count) -{ - int bsa, bsc; - - /* BufferRAM Sector Address */ - bsa = sectors & ONENAND_BSA_MASK; - - if (dataram1) - bsa |= ONENAND_BSA_DATARAM1; /* DataRAM1 */ - else - bsa |= ONENAND_BSA_DATARAM0; /* DataRAM0 */ - - /* BufferRAM Sector Count */ - bsc = count & ONENAND_BSC_MASK; - - return ((bsa << ONENAND_BSA_SHIFT) | bsc); -} - -/** - * flexonenand_block- For given address return block number - * @param this - OneNAND device structure - * @param addr - Address for which block number is needed - */ -static unsigned flexonenand_block(struct onenand_chip *this, loff_t addr) -{ - unsigned boundary, blk, die = 0; - - if (ONENAND_IS_DDP(this) && addr >= this->diesize[0]) { - die = 1; - addr -= this->diesize[0]; - } - - boundary = this->boundary[die]; - - blk = addr >> (this->erase_shift - 1); - if (blk > boundary) - blk = (blk + boundary + 1) >> 1; - - blk += die ? this->density_mask : 0; - return blk; -} - -inline unsigned onenand_block(struct onenand_chip *this, loff_t addr) -{ - if (!FLEXONENAND(this)) - return addr >> this->erase_shift; - return flexonenand_block(this, addr); -} - -/** - * flexonenand_addr - Return address of the block - * @this: OneNAND device structure - * @block: Block number on Flex-OneNAND - * - * Return address of the block - */ -static loff_t flexonenand_addr(struct onenand_chip *this, int block) -{ - loff_t ofs = 0; - int die = 0, boundary; - - if (ONENAND_IS_DDP(this) && block >= this->density_mask) { - block -= this->density_mask; - die = 1; - ofs = this->diesize[0]; - } - - boundary = this->boundary[die]; - ofs += (loff_t)block << (this->erase_shift - 1); - if (block > (boundary + 1)) - ofs += (loff_t)(block - boundary - 1) << (this->erase_shift - 1); - return ofs; -} - -loff_t onenand_addr(struct onenand_chip *this, int block) -{ - if (!FLEXONENAND(this)) - return (loff_t)block << this->erase_shift; - return flexonenand_addr(this, block); -} -EXPORT_SYMBOL(onenand_addr); - -/** - * onenand_get_density - [DEFAULT] Get OneNAND density - * @param dev_id OneNAND device ID - * - * Get OneNAND density from device ID - */ -static inline int onenand_get_density(int dev_id) -{ - int density = dev_id >> ONENAND_DEVICE_DENSITY_SHIFT; - return (density & ONENAND_DEVICE_DENSITY_MASK); -} - -/** - * flexonenand_region - [Flex-OneNAND] Return erase region of addr - * @param mtd MTD device structure - * @param addr address whose erase region needs to be identified - */ -int flexonenand_region(struct mtd_info *mtd, loff_t addr) -{ - int i; - - for (i = 0; i < mtd->numeraseregions; i++) - if (addr < mtd->eraseregions[i].offset) - break; - return i - 1; -} -EXPORT_SYMBOL(flexonenand_region); - -/** - * onenand_command - [DEFAULT] Send command to OneNAND device - * @param mtd MTD device structure - * @param cmd the command to be sent - * @param addr offset to read from or write to - * @param len number of bytes to read or write - * - * Send command to OneNAND device. This function is used for middle/large page - * devices (1KB/2KB Bytes per page) - */ -static int onenand_command(struct mtd_info *mtd, int cmd, loff_t addr, size_t len) -{ - struct onenand_chip *this = mtd->priv; - int value, block, page; - - /* Address translation */ - switch (cmd) { - case ONENAND_CMD_UNLOCK: - case ONENAND_CMD_LOCK: - case ONENAND_CMD_LOCK_TIGHT: - case ONENAND_CMD_UNLOCK_ALL: - block = -1; - page = -1; - break; - - case FLEXONENAND_CMD_PI_ACCESS: - /* addr contains die index */ - block = addr * this->density_mask; - page = -1; - break; - - case ONENAND_CMD_ERASE: - case ONENAND_CMD_MULTIBLOCK_ERASE: - case ONENAND_CMD_ERASE_VERIFY: - case ONENAND_CMD_BUFFERRAM: - case ONENAND_CMD_OTP_ACCESS: - block = onenand_block(this, addr); - page = -1; - break; - - case FLEXONENAND_CMD_READ_PI: - cmd = ONENAND_CMD_READ; - block = addr * this->density_mask; - page = 0; - break; - - default: - block = onenand_block(this, addr); - if (FLEXONENAND(this)) - page = (int) (addr - onenand_addr(this, block))>>\ - this->page_shift; - else - page = (int) (addr >> this->page_shift); - if (ONENAND_IS_2PLANE(this)) { - /* Make the even block number */ - block &= ~1; - /* Is it the odd plane? */ - if (addr & this->writesize) - block++; - page >>= 1; - } - page &= this->page_mask; - break; - } - - /* NOTE: The setting order of the registers is very important! */ - if (cmd == ONENAND_CMD_BUFFERRAM) { - /* Select DataRAM for DDP */ - value = onenand_bufferram_address(this, block); - this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2); - - if (ONENAND_IS_2PLANE(this) || ONENAND_IS_4KB_PAGE(this)) - /* It is always BufferRAM0 */ - ONENAND_SET_BUFFERRAM0(this); - else - /* Switch to the next data buffer */ - ONENAND_SET_NEXT_BUFFERRAM(this); - - return 0; - } - - if (block != -1) { - /* Write 'DFS, FBA' of Flash */ - value = onenand_block_address(this, block); - this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1); - - /* Select DataRAM for DDP */ - value = onenand_bufferram_address(this, block); - this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2); - } - - if (page != -1) { - /* Now we use page size operation */ - int sectors = 0, count = 0; - int dataram; - - switch (cmd) { - case FLEXONENAND_CMD_RECOVER_LSB: - case ONENAND_CMD_READ: - case ONENAND_CMD_READOOB: - if (ONENAND_IS_4KB_PAGE(this)) - /* It is always BufferRAM0 */ - dataram = ONENAND_SET_BUFFERRAM0(this); - else - dataram = ONENAND_SET_NEXT_BUFFERRAM(this); - break; - - default: - if (ONENAND_IS_2PLANE(this) && cmd == ONENAND_CMD_PROG) - cmd = ONENAND_CMD_2X_PROG; - dataram = ONENAND_CURRENT_BUFFERRAM(this); - break; - } - - /* Write 'FPA, FSA' of Flash */ - value = onenand_page_address(page, sectors); - this->write_word(value, this->base + ONENAND_REG_START_ADDRESS8); - - /* Write 'BSA, BSC' of DataRAM */ - value = onenand_buffer_address(dataram, sectors, count); - this->write_word(value, this->base + ONENAND_REG_START_BUFFER); - } - - /* Interrupt clear */ - this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT); - - /* Write command */ - this->write_word(cmd, this->base + ONENAND_REG_COMMAND); - - return 0; -} - -/** - * onenand_read_ecc - return ecc status - * @param this onenand chip structure - */ -static inline int onenand_read_ecc(struct onenand_chip *this) -{ - int ecc, i, result = 0; - - if (!FLEXONENAND(this) && !ONENAND_IS_4KB_PAGE(this)) - return this->read_word(this->base + ONENAND_REG_ECC_STATUS); - - for (i = 0; i < 4; i++) { - ecc = this->read_word(this->base + ONENAND_REG_ECC_STATUS + i*2); - if (likely(!ecc)) - continue; - if (ecc & FLEXONENAND_UNCORRECTABLE_ERROR) - return ONENAND_ECC_2BIT_ALL; - else - result = ONENAND_ECC_1BIT_ALL; - } - - return result; -} - -/** - * onenand_wait - [DEFAULT] wait until the command is done - * @param mtd MTD device structure - * @param state state to select the max. timeout value - * - * Wait for command done. This applies to all OneNAND command - * Read can take up to 30us, erase up to 2ms and program up to 350us - * according to general OneNAND specs - */ -static int onenand_wait(struct mtd_info *mtd, int state) -{ - struct onenand_chip * this = mtd->priv; - unsigned long timeout; - unsigned int flags = ONENAND_INT_MASTER; - unsigned int interrupt = 0; - unsigned int ctrl; - - /* The 20 msec is enough */ - timeout = jiffies + msecs_to_jiffies(20); - while (time_before(jiffies, timeout)) { - interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT); - - if (interrupt & flags) - break; - - if (state != FL_READING && state != FL_PREPARING_ERASE) - cond_resched(); - } - /* To get correct interrupt status in timeout case */ - interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT); - - ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS); - - /* - * In the Spec. it checks the controller status first - * However if you get the correct information in case of - * power off recovery (POR) test, it should read ECC status first - */ - if (interrupt & ONENAND_INT_READ) { - int ecc = onenand_read_ecc(this); - if (ecc) { - if (ecc & ONENAND_ECC_2BIT_ALL) { - printk(KERN_ERR "%s: ECC error = 0x%04x\n", - __func__, ecc); - mtd->ecc_stats.failed++; - return -EBADMSG; - } else if (ecc & ONENAND_ECC_1BIT_ALL) { - printk(KERN_DEBUG "%s: correctable ECC error = 0x%04x\n", - __func__, ecc); - mtd->ecc_stats.corrected++; - } - } - } else if (state == FL_READING) { - printk(KERN_ERR "%s: read timeout! ctrl=0x%04x intr=0x%04x\n", - __func__, ctrl, interrupt); - return -EIO; - } - - if (state == FL_PREPARING_ERASE && !(interrupt & ONENAND_INT_ERASE)) { - printk(KERN_ERR "%s: mb erase timeout! ctrl=0x%04x intr=0x%04x\n", - __func__, ctrl, interrupt); - return -EIO; - } - - if (!(interrupt & ONENAND_INT_MASTER)) { - printk(KERN_ERR "%s: timeout! ctrl=0x%04x intr=0x%04x\n", - __func__, ctrl, interrupt); - return -EIO; - } - - /* If there's controller error, it's a real error */ - if (ctrl & ONENAND_CTRL_ERROR) { - printk(KERN_ERR "%s: controller error = 0x%04x\n", - __func__, ctrl); - if (ctrl & ONENAND_CTRL_LOCK) - printk(KERN_ERR "%s: it's locked error.\n", __func__); - return -EIO; - } - - return 0; -} - -/* - * onenand_interrupt - [DEFAULT] onenand interrupt handler - * @param irq onenand interrupt number - * @param dev_id interrupt data - * - * complete the work - */ -static irqreturn_t onenand_interrupt(int irq, void *data) -{ - struct onenand_chip *this = data; - - /* To handle shared interrupt */ - if (!this->complete.done) - complete(&this->complete); - - return IRQ_HANDLED; -} - -/* - * onenand_interrupt_wait - [DEFAULT] wait until the command is done - * @param mtd MTD device structure - * @param state state to select the max. timeout value - * - * Wait for command done. - */ -static int onenand_interrupt_wait(struct mtd_info *mtd, int state) -{ - struct onenand_chip *this = mtd->priv; - - wait_for_completion(&this->complete); - - return onenand_wait(mtd, state); -} - -/* - * onenand_try_interrupt_wait - [DEFAULT] try interrupt wait - * @param mtd MTD device structure - * @param state state to select the max. timeout value - * - * Try interrupt based wait (It is used one-time) - */ -static int onenand_try_interrupt_wait(struct mtd_info *mtd, int state) -{ - struct onenand_chip *this = mtd->priv; - unsigned long remain, timeout; - - /* We use interrupt wait first */ - this->wait = onenand_interrupt_wait; - - timeout = msecs_to_jiffies(100); - remain = wait_for_completion_timeout(&this->complete, timeout); - if (!remain) { - printk(KERN_INFO "OneNAND: There's no interrupt. " - "We use the normal wait\n"); - - /* Release the irq */ - free_irq(this->irq, this); - - this->wait = onenand_wait; - } - - return onenand_wait(mtd, state); -} - -/* - * onenand_setup_wait - [OneNAND Interface] setup onenand wait method - * @param mtd MTD device structure - * - * There's two method to wait onenand work - * 1. polling - read interrupt status register - * 2. interrupt - use the kernel interrupt method - */ -static void onenand_setup_wait(struct mtd_info *mtd) -{ - struct onenand_chip *this = mtd->priv; - int syscfg; - - init_completion(&this->complete); - - if (this->irq <= 0) { - this->wait = onenand_wait; - return; - } - - if (request_irq(this->irq, &onenand_interrupt, - IRQF_SHARED, "onenand", this)) { - /* If we can't get irq, use the normal wait */ - this->wait = onenand_wait; - return; - } - - /* Enable interrupt */ - syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1); - syscfg |= ONENAND_SYS_CFG1_IOBE; - this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1); - - this->wait = onenand_try_interrupt_wait; -} - -/** - * onenand_bufferram_offset - [DEFAULT] BufferRAM offset - * @param mtd MTD data structure - * @param area BufferRAM area - * @return offset given area - * - * Return BufferRAM offset given area - */ -static inline int onenand_bufferram_offset(struct mtd_info *mtd, int area) -{ - struct onenand_chip *this = mtd->priv; - - if (ONENAND_CURRENT_BUFFERRAM(this)) { - /* Note: the 'this->writesize' is a real page size */ - if (area == ONENAND_DATARAM) - return this->writesize; - if (area == ONENAND_SPARERAM) - return mtd->oobsize; - } - - return 0; -} - -/** - * onenand_read_bufferram - [OneNAND Interface] Read the bufferram area - * @param mtd MTD data structure - * @param area BufferRAM area - * @param buffer the databuffer to put/get data - * @param offset offset to read from or write to - * @param count number of bytes to read/write - * - * Read the BufferRAM area - */ -static int onenand_read_bufferram(struct mtd_info *mtd, int area, - unsigned char *buffer, int offset, size_t count) -{ - struct onenand_chip *this = mtd->priv; - void __iomem *bufferram; - - bufferram = this->base + area; - - bufferram += onenand_bufferram_offset(mtd, area); - - if (ONENAND_CHECK_BYTE_ACCESS(count)) { - unsigned short word; - - /* Align with word(16-bit) size */ - count--; - - /* Read word and save byte */ - word = this->read_word(bufferram + offset + count); - buffer[count] = (word & 0xff); - } - - memcpy(buffer, bufferram + offset, count); - - return 0; -} - -/** - * onenand_sync_read_bufferram - [OneNAND Interface] Read the bufferram area with Sync. Burst mode - * @param mtd MTD data structure - * @param area BufferRAM area - * @param buffer the databuffer to put/get data - * @param offset offset to read from or write to - * @param count number of bytes to read/write - * - * Read the BufferRAM area with Sync. Burst Mode - */ -static int onenand_sync_read_bufferram(struct mtd_info *mtd, int area, - unsigned char *buffer, int offset, size_t count) -{ - struct onenand_chip *this = mtd->priv; - void __iomem *bufferram; - - bufferram = this->base + area; - - bufferram += onenand_bufferram_offset(mtd, area); - - this->mmcontrol(mtd, ONENAND_SYS_CFG1_SYNC_READ); - - if (ONENAND_CHECK_BYTE_ACCESS(count)) { - unsigned short word; - - /* Align with word(16-bit) size */ - count--; - - /* Read word and save byte */ - word = this->read_word(bufferram + offset + count); - buffer[count] = (word & 0xff); - } - - memcpy(buffer, bufferram + offset, count); - - this->mmcontrol(mtd, 0); - - return 0; -} - -/** - * onenand_write_bufferram - [OneNAND Interface] Write the bufferram area - * @param mtd MTD data structure - * @param area BufferRAM area - * @param buffer the databuffer to put/get data - * @param offset offset to read from or write to - * @param count number of bytes to read/write - * - * Write the BufferRAM area - */ -static int onenand_write_bufferram(struct mtd_info *mtd, int area, - const unsigned char *buffer, int offset, size_t count) -{ - struct onenand_chip *this = mtd->priv; - void __iomem *bufferram; - - bufferram = this->base + area; - - bufferram += onenand_bufferram_offset(mtd, area); - - if (ONENAND_CHECK_BYTE_ACCESS(count)) { - unsigned short word; - int byte_offset; - - /* Align with word(16-bit) size */ - count--; - - /* Calculate byte access offset */ - byte_offset = offset + count; - - /* Read word and save byte */ - word = this->read_word(bufferram + byte_offset); - word = (word & ~0xff) | buffer[count]; - this->write_word(word, bufferram + byte_offset); - } - - memcpy(bufferram + offset, buffer, count); - - return 0; -} - -/** - * onenand_get_2x_blockpage - [GENERIC] Get blockpage at 2x program mode - * @param mtd MTD data structure - * @param addr address to check - * @return blockpage address - * - * Get blockpage address at 2x program mode - */ -static int onenand_get_2x_blockpage(struct mtd_info *mtd, loff_t addr) -{ - struct onenand_chip *this = mtd->priv; - int blockpage, block, page; - - /* Calculate the even block number */ - block = (int) (addr >> this->erase_shift) & ~1; - /* Is it the odd plane? */ - if (addr & this->writesize) - block++; - page = (int) (addr >> (this->page_shift + 1)) & this->page_mask; - blockpage = (block << 7) | page; - - return blockpage; -} - -/** - * onenand_check_bufferram - [GENERIC] Check BufferRAM information - * @param mtd MTD data structure - * @param addr address to check - * @return 1 if there are valid data, otherwise 0 - * - * Check bufferram if there is data we required - */ -static int onenand_check_bufferram(struct mtd_info *mtd, loff_t addr) -{ - struct onenand_chip *this = mtd->priv; - int blockpage, found = 0; - unsigned int i; - - if (ONENAND_IS_2PLANE(this)) - blockpage = onenand_get_2x_blockpage(mtd, addr); - else - blockpage = (int) (addr >> this->page_shift); - - /* Is there valid data? */ - i = ONENAND_CURRENT_BUFFERRAM(this); - if (this->bufferram[i].blockpage == blockpage) - found = 1; - else { - /* Check another BufferRAM */ - i = ONENAND_NEXT_BUFFERRAM(this); - if (this->bufferram[i].blockpage == blockpage) { - ONENAND_SET_NEXT_BUFFERRAM(this); - found = 1; - } - } - - if (found && ONENAND_IS_DDP(this)) { - /* Select DataRAM for DDP */ - int block = onenand_block(this, addr); - int value = onenand_bufferram_address(this, block); - this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2); - } - - return found; -} - -/** - * onenand_update_bufferram - [GENERIC] Update BufferRAM information - * @param mtd MTD data structure - * @param addr address to update - * @param valid valid flag - * - * Update BufferRAM information - */ -static void onenand_update_bufferram(struct mtd_info *mtd, loff_t addr, - int valid) -{ - struct onenand_chip *this = mtd->priv; - int blockpage; - unsigned int i; - - if (ONENAND_IS_2PLANE(this)) - blockpage = onenand_get_2x_blockpage(mtd, addr); - else - blockpage = (int) (addr >> this->page_shift); - - /* Invalidate another BufferRAM */ - i = ONENAND_NEXT_BUFFERRAM(this); - if (this->bufferram[i].blockpage == blockpage) - this->bufferram[i].blockpage = -1; - - /* Update BufferRAM */ - i = ONENAND_CURRENT_BUFFERRAM(this); - if (valid) - this->bufferram[i].blockpage = blockpage; - else - this->bufferram[i].blockpage = -1; -} - -/** - * onenand_invalidate_bufferram - [GENERIC] Invalidate BufferRAM information - * @param mtd MTD data structure - * @param addr start address to invalidate - * @param len length to invalidate - * - * Invalidate BufferRAM information - */ -static void onenand_invalidate_bufferram(struct mtd_info *mtd, loff_t addr, - unsigned int len) -{ - struct onenand_chip *this = mtd->priv; - int i; - loff_t end_addr = addr + len; - - /* Invalidate BufferRAM */ - for (i = 0; i < MAX_BUFFERRAM; i++) { - loff_t buf_addr = this->bufferram[i].blockpage << this->page_shift; - if (buf_addr >= addr && buf_addr < end_addr) - this->bufferram[i].blockpage = -1; - } -} - -/** - * onenand_get_device - [GENERIC] Get chip for selected access - * @param mtd MTD device structure - * @param new_state the state which is requested - * - * Get the device and lock it for exclusive access - */ -static int onenand_get_device(struct mtd_info *mtd, int new_state) -{ - struct onenand_chip *this = mtd->priv; - DECLARE_WAITQUEUE(wait, current); - - /* - * Grab the lock and see if the device is available - */ - while (1) { - spin_lock(&this->chip_lock); - if (this->state == FL_READY) { - this->state = new_state; - spin_unlock(&this->chip_lock); - if (new_state != FL_PM_SUSPENDED && this->enable) - this->enable(mtd); - break; - } - if (new_state == FL_PM_SUSPENDED) { - spin_unlock(&this->chip_lock); - return (this->state == FL_PM_SUSPENDED) ? 0 : -EAGAIN; - } - set_current_state(TASK_UNINTERRUPTIBLE); - add_wait_queue(&this->wq, &wait); - spin_unlock(&this->chip_lock); - schedule(); - remove_wait_queue(&this->wq, &wait); - } - - return 0; -} - -/** - * onenand_release_device - [GENERIC] release chip - * @param mtd MTD device structure - * - * Deselect, release chip lock and wake up anyone waiting on the device - */ -static void onenand_release_device(struct mtd_info *mtd) -{ - struct onenand_chip *this = mtd->priv; - - if (this->state != FL_PM_SUSPENDED && this->disable) - this->disable(mtd); - /* Release the chip */ - spin_lock(&this->chip_lock); - this->state = FL_READY; - wake_up(&this->wq); - spin_unlock(&this->chip_lock); -} - -/** - * onenand_transfer_auto_oob - [INTERN] oob auto-placement transfer - * @param mtd MTD device structure - * @param buf destination address - * @param column oob offset to read from - * @param thislen oob length to read - */ -static int onenand_transfer_auto_oob(struct mtd_info *mtd, uint8_t *buf, int column, - int thislen) -{ - struct onenand_chip *this = mtd->priv; - int ret; - - this->read_bufferram(mtd, ONENAND_SPARERAM, this->oob_buf, 0, - mtd->oobsize); - ret = mtd_ooblayout_get_databytes(mtd, buf, this->oob_buf, - column, thislen); - if (ret) - return ret; - - return 0; -} - -/** - * onenand_recover_lsb - [Flex-OneNAND] Recover LSB page data - * @param mtd MTD device structure - * @param addr address to recover - * @param status return value from onenand_wait / onenand_bbt_wait - * - * MLC NAND Flash cell has paired pages - LSB page and MSB page. LSB page has - * lower page address and MSB page has higher page address in paired pages. - * If power off occurs during MSB page program, the paired LSB page data can - * become corrupt. LSB page recovery read is a way to read LSB page though page - * data are corrupted. When uncorrectable error occurs as a result of LSB page - * read after power up, issue LSB page recovery read. - */ -static int onenand_recover_lsb(struct mtd_info *mtd, loff_t addr, int status) -{ - struct onenand_chip *this = mtd->priv; - int i; - - /* Recovery is only for Flex-OneNAND */ - if (!FLEXONENAND(this)) - return status; - - /* check if we failed due to uncorrectable error */ - if (!mtd_is_eccerr(status) && status != ONENAND_BBT_READ_ECC_ERROR) - return status; - - /* check if address lies in MLC region */ - i = flexonenand_region(mtd, addr); - if (mtd->eraseregions[i].erasesize < (1 << this->erase_shift)) - return status; - - /* We are attempting to reread, so decrement stats.failed - * which was incremented by onenand_wait due to read failure - */ - printk(KERN_INFO "%s: Attempting to recover from uncorrectable read\n", - __func__); - mtd->ecc_stats.failed--; - - /* Issue the LSB page recovery command */ - this->command(mtd, FLEXONENAND_CMD_RECOVER_LSB, addr, this->writesize); - return this->wait(mtd, FL_READING); -} - -/** - * onenand_mlc_read_ops_nolock - MLC OneNAND read main and/or out-of-band - * @param mtd MTD device structure - * @param from offset to read from - * @param ops: oob operation description structure - * - * MLC OneNAND / Flex-OneNAND has 4KB page size and 4KB dataram. - * So, read-while-load is not present. - */ -static int onenand_mlc_read_ops_nolock(struct mtd_info *mtd, loff_t from, - struct mtd_oob_ops *ops) -{ - struct onenand_chip *this = mtd->priv; - struct mtd_ecc_stats stats; - size_t len = ops->len; - size_t ooblen = ops->ooblen; - u_char *buf = ops->datbuf; - u_char *oobbuf = ops->oobbuf; - int read = 0, column, thislen; - int oobread = 0, oobcolumn, thisooblen, oobsize; - int ret = 0; - int writesize = this->writesize; - - pr_debug("%s: from = 0x%08x, len = %i\n", __func__, (unsigned int)from, - (int)len); - - oobsize = mtd_oobavail(mtd, ops); - oobcolumn = from & (mtd->oobsize - 1); - - /* Do not allow reads past end of device */ - if (from + len > mtd->size) { - printk(KERN_ERR "%s: Attempt read beyond end of device\n", - __func__); - ops->retlen = 0; - ops->oobretlen = 0; - return -EINVAL; - } - - stats = mtd->ecc_stats; - - while (read < len) { - cond_resched(); - - thislen = min_t(int, writesize, len - read); - - column = from & (writesize - 1); - if (column + thislen > writesize) - thislen = writesize - column; - - if (!onenand_check_bufferram(mtd, from)) { - this->command(mtd, ONENAND_CMD_READ, from, writesize); - - ret = this->wait(mtd, FL_READING); - if (unlikely(ret)) - ret = onenand_recover_lsb(mtd, from, ret); - onenand_update_bufferram(mtd, from, !ret); - if (mtd_is_eccerr(ret)) - ret = 0; - if (ret) - break; - } - - this->read_bufferram(mtd, ONENAND_DATARAM, buf, column, thislen); - if (oobbuf) { - thisooblen = oobsize - oobcolumn; - thisooblen = min_t(int, thisooblen, ooblen - oobread); - - if (ops->mode == MTD_OPS_AUTO_OOB) - onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen); - else - this->read_bufferram(mtd, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen); - oobread += thisooblen; - oobbuf += thisooblen; - oobcolumn = 0; - } - - read += thislen; - if (read == len) - break; - - from += thislen; - buf += thislen; - } - - /* - * Return success, if no ECC failures, else -EBADMSG - * fs driver will take care of that, because - * retlen == desired len and result == -EBADMSG - */ - ops->retlen = read; - ops->oobretlen = oobread; - - if (ret) - return ret; - - if (mtd->ecc_stats.failed - stats.failed) - return -EBADMSG; - - /* return max bitflips per ecc step; ONENANDs correct 1 bit only */ - return mtd->ecc_stats.corrected != stats.corrected ? 1 : 0; -} - -/** - * onenand_read_ops_nolock - [OneNAND Interface] OneNAND read main and/or out-of-band - * @param mtd MTD device structure - * @param from offset to read from - * @param ops: oob operation description structure - * - * OneNAND read main and/or out-of-band data - */ -static int onenand_read_ops_nolock(struct mtd_info *mtd, loff_t from, - struct mtd_oob_ops *ops) -{ - struct onenand_chip *this = mtd->priv; - struct mtd_ecc_stats stats; - size_t len = ops->len; - size_t ooblen = ops->ooblen; - u_char *buf = ops->datbuf; - u_char *oobbuf = ops->oobbuf; - int read = 0, column, thislen; - int oobread = 0, oobcolumn, thisooblen, oobsize; - int ret = 0, boundary = 0; - int writesize = this->writesize; - - pr_debug("%s: from = 0x%08x, len = %i\n", __func__, (unsigned int)from, - (int)len); - - oobsize = mtd_oobavail(mtd, ops); - oobcolumn = from & (mtd->oobsize - 1); - - /* Do not allow reads past end of device */ - if ((from + len) > mtd->size) { - printk(KERN_ERR "%s: Attempt read beyond end of device\n", - __func__); - ops->retlen = 0; - ops->oobretlen = 0; - return -EINVAL; - } - - stats = mtd->ecc_stats; - - /* Read-while-load method */ - - /* Do first load to bufferRAM */ - if (read < len) { - if (!onenand_check_bufferram(mtd, from)) { - this->command(mtd, ONENAND_CMD_READ, from, writesize); - ret = this->wait(mtd, FL_READING); - onenand_update_bufferram(mtd, from, !ret); - if (mtd_is_eccerr(ret)) - ret = 0; - } - } - - thislen = min_t(int, writesize, len - read); - column = from & (writesize - 1); - if (column + thislen > writesize) - thislen = writesize - column; - - while (!ret) { - /* If there is more to load then start next load */ - from += thislen; - if (read + thislen < len) { - this->command(mtd, ONENAND_CMD_READ, from, writesize); - /* - * Chip boundary handling in DDP - * Now we issued chip 1 read and pointed chip 1 - * bufferram so we have to point chip 0 bufferram. - */ - if (ONENAND_IS_DDP(this) && - unlikely(from == (this->chipsize >> 1))) { - this->write_word(ONENAND_DDP_CHIP0, this->base + ONENAND_REG_START_ADDRESS2); - boundary = 1; - } else - boundary = 0; - ONENAND_SET_PREV_BUFFERRAM(this); - } - /* While load is going, read from last bufferRAM */ - this->read_bufferram(mtd, ONENAND_DATARAM, buf, column, thislen); - - /* Read oob area if needed */ - if (oobbuf) { - thisooblen = oobsize - oobcolumn; - thisooblen = min_t(int, thisooblen, ooblen - oobread); - - if (ops->mode == MTD_OPS_AUTO_OOB) - onenand_transfer_auto_oob(mtd, oobbuf, oobcolumn, thisooblen); - else - this->read_bufferram(mtd, ONENAND_SPARERAM, oobbuf, oobcolumn, thisooblen); - oobread += thisooblen; - oobbuf += thisooblen; - oobcolumn = 0; - } - - /* See if we are done */ - read += thislen; - if (read == len) - break; - /* Set up for next read from bufferRAM */ - if (unlikely(boundary)) - this->write_word(ONENAND_DDP_CHIP1, this->base + ONENAND_REG_START_ADDRESS2); - ONENAND_SET_NEXT_BUFFERRAM(this); - buf += thislen; - thislen = min_t(int, writesize, len - read); - column = 0; - cond_resched(); - /* Now wait for load */ - ret = this->wait(mtd, FL_READING); - onenand_update_bufferram(mtd, from, !ret); - if (mtd_is_eccerr(ret)) - ret = 0; - } - - /* - * Return success, if no ECC failures, else -EBADMSG - * fs driver will take care of that, because - * retlen == desired len and result == -EBADMSG - */ - ops->retlen = read; - ops->oobretlen = oobread; - - if (ret) - return ret; - - if (mtd->ecc_stats.failed - stats.failed) - return -EBADMSG; - - /* return max bitflips per ecc step; ONENANDs correct 1 bit only */ - return mtd->ecc_stats.corrected != stats.corrected ? 1 : 0; -} - -/** - * onenand_read_oob_nolock - [MTD Interface] OneNAND read out-of-band - * @param mtd MTD device structure - * @param from offset to read from - * @param ops: oob operation description structure - * - * OneNAND read out-of-band data from the spare area - */ -static int onenand_read_oob_nolock(struct mtd_info *mtd, loff_t from, - struct mtd_oob_ops *ops) -{ - struct onenand_chip *this = mtd->priv; - struct mtd_ecc_stats stats; - int read = 0, thislen, column, oobsize; - size_t len = ops->ooblen; - unsigned int mode = ops->mode; - u_char *buf = ops->oobbuf; - int ret = 0, readcmd; - - from += ops->ooboffs; - - pr_debug("%s: from = 0x%08x, len = %i\n", __func__, (unsigned int)from, - (int)len); - - /* Initialize return length value */ - ops->oobretlen = 0; - - if (mode == MTD_OPS_AUTO_OOB) - oobsize = mtd->oobavail; - else - oobsize = mtd->oobsize; - - column = from & (mtd->oobsize - 1); - - if (unlikely(column >= oobsize)) { - printk(KERN_ERR "%s: Attempted to start read outside oob\n", - __func__); - return -EINVAL; - } - - stats = mtd->ecc_stats; - - readcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB; - - while (read < len) { - cond_resched(); - - thislen = oobsize - column; - thislen = min_t(int, thislen, len); - - this->command(mtd, readcmd, from, mtd->oobsize); - - onenand_update_bufferram(mtd, from, 0); - - ret = this->wait(mtd, FL_READING); - if (unlikely(ret)) - ret = onenand_recover_lsb(mtd, from, ret); - - if (ret && !mtd_is_eccerr(ret)) { - printk(KERN_ERR "%s: read failed = 0x%x\n", - __func__, ret); - break; - } - - if (mode == MTD_OPS_AUTO_OOB) - onenand_transfer_auto_oob(mtd, buf, column, thislen); - else - this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen); - - read += thislen; - - if (read == len) - break; - - buf += thislen; - - /* Read more? */ - if (read < len) { - /* Page size */ - from += mtd->writesize; - column = 0; - } - } - - ops->oobretlen = read; - - if (ret) - return ret; - - if (mtd->ecc_stats.failed - stats.failed) - return -EBADMSG; - - return 0; -} - -/** - * onenand_read_oob - [MTD Interface] Read main and/or out-of-band - * @param mtd: MTD device structure - * @param from: offset to read from - * @param ops: oob operation description structure - - * Read main and/or out-of-band - */ -static int onenand_read_oob(struct mtd_info *mtd, loff_t from, - struct mtd_oob_ops *ops) -{ - struct onenand_chip *this = mtd->priv; - int ret; - - switch (ops->mode) { - case MTD_OPS_PLACE_OOB: - case MTD_OPS_AUTO_OOB: - break; - case MTD_OPS_RAW: - /* Not implemented yet */ - default: - return -EINVAL; - } - - onenand_get_device(mtd, FL_READING); - if (ops->datbuf) - ret = ONENAND_IS_4KB_PAGE(this) ? - onenand_mlc_read_ops_nolock(mtd, from, ops) : - onenand_read_ops_nolock(mtd, from, ops); - else - ret = onenand_read_oob_nolock(mtd, from, ops); - onenand_release_device(mtd); - - return ret; -} - -/** - * onenand_bbt_wait - [DEFAULT] wait until the command is done - * @param mtd MTD device structure - * @param state state to select the max. timeout value - * - * Wait for command done. - */ -static int onenand_bbt_wait(struct mtd_info *mtd, int state) -{ - struct onenand_chip *this = mtd->priv; - unsigned long timeout; - unsigned int interrupt, ctrl, ecc, addr1, addr8; - - /* The 20 msec is enough */ - timeout = jiffies + msecs_to_jiffies(20); - while (time_before(jiffies, timeout)) { - interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT); - if (interrupt & ONENAND_INT_MASTER) - break; - } - /* To get correct interrupt status in timeout case */ - interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT); - ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS); - addr1 = this->read_word(this->base + ONENAND_REG_START_ADDRESS1); - addr8 = this->read_word(this->base + ONENAND_REG_START_ADDRESS8); - - if (interrupt & ONENAND_INT_READ) { - ecc = onenand_read_ecc(this); - if (ecc & ONENAND_ECC_2BIT_ALL) { - printk(KERN_DEBUG "%s: ecc 0x%04x ctrl 0x%04x " - "intr 0x%04x addr1 %#x addr8 %#x\n", - __func__, ecc, ctrl, interrupt, addr1, addr8); - return ONENAND_BBT_READ_ECC_ERROR; - } - } else { - printk(KERN_ERR "%s: read timeout! ctrl 0x%04x " - "intr 0x%04x addr1 %#x addr8 %#x\n", - __func__, ctrl, interrupt, addr1, addr8); - return ONENAND_BBT_READ_FATAL_ERROR; - } - - /* Initial bad block case: 0x2400 or 0x0400 */ - if (ctrl & ONENAND_CTRL_ERROR) { - printk(KERN_DEBUG "%s: ctrl 0x%04x intr 0x%04x addr1 %#x " - "addr8 %#x\n", __func__, ctrl, interrupt, addr1, addr8); - return ONENAND_BBT_READ_ERROR; - } - - return 0; -} - -/** - * onenand_bbt_read_oob - [MTD Interface] OneNAND read out-of-band for bbt scan - * @param mtd MTD device structure - * @param from offset to read from - * @param ops oob operation description structure - * - * OneNAND read out-of-band data from the spare area for bbt scan - */ -int onenand_bbt_read_oob(struct mtd_info *mtd, loff_t from, - struct mtd_oob_ops *ops) -{ - struct onenand_chip *this = mtd->priv; - int read = 0, thislen, column; - int ret = 0, readcmd; - size_t len = ops->ooblen; - u_char *buf = ops->oobbuf; - - pr_debug("%s: from = 0x%08x, len = %zi\n", __func__, (unsigned int)from, - len); - - /* Initialize return value */ - ops->oobretlen = 0; - - /* Do not allow reads past end of device */ - if (unlikely((from + len) > mtd->size)) { - printk(KERN_ERR "%s: Attempt read beyond end of device\n", - __func__); - return ONENAND_BBT_READ_FATAL_ERROR; - } - - /* Grab the lock and see if the device is available */ - onenand_get_device(mtd, FL_READING); - - column = from & (mtd->oobsize - 1); - - readcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB; - - while (read < len) { - cond_resched(); - - thislen = mtd->oobsize - column; - thislen = min_t(int, thislen, len); - - this->command(mtd, readcmd, from, mtd->oobsize); - - onenand_update_bufferram(mtd, from, 0); - - ret = this->bbt_wait(mtd, FL_READING); - if (unlikely(ret)) - ret = onenand_recover_lsb(mtd, from, ret); - - if (ret) - break; - - this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen); - read += thislen; - if (read == len) - break; - - buf += thislen; - - /* Read more? */ - if (read < len) { - /* Update Page size */ - from += this->writesize; - column = 0; - } - } - - /* Deselect and wake up anyone waiting on the device */ - onenand_release_device(mtd); - - ops->oobretlen = read; - return ret; -} - -#ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE -/** - * onenand_verify_oob - [GENERIC] verify the oob contents after a write - * @param mtd MTD device structure - * @param buf the databuffer to verify - * @param to offset to read from - */ -static int onenand_verify_oob(struct mtd_info *mtd, const u_char *buf, loff_t to) -{ - struct onenand_chip *this = mtd->priv; - u_char *oob_buf = this->oob_buf; - int status, i, readcmd; - - readcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ : ONENAND_CMD_READOOB; - - this->command(mtd, readcmd, to, mtd->oobsize); - onenand_update_bufferram(mtd, to, 0); - status = this->wait(mtd, FL_READING); - if (status) - return status; - - this->read_bufferram(mtd, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize); - for (i = 0; i < mtd->oobsize; i++) - if (buf[i] != 0xFF && buf[i] != oob_buf[i]) - return -EBADMSG; - - return 0; -} - -/** - * onenand_verify - [GENERIC] verify the chip contents after a write - * @param mtd MTD device structure - * @param buf the databuffer to verify - * @param addr offset to read from - * @param len number of bytes to read and compare - */ -static int onenand_verify(struct mtd_info *mtd, const u_char *buf, loff_t addr, size_t len) -{ - struct onenand_chip *this = mtd->priv; - int ret = 0; - int thislen, column; - - column = addr & (this->writesize - 1); - - while (len != 0) { - thislen = min_t(int, this->writesize - column, len); - - this->command(mtd, ONENAND_CMD_READ, addr, this->writesize); - - onenand_update_bufferram(mtd, addr, 0); - - ret = this->wait(mtd, FL_READING); - if (ret) - return ret; - - onenand_update_bufferram(mtd, addr, 1); - - this->read_bufferram(mtd, ONENAND_DATARAM, this->verify_buf, 0, mtd->writesize); - - if (memcmp(buf, this->verify_buf + column, thislen)) - return -EBADMSG; - - len -= thislen; - buf += thislen; - addr += thislen; - column = 0; - } - - return 0; -} -#else -#define onenand_verify(...) (0) -#define onenand_verify_oob(...) (0) -#endif - -#define NOTALIGNED(x) ((x & (this->subpagesize - 1)) != 0) - -static void onenand_panic_wait(struct mtd_info *mtd) -{ - struct onenand_chip *this = mtd->priv; - unsigned int interrupt; - int i; - - for (i = 0; i < 2000; i++) { - interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT); - if (interrupt & ONENAND_INT_MASTER) - break; - udelay(10); - } -} - -/** - * onenand_panic_write - [MTD Interface] write buffer to FLASH in a panic context - * @param mtd MTD device structure - * @param to offset to write to - * @param len number of bytes to write - * @param retlen pointer to variable to store the number of written bytes - * @param buf the data to write - * - * Write with ECC - */ -static int onenand_panic_write(struct mtd_info *mtd, loff_t to, size_t len, - size_t *retlen, const u_char *buf) -{ - struct onenand_chip *this = mtd->priv; - int column, subpage; - int written = 0; - - if (this->state == FL_PM_SUSPENDED) - return -EBUSY; - - /* Wait for any existing operation to clear */ - onenand_panic_wait(mtd); - - pr_debug("%s: to = 0x%08x, len = %i\n", __func__, (unsigned int)to, - (int)len); - - /* Reject writes, which are not page aligned */ - if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) { - printk(KERN_ERR "%s: Attempt to write not page aligned data\n", - __func__); - return -EINVAL; - } - - column = to & (mtd->writesize - 1); - - /* Loop until all data write */ - while (written < len) { - int thislen = min_t(int, mtd->writesize - column, len - written); - u_char *wbuf = (u_char *) buf; - - this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen); - - /* Partial page write */ - subpage = thislen < mtd->writesize; - if (subpage) { - memset(this->page_buf, 0xff, mtd->writesize); - memcpy(this->page_buf + column, buf, thislen); - wbuf = this->page_buf; - } - - this->write_bufferram(mtd, ONENAND_DATARAM, wbuf, 0, mtd->writesize); - this->write_bufferram(mtd, ONENAND_SPARERAM, ffchars, 0, mtd->oobsize); - - this->command(mtd, ONENAND_CMD_PROG, to, mtd->writesize); - - onenand_panic_wait(mtd); - - /* In partial page write we don't update bufferram */ - onenand_update_bufferram(mtd, to, !subpage); - if (ONENAND_IS_2PLANE(this)) { - ONENAND_SET_BUFFERRAM1(this); - onenand_update_bufferram(mtd, to + this->writesize, !subpage); - } - - written += thislen; - - if (written == len) - break; - - column = 0; - to += thislen; - buf += thislen; - } - - *retlen = written; - return 0; -} - -/** - * onenand_fill_auto_oob - [INTERN] oob auto-placement transfer - * @param mtd MTD device structure - * @param oob_buf oob buffer - * @param buf source address - * @param column oob offset to write to - * @param thislen oob length to write - */ -static int onenand_fill_auto_oob(struct mtd_info *mtd, u_char *oob_buf, - const u_char *buf, int column, int thislen) -{ - return mtd_ooblayout_set_databytes(mtd, buf, oob_buf, column, thislen); -} - -/** - * onenand_write_ops_nolock - [OneNAND Interface] write main and/or out-of-band - * @param mtd MTD device structure - * @param to offset to write to - * @param ops oob operation description structure - * - * Write main and/or oob with ECC - */ -static int onenand_write_ops_nolock(struct mtd_info *mtd, loff_t to, - struct mtd_oob_ops *ops) -{ - struct onenand_chip *this = mtd->priv; - int written = 0, column, thislen = 0, subpage = 0; - int prev = 0, prevlen = 0, prev_subpage = 0, first = 1; - int oobwritten = 0, oobcolumn, thisooblen, oobsize; - size_t len = ops->len; - size_t ooblen = ops->ooblen; - const u_char *buf = ops->datbuf; - const u_char *oob = ops->oobbuf; - u_char *oobbuf; - int ret = 0, cmd; - - pr_debug("%s: to = 0x%08x, len = %i\n", __func__, (unsigned int)to, - (int)len); - - /* Initialize retlen, in case of early exit */ - ops->retlen = 0; - ops->oobretlen = 0; - - /* Reject writes, which are not page aligned */ - if (unlikely(NOTALIGNED(to) || NOTALIGNED(len))) { - printk(KERN_ERR "%s: Attempt to write not page aligned data\n", - __func__); - return -EINVAL; - } - - /* Check zero length */ - if (!len) - return 0; - oobsize = mtd_oobavail(mtd, ops); - oobcolumn = to & (mtd->oobsize - 1); - - column = to & (mtd->writesize - 1); - - /* Loop until all data write */ - while (1) { - if (written < len) { - u_char *wbuf = (u_char *) buf; - - thislen = min_t(int, mtd->writesize - column, len - written); - thisooblen = min_t(int, oobsize - oobcolumn, ooblen - oobwritten); - - cond_resched(); - - this->command(mtd, ONENAND_CMD_BUFFERRAM, to, thislen); - - /* Partial page write */ - subpage = thislen < mtd->writesize; - if (subpage) { - memset(this->page_buf, 0xff, mtd->writesize); - memcpy(this->page_buf + column, buf, thislen); - wbuf = this->page_buf; - } - - this->write_bufferram(mtd, ONENAND_DATARAM, wbuf, 0, mtd->writesize); - - if (oob) { - oobbuf = this->oob_buf; - - /* We send data to spare ram with oobsize - * to prevent byte access */ - memset(oobbuf, 0xff, mtd->oobsize); - if (ops->mode == MTD_OPS_AUTO_OOB) - onenand_fill_auto_oob(mtd, oobbuf, oob, oobcolumn, thisooblen); - else - memcpy(oobbuf + oobcolumn, oob, thisooblen); - - oobwritten += thisooblen; - oob += thisooblen; - oobcolumn = 0; - } else - oobbuf = (u_char *) ffchars; - - this->write_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize); - } else - ONENAND_SET_NEXT_BUFFERRAM(this); - - /* - * 2 PLANE, MLC, and Flex-OneNAND do not support - * write-while-program feature. - */ - if (!ONENAND_IS_2PLANE(this) && !ONENAND_IS_4KB_PAGE(this) && !first) { - ONENAND_SET_PREV_BUFFERRAM(this); - - ret = this->wait(mtd, FL_WRITING); - - /* In partial page write we don't update bufferram */ - onenand_update_bufferram(mtd, prev, !ret && !prev_subpage); - if (ret) { - written -= prevlen; - printk(KERN_ERR "%s: write failed %d\n", - __func__, ret); - break; - } - - if (written == len) { - /* Only check verify write turn on */ - ret = onenand_verify(mtd, buf - len, to - len, len); - if (ret) - printk(KERN_ERR "%s: verify failed %d\n", - __func__, ret); - break; - } - - ONENAND_SET_NEXT_BUFFERRAM(this); - } - - this->ongoing = 0; - cmd = ONENAND_CMD_PROG; - - /* Exclude 1st OTP and OTP blocks for cache program feature */ - if (ONENAND_IS_CACHE_PROGRAM(this) && - likely(onenand_block(this, to) != 0) && - ONENAND_IS_4KB_PAGE(this) && - ((written + thislen) < len)) { - cmd = ONENAND_CMD_2X_CACHE_PROG; - this->ongoing = 1; - } - - this->command(mtd, cmd, to, mtd->writesize); - - /* - * 2 PLANE, MLC, and Flex-OneNAND wait here - */ - if (ONENAND_IS_2PLANE(this) || ONENAND_IS_4KB_PAGE(this)) { - ret = this->wait(mtd, FL_WRITING); - - /* In partial page write we don't update bufferram */ - onenand_update_bufferram(mtd, to, !ret && !subpage); - if (ret) { - printk(KERN_ERR "%s: write failed %d\n", - __func__, ret); - break; - } - - /* Only check verify write turn on */ - ret = onenand_verify(mtd, buf, to, thislen); - if (ret) { - printk(KERN_ERR "%s: verify failed %d\n", - __func__, ret); - break; - } - - written += thislen; - - if (written == len) - break; - - } else - written += thislen; - - column = 0; - prev_subpage = subpage; - prev = to; - prevlen = thislen; - to += thislen; - buf += thislen; - first = 0; - } - - /* In error case, clear all bufferrams */ - if (written != len) - onenand_invalidate_bufferram(mtd, 0, -1); - - ops->retlen = written; - ops->oobretlen = oobwritten; - - return ret; -} - - -/** - * onenand_write_oob_nolock - [INTERN] OneNAND write out-of-band - * @param mtd MTD device structure - * @param to offset to write to - * @param len number of bytes to write - * @param retlen pointer to variable to store the number of written bytes - * @param buf the data to write - * @param mode operation mode - * - * OneNAND write out-of-band - */ -static int onenand_write_oob_nolock(struct mtd_info *mtd, loff_t to, - struct mtd_oob_ops *ops) -{ - struct onenand_chip *this = mtd->priv; - int column, ret = 0, oobsize; - int written = 0, oobcmd; - u_char *oobbuf; - size_t len = ops->ooblen; - const u_char *buf = ops->oobbuf; - unsigned int mode = ops->mode; - - to += ops->ooboffs; - - pr_debug("%s: to = 0x%08x, len = %i\n", __func__, (unsigned int)to, - (int)len); - - /* Initialize retlen, in case of early exit */ - ops->oobretlen = 0; - - if (mode == MTD_OPS_AUTO_OOB) - oobsize = mtd->oobavail; - else - oobsize = mtd->oobsize; - - column = to & (mtd->oobsize - 1); - - if (unlikely(column >= oobsize)) { - printk(KERN_ERR "%s: Attempted to start write outside oob\n", - __func__); - return -EINVAL; - } - - /* For compatibility with NAND: Do not allow write past end of page */ - if (unlikely(column + len > oobsize)) { - printk(KERN_ERR "%s: Attempt to write past end of page\n", - __func__); - return -EINVAL; - } - - oobbuf = this->oob_buf; - - oobcmd = ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_PROG : ONENAND_CMD_PROGOOB; - - /* Loop until all data write */ - while (written < len) { - int thislen = min_t(int, oobsize, len - written); - - cond_resched(); - - this->command(mtd, ONENAND_CMD_BUFFERRAM, to, mtd->oobsize); - - /* We send data to spare ram with oobsize - * to prevent byte access */ - memset(oobbuf, 0xff, mtd->oobsize); - if (mode == MTD_OPS_AUTO_OOB) - onenand_fill_auto_oob(mtd, oobbuf, buf, column, thislen); - else - memcpy(oobbuf + column, buf, thislen); - this->write_bufferram(mtd, ONENAND_SPARERAM, oobbuf, 0, mtd->oobsize); - - if (ONENAND_IS_4KB_PAGE(this)) { - /* Set main area of DataRAM to 0xff*/ - memset(this->page_buf, 0xff, mtd->writesize); - this->write_bufferram(mtd, ONENAND_DATARAM, - this->page_buf, 0, mtd->writesize); - } - - this->command(mtd, oobcmd, to, mtd->oobsize); - - onenand_update_bufferram(mtd, to, 0); - if (ONENAND_IS_2PLANE(this)) { - ONENAND_SET_BUFFERRAM1(this); - onenand_update_bufferram(mtd, to + this->writesize, 0); - } - - ret = this->wait(mtd, FL_WRITING); - if (ret) { - printk(KERN_ERR "%s: write failed %d\n", __func__, ret); - break; - } - - ret = onenand_verify_oob(mtd, oobbuf, to); - if (ret) { - printk(KERN_ERR "%s: verify failed %d\n", - __func__, ret); - break; - } - - written += thislen; - if (written == len) - break; - - to += mtd->writesize; - buf += thislen; - column = 0; - } - - ops->oobretlen = written; - - return ret; -} - -/** - * onenand_write_oob - [MTD Interface] NAND write data and/or out-of-band - * @param mtd: MTD device structure - * @param to: offset to write - * @param ops: oob operation description structure - */ -static int onenand_write_oob(struct mtd_info *mtd, loff_t to, - struct mtd_oob_ops *ops) -{ - int ret; - - switch (ops->mode) { - case MTD_OPS_PLACE_OOB: - case MTD_OPS_AUTO_OOB: - break; - case MTD_OPS_RAW: - /* Not implemented yet */ - default: - return -EINVAL; - } - - onenand_get_device(mtd, FL_WRITING); - if (ops->datbuf) - ret = onenand_write_ops_nolock(mtd, to, ops); - else - ret = onenand_write_oob_nolock(mtd, to, ops); - onenand_release_device(mtd); - - return ret; -} - -/** - * onenand_block_isbad_nolock - [GENERIC] Check if a block is marked bad - * @param mtd MTD device structure - * @param ofs offset from device start - * @param allowbbt 1, if its allowed to access the bbt area - * - * Check, if the block is bad. Either by reading the bad block table or - * calling of the scan function. - */ -static int onenand_block_isbad_nolock(struct mtd_info *mtd, loff_t ofs, int allowbbt) -{ - struct onenand_chip *this = mtd->priv; - struct bbm_info *bbm = this->bbm; - - /* Return info from the table */ - return bbm->isbad_bbt(mtd, ofs, allowbbt); -} - - -static int onenand_multiblock_erase_verify(struct mtd_info *mtd, - struct erase_info *instr) -{ - struct onenand_chip *this = mtd->priv; - loff_t addr = instr->addr; - int len = instr->len; - unsigned int block_size = (1 << this->erase_shift); - int ret = 0; - - while (len) { - this->command(mtd, ONENAND_CMD_ERASE_VERIFY, addr, block_size); - ret = this->wait(mtd, FL_VERIFYING_ERASE); - if (ret) { - printk(KERN_ERR "%s: Failed verify, block %d\n", - __func__, onenand_block(this, addr)); - instr->state = MTD_ERASE_FAILED; - instr->fail_addr = addr; - return -1; - } - len -= block_size; - addr += block_size; - } - return 0; -} - -/** - * onenand_multiblock_erase - [INTERN] erase block(s) using multiblock erase - * @param mtd MTD device structure - * @param instr erase instruction - * @param region erase region - * - * Erase one or more blocks up to 64 block at a time - */ -static int onenand_multiblock_erase(struct mtd_info *mtd, - struct erase_info *instr, - unsigned int block_size) -{ - struct onenand_chip *this = mtd->priv; - loff_t addr = instr->addr; - int len = instr->len; - int eb_count = 0; - int ret = 0; - int bdry_block = 0; - - instr->state = MTD_ERASING; - - if (ONENAND_IS_DDP(this)) { - loff_t bdry_addr = this->chipsize >> 1; - if (addr < bdry_addr && (addr + len) > bdry_addr) - bdry_block = bdry_addr >> this->erase_shift; - } - - /* Pre-check bbs */ - while (len) { - /* Check if we have a bad block, we do not erase bad blocks */ - if (onenand_block_isbad_nolock(mtd, addr, 0)) { - printk(KERN_WARNING "%s: attempt to erase a bad block " - "at addr 0x%012llx\n", - __func__, (unsigned long long) addr); - instr->state = MTD_ERASE_FAILED; - return -EIO; - } - len -= block_size; - addr += block_size; - } - - len = instr->len; - addr = instr->addr; - - /* loop over 64 eb batches */ - while (len) { - struct erase_info verify_instr = *instr; - int max_eb_count = MB_ERASE_MAX_BLK_COUNT; - - verify_instr.addr = addr; - verify_instr.len = 0; - - /* do not cross chip boundary */ - if (bdry_block) { - int this_block = (addr >> this->erase_shift); - - if (this_block < bdry_block) { - max_eb_count = min(max_eb_count, - (bdry_block - this_block)); - } - } - - eb_count = 0; - - while (len > block_size && eb_count < (max_eb_count - 1)) { - this->command(mtd, ONENAND_CMD_MULTIBLOCK_ERASE, - addr, block_size); - onenand_invalidate_bufferram(mtd, addr, block_size); - - ret = this->wait(mtd, FL_PREPARING_ERASE); - if (ret) { - printk(KERN_ERR "%s: Failed multiblock erase, " - "block %d\n", __func__, - onenand_block(this, addr)); - instr->state = MTD_ERASE_FAILED; - instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN; - return -EIO; - } - - len -= block_size; - addr += block_size; - eb_count++; - } - - /* last block of 64-eb series */ - cond_resched(); - this->command(mtd, ONENAND_CMD_ERASE, addr, block_size); - onenand_invalidate_bufferram(mtd, addr, block_size); - - ret = this->wait(mtd, FL_ERASING); - /* Check if it is write protected */ - if (ret) { - printk(KERN_ERR "%s: Failed erase, block %d\n", - __func__, onenand_block(this, addr)); - instr->state = MTD_ERASE_FAILED; - instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN; - return -EIO; - } - - len -= block_size; - addr += block_size; - eb_count++; - - /* verify */ - verify_instr.len = eb_count * block_size; - if (onenand_multiblock_erase_verify(mtd, &verify_instr)) { - instr->state = verify_instr.state; - instr->fail_addr = verify_instr.fail_addr; - return -EIO; - } - - } - return 0; -} - - -/** - * onenand_block_by_block_erase - [INTERN] erase block(s) using regular erase - * @param mtd MTD device structure - * @param instr erase instruction - * @param region erase region - * @param block_size erase block size - * - * Erase one or more blocks one block at a time - */ -static int onenand_block_by_block_erase(struct mtd_info *mtd, - struct erase_info *instr, - struct mtd_erase_region_info *region, - unsigned int block_size) -{ - struct onenand_chip *this = mtd->priv; - loff_t addr = instr->addr; - int len = instr->len; - loff_t region_end = 0; - int ret = 0; - - if (region) { - /* region is set for Flex-OneNAND */ - region_end = region->offset + region->erasesize * region->numblocks; - } - - instr->state = MTD_ERASING; - - /* Loop through the blocks */ - while (len) { - cond_resched(); - - /* Check if we have a bad block, we do not erase bad blocks */ - if (onenand_block_isbad_nolock(mtd, addr, 0)) { - printk(KERN_WARNING "%s: attempt to erase a bad block " - "at addr 0x%012llx\n", - __func__, (unsigned long long) addr); - instr->state = MTD_ERASE_FAILED; - return -EIO; - } - - this->command(mtd, ONENAND_CMD_ERASE, addr, block_size); - - onenand_invalidate_bufferram(mtd, addr, block_size); - - ret = this->wait(mtd, FL_ERASING); - /* Check, if it is write protected */ - if (ret) { - printk(KERN_ERR "%s: Failed erase, block %d\n", - __func__, onenand_block(this, addr)); - instr->state = MTD_ERASE_FAILED; - instr->fail_addr = addr; - return -EIO; - } - - len -= block_size; - addr += block_size; - - if (region && addr == region_end) { - if (!len) - break; - region++; - - block_size = region->erasesize; - region_end = region->offset + region->erasesize * region->numblocks; - - if (len & (block_size - 1)) { - /* FIXME: This should be handled at MTD partitioning level. */ - printk(KERN_ERR "%s: Unaligned address\n", - __func__); - return -EIO; - } - } - } - return 0; -} - -/** - * onenand_erase - [MTD Interface] erase block(s) - * @param mtd MTD device structure - * @param instr erase instruction - * - * Erase one or more blocks - */ -static int onenand_erase(struct mtd_info *mtd, struct erase_info *instr) -{ - struct onenand_chip *this = mtd->priv; - unsigned int block_size; - loff_t addr = instr->addr; - loff_t len = instr->len; - int ret = 0; - struct mtd_erase_region_info *region = NULL; - loff_t region_offset = 0; - - pr_debug("%s: start=0x%012llx, len=%llu\n", __func__, - (unsigned long long)instr->addr, - (unsigned long long)instr->len); - - if (FLEXONENAND(this)) { - /* Find the eraseregion of this address */ - int i = flexonenand_region(mtd, addr); - - region = &mtd->eraseregions[i]; - block_size = region->erasesize; - - /* Start address within region must align on block boundary. - * Erase region's start offset is always block start address. - */ - region_offset = region->offset; - } else - block_size = 1 << this->erase_shift; - - /* Start address must align on block boundary */ - if (unlikely((addr - region_offset) & (block_size - 1))) { - printk(KERN_ERR "%s: Unaligned address\n", __func__); - return -EINVAL; - } - - /* Length must align on block boundary */ - if (unlikely(len & (block_size - 1))) { - printk(KERN_ERR "%s: Length not block aligned\n", __func__); - return -EINVAL; - } - - /* Grab the lock and see if the device is available */ - onenand_get_device(mtd, FL_ERASING); - - if (ONENAND_IS_4KB_PAGE(this) || region || - instr->len < MB_ERASE_MIN_BLK_COUNT * block_size) { - /* region is set for Flex-OneNAND (no mb erase) */ - ret = onenand_block_by_block_erase(mtd, instr, - region, block_size); - } else { - ret = onenand_multiblock_erase(mtd, instr, block_size); - } - - /* Deselect and wake up anyone waiting on the device */ - onenand_release_device(mtd); - - /* Do call back function */ - if (!ret) { - instr->state = MTD_ERASE_DONE; - mtd_erase_callback(instr); - } - - return ret; -} - -/** - * onenand_sync - [MTD Interface] sync - * @param mtd MTD device structure - * - * Sync is actually a wait for chip ready function - */ -static void onenand_sync(struct mtd_info *mtd) -{ - pr_debug("%s: called\n", __func__); - - /* Grab the lock and see if the device is available */ - onenand_get_device(mtd, FL_SYNCING); - - /* Release it and go back */ - onenand_release_device(mtd); -} - -/** - * onenand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad - * @param mtd MTD device structure - * @param ofs offset relative to mtd start - * - * Check whether the block is bad - */ -static int onenand_block_isbad(struct mtd_info *mtd, loff_t ofs) -{ - int ret; - - onenand_get_device(mtd, FL_READING); - ret = onenand_block_isbad_nolock(mtd, ofs, 0); - onenand_release_device(mtd); - return ret; -} - -/** - * onenand_default_block_markbad - [DEFAULT] mark a block bad - * @param mtd MTD device structure - * @param ofs offset from device start - * - * This is the default implementation, which can be overridden by - * a hardware specific driver. - */ -static int onenand_default_block_markbad(struct mtd_info *mtd, loff_t ofs) -{ - struct onenand_chip *this = mtd->priv; - struct bbm_info *bbm = this->bbm; - u_char buf[2] = {0, 0}; - struct mtd_oob_ops ops = { - .mode = MTD_OPS_PLACE_OOB, - .ooblen = 2, - .oobbuf = buf, - .ooboffs = 0, - }; - int block; - - /* Get block number */ - block = onenand_block(this, ofs); - if (bbm->bbt) - bbm->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1); - - /* We write two bytes, so we don't have to mess with 16-bit access */ - ofs += mtd->oobsize + (bbm->badblockpos & ~0x01); - /* FIXME : What to do when marking SLC block in partition - * with MLC erasesize? For now, it is not advisable to - * create partitions containing both SLC and MLC regions. - */ - return onenand_write_oob_nolock(mtd, ofs, &ops); -} - -/** - * onenand_block_markbad - [MTD Interface] Mark the block at the given offset as bad - * @param mtd MTD device structure - * @param ofs offset relative to mtd start - * - * Mark the block as bad - */ -static int onenand_block_markbad(struct mtd_info *mtd, loff_t ofs) -{ - struct onenand_chip *this = mtd->priv; - int ret; - - ret = onenand_block_isbad(mtd, ofs); - if (ret) { - /* If it was bad already, return success and do nothing */ - if (ret > 0) - return 0; - return ret; - } - - onenand_get_device(mtd, FL_WRITING); - ret = this->block_markbad(mtd, ofs); - onenand_release_device(mtd); - return ret; -} - -/** - * onenand_do_lock_cmd - [OneNAND Interface] Lock or unlock block(s) - * @param mtd MTD device structure - * @param ofs offset relative to mtd start - * @param len number of bytes to lock or unlock - * @param cmd lock or unlock command - * - * Lock or unlock one or more blocks - */ -static int onenand_do_lock_cmd(struct mtd_info *mtd, loff_t ofs, size_t len, int cmd) -{ - struct onenand_chip *this = mtd->priv; - int start, end, block, value, status; - int wp_status_mask; - - start = onenand_block(this, ofs); - end = onenand_block(this, ofs + len) - 1; - - if (cmd == ONENAND_CMD_LOCK) - wp_status_mask = ONENAND_WP_LS; - else - wp_status_mask = ONENAND_WP_US; - - /* Continuous lock scheme */ - if (this->options & ONENAND_HAS_CONT_LOCK) { - /* Set start block address */ - this->write_word(start, this->base + ONENAND_REG_START_BLOCK_ADDRESS); - /* Set end block address */ - this->write_word(end, this->base + ONENAND_REG_END_BLOCK_ADDRESS); - /* Write lock command */ - this->command(mtd, cmd, 0, 0); - - /* There's no return value */ - this->wait(mtd, FL_LOCKING); - - /* Sanity check */ - while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS) - & ONENAND_CTRL_ONGO) - continue; - - /* Check lock status */ - status = this->read_word(this->base + ONENAND_REG_WP_STATUS); - if (!(status & wp_status_mask)) - printk(KERN_ERR "%s: wp status = 0x%x\n", - __func__, status); - - return 0; - } - - /* Block lock scheme */ - for (block = start; block < end + 1; block++) { - /* Set block address */ - value = onenand_block_address(this, block); - this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1); - /* Select DataRAM for DDP */ - value = onenand_bufferram_address(this, block); - this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2); - /* Set start block address */ - this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS); - /* Write lock command */ - this->command(mtd, cmd, 0, 0); - - /* There's no return value */ - this->wait(mtd, FL_LOCKING); - - /* Sanity check */ - while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS) - & ONENAND_CTRL_ONGO) - continue; - - /* Check lock status */ - status = this->read_word(this->base + ONENAND_REG_WP_STATUS); - if (!(status & wp_status_mask)) - printk(KERN_ERR "%s: block = %d, wp status = 0x%x\n", - __func__, block, status); - } - - return 0; -} - -/** - * onenand_lock - [MTD Interface] Lock block(s) - * @param mtd MTD device structure - * @param ofs offset relative to mtd start - * @param len number of bytes to unlock - * - * Lock one or more blocks - */ -static int onenand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) -{ - int ret; - - onenand_get_device(mtd, FL_LOCKING); - ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_LOCK); - onenand_release_device(mtd); - return ret; -} - -/** - * onenand_unlock - [MTD Interface] Unlock block(s) - * @param mtd MTD device structure - * @param ofs offset relative to mtd start - * @param len number of bytes to unlock - * - * Unlock one or more blocks - */ -static int onenand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) -{ - int ret; - - onenand_get_device(mtd, FL_LOCKING); - ret = onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK); - onenand_release_device(mtd); - return ret; -} - -/** - * onenand_check_lock_status - [OneNAND Interface] Check lock status - * @param this onenand chip data structure - * - * Check lock status - */ -static int onenand_check_lock_status(struct onenand_chip *this) -{ - unsigned int value, block, status; - unsigned int end; - - end = this->chipsize >> this->erase_shift; - for (block = 0; block < end; block++) { - /* Set block address */ - value = onenand_block_address(this, block); - this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1); - /* Select DataRAM for DDP */ - value = onenand_bufferram_address(this, block); - this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2); - /* Set start block address */ - this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS); - - /* Check lock status */ - status = this->read_word(this->base + ONENAND_REG_WP_STATUS); - if (!(status & ONENAND_WP_US)) { - printk(KERN_ERR "%s: block = %d, wp status = 0x%x\n", - __func__, block, status); - return 0; - } - } - - return 1; -} - -/** - * onenand_unlock_all - [OneNAND Interface] unlock all blocks - * @param mtd MTD device structure - * - * Unlock all blocks - */ -static void onenand_unlock_all(struct mtd_info *mtd) -{ - struct onenand_chip *this = mtd->priv; - loff_t ofs = 0; - loff_t len = mtd->size; - - if (this->options & ONENAND_HAS_UNLOCK_ALL) { - /* Set start block address */ - this->write_word(0, this->base + ONENAND_REG_START_BLOCK_ADDRESS); - /* Write unlock command */ - this->command(mtd, ONENAND_CMD_UNLOCK_ALL, 0, 0); - - /* There's no return value */ - this->wait(mtd, FL_LOCKING); - - /* Sanity check */ - while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS) - & ONENAND_CTRL_ONGO) - continue; - - /* Don't check lock status */ - if (this->options & ONENAND_SKIP_UNLOCK_CHECK) - return; - - /* Check lock status */ - if (onenand_check_lock_status(this)) - return; - - /* Workaround for all block unlock in DDP */ - if (ONENAND_IS_DDP(this) && !FLEXONENAND(this)) { - /* All blocks on another chip */ - ofs = this->chipsize >> 1; - len = this->chipsize >> 1; - } - } - - onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK); -} - -#ifdef CONFIG_MTD_ONENAND_OTP - -/** - * onenand_otp_command - Send OTP specific command to OneNAND device - * @param mtd MTD device structure - * @param cmd the command to be sent - * @param addr offset to read from or write to - * @param len number of bytes to read or write - */ -static int onenand_otp_command(struct mtd_info *mtd, int cmd, loff_t addr, - size_t len) -{ - struct onenand_chip *this = mtd->priv; - int value, block, page; - - /* Address translation */ - switch (cmd) { - case ONENAND_CMD_OTP_ACCESS: - block = (int) (addr >> this->erase_shift); - page = -1; - break; - - default: - block = (int) (addr >> this->erase_shift); - page = (int) (addr >> this->page_shift); - - if (ONENAND_IS_2PLANE(this)) { - /* Make the even block number */ - block &= ~1; - /* Is it the odd plane? */ - if (addr & this->writesize) - block++; - page >>= 1; - } - page &= this->page_mask; - break; - } - - if (block != -1) { - /* Write 'DFS, FBA' of Flash */ - value = onenand_block_address(this, block); - this->write_word(value, this->base + - ONENAND_REG_START_ADDRESS1); - } - - if (page != -1) { - /* Now we use page size operation */ - int sectors = 4, count = 4; - int dataram; - - switch (cmd) { - default: - if (ONENAND_IS_2PLANE(this) && cmd == ONENAND_CMD_PROG) - cmd = ONENAND_CMD_2X_PROG; - dataram = ONENAND_CURRENT_BUFFERRAM(this); - break; - } - - /* Write 'FPA, FSA' of Flash */ - value = onenand_page_address(page, sectors); - this->write_word(value, this->base + - ONENAND_REG_START_ADDRESS8); - - /* Write 'BSA, BSC' of DataRAM */ - value = onenand_buffer_address(dataram, sectors, count); - this->write_word(value, this->base + ONENAND_REG_START_BUFFER); - } - - /* Interrupt clear */ - this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT); - - /* Write command */ - this->write_word(cmd, this->base + ONENAND_REG_COMMAND); - - return 0; -} - -/** - * onenand_otp_write_oob_nolock - [INTERN] OneNAND write out-of-band, specific to OTP - * @param mtd MTD device structure - * @param to offset to write to - * @param len number of bytes to write - * @param retlen pointer to variable to store the number of written bytes - * @param buf the data to write - * - * OneNAND write out-of-band only for OTP - */ -static int onenand_otp_write_oob_nolock(struct mtd_info *mtd, loff_t to, - struct mtd_oob_ops *ops) -{ - struct onenand_chip *this = mtd->priv; - int column, ret = 0, oobsize; - int written = 0; - u_char *oobbuf; - size_t len = ops->ooblen; - const u_char *buf = ops->oobbuf; - int block, value, status; - - to += ops->ooboffs; - - /* Initialize retlen, in case of early exit */ - ops->oobretlen = 0; - - oobsize = mtd->oobsize; - - column = to & (mtd->oobsize - 1); - - oobbuf = this->oob_buf; - - /* Loop until all data write */ - while (written < len) { - int thislen = min_t(int, oobsize, len - written); - - cond_resched(); - - block = (int) (to >> this->erase_shift); - /* - * Write 'DFS, FBA' of Flash - * Add: F100h DQ=DFS, FBA - */ - - value = onenand_block_address(this, block); - this->write_word(value, this->base + - ONENAND_REG_START_ADDRESS1); - - /* - * Select DataRAM for DDP - * Add: F101h DQ=DBS - */ - - value = onenand_bufferram_address(this, block); - this->write_word(value, this->base + - ONENAND_REG_START_ADDRESS2); - ONENAND_SET_NEXT_BUFFERRAM(this); - - /* - * Enter OTP access mode - */ - this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0); - this->wait(mtd, FL_OTPING); - - /* We send data to spare ram with oobsize - * to prevent byte access */ - memcpy(oobbuf + column, buf, thislen); - - /* - * Write Data into DataRAM - * Add: 8th Word - * in sector0/spare/page0 - * DQ=XXFCh - */ - this->write_bufferram(mtd, ONENAND_SPARERAM, - oobbuf, 0, mtd->oobsize); - - onenand_otp_command(mtd, ONENAND_CMD_PROGOOB, to, mtd->oobsize); - onenand_update_bufferram(mtd, to, 0); - if (ONENAND_IS_2PLANE(this)) { - ONENAND_SET_BUFFERRAM1(this); - onenand_update_bufferram(mtd, to + this->writesize, 0); - } - - ret = this->wait(mtd, FL_WRITING); - if (ret) { - printk(KERN_ERR "%s: write failed %d\n", __func__, ret); - break; - } - - /* Exit OTP access mode */ - this->command(mtd, ONENAND_CMD_RESET, 0, 0); - this->wait(mtd, FL_RESETING); - - status = this->read_word(this->base + ONENAND_REG_CTRL_STATUS); - status &= 0x60; - - if (status == 0x60) { - printk(KERN_DEBUG "\nBLOCK\tSTATUS\n"); - printk(KERN_DEBUG "1st Block\tLOCKED\n"); - printk(KERN_DEBUG "OTP Block\tLOCKED\n"); - } else if (status == 0x20) { - printk(KERN_DEBUG "\nBLOCK\tSTATUS\n"); - printk(KERN_DEBUG "1st Block\tLOCKED\n"); - printk(KERN_DEBUG "OTP Block\tUN-LOCKED\n"); - } else if (status == 0x40) { - printk(KERN_DEBUG "\nBLOCK\tSTATUS\n"); - printk(KERN_DEBUG "1st Block\tUN-LOCKED\n"); - printk(KERN_DEBUG "OTP Block\tLOCKED\n"); - } else { - printk(KERN_DEBUG "Reboot to check\n"); - } - - written += thislen; - if (written == len) - break; - - to += mtd->writesize; - buf += thislen; - column = 0; - } - - ops->oobretlen = written; - - return ret; -} - -/* Internal OTP operation */ -typedef int (*otp_op_t)(struct mtd_info *mtd, loff_t form, size_t len, - size_t *retlen, u_char *buf); - -/** - * do_otp_read - [DEFAULT] Read OTP block area - * @param mtd MTD device structure - * @param from The offset to read - * @param len number of bytes to read - * @param retlen pointer to variable to store the number of readbytes - * @param buf the databuffer to put/get data - * - * Read OTP block area. - */ -static int do_otp_read(struct mtd_info *mtd, loff_t from, size_t len, - size_t *retlen, u_char *buf) -{ - struct onenand_chip *this = mtd->priv; - struct mtd_oob_ops ops = { - .len = len, - .ooblen = 0, - .datbuf = buf, - .oobbuf = NULL, - }; - int ret; - - /* Enter OTP access mode */ - this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0); - this->wait(mtd, FL_OTPING); - - ret = ONENAND_IS_4KB_PAGE(this) ? - onenand_mlc_read_ops_nolock(mtd, from, &ops) : - onenand_read_ops_nolock(mtd, from, &ops); - - /* Exit OTP access mode */ - this->command(mtd, ONENAND_CMD_RESET, 0, 0); - this->wait(mtd, FL_RESETING); - - return ret; -} - -/** - * do_otp_write - [DEFAULT] Write OTP block area - * @param mtd MTD device structure - * @param to The offset to write - * @param len number of bytes to write - * @param retlen pointer to variable to store the number of write bytes - * @param buf the databuffer to put/get data - * - * Write OTP block area. - */ -static int do_otp_write(struct mtd_info *mtd, loff_t to, size_t len, - size_t *retlen, u_char *buf) -{ - struct onenand_chip *this = mtd->priv; - unsigned char *pbuf = buf; - int ret; - struct mtd_oob_ops ops; - - /* Force buffer page aligned */ - if (len < mtd->writesize) { - memcpy(this->page_buf, buf, len); - memset(this->page_buf + len, 0xff, mtd->writesize - len); - pbuf = this->page_buf; - len = mtd->writesize; - } - - /* Enter OTP access mode */ - this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0); - this->wait(mtd, FL_OTPING); - - ops.len = len; - ops.ooblen = 0; - ops.datbuf = pbuf; - ops.oobbuf = NULL; - ret = onenand_write_ops_nolock(mtd, to, &ops); - *retlen = ops.retlen; - - /* Exit OTP access mode */ - this->command(mtd, ONENAND_CMD_RESET, 0, 0); - this->wait(mtd, FL_RESETING); - - return ret; -} - -/** - * do_otp_lock - [DEFAULT] Lock OTP block area - * @param mtd MTD device structure - * @param from The offset to lock - * @param len number of bytes to lock - * @param retlen pointer to variable to store the number of lock bytes - * @param buf the databuffer to put/get data - * - * Lock OTP block area. - */ -static int do_otp_lock(struct mtd_info *mtd, loff_t from, size_t len, - size_t *retlen, u_char *buf) -{ - struct onenand_chip *this = mtd->priv; - struct mtd_oob_ops ops; - int ret; - - if (FLEXONENAND(this)) { - - /* Enter OTP access mode */ - this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0); - this->wait(mtd, FL_OTPING); - /* - * For Flex-OneNAND, we write lock mark to 1st word of sector 4 of - * main area of page 49. - */ - ops.len = mtd->writesize; - ops.ooblen = 0; - ops.datbuf = buf; - ops.oobbuf = NULL; - ret = onenand_write_ops_nolock(mtd, mtd->writesize * 49, &ops); - *retlen = ops.retlen; - - /* Exit OTP access mode */ - this->command(mtd, ONENAND_CMD_RESET, 0, 0); - this->wait(mtd, FL_RESETING); - } else { - ops.mode = MTD_OPS_PLACE_OOB; - ops.ooblen = len; - ops.oobbuf = buf; - ops.ooboffs = 0; - ret = onenand_otp_write_oob_nolock(mtd, from, &ops); - *retlen = ops.oobretlen; - } - - return ret; -} - -/** - * onenand_otp_walk - [DEFAULT] Handle OTP operation - * @param mtd MTD device structure - * @param from The offset to read/write - * @param len number of bytes to read/write - * @param retlen pointer to variable to store the number of read bytes - * @param buf the databuffer to put/get data - * @param action do given action - * @param mode specify user and factory - * - * Handle OTP operation. - */ -static int onenand_otp_walk(struct mtd_info *mtd, loff_t from, size_t len, - size_t *retlen, u_char *buf, - otp_op_t action, int mode) -{ - struct onenand_chip *this = mtd->priv; - int otp_pages; - int density; - int ret = 0; - - *retlen = 0; - - density = onenand_get_density(this->device_id); - if (density < ONENAND_DEVICE_DENSITY_512Mb) - otp_pages = 20; - else - otp_pages = 50; - - if (mode == MTD_OTP_FACTORY) { - from += mtd->writesize * otp_pages; - otp_pages = ONENAND_PAGES_PER_BLOCK - otp_pages; - } - - /* Check User/Factory boundary */ - if (mode == MTD_OTP_USER) { - if (mtd->writesize * otp_pages < from + len) - return 0; - } else { - if (mtd->writesize * otp_pages < len) - return 0; - } - - onenand_get_device(mtd, FL_OTPING); - while (len > 0 && otp_pages > 0) { - if (!action) { /* OTP Info functions */ - struct otp_info *otpinfo; - - len -= sizeof(struct otp_info); - if (len <= 0) { - ret = -ENOSPC; - break; - } - - otpinfo = (struct otp_info *) buf; - otpinfo->start = from; - otpinfo->length = mtd->writesize; - otpinfo->locked = 0; - - from += mtd->writesize; - buf += sizeof(struct otp_info); - *retlen += sizeof(struct otp_info); - } else { - size_t tmp_retlen; - - ret = action(mtd, from, len, &tmp_retlen, buf); - if (ret) - break; - - buf += tmp_retlen; - len -= tmp_retlen; - *retlen += tmp_retlen; - - } - otp_pages--; - } - onenand_release_device(mtd); - - return ret; -} - -/** - * onenand_get_fact_prot_info - [MTD Interface] Read factory OTP info - * @param mtd MTD device structure - * @param len number of bytes to read - * @param retlen pointer to variable to store the number of read bytes - * @param buf the databuffer to put/get data - * - * Read factory OTP info. - */ -static int onenand_get_fact_prot_info(struct mtd_info *mtd, size_t len, - size_t *retlen, struct otp_info *buf) -{ - return onenand_otp_walk(mtd, 0, len, retlen, (u_char *) buf, NULL, - MTD_OTP_FACTORY); -} - -/** - * onenand_read_fact_prot_reg - [MTD Interface] Read factory OTP area - * @param mtd MTD device structure - * @param from The offset to read - * @param len number of bytes to read - * @param retlen pointer to variable to store the number of read bytes - * @param buf the databuffer to put/get data - * - * Read factory OTP area. - */ -static int onenand_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, - size_t len, size_t *retlen, u_char *buf) -{ - return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_FACTORY); -} - -/** - * onenand_get_user_prot_info - [MTD Interface] Read user OTP info - * @param mtd MTD device structure - * @param retlen pointer to variable to store the number of read bytes - * @param len number of bytes to read - * @param buf the databuffer to put/get data - * - * Read user OTP info. - */ -static int onenand_get_user_prot_info(struct mtd_info *mtd, size_t len, - size_t *retlen, struct otp_info *buf) -{ - return onenand_otp_walk(mtd, 0, len, retlen, (u_char *) buf, NULL, - MTD_OTP_USER); -} - -/** - * onenand_read_user_prot_reg - [MTD Interface] Read user OTP area - * @param mtd MTD device structure - * @param from The offset to read - * @param len number of bytes to read - * @param retlen pointer to variable to store the number of read bytes - * @param buf the databuffer to put/get data - * - * Read user OTP area. - */ -static int onenand_read_user_prot_reg(struct mtd_info *mtd, loff_t from, - size_t len, size_t *retlen, u_char *buf) -{ - return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_USER); -} - -/** - * onenand_write_user_prot_reg - [MTD Interface] Write user OTP area - * @param mtd MTD device structure - * @param from The offset to write - * @param len number of bytes to write - * @param retlen pointer to variable to store the number of write bytes - * @param buf the databuffer to put/get data - * - * Write user OTP area. - */ -static int onenand_write_user_prot_reg(struct mtd_info *mtd, loff_t from, - size_t len, size_t *retlen, u_char *buf) -{ - return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_write, MTD_OTP_USER); -} - -/** - * onenand_lock_user_prot_reg - [MTD Interface] Lock user OTP area - * @param mtd MTD device structure - * @param from The offset to lock - * @param len number of bytes to unlock - * - * Write lock mark on spare area in page 0 in OTP block - */ -static int onenand_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, - size_t len) -{ - struct onenand_chip *this = mtd->priv; - u_char *buf = FLEXONENAND(this) ? this->page_buf : this->oob_buf; - size_t retlen; - int ret; - unsigned int otp_lock_offset = ONENAND_OTP_LOCK_OFFSET; - - memset(buf, 0xff, FLEXONENAND(this) ? this->writesize - : mtd->oobsize); - /* - * Write lock mark to 8th word of sector0 of page0 of the spare0. - * We write 16 bytes spare area instead of 2 bytes. - * For Flex-OneNAND, we write lock mark to 1st word of sector 4 of - * main area of page 49. - */ - - from = 0; - len = FLEXONENAND(this) ? mtd->writesize : 16; - - /* - * Note: OTP lock operation - * OTP block : 0xXXFC XX 1111 1100 - * 1st block : 0xXXF3 (If chip support) XX 1111 0011 - * Both : 0xXXF0 (If chip support) XX 1111 0000 - */ - if (FLEXONENAND(this)) - otp_lock_offset = FLEXONENAND_OTP_LOCK_OFFSET; - - /* ONENAND_OTP_AREA | ONENAND_OTP_BLOCK0 | ONENAND_OTP_AREA_BLOCK0 */ - if (otp == 1) - buf[otp_lock_offset] = 0xFC; - else if (otp == 2) - buf[otp_lock_offset] = 0xF3; - else if (otp == 3) - buf[otp_lock_offset] = 0xF0; - else if (otp != 0) - printk(KERN_DEBUG "[OneNAND] Invalid option selected for OTP\n"); - - ret = onenand_otp_walk(mtd, from, len, &retlen, buf, do_otp_lock, MTD_OTP_USER); - - return ret ? : retlen; -} - -#endif /* CONFIG_MTD_ONENAND_OTP */ - -/** - * onenand_check_features - Check and set OneNAND features - * @param mtd MTD data structure - * - * Check and set OneNAND features - * - lock scheme - * - two plane - */ -static void onenand_check_features(struct mtd_info *mtd) -{ - struct onenand_chip *this = mtd->priv; - unsigned int density, process, numbufs; - - /* Lock scheme depends on density and process */ - density = onenand_get_density(this->device_id); - process = this->version_id >> ONENAND_VERSION_PROCESS_SHIFT; - numbufs = this->read_word(this->base + ONENAND_REG_NUM_BUFFERS) >> 8; - - /* Lock scheme */ - switch (density) { - case ONENAND_DEVICE_DENSITY_4Gb: - if (ONENAND_IS_DDP(this)) - this->options |= ONENAND_HAS_2PLANE; - else if (numbufs == 1) { - this->options |= ONENAND_HAS_4KB_PAGE; - this->options |= ONENAND_HAS_CACHE_PROGRAM; - /* - * There are two different 4KiB pagesize chips - * and no way to detect it by H/W config values. - * - * To detect the correct NOP for each chips, - * It should check the version ID as workaround. - * - * Now it has as following - * KFM4G16Q4M has NOP 4 with version ID 0x0131 - * KFM4G16Q5M has NOP 1 with versoin ID 0x013e - */ - if ((this->version_id & 0xf) == 0xe) - this->options |= ONENAND_HAS_NOP_1; - } - - case ONENAND_DEVICE_DENSITY_2Gb: - /* 2Gb DDP does not have 2 plane */ - if (!ONENAND_IS_DDP(this)) - this->options |= ONENAND_HAS_2PLANE; - this->options |= ONENAND_HAS_UNLOCK_ALL; - - case ONENAND_DEVICE_DENSITY_1Gb: - /* A-Die has all block unlock */ - if (process) - this->options |= ONENAND_HAS_UNLOCK_ALL; - break; - - default: - /* Some OneNAND has continuous lock scheme */ - if (!process) - this->options |= ONENAND_HAS_CONT_LOCK; - break; - } - - /* The MLC has 4KiB pagesize. */ - if (ONENAND_IS_MLC(this)) - this->options |= ONENAND_HAS_4KB_PAGE; - - if (ONENAND_IS_4KB_PAGE(this)) - this->options &= ~ONENAND_HAS_2PLANE; - - if (FLEXONENAND(this)) { - this->options &= ~ONENAND_HAS_CONT_LOCK; - this->options |= ONENAND_HAS_UNLOCK_ALL; - } - - if (this->options & ONENAND_HAS_CONT_LOCK) - printk(KERN_DEBUG "Lock scheme is Continuous Lock\n"); - if (this->options & ONENAND_HAS_UNLOCK_ALL) - printk(KERN_DEBUG "Chip support all block unlock\n"); - if (this->options & ONENAND_HAS_2PLANE) - printk(KERN_DEBUG "Chip has 2 plane\n"); - if (this->options & ONENAND_HAS_4KB_PAGE) - printk(KERN_DEBUG "Chip has 4KiB pagesize\n"); - if (this->options & ONENAND_HAS_CACHE_PROGRAM) - printk(KERN_DEBUG "Chip has cache program feature\n"); -} - -/** - * onenand_print_device_info - Print device & version ID - * @param device device ID - * @param version version ID - * - * Print device & version ID - */ -static void onenand_print_device_info(int device, int version) -{ - int vcc, demuxed, ddp, density, flexonenand; - - vcc = device & ONENAND_DEVICE_VCC_MASK; - demuxed = device & ONENAND_DEVICE_IS_DEMUX; - ddp = device & ONENAND_DEVICE_IS_DDP; - density = onenand_get_density(device); - flexonenand = device & DEVICE_IS_FLEXONENAND; - printk(KERN_INFO "%s%sOneNAND%s %dMB %sV 16-bit (0x%02x)\n", - demuxed ? "" : "Muxed ", - flexonenand ? "Flex-" : "", - ddp ? "(DDP)" : "", - (16 << density), - vcc ? "2.65/3.3" : "1.8", - device); - printk(KERN_INFO "OneNAND version = 0x%04x\n", version); -} - -static const struct onenand_manufacturers onenand_manuf_ids[] = { - {ONENAND_MFR_SAMSUNG, "Samsung"}, - {ONENAND_MFR_NUMONYX, "Numonyx"}, -}; - -/** - * onenand_check_maf - Check manufacturer ID - * @param manuf manufacturer ID - * - * Check manufacturer ID - */ -static int onenand_check_maf(int manuf) -{ - int size = ARRAY_SIZE(onenand_manuf_ids); - char *name; - int i; - - for (i = 0; i < size; i++) - if (manuf == onenand_manuf_ids[i].id) - break; - - if (i < size) - name = onenand_manuf_ids[i].name; - else - name = "Unknown"; - - printk(KERN_DEBUG "OneNAND Manufacturer: %s (0x%0x)\n", name, manuf); - - return (i == size); -} - -/** -* flexonenand_get_boundary - Reads the SLC boundary -* @param onenand_info - onenand info structure -**/ -static int flexonenand_get_boundary(struct mtd_info *mtd) -{ - struct onenand_chip *this = mtd->priv; - unsigned die, bdry; - int syscfg, locked; - - /* Disable ECC */ - syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1); - this->write_word((syscfg | 0x0100), this->base + ONENAND_REG_SYS_CFG1); - - for (die = 0; die < this->dies; die++) { - this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0); - this->wait(mtd, FL_SYNCING); - - this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0); - this->wait(mtd, FL_READING); - - bdry = this->read_word(this->base + ONENAND_DATARAM); - if ((bdry >> FLEXONENAND_PI_UNLOCK_SHIFT) == 3) - locked = 0; - else - locked = 1; - this->boundary[die] = bdry & FLEXONENAND_PI_MASK; - - this->command(mtd, ONENAND_CMD_RESET, 0, 0); - this->wait(mtd, FL_RESETING); - - printk(KERN_INFO "Die %d boundary: %d%s\n", die, - this->boundary[die], locked ? "(Locked)" : "(Unlocked)"); - } - - /* Enable ECC */ - this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1); - return 0; -} - -/** - * flexonenand_get_size - Fill up fields in onenand_chip and mtd_info - * boundary[], diesize[], mtd->size, mtd->erasesize - * @param mtd - MTD device structure - */ -static void flexonenand_get_size(struct mtd_info *mtd) -{ - struct onenand_chip *this = mtd->priv; - int die, i, eraseshift, density; - int blksperdie, maxbdry; - loff_t ofs; - - density = onenand_get_density(this->device_id); - blksperdie = ((loff_t)(16 << density) << 20) >> (this->erase_shift); - blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0; - maxbdry = blksperdie - 1; - eraseshift = this->erase_shift - 1; - - mtd->numeraseregions = this->dies << 1; - - /* This fills up the device boundary */ - flexonenand_get_boundary(mtd); - die = ofs = 0; - i = -1; - for (; die < this->dies; die++) { - if (!die || this->boundary[die-1] != maxbdry) { - i++; - mtd->eraseregions[i].offset = ofs; - mtd->eraseregions[i].erasesize = 1 << eraseshift; - mtd->eraseregions[i].numblocks = - this->boundary[die] + 1; - ofs += mtd->eraseregions[i].numblocks << eraseshift; - eraseshift++; - } else { - mtd->numeraseregions -= 1; - mtd->eraseregions[i].numblocks += - this->boundary[die] + 1; - ofs += (this->boundary[die] + 1) << (eraseshift - 1); - } - if (this->boundary[die] != maxbdry) { - i++; - mtd->eraseregions[i].offset = ofs; - mtd->eraseregions[i].erasesize = 1 << eraseshift; - mtd->eraseregions[i].numblocks = maxbdry ^ - this->boundary[die]; - ofs += mtd->eraseregions[i].numblocks << eraseshift; - eraseshift--; - } else - mtd->numeraseregions -= 1; - } - - /* Expose MLC erase size except when all blocks are SLC */ - mtd->erasesize = 1 << this->erase_shift; - if (mtd->numeraseregions == 1) - mtd->erasesize >>= 1; - - printk(KERN_INFO "Device has %d eraseregions\n", mtd->numeraseregions); - for (i = 0; i < mtd->numeraseregions; i++) - printk(KERN_INFO "[offset: 0x%08x, erasesize: 0x%05x," - " numblocks: %04u]\n", - (unsigned int) mtd->eraseregions[i].offset, - mtd->eraseregions[i].erasesize, - mtd->eraseregions[i].numblocks); - - for (die = 0, mtd->size = 0; die < this->dies; die++) { - this->diesize[die] = (loff_t)blksperdie << this->erase_shift; - this->diesize[die] -= (loff_t)(this->boundary[die] + 1) - << (this->erase_shift - 1); - mtd->size += this->diesize[die]; - } -} - -/** - * flexonenand_check_blocks_erased - Check if blocks are erased - * @param mtd_info - mtd info structure - * @param start - first erase block to check - * @param end - last erase block to check - * - * Converting an unerased block from MLC to SLC - * causes byte values to change. Since both data and its ECC - * have changed, reads on the block give uncorrectable error. - * This might lead to the block being detected as bad. - * - * Avoid this by ensuring that the block to be converted is - * erased. - */ -static int flexonenand_check_blocks_erased(struct mtd_info *mtd, int start, int end) -{ - struct onenand_chip *this = mtd->priv; - int i, ret; - int block; - struct mtd_oob_ops ops = { - .mode = MTD_OPS_PLACE_OOB, - .ooboffs = 0, - .ooblen = mtd->oobsize, - .datbuf = NULL, - .oobbuf = this->oob_buf, - }; - loff_t addr; - - printk(KERN_DEBUG "Check blocks from %d to %d\n", start, end); - - for (block = start; block <= end; block++) { - addr = flexonenand_addr(this, block); - if (onenand_block_isbad_nolock(mtd, addr, 0)) - continue; - - /* - * Since main area write results in ECC write to spare, - * it is sufficient to check only ECC bytes for change. - */ - ret = onenand_read_oob_nolock(mtd, addr, &ops); - if (ret) - return ret; - - for (i = 0; i < mtd->oobsize; i++) - if (this->oob_buf[i] != 0xff) - break; - - if (i != mtd->oobsize) { - printk(KERN_WARNING "%s: Block %d not erased.\n", - __func__, block); - return 1; - } - } - - return 0; -} - -/** - * flexonenand_set_boundary - Writes the SLC boundary - * @param mtd - mtd info structure - */ -static int flexonenand_set_boundary(struct mtd_info *mtd, int die, - int boundary, int lock) -{ - struct onenand_chip *this = mtd->priv; - int ret, density, blksperdie, old, new, thisboundary; - loff_t addr; - - /* Change only once for SDP Flex-OneNAND */ - if (die && (!ONENAND_IS_DDP(this))) - return 0; - - /* boundary value of -1 indicates no required change */ - if (boundary < 0 || boundary == this->boundary[die]) - return 0; - - density = onenand_get_density(this->device_id); - blksperdie = ((16 << density) << 20) >> this->erase_shift; - blksperdie >>= ONENAND_IS_DDP(this) ? 1 : 0; - - if (boundary >= blksperdie) { - printk(KERN_ERR "%s: Invalid boundary value. " - "Boundary not changed.\n", __func__); - return -EINVAL; - } - - /* Check if converting blocks are erased */ - old = this->boundary[die] + (die * this->density_mask); - new = boundary + (die * this->density_mask); - ret = flexonenand_check_blocks_erased(mtd, min(old, new) + 1, max(old, new)); - if (ret) { - printk(KERN_ERR "%s: Please erase blocks " - "before boundary change\n", __func__); - return ret; - } - - this->command(mtd, FLEXONENAND_CMD_PI_ACCESS, die, 0); - this->wait(mtd, FL_SYNCING); - - /* Check is boundary is locked */ - this->command(mtd, FLEXONENAND_CMD_READ_PI, die, 0); - this->wait(mtd, FL_READING); - - thisboundary = this->read_word(this->base + ONENAND_DATARAM); - if ((thisboundary >> FLEXONENAND_PI_UNLOCK_SHIFT) != 3) { - printk(KERN_ERR "%s: boundary locked\n", __func__); - ret = 1; - goto out; - } - - printk(KERN_INFO "Changing die %d boundary: %d%s\n", - die, boundary, lock ? "(Locked)" : "(Unlocked)"); - - addr = die ? this->diesize[0] : 0; - - boundary &= FLEXONENAND_PI_MASK; - boundary |= lock ? 0 : (3 << FLEXONENAND_PI_UNLOCK_SHIFT); - - this->command(mtd, ONENAND_CMD_ERASE, addr, 0); - ret = this->wait(mtd, FL_ERASING); - if (ret) { - printk(KERN_ERR "%s: Failed PI erase for Die %d\n", - __func__, die); - goto out; - } - - this->write_word(boundary, this->base + ONENAND_DATARAM); - this->command(mtd, ONENAND_CMD_PROG, addr, 0); - ret = this->wait(mtd, FL_WRITING); - if (ret) { - printk(KERN_ERR "%s: Failed PI write for Die %d\n", - __func__, die); - goto out; - } - - this->command(mtd, FLEXONENAND_CMD_PI_UPDATE, die, 0); - ret = this->wait(mtd, FL_WRITING); -out: - this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_REG_COMMAND); - this->wait(mtd, FL_RESETING); - if (!ret) - /* Recalculate device size on boundary change*/ - flexonenand_get_size(mtd); - - return ret; -} - -/** - * onenand_chip_probe - [OneNAND Interface] The generic chip probe - * @param mtd MTD device structure - * - * OneNAND detection method: - * Compare the values from command with ones from register - */ -static int onenand_chip_probe(struct mtd_info *mtd) -{ - struct onenand_chip *this = mtd->priv; - int bram_maf_id, bram_dev_id, maf_id, dev_id; - int syscfg; - - /* Save system configuration 1 */ - syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1); - /* Clear Sync. Burst Read mode to read BootRAM */ - this->write_word((syscfg & ~ONENAND_SYS_CFG1_SYNC_READ & ~ONENAND_SYS_CFG1_SYNC_WRITE), this->base + ONENAND_REG_SYS_CFG1); - - /* Send the command for reading device ID from BootRAM */ - this->write_word(ONENAND_CMD_READID, this->base + ONENAND_BOOTRAM); - - /* Read manufacturer and device IDs from BootRAM */ - bram_maf_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x0); - bram_dev_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x2); - - /* Reset OneNAND to read default register values */ - this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_BOOTRAM); - /* Wait reset */ - this->wait(mtd, FL_RESETING); - - /* Restore system configuration 1 */ - this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1); - - /* Check manufacturer ID */ - if (onenand_check_maf(bram_maf_id)) - return -ENXIO; - - /* Read manufacturer and device IDs from Register */ - maf_id = this->read_word(this->base + ONENAND_REG_MANUFACTURER_ID); - dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID); - - /* Check OneNAND device */ - if (maf_id != bram_maf_id || dev_id != bram_dev_id) - return -ENXIO; - - return 0; -} - -/** - * onenand_probe - [OneNAND Interface] Probe the OneNAND device - * @param mtd MTD device structure - */ -static int onenand_probe(struct mtd_info *mtd) -{ - struct onenand_chip *this = mtd->priv; - int dev_id, ver_id; - int density; - int ret; - - ret = this->chip_probe(mtd); - if (ret) - return ret; - - /* Device and version IDs from Register */ - dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID); - ver_id = this->read_word(this->base + ONENAND_REG_VERSION_ID); - this->technology = this->read_word(this->base + ONENAND_REG_TECHNOLOGY); - - /* Flash device information */ - onenand_print_device_info(dev_id, ver_id); - this->device_id = dev_id; - this->version_id = ver_id; - - /* Check OneNAND features */ - onenand_check_features(mtd); - - density = onenand_get_density(dev_id); - if (FLEXONENAND(this)) { - this->dies = ONENAND_IS_DDP(this) ? 2 : 1; - /* Maximum possible erase regions */ - mtd->numeraseregions = this->dies << 1; - mtd->eraseregions = kzalloc(sizeof(struct mtd_erase_region_info) - * (this->dies << 1), GFP_KERNEL); - if (!mtd->eraseregions) - return -ENOMEM; - } - - /* - * For Flex-OneNAND, chipsize represents maximum possible device size. - * mtd->size represents the actual device size. - */ - this->chipsize = (16 << density) << 20; - - /* OneNAND page size & block size */ - /* The data buffer size is equal to page size */ - mtd->writesize = this->read_word(this->base + ONENAND_REG_DATA_BUFFER_SIZE); - /* We use the full BufferRAM */ - if (ONENAND_IS_4KB_PAGE(this)) - mtd->writesize <<= 1; - - mtd->oobsize = mtd->writesize >> 5; - /* Pages per a block are always 64 in OneNAND */ - mtd->erasesize = mtd->writesize << 6; - /* - * Flex-OneNAND SLC area has 64 pages per block. - * Flex-OneNAND MLC area has 128 pages per block. - * Expose MLC erase size to find erase_shift and page_mask. - */ - if (FLEXONENAND(this)) - mtd->erasesize <<= 1; - - this->erase_shift = ffs(mtd->erasesize) - 1; - this->page_shift = ffs(mtd->writesize) - 1; - this->page_mask = (1 << (this->erase_shift - this->page_shift)) - 1; - /* Set density mask. it is used for DDP */ - if (ONENAND_IS_DDP(this)) - this->density_mask = this->chipsize >> (this->erase_shift + 1); - /* It's real page size */ - this->writesize = mtd->writesize; - - /* REVISIT: Multichip handling */ - - if (FLEXONENAND(this)) - flexonenand_get_size(mtd); - else - mtd->size = this->chipsize; - - /* - * We emulate the 4KiB page and 256KiB erase block size - * But oobsize is still 64 bytes. - * It is only valid if you turn on 2X program support, - * Otherwise it will be ignored by compiler. - */ - if (ONENAND_IS_2PLANE(this)) { - mtd->writesize <<= 1; - mtd->erasesize <<= 1; - } - - return 0; -} - -/** - * onenand_suspend - [MTD Interface] Suspend the OneNAND flash - * @param mtd MTD device structure - */ -static int onenand_suspend(struct mtd_info *mtd) -{ - return onenand_get_device(mtd, FL_PM_SUSPENDED); -} - -/** - * onenand_resume - [MTD Interface] Resume the OneNAND flash - * @param mtd MTD device structure - */ -static void onenand_resume(struct mtd_info *mtd) -{ - struct onenand_chip *this = mtd->priv; - - if (this->state == FL_PM_SUSPENDED) - onenand_release_device(mtd); - else - printk(KERN_ERR "%s: resume() called for the chip which is not " - "in suspended state\n", __func__); -} - -/** - * onenand_scan - [OneNAND Interface] Scan for the OneNAND device - * @param mtd MTD device structure - * @param maxchips Number of chips to scan for - * - * This fills out all the not initialized function pointers - * with the defaults. - * The flash ID is read and the mtd/chip structures are - * filled with the appropriate values. - */ -int onenand_scan(struct mtd_info *mtd, int maxchips) -{ - int i, ret; - struct onenand_chip *this = mtd->priv; - - if (!this->read_word) - this->read_word = onenand_readw; - if (!this->write_word) - this->write_word = onenand_writew; - - if (!this->command) - this->command = onenand_command; - if (!this->wait) - onenand_setup_wait(mtd); - if (!this->bbt_wait) - this->bbt_wait = onenand_bbt_wait; - if (!this->unlock_all) - this->unlock_all = onenand_unlock_all; - - if (!this->chip_probe) - this->chip_probe = onenand_chip_probe; - - if (!this->read_bufferram) - this->read_bufferram = onenand_read_bufferram; - if (!this->write_bufferram) - this->write_bufferram = onenand_write_bufferram; - - if (!this->block_markbad) - this->block_markbad = onenand_default_block_markbad; - if (!this->scan_bbt) - this->scan_bbt = onenand_default_bbt; - - if (onenand_probe(mtd)) - return -ENXIO; - - /* Set Sync. Burst Read after probing */ - if (this->mmcontrol) { - printk(KERN_INFO "OneNAND Sync. Burst Read support\n"); - this->read_bufferram = onenand_sync_read_bufferram; - } - - /* Allocate buffers, if necessary */ - if (!this->page_buf) { - this->page_buf = kzalloc(mtd->writesize, GFP_KERNEL); - if (!this->page_buf) - return -ENOMEM; -#ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE - this->verify_buf = kzalloc(mtd->writesize, GFP_KERNEL); - if (!this->verify_buf) { - kfree(this->page_buf); - return -ENOMEM; - } -#endif - this->options |= ONENAND_PAGEBUF_ALLOC; - } - if (!this->oob_buf) { - this->oob_buf = kzalloc(mtd->oobsize, GFP_KERNEL); - if (!this->oob_buf) { - if (this->options & ONENAND_PAGEBUF_ALLOC) { - this->options &= ~ONENAND_PAGEBUF_ALLOC; - kfree(this->page_buf); - } - return -ENOMEM; - } - this->options |= ONENAND_OOBBUF_ALLOC; - } - - this->state = FL_READY; - init_waitqueue_head(&this->wq); - spin_lock_init(&this->chip_lock); - - /* - * Allow subpage writes up to oobsize. - */ - switch (mtd->oobsize) { - case 128: - if (FLEXONENAND(this)) { - mtd_set_ooblayout(mtd, &flexonenand_ooblayout_ops); - mtd->subpage_sft = 0; - } else { - mtd_set_ooblayout(mtd, &onenand_oob_128_ooblayout_ops); - mtd->subpage_sft = 2; - } - if (ONENAND_IS_NOP_1(this)) - mtd->subpage_sft = 0; - break; - case 64: - mtd_set_ooblayout(mtd, &onenand_oob_32_64_ooblayout_ops); - mtd->subpage_sft = 2; - break; - - case 32: - mtd_set_ooblayout(mtd, &onenand_oob_32_64_ooblayout_ops); - mtd->subpage_sft = 1; - break; - - default: - printk(KERN_WARNING "%s: No OOB scheme defined for oobsize %d\n", - __func__, mtd->oobsize); - mtd->subpage_sft = 0; - /* To prevent kernel oops */ - mtd_set_ooblayout(mtd, &onenand_oob_32_64_ooblayout_ops); - break; - } - - this->subpagesize = mtd->writesize >> mtd->subpage_sft; - - /* - * The number of bytes available for a client to place data into - * the out of band area - */ - ret = mtd_ooblayout_count_freebytes(mtd); - if (ret < 0) - ret = 0; - - mtd->oobavail = ret; - - mtd->ecc_strength = 1; - - /* Fill in remaining MTD driver data */ - mtd->type = ONENAND_IS_MLC(this) ? MTD_MLCNANDFLASH : MTD_NANDFLASH; - mtd->flags = MTD_CAP_NANDFLASH; - mtd->_erase = onenand_erase; - mtd->_point = NULL; - mtd->_unpoint = NULL; - mtd->_read_oob = onenand_read_oob; - mtd->_write_oob = onenand_write_oob; - mtd->_panic_write = onenand_panic_write; -#ifdef CONFIG_MTD_ONENAND_OTP - mtd->_get_fact_prot_info = onenand_get_fact_prot_info; - mtd->_read_fact_prot_reg = onenand_read_fact_prot_reg; - mtd->_get_user_prot_info = onenand_get_user_prot_info; - mtd->_read_user_prot_reg = onenand_read_user_prot_reg; - mtd->_write_user_prot_reg = onenand_write_user_prot_reg; - mtd->_lock_user_prot_reg = onenand_lock_user_prot_reg; -#endif - mtd->_sync = onenand_sync; - mtd->_lock = onenand_lock; - mtd->_unlock = onenand_unlock; - mtd->_suspend = onenand_suspend; - mtd->_resume = onenand_resume; - mtd->_block_isbad = onenand_block_isbad; - mtd->_block_markbad = onenand_block_markbad; - mtd->owner = THIS_MODULE; - mtd->writebufsize = mtd->writesize; - - /* Unlock whole block */ - if (!(this->options & ONENAND_SKIP_INITIAL_UNLOCKING)) - this->unlock_all(mtd); - - ret = this->scan_bbt(mtd); - if ((!FLEXONENAND(this)) || ret) - return ret; - - /* Change Flex-OneNAND boundaries if required */ - for (i = 0; i < MAX_DIES; i++) - flexonenand_set_boundary(mtd, i, flex_bdry[2 * i], - flex_bdry[(2 * i) + 1]); - - return 0; -} - -/** - * onenand_release - [OneNAND Interface] Free resources held by the OneNAND device - * @param mtd MTD device structure - */ -void onenand_release(struct mtd_info *mtd) -{ - struct onenand_chip *this = mtd->priv; - - /* Deregister partitions */ - mtd_device_unregister(mtd); - - /* Free bad block table memory, if allocated */ - if (this->bbm) { - struct bbm_info *bbm = this->bbm; - kfree(bbm->bbt); - kfree(this->bbm); - } - /* Buffers allocated by onenand_scan */ - if (this->options & ONENAND_PAGEBUF_ALLOC) { - kfree(this->page_buf); -#ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE - kfree(this->verify_buf); -#endif - } - if (this->options & ONENAND_OOBBUF_ALLOC) - kfree(this->oob_buf); - kfree(mtd->eraseregions); -} - -EXPORT_SYMBOL_GPL(onenand_scan); -EXPORT_SYMBOL_GPL(onenand_release); - -MODULE_LICENSE("GPL"); -MODULE_AUTHOR("Kyungmin Park "); -MODULE_DESCRIPTION("Generic OneNAND flash driver code"); diff --git a/drivers/mtd/onenand/onenand_bbt.c b/drivers/mtd/onenand/onenand_bbt.c deleted file mode 100644 index dde20487937d..000000000000 --- a/drivers/mtd/onenand/onenand_bbt.c +++ /dev/null @@ -1,248 +0,0 @@ -// SPDX-License-Identifier: GPL-2.0 -/* - * Bad Block Table support for the OneNAND driver - * - * Copyright(c) 2005 Samsung Electronics - * Kyungmin Park - * - * Derived from nand_bbt.c - * - * TODO: - * Split BBT core and chip specific BBT. - */ - -#include -#include -#include -#include - -/** - * check_short_pattern - [GENERIC] check if a pattern is in the buffer - * @param buf the buffer to search - * @param len the length of buffer to search - * @param paglen the pagelength - * @param td search pattern descriptor - * - * Check for a pattern at the given place. Used to search bad block - * tables and good / bad block identifiers. Same as check_pattern, but - * no optional empty check and the pattern is expected to start - * at offset 0. - * - */ -static int check_short_pattern(uint8_t *buf, int len, int paglen, struct nand_bbt_descr *td) -{ - int i; - uint8_t *p = buf; - - /* Compare the pattern */ - for (i = 0; i < td->len; i++) { - if (p[i] != td->pattern[i]) - return -1; - } - return 0; -} - -/** - * create_bbt - [GENERIC] Create a bad block table by scanning the device - * @param mtd MTD device structure - * @param buf temporary buffer - * @param bd descriptor for the good/bad block search pattern - * @param chip create the table for a specific chip, -1 read all chips. - * Applies only if NAND_BBT_PERCHIP option is set - * - * Create a bad block table by scanning the device - * for the given good/bad block identify pattern - */ -static int create_bbt(struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *bd, int chip) -{ - struct onenand_chip *this = mtd->priv; - struct bbm_info *bbm = this->bbm; - int i, j, numblocks, len, scanlen; - int startblock; - loff_t from; - size_t readlen, ooblen; - struct mtd_oob_ops ops; - int rgn; - - printk(KERN_INFO "Scanning device for bad blocks\n"); - - len = 2; - - /* We need only read few bytes from the OOB area */ - scanlen = ooblen = 0; - readlen = bd->len; - - /* chip == -1 case only */ - /* Note that numblocks is 2 * (real numblocks) here; - * see i += 2 below as it makses shifting and masking less painful - */ - numblocks = this->chipsize >> (bbm->bbt_erase_shift - 1); - startblock = 0; - from = 0; - - ops.mode = MTD_OPS_PLACE_OOB; - ops.ooblen = readlen; - ops.oobbuf = buf; - ops.len = ops.ooboffs = ops.retlen = ops.oobretlen = 0; - - for (i = startblock; i < numblocks; ) { - int ret; - - for (j = 0; j < len; j++) { - /* No need to read pages fully, - * just read required OOB bytes */ - ret = onenand_bbt_read_oob(mtd, - from + j * this->writesize + bd->offs, &ops); - - /* If it is a initial bad block, just ignore it */ - if (ret == ONENAND_BBT_READ_FATAL_ERROR) - return -EIO; - - if (ret || check_short_pattern(&buf[j * scanlen], - scanlen, this->writesize, bd)) { - bbm->bbt[i >> 3] |= 0x03 << (i & 0x6); - printk(KERN_INFO "OneNAND eraseblock %d is an " - "initial bad block\n", i >> 1); - mtd->ecc_stats.badblocks++; - break; - } - } - i += 2; - - if (FLEXONENAND(this)) { - rgn = flexonenand_region(mtd, from); - from += mtd->eraseregions[rgn].erasesize; - } else - from += (1 << bbm->bbt_erase_shift); - } - - return 0; -} - - -/** - * onenand_memory_bbt - [GENERIC] create a memory based bad block table - * @param mtd MTD device structure - * @param bd descriptor for the good/bad block search pattern - * - * The function creates a memory based bbt by scanning the device - * for manufacturer / software marked good / bad blocks - */ -static inline int onenand_memory_bbt (struct mtd_info *mtd, struct nand_bbt_descr *bd) -{ - struct onenand_chip *this = mtd->priv; - - return create_bbt(mtd, this->page_buf, bd, -1); -} - -/** - * onenand_isbad_bbt - [OneNAND Interface] Check if a block is bad - * @param mtd MTD device structure - * @param offs offset in the device - * @param allowbbt allow access to bad block table region - */ -static int onenand_isbad_bbt(struct mtd_info *mtd, loff_t offs, int allowbbt) -{ - struct onenand_chip *this = mtd->priv; - struct bbm_info *bbm = this->bbm; - int block; - uint8_t res; - - /* Get block number * 2 */ - block = (int) (onenand_block(this, offs) << 1); - res = (bbm->bbt[block >> 3] >> (block & 0x06)) & 0x03; - - pr_debug("onenand_isbad_bbt: bbt info for offs 0x%08x: (block %d) 0x%02x\n", - (unsigned int) offs, block >> 1, res); - - switch ((int) res) { - case 0x00: return 0; - case 0x01: return 1; - case 0x02: return allowbbt ? 0 : 1; - } - - return 1; -} - -/** - * onenand_scan_bbt - [OneNAND Interface] scan, find, read and maybe create bad block table(s) - * @param mtd MTD device structure - * @param bd descriptor for the good/bad block search pattern - * - * The function checks, if a bad block table(s) is/are already - * available. If not it scans the device for manufacturer - * marked good / bad blocks and writes the bad block table(s) to - * the selected place. - * - * The bad block table memory is allocated here. It is freed - * by the onenand_release function. - * - */ -static int onenand_scan_bbt(struct mtd_info *mtd, struct nand_bbt_descr *bd) -{ - struct onenand_chip *this = mtd->priv; - struct bbm_info *bbm = this->bbm; - int len, ret = 0; - - len = this->chipsize >> (this->erase_shift + 2); - /* Allocate memory (2bit per block) and clear the memory bad block table */ - bbm->bbt = kzalloc(len, GFP_KERNEL); - if (!bbm->bbt) - return -ENOMEM; - - /* Set the bad block position */ - bbm->badblockpos = ONENAND_BADBLOCK_POS; - - /* Set erase shift */ - bbm->bbt_erase_shift = this->erase_shift; - - if (!bbm->isbad_bbt) - bbm->isbad_bbt = onenand_isbad_bbt; - - /* Scan the device to build a memory based bad block table */ - if ((ret = onenand_memory_bbt(mtd, bd))) { - printk(KERN_ERR "onenand_scan_bbt: Can't scan flash and build the RAM-based BBT\n"); - kfree(bbm->bbt); - bbm->bbt = NULL; - } - - return ret; -} - -/* - * Define some generic bad / good block scan pattern which are used - * while scanning a device for factory marked good / bad blocks. - */ -static uint8_t scan_ff_pattern[] = { 0xff, 0xff }; - -static struct nand_bbt_descr largepage_memorybased = { - .options = 0, - .offs = 0, - .len = 2, - .pattern = scan_ff_pattern, -}; - -/** - * onenand_default_bbt - [OneNAND Interface] Select a default bad block table for the device - * @param mtd MTD device structure - * - * This function selects the default bad block table - * support for the device and calls the onenand_scan_bbt function - */ -int onenand_default_bbt(struct mtd_info *mtd) -{ - struct onenand_chip *this = mtd->priv; - struct bbm_info *bbm; - - this->bbm = kzalloc(sizeof(struct bbm_info), GFP_KERNEL); - if (!this->bbm) - return -ENOMEM; - - bbm = this->bbm; - - /* 1KB page has same configuration as 2KB page */ - if (!bbm->badblock_pattern) - bbm->badblock_pattern = &largepage_memorybased; - - return onenand_scan_bbt(mtd, bbm->badblock_pattern); -} diff --git a/drivers/mtd/onenand/samsung.c b/drivers/mtd/onenand/samsung.c deleted file mode 100644 index 2e9d076e445a..000000000000 --- a/drivers/mtd/onenand/samsung.c +++ /dev/null @@ -1,1012 +0,0 @@ -/* - * Samsung S3C64XX/S5PC1XX OneNAND driver - * - * Copyright © 2008-2010 Samsung Electronics - * Kyungmin Park - * Marek Szyprowski - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License version 2 as - * published by the Free Software Foundation. - * - * Implementation: - * S3C64XX: emulate the pseudo BufferRAM - * S5PC110: use DMA - */ - -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include - -#include "samsung.h" - -enum soc_type { - TYPE_S3C6400, - TYPE_S3C6410, - TYPE_S5PC110, -}; - -#define ONENAND_ERASE_STATUS 0x00 -#define ONENAND_MULTI_ERASE_SET 0x01 -#define ONENAND_ERASE_START 0x03 -#define ONENAND_UNLOCK_START 0x08 -#define ONENAND_UNLOCK_END 0x09 -#define ONENAND_LOCK_START 0x0A -#define ONENAND_LOCK_END 0x0B -#define ONENAND_LOCK_TIGHT_START 0x0C -#define ONENAND_LOCK_TIGHT_END 0x0D -#define ONENAND_UNLOCK_ALL 0x0E -#define ONENAND_OTP_ACCESS 0x12 -#define ONENAND_SPARE_ACCESS_ONLY 0x13 -#define ONENAND_MAIN_ACCESS_ONLY 0x14 -#define ONENAND_ERASE_VERIFY 0x15 -#define ONENAND_MAIN_SPARE_ACCESS 0x16 -#define ONENAND_PIPELINE_READ 0x4000 - -#define MAP_00 (0x0) -#define MAP_01 (0x1) -#define MAP_10 (0x2) -#define MAP_11 (0x3) - -#define S3C64XX_CMD_MAP_SHIFT 24 - -#define S3C6400_FBA_SHIFT 10 -#define S3C6400_FPA_SHIFT 4 -#define S3C6400_FSA_SHIFT 2 - -#define S3C6410_FBA_SHIFT 12 -#define S3C6410_FPA_SHIFT 6 -#define S3C6410_FSA_SHIFT 4 - -/* S5PC110 specific definitions */ -#define S5PC110_DMA_SRC_ADDR 0x400 -#define S5PC110_DMA_SRC_CFG 0x404 -#define S5PC110_DMA_DST_ADDR 0x408 -#define S5PC110_DMA_DST_CFG 0x40C -#define S5PC110_DMA_TRANS_SIZE 0x414 -#define S5PC110_DMA_TRANS_CMD 0x418 -#define S5PC110_DMA_TRANS_STATUS 0x41C -#define S5PC110_DMA_TRANS_DIR 0x420 -#define S5PC110_INTC_DMA_CLR 0x1004 -#define S5PC110_INTC_ONENAND_CLR 0x1008 -#define S5PC110_INTC_DMA_MASK 0x1024 -#define S5PC110_INTC_ONENAND_MASK 0x1028 -#define S5PC110_INTC_DMA_PEND 0x1044 -#define S5PC110_INTC_ONENAND_PEND 0x1048 -#define S5PC110_INTC_DMA_STATUS 0x1064 -#define S5PC110_INTC_ONENAND_STATUS 0x1068 - -#define S5PC110_INTC_DMA_TD (1 << 24) -#define S5PC110_INTC_DMA_TE (1 << 16) - -#define S5PC110_DMA_CFG_SINGLE (0x0 << 16) -#define S5PC110_DMA_CFG_4BURST (0x2 << 16) -#define S5PC110_DMA_CFG_8BURST (0x3 << 16) -#define S5PC110_DMA_CFG_16BURST (0x4 << 16) - -#define S5PC110_DMA_CFG_INC (0x0 << 8) -#define S5PC110_DMA_CFG_CNT (0x1 << 8) - -#define S5PC110_DMA_CFG_8BIT (0x0 << 0) -#define S5PC110_DMA_CFG_16BIT (0x1 << 0) -#define S5PC110_DMA_CFG_32BIT (0x2 << 0) - -#define S5PC110_DMA_SRC_CFG_READ (S5PC110_DMA_CFG_16BURST | \ - S5PC110_DMA_CFG_INC | \ - S5PC110_DMA_CFG_16BIT) -#define S5PC110_DMA_DST_CFG_READ (S5PC110_DMA_CFG_16BURST | \ - S5PC110_DMA_CFG_INC | \ - S5PC110_DMA_CFG_32BIT) -#define S5PC110_DMA_SRC_CFG_WRITE (S5PC110_DMA_CFG_16BURST | \ - S5PC110_DMA_CFG_INC | \ - S5PC110_DMA_CFG_32BIT) -#define S5PC110_DMA_DST_CFG_WRITE (S5PC110_DMA_CFG_16BURST | \ - S5PC110_DMA_CFG_INC | \ - S5PC110_DMA_CFG_16BIT) - -#define S5PC110_DMA_TRANS_CMD_TDC (0x1 << 18) -#define S5PC110_DMA_TRANS_CMD_TEC (0x1 << 16) -#define S5PC110_DMA_TRANS_CMD_TR (0x1 << 0) - -#define S5PC110_DMA_TRANS_STATUS_TD (0x1 << 18) -#define S5PC110_DMA_TRANS_STATUS_TB (0x1 << 17) -#define S5PC110_DMA_TRANS_STATUS_TE (0x1 << 16) - -#define S5PC110_DMA_DIR_READ 0x0 -#define S5PC110_DMA_DIR_WRITE 0x1 - -struct s3c_onenand { - struct mtd_info *mtd; - struct platform_device *pdev; - enum soc_type type; - void __iomem *base; - void __iomem *ahb_addr; - int bootram_command; - void *page_buf; - void *oob_buf; - unsigned int (*mem_addr)(int fba, int fpa, int fsa); - unsigned int (*cmd_map)(unsigned int type, unsigned int val); - void __iomem *dma_addr; - unsigned long phys_base; - struct completion complete; -}; - -#define CMD_MAP_00(dev, addr) (dev->cmd_map(MAP_00, ((addr) << 1))) -#define CMD_MAP_01(dev, mem_addr) (dev->cmd_map(MAP_01, (mem_addr))) -#define CMD_MAP_10(dev, mem_addr) (dev->cmd_map(MAP_10, (mem_addr))) -#define CMD_MAP_11(dev, addr) (dev->cmd_map(MAP_11, ((addr) << 2))) - -static struct s3c_onenand *onenand; - -static inline int s3c_read_reg(int offset) -{ - return readl(onenand->base + offset); -} - -static inline void s3c_write_reg(int value, int offset) -{ - writel(value, onenand->base + offset); -} - -static inline int s3c_read_cmd(unsigned int cmd) -{ - return readl(onenand->ahb_addr + cmd); -} - -static inline void s3c_write_cmd(int value, unsigned int cmd) -{ - writel(value, onenand->ahb_addr + cmd); -} - -#ifdef SAMSUNG_DEBUG -static void s3c_dump_reg(void) -{ - int i; - - for (i = 0; i < 0x400; i += 0x40) { - printk(KERN_INFO "0x%08X: 0x%08x 0x%08x 0x%08x 0x%08x\n", - (unsigned int) onenand->base + i, - s3c_read_reg(i), s3c_read_reg(i + 0x10), - s3c_read_reg(i + 0x20), s3c_read_reg(i + 0x30)); - } -} -#endif - -static unsigned int s3c64xx_cmd_map(unsigned type, unsigned val) -{ - return (type << S3C64XX_CMD_MAP_SHIFT) | val; -} - -static unsigned int s3c6400_mem_addr(int fba, int fpa, int fsa) -{ - return (fba << S3C6400_FBA_SHIFT) | (fpa << S3C6400_FPA_SHIFT) | - (fsa << S3C6400_FSA_SHIFT); -} - -static unsigned int s3c6410_mem_addr(int fba, int fpa, int fsa) -{ - return (fba << S3C6410_FBA_SHIFT) | (fpa << S3C6410_FPA_SHIFT) | - (fsa << S3C6410_FSA_SHIFT); -} - -static void s3c_onenand_reset(void) -{ - unsigned long timeout = 0x10000; - int stat; - - s3c_write_reg(ONENAND_MEM_RESET_COLD, MEM_RESET_OFFSET); - while (1 && timeout--) { - stat = s3c_read_reg(INT_ERR_STAT_OFFSET); - if (stat & RST_CMP) - break; - } - stat = s3c_read_reg(INT_ERR_STAT_OFFSET); - s3c_write_reg(stat, INT_ERR_ACK_OFFSET); - - /* Clear interrupt */ - s3c_write_reg(0x0, INT_ERR_ACK_OFFSET); - /* Clear the ECC status */ - s3c_write_reg(0x0, ECC_ERR_STAT_OFFSET); -} - -static unsigned short s3c_onenand_readw(void __iomem *addr) -{ - struct onenand_chip *this = onenand->mtd->priv; - struct device *dev = &onenand->pdev->dev; - int reg = addr - this->base; - int word_addr = reg >> 1; - int value; - - /* It's used for probing time */ - switch (reg) { - case ONENAND_REG_MANUFACTURER_ID: - return s3c_read_reg(MANUFACT_ID_OFFSET); - case ONENAND_REG_DEVICE_ID: - return s3c_read_reg(DEVICE_ID_OFFSET); - case ONENAND_REG_VERSION_ID: - return s3c_read_reg(FLASH_VER_ID_OFFSET); - case ONENAND_REG_DATA_BUFFER_SIZE: - return s3c_read_reg(DATA_BUF_SIZE_OFFSET); - case ONENAND_REG_TECHNOLOGY: - return s3c_read_reg(TECH_OFFSET); - case ONENAND_REG_SYS_CFG1: - return s3c_read_reg(MEM_CFG_OFFSET); - - /* Used at unlock all status */ - case ONENAND_REG_CTRL_STATUS: - return 0; - - case ONENAND_REG_WP_STATUS: - return ONENAND_WP_US; - - default: - break; - } - - /* BootRAM access control */ - if ((unsigned int) addr < ONENAND_DATARAM && onenand->bootram_command) { - if (word_addr == 0) - return s3c_read_reg(MANUFACT_ID_OFFSET); - if (word_addr == 1) - return s3c_read_reg(DEVICE_ID_OFFSET); - if (word_addr == 2) - return s3c_read_reg(FLASH_VER_ID_OFFSET); - } - - value = s3c_read_cmd(CMD_MAP_11(onenand, word_addr)) & 0xffff; - dev_info(dev, "%s: Illegal access at reg 0x%x, value 0x%x\n", __func__, - word_addr, value); - return value; -} - -static void s3c_onenand_writew(unsigned short value, void __iomem *addr) -{ - struct onenand_chip *this = onenand->mtd->priv; - struct device *dev = &onenand->pdev->dev; - unsigned int reg = addr - this->base; - unsigned int word_addr = reg >> 1; - - /* It's used for probing time */ - switch (reg) { - case ONENAND_REG_SYS_CFG1: - s3c_write_reg(value, MEM_CFG_OFFSET); - return; - - case ONENAND_REG_START_ADDRESS1: - case ONENAND_REG_START_ADDRESS2: - return; - - /* Lock/lock-tight/unlock/unlock_all */ - case ONENAND_REG_START_BLOCK_ADDRESS: - return; - - default: - break; - } - - /* BootRAM access control */ - if ((unsigned int)addr < ONENAND_DATARAM) { - if (value == ONENAND_CMD_READID) { - onenand->bootram_command = 1; - return; - } - if (value == ONENAND_CMD_RESET) { - s3c_write_reg(ONENAND_MEM_RESET_COLD, MEM_RESET_OFFSET); - onenand->bootram_command = 0; - return; - } - } - - dev_info(dev, "%s: Illegal access at reg 0x%x, value 0x%x\n", __func__, - word_addr, value); - - s3c_write_cmd(value, CMD_MAP_11(onenand, word_addr)); -} - -static int s3c_onenand_wait(struct mtd_info *mtd, int state) -{ - struct device *dev = &onenand->pdev->dev; - unsigned int flags = INT_ACT; - unsigned int stat, ecc; - unsigned long timeout; - - switch (state) { - case FL_READING: - flags |= BLK_RW_CMP | LOAD_CMP; - break; - case FL_WRITING: - flags |= BLK_RW_CMP | PGM_CMP; - break; - case FL_ERASING: - flags |= BLK_RW_CMP | ERS_CMP; - break; - case FL_LOCKING: - flags |= BLK_RW_CMP; - break; - default: - break; - } - - /* The 20 msec is enough */ - timeout = jiffies + msecs_to_jiffies(20); - while (time_before(jiffies, timeout)) { - stat = s3c_read_reg(INT_ERR_STAT_OFFSET); - if (stat & flags) - break; - - if (state != FL_READING) - cond_resched(); - } - /* To get correct interrupt status in timeout case */ - stat = s3c_read_reg(INT_ERR_STAT_OFFSET); - s3c_write_reg(stat, INT_ERR_ACK_OFFSET); - - /* - * In the Spec. it checks the controller status first - * However if you get the correct information in case of - * power off recovery (POR) test, it should read ECC status first - */ - if (stat & LOAD_CMP) { - ecc = s3c_read_reg(ECC_ERR_STAT_OFFSET); - if (ecc & ONENAND_ECC_4BIT_UNCORRECTABLE) { - dev_info(dev, "%s: ECC error = 0x%04x\n", __func__, - ecc); - mtd->ecc_stats.failed++; - return -EBADMSG; - } - } - - if (stat & (LOCKED_BLK | ERS_FAIL | PGM_FAIL | LD_FAIL_ECC_ERR)) { - dev_info(dev, "%s: controller error = 0x%04x\n", __func__, - stat); - if (stat & LOCKED_BLK) - dev_info(dev, "%s: it's locked error = 0x%04x\n", - __func__, stat); - - return -EIO; - } - - return 0; -} - -static int s3c_onenand_command(struct mtd_info *mtd, int cmd, loff_t addr, - size_t len) -{ - struct onenand_chip *this = mtd->priv; - unsigned int *m, *s; - int fba, fpa, fsa = 0; - unsigned int mem_addr, cmd_map_01, cmd_map_10; - int i, mcount, scount; - int index; - - fba = (int) (addr >> this->erase_shift); - fpa = (int) (addr >> this->page_shift); - fpa &= this->page_mask; - - mem_addr = onenand->mem_addr(fba, fpa, fsa); - cmd_map_01 = CMD_MAP_01(onenand, mem_addr); - cmd_map_10 = CMD_MAP_10(onenand, mem_addr); - - switch (cmd) { - case ONENAND_CMD_READ: - case ONENAND_CMD_READOOB: - case ONENAND_CMD_BUFFERRAM: - ONENAND_SET_NEXT_BUFFERRAM(this); - default: - break; - } - - index = ONENAND_CURRENT_BUFFERRAM(this); - - /* - * Emulate Two BufferRAMs and access with 4 bytes pointer - */ - m = onenand->page_buf; - s = onenand->oob_buf; - - if (index) { - m += (this->writesize >> 2); - s += (mtd->oobsize >> 2); - } - - mcount = mtd->writesize >> 2; - scount = mtd->oobsize >> 2; - - switch (cmd) { - case ONENAND_CMD_READ: - /* Main */ - for (i = 0; i < mcount; i++) - *m++ = s3c_read_cmd(cmd_map_01); - return 0; - - case ONENAND_CMD_READOOB: - s3c_write_reg(TSRF, TRANS_SPARE_OFFSET); - /* Main */ - for (i = 0; i < mcount; i++) - *m++ = s3c_read_cmd(cmd_map_01); - - /* Spare */ - for (i = 0; i < scount; i++) - *s++ = s3c_read_cmd(cmd_map_01); - - s3c_write_reg(0, TRANS_SPARE_OFFSET); - return 0; - - case ONENAND_CMD_PROG: - /* Main */ - for (i = 0; i < mcount; i++) - s3c_write_cmd(*m++, cmd_map_01); - return 0; - - case ONENAND_CMD_PROGOOB: - s3c_write_reg(TSRF, TRANS_SPARE_OFFSET); - - /* Main - dummy write */ - for (i = 0; i < mcount; i++) - s3c_write_cmd(0xffffffff, cmd_map_01); - - /* Spare */ - for (i = 0; i < scount; i++) - s3c_write_cmd(*s++, cmd_map_01); - - s3c_write_reg(0, TRANS_SPARE_OFFSET); - return 0; - - case ONENAND_CMD_UNLOCK_ALL: - s3c_write_cmd(ONENAND_UNLOCK_ALL, cmd_map_10); - return 0; - - case ONENAND_CMD_ERASE: - s3c_write_cmd(ONENAND_ERASE_START, cmd_map_10); - return 0; - - default: - break; - } - - return 0; -} - -static unsigned char *s3c_get_bufferram(struct mtd_info *mtd, int area) -{ - struct onenand_chip *this = mtd->priv; - int index = ONENAND_CURRENT_BUFFERRAM(this); - unsigned char *p; - - if (area == ONENAND_DATARAM) { - p = onenand->page_buf; - if (index == 1) - p += this->writesize; - } else { - p = onenand->oob_buf; - if (index == 1) - p += mtd->oobsize; - } - - return p; -} - -static int onenand_read_bufferram(struct mtd_info *mtd, int area, - unsigned char *buffer, int offset, - size_t count) -{ - unsigned char *p; - - p = s3c_get_bufferram(mtd, area); - memcpy(buffer, p + offset, count); - return 0; -} - -static int onenand_write_bufferram(struct mtd_info *mtd, int area, - const unsigned char *buffer, int offset, - size_t count) -{ - unsigned char *p; - - p = s3c_get_bufferram(mtd, area); - memcpy(p + offset, buffer, count); - return 0; -} - -static int (*s5pc110_dma_ops)(dma_addr_t dst, dma_addr_t src, size_t count, int direction); - -static int s5pc110_dma_poll(dma_addr_t dst, dma_addr_t src, size_t count, int direction) -{ - void __iomem *base = onenand->dma_addr; - int status; - unsigned long timeout; - - writel(src, base + S5PC110_DMA_SRC_ADDR); - writel(dst, base + S5PC110_DMA_DST_ADDR); - - if (direction == S5PC110_DMA_DIR_READ) { - writel(S5PC110_DMA_SRC_CFG_READ, base + S5PC110_DMA_SRC_CFG); - writel(S5PC110_DMA_DST_CFG_READ, base + S5PC110_DMA_DST_CFG); - } else { - writel(S5PC110_DMA_SRC_CFG_WRITE, base + S5PC110_DMA_SRC_CFG); - writel(S5PC110_DMA_DST_CFG_WRITE, base + S5PC110_DMA_DST_CFG); - } - - writel(count, base + S5PC110_DMA_TRANS_SIZE); - writel(direction, base + S5PC110_DMA_TRANS_DIR); - - writel(S5PC110_DMA_TRANS_CMD_TR, base + S5PC110_DMA_TRANS_CMD); - - /* - * There's no exact timeout values at Spec. - * In real case it takes under 1 msec. - * So 20 msecs are enough. - */ - timeout = jiffies + msecs_to_jiffies(20); - - do { - status = readl(base + S5PC110_DMA_TRANS_STATUS); - if (status & S5PC110_DMA_TRANS_STATUS_TE) { - writel(S5PC110_DMA_TRANS_CMD_TEC, - base + S5PC110_DMA_TRANS_CMD); - return -EIO; - } - } while (!(status & S5PC110_DMA_TRANS_STATUS_TD) && - time_before(jiffies, timeout)); - - writel(S5PC110_DMA_TRANS_CMD_TDC, base + S5PC110_DMA_TRANS_CMD); - - return 0; -} - -static irqreturn_t s5pc110_onenand_irq(int irq, void *data) -{ - void __iomem *base = onenand->dma_addr; - int status, cmd = 0; - - status = readl(base + S5PC110_INTC_DMA_STATUS); - - if (likely(status & S5PC110_INTC_DMA_TD)) - cmd = S5PC110_DMA_TRANS_CMD_TDC; - - if (unlikely(status & S5PC110_INTC_DMA_TE)) - cmd = S5PC110_DMA_TRANS_CMD_TEC; - - writel(cmd, base + S5PC110_DMA_TRANS_CMD); - writel(status, base + S5PC110_INTC_DMA_CLR); - - if (!onenand->complete.done) - complete(&onenand->complete); - - return IRQ_HANDLED; -} - -static int s5pc110_dma_irq(dma_addr_t dst, dma_addr_t src, size_t count, int direction) -{ - void __iomem *base = onenand->dma_addr; - int status; - - status = readl(base + S5PC110_INTC_DMA_MASK); - if (status) { - status &= ~(S5PC110_INTC_DMA_TD | S5PC110_INTC_DMA_TE); - writel(status, base + S5PC110_INTC_DMA_MASK); - } - - writel(src, base + S5PC110_DMA_SRC_ADDR); - writel(dst, base + S5PC110_DMA_DST_ADDR); - - if (direction == S5PC110_DMA_DIR_READ) { - writel(S5PC110_DMA_SRC_CFG_READ, base + S5PC110_DMA_SRC_CFG); - writel(S5PC110_DMA_DST_CFG_READ, base + S5PC110_DMA_DST_CFG); - } else { - writel(S5PC110_DMA_SRC_CFG_WRITE, base + S5PC110_DMA_SRC_CFG); - writel(S5PC110_DMA_DST_CFG_WRITE, base + S5PC110_DMA_DST_CFG); - } - - writel(count, base + S5PC110_DMA_TRANS_SIZE); - writel(direction, base + S5PC110_DMA_TRANS_DIR); - - writel(S5PC110_DMA_TRANS_CMD_TR, base + S5PC110_DMA_TRANS_CMD); - - wait_for_completion_timeout(&onenand->complete, msecs_to_jiffies(20)); - - return 0; -} - -static int s5pc110_read_bufferram(struct mtd_info *mtd, int area, - unsigned char *buffer, int offset, size_t count) -{ - struct onenand_chip *this = mtd->priv; - void __iomem *p; - void *buf = (void *) buffer; - dma_addr_t dma_src, dma_dst; - int err, ofs, page_dma = 0; - struct device *dev = &onenand->pdev->dev; - - p = this->base + area; - if (ONENAND_CURRENT_BUFFERRAM(this)) { - if (area == ONENAND_DATARAM) - p += this->writesize; - else - p += mtd->oobsize; - } - - if (offset & 3 || (size_t) buf & 3 || - !onenand->dma_addr || count != mtd->writesize) - goto normal; - - /* Handle vmalloc address */ - if (buf >= high_memory) { - struct page *page; - - if (((size_t) buf & PAGE_MASK) != - ((size_t) (buf + count - 1) & PAGE_MASK)) - goto normal; - page = vmalloc_to_page(buf); - if (!page) - goto normal; - - /* Page offset */ - ofs = ((size_t) buf & ~PAGE_MASK); - page_dma = 1; - - /* DMA routine */ - dma_src = onenand->phys_base + (p - this->base); - dma_dst = dma_map_page(dev, page, ofs, count, DMA_FROM_DEVICE); - } else { - /* DMA routine */ - dma_src = onenand->phys_base + (p - this->base); - dma_dst = dma_map_single(dev, buf, count, DMA_FROM_DEVICE); - } - if (dma_mapping_error(dev, dma_dst)) { - dev_err(dev, "Couldn't map a %d byte buffer for DMA\n", count); - goto normal; - } - err = s5pc110_dma_ops(dma_dst, dma_src, - count, S5PC110_DMA_DIR_READ); - - if (page_dma) - dma_unmap_page(dev, dma_dst, count, DMA_FROM_DEVICE); - else - dma_unmap_single(dev, dma_dst, count, DMA_FROM_DEVICE); - - if (!err) - return 0; - -normal: - if (count != mtd->writesize) { - /* Copy the bufferram to memory to prevent unaligned access */ - memcpy(this->page_buf, p, mtd->writesize); - p = this->page_buf + offset; - } - - memcpy(buffer, p, count); - - return 0; -} - -static int s5pc110_chip_probe(struct mtd_info *mtd) -{ - /* Now just return 0 */ - return 0; -} - -static int s3c_onenand_bbt_wait(struct mtd_info *mtd, int state) -{ - unsigned int flags = INT_ACT | LOAD_CMP; - unsigned int stat; - unsigned long timeout; - - /* The 20 msec is enough */ - timeout = jiffies + msecs_to_jiffies(20); - while (time_before(jiffies, timeout)) { - stat = s3c_read_reg(INT_ERR_STAT_OFFSET); - if (stat & flags) - break; - } - /* To get correct interrupt status in timeout case */ - stat = s3c_read_reg(INT_ERR_STAT_OFFSET); - s3c_write_reg(stat, INT_ERR_ACK_OFFSET); - - if (stat & LD_FAIL_ECC_ERR) { - s3c_onenand_reset(); - return ONENAND_BBT_READ_ERROR; - } - - if (stat & LOAD_CMP) { - int ecc = s3c_read_reg(ECC_ERR_STAT_OFFSET); - if (ecc & ONENAND_ECC_4BIT_UNCORRECTABLE) { - s3c_onenand_reset(); - return ONENAND_BBT_READ_ERROR; - } - } - - return 0; -} - -static void s3c_onenand_check_lock_status(struct mtd_info *mtd) -{ - struct onenand_chip *this = mtd->priv; - struct device *dev = &onenand->pdev->dev; - unsigned int block, end; - int tmp; - - end = this->chipsize >> this->erase_shift; - - for (block = 0; block < end; block++) { - unsigned int mem_addr = onenand->mem_addr(block, 0, 0); - tmp = s3c_read_cmd(CMD_MAP_01(onenand, mem_addr)); - - if (s3c_read_reg(INT_ERR_STAT_OFFSET) & LOCKED_BLK) { - dev_err(dev, "block %d is write-protected!\n", block); - s3c_write_reg(LOCKED_BLK, INT_ERR_ACK_OFFSET); - } - } -} - -static void s3c_onenand_do_lock_cmd(struct mtd_info *mtd, loff_t ofs, - size_t len, int cmd) -{ - struct onenand_chip *this = mtd->priv; - int start, end, start_mem_addr, end_mem_addr; - - start = ofs >> this->erase_shift; - start_mem_addr = onenand->mem_addr(start, 0, 0); - end = start + (len >> this->erase_shift) - 1; - end_mem_addr = onenand->mem_addr(end, 0, 0); - - if (cmd == ONENAND_CMD_LOCK) { - s3c_write_cmd(ONENAND_LOCK_START, CMD_MAP_10(onenand, - start_mem_addr)); - s3c_write_cmd(ONENAND_LOCK_END, CMD_MAP_10(onenand, - end_mem_addr)); - } else { - s3c_write_cmd(ONENAND_UNLOCK_START, CMD_MAP_10(onenand, - start_mem_addr)); - s3c_write_cmd(ONENAND_UNLOCK_END, CMD_MAP_10(onenand, - end_mem_addr)); - } - - this->wait(mtd, FL_LOCKING); -} - -static void s3c_unlock_all(struct mtd_info *mtd) -{ - struct onenand_chip *this = mtd->priv; - loff_t ofs = 0; - size_t len = this->chipsize; - - if (this->options & ONENAND_HAS_UNLOCK_ALL) { - /* Write unlock command */ - this->command(mtd, ONENAND_CMD_UNLOCK_ALL, 0, 0); - - /* No need to check return value */ - this->wait(mtd, FL_LOCKING); - - /* Workaround for all block unlock in DDP */ - if (!ONENAND_IS_DDP(this)) { - s3c_onenand_check_lock_status(mtd); - return; - } - - /* All blocks on another chip */ - ofs = this->chipsize >> 1; - len = this->chipsize >> 1; - } - - s3c_onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK); - - s3c_onenand_check_lock_status(mtd); -} - -static void s3c_onenand_setup(struct mtd_info *mtd) -{ - struct onenand_chip *this = mtd->priv; - - onenand->mtd = mtd; - - if (onenand->type == TYPE_S3C6400) { - onenand->mem_addr = s3c6400_mem_addr; - onenand->cmd_map = s3c64xx_cmd_map; - } else if (onenand->type == TYPE_S3C6410) { - onenand->mem_addr = s3c6410_mem_addr; - onenand->cmd_map = s3c64xx_cmd_map; - } else if (onenand->type == TYPE_S5PC110) { - /* Use generic onenand functions */ - this->read_bufferram = s5pc110_read_bufferram; - this->chip_probe = s5pc110_chip_probe; - return; - } else { - BUG(); - } - - this->read_word = s3c_onenand_readw; - this->write_word = s3c_onenand_writew; - - this->wait = s3c_onenand_wait; - this->bbt_wait = s3c_onenand_bbt_wait; - this->unlock_all = s3c_unlock_all; - this->command = s3c_onenand_command; - - this->read_bufferram = onenand_read_bufferram; - this->write_bufferram = onenand_write_bufferram; -} - -static int s3c_onenand_probe(struct platform_device *pdev) -{ - struct onenand_platform_data *pdata; - struct onenand_chip *this; - struct mtd_info *mtd; - struct resource *r; - int size, err; - - pdata = dev_get_platdata(&pdev->dev); - /* No need to check pdata. the platform data is optional */ - - size = sizeof(struct mtd_info) + sizeof(struct onenand_chip); - mtd = devm_kzalloc(&pdev->dev, size, GFP_KERNEL); - if (!mtd) - return -ENOMEM; - - onenand = devm_kzalloc(&pdev->dev, sizeof(struct s3c_onenand), - GFP_KERNEL); - if (!onenand) - return -ENOMEM; - - this = (struct onenand_chip *) &mtd[1]; - mtd->priv = this; - mtd->dev.parent = &pdev->dev; - onenand->pdev = pdev; - onenand->type = platform_get_device_id(pdev)->driver_data; - - s3c_onenand_setup(mtd); - - r = platform_get_resource(pdev, IORESOURCE_MEM, 0); - onenand->base = devm_ioremap_resource(&pdev->dev, r); - if (IS_ERR(onenand->base)) - return PTR_ERR(onenand->base); - - onenand->phys_base = r->start; - - /* Set onenand_chip also */ - this->base = onenand->base; - - /* Use runtime badblock check */ - this->options |= ONENAND_SKIP_UNLOCK_CHECK; - - if (onenand->type != TYPE_S5PC110) { - r = platform_get_resource(pdev, IORESOURCE_MEM, 1); - onenand->ahb_addr = devm_ioremap_resource(&pdev->dev, r); - if (IS_ERR(onenand->ahb_addr)) - return PTR_ERR(onenand->ahb_addr); - - /* Allocate 4KiB BufferRAM */ - onenand->page_buf = devm_kzalloc(&pdev->dev, SZ_4K, - GFP_KERNEL); - if (!onenand->page_buf) - return -ENOMEM; - - /* Allocate 128 SpareRAM */ - onenand->oob_buf = devm_kzalloc(&pdev->dev, 128, GFP_KERNEL); - if (!onenand->oob_buf) - return -ENOMEM; - - /* S3C doesn't handle subpage write */ - mtd->subpage_sft = 0; - this->subpagesize = mtd->writesize; - - } else { /* S5PC110 */ - r = platform_get_resource(pdev, IORESOURCE_MEM, 1); - onenand->dma_addr = devm_ioremap_resource(&pdev->dev, r); - if (IS_ERR(onenand->dma_addr)) - return PTR_ERR(onenand->dma_addr); - - s5pc110_dma_ops = s5pc110_dma_poll; - /* Interrupt support */ - r = platform_get_resource(pdev, IORESOURCE_IRQ, 0); - if (r) { - init_completion(&onenand->complete); - s5pc110_dma_ops = s5pc110_dma_irq; - err = devm_request_irq(&pdev->dev, r->start, - s5pc110_onenand_irq, - IRQF_SHARED, "onenand", - &onenand); - if (err) { - dev_err(&pdev->dev, "failed to get irq\n"); - return err; - } - } - } - - err = onenand_scan(mtd, 1); - if (err) - return err; - - if (onenand->type != TYPE_S5PC110) { - /* S3C doesn't handle subpage write */ - mtd->subpage_sft = 0; - this->subpagesize = mtd->writesize; - } - - if (s3c_read_reg(MEM_CFG_OFFSET) & ONENAND_SYS_CFG1_SYNC_READ) - dev_info(&onenand->pdev->dev, "OneNAND Sync. Burst Read enabled\n"); - - err = mtd_device_parse_register(mtd, NULL, NULL, - pdata ? pdata->parts : NULL, - pdata ? pdata->nr_parts : 0); - if (err) { - dev_err(&pdev->dev, "failed to parse partitions and register the MTD device\n"); - onenand_release(mtd); - return err; - } - - platform_set_drvdata(pdev, mtd); - - return 0; -} - -static int s3c_onenand_remove(struct platform_device *pdev) -{ - struct mtd_info *mtd = platform_get_drvdata(pdev); - - onenand_release(mtd); - - return 0; -} - -static int s3c_pm_ops_suspend(struct device *dev) -{ - struct platform_device *pdev = to_platform_device(dev); - struct mtd_info *mtd = platform_get_drvdata(pdev); - struct onenand_chip *this = mtd->priv; - - this->wait(mtd, FL_PM_SUSPENDED); - return 0; -} - -static int s3c_pm_ops_resume(struct device *dev) -{ - struct platform_device *pdev = to_platform_device(dev); - struct mtd_info *mtd = platform_get_drvdata(pdev); - struct onenand_chip *this = mtd->priv; - - this->unlock_all(mtd); - return 0; -} - -static const struct dev_pm_ops s3c_pm_ops = { - .suspend = s3c_pm_ops_suspend, - .resume = s3c_pm_ops_resume, -}; - -static const struct platform_device_id s3c_onenand_driver_ids[] = { - { - .name = "s3c6400-onenand", - .driver_data = TYPE_S3C6400, - }, { - .name = "s3c6410-onenand", - .driver_data = TYPE_S3C6410, - }, { - .name = "s5pc110-onenand", - .driver_data = TYPE_S5PC110, - }, { }, -}; -MODULE_DEVICE_TABLE(platform, s3c_onenand_driver_ids); - -static struct platform_driver s3c_onenand_driver = { - .driver = { - .name = "samsung-onenand", - .pm = &s3c_pm_ops, - }, - .id_table = s3c_onenand_driver_ids, - .probe = s3c_onenand_probe, - .remove = s3c_onenand_remove, -}; - -module_platform_driver(s3c_onenand_driver); - -MODULE_LICENSE("GPL"); -MODULE_AUTHOR("Kyungmin Park "); -MODULE_DESCRIPTION("Samsung OneNAND controller support"); diff --git a/drivers/mtd/onenand/samsung.h b/drivers/mtd/onenand/samsung.h deleted file mode 100644 index 9016dc0136a8..000000000000 --- a/drivers/mtd/onenand/samsung.h +++ /dev/null @@ -1,59 +0,0 @@ -/* - * Copyright (C) 2008-2010 Samsung Electronics - * Kyungmin Park - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License version 2 as - * published by the Free Software Foundation. - */ -#ifndef __SAMSUNG_ONENAND_H__ -#define __SAMSUNG_ONENAND_H__ - -/* - * OneNAND Controller - */ -#define MEM_CFG_OFFSET 0x0000 -#define BURST_LEN_OFFSET 0x0010 -#define MEM_RESET_OFFSET 0x0020 -#define INT_ERR_STAT_OFFSET 0x0030 -#define INT_ERR_MASK_OFFSET 0x0040 -#define INT_ERR_ACK_OFFSET 0x0050 -#define ECC_ERR_STAT_OFFSET 0x0060 -#define MANUFACT_ID_OFFSET 0x0070 -#define DEVICE_ID_OFFSET 0x0080 -#define DATA_BUF_SIZE_OFFSET 0x0090 -#define BOOT_BUF_SIZE_OFFSET 0x00A0 -#define BUF_AMOUNT_OFFSET 0x00B0 -#define TECH_OFFSET 0x00C0 -#define FBA_WIDTH_OFFSET 0x00D0 -#define FPA_WIDTH_OFFSET 0x00E0 -#define FSA_WIDTH_OFFSET 0x00F0 -#define TRANS_SPARE_OFFSET 0x0140 -#define DBS_DFS_WIDTH_OFFSET 0x0160 -#define INT_PIN_ENABLE_OFFSET 0x01A0 -#define ACC_CLOCK_OFFSET 0x01C0 -#define FLASH_VER_ID_OFFSET 0x01F0 -#define FLASH_AUX_CNTRL_OFFSET 0x0300 /* s3c64xx only */ - -#define ONENAND_MEM_RESET_HOT 0x3 -#define ONENAND_MEM_RESET_COLD 0x2 -#define ONENAND_MEM_RESET_WARM 0x1 - -#define CACHE_OP_ERR (1 << 13) -#define RST_CMP (1 << 12) -#define RDY_ACT (1 << 11) -#define INT_ACT (1 << 10) -#define UNSUP_CMD (1 << 9) -#define LOCKED_BLK (1 << 8) -#define BLK_RW_CMP (1 << 7) -#define ERS_CMP (1 << 6) -#define PGM_CMP (1 << 5) -#define LOAD_CMP (1 << 4) -#define ERS_FAIL (1 << 3) -#define PGM_FAIL (1 << 2) -#define INT_TO (1 << 1) -#define LD_FAIL_ECC_ERR (1 << 0) - -#define TSRF (1 << 0) - -#endif -- cgit v1.2.3-58-ga151 From 63fa37f0c512481bd942e84b596ad58e1d4c84e2 Mon Sep 17 00:00:00 2001 From: Shreeya Patel Date: Thu, 22 Feb 2018 22:01:22 +0530 Subject: mtd: rawnand: Replace printk() with appropriate pr_*() macro Using pr_() is more concise than printk(KERN_). Replace printks having a log level with the appropriate pr_*() macros. Define pr_fmt() and remove other additional macros from the replaced printks. Signed-off-by: Shreeya Patel Signed-off-by: Boris Brezillon --- drivers/mtd/nand/raw/ams-delta.c | 4 +- drivers/mtd/nand/raw/cafe_nand.c | 4 +- drivers/mtd/nand/raw/cs553x_nand.c | 9 +++-- drivers/mtd/nand/raw/diskonchip.c | 76 +++++++++++++++++++----------------- drivers/mtd/nand/raw/fsl_elbc_nand.c | 4 +- drivers/mtd/nand/raw/fsl_ifc_nand.c | 2 +- drivers/mtd/nand/raw/nand_bch.c | 12 +++--- drivers/mtd/nand/raw/nandsim.c | 15 ++++--- drivers/mtd/nand/raw/r852.c | 5 ++- drivers/mtd/nand/raw/r852.h | 9 ++--- drivers/mtd/nand/raw/sh_flctl.c | 2 +- drivers/mtd/nand/raw/sm_common.c | 5 +-- 12 files changed, 75 insertions(+), 72 deletions(-) diff --git a/drivers/mtd/nand/raw/ams-delta.c b/drivers/mtd/nand/raw/ams-delta.c index 35f80523e52e..37a3cc21c7bc 100644 --- a/drivers/mtd/nand/raw/ams-delta.c +++ b/drivers/mtd/nand/raw/ams-delta.c @@ -186,7 +186,7 @@ static int ams_delta_init(struct platform_device *pdev) /* Allocate memory for MTD device structure and private data */ this = kzalloc(sizeof(struct nand_chip), GFP_KERNEL); if (!this) { - printk (KERN_WARNING "Unable to allocate E3 NAND MTD device structure.\n"); + pr_warn("Unable to allocate E3 NAND MTD device structure.\n"); err = -ENOMEM; goto out; } @@ -220,7 +220,7 @@ static int ams_delta_init(struct platform_device *pdev) this->dev_ready = ams_delta_nand_ready; } else { this->dev_ready = NULL; - printk(KERN_NOTICE "Couldn't request gpio for Delta NAND ready.\n"); + pr_notice("Couldn't request gpio for Delta NAND ready.\n"); } /* 25 us command delay time */ this->chip_delay = 30; diff --git a/drivers/mtd/nand/raw/cafe_nand.c b/drivers/mtd/nand/raw/cafe_nand.c index 567ff972d5fc..37cfae2761d4 100644 --- a/drivers/mtd/nand/raw/cafe_nand.c +++ b/drivers/mtd/nand/raw/cafe_nand.c @@ -751,8 +751,8 @@ static int cafe_nand_probe(struct pci_dev *pdev, cafe->nand.bbt_td = &cafe_bbt_main_descr_512; cafe->nand.bbt_md = &cafe_bbt_mirror_descr_512; } else { - printk(KERN_WARNING "Unexpected NAND flash writesize %d. Aborting\n", - mtd->writesize); + pr_warn("Unexpected NAND flash writesize %d. Aborting\n", + mtd->writesize); goto out_free_dma; } cafe->nand.ecc.mode = NAND_ECC_HW_SYNDROME; diff --git a/drivers/mtd/nand/raw/cs553x_nand.c b/drivers/mtd/nand/raw/cs553x_nand.c index be1f28fc7363..82269fde9e66 100644 --- a/drivers/mtd/nand/raw/cs553x_nand.c +++ b/drivers/mtd/nand/raw/cs553x_nand.c @@ -187,10 +187,11 @@ static int __init cs553x_init_one(int cs, int mmio, unsigned long adr) struct nand_chip *this; struct mtd_info *new_mtd; - printk(KERN_NOTICE "Probing CS553x NAND controller CS#%d at %sIO 0x%08lx\n", cs, mmio?"MM":"P", adr); + pr_notice("Probing CS553x NAND controller CS#%d at %sIO 0x%08lx\n", + cs, mmio ? "MM" : "P", adr); if (!mmio) { - printk(KERN_NOTICE "PIO mode not yet implemented for CS553X NAND controller\n"); + pr_notice("PIO mode not yet implemented for CS553X NAND controller\n"); return -ENXIO; } @@ -209,7 +210,7 @@ static int __init cs553x_init_one(int cs, int mmio, unsigned long adr) /* map physical address */ this->IO_ADDR_R = this->IO_ADDR_W = ioremap(adr, 4096); if (!this->IO_ADDR_R) { - printk(KERN_WARNING "ioremap cs553x NAND @0x%08lx failed\n", adr); + pr_warn("ioremap cs553x NAND @0x%08lx failed\n", adr); err = -EIO; goto out_mtd; } @@ -293,7 +294,7 @@ static int __init cs553x_init(void) /* If it doesn't have the NAND controller enabled, abort */ rdmsrl(MSR_DIVIL_BALL_OPTS, val); if (val & PIN_OPT_IDE) { - printk(KERN_INFO "CS553x NAND controller: Flash I/O not enabled in MSR_DIVIL_BALL_OPTS.\n"); + pr_info("CS553x NAND controller: Flash I/O not enabled in MSR_DIVIL_BALL_OPTS.\n"); return -ENXIO; } diff --git a/drivers/mtd/nand/raw/diskonchip.c b/drivers/mtd/nand/raw/diskonchip.c index 1af77f798fe5..86a258de0b75 100644 --- a/drivers/mtd/nand/raw/diskonchip.c +++ b/drivers/mtd/nand/raw/diskonchip.c @@ -409,7 +409,7 @@ static uint16_t __init doc200x_ident_chip(struct mtd_info *mtd, int nr) ident.dword = readl(docptr + DoC_2k_CDSN_IO); if (((ident.byte[0] << 8) | ident.byte[1]) == ret) { - printk(KERN_INFO "DiskOnChip 2000 responds to DWORD access\n"); + pr_info("DiskOnChip 2000 responds to DWORD access\n"); this->read_buf = &doc2000_readbuf_dword; } } @@ -436,7 +436,7 @@ static void __init doc2000_count_chips(struct mtd_info *mtd) break; } doc->chips_per_floor = i; - printk(KERN_DEBUG "Detected %d chips per floor.\n", i); + pr_debug("Detected %d chips per floor.\n", i); } static int doc200x_wait(struct mtd_info *mtd, struct nand_chip *this) @@ -932,14 +932,15 @@ static int doc200x_correct_data(struct mtd_info *mtd, u_char *dat, ret = doc_ecc_decode(rs_decoder, dat, calc_ecc); if (ret > 0) - printk(KERN_ERR "doc200x_correct_data corrected %d errors\n", ret); + pr_err("doc200x_correct_data corrected %d errors\n", + ret); } if (DoC_is_MillenniumPlus(doc)) WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf); else WriteDOC(DOC_ECC_DIS, docptr, ECCConf); if (no_ecc_failures && mtd_is_eccerr(ret)) { - printk(KERN_ERR "suppressing ECC failure\n"); + pr_err("suppressing ECC failure\n"); ret = 0; } return ret; @@ -1012,11 +1013,11 @@ static int __init find_media_headers(struct mtd_info *mtd, u_char *buf, const ch if (retlen != mtd->writesize) continue; if (ret) { - printk(KERN_WARNING "ECC error scanning DOC at 0x%x\n", offs); + pr_warn("ECC error scanning DOC at 0x%x\n", offs); } if (memcmp(buf, id, 6)) continue; - printk(KERN_INFO "Found DiskOnChip %s Media Header at 0x%x\n", id, offs); + pr_info("Found DiskOnChip %s Media Header at 0x%x\n", id, offs); if (doc->mh0_page == -1) { doc->mh0_page = offs >> this->page_shift; if (!findmirror) @@ -1027,7 +1028,7 @@ static int __init find_media_headers(struct mtd_info *mtd, u_char *buf, const ch return 2; } if (doc->mh0_page == -1) { - printk(KERN_WARNING "DiskOnChip %s Media Header not found.\n", id); + pr_warn("DiskOnChip %s Media Header not found.\n", id); return 0; } /* Only one mediaheader was found. We want buf to contain a @@ -1036,7 +1037,7 @@ static int __init find_media_headers(struct mtd_info *mtd, u_char *buf, const ch ret = mtd_read(mtd, offs, mtd->writesize, &retlen, buf); if (retlen != mtd->writesize) { /* Insanity. Give up. */ - printk(KERN_ERR "Read DiskOnChip Media Header once, but can't reread it???\n"); + pr_err("Read DiskOnChip Media Header once, but can't reread it???\n"); return 0; } return 1; @@ -1066,11 +1067,11 @@ static inline int __init nftl_partscan(struct mtd_info *mtd, struct mtd_partitio le16_to_cpus(&mh->FirstPhysicalEUN); le32_to_cpus(&mh->FormattedSize); - printk(KERN_INFO " DataOrgID = %s\n" - " NumEraseUnits = %d\n" - " FirstPhysicalEUN = %d\n" - " FormattedSize = %d\n" - " UnitSizeFactor = %d\n", + pr_info(" DataOrgID = %s\n" + " NumEraseUnits = %d\n" + " FirstPhysicalEUN = %d\n" + " FormattedSize = %d\n" + " UnitSizeFactor = %d\n", mh->DataOrgID, mh->NumEraseUnits, mh->FirstPhysicalEUN, mh->FormattedSize, mh->UnitSizeFactor); @@ -1090,7 +1091,7 @@ static inline int __init nftl_partscan(struct mtd_info *mtd, struct mtd_partitio maxblocks = min(32768U, (maxblocks << 1) + psize); mh->UnitSizeFactor--; } - printk(KERN_WARNING "UnitSizeFactor=0x00 detected. Correct value is assumed to be 0x%02x.\n", mh->UnitSizeFactor); + pr_warn("UnitSizeFactor=0x00 detected. Correct value is assumed to be 0x%02x.\n", mh->UnitSizeFactor); } /* NOTE: The lines below modify internal variables of the NAND and MTD @@ -1101,13 +1102,13 @@ static inline int __init nftl_partscan(struct mtd_info *mtd, struct mtd_partitio if (mh->UnitSizeFactor != 0xff) { this->bbt_erase_shift += (0xff - mh->UnitSizeFactor); mtd->erasesize <<= (0xff - mh->UnitSizeFactor); - printk(KERN_INFO "Setting virtual erase size to %d\n", mtd->erasesize); + pr_info("Setting virtual erase size to %d\n", mtd->erasesize); blocks = mtd->size >> this->bbt_erase_shift; maxblocks = min(32768U, mtd->erasesize - psize); } if (blocks > maxblocks) { - printk(KERN_ERR "UnitSizeFactor of 0x%02x is inconsistent with device size. Aborting.\n", mh->UnitSizeFactor); + pr_err("UnitSizeFactor of 0x%02x is inconsistent with device size. Aborting.\n", mh->UnitSizeFactor); goto out; } @@ -1178,14 +1179,14 @@ static inline int __init inftl_partscan(struct mtd_info *mtd, struct mtd_partiti le32_to_cpus(&mh->FormatFlags); le32_to_cpus(&mh->PercentUsed); - printk(KERN_INFO " bootRecordID = %s\n" - " NoOfBootImageBlocks = %d\n" - " NoOfBinaryPartitions = %d\n" - " NoOfBDTLPartitions = %d\n" - " BlockMultiplerBits = %d\n" - " FormatFlgs = %d\n" - " OsakVersion = %d.%d.%d.%d\n" - " PercentUsed = %d\n", + pr_info(" bootRecordID = %s\n" + " NoOfBootImageBlocks = %d\n" + " NoOfBinaryPartitions = %d\n" + " NoOfBDTLPartitions = %d\n" + " BlockMultiplerBits = %d\n" + " FormatFlgs = %d\n" + " OsakVersion = %d.%d.%d.%d\n" + " PercentUsed = %d\n", mh->bootRecordID, mh->NoOfBootImageBlocks, mh->NoOfBinaryPartitions, mh->NoOfBDTLPartitions, @@ -1200,13 +1201,13 @@ static inline int __init inftl_partscan(struct mtd_info *mtd, struct mtd_partiti blocks = mtd->size >> vshift; if (blocks > 32768) { - printk(KERN_ERR "BlockMultiplierBits=%d is inconsistent with device size. Aborting.\n", mh->BlockMultiplierBits); + pr_err("BlockMultiplierBits=%d is inconsistent with device size. Aborting.\n", mh->BlockMultiplierBits); goto out; } blocks = doc->chips_per_floor << (this->chip_shift - this->phys_erase_shift); if (inftl_bbt_write && (blocks > mtd->erasesize)) { - printk(KERN_ERR "Writeable BBTs spanning more than one erase block are not yet supported. FIX ME!\n"); + pr_err("Writeable BBTs spanning more than one erase block are not yet supported. FIX ME!\n"); goto out; } @@ -1220,7 +1221,7 @@ static inline int __init inftl_partscan(struct mtd_info *mtd, struct mtd_partiti le32_to_cpus(&ip->spareUnits); le32_to_cpus(&ip->Reserved0); - printk(KERN_INFO " PARTITION[%d] ->\n" + pr_info(" PARTITION[%d] ->\n" " virtualUnits = %d\n" " firstUnit = %d\n" " lastUnit = %d\n" @@ -1306,7 +1307,7 @@ static int __init inftl_scan_bbt(struct mtd_info *mtd) struct mtd_partition parts[5]; if (this->numchips > doc->chips_per_floor) { - printk(KERN_ERR "Multi-floor INFTL devices not yet supported.\n"); + pr_err("Multi-floor INFTL devices not yet supported.\n"); return -EIO; } @@ -1434,7 +1435,8 @@ static int __init doc_probe(unsigned long physadr) return -EBUSY; virtadr = ioremap(physadr, DOC_IOREMAP_LEN); if (!virtadr) { - printk(KERN_ERR "Diskonchip ioremap failed: 0x%x bytes at 0x%lx\n", DOC_IOREMAP_LEN, physadr); + pr_err("Diskonchip ioremap failed: 0x%x bytes at 0x%lx\n", + DOC_IOREMAP_LEN, physadr); ret = -EIO; goto error_ioremap; } @@ -1493,7 +1495,7 @@ static int __init doc_probe(unsigned long physadr) reg = DoC_Mplus_Toggle; break; case DOC_ChipID_DocMilPlus32: - printk(KERN_ERR "DiskOnChip Millennium Plus 32MB is not supported, ignoring.\n"); + pr_err("DiskOnChip Millennium Plus 32MB is not supported, ignoring.\n"); default: ret = -ENODEV; goto notfound; @@ -1509,7 +1511,7 @@ static int __init doc_probe(unsigned long physadr) tmpb = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT; tmpc = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT; if ((tmp == tmpb) || (tmp != tmpc)) { - printk(KERN_WARNING "Possible DiskOnChip at 0x%lx failed TOGGLE test, dropping.\n", physadr); + pr_warn("Possible DiskOnChip at 0x%lx failed TOGGLE test, dropping.\n", physadr); ret = -ENODEV; goto notfound; } @@ -1543,12 +1545,13 @@ static int __init doc_probe(unsigned long physadr) } newval = ~newval; if (oldval == newval) { - printk(KERN_DEBUG "Found alias of DOC at 0x%lx to 0x%lx\n", doc->physadr, physadr); + pr_debug("Found alias of DOC at 0x%lx to 0x%lx\n", + doc->physadr, physadr); goto notfound; } } - printk(KERN_NOTICE "DiskOnChip found at 0x%lx\n", physadr); + pr_notice("DiskOnChip found at 0x%lx\n", physadr); len = sizeof(struct nand_chip) + sizeof(struct doc_priv) + (2 * sizeof(struct nand_bbt_descr)); @@ -1663,12 +1666,13 @@ static int __init init_nanddoc(void) */ rs_decoder = init_rs(10, 0x409, FCR, 1, NROOTS); if (!rs_decoder) { - printk(KERN_ERR "DiskOnChip: Could not create a RS decoder\n"); + pr_err("DiskOnChip: Could not create a RS decoder\n"); return -ENOMEM; } if (doc_config_location) { - printk(KERN_INFO "Using configured DiskOnChip probe address 0x%lx\n", doc_config_location); + pr_info("Using configured DiskOnChip probe address 0x%lx\n", + doc_config_location); ret = doc_probe(doc_config_location); if (ret < 0) goto outerr; @@ -1680,7 +1684,7 @@ static int __init init_nanddoc(void) /* No banner message any more. Print a message if no DiskOnChip found, so the user knows we at least tried. */ if (!doclist) { - printk(KERN_INFO "No valid DiskOnChip devices found\n"); + pr_info("No valid DiskOnChip devices found\n"); ret = -ENODEV; goto outerr; } diff --git a/drivers/mtd/nand/raw/fsl_elbc_nand.c b/drivers/mtd/nand/raw/fsl_elbc_nand.c index 8b6dcd739ecb..84f7d6a94be7 100644 --- a/drivers/mtd/nand/raw/fsl_elbc_nand.c +++ b/drivers/mtd/nand/raw/fsl_elbc_nand.c @@ -929,8 +929,8 @@ static int fsl_elbc_nand_probe(struct platform_device *pdev) mtd_device_parse_register(mtd, part_probe_types, NULL, NULL, 0); - printk(KERN_INFO "eLBC NAND device at 0x%llx, bank %d\n", - (unsigned long long)res.start, priv->bank); + pr_info("eLBC NAND device at 0x%llx, bank %d\n", + (unsigned long long)res.start, priv->bank); return 0; err: diff --git a/drivers/mtd/nand/raw/fsl_ifc_nand.c b/drivers/mtd/nand/raw/fsl_ifc_nand.c index 4872a7ba6503..4f0bbc8a803d 100644 --- a/drivers/mtd/nand/raw/fsl_ifc_nand.c +++ b/drivers/mtd/nand/raw/fsl_ifc_nand.c @@ -805,7 +805,7 @@ static void fsl_ifc_sram_init(struct fsl_ifc_mtd *priv) msecs_to_jiffies(IFC_TIMEOUT_MSECS)); if (ctrl->nand_stat != IFC_NAND_EVTER_STAT_OPC) - printk(KERN_ERR "fsl-ifc: Failed to Initialise SRAM\n"); + pr_err("fsl-ifc: Failed to Initialise SRAM\n"); /* Restore CSOR and CSOR_ext */ ifc_out32(csor, &ifc_global->csor_cs[cs].csor); diff --git a/drivers/mtd/nand/raw/nand_bch.c b/drivers/mtd/nand/raw/nand_bch.c index 505441c9373b..7f11b68f6db1 100644 --- a/drivers/mtd/nand/raw/nand_bch.c +++ b/drivers/mtd/nand/raw/nand_bch.c @@ -95,7 +95,7 @@ int nand_bch_correct_data(struct mtd_info *mtd, unsigned char *buf, errloc[i]); } } else if (count < 0) { - printk(KERN_ERR "ecc unrecoverable error\n"); + pr_err("ecc unrecoverable error\n"); count = -EBADMSG; } return count; @@ -134,7 +134,7 @@ struct nand_bch_control *nand_bch_init(struct mtd_info *mtd) } if (!eccsize || !eccbytes) { - printk(KERN_WARNING "ecc parameters not supplied\n"); + pr_warn("ecc parameters not supplied\n"); goto fail; } @@ -151,8 +151,8 @@ struct nand_bch_control *nand_bch_init(struct mtd_info *mtd) /* verify that eccbytes has the expected value */ if (nbc->bch->ecc_bytes != eccbytes) { - printk(KERN_WARNING "invalid eccbytes %u, should be %u\n", - eccbytes, nbc->bch->ecc_bytes); + pr_warn("invalid eccbytes %u, should be %u\n", + eccbytes, nbc->bch->ecc_bytes); goto fail; } @@ -166,7 +166,7 @@ struct nand_bch_control *nand_bch_init(struct mtd_info *mtd) /* sanity checks */ if (8*(eccsize+eccbytes) >= (1 << m)) { - printk(KERN_WARNING "eccsize %u is too large\n", eccsize); + pr_warn("eccsize %u is too large\n", eccsize); goto fail; } @@ -181,7 +181,7 @@ struct nand_bch_control *nand_bch_init(struct mtd_info *mtd) nand->ecc.steps = eccsteps; nand->ecc.total = eccsteps * eccbytes; if (mtd_ooblayout_count_eccbytes(mtd) != (eccsteps*eccbytes)) { - printk(KERN_WARNING "invalid ecc layout\n"); + pr_warn("invalid ecc layout\n"); goto fail; } diff --git a/drivers/mtd/nand/raw/nandsim.c b/drivers/mtd/nand/raw/nandsim.c index 44322a363ba5..e027c6f9d327 100644 --- a/drivers/mtd/nand/raw/nandsim.c +++ b/drivers/mtd/nand/raw/nandsim.c @@ -23,6 +23,8 @@ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA */ +#define pr_fmt(fmt) "[nandsim]" fmt + #include #include #include @@ -179,20 +181,17 @@ MODULE_PARM_DESC(bch, "Enable BCH ecc and set how many bits should " /* The largest possible page size */ #define NS_LARGEST_PAGE_SIZE 4096 -/* The prefix for simulator output */ -#define NS_OUTPUT_PREFIX "[nandsim]" - /* Simulator's output macros (logging, debugging, warning, error) */ #define NS_LOG(args...) \ - do { if (log) printk(KERN_DEBUG NS_OUTPUT_PREFIX " log: " args); } while(0) + do { if (log) pr_debug(" log: " args); } while(0) #define NS_DBG(args...) \ - do { if (dbg) printk(KERN_DEBUG NS_OUTPUT_PREFIX " debug: " args); } while(0) + do { if (dbg) pr_debug(" debug: " args); } while(0) #define NS_WARN(args...) \ - do { printk(KERN_WARNING NS_OUTPUT_PREFIX " warning: " args); } while(0) + do { pr_warn(" warning: " args); } while(0) #define NS_ERR(args...) \ - do { printk(KERN_ERR NS_OUTPUT_PREFIX " error: " args); } while(0) + do { pr_err(" error: " args); } while(0) #define NS_INFO(args...) \ - do { printk(KERN_INFO NS_OUTPUT_PREFIX " " args); } while(0) + do { pr_info(" " args); } while(0) /* Busy-wait delay macros (microseconds, milliseconds) */ #define NS_UDELAY(us) \ diff --git a/drivers/mtd/nand/raw/r852.c b/drivers/mtd/nand/raw/r852.c index 595635b9e9de..dcdeb0660e5e 100644 --- a/drivers/mtd/nand/raw/r852.c +++ b/drivers/mtd/nand/raw/r852.c @@ -7,6 +7,9 @@ * published by the Free Software Foundation. */ +#define DRV_NAME "r852" +#define pr_fmt(fmt) DRV_NAME ": " fmt + #include #include #include @@ -932,7 +935,7 @@ static int r852_probe(struct pci_dev *pci_dev, const struct pci_device_id *id) &dev->card_detect_work, 0); - printk(KERN_NOTICE DRV_NAME ": driver loaded successfully\n"); + pr_notice("driver loaded successfully\n"); return 0; error10: diff --git a/drivers/mtd/nand/raw/r852.h b/drivers/mtd/nand/raw/r852.h index 8713c57f6207..1eed2fc2fa42 100644 --- a/drivers/mtd/nand/raw/r852.h +++ b/drivers/mtd/nand/raw/r852.h @@ -144,17 +144,14 @@ struct r852_device { uint8_t ctlreg; /* cached contents of control reg */ }; -#define DRV_NAME "r852" - - #define dbg(format, ...) \ if (debug) \ - printk(KERN_DEBUG DRV_NAME ": " format "\n", ## __VA_ARGS__) + pr_debug(format "\n", ## __VA_ARGS__) #define dbg_verbose(format, ...) \ if (debug > 1) \ - printk(KERN_DEBUG DRV_NAME ": " format "\n", ## __VA_ARGS__) + pr_debug(format "\n", ## __VA_ARGS__) #define message(format, ...) \ - printk(KERN_INFO DRV_NAME ": " format "\n", ## __VA_ARGS__) + pr_info(format "\n", ## __VA_ARGS__) diff --git a/drivers/mtd/nand/raw/sh_flctl.c b/drivers/mtd/nand/raw/sh_flctl.c index c4e7755448e6..a60d43adff3c 100644 --- a/drivers/mtd/nand/raw/sh_flctl.c +++ b/drivers/mtd/nand/raw/sh_flctl.c @@ -877,7 +877,7 @@ static void flctl_cmdfunc(struct mtd_info *mtd, unsigned int command, else if (!flctl->seqin_column) execmd_write_page_sector(mtd); else - printk(KERN_ERR "Invalid address !?\n"); + pr_err("Invalid address !?\n"); break; } set_cmd_regs(mtd, command, (command << 8) | NAND_CMD_SEQIN); diff --git a/drivers/mtd/nand/raw/sm_common.c b/drivers/mtd/nand/raw/sm_common.c index c378705c6e2b..7f5044a79f01 100644 --- a/drivers/mtd/nand/raw/sm_common.c +++ b/drivers/mtd/nand/raw/sm_common.c @@ -119,9 +119,8 @@ static int sm_block_markbad(struct mtd_info *mtd, loff_t ofs) ret = mtd_write_oob(mtd, ofs, &ops); if (ret < 0 || ops.oobretlen != SM_OOB_SIZE) { - printk(KERN_NOTICE - "sm_common: can't mark sector at %i as bad\n", - (int)ofs); + pr_notice("sm_common: can't mark sector at %i as bad\n", + (int)ofs); return -EIO; } -- cgit v1.2.3-58-ga151 From 828814e6a4cf2337be7cfde0b35b60a13cbc1ee7 Mon Sep 17 00:00:00 2001 From: Masahiro Yamada Date: Fri, 9 Mar 2018 22:03:52 +0900 Subject: mtd: rawnand: remove STANDALONE compile mode of nand_ecc This file can not be built independently any more. We would have to bring in more to resolve mtd_to_nand(mtd)->ecc.size, for example. It is difficult to notice a breakage since nobody compiles this mode. It is not worth fixing or maintaining in my opinion. Remove. Signed-off-by: Masahiro Yamada Signed-off-by: Boris Brezillon --- drivers/mtd/nand/raw/nand_ecc.c | 20 -------------------- 1 file changed, 20 deletions(-) diff --git a/drivers/mtd/nand/raw/nand_ecc.c b/drivers/mtd/nand/raw/nand_ecc.c index 3630f0fe8fa4..8e132edbc5ce 100644 --- a/drivers/mtd/nand/raw/nand_ecc.c +++ b/drivers/mtd/nand/raw/nand_ecc.c @@ -28,15 +28,6 @@ * */ -/* - * The STANDALONE macro is useful when running the code outside the kernel - * e.g. when running the code in a testbed or a benchmark program. - * When STANDALONE is used, the module related macros are commented out - * as well as the linux include files. - * Instead a private definition of mtd_info is given to satisfy the compiler - * (the code does not use mtd_info, so the code does not care) - */ -#ifndef STANDALONE #include #include #include @@ -44,17 +35,6 @@ #include #include #include -#else -#include -struct mtd_info; -#define EXPORT_SYMBOL(x) /* x */ - -#define MODULE_LICENSE(x) /* x */ -#define MODULE_AUTHOR(x) /* x */ -#define MODULE_DESCRIPTION(x) /* x */ - -#define pr_err printf -#endif /* * invparity is a 256 byte table that contains the odd parity -- cgit v1.2.3-58-ga151 From d40a18fec04ae6dc6f6760923aa5f487d1af2444 Mon Sep 17 00:00:00 2001 From: Colin Ian King Date: Sat, 20 Jan 2018 22:09:34 +0000 Subject: mtd: block2mtd: remove redundant initialization of 'bdev' Pointer bdev is being initialized however this value is never read as bdev is assigned an updated value from the returned call to blkdev_get_by_path. Remove the redundant assignment. Cleans up clang warning: drivers/mtd/devices/block2mtd.c:228:23: warning: Value stored to 'bdev' during its initialization is never read Signed-off-by: Colin Ian King Signed-off-by: Boris Brezillon --- drivers/mtd/devices/block2mtd.c | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/drivers/mtd/devices/block2mtd.c b/drivers/mtd/devices/block2mtd.c index 62fd6905c648..bb0734600a07 100644 --- a/drivers/mtd/devices/block2mtd.c +++ b/drivers/mtd/devices/block2mtd.c @@ -225,7 +225,7 @@ static struct block2mtd_dev *add_device(char *devname, int erase_size, int i; #endif const fmode_t mode = FMODE_READ | FMODE_WRITE | FMODE_EXCL; - struct block_device *bdev = ERR_PTR(-ENODEV); + struct block_device *bdev; struct block2mtd_dev *dev; char *name; -- cgit v1.2.3-58-ga151 From f0a37a8db81ea9c7034e0fff4a430b221019fc50 Mon Sep 17 00:00:00 2001 From: Antonio Cardace Date: Mon, 12 Feb 2018 18:41:30 +0000 Subject: mtd: st_spi_fsm: use %*ph to print small buffer Use %*ph format to print small buffer as hex string. Suggested-by: Andy Shevchenko Signed-off-by: Antonio Cardace Signed-off-by: Boris Brezillon --- drivers/mtd/devices/st_spi_fsm.c | 3 +-- 1 file changed, 1 insertion(+), 2 deletions(-) diff --git a/drivers/mtd/devices/st_spi_fsm.c b/drivers/mtd/devices/st_spi_fsm.c index 7bc29d725200..a33f5fd6818c 100644 --- a/drivers/mtd/devices/st_spi_fsm.c +++ b/drivers/mtd/devices/st_spi_fsm.c @@ -1868,8 +1868,7 @@ static struct flash_info *stfsm_jedec_probe(struct stfsm *fsm) */ ext_jedec = id[3] << 8 | id[4]; - dev_dbg(fsm->dev, "JEDEC = 0x%08x [%02x %02x %02x %02x %02x]\n", - jedec, id[0], id[1], id[2], id[3], id[4]); + dev_dbg(fsm->dev, "JEDEC = 0x%08x [%5ph]\n", jedec, id); for (info = flash_types; info->name; info++) { if (info->jedec_id == jedec) { -- cgit v1.2.3-58-ga151 From c585da9f5f6186739f0b123b8a5b6353e425f51b Mon Sep 17 00:00:00 2001 From: Boris Brezillon Date: Mon, 12 Feb 2018 22:03:07 +0100 Subject: mtd: Initialize ->fail_addr early in mtd_erase() mtd_erase() can return an error before ->fail_addr is initialized to MTD_FAIL_ADDR_UNKNOWN. Move this initialization at the very beginning of the function. Signed-off-by: Boris Brezillon Reviewed-by: Richard Weinberger --- drivers/mtd/mtdcore.c | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/drivers/mtd/mtdcore.c b/drivers/mtd/mtdcore.c index a1c94526fb88..c87859ff338b 100644 --- a/drivers/mtd/mtdcore.c +++ b/drivers/mtd/mtdcore.c @@ -953,6 +953,8 @@ EXPORT_SYMBOL_GPL(__put_mtd_device); */ int mtd_erase(struct mtd_info *mtd, struct erase_info *instr) { + instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN; + if (!mtd->erasesize || !mtd->_erase) return -ENOTSUPP; @@ -961,7 +963,6 @@ int mtd_erase(struct mtd_info *mtd, struct erase_info *instr) if (!(mtd->flags & MTD_WRITEABLE)) return -EROFS; - instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN; if (!instr->len) { instr->state = MTD_ERASE_DONE; mtd_erase_callback(instr); -- cgit v1.2.3-58-ga151 From dcba51bbb9e0cc7f80d36eb20a033a4dff2ce9cc Mon Sep 17 00:00:00 2001 From: Boris Brezillon Date: Mon, 12 Feb 2018 22:03:08 +0100 Subject: mtd: Get rid of unused fields in struct erase_info Some fields are not used by MTD drivers, users or core code. Moreover, those fields are not documented, so get rid of them to avoid any confusion. Signed-off-by: Boris Brezillon Reviewed-by: Richard Weinberger --- include/linux/mtd/mtd.h | 5 ----- 1 file changed, 5 deletions(-) diff --git a/include/linux/mtd/mtd.h b/include/linux/mtd/mtd.h index 205ededccc60..2a407dc9beaa 100644 --- a/include/linux/mtd/mtd.h +++ b/include/linux/mtd/mtd.h @@ -48,14 +48,9 @@ struct erase_info { uint64_t addr; uint64_t len; uint64_t fail_addr; - u_long time; - u_long retries; - unsigned dev; - unsigned cell; void (*callback) (struct erase_info *self); u_long priv; u_char state; - struct erase_info *next; }; struct mtd_erase_region_info { -- cgit v1.2.3-58-ga151 From 884cfd9023ce6afe8bcf181ec988d8516eb32bf0 Mon Sep 17 00:00:00 2001 From: Boris Brezillon Date: Mon, 12 Feb 2018 22:03:09 +0100 Subject: mtd: Stop assuming mtd_erase() is asynchronous None of the mtd->_erase() implementations work in an asynchronous manner, so let's simplify MTD users that call mtd_erase(). All they need to do is check the value returned by mtd_erase() and assume that != 0 means failure. Signed-off-by: Boris Brezillon Reviewed-by: Richard Weinberger --- drivers/mtd/devices/bcm47xxsflash.c | 3 -- drivers/mtd/ftl.c | 51 ++++---------------- drivers/mtd/inftlmount.c | 5 +- drivers/mtd/mtdblock.c | 20 -------- drivers/mtd/mtdchar.c | 33 +------------ drivers/mtd/mtdconcat.c | 48 ++----------------- drivers/mtd/mtdcore.c | 8 ++-- drivers/mtd/mtdoops.c | 19 -------- drivers/mtd/mtdpart.c | 2 - drivers/mtd/mtdswap.c | 32 ------------- drivers/mtd/nftlmount.c | 4 +- drivers/mtd/rfd_ftl.c | 92 +++++++++++-------------------------- drivers/mtd/sm_ftl.c | 18 -------- drivers/mtd/sm_ftl.h | 4 -- drivers/mtd/tests/mtd_test.c | 4 -- drivers/mtd/tests/speedtest.c | 6 --- drivers/mtd/ubi/io.c | 35 -------------- fs/jffs2/erase.c | 36 ++------------- include/linux/mtd/mtd.h | 2 - 19 files changed, 52 insertions(+), 370 deletions(-) diff --git a/drivers/mtd/devices/bcm47xxsflash.c b/drivers/mtd/devices/bcm47xxsflash.c index e2bd81817df4..6b84947cfbea 100644 --- a/drivers/mtd/devices/bcm47xxsflash.c +++ b/drivers/mtd/devices/bcm47xxsflash.c @@ -95,9 +95,6 @@ static int bcm47xxsflash_erase(struct mtd_info *mtd, struct erase_info *erase) else erase->state = MTD_ERASE_DONE; - if (erase->callback) - erase->callback(erase); - return err; } diff --git a/drivers/mtd/ftl.c b/drivers/mtd/ftl.c index 664d206a4cbe..fcf9907e7987 100644 --- a/drivers/mtd/ftl.c +++ b/drivers/mtd/ftl.c @@ -140,12 +140,6 @@ typedef struct partition_t { #define XFER_PREPARED 0x03 #define XFER_FAILED 0x04 -/*====================================================================*/ - - -static void ftl_erase_callback(struct erase_info *done); - - /*====================================================================== Scan_header() checks to see if a memory region contains an FTL @@ -349,17 +343,19 @@ static int erase_xfer(partition_t *part, return -ENOMEM; erase->mtd = part->mbd.mtd; - erase->callback = ftl_erase_callback; erase->addr = xfer->Offset; erase->len = 1 << part->header.EraseUnitSize; - erase->priv = (u_long)part; ret = mtd_erase(part->mbd.mtd, erase); + if (!ret) { + xfer->state = XFER_ERASED; + xfer->EraseCount++; + } else { + xfer->state = XFER_FAILED; + pr_notice("ftl_cs: erase failed: err = %d\n", ret); + } - if (!ret) - xfer->EraseCount++; - else - kfree(erase); + kfree(erase); return ret; } /* erase_xfer */ @@ -371,37 +367,6 @@ static int erase_xfer(partition_t *part, ======================================================================*/ -static void ftl_erase_callback(struct erase_info *erase) -{ - partition_t *part; - struct xfer_info_t *xfer; - int i; - - /* Look up the transfer unit */ - part = (partition_t *)(erase->priv); - - for (i = 0; i < part->header.NumTransferUnits; i++) - if (part->XferInfo[i].Offset == erase->addr) break; - - if (i == part->header.NumTransferUnits) { - printk(KERN_NOTICE "ftl_cs: internal error: " - "erase lookup failed!\n"); - return; - } - - xfer = &part->XferInfo[i]; - if (erase->state == MTD_ERASE_DONE) - xfer->state = XFER_ERASED; - else { - xfer->state = XFER_FAILED; - printk(KERN_NOTICE "ftl_cs: erase failed: state = %d\n", - erase->state); - } - - kfree(erase); - -} /* ftl_erase_callback */ - static int prepare_xfer(partition_t *part, int i) { erase_unit_header_t header; diff --git a/drivers/mtd/inftlmount.c b/drivers/mtd/inftlmount.c index 8d6bb189ea8e..0f47be4834d8 100644 --- a/drivers/mtd/inftlmount.c +++ b/drivers/mtd/inftlmount.c @@ -393,9 +393,10 @@ int INFTL_formatblock(struct INFTLrecord *inftl, int block) mark only the failed block in the bbt. */ for (physblock = 0; physblock < inftl->EraseSize; physblock += instr->len, instr->addr += instr->len) { - mtd_erase(inftl->mbd.mtd, instr); + int ret; - if (instr->state == MTD_ERASE_FAILED) { + ret = mtd_erase(inftl->mbd.mtd, instr); + if (ret) { printk(KERN_WARNING "INFTL: error while formatting block %d\n", block); goto fail; diff --git a/drivers/mtd/mtdblock.c b/drivers/mtd/mtdblock.c index bb4c14f83c75..7b2b7f651181 100644 --- a/drivers/mtd/mtdblock.c +++ b/drivers/mtd/mtdblock.c @@ -55,48 +55,28 @@ struct mtdblk_dev { * being written to until a different sector is required. */ -static void erase_callback(struct erase_info *done) -{ - wait_queue_head_t *wait_q = (wait_queue_head_t *)done->priv; - wake_up(wait_q); -} - static int erase_write (struct mtd_info *mtd, unsigned long pos, int len, const char *buf) { struct erase_info erase; - DECLARE_WAITQUEUE(wait, current); - wait_queue_head_t wait_q; size_t retlen; int ret; /* * First, let's erase the flash block. */ - - init_waitqueue_head(&wait_q); erase.mtd = mtd; - erase.callback = erase_callback; erase.addr = pos; erase.len = len; - erase.priv = (u_long)&wait_q; - - set_current_state(TASK_INTERRUPTIBLE); - add_wait_queue(&wait_q, &wait); ret = mtd_erase(mtd, &erase); if (ret) { - set_current_state(TASK_RUNNING); - remove_wait_queue(&wait_q, &wait); printk (KERN_WARNING "mtdblock: erase of region [0x%lx, 0x%x] " "on \"%s\" failed\n", pos, len, mtd->name); return ret; } - schedule(); /* Wait for erase to finish. */ - remove_wait_queue(&wait_q, &wait); - /* * Next, write the data to flash. */ diff --git a/drivers/mtd/mtdchar.c b/drivers/mtd/mtdchar.c index de8c902059b8..2beb22dd6bbb 100644 --- a/drivers/mtd/mtdchar.c +++ b/drivers/mtd/mtdchar.c @@ -324,10 +324,6 @@ static ssize_t mtdchar_write(struct file *file, const char __user *buf, size_t c IOCTL calls for getting device parameters. ======================================================================*/ -static void mtdchar_erase_callback (struct erase_info *instr) -{ - wake_up((wait_queue_head_t *)instr->priv); -} static int otp_select_filemode(struct mtd_file_info *mfi, int mode) { @@ -709,11 +705,6 @@ static int mtdchar_ioctl(struct file *file, u_int cmd, u_long arg) if (!erase) ret = -ENOMEM; else { - wait_queue_head_t waitq; - DECLARE_WAITQUEUE(wait, current); - - init_waitqueue_head(&waitq); - if (cmd == MEMERASE64) { struct erase_info_user64 einfo64; @@ -736,30 +727,8 @@ static int mtdchar_ioctl(struct file *file, u_int cmd, u_long arg) erase->len = einfo32.length; } erase->mtd = mtd; - erase->callback = mtdchar_erase_callback; - erase->priv = (unsigned long)&waitq; - - /* - FIXME: Allow INTERRUPTIBLE. Which means - not having the wait_queue head on the stack. - - If the wq_head is on the stack, and we - leave because we got interrupted, then the - wq_head is no longer there when the - callback routine tries to wake us up. - */ + ret = mtd_erase(mtd, erase); - if (!ret) { - set_current_state(TASK_UNINTERRUPTIBLE); - add_wait_queue(&waitq, &wait); - if (erase->state != MTD_ERASE_DONE && - erase->state != MTD_ERASE_FAILED) - schedule(); - remove_wait_queue(&waitq, &wait); - set_current_state(TASK_RUNNING); - - ret = (erase->state == MTD_ERASE_FAILED)?-EIO:0; - } kfree(erase); } break; diff --git a/drivers/mtd/mtdconcat.c b/drivers/mtd/mtdconcat.c index 60bf53df5454..caa09bf6e572 100644 --- a/drivers/mtd/mtdconcat.c +++ b/drivers/mtd/mtdconcat.c @@ -333,45 +333,6 @@ concat_write_oob(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops) return -EINVAL; } -static void concat_erase_callback(struct erase_info *instr) -{ - wake_up((wait_queue_head_t *) instr->priv); -} - -static int concat_dev_erase(struct mtd_info *mtd, struct erase_info *erase) -{ - int err; - wait_queue_head_t waitq; - DECLARE_WAITQUEUE(wait, current); - - /* - * This code was stol^H^H^H^Hinspired by mtdchar.c - */ - init_waitqueue_head(&waitq); - - erase->mtd = mtd; - erase->callback = concat_erase_callback; - erase->priv = (unsigned long) &waitq; - - /* - * FIXME: Allow INTERRUPTIBLE. Which means - * not having the wait_queue head on the stack. - */ - err = mtd_erase(mtd, erase); - if (!err) { - set_current_state(TASK_UNINTERRUPTIBLE); - add_wait_queue(&waitq, &wait); - if (erase->state != MTD_ERASE_DONE - && erase->state != MTD_ERASE_FAILED) - schedule(); - remove_wait_queue(&waitq, &wait); - set_current_state(TASK_RUNNING); - - err = (erase->state == MTD_ERASE_FAILED) ? -EIO : 0; - } - return err; -} - static int concat_erase(struct mtd_info *mtd, struct erase_info *instr) { struct mtd_concat *concat = CONCAT(mtd); @@ -466,7 +427,8 @@ static int concat_erase(struct mtd_info *mtd, struct erase_info *instr) erase->len = length; length -= erase->len; - if ((err = concat_dev_erase(subdev, erase))) { + erase->mtd = subdev; + if ((err = mtd_erase(subdev, erase))) { /* sanity check: should never happen since * block alignment has been checked above */ BUG_ON(err == -EINVAL); @@ -487,12 +449,8 @@ static int concat_erase(struct mtd_info *mtd, struct erase_info *instr) } instr->state = erase->state; kfree(erase); - if (err) - return err; - if (instr->callback) - instr->callback(instr); - return 0; + return err; } static int concat_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) diff --git a/drivers/mtd/mtdcore.c b/drivers/mtd/mtdcore.c index c87859ff338b..f92ad02959eb 100644 --- a/drivers/mtd/mtdcore.c +++ b/drivers/mtd/mtdcore.c @@ -945,11 +945,9 @@ void __put_mtd_device(struct mtd_info *mtd) EXPORT_SYMBOL_GPL(__put_mtd_device); /* - * Erase is an asynchronous operation. Device drivers are supposed - * to call instr->callback() whenever the operation completes, even - * if it completes with a failure. - * Callers are supposed to pass a callback function and wait for it - * to be called before writing to the block. + * Erase is an synchronous operation. Device drivers are epected to return a + * negative error code if the operation failed and update instr->fail_addr + * to point the portion that was not properly erased. */ int mtd_erase(struct mtd_info *mtd, struct erase_info *instr) { diff --git a/drivers/mtd/mtdoops.c b/drivers/mtd/mtdoops.c index 97bb8f6304d4..028ded59297b 100644 --- a/drivers/mtd/mtdoops.c +++ b/drivers/mtd/mtdoops.c @@ -84,12 +84,6 @@ static int page_is_used(struct mtdoops_context *cxt, int page) return test_bit(page, cxt->oops_page_used); } -static void mtdoops_erase_callback(struct erase_info *done) -{ - wait_queue_head_t *wait_q = (wait_queue_head_t *)done->priv; - wake_up(wait_q); -} - static int mtdoops_erase_block(struct mtdoops_context *cxt, int offset) { struct mtd_info *mtd = cxt->mtd; @@ -97,34 +91,21 @@ static int mtdoops_erase_block(struct mtdoops_context *cxt, int offset) u32 start_page = start_page_offset / record_size; u32 erase_pages = mtd->erasesize / record_size; struct erase_info erase; - DECLARE_WAITQUEUE(wait, current); - wait_queue_head_t wait_q; int ret; int page; - init_waitqueue_head(&wait_q); erase.mtd = mtd; - erase.callback = mtdoops_erase_callback; erase.addr = offset; erase.len = mtd->erasesize; - erase.priv = (u_long)&wait_q; - - set_current_state(TASK_INTERRUPTIBLE); - add_wait_queue(&wait_q, &wait); ret = mtd_erase(mtd, &erase); if (ret) { - set_current_state(TASK_RUNNING); - remove_wait_queue(&wait_q, &wait); printk(KERN_WARNING "mtdoops: erase of region [0x%llx, 0x%llx] on \"%s\" failed\n", (unsigned long long)erase.addr, (unsigned long long)erase.len, mtddev); return ret; } - schedule(); /* Wait for erase to finish. */ - remove_wait_queue(&wait_q, &wait); - /* Mark pages as unused */ for (page = start_page; page < start_page + erase_pages; page++) mark_page_unused(cxt, page); diff --git a/drivers/mtd/mtdpart.c b/drivers/mtd/mtdpart.c index 76cd21d1171b..ae1206633d9d 100644 --- a/drivers/mtd/mtdpart.c +++ b/drivers/mtd/mtdpart.c @@ -222,8 +222,6 @@ void mtd_erase_callback(struct erase_info *instr) instr->fail_addr -= part->offset; instr->addr -= part->offset; } - if (instr->callback) - instr->callback(instr); } EXPORT_SYMBOL_GPL(mtd_erase_callback); diff --git a/drivers/mtd/mtdswap.c b/drivers/mtd/mtdswap.c index 7eb0e1f4f980..d390324d102e 100644 --- a/drivers/mtd/mtdswap.c +++ b/drivers/mtd/mtdswap.c @@ -536,18 +536,10 @@ static void mtdswap_store_eb(struct mtdswap_dev *d, struct swap_eb *eb) mtdswap_rb_add(d, eb, MTDSWAP_HIFRAG); } - -static void mtdswap_erase_callback(struct erase_info *done) -{ - wait_queue_head_t *wait_q = (wait_queue_head_t *)done->priv; - wake_up(wait_q); -} - static int mtdswap_erase_block(struct mtdswap_dev *d, struct swap_eb *eb) { struct mtd_info *mtd = d->mtd; struct erase_info erase; - wait_queue_head_t wq; unsigned int retries = 0; int ret; @@ -556,14 +548,11 @@ static int mtdswap_erase_block(struct mtdswap_dev *d, struct swap_eb *eb) d->max_erase_count = eb->erase_count; retry: - init_waitqueue_head(&wq); memset(&erase, 0, sizeof(struct erase_info)); erase.mtd = mtd; - erase.callback = mtdswap_erase_callback; erase.addr = mtdswap_eb_offset(d, eb); erase.len = mtd->erasesize; - erase.priv = (u_long)&wq; ret = mtd_erase(mtd, &erase); if (ret) { @@ -582,27 +571,6 @@ retry: return -EIO; } - ret = wait_event_interruptible(wq, erase.state == MTD_ERASE_DONE || - erase.state == MTD_ERASE_FAILED); - if (ret) { - dev_err(d->dev, "Interrupted erase block %#llx erasure on %s\n", - erase.addr, mtd->name); - return -EINTR; - } - - if (erase.state == MTD_ERASE_FAILED) { - if (retries++ < MTDSWAP_ERASE_RETRIES) { - dev_warn(d->dev, - "erase of erase block %#llx on %s failed", - erase.addr, mtd->name); - yield(); - goto retry; - } - - mtdswap_handle_badblock(d, eb); - return -EIO; - } - return 0; } diff --git a/drivers/mtd/nftlmount.c b/drivers/mtd/nftlmount.c index 184c8fbfe465..07e122449759 100644 --- a/drivers/mtd/nftlmount.c +++ b/drivers/mtd/nftlmount.c @@ -331,9 +331,7 @@ int NFTL_formatblock(struct NFTLrecord *nftl, int block) instr->mtd = nftl->mbd.mtd; instr->addr = block * nftl->EraseSize; instr->len = nftl->EraseSize; - mtd_erase(mtd, instr); - - if (instr->state == MTD_ERASE_FAILED) { + if (mtd_erase(mtd, instr)) { printk("Error while formatting block %d\n", block); goto fail; } diff --git a/drivers/mtd/rfd_ftl.c b/drivers/mtd/rfd_ftl.c index d1cbf26db2c0..4e0b55cd08e2 100644 --- a/drivers/mtd/rfd_ftl.c +++ b/drivers/mtd/rfd_ftl.c @@ -266,91 +266,55 @@ static int rfd_ftl_readsect(struct mtd_blktrans_dev *dev, u_long sector, char *b return 0; } -static void erase_callback(struct erase_info *erase) -{ - struct partition *part; - u16 magic; - int i, rc; - size_t retlen; - - part = (struct partition*)erase->priv; - - i = (u32)erase->addr / part->block_size; - if (i >= part->total_blocks || part->blocks[i].offset != erase->addr || - erase->addr > UINT_MAX) { - printk(KERN_ERR PREFIX "erase callback for unknown offset %llx " - "on '%s'\n", (unsigned long long)erase->addr, part->mbd.mtd->name); - return; - } - - if (erase->state != MTD_ERASE_DONE) { - printk(KERN_WARNING PREFIX "erase failed at 0x%llx on '%s', " - "state %d\n", (unsigned long long)erase->addr, - part->mbd.mtd->name, erase->state); - - part->blocks[i].state = BLOCK_FAILED; - part->blocks[i].free_sectors = 0; - part->blocks[i].used_sectors = 0; - - kfree(erase); - - return; - } - - magic = cpu_to_le16(RFD_MAGIC); - - part->blocks[i].state = BLOCK_ERASED; - part->blocks[i].free_sectors = part->data_sectors_per_block; - part->blocks[i].used_sectors = 0; - part->blocks[i].erases++; - - rc = mtd_write(part->mbd.mtd, part->blocks[i].offset, sizeof(magic), - &retlen, (u_char *)&magic); - - if (!rc && retlen != sizeof(magic)) - rc = -EIO; - - if (rc) { - printk(KERN_ERR PREFIX "'%s': unable to write RFD " - "header at 0x%lx\n", - part->mbd.mtd->name, - part->blocks[i].offset); - part->blocks[i].state = BLOCK_FAILED; - } - else - part->blocks[i].state = BLOCK_OK; - - kfree(erase); -} - static int erase_block(struct partition *part, int block) { struct erase_info *erase; - int rc = -ENOMEM; + int rc; erase = kmalloc(sizeof(struct erase_info), GFP_KERNEL); if (!erase) - goto err; + return -ENOMEM; erase->mtd = part->mbd.mtd; - erase->callback = erase_callback; erase->addr = part->blocks[block].offset; erase->len = part->block_size; - erase->priv = (u_long)part; part->blocks[block].state = BLOCK_ERASING; part->blocks[block].free_sectors = 0; rc = mtd_erase(part->mbd.mtd, erase); - if (rc) { printk(KERN_ERR PREFIX "erase of region %llx,%llx on '%s' " "failed\n", (unsigned long long)erase->addr, (unsigned long long)erase->len, part->mbd.mtd->name); - kfree(erase); + part->blocks[block].state = BLOCK_FAILED; + part->blocks[block].free_sectors = 0; + part->blocks[block].used_sectors = 0; + } else { + u16 magic = cpu_to_le16(RFD_MAGIC); + size_t retlen; + + part->blocks[block].state = BLOCK_ERASED; + part->blocks[block].free_sectors = part->data_sectors_per_block; + part->blocks[block].used_sectors = 0; + part->blocks[block].erases++; + + rc = mtd_write(part->mbd.mtd, part->blocks[block].offset, + sizeof(magic), &retlen, (u_char *)&magic); + if (!rc && retlen != sizeof(magic)) + rc = -EIO; + + if (rc) { + pr_err(PREFIX "'%s': unable to write RFD header at 0x%lx\n", + part->mbd.mtd->name, part->blocks[block].offset); + part->blocks[block].state = BLOCK_FAILED; + } else { + part->blocks[block].state = BLOCK_OK; + } } -err: + kfree(erase); + return rc; } diff --git a/drivers/mtd/sm_ftl.c b/drivers/mtd/sm_ftl.c index 4237c7cebf02..c11156f9d96f 100644 --- a/drivers/mtd/sm_ftl.c +++ b/drivers/mtd/sm_ftl.c @@ -461,10 +461,8 @@ static int sm_erase_block(struct sm_ftl *ftl, int zone_num, uint16_t block, struct erase_info erase; erase.mtd = mtd; - erase.callback = sm_erase_callback; erase.addr = sm_mkoffset(ftl, zone_num, block, 0); erase.len = ftl->block_size; - erase.priv = (u_long)ftl; if (ftl->unstable) return -EIO; @@ -482,15 +480,6 @@ static int sm_erase_block(struct sm_ftl *ftl, int zone_num, uint16_t block, goto error; } - if (erase.state == MTD_ERASE_PENDING) - wait_for_completion(&ftl->erase_completion); - - if (erase.state != MTD_ERASE_DONE) { - sm_printk("erase of block %d in zone %d failed after wait", - block, zone_num); - goto error; - } - if (put_free) kfifo_in(&zone->free_sectors, (const unsigned char *)&block, sizeof(block)); @@ -501,12 +490,6 @@ error: return -EIO; } -static void sm_erase_callback(struct erase_info *self) -{ - struct sm_ftl *ftl = (struct sm_ftl *)self->priv; - complete(&ftl->erase_completion); -} - /* Thoroughly test that block is valid. */ static int sm_check_block(struct sm_ftl *ftl, int zone, int block) { @@ -1141,7 +1124,6 @@ static void sm_add_mtd(struct mtd_blktrans_ops *tr, struct mtd_info *mtd) mutex_init(&ftl->mutex); timer_setup(&ftl->timer, sm_cache_flush_timer, 0); INIT_WORK(&ftl->flush_work, sm_cache_flush_work); - init_completion(&ftl->erase_completion); /* Read media information */ if (sm_get_media_info(ftl, mtd)) { diff --git a/drivers/mtd/sm_ftl.h b/drivers/mtd/sm_ftl.h index 43bb7300785b..0a46d75cdc6a 100644 --- a/drivers/mtd/sm_ftl.h +++ b/drivers/mtd/sm_ftl.h @@ -53,9 +53,6 @@ struct sm_ftl { struct work_struct flush_work; struct timer_list timer; - /* Async erase stuff */ - struct completion erase_completion; - /* Geometry stuff */ int heads; int sectors; @@ -86,7 +83,6 @@ struct chs_entry { printk(KERN_DEBUG "sm_ftl" ": " format "\n", ## __VA_ARGS__) -static void sm_erase_callback(struct erase_info *self); static int sm_erase_block(struct sm_ftl *ftl, int zone_num, uint16_t block, int put_free); static void sm_mark_block_bad(struct sm_ftl *ftl, int zone_num, int block); diff --git a/drivers/mtd/tests/mtd_test.c b/drivers/mtd/tests/mtd_test.c index 3d0b8b5c1a53..0ac625e8f798 100644 --- a/drivers/mtd/tests/mtd_test.c +++ b/drivers/mtd/tests/mtd_test.c @@ -24,10 +24,6 @@ int mtdtest_erase_eraseblock(struct mtd_info *mtd, unsigned int ebnum) return err; } - if (ei.state == MTD_ERASE_FAILED) { - pr_info("some erase error occurred at EB %d\n", ebnum); - return -EIO; - } return 0; } diff --git a/drivers/mtd/tests/speedtest.c b/drivers/mtd/tests/speedtest.c index 0b89418a0888..f8e5dc11f943 100644 --- a/drivers/mtd/tests/speedtest.c +++ b/drivers/mtd/tests/speedtest.c @@ -70,12 +70,6 @@ static int multiblock_erase(int ebnum, int blocks) return err; } - if (ei.state == MTD_ERASE_FAILED) { - pr_err("some erase error occurred at EB %d," - "blocks %d\n", ebnum, blocks); - return -EIO; - } - return 0; } diff --git a/drivers/mtd/ubi/io.c b/drivers/mtd/ubi/io.c index 8290432017ce..8843d26837b2 100644 --- a/drivers/mtd/ubi/io.c +++ b/drivers/mtd/ubi/io.c @@ -308,18 +308,6 @@ int ubi_io_write(struct ubi_device *ubi, const void *buf, int pnum, int offset, return err; } -/** - * erase_callback - MTD erasure call-back. - * @ei: MTD erase information object. - * - * Note, even though MTD erase interface is asynchronous, all the current - * implementations are synchronous anyway. - */ -static void erase_callback(struct erase_info *ei) -{ - wake_up_interruptible((wait_queue_head_t *)ei->priv); -} - /** * do_sync_erase - synchronously erase a physical eraseblock. * @ubi: UBI device description object @@ -333,7 +321,6 @@ static int do_sync_erase(struct ubi_device *ubi, int pnum) { int err, retries = 0; struct erase_info ei; - wait_queue_head_t wq; dbg_io("erase PEB %d", pnum); ubi_assert(pnum >= 0 && pnum < ubi->peb_count); @@ -344,14 +331,11 @@ static int do_sync_erase(struct ubi_device *ubi, int pnum) } retry: - init_waitqueue_head(&wq); memset(&ei, 0, sizeof(struct erase_info)); ei.mtd = ubi->mtd; ei.addr = (loff_t)pnum * ubi->peb_size; ei.len = ubi->peb_size; - ei.callback = erase_callback; - ei.priv = (unsigned long)&wq; err = mtd_erase(ubi->mtd, &ei); if (err) { @@ -366,25 +350,6 @@ retry: return err; } - err = wait_event_interruptible(wq, ei.state == MTD_ERASE_DONE || - ei.state == MTD_ERASE_FAILED); - if (err) { - ubi_err(ubi, "interrupted PEB %d erasure", pnum); - return -EINTR; - } - - if (ei.state == MTD_ERASE_FAILED) { - if (retries++ < UBI_IO_RETRIES) { - ubi_warn(ubi, "error while erasing PEB %d, retry", - pnum); - yield(); - goto retry; - } - ubi_err(ubi, "cannot erase PEB %d", pnum); - dump_stack(); - return -EIO; - } - err = ubi_self_check_all_ff(ubi, pnum, 0, ubi->peb_size); if (err) return err; diff --git a/fs/jffs2/erase.c b/fs/jffs2/erase.c index 4a6cf289be24..09bb6c00b869 100644 --- a/fs/jffs2/erase.c +++ b/fs/jffs2/erase.c @@ -21,14 +21,6 @@ #include #include "nodelist.h" -struct erase_priv_struct { - struct jffs2_eraseblock *jeb; - struct jffs2_sb_info *c; -}; - -#ifndef __ECOS -static void jffs2_erase_callback(struct erase_info *); -#endif static void jffs2_erase_failed(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, uint32_t bad_offset); static void jffs2_erase_succeeded(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb); static void jffs2_mark_erased_block(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb); @@ -51,7 +43,7 @@ static void jffs2_erase_block(struct jffs2_sb_info *c, jffs2_dbg(1, "%s(): erase block %#08x (range %#08x-%#08x)\n", __func__, jeb->offset, jeb->offset, jeb->offset + c->sector_size); - instr = kmalloc(sizeof(struct erase_info) + sizeof(struct erase_priv_struct), GFP_KERNEL); + instr = kmalloc(sizeof(struct erase_info), GFP_KERNEL); if (!instr) { pr_warn("kmalloc for struct erase_info in jffs2_erase_block failed. Refiling block for later\n"); mutex_lock(&c->erase_free_sem); @@ -70,15 +62,13 @@ static void jffs2_erase_block(struct jffs2_sb_info *c, instr->mtd = c->mtd; instr->addr = jeb->offset; instr->len = c->sector_size; - instr->callback = jffs2_erase_callback; - instr->priv = (unsigned long)(&instr[1]); - - ((struct erase_priv_struct *)instr->priv)->jeb = jeb; - ((struct erase_priv_struct *)instr->priv)->c = c; ret = mtd_erase(c->mtd, instr); - if (!ret) + if (!ret) { + jffs2_erase_succeeded(c, jeb); + kfree(instr); return; + } bad_offset = instr->fail_addr; kfree(instr); @@ -214,22 +204,6 @@ static void jffs2_erase_failed(struct jffs2_sb_info *c, struct jffs2_eraseblock wake_up(&c->erase_wait); } -#ifndef __ECOS -static void jffs2_erase_callback(struct erase_info *instr) -{ - struct erase_priv_struct *priv = (void *)instr->priv; - - if(instr->state != MTD_ERASE_DONE) { - pr_warn("Erase at 0x%08llx finished, but state != MTD_ERASE_DONE. State is 0x%x instead.\n", - (unsigned long long)instr->addr, instr->state); - jffs2_erase_failed(priv->c, priv->jeb, instr->fail_addr); - } else { - jffs2_erase_succeeded(priv->c, priv->jeb); - } - kfree(instr); -} -#endif /* !__ECOS */ - /* Hmmm. Maybe we should accept the extra space it takes and make this a standard doubly-linked list? */ static inline void jffs2_remove_node_refs_from_ino_list(struct jffs2_sb_info *c, diff --git a/include/linux/mtd/mtd.h b/include/linux/mtd/mtd.h index 2a407dc9beaa..5018437d7999 100644 --- a/include/linux/mtd/mtd.h +++ b/include/linux/mtd/mtd.h @@ -48,8 +48,6 @@ struct erase_info { uint64_t addr; uint64_t len; uint64_t fail_addr; - void (*callback) (struct erase_info *self); - u_long priv; u_char state; }; -- cgit v1.2.3-58-ga151 From 8f347c4232d5fc097599b711a3385722a6834005 Mon Sep 17 00:00:00 2001 From: Boris Brezillon Date: Mon, 12 Feb 2018 22:03:10 +0100 Subject: mtd: Unconditionally update ->fail_addr and ->addr in part_erase() ->fail_addr and ->addr can be updated no matter the result of parent->_erase(), we just need to remove the code doing the same thing in mtd_erase_callback() to avoid adjusting those fields twice. Note that this can be done because all MTD users have been converted to not pass an erase_info->callback() and are thus only taking the ->addr_fail and ->addr fields into account after part_erase() has returned. While we're at it, get rid of the erase_info->mtd field which was only needed to let mtd_erase_callback() get the partition device back. Signed-off-by: Boris Brezillon Reviewed-by: Richard Weinberger --- drivers/mtd/ftl.c | 1 - drivers/mtd/inftlmount.c | 3 --- drivers/mtd/mtdblock.c | 1 - drivers/mtd/mtdchar.c | 1 - drivers/mtd/mtdconcat.c | 1 - drivers/mtd/mtdoops.c | 1 - drivers/mtd/mtdpart.c | 16 ++++------------ drivers/mtd/mtdswap.c | 2 -- drivers/mtd/nand/nand_base.c | 1 - drivers/mtd/nand/nand_bbt.c | 1 - drivers/mtd/nftlmount.c | 1 - drivers/mtd/rfd_ftl.c | 1 - drivers/mtd/sm_ftl.c | 1 - drivers/mtd/tests/mtd_test.c | 1 - drivers/mtd/tests/speedtest.c | 1 - drivers/mtd/ubi/io.c | 1 - fs/jffs2/erase.c | 1 - include/linux/mtd/mtd.h | 3 ++- 18 files changed, 6 insertions(+), 32 deletions(-) diff --git a/drivers/mtd/ftl.c b/drivers/mtd/ftl.c index fcf9907e7987..0a6adfaec7b5 100644 --- a/drivers/mtd/ftl.c +++ b/drivers/mtd/ftl.c @@ -342,7 +342,6 @@ static int erase_xfer(partition_t *part, if (!erase) return -ENOMEM; - erase->mtd = part->mbd.mtd; erase->addr = xfer->Offset; erase->len = 1 << part->header.EraseUnitSize; diff --git a/drivers/mtd/inftlmount.c b/drivers/mtd/inftlmount.c index 0f47be4834d8..aab4f68bd36f 100644 --- a/drivers/mtd/inftlmount.c +++ b/drivers/mtd/inftlmount.c @@ -208,8 +208,6 @@ static int find_boot_record(struct INFTLrecord *inftl) if (ip->Reserved0 != ip->firstUnit) { struct erase_info *instr = &inftl->instr; - instr->mtd = inftl->mbd.mtd; - /* * Most likely this is using the * undocumented qiuck mount feature. @@ -385,7 +383,6 @@ int INFTL_formatblock(struct INFTLrecord *inftl, int block) _first_? */ /* Use async erase interface, test return code */ - instr->mtd = inftl->mbd.mtd; instr->addr = block * inftl->EraseSize; instr->len = inftl->mbd.mtd->erasesize; /* Erase one physical eraseblock at a time, even though the NAND api diff --git a/drivers/mtd/mtdblock.c b/drivers/mtd/mtdblock.c index 7b2b7f651181..a5b1933c0490 100644 --- a/drivers/mtd/mtdblock.c +++ b/drivers/mtd/mtdblock.c @@ -65,7 +65,6 @@ static int erase_write (struct mtd_info *mtd, unsigned long pos, /* * First, let's erase the flash block. */ - erase.mtd = mtd; erase.addr = pos; erase.len = len; diff --git a/drivers/mtd/mtdchar.c b/drivers/mtd/mtdchar.c index 2beb22dd6bbb..c06b33f80e75 100644 --- a/drivers/mtd/mtdchar.c +++ b/drivers/mtd/mtdchar.c @@ -726,7 +726,6 @@ static int mtdchar_ioctl(struct file *file, u_int cmd, u_long arg) erase->addr = einfo32.start; erase->len = einfo32.length; } - erase->mtd = mtd; ret = mtd_erase(mtd, erase); kfree(erase); diff --git a/drivers/mtd/mtdconcat.c b/drivers/mtd/mtdconcat.c index caa09bf6e572..93c47e56d9d8 100644 --- a/drivers/mtd/mtdconcat.c +++ b/drivers/mtd/mtdconcat.c @@ -427,7 +427,6 @@ static int concat_erase(struct mtd_info *mtd, struct erase_info *instr) erase->len = length; length -= erase->len; - erase->mtd = subdev; if ((err = mtd_erase(subdev, erase))) { /* sanity check: should never happen since * block alignment has been checked above */ diff --git a/drivers/mtd/mtdoops.c b/drivers/mtd/mtdoops.c index 028ded59297b..9f25111fd559 100644 --- a/drivers/mtd/mtdoops.c +++ b/drivers/mtd/mtdoops.c @@ -94,7 +94,6 @@ static int mtdoops_erase_block(struct mtdoops_context *cxt, int offset) int ret; int page; - erase.mtd = mtd; erase.addr = offset; erase.len = mtd->erasesize; diff --git a/drivers/mtd/mtdpart.c b/drivers/mtd/mtdpart.c index ae1206633d9d..1c07a6f0dfe5 100644 --- a/drivers/mtd/mtdpart.c +++ b/drivers/mtd/mtdpart.c @@ -205,23 +205,15 @@ static int part_erase(struct mtd_info *mtd, struct erase_info *instr) instr->addr += part->offset; ret = part->parent->_erase(part->parent, instr); - if (ret) { - if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN) - instr->fail_addr -= part->offset; - instr->addr -= part->offset; - } + if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN) + instr->fail_addr -= part->offset; + instr->addr -= part->offset; + return ret; } void mtd_erase_callback(struct erase_info *instr) { - if (instr->mtd->_erase == part_erase) { - struct mtd_part *part = mtd_to_part(instr->mtd); - - if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN) - instr->fail_addr -= part->offset; - instr->addr -= part->offset; - } } EXPORT_SYMBOL_GPL(mtd_erase_callback); diff --git a/drivers/mtd/mtdswap.c b/drivers/mtd/mtdswap.c index d390324d102e..7161f8a17f62 100644 --- a/drivers/mtd/mtdswap.c +++ b/drivers/mtd/mtdswap.c @@ -549,8 +549,6 @@ static int mtdswap_erase_block(struct mtdswap_dev *d, struct swap_eb *eb) retry: memset(&erase, 0, sizeof(struct erase_info)); - - erase.mtd = mtd; erase.addr = mtdswap_eb_offset(d, eb); erase.len = mtd->erasesize; diff --git a/drivers/mtd/nand/nand_base.c b/drivers/mtd/nand/nand_base.c index e70ca16a5118..16c8bc06975d 100644 --- a/drivers/mtd/nand/nand_base.c +++ b/drivers/mtd/nand/nand_base.c @@ -527,7 +527,6 @@ static int nand_block_markbad_lowlevel(struct mtd_info *mtd, loff_t ofs) /* Attempt erase before marking OOB */ memset(&einfo, 0, sizeof(einfo)); - einfo.mtd = mtd; einfo.addr = ofs; einfo.len = 1ULL << chip->phys_erase_shift; nand_erase_nand(mtd, &einfo, 0); diff --git a/drivers/mtd/nand/nand_bbt.c b/drivers/mtd/nand/nand_bbt.c index 36092850be2c..d9f4ceff2568 100644 --- a/drivers/mtd/nand/nand_bbt.c +++ b/drivers/mtd/nand/nand_bbt.c @@ -852,7 +852,6 @@ static int write_bbt(struct mtd_info *mtd, uint8_t *buf, } memset(&einfo, 0, sizeof(einfo)); - einfo.mtd = mtd; einfo.addr = to; einfo.len = 1 << this->bbt_erase_shift; res = nand_erase_nand(mtd, &einfo, 1); diff --git a/drivers/mtd/nftlmount.c b/drivers/mtd/nftlmount.c index 07e122449759..d8f6dba01c87 100644 --- a/drivers/mtd/nftlmount.c +++ b/drivers/mtd/nftlmount.c @@ -328,7 +328,6 @@ int NFTL_formatblock(struct NFTLrecord *nftl, int block) memset(instr, 0, sizeof(struct erase_info)); /* XXX: use async erase interface, XXX: test return code */ - instr->mtd = nftl->mbd.mtd; instr->addr = block * nftl->EraseSize; instr->len = nftl->EraseSize; if (mtd_erase(mtd, instr)) { diff --git a/drivers/mtd/rfd_ftl.c b/drivers/mtd/rfd_ftl.c index 4e0b55cd08e2..df27f24ce0fa 100644 --- a/drivers/mtd/rfd_ftl.c +++ b/drivers/mtd/rfd_ftl.c @@ -275,7 +275,6 @@ static int erase_block(struct partition *part, int block) if (!erase) return -ENOMEM; - erase->mtd = part->mbd.mtd; erase->addr = part->blocks[block].offset; erase->len = part->block_size; diff --git a/drivers/mtd/sm_ftl.c b/drivers/mtd/sm_ftl.c index c11156f9d96f..72740ede9f05 100644 --- a/drivers/mtd/sm_ftl.c +++ b/drivers/mtd/sm_ftl.c @@ -460,7 +460,6 @@ static int sm_erase_block(struct sm_ftl *ftl, int zone_num, uint16_t block, struct mtd_info *mtd = ftl->trans->mtd; struct erase_info erase; - erase.mtd = mtd; erase.addr = sm_mkoffset(ftl, zone_num, block, 0); erase.len = ftl->block_size; diff --git a/drivers/mtd/tests/mtd_test.c b/drivers/mtd/tests/mtd_test.c index 0ac625e8f798..c84250beffdc 100644 --- a/drivers/mtd/tests/mtd_test.c +++ b/drivers/mtd/tests/mtd_test.c @@ -14,7 +14,6 @@ int mtdtest_erase_eraseblock(struct mtd_info *mtd, unsigned int ebnum) loff_t addr = (loff_t)ebnum * mtd->erasesize; memset(&ei, 0, sizeof(struct erase_info)); - ei.mtd = mtd; ei.addr = addr; ei.len = mtd->erasesize; diff --git a/drivers/mtd/tests/speedtest.c b/drivers/mtd/tests/speedtest.c index f8e5dc11f943..20edb3b49c77 100644 --- a/drivers/mtd/tests/speedtest.c +++ b/drivers/mtd/tests/speedtest.c @@ -59,7 +59,6 @@ static int multiblock_erase(int ebnum, int blocks) loff_t addr = (loff_t)ebnum * mtd->erasesize; memset(&ei, 0, sizeof(struct erase_info)); - ei.mtd = mtd; ei.addr = addr; ei.len = mtd->erasesize * blocks; diff --git a/drivers/mtd/ubi/io.c b/drivers/mtd/ubi/io.c index 8843d26837b2..0e3a76a9e2f8 100644 --- a/drivers/mtd/ubi/io.c +++ b/drivers/mtd/ubi/io.c @@ -333,7 +333,6 @@ static int do_sync_erase(struct ubi_device *ubi, int pnum) retry: memset(&ei, 0, sizeof(struct erase_info)); - ei.mtd = ubi->mtd; ei.addr = (loff_t)pnum * ubi->peb_size; ei.len = ubi->peb_size; diff --git a/fs/jffs2/erase.c b/fs/jffs2/erase.c index 09bb6c00b869..83b8f06b4a64 100644 --- a/fs/jffs2/erase.c +++ b/fs/jffs2/erase.c @@ -59,7 +59,6 @@ static void jffs2_erase_block(struct jffs2_sb_info *c, memset(instr, 0, sizeof(*instr)); - instr->mtd = c->mtd; instr->addr = jeb->offset; instr->len = c->sector_size; diff --git a/include/linux/mtd/mtd.h b/include/linux/mtd/mtd.h index 5018437d7999..4cbb7f555244 100644 --- a/include/linux/mtd/mtd.h +++ b/include/linux/mtd/mtd.h @@ -38,13 +38,14 @@ #define MTD_FAIL_ADDR_UNKNOWN -1LL +struct mtd_info; + /* * If the erase fails, fail_addr might indicate exactly which block failed. If * fail_addr = MTD_FAIL_ADDR_UNKNOWN, the failure was not at the device level * or was not specific to any particular block. */ struct erase_info { - struct mtd_info *mtd; uint64_t addr; uint64_t len; uint64_t fail_addr; -- cgit v1.2.3-58-ga151 From 1cbe30b0ddc7afa3009dbe10f1c3d34f5adbef3f Mon Sep 17 00:00:00 2001 From: Stefan Agner Date: Fri, 9 Mar 2018 15:50:36 +0100 Subject: mtd: rawnand: vf610_nfc: make use of ->exec_op() This reworks the driver to make use of ->exec_op() callback. The command sequencer of the VF610 NFC aligns well with the new ops interface. The operations are translated to a NFC command code while filling the necessary registers. Instead of using the special status and read ID command codes (which require to read status/ID from special registers instead of the regular data area) the driver now now uses the main data buffer for all commands. This simplifies the driver as no special casing is needed. For control data (status byte, id bytes and parameter page) the driver needs to reverse byte order for little endian CPUs since the controller seems to store the bytes in big endian order in the data buffer. The current state seems to pass MTD tests on a Colibri VF61. Signed-off-by: Stefan Agner Reviewed-by: Miquel Raynal Signed-off-by: Boris Brezillon --- drivers/mtd/nand/raw/vf610_nfc.c | 424 +++++++++++++++++++++++++++++++++++++-- 1 file changed, 412 insertions(+), 12 deletions(-) diff --git a/drivers/mtd/nand/raw/vf610_nfc.c b/drivers/mtd/nand/raw/vf610_nfc.c index 5d7a1f8f580f..15fcefaba43e 100644 --- a/drivers/mtd/nand/raw/vf610_nfc.c +++ b/drivers/mtd/nand/raw/vf610_nfc.c @@ -36,6 +36,7 @@ #include #include #include +#include #define DRV_NAME "vf610_nfc" @@ -74,6 +75,22 @@ #define RESET_CMD_CODE 0x4040 #define STATUS_READ_CMD_CODE 0x4068 +/* NFC_CMD2[CODE] controller cycle bit masks */ +#define COMMAND_CMD_BYTE1 BIT(14) +#define COMMAND_CAR_BYTE1 BIT(13) +#define COMMAND_CAR_BYTE2 BIT(12) +#define COMMAND_RAR_BYTE1 BIT(11) +#define COMMAND_RAR_BYTE2 BIT(10) +#define COMMAND_RAR_BYTE3 BIT(9) +#define COMMAND_NADDR_BYTES(x) GENMASK(13, 13 - (x) + 1) +#define COMMAND_WRITE_DATA BIT(8) +#define COMMAND_CMD_BYTE2 BIT(7) +#define COMMAND_RB_HANDSHAKE BIT(6) +#define COMMAND_READ_DATA BIT(5) +#define COMMAND_CMD_BYTE3 BIT(4) +#define COMMAND_READ_STATUS BIT(3) +#define COMMAND_READ_ID BIT(2) + /* NFC ECC mode define */ #define ECC_BYPASS 0 #define ECC_45_BYTE 6 @@ -97,10 +114,13 @@ /* NFC_COL_ADDR Field */ #define COL_ADDR_MASK 0x0000FFFF #define COL_ADDR_SHIFT 0 +#define COL_ADDR(pos, val) (((val) & 0xFF) << (8 * (pos))) /* NFC_ROW_ADDR Field */ #define ROW_ADDR_MASK 0x00FFFFFF #define ROW_ADDR_SHIFT 0 +#define ROW_ADDR(pos, val) (((val) & 0xFF) << (8 * (pos))) + #define ROW_ADDR_CHIP_SEL_RB_MASK 0xF0000000 #define ROW_ADDR_CHIP_SEL_RB_SHIFT 28 #define ROW_ADDR_CHIP_SEL_MASK 0x0F000000 @@ -165,6 +185,12 @@ struct vf610_nfc { enum vf610_nfc_variant variant; struct clk *clk; bool use_hw_ecc; + /* + * Indicate that user data is accessed (full page/oob). This is + * useful to indicate the driver whether to swap byte endianness. + * See comments in vf610_nfc_rd_from_sram/vf610_nfc_wr_to_sram. + */ + bool data_access; u32 ecc_mode; }; @@ -173,6 +199,11 @@ static inline struct vf610_nfc *mtd_to_nfc(struct mtd_info *mtd) return container_of(mtd_to_nand(mtd), struct vf610_nfc, chip); } +static inline struct vf610_nfc *chip_to_nfc(struct nand_chip *chip) +{ + return container_of(chip, struct vf610_nfc, chip); +} + static inline u32 vf610_nfc_read(struct vf610_nfc *nfc, uint reg) { return readl(nfc->regs + reg); @@ -214,6 +245,86 @@ static inline void vf610_nfc_memcpy(void *dst, const void __iomem *src, memcpy(dst, src, n); } +static inline bool vf610_nfc_kernel_is_little_endian(void) +{ +#ifdef __LITTLE_ENDIAN + return true; +#else + return false; +#endif +} + +/** + * Read accessor for internal SRAM buffer + * @dst: destination address in regular memory + * @src: source address in SRAM buffer + * @len: bytes to copy + * @fix_endian: Fix endianness if required + * + * Use this accessor for the internal SRAM buffers. On the ARM + * Freescale Vybrid SoC it's known that the driver can treat + * the SRAM buffer as if it's memory. Other platform might need + * to treat the buffers differently. + * + * The controller stores bytes from the NAND chip internally in big + * endianness. On little endian platforms such as Vybrid this leads + * to reversed byte order. + * For performance reason (and earlier probably due to unawareness) + * the driver avoids correcting endianness where it has control over + * write and read side (e.g. page wise data access). + */ +static inline void vf610_nfc_rd_from_sram(void *dst, const void __iomem *src, + size_t len, bool fix_endian) +{ + if (vf610_nfc_kernel_is_little_endian() && fix_endian) { + unsigned int i; + + for (i = 0; i < len; i += 4) { + u32 val = swab32(__raw_readl(src + i)); + + memcpy(dst + i, &val, min(sizeof(val), len - i)); + } + } else { + memcpy_fromio(dst, src, len); + } +} + +/** + * Write accessor for internal SRAM buffer + * @dst: destination address in SRAM buffer + * @src: source address in regular memory + * @len: bytes to copy + * @fix_endian: Fix endianness if required + * + * Use this accessor for the internal SRAM buffers. On the ARM + * Freescale Vybrid SoC it's known that the driver can treat + * the SRAM buffer as if it's memory. Other platform might need + * to treat the buffers differently. + * + * The controller stores bytes from the NAND chip internally in big + * endianness. On little endian platforms such as Vybrid this leads + * to reversed byte order. + * For performance reason (and earlier probably due to unawareness) + * the driver avoids correcting endianness where it has control over + * write and read side (e.g. page wise data access). + */ +static inline void vf610_nfc_wr_to_sram(void __iomem *dst, const void *src, + size_t len, bool fix_endian) +{ + if (vf610_nfc_kernel_is_little_endian() && fix_endian) { + unsigned int i; + + for (i = 0; i < len; i += 4) { + u32 val; + + memcpy(&val, src + i, min(sizeof(val), len - i)); + __raw_writel(swab32(val), dst + i); + } + } else { + memcpy_toio(dst, src, len); + } +} + /* Clear flags for upcoming command */ static inline void vf610_nfc_clear_status(struct vf610_nfc *nfc) { @@ -489,6 +600,164 @@ static int vf610_nfc_dev_ready(struct mtd_info *mtd) return 1; } +static inline void vf610_nfc_run(struct vf610_nfc *nfc, u32 col, u32 row, + u32 cmd1, u32 cmd2, u32 trfr_sz) +{ + vf610_nfc_set_field(nfc, NFC_COL_ADDR, COL_ADDR_MASK, + COL_ADDR_SHIFT, col); + + vf610_nfc_set_field(nfc, NFC_ROW_ADDR, ROW_ADDR_MASK, + ROW_ADDR_SHIFT, row); + + vf610_nfc_write(nfc, NFC_SECTOR_SIZE, trfr_sz); + vf610_nfc_write(nfc, NFC_FLASH_CMD1, cmd1); + vf610_nfc_write(nfc, NFC_FLASH_CMD2, cmd2); + + dev_dbg(nfc->dev, + "col 0x%04x, row 0x%08x, cmd1 0x%08x, cmd2 0x%08x, len %d\n", + col, row, cmd1, cmd2, trfr_sz); + + vf610_nfc_done(nfc); +} + +static inline const struct nand_op_instr * +vf610_get_next_instr(const struct nand_subop *subop, int *op_id) +{ + if (*op_id + 1 >= subop->ninstrs) + return NULL; + + (*op_id)++; + + return &subop->instrs[*op_id]; +} + +static int vf610_nfc_cmd(struct nand_chip *chip, + const struct nand_subop *subop) +{ + const struct nand_op_instr *instr; + struct vf610_nfc *nfc = chip_to_nfc(chip); + int op_id = -1, trfr_sz = 0, offset; + u32 col = 0, row = 0, cmd1 = 0, cmd2 = 0, code = 0; + bool force8bit = false; + + /* + * Some ops are optional, but the hardware requires the operations + * to be in this exact order. + * The op parser enforces the order and makes sure that there isn't + * a read and write element in a single operation. + */ + instr = vf610_get_next_instr(subop, &op_id); + if (!instr) + return -EINVAL; + + if (instr && instr->type == NAND_OP_CMD_INSTR) { + cmd2 |= instr->ctx.cmd.opcode << CMD_BYTE1_SHIFT; + code |= COMMAND_CMD_BYTE1; + + instr = vf610_get_next_instr(subop, &op_id); + } + + if (instr && instr->type == NAND_OP_ADDR_INSTR) { + int naddrs = nand_subop_get_num_addr_cyc(subop, op_id); + int i = nand_subop_get_addr_start_off(subop, op_id); + + for (; i < naddrs; i++) { + u8 val = instr->ctx.addr.addrs[i]; + + if (i < 2) + col |= COL_ADDR(i, val); + else + row |= ROW_ADDR(i - 2, val); + } + code |= COMMAND_NADDR_BYTES(naddrs); + + instr = vf610_get_next_instr(subop, &op_id); + } + + if (instr && instr->type == NAND_OP_DATA_OUT_INSTR) { + trfr_sz = nand_subop_get_data_len(subop, op_id); + offset = nand_subop_get_data_start_off(subop, op_id); + force8bit = instr->ctx.data.force_8bit; + + /* + * Don't fix endianness on page access for historical reasons. + * See comment in vf610_nfc_wr_to_sram + */ + vf610_nfc_wr_to_sram(nfc->regs + NFC_MAIN_AREA(0) + offset, + instr->ctx.data.buf.out + offset, + trfr_sz, !nfc->data_access); + code |= COMMAND_WRITE_DATA; + + instr = vf610_get_next_instr(subop, &op_id); + } + + if (instr && instr->type == NAND_OP_CMD_INSTR) { + cmd1 |= instr->ctx.cmd.opcode << CMD_BYTE2_SHIFT; + code |= COMMAND_CMD_BYTE2; + + instr = vf610_get_next_instr(subop, &op_id); + } + + if (instr && instr->type == NAND_OP_WAITRDY_INSTR) { + code |= COMMAND_RB_HANDSHAKE; + + instr = vf610_get_next_instr(subop, &op_id); + } + + if (instr && instr->type == NAND_OP_DATA_IN_INSTR) { + trfr_sz = nand_subop_get_data_len(subop, op_id); + offset = nand_subop_get_data_start_off(subop, op_id); + force8bit = instr->ctx.data.force_8bit; + + code |= COMMAND_READ_DATA; + } + + if (force8bit && (chip->options & NAND_BUSWIDTH_16)) + vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT); + + cmd2 |= code << CMD_CODE_SHIFT; + + vf610_nfc_run(nfc, col, row, cmd1, cmd2, trfr_sz); + + if (instr && instr->type == NAND_OP_DATA_IN_INSTR) { + /* + * Don't fix endianness on page access for historical reasons. + * See comment in vf610_nfc_rd_from_sram + */ + vf610_nfc_rd_from_sram(instr->ctx.data.buf.in + offset, + nfc->regs + NFC_MAIN_AREA(0) + offset, + trfr_sz, !nfc->data_access); + } + + if (force8bit && (chip->options & NAND_BUSWIDTH_16)) + vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_16BIT); + + return 0; +} + +static const struct nand_op_parser vf610_nfc_op_parser = NAND_OP_PARSER( + NAND_OP_PARSER_PATTERN(vf610_nfc_cmd, + NAND_OP_PARSER_PAT_CMD_ELEM(true), + NAND_OP_PARSER_PAT_ADDR_ELEM(true, 5), + NAND_OP_PARSER_PAT_DATA_OUT_ELEM(true, PAGE_2K + OOB_MAX), + NAND_OP_PARSER_PAT_CMD_ELEM(true), + NAND_OP_PARSER_PAT_WAITRDY_ELEM(true)), + NAND_OP_PARSER_PATTERN(vf610_nfc_cmd, + NAND_OP_PARSER_PAT_CMD_ELEM(true), + NAND_OP_PARSER_PAT_ADDR_ELEM(true, 5), + NAND_OP_PARSER_PAT_CMD_ELEM(true), + NAND_OP_PARSER_PAT_WAITRDY_ELEM(true), + NAND_OP_PARSER_PAT_DATA_IN_ELEM(true, PAGE_2K + OOB_MAX)), + ); + +static int vf610_nfc_exec_op(struct nand_chip *chip, + const struct nand_operation *op, + bool check_only) +{ + return nand_op_parser_exec_op(chip, &vf610_nfc_op_parser, op, + check_only); +} + /* * This function supports Vybrid only (MPC5125 would have full RB and four CS) */ @@ -526,9 +795,9 @@ static inline int vf610_nfc_correct_data(struct mtd_info *mtd, uint8_t *dat, if (!(ecc_status & ECC_STATUS_MASK)) return ecc_count; - /* Read OOB without ECC unit enabled */ - vf610_nfc_command(mtd, NAND_CMD_READOOB, 0, page); - vf610_nfc_read_buf(mtd, oob, mtd->oobsize); + nfc->data_access = true; + nand_read_oob_op(&nfc->chip, page, 0, oob, mtd->oobsize); + nfc->data_access = false; /* * On an erased page, bit count (including OOB) should be zero or @@ -539,15 +808,51 @@ static inline int vf610_nfc_correct_data(struct mtd_info *mtd, uint8_t *dat, flips_threshold); } +static void vf610_nfc_fill_row(struct nand_chip *chip, int page, u32 *code, + u32 *row) +{ + *row = ROW_ADDR(0, page & 0xff) | ROW_ADDR(1, page >> 8); + *code |= COMMAND_RAR_BYTE1 | COMMAND_RAR_BYTE2; + + if (chip->options & NAND_ROW_ADDR_3) { + *row |= ROW_ADDR(2, page >> 16); + *code |= COMMAND_RAR_BYTE3; + } +} + static int vf610_nfc_read_page(struct mtd_info *mtd, struct nand_chip *chip, uint8_t *buf, int oob_required, int page) { - int eccsize = chip->ecc.size; + struct vf610_nfc *nfc = mtd_to_nfc(mtd); + int trfr_sz = mtd->writesize + mtd->oobsize; + u32 row = 0, cmd1 = 0, cmd2 = 0, code = 0; int stat; - nand_read_page_op(chip, page, 0, buf, eccsize); + cmd2 |= NAND_CMD_READ0 << CMD_BYTE1_SHIFT; + code |= COMMAND_CMD_BYTE1 | COMMAND_CAR_BYTE1 | COMMAND_CAR_BYTE2; + + vf610_nfc_fill_row(chip, page, &code, &row); + + cmd1 |= NAND_CMD_READSTART << CMD_BYTE2_SHIFT; + code |= COMMAND_CMD_BYTE2 | COMMAND_RB_HANDSHAKE | COMMAND_READ_DATA; + + cmd2 |= code << CMD_CODE_SHIFT; + + vf610_nfc_ecc_mode(nfc, nfc->ecc_mode); + vf610_nfc_run(nfc, 0, row, cmd1, cmd2, trfr_sz); + vf610_nfc_ecc_mode(nfc, ECC_BYPASS); + + /* + * Don't fix endianness on page access for historical reasons. + * See comment in vf610_nfc_rd_from_sram + */ + vf610_nfc_rd_from_sram(buf, nfc->regs + NFC_MAIN_AREA(0), + mtd->writesize, false); if (oob_required) - vf610_nfc_read_buf(mtd, chip->oob_poi, mtd->oobsize); + vf610_nfc_rd_from_sram(chip->oob_poi, + nfc->regs + NFC_MAIN_AREA(0) + + mtd->writesize, + mtd->oobsize, false); stat = vf610_nfc_correct_data(mtd, buf, chip->oob_poi, page); @@ -564,14 +869,103 @@ static int vf610_nfc_write_page(struct mtd_info *mtd, struct nand_chip *chip, const uint8_t *buf, int oob_required, int page) { struct vf610_nfc *nfc = mtd_to_nfc(mtd); + int trfr_sz = mtd->writesize + mtd->oobsize; + u32 row = 0, cmd1 = 0, cmd2 = 0, code = 0; + u8 status; + int ret; - nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize); - if (oob_required) - vf610_nfc_write_buf(mtd, chip->oob_poi, mtd->oobsize); + cmd2 |= NAND_CMD_SEQIN << CMD_BYTE1_SHIFT; + code |= COMMAND_CMD_BYTE1 | COMMAND_CAR_BYTE1 | COMMAND_CAR_BYTE2; + + vf610_nfc_fill_row(chip, page, &code, &row); + + cmd1 |= NAND_CMD_PAGEPROG << CMD_BYTE2_SHIFT; + code |= COMMAND_CMD_BYTE2 | COMMAND_WRITE_DATA; + + /* + * Don't fix endianness on page access for historical reasons. + * See comment in vf610_nfc_wr_to_sram + */ + vf610_nfc_wr_to_sram(nfc->regs + NFC_MAIN_AREA(0), buf, + mtd->writesize, false); + + code |= COMMAND_RB_HANDSHAKE; + cmd2 |= code << CMD_CODE_SHIFT; + + vf610_nfc_ecc_mode(nfc, nfc->ecc_mode); + vf610_nfc_run(nfc, 0, row, cmd1, cmd2, trfr_sz); + vf610_nfc_ecc_mode(nfc, ECC_BYPASS); + + ret = nand_status_op(chip, &status); + if (ret) + return ret; + + if (status & NAND_STATUS_FAIL) + return -EIO; + + return 0; +} + +static int vf610_nfc_read_page_raw(struct mtd_info *mtd, + struct nand_chip *chip, u8 *buf, + int oob_required, int page) +{ + struct vf610_nfc *nfc = mtd_to_nfc(mtd); + int ret; + + nfc->data_access = true; + ret = nand_read_page_raw(mtd, chip, buf, oob_required, page); + nfc->data_access = false; + + return ret; +} + +static int vf610_nfc_write_page_raw(struct mtd_info *mtd, + struct nand_chip *chip, const u8 *buf, + int oob_required, int page) +{ + struct vf610_nfc *nfc = mtd_to_nfc(mtd); + int ret; + + nfc->data_access = true; + ret = nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize); + if (!ret && oob_required) + ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, + false); + nfc->data_access = false; + + if (ret) + return ret; + + return nand_prog_page_end_op(chip); +} + +static int vf610_nfc_read_oob(struct mtd_info *mtd, struct nand_chip *chip, + int page) +{ + struct vf610_nfc *nfc = mtd_to_nfc(mtd); + int ret; + + nfc->data_access = true; + ret = nand_read_oob_std(mtd, chip, page); + nfc->data_access = false; + + return ret; +} + +static int vf610_nfc_write_oob(struct mtd_info *mtd, struct nand_chip *chip, + int page) +{ + struct vf610_nfc *nfc = mtd_to_nfc(mtd); + int ret; + + nfc->data_access = true; + ret = nand_prog_page_begin_op(chip, page, mtd->writesize, + chip->oob_poi, mtd->oobsize); + nfc->data_access = false; - /* Always write whole page including OOB due to HW ECC */ - nfc->use_hw_ecc = true; - nfc->write_sz = mtd->writesize + mtd->oobsize; + if (ret) + return ret; return nand_prog_page_end_op(chip); } @@ -590,6 +984,7 @@ static void vf610_nfc_preinit_controller(struct vf610_nfc *nfc) vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_BOOT_MODE_BIT); vf610_nfc_clear(nfc, NFC_FLASH_CONFIG, CONFIG_DMA_REQ_BIT); vf610_nfc_set(nfc, NFC_FLASH_CONFIG, CONFIG_FAST_FLASH_BIT); + vf610_nfc_ecc_mode(nfc, ECC_BYPASS); /* Disable virtual pages, only one elementary transfer unit */ vf610_nfc_set_field(nfc, NFC_FLASH_CONFIG, CONFIG_PAGE_CNT_MASK, @@ -686,6 +1081,7 @@ static int vf610_nfc_probe(struct platform_device *pdev) chip->read_word = vf610_nfc_read_word; chip->read_buf = vf610_nfc_read_buf; chip->write_buf = vf610_nfc_write_buf; + chip->exec_op = vf610_nfc_exec_op; chip->select_chip = vf610_nfc_select_chip; chip->onfi_set_features = nand_onfi_get_set_features_notsupp; chip->onfi_get_features = nand_onfi_get_set_features_notsupp; @@ -755,6 +1151,10 @@ static int vf610_nfc_probe(struct platform_device *pdev) chip->ecc.read_page = vf610_nfc_read_page; chip->ecc.write_page = vf610_nfc_write_page; + chip->ecc.read_page_raw = vf610_nfc_read_page_raw; + chip->ecc.write_page_raw = vf610_nfc_write_page_raw; + chip->ecc.read_oob = vf610_nfc_read_oob; + chip->ecc.write_oob = vf610_nfc_write_oob; chip->ecc.size = PAGE_2K; } -- cgit v1.2.3-58-ga151 From ecc40b8df59a13dc1c1abd8abe4361e4160d29ea Mon Sep 17 00:00:00 2001 From: Stefan Agner Date: Fri, 9 Mar 2018 15:50:37 +0100 Subject: mtd: rawnand: vf610_nfc: remove old hooks Now that the driver is using ->exec_op(), remove the old hooks. Signed-off-by: Stefan Agner Reviewed-by: Miquel Raynal Signed-off-by: Boris Brezillon --- drivers/mtd/nand/raw/vf610_nfc.c | 269 --------------------------------------- 1 file changed, 269 deletions(-) diff --git a/drivers/mtd/nand/raw/vf610_nfc.c b/drivers/mtd/nand/raw/vf610_nfc.c index 15fcefaba43e..bbec33f178d5 100644 --- a/drivers/mtd/nand/raw/vf610_nfc.c +++ b/drivers/mtd/nand/raw/vf610_nfc.c @@ -60,21 +60,6 @@ #define OOB_64 0x0040 #define OOB_MAX 0x0100 -/* - * NFC_CMD2[CODE] values. See section: - * - 31.4.7 Flash Command Code Description, Vybrid manual - * - 23.8.6 Flash Command Sequencer, MPC5125 manual - * - * Briefly these are bitmasks of controller cycles. - */ -#define READ_PAGE_CMD_CODE 0x7EE0 -#define READ_ONFI_PARAM_CMD_CODE 0x4860 -#define PROGRAM_PAGE_CMD_CODE 0x7FC0 -#define ERASE_CMD_CODE 0x4EC0 -#define READ_ID_CMD_CODE 0x4804 -#define RESET_CMD_CODE 0x4040 -#define STATUS_READ_CMD_CODE 0x4068 - /* NFC_CMD2[CODE] controller cycle bit masks */ #define COMMAND_CMD_BYTE1 BIT(14) #define COMMAND_CAR_BYTE1 BIT(13) @@ -162,13 +147,6 @@ #define ECC_STATUS_MASK 0x80 #define ECC_STATUS_ERR_COUNT 0x3F -enum vf610_nfc_alt_buf { - ALT_BUF_DATA = 0, - ALT_BUF_ID = 1, - ALT_BUF_STAT = 2, - ALT_BUF_ONFI = 3, -}; - enum vf610_nfc_variant { NFC_VFC610 = 1, }; @@ -178,13 +156,9 @@ struct vf610_nfc { struct device *dev; void __iomem *regs; struct completion cmd_done; - uint buf_offset; - int write_sz; /* Status and ID are in alternate locations. */ - enum vf610_nfc_alt_buf alt_buf; enum vf610_nfc_variant variant; struct clk *clk; - bool use_hw_ecc; /* * Indicate that user data is accessed (full page/oob). This is * useful to indicate the driver whether to swap byte endianness. @@ -231,20 +205,6 @@ static inline void vf610_nfc_set_field(struct vf610_nfc *nfc, u32 reg, (vf610_nfc_read(nfc, reg) & (~mask)) | val << shift); } -static inline void vf610_nfc_memcpy(void *dst, const void __iomem *src, - size_t n) -{ - /* - * Use this accessor for the internal SRAM buffers. On the ARM - * Freescale Vybrid SoC it's known that the driver can treat - * the SRAM buffer as if it's memory. Other platform might need - * to treat the buffers differently. - * - * For the time being, use memcpy - */ - memcpy(dst, src, n); -} - static inline bool vf610_nfc_kernel_is_little_endian(void) { #ifdef __LITTLE_ENDIAN @@ -354,53 +314,6 @@ static void vf610_nfc_done(struct vf610_nfc *nfc) vf610_nfc_clear_status(nfc); } -static u8 vf610_nfc_get_id(struct vf610_nfc *nfc, int col) -{ - u32 flash_id; - - if (col < 4) { - flash_id = vf610_nfc_read(nfc, NFC_FLASH_STATUS1); - flash_id >>= (3 - col) * 8; - } else { - flash_id = vf610_nfc_read(nfc, NFC_FLASH_STATUS2); - flash_id >>= 24; - } - - return flash_id & 0xff; -} - -static u8 vf610_nfc_get_status(struct vf610_nfc *nfc) -{ - return vf610_nfc_read(nfc, NFC_FLASH_STATUS2) & STATUS_BYTE1_MASK; -} - -static void vf610_nfc_send_command(struct vf610_nfc *nfc, u32 cmd_byte1, - u32 cmd_code) -{ - u32 tmp; - - vf610_nfc_clear_status(nfc); - - tmp = vf610_nfc_read(nfc, NFC_FLASH_CMD2); - tmp &= ~(CMD_BYTE1_MASK | CMD_CODE_MASK | BUFNO_MASK); - tmp |= cmd_byte1 << CMD_BYTE1_SHIFT; - tmp |= cmd_code << CMD_CODE_SHIFT; - vf610_nfc_write(nfc, NFC_FLASH_CMD2, tmp); -} - -static void vf610_nfc_send_commands(struct vf610_nfc *nfc, u32 cmd_byte1, - u32 cmd_byte2, u32 cmd_code) -{ - u32 tmp; - - vf610_nfc_send_command(nfc, cmd_byte1, cmd_code); - - tmp = vf610_nfc_read(nfc, NFC_FLASH_CMD1); - tmp &= ~CMD_BYTE2_MASK; - tmp |= cmd_byte2 << CMD_BYTE2_SHIFT; - vf610_nfc_write(nfc, NFC_FLASH_CMD1, tmp); -} - static irqreturn_t vf610_nfc_irq(int irq, void *data) { struct mtd_info *mtd = data; @@ -412,19 +325,6 @@ static irqreturn_t vf610_nfc_irq(int irq, void *data) return IRQ_HANDLED; } -static void vf610_nfc_addr_cycle(struct vf610_nfc *nfc, int column, int page) -{ - if (column != -1) { - if (nfc->chip.options & NAND_BUSWIDTH_16) - column = column / 2; - vf610_nfc_set_field(nfc, NFC_COL_ADDR, COL_ADDR_MASK, - COL_ADDR_SHIFT, column); - } - if (page != -1) - vf610_nfc_set_field(nfc, NFC_ROW_ADDR, ROW_ADDR_MASK, - ROW_ADDR_SHIFT, page); -} - static inline void vf610_nfc_ecc_mode(struct vf610_nfc *nfc, int ecc_mode) { vf610_nfc_set_field(nfc, NFC_FLASH_CONFIG, @@ -437,169 +337,6 @@ static inline void vf610_nfc_transfer_size(struct vf610_nfc *nfc, int size) vf610_nfc_write(nfc, NFC_SECTOR_SIZE, size); } -static void vf610_nfc_command(struct mtd_info *mtd, unsigned command, - int column, int page) -{ - struct vf610_nfc *nfc = mtd_to_nfc(mtd); - int trfr_sz = nfc->chip.options & NAND_BUSWIDTH_16 ? 1 : 0; - - nfc->buf_offset = max(column, 0); - nfc->alt_buf = ALT_BUF_DATA; - - switch (command) { - case NAND_CMD_SEQIN: - /* Use valid column/page from preread... */ - vf610_nfc_addr_cycle(nfc, column, page); - nfc->buf_offset = 0; - - /* - * SEQIN => data => PAGEPROG sequence is done by the controller - * hence we do not need to issue the command here... - */ - return; - case NAND_CMD_PAGEPROG: - trfr_sz += nfc->write_sz; - vf610_nfc_transfer_size(nfc, trfr_sz); - vf610_nfc_send_commands(nfc, NAND_CMD_SEQIN, - command, PROGRAM_PAGE_CMD_CODE); - if (nfc->use_hw_ecc) - vf610_nfc_ecc_mode(nfc, nfc->ecc_mode); - else - vf610_nfc_ecc_mode(nfc, ECC_BYPASS); - break; - - case NAND_CMD_RESET: - vf610_nfc_transfer_size(nfc, 0); - vf610_nfc_send_command(nfc, command, RESET_CMD_CODE); - break; - - case NAND_CMD_READOOB: - trfr_sz += mtd->oobsize; - column = mtd->writesize; - vf610_nfc_transfer_size(nfc, trfr_sz); - vf610_nfc_send_commands(nfc, NAND_CMD_READ0, - NAND_CMD_READSTART, READ_PAGE_CMD_CODE); - vf610_nfc_addr_cycle(nfc, column, page); - vf610_nfc_ecc_mode(nfc, ECC_BYPASS); - break; - - case NAND_CMD_READ0: - trfr_sz += mtd->writesize + mtd->oobsize; - vf610_nfc_transfer_size(nfc, trfr_sz); - vf610_nfc_send_commands(nfc, NAND_CMD_READ0, - NAND_CMD_READSTART, READ_PAGE_CMD_CODE); - vf610_nfc_addr_cycle(nfc, column, page); - vf610_nfc_ecc_mode(nfc, nfc->ecc_mode); - break; - - case NAND_CMD_PARAM: - nfc->alt_buf = ALT_BUF_ONFI; - trfr_sz = 3 * sizeof(struct nand_onfi_params); - vf610_nfc_transfer_size(nfc, trfr_sz); - vf610_nfc_send_command(nfc, command, READ_ONFI_PARAM_CMD_CODE); - vf610_nfc_addr_cycle(nfc, -1, column); - vf610_nfc_ecc_mode(nfc, ECC_BYPASS); - break; - - case NAND_CMD_ERASE1: - vf610_nfc_transfer_size(nfc, 0); - vf610_nfc_send_commands(nfc, command, - NAND_CMD_ERASE2, ERASE_CMD_CODE); - vf610_nfc_addr_cycle(nfc, column, page); - break; - - case NAND_CMD_READID: - nfc->alt_buf = ALT_BUF_ID; - nfc->buf_offset = 0; - vf610_nfc_transfer_size(nfc, 0); - vf610_nfc_send_command(nfc, command, READ_ID_CMD_CODE); - vf610_nfc_addr_cycle(nfc, -1, column); - break; - - case NAND_CMD_STATUS: - nfc->alt_buf = ALT_BUF_STAT; - vf610_nfc_transfer_size(nfc, 0); - vf610_nfc_send_command(nfc, command, STATUS_READ_CMD_CODE); - break; - default: - return; - } - - vf610_nfc_done(nfc); - - nfc->use_hw_ecc = false; - nfc->write_sz = 0; -} - -static void vf610_nfc_read_buf(struct mtd_info *mtd, u_char *buf, int len) -{ - struct vf610_nfc *nfc = mtd_to_nfc(mtd); - uint c = nfc->buf_offset; - - /* Alternate buffers are only supported through read_byte */ - WARN_ON(nfc->alt_buf); - - vf610_nfc_memcpy(buf, nfc->regs + NFC_MAIN_AREA(0) + c, len); - - nfc->buf_offset += len; -} - -static void vf610_nfc_write_buf(struct mtd_info *mtd, const uint8_t *buf, - int len) -{ - struct vf610_nfc *nfc = mtd_to_nfc(mtd); - uint c = nfc->buf_offset; - uint l; - - l = min_t(uint, len, mtd->writesize + mtd->oobsize - c); - vf610_nfc_memcpy(nfc->regs + NFC_MAIN_AREA(0) + c, buf, l); - - nfc->write_sz += l; - nfc->buf_offset += l; -} - -static uint8_t vf610_nfc_read_byte(struct mtd_info *mtd) -{ - struct vf610_nfc *nfc = mtd_to_nfc(mtd); - u8 tmp; - uint c = nfc->buf_offset; - - switch (nfc->alt_buf) { - case ALT_BUF_ID: - tmp = vf610_nfc_get_id(nfc, c); - break; - case ALT_BUF_STAT: - tmp = vf610_nfc_get_status(nfc); - break; -#ifdef __LITTLE_ENDIAN - case ALT_BUF_ONFI: - /* Reverse byte since the controller uses big endianness */ - c = nfc->buf_offset ^ 0x3; - /* fall-through */ -#endif - default: - tmp = *((u8 *)(nfc->regs + NFC_MAIN_AREA(0) + c)); - break; - } - nfc->buf_offset++; - return tmp; -} - -static u16 vf610_nfc_read_word(struct mtd_info *mtd) -{ - u16 tmp; - - vf610_nfc_read_buf(mtd, (u_char *)&tmp, sizeof(tmp)); - return tmp; -} - -/* If not provided, upper layers apply a fixed delay. */ -static int vf610_nfc_dev_ready(struct mtd_info *mtd) -{ - /* NFC handles R/B internally; always ready. */ - return 1; -} - static inline void vf610_nfc_run(struct vf610_nfc *nfc, u32 col, u32 row, u32 cmd1, u32 cmd2, u32 trfr_sz) { @@ -1075,12 +812,6 @@ static int vf610_nfc_probe(struct platform_device *pdev) goto err_disable_clk; } - chip->dev_ready = vf610_nfc_dev_ready; - chip->cmdfunc = vf610_nfc_command; - chip->read_byte = vf610_nfc_read_byte; - chip->read_word = vf610_nfc_read_word; - chip->read_buf = vf610_nfc_read_buf; - chip->write_buf = vf610_nfc_write_buf; chip->exec_op = vf610_nfc_exec_op; chip->select_chip = vf610_nfc_select_chip; chip->onfi_set_features = nand_onfi_get_set_features_notsupp; -- cgit v1.2.3-58-ga151 From a722932a5af92189af45216e642bf9eb8f5fb883 Mon Sep 17 00:00:00 2001 From: Stefan Agner Date: Fri, 9 Mar 2018 15:50:38 +0100 Subject: mtd: rawnand: vf610_nfc: support ONFI SET/GET_FEATURES commands With the move to ->exec_op() the driver should now support ONFI SET/GET_FEATURES commands. Signed-off-by: Stefan Agner Reviewed-by: Miquel Raynal Signed-off-by: Boris Brezillon --- drivers/mtd/nand/raw/vf610_nfc.c | 2 -- 1 file changed, 2 deletions(-) diff --git a/drivers/mtd/nand/raw/vf610_nfc.c b/drivers/mtd/nand/raw/vf610_nfc.c index bbec33f178d5..7872a9ed3df8 100644 --- a/drivers/mtd/nand/raw/vf610_nfc.c +++ b/drivers/mtd/nand/raw/vf610_nfc.c @@ -814,8 +814,6 @@ static int vf610_nfc_probe(struct platform_device *pdev) chip->exec_op = vf610_nfc_exec_op; chip->select_chip = vf610_nfc_select_chip; - chip->onfi_set_features = nand_onfi_get_set_features_notsupp; - chip->onfi_get_features = nand_onfi_get_set_features_notsupp; chip->options |= NAND_NO_SUBPAGE_WRITE; -- cgit v1.2.3-58-ga151 From 00324da71e660702dd59abaaf9a5fcfe9d4baf93 Mon Sep 17 00:00:00 2001 From: Arnd Bergmann Date: Wed, 14 Mar 2018 17:30:23 +0100 Subject: mtd: rawnand: remove bf5xx_nand driver The blackfin architecture is getting removed, so this driver has become obsolete. Signed-off-by: Arnd Bergmann Signed-off-by: Boris Brezillon --- drivers/mtd/nand/raw/Kconfig | 32 -- drivers/mtd/nand/raw/Makefile | 1 - drivers/mtd/nand/raw/bf5xx_nand.c | 861 -------------------------------------- 3 files changed, 894 deletions(-) delete mode 100644 drivers/mtd/nand/raw/bf5xx_nand.c diff --git a/drivers/mtd/nand/raw/Kconfig b/drivers/mtd/nand/raw/Kconfig index 2c6ecb7ae753..9b1918af0064 100644 --- a/drivers/mtd/nand/raw/Kconfig +++ b/drivers/mtd/nand/raw/Kconfig @@ -116,38 +116,6 @@ config MTD_NAND_AU1550 This enables the driver for the NAND flash controller on the AMD/Alchemy 1550 SOC. -config MTD_NAND_BF5XX - tristate "Blackfin on-chip NAND Flash Controller driver" - depends on BF54x || BF52x - help - This enables the Blackfin on-chip NAND flash controller - - No board specific support is done by this driver, each board - must advertise a platform_device for the driver to attach. - - This driver can also be built as a module. If so, the module - will be called bf5xx-nand. - -config MTD_NAND_BF5XX_HWECC - bool "BF5XX NAND Hardware ECC" - default y - depends on MTD_NAND_BF5XX - help - Enable the use of the BF5XX's internal ECC generator when - using NAND. - -config MTD_NAND_BF5XX_BOOTROM_ECC - bool "Use Blackfin BootROM ECC Layout" - default n - depends on MTD_NAND_BF5XX_HWECC - help - If you wish to modify NAND pages and allow the Blackfin on-chip - BootROM to boot from them, say Y here. This is only necessary - if you are booting U-Boot out of NAND and you wish to update - U-Boot from Linux' userspace. Otherwise, you should say N here. - - If unsure, say N. - config MTD_NAND_S3C2410 tristate "NAND Flash support for Samsung S3C SoCs" depends on ARCH_S3C24XX || ARCH_S3C64XX diff --git a/drivers/mtd/nand/raw/Makefile b/drivers/mtd/nand/raw/Makefile index f16f59a197a3..165b7ef9e9a1 100644 --- a/drivers/mtd/nand/raw/Makefile +++ b/drivers/mtd/nand/raw/Makefile @@ -11,7 +11,6 @@ obj-$(CONFIG_MTD_NAND_DENALI) += denali.o obj-$(CONFIG_MTD_NAND_DENALI_PCI) += denali_pci.o obj-$(CONFIG_MTD_NAND_DENALI_DT) += denali_dt.o obj-$(CONFIG_MTD_NAND_AU1550) += au1550nd.o -obj-$(CONFIG_MTD_NAND_BF5XX) += bf5xx_nand.o obj-$(CONFIG_MTD_NAND_S3C2410) += s3c2410.o obj-$(CONFIG_MTD_NAND_TANGO) += tango_nand.o obj-$(CONFIG_MTD_NAND_DAVINCI) += davinci_nand.o diff --git a/drivers/mtd/nand/raw/bf5xx_nand.c b/drivers/mtd/nand/raw/bf5xx_nand.c deleted file mode 100644 index 9a1d8d104570..000000000000 --- a/drivers/mtd/nand/raw/bf5xx_nand.c +++ /dev/null @@ -1,861 +0,0 @@ -/* - * Copyright 2006-2008 Analog Devices Inc. - * http://blackfin.uclinux.org/ - * Bryan Wu - * - * Blackfin BF5xx on-chip NAND flash controller driver - * - * Derived from s3c2410.c - * Copyright (c) 2007 Ben Dooks - * - * Derived from cafe.c - * Copyright © 2006 Red Hat, Inc. - * Copyright © 2006 David Woodhouse - * - * Changelog: - * 12-Jun-2007 Bryan Wu: Initial version - * 18-Jul-2007 Bryan Wu: - * - ECC_HW and ECC_SW supported - * - DMA supported in ECC_HW - * - YAFFS tested as rootfs in both ECC_HW and ECC_SW - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation; either version 2 of the License, or - * (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License - * along with this program; if not, write to the Free Software - * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA -*/ - -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include -#include - -#include -#include -#include -#include - -#include -#include -#include -#include -#include - -#define DRV_NAME "bf5xx-nand" -#define DRV_VERSION "1.2" -#define DRV_AUTHOR "Bryan Wu " -#define DRV_DESC "BF5xx on-chip NAND FLash Controller Driver" - -/* NFC_STAT Masks */ -#define NBUSY 0x01 /* Not Busy */ -#define WB_FULL 0x02 /* Write Buffer Full */ -#define PG_WR_STAT 0x04 /* Page Write Pending */ -#define PG_RD_STAT 0x08 /* Page Read Pending */ -#define WB_EMPTY 0x10 /* Write Buffer Empty */ - -/* NFC_IRQSTAT Masks */ -#define NBUSYIRQ 0x01 /* Not Busy IRQ */ -#define WB_OVF 0x02 /* Write Buffer Overflow */ -#define WB_EDGE 0x04 /* Write Buffer Edge Detect */ -#define RD_RDY 0x08 /* Read Data Ready */ -#define WR_DONE 0x10 /* Page Write Done */ - -/* NFC_RST Masks */ -#define ECC_RST 0x01 /* ECC (and NFC counters) Reset */ - -/* NFC_PGCTL Masks */ -#define PG_RD_START 0x01 /* Page Read Start */ -#define PG_WR_START 0x02 /* Page Write Start */ - -#ifdef CONFIG_MTD_NAND_BF5XX_HWECC -static int hardware_ecc = 1; -#else -static int hardware_ecc; -#endif - -static const unsigned short bfin_nfc_pin_req[] = - {P_NAND_CE, - P_NAND_RB, - P_NAND_D0, - P_NAND_D1, - P_NAND_D2, - P_NAND_D3, - P_NAND_D4, - P_NAND_D5, - P_NAND_D6, - P_NAND_D7, - P_NAND_WE, - P_NAND_RE, - P_NAND_CLE, - P_NAND_ALE, - 0}; - -#ifdef CONFIG_MTD_NAND_BF5XX_BOOTROM_ECC -static int bootrom_ooblayout_ecc(struct mtd_info *mtd, int section, - struct mtd_oob_region *oobregion) -{ - if (section > 7) - return -ERANGE; - - oobregion->offset = section * 8; - oobregion->length = 3; - - return 0; -} - -static int bootrom_ooblayout_free(struct mtd_info *mtd, int section, - struct mtd_oob_region *oobregion) -{ - if (section > 7) - return -ERANGE; - - oobregion->offset = (section * 8) + 3; - oobregion->length = 5; - - return 0; -} - -static const struct mtd_ooblayout_ops bootrom_ooblayout_ops = { - .ecc = bootrom_ooblayout_ecc, - .free = bootrom_ooblayout_free, -}; -#endif - -/* - * Data structures for bf5xx nand flash controller driver - */ - -/* bf5xx nand info */ -struct bf5xx_nand_info { - /* mtd info */ - struct nand_hw_control controller; - struct nand_chip chip; - - /* platform info */ - struct bf5xx_nand_platform *platform; - - /* device info */ - struct device *device; - - /* DMA stuff */ - struct completion dma_completion; -}; - -/* - * Conversion functions - */ -static struct bf5xx_nand_info *mtd_to_nand_info(struct mtd_info *mtd) -{ - return container_of(mtd_to_nand(mtd), struct bf5xx_nand_info, - chip); -} - -static struct bf5xx_nand_info *to_nand_info(struct platform_device *pdev) -{ - return platform_get_drvdata(pdev); -} - -static struct bf5xx_nand_platform *to_nand_plat(struct platform_device *pdev) -{ - return dev_get_platdata(&pdev->dev); -} - -/* - * struct nand_chip interface function pointers - */ - -/* - * bf5xx_nand_hwcontrol - * - * Issue command and address cycles to the chip - */ -static void bf5xx_nand_hwcontrol(struct mtd_info *mtd, int cmd, - unsigned int ctrl) -{ - if (cmd == NAND_CMD_NONE) - return; - - while (bfin_read_NFC_STAT() & WB_FULL) - cpu_relax(); - - if (ctrl & NAND_CLE) - bfin_write_NFC_CMD(cmd); - else if (ctrl & NAND_ALE) - bfin_write_NFC_ADDR(cmd); - SSYNC(); -} - -/* - * bf5xx_nand_devready() - * - * returns 0 if the nand is busy, 1 if it is ready - */ -static int bf5xx_nand_devready(struct mtd_info *mtd) -{ - unsigned short val = bfin_read_NFC_STAT(); - - if ((val & NBUSY) == NBUSY) - return 1; - else - return 0; -} - -/* - * ECC functions - * These allow the bf5xx to use the controller's ECC - * generator block to ECC the data as it passes through - */ - -/* - * ECC error correction function - */ -static int bf5xx_nand_correct_data_256(struct mtd_info *mtd, u_char *dat, - u_char *read_ecc, u_char *calc_ecc) -{ - struct bf5xx_nand_info *info = mtd_to_nand_info(mtd); - u32 syndrome[5]; - u32 calced, stored; - int i; - unsigned short failing_bit, failing_byte; - u_char data; - - calced = calc_ecc[0] | (calc_ecc[1] << 8) | (calc_ecc[2] << 16); - stored = read_ecc[0] | (read_ecc[1] << 8) | (read_ecc[2] << 16); - - syndrome[0] = (calced ^ stored); - - /* - * syndrome 0: all zero - * No error in data - * No action - */ - if (!syndrome[0] || !calced || !stored) - return 0; - - /* - * sysdrome 0: only one bit is one - * ECC data was incorrect - * No action - */ - if (hweight32(syndrome[0]) == 1) { - dev_err(info->device, "ECC data was incorrect!\n"); - return -EBADMSG; - } - - syndrome[1] = (calced & 0x7FF) ^ (stored & 0x7FF); - syndrome[2] = (calced & 0x7FF) ^ ((calced >> 11) & 0x7FF); - syndrome[3] = (stored & 0x7FF) ^ ((stored >> 11) & 0x7FF); - syndrome[4] = syndrome[2] ^ syndrome[3]; - - for (i = 0; i < 5; i++) - dev_info(info->device, "syndrome[%d] 0x%08x\n", i, syndrome[i]); - - dev_info(info->device, - "calced[0x%08x], stored[0x%08x]\n", - calced, stored); - - /* - * sysdrome 0: exactly 11 bits are one, each parity - * and parity' pair is 1 & 0 or 0 & 1. - * 1-bit correctable error - * Correct the error - */ - if (hweight32(syndrome[0]) == 11 && syndrome[4] == 0x7FF) { - dev_info(info->device, - "1-bit correctable error, correct it.\n"); - dev_info(info->device, - "syndrome[1] 0x%08x\n", syndrome[1]); - - failing_bit = syndrome[1] & 0x7; - failing_byte = syndrome[1] >> 0x3; - data = *(dat + failing_byte); - data = data ^ (0x1 << failing_bit); - *(dat + failing_byte) = data; - - return 1; - } - - /* - * sysdrome 0: random data - * More than 1-bit error, non-correctable error - * Discard data, mark bad block - */ - dev_err(info->device, - "More than 1-bit error, non-correctable error.\n"); - dev_err(info->device, - "Please discard data, mark bad block\n"); - - return -EBADMSG; -} - -static int bf5xx_nand_correct_data(struct mtd_info *mtd, u_char *dat, - u_char *read_ecc, u_char *calc_ecc) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - int ret, bitflips = 0; - - ret = bf5xx_nand_correct_data_256(mtd, dat, read_ecc, calc_ecc); - if (ret < 0) - return ret; - - bitflips = ret; - - /* If ecc size is 512, correct second 256 bytes */ - if (chip->ecc.size == 512) { - dat += 256; - read_ecc += 3; - calc_ecc += 3; - ret = bf5xx_nand_correct_data_256(mtd, dat, read_ecc, calc_ecc); - if (ret < 0) - return ret; - - bitflips += ret; - } - - return bitflips; -} - -static void bf5xx_nand_enable_hwecc(struct mtd_info *mtd, int mode) -{ - return; -} - -static int bf5xx_nand_calculate_ecc(struct mtd_info *mtd, - const u_char *dat, u_char *ecc_code) -{ - struct bf5xx_nand_info *info = mtd_to_nand_info(mtd); - struct nand_chip *chip = mtd_to_nand(mtd); - u16 ecc0, ecc1; - u32 code[2]; - u8 *p; - - /* first 3 bytes ECC code for 256 page size */ - ecc0 = bfin_read_NFC_ECC0(); - ecc1 = bfin_read_NFC_ECC1(); - - code[0] = (ecc0 & 0x7ff) | ((ecc1 & 0x7ff) << 11); - - dev_dbg(info->device, "returning ecc 0x%08x\n", code[0]); - - p = (u8 *) code; - memcpy(ecc_code, p, 3); - - /* second 3 bytes ECC code for 512 ecc size */ - if (chip->ecc.size == 512) { - ecc0 = bfin_read_NFC_ECC2(); - ecc1 = bfin_read_NFC_ECC3(); - code[1] = (ecc0 & 0x7ff) | ((ecc1 & 0x7ff) << 11); - - /* second 3 bytes in ecc_code for second 256 - * bytes of 512 page size - */ - p = (u8 *) (code + 1); - memcpy((ecc_code + 3), p, 3); - dev_dbg(info->device, "returning ecc 0x%08x\n", code[1]); - } - - return 0; -} - -/* - * PIO mode for buffer writing and reading - */ -static void bf5xx_nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) -{ - int i; - unsigned short val; - - /* - * Data reads are requested by first writing to NFC_DATA_RD - * and then reading back from NFC_READ. - */ - for (i = 0; i < len; i++) { - while (bfin_read_NFC_STAT() & WB_FULL) - cpu_relax(); - - /* Contents do not matter */ - bfin_write_NFC_DATA_RD(0x0000); - SSYNC(); - - while ((bfin_read_NFC_IRQSTAT() & RD_RDY) != RD_RDY) - cpu_relax(); - - buf[i] = bfin_read_NFC_READ(); - - val = bfin_read_NFC_IRQSTAT(); - val |= RD_RDY; - bfin_write_NFC_IRQSTAT(val); - SSYNC(); - } -} - -static uint8_t bf5xx_nand_read_byte(struct mtd_info *mtd) -{ - uint8_t val; - - bf5xx_nand_read_buf(mtd, &val, 1); - - return val; -} - -static void bf5xx_nand_write_buf(struct mtd_info *mtd, - const uint8_t *buf, int len) -{ - int i; - - for (i = 0; i < len; i++) { - while (bfin_read_NFC_STAT() & WB_FULL) - cpu_relax(); - - bfin_write_NFC_DATA_WR(buf[i]); - SSYNC(); - } -} - -static void bf5xx_nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len) -{ - int i; - u16 *p = (u16 *) buf; - len >>= 1; - - /* - * Data reads are requested by first writing to NFC_DATA_RD - * and then reading back from NFC_READ. - */ - bfin_write_NFC_DATA_RD(0x5555); - - SSYNC(); - - for (i = 0; i < len; i++) - p[i] = bfin_read_NFC_READ(); -} - -static void bf5xx_nand_write_buf16(struct mtd_info *mtd, - const uint8_t *buf, int len) -{ - int i; - u16 *p = (u16 *) buf; - len >>= 1; - - for (i = 0; i < len; i++) - bfin_write_NFC_DATA_WR(p[i]); - - SSYNC(); -} - -/* - * DMA functions for buffer writing and reading - */ -static irqreturn_t bf5xx_nand_dma_irq(int irq, void *dev_id) -{ - struct bf5xx_nand_info *info = dev_id; - - clear_dma_irqstat(CH_NFC); - disable_dma(CH_NFC); - complete(&info->dma_completion); - - return IRQ_HANDLED; -} - -static void bf5xx_nand_dma_rw(struct mtd_info *mtd, - uint8_t *buf, int is_read) -{ - struct bf5xx_nand_info *info = mtd_to_nand_info(mtd); - struct nand_chip *chip = mtd_to_nand(mtd); - unsigned short val; - - dev_dbg(info->device, " mtd->%p, buf->%p, is_read %d\n", - mtd, buf, is_read); - - /* - * Before starting a dma transfer, be sure to invalidate/flush - * the cache over the address range of your DMA buffer to - * prevent cache coherency problems. Otherwise very subtle bugs - * can be introduced to your driver. - */ - if (is_read) - invalidate_dcache_range((unsigned int)buf, - (unsigned int)(buf + chip->ecc.size)); - else - flush_dcache_range((unsigned int)buf, - (unsigned int)(buf + chip->ecc.size)); - - /* - * This register must be written before each page is - * transferred to generate the correct ECC register - * values. - */ - bfin_write_NFC_RST(ECC_RST); - SSYNC(); - while (bfin_read_NFC_RST() & ECC_RST) - cpu_relax(); - - disable_dma(CH_NFC); - clear_dma_irqstat(CH_NFC); - - /* setup DMA register with Blackfin DMA API */ - set_dma_config(CH_NFC, 0x0); - set_dma_start_addr(CH_NFC, (unsigned long) buf); - - /* The DMAs have different size on BF52x and BF54x */ -#ifdef CONFIG_BF52x - set_dma_x_count(CH_NFC, (chip->ecc.size >> 1)); - set_dma_x_modify(CH_NFC, 2); - val = DI_EN | WDSIZE_16; -#endif - -#ifdef CONFIG_BF54x - set_dma_x_count(CH_NFC, (chip->ecc.size >> 2)); - set_dma_x_modify(CH_NFC, 4); - val = DI_EN | WDSIZE_32; -#endif - /* setup write or read operation */ - if (is_read) - val |= WNR; - set_dma_config(CH_NFC, val); - enable_dma(CH_NFC); - - /* Start PAGE read/write operation */ - if (is_read) - bfin_write_NFC_PGCTL(PG_RD_START); - else - bfin_write_NFC_PGCTL(PG_WR_START); - wait_for_completion(&info->dma_completion); -} - -static void bf5xx_nand_dma_read_buf(struct mtd_info *mtd, - uint8_t *buf, int len) -{ - struct bf5xx_nand_info *info = mtd_to_nand_info(mtd); - struct nand_chip *chip = mtd_to_nand(mtd); - - dev_dbg(info->device, "mtd->%p, buf->%p, int %d\n", mtd, buf, len); - - if (len == chip->ecc.size) - bf5xx_nand_dma_rw(mtd, buf, 1); - else - bf5xx_nand_read_buf(mtd, buf, len); -} - -static void bf5xx_nand_dma_write_buf(struct mtd_info *mtd, - const uint8_t *buf, int len) -{ - struct bf5xx_nand_info *info = mtd_to_nand_info(mtd); - struct nand_chip *chip = mtd_to_nand(mtd); - - dev_dbg(info->device, "mtd->%p, buf->%p, len %d\n", mtd, buf, len); - - if (len == chip->ecc.size) - bf5xx_nand_dma_rw(mtd, (uint8_t *)buf, 0); - else - bf5xx_nand_write_buf(mtd, buf, len); -} - -static int bf5xx_nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip, - uint8_t *buf, int oob_required, int page) -{ - nand_read_page_op(chip, page, 0, NULL, 0); - - bf5xx_nand_read_buf(mtd, buf, mtd->writesize); - bf5xx_nand_read_buf(mtd, chip->oob_poi, mtd->oobsize); - - return 0; -} - -static int bf5xx_nand_write_page_raw(struct mtd_info *mtd, - struct nand_chip *chip, const uint8_t *buf, int oob_required, - int page) -{ - nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize); - bf5xx_nand_write_buf(mtd, chip->oob_poi, mtd->oobsize); - - return nand_prog_page_end_op(chip); -} - -/* - * System initialization functions - */ -static int bf5xx_nand_dma_init(struct bf5xx_nand_info *info) -{ - int ret; - - /* Do not use dma */ - if (!hardware_ecc) - return 0; - - init_completion(&info->dma_completion); - - /* Request NFC DMA channel */ - ret = request_dma(CH_NFC, "BF5XX NFC driver"); - if (ret < 0) { - dev_err(info->device, " unable to get DMA channel\n"); - return ret; - } - -#ifdef CONFIG_BF54x - /* Setup DMAC1 channel mux for NFC which shared with SDH */ - bfin_write_DMAC1_PERIMUX(bfin_read_DMAC1_PERIMUX() & ~1); - SSYNC(); -#endif - - set_dma_callback(CH_NFC, bf5xx_nand_dma_irq, info); - - /* Turn off the DMA channel first */ - disable_dma(CH_NFC); - return 0; -} - -static void bf5xx_nand_dma_remove(struct bf5xx_nand_info *info) -{ - /* Free NFC DMA channel */ - if (hardware_ecc) - free_dma(CH_NFC); -} - -/* - * BF5XX NFC hardware initialization - * - pin mux setup - * - clear interrupt status - */ -static int bf5xx_nand_hw_init(struct bf5xx_nand_info *info) -{ - int err = 0; - unsigned short val; - struct bf5xx_nand_platform *plat = info->platform; - - /* setup NFC_CTL register */ - dev_info(info->device, - "data_width=%d, wr_dly=%d, rd_dly=%d\n", - (plat->data_width ? 16 : 8), - plat->wr_dly, plat->rd_dly); - - val = (1 << NFC_PG_SIZE_OFFSET) | - (plat->data_width << NFC_NWIDTH_OFFSET) | - (plat->rd_dly << NFC_RDDLY_OFFSET) | - (plat->wr_dly << NFC_WRDLY_OFFSET); - dev_dbg(info->device, "NFC_CTL is 0x%04x\n", val); - - bfin_write_NFC_CTL(val); - SSYNC(); - - /* clear interrupt status */ - bfin_write_NFC_IRQMASK(0x0); - SSYNC(); - val = bfin_read_NFC_IRQSTAT(); - bfin_write_NFC_IRQSTAT(val); - SSYNC(); - - /* DMA initialization */ - if (bf5xx_nand_dma_init(info)) - err = -ENXIO; - - return err; -} - -/* - * Device management interface - */ -static int bf5xx_nand_add_partition(struct bf5xx_nand_info *info) -{ - struct mtd_info *mtd = nand_to_mtd(&info->chip); - struct mtd_partition *parts = info->platform->partitions; - int nr = info->platform->nr_partitions; - - return mtd_device_register(mtd, parts, nr); -} - -static int bf5xx_nand_remove(struct platform_device *pdev) -{ - struct bf5xx_nand_info *info = to_nand_info(pdev); - - /* first thing we need to do is release all our mtds - * and their partitions, then go through freeing the - * resources used - */ - nand_release(nand_to_mtd(&info->chip)); - - peripheral_free_list(bfin_nfc_pin_req); - bf5xx_nand_dma_remove(info); - - return 0; -} - -static int bf5xx_nand_scan(struct mtd_info *mtd) -{ - struct nand_chip *chip = mtd_to_nand(mtd); - int ret; - - ret = nand_scan_ident(mtd, 1, NULL); - if (ret) - return ret; - - if (hardware_ecc) { - /* - * for nand with page size > 512B, think it as several sections with 512B - */ - if (likely(mtd->writesize >= 512)) { - chip->ecc.size = 512; - chip->ecc.bytes = 6; - chip->ecc.strength = 2; - } else { - chip->ecc.size = 256; - chip->ecc.bytes = 3; - chip->ecc.strength = 1; - bfin_write_NFC_CTL(bfin_read_NFC_CTL() & ~(1 << NFC_PG_SIZE_OFFSET)); - SSYNC(); - } - } - - return nand_scan_tail(mtd); -} - -/* - * bf5xx_nand_probe - * - * called by device layer when it finds a device matching - * one our driver can handled. This code checks to see if - * it can allocate all necessary resources then calls the - * nand layer to look for devices - */ -static int bf5xx_nand_probe(struct platform_device *pdev) -{ - struct bf5xx_nand_platform *plat = to_nand_plat(pdev); - struct bf5xx_nand_info *info = NULL; - struct nand_chip *chip = NULL; - struct mtd_info *mtd = NULL; - int err = 0; - - dev_dbg(&pdev->dev, "(%p)\n", pdev); - - if (!plat) { - dev_err(&pdev->dev, "no platform specific information\n"); - return -EINVAL; - } - - if (peripheral_request_list(bfin_nfc_pin_req, DRV_NAME)) { - dev_err(&pdev->dev, "requesting Peripherals failed\n"); - return -EFAULT; - } - - info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL); - if (info == NULL) { - err = -ENOMEM; - goto out_err; - } - - platform_set_drvdata(pdev, info); - - nand_hw_control_init(&info->controller); - - info->device = &pdev->dev; - info->platform = plat; - - /* initialise chip data struct */ - chip = &info->chip; - mtd = nand_to_mtd(&info->chip); - - if (plat->data_width) - chip->options |= NAND_BUSWIDTH_16; - - chip->options |= NAND_CACHEPRG | NAND_SKIP_BBTSCAN; - - chip->read_buf = (plat->data_width) ? - bf5xx_nand_read_buf16 : bf5xx_nand_read_buf; - chip->write_buf = (plat->data_width) ? - bf5xx_nand_write_buf16 : bf5xx_nand_write_buf; - - chip->read_byte = bf5xx_nand_read_byte; - - chip->cmd_ctrl = bf5xx_nand_hwcontrol; - chip->dev_ready = bf5xx_nand_devready; - - nand_set_controller_data(chip, mtd); - chip->controller = &info->controller; - - chip->IO_ADDR_R = (void __iomem *) NFC_READ; - chip->IO_ADDR_W = (void __iomem *) NFC_DATA_WR; - - chip->chip_delay = 0; - - /* initialise mtd info data struct */ - mtd->dev.parent = &pdev->dev; - - /* initialise the hardware */ - err = bf5xx_nand_hw_init(info); - if (err) - goto out_err; - - /* setup hardware ECC data struct */ - if (hardware_ecc) { -#ifdef CONFIG_MTD_NAND_BF5XX_BOOTROM_ECC - mtd_set_ooblayout(mtd, &bootrom_ooblayout_ops); -#endif - chip->read_buf = bf5xx_nand_dma_read_buf; - chip->write_buf = bf5xx_nand_dma_write_buf; - chip->ecc.calculate = bf5xx_nand_calculate_ecc; - chip->ecc.correct = bf5xx_nand_correct_data; - chip->ecc.mode = NAND_ECC_HW; - chip->ecc.hwctl = bf5xx_nand_enable_hwecc; - chip->ecc.read_page_raw = bf5xx_nand_read_page_raw; - chip->ecc.write_page_raw = bf5xx_nand_write_page_raw; - } else { - chip->ecc.mode = NAND_ECC_SOFT; - chip->ecc.algo = NAND_ECC_HAMMING; - } - - /* scan hardware nand chip and setup mtd info data struct */ - if (bf5xx_nand_scan(mtd)) { - err = -ENXIO; - goto out_err_nand_scan; - } - -#ifdef CONFIG_MTD_NAND_BF5XX_BOOTROM_ECC - chip->badblockpos = 63; -#endif - - /* add NAND partition */ - bf5xx_nand_add_partition(info); - - dev_dbg(&pdev->dev, "initialised ok\n"); - return 0; - -out_err_nand_scan: - bf5xx_nand_dma_remove(info); -out_err: - peripheral_free_list(bfin_nfc_pin_req); - - return err; -} - -/* driver device registration */ -static struct platform_driver bf5xx_nand_driver = { - .probe = bf5xx_nand_probe, - .remove = bf5xx_nand_remove, - .driver = { - .name = DRV_NAME, - }, -}; - -module_platform_driver(bf5xx_nand_driver); - -MODULE_LICENSE("GPL"); -MODULE_AUTHOR(DRV_AUTHOR); -MODULE_DESCRIPTION(DRV_DESC); -MODULE_ALIAS("platform:" DRV_NAME); -- cgit v1.2.3-58-ga151 From daf9a874c9cf0dd379195362f3bd8ef8280d82cb Mon Sep 17 00:00:00 2001 From: Miquel Raynal Date: Mon, 19 Mar 2018 10:21:58 +0100 Subject: mtd: rawnand: makes the Kconfig entry clear when it comes to raw NANDs Files have been moved in the NAND subsystem to reflect the different flavors of NAND devices. Raw/Parallel NAND devices have been moved to a "raw" subdirectory to make the difference with OneNAND and SPI NAND for instance. So adjust the Kconfig entry to clarify things. Signed-off-by: Miquel Raynal Signed-off-by: Boris Brezillon --- drivers/mtd/nand/raw/Kconfig | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/drivers/mtd/nand/raw/Kconfig b/drivers/mtd/nand/raw/Kconfig index 9b1918af0064..46b29d277804 100644 --- a/drivers/mtd/nand/raw/Kconfig +++ b/drivers/mtd/nand/raw/Kconfig @@ -11,12 +11,12 @@ config MTD_NAND_ECC_SMC menuconfig MTD_NAND - tristate "NAND Device Support" + tristate "Raw/Parallel NAND Device Support" depends on MTD select MTD_NAND_ECC help - This enables support for accessing all type of NAND flash - devices. For further information see + This enables support for accessing all type of raw/parallel + NAND flash devices. For further information see . if MTD_NAND -- cgit v1.2.3-58-ga151 From fc2f30a4b411b9e8e19c158840598a19b768bf11 Mon Sep 17 00:00:00 2001 From: Miquel Raynal Date: Mon, 19 Mar 2018 14:47:18 +0100 Subject: mtd: rawnand: rename default ->onfi_get/set_features() implementations Prepare future work on the ->onfi_get/set_features() hooks by renaming the core's implementation as 'default' ones. Signed-off-by: Miquel Raynal Signed-off-by: Boris Brezillon --- drivers/mtd/nand/raw/nand_base.c | 18 ++++++++++-------- 1 file changed, 10 insertions(+), 8 deletions(-) diff --git a/drivers/mtd/nand/raw/nand_base.c b/drivers/mtd/nand/raw/nand_base.c index e70ca16a5118..d1d5e2281860 100644 --- a/drivers/mtd/nand/raw/nand_base.c +++ b/drivers/mtd/nand/raw/nand_base.c @@ -4769,14 +4769,15 @@ static int nand_max_bad_blocks(struct mtd_info *mtd, loff_t ofs, size_t len) } /** - * nand_onfi_set_features- [REPLACEABLE] set features for ONFI nand + * nand_default_onfi_set_features- [REPLACEABLE] set features for ONFI nand * @mtd: MTD device structure * @chip: nand chip info structure * @addr: feature address. * @subfeature_param: the subfeature parameters, a four bytes array. */ -static int nand_onfi_set_features(struct mtd_info *mtd, struct nand_chip *chip, - int addr, uint8_t *subfeature_param) +static int nand_default_onfi_set_features(struct mtd_info *mtd, + struct nand_chip *chip, int addr, + uint8_t *subfeature_param) { if (!chip->onfi_version || !(le16_to_cpu(chip->onfi_params.opt_cmd) @@ -4787,14 +4788,15 @@ static int nand_onfi_set_features(struct mtd_info *mtd, struct nand_chip *chip, } /** - * nand_onfi_get_features- [REPLACEABLE] get features for ONFI nand + * nand_default_onfi_get_features- [REPLACEABLE] get features for ONFI nand * @mtd: MTD device structure * @chip: nand chip info structure * @addr: feature address. * @subfeature_param: the subfeature parameters, a four bytes array. */ -static int nand_onfi_get_features(struct mtd_info *mtd, struct nand_chip *chip, - int addr, uint8_t *subfeature_param) +static int nand_default_onfi_get_features(struct mtd_info *mtd, + struct nand_chip *chip, int addr, + uint8_t *subfeature_param) { if (!chip->onfi_version || !(le16_to_cpu(chip->onfi_params.opt_cmd) @@ -4879,9 +4881,9 @@ static void nand_set_defaults(struct nand_chip *chip) /* set for ONFI nand */ if (!chip->onfi_set_features) - chip->onfi_set_features = nand_onfi_set_features; + chip->onfi_set_features = nand_default_onfi_set_features; if (!chip->onfi_get_features) - chip->onfi_get_features = nand_onfi_get_features; + chip->onfi_get_features = nand_default_onfi_get_features; /* If called twice, pointers that depend on busw may need to be reset */ if (!chip->read_byte || chip->read_byte == nand_read_byte) -- cgit v1.2.3-58-ga151 From b958758e686aebe84672acc8871aca87d04f13a3 Mon Sep 17 00:00:00 2001 From: Miquel Raynal Date: Mon, 19 Mar 2018 14:47:19 +0100 Subject: mtd: rawnand: rename SET/GET FEATURES related functions SET/GET FEATURES are flagged ONFI-compliant because of their name. This is not accurate as non-ONFI NAND chips support it and use it. Rename the hooks and helpers to remove the "onfi" prefix. Signed-off-by: Miquel Raynal Signed-off-by: Boris Brezillon --- drivers/mtd/nand/raw/bcm47xxnflash/ops_bcm4706.c | 4 +-- drivers/mtd/nand/raw/cafe_nand.c | 4 +-- drivers/mtd/nand/raw/docg4.c | 4 +-- drivers/mtd/nand/raw/fsl_elbc_nand.c | 4 +-- drivers/mtd/nand/raw/fsl_ifc_nand.c | 4 +-- drivers/mtd/nand/raw/gpmi-nand/gpmi-lib.c | 8 ++--- drivers/mtd/nand/raw/hisi504_nand.c | 4 +-- drivers/mtd/nand/raw/mpc5121_nfc.c | 4 +-- drivers/mtd/nand/raw/mxc_nand.c | 14 ++++---- drivers/mtd/nand/raw/nand_base.c | 42 +++++++++++------------- drivers/mtd/nand/raw/nand_micron.c | 16 ++++----- drivers/mtd/nand/raw/qcom_nandc.c | 4 +-- drivers/mtd/nand/raw/sh_flctl.c | 4 +-- drivers/staging/mt29f_spinand/mt29f_spinand.c | 4 +-- include/linux/mtd/rawnand.h | 17 +++++----- 15 files changed, 66 insertions(+), 71 deletions(-) diff --git a/drivers/mtd/nand/raw/bcm47xxnflash/ops_bcm4706.c b/drivers/mtd/nand/raw/bcm47xxnflash/ops_bcm4706.c index 54bac5b73f0a..60874de430eb 100644 --- a/drivers/mtd/nand/raw/bcm47xxnflash/ops_bcm4706.c +++ b/drivers/mtd/nand/raw/bcm47xxnflash/ops_bcm4706.c @@ -392,8 +392,8 @@ int bcm47xxnflash_ops_bcm4706_init(struct bcm47xxnflash *b47n) b47n->nand_chip.read_byte = bcm47xxnflash_ops_bcm4706_read_byte; b47n->nand_chip.read_buf = bcm47xxnflash_ops_bcm4706_read_buf; b47n->nand_chip.write_buf = bcm47xxnflash_ops_bcm4706_write_buf; - b47n->nand_chip.onfi_set_features = nand_onfi_get_set_features_notsupp; - b47n->nand_chip.onfi_get_features = nand_onfi_get_set_features_notsupp; + b47n->nand_chip.set_features = nand_get_set_features_notsupp; + b47n->nand_chip.get_features = nand_get_set_features_notsupp; nand_chip->chip_delay = 50; b47n->nand_chip.bbt_options = NAND_BBT_USE_FLASH; diff --git a/drivers/mtd/nand/raw/cafe_nand.c b/drivers/mtd/nand/raw/cafe_nand.c index 37cfae2761d4..3c1b6a3786b2 100644 --- a/drivers/mtd/nand/raw/cafe_nand.c +++ b/drivers/mtd/nand/raw/cafe_nand.c @@ -645,8 +645,8 @@ static int cafe_nand_probe(struct pci_dev *pdev, cafe->nand.read_buf = cafe_read_buf; cafe->nand.write_buf = cafe_write_buf; cafe->nand.select_chip = cafe_select_chip; - cafe->nand.onfi_set_features = nand_onfi_get_set_features_notsupp; - cafe->nand.onfi_get_features = nand_onfi_get_set_features_notsupp; + cafe->nand.set_features = nand_get_set_features_notsupp; + cafe->nand.get_features = nand_get_set_features_notsupp; cafe->nand.chip_delay = 0; diff --git a/drivers/mtd/nand/raw/docg4.c b/drivers/mtd/nand/raw/docg4.c index 72f1327c4430..1314aa99b9ab 100644 --- a/drivers/mtd/nand/raw/docg4.c +++ b/drivers/mtd/nand/raw/docg4.c @@ -1269,8 +1269,8 @@ static void __init init_mtd_structs(struct mtd_info *mtd) nand->read_buf = docg4_read_buf; nand->write_buf = docg4_write_buf16; nand->erase = docg4_erase_block; - nand->onfi_set_features = nand_onfi_get_set_features_notsupp; - nand->onfi_get_features = nand_onfi_get_set_features_notsupp; + nand->set_features = nand_get_set_features_notsupp; + nand->get_features = nand_get_set_features_notsupp; nand->ecc.read_page = docg4_read_page; nand->ecc.write_page = docg4_write_page; nand->ecc.read_page_raw = docg4_read_page_raw; diff --git a/drivers/mtd/nand/raw/fsl_elbc_nand.c b/drivers/mtd/nand/raw/fsl_elbc_nand.c index 84f7d6a94be7..d28df991c73c 100644 --- a/drivers/mtd/nand/raw/fsl_elbc_nand.c +++ b/drivers/mtd/nand/raw/fsl_elbc_nand.c @@ -775,8 +775,8 @@ static int fsl_elbc_chip_init(struct fsl_elbc_mtd *priv) chip->select_chip = fsl_elbc_select_chip; chip->cmdfunc = fsl_elbc_cmdfunc; chip->waitfunc = fsl_elbc_wait; - chip->onfi_set_features = nand_onfi_get_set_features_notsupp; - chip->onfi_get_features = nand_onfi_get_set_features_notsupp; + chip->set_features = nand_get_set_features_notsupp; + chip->get_features = nand_get_set_features_notsupp; chip->bbt_td = &bbt_main_descr; chip->bbt_md = &bbt_mirror_descr; diff --git a/drivers/mtd/nand/raw/fsl_ifc_nand.c b/drivers/mtd/nand/raw/fsl_ifc_nand.c index 4f0bbc8a803d..7ca678f05ae3 100644 --- a/drivers/mtd/nand/raw/fsl_ifc_nand.c +++ b/drivers/mtd/nand/raw/fsl_ifc_nand.c @@ -838,8 +838,8 @@ static int fsl_ifc_chip_init(struct fsl_ifc_mtd *priv) chip->select_chip = fsl_ifc_select_chip; chip->cmdfunc = fsl_ifc_cmdfunc; chip->waitfunc = fsl_ifc_wait; - chip->onfi_set_features = nand_onfi_get_set_features_notsupp; - chip->onfi_get_features = nand_onfi_get_set_features_notsupp; + chip->set_features = nand_get_set_features_notsupp; + chip->get_features = nand_get_set_features_notsupp; chip->bbt_td = &bbt_main_descr; chip->bbt_md = &bbt_mirror_descr; diff --git a/drivers/mtd/nand/raw/gpmi-nand/gpmi-lib.c b/drivers/mtd/nand/raw/gpmi-nand/gpmi-lib.c index 97787246af41..f78d907ca61e 100644 --- a/drivers/mtd/nand/raw/gpmi-nand/gpmi-lib.c +++ b/drivers/mtd/nand/raw/gpmi-nand/gpmi-lib.c @@ -934,15 +934,15 @@ static int enable_edo_mode(struct gpmi_nand_data *this, int mode) /* [1] send SET FEATURE command to NAND */ feature[0] = mode; - ret = nand->onfi_set_features(mtd, nand, - ONFI_FEATURE_ADDR_TIMING_MODE, feature); + ret = nand->set_features(mtd, nand, + ONFI_FEATURE_ADDR_TIMING_MODE, feature); if (ret) goto err_out; /* [2] send GET FEATURE command to double-check the timing mode */ memset(feature, 0, ONFI_SUBFEATURE_PARAM_LEN); - ret = nand->onfi_get_features(mtd, nand, - ONFI_FEATURE_ADDR_TIMING_MODE, feature); + ret = nand->get_features(mtd, nand, + ONFI_FEATURE_ADDR_TIMING_MODE, feature); if (ret || feature[0] != mode) goto err_out; diff --git a/drivers/mtd/nand/raw/hisi504_nand.c b/drivers/mtd/nand/raw/hisi504_nand.c index cb862793ab6d..27558a67fa41 100644 --- a/drivers/mtd/nand/raw/hisi504_nand.c +++ b/drivers/mtd/nand/raw/hisi504_nand.c @@ -762,8 +762,8 @@ static int hisi_nfc_probe(struct platform_device *pdev) chip->write_buf = hisi_nfc_write_buf; chip->read_buf = hisi_nfc_read_buf; chip->chip_delay = HINFC504_CHIP_DELAY; - chip->onfi_set_features = nand_onfi_get_set_features_notsupp; - chip->onfi_get_features = nand_onfi_get_set_features_notsupp; + chip->set_features = nand_get_set_features_notsupp; + chip->get_features = nand_get_set_features_notsupp; hisi_nfc_host_init(host); diff --git a/drivers/mtd/nand/raw/mpc5121_nfc.c b/drivers/mtd/nand/raw/mpc5121_nfc.c index 913b9d1225c6..6d1740d54e0d 100644 --- a/drivers/mtd/nand/raw/mpc5121_nfc.c +++ b/drivers/mtd/nand/raw/mpc5121_nfc.c @@ -707,8 +707,8 @@ static int mpc5121_nfc_probe(struct platform_device *op) chip->read_buf = mpc5121_nfc_read_buf; chip->write_buf = mpc5121_nfc_write_buf; chip->select_chip = mpc5121_nfc_select_chip; - chip->onfi_set_features = nand_onfi_get_set_features_notsupp; - chip->onfi_get_features = nand_onfi_get_set_features_notsupp; + chip->set_features = nand_get_set_features_notsupp; + chip->get_features = nand_get_set_features_notsupp; chip->bbt_options = NAND_BBT_USE_FLASH; chip->ecc.mode = NAND_ECC_SOFT; chip->ecc.algo = NAND_ECC_HAMMING; diff --git a/drivers/mtd/nand/raw/mxc_nand.c b/drivers/mtd/nand/raw/mxc_nand.c index 87b5ee66e501..61501654e708 100644 --- a/drivers/mtd/nand/raw/mxc_nand.c +++ b/drivers/mtd/nand/raw/mxc_nand.c @@ -1421,9 +1421,8 @@ static void mxc_nand_command(struct mtd_info *mtd, unsigned command, } } -static int mxc_nand_onfi_set_features(struct mtd_info *mtd, - struct nand_chip *chip, int addr, - u8 *subfeature_param) +static int mxc_nand_set_features(struct mtd_info *mtd, struct nand_chip *chip, + int addr, u8 *subfeature_param) { struct nand_chip *nand_chip = mtd_to_nand(mtd); struct mxc_nand_host *host = nand_get_controller_data(nand_chip); @@ -1447,9 +1446,8 @@ static int mxc_nand_onfi_set_features(struct mtd_info *mtd, return 0; } -static int mxc_nand_onfi_get_features(struct mtd_info *mtd, - struct nand_chip *chip, int addr, - u8 *subfeature_param) +static int mxc_nand_get_features(struct mtd_info *mtd, struct nand_chip *chip, + int addr, u8 *subfeature_param) { struct nand_chip *nand_chip = mtd_to_nand(mtd); struct mxc_nand_host *host = nand_get_controller_data(nand_chip); @@ -1752,8 +1750,8 @@ static int mxcnd_probe(struct platform_device *pdev) this->read_word = mxc_nand_read_word; this->write_buf = mxc_nand_write_buf; this->read_buf = mxc_nand_read_buf; - this->onfi_set_features = mxc_nand_onfi_set_features; - this->onfi_get_features = mxc_nand_onfi_get_features; + this->set_features = mxc_nand_set_features; + this->get_features = mxc_nand_get_features; host->clk = devm_clk_get(&pdev->dev, NULL); if (IS_ERR(host->clk)) diff --git a/drivers/mtd/nand/raw/nand_base.c b/drivers/mtd/nand/raw/nand_base.c index d1d5e2281860..802cd9ed44a1 100644 --- a/drivers/mtd/nand/raw/nand_base.c +++ b/drivers/mtd/nand/raw/nand_base.c @@ -349,7 +349,7 @@ static void nand_write_byte16(struct mtd_info *mtd, uint8_t byte) * 8-bits of the data bus. During address transfers, the host shall * set the upper 8-bits of the data bus to 00h. * - * One user of the write_byte callback is nand_onfi_set_features. The + * One user of the write_byte callback is nand_set_features. The * four parameters are specified to be written to I/O[7:0], but this is * neither an address nor a command transfer. Let's assume a 0 on the * upper I/O lines is OK. @@ -1231,9 +1231,9 @@ static int nand_setup_data_interface(struct nand_chip *chip, int chipnr) chip->onfi_timing_mode_default, }; - ret = chip->onfi_set_features(mtd, chip, - ONFI_FEATURE_ADDR_TIMING_MODE, - tmode_param); + ret = chip->set_features(mtd, chip, + ONFI_FEATURE_ADDR_TIMING_MODE, + tmode_param); if (ret) goto err; } @@ -4769,15 +4769,15 @@ static int nand_max_bad_blocks(struct mtd_info *mtd, loff_t ofs, size_t len) } /** - * nand_default_onfi_set_features- [REPLACEABLE] set features for ONFI nand + * nand_default_set_features- [REPLACEABLE] set NAND chip features * @mtd: MTD device structure * @chip: nand chip info structure * @addr: feature address. * @subfeature_param: the subfeature parameters, a four bytes array. */ -static int nand_default_onfi_set_features(struct mtd_info *mtd, - struct nand_chip *chip, int addr, - uint8_t *subfeature_param) +static int nand_default_set_features(struct mtd_info *mtd, + struct nand_chip *chip, int addr, + uint8_t *subfeature_param) { if (!chip->onfi_version || !(le16_to_cpu(chip->onfi_params.opt_cmd) @@ -4788,15 +4788,15 @@ static int nand_default_onfi_set_features(struct mtd_info *mtd, } /** - * nand_default_onfi_get_features- [REPLACEABLE] get features for ONFI nand + * nand_default_get_features- [REPLACEABLE] get NAND chip features * @mtd: MTD device structure * @chip: nand chip info structure * @addr: feature address. * @subfeature_param: the subfeature parameters, a four bytes array. */ -static int nand_default_onfi_get_features(struct mtd_info *mtd, - struct nand_chip *chip, int addr, - uint8_t *subfeature_param) +static int nand_default_get_features(struct mtd_info *mtd, + struct nand_chip *chip, int addr, + uint8_t *subfeature_param) { if (!chip->onfi_version || !(le16_to_cpu(chip->onfi_params.opt_cmd) @@ -4807,8 +4807,7 @@ static int nand_default_onfi_get_features(struct mtd_info *mtd, } /** - * nand_onfi_get_set_features_notsupp - set/get features stub returning - * -ENOTSUPP + * nand_get_set_features_notsupp - set/get features stub returning -ENOTSUPP * @mtd: MTD device structure * @chip: nand chip info structure * @addr: feature address. @@ -4817,13 +4816,12 @@ static int nand_default_onfi_get_features(struct mtd_info *mtd, * Should be used by NAND controller drivers that do not support the SET/GET * FEATURES operations. */ -int nand_onfi_get_set_features_notsupp(struct mtd_info *mtd, - struct nand_chip *chip, int addr, - u8 *subfeature_param) +int nand_get_set_features_notsupp(struct mtd_info *mtd, struct nand_chip *chip, + int addr, u8 *subfeature_param) { return -ENOTSUPP; } -EXPORT_SYMBOL(nand_onfi_get_set_features_notsupp); +EXPORT_SYMBOL(nand_get_set_features_notsupp); /** * nand_suspend - [MTD Interface] Suspend the NAND flash @@ -4880,10 +4878,10 @@ static void nand_set_defaults(struct nand_chip *chip) chip->select_chip = nand_select_chip; /* set for ONFI nand */ - if (!chip->onfi_set_features) - chip->onfi_set_features = nand_default_onfi_set_features; - if (!chip->onfi_get_features) - chip->onfi_get_features = nand_default_onfi_get_features; + if (!chip->set_features) + chip->set_features = nand_default_set_features; + if (!chip->get_features) + chip->get_features = nand_default_get_features; /* If called twice, pointers that depend on busw may need to be reset */ if (!chip->read_byte || chip->read_byte == nand_read_byte) diff --git a/drivers/mtd/nand/raw/nand_micron.c b/drivers/mtd/nand/raw/nand_micron.c index 02e109ae73f1..ab3e3a1a5212 100644 --- a/drivers/mtd/nand/raw/nand_micron.c +++ b/drivers/mtd/nand/raw/nand_micron.c @@ -48,8 +48,8 @@ static int micron_nand_setup_read_retry(struct mtd_info *mtd, int retry_mode) struct nand_chip *chip = mtd_to_nand(mtd); u8 feature[ONFI_SUBFEATURE_PARAM_LEN] = {retry_mode}; - return chip->onfi_set_features(mtd, chip, ONFI_FEATURE_ADDR_READ_RETRY, - feature); + return chip->set_features(mtd, chip, ONFI_FEATURE_ADDR_READ_RETRY, + feature); } /* @@ -108,8 +108,8 @@ static int micron_nand_on_die_ecc_setup(struct nand_chip *chip, bool enable) if (enable) feature[0] |= ONFI_FEATURE_ON_DIE_ECC_EN; - return chip->onfi_set_features(nand_to_mtd(chip), chip, - ONFI_FEATURE_ON_DIE_ECC, feature); + return chip->set_features(nand_to_mtd(chip), chip, + ONFI_FEATURE_ON_DIE_ECC, feature); } static int @@ -219,8 +219,8 @@ static int micron_supports_on_die_ecc(struct nand_chip *chip) if (ret) return MICRON_ON_DIE_UNSUPPORTED; - chip->onfi_get_features(nand_to_mtd(chip), chip, - ONFI_FEATURE_ON_DIE_ECC, feature); + chip->get_features(nand_to_mtd(chip), chip, + ONFI_FEATURE_ON_DIE_ECC, feature); if ((feature[0] & ONFI_FEATURE_ON_DIE_ECC_EN) == 0) return MICRON_ON_DIE_UNSUPPORTED; @@ -228,8 +228,8 @@ static int micron_supports_on_die_ecc(struct nand_chip *chip) if (ret) return MICRON_ON_DIE_UNSUPPORTED; - chip->onfi_get_features(nand_to_mtd(chip), chip, - ONFI_FEATURE_ON_DIE_ECC, feature); + chip->get_features(nand_to_mtd(chip), chip, + ONFI_FEATURE_ON_DIE_ECC, feature); if (feature[0] & ONFI_FEATURE_ON_DIE_ECC_EN) return MICRON_ON_DIE_MANDATORY; diff --git a/drivers/mtd/nand/raw/qcom_nandc.c b/drivers/mtd/nand/raw/qcom_nandc.c index 563b759ffca6..b554fb6e609c 100644 --- a/drivers/mtd/nand/raw/qcom_nandc.c +++ b/drivers/mtd/nand/raw/qcom_nandc.c @@ -2651,8 +2651,8 @@ static int qcom_nand_host_init(struct qcom_nand_controller *nandc, chip->read_byte = qcom_nandc_read_byte; chip->read_buf = qcom_nandc_read_buf; chip->write_buf = qcom_nandc_write_buf; - chip->onfi_set_features = nand_onfi_get_set_features_notsupp; - chip->onfi_get_features = nand_onfi_get_set_features_notsupp; + chip->set_features = nand_get_set_features_notsupp; + chip->get_features = nand_get_set_features_notsupp; /* * the bad block marker is readable only when we read the last codeword diff --git a/drivers/mtd/nand/raw/sh_flctl.c b/drivers/mtd/nand/raw/sh_flctl.c index a60d43adff3c..7a740d583866 100644 --- a/drivers/mtd/nand/raw/sh_flctl.c +++ b/drivers/mtd/nand/raw/sh_flctl.c @@ -1180,8 +1180,8 @@ static int flctl_probe(struct platform_device *pdev) nand->read_buf = flctl_read_buf; nand->select_chip = flctl_select_chip; nand->cmdfunc = flctl_cmdfunc; - nand->onfi_set_features = nand_onfi_get_set_features_notsupp; - nand->onfi_get_features = nand_onfi_get_set_features_notsupp; + nand->set_features = nand_get_set_features_notsupp; + nand->get_features = nand_get_set_features_notsupp; if (pdata->flcmncr_val & SEL_16BIT) nand->options |= NAND_BUSWIDTH_16; diff --git a/drivers/staging/mt29f_spinand/mt29f_spinand.c b/drivers/staging/mt29f_spinand/mt29f_spinand.c index 264ad362d858..6819dd2c1117 100644 --- a/drivers/staging/mt29f_spinand/mt29f_spinand.c +++ b/drivers/staging/mt29f_spinand/mt29f_spinand.c @@ -918,8 +918,8 @@ static int spinand_probe(struct spi_device *spi_nand) chip->waitfunc = spinand_wait; chip->options |= NAND_CACHEPRG; chip->select_chip = spinand_select_chip; - chip->onfi_set_features = nand_onfi_get_set_features_notsupp; - chip->onfi_get_features = nand_onfi_get_set_features_notsupp; + chip->set_features = nand_get_set_features_notsupp; + chip->get_features = nand_get_set_features_notsupp; mtd = nand_to_mtd(chip); diff --git a/include/linux/mtd/rawnand.h b/include/linux/mtd/rawnand.h index 56c5570aadbe..fb2e288ef8b1 100644 --- a/include/linux/mtd/rawnand.h +++ b/include/linux/mtd/rawnand.h @@ -1170,8 +1170,8 @@ int nand_op_parser_exec_op(struct nand_chip *chip, * @blocks_per_die: [INTERN] The number of PEBs in a die * @data_interface: [INTERN] NAND interface timing information * @read_retries: [INTERN] the number of read retry modes supported - * @onfi_set_features: [REPLACEABLE] set the features for ONFI nand - * @onfi_get_features: [REPLACEABLE] get the features for ONFI nand + * @set_features: [REPLACEABLE] set the NAND chip features + * @get_features: [REPLACEABLE] get the NAND chip features * @setup_data_interface: [OPTIONAL] setup the data interface and timing. If * chipnr is set to %NAND_DATA_IFACE_CHECK_ONLY this * means the configuration should not be applied but @@ -1212,10 +1212,10 @@ struct nand_chip { bool check_only); int (*erase)(struct mtd_info *mtd, int page); int (*scan_bbt)(struct mtd_info *mtd); - int (*onfi_set_features)(struct mtd_info *mtd, struct nand_chip *chip, - int feature_addr, uint8_t *subfeature_para); - int (*onfi_get_features)(struct mtd_info *mtd, struct nand_chip *chip, - int feature_addr, uint8_t *subfeature_para); + int (*set_features)(struct mtd_info *mtd, struct nand_chip *chip, + int feature_addr, uint8_t *subfeature_para); + int (*get_features)(struct mtd_info *mtd, struct nand_chip *chip, + int feature_addr, uint8_t *subfeature_para); int (*setup_read_retry)(struct mtd_info *mtd, int retry_mode); int (*setup_data_interface)(struct mtd_info *mtd, int chipnr, const struct nand_data_interface *conf); @@ -1630,9 +1630,8 @@ int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip, int page); /* Stub used by drivers that do not support GET/SET FEATURES operations */ -int nand_onfi_get_set_features_notsupp(struct mtd_info *mtd, - struct nand_chip *chip, int addr, - u8 *subfeature_param); +int nand_get_set_features_notsupp(struct mtd_info *mtd, struct nand_chip *chip, + int addr, u8 *subfeature_param); /* Default read_page_raw implementation */ int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip, -- cgit v1.2.3-58-ga151 From 97baea1e6b74c73973fa0922252f880ab15450ea Mon Sep 17 00:00:00 2001 From: Miquel Raynal Date: Mon, 19 Mar 2018 14:47:20 +0100 Subject: mtd: rawnand: use wrappers to call onfi GET/SET_FEATURES Prepare the fact that some features managed by GET/SET_FEATURES could be overloaded by vendor code. To handle this logic, use new wrappers instead of directly call the ->get/set_features() hooks. Signed-off-by: Miquel Raynal Signed-off-by: Boris Brezillon --- drivers/mtd/nand/raw/gpmi-nand/gpmi-lib.c | 6 +-- drivers/mtd/nand/raw/nand_base.c | 89 ++++++++++++++++++++----------- drivers/mtd/nand/raw/nand_micron.c | 18 ++++--- include/linux/mtd/rawnand.h | 3 ++ 4 files changed, 74 insertions(+), 42 deletions(-) diff --git a/drivers/mtd/nand/raw/gpmi-nand/gpmi-lib.c b/drivers/mtd/nand/raw/gpmi-nand/gpmi-lib.c index f78d907ca61e..039f2795617f 100644 --- a/drivers/mtd/nand/raw/gpmi-nand/gpmi-lib.c +++ b/drivers/mtd/nand/raw/gpmi-nand/gpmi-lib.c @@ -934,15 +934,13 @@ static int enable_edo_mode(struct gpmi_nand_data *this, int mode) /* [1] send SET FEATURE command to NAND */ feature[0] = mode; - ret = nand->set_features(mtd, nand, - ONFI_FEATURE_ADDR_TIMING_MODE, feature); + ret = nand_set_features(nand, ONFI_FEATURE_ADDR_TIMING_MODE, feature); if (ret) goto err_out; /* [2] send GET FEATURE command to double-check the timing mode */ memset(feature, 0, ONFI_SUBFEATURE_PARAM_LEN); - ret = nand->get_features(mtd, nand, - ONFI_FEATURE_ADDR_TIMING_MODE, feature); + ret = nand_get_features(nand, ONFI_FEATURE_ADDR_TIMING_MODE, feature); if (ret || feature[0] != mode) goto err_out; diff --git a/drivers/mtd/nand/raw/nand_base.c b/drivers/mtd/nand/raw/nand_base.c index 802cd9ed44a1..d344dcb12620 100644 --- a/drivers/mtd/nand/raw/nand_base.c +++ b/drivers/mtd/nand/raw/nand_base.c @@ -1160,6 +1160,55 @@ static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip) return status; } +static bool nand_supports_set_get_features(struct nand_chip *chip) +{ + return (chip->onfi_version && + (le16_to_cpu(chip->onfi_params.opt_cmd) & + ONFI_OPT_CMD_SET_GET_FEATURES)); +} + +/** + * nand_get_features - wrapper to perform a GET_FEATURE + * @chip: NAND chip info structure + * @addr: feature address + * @subfeature_param: the subfeature parameters, a four bytes array + * + * Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the + * operation cannot be handled. + */ +int nand_get_features(struct nand_chip *chip, int addr, + u8 *subfeature_param) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + + if (!nand_supports_set_get_features(chip)) + return -ENOTSUPP; + + return chip->get_features(mtd, chip, addr, subfeature_param); +} +EXPORT_SYMBOL_GPL(nand_get_features); + +/** + * nand_set_features - wrapper to perform a SET_FEATURE + * @chip: NAND chip info structure + * @addr: feature address + * @subfeature_param: the subfeature parameters, a four bytes array + * + * Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the + * operation cannot be handled. + */ +int nand_set_features(struct nand_chip *chip, int addr, + u8 *subfeature_param) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + + if (!nand_supports_set_get_features(chip)) + return -ENOTSUPP; + + return chip->set_features(mtd, chip, addr, subfeature_param); +} +EXPORT_SYMBOL_GPL(nand_set_features); + /** * nand_reset_data_interface - Reset data interface and timings * @chip: The NAND chip @@ -1215,32 +1264,22 @@ static int nand_reset_data_interface(struct nand_chip *chip, int chipnr) static int nand_setup_data_interface(struct nand_chip *chip, int chipnr) { struct mtd_info *mtd = nand_to_mtd(chip); + u8 tmode_param[ONFI_SUBFEATURE_PARAM_LEN] = { + chip->onfi_timing_mode_default, + }; int ret; if (!chip->setup_data_interface) return 0; - /* - * Ensure the timing mode has been changed on the chip side - * before changing timings on the controller side. - */ - if (chip->onfi_version && - (le16_to_cpu(chip->onfi_params.opt_cmd) & - ONFI_OPT_CMD_SET_GET_FEATURES)) { - u8 tmode_param[ONFI_SUBFEATURE_PARAM_LEN] = { - chip->onfi_timing_mode_default, - }; - - ret = chip->set_features(mtd, chip, - ONFI_FEATURE_ADDR_TIMING_MODE, - tmode_param); - if (ret) - goto err; - } + /* Change the mode on the chip side */ + ret = nand_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE, + tmode_param); + if (ret) + return ret; - ret = chip->setup_data_interface(mtd, chipnr, &chip->data_interface); -err: - return ret; + /* Change the mode on the controller side */ + return chip->setup_data_interface(mtd, chipnr, &chip->data_interface); } /** @@ -4779,11 +4818,6 @@ static int nand_default_set_features(struct mtd_info *mtd, struct nand_chip *chip, int addr, uint8_t *subfeature_param) { - if (!chip->onfi_version || - !(le16_to_cpu(chip->onfi_params.opt_cmd) - & ONFI_OPT_CMD_SET_GET_FEATURES)) - return -EINVAL; - return nand_set_features_op(chip, addr, subfeature_param); } @@ -4798,11 +4832,6 @@ static int nand_default_get_features(struct mtd_info *mtd, struct nand_chip *chip, int addr, uint8_t *subfeature_param) { - if (!chip->onfi_version || - !(le16_to_cpu(chip->onfi_params.opt_cmd) - & ONFI_OPT_CMD_SET_GET_FEATURES)) - return -EINVAL; - return nand_get_features_op(chip, addr, subfeature_param); } diff --git a/drivers/mtd/nand/raw/nand_micron.c b/drivers/mtd/nand/raw/nand_micron.c index ab3e3a1a5212..b825656f6284 100644 --- a/drivers/mtd/nand/raw/nand_micron.c +++ b/drivers/mtd/nand/raw/nand_micron.c @@ -48,8 +48,7 @@ static int micron_nand_setup_read_retry(struct mtd_info *mtd, int retry_mode) struct nand_chip *chip = mtd_to_nand(mtd); u8 feature[ONFI_SUBFEATURE_PARAM_LEN] = {retry_mode}; - return chip->set_features(mtd, chip, ONFI_FEATURE_ADDR_READ_RETRY, - feature); + return nand_set_features(chip, ONFI_FEATURE_ADDR_READ_RETRY, feature); } /* @@ -108,8 +107,7 @@ static int micron_nand_on_die_ecc_setup(struct nand_chip *chip, bool enable) if (enable) feature[0] |= ONFI_FEATURE_ON_DIE_ECC_EN; - return chip->set_features(nand_to_mtd(chip), chip, - ONFI_FEATURE_ON_DIE_ECC, feature); + return nand_set_features(chip, ONFI_FEATURE_ON_DIE_ECC, feature); } static int @@ -219,8 +217,10 @@ static int micron_supports_on_die_ecc(struct nand_chip *chip) if (ret) return MICRON_ON_DIE_UNSUPPORTED; - chip->get_features(nand_to_mtd(chip), chip, - ONFI_FEATURE_ON_DIE_ECC, feature); + ret = nand_get_features(chip, ONFI_FEATURE_ON_DIE_ECC, feature); + if (ret < 0) + return ret; + if ((feature[0] & ONFI_FEATURE_ON_DIE_ECC_EN) == 0) return MICRON_ON_DIE_UNSUPPORTED; @@ -228,8 +228,10 @@ static int micron_supports_on_die_ecc(struct nand_chip *chip) if (ret) return MICRON_ON_DIE_UNSUPPORTED; - chip->get_features(nand_to_mtd(chip), chip, - ONFI_FEATURE_ON_DIE_ECC, feature); + ret = nand_get_features(chip, ONFI_FEATURE_ON_DIE_ECC, feature); + if (ret < 0) + return ret; + if (feature[0] & ONFI_FEATURE_ON_DIE_ECC_EN) return MICRON_ON_DIE_MANDATORY; diff --git a/include/linux/mtd/rawnand.h b/include/linux/mtd/rawnand.h index fb2e288ef8b1..3cc2a3435b20 100644 --- a/include/linux/mtd/rawnand.h +++ b/include/linux/mtd/rawnand.h @@ -1629,6 +1629,9 @@ int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip, int page); int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip, int page); +/* Wrapper to use in order for controllers/vendors to GET/SET FEATURES */ +int nand_get_features(struct nand_chip *chip, int addr, u8 *subfeature_param); +int nand_set_features(struct nand_chip *chip, int addr, u8 *subfeature_param); /* Stub used by drivers that do not support GET/SET FEATURES operations */ int nand_get_set_features_notsupp(struct mtd_info *mtd, struct nand_chip *chip, int addr, u8 *subfeature_param); -- cgit v1.2.3-58-ga151 From 993447b746820259e21b6c7962523631128d5ca6 Mon Sep 17 00:00:00 2001 From: Miquel Raynal Date: Mon, 19 Mar 2018 14:47:21 +0100 Subject: mtd: rawnand: handle differently chip/controller errors about timings Usually, the source of the error when setting/getting features does not matter (if the controller does not support sending the command or if the chip does not support the operation). When it comes to timings, if the controller fails it is an error while if the chip does not support the operation, it can be silently supposed that it already works with the maximum supported timings. Introduce some logic in nand_setup_data_interface() to handle that difference. Signed-off-by: Miquel Raynal Signed-off-by: Boris Brezillon --- drivers/mtd/nand/raw/nand_base.c | 12 +++++++----- 1 file changed, 7 insertions(+), 5 deletions(-) diff --git a/drivers/mtd/nand/raw/nand_base.c b/drivers/mtd/nand/raw/nand_base.c index d344dcb12620..2109fc223ff2 100644 --- a/drivers/mtd/nand/raw/nand_base.c +++ b/drivers/mtd/nand/raw/nand_base.c @@ -1272,11 +1272,13 @@ static int nand_setup_data_interface(struct nand_chip *chip, int chipnr) if (!chip->setup_data_interface) return 0; - /* Change the mode on the chip side */ - ret = nand_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE, - tmode_param); - if (ret) - return ret; + /* Change the mode on the chip side (if supported by the NAND chip) */ + if (nand_supports_set_get_features(chip)) { + ret = nand_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE, + tmode_param); + if (ret) + return ret; + } /* Change the mode on the controller side */ return chip->setup_data_interface(mtd, chipnr, &chip->data_interface); -- cgit v1.2.3-58-ga151 From 939da44758447c64a272d7a87e706872271a2fab Mon Sep 17 00:00:00 2001 From: Miquel Raynal Date: Mon, 19 Mar 2018 14:47:22 +0100 Subject: mtd: rawnand: mxc: remove useless checks in GET/SET_FEATURES functions All the calls to the chip's hooks ->get/set_features() go through the core's wrappers nand_get/set_features() that already do the necessary checks about feature support. Remove these checks from the mxc's functions. Signed-off-by: Miquel Raynal Signed-off-by: Boris Brezillon --- drivers/mtd/nand/raw/mxc_nand.c | 10 ---------- 1 file changed, 10 deletions(-) diff --git a/drivers/mtd/nand/raw/mxc_nand.c b/drivers/mtd/nand/raw/mxc_nand.c index 61501654e708..944ecf03d3b1 100644 --- a/drivers/mtd/nand/raw/mxc_nand.c +++ b/drivers/mtd/nand/raw/mxc_nand.c @@ -1428,11 +1428,6 @@ static int mxc_nand_set_features(struct mtd_info *mtd, struct nand_chip *chip, struct mxc_nand_host *host = nand_get_controller_data(nand_chip); int i; - if (!chip->onfi_version || - !(le16_to_cpu(chip->onfi_params.opt_cmd) - & ONFI_OPT_CMD_SET_GET_FEATURES)) - return -EINVAL; - host->buf_start = 0; for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i) @@ -1453,11 +1448,6 @@ static int mxc_nand_get_features(struct mtd_info *mtd, struct nand_chip *chip, struct mxc_nand_host *host = nand_get_controller_data(nand_chip); int i; - if (!chip->onfi_version || - !(le16_to_cpu(chip->onfi_params.opt_cmd) - & ONFI_OPT_CMD_SET_GET_FEATURES)) - return -EINVAL; - host->devtype_data->send_cmd(host, NAND_CMD_GET_FEATURES, false); mxc_do_addr_cycle(mtd, addr, -1); host->devtype_data->send_page(mtd, NFC_OUTPUT); -- cgit v1.2.3-58-ga151 From 29714d6bd72b2de163a89240a70550f23d25c324 Mon Sep 17 00:00:00 2001 From: Miquel Raynal Date: Mon, 19 Mar 2018 14:47:23 +0100 Subject: mtd: rawnand: move calls to ->select_chip() in nand_setup_data_interface() After a ->set_features(TIMINGS), the chip is supposed to be working at a new speed. In order for all the transactions to be perperly handled, the NAND controller should also be configured to this same speed. Calling ->setup_data_interface() is not enough and the chip should be de-asserted/re-asserted through calls to ->select_chip(). Prepare the next change in nand_setup_data_interface() where timings will be checked after being applied. Because assertions of the CS pin will be needed from within this function, move the calls to ->select_chip() inside nand_setup_data_interface() for later consistency. Signed-off-by: Miquel Raynal Signed-off-by: Boris Brezillon --- drivers/mtd/nand/raw/nand_base.c | 7 ++----- 1 file changed, 2 insertions(+), 5 deletions(-) diff --git a/drivers/mtd/nand/raw/nand_base.c b/drivers/mtd/nand/raw/nand_base.c index 2109fc223ff2..9d5c2739fe6d 100644 --- a/drivers/mtd/nand/raw/nand_base.c +++ b/drivers/mtd/nand/raw/nand_base.c @@ -1274,8 +1274,10 @@ static int nand_setup_data_interface(struct nand_chip *chip, int chipnr) /* Change the mode on the chip side (if supported by the NAND chip) */ if (nand_supports_set_get_features(chip)) { + chip->select_chip(mtd, chipnr); ret = nand_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE, tmode_param); + chip->select_chip(mtd, -1); if (ret) return ret; } @@ -2780,10 +2782,8 @@ int nand_reset(struct nand_chip *chip, int chipnr) if (ret) return ret; - chip->select_chip(mtd, chipnr); chip->data_interface = saved_data_intf; ret = nand_setup_data_interface(chip, chipnr); - chip->select_chip(mtd, -1); if (ret) return ret; @@ -6505,10 +6505,7 @@ int nand_scan_tail(struct mtd_info *mtd) /* Enter fastest possible mode on all dies. */ for (i = 0; i < chip->numchips; i++) { - chip->select_chip(mtd, i); ret = nand_setup_data_interface(chip, i); - chip->select_chip(mtd, -1); - if (ret) goto err_nand_manuf_cleanup; } -- cgit v1.2.3-58-ga151 From 415ae78ffb5d97343ada8e4c2d4bda5f6416b5ef Mon Sep 17 00:00:00 2001 From: Miquel Raynal Date: Mon, 19 Mar 2018 14:47:24 +0100 Subject: mtd: rawnand: check ONFI timings have been acked by the chip Choosing ONFI timings when ->set/get_features() calls are supported by the NAND chip is a matter of reading the chip's ONFI parameter page and telling the chip the chosen mode (between all of the supported ones) with ->set_feature(). Add a check on whether the chip "acked" the timing mode or not. This can be a problem for NAND chips that do not follow entirely the ONFI specification. These chips actually support other modes than "mode 0", but either: 1/ do not update the timing mode register once a timing mode has been selected. or 2/ do not support the TIMING_MODE featured and thus do not require users to change the timing mode at all. These issues will be addressed in another patch that will add the feature to overwrite NAND chips features within the parameter page, from the NAND chip driver. Signed-off-by: Miquel Raynal Tested-by: Han Xu Signed-off-by: Boris Brezillon --- drivers/mtd/nand/raw/nand_base.c | 36 +++++++++++++++++++++++++++++++++++- 1 file changed, 35 insertions(+), 1 deletion(-) diff --git a/drivers/mtd/nand/raw/nand_base.c b/drivers/mtd/nand/raw/nand_base.c index 9d5c2739fe6d..837ea698af08 100644 --- a/drivers/mtd/nand/raw/nand_base.c +++ b/drivers/mtd/nand/raw/nand_base.c @@ -1283,7 +1283,41 @@ static int nand_setup_data_interface(struct nand_chip *chip, int chipnr) } /* Change the mode on the controller side */ - return chip->setup_data_interface(mtd, chipnr, &chip->data_interface); + ret = chip->setup_data_interface(mtd, chipnr, &chip->data_interface); + if (ret) + return ret; + + /* Check the mode has been accepted by the chip, if supported */ + if (!nand_supports_set_get_features(chip)) + return 0; + + memset(tmode_param, 0, ONFI_SUBFEATURE_PARAM_LEN); + chip->select_chip(mtd, chipnr); + ret = nand_get_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE, + tmode_param); + chip->select_chip(mtd, -1); + if (ret) + goto err_reset_chip; + + if (tmode_param[0] != chip->onfi_timing_mode_default) { + pr_warn("timing mode %d not acknowledged by the NAND chip\n", + chip->onfi_timing_mode_default); + goto err_reset_chip; + } + + return 0; + +err_reset_chip: + /* + * Fallback to mode 0 if the chip explicitly did not ack the chosen + * timing mode. + */ + nand_reset_data_interface(chip, chipnr); + chip->select_chip(mtd, chipnr); + nand_reset_op(chip); + chip->select_chip(mtd, -1); + + return ret; } /** -- cgit v1.2.3-58-ga151 From 107b7d6a7ad4927e1b217cf5667ac94bab021e42 Mon Sep 17 00:00:00 2001 From: Miquel Raynal Date: Mon, 19 Mar 2018 14:47:25 +0100 Subject: mtd: rawnand: avoid setting again the timings to mode 0 after a reset After a nand_reset_data_interface(), both the NAND chip and the NAND controller use timing mode 0. The previously defined data interface for this chip has been saved and is supposed to be restored after that. However, if the saved data interface also refers to timing mode 0, there is no need to re-apply them again. Also, as nand_setup_data_interface() uses ->set/get_features(), it could lead to issues when doing the reset at probe time as the parameter page is not available yet to know if these functions are supported or not. Signed-off-by: Miquel Raynal Signed-off-by: Boris Brezillon --- drivers/mtd/nand/raw/nand_base.c | 10 ++++++++++ 1 file changed, 10 insertions(+) diff --git a/drivers/mtd/nand/raw/nand_base.c b/drivers/mtd/nand/raw/nand_base.c index 837ea698af08..4099d8a1e25e 100644 --- a/drivers/mtd/nand/raw/nand_base.c +++ b/drivers/mtd/nand/raw/nand_base.c @@ -2816,6 +2816,16 @@ int nand_reset(struct nand_chip *chip, int chipnr) if (ret) return ret; + /* + * A nand_reset_data_interface() put both the NAND chip and the NAND + * controller in timings mode 0. If the default mode for this chip is + * also 0, no need to proceed to the change again. Plus, at probe time, + * nand_setup_data_interface() uses ->set/get_features() which would + * fail anyway as the parameter page is not available yet. + */ + if (!chip->onfi_timing_mode_default) + return 0; + chip->data_interface = saved_data_intf; ret = nand_setup_data_interface(chip, chipnr); if (ret) -- cgit v1.2.3-58-ga151 From f4531b2b1929806d2bec1a2f19805031d8bc0806 Mon Sep 17 00:00:00 2001 From: Miquel Raynal Date: Mon, 19 Mar 2018 14:47:26 +0100 Subject: mtd: rawnand: prepare the removal of ONFI/JEDEC parameter pages The NAND chip parameter page is statically allocated within the nand_chip structure, which reserves a lot of space. Even not ONFI nor JEDEC chips have it embedded. Also, only a few parameters are actually read from the parameter page after the detection. To prepare to the removal of such huge structure, a small NAND parameter structure is allocated statically and contains only very few members that are generic to all chips and actually used elsewhere in the code. Signed-off-by: Miquel Raynal Signed-off-by: Boris Brezillon --- drivers/mtd/nand/raw/nand_base.c | 39 +++++++++++++++++---------------------- include/linux/mtd/rawnand.h | 13 +++++++++++++ 2 files changed, 30 insertions(+), 22 deletions(-) diff --git a/drivers/mtd/nand/raw/nand_base.c b/drivers/mtd/nand/raw/nand_base.c index 4099d8a1e25e..0f1f45526c7f 100644 --- a/drivers/mtd/nand/raw/nand_base.c +++ b/drivers/mtd/nand/raw/nand_base.c @@ -1162,9 +1162,7 @@ static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip) static bool nand_supports_set_get_features(struct nand_chip *chip) { - return (chip->onfi_version && - (le16_to_cpu(chip->onfi_params.opt_cmd) & - ONFI_OPT_CMD_SET_GET_FEATURES)); + return chip->parameters.supports_set_get_features; } /** @@ -5145,8 +5143,8 @@ static int nand_flash_detect_onfi(struct nand_chip *chip) sanitize_string(p->manufacturer, sizeof(p->manufacturer)); sanitize_string(p->model, sizeof(p->model)); - if (!mtd->name) - mtd->name = p->model; + strncpy(chip->parameters.model, p->model, + sizeof(chip->parameters.model) - 1); mtd->writesize = le32_to_cpu(p->byte_per_page); @@ -5193,6 +5191,10 @@ static int nand_flash_detect_onfi(struct nand_chip *chip) pr_warn("Could not retrieve ONFI ECC requirements\n"); } + /* Save some parameters from the parameter page for future use */ + if (le16_to_cpu(p->opt_cmd) & ONFI_OPT_CMD_SET_GET_FEATURES) + chip->parameters.supports_set_get_features = true; + return 1; } @@ -5245,8 +5247,8 @@ static int nand_flash_detect_jedec(struct nand_chip *chip) sanitize_string(p->manufacturer, sizeof(p->manufacturer)); sanitize_string(p->model, sizeof(p->model)); - if (!mtd->name) - mtd->name = p->model; + strncpy(chip->parameters.model, p->model, + sizeof(chip->parameters.model) - 1); mtd->writesize = le32_to_cpu(p->byte_per_page); @@ -5433,8 +5435,8 @@ static bool find_full_id_nand(struct nand_chip *chip, chip->onfi_timing_mode_default = type->onfi_timing_mode_default; - if (!mtd->name) - mtd->name = type->name; + strncpy(chip->parameters.model, type->name, + sizeof(chip->parameters.model) - 1); return true; } @@ -5587,8 +5589,8 @@ static int nand_detect(struct nand_chip *chip, struct nand_flash_dev *type) if (!type->name) return -ENODEV; - if (!mtd->name) - mtd->name = type->name; + strncpy(chip->parameters.model, type->name, + sizeof(chip->parameters.model) - 1); chip->chipsize = (uint64_t)type->chipsize << 20; @@ -5601,6 +5603,8 @@ static int nand_detect(struct nand_chip *chip, struct nand_flash_dev *type) chip->options |= type->options; ident_done: + if (!mtd->name) + mtd->name = chip->parameters.model; if (chip->options & NAND_BUSWIDTH_AUTO) { WARN_ON(busw & NAND_BUSWIDTH_16); @@ -5647,17 +5651,8 @@ ident_done: pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n", maf_id, dev_id); - - if (chip->onfi_version) - pr_info("%s %s\n", nand_manufacturer_name(manufacturer), - chip->onfi_params.model); - else if (chip->jedec_version) - pr_info("%s %s\n", nand_manufacturer_name(manufacturer), - chip->jedec_params.model); - else - pr_info("%s %s\n", nand_manufacturer_name(manufacturer), - type->name); - + pr_info("%s %s\n", nand_manufacturer_name(manufacturer), + chip->parameters.model); pr_info("%d MiB, %s, erase size: %d KiB, page size: %d, OOB size: %d\n", (int)(chip->chipsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC", mtd->erasesize >> 10, mtd->writesize, mtd->oobsize); diff --git a/include/linux/mtd/rawnand.h b/include/linux/mtd/rawnand.h index 3cc2a3435b20..a24591411d78 100644 --- a/include/linux/mtd/rawnand.h +++ b/include/linux/mtd/rawnand.h @@ -429,6 +429,16 @@ struct nand_jedec_params { __le16 crc; } __packed; +/** + * struct nand_parameters - NAND generic parameters from the parameter page + * @model: Model name + * @supports_set_get_features: The NAND chip supports setting/getting features + */ +struct nand_parameters { + char model[100]; + bool supports_set_get_features; +}; + /* The maximum expected count of bytes in the NAND ID sequence */ #define NAND_MAX_ID_LEN 8 @@ -1165,6 +1175,8 @@ int nand_op_parser_exec_op(struct nand_chip *chip, * supported, 0 otherwise. * @jedec_params: [INTERN] holds the JEDEC parameter page when JEDEC is * supported, 0 otherwise. + * @parameters: [INTERN] holds generic parameters under an easily + * readable form. * @max_bb_per_die: [INTERN] the max number of bad blocks each die of a * this nand device will encounter their life times. * @blocks_per_die: [INTERN] The number of PEBs in a die @@ -1249,6 +1261,7 @@ struct nand_chip { struct nand_onfi_params onfi_params; struct nand_jedec_params jedec_params; }; + struct nand_parameters parameters; u16 max_bb_per_die; u32 blocks_per_die; -- cgit v1.2.3-58-ga151 From a97421c7532d382ab560ca153bdf9450f97c7e41 Mon Sep 17 00:00:00 2001 From: Miquel Raynal Date: Mon, 19 Mar 2018 14:47:27 +0100 Subject: mtd: rawnand: prepare the removal of the ONFI parameter page The NAND chip parameter page is statically allocated within the nand_chip structure, which reserves a lot of space. Even not ONFI nor JEDEC chips have it embedded. Also, only a few parameters are actually read from the parameter page after the detection. ONFI-related parameters that will be used outside from the identification function are stored in a separate onfi_parameters structure embedded in nand_parameters, this small structure that already hold generic parameters. For now, the onfi_parameters structure is allocated statically. However, after some deep rework in the NAND framework, it will be possible to do dynamic allocations from the NAND identification phase, and this strcuture will then be dynamically allocated when needed. Signed-off-by: Miquel Raynal Signed-off-by: Boris Brezillon --- drivers/mtd/nand/raw/gpmi-nand/gpmi-lib.c | 2 +- drivers/mtd/nand/raw/nand_base.c | 30 +++++++++++++------- drivers/mtd/nand/raw/nand_micron.c | 19 ++++++------- drivers/mtd/nand/raw/nand_timings.c | 12 ++++---- include/linux/mtd/rawnand.h | 47 +++++++++++++++++++------------ 5 files changed, 64 insertions(+), 46 deletions(-) diff --git a/drivers/mtd/nand/raw/gpmi-nand/gpmi-lib.c b/drivers/mtd/nand/raw/gpmi-nand/gpmi-lib.c index 039f2795617f..f3cc38372d79 100644 --- a/drivers/mtd/nand/raw/gpmi-nand/gpmi-lib.c +++ b/drivers/mtd/nand/raw/gpmi-nand/gpmi-lib.c @@ -971,7 +971,7 @@ int gpmi_extra_init(struct gpmi_nand_data *this) struct nand_chip *chip = &this->nand; /* Enable the asynchronous EDO feature. */ - if (GPMI_IS_MX6(this) && chip->onfi_version) { + if (GPMI_IS_MX6(this) && chip->parameters.onfi.version) { int mode = onfi_get_async_timing_mode(chip); /* We only support the timing mode 4 and mode 5. */ diff --git a/drivers/mtd/nand/raw/nand_base.c b/drivers/mtd/nand/raw/nand_base.c index 0f1f45526c7f..789c11e0925e 100644 --- a/drivers/mtd/nand/raw/nand_base.c +++ b/drivers/mtd/nand/raw/nand_base.c @@ -5126,17 +5126,17 @@ static int nand_flash_detect_onfi(struct nand_chip *chip) /* Check version */ val = le16_to_cpu(p->revision); if (val & (1 << 5)) - chip->onfi_version = 23; + chip->parameters.onfi.version = 23; else if (val & (1 << 4)) - chip->onfi_version = 22; + chip->parameters.onfi.version = 22; else if (val & (1 << 3)) - chip->onfi_version = 21; + chip->parameters.onfi.version = 21; else if (val & (1 << 2)) - chip->onfi_version = 20; + chip->parameters.onfi.version = 20; else if (val & (1 << 1)) - chip->onfi_version = 10; + chip->parameters.onfi.version = 10; - if (!chip->onfi_version) { + if (!chip->parameters.onfi.version) { pr_info("unsupported ONFI version: %d\n", val); return 0; } @@ -5166,14 +5166,14 @@ static int nand_flash_detect_onfi(struct nand_chip *chip) chip->max_bb_per_die = le16_to_cpu(p->bb_per_lun); chip->blocks_per_die = le32_to_cpu(p->blocks_per_lun); - if (onfi_feature(chip) & ONFI_FEATURE_16_BIT_BUS) + if (le16_to_cpu(p->features) & ONFI_FEATURE_16_BIT_BUS) chip->options |= NAND_BUSWIDTH_16; if (p->ecc_bits != 0xff) { chip->ecc_strength_ds = p->ecc_bits; chip->ecc_step_ds = 512; - } else if (chip->onfi_version >= 21 && - (onfi_feature(chip) & ONFI_FEATURE_EXT_PARAM_PAGE)) { + } else if (chip->parameters.onfi.version >= 21 && + (le16_to_cpu(p->features) & ONFI_FEATURE_EXT_PARAM_PAGE)) { /* * The nand_flash_detect_ext_param_page() uses the @@ -5194,6 +5194,16 @@ static int nand_flash_detect_onfi(struct nand_chip *chip) /* Save some parameters from the parameter page for future use */ if (le16_to_cpu(p->opt_cmd) & ONFI_OPT_CMD_SET_GET_FEATURES) chip->parameters.supports_set_get_features = true; + chip->parameters.onfi.tPROG = le16_to_cpu(p->t_prog); + chip->parameters.onfi.tBERS = le16_to_cpu(p->t_bers); + chip->parameters.onfi.tR = le16_to_cpu(p->t_r); + chip->parameters.onfi.tCCS = le16_to_cpu(p->t_ccs); + chip->parameters.onfi.async_timing_mode = + le16_to_cpu(p->async_timing_mode); + chip->parameters.onfi.vendor_revision = + le16_to_cpu(p->vendor_revision); + memcpy(chip->parameters.onfi.vendor, p->vendor, + sizeof(p->vendor)); return 1; } @@ -5575,7 +5585,7 @@ static int nand_detect(struct nand_chip *chip, struct nand_flash_dev *type) } } - chip->onfi_version = 0; + chip->parameters.onfi.version = 0; if (!type->name || !type->pagesize) { /* Check if the chip is ONFI compliant */ if (nand_flash_detect_onfi(chip)) diff --git a/drivers/mtd/nand/raw/nand_micron.c b/drivers/mtd/nand/raw/nand_micron.c index b825656f6284..c5974d8313e7 100644 --- a/drivers/mtd/nand/raw/nand_micron.c +++ b/drivers/mtd/nand/raw/nand_micron.c @@ -56,17 +56,14 @@ static int micron_nand_setup_read_retry(struct mtd_info *mtd, int retry_mode) */ static int micron_nand_onfi_init(struct nand_chip *chip) { - struct nand_onfi_params *p = &chip->onfi_params; - struct nand_onfi_vendor_micron *micron = (void *)p->vendor; + struct nand_parameters *p = &chip->parameters; + struct nand_onfi_vendor_micron *micron = (void *)p->onfi.vendor; - if (!chip->onfi_version) - return 0; - - if (le16_to_cpu(p->vendor_revision) < 1) - return 0; + if (chip->parameters.onfi.version && p->onfi.vendor_revision) { + chip->read_retries = micron->read_retry_options; + chip->setup_read_retry = micron_nand_setup_read_retry; + } - chip->read_retries = micron->read_retry_options; - chip->setup_read_retry = micron_nand_setup_read_retry; return 0; } @@ -207,7 +204,7 @@ static int micron_supports_on_die_ecc(struct nand_chip *chip) u8 feature[ONFI_SUBFEATURE_PARAM_LEN] = { 0, }; int ret; - if (chip->onfi_version == 0) + if (!chip->parameters.onfi.version) return MICRON_ON_DIE_UNSUPPORTED; if (chip->bits_per_cell != 1) @@ -239,7 +236,7 @@ static int micron_supports_on_die_ecc(struct nand_chip *chip) * Some Micron NANDs have an on-die ECC of 4/512, some other * 8/512. We only support the former. */ - if (chip->onfi_params.ecc_bits != 4) + if (chip->ecc_strength_ds != 4) return MICRON_ON_DIE_UNSUPPORTED; return MICRON_ON_DIE_SUPPORTED; diff --git a/drivers/mtd/nand/raw/nand_timings.c b/drivers/mtd/nand/raw/nand_timings.c index 9400d039ddbd..7c4e4a371bbc 100644 --- a/drivers/mtd/nand/raw/nand_timings.c +++ b/drivers/mtd/nand/raw/nand_timings.c @@ -306,17 +306,17 @@ int onfi_fill_data_interface(struct nand_chip *chip, * tR, tPROG, tCCS, ... * These information are part of the ONFI parameter page. */ - if (chip->onfi_version) { - struct nand_onfi_params *params = &chip->onfi_params; + if (chip->parameters.onfi.version) { + struct nand_parameters *params = &chip->parameters; struct nand_sdr_timings *timings = &iface->timings.sdr; /* microseconds -> picoseconds */ - timings->tPROG_max = 1000000ULL * le16_to_cpu(params->t_prog); - timings->tBERS_max = 1000000ULL * le16_to_cpu(params->t_bers); - timings->tR_max = 1000000ULL * le16_to_cpu(params->t_r); + timings->tPROG_max = 1000000ULL * params->onfi.tPROG; + timings->tBERS_max = 1000000ULL * params->onfi.tBERS; + timings->tR_max = 1000000ULL * params->onfi.tR; /* nanoseconds -> picoseconds */ - timings->tCCS_min = 1000UL * le16_to_cpu(params->t_ccs); + timings->tCCS_min = 1000UL * params->onfi.tCCS; } return 0; diff --git a/include/linux/mtd/rawnand.h b/include/linux/mtd/rawnand.h index a24591411d78..7b5afa6ef5a9 100644 --- a/include/linux/mtd/rawnand.h +++ b/include/linux/mtd/rawnand.h @@ -429,14 +429,41 @@ struct nand_jedec_params { __le16 crc; } __packed; +/** + * struct onfi_params - ONFI specific parameters that will be reused + * @version: ONFI version (BCD encoded), 0 if ONFI is not supported + * @tPROG: Page program time + * @tBERS: Block erase time + * @tR: Page read time + * @tCCS: Change column setup time + * @async_timing_mode: Supported asynchronous timing mode + * @vendor_revision: Vendor specific revision number + * @vendor: Vendor specific data + */ +struct onfi_params { + int version; + u16 tPROG; + u16 tBERS; + u16 tR; + u16 tCCS; + u16 async_timing_mode; + u16 vendor_revision; + u8 vendor[88]; +}; + /** * struct nand_parameters - NAND generic parameters from the parameter page * @model: Model name * @supports_set_get_features: The NAND chip supports setting/getting features + * @onfi: ONFI specific parameters */ struct nand_parameters { + /* Generic parameters */ char model[100]; bool supports_set_get_features; + + /* ONFI parameters */ + struct onfi_params onfi; }; /* The maximum expected count of bytes in the NAND ID sequence */ @@ -1167,8 +1194,6 @@ int nand_op_parser_exec_op(struct nand_chip *chip, * currently in data_buf. * @subpagesize: [INTERN] holds the subpagesize * @id: [INTERN] holds NAND ID - * @onfi_version: [INTERN] holds the chip ONFI version (BCD encoded), - * non 0 if ONFI supported. * @jedec_version: [INTERN] holds the chip JEDEC version (BCD encoded), * non 0 if JEDEC supported. * @onfi_params: [INTERN] holds the ONFI page parameter when ONFI is @@ -1255,7 +1280,6 @@ struct nand_chip { int badblockbits; struct nand_id id; - int onfi_version; int jedec_version; union { struct nand_onfi_params onfi_params; @@ -1548,26 +1572,13 @@ struct platform_nand_data { struct platform_nand_ctrl ctrl; }; -/* return the supported features. */ -static inline int onfi_feature(struct nand_chip *chip) -{ - return chip->onfi_version ? le16_to_cpu(chip->onfi_params.features) : 0; -} - /* return the supported asynchronous timing mode. */ static inline int onfi_get_async_timing_mode(struct nand_chip *chip) { - if (!chip->onfi_version) + if (!chip->parameters.onfi.version) return ONFI_TIMING_MODE_UNKNOWN; - return le16_to_cpu(chip->onfi_params.async_timing_mode); -} -/* return the supported synchronous timing mode. */ -static inline int onfi_get_sync_timing_mode(struct nand_chip *chip) -{ - if (!chip->onfi_version) - return ONFI_TIMING_MODE_UNKNOWN; - return le16_to_cpu(chip->onfi_params.src_sync_timing_mode); + return chip->parameters.onfi.async_timing_mode; } int onfi_fill_data_interface(struct nand_chip *chip, -- cgit v1.2.3-58-ga151 From 789157e41a0694e70bf80bceecd79438c3de98d6 Mon Sep 17 00:00:00 2001 From: Miquel Raynal Date: Mon, 19 Mar 2018 14:47:28 +0100 Subject: mtd: rawnand: allow vendors to declare (un)supported features If SET/GET_FEATURES is available (from the parameter page), use a bitmap to declare what feature is actually supported. Initialize the bitmap in the core to support timing changes (only feature used by the core), also add support for Micron specific features used in Micron initialization code (in the init routine). Signed-off-by: Miquel Raynal Signed-off-by: Boris Brezillon --- drivers/mtd/nand/raw/nand_base.c | 26 +++++++++++++++++++------- drivers/mtd/nand/raw/nand_micron.c | 4 ++++ include/linux/mtd/rawnand.h | 8 +++++++- 3 files changed, 30 insertions(+), 8 deletions(-) diff --git a/drivers/mtd/nand/raw/nand_base.c b/drivers/mtd/nand/raw/nand_base.c index 789c11e0925e..0bd9f22973e9 100644 --- a/drivers/mtd/nand/raw/nand_base.c +++ b/drivers/mtd/nand/raw/nand_base.c @@ -1160,9 +1160,16 @@ static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip) return status; } -static bool nand_supports_set_get_features(struct nand_chip *chip) +static bool nand_supports_get_features(struct nand_chip *chip, int addr) { - return chip->parameters.supports_set_get_features; + return (chip->parameters.supports_set_get_features && + test_bit(addr, chip->parameters.get_feature_list)); +} + +static bool nand_supports_set_features(struct nand_chip *chip, int addr) +{ + return (chip->parameters.supports_set_get_features && + test_bit(addr, chip->parameters.set_feature_list)); } /** @@ -1179,7 +1186,7 @@ int nand_get_features(struct nand_chip *chip, int addr, { struct mtd_info *mtd = nand_to_mtd(chip); - if (!nand_supports_set_get_features(chip)) + if (!nand_supports_get_features(chip, addr)) return -ENOTSUPP; return chip->get_features(mtd, chip, addr, subfeature_param); @@ -1200,7 +1207,7 @@ int nand_set_features(struct nand_chip *chip, int addr, { struct mtd_info *mtd = nand_to_mtd(chip); - if (!nand_supports_set_get_features(chip)) + if (!nand_supports_set_features(chip, addr)) return -ENOTSUPP; return chip->set_features(mtd, chip, addr, subfeature_param); @@ -1271,7 +1278,7 @@ static int nand_setup_data_interface(struct nand_chip *chip, int chipnr) return 0; /* Change the mode on the chip side (if supported by the NAND chip) */ - if (nand_supports_set_get_features(chip)) { + if (nand_supports_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE)) { chip->select_chip(mtd, chipnr); ret = nand_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE, tmode_param); @@ -1286,7 +1293,7 @@ static int nand_setup_data_interface(struct nand_chip *chip, int chipnr) return ret; /* Check the mode has been accepted by the chip, if supported */ - if (!nand_supports_set_get_features(chip)) + if (!nand_supports_get_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE)) return 0; memset(tmode_param, 0, ONFI_SUBFEATURE_PARAM_LEN); @@ -5192,8 +5199,13 @@ static int nand_flash_detect_onfi(struct nand_chip *chip) } /* Save some parameters from the parameter page for future use */ - if (le16_to_cpu(p->opt_cmd) & ONFI_OPT_CMD_SET_GET_FEATURES) + if (le16_to_cpu(p->opt_cmd) & ONFI_OPT_CMD_SET_GET_FEATURES) { chip->parameters.supports_set_get_features = true; + bitmap_set(chip->parameters.get_feature_list, + ONFI_FEATURE_ADDR_TIMING_MODE, 1); + bitmap_set(chip->parameters.set_feature_list, + ONFI_FEATURE_ADDR_TIMING_MODE, 1); + } chip->parameters.onfi.tPROG = le16_to_cpu(p->t_prog); chip->parameters.onfi.tBERS = le16_to_cpu(p->t_bers); chip->parameters.onfi.tR = le16_to_cpu(p->t_r); diff --git a/drivers/mtd/nand/raw/nand_micron.c b/drivers/mtd/nand/raw/nand_micron.c index c5974d8313e7..0af45b134c0c 100644 --- a/drivers/mtd/nand/raw/nand_micron.c +++ b/drivers/mtd/nand/raw/nand_micron.c @@ -64,6 +64,10 @@ static int micron_nand_onfi_init(struct nand_chip *chip) chip->setup_read_retry = micron_nand_setup_read_retry; } + if (p->supports_set_get_features) { + set_bit(ONFI_FEATURE_ADDR_READ_RETRY, p->set_feature_list); + set_bit(ONFI_FEATURE_ADDR_READ_RETRY, p->get_feature_list); + } return 0; } diff --git a/include/linux/mtd/rawnand.h b/include/linux/mtd/rawnand.h index 7b5afa6ef5a9..d9f417719d36 100644 --- a/include/linux/mtd/rawnand.h +++ b/include/linux/mtd/rawnand.h @@ -21,6 +21,7 @@ #include #include #include +#include struct mtd_info; struct nand_flash_dev; @@ -235,7 +236,8 @@ struct nand_chip; #define ONFI_TIMING_MODE_5 (1 << 5) #define ONFI_TIMING_MODE_UNKNOWN (1 << 6) -/* ONFI feature address */ +/* ONFI feature number/address */ +#define ONFI_FEATURE_NUMBER 256 #define ONFI_FEATURE_ADDR_TIMING_MODE 0x1 /* Vendor-specific feature address (Micron) */ @@ -455,12 +457,16 @@ struct onfi_params { * struct nand_parameters - NAND generic parameters from the parameter page * @model: Model name * @supports_set_get_features: The NAND chip supports setting/getting features + * @set_feature_list: Bitmap of features that can be set + * @get_feature_list: Bitmap of features that can be get * @onfi: ONFI specific parameters */ struct nand_parameters { /* Generic parameters */ char model[100]; bool supports_set_get_features; + DECLARE_BITMAP(set_feature_list, ONFI_FEATURE_NUMBER); + DECLARE_BITMAP(get_feature_list, ONFI_FEATURE_NUMBER); /* ONFI parameters */ struct onfi_params onfi; -- cgit v1.2.3-58-ga151 From 34c5c01e0c8c35c01e9353d0166bfc0eb19b571c Mon Sep 17 00:00:00 2001 From: Miquel Raynal Date: Mon, 19 Mar 2018 14:47:29 +0100 Subject: mtd: rawnand: macronix: nack the support of changing timings for one chip The MX30LF2G18AC chip declares in its parameter page supporting SET/GET_FEATURES but when it comes to timings, experience shows that it is not the case. Unflag this feature for this particular chip in the nand_parameters structure to avoid unnecessary errors and downturns. Signed-off-by: Miquel Raynal Signed-off-by: Boris Brezillon --- drivers/mtd/nand/raw/nand_macronix.c | 13 +++++++++++++ 1 file changed, 13 insertions(+) diff --git a/drivers/mtd/nand/raw/nand_macronix.c b/drivers/mtd/nand/raw/nand_macronix.c index d290ff2a6d2f..7ed1f87e742a 100644 --- a/drivers/mtd/nand/raw/nand_macronix.c +++ b/drivers/mtd/nand/raw/nand_macronix.c @@ -22,6 +22,19 @@ static int macronix_nand_init(struct nand_chip *chip) if (nand_is_slc(chip)) chip->bbt_options |= NAND_BBT_SCAN2NDPAGE; + /* + * MX30LF2G18AC chip does not support using SET/GET_FEATURES to change + * the timings unlike what is declared in the parameter page. Unflag + * this feature to avoid unnecessary downturns. + */ + if (chip->parameters.supports_set_get_features && + !strcmp("MX30LF2G18AC", chip->parameters.model)) { + bitmap_clear(chip->parameters.get_feature_list, + ONFI_FEATURE_ADDR_TIMING_MODE, 1); + bitmap_clear(chip->parameters.set_feature_list, + ONFI_FEATURE_ADDR_TIMING_MODE, 1); + } + return 0; } -- cgit v1.2.3-58-ga151 From 480139d9229e3be0530bc548da208b5f49b1ab90 Mon Sep 17 00:00:00 2001 From: Miquel Raynal Date: Mon, 19 Mar 2018 14:47:30 +0100 Subject: mtd: rawnand: get rid of the JEDEC parameter page in nand_chip The NAND chip parameter page is statically allocated within the nand_chip structure, which reserves a lot of space. Even not ONFI nor JEDEC chips have it embedded. Also, only a few parameters are actually read from the parameter page after the detection. Now that there is a small nand_parameters structure that can held generic parameters, remove the JEDEC page from the nand_chip structure by just allocating it during the identification phase and removing it right after. Signed-off-by: Miquel Raynal Signed-off-by: Boris Brezillon --- drivers/mtd/nand/raw/nand_base.c | 41 +++++++++++++++++++++++++++------------- include/linux/mtd/rawnand.h | 17 +---------------- 2 files changed, 29 insertions(+), 29 deletions(-) diff --git a/drivers/mtd/nand/raw/nand_base.c b/drivers/mtd/nand/raw/nand_base.c index 0bd9f22973e9..79348165e4a3 100644 --- a/drivers/mtd/nand/raw/nand_base.c +++ b/drivers/mtd/nand/raw/nand_base.c @@ -5226,8 +5226,9 @@ static int nand_flash_detect_onfi(struct nand_chip *chip) static int nand_flash_detect_jedec(struct nand_chip *chip) { struct mtd_info *mtd = nand_to_mtd(chip); - struct nand_jedec_params *p = &chip->jedec_params; + struct nand_jedec_params *p; struct jedec_ecc_info *ecc; + int jedec_version = 0; char id[5]; int i, val, ret; @@ -5236,14 +5237,23 @@ static int nand_flash_detect_jedec(struct nand_chip *chip) if (ret || strncmp(id, "JEDEC", sizeof(id))) return 0; + /* JEDEC chip: allocate a buffer to hold its parameter page */ + p = kzalloc(sizeof(*p), GFP_KERNEL); + if (!p) + return -ENOMEM; + ret = nand_read_param_page_op(chip, 0x40, NULL, 0); - if (ret) - return 0; + if (ret) { + ret = 0; + goto free_jedec_param_page; + } for (i = 0; i < 3; i++) { ret = nand_read_data_op(chip, p, sizeof(*p), true); - if (ret) - return 0; + if (ret) { + ret = 0; + goto free_jedec_param_page; + } if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 510) == le16_to_cpu(p->crc)) @@ -5252,19 +5262,19 @@ static int nand_flash_detect_jedec(struct nand_chip *chip) if (i == 3) { pr_err("Could not find valid JEDEC parameter page; aborting\n"); - return 0; + goto free_jedec_param_page; } /* Check version */ val = le16_to_cpu(p->revision); if (val & (1 << 2)) - chip->jedec_version = 10; + jedec_version = 10; else if (val & (1 << 1)) - chip->jedec_version = 1; /* vendor specific version */ + jedec_version = 1; /* vendor specific version */ - if (!chip->jedec_version) { + if (!jedec_version) { pr_info("unsupported JEDEC version: %d\n", val); - return 0; + goto free_jedec_param_page; } sanitize_string(p->manufacturer, sizeof(p->manufacturer)); @@ -5285,7 +5295,7 @@ static int nand_flash_detect_jedec(struct nand_chip *chip) chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count; chip->bits_per_cell = p->bits_per_cell; - if (jedec_feature(chip) & JEDEC_FEATURE_16_BIT_BUS) + if (le16_to_cpu(p->features) & JEDEC_FEATURE_16_BIT_BUS) chip->options |= NAND_BUSWIDTH_16; /* ECC info */ @@ -5298,7 +5308,9 @@ static int nand_flash_detect_jedec(struct nand_chip *chip) pr_warn("Invalid codeword size\n"); } - return 1; +free_jedec_param_page: + kfree(p); + return ret; } /* @@ -5604,7 +5616,10 @@ static int nand_detect(struct nand_chip *chip, struct nand_flash_dev *type) goto ident_done; /* Check if the chip is JEDEC compliant */ - if (nand_flash_detect_jedec(chip)) + ret = nand_flash_detect_jedec(chip); + if (ret < 0) + return ret; + else if (ret) goto ident_done; } diff --git a/include/linux/mtd/rawnand.h b/include/linux/mtd/rawnand.h index d9f417719d36..cf82a959b0f3 100644 --- a/include/linux/mtd/rawnand.h +++ b/include/linux/mtd/rawnand.h @@ -1200,12 +1200,8 @@ int nand_op_parser_exec_op(struct nand_chip *chip, * currently in data_buf. * @subpagesize: [INTERN] holds the subpagesize * @id: [INTERN] holds NAND ID - * @jedec_version: [INTERN] holds the chip JEDEC version (BCD encoded), - * non 0 if JEDEC supported. * @onfi_params: [INTERN] holds the ONFI page parameter when ONFI is * supported, 0 otherwise. - * @jedec_params: [INTERN] holds the JEDEC parameter page when JEDEC is - * supported, 0 otherwise. * @parameters: [INTERN] holds generic parameters under an easily * readable form. * @max_bb_per_die: [INTERN] the max number of bad blocks each die of a @@ -1286,11 +1282,7 @@ struct nand_chip { int badblockbits; struct nand_id id; - int jedec_version; - union { - struct nand_onfi_params onfi_params; - struct nand_jedec_params jedec_params; - }; + struct nand_onfi_params onfi_params; struct nand_parameters parameters; u16 max_bb_per_die; u32 blocks_per_die; @@ -1621,13 +1613,6 @@ static inline int nand_opcode_8bits(unsigned int command) return 0; } -/* return the supported JEDEC features. */ -static inline int jedec_feature(struct nand_chip *chip) -{ - return chip->jedec_version ? le16_to_cpu(chip->jedec_params.features) - : 0; -} - /* get timing characteristics from ONFI timing mode. */ const struct nand_sdr_timings *onfi_async_timing_mode_to_sdr_timings(int mode); -- cgit v1.2.3-58-ga151 From bd0b64340c2d66c0fe1aa99b0b23159d7e0c21f2 Mon Sep 17 00:00:00 2001 From: Miquel Raynal Date: Mon, 19 Mar 2018 14:47:31 +0100 Subject: mtd: rawnand: get rid of the ONFI parameter page in nand_chip The NAND chip parameter page is statically allocated within the nand_chip structure, which reserves a lot of space. Even not ONFI nor JEDEC chips have it embedded. Also, only a few parameters are actually read from the parameter page after the detection. Now that there is a small nand_parameters structure that hold all needed ONFI parameters, remove the ONFI page from the nand_chip structure by just allocating it during the identification phase and removing it right after. Signed-off-by: Miquel Raynal Signed-off-by: Boris Brezillon --- drivers/mtd/nand/raw/nand_base.c | 34 +++++++++++++++++++++++++--------- include/linux/mtd/rawnand.h | 3 --- 2 files changed, 25 insertions(+), 12 deletions(-) diff --git a/drivers/mtd/nand/raw/nand_base.c b/drivers/mtd/nand/raw/nand_base.c index 79348165e4a3..d0b993fcf3a5 100644 --- a/drivers/mtd/nand/raw/nand_base.c +++ b/drivers/mtd/nand/raw/nand_base.c @@ -5101,7 +5101,7 @@ ext_out: static int nand_flash_detect_onfi(struct nand_chip *chip) { struct mtd_info *mtd = nand_to_mtd(chip); - struct nand_onfi_params *p = &chip->onfi_params; + struct nand_onfi_params *p; char id[4]; int i, ret, val; @@ -5110,14 +5110,23 @@ static int nand_flash_detect_onfi(struct nand_chip *chip) if (ret || strncmp(id, "ONFI", 4)) return 0; + /* ONFI chip: allocate a buffer to hold its parameter page */ + p = kzalloc(sizeof(*p), GFP_KERNEL); + if (!p) + return -ENOMEM; + ret = nand_read_param_page_op(chip, 0, NULL, 0); - if (ret) - return 0; + if (ret) { + ret = 0; + goto free_onfi_param_page; + } for (i = 0; i < 3; i++) { ret = nand_read_data_op(chip, p, sizeof(*p), true); - if (ret) - return 0; + if (ret) { + ret = 0; + goto free_onfi_param_page; + } if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 254) == le16_to_cpu(p->crc)) { @@ -5127,7 +5136,7 @@ static int nand_flash_detect_onfi(struct nand_chip *chip) if (i == 3) { pr_err("Could not find valid ONFI parameter page; aborting\n"); - return 0; + goto free_onfi_param_page; } /* Check version */ @@ -5145,7 +5154,9 @@ static int nand_flash_detect_onfi(struct nand_chip *chip) if (!chip->parameters.onfi.version) { pr_info("unsupported ONFI version: %d\n", val); - return 0; + goto free_onfi_param_page; + } else { + ret = 1; } sanitize_string(p->manufacturer, sizeof(p->manufacturer)); @@ -5217,7 +5228,9 @@ static int nand_flash_detect_onfi(struct nand_chip *chip) memcpy(chip->parameters.onfi.vendor, p->vendor, sizeof(p->vendor)); - return 1; +free_onfi_param_page: + kfree(p); + return ret; } /* @@ -5612,7 +5625,10 @@ static int nand_detect(struct nand_chip *chip, struct nand_flash_dev *type) chip->parameters.onfi.version = 0; if (!type->name || !type->pagesize) { /* Check if the chip is ONFI compliant */ - if (nand_flash_detect_onfi(chip)) + ret = nand_flash_detect_onfi(chip); + if (ret < 0) + return ret; + else if (ret) goto ident_done; /* Check if the chip is JEDEC compliant */ diff --git a/include/linux/mtd/rawnand.h b/include/linux/mtd/rawnand.h index cf82a959b0f3..5dad59b31244 100644 --- a/include/linux/mtd/rawnand.h +++ b/include/linux/mtd/rawnand.h @@ -1200,8 +1200,6 @@ int nand_op_parser_exec_op(struct nand_chip *chip, * currently in data_buf. * @subpagesize: [INTERN] holds the subpagesize * @id: [INTERN] holds NAND ID - * @onfi_params: [INTERN] holds the ONFI page parameter when ONFI is - * supported, 0 otherwise. * @parameters: [INTERN] holds generic parameters under an easily * readable form. * @max_bb_per_die: [INTERN] the max number of bad blocks each die of a @@ -1282,7 +1280,6 @@ struct nand_chip { int badblockbits; struct nand_id id; - struct nand_onfi_params onfi_params; struct nand_parameters parameters; u16 max_bb_per_die; u32 blocks_per_die; -- cgit v1.2.3-58-ga151 From 76e1a0086a0c3276b384f77905345e0fcc886fdd Mon Sep 17 00:00:00 2001 From: Miquel Raynal Date: Fri, 2 Mar 2018 15:38:39 +0100 Subject: mtd: rawnand: gpmi: support ->setup_data_interface() Until now the GPMI driver had its own timings logic while the core already handles that and request the NAND controller drivers to support the ->setup_data_interface() hook. Implement that hook by reusing the already existing function. No real glue is necessary between core timing delays and GPMI registers because the driver already translates the ONFI timing modes into register values. Make use of the core's tREA, tRLOH and tRHOH values that allow computing more precise timings for mode [0-3] and get significantly better values (+20% with an i.MX6 Sabre Auto board). Otherwise use the existing logic. Signed-off-by: Miquel Raynal Tested-by: Han Xu Signed-off-by: Boris Brezillon --- drivers/mtd/nand/raw/gpmi-nand/gpmi-lib.c | 276 ++++++++--------------------- drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.c | 42 +++-- drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.h | 82 +++++---- 3 files changed, 150 insertions(+), 250 deletions(-) diff --git a/drivers/mtd/nand/raw/gpmi-nand/gpmi-lib.c b/drivers/mtd/nand/raw/gpmi-nand/gpmi-lib.c index f3cc38372d79..cf71cb9cee6a 100644 --- a/drivers/mtd/nand/raw/gpmi-nand/gpmi-lib.c +++ b/drivers/mtd/nand/raw/gpmi-nand/gpmi-lib.c @@ -151,8 +151,15 @@ err_clk: return ret; } -#define gpmi_enable_clk(x) __gpmi_enable_clk(x, true) -#define gpmi_disable_clk(x) __gpmi_enable_clk(x, false) +int gpmi_enable_clk(struct gpmi_nand_data *this) +{ + return __gpmi_enable_clk(this, true); +} + +int gpmi_disable_clk(struct gpmi_nand_data *this) +{ + return __gpmi_enable_clk(this, false); +} int gpmi_init(struct gpmi_nand_data *this) { @@ -326,14 +333,13 @@ static unsigned int ns_to_cycles(unsigned int time, #define DEF_MIN_PROP_DELAY 5 #define DEF_MAX_PROP_DELAY 9 /* Apply timing to current hardware conditions. */ -static int gpmi_nfc_compute_hardware_timing(struct gpmi_nand_data *this, - struct gpmi_nfc_hardware_timing *hw) +static void +gpmi_nfc_compute_hardware_timings(struct gpmi_nand_data *this) { + struct gpmi_nfc_hardware_timing *hw = &this->hw; struct timing_threshold *nfc = &timing_default_threshold; - struct resources *r = &this->resources; struct nand_chip *nand = &this->nand; struct nand_timing target = this->timing; - bool improved_timing_is_available; unsigned long clock_frequency_in_hz; unsigned int clock_period_in_ns; bool dll_use_half_periods; @@ -349,6 +355,9 @@ static int gpmi_nfc_compute_hardware_timing(struct gpmi_nand_data *this, unsigned int min_prop_delay_in_ns = DEF_MIN_PROP_DELAY; unsigned int max_prop_delay_in_ns = DEF_MAX_PROP_DELAY; + /* Clock rate for non-EDO modes */ + hw->clk_rate = 22000000; + /* * If there are multiple chips, we need to relax the timings to allow * for signal distortion due to higher capacitance. @@ -363,14 +372,8 @@ static int gpmi_nfc_compute_hardware_timing(struct gpmi_nand_data *this, target.address_setup_in_ns += 5; } - /* Check if improved timing information is available. */ - improved_timing_is_available = - (target.tREA_in_ns >= 0) && - (target.tRLOH_in_ns >= 0) && - (target.tRHOH_in_ns >= 0); - /* Inspect the clock. */ - nfc->clock_frequency_in_hz = clk_get_rate(r->clock[0]); + nfc->clock_frequency_in_hz = hw->clk_rate; clock_frequency_in_hz = nfc->clock_frequency_in_hz; clock_period_in_ns = NSEC_PER_SEC / clock_frequency_in_hz; @@ -481,65 +484,6 @@ static int gpmi_nfc_compute_hardware_timing(struct gpmi_nand_data *this, max_sample_delay_in_ns = nfc->max_dll_delay_in_ns; } - /* - * Check if improved timing information is available. If not, we have to - * use a less-sophisticated algorithm. - */ - if (!improved_timing_is_available) { - /* - * Fold the read setup time required by the NFC into the ideal - * sample delay. - */ - ideal_sample_delay_in_ns = target.gpmi_sample_delay_in_ns + - nfc->internal_data_setup_in_ns; - - /* - * The ideal sample delay may be greater than the maximum - * allowed by the NFC. If so, we can trade off sample delay time - * for more data setup time. - * - * In each iteration of the following loop, we add a cycle to - * the data setup time and subtract a corresponding amount from - * the sample delay until we've satisified the constraints or - * can't do any better. - */ - while ((ideal_sample_delay_in_ns > max_sample_delay_in_ns) && - (data_setup_in_cycles < nfc->max_data_setup_cycles)) { - - data_setup_in_cycles++; - ideal_sample_delay_in_ns -= clock_period_in_ns; - - if (ideal_sample_delay_in_ns < 0) - ideal_sample_delay_in_ns = 0; - - } - - /* - * Compute the sample delay factor that corresponds most closely - * to the ideal sample delay. If the result is too large for the - * NFC, use the maximum value. - * - * Notice that we use the ns_to_cycles function to compute the - * sample delay factor. We do this because the form of the - * computation is the same as that for calculating cycles. - */ - sample_delay_factor = - ns_to_cycles( - ideal_sample_delay_in_ns << dll_delay_shift, - clock_period_in_ns, 0); - - if (sample_delay_factor > nfc->max_sample_delay_factor) - sample_delay_factor = nfc->max_sample_delay_factor; - - /* Skip to the part where we return our results. */ - goto return_results; - } - - /* - * If control arrives here, we have more detailed timing information, - * so we can use a better algorithm. - */ - /* * Fold the read setup time required by the NFC into the maximum * propagation delay. @@ -760,8 +704,6 @@ static int gpmi_nfc_compute_hardware_timing(struct gpmi_nand_data *this, sample_delay_factor = nfc->max_sample_delay_factor; } - /* Control arrives here when we're ready to return our results. */ -return_results: hw->data_setup_in_cycles = data_setup_in_cycles; hw->data_hold_in_cycles = data_hold_in_cycles; hw->address_setup_in_cycles = address_setup_in_cycles; @@ -769,9 +711,6 @@ return_results: hw->sample_delay_factor = sample_delay_factor; hw->device_busy_timeout = GPMI_DEFAULT_BUSY_TIMEOUT; hw->wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_4_TO_8NS; - - /* Return success. */ - return 0; } /* @@ -857,19 +796,17 @@ return_results: * So we only support the mode 4 and mode 5. It is no need to * support other modes. */ -static void gpmi_compute_edo_timing(struct gpmi_nand_data *this, - struct gpmi_nfc_hardware_timing *hw) +static void gpmi_nfc_compute_edo_timings(struct gpmi_nand_data *this, + int mode) { - struct resources *r = &this->resources; - unsigned long rate = clk_get_rate(r->clock[0]); - int mode = this->timing_mode; + struct gpmi_nfc_hardware_timing *hw = &this->hw; int dll_threshold = this->devdata->max_chain_delay; unsigned long delay; unsigned long clk_period; - int t_rea; - int c = 4; - int t_rp; - int rp; + int t_rp, t_rea, rp; + + /* Set the main clock to: 100MHz (mode 5) or 80MHz (mode 4) */ + hw->clk_rate = (mode == 5) ? 100000000 : 80000000; /* * [1] for GPMI_HW_GPMI_TIMING0: @@ -880,7 +817,7 @@ static void gpmi_compute_edo_timing(struct gpmi_nand_data *this, */ hw->data_setup_in_cycles = 1; hw->data_hold_in_cycles = 1; - hw->address_setup_in_cycles = ((mode == 5) ? 1 : 0); + hw->address_setup_in_cycles = (mode == 5) ? 1 : 0; /* [2] for GPMI_HW_GPMI_TIMING1 */ hw->device_busy_timeout = 0x9000; @@ -892,11 +829,9 @@ static void gpmi_compute_edo_timing(struct gpmi_nand_data *this, * Enlarge 10 times for the numerator and denominator in {3}. * This make us to get more accurate result. */ - clk_period = NSEC_PER_SEC / (rate / 10); + clk_period = NSEC_PER_SEC / (hw->clk_rate / 10); dll_threshold *= 10; - t_rea = ((mode == 5) ? 16 : 20) * 10; - c *= 10; - + t_rea = this->timing.tREA_in_ns * 10; t_rp = clk_period * 1; /* DATA_SETUP is 1 */ if (clk_period > dll_threshold) { @@ -911,127 +846,41 @@ static void gpmi_compute_edo_timing(struct gpmi_nand_data *this, * Multiply the numerator with 10, we could do a round off: * 7.8 round up to 8; 7.4 round down to 7. */ - delay = (((t_rea + c - t_rp) * 8) * 10) / rp; + delay = (((t_rea + 40 - t_rp) * 8) * 10) / rp; delay = (delay + 5) / 10; hw->sample_delay_factor = delay; } -static int enable_edo_mode(struct gpmi_nand_data *this, int mode) -{ - struct resources *r = &this->resources; - struct nand_chip *nand = &this->nand; - struct mtd_info *mtd = nand_to_mtd(nand); - uint8_t *feature; - unsigned long rate; - int ret; - - feature = kzalloc(ONFI_SUBFEATURE_PARAM_LEN, GFP_KERNEL); - if (!feature) - return -ENOMEM; - - nand->select_chip(mtd, 0); - - /* [1] send SET FEATURE command to NAND */ - feature[0] = mode; - ret = nand_set_features(nand, ONFI_FEATURE_ADDR_TIMING_MODE, feature); - if (ret) - goto err_out; - - /* [2] send GET FEATURE command to double-check the timing mode */ - memset(feature, 0, ONFI_SUBFEATURE_PARAM_LEN); - ret = nand_get_features(nand, ONFI_FEATURE_ADDR_TIMING_MODE, feature); - if (ret || feature[0] != mode) - goto err_out; - - nand->select_chip(mtd, -1); - - /* [3] set the main IO clock, 100MHz for mode 5, 80MHz for mode 4. */ - rate = (mode == 5) ? 100000000 : 80000000; - clk_set_rate(r->clock[0], rate); - - /* Let the gpmi_begin() re-compute the timing again. */ - this->flags &= ~GPMI_TIMING_INIT_OK; - - this->flags |= GPMI_ASYNC_EDO_ENABLED; - this->timing_mode = mode; - kfree(feature); - dev_info(this->dev, "enable the asynchronous EDO mode %d\n", mode); - return 0; - -err_out: - nand->select_chip(mtd, -1); - kfree(feature); - dev_err(this->dev, "mode:%d ,failed in set feature.\n", mode); - return -EINVAL; -} - -int gpmi_extra_init(struct gpmi_nand_data *this) -{ - struct nand_chip *chip = &this->nand; - - /* Enable the asynchronous EDO feature. */ - if (GPMI_IS_MX6(this) && chip->parameters.onfi.version) { - int mode = onfi_get_async_timing_mode(chip); - - /* We only support the timing mode 4 and mode 5. */ - if (mode & ONFI_TIMING_MODE_5) - mode = 5; - else if (mode & ONFI_TIMING_MODE_4) - mode = 4; - else - return 0; - - return enable_edo_mode(this, mode); - } - return 0; -} - -/* Begin the I/O */ -void gpmi_begin(struct gpmi_nand_data *this) +void gpmi_nfc_apply_timings(struct gpmi_nand_data *this) { + struct gpmi_nfc_hardware_timing *hw = &this->hw; struct resources *r = &this->resources; void __iomem *gpmi_regs = r->gpmi_regs; unsigned int clock_period_in_ns; uint32_t reg; unsigned int dll_wait_time_in_us; - struct gpmi_nfc_hardware_timing hw; - int ret; - - /* Enable the clock. */ - ret = gpmi_enable_clk(this); - if (ret) { - dev_err(this->dev, "We failed in enable the clk\n"); - goto err_out; - } - /* Only initialize the timing once */ - if (this->flags & GPMI_TIMING_INIT_OK) - return; - this->flags |= GPMI_TIMING_INIT_OK; - - if (this->flags & GPMI_ASYNC_EDO_ENABLED) - gpmi_compute_edo_timing(this, &hw); - else - gpmi_nfc_compute_hardware_timing(this, &hw); + /* [0] Set the main clock rate */ + clk_set_rate(r->clock[0], hw->clk_rate); /* [1] Set HW_GPMI_TIMING0 */ - reg = BF_GPMI_TIMING0_ADDRESS_SETUP(hw.address_setup_in_cycles) | - BF_GPMI_TIMING0_DATA_HOLD(hw.data_hold_in_cycles) | - BF_GPMI_TIMING0_DATA_SETUP(hw.data_setup_in_cycles); + reg = BF_GPMI_TIMING0_ADDRESS_SETUP(hw->address_setup_in_cycles) | + BF_GPMI_TIMING0_DATA_HOLD(hw->data_hold_in_cycles) | + BF_GPMI_TIMING0_DATA_SETUP(hw->data_setup_in_cycles); writel(reg, gpmi_regs + HW_GPMI_TIMING0); /* [2] Set HW_GPMI_TIMING1 */ - writel(BF_GPMI_TIMING1_BUSY_TIMEOUT(hw.device_busy_timeout), - gpmi_regs + HW_GPMI_TIMING1); + writel(BF_GPMI_TIMING1_BUSY_TIMEOUT(hw->device_busy_timeout), + gpmi_regs + HW_GPMI_TIMING1); /* [3] The following code is to set the HW_GPMI_CTRL1. */ /* Set the WRN_DLY_SEL */ writel(BM_GPMI_CTRL1_WRN_DLY_SEL, gpmi_regs + HW_GPMI_CTRL1_CLR); - writel(BF_GPMI_CTRL1_WRN_DLY_SEL(hw.wrn_dly_sel), - gpmi_regs + HW_GPMI_CTRL1_SET); + writel(BF_GPMI_CTRL1_WRN_DLY_SEL(hw->wrn_dly_sel), + gpmi_regs + HW_GPMI_CTRL1_SET); /* DLL_ENABLE must be set to 0 when setting RDN_DELAY or HALF_PERIOD. */ writel(BM_GPMI_CTRL1_DLL_ENABLE, gpmi_regs + HW_GPMI_CTRL1_CLR); @@ -1041,12 +890,12 @@ void gpmi_begin(struct gpmi_nand_data *this) writel(reg, gpmi_regs + HW_GPMI_CTRL1_CLR); /* If no sample delay is called for, return immediately. */ - if (!hw.sample_delay_factor) + if (!hw->sample_delay_factor) return; /* Set RDN_DELAY or HALF_PERIOD. */ - reg = ((hw.use_half_periods) ? BM_GPMI_CTRL1_HALF_PERIOD : 0) - | BF_GPMI_CTRL1_RDN_DELAY(hw.sample_delay_factor); + reg = ((hw->use_half_periods) ? BM_GPMI_CTRL1_HALF_PERIOD : 0) + | BF_GPMI_CTRL1_RDN_DELAY(hw->sample_delay_factor); writel(reg, gpmi_regs + HW_GPMI_CTRL1_SET); @@ -1058,7 +907,7 @@ void gpmi_begin(struct gpmi_nand_data *this) * we can use the GPMI. Calculate the amount of time we need to wait, * in microseconds. */ - clock_period_in_ns = NSEC_PER_SEC / clk_get_rate(r->clock[0]); + clock_period_in_ns = NSEC_PER_SEC / hw->clk_rate; dll_wait_time_in_us = (clock_period_in_ns * 64) / 1000; if (!dll_wait_time_in_us) @@ -1066,14 +915,45 @@ void gpmi_begin(struct gpmi_nand_data *this) /* Wait for the DLL to settle. */ udelay(dll_wait_time_in_us); - -err_out: - return; } -void gpmi_end(struct gpmi_nand_data *this) +int gpmi_setup_data_interface(struct mtd_info *mtd, int chipnr, + const struct nand_data_interface *conf) { - gpmi_disable_clk(this); + struct nand_chip *chip = mtd_to_nand(mtd); + struct gpmi_nand_data *this = nand_get_controller_data(chip); + const struct nand_sdr_timings *sdr; + bool edo_mode = false; + + /* Retrieve required NAND timings */ + sdr = nand_get_sdr_timings(conf); + if (IS_ERR(sdr)) + return PTR_ERR(sdr); + + if (sdr->tRC_min <= 25000) + edo_mode = true; + + /* Only MX6 GPMI controller can reach EDO timings */ + if (edo_mode && !GPMI_IS_MX6(this)) + return -ENOTSUPP; + + if (chipnr < 0) + return 0; + + this->timing.tREA_in_ns = sdr->tREA_max / 1000; + this->timing.tRLOH_in_ns = sdr->tRLOH_min / 1000; + this->timing.tRHOH_in_ns = sdr->tRHOH_min / 1000; + + /* Compute GPMI parameters depending on the mode */ + if (edo_mode) + gpmi_nfc_compute_edo_timings(this, + sdr->tRC_min > 20000 ? 4 : 5); + else + gpmi_nfc_compute_hardware_timings(this); + + this->hw.must_apply_timings = true; + + return 0; } /* Clears a BCH interrupt. */ diff --git a/drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.c b/drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.c index 61fdd733492f..e7e01934f50d 100644 --- a/drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.c +++ b/drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.c @@ -938,11 +938,32 @@ static void gpmi_select_chip(struct mtd_info *mtd, int chipnr) { struct nand_chip *chip = mtd_to_nand(mtd); struct gpmi_nand_data *this = nand_get_controller_data(chip); + int ret; - if ((this->current_chip < 0) && (chipnr >= 0)) - gpmi_begin(this); - else if ((this->current_chip >= 0) && (chipnr < 0)) - gpmi_end(this); + /* + * For power consumption matters, disable/enable the clock each time a + * die is selected/unselected. + */ + if (this->current_chip < 0 && chipnr >= 0) { + ret = gpmi_enable_clk(this); + if (ret) + dev_err(this->dev, "Failed to enable the clock\n"); + } else if (this->current_chip >= 0 && chipnr < 0) { + ret = gpmi_disable_clk(this); + if (ret) + dev_err(this->dev, "Failed to disable the clock\n"); + } + + /* + * This driver currently supports only one NAND chip. Plus, dies share + * the same configuration. So once timings have been applied on the + * controller side, they will not change anymore. When the time will + * come, the check on must_apply_timings will have to be dropped. + */ + if (chipnr >= 0 && this->hw.must_apply_timings) { + this->hw.must_apply_timings = false; + gpmi_nfc_apply_timings(this); + } this->current_chip = chipnr; } @@ -1955,14 +1976,6 @@ static int gpmi_init_last(struct gpmi_nand_data *this) chip->options |= NAND_SUBPAGE_READ; } - /* - * Can we enable the extra features? such as EDO or Sync mode. - * - * We do not check the return value now. That's means if we fail in - * enable the extra features, we still can run in the normal way. - */ - gpmi_extra_init(this); - return 0; } @@ -1983,6 +1996,7 @@ static int gpmi_nand_init(struct gpmi_nand_data *this) nand_set_controller_data(chip, this); nand_set_flash_node(chip, this->pdev->dev.of_node); chip->select_chip = gpmi_select_chip; + chip->setup_data_interface = gpmi_setup_data_interface; chip->cmd_ctrl = gpmi_cmd_ctrl; chip->dev_ready = gpmi_dev_ready; chip->read_byte = gpmi_read_byte; @@ -2141,7 +2155,6 @@ static int gpmi_pm_resume(struct device *dev) return ret; /* re-init the GPMI registers */ - this->flags &= ~GPMI_TIMING_INIT_OK; ret = gpmi_init(this); if (ret) { dev_err(this->dev, "Error setting GPMI : %d\n", ret); @@ -2155,9 +2168,6 @@ static int gpmi_pm_resume(struct device *dev) return ret; } - /* re-init others */ - gpmi_extra_init(this); - return 0; } #endif /* CONFIG_PM_SLEEP */ diff --git a/drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.h b/drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.h index 06c1f993912c..23f9030cf6d2 100644 --- a/drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.h +++ b/drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.h @@ -135,11 +135,47 @@ struct gpmi_devdata { const int clks_count; }; +/** + * struct gpmi_nfc_hardware_timing - GPMI hardware timing parameters. + * @timing_mode: The timing mode to comply with. + * @must_apply_timings: Whether controller timings have already been + * applied or not (useful only while there is + * support for only one chip select) + * @clk_rate: The clock rate that must be used to derive the + * following parameters. + * @data_setup_in_cycles: The data setup time, in cycles. + * @data_hold_in_cycles: The data hold time, in cycles. + * @address_setup_in_cycles: The address setup time, in cycles. + * @device_busy_timeout: The timeout waiting for NAND Ready/Busy, + * this value is the number of cycles multiplied + * by 4096. + * @use_half_periods: Indicates the clock is running slowly, so the + * NFC DLL should use half-periods. + * @sample_delay_factor: The sample delay factor. + * @wrn_dly_sel: The delay on the GPMI write strobe. + */ +struct gpmi_nfc_hardware_timing { + unsigned int timing_mode; + bool must_apply_timings; + unsigned long int clk_rate; + + /* for HW_GPMI_TIMING0 */ + u8 data_setup_in_cycles; + u8 data_hold_in_cycles; + u8 address_setup_in_cycles; + + /* for HW_GPMI_TIMING1 */ + u16 device_busy_timeout; +#define GPMI_DEFAULT_BUSY_TIMEOUT 0x500 /* default busy timeout value.*/ + + /* for HW_GPMI_CTRL1 */ + bool use_half_periods; + u8 sample_delay_factor; + u8 wrn_dly_sel; +}; + struct gpmi_nand_data { - /* flags */ -#define GPMI_ASYNC_EDO_ENABLED (1 << 0) -#define GPMI_TIMING_INIT_OK (1 << 1) - int flags; + /* Devdata */ const struct gpmi_devdata *devdata; /* System Interface */ @@ -152,6 +188,7 @@ struct gpmi_nand_data { /* Flash Hardware */ struct nand_timing timing; int timing_mode; + struct gpmi_nfc_hardware_timing hw; /* BCH */ struct bch_geometry bch_geometry; @@ -204,35 +241,6 @@ struct gpmi_nand_data { void *private; }; -/** - * struct gpmi_nfc_hardware_timing - GPMI hardware timing parameters. - * @data_setup_in_cycles: The data setup time, in cycles. - * @data_hold_in_cycles: The data hold time, in cycles. - * @address_setup_in_cycles: The address setup time, in cycles. - * @device_busy_timeout: The timeout waiting for NAND Ready/Busy, - * this value is the number of cycles multiplied - * by 4096. - * @use_half_periods: Indicates the clock is running slowly, so the - * NFC DLL should use half-periods. - * @sample_delay_factor: The sample delay factor. - * @wrn_dly_sel: The delay on the GPMI write strobe. - */ -struct gpmi_nfc_hardware_timing { - /* for HW_GPMI_TIMING0 */ - uint8_t data_setup_in_cycles; - uint8_t data_hold_in_cycles; - uint8_t address_setup_in_cycles; - - /* for HW_GPMI_TIMING1 */ - uint16_t device_busy_timeout; -#define GPMI_DEFAULT_BUSY_TIMEOUT 0x500 /* default busy timeout value.*/ - - /* for HW_GPMI_CTRL1 */ - bool use_half_periods; - uint8_t sample_delay_factor; - uint8_t wrn_dly_sel; -}; - /** * struct timing_threshold - Timing threshold * @max_data_setup_cycles: The maximum number of data setup cycles that @@ -279,14 +287,16 @@ int start_dma_with_bch_irq(struct gpmi_nand_data *, /* GPMI-NAND helper function library */ int gpmi_init(struct gpmi_nand_data *); -int gpmi_extra_init(struct gpmi_nand_data *); void gpmi_clear_bch(struct gpmi_nand_data *); void gpmi_dump_info(struct gpmi_nand_data *); int bch_set_geometry(struct gpmi_nand_data *); int gpmi_is_ready(struct gpmi_nand_data *, unsigned chip); int gpmi_send_command(struct gpmi_nand_data *); -void gpmi_begin(struct gpmi_nand_data *); -void gpmi_end(struct gpmi_nand_data *); +int gpmi_enable_clk(struct gpmi_nand_data *this); +int gpmi_disable_clk(struct gpmi_nand_data *this); +int gpmi_setup_data_interface(struct mtd_info *mtd, int chipnr, + const struct nand_data_interface *conf); +void gpmi_nfc_apply_timings(struct gpmi_nand_data *this); int gpmi_read_data(struct gpmi_nand_data *); int gpmi_send_data(struct gpmi_nand_data *); int gpmi_send_page(struct gpmi_nand_data *, -- cgit v1.2.3-58-ga151 From b1206122069aadabe1a8c50789277a978aaa4df7 Mon Sep 17 00:00:00 2001 From: Miquel Raynal Date: Fri, 2 Mar 2018 15:38:40 +0100 Subject: mtd: rawnand: gpmi: use core timings instead of an empirical derivation GPMI driver timings derivation looks very empirical and does not use the known timings that the core wants to use with the NAND chip, by using local defined constants that have no special meaning from the outside world. Simplify the way all of this is computed and use the NAND core's SDR timings. Integrity of the reads/writes has been checked with nandbiterrs, speed improvements with flash_speed on a Freescale i.MX6 DualLite/Solo SABRE Automotive Board. Measures are below, variations of less than 150kiB/s between tests are common and then not significant. Speeds using mode 5 are the same, while speeds using mode 0 are quite improved (+40/50% from non-optimal computation). Forcing timings mode 0: ======================= Before this patch: ------------------ eraseblock write speed is 2298 KiB/s eraseblock read speed is 3636 KiB/s page write speed is 2136 KiB/s page read speed is 3316 KiB/s 2 page write speed is 2199 KiB/s 2 page read speed is 3468 KiB/s After this patch: ----------------- eraseblock write speed is 3232 KiB/s eraseblock read speed is 5663 KiB/s page write speed is 2915 KiB/s page read speed is 4904 KiB/s 2 page write speed is 3084 KiB/s 2 page read speed is 5267 KiB/s Forcing timings mode 5: ======================= Before this patch: ------------------ eraseblock write speed is 4338 KiB/s eraseblock read speed is 14883 KiB/s page write speed is 3786 KiB/s page read speed is 12800 KiB/s 2 page write speed is 4076 KiB/s 2 page read speed is 14065 KiB/s After this patch: ----------------- eraseblock write speed is 4309 KiB/s eraseblock read speed is 14712 KiB/s page write speed is 3764 KiB/s page read speed is 12673 KiB/s 2 page write speed is 4076 KiB/s 2 page read speed is 14065 KiB/s Signed-off-by: Miquel Raynal Signed-off-by: Boris Brezillon --- drivers/mtd/nand/raw/gpmi-nand/gpmi-lib.c | 605 ++++------------------------- drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.c | 40 +- drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.h | 103 +---- drivers/mtd/nand/raw/gpmi-nand/gpmi-regs.h | 5 + 4 files changed, 98 insertions(+), 655 deletions(-) diff --git a/drivers/mtd/nand/raw/gpmi-nand/gpmi-lib.c b/drivers/mtd/nand/raw/gpmi-nand/gpmi-lib.c index cf71cb9cee6a..e94556705dc7 100644 --- a/drivers/mtd/nand/raw/gpmi-nand/gpmi-lib.c +++ b/drivers/mtd/nand/raw/gpmi-nand/gpmi-lib.c @@ -26,15 +26,8 @@ #include "gpmi-regs.h" #include "bch-regs.h" -static struct timing_threshold timing_default_threshold = { - .max_data_setup_cycles = (BM_GPMI_TIMING0_DATA_SETUP >> - BP_GPMI_TIMING0_DATA_SETUP), - .internal_data_setup_in_ns = 0, - .max_sample_delay_factor = (BM_GPMI_CTRL1_RDN_DELAY >> - BP_GPMI_CTRL1_RDN_DELAY), - .max_dll_clock_period_in_ns = 32, - .max_dll_delay_in_ns = 16, -}; +/* Converts time to clock cycles */ +#define TO_CYCLES(duration, period) DIV_ROUND_UP_ULL(duration, period) #define MXS_SET_ADDR 0x4 #define MXS_CLR_ADDR 0x8 @@ -181,7 +174,6 @@ int gpmi_init(struct gpmi_nand_data *this) if (ret) goto err_out; - /* Choose NAND mode. */ writel(BM_GPMI_CTRL1_GPMI_MODE, r->gpmi_regs + HW_GPMI_CTRL1_CLR); @@ -320,399 +312,6 @@ err_out: return ret; } -/* Converts time in nanoseconds to cycles. */ -static unsigned int ns_to_cycles(unsigned int time, - unsigned int period, unsigned int min) -{ - unsigned int k; - - k = (time + period - 1) / period; - return max(k, min); -} - -#define DEF_MIN_PROP_DELAY 5 -#define DEF_MAX_PROP_DELAY 9 -/* Apply timing to current hardware conditions. */ -static void -gpmi_nfc_compute_hardware_timings(struct gpmi_nand_data *this) -{ - struct gpmi_nfc_hardware_timing *hw = &this->hw; - struct timing_threshold *nfc = &timing_default_threshold; - struct nand_chip *nand = &this->nand; - struct nand_timing target = this->timing; - unsigned long clock_frequency_in_hz; - unsigned int clock_period_in_ns; - bool dll_use_half_periods; - unsigned int dll_delay_shift; - unsigned int max_sample_delay_in_ns; - unsigned int address_setup_in_cycles; - unsigned int data_setup_in_ns; - unsigned int data_setup_in_cycles; - unsigned int data_hold_in_cycles; - int ideal_sample_delay_in_ns; - unsigned int sample_delay_factor; - int tEYE; - unsigned int min_prop_delay_in_ns = DEF_MIN_PROP_DELAY; - unsigned int max_prop_delay_in_ns = DEF_MAX_PROP_DELAY; - - /* Clock rate for non-EDO modes */ - hw->clk_rate = 22000000; - - /* - * If there are multiple chips, we need to relax the timings to allow - * for signal distortion due to higher capacitance. - */ - if (nand->numchips > 2) { - target.data_setup_in_ns += 10; - target.data_hold_in_ns += 10; - target.address_setup_in_ns += 10; - } else if (nand->numchips > 1) { - target.data_setup_in_ns += 5; - target.data_hold_in_ns += 5; - target.address_setup_in_ns += 5; - } - - /* Inspect the clock. */ - nfc->clock_frequency_in_hz = hw->clk_rate; - clock_frequency_in_hz = nfc->clock_frequency_in_hz; - clock_period_in_ns = NSEC_PER_SEC / clock_frequency_in_hz; - - /* - * The NFC quantizes setup and hold parameters in terms of clock cycles. - * Here, we quantize the setup and hold timing parameters to the - * next-highest clock period to make sure we apply at least the - * specified times. - * - * For data setup and data hold, the hardware interprets a value of zero - * as the largest possible delay. This is not what's intended by a zero - * in the input parameter, so we impose a minimum of one cycle. - */ - data_setup_in_cycles = ns_to_cycles(target.data_setup_in_ns, - clock_period_in_ns, 1); - data_hold_in_cycles = ns_to_cycles(target.data_hold_in_ns, - clock_period_in_ns, 1); - address_setup_in_cycles = ns_to_cycles(target.address_setup_in_ns, - clock_period_in_ns, 0); - - /* - * The clock's period affects the sample delay in a number of ways: - * - * (1) The NFC HAL tells us the maximum clock period the sample delay - * DLL can tolerate. If the clock period is greater than half that - * maximum, we must configure the DLL to be driven by half periods. - * - * (2) We need to convert from an ideal sample delay, in ns, to a - * "sample delay factor," which the NFC uses. This factor depends on - * whether we're driving the DLL with full or half periods. - * Paraphrasing the reference manual: - * - * AD = SDF x 0.125 x RP - * - * where: - * - * AD is the applied delay, in ns. - * SDF is the sample delay factor, which is dimensionless. - * RP is the reference period, in ns, which is a full clock period - * if the DLL is being driven by full periods, or half that if - * the DLL is being driven by half periods. - * - * Let's re-arrange this in a way that's more useful to us: - * - * 8 - * SDF = AD x ---- - * RP - * - * The reference period is either the clock period or half that, so this - * is: - * - * 8 AD x DDF - * SDF = AD x ----- = -------- - * f x P P - * - * where: - * - * f is 1 or 1/2, depending on how we're driving the DLL. - * P is the clock period. - * DDF is the DLL Delay Factor, a dimensionless value that - * incorporates all the constants in the conversion. - * - * DDF will be either 8 or 16, both of which are powers of two. We can - * reduce the cost of this conversion by using bit shifts instead of - * multiplication or division. Thus: - * - * AD << DDS - * SDF = --------- - * P - * - * or - * - * AD = (SDF >> DDS) x P - * - * where: - * - * DDS is the DLL Delay Shift, the logarithm to base 2 of the DDF. - */ - if (clock_period_in_ns > (nfc->max_dll_clock_period_in_ns >> 1)) { - dll_use_half_periods = true; - dll_delay_shift = 3 + 1; - } else { - dll_use_half_periods = false; - dll_delay_shift = 3; - } - - /* - * Compute the maximum sample delay the NFC allows, under current - * conditions. If the clock is running too slowly, no sample delay is - * possible. - */ - if (clock_period_in_ns > nfc->max_dll_clock_period_in_ns) - max_sample_delay_in_ns = 0; - else { - /* - * Compute the delay implied by the largest sample delay factor - * the NFC allows. - */ - max_sample_delay_in_ns = - (nfc->max_sample_delay_factor * clock_period_in_ns) >> - dll_delay_shift; - - /* - * Check if the implied sample delay larger than the NFC - * actually allows. - */ - if (max_sample_delay_in_ns > nfc->max_dll_delay_in_ns) - max_sample_delay_in_ns = nfc->max_dll_delay_in_ns; - } - - /* - * Fold the read setup time required by the NFC into the maximum - * propagation delay. - */ - max_prop_delay_in_ns += nfc->internal_data_setup_in_ns; - - /* - * Earlier, we computed the number of clock cycles required to satisfy - * the data setup time. Now, we need to know the actual nanoseconds. - */ - data_setup_in_ns = clock_period_in_ns * data_setup_in_cycles; - - /* - * Compute tEYE, the width of the data eye when reading from the NAND - * Flash. The eye width is fundamentally determined by the data setup - * time, perturbed by propagation delays and some characteristics of the - * NAND Flash device. - * - * start of the eye = max_prop_delay + tREA - * end of the eye = min_prop_delay + tRHOH + data_setup - */ - tEYE = (int)min_prop_delay_in_ns + (int)target.tRHOH_in_ns + - (int)data_setup_in_ns; - - tEYE -= (int)max_prop_delay_in_ns + (int)target.tREA_in_ns; - - /* - * The eye must be open. If it's not, we can try to open it by - * increasing its main forcer, the data setup time. - * - * In each iteration of the following loop, we increase the data setup - * time by a single clock cycle. We do this until either the eye is - * open or we run into NFC limits. - */ - while ((tEYE <= 0) && - (data_setup_in_cycles < nfc->max_data_setup_cycles)) { - /* Give a cycle to data setup. */ - data_setup_in_cycles++; - /* Synchronize the data setup time with the cycles. */ - data_setup_in_ns += clock_period_in_ns; - /* Adjust tEYE accordingly. */ - tEYE += clock_period_in_ns; - } - - /* - * When control arrives here, the eye is open. The ideal time to sample - * the data is in the center of the eye: - * - * end of the eye + start of the eye - * --------------------------------- - data_setup - * 2 - * - * After some algebra, this simplifies to the code immediately below. - */ - ideal_sample_delay_in_ns = - ((int)max_prop_delay_in_ns + - (int)target.tREA_in_ns + - (int)min_prop_delay_in_ns + - (int)target.tRHOH_in_ns - - (int)data_setup_in_ns) >> 1; - - /* - * The following figure illustrates some aspects of a NAND Flash read: - * - * - * __ _____________________________________ - * RDN \_________________/ - * - * <---- tEYE -----> - * /-----------------\ - * Read Data ----------------------------< >--------- - * \-----------------/ - * ^ ^ ^ ^ - * | | | | - * |<--Data Setup -->|<--Delay Time -->| | - * | | | | - * | | | - * | |<-- Quantized Delay Time -->| - * | | | - * - * - * We have some issues we must now address: - * - * (1) The *ideal* sample delay time must not be negative. If it is, we - * jam it to zero. - * - * (2) The *ideal* sample delay time must not be greater than that - * allowed by the NFC. If it is, we can increase the data setup - * time, which will reduce the delay between the end of the data - * setup and the center of the eye. It will also make the eye - * larger, which might help with the next issue... - * - * (3) The *quantized* sample delay time must not fall either before the - * eye opens or after it closes (the latter is the problem - * illustrated in the above figure). - */ - - /* Jam a negative ideal sample delay to zero. */ - if (ideal_sample_delay_in_ns < 0) - ideal_sample_delay_in_ns = 0; - - /* - * Extend the data setup as needed to reduce the ideal sample delay - * below the maximum permitted by the NFC. - */ - while ((ideal_sample_delay_in_ns > max_sample_delay_in_ns) && - (data_setup_in_cycles < nfc->max_data_setup_cycles)) { - - /* Give a cycle to data setup. */ - data_setup_in_cycles++; - /* Synchronize the data setup time with the cycles. */ - data_setup_in_ns += clock_period_in_ns; - /* Adjust tEYE accordingly. */ - tEYE += clock_period_in_ns; - - /* - * Decrease the ideal sample delay by one half cycle, to keep it - * in the middle of the eye. - */ - ideal_sample_delay_in_ns -= (clock_period_in_ns >> 1); - - /* Jam a negative ideal sample delay to zero. */ - if (ideal_sample_delay_in_ns < 0) - ideal_sample_delay_in_ns = 0; - } - - /* - * Compute the sample delay factor that corresponds to the ideal sample - * delay. If the result is too large, then use the maximum allowed - * value. - * - * Notice that we use the ns_to_cycles function to compute the sample - * delay factor. We do this because the form of the computation is the - * same as that for calculating cycles. - */ - sample_delay_factor = - ns_to_cycles(ideal_sample_delay_in_ns << dll_delay_shift, - clock_period_in_ns, 0); - - if (sample_delay_factor > nfc->max_sample_delay_factor) - sample_delay_factor = nfc->max_sample_delay_factor; - - /* - * These macros conveniently encapsulate a computation we'll use to - * continuously evaluate whether or not the data sample delay is inside - * the eye. - */ - #define IDEAL_DELAY ((int) ideal_sample_delay_in_ns) - - #define QUANTIZED_DELAY \ - ((int) ((sample_delay_factor * clock_period_in_ns) >> \ - dll_delay_shift)) - - #define DELAY_ERROR (abs(QUANTIZED_DELAY - IDEAL_DELAY)) - - #define SAMPLE_IS_NOT_WITHIN_THE_EYE (DELAY_ERROR > (tEYE >> 1)) - - /* - * While the quantized sample time falls outside the eye, reduce the - * sample delay or extend the data setup to move the sampling point back - * toward the eye. Do not allow the number of data setup cycles to - * exceed the maximum allowed by the NFC. - */ - while (SAMPLE_IS_NOT_WITHIN_THE_EYE && - (data_setup_in_cycles < nfc->max_data_setup_cycles)) { - /* - * If control arrives here, the quantized sample delay falls - * outside the eye. Check if it's before the eye opens, or after - * the eye closes. - */ - if (QUANTIZED_DELAY > IDEAL_DELAY) { - /* - * If control arrives here, the quantized sample delay - * falls after the eye closes. Decrease the quantized - * delay time and then go back to re-evaluate. - */ - if (sample_delay_factor != 0) - sample_delay_factor--; - continue; - } - - /* - * If control arrives here, the quantized sample delay falls - * before the eye opens. Shift the sample point by increasing - * data setup time. This will also make the eye larger. - */ - - /* Give a cycle to data setup. */ - data_setup_in_cycles++; - /* Synchronize the data setup time with the cycles. */ - data_setup_in_ns += clock_period_in_ns; - /* Adjust tEYE accordingly. */ - tEYE += clock_period_in_ns; - - /* - * Decrease the ideal sample delay by one half cycle, to keep it - * in the middle of the eye. - */ - ideal_sample_delay_in_ns -= (clock_period_in_ns >> 1); - - /* ...and one less period for the delay time. */ - ideal_sample_delay_in_ns -= clock_period_in_ns; - - /* Jam a negative ideal sample delay to zero. */ - if (ideal_sample_delay_in_ns < 0) - ideal_sample_delay_in_ns = 0; - - /* - * We have a new ideal sample delay, so re-compute the quantized - * delay. - */ - sample_delay_factor = - ns_to_cycles( - ideal_sample_delay_in_ns << dll_delay_shift, - clock_period_in_ns, 0); - - if (sample_delay_factor > nfc->max_sample_delay_factor) - sample_delay_factor = nfc->max_sample_delay_factor; - } - - hw->data_setup_in_cycles = data_setup_in_cycles; - hw->data_hold_in_cycles = data_hold_in_cycles; - hw->address_setup_in_cycles = address_setup_in_cycles; - hw->use_half_periods = dll_use_half_periods; - hw->sample_delay_factor = sample_delay_factor; - hw->device_busy_timeout = GPMI_DEFAULT_BUSY_TIMEOUT; - hw->wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_4_TO_8NS; -} - /* * <1> Firstly, we should know what's the GPMI-clock means. * The GPMI-clock is the internal clock in the gpmi nand controller. @@ -763,13 +362,10 @@ gpmi_nfc_compute_hardware_timings(struct gpmi_nand_data *this) * 4.1) From the aspect of the nand chip pins: * Delay = (tREA + C - tRP) {1} * - * tREA : the maximum read access time. From the ONFI nand standards, - * we know that tREA is 16ns in mode 5, tREA is 20ns is mode 4. - * Please check it in : www.onfi.org - * C : a constant for adjust the delay. default is 4. - * tRP : the read pulse width. - * Specified by the HW_GPMI_TIMING0:DATA_SETUP: - * tRP = (GPMI-clock-period) * DATA_SETUP + * tREA : the maximum read access time. + * C : a constant to adjust the delay. default is 4000ps. + * tRP : the read pulse width, which is exactly: + * tRP = (GPMI-clock-period) * DATA_SETUP * * 4.2) From the aspect of the GPMI nand controller: * Delay = RDN_DELAY * 0.125 * RP {2} @@ -782,74 +378,81 @@ gpmi_nfc_compute_hardware_timings(struct gpmi_nand_data *this) * * Set the HW_GPMI_CTRL1:HALF_PERIOD if GPMI-clock-period * is greater DLL_THRETHOLD. In other SOCs, the DLL_THRETHOLD - * is 16ns, but in mx6q, we use 12ns. + * is 16000ps, but in mx6q, we use 12000ps. * * 4.3) since {1} equals {2}, we get: * - * (tREA + 4 - tRP) * 8 - * RDN_DELAY = --------------------- {3} + * (tREA + 4000 - tRP) * 8 + * RDN_DELAY = ----------------------- {3} * RP - * - * 4.4) We only support the fastest asynchronous mode of ONFI nand. - * For some ONFI nand, the mode 4 is the fastest mode; - * while for some ONFI nand, the mode 5 is the fastest mode. - * So we only support the mode 4 and mode 5. It is no need to - * support other modes. */ -static void gpmi_nfc_compute_edo_timings(struct gpmi_nand_data *this, - int mode) +static void gpmi_nfc_compute_timings(struct gpmi_nand_data *this, + const struct nand_sdr_timings *sdr) { struct gpmi_nfc_hardware_timing *hw = &this->hw; - int dll_threshold = this->devdata->max_chain_delay; - unsigned long delay; - unsigned long clk_period; - int t_rp, t_rea, rp; - - /* Set the main clock to: 100MHz (mode 5) or 80MHz (mode 4) */ - hw->clk_rate = (mode == 5) ? 100000000 : 80000000; + unsigned int dll_threshold_ps = this->devdata->max_chain_delay; + unsigned int period_ps, reference_period_ps; + unsigned int data_setup_cycles, data_hold_cycles, addr_setup_cycles; + unsigned int tRP_ps; + bool use_half_period; + int sample_delay_ps, sample_delay_factor; + u16 busy_timeout_cycles; + u8 wrn_dly_sel; + + if (sdr->tRC_min >= 30000) { + /* ONFI non-EDO modes [0-3] */ + hw->clk_rate = 22000000; + wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_4_TO_8NS; + } else if (sdr->tRC_min >= 25000) { + /* ONFI EDO mode 4 */ + hw->clk_rate = 80000000; + wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY; + } else { + /* ONFI EDO mode 5 */ + hw->clk_rate = 100000000; + wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY; + } - /* - * [1] for GPMI_HW_GPMI_TIMING0: - * The async mode requires 40MHz for mode 4, 50MHz for mode 5. - * The GPMI can support 100MHz at most. So if we want to - * get the 40MHz or 50MHz, we have to set DS=1, DH=1. - * Set the ADDRESS_SETUP to 0 in mode 4. - */ - hw->data_setup_in_cycles = 1; - hw->data_hold_in_cycles = 1; - hw->address_setup_in_cycles = (mode == 5) ? 1 : 0; + /* SDR core timings are given in picoseconds */ + period_ps = div_u64((u64)NSEC_PER_SEC * 1000, hw->clk_rate); - /* [2] for GPMI_HW_GPMI_TIMING1 */ - hw->device_busy_timeout = 0x9000; + addr_setup_cycles = TO_CYCLES(sdr->tALS_min, period_ps); + data_setup_cycles = TO_CYCLES(sdr->tDS_min, period_ps); + data_hold_cycles = TO_CYCLES(sdr->tDH_min, period_ps); + busy_timeout_cycles = TO_CYCLES(sdr->tWB_max + sdr->tR_max, period_ps); - /* [3] for GPMI_HW_GPMI_CTRL1 */ - hw->wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY; + hw->timing0 = BF_GPMI_TIMING0_ADDRESS_SETUP(addr_setup_cycles) | + BF_GPMI_TIMING0_DATA_HOLD(data_hold_cycles) | + BF_GPMI_TIMING0_DATA_SETUP(data_setup_cycles); + hw->timing1 = BF_GPMI_TIMING1_BUSY_TIMEOUT(busy_timeout_cycles * 4096); /* - * Enlarge 10 times for the numerator and denominator in {3}. - * This make us to get more accurate result. + * Derive NFC ideal delay from {3}: + * + * (tREA + 4000 - tRP) * 8 + * RDN_DELAY = ----------------------- + * RP */ - clk_period = NSEC_PER_SEC / (hw->clk_rate / 10); - dll_threshold *= 10; - t_rea = this->timing.tREA_in_ns * 10; - t_rp = clk_period * 1; /* DATA_SETUP is 1 */ - - if (clk_period > dll_threshold) { - hw->use_half_periods = 1; - rp = clk_period / 2; + if (period_ps > dll_threshold_ps) { + use_half_period = true; + reference_period_ps = period_ps / 2; } else { - hw->use_half_periods = 0; - rp = clk_period; + use_half_period = false; + reference_period_ps = period_ps; } - /* - * Multiply the numerator with 10, we could do a round off: - * 7.8 round up to 8; 7.4 round down to 7. - */ - delay = (((t_rea + 40 - t_rp) * 8) * 10) / rp; - delay = (delay + 5) / 10; + tRP_ps = data_setup_cycles * period_ps; + sample_delay_ps = (sdr->tREA_max + 4000 - tRP_ps) * 8; + if (sample_delay_ps > 0) + sample_delay_factor = sample_delay_ps / reference_period_ps; + else + sample_delay_factor = 0; - hw->sample_delay_factor = delay; + hw->ctrl1n = BF_GPMI_CTRL1_WRN_DLY_SEL(wrn_dly_sel); + if (sample_delay_factor) + hw->ctrl1n |= BF_GPMI_CTRL1_RDN_DELAY(sample_delay_factor) | + BM_GPMI_CTRL1_DLL_ENABLE | + (use_half_period ? BM_GPMI_CTRL1_HALF_PERIOD : 0); } void gpmi_nfc_apply_timings(struct gpmi_nand_data *this) @@ -857,64 +460,27 @@ void gpmi_nfc_apply_timings(struct gpmi_nand_data *this) struct gpmi_nfc_hardware_timing *hw = &this->hw; struct resources *r = &this->resources; void __iomem *gpmi_regs = r->gpmi_regs; - unsigned int clock_period_in_ns; - uint32_t reg; - unsigned int dll_wait_time_in_us; + unsigned int dll_wait_time_us; - /* [0] Set the main clock rate */ clk_set_rate(r->clock[0], hw->clk_rate); - /* [1] Set HW_GPMI_TIMING0 */ - reg = BF_GPMI_TIMING0_ADDRESS_SETUP(hw->address_setup_in_cycles) | - BF_GPMI_TIMING0_DATA_HOLD(hw->data_hold_in_cycles) | - BF_GPMI_TIMING0_DATA_SETUP(hw->data_setup_in_cycles); - - writel(reg, gpmi_regs + HW_GPMI_TIMING0); - - /* [2] Set HW_GPMI_TIMING1 */ - writel(BF_GPMI_TIMING1_BUSY_TIMEOUT(hw->device_busy_timeout), - gpmi_regs + HW_GPMI_TIMING1); - - /* [3] The following code is to set the HW_GPMI_CTRL1. */ - - /* Set the WRN_DLY_SEL */ - writel(BM_GPMI_CTRL1_WRN_DLY_SEL, gpmi_regs + HW_GPMI_CTRL1_CLR); - writel(BF_GPMI_CTRL1_WRN_DLY_SEL(hw->wrn_dly_sel), - gpmi_regs + HW_GPMI_CTRL1_SET); - - /* DLL_ENABLE must be set to 0 when setting RDN_DELAY or HALF_PERIOD. */ - writel(BM_GPMI_CTRL1_DLL_ENABLE, gpmi_regs + HW_GPMI_CTRL1_CLR); - - /* Clear out the DLL control fields. */ - reg = BM_GPMI_CTRL1_RDN_DELAY | BM_GPMI_CTRL1_HALF_PERIOD; - writel(reg, gpmi_regs + HW_GPMI_CTRL1_CLR); - - /* If no sample delay is called for, return immediately. */ - if (!hw->sample_delay_factor) - return; - - /* Set RDN_DELAY or HALF_PERIOD. */ - reg = ((hw->use_half_periods) ? BM_GPMI_CTRL1_HALF_PERIOD : 0) - | BF_GPMI_CTRL1_RDN_DELAY(hw->sample_delay_factor); - - writel(reg, gpmi_regs + HW_GPMI_CTRL1_SET); - - /* At last, we enable the DLL. */ - writel(BM_GPMI_CTRL1_DLL_ENABLE, gpmi_regs + HW_GPMI_CTRL1_SET); + writel(hw->timing0, gpmi_regs + HW_GPMI_TIMING0); + writel(hw->timing1, gpmi_regs + HW_GPMI_TIMING1); /* - * After we enable the GPMI DLL, we have to wait 64 clock cycles before - * we can use the GPMI. Calculate the amount of time we need to wait, - * in microseconds. + * Clear several CTRL1 fields, DLL must be disabled when setting + * RDN_DELAY or HALF_PERIOD. */ - clock_period_in_ns = NSEC_PER_SEC / hw->clk_rate; - dll_wait_time_in_us = (clock_period_in_ns * 64) / 1000; + writel(BM_GPMI_CTRL1_CLEAR_MASK, gpmi_regs + HW_GPMI_CTRL1_CLR); + writel(hw->ctrl1n, gpmi_regs + HW_GPMI_CTRL1_SET); - if (!dll_wait_time_in_us) - dll_wait_time_in_us = 1; + /* Wait 64 clock cycles before using the GPMI after enabling the DLL */ + dll_wait_time_us = USEC_PER_SEC / hw->clk_rate * 64; + if (!dll_wait_time_us) + dll_wait_time_us = 1; /* Wait for the DLL to settle. */ - udelay(dll_wait_time_in_us); + udelay(dll_wait_time_us); } int gpmi_setup_data_interface(struct mtd_info *mtd, int chipnr, @@ -923,33 +489,22 @@ int gpmi_setup_data_interface(struct mtd_info *mtd, int chipnr, struct nand_chip *chip = mtd_to_nand(mtd); struct gpmi_nand_data *this = nand_get_controller_data(chip); const struct nand_sdr_timings *sdr; - bool edo_mode = false; /* Retrieve required NAND timings */ sdr = nand_get_sdr_timings(conf); if (IS_ERR(sdr)) return PTR_ERR(sdr); - if (sdr->tRC_min <= 25000) - edo_mode = true; - /* Only MX6 GPMI controller can reach EDO timings */ - if (edo_mode && !GPMI_IS_MX6(this)) + if (sdr->tRC_min <= 25000 && !GPMI_IS_MX6(this)) return -ENOTSUPP; + /* Stop here if this call was just a check */ if (chipnr < 0) return 0; - this->timing.tREA_in_ns = sdr->tREA_max / 1000; - this->timing.tRLOH_in_ns = sdr->tRLOH_min / 1000; - this->timing.tRHOH_in_ns = sdr->tRHOH_min / 1000; - - /* Compute GPMI parameters depending on the mode */ - if (edo_mode) - gpmi_nfc_compute_edo_timings(this, - sdr->tRC_min > 20000 ? 4 : 5); - else - gpmi_nfc_compute_hardware_timings(this); + /* Do the actual derivation of the controller timings */ + gpmi_nfc_compute_timings(this, sdr); this->hw.must_apply_timings = true; diff --git a/drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.c b/drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.c index e7e01934f50d..c2597c8107a0 100644 --- a/drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.c +++ b/drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.c @@ -94,7 +94,7 @@ static const struct mtd_ooblayout_ops gpmi_ooblayout_ops = { static const struct gpmi_devdata gpmi_devdata_imx23 = { .type = IS_MX23, .bch_max_ecc_strength = 20, - .max_chain_delay = 16, + .max_chain_delay = 16000, .clks = gpmi_clks_for_mx2x, .clks_count = ARRAY_SIZE(gpmi_clks_for_mx2x), }; @@ -102,7 +102,7 @@ static const struct gpmi_devdata gpmi_devdata_imx23 = { static const struct gpmi_devdata gpmi_devdata_imx28 = { .type = IS_MX28, .bch_max_ecc_strength = 20, - .max_chain_delay = 16, + .max_chain_delay = 16000, .clks = gpmi_clks_for_mx2x, .clks_count = ARRAY_SIZE(gpmi_clks_for_mx2x), }; @@ -114,7 +114,7 @@ static const char * const gpmi_clks_for_mx6[] = { static const struct gpmi_devdata gpmi_devdata_imx6q = { .type = IS_MX6Q, .bch_max_ecc_strength = 40, - .max_chain_delay = 12, + .max_chain_delay = 12000, .clks = gpmi_clks_for_mx6, .clks_count = ARRAY_SIZE(gpmi_clks_for_mx6), }; @@ -122,7 +122,7 @@ static const struct gpmi_devdata gpmi_devdata_imx6q = { static const struct gpmi_devdata gpmi_devdata_imx6sx = { .type = IS_MX6SX, .bch_max_ecc_strength = 62, - .max_chain_delay = 12, + .max_chain_delay = 12000, .clks = gpmi_clks_for_mx6, .clks_count = ARRAY_SIZE(gpmi_clks_for_mx6), }; @@ -134,7 +134,7 @@ static const char * const gpmi_clks_for_mx7d[] = { static const struct gpmi_devdata gpmi_devdata_imx7d = { .type = IS_MX7D, .bch_max_ecc_strength = 62, - .max_chain_delay = 12, + .max_chain_delay = 12000, .clks = gpmi_clks_for_mx7d, .clks_count = ARRAY_SIZE(gpmi_clks_for_mx7d), }; @@ -695,34 +695,6 @@ static void release_resources(struct gpmi_nand_data *this) release_dma_channels(this); } -static int init_hardware(struct gpmi_nand_data *this) -{ - int ret; - - /* - * This structure contains the "safe" GPMI timing that should succeed - * with any NAND Flash device - * (although, with less-than-optimal performance). - */ - struct nand_timing safe_timing = { - .data_setup_in_ns = 80, - .data_hold_in_ns = 60, - .address_setup_in_ns = 25, - .gpmi_sample_delay_in_ns = 6, - .tREA_in_ns = -1, - .tRLOH_in_ns = -1, - .tRHOH_in_ns = -1, - }; - - /* Initialize the hardwares. */ - ret = gpmi_init(this); - if (ret) - return ret; - - this->timing = safe_timing; - return 0; -} - static int read_page_prepare(struct gpmi_nand_data *this, void *destination, unsigned length, void *alt_virt, dma_addr_t alt_phys, unsigned alt_size, @@ -2107,7 +2079,7 @@ static int gpmi_nand_probe(struct platform_device *pdev) if (ret) goto exit_acquire_resources; - ret = init_hardware(this); + ret = gpmi_init(this); if (ret) goto exit_nfc_init; diff --git a/drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.h b/drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.h index 23f9030cf6d2..62fde59b995f 100644 --- a/drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.h +++ b/drivers/mtd/nand/raw/gpmi-nand/gpmi-nand.h @@ -86,39 +86,6 @@ enum dma_ops_type { DMA_FOR_WRITE_ECC_PAGE }; -/** - * struct nand_timing - Fundamental timing attributes for NAND. - * @data_setup_in_ns: The data setup time, in nanoseconds. Usually the - * maximum of tDS and tWP. A negative value - * indicates this characteristic isn't known. - * @data_hold_in_ns: The data hold time, in nanoseconds. Usually the - * maximum of tDH, tWH and tREH. A negative value - * indicates this characteristic isn't known. - * @address_setup_in_ns: The address setup time, in nanoseconds. Usually - * the maximum of tCLS, tCS and tALS. A negative - * value indicates this characteristic isn't known. - * @gpmi_sample_delay_in_ns: A GPMI-specific timing parameter. A negative value - * indicates this characteristic isn't known. - * @tREA_in_ns: tREA, in nanoseconds, from the data sheet. A - * negative value indicates this characteristic isn't - * known. - * @tRLOH_in_ns: tRLOH, in nanoseconds, from the data sheet. A - * negative value indicates this characteristic isn't - * known. - * @tRHOH_in_ns: tRHOH, in nanoseconds, from the data sheet. A - * negative value indicates this characteristic isn't - * known. - */ -struct nand_timing { - int8_t data_setup_in_ns; - int8_t data_hold_in_ns; - int8_t address_setup_in_ns; - int8_t gpmi_sample_delay_in_ns; - int8_t tREA_in_ns; - int8_t tRLOH_in_ns; - int8_t tRHOH_in_ns; -}; - enum gpmi_type { IS_MX23, IS_MX28, @@ -137,41 +104,21 @@ struct gpmi_devdata { /** * struct gpmi_nfc_hardware_timing - GPMI hardware timing parameters. - * @timing_mode: The timing mode to comply with. * @must_apply_timings: Whether controller timings have already been * applied or not (useful only while there is * support for only one chip select) * @clk_rate: The clock rate that must be used to derive the - * following parameters. - * @data_setup_in_cycles: The data setup time, in cycles. - * @data_hold_in_cycles: The data hold time, in cycles. - * @address_setup_in_cycles: The address setup time, in cycles. - * @device_busy_timeout: The timeout waiting for NAND Ready/Busy, - * this value is the number of cycles multiplied - * by 4096. - * @use_half_periods: Indicates the clock is running slowly, so the - * NFC DLL should use half-periods. - * @sample_delay_factor: The sample delay factor. - * @wrn_dly_sel: The delay on the GPMI write strobe. + * following parameters + * @timing0: HW_GPMI_TIMING0 register + * @timing1: HW_GPMI_TIMING1 register + * @ctrl1n: HW_GPMI_CTRL1n register */ struct gpmi_nfc_hardware_timing { - unsigned int timing_mode; bool must_apply_timings; unsigned long int clk_rate; - - /* for HW_GPMI_TIMING0 */ - u8 data_setup_in_cycles; - u8 data_hold_in_cycles; - u8 address_setup_in_cycles; - - /* for HW_GPMI_TIMING1 */ - u16 device_busy_timeout; -#define GPMI_DEFAULT_BUSY_TIMEOUT 0x500 /* default busy timeout value.*/ - - /* for HW_GPMI_CTRL1 */ - bool use_half_periods; - u8 sample_delay_factor; - u8 wrn_dly_sel; + u32 timing0; + u32 timing1; + u32 ctrl1n; }; struct gpmi_nand_data { @@ -186,8 +133,6 @@ struct gpmi_nand_data { struct resources resources; /* Flash Hardware */ - struct nand_timing timing; - int timing_mode; struct gpmi_nfc_hardware_timing hw; /* BCH */ @@ -241,40 +186,6 @@ struct gpmi_nand_data { void *private; }; -/** - * struct timing_threshold - Timing threshold - * @max_data_setup_cycles: The maximum number of data setup cycles that - * can be expressed in the hardware. - * @internal_data_setup_in_ns: The time, in ns, that the NFC hardware requires - * for data read internal setup. In the Reference - * Manual, see the chapter "High-Speed NAND - * Timing" for more details. - * @max_sample_delay_factor: The maximum sample delay factor that can be - * expressed in the hardware. - * @max_dll_clock_period_in_ns: The maximum period of the GPMI clock that the - * sample delay DLL hardware can possibly work - * with (the DLL is unusable with longer periods). - * If the full-cycle period is greater than HALF - * this value, the DLL must be configured to use - * half-periods. - * @max_dll_delay_in_ns: The maximum amount of delay, in ns, that the - * DLL can implement. - * @clock_frequency_in_hz: The clock frequency, in Hz, during the current - * I/O transaction. If no I/O transaction is in - * progress, this is the clock frequency during - * the most recent I/O transaction. - */ -struct timing_threshold { - const unsigned int max_chip_count; - const unsigned int max_data_setup_cycles; - const unsigned int internal_data_setup_in_ns; - const unsigned int max_sample_delay_factor; - const unsigned int max_dll_clock_period_in_ns; - const unsigned int max_dll_delay_in_ns; - unsigned long clock_frequency_in_hz; - -}; - /* Common Services */ int common_nfc_set_geometry(struct gpmi_nand_data *); struct dma_chan *get_dma_chan(struct gpmi_nand_data *); diff --git a/drivers/mtd/nand/raw/gpmi-nand/gpmi-regs.h b/drivers/mtd/nand/raw/gpmi-nand/gpmi-regs.h index 82114cdc8330..d92bf32221ca 100644 --- a/drivers/mtd/nand/raw/gpmi-nand/gpmi-regs.h +++ b/drivers/mtd/nand/raw/gpmi-nand/gpmi-regs.h @@ -147,6 +147,11 @@ #define BM_GPMI_CTRL1_GPMI_MODE (1 << 0) +#define BM_GPMI_CTRL1_CLEAR_MASK (BM_GPMI_CTRL1_WRN_DLY_SEL | \ + BM_GPMI_CTRL1_DLL_ENABLE | \ + BM_GPMI_CTRL1_RDN_DELAY | \ + BM_GPMI_CTRL1_HALF_PERIOD) + #define HW_GPMI_TIMING0 0x00000070 #define BP_GPMI_TIMING0_ADDRESS_SETUP 16 -- cgit v1.2.3-58-ga151 From e7bfb3fdbde3bfeeeb64e2d73ac6babe59519c9e Mon Sep 17 00:00:00 2001 From: Boris Brezillon Date: Mon, 12 Feb 2018 22:03:11 +0100 Subject: mtd: Stop updating erase_info->state and calling mtd_erase_callback() MTD users are no longer checking erase_info->state to determine if the erase operation failed or succeeded. Moreover, mtd_erase_callback() is now a NOP. We can safely get rid of all mtd_erase_callback() calls and all erase_info->state assignments. While at it, get rid of the erase_info->state field, all MTD_ERASE_XXX definitions and the mtd_erase_callback() function. Signed-off-by: Boris Brezillon Reviewed-by: Richard Weinberger Reviewed-by: Miquel Raynal Acked-by: Bert Kenward --- Changes in v2: - Address a few coding style issues (reported by Miquel) - Remove comments that are no longer valid (reported by Miquel) --- drivers/mtd/chips/cfi_cmdset_0001.c | 16 ++-------------- drivers/mtd/chips/cfi_cmdset_0002.c | 26 +++----------------------- drivers/mtd/chips/cfi_cmdset_0020.c | 3 --- drivers/mtd/chips/map_ram.c | 2 -- drivers/mtd/devices/bcm47xxsflash.c | 9 +-------- drivers/mtd/devices/block2mtd.c | 7 +------ drivers/mtd/devices/docg3.c | 16 ++-------------- drivers/mtd/devices/lart.c | 6 ------ drivers/mtd/devices/mtd_dataflash.c | 4 ---- drivers/mtd/devices/mtdram.c | 3 +-- drivers/mtd/devices/phram.c | 7 ------- drivers/mtd/devices/pmc551.c | 2 -- drivers/mtd/devices/powernv_flash.c | 12 ++---------- drivers/mtd/devices/slram.c | 7 +------ drivers/mtd/devices/spear_smi.c | 3 --- drivers/mtd/devices/sst25l.c | 3 --- drivers/mtd/devices/st_spi_fsm.c | 4 ---- drivers/mtd/lpddr/lpddr2_nvm.c | 10 ++-------- drivers/mtd/lpddr/lpddr_cmds.c | 2 -- drivers/mtd/mtdconcat.c | 1 - drivers/mtd/mtdcore.c | 6 ++---- drivers/mtd/mtdpart.c | 5 ----- drivers/mtd/nand/nand_base.c | 16 ++++------------ drivers/mtd/onenand/onenand_base.c | 17 ----------------- drivers/mtd/spi-nor/spi-nor.c | 3 --- drivers/mtd/ubi/gluebi.c | 3 --- drivers/net/ethernet/sfc/falcon/mtd.c | 11 +---------- drivers/net/ethernet/sfc/mtd.c | 11 +---------- drivers/staging/goldfish/goldfish_nand.c | 3 --- include/linux/mtd/mtd.h | 9 --------- 30 files changed, 23 insertions(+), 204 deletions(-) diff --git a/drivers/mtd/chips/cfi_cmdset_0001.c b/drivers/mtd/chips/cfi_cmdset_0001.c index 5e1b68cbcd0a..d4c07b85f18e 100644 --- a/drivers/mtd/chips/cfi_cmdset_0001.c +++ b/drivers/mtd/chips/cfi_cmdset_0001.c @@ -1993,20 +1993,8 @@ static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip, static int cfi_intelext_erase_varsize(struct mtd_info *mtd, struct erase_info *instr) { - unsigned long ofs, len; - int ret; - - ofs = instr->addr; - len = instr->len; - - ret = cfi_varsize_frob(mtd, do_erase_oneblock, ofs, len, NULL); - if (ret) - return ret; - - instr->state = MTD_ERASE_DONE; - mtd_erase_callback(instr); - - return 0; + return cfi_varsize_frob(mtd, do_erase_oneblock, instr->addr, + instr->len, NULL); } static void cfi_intelext_sync (struct mtd_info *mtd) diff --git a/drivers/mtd/chips/cfi_cmdset_0002.c b/drivers/mtd/chips/cfi_cmdset_0002.c index 56aa6b75213d..668e2cbc155b 100644 --- a/drivers/mtd/chips/cfi_cmdset_0002.c +++ b/drivers/mtd/chips/cfi_cmdset_0002.c @@ -2415,20 +2415,8 @@ static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip, static int cfi_amdstd_erase_varsize(struct mtd_info *mtd, struct erase_info *instr) { - unsigned long ofs, len; - int ret; - - ofs = instr->addr; - len = instr->len; - - ret = cfi_varsize_frob(mtd, do_erase_oneblock, ofs, len, NULL); - if (ret) - return ret; - - instr->state = MTD_ERASE_DONE; - mtd_erase_callback(instr); - - return 0; + return cfi_varsize_frob(mtd, do_erase_oneblock, instr->addr, + instr->len, NULL); } @@ -2436,7 +2424,6 @@ static int cfi_amdstd_erase_chip(struct mtd_info *mtd, struct erase_info *instr) { struct map_info *map = mtd->priv; struct cfi_private *cfi = map->fldrv_priv; - int ret = 0; if (instr->addr != 0) return -EINVAL; @@ -2444,14 +2431,7 @@ static int cfi_amdstd_erase_chip(struct mtd_info *mtd, struct erase_info *instr) if (instr->len != mtd->size) return -EINVAL; - ret = do_erase_chip(map, &cfi->chips[0]); - if (ret) - return ret; - - instr->state = MTD_ERASE_DONE; - mtd_erase_callback(instr); - - return 0; + return do_erase_chip(map, &cfi->chips[0]); } static int do_atmel_lock(struct map_info *map, struct flchip *chip, diff --git a/drivers/mtd/chips/cfi_cmdset_0020.c b/drivers/mtd/chips/cfi_cmdset_0020.c index 7d342965f392..7b7658a05036 100644 --- a/drivers/mtd/chips/cfi_cmdset_0020.c +++ b/drivers/mtd/chips/cfi_cmdset_0020.c @@ -965,9 +965,6 @@ static int cfi_staa_erase_varsize(struct mtd_info *mtd, } } - instr->state = MTD_ERASE_DONE; - mtd_erase_callback(instr); - return 0; } diff --git a/drivers/mtd/chips/map_ram.c b/drivers/mtd/chips/map_ram.c index 1cd0fff0e940..c37fce926864 100644 --- a/drivers/mtd/chips/map_ram.c +++ b/drivers/mtd/chips/map_ram.c @@ -131,8 +131,6 @@ static int mapram_erase (struct mtd_info *mtd, struct erase_info *instr) allff = map_word_ff(map); for (i=0; ilen; i += map_bankwidth(map)) map_write(map, allff, instr->addr + i); - instr->state = MTD_ERASE_DONE; - mtd_erase_callback(instr); return 0; } diff --git a/drivers/mtd/devices/bcm47xxsflash.c b/drivers/mtd/devices/bcm47xxsflash.c index 6b84947cfbea..9baa81b8780c 100644 --- a/drivers/mtd/devices/bcm47xxsflash.c +++ b/drivers/mtd/devices/bcm47xxsflash.c @@ -68,7 +68,6 @@ static int bcm47xxsflash_poll(struct bcm47xxsflash *b47s, int timeout) static int bcm47xxsflash_erase(struct mtd_info *mtd, struct erase_info *erase) { struct bcm47xxsflash *b47s = mtd->priv; - int err; switch (b47s->type) { case BCM47XXSFLASH_TYPE_ST: @@ -89,13 +88,7 @@ static int bcm47xxsflash_erase(struct mtd_info *mtd, struct erase_info *erase) break; } - err = bcm47xxsflash_poll(b47s, HZ); - if (err) - erase->state = MTD_ERASE_FAILED; - else - erase->state = MTD_ERASE_DONE; - - return err; + return bcm47xxsflash_poll(b47s, HZ); } static int bcm47xxsflash_read(struct mtd_info *mtd, loff_t from, size_t len, diff --git a/drivers/mtd/devices/block2mtd.c b/drivers/mtd/devices/block2mtd.c index bb0734600a07..c9e424993e37 100644 --- a/drivers/mtd/devices/block2mtd.c +++ b/drivers/mtd/devices/block2mtd.c @@ -88,17 +88,12 @@ static int block2mtd_erase(struct mtd_info *mtd, struct erase_info *instr) size_t len = instr->len; int err; - instr->state = MTD_ERASING; mutex_lock(&dev->write_mutex); err = _block2mtd_erase(dev, from, len); mutex_unlock(&dev->write_mutex); - if (err) { + if (err) pr_err("erase failed err = %d\n", err); - instr->state = MTD_ERASE_FAILED; - } else - instr->state = MTD_ERASE_DONE; - mtd_erase_callback(instr); return err; } diff --git a/drivers/mtd/devices/docg3.c b/drivers/mtd/devices/docg3.c index a85af236b44d..c594fe5eac08 100644 --- a/drivers/mtd/devices/docg3.c +++ b/drivers/mtd/devices/docg3.c @@ -1191,39 +1191,27 @@ static int doc_erase(struct mtd_info *mtd, struct erase_info *info) { struct docg3 *docg3 = mtd->priv; uint64_t len; - int block0, block1, page, ret, ofs = 0; + int block0, block1, page, ret = 0, ofs = 0; doc_dbg("doc_erase(from=%lld, len=%lld\n", info->addr, info->len); - info->state = MTD_ERASE_PENDING; calc_block_sector(info->addr + info->len, &block0, &block1, &page, &ofs, docg3->reliable); - ret = -EINVAL; if (info->addr + info->len > mtd->size || page || ofs) - goto reset_err; + return -EINVAL; - ret = 0; calc_block_sector(info->addr, &block0, &block1, &page, &ofs, docg3->reliable); mutex_lock(&docg3->cascade->lock); doc_set_device_id(docg3, docg3->device_id); doc_set_reliable_mode(docg3); for (len = info->len; !ret && len > 0; len -= mtd->erasesize) { - info->state = MTD_ERASING; ret = doc_erase_block(docg3, block0, block1); block0 += 2; block1 += 2; } mutex_unlock(&docg3->cascade->lock); - if (ret) - goto reset_err; - - info->state = MTD_ERASE_DONE; - return 0; - -reset_err: - info->state = MTD_ERASE_FAILED; return ret; } diff --git a/drivers/mtd/devices/lart.c b/drivers/mtd/devices/lart.c index 555b94406e0b..f67b653c17d7 100644 --- a/drivers/mtd/devices/lart.c +++ b/drivers/mtd/devices/lart.c @@ -414,10 +414,7 @@ static int flash_erase (struct mtd_info *mtd,struct erase_info *instr) while (len) { if (!erase_block (addr)) - { - instr->state = MTD_ERASE_FAILED; return (-EIO); - } addr += mtd->eraseregions[i].erasesize; len -= mtd->eraseregions[i].erasesize; @@ -425,9 +422,6 @@ static int flash_erase (struct mtd_info *mtd,struct erase_info *instr) if (addr == mtd->eraseregions[i].offset + (mtd->eraseregions[i].erasesize * mtd->eraseregions[i].numblocks)) i++; } - instr->state = MTD_ERASE_DONE; - mtd_erase_callback(instr); - return (0); } diff --git a/drivers/mtd/devices/mtd_dataflash.c b/drivers/mtd/devices/mtd_dataflash.c index 5dc8bd042cc5..aaaeaae01e1d 100644 --- a/drivers/mtd/devices/mtd_dataflash.c +++ b/drivers/mtd/devices/mtd_dataflash.c @@ -220,10 +220,6 @@ static int dataflash_erase(struct mtd_info *mtd, struct erase_info *instr) } mutex_unlock(&priv->lock); - /* Inform MTD subsystem that erase is complete */ - instr->state = MTD_ERASE_DONE; - mtd_erase_callback(instr); - return 0; } diff --git a/drivers/mtd/devices/mtdram.c b/drivers/mtd/devices/mtdram.c index 0bf4aeaf0cb8..46238796145f 100644 --- a/drivers/mtd/devices/mtdram.c +++ b/drivers/mtd/devices/mtdram.c @@ -60,8 +60,7 @@ static int ram_erase(struct mtd_info *mtd, struct erase_info *instr) if (check_offs_len(mtd, instr->addr, instr->len)) return -EINVAL; memset((char *)mtd->priv + instr->addr, 0xff, instr->len); - instr->state = MTD_ERASE_DONE; - mtd_erase_callback(instr); + return 0; } diff --git a/drivers/mtd/devices/phram.c b/drivers/mtd/devices/phram.c index 7287696a21f9..9ee04b5f9311 100644 --- a/drivers/mtd/devices/phram.c +++ b/drivers/mtd/devices/phram.c @@ -39,13 +39,6 @@ static int phram_erase(struct mtd_info *mtd, struct erase_info *instr) memset(start + instr->addr, 0xff, instr->len); - /* - * This'll catch a few races. Free the thing before returning :) - * I don't feel at all ashamed. This kind of thing is possible anyway - * with flash, but unlikely. - */ - instr->state = MTD_ERASE_DONE; - mtd_erase_callback(instr); return 0; } diff --git a/drivers/mtd/devices/pmc551.c b/drivers/mtd/devices/pmc551.c index cadea0620cd0..5d842cbca3de 100644 --- a/drivers/mtd/devices/pmc551.c +++ b/drivers/mtd/devices/pmc551.c @@ -184,12 +184,10 @@ static int pmc551_erase(struct mtd_info *mtd, struct erase_info *instr) } out: - instr->state = MTD_ERASE_DONE; #ifdef CONFIG_MTD_PMC551_DEBUG printk(KERN_DEBUG "pmc551_erase() done\n"); #endif - mtd_erase_callback(instr); return 0; } diff --git a/drivers/mtd/devices/powernv_flash.c b/drivers/mtd/devices/powernv_flash.c index 26f9feaa5d17..c1312b141ae0 100644 --- a/drivers/mtd/devices/powernv_flash.c +++ b/drivers/mtd/devices/powernv_flash.c @@ -175,19 +175,11 @@ static int powernv_flash_erase(struct mtd_info *mtd, struct erase_info *erase) { int rc; - erase->state = MTD_ERASING; - - /* todo: register our own notifier to do a true async implementation */ rc = powernv_flash_async_op(mtd, FLASH_OP_ERASE, erase->addr, erase->len, NULL, NULL); - - if (rc) { + if (rc) erase->fail_addr = erase->addr; - erase->state = MTD_ERASE_FAILED; - } else { - erase->state = MTD_ERASE_DONE; - } - mtd_erase_callback(erase); + return rc; } diff --git a/drivers/mtd/devices/slram.c b/drivers/mtd/devices/slram.c index 0ec85f316d24..10183ee4e12b 100644 --- a/drivers/mtd/devices/slram.c +++ b/drivers/mtd/devices/slram.c @@ -84,12 +84,7 @@ static int slram_erase(struct mtd_info *mtd, struct erase_info *instr) slram_priv_t *priv = mtd->priv; memset(priv->start + instr->addr, 0xff, instr->len); - /* This'll catch a few races. Free the thing before returning :) - * I don't feel at all ashamed. This kind of thing is possible anyway - * with flash, but unlikely. - */ - instr->state = MTD_ERASE_DONE; - mtd_erase_callback(instr); + return(0); } diff --git a/drivers/mtd/devices/spear_smi.c b/drivers/mtd/devices/spear_smi.c index ddf478976013..986f81d2f93e 100644 --- a/drivers/mtd/devices/spear_smi.c +++ b/drivers/mtd/devices/spear_smi.c @@ -518,7 +518,6 @@ static int spear_mtd_erase(struct mtd_info *mtd, struct erase_info *e_info) /* preparing the command for flash */ ret = spear_smi_erase_sector(dev, bank, command, 4); if (ret) { - e_info->state = MTD_ERASE_FAILED; mutex_unlock(&flash->lock); return ret; } @@ -527,8 +526,6 @@ static int spear_mtd_erase(struct mtd_info *mtd, struct erase_info *e_info) } mutex_unlock(&flash->lock); - e_info->state = MTD_ERASE_DONE; - mtd_erase_callback(e_info); return 0; } diff --git a/drivers/mtd/devices/sst25l.c b/drivers/mtd/devices/sst25l.c index 5b84d71efb36..1897f33fe3e7 100644 --- a/drivers/mtd/devices/sst25l.c +++ b/drivers/mtd/devices/sst25l.c @@ -195,7 +195,6 @@ static int sst25l_erase(struct mtd_info *mtd, struct erase_info *instr) err = sst25l_erase_sector(flash, addr); if (err) { mutex_unlock(&flash->lock); - instr->state = MTD_ERASE_FAILED; dev_err(&flash->spi->dev, "Erase failed\n"); return err; } @@ -205,8 +204,6 @@ static int sst25l_erase(struct mtd_info *mtd, struct erase_info *instr) mutex_unlock(&flash->lock); - instr->state = MTD_ERASE_DONE; - mtd_erase_callback(instr); return 0; } diff --git a/drivers/mtd/devices/st_spi_fsm.c b/drivers/mtd/devices/st_spi_fsm.c index a33f5fd6818c..55d4a77f3b7f 100644 --- a/drivers/mtd/devices/st_spi_fsm.c +++ b/drivers/mtd/devices/st_spi_fsm.c @@ -1825,13 +1825,9 @@ static int stfsm_mtd_erase(struct mtd_info *mtd, struct erase_info *instr) mutex_unlock(&fsm->lock); - instr->state = MTD_ERASE_DONE; - mtd_erase_callback(instr); - return 0; out1: - instr->state = MTD_ERASE_FAILED; mutex_unlock(&fsm->lock); return ret; diff --git a/drivers/mtd/lpddr/lpddr2_nvm.c b/drivers/mtd/lpddr/lpddr2_nvm.c index 2342277c9bcb..5d73db2a496d 100644 --- a/drivers/mtd/lpddr/lpddr2_nvm.c +++ b/drivers/mtd/lpddr/lpddr2_nvm.c @@ -380,14 +380,8 @@ out: */ static int lpddr2_nvm_erase(struct mtd_info *mtd, struct erase_info *instr) { - int ret = lpddr2_nvm_do_block_op(mtd, instr->addr, instr->len, - LPDDR2_NVM_ERASE); - if (!ret) { - instr->state = MTD_ERASE_DONE; - mtd_erase_callback(instr); - } - - return ret; + return lpddr2_nvm_do_block_op(mtd, instr->addr, instr->len, + LPDDR2_NVM_ERASE); } /* diff --git a/drivers/mtd/lpddr/lpddr_cmds.c b/drivers/mtd/lpddr/lpddr_cmds.c index 018c75faadb3..5c5ba3c7c79d 100644 --- a/drivers/mtd/lpddr/lpddr_cmds.c +++ b/drivers/mtd/lpddr/lpddr_cmds.c @@ -693,8 +693,6 @@ static int lpddr_erase(struct mtd_info *mtd, struct erase_info *instr) ofs += size; len -= size; } - instr->state = MTD_ERASE_DONE; - mtd_erase_callback(instr); return 0; } diff --git a/drivers/mtd/mtdconcat.c b/drivers/mtd/mtdconcat.c index 93c47e56d9d8..6b86d1a73cf2 100644 --- a/drivers/mtd/mtdconcat.c +++ b/drivers/mtd/mtdconcat.c @@ -446,7 +446,6 @@ static int concat_erase(struct mtd_info *mtd, struct erase_info *instr) erase->addr = 0; offset += subdev->size; } - instr->state = erase->state; kfree(erase); return err; diff --git a/drivers/mtd/mtdcore.c b/drivers/mtd/mtdcore.c index f92ad02959eb..f25d65ea7149 100644 --- a/drivers/mtd/mtdcore.c +++ b/drivers/mtd/mtdcore.c @@ -961,11 +961,9 @@ int mtd_erase(struct mtd_info *mtd, struct erase_info *instr) if (!(mtd->flags & MTD_WRITEABLE)) return -EROFS; - if (!instr->len) { - instr->state = MTD_ERASE_DONE; - mtd_erase_callback(instr); + if (!instr->len) return 0; - } + ledtrig_mtd_activity(); return mtd->_erase(mtd, instr); } diff --git a/drivers/mtd/mtdpart.c b/drivers/mtd/mtdpart.c index 1c07a6f0dfe5..85fea8ea3423 100644 --- a/drivers/mtd/mtdpart.c +++ b/drivers/mtd/mtdpart.c @@ -212,11 +212,6 @@ static int part_erase(struct mtd_info *mtd, struct erase_info *instr) return ret; } -void mtd_erase_callback(struct erase_info *instr) -{ -} -EXPORT_SYMBOL_GPL(mtd_erase_callback); - static int part_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) { struct mtd_part *part = mtd_to_part(mtd); diff --git a/drivers/mtd/nand/nand_base.c b/drivers/mtd/nand/nand_base.c index 16c8bc06975d..87b72bf626ae 100644 --- a/drivers/mtd/nand/nand_base.c +++ b/drivers/mtd/nand/nand_base.c @@ -4604,22 +4604,20 @@ int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr, if (nand_check_wp(mtd)) { pr_debug("%s: device is write protected!\n", __func__); - instr->state = MTD_ERASE_FAILED; + ret = -EIO; goto erase_exit; } /* Loop through the pages */ len = instr->len; - instr->state = MTD_ERASING; - while (len) { /* Check if we have a bad block, we do not erase bad blocks! */ if (nand_block_checkbad(mtd, ((loff_t) page) << chip->page_shift, allowbbt)) { pr_warn("%s: attempt to erase a bad block at page 0x%08x\n", __func__, page); - instr->state = MTD_ERASE_FAILED; + ret = -EIO; goto erase_exit; } @@ -4637,7 +4635,7 @@ int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr, if (status) { pr_debug("%s: failed erase, page 0x%08x\n", __func__, page); - instr->state = MTD_ERASE_FAILED; + ret = -EIO; instr->fail_addr = ((loff_t)page << chip->page_shift); goto erase_exit; @@ -4654,20 +4652,14 @@ int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr, chip->select_chip(mtd, chipnr); } } - instr->state = MTD_ERASE_DONE; + ret = 0; erase_exit: - ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO; - /* Deselect and wake up anyone waiting on the device */ chip->select_chip(mtd, -1); nand_release_device(mtd); - /* Do call back function */ - if (!ret) - mtd_erase_callback(instr); - /* Return more or less happy */ return ret; } diff --git a/drivers/mtd/onenand/onenand_base.c b/drivers/mtd/onenand/onenand_base.c index 979f4031f23c..8d19b78777b5 100644 --- a/drivers/mtd/onenand/onenand_base.c +++ b/drivers/mtd/onenand/onenand_base.c @@ -2143,7 +2143,6 @@ static int onenand_multiblock_erase_verify(struct mtd_info *mtd, if (ret) { printk(KERN_ERR "%s: Failed verify, block %d\n", __func__, onenand_block(this, addr)); - instr->state = MTD_ERASE_FAILED; instr->fail_addr = addr; return -1; } @@ -2172,8 +2171,6 @@ static int onenand_multiblock_erase(struct mtd_info *mtd, int ret = 0; int bdry_block = 0; - instr->state = MTD_ERASING; - if (ONENAND_IS_DDP(this)) { loff_t bdry_addr = this->chipsize >> 1; if (addr < bdry_addr && (addr + len) > bdry_addr) @@ -2187,7 +2184,6 @@ static int onenand_multiblock_erase(struct mtd_info *mtd, printk(KERN_WARNING "%s: attempt to erase a bad block " "at addr 0x%012llx\n", __func__, (unsigned long long) addr); - instr->state = MTD_ERASE_FAILED; return -EIO; } len -= block_size; @@ -2227,7 +2223,6 @@ static int onenand_multiblock_erase(struct mtd_info *mtd, printk(KERN_ERR "%s: Failed multiblock erase, " "block %d\n", __func__, onenand_block(this, addr)); - instr->state = MTD_ERASE_FAILED; instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN; return -EIO; } @@ -2247,7 +2242,6 @@ static int onenand_multiblock_erase(struct mtd_info *mtd, if (ret) { printk(KERN_ERR "%s: Failed erase, block %d\n", __func__, onenand_block(this, addr)); - instr->state = MTD_ERASE_FAILED; instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN; return -EIO; } @@ -2259,7 +2253,6 @@ static int onenand_multiblock_erase(struct mtd_info *mtd, /* verify */ verify_instr.len = eb_count * block_size; if (onenand_multiblock_erase_verify(mtd, &verify_instr)) { - instr->state = verify_instr.state; instr->fail_addr = verify_instr.fail_addr; return -EIO; } @@ -2294,8 +2287,6 @@ static int onenand_block_by_block_erase(struct mtd_info *mtd, region_end = region->offset + region->erasesize * region->numblocks; } - instr->state = MTD_ERASING; - /* Loop through the blocks */ while (len) { cond_resched(); @@ -2305,7 +2296,6 @@ static int onenand_block_by_block_erase(struct mtd_info *mtd, printk(KERN_WARNING "%s: attempt to erase a bad block " "at addr 0x%012llx\n", __func__, (unsigned long long) addr); - instr->state = MTD_ERASE_FAILED; return -EIO; } @@ -2318,7 +2308,6 @@ static int onenand_block_by_block_erase(struct mtd_info *mtd, if (ret) { printk(KERN_ERR "%s: Failed erase, block %d\n", __func__, onenand_block(this, addr)); - instr->state = MTD_ERASE_FAILED; instr->fail_addr = addr; return -EIO; } @@ -2407,12 +2396,6 @@ static int onenand_erase(struct mtd_info *mtd, struct erase_info *instr) /* Deselect and wake up anyone waiting on the device */ onenand_release_device(mtd); - /* Do call back function */ - if (!ret) { - instr->state = MTD_ERASE_DONE; - mtd_erase_callback(instr); - } - return ret; } diff --git a/drivers/mtd/spi-nor/spi-nor.c b/drivers/mtd/spi-nor/spi-nor.c index d445a4d3b770..5bfa36e95f35 100644 --- a/drivers/mtd/spi-nor/spi-nor.c +++ b/drivers/mtd/spi-nor/spi-nor.c @@ -560,9 +560,6 @@ static int spi_nor_erase(struct mtd_info *mtd, struct erase_info *instr) erase_err: spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_ERASE); - instr->state = ret ? MTD_ERASE_FAILED : MTD_ERASE_DONE; - mtd_erase_callback(instr); - return ret; } diff --git a/drivers/mtd/ubi/gluebi.c b/drivers/mtd/ubi/gluebi.c index 1cb287ec32ad..6b655a53113b 100644 --- a/drivers/mtd/ubi/gluebi.c +++ b/drivers/mtd/ubi/gluebi.c @@ -272,12 +272,9 @@ static int gluebi_erase(struct mtd_info *mtd, struct erase_info *instr) if (err) goto out_err; - instr->state = MTD_ERASE_DONE; - mtd_erase_callback(instr); return 0; out_err: - instr->state = MTD_ERASE_FAILED; instr->fail_addr = (long long)lnum * mtd->erasesize; return err; } diff --git a/drivers/net/ethernet/sfc/falcon/mtd.c b/drivers/net/ethernet/sfc/falcon/mtd.c index cde593cb1052..2d67e4621a3d 100644 --- a/drivers/net/ethernet/sfc/falcon/mtd.c +++ b/drivers/net/ethernet/sfc/falcon/mtd.c @@ -24,17 +24,8 @@ static int ef4_mtd_erase(struct mtd_info *mtd, struct erase_info *erase) { struct ef4_nic *efx = mtd->priv; - int rc; - rc = efx->type->mtd_erase(mtd, erase->addr, erase->len); - if (rc == 0) { - erase->state = MTD_ERASE_DONE; - } else { - erase->state = MTD_ERASE_FAILED; - erase->fail_addr = MTD_FAIL_ADDR_UNKNOWN; - } - mtd_erase_callback(erase); - return rc; + return efx->type->mtd_erase(mtd, erase->addr, erase->len); } static void ef4_mtd_sync(struct mtd_info *mtd) diff --git a/drivers/net/ethernet/sfc/mtd.c b/drivers/net/ethernet/sfc/mtd.c index a77a8bd2dd70..4ac30b6e5dab 100644 --- a/drivers/net/ethernet/sfc/mtd.c +++ b/drivers/net/ethernet/sfc/mtd.c @@ -24,17 +24,8 @@ static int efx_mtd_erase(struct mtd_info *mtd, struct erase_info *erase) { struct efx_nic *efx = mtd->priv; - int rc; - rc = efx->type->mtd_erase(mtd, erase->addr, erase->len); - if (rc == 0) { - erase->state = MTD_ERASE_DONE; - } else { - erase->state = MTD_ERASE_FAILED; - erase->fail_addr = MTD_FAIL_ADDR_UNKNOWN; - } - mtd_erase_callback(erase); - return rc; + return efx->type->mtd_erase(mtd, erase->addr, erase->len); } static void efx_mtd_sync(struct mtd_info *mtd) diff --git a/drivers/staging/goldfish/goldfish_nand.c b/drivers/staging/goldfish/goldfish_nand.c index 52cc1363993e..f5e002ecba75 100644 --- a/drivers/staging/goldfish/goldfish_nand.c +++ b/drivers/staging/goldfish/goldfish_nand.c @@ -119,9 +119,6 @@ static int goldfish_nand_erase(struct mtd_info *mtd, struct erase_info *instr) return -EIO; } - instr->state = MTD_ERASE_DONE; - mtd_erase_callback(instr); - return 0; invalid_arg: diff --git a/include/linux/mtd/mtd.h b/include/linux/mtd/mtd.h index 4cbb7f555244..a86c4fa93115 100644 --- a/include/linux/mtd/mtd.h +++ b/include/linux/mtd/mtd.h @@ -30,12 +30,6 @@ #include -#define MTD_ERASE_PENDING 0x01 -#define MTD_ERASING 0x02 -#define MTD_ERASE_SUSPEND 0x04 -#define MTD_ERASE_DONE 0x08 -#define MTD_ERASE_FAILED 0x10 - #define MTD_FAIL_ADDR_UNKNOWN -1LL struct mtd_info; @@ -49,7 +43,6 @@ struct erase_info { uint64_t addr; uint64_t len; uint64_t fail_addr; - u_char state; }; struct mtd_erase_region_info { @@ -589,8 +582,6 @@ extern void register_mtd_user (struct mtd_notifier *new); extern int unregister_mtd_user (struct mtd_notifier *old); void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size); -void mtd_erase_callback(struct erase_info *instr); - static inline int mtd_is_bitflip(int err) { return err == -EUCLEAN; } -- cgit v1.2.3-58-ga151 From ac9cd36c7a5dc79b3d10f0110bc096918109fdf8 Mon Sep 17 00:00:00 2001 From: Antonio Cardace Date: Tue, 13 Feb 2018 17:52:45 +0000 Subject: mtd: nftl: use %*ph to print small buffer Use %*ph format to print small buffer as hex string. Suggested-by: Andy Shevchenko Signed-off-by: Antonio Cardace Signed-off-by: Boris Brezillon --- drivers/mtd/nftlmount.c | 3 +-- 1 file changed, 1 insertion(+), 2 deletions(-) diff --git a/drivers/mtd/nftlmount.c b/drivers/mtd/nftlmount.c index d8f6dba01c87..a6fbfa4e5799 100644 --- a/drivers/mtd/nftlmount.c +++ b/drivers/mtd/nftlmount.c @@ -122,8 +122,7 @@ static int find_boot_record(struct NFTLrecord *nftl) if (memcmp(buf, "ANAND", 6)) { printk(KERN_NOTICE "ANAND header found at 0x%x in mtd%d, but went away on reread!\n", block * nftl->EraseSize, nftl->mbd.mtd->index); - printk(KERN_NOTICE "New data are: %02x %02x %02x %02x %02x %02x\n", - buf[0], buf[1], buf[2], buf[3], buf[4], buf[5]); + printk(KERN_NOTICE "New data are: %6ph\n", buf); continue; } #endif -- cgit v1.2.3-58-ga151 From 148a1a5d74485c5595481c3a2bd78daf50cd346a Mon Sep 17 00:00:00 2001 From: Stefan Agner Date: Sat, 3 Mar 2018 23:26:22 +0100 Subject: mtd: tests: check erase block count in page test When there is only a single erase block, the cross erase test does not report sensible errors. Warn in case there is only a single erase block instead of executing the test. Signed-off-by: Stefan Agner Signed-off-by: Boris Brezillon --- drivers/mtd/tests/pagetest.c | 10 +++++++--- 1 file changed, 7 insertions(+), 3 deletions(-) diff --git a/drivers/mtd/tests/pagetest.c b/drivers/mtd/tests/pagetest.c index ff1e0565b020..bc303cac9f43 100644 --- a/drivers/mtd/tests/pagetest.c +++ b/drivers/mtd/tests/pagetest.c @@ -435,9 +435,13 @@ static int __init mtd_pagetest_init(void) if (err) goto out; - err = erasecrosstest(); - if (err) - goto out; + if (ebcnt > 1) { + err = erasecrosstest(); + if (err) + goto out; + } else { + pr_info("skipping erasecrosstest, 2 erase blocks needed\n"); + } err = erasetest(); if (err) -- cgit v1.2.3-58-ga151 From 5741a164ff6fb5abbea8548ad0f3846bad2b9aec Mon Sep 17 00:00:00 2001 From: Arnd Bergmann Date: Wed, 14 Mar 2018 17:30:22 +0100 Subject: mtd: maps: remove bfin-async-flash driver The blackfin architecture is getting removed, so this driver has become obsolete. Signed-off-by: Arnd Bergmann Signed-off-by: Boris Brezillon --- drivers/mtd/maps/Kconfig | 10 -- drivers/mtd/maps/Makefile | 1 - drivers/mtd/maps/bfin-async-flash.c | 196 ------------------------------------ 3 files changed, 207 deletions(-) delete mode 100644 drivers/mtd/maps/bfin-async-flash.c diff --git a/drivers/mtd/maps/Kconfig b/drivers/mtd/maps/Kconfig index 542fdf8e81fa..bdc1283f30fb 100644 --- a/drivers/mtd/maps/Kconfig +++ b/drivers/mtd/maps/Kconfig @@ -334,16 +334,6 @@ config MTD_PCMCIA_ANONYMOUS If unsure, say N. -config MTD_BFIN_ASYNC - tristate "Blackfin BF533-STAMP Flash Chip Support" - depends on BFIN533_STAMP && MTD_CFI && MTD_COMPLEX_MAPPINGS - default y - help - Map driver which allows for simultaneous utilization of - ethernet and CFI parallel flash. - - If compiled as a module, it will be called bfin-async-flash. - config MTD_GPIO_ADDR tristate "GPIO-assisted Flash Chip Support" depends on GPIOLIB || COMPILE_TEST diff --git a/drivers/mtd/maps/Makefile b/drivers/mtd/maps/Makefile index b849aaf85c34..51acf1fec19b 100644 --- a/drivers/mtd/maps/Makefile +++ b/drivers/mtd/maps/Makefile @@ -42,7 +42,6 @@ obj-$(CONFIG_MTD_SCB2_FLASH) += scb2_flash.o obj-$(CONFIG_MTD_IXP4XX) += ixp4xx.o obj-$(CONFIG_MTD_PLATRAM) += plat-ram.o obj-$(CONFIG_MTD_INTEL_VR_NOR) += intel_vr_nor.o -obj-$(CONFIG_MTD_BFIN_ASYNC) += bfin-async-flash.o obj-$(CONFIG_MTD_RBTX4939) += rbtx4939-flash.o obj-$(CONFIG_MTD_VMU) += vmu-flash.o obj-$(CONFIG_MTD_GPIO_ADDR) += gpio-addr-flash.o diff --git a/drivers/mtd/maps/bfin-async-flash.c b/drivers/mtd/maps/bfin-async-flash.c deleted file mode 100644 index 41730feeace8..000000000000 --- a/drivers/mtd/maps/bfin-async-flash.c +++ /dev/null @@ -1,196 +0,0 @@ -/* - * drivers/mtd/maps/bfin-async-flash.c - * - * Handle the case where flash memory and ethernet mac/phy are - * mapped onto the same async bank. The BF533-STAMP does this - * for example. All board-specific configuration goes in your - * board resources file. - * - * Copyright 2000 Nicolas Pitre - * Copyright 2005-2008 Analog Devices Inc. - * - * Enter bugs at http://blackfin.uclinux.org/ - * - * Licensed under the GPL-2 or later. - */ - -#include -#include -#include -#include -#include -#include -#include -#include -#include - -#include -#include -#include -#include - -#define pr_devinit(fmt, args...) \ - ({ static const char __fmt[] = fmt; printk(__fmt, ## args); }) - -#define DRIVER_NAME "bfin-async-flash" - -struct async_state { - struct mtd_info *mtd; - struct map_info map; - int enet_flash_pin; - uint32_t flash_ambctl0, flash_ambctl1; - uint32_t save_ambctl0, save_ambctl1; - unsigned long irq_flags; -}; - -static void switch_to_flash(struct async_state *state) -{ - local_irq_save(state->irq_flags); - - gpio_set_value(state->enet_flash_pin, 0); - - state->save_ambctl0 = bfin_read_EBIU_AMBCTL0(); - state->save_ambctl1 = bfin_read_EBIU_AMBCTL1(); - bfin_write_EBIU_AMBCTL0(state->flash_ambctl0); - bfin_write_EBIU_AMBCTL1(state->flash_ambctl1); - SSYNC(); -} - -static void switch_back(struct async_state *state) -{ - bfin_write_EBIU_AMBCTL0(state->save_ambctl0); - bfin_write_EBIU_AMBCTL1(state->save_ambctl1); - SSYNC(); - - gpio_set_value(state->enet_flash_pin, 1); - - local_irq_restore(state->irq_flags); -} - -static map_word bfin_flash_read(struct map_info *map, unsigned long ofs) -{ - struct async_state *state = (struct async_state *)map->map_priv_1; - uint16_t word; - map_word test; - - switch_to_flash(state); - - word = readw(map->virt + ofs); - - switch_back(state); - - test.x[0] = word; - return test; -} - -static void bfin_flash_copy_from(struct map_info *map, void *to, unsigned long from, ssize_t len) -{ - struct async_state *state = (struct async_state *)map->map_priv_1; - - switch_to_flash(state); - - memcpy(to, map->virt + from, len); - - switch_back(state); -} - -static void bfin_flash_write(struct map_info *map, map_word d1, unsigned long ofs) -{ - struct async_state *state = (struct async_state *)map->map_priv_1; - uint16_t d; - - d = d1.x[0]; - - switch_to_flash(state); - - writew(d, map->virt + ofs); - SSYNC(); - - switch_back(state); -} - -static void bfin_flash_copy_to(struct map_info *map, unsigned long to, const void *from, ssize_t len) -{ - struct async_state *state = (struct async_state *)map->map_priv_1; - - switch_to_flash(state); - - memcpy(map->virt + to, from, len); - SSYNC(); - - switch_back(state); -} - -static const char * const part_probe_types[] = { - "cmdlinepart", "RedBoot", NULL }; - -static int bfin_flash_probe(struct platform_device *pdev) -{ - struct physmap_flash_data *pdata = dev_get_platdata(&pdev->dev); - struct resource *memory = platform_get_resource(pdev, IORESOURCE_MEM, 0); - struct resource *flash_ambctl = platform_get_resource(pdev, IORESOURCE_MEM, 1); - struct async_state *state; - - state = kzalloc(sizeof(*state), GFP_KERNEL); - if (!state) - return -ENOMEM; - - state->map.name = DRIVER_NAME; - state->map.read = bfin_flash_read; - state->map.copy_from = bfin_flash_copy_from; - state->map.write = bfin_flash_write; - state->map.copy_to = bfin_flash_copy_to; - state->map.bankwidth = pdata->width; - state->map.size = resource_size(memory); - state->map.virt = (void __iomem *)memory->start; - state->map.phys = memory->start; - state->map.map_priv_1 = (unsigned long)state; - state->enet_flash_pin = platform_get_irq(pdev, 0); - state->flash_ambctl0 = flash_ambctl->start; - state->flash_ambctl1 = flash_ambctl->end; - - if (gpio_request(state->enet_flash_pin, DRIVER_NAME)) { - pr_devinit(KERN_ERR DRIVER_NAME ": Failed to request gpio %d\n", state->enet_flash_pin); - kfree(state); - return -EBUSY; - } - gpio_direction_output(state->enet_flash_pin, 1); - - pr_devinit(KERN_NOTICE DRIVER_NAME ": probing %d-bit flash bus\n", state->map.bankwidth * 8); - state->mtd = do_map_probe(memory->name, &state->map); - if (!state->mtd) { - gpio_free(state->enet_flash_pin); - kfree(state); - return -ENXIO; - } - - mtd_device_parse_register(state->mtd, part_probe_types, NULL, - pdata->parts, pdata->nr_parts); - - platform_set_drvdata(pdev, state); - - return 0; -} - -static int bfin_flash_remove(struct platform_device *pdev) -{ - struct async_state *state = platform_get_drvdata(pdev); - gpio_free(state->enet_flash_pin); - mtd_device_unregister(state->mtd); - map_destroy(state->mtd); - kfree(state); - return 0; -} - -static struct platform_driver bfin_flash_driver = { - .probe = bfin_flash_probe, - .remove = bfin_flash_remove, - .driver = { - .name = DRIVER_NAME, - }, -}; - -module_platform_driver(bfin_flash_driver); - -MODULE_LICENSE("GPL"); -MODULE_DESCRIPTION("MTD map driver for Blackfins with flash/ethernet on same async bank"); -- cgit v1.2.3-58-ga151 From 5b644aa012f67fd211138a067b9f351f30bdcc60 Mon Sep 17 00:00:00 2001 From: Rafał Miłecki Date: Wed, 14 Mar 2018 13:10:42 +0100 Subject: mtd: partitions: add of_match_table parser matching for the "ofpart" type MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit In order to properly support compatibility strings as described in the bindings/mtd/partition.txt "ofpart" type should be treated as an indication for looking into OF. MTD should check "compatible" property and search for a matching parser rather than blindly trying the one supporting "fixed-partitions". It also means that existing "fixed-partitions" parser should get renamed to use a more meaningful name. This commit achievies that aim by introducing a new mtd_part_of_parse(). It works by looking for a matching parser for every string in the "compatibility" property (starting with the most specific one). Please note that driver-specified parsers still take a precedence. It's assumed that driver providing a parser type has a good reason for that (e.g. having platform data with device-specific info). Also doing otherwise could break existing setups. The same applies to using default parsers (including "cmdlinepart") as some overwrite DT data with cmdline argument. Partition parsers can now provide an of_match_table to enable flash<-->parser matching via device tree as documented in the mtd/partition.txt. This support is currently limited to built-in parsers as it uses request_module() and friends. This should be sufficient for most cases though as compiling parsers as modules isn't a common choice. Signed-off-by: Brian Norris Signed-off-by: Rafał Miłecki Tested-by: Peter Rosin Reviewed-by: Richard Weinberger Signed-off-by: Boris Brezillon --- drivers/mtd/mtdpart.c | 116 +++++++++++++++++++++++++++++++++++++---- include/linux/mtd/partitions.h | 1 + 2 files changed, 108 insertions(+), 9 deletions(-) diff --git a/drivers/mtd/mtdpart.c b/drivers/mtd/mtdpart.c index 85fea8ea3423..2b7bb834ff40 100644 --- a/drivers/mtd/mtdpart.c +++ b/drivers/mtd/mtdpart.c @@ -30,6 +30,7 @@ #include #include #include +#include #include "mtdcore.h" @@ -845,6 +846,92 @@ static int mtd_part_do_parse(struct mtd_part_parser *parser, return ret; } +/** + * mtd_part_get_compatible_parser - find MTD parser by a compatible string + * + * @compat: compatible string describing partitions in a device tree + * + * MTD parsers can specify supported partitions by providing a table of + * compatibility strings. This function finds a parser that advertises support + * for a passed value of "compatible". + */ +static struct mtd_part_parser *mtd_part_get_compatible_parser(const char *compat) +{ + struct mtd_part_parser *p, *ret = NULL; + + spin_lock(&part_parser_lock); + + list_for_each_entry(p, &part_parsers, list) { + const struct of_device_id *matches; + + matches = p->of_match_table; + if (!matches) + continue; + + for (; matches->compatible[0]; matches++) { + if (!strcmp(matches->compatible, compat) && + try_module_get(p->owner)) { + ret = p; + break; + } + } + + if (ret) + break; + } + + spin_unlock(&part_parser_lock); + + return ret; +} + +static int mtd_part_of_parse(struct mtd_info *master, + struct mtd_partitions *pparts) +{ + struct mtd_part_parser *parser; + struct device_node *np; + struct property *prop; + const char *compat; + const char *fixed = "ofpart"; + int ret, err = 0; + + np = of_get_child_by_name(mtd_get_of_node(master), "partitions"); + of_property_for_each_string(np, "compatible", prop, compat) { + parser = mtd_part_get_compatible_parser(compat); + if (!parser) + continue; + ret = mtd_part_do_parse(parser, master, pparts, NULL); + if (ret > 0) { + of_node_put(np); + return ret; + } + mtd_part_parser_put(parser); + if (ret < 0 && !err) + err = ret; + } + of_node_put(np); + + /* + * For backward compatibility we have to try the "ofpart" + * parser. It supports old DT format with partitions specified as a + * direct subnodes of a flash device DT node without any compatibility + * specified we could match. + */ + parser = mtd_part_parser_get(fixed); + if (!parser && !request_module("%s", fixed)) + parser = mtd_part_parser_get(fixed); + if (parser) { + ret = mtd_part_do_parse(parser, master, pparts, NULL); + if (ret > 0) + return ret; + mtd_part_parser_put(parser); + if (ret < 0 && !err) + err = ret; + } + + return err; +} + /** * parse_mtd_partitions - parse MTD partitions * @master: the master partition (describes whole MTD device) @@ -877,19 +964,30 @@ int parse_mtd_partitions(struct mtd_info *master, const char *const *types, types = default_mtd_part_types; for ( ; *types; types++) { - pr_debug("%s: parsing partitions %s\n", master->name, *types); - parser = mtd_part_parser_get(*types); - if (!parser && !request_module("%s", *types)) + /* + * ofpart is a special type that means OF partitioning info + * should be used. It requires a bit different logic so it is + * handled in a separated function. + */ + if (!strcmp(*types, "ofpart")) { + ret = mtd_part_of_parse(master, pparts); + } else { + pr_debug("%s: parsing partitions %s\n", master->name, + *types); parser = mtd_part_parser_get(*types); - pr_debug("%s: got parser %s\n", master->name, - parser ? parser->name : NULL); - if (!parser) - continue; - ret = mtd_part_do_parse(parser, master, pparts, data); + if (!parser && !request_module("%s", *types)) + parser = mtd_part_parser_get(*types); + pr_debug("%s: got parser %s\n", master->name, + parser ? parser->name : NULL); + if (!parser) + continue; + ret = mtd_part_do_parse(parser, master, pparts, data); + if (ret <= 0) + mtd_part_parser_put(parser); + } /* Found partitions! */ if (ret > 0) return 0; - mtd_part_parser_put(parser); /* * Stash the first error we see; only report it if no parser * succeeds diff --git a/include/linux/mtd/partitions.h b/include/linux/mtd/partitions.h index c4beb70dacbd..11cb0c50cd84 100644 --- a/include/linux/mtd/partitions.h +++ b/include/linux/mtd/partitions.h @@ -77,6 +77,7 @@ struct mtd_part_parser { struct list_head list; struct module *owner; const char *name; + const struct of_device_id *of_match_table; int (*parse_fn)(struct mtd_info *, const struct mtd_partition **, struct mtd_part_parser_data *); void (*cleanup)(const struct mtd_partition *pparts, int nr_parts); -- cgit v1.2.3-58-ga151 From c0faf43482e7f7dfb6d61847cb93d17748560b24 Mon Sep 17 00:00:00 2001 From: Rafał Miłecki Date: Wed, 14 Mar 2018 13:10:43 +0100 Subject: mtd: rename "ofpart" parser to "fixed-partitions" as it fits it better MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit Type "ofpart" means that OF should be used to get partitioning info and this driver supports "fixed-partitions" binding only. Renaming it should lead to less confusion especially when parsers for new compatibility strings start to appear. Signed-off-by: Rafał Miłecki Reviewed-by: Richard Weinberger Signed-off-by: Boris Brezillon --- drivers/mtd/mtdpart.c | 4 ++-- drivers/mtd/ofpart.c | 11 ++++++----- 2 files changed, 8 insertions(+), 7 deletions(-) diff --git a/drivers/mtd/mtdpart.c b/drivers/mtd/mtdpart.c index 2b7bb834ff40..023516a63276 100644 --- a/drivers/mtd/mtdpart.c +++ b/drivers/mtd/mtdpart.c @@ -892,7 +892,7 @@ static int mtd_part_of_parse(struct mtd_info *master, struct device_node *np; struct property *prop; const char *compat; - const char *fixed = "ofpart"; + const char *fixed = "fixed-partitions"; int ret, err = 0; np = of_get_child_by_name(mtd_get_of_node(master), "partitions"); @@ -912,7 +912,7 @@ static int mtd_part_of_parse(struct mtd_info *master, of_node_put(np); /* - * For backward compatibility we have to try the "ofpart" + * For backward compatibility we have to try the "fixed-partitions" * parser. It supports old DT format with partitions specified as a * direct subnodes of a flash device DT node without any compatibility * specified we could match. diff --git a/drivers/mtd/ofpart.c b/drivers/mtd/ofpart.c index 6bdf4e525677..9f497315e65d 100644 --- a/drivers/mtd/ofpart.c +++ b/drivers/mtd/ofpart.c @@ -25,9 +25,9 @@ static bool node_has_compatible(struct device_node *pp) return of_get_property(pp, "compatible", NULL); } -static int parse_ofpart_partitions(struct mtd_info *master, - const struct mtd_partition **pparts, - struct mtd_part_parser_data *data) +static int parse_fixed_partitions(struct mtd_info *master, + const struct mtd_partition **pparts, + struct mtd_part_parser_data *data) { struct mtd_partition *parts; struct device_node *mtd_node; @@ -141,8 +141,8 @@ ofpart_none: } static struct mtd_part_parser ofpart_parser = { - .parse_fn = parse_ofpart_partitions, - .name = "ofpart", + .parse_fn = parse_fixed_partitions, + .name = "fixed-partitions", }; static int parse_ofoldpart_partitions(struct mtd_info *master, @@ -229,4 +229,5 @@ MODULE_AUTHOR("Vitaly Wool, David Gibson"); * with the same name. Since we provide the ofoldpart parser, we should have * the corresponding alias. */ +MODULE_ALIAS("fixed-partitions"); MODULE_ALIAS("ofoldpart"); -- cgit v1.2.3-58-ga151 From 97b0c7c0df3efd7048ed39d7e2dee34cafd55887 Mon Sep 17 00:00:00 2001 From: Rafał Miłecki Date: Wed, 14 Mar 2018 13:10:44 +0100 Subject: mtd: ofpart: add of_match_table with "fixed-partitions" MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit This allows using this parser with any flash driver that takes care of setting of_node (using mtd_set_of_node helper) correctly. Up to now support for "fixed-partitions" DT compatibility string was working only with flash drivers that were specifying "ofpart" (manually or by letting mtd use the default set of parsers). This matches existing bindings documentation. Signed-off-by: Rafał Miłecki Reviewed-by: Brian Norris Tested-by: Brian Norris Reviewed-by: Richard Weinberger Signed-off-by: Boris Brezillon --- drivers/mtd/ofpart.c | 7 +++++++ 1 file changed, 7 insertions(+) diff --git a/drivers/mtd/ofpart.c b/drivers/mtd/ofpart.c index 9f497315e65d..615f8c173162 100644 --- a/drivers/mtd/ofpart.c +++ b/drivers/mtd/ofpart.c @@ -140,9 +140,16 @@ ofpart_none: return ret; } +static const struct of_device_id parse_ofpart_match_table[] = { + { .compatible = "fixed-partitions" }, + {}, +}; +MODULE_DEVICE_TABLE(of, parse_ofpart_match_table); + static struct mtd_part_parser ofpart_parser = { .parse_fn = parse_fixed_partitions, .name = "fixed-partitions", + .of_match_table = parse_ofpart_match_table, }; static int parse_ofoldpart_partitions(struct mtd_info *master, -- cgit v1.2.3-58-ga151 From 974f2936b360500f9658fb5b698024d2439c18bf Mon Sep 17 00:00:00 2001 From: Linus Walleij Date: Sat, 3 Mar 2018 23:31:45 +0100 Subject: mtd: jedec_probe: add Eon EN29LV400A IDs This adds the JEDEC IDs for Eon EN29LV400A variants EN29LV400AB and EN29LV400AT. This chip is found in the D-Link DNS-313. Signed-off-by: Linus Walleij Signed-off-by: Boris Brezillon --- drivers/mtd/chips/jedec_probe.c | 32 ++++++++++++++++++++++++++++++++ 1 file changed, 32 insertions(+) diff --git a/drivers/mtd/chips/jedec_probe.c b/drivers/mtd/chips/jedec_probe.c index 7c0b27d132b1..9516439bb1a5 100644 --- a/drivers/mtd/chips/jedec_probe.c +++ b/drivers/mtd/chips/jedec_probe.c @@ -53,6 +53,8 @@ #define AT49BV32XT 0x00C9 /* Eon */ +#define EN29LV400AT 0x22B9 +#define EN29LV400AB 0x22BA #define EN29SL800BB 0x226B #define EN29SL800BT 0x22EA @@ -641,6 +643,36 @@ static const struct amd_flash_info jedec_table[] = { ERASEINFO(0x10000,63), ERASEINFO(0x02000,8) } + }, { + .mfr_id = CFI_MFR_EON, + .dev_id = EN29LV400AT, + .name = "Eon EN29LV400AT", + .devtypes = CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8, + .uaddr = MTD_UADDR_0x0AAA_0x0555, + .dev_size = SIZE_512KiB, + .cmd_set = P_ID_AMD_STD, + .nr_regions = 4, + .regions = { + ERASEINFO(0x10000,7), + ERASEINFO(0x08000,1), + ERASEINFO(0x02000,2), + ERASEINFO(0x04000,1), + } + }, { + .mfr_id = CFI_MFR_EON, + .dev_id = EN29LV400AB, + .name = "Eon EN29LV400AB", + .devtypes = CFI_DEVICETYPE_X16|CFI_DEVICETYPE_X8, + .uaddr = MTD_UADDR_0x0AAA_0x0555, + .dev_size = SIZE_512KiB, + .cmd_set = P_ID_AMD_STD, + .nr_regions = 4, + .regions = { + ERASEINFO(0x04000,1), + ERASEINFO(0x02000,2), + ERASEINFO(0x08000,1), + ERASEINFO(0x10000,7), + } }, { .mfr_id = CFI_MFR_EON, .dev_id = EN29SL800BT, -- cgit v1.2.3-58-ga151 From 9e7eb9c90d769ad724136f47e374b2edfa351f9b Mon Sep 17 00:00:00 2001 From: Cyrille Pitchen Date: Thu, 15 Mar 2018 20:04:38 +0100 Subject: MAINTAINERS: update maintainers for MTD and SPI NOR subsystems remove myself as MTD and SPI NOR maintainer. Signed-off-by: Cyrille Pitchen Signed-off-by: Boris Brezillon --- MAINTAINERS | 2 -- 1 file changed, 2 deletions(-) diff --git a/MAINTAINERS b/MAINTAINERS index 3bdc260e36b7..7892db9a9494 100644 --- a/MAINTAINERS +++ b/MAINTAINERS @@ -9037,7 +9037,6 @@ M: Brian Norris M: Boris Brezillon M: Marek Vasut M: Richard Weinberger -M: Cyrille Pitchen L: linux-mtd@lists.infradead.org W: http://www.linux-mtd.infradead.org/ Q: http://patchwork.ozlabs.org/project/linux-mtd/list/ @@ -13006,7 +13005,6 @@ F: arch/arm/boot/dts/spear* F: arch/arm/mach-spear/ SPI NOR SUBSYSTEM -M: Cyrille Pitchen M: Marek Vasut L: linux-mtd@lists.infradead.org W: http://www.linux-mtd.infradead.org/ -- cgit v1.2.3-58-ga151 From 55a999a04159dfb33d3d3d293a70cce766f6db27 Mon Sep 17 00:00:00 2001 From: Rafał Miłecki Date: Tue, 27 Mar 2018 15:36:47 +0200 Subject: mtd: update documentation of mtd_device_parse_register() MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit In the commit 2c77c57d22adb ("mtd: move code adding master MTD out of mtd_add_device_partitions()") behavior of mtd_device_parse_register() has very slightly changed. It's a pretty non-significant order change to match updated function behavior. Signed-off-by: Rafał Miłecki Reviewed-by: Richard Weinberger Signed-off-by: Boris Brezillon --- drivers/mtd/mtdcore.c | 7 +++---- 1 file changed, 3 insertions(+), 4 deletions(-) diff --git a/drivers/mtd/mtdcore.c b/drivers/mtd/mtdcore.c index f25d65ea7149..20d5262c5b5c 100644 --- a/drivers/mtd/mtdcore.c +++ b/drivers/mtd/mtdcore.c @@ -673,14 +673,13 @@ static void mtd_set_dev_defaults(struct mtd_info *mtd) * 'parse_mtd_partitions()') and MTD device and partitions registering. It * basically follows the most common pattern found in many MTD drivers: * - * * It first tries to probe partitions on MTD device @mtd using parsers + * * If the MTD_PARTITIONED_MASTER option is set, then the device as a whole is + * registered first. + * * Then It tries to probe partitions on MTD device @mtd using parsers * specified in @types (if @types is %NULL, then the default list of parsers * is used, see 'parse_mtd_partitions()' for more information). If none are * found this functions tries to fallback to information specified in * @parts/@nr_parts. - * * If any partitioning info was found, this function registers the found - * partitions. If the MTD_PARTITIONED_MASTER option is set, then the device - * as a whole is registered first. * * If no partitions were found this function just registers the MTD device * @mtd and exits. * -- cgit v1.2.3-58-ga151 From 147395ea40b36b8652b6df3e50a1cb745be75c93 Mon Sep 17 00:00:00 2001 From: Prabhakar Kushwaha Date: Wed, 28 Mar 2018 11:14:43 +0530 Subject: dt-bindings: mtd-physmap: Add endianness supports Provide a way to specify the endianness to use when accessing a memory-mapped flash. Signed-off-by: Prabhakar Kushwaha Reviewed-by: Rob Herring Signed-off-by: Boris Brezillon --- Documentation/devicetree/bindings/mtd/mtd-physmap.txt | 7 +++++++ 1 file changed, 7 insertions(+) diff --git a/Documentation/devicetree/bindings/mtd/mtd-physmap.txt b/Documentation/devicetree/bindings/mtd/mtd-physmap.txt index 4a0a48bf4ecb..232fa12e90ef 100644 --- a/Documentation/devicetree/bindings/mtd/mtd-physmap.txt +++ b/Documentation/devicetree/bindings/mtd/mtd-physmap.txt @@ -41,6 +41,13 @@ additional (optional) property is defined: - erase-size : The chip's physical erase block size in bytes. + The device tree may optionally contain endianness property. + little-endian or big-endian : It Represents the endianness that should be used + by the controller to properly read/write data + from/to the flash. If this property is missing, + the endianness is chosen by the system + (potentially based on extra configuration options). + The device tree may optionally contain sub-nodes describing partitions of the address space. See partition.txt for more detail. -- cgit v1.2.3-58-ga151 From 7d5cba597dbfc55c43761e255f1be646ef3ab633 Mon Sep 17 00:00:00 2001 From: Prabhakar Kushwaha Date: Wed, 28 Mar 2018 11:15:52 +0530 Subject: mtd: physmap_of: update struct map_info's swap as per map requirement It is not necessary for all device's maps to be CFI_HOST_ENDIAN. Maps device can be Big endian or little endian. Currently it is being taken care using CONFIG_MTD_CFI_LE_BYTE_SWAP or CONFIG_MTD_CFI_BE_BYTE_SWAP i.e. compile time. Now update struct map_info's swap field based on device characteristics defined in device tree. Signed-off-by: Jagdish Gediya Signed-off-by: Prabhakar Kushwaha Signed-off-by: Boris Brezillon --- drivers/mtd/maps/physmap_of_core.c | 6 ++++++ 1 file changed, 6 insertions(+) diff --git a/drivers/mtd/maps/physmap_of_core.c b/drivers/mtd/maps/physmap_of_core.c index b1bd4faecfb2..527b1682381f 100644 --- a/drivers/mtd/maps/physmap_of_core.c +++ b/drivers/mtd/maps/physmap_of_core.c @@ -20,6 +20,7 @@ #include #include #include +#include #include #include #include @@ -233,6 +234,11 @@ static int of_flash_probe(struct platform_device *dev) info->list[i].map.bankwidth = be32_to_cpup(width); info->list[i].map.device_node = dp; + if (of_property_read_bool(dp, "big-endian")) + info->list[i].map.swap = CFI_BIG_ENDIAN; + else if (of_property_read_bool(dp, "little-endian")) + info->list[i].map.swap = CFI_LITTLE_ENDIAN; + err = of_flash_probe_gemini(dev, dp, &info->list[i].map); if (err) goto err_out; -- cgit v1.2.3-58-ga151 From c77a93120640057bd7c3fd7eca25c427bb6de409 Mon Sep 17 00:00:00 2001 From: Xiaolei Li Date: Thu, 29 Mar 2018 09:34:58 +0800 Subject: mtd: Fix some function description mismatches in mtdcore.c In mtdcore.c, some function descriptions do not match function definitions. Just fix these mismatches. Signed-off-by: Xiaolei Li Signed-off-by: Boris Brezillon --- drivers/mtd/mtdcore.c | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/drivers/mtd/mtdcore.c b/drivers/mtd/mtdcore.c index 20d5262c5b5c..807d17d863b3 100644 --- a/drivers/mtd/mtdcore.c +++ b/drivers/mtd/mtdcore.c @@ -419,7 +419,7 @@ int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit, EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info); /** - * mtd_wunit_to_pairing_info - get wunit from pairing information + * mtd_pairing_info_to_wunit - get wunit from pairing information * @mtd: pointer to new MTD device info structure * @info: pairing information struct * @@ -1507,9 +1507,9 @@ int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf, EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes); /** - * mtd_ooblayout_get_eccbytes - set data bytes into the oob buffer + * mtd_ooblayout_set_databytes - set data bytes into the oob buffer * @mtd: mtd info structure - * @eccbuf: source buffer to get data bytes from + * @databuf: source buffer to get data bytes from * @oobbuf: OOB buffer * @start: first ECC byte to set * @nbytes: number of ECC bytes to set @@ -1541,7 +1541,7 @@ int mtd_ooblayout_count_freebytes(struct mtd_info *mtd) EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes); /** - * mtd_ooblayout_count_freebytes - count the number of ECC bytes in OOB + * mtd_ooblayout_count_eccbytes - count the number of ECC bytes in OOB * @mtd: mtd info structure * * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes. -- cgit v1.2.3-58-ga151 From b756816dad0aaca4f57c857a86a6a4a85a9f478b Mon Sep 17 00:00:00 2001 From: Arushi Singhal Date: Sun, 25 Mar 2018 21:07:43 +0530 Subject: mtd: ftl: Use DIV_ROUND_UP() The kernel.h macro DIV_ROUND_UP performs the computation (((n) + (d) - 1) / (d)) but is perhaps more readable. Signed-off-by: Arushi Singhal Signed-off-by: Boris Brezillon --- drivers/mtd/ftl.c | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/drivers/mtd/ftl.c b/drivers/mtd/ftl.c index 0a6adfaec7b5..ef6ad2551d57 100644 --- a/drivers/mtd/ftl.c +++ b/drivers/mtd/ftl.c @@ -393,8 +393,8 @@ static int prepare_xfer(partition_t *part, int i) } /* Write the BAM stub */ - nbam = (part->BlocksPerUnit * sizeof(uint32_t) + - le32_to_cpu(part->header.BAMOffset) + SECTOR_SIZE - 1) / SECTOR_SIZE; + nbam = DIV_ROUND_UP(part->BlocksPerUnit * sizeof(uint32_t) + + le32_to_cpu(part->header.BAMOffset), SECTOR_SIZE); offset = xfer->Offset + le32_to_cpu(part->header.BAMOffset); ctl = cpu_to_le32(BLOCK_CONTROL); -- cgit v1.2.3-58-ga151 From 961ba15c48dd465fdbef1b9379bd8031c374d62e Mon Sep 17 00:00:00 2001 From: Gregory CLEMENT Date: Tue, 13 Mar 2018 11:30:16 +0100 Subject: mtd: rawnand: marvell: Fix clock resource by adding a register clock On Armada 7K/8K we need to explicitly enable the register clock. This clock is optional because not all the SoCs using this IP need it but at least for Armada 7K/8K it is actually mandatory. The binding documentation is updated accordingly. Signed-off-by: Gregory CLEMENT Signed-off-by: Boris Brezillon --- .../devicetree/bindings/mtd/marvell-nand.txt | 5 +++- drivers/mtd/nand/raw/marvell_nand.c | 34 ++++++++++++++++++---- 2 files changed, 32 insertions(+), 7 deletions(-) diff --git a/Documentation/devicetree/bindings/mtd/marvell-nand.txt b/Documentation/devicetree/bindings/mtd/marvell-nand.txt index c08fb477b3c6..e0c790706b9b 100644 --- a/Documentation/devicetree/bindings/mtd/marvell-nand.txt +++ b/Documentation/devicetree/bindings/mtd/marvell-nand.txt @@ -14,7 +14,10 @@ Required properties: - #address-cells: shall be set to 1. Encode the NAND CS. - #size-cells: shall be set to 0. - interrupts: shall define the NAND controller interrupt. -- clocks: shall reference the NAND controller clock. +- clocks: shall reference the NAND controller clocks, the second one is + is only needed for the Armada 7K/8K SoCs +- clock-names: mandatory if there is a second clock, in this case there + should be one clock named "core" and another one named "reg" - marvell,system-controller: Set to retrieve the syscon node that handles NAND controller related registers (only required with the "marvell,armada-8k-nand[-controller]" compatibles). diff --git a/drivers/mtd/nand/raw/marvell_nand.c b/drivers/mtd/nand/raw/marvell_nand.c index 528a8e0342bd..3d84f4252af4 100644 --- a/drivers/mtd/nand/raw/marvell_nand.c +++ b/drivers/mtd/nand/raw/marvell_nand.c @@ -308,6 +308,7 @@ struct marvell_nfc_caps { * @dev: Parent device (used to print error messages) * @regs: NAND controller registers * @ecc_clk: ECC block clock, two times the NAND controller clock + * @reg_clk: Regiters clock * @complete: Completion object to wait for NAND controller events * @assigned_cs: Bitmask describing already assigned CS lines * @chips: List containing all the NAND chips attached to @@ -321,6 +322,7 @@ struct marvell_nfc { struct device *dev; void __iomem *regs; struct clk *ecc_clk; + struct clk *reg_clk; struct completion complete; unsigned long assigned_cs; struct list_head chips; @@ -2757,7 +2759,12 @@ static int marvell_nfc_probe(struct platform_device *pdev) return irq; } - nfc->ecc_clk = devm_clk_get(&pdev->dev, NULL); + nfc->ecc_clk = devm_clk_get(&pdev->dev, "core"); + + /* Managed the legacy case (when the first clock was not named) */ + if (nfc->ecc_clk == ERR_PTR(-ENOENT)) + nfc->ecc_clk = devm_clk_get(&pdev->dev, NULL); + if (IS_ERR(nfc->ecc_clk)) return PTR_ERR(nfc->ecc_clk); @@ -2765,12 +2772,24 @@ static int marvell_nfc_probe(struct platform_device *pdev) if (ret) return ret; + nfc->reg_clk = devm_clk_get(&pdev->dev, "reg"); + if (PTR_ERR(nfc->reg_clk) != -ENOENT) { + if (!IS_ERR(nfc->reg_clk)) { + ret = clk_prepare_enable(nfc->reg_clk); + if (ret) + goto unprepare_ecc_clk; + } else { + ret = PTR_ERR(nfc->reg_clk); + goto unprepare_ecc_clk; + } + } + marvell_nfc_disable_int(nfc, NDCR_ALL_INT); marvell_nfc_clear_int(nfc, NDCR_ALL_INT); ret = devm_request_irq(dev, irq, marvell_nfc_isr, 0, "marvell-nfc", nfc); if (ret) - goto unprepare_clk; + goto unprepare_reg_clk; /* Get NAND controller capabilities */ if (pdev->id_entry) @@ -2781,23 +2800,25 @@ static int marvell_nfc_probe(struct platform_device *pdev) if (!nfc->caps) { dev_err(dev, "Could not retrieve NFC caps\n"); ret = -EINVAL; - goto unprepare_clk; + goto unprepare_reg_clk; } /* Init the controller and then probe the chips */ ret = marvell_nfc_init(nfc); if (ret) - goto unprepare_clk; + goto unprepare_reg_clk; platform_set_drvdata(pdev, nfc); ret = marvell_nand_chips_init(dev, nfc); if (ret) - goto unprepare_clk; + goto unprepare_reg_clk; return 0; -unprepare_clk: +unprepare_reg_clk: + clk_disable_unprepare(nfc->reg_clk); +unprepare_ecc_clk: clk_disable_unprepare(nfc->ecc_clk); return ret; @@ -2814,6 +2835,7 @@ static int marvell_nfc_remove(struct platform_device *pdev) dma_release_channel(nfc->dma_chan); } + clk_disable_unprepare(nfc->reg_clk); clk_disable_unprepare(nfc->ecc_clk); return 0; -- cgit v1.2.3-58-ga151 From 15d6f118285f2ffc73fc8de75ecf7c36c3c6fe18 Mon Sep 17 00:00:00 2001 From: Boris Brezillon Date: Wed, 21 Mar 2018 09:36:18 +0100 Subject: mtd: rawnand: sunxi: Stop supporting ECC_HW_SYNDROME mode This mode is not used by any existing setup and should not be used because it overwrites the BBMs. Let's just remove it before someone starts using it. Signed-off-by: Boris Brezillon Acked-by: Maxime Ripard Tested-by: Miquel Raynal --- .../devicetree/bindings/mtd/sunxi-nand.txt | 4 +- drivers/mtd/nand/raw/sunxi_nand.c | 155 +++------------------ 2 files changed, 22 insertions(+), 137 deletions(-) diff --git a/Documentation/devicetree/bindings/mtd/sunxi-nand.txt b/Documentation/devicetree/bindings/mtd/sunxi-nand.txt index 5e13a5cdff03..0734f03bf3d3 100644 --- a/Documentation/devicetree/bindings/mtd/sunxi-nand.txt +++ b/Documentation/devicetree/bindings/mtd/sunxi-nand.txt @@ -24,8 +24,8 @@ Optional properties: - allwinner,rb : shall contain the native Ready/Busy ids. or - rb-gpios : shall contain the gpios used as R/B pins. -- nand-ecc-mode : one of the supported ECC modes ("hw", "hw_syndrome", "soft", - "soft_bch" or "none") +- nand-ecc-mode : one of the supported ECC modes ("hw", "soft", "soft_bch" or + "none") see Documentation/devicetree/bindings/mtd/nand.txt for generic bindings. diff --git a/drivers/mtd/nand/raw/sunxi_nand.c b/drivers/mtd/nand/raw/sunxi_nand.c index f5a55c63935c..aad42812a353 100644 --- a/drivers/mtd/nand/raw/sunxi_nand.c +++ b/drivers/mtd/nand/raw/sunxi_nand.c @@ -1475,92 +1475,18 @@ pio_fallback: return sunxi_nfc_hw_ecc_write_page(mtd, chip, buf, oob_required, page); } -static int sunxi_nfc_hw_syndrome_ecc_read_page(struct mtd_info *mtd, - struct nand_chip *chip, - uint8_t *buf, int oob_required, - int page) -{ - struct nand_ecc_ctrl *ecc = &chip->ecc; - unsigned int max_bitflips = 0; - int ret, i, cur_off = 0; - bool raw_mode = false; - - nand_read_page_op(chip, page, 0, NULL, 0); - - sunxi_nfc_hw_ecc_enable(mtd); - - for (i = 0; i < ecc->steps; i++) { - int data_off = i * (ecc->size + ecc->bytes + 4); - int oob_off = data_off + ecc->size; - u8 *data = buf + (i * ecc->size); - u8 *oob = chip->oob_poi + (i * (ecc->bytes + 4)); - - ret = sunxi_nfc_hw_ecc_read_chunk(mtd, data, data_off, oob, - oob_off, &cur_off, - &max_bitflips, !i, - oob_required, - page); - if (ret < 0) - return ret; - else if (ret) - raw_mode = true; - } - - if (oob_required) - sunxi_nfc_hw_ecc_read_extra_oob(mtd, chip->oob_poi, &cur_off, - !raw_mode, page); - - sunxi_nfc_hw_ecc_disable(mtd); - - return max_bitflips; -} - -static int sunxi_nfc_hw_syndrome_ecc_write_page(struct mtd_info *mtd, - struct nand_chip *chip, - const uint8_t *buf, - int oob_required, int page) -{ - struct nand_ecc_ctrl *ecc = &chip->ecc; - int ret, i, cur_off = 0; - - nand_prog_page_begin_op(chip, page, 0, NULL, 0); - - sunxi_nfc_hw_ecc_enable(mtd); - - for (i = 0; i < ecc->steps; i++) { - int data_off = i * (ecc->size + ecc->bytes + 4); - int oob_off = data_off + ecc->size; - const u8 *data = buf + (i * ecc->size); - const u8 *oob = chip->oob_poi + (i * (ecc->bytes + 4)); - - ret = sunxi_nfc_hw_ecc_write_chunk(mtd, data, data_off, - oob, oob_off, &cur_off, - false, page); - if (ret) - return ret; - } - - if (oob_required || (chip->options & NAND_NEED_SCRAMBLING)) - sunxi_nfc_hw_ecc_write_extra_oob(mtd, chip->oob_poi, - &cur_off, page); - - sunxi_nfc_hw_ecc_disable(mtd); - - return nand_prog_page_end_op(chip); -} - -static int sunxi_nfc_hw_common_ecc_read_oob(struct mtd_info *mtd, - struct nand_chip *chip, - int page) +static int sunxi_nfc_hw_ecc_read_oob(struct mtd_info *mtd, + struct nand_chip *chip, + int page) { chip->pagebuf = -1; return chip->ecc.read_page(mtd, chip, chip->data_buf, 1, page); } -static int sunxi_nfc_hw_common_ecc_write_oob(struct mtd_info *mtd, - struct nand_chip *chip, - int page) +static int sunxi_nfc_hw_ecc_write_oob(struct mtd_info *mtd, + struct nand_chip *chip, + int page) { int ret; @@ -1801,9 +1727,14 @@ static const struct mtd_ooblayout_ops sunxi_nand_ooblayout_ops = { .free = sunxi_nand_ooblayout_free, }; -static int sunxi_nand_hw_common_ecc_ctrl_init(struct mtd_info *mtd, - struct nand_ecc_ctrl *ecc, - struct device_node *np) +static void sunxi_nand_hw_ecc_ctrl_cleanup(struct nand_ecc_ctrl *ecc) +{ + kfree(ecc->priv); +} + +static int sunxi_nand_hw_ecc_ctrl_init(struct mtd_info *mtd, + struct nand_ecc_ctrl *ecc, + struct device_node *np) { static const u8 strengths[] = { 16, 24, 28, 32, 40, 48, 56, 60, 64 }; struct nand_chip *nand = mtd_to_nand(mtd); @@ -1889,37 +1820,11 @@ static int sunxi_nand_hw_common_ecc_ctrl_init(struct mtd_info *mtd, goto err; } - ecc->read_oob = sunxi_nfc_hw_common_ecc_read_oob; - ecc->write_oob = sunxi_nfc_hw_common_ecc_write_oob; + ecc->read_oob = sunxi_nfc_hw_ecc_read_oob; + ecc->write_oob = sunxi_nfc_hw_ecc_write_oob; mtd_set_ooblayout(mtd, &sunxi_nand_ooblayout_ops); ecc->priv = data; - return 0; - -err: - kfree(data); - - return ret; -} - -static void sunxi_nand_hw_common_ecc_ctrl_cleanup(struct nand_ecc_ctrl *ecc) -{ - kfree(ecc->priv); -} - -static int sunxi_nand_hw_ecc_ctrl_init(struct mtd_info *mtd, - struct nand_ecc_ctrl *ecc, - struct device_node *np) -{ - struct nand_chip *nand = mtd_to_nand(mtd); - struct sunxi_nand_chip *sunxi_nand = to_sunxi_nand(nand); - struct sunxi_nfc *nfc = to_sunxi_nfc(sunxi_nand->nand.controller); - int ret; - - ret = sunxi_nand_hw_common_ecc_ctrl_init(mtd, ecc, np); - if (ret) - return ret; - if (nfc->dmac) { ecc->read_page = sunxi_nfc_hw_ecc_read_page_dma; ecc->read_subpage = sunxi_nfc_hw_ecc_read_subpage_dma; @@ -1937,33 +1842,18 @@ static int sunxi_nand_hw_ecc_ctrl_init(struct mtd_info *mtd, ecc->write_oob_raw = nand_write_oob_std; return 0; -} - -static int sunxi_nand_hw_syndrome_ecc_ctrl_init(struct mtd_info *mtd, - struct nand_ecc_ctrl *ecc, - struct device_node *np) -{ - int ret; - - ret = sunxi_nand_hw_common_ecc_ctrl_init(mtd, ecc, np); - if (ret) - return ret; - ecc->prepad = 4; - ecc->read_page = sunxi_nfc_hw_syndrome_ecc_read_page; - ecc->write_page = sunxi_nfc_hw_syndrome_ecc_write_page; - ecc->read_oob_raw = nand_read_oob_syndrome; - ecc->write_oob_raw = nand_write_oob_syndrome; +err: + kfree(data); - return 0; + return ret; } static void sunxi_nand_ecc_cleanup(struct nand_ecc_ctrl *ecc) { switch (ecc->mode) { case NAND_ECC_HW: - case NAND_ECC_HW_SYNDROME: - sunxi_nand_hw_common_ecc_ctrl_cleanup(ecc); + sunxi_nand_hw_ecc_ctrl_cleanup(ecc); break; case NAND_ECC_NONE: default: @@ -1991,11 +1881,6 @@ static int sunxi_nand_ecc_init(struct mtd_info *mtd, struct nand_ecc_ctrl *ecc, if (ret) return ret; break; - case NAND_ECC_HW_SYNDROME: - ret = sunxi_nand_hw_syndrome_ecc_ctrl_init(mtd, ecc, np); - if (ret) - return ret; - break; case NAND_ECC_NONE: case NAND_ECC_SOFT: break; -- cgit v1.2.3-58-ga151 From 5826b8802a970d2b0aaf097951de42040ee32480 Mon Sep 17 00:00:00 2001 From: Miquel Raynal Date: Wed, 21 Mar 2018 14:01:42 +0100 Subject: mtd: rawnand: brcmnand: fix probe function error path An error after nand_scan_tail() should trigger a nand_cleanup(). The helper mtd_device_register() returns an error code that should be checked and nand_cleanup() called accordingly. Signed-off-by: Miquel Raynal Signed-off-by: Boris Brezillon --- drivers/mtd/nand/raw/brcmnand/brcmnand.c | 6 +++++- 1 file changed, 5 insertions(+), 1 deletion(-) diff --git a/drivers/mtd/nand/raw/brcmnand/brcmnand.c b/drivers/mtd/nand/raw/brcmnand/brcmnand.c index c28fd2bc1a84..1306aaa7a8bf 100644 --- a/drivers/mtd/nand/raw/brcmnand/brcmnand.c +++ b/drivers/mtd/nand/raw/brcmnand/brcmnand.c @@ -2297,7 +2297,11 @@ static int brcmnand_init_cs(struct brcmnand_host *host, struct device_node *dn) if (ret) return ret; - return mtd_device_register(mtd, NULL, 0); + ret = mtd_device_register(mtd, NULL, 0); + if (ret) + nand_cleanup(chip); + + return ret; } static void brcmnand_save_restore_cs_config(struct brcmnand_host *host, -- cgit v1.2.3-58-ga151 From a446c998ff0cd49fa8023f607e9fc15ce45ec576 Mon Sep 17 00:00:00 2001 From: Miquel Raynal Date: Wed, 21 Mar 2018 14:01:43 +0100 Subject: mtd: rawnand: cafe: fix probe function error path An error after nand_scan_tail() should trigger a nand_cleanup(). The helper mtd_device_parse_register() returns an error code that should be checked and nand_cleanup() called accordingly. Signed-off-by: Miquel Raynal Signed-off-by: Boris Brezillon --- drivers/mtd/nand/raw/cafe_nand.c | 6 +++++- 1 file changed, 5 insertions(+), 1 deletion(-) diff --git a/drivers/mtd/nand/raw/cafe_nand.c b/drivers/mtd/nand/raw/cafe_nand.c index 3c1b6a3786b2..d8c8c9d1e640 100644 --- a/drivers/mtd/nand/raw/cafe_nand.c +++ b/drivers/mtd/nand/raw/cafe_nand.c @@ -774,10 +774,14 @@ static int cafe_nand_probe(struct pci_dev *pdev, pci_set_drvdata(pdev, mtd); mtd->name = "cafe_nand"; - mtd_device_parse_register(mtd, part_probes, NULL, NULL, 0); + err = mtd_device_parse_register(mtd, part_probes, NULL, NULL, 0); + if (err) + goto out_cleanup_nand; goto out; + out_cleanup_nand: + nand_cleanup(&cafe->nand); out_free_dma: dma_free_coherent(&cafe->pdev->dev, 2112, cafe->dmabuf, cafe->dmaaddr); out_irq: -- cgit v1.2.3-58-ga151 From 4acc3046ed5c1641874b89fe66ef8707d81ff80e Mon Sep 17 00:00:00 2001 From: Miquel Raynal Date: Wed, 21 Mar 2018 14:01:44 +0100 Subject: mtd: rawnand: davinci: fix probe function error path An error after nand_scan_tail() should trigger a nand_cleanup(). The helper mtd_device_register() returns an error code that should be checked and nand_cleanup() called accordingly. Signed-off-by: Miquel Raynal Signed-off-by: Boris Brezillon --- drivers/mtd/nand/raw/davinci_nand.c | 5 ++++- 1 file changed, 4 insertions(+), 1 deletion(-) diff --git a/drivers/mtd/nand/raw/davinci_nand.c b/drivers/mtd/nand/raw/davinci_nand.c index ccc8c43abcff..0f09518d980f 100644 --- a/drivers/mtd/nand/raw/davinci_nand.c +++ b/drivers/mtd/nand/raw/davinci_nand.c @@ -826,7 +826,7 @@ static int nand_davinci_probe(struct platform_device *pdev) else ret = mtd_device_register(mtd, NULL, 0); if (ret < 0) - goto err; + goto err_cleanup_nand; val = davinci_nand_readl(info, NRCSR_OFFSET); dev_info(&pdev->dev, "controller rev. %d.%d\n", @@ -834,6 +834,9 @@ static int nand_davinci_probe(struct platform_device *pdev) return 0; +err_cleanup_nand: + nand_cleanup(&info->chip); + err: clk_disable_unprepare(info->clk); -- cgit v1.2.3-58-ga151 From 4e5d1d9078eda3de65f478b248cae882e2c0a839 Mon Sep 17 00:00:00 2001 From: Miquel Raynal Date: Wed, 21 Mar 2018 14:01:45 +0100 Subject: mtd: rawnand: denali: fix probe function error path An error after nand_scan_tail() should trigger a nand_cleanup(). The helper mtd_device_register() returns an error code that should be checked and nand_cleanup() called accordingly. Signed-off-by: Miquel Raynal Signed-off-by: Boris Brezillon --- drivers/mtd/nand/raw/denali.c | 4 +++- 1 file changed, 3 insertions(+), 1 deletion(-) diff --git a/drivers/mtd/nand/raw/denali.c b/drivers/mtd/nand/raw/denali.c index 313c7f50621b..2a302a1d1430 100644 --- a/drivers/mtd/nand/raw/denali.c +++ b/drivers/mtd/nand/raw/denali.c @@ -1384,10 +1384,12 @@ int denali_init(struct denali_nand_info *denali) ret = mtd_device_register(mtd, NULL, 0); if (ret) { dev_err(denali->dev, "Failed to register MTD: %d\n", ret); - goto free_buf; + goto cleanup_nand; } return 0; +cleanup_nand: + nand_cleanup(chip); free_buf: kfree(denali->buf); disable_irq: -- cgit v1.2.3-58-ga151 From be051bf28f8084bd75f6fd67b2f3fb7d4883751d Mon Sep 17 00:00:00 2001 From: Miquel Raynal Date: Wed, 21 Mar 2018 14:01:50 +0100 Subject: mtd: rawnand: mxc: fix probe function error path An error after nand_scan_tail() should trigger a nand_cleanup(). The helper mtd_device_parse_register() returns an error code that should be checked and nand_cleanup() called accordingly. Signed-off-by: Miquel Raynal Signed-off-by: Boris Brezillon --- drivers/mtd/nand/raw/mxc_nand.c | 11 +++++++---- 1 file changed, 7 insertions(+), 4 deletions(-) diff --git a/drivers/mtd/nand/raw/mxc_nand.c b/drivers/mtd/nand/raw/mxc_nand.c index 944ecf03d3b1..45786e707b7b 100644 --- a/drivers/mtd/nand/raw/mxc_nand.c +++ b/drivers/mtd/nand/raw/mxc_nand.c @@ -1911,15 +1911,18 @@ static int mxcnd_probe(struct platform_device *pdev) goto escan; /* Register the partitions */ - mtd_device_parse_register(mtd, part_probes, - NULL, - host->pdata.parts, - host->pdata.nr_parts); + err = mtd_device_parse_register(mtd, part_probes, NULL, + host->pdata.parts, + host->pdata.nr_parts); + if (err) + goto cleanup_nand; platform_set_drvdata(pdev, host); return 0; +cleanup_nand: + nand_cleanup(this); escan: if (host->clk_act) clk_disable_unprepare(host->clk); -- cgit v1.2.3-58-ga151 From 122bb3cb8b009aaa19fd8b09df8028ba8d49c043 Mon Sep 17 00:00:00 2001 From: Miquel Raynal Date: Wed, 21 Mar 2018 14:01:51 +0100 Subject: mtd: rawnand: omap2: fix the probe function error path An error after nand_scan_tail() should trigger a nand_cleanup(). The helper mtd_device_parse_register() returns an error code that should be checked and nand_cleanup() called accordingly. Signed-off-by: Miquel Raynal Signed-off-by: Boris Brezillon --- drivers/mtd/nand/raw/omap2.c | 5 ++++- 1 file changed, 4 insertions(+), 1 deletion(-) diff --git a/drivers/mtd/nand/raw/omap2.c b/drivers/mtd/nand/raw/omap2.c index 8cdf7d3d8fa7..e50c64adc3c8 100644 --- a/drivers/mtd/nand/raw/omap2.c +++ b/drivers/mtd/nand/raw/omap2.c @@ -2263,12 +2263,15 @@ scan_tail: err = mtd_device_register(mtd, NULL, 0); if (err) - goto return_error; + goto cleanup_nand; platform_set_drvdata(pdev, mtd); return 0; +cleanup_nand: + nand_cleanup(nand_chip); + return_error: if (!IS_ERR_OR_NULL(info->dma)) dma_release_channel(info->dma); -- cgit v1.2.3-58-ga151 From 5a3e8cde101209edb962ed42091db257f9f5ce5c Mon Sep 17 00:00:00 2001 From: Miquel Raynal Date: Wed, 21 Mar 2018 14:01:52 +0100 Subject: mtd: rawnand: sh_flctl: fix the probe function error path An error after nand_scan_tail() should trigger a nand_cleanup(). The helper mtd_device_parse_register() returns an error code that should be checked and nand_cleanup() called accordingly. Signed-off-by: Miquel Raynal Signed-off-by: Boris Brezillon --- drivers/mtd/nand/raw/sh_flctl.c | 4 ++++ 1 file changed, 4 insertions(+) diff --git a/drivers/mtd/nand/raw/sh_flctl.c b/drivers/mtd/nand/raw/sh_flctl.c index 7a740d583866..c7abceffcc40 100644 --- a/drivers/mtd/nand/raw/sh_flctl.c +++ b/drivers/mtd/nand/raw/sh_flctl.c @@ -1214,9 +1214,13 @@ static int flctl_probe(struct platform_device *pdev) goto err_chip; ret = mtd_device_register(flctl_mtd, pdata->parts, pdata->nr_parts); + if (ret) + goto cleanup_nand; return 0; +cleanup_nand: + nand_cleanup(nand); err_chip: flctl_release_dma(flctl); pm_runtime_disable(&pdev->dev); -- cgit v1.2.3-58-ga151 From 0eaa879be623f5e209e79a40f5e281f9c5c9170b Mon Sep 17 00:00:00 2001 From: Miquel Raynal Date: Wed, 21 Mar 2018 14:01:53 +0100 Subject: mtd: rawnand: tango: fix probe function error path An error after nand_scan_tail() should trigger a nand_cleanup(). The helper mtd_device_parse_register() returns an error code that should be checked and nand_cleanup() called accordingly. Signed-off-by: Miquel Raynal Signed-off-by: Boris Brezillon --- drivers/mtd/nand/raw/tango_nand.c | 4 +++- 1 file changed, 3 insertions(+), 1 deletion(-) diff --git a/drivers/mtd/nand/raw/tango_nand.c b/drivers/mtd/nand/raw/tango_nand.c index c5bee00b7f5e..f54518ffb36a 100644 --- a/drivers/mtd/nand/raw/tango_nand.c +++ b/drivers/mtd/nand/raw/tango_nand.c @@ -591,8 +591,10 @@ static int chip_init(struct device *dev, struct device_node *np) tchip->bb_cfg = BB_CFG(mtd->writesize, BBM_SIZE); err = mtd_device_register(mtd, NULL, 0); - if (err) + if (err) { + nand_cleanup(chip); return err; + } nfc->chips[cs] = tchip; -- cgit v1.2.3-58-ga151 From bb00ff2f4a746db95a44758d45bd3f715169ef6f Mon Sep 17 00:00:00 2001 From: Miquel Raynal Date: Wed, 21 Mar 2018 14:01:57 +0100 Subject: mtd: rawnand: s3c2410: enhance the probe function error path Prepare the migration of the lpc32xx_slc driver to use nand_scan() by cleaning the error path in the probe function. Signed-off-by: Miquel Raynal Signed-off-by: Boris Brezillon --- drivers/mtd/nand/raw/s3c2410.c | 24 ++++++++++++------------ 1 file changed, 12 insertions(+), 12 deletions(-) diff --git a/drivers/mtd/nand/raw/s3c2410.c b/drivers/mtd/nand/raw/s3c2410.c index b5bc5f106c09..1bc0458063d8 100644 --- a/drivers/mtd/nand/raw/s3c2410.c +++ b/drivers/mtd/nand/raw/s3c2410.c @@ -124,13 +124,11 @@ struct s3c2410_nand_info; * @chip: The NAND chip information. * @set: The platform information supplied for this set of NAND chips. * @info: Link back to the hardware information. - * @scan_res: The result from calling nand_scan_ident(). */ struct s3c2410_nand_mtd { struct nand_chip chip; struct s3c2410_nand_set *set; struct s3c2410_nand_info *info; - int scan_res; }; enum s3c_cpu_type { @@ -1163,17 +1161,19 @@ static int s3c24xx_nand_probe(struct platform_device *pdev) mtd->dev.parent = &pdev->dev; s3c2410_nand_init_chip(info, nmtd, sets); - nmtd->scan_res = nand_scan_ident(mtd, - (sets) ? sets->nr_chips : 1, - NULL); + err = nand_scan_ident(mtd, (sets) ? sets->nr_chips : 1, NULL); + if (err) + goto exit_error; - if (nmtd->scan_res == 0) { - err = s3c2410_nand_update_chip(info, nmtd); - if (err < 0) - goto exit_error; - nand_scan_tail(mtd); - s3c2410_nand_add_partition(info, nmtd, sets); - } + err = s3c2410_nand_update_chip(info, nmtd); + if (err < 0) + goto exit_error; + + err = nand_scan_tail(mtd); + if (err) + goto exit_error; + + s3c2410_nand_add_partition(info, nmtd, sets); if (sets != NULL) sets++; -- cgit v1.2.3-58-ga151 From 6b6de6543dd5040727afc56a69c7ba6698dd3090 Mon Sep 17 00:00:00 2001 From: Boris Brezillon Date: Mon, 26 Mar 2018 11:53:01 +0200 Subject: mtd: rawnand: marvell: Rename ->ecc_clk into ->core_clk The core clock field was badly named ->ecc_clk which might lead to some confusion. Rename it ->core_clk. Signed-off-by: Boris Brezillon Acked-by: Miquel Raynal --- drivers/mtd/nand/raw/marvell_nand.c | 28 ++++++++++++++-------------- 1 file changed, 14 insertions(+), 14 deletions(-) diff --git a/drivers/mtd/nand/raw/marvell_nand.c b/drivers/mtd/nand/raw/marvell_nand.c index 3d84f4252af4..10e953218948 100644 --- a/drivers/mtd/nand/raw/marvell_nand.c +++ b/drivers/mtd/nand/raw/marvell_nand.c @@ -307,7 +307,7 @@ struct marvell_nfc_caps { * @controller: Base controller structure * @dev: Parent device (used to print error messages) * @regs: NAND controller registers - * @ecc_clk: ECC block clock, two times the NAND controller clock + * @core_clk: Core clock * @reg_clk: Regiters clock * @complete: Completion object to wait for NAND controller events * @assigned_cs: Bitmask describing already assigned CS lines @@ -321,7 +321,7 @@ struct marvell_nfc { struct nand_hw_control controller; struct device *dev; void __iomem *regs; - struct clk *ecc_clk; + struct clk *core_clk; struct clk *reg_clk; struct completion complete; unsigned long assigned_cs; @@ -2193,7 +2193,7 @@ static int marvell_nfc_setup_data_interface(struct mtd_info *mtd, int chipnr, struct nand_chip *chip = mtd_to_nand(mtd); struct marvell_nand_chip *marvell_nand = to_marvell_nand(chip); struct marvell_nfc *nfc = to_marvell_nfc(chip->controller); - unsigned int period_ns = 1000000000 / clk_get_rate(nfc->ecc_clk) * 2; + unsigned int period_ns = 1000000000 / clk_get_rate(nfc->core_clk) * 2; const struct nand_sdr_timings *sdr; struct marvell_nfc_timings nfc_tmg; int read_delay; @@ -2759,16 +2759,16 @@ static int marvell_nfc_probe(struct platform_device *pdev) return irq; } - nfc->ecc_clk = devm_clk_get(&pdev->dev, "core"); + nfc->core_clk = devm_clk_get(&pdev->dev, "core"); /* Managed the legacy case (when the first clock was not named) */ - if (nfc->ecc_clk == ERR_PTR(-ENOENT)) - nfc->ecc_clk = devm_clk_get(&pdev->dev, NULL); + if (nfc->core_clk == ERR_PTR(-ENOENT)) + nfc->core_clk = devm_clk_get(&pdev->dev, NULL); - if (IS_ERR(nfc->ecc_clk)) - return PTR_ERR(nfc->ecc_clk); + if (IS_ERR(nfc->core_clk)) + return PTR_ERR(nfc->core_clk); - ret = clk_prepare_enable(nfc->ecc_clk); + ret = clk_prepare_enable(nfc->core_clk); if (ret) return ret; @@ -2777,10 +2777,10 @@ static int marvell_nfc_probe(struct platform_device *pdev) if (!IS_ERR(nfc->reg_clk)) { ret = clk_prepare_enable(nfc->reg_clk); if (ret) - goto unprepare_ecc_clk; + goto unprepare_core_clk; } else { ret = PTR_ERR(nfc->reg_clk); - goto unprepare_ecc_clk; + goto unprepare_core_clk; } } @@ -2818,8 +2818,8 @@ static int marvell_nfc_probe(struct platform_device *pdev) unprepare_reg_clk: clk_disable_unprepare(nfc->reg_clk); -unprepare_ecc_clk: - clk_disable_unprepare(nfc->ecc_clk); +unprepare_core_clk: + clk_disable_unprepare(nfc->core_clk); return ret; } @@ -2836,7 +2836,7 @@ static int marvell_nfc_remove(struct platform_device *pdev) } clk_disable_unprepare(nfc->reg_clk); - clk_disable_unprepare(nfc->ecc_clk); + clk_disable_unprepare(nfc->core_clk); return 0; } -- cgit v1.2.3-58-ga151 From 94bf11bddad836380ecced299f4d5cb7d17a7dd1 Mon Sep 17 00:00:00 2001 From: Boris Brezillon Date: Wed, 14 Feb 2018 13:46:25 +0100 Subject: mtd: fsl-quadspi: Remove unneeded driver.bus assignment platform_driver_register() takes care of assigning driver->bus to &platform_bus_type, no need to explicitly assign it in the driver. Signed-off-by: Boris Brezillon Acked-by: Han Xu Signed-off-by: Cyrille Pitchen --- drivers/mtd/spi-nor/fsl-quadspi.c | 1 - 1 file changed, 1 deletion(-) diff --git a/drivers/mtd/spi-nor/fsl-quadspi.c b/drivers/mtd/spi-nor/fsl-quadspi.c index 2901c7bd9e30..dc9914fce296 100644 --- a/drivers/mtd/spi-nor/fsl-quadspi.c +++ b/drivers/mtd/spi-nor/fsl-quadspi.c @@ -1174,7 +1174,6 @@ static int fsl_qspi_resume(struct platform_device *pdev) static struct platform_driver fsl_qspi_driver = { .driver = { .name = "fsl-quadspi", - .bus = &platform_bus_type, .of_match_table = fsl_qspi_dt_ids, }, .probe = fsl_qspi_probe, -- cgit v1.2.3-58-ga151 From 097ccca726ffedb277c104aba45c59d075969e51 Mon Sep 17 00:00:00 2001 From: Xiaolei Li Date: Thu, 29 Mar 2018 09:34:59 +0800 Subject: mtd: nand: Fix some function description mismatches in core.c In core.c, some function descriptions do not match function definitions. Just fix these mismatches. Signed-off-by: Xiaolei Li Signed-off-by: Boris Brezillon --- drivers/mtd/nand/core.c | 12 ++++++------ 1 file changed, 6 insertions(+), 6 deletions(-) diff --git a/drivers/mtd/nand/core.c b/drivers/mtd/nand/core.c index f237a688f8e9..d0cd6f8635d7 100644 --- a/drivers/mtd/nand/core.c +++ b/drivers/mtd/nand/core.c @@ -51,7 +51,7 @@ EXPORT_SYMBOL_GPL(nanddev_isbad); /** * nanddev_markbad() - Mark a block as bad * @nand: NAND device - * @block: block to mark bad + * @pos: position of the block to mark bad * * Mark a block bad. This function is updating the BBT if available and * calls the low-level markbad hook (nand->ops->markbad()). @@ -117,9 +117,9 @@ EXPORT_SYMBOL_GPL(nanddev_isreserved); /** * nanddev_erase() - Erase a NAND portion * @nand: NAND device - * @block: eraseblock to erase + * @pos: position of the block to erase * - * Erases @block if it's not bad. + * Erases the block if it's not bad. * * Return: 0 in case of success, a negative error code otherwise. */ @@ -179,11 +179,11 @@ EXPORT_SYMBOL_GPL(nanddev_mtd_erase); /** * nanddev_init() - Initialize a NAND device * @nand: NAND device - * @memorg: NAND memory organization descriptor * @ops: NAND device operations + * @owner: NAND device owner * - * Initializes a NAND device object. Consistency checks are done on @memorg and - * @ops. Also takes care of initializing the BBT. + * Initializes a NAND device object. Consistency checks are done on @ops and + * @nand->memorg. Also takes care of initializing the BBT. * * Return: 0 in case of success, a negative error code otherwise. */ -- cgit v1.2.3-58-ga151 From 6898b240f8a16be8323ec58ad1214dd3ed121592 Mon Sep 17 00:00:00 2001 From: Fabio Estevam Date: Fri, 26 Jan 2018 19:23:24 -0200 Subject: mtd: fsl-quadspi: Distinguish the mtd device names Currently on a imx6sx-sdb board, which has two SPI NOR chips connected to QSPI2 the following output from /proc/mtd is seen: dev: size erasesize name mtd0: 01000000 00010000 "21e4000.qspi" mtd1: 01000000 00010000 "21e4000.qspi" Attempts to partition them on the kernel command line result in both chips with identical (and identically named) partitions, which is an inconvenient behavior. Assign a different mtd->name for each mtd device to avoid this problem. After this change the output from /proc/mtd becomes: dev: size erasesize name mtd0: 01000000 00010000 "21e4000.qspi-0" mtd1: 01000000 00010000 "21e4000.qspi-1" In order to keep mtdparts compatibility keep the mtd->name unchanged when a single SPI NOR is present. Reported-by: David Wolfe Signed-off-by: Fabio Estevam Reviewed-by: Boris Brezillon Acked-by: Han Xu Signed-off-by: Cyrille Pitchen Signed-off-by: Boris Brezillon --- drivers/mtd/spi-nor/fsl-quadspi.c | 18 ++++++++++++++++++ 1 file changed, 18 insertions(+) diff --git a/drivers/mtd/spi-nor/fsl-quadspi.c b/drivers/mtd/spi-nor/fsl-quadspi.c index dc9914fce296..3e3c0bbc45c0 100644 --- a/drivers/mtd/spi-nor/fsl-quadspi.c +++ b/drivers/mtd/spi-nor/fsl-quadspi.c @@ -1051,6 +1051,24 @@ static int fsl_qspi_probe(struct platform_device *pdev) spi_nor_set_flash_node(nor, np); nor->priv = q; + if (q->nor_num > 1 && !mtd->name) { + int spiflash_idx; + + ret = of_property_read_u32(np, "reg", &spiflash_idx); + if (!ret) { + mtd->name = devm_kasprintf(dev, GFP_KERNEL, + "%s-%d", + dev_name(dev), + spiflash_idx); + if (!mtd->name) { + ret = -ENOMEM; + goto mutex_failed; + } + } else { + dev_warn(dev, "reg property is missing\n"); + } + } + /* fill the hooks */ nor->read_reg = fsl_qspi_read_reg; nor->write_reg = fsl_qspi_write_reg; -- cgit v1.2.3-58-ga151 From e8de85d5a107352ff428f735b0afc8133bcbc3e5 Mon Sep 17 00:00:00 2001 From: Fabio Estevam Date: Fri, 26 Jan 2018 19:23:25 -0200 Subject: dt-bindings: fsl-quadspi: Add the example of two SPI NOR Improve the bindings example by adding an example of how to represent two SPI NOR devices. Signed-off-by: Fabio Estevam Acked-by: Han Xu Signed-off-by: Cyrille Pitchen Signed-off-by: Boris Brezillon --- .../devicetree/bindings/mtd/fsl-quadspi.txt | 24 ++++++++++++++++++++++ 1 file changed, 24 insertions(+) diff --git a/Documentation/devicetree/bindings/mtd/fsl-quadspi.txt b/Documentation/devicetree/bindings/mtd/fsl-quadspi.txt index 63d4d626fbd5..483e9cfac1b1 100644 --- a/Documentation/devicetree/bindings/mtd/fsl-quadspi.txt +++ b/Documentation/devicetree/bindings/mtd/fsl-quadspi.txt @@ -39,3 +39,27 @@ qspi0: quadspi@40044000 { .... }; }; + +Example showing the usage of two SPI NOR devices: + +&qspi2 { + pinctrl-names = "default"; + pinctrl-0 = <&pinctrl_qspi2>; + status = "okay"; + + flash0: n25q256a@0 { + #address-cells = <1>; + #size-cells = <1>; + compatible = "micron,n25q256a", "jedec,spi-nor"; + spi-max-frequency = <29000000>; + reg = <0>; + }; + + flash1: n25q256a@1 { + #address-cells = <1>; + #size-cells = <1>; + compatible = "micron,n25q256a", "jedec,spi-nor"; + spi-max-frequency = <29000000>; + reg = <1>; + }; +}; -- cgit v1.2.3-58-ga151