Age | Commit message (Collapse) | Author |
|
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
- Nick Piggin's "shoot lazy tlbs" series, to improve the peformance of
switching from a user process to a kernel thread.
- More folio conversions from Kefeng Wang, Zhang Peng and Pankaj
Raghav.
- zsmalloc performance improvements from Sergey Senozhatsky.
- Yue Zhao has found and fixed some data race issues around the
alteration of memcg userspace tunables.
- VFS rationalizations from Christoph Hellwig:
- removal of most of the callers of write_one_page()
- make __filemap_get_folio()'s return value more useful
- Luis Chamberlain has changed tmpfs so it no longer requires swap
backing. Use `mount -o noswap'.
- Qi Zheng has made the slab shrinkers operate locklessly, providing
some scalability benefits.
- Keith Busch has improved dmapool's performance, making part of its
operations O(1) rather than O(n).
- Peter Xu adds the UFFD_FEATURE_WP_UNPOPULATED feature to userfaultd,
permitting userspace to wr-protect anon memory unpopulated ptes.
- Kirill Shutemov has changed MAX_ORDER's meaning to be inclusive
rather than exclusive, and has fixed a bunch of errors which were
caused by its unintuitive meaning.
- Axel Rasmussen give userfaultfd the UFFDIO_CONTINUE_MODE_WP feature,
which causes minor faults to install a write-protected pte.
- Vlastimil Babka has done some maintenance work on vma_merge():
cleanups to the kernel code and improvements to our userspace test
harness.
- Cleanups to do_fault_around() by Lorenzo Stoakes.
- Mike Rapoport has moved a lot of initialization code out of various
mm/ files and into mm/mm_init.c.
- Lorenzo Stoakes removd vmf_insert_mixed_prot(), which was added for
DRM, but DRM doesn't use it any more.
- Lorenzo has also coverted read_kcore() and vread() to use iterators
and has thereby removed the use of bounce buffers in some cases.
- Lorenzo has also contributed further cleanups of vma_merge().
- Chaitanya Prakash provides some fixes to the mmap selftesting code.
- Matthew Wilcox changes xfs and afs so they no longer take sleeping
locks in ->map_page(), a step towards RCUification of pagefaults.
- Suren Baghdasaryan has improved mmap_lock scalability by switching to
per-VMA locking.
- Frederic Weisbecker has reworked the percpu cache draining so that it
no longer causes latency glitches on cpu isolated workloads.
- Mike Rapoport cleans up and corrects the ARCH_FORCE_MAX_ORDER Kconfig
logic.
- Liu Shixin has changed zswap's initialization so we no longer waste a
chunk of memory if zswap is not being used.
- Yosry Ahmed has improved the performance of memcg statistics
flushing.
- David Stevens has fixed several issues involving khugepaged,
userfaultfd and shmem.
- Christoph Hellwig has provided some cleanup work to zram's IO-related
code paths.
- David Hildenbrand has fixed up some issues in the selftest code's
testing of our pte state changing.
- Pankaj Raghav has made page_endio() unneeded and has removed it.
- Peter Xu contributed some rationalizations of the userfaultfd
selftests.
- Yosry Ahmed has fixed an issue around memcg's page recalim
accounting.
- Chaitanya Prakash has fixed some arm-related issues in the
selftests/mm code.
- Longlong Xia has improved the way in which KSM handles hwpoisoned
pages.
- Peter Xu fixes a few issues with uffd-wp at fork() time.
- Stefan Roesch has changed KSM so that it may now be used on a
per-process and per-cgroup basis.
* tag 'mm-stable-2023-04-27-15-30' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (369 commits)
mm,unmap: avoid flushing TLB in batch if PTE is inaccessible
shmem: restrict noswap option to initial user namespace
mm/khugepaged: fix conflicting mods to collapse_file()
sparse: remove unnecessary 0 values from rc
mm: move 'mmap_min_addr' logic from callers into vm_unmapped_area()
hugetlb: pte_alloc_huge() to replace huge pte_alloc_map()
maple_tree: fix allocation in mas_sparse_area()
mm: do not increment pgfault stats when page fault handler retries
zsmalloc: allow only one active pool compaction context
selftests/mm: add new selftests for KSM
mm: add new KSM process and sysfs knobs
mm: add new api to enable ksm per process
mm: shrinkers: fix debugfs file permissions
mm: don't check VMA write permissions if the PTE/PMD indicates write permissions
migrate_pages_batch: fix statistics for longterm pin retry
userfaultfd: use helper function range_in_vma()
lib/show_mem.c: use for_each_populated_zone() simplify code
mm: correct arg in reclaim_pages()/reclaim_clean_pages_from_list()
fs/buffer: convert create_page_buffers to folio_create_buffers
fs/buffer: add folio_create_empty_buffers helper
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Will Deacon:
"ACPI:
- Improve error reporting when failing to manage SDEI on AGDI device
removal
Assembly routines:
- Improve register constraints so that the compiler can make use of
the zero register instead of moving an immediate #0 into a GPR
- Allow the compiler to allocate the registers used for CAS
instructions
CPU features and system registers:
- Cleanups to the way in which CPU features are identified from the
ID register fields
- Extend system register definition generation to handle Enum types
when defining shared register fields
- Generate definitions for new _EL2 registers and add new fields for
ID_AA64PFR1_EL1
- Allow SVE to be disabled separately from SME on the kernel
command-line
Tracing:
- Support for "direct calls" in ftrace, which enables BPF tracing for
arm64
Kdump:
- Don't bother unmapping the crashkernel from the linear mapping,
which then allows us to use huge (block) mappings and reduce TLB
pressure when a crashkernel is loaded.
Memory management:
- Try again to remove data cache invalidation from the coherent DMA
allocation path
- Simplify the fixmap code by mapping at page granularity
- Allow the kfence pool to be allocated early, preventing the rest of
the linear mapping from being forced to page granularity
Perf and PMU:
- Move CPU PMU code out to drivers/perf/ where it can be reused by
the 32-bit ARM architecture when running on ARMv8 CPUs
- Fix race between CPU PMU probing and pKVM host de-privilege
- Add support for Apple M2 CPU PMU
- Adjust the generic PERF_COUNT_HW_BRANCH_INSTRUCTIONS event
dynamically, depending on what the CPU actually supports
- Minor fixes and cleanups to system PMU drivers
Stack tracing:
- Use the XPACLRI instruction to strip PAC from pointers, rather than
rolling our own function in C
- Remove redundant PAC removal for toolchains that handle this in
their builtins
- Make backtracing more resilient in the face of instrumentation
Miscellaneous:
- Fix single-step with KGDB
- Remove harmless warning when 'nokaslr' is passed on the kernel
command-line
- Minor fixes and cleanups across the board"
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (72 commits)
KVM: arm64: Ensure CPU PMU probes before pKVM host de-privilege
arm64: kexec: include reboot.h
arm64: delete dead code in this_cpu_set_vectors()
arm64/cpufeature: Use helper macro to specify ID register for capabilites
drivers/perf: hisi: add NULL check for name
drivers/perf: hisi: Remove redundant initialized of pmu->name
arm64/cpufeature: Consistently use symbolic constants for min_field_value
arm64/cpufeature: Pull out helper for CPUID register definitions
arm64/sysreg: Convert HFGITR_EL2 to automatic generation
ACPI: AGDI: Improve error reporting for problems during .remove()
arm64: kernel: Fix kernel warning when nokaslr is passed to commandline
perf/arm-cmn: Fix port detection for CMN-700
arm64: kgdb: Set PSTATE.SS to 1 to re-enable single-step
arm64: move PAC masks to <asm/pointer_auth.h>
arm64: use XPACLRI to strip PAC
arm64: avoid redundant PAC stripping in __builtin_return_address()
arm64/sme: Fix some comments of ARM SME
arm64/signal: Alloc tpidr2 sigframe after checking system_supports_tpidr2()
arm64/signal: Use system_supports_tpidr2() to check TPIDR2
arm64/idreg: Don't disable SME when disabling SVE
...
|
|
In __kfence_alloc() and __kfence_free(), we will set and check canary.
Assuming that the size of the object is close to 0, nearly 4k memory
accesses are required because setting and checking canary is executed byte
by byte.
canary is now defined like this:
KFENCE_CANARY_PATTERN(addr) ((u8)0xaa ^ (u8)((unsigned long)(addr) & 0x7))
Observe that canary is only related to the lower three bits of the
address, so every 8 bytes of canary are the same. We can access 8-byte
canary each time instead of byte-by-byte, thereby optimizing nearly 4k
memory accesses to 4k/8 times.
Use the bcc tool funclatency to measure the latency of __kfence_alloc()
and __kfence_free(), the numbers (deleted the distribution of latency) is
posted below. Though different object sizes will have an impact on the
measurement, we ignore it for now and assume the average object size is
roughly equal.
Before patching:
__kfence_alloc:
avg = 5055 nsecs, total: 5515252 nsecs, count: 1091
__kfence_free:
avg = 5319 nsecs, total: 9735130 nsecs, count: 1830
After patching:
__kfence_alloc:
avg = 3597 nsecs, total: 6428491 nsecs, count: 1787
__kfence_free:
avg = 3046 nsecs, total: 3415390 nsecs, count: 1121
The numbers indicate that there is ~30% - ~40% performance improvement.
Link: https://lkml.kernel.org/r/20230403122738.6006-1-zhangpeng.00@bytedance.com
Signed-off-by: Peng Zhang <zhangpeng.00@bytedance.com>
Reviewed-by: Marco Elver <elver@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
The struct pages could be discontiguous when the kfence pool is allocated
via alloc_contig_pages() with CONFIG_SPARSEMEM and
!CONFIG_SPARSEMEM_VMEMMAP.
This may result in setting PG_slab and memcg_data to a arbitrary
address (may be not used as a struct page), which in the worst case
might corrupt the kernel.
So the iteration should use nth_page().
Link: https://lkml.kernel.org/r/20230323025003.94447-1-songmuchun@bytedance.com
Fixes: 0ce20dd84089 ("mm: add Kernel Electric-Fence infrastructure")
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: Marco Elver <elver@google.com>
Reviewed-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Jann Horn <jannh@google.com>
Cc: SeongJae Park <sjpark@amazon.de>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
It does not reset PG_slab and memcg_data when KFENCE fails to initialize
kfence pool at runtime. It is reporting a "Bad page state" message when
kfence pool is freed to buddy. The checking of whether it is a compound
head page seems unnecessary since we already guarantee this when
allocating kfence pool. Remove the check to simplify the code.
Link: https://lkml.kernel.org/r/20230320030059.20189-1-songmuchun@bytedance.com
Fixes: 0ce20dd84089 ("mm: add Kernel Electric-Fence infrastructure")
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Jann Horn <jannh@google.com>
Cc: Marco Elver <elver@google.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: SeongJae Park <sjpark@amazon.de>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Kfence only needs its pool to be mapped as page granularity, if it is
inited early. Previous judgement was a bit over protected. From [1], Mark
suggested to "just map the KFENCE region a page granularity". So I
decouple it from judgement and do page granularity mapping for kfence
pool only. Need to be noticed that late init of kfence pool still requires
page granularity mapping.
Page granularity mapping in theory cost more(2M per 1GB) memory on arm64
platform. Like what I've tested on QEMU(emulated 1GB RAM) with
gki_defconfig, also turning off rodata protection:
Before:
[root@liebao ]# cat /proc/meminfo
MemTotal: 999484 kB
After:
[root@liebao ]# cat /proc/meminfo
MemTotal: 1001480 kB
To implement this, also relocate the kfence pool allocation before the
linear mapping setting up, arm64_kfence_alloc_pool is to allocate phys
addr, __kfence_pool is to be set after linear mapping set up.
LINK: [1] https://lore.kernel.org/linux-arm-kernel/Y+IsdrvDNILA59UN@FVFF77S0Q05N/
Suggested-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Zhenhua Huang <quic_zhenhuah@quicinc.com>
Reviewed-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Reviewed-by: Marco Elver <elver@google.com>
Link: https://lore.kernel.org/r/1679066974-690-1-git-send-email-quic_zhenhuah@quicinc.com
Signed-off-by: Will Deacon <will@kernel.org>
|
|
The variable kfence_metadata is initialized in kfence_init_pool(), then,
it is not initialized if kfence is disabled after booting. In this case,
kfence_metadata will be used (e.g. ->lock and ->state fields) without
initialization when reading /sys/kernel/debug/kfence/objects. There will
be a warning if you enable CONFIG_DEBUG_SPINLOCK. Fix it by creating
debugfs files when necessary.
Link: https://lkml.kernel.org/r/20230315034441.44321-1-songmuchun@bytedance.com
Fixes: 0ce20dd84089 ("mm: add Kernel Electric-Fence infrastructure")
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Tested-by: Marco Elver <elver@google.com>
Reviewed-by: Marco Elver <elver@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Jann Horn <jannh@google.com>
Cc: SeongJae Park <sjpark@amazon.de>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
- More userfaultfs work from Peter Xu
- Several convert-to-folios series from Sidhartha Kumar and Huang Ying
- Some filemap cleanups from Vishal Moola
- David Hildenbrand added the ability to selftest anon memory COW
handling
- Some cpuset simplifications from Liu Shixin
- Addition of vmalloc tracing support by Uladzislau Rezki
- Some pagecache folioifications and simplifications from Matthew
Wilcox
- A pagemap cleanup from Kefeng Wang: we have VM_ACCESS_FLAGS, so use
it
- Miguel Ojeda contributed some cleanups for our use of the
__no_sanitize_thread__ gcc keyword.
This series should have been in the non-MM tree, my bad
- Naoya Horiguchi improved the interaction between memory poisoning and
memory section removal for huge pages
- DAMON cleanups and tuneups from SeongJae Park
- Tony Luck fixed the handling of COW faults against poisoned pages
- Peter Xu utilized the PTE marker code for handling swapin errors
- Hugh Dickins reworked compound page mapcount handling, simplifying it
and making it more efficient
- Removal of the autonuma savedwrite infrastructure from Nadav Amit and
David Hildenbrand
- zram support for multiple compression streams from Sergey Senozhatsky
- David Hildenbrand reworked the GUP code's R/O long-term pinning so
that drivers no longer need to use the FOLL_FORCE workaround which
didn't work very well anyway
- Mel Gorman altered the page allocator so that local IRQs can remnain
enabled during per-cpu page allocations
- Vishal Moola removed the try_to_release_page() wrapper
- Stefan Roesch added some per-BDI sysfs tunables which are used to
prevent network block devices from dirtying excessive amounts of
pagecache
- David Hildenbrand did some cleanup and repair work on KSM COW
breaking
- Nhat Pham and Johannes Weiner have implemented writeback in zswap's
zsmalloc backend
- Brian Foster has fixed a longstanding corner-case oddity in
file[map]_write_and_wait_range()
- sparse-vmemmap changes for MIPS, LoongArch and NIOS2 from Feiyang
Chen
- Shiyang Ruan has done some work on fsdax, to make its reflink mode
work better under xfstests. Better, but still not perfect
- Christoph Hellwig has removed the .writepage() method from several
filesystems. They only need .writepages()
- Yosry Ahmed wrote a series which fixes the memcg reclaim target
beancounting
- David Hildenbrand has fixed some of our MM selftests for 32-bit
machines
- Many singleton patches, as usual
* tag 'mm-stable-2022-12-13' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (313 commits)
mm/hugetlb: set head flag before setting compound_order in __prep_compound_gigantic_folio
mm: mmu_gather: allow more than one batch of delayed rmaps
mm: fix typo in struct pglist_data code comment
kmsan: fix memcpy tests
mm: add cond_resched() in swapin_walk_pmd_entry()
mm: do not show fs mm pc for VM_LOCKONFAULT pages
selftests/vm: ksm_functional_tests: fixes for 32bit
selftests/vm: cow: fix compile warning on 32bit
selftests/vm: madv_populate: fix missing MADV_POPULATE_(READ|WRITE) definitions
mm/gup_test: fix PIN_LONGTERM_TEST_READ with highmem
mm,thp,rmap: fix races between updates of subpages_mapcount
mm: memcg: fix swapcached stat accounting
mm: add nodes= arg to memory.reclaim
mm: disable top-tier fallback to reclaim on proactive reclaim
selftests: cgroup: make sure reclaim target memcg is unprotected
selftests: cgroup: refactor proactive reclaim code to reclaim_until()
mm: memcg: fix stale protection of reclaim target memcg
mm/mmap: properly unaccount memory on mas_preallocate() failure
omfs: remove ->writepage
jfs: remove ->writepage
...
|
|
commit fdf756f71271 ("sched: Fix more TASK_state comparisons") makes
hung_task not to monitor TASK_IDLE tasks. The special handling to
workaround hung_task warnings is not required anymore.
Link: https://lkml.kernel.org/r/1667986006-25420-1-git-send-email-quic_pkondeti@quicinc.com
Signed-off-by: Pavankumar Kondeti <quic_pkondeti@quicinc.com>
Reviewed-by: Marco Elver <elver@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
This is a simple mechanical transformation done by:
@@
expression E;
@@
- prandom_u32_max
+ get_random_u32_below
(E)
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Acked-by: Darrick J. Wong <djwong@kernel.org> # for xfs
Reviewed-by: SeongJae Park <sj@kernel.org> # for damon
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com> # for infiniband
Reviewed-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk> # for arm
Acked-by: Ulf Hansson <ulf.hansson@linaro.org> # for mmc
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
- Yu Zhao's Multi-Gen LRU patches are here. They've been under test in
linux-next for a couple of months without, to my knowledge, any
negative reports (or any positive ones, come to that).
- Also the Maple Tree from Liam Howlett. An overlapping range-based
tree for vmas. It it apparently slightly more efficient in its own
right, but is mainly targeted at enabling work to reduce mmap_lock
contention.
Liam has identified a number of other tree users in the kernel which
could be beneficially onverted to mapletrees.
Yu Zhao has identified a hard-to-hit but "easy to fix" lockdep splat
at [1]. This has yet to be addressed due to Liam's unfortunately
timed vacation. He is now back and we'll get this fixed up.
- Dmitry Vyukov introduces KMSAN: the Kernel Memory Sanitizer. It uses
clang-generated instrumentation to detect used-unintialized bugs down
to the single bit level.
KMSAN keeps finding bugs. New ones, as well as the legacy ones.
- Yang Shi adds a userspace mechanism (madvise) to induce a collapse of
memory into THPs.
- Zach O'Keefe has expanded Yang Shi's madvise(MADV_COLLAPSE) to
support file/shmem-backed pages.
- userfaultfd updates from Axel Rasmussen
- zsmalloc cleanups from Alexey Romanov
- cleanups from Miaohe Lin: vmscan, hugetlb_cgroup, hugetlb and
memory-failure
- Huang Ying adds enhancements to NUMA balancing memory tiering mode's
page promotion, with a new way of detecting hot pages.
- memcg updates from Shakeel Butt: charging optimizations and reduced
memory consumption.
- memcg cleanups from Kairui Song.
- memcg fixes and cleanups from Johannes Weiner.
- Vishal Moola provides more folio conversions
- Zhang Yi removed ll_rw_block() :(
- migration enhancements from Peter Xu
- migration error-path bugfixes from Huang Ying
- Aneesh Kumar added ability for a device driver to alter the memory
tiering promotion paths. For optimizations by PMEM drivers, DRM
drivers, etc.
- vma merging improvements from Jakub Matěn.
- NUMA hinting cleanups from David Hildenbrand.
- xu xin added aditional userspace visibility into KSM merging
activity.
- THP & KSM code consolidation from Qi Zheng.
- more folio work from Matthew Wilcox.
- KASAN updates from Andrey Konovalov.
- DAMON cleanups from Kaixu Xia.
- DAMON work from SeongJae Park: fixes, cleanups.
- hugetlb sysfs cleanups from Muchun Song.
- Mike Kravetz fixes locking issues in hugetlbfs and in hugetlb core.
Link: https://lkml.kernel.org/r/CAOUHufZabH85CeUN-MEMgL8gJGzJEWUrkiM58JkTbBhh-jew0Q@mail.gmail.com [1]
* tag 'mm-stable-2022-10-08' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (555 commits)
hugetlb: allocate vma lock for all sharable vmas
hugetlb: take hugetlb vma_lock when clearing vma_lock->vma pointer
hugetlb: fix vma lock handling during split vma and range unmapping
mglru: mm/vmscan.c: fix imprecise comments
mm/mglru: don't sync disk for each aging cycle
mm: memcontrol: drop dead CONFIG_MEMCG_SWAP config symbol
mm: memcontrol: use do_memsw_account() in a few more places
mm: memcontrol: deprecate swapaccounting=0 mode
mm: memcontrol: don't allocate cgroup swap arrays when memcg is disabled
mm/secretmem: remove reduntant return value
mm/hugetlb: add available_huge_pages() func
mm: remove unused inline functions from include/linux/mm_inline.h
selftests/vm: add selftest for MADV_COLLAPSE of uffd-minor memory
selftests/vm: add file/shmem MADV_COLLAPSE selftest for cleared pmd
selftests/vm: add thp collapse shmem testing
selftests/vm: add thp collapse file and tmpfs testing
selftests/vm: modularize thp collapse memory operations
selftests/vm: dedup THP helpers
mm/khugepaged: add tracepoint to hpage_collapse_scan_file()
mm/madvise: add file and shmem support to MADV_COLLAPSE
...
|
|
Use DEFINE_SEQ_ATTRIBUTE helper macro to simplify the code.
Link: https://lkml.kernel.org/r/20220909083140.3592919-1-liushixin2@huawei.com
Signed-off-by: Liu Shixin <liushixin2@huawei.com>
Reviewed-by: Marco Elver <elver@google.com>
Tested-by: Marco Elver <elver@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
As of the prior commit, the RNG will have incorporated both a cycle
counter value and RDRAND, in addition to various other environmental
noise. Therefore, using get_random_u32() will supply a stronger seed
than simply using random_get_entropy(). N.B.: random_get_entropy()
should be considered an internal API of random.c and not generally
consumed.
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Marco Elver <elver@google.com>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
|
|
By default kfence allocation can happen for any slab object, whose size is
up to PAGE_SIZE, as long as that allocation is the first allocation after
expiration of kfence sample interval. But in certain debugging scenarios
we may be interested in debugging corruptions involving some specific slub
objects like dentry or ext4_* etc. In such cases limiting kfence for
allocations involving only specific slub objects will increase the
probablity of catching the issue since kfence pool will not be consumed by
other slab objects.
This patch introduces a sysfs interface
'/sys/kernel/slab/<name>/skip_kfence' to disable kfence for specific
slabs. Having the interface work in this way does not impact
current/default behavior of kfence and allows us to use kfence for
specific slabs (when needed) as well. The decision to skip/use kfence is
taken depending on whether kmem_cache.flags has (newly introduced)
SLAB_SKIP_KFENCE flag set or not.
Link: https://lkml.kernel.org/r/20220814195353.2540848-1-imran.f.khan@oracle.com
Signed-off-by: Imran Khan <imran.f.khan@oracle.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Marco Elver <elver@google.com>
Reviewed-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
"Most of the MM queue. A few things are still pending.
Liam's maple tree rework didn't make it. This has resulted in a few
other minor patch series being held over for next time.
Multi-gen LRU still isn't merged as we were waiting for mapletree to
stabilize. The current plan is to merge MGLRU into -mm soon and to
later reintroduce mapletree, with a view to hopefully getting both
into 6.1-rc1.
Summary:
- The usual batches of cleanups from Baoquan He, Muchun Song, Miaohe
Lin, Yang Shi, Anshuman Khandual and Mike Rapoport
- Some kmemleak fixes from Patrick Wang and Waiman Long
- DAMON updates from SeongJae Park
- memcg debug/visibility work from Roman Gushchin
- vmalloc speedup from Uladzislau Rezki
- more folio conversion work from Matthew Wilcox
- enhancements for coherent device memory mapping from Alex Sierra
- addition of shared pages tracking and CoW support for fsdax, from
Shiyang Ruan
- hugetlb optimizations from Mike Kravetz
- Mel Gorman has contributed some pagealloc changes to improve
latency and realtime behaviour.
- mprotect soft-dirty checking has been improved by Peter Xu
- Many other singleton patches all over the place"
[ XFS merge from hell as per Darrick Wong in
https://lore.kernel.org/all/YshKnxb4VwXycPO8@magnolia/ ]
* tag 'mm-stable-2022-08-03' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (282 commits)
tools/testing/selftests/vm/hmm-tests.c: fix build
mm: Kconfig: fix typo
mm: memory-failure: convert to pr_fmt()
mm: use is_zone_movable_page() helper
hugetlbfs: fix inaccurate comment in hugetlbfs_statfs()
hugetlbfs: cleanup some comments in inode.c
hugetlbfs: remove unneeded header file
hugetlbfs: remove unneeded hugetlbfs_ops forward declaration
hugetlbfs: use helper macro SZ_1{K,M}
mm: cleanup is_highmem()
mm/hmm: add a test for cross device private faults
selftests: add soft-dirty into run_vmtests.sh
selftests: soft-dirty: add test for mprotect
mm/mprotect: fix soft-dirty check in can_change_pte_writable()
mm: memcontrol: fix potential oom_lock recursion deadlock
mm/gup.c: fix formatting in check_and_migrate_movable_page()
xfs: fail dax mount if reflink is enabled on a partition
mm/memcontrol.c: remove the redundant updating of stats_flush_threshold
userfaultfd: don't fail on unrecognized features
hugetlb_cgroup: fix wrong hugetlb cgroup numa stat
...
|
|
This patch solves two issues.
(1) The pool allocated by memblock needs to unregister from
kmemleak scanning. Apply kmemleak_ignore_phys to replace the
original kmemleak_free as its address now is stored in the phys tree.
(2) The pool late allocated by page-alloc doesn't need to unregister.
Move out the freeing operation from its call path.
Link: https://lkml.kernel.org/r/20220628113714.7792-2-yee.lee@mediatek.com
Fixes: 0c24e061196c21d5 ("mm: kmemleak: add rbtree and store physical address for objects allocated with PA")
Signed-off-by: Yee Lee <yee.lee@mediatek.com>
Suggested-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Suggested-by: Marco Elver <elver@google.com>
Reviewed-by: Marco Elver <elver@google.com>
Tested-by: Geert Uytterhoeven <geert+renesas@glider.be>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Functions that work on a pointer to virtual memory such as virt_to_pfn()
and users of that function such as virt_to_page() are supposed to pass a
pointer to virtual memory, ideally a (void *) or other pointer. However
since many architectures implement virt_to_pfn() as a macro, this function
becomes polymorphic and accepts both a (unsigned long) and a (void *).
If we instead implement a proper virt_to_pfn(void *addr) function the
following happens (occurred on arch/arm):
mm/kfence/core.c:558:30: warning: passing argument 1
of 'virt_to_pfn' makes pointer from integer without a
cast [-Wint-conversion]
In one case we can refer to __kfence_pool directly (and that is a proper
(char *) pointer) and in the other call site we use an explicit cast.
Link: https://lkml.kernel.org/r/20220630084124.691207-4-linus.walleij@linaro.org
Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
Reviewed-by: Marco Elver <elver@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
The RNG uses vanilla spinlocks, not raw spinlocks, so kfence should pick
its random numbers before taking its raw spinlocks. This also has the
nice effect of doing less work inside the lock. It should fix a splat
that Geert saw with CONFIG_PROVE_RAW_LOCK_NESTING:
dump_backtrace.part.0+0x98/0xc0
show_stack+0x14/0x28
dump_stack_lvl+0xac/0xec
dump_stack+0x14/0x2c
__lock_acquire+0x388/0x10a0
lock_acquire+0x190/0x2c0
_raw_spin_lock_irqsave+0x6c/0x94
crng_make_state+0x148/0x1e4
_get_random_bytes.part.0+0x4c/0xe8
get_random_u32+0x4c/0x140
__kfence_alloc+0x460/0x5c4
kmem_cache_alloc_trace+0x194/0x1dc
__kthread_create_on_node+0x5c/0x1a8
kthread_create_on_node+0x58/0x7c
printk_start_kthread.part.0+0x34/0xa8
printk_activate_kthreads+0x4c/0x54
do_one_initcall+0xec/0x278
kernel_init_freeable+0x11c/0x214
kernel_init+0x24/0x124
ret_from_fork+0x10/0x20
Link: https://lkml.kernel.org/r/20220609123319.17576-1-Jason@zx2c4.com
Fixes: d4150779e60f ("random32: use real rng for non-deterministic randomness")
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Reported-by: Geert Uytterhoeven <geert@linux-m68k.org>
Tested-by: Geert Uytterhoeven <geert+renesas@glider.be>
Reviewed-by: Marco Elver <elver@google.com>
Reviewed-by: Petr Mladek <pmladek@suse.com>
Cc: John Ogness <john.ogness@linutronix.de>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
"Almost all of MM here. A few things are still getting finished off,
reviewed, etc.
- Yang Shi has improved the behaviour of khugepaged collapsing of
readonly file-backed transparent hugepages.
- Johannes Weiner has arranged for zswap memory use to be tracked and
managed on a per-cgroup basis.
- Munchun Song adds a /proc knob ("hugetlb_optimize_vmemmap") for
runtime enablement of the recent huge page vmemmap optimization
feature.
- Baolin Wang contributes a series to fix some issues around hugetlb
pagetable invalidation.
- Zhenwei Pi has fixed some interactions between hwpoisoned pages and
virtualization.
- Tong Tiangen has enabled the use of the presently x86-only
page_table_check debugging feature on arm64 and riscv.
- David Vernet has done some fixup work on the memcg selftests.
- Peter Xu has taught userfaultfd to handle write protection faults
against shmem- and hugetlbfs-backed files.
- More DAMON development from SeongJae Park - adding online tuning of
the feature and support for monitoring of fixed virtual address
ranges. Also easier discovery of which monitoring operations are
available.
- Nadav Amit has done some optimization of TLB flushing during
mprotect().
- Neil Brown continues to labor away at improving our swap-over-NFS
support.
- David Hildenbrand has some fixes to anon page COWing versus
get_user_pages().
- Peng Liu fixed some errors in the core hugetlb code.
- Joao Martins has reduced the amount of memory consumed by
device-dax's compound devmaps.
- Some cleanups of the arch-specific pagemap code from Anshuman
Khandual.
- Muchun Song has found and fixed some errors in the TLB flushing of
transparent hugepages.
- Roman Gushchin has done more work on the memcg selftests.
... and, of course, many smaller fixes and cleanups. Notably, the
customary million cleanup serieses from Miaohe Lin"
* tag 'mm-stable-2022-05-25' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (381 commits)
mm: kfence: use PAGE_ALIGNED helper
selftests: vm: add the "settings" file with timeout variable
selftests: vm: add "test_hmm.sh" to TEST_FILES
selftests: vm: check numa_available() before operating "merge_across_nodes" in ksm_tests
selftests: vm: add migration to the .gitignore
selftests/vm/pkeys: fix typo in comment
ksm: fix typo in comment
selftests: vm: add process_mrelease tests
Revert "mm/vmscan: never demote for memcg reclaim"
mm/kfence: print disabling or re-enabling message
include/trace/events/percpu.h: cleanup for "percpu: improve percpu_alloc_percpu event trace"
include/trace/events/mmflags.h: cleanup for "tracing: incorrect gfp_t conversion"
mm: fix a potential infinite loop in start_isolate_page_range()
MAINTAINERS: add Muchun as co-maintainer for HugeTLB
zram: fix Kconfig dependency warning
mm/shmem: fix shmem folio swapoff hang
cgroup: fix an error handling path in alloc_pagecache_max_30M()
mm: damon: use HPAGE_PMD_SIZE
tracing: incorrect isolate_mote_t cast in mm_vmscan_lru_isolate
nodemask.h: fix compilation error with GCC12
...
|
|
By printing information, we can friendly prompt the status change
information of kfence by dmesg and record by syslog.
Also, set kfence_enabled to false only when needed.
Link: https://lkml.kernel.org/r/20220518073105.3160335-1-liu.yun@linux.dev
Signed-off-by: Jackie Liu <liuyun01@kylinos.cn>
Co-developed-by: Marco Elver <elver@google.com>
Signed-off-by: Marco Elver <elver@google.com>
Reviewed-by: Marco Elver <elver@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Out-of-bounds accesses that aren't caught by a guard page will result in
corruption of canary memory. In pathological cases, where an object has
certain alignment requirements, an out-of-bounds access might never be
caught by the guard page. Such corruptions, however, are only detected on
kfree() normally. If the bug causes the kernel to panic before kfree(),
KFENCE has no opportunity to report the issue. Such corruptions may also
indicate failing memory or other faults.
To provide some more information in such cases, add the option to check
canary bytes on panic. This might help narrow the search for the panic
cause; but, due to only having the allocation stack trace, such reports
are difficult to use to diagnose an issue alone. In most cases, such
reports are inactionable, and is therefore an opt-in feature (disabled by
default).
[akpm@linux-foundation.org: add __read_mostly, per Marco]
Link: https://lkml.kernel.org/r/20220425022456.44300-1-huangshaobo6@huawei.com
Signed-off-by: huangshaobo <huangshaobo6@huawei.com>
Suggested-by: chenzefeng <chenzefeng2@huawei.com>
Reviewed-by: Marco Elver <elver@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Xiaoming Ni <nixiaoming@huawei.com>
Cc: Wangbing <wangbing6@huawei.com>
Cc: Jubin Zhong <zhongjubin@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
When kfence fails to initialize kfence pool, it frees the pool. But it
does not reset memcg_data and PG_slab flag.
Below is a BUG because of this. Let's fix it by resetting memcg_data
and PG_slab flag before free.
[ 0.089149] BUG: Bad page state in process swapper/0 pfn:3d8e06
[ 0.089149] page:ffffea46cf638180 refcount:0 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x3d8e06
[ 0.089150] memcg:ffffffff94a475d1
[ 0.089150] flags: 0x17ffffc0000200(slab|node=0|zone=2|lastcpupid=0x1fffff)
[ 0.089151] raw: 0017ffffc0000200 ffffea46cf638188 ffffea46cf638188 0000000000000000
[ 0.089152] raw: 0000000000000000 0000000000000000 00000000ffffffff ffffffff94a475d1
[ 0.089152] page dumped because: page still charged to cgroup
[ 0.089153] Modules linked in:
[ 0.089153] CPU: 0 PID: 0 Comm: swapper/0 Tainted: G B W 5.18.0-rc1+ #965
[ 0.089154] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.14.0-2 04/01/2014
[ 0.089154] Call Trace:
[ 0.089155] <TASK>
[ 0.089155] dump_stack_lvl+0x49/0x5f
[ 0.089157] dump_stack+0x10/0x12
[ 0.089158] bad_page.cold+0x63/0x94
[ 0.089159] check_free_page_bad+0x66/0x70
[ 0.089160] __free_pages_ok+0x423/0x530
[ 0.089161] __free_pages_core+0x8e/0xa0
[ 0.089162] memblock_free_pages+0x10/0x12
[ 0.089164] memblock_free_late+0x8f/0xb9
[ 0.089165] kfence_init+0x68/0x92
[ 0.089166] start_kernel+0x789/0x992
[ 0.089167] x86_64_start_reservations+0x24/0x26
[ 0.089168] x86_64_start_kernel+0xa9/0xaf
[ 0.089170] secondary_startup_64_no_verify+0xd5/0xdb
[ 0.089171] </TASK>
Link: https://lkml.kernel.org/r/YnPG3pQrqfcgOlVa@hyeyoo
Fixes: 0ce20dd84089 ("mm: add Kernel Electric-Fence infrastructure")
Fixes: 8f0b36497303 ("mm: kfence: fix objcgs vector allocation")
Signed-off-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Reviewed-by: Marco Elver <elver@google.com>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Calling kmem_obj_info() via kmem_dump_obj() on KFENCE objects has been
producing garbage data due to the object not actually being maintained
by SLAB or SLUB.
Fix this by implementing __kfence_obj_info() that copies relevant
information to struct kmem_obj_info when the object was allocated by
KFENCE; this is called by a common kmem_obj_info(), which also calls the
slab/slub/slob specific variant now called __kmem_obj_info().
For completeness, kmem_dump_obj() now displays if the object was
allocated by KFENCE.
Link: https://lore.kernel.org/all/20220323090520.GG16885@xsang-OptiPlex-9020/
Link: https://lkml.kernel.org/r/20220406131558.3558585-1-elver@google.com
Fixes: b89fb5ef0ce6 ("mm, kfence: insert KFENCE hooks for SLUB")
Fixes: d3fb45f370d9 ("mm, kfence: insert KFENCE hooks for SLAB")
Signed-off-by: Marco Elver <elver@google.com>
Reviewed-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Reported-by: kernel test robot <oliver.sang@intel.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz> [slab]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
If the kfence object is allocated to be used for objects vector, then
this slot of the pool eventually being occupied permanently since the
vector is never freed. The solutions could be (1) freeing vector when
the kfence object is freed or (2) allocating all vectors statically.
Since the memory consumption of object vectors is low, it is better to
chose (2) to fix the issue and it is also can reduce overhead of vectors
allocating in the future.
Link: https://lkml.kernel.org/r/20220328132843.16624-1-songmuchun@bytedance.com
Fixes: d3fb45f370d9 ("mm, kfence: insert KFENCE hooks for SLAB")
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: Marco Elver <elver@google.com>
Reviewed-by: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Xiongchun Duan <duanxiongchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Allow the use of a deferrable timer, which does not force CPU wake-ups
when the system is idle. A consequence is that the sample interval
becomes very unpredictable, to the point that it is not guaranteed that
the KFENCE KUnit test still passes.
Nevertheless, on power-constrained systems this may be preferable, so
let's give the user the option should they accept the above trade-off.
Link: https://lkml.kernel.org/r/20220308141415.3168078-1-elver@google.com
Signed-off-by: Marco Elver <elver@google.com>
Reviewed-by: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Allow enabling KFENCE after system startup by allocating its pool via the
page allocator. This provides the flexibility to enable KFENCE even if it
wasn't enabled at boot time.
Link: https://lkml.kernel.org/r/20220307074516.6920-3-dtcccc@linux.alibaba.com
Signed-off-by: Tianchen Ding <dtcccc@linux.alibaba.com>
Reviewed-by: Marco Elver <elver@google.com>
Tested-by: Peng Liu <liupeng256@huawei.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Patch series "provide the flexibility to enable KFENCE", v3.
If CONFIG_CONTIG_ALLOC is not supported, we fallback to try
alloc_pages_exact(). Allocating pages in this way has limits about
MAX_ORDER (default 11). So we will not support allocating kfence pool
after system startup with a large KFENCE_NUM_OBJECTS.
When handling failures in kfence_init_pool_late(), we pair
free_pages_exact() to alloc_pages_exact() for compatibility consideration,
though it actually does the same as free_contig_range().
This patch (of 2):
If once KFENCE is disabled by:
echo 0 > /sys/module/kfence/parameters/sample_interval
KFENCE could never be re-enabled until next rebooting.
Allow re-enabling it by writing a positive num to sample_interval.
Link: https://lkml.kernel.org/r/20220307074516.6920-1-dtcccc@linux.alibaba.com
Link: https://lkml.kernel.org/r/20220307074516.6920-2-dtcccc@linux.alibaba.com
Signed-off-by: Tianchen Ding <dtcccc@linux.alibaba.com>
Reviewed-by: Marco Elver <elver@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The parameter kfence_sample_interval can be set via boot parameter and
late shell command, which is convenient for automated tests and KFENCE
parameter optimization. However, KFENCE test case just uses
compile-time CONFIG_KFENCE_SAMPLE_INTERVAL, which will make KFENCE test
case not run as users desired. Export kfence_sample_interval, so that
KFENCE test case can use run-time-set sample interval.
Link: https://lkml.kernel.org/r/20220207034432.185532-1-liupeng256@huawei.com
Signed-off-by: Peng Liu <liupeng256@huawei.com>
Reviewed-by: Marco Elver <elver@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Sumit Semwal <sumit.semwal@linaro.org>
Cc: Christian Knig <christian.koenig@amd.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/vbabka/slab
Pull slab updates from Vlastimil Babka:
- Separate struct slab from struct page - an offshot of the page folio
work.
Struct page fields used by slab allocators are moved from struct page
to a new struct slab, that uses the same physical storage. Similar to
struct folio, it always is a head page. This brings better type
safety, separation of large kmalloc allocations from true slabs, and
cleanup of related objcg code.
- A SLAB_MERGE_DEFAULT config optimization.
* tag 'slab-for-5.17' of git://git.kernel.org/pub/scm/linux/kernel/git/vbabka/slab: (33 commits)
mm/slob: Remove unnecessary page_mapcount_reset() function call
bootmem: Use page->index instead of page->freelist
zsmalloc: Stop using slab fields in struct page
mm/slub: Define struct slab fields for CONFIG_SLUB_CPU_PARTIAL only when enabled
mm/slub: Simplify struct slab slabs field definition
mm/sl*b: Differentiate struct slab fields by sl*b implementations
mm/kfence: Convert kfence_guarded_alloc() to struct slab
mm/kasan: Convert to struct folio and struct slab
mm/slob: Convert SLOB to use struct slab and struct folio
mm/memcg: Convert slab objcgs from struct page to struct slab
mm: Convert struct page to struct slab in functions used by other subsystems
mm/slab: Finish struct page to struct slab conversion
mm/slab: Convert most struct page to struct slab by spatch
mm/slab: Convert kmem_getpages() and kmem_freepages() to struct slab
mm/slub: Finish struct page to struct slab conversion
mm/slub: Convert most struct page to struct slab by spatch
mm/slub: Convert pfmemalloc_match() to take a struct slab
mm/slub: Convert __free_slab() to use struct slab
mm/slub: Convert alloc_slab_page() to return a struct slab
mm/slub: Convert print_page_info() to print_slab_info()
...
|
|
With a struct slab definition separate from struct page, we can go
further and define only fields that the chosen sl*b implementation uses.
This means everything between __page_flags and __page_refcount
placeholders now depends on the chosen CONFIG_SL*B. Some fields exist in
all implementations (slab_list) but can be part of a union in some, so
it's simpler to repeat them than complicate the definition with ifdefs
even more.
The patch doesn't change physical offsets of the fields, although it
could be done later - for example it's now clear that tighter packing in
SLOB could be possible.
This should also prevent accidental use of fields that don't exist in
given implementation. Before this patch virt_to_cache() and
cache_from_obj() were visible for SLOB (albeit not used), although they
rely on the slab_cache field that isn't set by SLOB. With this patch
it's now a compile error, so these functions are now hidden behind
an #ifndef CONFIG_SLOB.
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Roman Gushchin <guro@fb.com>
Tested-by: Marco Elver <elver@google.com> # kfence
Reviewed-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Tested-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Marco Elver <elver@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: <kasan-dev@googlegroups.com>
|
|
The function sets some fields that are being moved from struct page to
struct slab so it needs to be converted.
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Tested-by: Marco Elver <elver@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Marco Elver <elver@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: <kasan-dev@googlegroups.com>
|
|
Hulk robot reported a kmemleak problem:
unreferenced object 0xffff93d1d8cc02e8 (size 248):
comm "cat", pid 23327, jiffies 4624670141 (age 495992.217s)
hex dump (first 32 bytes):
00 40 85 19 d4 93 ff ff 00 10 00 00 00 00 00 00 .@..............
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace:
seq_open+0x2a/0x80
full_proxy_open+0x167/0x1e0
do_dentry_open+0x1e1/0x3a0
path_openat+0x961/0xa20
do_filp_open+0xae/0x120
do_sys_openat2+0x216/0x2f0
do_sys_open+0x57/0x80
do_syscall_64+0x33/0x40
entry_SYSCALL_64_after_hwframe+0x44/0xa9
unreferenced object 0xffff93d419854000 (size 4096):
comm "cat", pid 23327, jiffies 4624670141 (age 495992.217s)
hex dump (first 32 bytes):
6b 66 65 6e 63 65 2d 23 32 35 30 3a 20 30 78 30 kfence-#250: 0x0
30 30 30 30 30 30 30 37 35 34 62 64 61 31 32 2d 0000000754bda12-
backtrace:
seq_read_iter+0x313/0x440
seq_read+0x14b/0x1a0
full_proxy_read+0x56/0x80
vfs_read+0xa5/0x1b0
ksys_read+0xa0/0xf0
do_syscall_64+0x33/0x40
entry_SYSCALL_64_after_hwframe+0x44/0xa9
I find that we can easily reproduce this problem with the following
commands:
cat /sys/kernel/debug/kfence/objects
echo scan > /sys/kernel/debug/kmemleak
cat /sys/kernel/debug/kmemleak
The leaked memory is allocated in the stack below:
do_syscall_64
do_sys_open
do_dentry_open
full_proxy_open
seq_open ---> alloc seq_file
vfs_read
full_proxy_read
seq_read
seq_read_iter
traverse ---> alloc seq_buf
And it should have been released in the following process:
do_syscall_64
syscall_exit_to_user_mode
exit_to_user_mode_prepare
task_work_run
____fput
__fput
full_proxy_release ---> free here
However, the release function corresponding to file_operations is not
implemented in kfence. As a result, a memory leak occurs. Therefore,
the solution to this problem is to implement the corresponding release
function.
Link: https://lkml.kernel.org/r/20211206133628.2822545-1-libaokun1@huawei.com
Fixes: 0ce20dd84089 ("mm: add Kernel Electric-Fence infrastructure")
Signed-off-by: Baokun Li <libaokun1@huawei.com>
Reported-by: Hulk Robot <hulkci@huawei.com>
Acked-by: Marco Elver <elver@google.com>
Reviewed-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Yu Kuai <yukuai3@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Regardless of KFENCE mode (CONFIG_KFENCE_STATIC_KEYS: either using
static keys to gate allocations, or using a simple dynamic branch),
always use a static branch to avoid the dynamic branch in kfence_alloc()
if KFENCE was disabled at boot.
For CONFIG_KFENCE_STATIC_KEYS=n, this now avoids the dynamic branch if
KFENCE was disabled at boot.
To simplify, also unifies the location where kfence_allocation_gate is
read-checked to just be inline in kfence_alloc().
Link: https://lkml.kernel.org/r/20211019102524.2807208-1-elver@google.com
Signed-off-by: Marco Elver <elver@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Jann Horn <jannh@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Initializing memory and setting/checking the canary bytes is relatively
expensive, and doing so in the meta->lock critical sections extends the
duration with preemption and interrupts disabled unnecessarily.
Any reads to meta->addr and meta->size in kfence_guarded_alloc() and
kfence_guarded_free() don't require locking meta->lock as long as the
object is removed from the freelist: only kfence_guarded_alloc() sets
meta->addr and meta->size after removing it from the freelist, which
requires a preceding kfence_guarded_free() returning it to the list or
the initial state.
Therefore move reads to meta->addr and meta->size, including expensive
memory initialization using them, out of meta->lock critical sections.
Link: https://lkml.kernel.org/r/20210930153706.2105471-1-elver@google.com
Signed-off-by: Marco Elver <elver@google.com>
Acked-by: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Jann Horn <jannh@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
One of KFENCE's main design principles is that with increasing uptime,
allocation coverage increases sufficiently to detect previously
undetected bugs.
We have observed that frequent long-lived allocations of the same source
(e.g. pagecache) tend to permanently fill up the KFENCE pool with
increasing system uptime, thus breaking the above requirement. The
workaround thus far had been increasing the sample interval and/or
increasing the KFENCE pool size, but is no reliable solution.
To ensure diverse coverage of allocations, limit currently covered
allocations of the same source once pool utilization reaches 75%
(configurable via `kfence.skip_covered_thresh`) or above. The effect is
retaining reasonable allocation coverage when the pool is close to full.
A side-effect is that this also limits frequent long-lived allocations
of the same source filling up the pool permanently.
Uniqueness of an allocation for coverage purposes is based on its
(partial) allocation stack trace (the source). A Counting Bloom filter
is used to check if an allocation is covered; if the allocation is
currently covered, the allocation is skipped by KFENCE.
Testing was done using:
(a) a synthetic workload that performs frequent long-lived
allocations (default config values; sample_interval=1;
num_objects=63), and
(b) normal desktop workloads on an otherwise idle machine where
the problem was first reported after a few days of uptime
(default config values).
In both test cases the sampled allocation rate no longer drops to zero
at any point. In the case of (b) we observe (after 2 days uptime) 15%
unique allocations in the pool, 77% pool utilization, with 20% "skipped
allocations (covered)".
[elver@google.com: simplify and just use hash_32(), use more random stack_hash_seed]
Link: https://lkml.kernel.org/r/YU3MRGaCaJiYht5g@elver.google.com
[elver@google.com: fix 32 bit]
Link: https://lkml.kernel.org/r/20210923104803.2620285-4-elver@google.com
Signed-off-by: Marco Elver <elver@google.com>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Acked-by: Alexander Potapenko <glider@google.com>
Cc: Aleksandr Nogikh <nogikh@google.com>
Cc: Jann Horn <jannh@google.com>
Cc: Taras Madan <tarasmadan@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Move the saving of the stack trace of allocations into __kfence_alloc(),
so that the stack entries array can be used outside of
kfence_guarded_alloc() and we avoid potentially unwinding the stack
multiple times.
Link: https://lkml.kernel.org/r/20210923104803.2620285-3-elver@google.com
Signed-off-by: Marco Elver <elver@google.com>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Acked-by: Alexander Potapenko <glider@google.com>
Cc: Aleksandr Nogikh <nogikh@google.com>
Cc: Jann Horn <jannh@google.com>
Cc: Taras Madan <tarasmadan@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Maintain a counter to count allocations that are skipped due to being
incompatible (oversized, incompatible gfp flags) or no capacity.
This is to compute the fraction of allocations that could not be
serviced by KFENCE, which we expect to be rare.
Link: https://lkml.kernel.org/r/20210923104803.2620285-2-elver@google.com
Signed-off-by: Marco Elver <elver@google.com>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Acked-by: Alexander Potapenko <glider@google.com>
Cc: Aleksandr Nogikh <nogikh@google.com>
Cc: Jann Horn <jannh@google.com>
Cc: Taras Madan <tarasmadan@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Record cpu and timestamp on allocations and frees, and show them in
reports. Upon an error, this can help correlate earlier messages in the
kernel log via allocation and free timestamps.
Link: https://lkml.kernel.org/r/20210714175312.2947941-1-elver@google.com
Suggested-by: Joern Engel <joern@purestorage.com>
Signed-off-by: Marco Elver <elver@google.com>
Acked-by: Alexander Potapenko <glider@google.com>
Acked-by: Joern Engel <joern@purestorage.com>
Cc: Yuanyuan Zhong <yzhong@purestorage.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Allocation requests outside ZONE_NORMAL (MOVABLE, HIGHMEM or DMA) cannot
be fulfilled by KFENCE, because KFENCE memory pool is located in a zone
different from the requested one.
Because callers of kmem_cache_alloc() may actually rely on the
allocation to reside in the requested zone (e.g. memory allocations
done with __GFP_DMA must be DMAable), skip all allocations done with
GFP_ZONEMASK and/or respective SLAB flags (SLAB_CACHE_DMA and
SLAB_CACHE_DMA32).
Link: https://lkml.kernel.org/r/20210714092222.1890268-2-glider@google.com
Fixes: 0ce20dd84089 ("mm: add Kernel Electric-Fence infrastructure")
Signed-off-by: Alexander Potapenko <glider@google.com>
Reviewed-by: Marco Elver <elver@google.com>
Acked-by: Souptick Joarder <jrdr.linux@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Souptick Joarder <jrdr.linux@gmail.com>
Cc: <stable@vger.kernel.org> [5.12+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Check the allocation size before toggling kfence_allocation_gate.
This way allocations that can't be served by KFENCE will not result in
waiting for another CONFIG_KFENCE_SAMPLE_INTERVAL without allocating
anything.
Link: https://lkml.kernel.org/r/20210714092222.1890268-1-glider@google.com
Signed-off-by: Alexander Potapenko <glider@google.com>
Suggested-by: Marco Elver <elver@google.com>
Reviewed-by: Marco Elver <elver@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Marco Elver <elver@google.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: <stable@vger.kernel.org> [5.12+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Unconditionally use unbound work queue, and not just if wq_power_efficient
is true. Because if the system is idle, KFENCE may wait, and by being run
on the unbound work queue, we permit the scheduler to make better
scheduling decisions and not require pinning KFENCE to the same CPU upon
waking up.
Link: https://lkml.kernel.org/r/20210521111630.472579-1-elver@google.com
Fixes: 36f0b35d0894 ("kfence: use power-efficient work queue to run delayed work")
Signed-off-by: Marco Elver <elver@google.com>
Reported-by: Hillf Danton <hdanton@sina.com>
Reviewed-by: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Since wait_event() uses TASK_UNINTERRUPTIBLE by default, waiting for an
allocation counts towards load. However, for KFENCE, this does not make
any sense, since there is no busy work we're awaiting.
Instead, use TASK_IDLE via wait_event_idle() to not count towards load.
BugLink: https://bugzilla.suse.com/show_bug.cgi?id=1185565
Link: https://lkml.kernel.org/r/20210521083209.3740269-1-elver@google.com
Fixes: 407f1d8c1b5f ("kfence: await for allocation using wait_event")
Signed-off-by: Marco Elver <elver@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: David Laight <David.Laight@ACULAB.COM>
Cc: Hillf Danton <hdanton@sina.com>
Cc: <stable@vger.kernel.org> [5.12+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Use the power-efficient work queue, to avoid the pathological case where
we keep pinning ourselves on the same possibly idle CPU on systems that
want to be power-efficient (https://lwn.net/Articles/731052/).
Link: https://lkml.kernel.org/r/20210421105132.3965998-4-elver@google.com
Signed-off-by: Marco Elver <elver@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Jann Horn <jannh@google.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The allocation wait timeout was initially added because of warnings due to
CONFIG_DETECT_HUNG_TASK=y [1]. While the 1 sec timeout is sufficient to
resolve the warnings (given the hung task timeout must be 1 sec or larger)
it may cause unnecessary wake-ups if the system is idle:
https://lkml.kernel.org/r/CADYN=9J0DQhizAGB0-jz4HOBBh+05kMBXb4c0cXMS7Qi5NAJiw@mail.gmail.com
Fix it by computing the timeout duration in terms of the current
sysctl_hung_task_timeout_secs value.
Link: https://lkml.kernel.org/r/20210421105132.3965998-3-elver@google.com
Signed-off-by: Marco Elver <elver@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Jann Horn <jannh@google.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Patch series "kfence: optimize timer scheduling", v2.
We have observed that mostly-idle systems with KFENCE enabled wake up
otherwise idle CPUs, preventing such to enter a lower power state.
Debugging revealed that KFENCE spends too much active time in
toggle_allocation_gate().
While the first version of KFENCE was using all the right bits to be
scheduling optimal, and thus power efficient, by simply using wait_event()
+ wake_up(), that code was unfortunately removed.
As KFENCE was exposed to various different configs and tests, the
scheduling optimal code slowly disappeared. First because of hung task
warnings, and finally because of deadlocks when an allocation is made by
timer code with debug objects enabled. Clearly, the "fixes" were not too
friendly for devices that want to be power efficient.
Therefore, let's try a little harder to fix the hung task and deadlock
problems that we have with wait_event() + wake_up(), while remaining as
scheduling friendly and power efficient as possible.
Crucially, we need to defer the wake_up() to an irq_work, avoiding any
potential for deadlock.
The result with this series is that on the devices where we observed a
power regression, power usage returns back to baseline levels.
This patch (of 3):
On mostly-idle systems, we have observed that toggle_allocation_gate() is
a cause of frequent wake-ups, preventing an otherwise idle CPU to go into
a lower power state.
A late change in KFENCE's development, due to a potential deadlock [1],
required changing the scheduling-friendly wait_event_timeout() and
wake_up() to an open-coded wait-loop using schedule_timeout(). [1]
https://lkml.kernel.org/r/000000000000c0645805b7f982e4@google.com
To avoid unnecessary wake-ups, switch to using wait_event_timeout().
Unfortunately, we still cannot use a version with direct wake_up() in
__kfence_alloc() due to the same potential for deadlock as in [1].
Instead, add a level of indirection via an irq_work that is scheduled if
we determine that the kfence_timer requires a wake_up().
Link: https://lkml.kernel.org/r/20210421105132.3965998-1-elver@google.com
Link: https://lkml.kernel.org/r/20210421105132.3965998-2-elver@google.com
Fixes: 0ce20dd84089 ("mm: add Kernel Electric-Fence infrastructure")
Signed-off-by: Marco Elver <elver@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Jann Horn <jannh@google.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Hillf Danton <hdanton@sina.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
After an out-of-bounds accesses, zero the guard page before re-protecting
in kfence_guarded_free(). On one hand this helps make the failure mode of
subsequent out-of-bounds accesses more deterministic, but could also
prevent certain information leaks.
Link: https://lkml.kernel.org/r/20210312121653.348518-1-elver@google.com
Signed-off-by: Marco Elver <elver@google.com>
Acked-by: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Andrey Konovalov <andreyknvl@google.com>
Cc: Jann Horn <jannh@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Because memblock allocations are registered with kmemleak, the KFENCE
pool was seen by kmemleak as one large object. Later allocations
through kfence_alloc() that were registered with kmemleak via
slab_post_alloc_hook() would then overlap and trigger a warning.
Therefore, once the pool is initialized, we can remove (free) it from
kmemleak again, since it should be treated as allocator-internal and be
seen as "free memory".
The second problem is that kmemleak is passed the rounded size, and not
the originally requested size, which is also the size of KFENCE objects.
To avoid kmemleak scanning past the end of an object and trigger a
KFENCE out-of-bounds error, fix the size if it is a KFENCE object.
For simplicity, to avoid a call to kfence_ksize() in
slab_post_alloc_hook() (and avoid new IS_ENABLED(CONFIG_DEBUG_KMEMLEAK)
guard), just call kfence_ksize() in mm/kmemleak.c:create_object().
Link: https://lkml.kernel.org/r/20210317084740.3099921-1-elver@google.com
Signed-off-by: Marco Elver <elver@google.com>
Reported-by: Luis Henriques <lhenriques@suse.de>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Tested-by: Luis Henriques <lhenriques@suse.de>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Andrey Konovalov <andreyknvl@google.com>
Cc: Jann Horn <jannh@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
We cannot rely on CONFIG_DEBUG_KERNEL to decide if we're running a "debug
kernel" where we can safely show potentially sensitive information in the
kernel log.
Instead, simply rely on the newly introduced "no_hash_pointers" to print
unhashed kernel pointers, as well as decide if our reports can include
other potentially sensitive information such as registers and corrupted
bytes.
Link: https://lkml.kernel.org/r/20210223082043.1972742-1-elver@google.com
Signed-off-by: Marco Elver <elver@google.com>
Cc: Timur Tabi <timur@kernel.org>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Andrey Konovalov <andreyknvl@google.com>
Cc: Jann Horn <jannh@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Add KFENCE test suite, testing various error detection scenarios. Makes
use of KUnit for test organization. Since KFENCE's interface to obtain
error reports is via the console, the test verifies that KFENCE outputs
expected reports to the console.
[elver@google.com: fix typo in test]
Link: https://lkml.kernel.org/r/X9lHQExmHGvETxY4@elver.google.com
[elver@google.com: show access type in report]
Link: https://lkml.kernel.org/r/20210111091544.3287013-2-elver@google.com
Link: https://lkml.kernel.org/r/20201103175841.3495947-9-elver@google.com
Signed-off-by: Alexander Potapenko <glider@google.com>
Signed-off-by: Marco Elver <elver@google.com>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Co-developed-by: Alexander Potapenko <glider@google.com>
Reviewed-by: Jann Horn <jannh@google.com>
Cc: Andrey Konovalov <andreyknvl@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Hillf Danton <hdanton@sina.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joern Engel <joern@purestorage.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Paul E. McKenney <paulmck@kernel.org>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: SeongJae Park <sjpark@amazon.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Inserts KFENCE hooks into the SLUB allocator.
To pass the originally requested size to KFENCE, add an argument
'orig_size' to slab_alloc*(). The additional argument is required to
preserve the requested original size for kmalloc() allocations, which
uses size classes (e.g. an allocation of 272 bytes will return an object
of size 512). Therefore, kmem_cache::size does not represent the
kmalloc-caller's requested size, and we must introduce the argument
'orig_size' to propagate the originally requested size to KFENCE.
Without the originally requested size, we would not be able to detect
out-of-bounds accesses for objects placed at the end of a KFENCE object
page if that object is not equal to the kmalloc-size class it was
bucketed into.
When KFENCE is disabled, there is no additional overhead, since
slab_alloc*() functions are __always_inline.
Link: https://lkml.kernel.org/r/20201103175841.3495947-6-elver@google.com
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Alexander Potapenko <glider@google.com>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Reviewed-by: Jann Horn <jannh@google.com>
Co-developed-by: Marco Elver <elver@google.com>
Cc: Andrey Konovalov <andreyknvl@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christopher Lameter <cl@linux.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Hillf Danton <hdanton@sina.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joern Engel <joern@purestorage.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Paul E. McKenney <paulmck@kernel.org>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: SeongJae Park <sjpark@amazon.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|