Age | Commit message (Collapse) | Author |
|
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b42 ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b42 ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b42 ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b42 ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b42 ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b42 ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b42 ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b42 ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b42 ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b42 ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b42 ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b42 ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b42 ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
Commit bbff39cc6cbc ("hugetlb: allocate vma lock for all sharable vmas")
removed the pmd sharable checks in the vma lock helper routines. However,
it left the functional version of helper routines behind #ifdef
CONFIG_ARCH_WANT_HUGE_PMD_SHARE. Therefore, the vma lock is not being
used for sharable vmas on architectures that do not support pmd sharing.
On these architectures, a potential fault/truncation race is exposed that
could leave pages in a hugetlb file past i_size until the file is removed.
Move the functional vma lock helpers outside the ifdef, and remove the
non-functional stubs. Since the vma lock is not just for pmd sharing,
rename the routine __vma_shareable_flags_pmd.
Link: https://lkml.kernel.org/r/20221212235042.178355-1-mike.kravetz@oracle.com
Fixes: bbff39cc6cbc ("hugetlb: allocate vma lock for all sharable vmas")
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Miaohe Lin <linmiaohe@huawei.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: James Houghton <jthoughton@google.com>
Cc: Mina Almasry <almasrymina@google.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev>
Cc: Peter Xu <peterx@redhat.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
USB support can be in a loadable module, and this causes a link failure
with KMSAN:
ERROR: modpost: "kmsan_handle_urb" [drivers/usb/core/usbcore.ko] undefined!
Export the symbol so it can be used by this module.
Link: https://lkml.kernel.org/r/20221215162710.3802378-1-arnd@kernel.org
Fixes: 553a80188a5d ("kmsan: handle memory sent to/from USB")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Marco Elver <elver@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
This is needed for the vmap/vunmap declarations:
mm/kmsan/kmsan_test.c:316:9: error: implicit declaration of function 'vmap' is invalid in C99 [-Werror,-Wimplicit-function-declaration]
vbuf = vmap(pages, npages, VM_MAP, PAGE_KERNEL);
^
mm/kmsan/kmsan_test.c:316:29: error: use of undeclared identifier 'VM_MAP'
vbuf = vmap(pages, npages, VM_MAP, PAGE_KERNEL);
^
mm/kmsan/kmsan_test.c:322:3: error: implicit declaration of function 'vunmap' is invalid in C99 [-Werror,-Wimplicit-function-declaration]
vunmap(vbuf);
^
Link: https://lkml.kernel.org/r/20221215163046.4079767-1-arnd@kernel.org
Fixes: 8ed691b02ade ("kmsan: add tests for KMSAN")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Marco Elver <elver@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
When encountering any vma in the range with policy other than MPOL_BIND or
MPOL_PREFERRED_MANY, an error is returned without issuing a mpol_put on
the policy just allocated with mpol_dup().
This allows arbitrary users to leak kernel memory.
Link: https://lkml.kernel.org/r/20221215194621.202816-1-mathieu.desnoyers@efficios.com
Fixes: c6018b4b2549 ("mm/mempolicy: add set_mempolicy_home_node syscall")
Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Reviewed-by: Randy Dunlap <rdunlap@infradead.org>
Reviewed-by: "Huang, Ying" <ying.huang@intel.com>
Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Feng Tang <feng.tang@intel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: <stable@vger.kernel.org> [5.17+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Since 6.1 we have noticed random rpm install failures that were tracked to
mremap() returning -ENOMEM and to commit ca3d76b0aa80 ("mm: add merging
after mremap resize").
The problem occurs when mremap() expands a VMA in place, but using an
starting address that's not vma->vm_start, but somewhere in the middle.
The extension_pgoff calculation introduced by the commit is wrong in that
case, so vma_merge() fails due to pgoffs not being compatible. Fix the
calculation.
By the way it seems that the situations, where rpm now expands a vma from
the middle, were made possible also due to that commit, thanks to the
improved vma merging. Yet it should work just fine, except for the buggy
calculation.
Link: https://lkml.kernel.org/r/20221216163227.24648-1-vbabka@suse.cz
Reported-by: Jiri Slaby <jirislaby@kernel.org>
Link: https://bugzilla.suse.com/show_bug.cgi?id=1206359
Fixes: ca3d76b0aa80 ("mm: add merging after mremap resize")
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Jakub Matěna <matenajakub@gmail.com>
Cc: "Kirill A . Shutemov" <kirill@shutemov.name>
Cc: Liam Howlett <liam.howlett@oracle.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull more mm updates from Andrew Morton:
- A few late-breaking minor fixups
- Two minor feature patches which were awkwardly dependent on mm-nonmm.
I need to set up a new branch to handle such things.
* tag 'mm-stable-2022-12-17-2' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm:
MAINTAINERS: zram: zsmalloc: Add an additional co-maintainer
mm/kmemleak: use %pK to display kernel pointers in backtrace
mm: use stack_depot for recording kmemleak's backtrace
maple_tree: update copyright dates for test code
maple_tree: fix mas_find_rev() comment
mm/gup_test: free memory allocated via kvcalloc() using kvfree()
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 mm updates from Dave Hansen:
"New Feature:
- Randomize the per-cpu entry areas
Cleanups:
- Have CR3_ADDR_MASK use PHYSICAL_PAGE_MASK instead of open coding it
- Move to "native" set_memory_rox() helper
- Clean up pmd_get_atomic() and i386-PAE
- Remove some unused page table size macros"
* tag 'x86_mm_for_6.2_v2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (35 commits)
x86/mm: Ensure forced page table splitting
x86/kasan: Populate shadow for shared chunk of the CPU entry area
x86/kasan: Add helpers to align shadow addresses up and down
x86/kasan: Rename local CPU_ENTRY_AREA variables to shorten names
x86/mm: Populate KASAN shadow for entire per-CPU range of CPU entry area
x86/mm: Recompute physical address for every page of per-CPU CEA mapping
x86/mm: Rename __change_page_attr_set_clr(.checkalias)
x86/mm: Inhibit _PAGE_NX changes from cpa_process_alias()
x86/mm: Untangle __change_page_attr_set_clr(.checkalias)
x86/mm: Add a few comments
x86/mm: Fix CR3_ADDR_MASK
x86/mm: Remove P*D_PAGE_MASK and P*D_PAGE_SIZE macros
mm: Convert __HAVE_ARCH_P..P_GET to the new style
mm: Remove pointless barrier() after pmdp_get_lockless()
x86/mm/pae: Get rid of set_64bit()
x86_64: Remove pointless set_64bit() usage
x86/mm/pae: Be consistent with pXXp_get_and_clear()
x86/mm/pae: Use WRITE_ONCE()
x86/mm/pae: Don't (ab)use atomic64
mm/gup: Fix the lockless PMD access
...
|
|
Currently, %p is used to display kernel pointers in backtrace which result
in a hashed value that is not usable to correlate the address for debug.
Use %pK which will respect the kptr_restrict configuration value and thus
allow to extract meaningful information from the backtrace.
Link: https://lkml.kernel.org/r/20221108094322.73492-1-clement.leger@bootlin.com
Signed-off-by: Clément Léger <clement.leger@bootlin.com>
Cc: Alexandre Belloni <alexandre.belloni@bootlin.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Thomas Petazzoni <thomas.petazzoni@bootlin.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Using stack_depot to record kmemleak's backtrace which has been
implemented on slub for reducing redundant information.
[akpm@linux-foundation.org: fix build - remove now-unused __save_stack_trace()]
[zhaoyang.huang@unisoc.com: v3]
Link: https://lkml.kernel.org/r/1667101354-4669-1-git-send-email-zhaoyang.huang@unisoc.com
[akpm@linux-foundation.org: fix v3 layout oddities]
[akpm@linux-foundation.org: coding-style cleanups]
Link: https://lkml.kernel.org/r/1666864224-27541-1-git-send-email-zhaoyang.huang@unisoc.com
Signed-off-by: Zhaoyang Huang <zhaoyang.huang@unisoc.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: ke.wang <ke.wang@unisoc.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Zhaoyang Huang <huangzhaoyang@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
We have to free via kvfree(), not via kfree().
Link: https://lkml.kernel.org/r/20221212182018.264900-1-david@redhat.com
Fixes: c77369b437f9 ("mm/gup_test: start/stop/read functionality for PIN LONGTERM test")
Signed-off-by: David Hildenbrand <david@redhat.com>
Reported-by: kernel test robot <lkp@intel.com>
Reported-by: Julia Lawall <julia.lawall@lip6.fr>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Pull kvm updates from Paolo Bonzini:
"ARM64:
- Enable the per-vcpu dirty-ring tracking mechanism, together with an
option to keep the good old dirty log around for pages that are
dirtied by something other than a vcpu.
- Switch to the relaxed parallel fault handling, using RCU to delay
page table reclaim and giving better performance under load.
- Relax the MTE ABI, allowing a VMM to use the MAP_SHARED mapping
option, which multi-process VMMs such as crosvm rely on (see merge
commit 382b5b87a97d: "Fix a number of issues with MTE, such as
races on the tags being initialised vs the PG_mte_tagged flag as
well as the lack of support for VM_SHARED when KVM is involved.
Patches from Catalin Marinas and Peter Collingbourne").
- Merge the pKVM shadow vcpu state tracking that allows the
hypervisor to have its own view of a vcpu, keeping that state
private.
- Add support for the PMUv3p5 architecture revision, bringing support
for 64bit counters on systems that support it, and fix the
no-quite-compliant CHAIN-ed counter support for the machines that
actually exist out there.
- Fix a handful of minor issues around 52bit VA/PA support (64kB
pages only) as a prefix of the oncoming support for 4kB and 16kB
pages.
- Pick a small set of documentation and spelling fixes, because no
good merge window would be complete without those.
s390:
- Second batch of the lazy destroy patches
- First batch of KVM changes for kernel virtual != physical address
support
- Removal of a unused function
x86:
- Allow compiling out SMM support
- Cleanup and documentation of SMM state save area format
- Preserve interrupt shadow in SMM state save area
- Respond to generic signals during slow page faults
- Fixes and optimizations for the non-executable huge page errata
fix.
- Reprogram all performance counters on PMU filter change
- Cleanups to Hyper-V emulation and tests
- Process Hyper-V TLB flushes from a nested guest (i.e. from a L2
guest running on top of a L1 Hyper-V hypervisor)
- Advertise several new Intel features
- x86 Xen-for-KVM:
- Allow the Xen runstate information to cross a page boundary
- Allow XEN_RUNSTATE_UPDATE flag behaviour to be configured
- Add support for 32-bit guests in SCHEDOP_poll
- Notable x86 fixes and cleanups:
- One-off fixes for various emulation flows (SGX, VMXON, NRIPS=0).
- Reinstate IBPB on emulated VM-Exit that was incorrectly dropped
a few years back when eliminating unnecessary barriers when
switching between vmcs01 and vmcs02.
- Clean up vmread_error_trampoline() to make it more obvious that
params must be passed on the stack, even for x86-64.
- Let userspace set all supported bits in MSR_IA32_FEAT_CTL
irrespective of the current guest CPUID.
- Fudge around a race with TSC refinement that results in KVM
incorrectly thinking a guest needs TSC scaling when running on a
CPU with a constant TSC, but no hardware-enumerated TSC
frequency.
- Advertise (on AMD) that the SMM_CTL MSR is not supported
- Remove unnecessary exports
Generic:
- Support for responding to signals during page faults; introduces
new FOLL_INTERRUPTIBLE flag that was reviewed by mm folks
Selftests:
- Fix an inverted check in the access tracking perf test, and restore
support for asserting that there aren't too many idle pages when
running on bare metal.
- Fix build errors that occur in certain setups (unsure exactly what
is unique about the problematic setup) due to glibc overriding
static_assert() to a variant that requires a custom message.
- Introduce actual atomics for clear/set_bit() in selftests
- Add support for pinning vCPUs in dirty_log_perf_test.
- Rename the so called "perf_util" framework to "memstress".
- Add a lightweight psuedo RNG for guest use, and use it to randomize
the access pattern and write vs. read percentage in the memstress
tests.
- Add a common ucall implementation; code dedup and pre-work for
running SEV (and beyond) guests in selftests.
- Provide a common constructor and arch hook, which will eventually
be used by x86 to automatically select the right hypercall (AMD vs.
Intel).
- A bunch of added/enabled/fixed selftests for ARM64, covering
memslots, breakpoints, stage-2 faults and access tracking.
- x86-specific selftest changes:
- Clean up x86's page table management.
- Clean up and enhance the "smaller maxphyaddr" test, and add a
related test to cover generic emulation failure.
- Clean up the nEPT support checks.
- Add X86_PROPERTY_* framework to retrieve multi-bit CPUID values.
- Fix an ordering issue in the AMX test introduced by recent
conversions to use kvm_cpu_has(), and harden the code to guard
against similar bugs in the future. Anything that tiggers
caching of KVM's supported CPUID, kvm_cpu_has() in this case,
effectively hides opt-in XSAVE features if the caching occurs
before the test opts in via prctl().
Documentation:
- Remove deleted ioctls from documentation
- Clean up the docs for the x86 MSR filter.
- Various fixes"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (361 commits)
KVM: x86: Add proper ReST tables for userspace MSR exits/flags
KVM: selftests: Allocate ucall pool from MEM_REGION_DATA
KVM: arm64: selftests: Align VA space allocator with TTBR0
KVM: arm64: Fix benign bug with incorrect use of VA_BITS
KVM: arm64: PMU: Fix period computation for 64bit counters with 32bit overflow
KVM: x86: Advertise that the SMM_CTL MSR is not supported
KVM: x86: remove unnecessary exports
KVM: selftests: Fix spelling mistake "probabalistic" -> "probabilistic"
tools: KVM: selftests: Convert clear/set_bit() to actual atomics
tools: Drop "atomic_" prefix from atomic test_and_set_bit()
tools: Drop conflicting non-atomic test_and_{clear,set}_bit() helpers
KVM: selftests: Use non-atomic clear/set bit helpers in KVM tests
perf tools: Use dedicated non-atomic clear/set bit helpers
tools: Take @bit as an "unsigned long" in {clear,set}_bit() helpers
KVM: arm64: selftests: Enable single-step without a "full" ucall()
KVM: x86: fix APICv/x2AVIC disabled when vm reboot by itself
KVM: Remove stale comment about KVM_REQ_UNHALT
KVM: Add missing arch for KVM_CREATE_DEVICE and KVM_{SET,GET}_DEVICE_ATTR
KVM: Reference to kvm_userspace_memory_region in doc and comments
KVM: Delete all references to removed KVM_SET_MEMORY_ALIAS ioctl
...
|
|
pmdp_get_lockless() should itself imply any ordering required.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20221022114425.298833095%40infradead.org
|
|
On architectures where the PTE/PMD is larger than the native word size
(i386-PAE for example), READ_ONCE() can do the wrong thing. Use
pmdp_get_lockless() just like we use ptep_get_lockless().
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20221022114424.906110403%40infradead.org
|
|
There's no point in having the identical routines for PTE/PMD have
different names.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20221022114424.841277397%40infradead.org
|
|
Since it no longer applies to only PTEs, rename it to PXX.
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20221022114424.776404066%40infradead.org
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux
Pull kernel hardening updates from Kees Cook:
- Convert flexible array members, fix -Wstringop-overflow warnings, and
fix KCFI function type mismatches that went ignored by maintainers
(Gustavo A. R. Silva, Nathan Chancellor, Kees Cook)
- Remove the remaining side-effect users of ksize() by converting
dma-buf, btrfs, and coredump to using kmalloc_size_roundup(), add
more __alloc_size attributes, and introduce full testing of all
allocator functions. Finally remove the ksize() side-effect so that
each allocation-aware checker can finally behave without exceptions
- Introduce oops_limit (default 10,000) and warn_limit (default off) to
provide greater granularity of control for panic_on_oops and
panic_on_warn (Jann Horn, Kees Cook)
- Introduce overflows_type() and castable_to_type() helpers for cleaner
overflow checking
- Improve code generation for strscpy() and update str*() kern-doc
- Convert strscpy and sigphash tests to KUnit, and expand memcpy tests
- Always use a non-NULL argument for prepare_kernel_cred()
- Disable structleak plugin in FORTIFY KUnit test (Anders Roxell)
- Adjust orphan linker section checking to respect CONFIG_WERROR (Xin
Li)
- Make sure siginfo is cleared for forced SIGKILL (haifeng.xu)
- Fix um vs FORTIFY warnings for always-NULL arguments
* tag 'hardening-v6.2-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux: (31 commits)
ksmbd: replace one-element arrays with flexible-array members
hpet: Replace one-element array with flexible-array member
um: virt-pci: Avoid GCC non-NULL warning
signal: Initialize the info in ksignal
lib: fortify_kunit: build without structleak plugin
panic: Expose "warn_count" to sysfs
panic: Introduce warn_limit
panic: Consolidate open-coded panic_on_warn checks
exit: Allow oops_limit to be disabled
exit: Expose "oops_count" to sysfs
exit: Put an upper limit on how often we can oops
panic: Separate sysctl logic from CONFIG_SMP
mm/pgtable: Fix multiple -Wstringop-overflow warnings
mm: Make ksize() a reporting-only function
kunit/fortify: Validate __alloc_size attribute results
drm/sti: Fix return type of sti_{dvo,hda,hdmi}_connector_mode_valid()
drm/fsl-dcu: Fix return type of fsl_dcu_drm_connector_mode_valid()
driver core: Add __alloc_size hint to devm allocators
overflow: Introduce overflows_type() and castable_to_type()
coredump: Proactively round up to kmalloc bucket size
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
- More userfaultfs work from Peter Xu
- Several convert-to-folios series from Sidhartha Kumar and Huang Ying
- Some filemap cleanups from Vishal Moola
- David Hildenbrand added the ability to selftest anon memory COW
handling
- Some cpuset simplifications from Liu Shixin
- Addition of vmalloc tracing support by Uladzislau Rezki
- Some pagecache folioifications and simplifications from Matthew
Wilcox
- A pagemap cleanup from Kefeng Wang: we have VM_ACCESS_FLAGS, so use
it
- Miguel Ojeda contributed some cleanups for our use of the
__no_sanitize_thread__ gcc keyword.
This series should have been in the non-MM tree, my bad
- Naoya Horiguchi improved the interaction between memory poisoning and
memory section removal for huge pages
- DAMON cleanups and tuneups from SeongJae Park
- Tony Luck fixed the handling of COW faults against poisoned pages
- Peter Xu utilized the PTE marker code for handling swapin errors
- Hugh Dickins reworked compound page mapcount handling, simplifying it
and making it more efficient
- Removal of the autonuma savedwrite infrastructure from Nadav Amit and
David Hildenbrand
- zram support for multiple compression streams from Sergey Senozhatsky
- David Hildenbrand reworked the GUP code's R/O long-term pinning so
that drivers no longer need to use the FOLL_FORCE workaround which
didn't work very well anyway
- Mel Gorman altered the page allocator so that local IRQs can remnain
enabled during per-cpu page allocations
- Vishal Moola removed the try_to_release_page() wrapper
- Stefan Roesch added some per-BDI sysfs tunables which are used to
prevent network block devices from dirtying excessive amounts of
pagecache
- David Hildenbrand did some cleanup and repair work on KSM COW
breaking
- Nhat Pham and Johannes Weiner have implemented writeback in zswap's
zsmalloc backend
- Brian Foster has fixed a longstanding corner-case oddity in
file[map]_write_and_wait_range()
- sparse-vmemmap changes for MIPS, LoongArch and NIOS2 from Feiyang
Chen
- Shiyang Ruan has done some work on fsdax, to make its reflink mode
work better under xfstests. Better, but still not perfect
- Christoph Hellwig has removed the .writepage() method from several
filesystems. They only need .writepages()
- Yosry Ahmed wrote a series which fixes the memcg reclaim target
beancounting
- David Hildenbrand has fixed some of our MM selftests for 32-bit
machines
- Many singleton patches, as usual
* tag 'mm-stable-2022-12-13' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (313 commits)
mm/hugetlb: set head flag before setting compound_order in __prep_compound_gigantic_folio
mm: mmu_gather: allow more than one batch of delayed rmaps
mm: fix typo in struct pglist_data code comment
kmsan: fix memcpy tests
mm: add cond_resched() in swapin_walk_pmd_entry()
mm: do not show fs mm pc for VM_LOCKONFAULT pages
selftests/vm: ksm_functional_tests: fixes for 32bit
selftests/vm: cow: fix compile warning on 32bit
selftests/vm: madv_populate: fix missing MADV_POPULATE_(READ|WRITE) definitions
mm/gup_test: fix PIN_LONGTERM_TEST_READ with highmem
mm,thp,rmap: fix races between updates of subpages_mapcount
mm: memcg: fix swapcached stat accounting
mm: add nodes= arg to memory.reclaim
mm: disable top-tier fallback to reclaim on proactive reclaim
selftests: cgroup: make sure reclaim target memcg is unprotected
selftests: cgroup: refactor proactive reclaim code to reclaim_until()
mm: memcg: fix stale protection of reclaim target memcg
mm/mmap: properly unaccount memory on mas_preallocate() failure
omfs: remove ->writepage
jfs: remove ->writepage
...
|
|
Pull block updates from Jens Axboe:
- NVMe pull requests via Christoph:
- Support some passthrough commands without CAP_SYS_ADMIN (Kanchan
Joshi)
- Refactor PCIe probing and reset (Christoph Hellwig)
- Various fabrics authentication fixes and improvements (Sagi
Grimberg)
- Avoid fallback to sequential scan due to transient issues (Uday
Shankar)
- Implement support for the DEAC bit in Write Zeroes (Christoph
Hellwig)
- Allow overriding the IEEE OUI and firmware revision in configfs
for nvmet (Aleksandr Miloserdov)
- Force reconnect when number of queue changes in nvmet (Daniel
Wagner)
- Minor fixes and improvements (Uros Bizjak, Joel Granados, Sagi
Grimberg, Christoph Hellwig, Christophe JAILLET)
- Fix and cleanup nvme-fc req allocation (Chaitanya Kulkarni)
- Use the common tagset helpers in nvme-pci driver (Christoph
Hellwig)
- Cleanup the nvme-pci removal path (Christoph Hellwig)
- Use kstrtobool() instead of strtobool (Christophe JAILLET)
- Allow unprivileged passthrough of Identify Controller (Joel
Granados)
- Support io stats on the mpath device (Sagi Grimberg)
- Minor nvmet cleanup (Sagi Grimberg)
- MD pull requests via Song:
- Code cleanups (Christoph)
- Various fixes
- Floppy pull request from Denis:
- Fix a memory leak in the init error path (Yuan)
- Series fixing some batch wakeup issues with sbitmap (Gabriel)
- Removal of the pktcdvd driver that was deprecated more than 5 years
ago, and subsequent removal of the devnode callback in struct
block_device_operations as no users are now left (Greg)
- Fix for partition read on an exclusively opened bdev (Jan)
- Series of elevator API cleanups (Jinlong, Christoph)
- Series of fixes and cleanups for blk-iocost (Kemeng)
- Series of fixes and cleanups for blk-throttle (Kemeng)
- Series adding concurrent support for sync queues in BFQ (Yu)
- Series bringing drbd a bit closer to the out-of-tree maintained
version (Christian, Joel, Lars, Philipp)
- Misc drbd fixes (Wang)
- blk-wbt fixes and tweaks for enable/disable (Yu)
- Fixes for mq-deadline for zoned devices (Damien)
- Add support for read-only and offline zones for null_blk
(Shin'ichiro)
- Series fixing the delayed holder tracking, as used by DM (Yu,
Christoph)
- Series enabling bio alloc caching for IRQ based IO (Pavel)
- Series enabling userspace peer-to-peer DMA (Logan)
- BFQ waker fixes (Khazhismel)
- Series fixing elevator refcount issues (Christoph, Jinlong)
- Series cleaning up references around queue destruction (Christoph)
- Series doing quiesce by tagset, enabling cleanups in drivers
(Christoph, Chao)
- Series untangling the queue kobject and queue references (Christoph)
- Misc fixes and cleanups (Bart, David, Dawei, Jinlong, Kemeng, Ye,
Yang, Waiman, Shin'ichiro, Randy, Pankaj, Christoph)
* tag 'for-6.2/block-2022-12-08' of git://git.kernel.dk/linux: (247 commits)
blktrace: Fix output non-blktrace event when blk_classic option enabled
block: sed-opal: Don't include <linux/kernel.h>
sed-opal: allow using IOC_OPAL_SAVE for locking too
blk-cgroup: Fix typo in comment
block: remove bio_set_op_attrs
nvmet: don't open-code NVME_NS_ATTR_RO enumeration
nvme-pci: use the tagset alloc/free helpers
nvme: add the Apple shared tag workaround to nvme_alloc_io_tag_set
nvme: only set reserved_tags in nvme_alloc_io_tag_set for fabrics controllers
nvme: consolidate setting the tagset flags
nvme: pass nr_maps explicitly to nvme_alloc_io_tag_set
block: bio_copy_data_iter
nvme-pci: split out a nvme_pci_ctrl_is_dead helper
nvme-pci: return early on ctrl state mismatch in nvme_reset_work
nvme-pci: rename nvme_disable_io_queues
nvme-pci: cleanup nvme_suspend_queue
nvme-pci: remove nvme_pci_disable
nvme-pci: remove nvme_disable_admin_queue
nvme: merge nvme_shutdown_ctrl into nvme_disable_ctrl
nvme: use nvme_wait_ready in nvme_shutdown_ctrl
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/vfs/idmapping
Pull simple-xattr updates from Christian Brauner:
"This ports the simple xattr infrastucture to rely on a simple rbtree
protected by a read-write lock instead of a linked list protected by a
spinlock.
A while ago we received reports about scaling issues for filesystems
using the simple xattr infrastructure that also support setting a
larger number of xattrs. Specifically, cgroups and tmpfs.
Both cgroupfs and tmpfs can be mounted by unprivileged users in
unprivileged containers and root in an unprivileged container can set
an unrestricted number of security.* xattrs and privileged users can
also set unlimited trusted.* xattrs. A few more words on further that
below. Other xattrs such as user.* are restricted for kernfs-based
instances to a fairly limited number.
As there are apparently users that have a fairly large number of
xattrs we should scale a bit better. Using a simple linked list
protected by a spinlock used for set, get, and list operations doesn't
scale well if users use a lot of xattrs even if it's not a crazy
number.
Let's switch to a simple rbtree protected by a rwlock. It scales way
better and gets rid of the perf issues some people reported. We
originally had fancier solutions even using an rcu+seqlock protected
rbtree but we had concerns about being to clever and also that
deletion from an rbtree with rcu+seqlock isn't entirely safe.
The rbtree plus rwlock is perfectly fine. By far the most common
operation is getting an xattr. While setting an xattr is not and
should be comparatively rare. And listxattr() often only happens when
copying xattrs between files or together with the contents to a new
file.
Holding a lock across listxattr() is unproblematic because it doesn't
list the values of xattrs. It can only be used to list the names of
all xattrs set on a file. And the number of xattr names that can be
listed with listxattr() is limited to XATTR_LIST_MAX aka 65536 bytes.
If a larger buffer is passed then vfs_listxattr() caps it to
XATTR_LIST_MAX and if more xattr names are found it will return
-E2BIG. In short, the maximum amount of memory that can be retrieved
via listxattr() is limited and thus listxattr() bounded.
Of course, the API is broken as documented on xattr(7) already. While
I have no idea how the xattr api ended up in this state we should
probably try to come up with something here at some point. An iterator
pattern similar to readdir() as an alternative to listxattr() or
something else.
Right now it is extremly strange that users can set millions of xattrs
but then can't use listxattr() to know which xattrs are actually set.
And it's really trivial to do:
for i in {1..1000000}; do setfattr -n security.$i -v $i ./file1; done
And around 5000 xattrs it's impossible to use listxattr() to figure
out which xattrs are actually set. So I have suggested that we try to
limit the number of xattrs for simple xattrs at least. But that's a
future patch and I don't consider it very urgent.
A bonus of this port to rbtree+rwlock is that we shrink the memory
consumption for users of the simple xattr infrastructure.
This also adds kernel documentation to all the functions"
* tag 'fs.xattr.simple.rework.rbtree.rwlock.v6.2' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/idmapping:
xattr: use rbtree for simple_xattrs
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tytso/ext4
Pull ext4 updates from Ted Ts'o:
"A large number of cleanups and bug fixes, with many of the bug fixes
found by Syzbot and fuzzing. (Many of the bug fixes involve less-used
ext4 features such as fast_commit, inline_data and bigalloc)
In addition, remove the writepage function for ext4, since the
medium-term plan is to remove ->writepage() entirely. (The VM doesn't
need or want writepage() for writeback, since it is fine with
->writepages() so long as ->migrate_folio() is implemented)"
* tag 'ext4_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/ext4: (58 commits)
ext4: fix reserved cluster accounting in __es_remove_extent()
ext4: fix inode leak in ext4_xattr_inode_create() on an error path
ext4: allocate extended attribute value in vmalloc area
ext4: avoid unaccounted block allocation when expanding inode
ext4: initialize quota before expanding inode in setproject ioctl
ext4: stop providing .writepage hook
mm: export buffer_migrate_folio_norefs()
ext4: switch to using write_cache_pages() for data=journal writeout
jbd2: switch jbd2_submit_inode_data() to use fs-provided hook for data writeout
ext4: switch to using ext4_do_writepages() for ordered data writeout
ext4: move percpu_rwsem protection into ext4_writepages()
ext4: provide ext4_do_writepages()
ext4: add support for writepages calls that cannot map blocks
ext4: drop pointless IO submission from ext4_bio_write_page()
ext4: remove nr_submitted from ext4_bio_write_page()
ext4: move keep_towrite handling to ext4_bio_write_page()
ext4: handle redirtying in ext4_bio_write_page()
ext4: fix kernel BUG in 'ext4_write_inline_data_end()'
ext4: make ext4_mb_initialize_context return void
ext4: fix deadlock due to mbcache entry corruption
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/vfs/idmapping
Pull VFS acl updates from Christian Brauner:
"This contains the work that builds a dedicated vfs posix acl api.
The origins of this work trace back to v5.19 but it took quite a while
to understand the various filesystem specific implementations in
sufficient detail and also come up with an acceptable solution.
As we discussed and seen multiple times the current state of how posix
acls are handled isn't nice and comes with a lot of problems: The
current way of handling posix acls via the generic xattr api is error
prone, hard to maintain, and type unsafe for the vfs until we call
into the filesystem's dedicated get and set inode operations.
It is already the case that posix acls are special-cased to death all
the way through the vfs. There are an uncounted number of hacks that
operate on the uapi posix acl struct instead of the dedicated vfs
struct posix_acl. And the vfs must be involved in order to interpret
and fixup posix acls before storing them to the backing store, caching
them, reporting them to userspace, or for permission checking.
Currently a range of hacks and duct tape exist to make this work. As
with most things this is really no ones fault it's just something that
happened over time. But the code is hard to understand and difficult
to maintain and one is constantly at risk of introducing bugs and
regressions when having to touch it.
Instead of continuing to hack posix acls through the xattr handlers
this series builds a dedicated posix acl api solely around the get and
set inode operations.
Going forward, the vfs_get_acl(), vfs_remove_acl(), and vfs_set_acl()
helpers must be used in order to interact with posix acls. They
operate directly on the vfs internal struct posix_acl instead of
abusing the uapi posix acl struct as we currently do. In the end this
removes all of the hackiness, makes the codepaths easier to maintain,
and gets us type safety.
This series passes the LTP and xfstests suites without any
regressions. For xfstests the following combinations were tested:
- xfs
- ext4
- btrfs
- overlayfs
- overlayfs on top of idmapped mounts
- orangefs
- (limited) cifs
There's more simplifications for posix acls that we can make in the
future if the basic api has made it.
A few implementation details:
- The series makes sure to retain exactly the same security and
integrity module permission checks. Especially for the integrity
modules this api is a win because right now they convert the uapi
posix acl struct passed to them via a void pointer into the vfs
struct posix_acl format to perform permission checking on the mode.
There's a new dedicated security hook for setting posix acls which
passes the vfs struct posix_acl not a void pointer. Basing checking
on the posix acl stored in the uapi format is really unreliable.
The vfs currently hacks around directly in the uapi struct storing
values that frankly the security and integrity modules can't
correctly interpret as evidenced by bugs we reported and fixed in
this area. It's not necessarily even their fault it's just that the
format we provide to them is sub optimal.
- Some filesystems like 9p and cifs need access to the dentry in
order to get and set posix acls which is why they either only
partially or not even at all implement get and set inode
operations. For example, cifs allows setxattr() and getxattr()
operations but doesn't allow permission checking based on posix
acls because it can't implement a get acl inode operation.
Thus, this patch series updates the set acl inode operation to take
a dentry instead of an inode argument. However, for the get acl
inode operation we can't do this as the old get acl method is
called in e.g., generic_permission() and inode_permission(). These
helpers in turn are called in various filesystem's permission inode
operation. So passing a dentry argument to the old get acl inode
operation would amount to passing a dentry to the permission inode
operation which we shouldn't and probably can't do.
So instead of extending the existing inode operation Christoph
suggested to add a new one. He also requested to ensure that the
get and set acl inode operation taking a dentry are consistently
named. So for this version the old get acl operation is renamed to
->get_inode_acl() and a new ->get_acl() inode operation taking a
dentry is added. With this we can give both 9p and cifs get and set
acl inode operations and in turn remove their complex custom posix
xattr handlers.
In the future I hope to get rid of the inode method duplication but
it isn't like we have never had this situation. Readdir is just one
example. And frankly, the overall gain in type safety and the more
pleasant api wise are simply too big of a benefit to not accept
this duplication for a while.
- We've done a full audit of every codepaths using variant of the
current generic xattr api to get and set posix acls and
surprisingly it isn't that many places. There's of course always a
chance that we might have missed some and if so I'm sure we'll find
them soon enough.
The crucial codepaths to be converted are obviously stacking
filesystems such as ecryptfs and overlayfs.
For a list of all callers currently using generic xattr api helpers
see [2] including comments whether they support posix acls or not.
- The old vfs generic posix acl infrastructure doesn't obey the
create and replace semantics promised on the setxattr(2) manpage.
This patch series doesn't address this. It really is something we
should revisit later though.
The patches are roughly organized as follows:
(1) Change existing set acl inode operation to take a dentry
argument (Intended to be a non-functional change)
(2) Rename existing get acl method (Intended to be a non-functional
change)
(3) Implement get and set acl inode operations for filesystems that
couldn't implement one before because of the missing dentry.
That's mostly 9p and cifs (Intended to be a non-functional
change)
(4) Build posix acl api, i.e., add vfs_get_acl(), vfs_remove_acl(),
and vfs_set_acl() including security and integrity hooks
(Intended to be a non-functional change)
(5) Implement get and set acl inode operations for stacking
filesystems (Intended to be a non-functional change)
(6) Switch posix acl handling in stacking filesystems to new posix
acl api now that all filesystems it can stack upon support it.
(7) Switch vfs to new posix acl api (semantical change)
(8) Remove all now unused helpers
(9) Additional regression fixes reported after we merged this into
linux-next
Thanks to Seth for a lot of good discussion around this and
encouragement and input from Christoph"
* tag 'fs.acl.rework.v6.2' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/idmapping: (36 commits)
posix_acl: Fix the type of sentinel in get_acl
orangefs: fix mode handling
ovl: call posix_acl_release() after error checking
evm: remove dead code in evm_inode_set_acl()
cifs: check whether acl is valid early
acl: make vfs_posix_acl_to_xattr() static
acl: remove a slew of now unused helpers
9p: use stub posix acl handlers
cifs: use stub posix acl handlers
ovl: use stub posix acl handlers
ecryptfs: use stub posix acl handlers
evm: remove evm_xattr_acl_change()
xattr: use posix acl api
ovl: use posix acl api
ovl: implement set acl method
ovl: implement get acl method
ecryptfs: implement set acl method
ecryptfs: implement get acl method
ksmbd: use vfs_remove_acl()
acl: add vfs_remove_acl()
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull iov_iter updates from Al Viro:
"iov_iter work; most of that is about getting rid of direction
misannotations and (hopefully) preventing more of the same for the
future"
* tag 'pull-iov_iter' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
use less confusing names for iov_iter direction initializers
iov_iter: saner checks for attempt to copy to/from iterator
[xen] fix "direction" argument of iov_iter_kvec()
[vhost] fix 'direction' argument of iov_iter_{init,bvec}()
[target] fix iov_iter_bvec() "direction" argument
[s390] memcpy_real(): WRITE is "data source", not destination...
[s390] zcore: WRITE is "data source", not destination...
[infiniband] READ is "data destination", not source...
[fsi] WRITE is "data source", not destination...
[s390] copy_oldmem_kernel() - WRITE is "data source", not destination
csum_and_copy_to_iter(): handle ITER_DISCARD
get rid of unlikely() on page_copy_sane() calls
|
|
__prep_compound_gigantic_folio
folio_set_compound_order() checks if the passed in folio is a large folio.
A large folio is indicated by the PG_head flag. Call __folio_set_head()
before setting the order.
Link: https://lkml.kernel.org/r/20221212225529.22493-1-sidhartha.kumar@oracle.com
Fixes: d1c6095572d0 ("mm/hugetlb: convert hugetlb prep functions to folios")
Signed-off-by: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Reported-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/shuah/linux-kselftest
Pull KUnit updates from Shuah Khan:
"Several enhancements, fixes, clean-ups, documentation updates,
improvements to logging and KTAP compliance of KUnit test output:
- log numbers in decimal and hex
- parse KTAP compliant test output
- allow conditionally exposing static symbols to tests when KUNIT is
enabled
- make static symbols visible during kunit testing
- clean-ups to remove unused structure definition"
* tag 'linux-kselftest-kunit-next-6.2-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/shuah/linux-kselftest: (29 commits)
Documentation: dev-tools: Clarify requirements for result description
apparmor: test: make static symbols visible during kunit testing
kunit: add macro to allow conditionally exposing static symbols to tests
kunit: tool: make parser preserve whitespace when printing test log
Documentation: kunit: Fix "How Do I Use This" / "Next Steps" sections
kunit: tool: don't include KTAP headers and the like in the test log
kunit: improve KTAP compliance of KUnit test output
kunit: tool: parse KTAP compliant test output
mm: slub: test: Use the kunit_get_current_test() function
kunit: Use the static key when retrieving the current test
kunit: Provide a static key to check if KUnit is actively running tests
kunit: tool: make --json do nothing if --raw_ouput is set
kunit: tool: tweak error message when no KTAP found
kunit: remove KUNIT_INIT_MEM_ASSERTION macro
Documentation: kunit: Remove redundant 'tips.rst' page
Documentation: KUnit: reword description of assertions
Documentation: KUnit: make usage.rst a superset of tips.rst, remove duplication
kunit: eliminate KUNIT_INIT_*_ASSERT_STRUCT macros
kunit: tool: remove redundant file.close() call in unit test
kunit: tool: unit tests all check parser errors, standardize formatting a bit
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/crng/random
Pull random number generator updates from Jason Donenfeld:
- Replace prandom_u32_max() and various open-coded variants of it,
there is now a new family of functions that uses fast rejection
sampling to choose properly uniformly random numbers within an
interval:
get_random_u32_below(ceil) - [0, ceil)
get_random_u32_above(floor) - (floor, U32_MAX]
get_random_u32_inclusive(floor, ceil) - [floor, ceil]
Coccinelle was used to convert all current users of
prandom_u32_max(), as well as many open-coded patterns, resulting in
improvements throughout the tree.
I'll have a "late" 6.1-rc1 pull for you that removes the now unused
prandom_u32_max() function, just in case any other trees add a new
use case of it that needs to converted. According to linux-next,
there may be two trivial cases of prandom_u32_max() reintroductions
that are fixable with a 's/.../.../'. So I'll have for you a final
conversion patch doing that alongside the removal patch during the
second week.
This is a treewide change that touches many files throughout.
- More consistent use of get_random_canary().
- Updates to comments, documentation, tests, headers, and
simplification in configuration.
- The arch_get_random*_early() abstraction was only used by arm64 and
wasn't entirely useful, so this has been replaced by code that works
in all relevant contexts.
- The kernel will use and manage random seeds in non-volatile EFI
variables, refreshing a variable with a fresh seed when the RNG is
initialized. The RNG GUID namespace is then hidden from efivarfs to
prevent accidental leakage.
These changes are split into random.c infrastructure code used in the
EFI subsystem, in this pull request, and related support inside of
EFISTUB, in Ard's EFI tree. These are co-dependent for full
functionality, but the order of merging doesn't matter.
- Part of the infrastructure added for the EFI support is also used for
an improvement to the way vsprintf initializes its siphash key,
replacing an sleep loop wart.
- The hardware RNG framework now always calls its correct random.c
input function, add_hwgenerator_randomness(), rather than sometimes
going through helpers better suited for other cases.
- The add_latent_entropy() function has long been called from the fork
handler, but is a no-op when the latent entropy gcc plugin isn't
used, which is fine for the purposes of latent entropy.
But it was missing out on the cycle counter that was also being mixed
in beside the latent entropy variable. So now, if the latent entropy
gcc plugin isn't enabled, add_latent_entropy() will expand to a call
to add_device_randomness(NULL, 0), which adds a cycle counter,
without the absent latent entropy variable.
- The RNG is now reseeded from a delayed worker, rather than on demand
when used. Always running from a worker allows it to make use of the
CPU RNG on platforms like S390x, whose instructions are too slow to
do so from interrupts. It also has the effect of adding in new inputs
more frequently with more regularity, amounting to a long term
transcript of random values. Plus, it helps a bit with the upcoming
vDSO implementation (which isn't yet ready for 6.2).
- The jitter entropy algorithm now tries to execute on many different
CPUs, round-robining, in hopes of hitting even more memory latencies
and other unpredictable effects. It also will mix in a cycle counter
when the entropy timer fires, in addition to being mixed in from the
main loop, to account more explicitly for fluctuations in that timer
firing. And the state it touches is now kept within the same cache
line, so that it's assured that the different execution contexts will
cause latencies.
* tag 'random-6.2-rc1-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/crng/random: (23 commits)
random: include <linux/once.h> in the right header
random: align entropy_timer_state to cache line
random: mix in cycle counter when jitter timer fires
random: spread out jitter callback to different CPUs
random: remove extraneous period and add a missing one in comments
efi: random: refresh non-volatile random seed when RNG is initialized
vsprintf: initialize siphash key using notifier
random: add back async readiness notifier
random: reseed in delayed work rather than on-demand
random: always mix cycle counter in add_latent_entropy()
hw_random: use add_hwgenerator_randomness() for early entropy
random: modernize documentation comment on get_random_bytes()
random: adjust comment to account for removed function
random: remove early archrandom abstraction
random: use random.trust_{bootloader,cpu} command line option only
stackprotector: actually use get_random_canary()
stackprotector: move get_random_canary() into stackprotector.h
treewide: use get_random_u32_inclusive() when possible
treewide: use get_random_u32_{above,below}() instead of manual loop
treewide: use get_random_u32_below() instead of deprecated function
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/dennis/percpu
Pull percpu updates from Dennis Zhou:
"Baoquan was nice enough to run some clean ups for percpu"
* 'for-6.2' of git://git.kernel.org/pub/scm/linux/kernel/git/dennis/percpu:
mm/percpu: remove unused PERCPU_DYNAMIC_EARLY_SLOTS
mm/percpu.c: remove the lcm code since block size is fixed at page size
mm/percpu: replace the goto with break
mm/percpu: add comment to state the empty populated pages accounting
mm/percpu: Update the code comment when creating new chunk
mm/percpu: use list_first_entry_or_null in pcpu_reclaim_populated()
mm/percpu: remove unused pcpu_map_extend_chunks
|
|
Use the newly-added function kunit_get_current_test() instead of
accessing current->kunit_test directly. This function uses a static key
to return more quickly when KUnit is enabled, but no tests are actively
running. There should therefore be a negligible performance impact to
enabling the slub KUnit tests.
Other than the performance improvement, this should be a no-op.
Cc: Oliver Glitta <glittao@gmail.com>
Cc: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: David Gow <davidgow@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Signed-off-by: Shuah Khan <skhan@linuxfoundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/hyperv/linux
Pull hyperv updates from Wei Liu:
- Drop unregister syscore from hyperv_cleanup to avoid hang (Gaurav
Kohli)
- Clean up panic path for Hyper-V framebuffer (Guilherme G. Piccoli)
- Allow IRQ remapping to work without x2apic (Nuno Das Neves)
- Fix comments (Olaf Hering)
- Expand hv_vp_assist_page definition (Saurabh Sengar)
- Improvement to page reporting (Shradha Gupta)
- Make sure TSC clocksource works when Linux runs as the root partition
(Stanislav Kinsburskiy)
* tag 'hyperv-next-signed-20221208' of git://git.kernel.org/pub/scm/linux/kernel/git/hyperv/linux:
x86/hyperv: Remove unregister syscore call from Hyper-V cleanup
iommu/hyper-v: Allow hyperv irq remapping without x2apic
clocksource: hyper-v: Add TSC page support for root partition
clocksource: hyper-v: Use TSC PFN getter to map vvar page
clocksource: hyper-v: Introduce TSC PFN getter
clocksource: hyper-v: Introduce a pointer to TSC page
x86/hyperv: Expand definition of struct hv_vp_assist_page
PCI: hv: update comment in x86 specific hv_arch_irq_unmask
hv: fix comment typo in vmbus_channel/low_latency
drivers: hv, hyperv_fb: Untangle and refactor Hyper-V panic notifiers
video: hyperv_fb: Avoid taking busy spinlock on panic path
hv_balloon: Add support for configurable order free page reporting
mm/page_reporting: Add checks for page_reporting_order param
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/vbabka/slab
Pull slab updates from Vlastimil Babka:
- SLOB deprecation and SLUB_TINY
The SLOB allocator adds maintenance burden and stands in the way of
API improvements [1]. Deprecate it by renaming the config option (to
make users notice) to CONFIG_SLOB_DEPRECATED with updated help text.
SLUB should be used instead as SLAB will be the next on the removal
list.
Based on reports from a riscv k210 board with 8MB RAM, add a
CONFIG_SLUB_TINY option to minimize SLUB's memory usage at the
expense of scalability. This has resolved the k210 regression [2] so
in case there are no others (that wouldn't be resolvable by further
tweaks to SLUB_TINY) plan is to remove SLOB in a few cycles.
Existing defconfigs with CONFIG_SLOB are converted to
CONFIG_SLUB_TINY.
- kmalloc() slub_debug redzone improvements
A series from Feng Tang that builds on the tracking or requested size
for kmalloc() allocations (for caches with debugging enabled) added
in 6.1, to make redzone checks consider the requested size and not
the rounded up one, in order to catch more subtle buffer overruns.
Includes new slub_kunit test.
- struct slab fields reordering to accomodate larger rcu_head
RCU folks would like to grow rcu_head with debugging options, which
breaks current struct slab layout's assumptions, so reorganize it to
make this possible.
- Miscellaneous improvements/fixes:
- __alloc_size checking compiler workaround (Kees Cook)
- Optimize and cleanup SLUB's sysfs init (Rasmus Villemoes)
- Make SLAB compatible with PROVE_RAW_LOCK_NESTING (Jiri Kosina)
- Correct SLUB's percpu allocation estimates (Baoquan He)
- Re-enableS LUB's run-time failslab sysfs control (Alexander Atanasov)
- Make tools/vm/slabinfo more user friendly when not run as root (Rong Tao)
- Dead code removal in SLUB (Hyeonggon Yoo)
* tag 'slab-for-6.2-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/vbabka/slab: (31 commits)
mm, slob: rename CONFIG_SLOB to CONFIG_SLOB_DEPRECATED
mm, slub: don't aggressively inline with CONFIG_SLUB_TINY
mm, slub: remove percpu slabs with CONFIG_SLUB_TINY
mm, slub: split out allocations from pre/post hooks
mm/slub, kunit: Add a test case for kmalloc redzone check
mm/slub, kunit: add SLAB_SKIP_KFENCE flag for cache creation
mm, slub: refactor free debug processing
mm, slab: ignore SLAB_RECLAIM_ACCOUNT with CONFIG_SLUB_TINY
mm, slub: don't create kmalloc-rcl caches with CONFIG_SLUB_TINY
mm, slub: lower the default slub_max_order with CONFIG_SLUB_TINY
mm, slub: retain no free slabs on partial list with CONFIG_SLUB_TINY
mm, slub: disable SYSFS support with CONFIG_SLUB_TINY
mm, slub: add CONFIG_SLUB_TINY
mm, slab: ignore hardened usercopy parameters when disabled
slab: Remove special-casing of const 0 size allocations
slab: Clean up SLOB vs kmalloc() definition
mm/sl[au]b: rearrange struct slab fields to allow larger rcu_head
mm/migrate: make isolate_movable_page() skip slab pages
mm/slab: move and adjust kernel-doc for kmem_cache_alloc
mm/slub, percpu: correct the calculation of early percpu allocation size
...
|
|
Commit 5df397dec7c4 ("mm: delay page_remove_rmap() until after the TLB has
been flushed") limited the page batching for the mmu gather operation when
a dirty shared page needed to delay rmap removal until after the TLB had
been flushed.
It did so because it needs to walk that array of pages while still holding
the page table lock, and our mmu_gather infrastructure allows for batching
quite a lot of pages. We may have thousands on pages queued up for
freeing, and we wanted to walk only the last batch if we then added a
dirty page to the queue.
However, when I limited it to one batch, I didn't think of the degenerate
case of the special first batch that is embedded on-stack in the
mmu_gather structure (called "local") and that only has eight entries.
So with the right pattern, that "limit delayed rmap to just one batch"
will trigger over and over in that first small batch, and we'll waste a
lot of time flushing TLB's every eight pages.
And those right patterns are trivially triggered by just having a shared
mappings with lots of adjacent dirty pages. Like the 'page_fault3'
subtest of the 'will-it-scale' benchmark, that just maps a shared area,
dirties all pages, and unmaps it. Rinse and repeat.
We still want to limit the batching, but to fix this (easily triggered)
degenerate case, just expand the "only one batch" logic to instead be
"only one batch that isn't the special first on-stack ('local') batch".
That way, when we need to flush the delayed rmaps, we can still limit our
walk to just the last batch - and that first small one.
Link: https://lkml.kernel.org/r/CAHk-=whkL5aM1fR7kYUmhHQHBcMUc-bDoFP7EwYjTxy64DGtvw@mail.gmail.com
Fixes: 5df397dec7c4 ("mm: delay page_remove_rmap() until after the TLB has been flushed")
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Reported-by: kernel test robot <yujie.liu@intel.com>
Link: https://lore.kernel.org/oe-lkp/202212051534.852804af-yujie.liu@intel.com
Tested-by: Huang, Ying <ying.huang@intel.com>
Tested-by: Hugh Dickins <hughd@google.com>
Cc: Feng Tang <feng.tang@intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: Xing Zhengjun <zhengjun.xing@linux.intel.com>
Cc: "Yin, Fengwei" <fengwei.yin@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Recent Clang changes may cause it to delete calls of memcpy(), if the
source is an uninitialized volatile local. This happens because passing a
pointer to a volatile local into memcpy() discards the volatile qualifier,
giving the compiler a free hand to optimize the memcpy() call away.
Use OPTIMIZER_HIDE_VAR() to hide the uninitialized var from the too-smart
compiler.
Link: https://lkml.kernel.org/r/20221205145740.694038-1-glider@google.com
Signed-off-by: Alexander Potapenko <glider@google.com>
Suggested-by: Marco Elver <elver@google.com>
Reviewed-by: Marco Elver <elver@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
When handling MADV_WILLNEED in madvise(), a soflockup may occurr in
swapin_walk_pmd_entry() if swapping in lots of memory on a slow device.
Add a cond_resched() to avoid the possible softlockup.
Link: https://lkml.kernel.org/r/20221205140327.72304-1-wangkefeng.wang@huawei.com
Fixes: 1998cc048901 ("mm: make madvise(MADV_WILLNEED) support swap file prefetch")
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Shaohua Li <shli@fusionio.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Patch series "selftests/vm: fix some tests on 32bit".
I finally had the time to run some of the selftests written by me
(especially "cow") on x86 PAE. I found some unexpected "surprises" :)
With these changes, and with [1] on top of mm-unstable, the "cow" tests
and the "ksm_functional_tests" compile and pass as expected (expected
failures with hugetlb in the "cow" tests). "madv_populate" has one
expected test failure -- x86 does not support softdirty tracking.
#1-#3 fix commits with stable commit ids. #4 fixes a test that is not in
mm-stable yet.
A note that there are many other compile errors/warnings when compiling on
32bit and with older Linux headers ... something for another day.
[1] https://lkml.kernel.org/r/20221205150857.167583-1-david@redhat.com
This patch (of 4):
... we have to kmap()/kunmap(), otherwise this won't work as expected
with highmem.
Link: https://lkml.kernel.org/r/20221205193716.276024-1-david@redhat.com
Link: https://lkml.kernel.org/r/20221205193716.276024-2-david@redhat.com
Fixes: c77369b437f9 ("mm/gup_test: start/stop/read functionality for PIN LONGTERM test")
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Shuah Khan <shuah@kernel.org>,
Cc: Yang Li <yang.lee@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Commit 4b51634cd16a, introducing the COMPOUND_MAPPED bit, paid attention
to the impossibility of subpages_mapcount ever appearing negative; but did
not attend to those races in which it can momentarily appear larger than
thought possible.
These arise from how page_remove_rmap() first decrements page->_mapcount
or compound_mapcount, then, if that transition goes negative (logical 0),
decrements subpages_mapcount. The initial decrement lets a racing
page_add_*_rmap() reincrement _mapcount or compound_mapcount immediately,
and then in rare cases its corresponding increment of subpages_mapcount
may be completed before page_remove_rmap()'s decrement. There could even
(with increasing unlikelihood) be a series of increments intermixed with
the decrements.
In practice, checking subpages_mapcount with a temporary WARN on range,
has caught values of 0x1000000 (2*COMPOUND_MAPPED, when move_pages() was
using remove_migration_pmd()) and 0x800201 (do_huge_pmd_wp_page() using
__split_huge_pmd()): page_add_anon_rmap() racing page_remove_rmap(), as
predicted.
I certainly found it harder to reason about than when bit_spin_locked, but
the easy case gives a clue to how to handle the harder case. The easy
case being the three !(nr & COMPOUND_MAPPED) checks, which should
obviously be replaced by (nr < COMPOUND_MAPPED) checks - to count a page
as compound mapped, even while the bit in that position is 0.
The harder case is when trying to decide how many subpages are newly
covered or uncovered, when compound map is first added or last removed:
not knowing all that racily happened between first and second atomic ops.
But the easy way to handle that, is again to count the page as compound
mapped all the while that its subpages_mapcount indicates so - ignoring
the _mapcount or compound_mapcount transition while it is on the way to
being reversed.
Link: https://lkml.kernel.org/r/4388158-3092-a960-ff2d-55f2b0fe4ef8@google.com
Fixes: 4b51634cd16a ("mm,thp,rmap: subpages_mapcount COMPOUND_MAPPED if PMD-mapped")
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: James Houghton <jthoughton@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: "Kirill A . Shutemov" <kirill@shutemov.name>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mina Almasry <almasrymina@google.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev>
Cc: Peter Xu <peterx@redhat.com>
Cc: Sidhartha Kumar <sidhartha.kumar@oracle.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Zach O'Keefe <zokeefe@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
I'd been worried by high "swapcached" counts in memcg OOM reports, thought
we had a problem freeing swapcache, but it was just the accounting that
was wrong.
Two issues:
1. When __remove_mapping() removes swapcache,
__delete_from_swap_cache() relies on memcg_data for the right counts to
be updated; but that had already been reset by mem_cgroup_swapout().
Swap those calls around - mem_cgroup_swapout() does not require the
swapcached flag to be set.
6.1 commit ac35a4902374 ("mm: multi-gen LRU: minimal
implementation") already made a similar swap for workingset_eviction(),
but not for this.
2. memcg's "swapcached" count was added for memcg v2 stats, but
displayed on OOM even for memcg v1: so mem_cgroup_move_account() ought
to move it.
Link: https://lkml.kernel.org/r/b8b96ee0-1e1e-85f8-df97-c82a11d7cd14@google.com
Fixes: b6038942480e ("mm: memcg: add swapcache stat for memcg v2")
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Shakeel Butt <shakeelb@google.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Yu Zhao <yuzhao@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
The nodes= arg instructs the kernel to only scan the given nodes for
proactive reclaim. For example use cases, consider a 2 tier memory
system:
nodes 0,1 -> top tier
nodes 2,3 -> second tier
$ echo "1m nodes=0" > memory.reclaim
This instructs the kernel to attempt to reclaim 1m memory from node 0.
Since node 0 is a top tier node, demotion will be attempted first. This
is useful to direct proactive reclaim to specific nodes that are under
pressure.
$ echo "1m nodes=2,3" > memory.reclaim
This instructs the kernel to attempt to reclaim 1m memory in the second
tier, since this tier of memory has no demotion targets the memory will be
reclaimed.
$ echo "1m nodes=0,1" > memory.reclaim
Instructs the kernel to reclaim memory from the top tier nodes, which can
be desirable according to the userspace policy if there is pressure on the
top tiers. Since these nodes have demotion targets, the kernel will
attempt demotion first.
Since commit 3f1509c57b1b ("Revert "mm/vmscan: never demote for memcg
reclaim""), the proactive reclaim interface memory.reclaim does both
reclaim and demotion. Reclaim and demotion incur different latency costs
to the jobs in the cgroup. Demoted memory would still be addressable by
the userspace at a higher latency, but reclaimed memory would need to
incur a pagefault.
The 'nodes' arg is useful to allow the userspace to control demotion and
reclaim independently according to its policy: if the memory.reclaim is
called on a node with demotion targets, it will attempt demotion first; if
it is called on a node without demotion targets, it will only attempt
reclaim.
Link: https://lkml.kernel.org/r/20221202223533.1785418-1-almasrymina@google.com
Signed-off-by: Mina Almasry <almasrymina@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Muchun Song <songmuchun@bytedance.com>
Cc: Bagas Sanjaya <bagasdotme@gmail.com>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Tejun Heo <tj@kernel.org>
Cc: Wei Xu <weixugc@google.com>
Cc: Yang Shi <yang.shi@linux.alibaba.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Cc: zefan li <lizefan.x@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Reclaiming directly from top tier nodes breaks the aging pipeline of
memory tiers. If we have a RAM -> CXL -> storage hierarchy, we should
demote from RAM to CXL and from CXL to storage. If we reclaim a page from
RAM, it means we 'demote' it directly from RAM to storage, bypassing
potentially a huge amount of pages colder than it in CXL.
However disabling reclaim from top tier nodes entirely would cause ooms in
edge scenarios where lower tier memory is unreclaimable for whatever
reason, e.g. memory being mlocked() or too hot to reclaim. In these
cases we would rather the job run with a performance regression rather
than it oom altogether.
However, we can disable reclaim from top tier nodes for proactive reclaim.
That reclaim is not real memory pressure, and we don't have any cause to
be breaking the aging pipeline.
[akpm@linux-foundation.org: restore comment layout, per Ying Huang]
Link: https://lkml.kernel.org/r/20221201233317.1394958-1-almasrymina@google.com
Signed-off-by: Mina Almasry <almasrymina@google.com>
Reviewed-by: "Huang, Ying" <ying.huang@intel.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Wei Xu <weixugc@google.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|