summaryrefslogtreecommitdiff
path: root/mm/migrate.c
AgeCommit message (Collapse)Author
2021-11-06mm: migrate: make demotion knob depend on migrationYang Shi
The memory demotion needs to call migrate_pages() to do the jobs. And it is controlled by a knob, however, the knob doesn't depend on CONFIG_MIGRATION. The knob could be truned on even though MIGRATION is disabled, this will not cause any crash since migrate_pages() would just return -ENOSYS. But it is definitely not optimal to go through demotion path then retry regular swap every time. And it doesn't make too much sense to have the knob visible to the users when !MIGRATION. Move the related code from mempolicy.[h|c] to migrate.[h|c]. Link: https://lkml.kernel.org/r/20211015005559.246709-1-shy828301@gmail.com Signed-off-by: Yang Shi <shy828301@gmail.com> Acked-by: "Huang, Ying" <ying.huang@intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-10-18mm/migrate: fix CPUHP state to update node demotion orderHuang Ying
The node demotion order needs to be updated during CPU hotplug. Because whether a NUMA node has CPU may influence the demotion order. The update function should be called during CPU online/offline after the node_states[N_CPU] has been updated. That is done in CPUHP_AP_ONLINE_DYN during CPU online and in CPUHP_MM_VMSTAT_DEAD during CPU offline. But in commit 884a6e5d1f93 ("mm/migrate: update node demotion order on hotplug events"), the function to update node demotion order is called in CPUHP_AP_ONLINE_DYN during CPU online/offline. This doesn't satisfy the order requirement. For example, there are 4 CPUs (P0, P1, P2, P3) in 2 sockets (P0, P1 in S0 and P2, P3 in S1), the demotion order is - S0 -> NUMA_NO_NODE - S1 -> NUMA_NO_NODE After P2 and P3 is offlined, because S1 has no CPU now, the demotion order should have been changed to - S0 -> S1 - S1 -> NO_NODE but it isn't changed, because the order updating callback for CPU hotplug doesn't see the new nodemask. After that, if P1 is offlined, the demotion order is changed to the expected order as above. So in this patch, we added CPUHP_AP_MM_DEMOTION_ONLINE and CPUHP_MM_DEMOTION_DEAD to be called after CPUHP_AP_ONLINE_DYN and CPUHP_MM_VMSTAT_DEAD during CPU online and offline, and register the update function on them. Link: https://lkml.kernel.org/r/20210929060351.7293-1-ying.huang@intel.com Fixes: 884a6e5d1f93 ("mm/migrate: update node demotion order on hotplug events") Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Yang Shi <shy828301@gmail.com> Cc: Zi Yan <ziy@nvidia.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Wei Xu <weixugc@google.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: David Rientjes <rientjes@google.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: Keith Busch <kbusch@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-10-18mm/migrate: add CPU hotplug to demotion #ifdefDave Hansen
Once upon a time, the node demotion updates were driven solely by memory hotplug events. But now, there are handlers for both CPU and memory hotplug. However, the #ifdef around the code checks only memory hotplug. A system that has HOTPLUG_CPU=y but MEMORY_HOTPLUG=n would miss CPU hotplug events. Update the #ifdef around the common code. Add memory and CPU-specific #ifdefs for their handlers. These memory/CPU #ifdefs avoid unused function warnings when their Kconfig option is off. [arnd@arndb.de: rework hotplug_memory_notifier() stub] Link: https://lkml.kernel.org/r/20211013144029.2154629-1-arnd@kernel.org Link: https://lkml.kernel.org/r/20210924161255.E5FE8F7E@davehans-spike.ostc.intel.com Fixes: 884a6e5d1f93 ("mm/migrate: update node demotion order on hotplug events") Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Wei Xu <weixugc@google.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: David Rientjes <rientjes@google.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: Yang Shi <yang.shi@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-10-18mm/migrate: optimize hotplug-time demotion order updatesDave Hansen
Patch series "mm/migrate: 5.15 fixes for automatic demotion", v2. This contains two fixes for the "automatic demotion" code which was merged into 5.15: * Fix memory hotplug performance regression by watching suppressing any real action on irrelevant hotplug events. * Ensure CPU hotplug handler is registered when memory hotplug is disabled. This patch (of 2): == tl;dr == Automatic demotion opted for a simple, lazy approach to handling hotplug events. This noticeably slows down memory hotplug[1]. Optimize away updates to the demotion order when memory hotplug events should have no effect. This has no effect on CPU hotplug. There is no known problem on the CPU side and any work there will be in a separate series. == Background == Automatic demotion is a memory migration strategy to ensure that new allocations have room in faster memory tiers on tiered memory systems. The kernel maintains an array (node_demotion[]) to drive these migrations. The node_demotion[] path is calculated by starting at nodes with CPUs and then "walking" to nodes with memory. Only hotplug events which online or offline a node with memory (N_ONLINE) or CPUs (N_CPU) will actually affect the migration order. == Problem == However, the current code is lazy. It completely regenerates the migration order on *any* CPU or memory hotplug event. The logic was that these events are extremely rare and that the overhead from indiscriminate order regeneration is minimal. Part of the update logic involves a synchronize_rcu(), which is a pretty big hammer. Its overhead was large enough to be detected by some 0day tests that watch memory hotplug performance[1]. == Solution == Add a new helper (node_demotion_topo_changed()) which can differentiate between superfluous and impactful hotplug events. Skip the expensive update operation for superfluous events. == Aside: Locking == It took me a few moments to declare the locking to be safe enough for node_demotion_topo_changed() to work. It all hinges on the memory hotplug lock: During memory hotplug events, 'mem_hotplug_lock' is held for write. This ensures that two memory hotplug events can not be called simultaneously. CPU hotplug has a similar lock (cpuhp_state_mutex) which also provides mutual exclusion between CPU hotplug events. In addition, the demotion code acquire and hold the mem_hotplug_lock for read during its CPU hotplug handlers. This provides mutual exclusion between the demotion memory hotplug callbacks and the CPU hotplug callbacks. This effectively allows treating the migration target generation code to act as if it is single-threaded. 1. https://lore.kernel.org/all/20210905135932.GE15026@xsang-OptiPlex-9020/ Link: https://lkml.kernel.org/r/20210924161251.093CCD06@davehans-spike.ostc.intel.com Link: https://lkml.kernel.org/r/20210924161253.D7673E31@davehans-spike.ostc.intel.com Fixes: 884a6e5d1f93 ("mm/migrate: update node demotion order on hotplug events") Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reported-by: kernel test robot <oliver.sang@intel.com> Reviewed-by: David Hildenbrand <david@redhat.com> Cc: "Huang, Ying" <ying.huang@intel.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Wei Xu <weixugc@google.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: David Rientjes <rientjes@google.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Greg Thelen <gthelen@google.com> Cc: Yang Shi <yang.shi@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08compat: remove some compat entry pointsArnd Bergmann
These are all handled correctly when calling the native system call entry point, so remove the special cases. Link: https://lkml.kernel.org/r/20210727144859.4150043-6-arnd@kernel.org Signed-off-by: Arnd Bergmann <arnd@arndb.de> Reviewed-by: Christoph Hellwig <hch@lst.de> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: "David S. Miller" <davem@davemloft.net> Cc: Eric Biederman <ebiederm@xmission.com> Cc: Feng Tang <feng.tang@intel.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Helge Deller <deller@gmx.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: "James E.J. Bottomley" <James.Bottomley@HansenPartnership.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Paul Mackerras <paulus@samba.org> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08mm: simplify compat_sys_move_pagesArnd Bergmann
The compat move_pages() implementation uses compat_alloc_user_space() for converting the pointer array. Moving the compat handling into the function itself is a bit simpler and lets us avoid the compat_alloc_user_space() call. Link: https://lkml.kernel.org/r/20210727144859.4150043-4-arnd@kernel.org Signed-off-by: Arnd Bergmann <arnd@arndb.de> Reviewed-by: Christoph Hellwig <hch@lst.de> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: "David S. Miller" <davem@davemloft.net> Cc: Eric Biederman <ebiederm@xmission.com> Cc: Feng Tang <feng.tang@intel.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Helge Deller <deller@gmx.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: "James E.J. Bottomley" <James.Bottomley@HansenPartnership.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Paul Mackerras <paulus@samba.org> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08mm: migrate: change to use bool type for 'page_was_mapped'Baolin Wang
Change to use bool type for 'page_was_mapped' variable making it more readable. Link: https://lkml.kernel.org/r/ce1279df18d2c163998c403e0b5ec6d3f6f90f7a.1629447552.git.baolin.wang@linux.alibaba.com Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Matthew Wilcox <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08mm: migrate: fix the incorrect function name in commentsBaolin Wang
since commit a98a2f0c8ce1 ("mm/rmap: split migration into its own function"), the migration ptes establishment has been split into a separate try_to_migrate() function, thus update the related comments. Link: https://lkml.kernel.org/r/5b824bad6183259c916ae6cf42f81d14c6118b06.1629447552.git.baolin.wang@linux.alibaba.com Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Reviewed-by: Alistair Popple <apopple@nvidia.com> Cc: Matthew Wilcox <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-08mm: migrate: introduce a local variable to get the number of pagesBaolin Wang
Use thp_nr_pages() instead of compound_nr() to get the number of pages for THP page, meanwhile introducing a local variable 'nr_pages' to avoid getting the number of pages repeatedly. Link: https://lkml.kernel.org/r/a8e331ac04392ee230c79186330fb05e86a2aa77.1629447552.git.baolin.wang@linux.alibaba.com Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Matthew Wilcox <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-03mm/migrate: correct kernel-doc notationRandy Dunlap
Use the expected "Return:" format to prevent a kernel-doc warning. mm/migrate.c:1157: warning: Excess function parameter 'returns' description in 'next_demotion_node' Link: https://lkml.kernel.org/r/20210808203151.10632-1-rdunlap@infradead.org Signed-off-by: Randy Dunlap <rdunlap@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-03mm/migrate: enable returning precise migrate_pages() success countYang Shi
Under normal circumstances, migrate_pages() returns the number of pages migrated. In error conditions, it returns an error code. When returning an error code, there is no way to know how many pages were migrated or not migrated. Make migrate_pages() return how many pages are demoted successfully for all cases, including when encountering errors. Page reclaim behavior will depend on this in subsequent patches. Link: https://lkml.kernel.org/r/20210721063926.3024591-3-ying.huang@intel.com Link: https://lkml.kernel.org/r/20210715055145.195411-4-ying.huang@intel.com Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Suggested-by: Oscar Salvador <osalvador@suse.de> [optional parameter] Reviewed-by: Yang Shi <shy828301@gmail.com> Reviewed-by: Zi Yan <ziy@nvidia.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Wei Xu <weixugc@google.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Greg Thelen <gthelen@google.com> Cc: Keith Busch <kbusch@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-03mm/migrate: update node demotion order on hotplug eventsDave Hansen
Reclaim-based migration is attempting to optimize data placement in memory based on the system topology. If the system changes, so must the migration ordering. The implementation is conceptually simple and entirely unoptimized. On any memory or CPU hotplug events, assume that a node was added or removed and recalculate all migration targets. This ensures that the node_demotion[] array is always ready to be used in case the new reclaim mode is enabled. This recalculation is far from optimal, most glaringly that it does not even attempt to figure out the hotplug event would have some *actual* effect on the demotion order. But, given the expected paucity of hotplug events, this should be fine. Link: https://lkml.kernel.org/r/20210721063926.3024591-2-ying.huang@intel.com Link: https://lkml.kernel.org/r/20210715055145.195411-3-ying.huang@intel.com Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Reviewed-by: Zi Yan <ziy@nvidia.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Wei Xu <weixugc@google.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: David Rientjes <rientjes@google.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: Keith Busch <kbusch@kernel.org> Cc: Yang Shi <yang.shi@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-03mm/numa: automatically generate node migration orderDave Hansen
Patch series "Migrate Pages in lieu of discard", v11. We're starting to see systems with more and more kinds of memory such as Intel's implementation of persistent memory. Let's say you have a system with some DRAM and some persistent memory. Today, once DRAM fills up, reclaim will start and some of the DRAM contents will be thrown out. Allocations will, at some point, start falling over to the slower persistent memory. That has two nasty properties. First, the newer allocations can end up in the slower persistent memory. Second, reclaimed data in DRAM are just discarded even if there are gobs of space in persistent memory that could be used. This patchset implements a solution to these problems. At the end of the reclaim process in shrink_page_list() just before the last page refcount is dropped, the page is migrated to persistent memory instead of being dropped. While I've talked about a DRAM/PMEM pairing, this approach would function in any environment where memory tiers exist. This is not perfect. It "strands" pages in slower memory and never brings them back to fast DRAM. Huang Ying has follow-on work which repurposes NUMA balancing to promote hot pages back to DRAM. This is also all based on an upstream mechanism that allows persistent memory to be onlined and used as if it were volatile: http://lkml.kernel.org/r/20190124231441.37A4A305@viggo.jf.intel.com With that, the DRAM and PMEM in each socket will be represented as 2 separate NUMA nodes, with the CPUs sit in the DRAM node. So the general inter-NUMA demotion mechanism introduced in the patchset can migrate the cold DRAM pages to the PMEM node. We have tested the patchset with the postgresql and pgbench. On a 2-socket server machine with DRAM and PMEM, the kernel with the patchset can improve the score of pgbench up to 22.1% compared with that of the DRAM only + disk case. This comes from the reduced disk read throughput (which reduces up to 70.8%). == Open Issues == * Memory policies and cpusets that, for instance, restrict allocations to DRAM can be demoted to PMEM whenever they opt in to this new mechanism. A cgroup-level API to opt-in or opt-out of these migrations will likely be required as a follow-on. * Could be more aggressive about where anon LRU scanning occurs since it no longer necessarily involves I/O. get_scan_count() for instance says: "If we have no swap space, do not bother scanning anon pages" This patch (of 9): Prepare for the kernel to auto-migrate pages to other memory nodes with a node migration table. This allows creating single migration target for each NUMA node to enable the kernel to do NUMA page migrations instead of simply discarding colder pages. A node with no target is a "terminal node", so reclaim acts normally there. The migration target does not fundamentally _need_ to be a single node, but this implementation starts there to limit complexity. When memory fills up on a node, memory contents can be automatically migrated to another node. The biggest problems are knowing when to migrate and to where the migration should be targeted. The most straightforward way to generate the "to where" list would be to follow the page allocator fallback lists. Those lists already tell us if memory is full where to look next. It would also be logical to move memory in that order. But, the allocator fallback lists have a fatal flaw: most nodes appear in all the lists. This would potentially lead to migration cycles (A->B, B->A, A->B, ...). Instead of using the allocator fallback lists directly, keep a separate node migration ordering. But, reuse the same data used to generate page allocator fallback in the first place: find_next_best_node(). This means that the firmware data used to populate node distances essentially dictates the ordering for now. It should also be architecture-neutral since all NUMA architectures have a working find_next_best_node(). RCU is used to allow lock-less read of node_demotion[] and prevent demotion cycles been observed. If multiple reads of node_demotion[] are performed, a single rcu_read_lock() must be held over all reads to ensure no cycles are observed. Details are as follows. === What does RCU provide? === Imagine a simple loop which walks down the demotion path looking for the last node: terminal_node = start_node; while (node_demotion[terminal_node] != NUMA_NO_NODE) { terminal_node = node_demotion[terminal_node]; } The initial values are: node_demotion[0] = 1; node_demotion[1] = NUMA_NO_NODE; and are updated to: node_demotion[0] = NUMA_NO_NODE; node_demotion[1] = 0; What guarantees that the cycle is not observed: node_demotion[0] = 1; node_demotion[1] = 0; and would loop forever? With RCU, a rcu_read_lock/unlock() can be placed around the loop. Since the write side does a synchronize_rcu(), the loop that observed the old contents is known to be complete before the synchronize_rcu() has completed. RCU, combined with disable_all_migrate_targets(), ensures that the old migration state is not visible by the time __set_migration_target_nodes() is called. === What does READ_ONCE() provide? === READ_ONCE() forbids the compiler from merging or reordering successive reads of node_demotion[]. This ensures that any updates are *eventually* observed. Consider the above loop again. The compiler could theoretically read the entirety of node_demotion[] into local storage (registers) and never go back to memory, and *permanently* observe bad values for node_demotion[]. Note: RCU does not provide any universal compiler-ordering guarantees: https://lore.kernel.org/lkml/20150921204327.GH4029@linux.vnet.ibm.com/ This code is unused for now. It will be called later in the series. Link: https://lkml.kernel.org/r/20210721063926.3024591-1-ying.huang@intel.com Link: https://lkml.kernel.org/r/20210715055145.195411-1-ying.huang@intel.com Link: https://lkml.kernel.org/r/20210715055145.195411-2-ying.huang@intel.com Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Reviewed-by: Zi Yan <ziy@nvidia.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: Michal Hocko <mhocko@suse.com> Cc: Wei Xu <weixugc@google.com> Cc: David Rientjes <rientjes@google.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Greg Thelen <gthelen@google.com> Cc: Keith Busch <kbusch@kernel.org> Cc: Yang Shi <yang.shi@linux.alibaba.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-30mm/migrate: fix NR_ISOLATED corruption on 64-bitAneesh Kumar K.V
Similar to commit 2da9f6305f30 ("mm/vmscan: fix NR_ISOLATED_FILE corruption on 64-bit") avoid using unsigned int for nr_pages. With unsigned int type the large unsigned int converts to a large positive signed long. Symptoms include CMA allocations hanging forever due to alloc_contig_range->...->isolate_migratepages_block waiting forever in "while (unlikely(too_many_isolated(pgdat)))". Link: https://lkml.kernel.org/r/20210728042531.359409-1-aneesh.kumar@linux.ibm.com Fixes: c5fc5c3ae0c8 ("mm: migrate: account THP NUMA migration counters correctly") Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Reported-by: Michael Ellerman <mpe@ellerman.id.au> Reported-by: Alexey Kardashevskiy <aik@ozlabs.ru> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: David Hildenbrand <david@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-12mm: Make copy_huge_page() always availableMatthew Wilcox (Oracle)
Rewrite copy_huge_page() and move it into mm/util.c so it's always available. Fixes an exposure of uninitialised memory on configurations with HUGETLB and UFFD enabled and MIGRATION disabled. Fixes: 8cc5fcbb5be8 ("mm, hugetlb: fix racy resv_huge_pages underflow on UFFDIO_COPY") Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01mm: rename migrate_pgmap_ownerAlistair Popple
MMU notifier ranges have a migrate_pgmap_owner field which is used by drivers to store a pointer. This is subsequently used by the driver callback to filter MMU_NOTIFY_MIGRATE events. Other notifier event types can also benefit from this filtering, so rename the 'migrate_pgmap_owner' field to 'owner' and create a new notifier initialisation function to initialise this field. Link: https://lkml.kernel.org/r/20210616105937.23201-6-apopple@nvidia.com Signed-off-by: Alistair Popple <apopple@nvidia.com> Suggested-by: Peter Xu <peterx@redhat.com> Reviewed-by: Peter Xu <peterx@redhat.com> Cc: Ben Skeggs <bskeggs@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Hugh Dickins <hughd@google.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: Ralph Campbell <rcampbell@nvidia.com> Cc: Shakeel Butt <shakeelb@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01mm/rmap: split migration into its own functionAlistair Popple
Migration is currently implemented as a mode of operation for try_to_unmap_one() generally specified by passing the TTU_MIGRATION flag or in the case of splitting a huge anonymous page TTU_SPLIT_FREEZE. However it does not have much in common with the rest of the unmap functionality of try_to_unmap_one() and thus splitting it into a separate function reduces the complexity of try_to_unmap_one() making it more readable. Several simplifications can also be made in try_to_migrate_one() based on the following observations: - All users of TTU_MIGRATION also set TTU_IGNORE_MLOCK. - No users of TTU_MIGRATION ever set TTU_IGNORE_HWPOISON. - No users of TTU_MIGRATION ever set TTU_BATCH_FLUSH. TTU_SPLIT_FREEZE is a special case of migration used when splitting an anonymous page. This is most easily dealt with by calling the correct function from unmap_page() in mm/huge_memory.c - either try_to_migrate() for PageAnon or try_to_unmap(). Link: https://lkml.kernel.org/r/20210616105937.23201-5-apopple@nvidia.com Signed-off-by: Alistair Popple <apopple@nvidia.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Ralph Campbell <rcampbell@nvidia.com> Cc: Ben Skeggs <bskeggs@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: Peter Xu <peterx@redhat.com> Cc: Shakeel Butt <shakeelb@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01mm/swapops: rework swap entry manipulation codeAlistair Popple
Both migration and device private pages use special swap entries that are manipluated by a range of inline functions. The arguments to these are somewhat inconsistent so rework them to remove flag type arguments and to make the arguments similar for both read and write entry creation. Link: https://lkml.kernel.org/r/20210616105937.23201-3-apopple@nvidia.com Signed-off-by: Alistair Popple <apopple@nvidia.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Jason Gunthorpe <jgg@nvidia.com> Reviewed-by: Ralph Campbell <rcampbell@nvidia.com> Cc: Ben Skeggs <bskeggs@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: Peter Xu <peterx@redhat.com> Cc: Shakeel Butt <shakeelb@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01mm: remove special swap entry functionsAlistair Popple
Patch series "Add support for SVM atomics in Nouveau", v11. Introduction ============ Some devices have features such as atomic PTE bits that can be used to implement atomic access to system memory. To support atomic operations to a shared virtual memory page such a device needs access to that page which is exclusive of the CPU. This series introduces a mechanism to temporarily unmap pages granting exclusive access to a device. These changes are required to support OpenCL atomic operations in Nouveau to shared virtual memory (SVM) regions allocated with the CL_MEM_SVM_ATOMICS clSVMAlloc flag. A more complete description of the OpenCL SVM feature is available at https://www.khronos.org/registry/OpenCL/specs/3.0-unified/html/ OpenCL_API.html#_shared_virtual_memory . Implementation ============== Exclusive device access is implemented by adding a new swap entry type (SWAP_DEVICE_EXCLUSIVE) which is similar to a migration entry. The main difference is that on fault the original entry is immediately restored by the fault handler instead of waiting. Restoring the entry triggers calls to MMU notifers which allows a device driver to revoke the atomic access permission from the GPU prior to the CPU finalising the entry. Patches ======= Patches 1 & 2 refactor existing migration and device private entry functions. Patches 3 & 4 rework try_to_unmap_one() by splitting out unrelated functionality into separate functions - try_to_migrate_one() and try_to_munlock_one(). Patch 5 renames some existing code but does not introduce functionality. Patch 6 is a small clean-up to swap entry handling in copy_pte_range(). Patch 7 contains the bulk of the implementation for device exclusive memory. Patch 8 contains some additions to the HMM selftests to ensure everything works as expected. Patch 9 is a cleanup for the Nouveau SVM implementation. Patch 10 contains the implementation of atomic access for the Nouveau driver. Testing ======= This has been tested with upstream Mesa 21.1.0 and a simple OpenCL program which checks that GPU atomic accesses to system memory are atomic. Without this series the test fails as there is no way of write-protecting the page mapping which results in the device clobbering CPU writes. For reference the test is available at https://ozlabs.org/~apopple/opencl_svm_atomics/ Further testing has been performed by adding support for testing exclusive access to the hmm-tests kselftests. This patch (of 10): Remove multiple similar inline functions for dealing with different types of special swap entries. Both migration and device private swap entries use the swap offset to store a pfn. Instead of multiple inline functions to obtain a struct page for each swap entry type use a common function pfn_swap_entry_to_page(). Also open-code the various entry_to_pfn() functions as this results is shorter code that is easier to understand. Link: https://lkml.kernel.org/r/20210616105937.23201-1-apopple@nvidia.com Link: https://lkml.kernel.org/r/20210616105937.23201-2-apopple@nvidia.com Signed-off-by: Alistair Popple <apopple@nvidia.com> Reviewed-by: Ralph Campbell <rcampbell@nvidia.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: Hugh Dickins <hughd@google.com> Cc: Peter Xu <peterx@redhat.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Ben Skeggs <bskeggs@redhat.com> Cc: Jason Gunthorpe <jgg@nvidia.com> Cc: John Hubbard <jhubbard@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-30mm: migrate: check mapcount for THP instead of refcountYang Shi
The generic migration path will check refcount, so no need check refcount here. But the old code actually prevents from migrating shared THP (mapped by multiple processes), so bail out early if mapcount is > 1 to keep the behavior. Link: https://lkml.kernel.org/r/20210518200801.7413-7-shy828301@gmail.com Signed-off-by: Yang Shi <shy828301@gmail.com> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Huang Ying <ying.huang@intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Michal Hocko <mhocko@suse.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-30mm: migrate: don't split THP for misplaced NUMA pageYang Shi
The old behavior didn't split THP if migration is failed due to lack of memory on the target node. But the THP migration does split THP, so keep the old behavior for misplaced NUMA page migration. Link: https://lkml.kernel.org/r/20210518200801.7413-6-shy828301@gmail.com Signed-off-by: Yang Shi <shy828301@gmail.com> Acked-by: Mel Gorman <mgorman@suse.de> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Huang Ying <ying.huang@intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-30mm: migrate: account THP NUMA migration counters correctlyYang Shi
Now both base page and THP NUMA migration is done via migrate_misplaced_page(), keep the counters correctly for THP. Link: https://lkml.kernel.org/r/20210518200801.7413-5-shy828301@gmail.com Signed-off-by: Yang Shi <shy828301@gmail.com> Acked-by: Mel Gorman <mgorman@suse.de> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Huang Ying <ying.huang@intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-30mm: thp: refactor NUMA fault handlingYang Shi
When the THP NUMA fault support was added THP migration was not supported yet. So the ad hoc THP migration was implemented in NUMA fault handling. Since v4.14 THP migration has been supported so it doesn't make too much sense to still keep another THP migration implementation rather than using the generic migration code. This patch reworks the NUMA fault handling to use generic migration implementation to migrate misplaced page. There is no functional change. After the refactor the flow of NUMA fault handling looks just like its PTE counterpart: Acquire ptl Prepare for migration (elevate page refcount) Release ptl Isolate page from lru and elevate page refcount Migrate the misplaced THP If migration fails just restore the old normal PMD. In the old code anon_vma lock was needed to serialize THP migration against THP split, but since then the THP code has been reworked a lot, it seems anon_vma lock is not required anymore to avoid the race. The page refcount elevation when holding ptl should prevent from THP split. Use migrate_misplaced_page() for both base page and THP NUMA hinting fault and remove all the dead and duplicate code. [dan.carpenter@oracle.com: fix a double unlock bug] Link: https://lkml.kernel.org/r/YLX8uYN01JmfLnlK@mwanda Link: https://lkml.kernel.org/r/20210518200801.7413-4-shy828301@gmail.com Signed-off-by: Yang Shi <shy828301@gmail.com> Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com> Acked-by: Mel Gorman <mgorman@suse.de> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: Gerald Schaefer <gerald.schaefer@linux.ibm.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Huang Ying <ying.huang@intel.com> Cc: Hugh Dickins <hughd@google.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-30mm: migrate: fix missing update page_private to hugetlb_page_subpoolMuchun Song
Since commit d6995da31122 ("hugetlb: use page.private for hugetlb specific page flags") converts page.private for hugetlb specific page flags. We should use hugetlb_page_subpool() to get the subpool pointer instead of page_private(). This 'could' prevent the migration of hugetlb pages. page_private(hpage) is now used for hugetlb page specific flags. At migration time, the only flag which could be set is HPageVmemmapOptimized. This flag will only be set if the new vmemmap reduction feature is enabled. In addition, !page_mapping() implies an anonymous mapping. So, this will prevent migration of hugetb pages in anonymous mappings if the vmemmap reduction feature is enabled. In addition, that if statement checked for the rare race condition of a page being migrated while in the process of being freed. Since that check is now wrong, we could leak hugetlb subpool usage counts. The commit forgot to update it in the page migration routine. So fix it. [songmuchun@bytedance.com: fix compiler error when !CONFIG_HUGETLB_PAGE reported by Randy] Link: https://lkml.kernel.org/r/20210521022747.35736-1-songmuchun@bytedance.com Link: https://lkml.kernel.org/r/20210520025949.1866-1-songmuchun@bytedance.com Fixes: d6995da31122 ("hugetlb: use page.private for hugetlb specific page flags") Signed-off-by: Muchun Song <songmuchun@bytedance.com> Reported-by: Anshuman Khandual <anshuman.khandual@arm.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Acked-by: Michal Hocko <mhocko@suse.com> Tested-by: Anshuman Khandual <anshuman.khandual@arm.com> [arm64] Cc: Oscar Salvador <osalvador@suse.de> Cc: David Hildenbrand <david@redhat.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-30mm, hugetlb: fix racy resv_huge_pages underflow on UFFDIO_COPYMina Almasry
On UFFDIO_COPY, if we fail to copy the page contents while holding the hugetlb_fault_mutex, we will drop the mutex and return to the caller after allocating a page that consumed a reservation. In this case there may be a fault that double consumes the reservation. To handle this, we free the allocated page, fix the reservations, and allocate a temporary hugetlb page and return that to the caller. When the caller does the copy outside of the lock, we again check the cache, and allocate a page consuming the reservation, and copy over the contents. Test: Hacked the code locally such that resv_huge_pages underflows produce a warning and the copy_huge_page_from_user() always fails, then: ./tools/testing/selftests/vm/userfaultfd hugetlb_shared 10 2 /tmp/kokonut_test/huge/userfaultfd_test && echo test success ./tools/testing/selftests/vm/userfaultfd hugetlb 10 2 /tmp/kokonut_test/huge/userfaultfd_test && echo test success Both tests succeed and produce no warnings. After the test runs number of free/resv hugepages is correct. [yuehaibing@huawei.com: remove set but not used variable 'vm_alloc_shared'] Link: https://lkml.kernel.org/r/20210601141610.28332-1-yuehaibing@huawei.com [almasrymina@google.com: fix allocation error check and copy func name] Link: https://lkml.kernel.org/r/20210605010626.1459873-1-almasrymina@google.com Link: https://lkml.kernel.org/r/20210528005029.88088-1-almasrymina@google.com Signed-off-by: Mina Almasry <almasrymina@google.com> Signed-off-by: YueHaibing <yuehaibing@huawei.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Peter Xu <peterx@redhat.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-30mm/hugetlb: change parameters of arch_make_huge_pte()Christophe Leroy
Patch series "Subject: [PATCH v2 0/5] Implement huge VMAP and VMALLOC on powerpc 8xx", v2. This series implements huge VMAP and VMALLOC on powerpc 8xx. Powerpc 8xx has 4 page sizes: - 4k - 16k - 512k - 8M At the time being, vmalloc and vmap only support huge pages which are leaf at PMD level. Here the PMD level is 4M, it doesn't correspond to any supported page size. For now, implement use of 16k and 512k pages which is done at PTE level. Support of 8M pages will be implemented later, it requires use of hugepd tables. To allow this, the architecture provides two functions: - arch_vmap_pte_range_map_size() which tells vmap_pte_range() what page size to use. A stub returning PAGE_SIZE is provided when the architecture doesn't provide this function. - arch_vmap_pte_supported_shift() which tells __vmalloc_node_range() what page shift to use for a given area size. A stub returning PAGE_SHIFT is provided when the architecture doesn't provide this function. This patch (of 5): At the time being, arch_make_huge_pte() has the following prototype: pte_t arch_make_huge_pte(pte_t entry, struct vm_area_struct *vma, struct page *page, int writable); vma is used to get the pages shift or size. vma is also used on Sparc to get vm_flags. page is not used. writable is not used. In order to use this function without a vma, replace vma by shift and flags. Also remove the used parameters. Link: https://lkml.kernel.org/r/cover.1620795204.git.christophe.leroy@csgroup.eu Link: https://lkml.kernel.org/r/f4633ac6a7da2f22f31a04a89e0a7026bb78b15b.1620795204.git.christophe.leroy@csgroup.eu Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu> Acked-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@kernel.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Uladzislau Rezki <uladzislau.rezki@sony.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-30mm: hugetlb: alloc the vmemmap pages associated with each HugeTLB pageMuchun Song
When we free a HugeTLB page to the buddy allocator, we need to allocate the vmemmap pages associated with it. However, we may not be able to allocate the vmemmap pages when the system is under memory pressure. In this case, we just refuse to free the HugeTLB page. This changes behavior in some corner cases as listed below: 1) Failing to free a huge page triggered by the user (decrease nr_pages). User needs to try again later. 2) Failing to free a surplus huge page when freed by the application. Try again later when freeing a huge page next time. 3) Failing to dissolve a free huge page on ZONE_MOVABLE via offline_pages(). This can happen when we have plenty of ZONE_MOVABLE memory, but not enough kernel memory to allocate vmemmmap pages. We may even be able to migrate huge page contents, but will not be able to dissolve the source huge page. This will prevent an offline operation and is unfortunate as memory offlining is expected to succeed on movable zones. Users that depend on memory hotplug to succeed for movable zones should carefully consider whether the memory savings gained from this feature are worth the risk of possibly not being able to offline memory in certain situations. 4) Failing to dissolve a huge page on CMA/ZONE_MOVABLE via alloc_contig_range() - once we have that handling in place. Mainly affects CMA and virtio-mem. Similar to 3). virito-mem will handle migration errors gracefully. CMA might be able to fallback on other free areas within the CMA region. Vmemmap pages are allocated from the page freeing context. In order for those allocations to be not disruptive (e.g. trigger oom killer) __GFP_NORETRY is used. hugetlb_lock is dropped for the allocation because a non sleeping allocation would be too fragile and it could fail too easily under memory pressure. GFP_ATOMIC or other modes to access memory reserves is not used because we want to prevent consuming reserves under heavy hugetlb freeing. [mike.kravetz@oracle.com: fix dissolve_free_huge_page use of tail/head page] Link: https://lkml.kernel.org/r/20210527231225.226987-1-mike.kravetz@oracle.com [willy@infradead.org: fix alloc_vmemmap_page_list documentation warning] Link: https://lkml.kernel.org/r/20210615200242.1716568-6-willy@infradead.org Link: https://lkml.kernel.org/r/20210510030027.56044-7-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andy Lutomirski <luto@kernel.org> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Barry Song <song.bao.hua@hisilicon.com> Cc: Bodeddula Balasubramaniam <bodeddub@amazon.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Chen Huang <chenhuang5@huawei.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: HORIGUCHI NAOYA <naoya.horiguchi@nec.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Joao Martins <joao.m.martins@oracle.com> Cc: Joerg Roedel <jroedel@suse.de> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Matthew Wilcox <willy@infradead.org> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Oliver Neukum <oneukum@suse.com> Cc: Paul E. McKenney <paulmck@kernel.org> Cc: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-29mm/migrate: use vma_lookup() in do_pages_stat_array()Liam Howlett
Use vma_lookup() to find the VMA at a specific address. As vma_lookup() will return NULL if the address is not within any VMA, the start address no longer needs to be validated. Link: https://lkml.kernel.org/r/20210521174745.2219620-20-Liam.Howlett@Oracle.com Signed-off-by: Liam R. Howlett <Liam.Howlett@Oracle.com> Reviewed-by: Laurent Dufour <ldufour@linux.ibm.com> Acked-by: David Hildenbrand <david@redhat.com> Acked-by: Davidlohr Bueso <dbueso@suse.de> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-16mm, thp: use head page in __migration_entry_wait()Xu Yu
We notice that hung task happens in a corner but practical scenario when CONFIG_PREEMPT_NONE is enabled, as follows. Process 0 Process 1 Process 2..Inf split_huge_page_to_list unmap_page split_huge_pmd_address __migration_entry_wait(head) __migration_entry_wait(tail) remap_page (roll back) remove_migration_ptes rmap_walk_anon cond_resched Where __migration_entry_wait(tail) is occurred in kernel space, e.g., copy_to_user in fstat, which will immediately fault again without rescheduling, and thus occupy the cpu fully. When there are too many processes performing __migration_entry_wait on tail page, remap_page will never be done after cond_resched. This makes __migration_entry_wait operate on the compound head page, thus waits for remap_page to complete, whether the THP is split successfully or roll back. Note that put_and_wait_on_page_locked helps to drop the page reference acquired with get_page_unless_zero, as soon as the page is on the wait queue, before actually waiting. So splitting the THP is only prevented for a brief interval. Link: https://lkml.kernel.org/r/b9836c1dd522e903891760af9f0c86a2cce987eb.1623144009.git.xuyu@linux.alibaba.com Fixes: ba98828088ad ("thp: add option to setup migration entries during PMD split") Suggested-by: Hugh Dickins <hughd@google.com> Signed-off-by: Gang Deng <gavin.dg@linux.alibaba.com> Signed-off-by: Xu Yu <xuyu@linux.alibaba.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Hugh Dickins <hughd@google.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-05-07mm: fix typos in commentsIngo Molnar
Fix ~94 single-word typos in locking code comments, plus a few very obvious grammar mistakes. Link: https://lkml.kernel.org/r/20210322212624.GA1963421@gmail.com Link: https://lore.kernel.org/r/20210322205203.GB1959563@gmail.com Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Randy Dunlap <rdunlap@infradead.org> Cc: Bhaskar Chowdhury <unixbhaskar@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-05-05mm: cma: add trace events for CMA alloc perf testingLiam Mark
Add cma and migrate trace events to enable CMA allocation performance to be measured via ftrace. [georgi.djakov@linaro.org: add the CMA instance name to the cma_alloc_start trace event] Link: https://lkml.kernel.org/r/20210326155414.25006-1-georgi.djakov@linaro.org Link: https://lkml.kernel.org/r/20210324160740.15901-1-georgi.djakov@linaro.org Signed-off-by: Liam Mark <lmark@codeaurora.org> Signed-off-by: Georgi Djakov <georgi.djakov@linaro.org> Acked-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-05-05Revert "mm: migrate: skip shared exec THP for NUMA balancing"Miaohe Lin
This reverts commit c77c5cbafe549eb330e8909861a3e16cbda2c848. Since commit c77c5cbafe54 ("mm: migrate: skip shared exec THP for NUMA balancing"), the NUMA balancing would skip shared exec transhuge page. But this enhancement is not suitable for transhuge page. Because it's required that page_mapcount() must be 1 due to no migration pte dance is done here. On the other hand, the shared exec transhuge page will leave the migrate_misplaced_page() with pte entry untouched and page locked. Thus pagefault for NUMA will be triggered again and deadlock occurs when we start waiting for the page lock held by ourselves. Yang Shi said: "Thanks for catching this. By relooking the code I think the other important reason for removing this is migrate_misplaced_transhuge_page() actually can't see shared exec file THP at all since page_lock_anon_vma_read() is called before and if page is not anonymous page it will just restore the PMD without migrating anything. The pages for private mapped file vma may be anonymous pages due to COW but they can't be THP so it won't trigger THP numa fault at all. I think this is why no bug was reported. I overlooked this in the first place." Link: https://lkml.kernel.org/r/20210325131524.48181-6-linmiaohe@huawei.com Signed-off-by: Miaohe Lin <linmiaohe@huawei.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: David Hildenbrand <david@redhat.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Rafael Aquini <aquini@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-05-05mm/migrate.c: use helper migrate_vma_collect_skip() in ↵Miaohe Lin
migrate_vma_collect_hole() It's more recommended to use helper function migrate_vma_collect_skip() to skip the unexpected case and it also helps remove some duplicated codes. Move migrate_vma_collect_skip() above migrate_vma_collect_hole() to avoid compiler warning. Link: https://lkml.kernel.org/r/20210325131524.48181-5-linmiaohe@huawei.com Signed-off-by: Miaohe Lin <linmiaohe@huawei.com> Reviewed-by: David Hildenbrand <david@redhat.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Rafael Aquini <aquini@redhat.com> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-05-05mm/migrate.c: fix potential indeterminate pte entry in migrate_vma_insert_page()Miaohe Lin
If the zone device page does not belong to un-addressable device memory, the variable entry will be uninitialized and lead to indeterminate pte entry ultimately. Fix this unexpected case and warn about it. Link: https://lkml.kernel.org/r/20210325131524.48181-4-linmiaohe@huawei.com Fixes: df6ad69838fc ("mm/device-public-memory: device memory cache coherent with CPU") Signed-off-by: Miaohe Lin <linmiaohe@huawei.com> Reviewed-by: David Hildenbrand <david@redhat.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Rafael Aquini <aquini@redhat.com> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-05-05mm/migrate.c: remove unnecessary rc != MIGRATEPAGE_SUCCESS check in 'else' caseMiaohe Lin
It's guaranteed that in the 'else' case of the rc == MIGRATEPAGE_SUCCESS check, rc does not equal to MIGRATEPAGE_SUCCESS. Remove this unnecessary check. Link: https://lkml.kernel.org/r/20210325131524.48181-3-linmiaohe@huawei.com Signed-off-by: Miaohe Lin <linmiaohe@huawei.com> Reviewed-by: David Hildenbrand <david@redhat.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Rafael Aquini <aquini@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-05-05mm/migrate.c: make putback_movable_page() staticMiaohe Lin
Patch series "Cleanup and fixup for mm/migrate.c", v3. This series contains cleanups to remove unnecessary VM_BUG_ON_PAGE and rc != MIGRATEPAGE_SUCCESS check. Also use helper function to remove some duplicated codes. What's more, this fixes potential deadlock in NUMA balancing shared exec THP case and so on. More details can be found in the respective changelogs. This patch (of 5): The putback_movable_page() is just called by putback_movable_pages() and we know the page is locked and both PageMovable() and PageIsolated() is checked right before calling putback_movable_page(). So we make it static and remove all the 3 VM_BUG_ON_PAGE(). Link: https://lkml.kernel.org/r/20210325131524.48181-1-linmiaohe@huawei.com Link: https://lkml.kernel.org/r/20210325131524.48181-2-linmiaohe@huawei.com Signed-off-by: Miaohe Lin <linmiaohe@huawei.com> Reviewed-by: David Hildenbrand <david@redhat.com> Reviewed-by: Yang Shi <shy828301@gmail.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: Rafael Aquini <aquini@redhat.com> Cc: Alistair Popple <apopple@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-05-05mm: replace migrate_[prep|finish] with lru_cache_[disable|enable]Minchan Kim
Currently, migrate_[prep|finish] is merely a wrapper of lru_cache_[disable|enable]. There is not much to gain from having additional abstraction. Use lru_cache_[disable|enable] instead of migrate_[prep|finish], which would be more descriptive. note: migrate_prep_local in compaction.c changed into lru_add_drain to avoid CPU schedule cost with involving many other CPUs to keep old behavior. Link: https://lkml.kernel.org/r/20210319175127.886124-2-minchan@kernel.org Signed-off-by: Minchan Kim <minchan@kernel.org> Acked-by: Michal Hocko <mhocko@suse.com> Reviewed-by: David Hildenbrand <david@redhat.com> Cc: Chris Goldsworthy <cgoldswo@codeaurora.org> Cc: John Dias <joaodias@google.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Oliver Sang <oliver.sang@intel.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-05-05mm: disable LRU pagevec during the migration temporarilyMinchan Kim
LRU pagevec holds refcount of pages until the pagevec are drained. It could prevent migration since the refcount of the page is greater than the expection in migration logic. To mitigate the issue, callers of migrate_pages drains LRU pagevec via migrate_prep or lru_add_drain_all before migrate_pages call. However, it's not enough because pages coming into pagevec after the draining call still could stay at the pagevec so it could keep preventing page migration. Since some callers of migrate_pages have retrial logic with LRU draining, the page would migrate at next trail but it is still fragile in that it doesn't close the fundamental race between upcoming LRU pages into pagvec and migration so the migration failure could cause contiguous memory allocation failure in the end. To close the race, this patch disables lru caches(i.e, pagevec) during ongoing migration until migrate is done. Since it's really hard to reproduce, I measured how many times migrate_pages retried with force mode(it is about a fallback to a sync migration) with below debug code. int migrate_pages(struct list_head *from, new_page_t get_new_page, .. .. if (rc && reason == MR_CONTIG_RANGE && pass > 2) { printk(KERN_ERR, "pfn 0x%lx reason %d", page_to_pfn(page), rc); dump_page(page, "fail to migrate"); } The test was repeating android apps launching with cma allocation in background every five seconds. Total cma allocation count was about 500 during the testing. With this patch, the dump_page count was reduced from 400 to 30. The new interface is also useful for memory hotplug which currently drains lru pcp caches after each migration failure. This is rather suboptimal as it has to disrupt others running during the operation. With the new interface the operation happens only once. This is also in line with pcp allocator cache which are disabled for the offlining as well. Link: https://lkml.kernel.org/r/20210319175127.886124-1-minchan@kernel.org Signed-off-by: Minchan Kim <minchan@kernel.org> Reviewed-by: Chris Goldsworthy <cgoldswo@codeaurora.org> Acked-by: Michal Hocko <mhocko@suse.com> Cc: John Dias <joaodias@google.com> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: David Hildenbrand <david@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Oliver Sang <oliver.sang@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-04-30mm/page_alloc: combine __alloc_pages and __alloc_pages_nodemaskMatthew Wilcox (Oracle)
There are only two callers of __alloc_pages() so prune the thicket of alloc_page variants by combining the two functions together. Current callers of __alloc_pages() simply add an extra 'NULL' parameter and current callers of __alloc_pages_nodemask() call __alloc_pages() instead. Link: https://lkml.kernel.org/r/20210225150642.2582252-4-willy@infradead.org Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Mike Rapoport <rppt@linux.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-02-24mm: memcg: add swapcache stat for memcg v2Shakeel Butt
This patch adds swapcache stat for the cgroup v2. The swapcache represents the memory that is accounted against both the memory and the swap limit of the cgroup. The main motivation behind exposing the swapcache stat is for enabling users to gracefully migrate from cgroup v1's memsw counter to cgroup v2's memory and swap counters. Cgroup v1's memsw limit allows users to limit the memory+swap usage of a workload but without control on the exact proportion of memory and swap. Cgroup v2 provides separate limits for memory and swap which enables more control on the exact usage of memory and swap individually for the workload. With some little subtleties, the v1's memsw limit can be switched with the sum of the v2's memory and swap limits. However the alternative for memsw usage is not yet available in cgroup v2. Exposing per-cgroup swapcache stat enables that alternative. Adding the memory usage and swap usage and subtracting the swapcache will approximate the memsw usage. This will help in the transparent migration of the workloads depending on memsw usage and limit to v2' memory and swap counters. The reasons these applications are still interested in this approximate memsw usage are: (1) these applications are not really interested in two separate memory and swap usage metrics. A single usage metric is more simple to use and reason about for them. (2) The memsw usage metric hides the underlying system's swap setup from the applications. Applications with multiple instances running in a datacenter with heterogeneous systems (some have swap and some don't) will keep seeing a consistent view of their usage. [akpm@linux-foundation.org: fix CONFIG_SWAP=n build] Link: https://lkml.kernel.org/r/20210108155813.2914586-3-shakeelb@google.com Signed-off-by: Shakeel Butt <shakeelb@google.com> Acked-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Roman Gushchin <guro@fb.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Muchun Song <songmuchun@bytedance.com> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-02-24mm/filemap: pass a sleep state to put_and_wait_on_page_lockedMatthew Wilcox (Oracle)
This is prep work for the next patch, but I think at least one of the current callers would prefer a killable sleep to an uninterruptible one. Link: https://lkml.kernel.org/r/20210122160140.223228-6-willy@infradead.org Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Kent Overstreet <kent.overstreet@gmail.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Cc: Miaohe Lin <linmiaohe@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-02-05mm: migrate: do not migrate HugeTLB page whose refcount is oneMuchun Song
All pages isolated for the migration have an elevated reference count and therefore seeing a reference count equal to 1 means that the last user of the page has dropped the reference and the page has became unused and there doesn't make much sense to migrate it anymore. This has been done for regular pages and this patch does the same for hugetlb pages. Although the likelihood of the race is rather small for hugetlb pages it makes sense the two code paths in sync. Link: https://lkml.kernel.org/r/20210115124942.46403-2-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Acked-by: Yang Shi <shy828301@gmail.com> Acked-by: Michal Hocko <mhocko@suse.com> Reviewed-by: David Hildenbrand <david@redhat.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-01-24mm: fix numa stats for thp migrationShakeel Butt
Currently the kernel is not correctly updating the numa stats for NR_FILE_PAGES and NR_SHMEM on THP migration. Fix that. For NR_FILE_DIRTY and NR_ZONE_WRITE_PENDING, although at the moment there is no need to handle THP migration as kernel still does not have write support for file THP but to be more future proof, this patch adds the THP support for those stats as well. Link: https://lkml.kernel.org/r/20210108155813.2914586-2-shakeelb@google.com Fixes: e71769ae52609 ("mm: enable thp migration for shmem thp") Signed-off-by: Shakeel Butt <shakeelb@google.com> Acked-by: Yang Shi <shy828301@gmail.com> Reviewed-by: Roman Gushchin <guro@fb.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Muchun Song <songmuchun@bytedance.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-01-24mm: memcg: fix memcg file_dirty numa statShakeel Butt
The kernel updates the per-node NR_FILE_DIRTY stats on page migration but not the memcg numa stats. That was not an issue until recently the commit 5f9a4f4a7096 ("mm: memcontrol: add the missing numa_stat interface for cgroup v2") exposed numa stats for the memcg. So fix the file_dirty per-memcg numa stat. Link: https://lkml.kernel.org/r/20210108155813.2914586-1-shakeelb@google.com Fixes: 5f9a4f4a7096 ("mm: memcontrol: add the missing numa_stat interface for cgroup v2") Signed-off-by: Shakeel Butt <shakeelb@google.com> Reviewed-by: Muchun Song <songmuchun@bytedance.com> Acked-by: Yang Shi <shy828301@gmail.com> Reviewed-by: Roman Gushchin <guro@fb.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-15mm: fix some spelling mistakes in commentsHaitao Shi
Fix some spelling mistakes in comments: udpate ==> update succesful ==> successful exmaple ==> example unneccessary ==> unnecessary stoping ==> stopping uknown ==> unknown Link: https://lkml.kernel.org/r/20201127011747.86005-1-shihaitao1@huawei.com Signed-off-by: Haitao Shi <shihaitao1@huawei.com> Reviewed-by: Mike Rapoport <rppt@linux.ibm.com> Reviewed-by: Souptick Joarder <jrdr.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-15mm: migrate: remove unused parameter in migrate_vma_insert_page()Stephen Zhang
"dst" parameter to migrate_vma_insert_page() is not used anymore. Link: https://lkml.kernel.org/r/CANubcdUwCAMuUyamG2dkWP=cqSR9MAS=tHLDc95kQkqU-rEnAg@mail.gmail.com Signed-off-by: Stephen Zhang <starzhangzsd@gmail.com> Reviewed-by: David Hildenbrand <david@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-15mm: migrate: return -ENOSYS if THP migration is unsupportedYang Shi
In the current implementation unmap_and_move() would return -ENOMEM if THP migration is unsupported, then the THP will be split. If split is failed just exit without trying to migrate other pages. It doesn't make too much sense since there may be enough free memory to migrate other pages and there may be a lot base pages on the list. Return -ENOSYS to make consistent with hugetlb. And if THP split is failed just skip and try other pages on the list. Just skip the whole list and exit when free memory is really low. Link: https://lkml.kernel.org/r/20201113205359.556831-6-shy828301@gmail.com Signed-off-by: Yang Shi <shy828301@gmail.com> Cc: Jan Kara <jack@suse.cz> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Michal Hocko <mhocko@suse.com> Cc: Song Liu <songliubraving@fb.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-15mm: migrate: clean up migrate_prep{_local}Yang Shi
The migrate_prep{_local} never fails, so it is pointless to have return value and check the return value. Link: https://lkml.kernel.org/r/20201113205359.556831-5-shy828301@gmail.com Signed-off-by: Yang Shi <shy828301@gmail.com> Reviewed-by: Zi Yan <ziy@nvidia.com> Cc: Jan Kara <jack@suse.cz> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Michal Hocko <mhocko@suse.com> Cc: Song Liu <songliubraving@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-15mm: migrate: skip shared exec THP for NUMA balancingYang Shi
The NUMA balancing skip shared exec base page. Since CONFIG_READ_ONLY_THP_FOR_FS was introduced, there are probably shared exec THP, so skip such THPs for NUMA balancing as well. And Willy's regular filesystem THP support patches could create shared exec THP wven without that config. In addition, the page_is_file_lru() is used to tell if the page is file cache or not, but it filters out shmem page. It sounds like a typical usecase by putting executables in shmem to achieve performance gain via using shmem-THP, so it sounds worth skipping migration for such case too. Link: https://lkml.kernel.org/r/20201113205359.556831-4-shy828301@gmail.com Signed-off-by: Yang Shi <shy828301@gmail.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Jan Kara <jack@suse.cz> Cc: Mel Gorman <mgorman@suse.de> Cc: Michal Hocko <mhocko@suse.com> Cc: Song Liu <songliubraving@fb.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-12-15mm: migrate: simplify the logic for handling permanent failureYang Shi
When unmap_and_move{_huge_page}() returns !-EAGAIN and !MIGRATEPAGE_SUCCESS, the page would be put back to LRU or proper list if it is non-LRU movable page. But, the callers always call putback_movable_pages() to put the failed pages back later on, so it seems not very efficient to put every single page back immediately, and the code looks convoluted. Put the failed page on a separate list, then splice the list to migrate list when all pages are tried. It is the caller's responsibility to call putback_movable_pages() to handle failures. This also makes the code simpler and more readable. After the change the rules are: * Success: non hugetlb page will be freed, hugetlb page will be put back * -EAGAIN: stay on the from list * -ENOMEM: stay on the from list * Other errno: put on ret_pages list then splice to from list The from list would be empty iff all pages are migrated successfully, it was not so before. This has no impact to current existing callsites. Link: https://lkml.kernel.org/r/20201113205359.556831-3-shy828301@gmail.com Signed-off-by: Yang Shi <shy828301@gmail.com> Reviewed-by: Zi Yan <ziy@nvidia.com> Cc: Jan Kara <jack@suse.cz> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Michal Hocko <mhocko@suse.com> Cc: Song Liu <songliubraving@fb.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>