summaryrefslogtreecommitdiff
path: root/mm/hugetlb.c
AgeCommit message (Collapse)Author
2014-05-06hugetlb: ensure hugepage access is denied if hugepages are not supportedNishanth Aravamudan
Currently, I am seeing the following when I `mount -t hugetlbfs /none /dev/hugetlbfs`, and then simply do a `ls /dev/hugetlbfs`. I think it's related to the fact that hugetlbfs is properly not correctly setting itself up in this state?: Unable to handle kernel paging request for data at address 0x00000031 Faulting instruction address: 0xc000000000245710 Oops: Kernel access of bad area, sig: 11 [#1] SMP NR_CPUS=2048 NUMA pSeries .... In KVM guests on Power, in a guest not backed by hugepages, we see the following: AnonHugePages: 0 kB HugePages_Total: 0 HugePages_Free: 0 HugePages_Rsvd: 0 HugePages_Surp: 0 Hugepagesize: 64 kB HPAGE_SHIFT == 0 in this configuration, which indicates that hugepages are not supported at boot-time, but this is only checked in hugetlb_init(). Extract the check to a helper function, and use it in a few relevant places. This does make hugetlbfs not supported (not registered at all) in this environment. I believe this is fine, as there are no valid hugepages and that won't change at runtime. [akpm@linux-foundation.org: use pr_info(), per Mel] [akpm@linux-foundation.org: fix build when HPAGE_SHIFT is undefined] Signed-off-by: Nishanth Aravamudan <nacc@linux.vnet.ibm.com> Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Mel Gorman <mgorman@suse.de> Cc: Randy Dunlap <rdunlap@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-18mm/hugetlb.c: add cond_resched_lock() in return_unused_surplus_pages()Mizuma, Masayoshi
soft lockup in freeing gigantic hugepage fixed in commit 55f67141a892 "mm: hugetlb: fix softlockup when a large number of hugepages are freed." can happen in return_unused_surplus_pages(), so let's fix it. Signed-off-by: Masayoshi Mizuma <m.mizuma@jp.fujitsu.com> Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-07mm: hugetlb: fix softlockup when a large number of hugepages are freed.Mizuma, Masayoshi
When I decrease the value of nr_hugepage in procfs a lot, softlockup happens. It is because there is no chance of context switch during this process. On the other hand, when I allocate a large number of hugepages, there is some chance of context switch. Hence softlockup doesn't happen during this process. So it's necessary to add the context switch in the freeing process as same as allocating process to avoid softlockup. When I freed 12 TB hugapages with kernel-2.6.32-358.el6, the freeing process occupied a CPU over 150 seconds and following softlockup message appeared twice or more. $ echo 6000000 > /proc/sys/vm/nr_hugepages $ cat /proc/sys/vm/nr_hugepages 6000000 $ grep ^Huge /proc/meminfo HugePages_Total: 6000000 HugePages_Free: 6000000 HugePages_Rsvd: 0 HugePages_Surp: 0 Hugepagesize: 2048 kB $ echo 0 > /proc/sys/vm/nr_hugepages BUG: soft lockup - CPU#16 stuck for 67s! [sh:12883] ... Pid: 12883, comm: sh Not tainted 2.6.32-358.el6.x86_64 #1 Call Trace: free_pool_huge_page+0xb8/0xd0 set_max_huge_pages+0x128/0x190 hugetlb_sysctl_handler_common+0x113/0x140 hugetlb_sysctl_handler+0x1e/0x20 proc_sys_call_handler+0x97/0xd0 proc_sys_write+0x14/0x20 vfs_write+0xb8/0x1a0 sys_write+0x51/0x90 __audit_syscall_exit+0x265/0x290 system_call_fastpath+0x16/0x1b I have not confirmed this problem with upstream kernels because I am not able to prepare the machine equipped with 12TB memory now. However I confirmed that the amount of decreasing hugepages was directly proportional to the amount of required time. I measured required times on a smaller machine. It showed 130-145 hugepages decreased in a millisecond. Amount of decreasing Required time Decreasing rate hugepages (msec) (pages/msec) ------------------------------------------------------------ 10,000 pages == 20GB 70 - 74 135-142 30,000 pages == 60GB 208 - 229 131-144 It means decrement of 6TB hugepages will trigger softlockup with the default threshold 20sec, in this decreasing rate. Signed-off-by: Masayoshi Mizuma <m.mizuma@jp.fujitsu.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com> Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-07mm: fix 'ERROR: do not initialise globals to 0 or NULL' and coding styleChoi Gi-yong
Signed-off-by: Choi Gi-yong <yong@gnoy.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-07mm: use macros from compiler.h instead of __attribute__((...))Gideon Israel Dsouza
To increase compiler portability there is <linux/compiler.h> which provides convenience macros for various gcc constructs. Eg: __weak for __attribute__((weak)). I've replaced all instances of gcc attributes with the right macro in the memory management (/mm) subsystem. [akpm@linux-foundation.org: while-we're-there consistency tweaks] Signed-off-by: Gideon Israel Dsouza <gidisrael@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-07mm: move mmu notifier call from change_protection to change_pmd_rangeRik van Riel
The NUMA scanning code can end up iterating over many gigabytes of unpopulated memory, especially in the case of a freshly started KVM guest with lots of memory. This results in the mmu notifier code being called even when there are no mapped pages in a virtual address range. The amount of time wasted can be enough to trigger soft lockup warnings with very large KVM guests. This patch moves the mmu notifier call to the pmd level, which represents 1GB areas of memory on x86-64. Furthermore, the mmu notifier code is only called from the address in the PMD where present mappings are first encountered. The hugetlbfs code is left alone for now; hugetlb mappings are not relocatable, and as such are left alone by the NUMA code, and should never trigger this problem to begin with. Signed-off-by: Rik van Riel <riel@redhat.com> Acked-by: David Rientjes <rientjes@google.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Reported-by: Xing Gang <gang.xing@hp.com> Tested-by: Chegu Vinod <chegu_vinod@hp.com> Cc: Sasha Levin <sasha.levin@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-07mm/hugetlb.c: add NULL check of return value of huge_pte_offsetNaoya Horiguchi
huge_pte_offset() could return NULL, so we need NULL check to avoid potential NULL pointer dereferences. Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-03mm, hugetlb: mark some bootstrap functions as __initDavid Rientjes
Both prep_compound_huge_page() and prep_compound_gigantic_page() are only called at bootstrap and can be marked as __init. The __SetPageTail(page) in prep_compound_gigantic_page() happening before page->first_page is initialized is not concerning since this is bootstrap. Signed-off-by: David Rientjes <rientjes@google.com> Reviewed-by: Michal Hocko <mhocko@suse.cz> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Reviewed-by: Davidlohr Bueso <davidlohr@hp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-03mm, hugetlb: improve page-fault scalabilityDavidlohr Bueso
The kernel can currently only handle a single hugetlb page fault at a time. This is due to a single mutex that serializes the entire path. This lock protects from spurious OOM errors under conditions of low availability of free hugepages. This problem is specific to hugepages, because it is normal to want to use every single hugepage in the system - with normal pages we simply assume there will always be a few spare pages which can be used temporarily until the race is resolved. Address this problem by using a table of mutexes, allowing a better chance of parallelization, where each hugepage is individually serialized. The hash key is selected depending on the mapping type. For shared ones it consists of the address space and file offset being faulted; while for private ones the mm and virtual address are used. The size of the table is selected based on a compromise of collisions and memory footprint of a series of database workloads. Large database workloads that make heavy use of hugepages can be particularly exposed to this issue, causing start-up times to be painfully slow. This patch reduces the startup time of a 10 Gb Oracle DB (with ~5000 faults) from 37.5 secs to 25.7 secs. Larger workloads will naturally benefit even more. NOTE: The only downside to this patch, detected by Joonsoo Kim, is that a small race is possible in private mappings: A child process (with its own mm, after cow) can instantiate a page that is already being handled by the parent in a cow fault. When low on pages, can trigger spurious OOMs. I have not been able to think of a efficient way of handling this... but do we really care about such a tiny window? We already maintain another theoretical race with normal pages. If not, one possible way to is to maintain the single hash for private mappings -- any workloads that *really* suffer from this scaling problem should already use shared mappings. [akpm@linux-foundation.org: remove stray + characters, go BUG if hugetlb_init() kmalloc fails] Signed-off-by: Davidlohr Bueso <davidlohr@hp.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: David Gibson <david@gibson.dropbear.id.au> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-03mm, hugetlb: use vma_resv_map() map typesJoonsoo Kim
Util now, we get a resv_map by two ways according to each mapping type. This makes code dirty and unreadable. Unify it. [davidlohr@hp.com: code cleanups] Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Davidlohr Bueso <davidlohr@hp.com> Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-03mm, hugetlb: remove resv_map_putJoonsoo Kim
This is a preparation patch to unify the use of vma_resv_map() regardless of the map type. This patch prepares it by removing resv_map_put(), which only works for HPAGE_RESV_OWNER's resv_map, not for all resv_maps. [davidlohr@hp.com: update changelog] Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Davidlohr Bueso <davidlohr@hp.com> Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-03mm, hugetlb: fix race in region trackingDavidlohr Bueso
There is a race condition if we map a same file on different processes. Region tracking is protected by mmap_sem and hugetlb_instantiation_mutex. When we do mmap, we don't grab a hugetlb_instantiation_mutex, but only mmap_sem (exclusively). This doesn't prevent other tasks from modifying the region structure, so it can be modified by two processes concurrently. To solve this, introduce a spinlock to resv_map and make region manipulation function grab it before they do actual work. [davidlohr@hp.com: updated changelog] Signed-off-by: Davidlohr Bueso <davidlohr@hp.com> Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Suggested-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: David Gibson <david@gibson.dropbear.id.au> Cc: David Gibson <david@gibson.dropbear.id.au> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-03mm, hugetlb: improve, cleanup resv_map parametersJoonsoo Kim
To change a protection method for region tracking to find grained one, we pass the resv_map, instead of list_head, to region manipulation functions. This doesn't introduce any functional change, and it is just for preparing a next step. [davidlohr@hp.com: update changelog] Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Davidlohr Bueso <davidlohr@hp.com> Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-03mm, hugetlb: unify region structure handlingJoonsoo Kim
Currently, to track reserved and allocated regions, we use two different ways, depending on the mapping. For MAP_SHARED, we use address_mapping's private_list and, while for MAP_PRIVATE, we use a resv_map. Now, we are preparing to change a coarse grained lock which protect a region structure to fine grained lock, and this difference hinder it. So, before changing it, unify region structure handling, consistently using a resv_map regardless of the kind of mapping. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Davidlohr Bueso <davidlohr@hp.com> Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-03mm: optimize put_mems_allowed() usageMel Gorman
Since put_mems_allowed() is strictly optional, its a seqcount retry, we don't need to evaluate the function if the allocation was in fact successful, saving a smp_rmb some loads and comparisons on some relative fast-paths. Since the naming, get/put_mems_allowed() does suggest a mandatory pairing, rename the interface, as suggested by Mel, to resemble the seqcount interface. This gives us: read_mems_allowed_begin() and read_mems_allowed_retry(), where it is important to note that the return value of the latter call is inverted from its previous incarnation. Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Mel Gorman <mgorman@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-23mm: dump page when hitting a VM_BUG_ON using VM_BUG_ON_PAGESasha Levin
Most of the VM_BUG_ON assertions are performed on a page. Usually, when one of these assertions fails we'll get a BUG_ON with a call stack and the registers. I've recently noticed based on the requests to add a small piece of code that dumps the page to various VM_BUG_ON sites that the page dump is quite useful to people debugging issues in mm. This patch adds a VM_BUG_ON_PAGE(cond, page) which beyond doing what VM_BUG_ON() does, also dumps the page before executing the actual BUG_ON. [akpm@linux-foundation.org: fix up includes] Signed-off-by: Sasha Levin <sasha.levin@oracle.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21mm/hugetlb.c: use memblock apis for early memory allocationsGrygorii Strashko
Switch to memblock interfaces for early memory allocator instead of bootmem allocator. No functional change in beahvior than what it is in current code from bootmem users points of view. Archs already converted to NO_BOOTMEM now directly use memblock interfaces instead of bootmem wrappers build on top of memblock. And the archs which still uses bootmem, these new apis just fallback to exiting bootmem APIs. Signed-off-by: Grygorii Strashko <grygorii.strashko@ti.com> Signed-off-by: Santosh Shilimkar <santosh.shilimkar@ti.com> Cc: "Rafael J. Wysocki" <rjw@sisk.pl> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Christoph Lameter <cl@linux-foundation.org> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: Paul Walmsley <paul@pwsan.com> Cc: Pavel Machek <pavel@ucw.cz> Cc: Russell King <linux@arm.linux.org.uk> Cc: Tejun Heo <tj@kernel.org> Cc: Tony Lindgren <tony@atomide.com> Cc: Yinghai Lu <yinghai@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21mm/hugetlb.c: call MMU notifiers when copying a hugetlb page rangeAndreas Sandberg
When copy_hugetlb_page_range() is called to copy a range of hugetlb mappings, the secondary MMUs are not notified if there is a protection downgrade, which breaks COW semantics in KVM. This patch adds the necessary MMU notifier calls. Signed-off-by: Andreas Sandberg <andreas@sandberg.pp.se> Acked-by: Steve Capper <steve.capper@linaro.org> Acked-by: Marc Zyngier <marc.zyngier@arm.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21mm/hugetlb.c: defer PageHeadHuge() symbol exportAndrea Arcangeli
No actual need of it. So keep it internal. Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Cc: Khalid Aziz <khalid.aziz@oracle.com> Cc: Pravin Shelar <pshelar@nicira.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Ben Hutchings <bhutchings@solarflare.com> Cc: Christoph Lameter <cl@linux.com> Cc: Johannes Weiner <jweiner@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21mm/hugetlb.c: simplify PageHeadHuge() and PageHuge()Andrew Morton
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Cc: Khalid Aziz <khalid.aziz@oracle.com> Cc: Pravin Shelar <pshelar@nicira.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Ben Hutchings <bhutchings@solarflare.com> Cc: Christoph Lameter <cl@linux.com> Cc: Johannes Weiner <jweiner@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21mm: hugetlb: use get_page_foll() in follow_hugetlb_page()Andrea Arcangeli
get_page_foll() is more optimal and is always safe to use under the PT lock. More so for hugetlbfs as there's no risk of race conditions with split_huge_page regardless of the PT lock. Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Tested-by: Khalid Aziz <khalid.aziz@oracle.com> Cc: Pravin Shelar <pshelar@nicira.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Ben Hutchings <bhutchings@solarflare.com> Cc: Christoph Lameter <cl@linux.com> Cc: Johannes Weiner <jweiner@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-11-21mm: hugetlbfs: fix hugetlbfs optimizationAndrea Arcangeli
Commit 7cb2ef56e6a8 ("mm: fix aio performance regression for database caused by THP") can cause dereference of a dangling pointer if split_huge_page runs during PageHuge() if there are updates to the tail_page->private field. Also it is repeating compound_head twice for hugetlbfs and it is running compound_head+compound_trans_head for THP when a single one is needed in both cases. The new code within the PageSlab() check doesn't need to verify that the THP page size is never bigger than the smallest hugetlbfs page size, to avoid memory corruption. A longstanding theoretical race condition was found while fixing the above (see the change right after the skip_unlock label, that is relevant for the compound_lock path too). By re-establishing the _mapcount tail refcounting for all compound pages, this also fixes the below problem: echo 0 >/sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages BUG: Bad page state in process bash pfn:59a01 page:ffffea000139b038 count:0 mapcount:10 mapping: (null) index:0x0 page flags: 0x1c00000000008000(tail) Modules linked in: CPU: 6 PID: 2018 Comm: bash Not tainted 3.12.0+ #25 Hardware name: Bochs Bochs, BIOS Bochs 01/01/2011 Call Trace: dump_stack+0x55/0x76 bad_page+0xd5/0x130 free_pages_prepare+0x213/0x280 __free_pages+0x36/0x80 update_and_free_page+0xc1/0xd0 free_pool_huge_page+0xc2/0xe0 set_max_huge_pages.part.58+0x14c/0x220 nr_hugepages_store_common.isra.60+0xd0/0xf0 nr_hugepages_store+0x13/0x20 kobj_attr_store+0xf/0x20 sysfs_write_file+0x189/0x1e0 vfs_write+0xc5/0x1f0 SyS_write+0x55/0xb0 system_call_fastpath+0x16/0x1b Signed-off-by: Khalid Aziz <khalid.aziz@oracle.com> Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Tested-by: Khalid Aziz <khalid.aziz@oracle.com> Cc: Pravin Shelar <pshelar@nicira.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Ben Hutchings <bhutchings@solarflare.com> Cc: Christoph Lameter <cl@linux.com> Cc: Johannes Weiner <jweiner@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-11-21mm: thp: give transparent hugepage code a separate copy_pageDave Hansen
Right now, the migration code in migrate_page_copy() uses copy_huge_page() for hugetlbfs and thp pages: if (PageHuge(page) || PageTransHuge(page)) copy_huge_page(newpage, page); So, yay for code reuse. But: void copy_huge_page(struct page *dst, struct page *src) { struct hstate *h = page_hstate(src); and a non-hugetlbfs page has no page_hstate(). This works 99% of the time because page_hstate() determines the hstate from the page order alone. Since the page order of a THP page matches the default hugetlbfs page order, it works. But, if you change the default huge page size on the boot command-line (say default_hugepagesz=1G), then we might not even *have* a 2MB hstate so page_hstate() returns null and copy_huge_page() oopses pretty fast since copy_huge_page() dereferences the hstate: void copy_huge_page(struct page *dst, struct page *src) { struct hstate *h = page_hstate(src); if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) { ... Mel noticed that the migration code is really the only user of these functions. This moves all the copy code over to migrate.c and makes copy_huge_page() work for THP by checking for it explicitly. I believe the bug was introduced in commit b32967ff101a ("mm: numa: Add THP migration for the NUMA working set scanning fault case") [akpm@linux-foundation.org: fix coding-style and comment text, per Naoya Horiguchi] Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Acked-by: Mel Gorman <mgorman@suse.de> Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Hillf Danton <dhillf@gmail.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Tested-by: Dave Jiang <dave.jiang@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-11-15mm, hugetlb: convert hugetlbfs to use split pmd lockKirill A. Shutemov
Hugetlb supports multiple page sizes. We use split lock only for PMD level, but not for PUD. [akpm@linux-foundation.org: coding-style fixes] Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Tested-by: Alex Thorlton <athorlton@sgi.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: "Eric W . Biederman" <ebiederm@xmission.com> Cc: "Paul E . McKenney" <paulmck@linux.vnet.ibm.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Andi Kleen <ak@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Dave Jones <davej@redhat.com> Cc: David Howells <dhowells@redhat.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Kees Cook <keescook@chromium.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: Robin Holt <robinmholt@gmail.com> Cc: Sedat Dilek <sedat.dilek@gmail.com> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-10-16mm: hugetlb: initialize PG_reserved for tail pages of gigantic compound pagesAndrea Arcangeli
Commit 11feeb498086 ("kvm: optimize away THP checks in kvm_is_mmio_pfn()") introduced a memory leak when KVM is run on gigantic compound pages. That commit depends on the assumption that PG_reserved is identical for all head and tail pages of a compound page. So that if get_user_pages returns a tail page, we don't need to check the head page in order to know if we deal with a reserved page that requires different refcounting. The assumption that PG_reserved is the same for head and tail pages is certainly correct for THP and regular hugepages, but gigantic hugepages allocated through bootmem don't clear the PG_reserved on the tail pages (the clearing of PG_reserved is done later only if the gigantic hugepage is freed). This patch corrects the gigantic compound page initialization so that we can retain the optimization in 11feeb498086. The cacheline was already modified in order to set PG_tail so this won't affect the boot time of large memory systems. [akpm@linux-foundation.org: tweak comment layout and grammar] Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Reported-by: andy123 <ajs124.ajs124@gmail.com> Acked-by: Rik van Riel <riel@redhat.com> Cc: Gleb Natapov <gleb@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Acked-by: Rafael Aquini <aquini@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-10-16mm/hugetlb.c: correct missing private flag clearingJoonsoo Kim
We should clear the page's private flag when returing the page to the hugepage pool. Otherwise, marked hugepage can be allocated to the user who tries to allocate the non-reserved hugepage. If this user fail to map this hugepage, he would try to return the page to the hugepage pool. Since this page has a private flag, resv_huge_pages would mistakenly increase. This patch fixes this situation. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Michal Hocko <mhocko@suse.cz> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Hugh Dickins <hughd@google.com> Cc: Davidlohr Bueso <davidlohr.bueso@hp.com> Cc: David Gibson <david@gibson.dropbear.id.au> Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Hillf Danton <dhillf@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-11mm: prepare to remove /proc/sys/vm/hugepages_treat_as_movableNaoya Horiguchi
Now hugepage migration is enabled, although restricted on pmd-based hugepages for now (due to lack of testing.) So we should allocate migratable hugepages from ZONE_MOVABLE if possible. This patch makes GFP flags in hugepage allocation dependent on migration support, not only the value of hugepages_treat_as_movable. It provides no change on the behavior for architectures which do not support hugepage migration, Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Acked-by: Andi Kleen <ak@linux.intel.com> Reviewed-by: Wanpeng Li <liwanp@linux.vnet.ibm.com> Cc: Hillf Danton <dhillf@gmail.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: Rik van Riel <riel@redhat.com> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-11mm: memory-hotplug: enable memory hotplug to handle hugepageNaoya Horiguchi
Until now we can't offline memory blocks which contain hugepages because a hugepage is considered as an unmovable page. But now with this patch series, a hugepage has become movable, so by using hugepage migration we can offline such memory blocks. What's different from other users of hugepage migration is that we need to decompose all the hugepages inside the target memory block into free buddy pages after hugepage migration, because otherwise free hugepages remaining in the memory block intervene the memory offlining. For this reason we introduce new functions dissolve_free_huge_page() and dissolve_free_huge_pages(). Other than that, what this patch does is straightforwardly to add hugepage migration code, that is, adding hugepage code to the functions which scan over pfn and collect hugepages to be migrated, and adding a hugepage allocation function to alloc_migrate_target(). As for larger hugepages (1GB for x86_64), it's not easy to do hotremove over them because it's larger than memory block. So we now simply leave it to fail as it is. [yongjun_wei@trendmicro.com.cn: remove duplicated include] Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Acked-by: Andi Kleen <ak@linux.intel.com> Cc: Hillf Danton <dhillf@gmail.com> Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: Rik van Riel <riel@redhat.com> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: Wei Yongjun <yongjun_wei@trendmicro.com.cn> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-11mm: mbind: add hugepage migration code to mbind()Naoya Horiguchi
Extend do_mbind() to handle vma with VM_HUGETLB set. We will be able to migrate hugepage with mbind(2) after applying the enablement patch which comes later in this series. Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Acked-by: Andi Kleen <ak@linux.intel.com> Reviewed-by: Wanpeng Li <liwanp@linux.vnet.ibm.com> Acked-by: Hillf Danton <dhillf@gmail.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: Rik van Riel <riel@redhat.com> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-11mm: migrate: make core migration code aware of hugepageNaoya Horiguchi
Currently hugepage migration is available only for soft offlining, but it's also useful for some other users of page migration (clearly because users of hugepage can enjoy the benefit of mempolicy and memory hotplug.) So this patchset tries to extend such users to support hugepage migration. The target of this patchset is to enable hugepage migration for NUMA related system calls (migrate_pages(2), move_pages(2), and mbind(2)), and memory hotplug. This patchset does not add hugepage migration for memory compaction, because users of memory compaction mainly expect to construct thp by arranging raw pages, and there's little or no need to compact hugepages. CMA, another user of page migration, can have benefit from hugepage migration, but is not enabled to support it for now (just because of lack of testing and expertise in CMA.) Hugepage migration of non pmd-based hugepage (for example 1GB hugepage in x86_64, or hugepages in architectures like ia64) is not enabled for now (again, because of lack of testing.) As for how these are achived, I extended the API (migrate_pages()) to handle hugepage (with patch 1 and 2) and adjusted code of each caller to check and collect movable hugepages (with patch 3-7). Remaining 2 patches are kind of miscellaneous ones to avoid unexpected behavior. Patch 8 is about making sure that we only migrate pmd-based hugepages. And patch 9 is about choosing appropriate zone for hugepage allocation. My test is mainly functional one, simply kicking hugepage migration via each entry point and confirm that migration is done correctly. Test code is available here: git://github.com/Naoya-Horiguchi/test_hugepage_migration_extension.git And I always run libhugetlbfs test when changing hugetlbfs's code. With this patchset, no regression was found in the test. This patch (of 9): Before enabling each user of page migration to support hugepage, this patch enables the list of pages for migration to link not only LRU pages, but also hugepages. As a result, putback_movable_pages() and migrate_pages() can handle both of LRU pages and hugepages. Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Acked-by: Andi Kleen <ak@linux.intel.com> Reviewed-by: Wanpeng Li <liwanp@linux.vnet.ibm.com> Acked-by: Hillf Danton <dhillf@gmail.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: Rik van Riel <riel@redhat.com> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-11mm, hugetlb: return a reserved page to a reserved pool if failedJoonsoo Kim
If we fail with a reserved page, just calling put_page() is not sufficient, because put_page() invoke free_huge_page() at last step and it doesn't know whether a page comes from a reserved pool or not. So it doesn't do anything related to reserved count. This makes reserve count lower than how we need, because reserve count already decrease in dequeue_huge_page_vma(). This patch fix this situation. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Davidlohr Bueso <davidlohr@hp.com> Cc: David Gibson <david@gibson.dropbear.id.au> Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com> Cc: Hillf Danton <dhillf@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-11mm, hugetlb: grab a page_table_lock after page_cache_releaseJoonsoo Kim
We don't need to grab a page_table_lock when we try to release a page. So, defer to grab a page_table_lock. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com> Reviewed-by: Davidlohr Bueso <davidlohr@hp.com> Cc: David Gibson <david@gibson.dropbear.id.au> Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com> Cc: Hillf Danton <dhillf@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-11mm, hugetlb: remove useless check about mapping typeJoonsoo Kim
is_vma_resv_set(vma, HPAGE_RESV_OWNER) implys that this mapping is for private. So we don't need to check whether this mapping is for shared or not. This patch is just for clean-up. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Reviewed-by: Davidlohr Bueso <davidlohr@hp.com> Cc: David Gibson <david@gibson.dropbear.id.au> Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com> Cc: Hillf Danton <dhillf@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-11mm, hugetlb: fix subpool accounting handlingJoonsoo Kim
If we alloc hugepage with avoid_reserve, we don't dequeue reserved one. So, we should check subpool counter when avoid_reserve. This patch implement it. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Davidlohr Bueso <davidlohr@hp.com> Cc: David Gibson <david@gibson.dropbear.id.au> Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com> Cc: Hillf Danton <dhillf@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-11mm, hugetlb: change variable name reservations to resvJoonsoo Kim
'reservations' is so long name as a variable and we use 'resv_map' to represent 'struct resv_map' in other place. To reduce confusion and unreadability, change it. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Reviewed-by: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Reviewed-by: Davidlohr Bueso <davidlohr@hp.com> Cc: David Gibson <david@gibson.dropbear.id.au> Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com> Cc: Hillf Danton <dhillf@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-11mm, hugetlb: protect reserved pages when soft offlining a hugepageJoonsoo Kim
Don't use the reserve pool when soft offlining a hugepage. Check we have free pages outside the reserve pool before we dequeue the huge page. Otherwise, we can steal other's reserve page. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Reviewed-by: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Reviewed-by: Davidlohr Bueso <davidlohr@hp.com> Cc: David Gibson <david@gibson.dropbear.id.au> Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com> Cc: Hillf Danton <dhillf@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-11mm, hugetlb: decrement reserve count if VM_NORESERVE alloc page cacheJoonsoo Kim
If a vma with VM_NORESERVE allocate a new page for page cache, we should check whether this area is reserved or not. If this address is already reserved by other process(in case of chg == 0), we should decrement reserve count, because this allocated page will go into page cache and currently, there is no way to know that this page comes from reserved pool or not when releasing inode. This may introduce over-counting problem to reserved count. With following example code, you can easily reproduce this situation. Assume 2MB, nr_hugepages = 100 size = 20 * MB; flag = MAP_SHARED; p = mmap(NULL, size, PROT_READ|PROT_WRITE, flag, fd, 0); if (p == MAP_FAILED) { fprintf(stderr, "mmap() failed: %s\n", strerror(errno)); return -1; } flag = MAP_SHARED | MAP_NORESERVE; q = mmap(NULL, size, PROT_READ|PROT_WRITE, flag, fd, 0); if (q == MAP_FAILED) { fprintf(stderr, "mmap() failed: %s\n", strerror(errno)); } q[0] = 'c'; After finish the program, run 'cat /proc/meminfo'. You can see below result. HugePages_Free: 100 HugePages_Rsvd: 1 To fix this, we should check our mapping type and tracked region. If our mapping is VM_NORESERVE, VM_MAYSHARE and chg is 0, this imply that current allocated page will go into page cache which is already reserved region when mapping is created. In this case, we should decrease reserve count. As implementing above, this patch solve the problem. [akpm@linux-foundation.org: fix spelling in comment] Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Reviewed-by: Wanpeng Li <liwanp@linux.vnet.ibm.com> Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Hillf Danton <dhillf@gmail.com> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Hugh Dickins <hughd@google.com> Cc: Davidlohr Bueso <davidlohr.bueso@hp.com> Cc: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-11mm, hugetlb: remove decrement_hugepage_resv_vma()Joonsoo Kim
Now, Checking condition of decrement_hugepage_resv_vma() and vma_has_reserves() is same, so we can clean-up this function with vma_has_reserves(). Additionally, decrement_hugepage_resv_vma() has only one call site, so we can remove function and embed it into dequeue_huge_page_vma() directly. This patch implement it. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Reviewed-by: Wanpeng Li <liwanp@linux.vnet.ibm.com> Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Hillf Danton <dhillf@gmail.com> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Hugh Dickins <hughd@google.com> Cc: Davidlohr Bueso <davidlohr.bueso@hp.com> Cc: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-11mm, hugetlb: add VM_NORESERVE check in vma_has_reserves()Joonsoo Kim
If we map the region with MAP_NORESERVE and MAP_SHARED, we can skip to check reserve counting and eventually we cannot be ensured to allocate a huge page in fault time. With following example code, you can easily find this situation. Assume 2MB, nr_hugepages = 100 fd = hugetlbfs_unlinked_fd(); if (fd < 0) return 1; size = 200 * MB; flag = MAP_SHARED; p = mmap(NULL, size, PROT_READ|PROT_WRITE, flag, fd, 0); if (p == MAP_FAILED) { fprintf(stderr, "mmap() failed: %s\n", strerror(errno)); return -1; } size = 2 * MB; flag = MAP_ANONYMOUS | MAP_SHARED | MAP_HUGETLB | MAP_NORESERVE; p = mmap(NULL, size, PROT_READ|PROT_WRITE, flag, -1, 0); if (p == MAP_FAILED) { fprintf(stderr, "mmap() failed: %s\n", strerror(errno)); } p[0] = '0'; sleep(10); During executing sleep(10), run 'cat /proc/meminfo' on another process. HugePages_Free: 99 HugePages_Rsvd: 100 Number of free should be higher or equal than number of reserve, but this aren't. This represent that non reserved shared mapping steal a reserved page. Non reserved shared mapping should not eat into reserve space. If we consider VM_NORESERVE in vma_has_reserve() and return 0 which mean that we don't have reserved pages, then we check that we have enough free pages in dequeue_huge_page_vma(). This prevent to steal a reserved page. With this change, above test generate a SIGBUG which is correct, because all free pages are reserved and non reserved shared mapping can't get a free page. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Reviewed-by: Wanpeng Li <liwanp@linux.vnet.ibm.com> Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Hillf Danton <dhillf@gmail.com> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Hugh Dickins <hughd@google.com> Cc: Davidlohr Bueso <davidlohr.bueso@hp.com> Cc: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-11mm, hugetlb: do not use a page in page cache for cow optimizationJoonsoo Kim
Currently, we use a page with mapped count 1 in page cache for cow optimization. If we find this condition, we don't allocate a new page and copy contents. Instead, we map this page directly. This may introduce a problem that writting to private mapping overwrite hugetlb file directly. You can find this situation with following code. size = 20 * MB; flag = MAP_SHARED; p = mmap(NULL, size, PROT_READ|PROT_WRITE, flag, fd, 0); if (p == MAP_FAILED) { fprintf(stderr, "mmap() failed: %s\n", strerror(errno)); return -1; } p[0] = 's'; fprintf(stdout, "BEFORE STEAL PRIVATE WRITE: %c\n", p[0]); munmap(p, size); flag = MAP_PRIVATE; p = mmap(NULL, size, PROT_READ|PROT_WRITE, flag, fd, 0); if (p == MAP_FAILED) { fprintf(stderr, "mmap() failed: %s\n", strerror(errno)); } p[0] = 'c'; munmap(p, size); flag = MAP_SHARED; p = mmap(NULL, size, PROT_READ|PROT_WRITE, flag, fd, 0); if (p == MAP_FAILED) { fprintf(stderr, "mmap() failed: %s\n", strerror(errno)); return -1; } fprintf(stdout, "AFTER STEAL PRIVATE WRITE: %c\n", p[0]); munmap(p, size); We can see that "AFTER STEAL PRIVATE WRITE: c", not "AFTER STEAL PRIVATE WRITE: s". If we turn off this optimization to a page in page cache, the problem is disappeared. So, I change the trigger condition of optimization. If this page is not AnonPage, we don't do optimization. This makes this optimization turning off for a page cache. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Michal Hocko <mhocko@suse.cz> Reviewed-by: Wanpeng Li <liwanp@linux.vnet.ibm.com> Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Hillf Danton <dhillf@gmail.com> Cc: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Hugh Dickins <hughd@google.com> Cc: Davidlohr Bueso <davidlohr.bueso@hp.com> Cc: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-11mm, hugetlb: remove redundant list_empty check in gather_surplus_pages()Joonsoo Kim
If list is empty, list_for_each_entry_safe() doesn't do anything. So, this check is redundant. Remove it. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Michal Hocko <mhocko@suse.cz> Reviewed-by: Wanpeng Li <liwanp@linux.vnet.ibm.com> Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Hillf Danton <dhillf@gmail.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com> Cc: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Hugh Dickins <hughd@google.com> Cc: Davidlohr Bueso <davidlohr.bueso@hp.com> Cc: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-11mm, hugetlb: fix and clean-up node iteration code to alloc or freeJoonsoo Kim
Current node iteration code have a minor problem which do one more node rotation if we can't succeed to allocate. For example, if we start to allocate at node 0, we stop to iterate at node 0. Then we start to allocate at node 1 for next allocation. I introduce new macros "for_each_node_mask_to_[alloc|free]" and fix and clean-up node iteration code to alloc or free. This makes code more understandable. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Hillf Danton <dhillf@gmail.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com> Cc: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Hugh Dickins <hughd@google.com> Cc: Davidlohr Bueso <davidlohr.bueso@hp.com> Cc: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-11mm, hugetlb: clean-up alloc_huge_page()Joonsoo Kim
Unify successful allocation paths to make the code more readable. There are no functional changes. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Michal Hocko <mhocko@suse.cz> Reviewed-by: Wanpeng Li <liwanp@linux.vnet.ibm.com> Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: Hillf Danton <dhillf@gmail.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com> Cc: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Hugh Dickins <hughd@google.com> Cc: Davidlohr Bueso <davidlohr.bueso@hp.com> Cc: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-11mm, hugetlb: trivial commenting fixJoonsoo Kim
The name of the mutex written in comment is wrong. Fix it. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Michal Hocko <mhocko@suse.cz> Acked-by: Hillf Danton <dhillf@gmail.com> Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com> Cc: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Hugh Dickins <hughd@google.com> Cc: Davidlohr Bueso <davidlohr.bueso@hp.com> Cc: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-11mm, hugetlb: move up the code which check availability of free huge pageJoonsoo Kim
In this time we are holding a hugetlb_lock, so hstate values can't be changed. If we don't have any usable free huge page in this time, we don't need to proceed with the processing. So move this code up. Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com> Acked-by: Michal Hocko <mhocko@suse.cz> Reviewed-by: Wanpeng Li <liwanp@linux.vnet.ibm.com> Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Hillf Danton <dhillf@gmail.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Hugh Dickins <hughd@google.com> Cc: Davidlohr Bueso <davidlohr.bueso@hp.com> Cc: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-11mm: replace strict_strtoul() with kstrtoul()Jingoo Han
The use of strict_strtoul() is not preferred, because strict_strtoul() is obsolete. Thus, kstrtoul() should be used. Signed-off-by: Jingoo Han <jg1.han@samsung.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-08-16Fix TLB gather virtual address range invalidation corner casesLinus Torvalds
Ben Tebulin reported: "Since v3.7.2 on two independent machines a very specific Git repository fails in 9/10 cases on git-fsck due to an SHA1/memory failures. This only occurs on a very specific repository and can be reproduced stably on two independent laptops. Git mailing list ran out of ideas and for me this looks like some very exotic kernel issue" and bisected the failure to the backport of commit 53a59fc67f97 ("mm: limit mmu_gather batching to fix soft lockups on !CONFIG_PREEMPT"). That commit itself is not actually buggy, but what it does is to make it much more likely to hit the partial TLB invalidation case, since it introduces a new case in tlb_next_batch() that previously only ever happened when running out of memory. The real bug is that the TLB gather virtual memory range setup is subtly buggered. It was introduced in commit 597e1c3580b7 ("mm/mmu_gather: enable tlb flush range in generic mmu_gather"), and the range handling was already fixed at least once in commit e6c495a96ce0 ("mm: fix the TLB range flushed when __tlb_remove_page() runs out of slots"), but that fix was not complete. The problem with the TLB gather virtual address range is that it isn't set up by the initial tlb_gather_mmu() initialization (which didn't get the TLB range information), but it is set up ad-hoc later by the functions that actually flush the TLB. And so any such case that forgot to update the TLB range entries would potentially miss TLB invalidates. Rather than try to figure out exactly which particular ad-hoc range setup was missing (I personally suspect it's the hugetlb case in zap_huge_pmd(), which didn't have the same logic as zap_pte_range() did), this patch just gets rid of the problem at the source: make the TLB range information available to tlb_gather_mmu(), and initialize it when initializing all the other tlb gather fields. This makes the patch larger, but conceptually much simpler. And the end result is much more understandable; even if you want to play games with partial ranges when invalidating the TLB contents in chunks, now the range information is always there, and anybody who doesn't want to bother with it won't introduce subtle bugs. Ben verified that this fixes his problem. Reported-bisected-and-tested-by: Ben Tebulin <tebulin@googlemail.com> Build-testing-by: Stephen Rothwell <sfr@canb.auug.org.au> Build-testing-by: Richard Weinberger <richard.weinberger@gmail.com> Reviewed-by: Michal Hocko <mhocko@suse.cz> Acked-by: Peter Zijlstra <peterz@infradead.org> Cc: stable@vger.kernel.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-03mm: correctly update zone->managed_pagesJiang Liu
Enhance adjust_managed_page_count() to adjust totalhigh_pages for highmem pages. And change code which directly adjusts totalram_pages to use adjust_managed_page_count() because it adjusts totalram_pages, totalhigh_pages and zone->managed_pages altogether in a safe way. Remove inc_totalhigh_pages() and dec_totalhigh_pages() from xen/balloon driver bacause adjust_managed_page_count() has already adjusted totalhigh_pages. This patch also fixes two bugs: 1) enhances virtio_balloon driver to adjust totalhigh_pages when reserve/unreserve pages. 2) enhance memory_hotplug.c to adjust totalhigh_pages when hot-removing memory. We still need to deal with modifications of totalram_pages in file arch/powerpc/platforms/pseries/cmm.c, but need help from PPC experts. [akpm@linux-foundation.org: remove ifdef, per Wanpeng Li, virtio_balloon.c cleanup, per Sergei] [akpm@linux-foundation.org: export adjust_managed_page_count() to modules, for drivers/virtio/virtio_balloon.c] Signed-off-by: Jiang Liu <jiang.liu@huawei.com> Cc: Chris Metcalf <cmetcalf@tilera.com> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: "Michael S. Tsirkin" <mst@redhat.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Jeremy Fitzhardinge <jeremy@goop.org> Cc: Wen Congyang <wency@cn.fujitsu.com> Cc: Tang Chen <tangchen@cn.fujitsu.com> Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: Minchan Kim <minchan@kernel.org> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: <sworddragon2@aol.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: David Howells <dhowells@redhat.com> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jianguo Wu <wujianguo@huawei.com> Cc: Joonsoo Kim <js1304@gmail.com> Cc: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Marek Szyprowski <m.szyprowski@samsung.com> Cc: Michel Lespinasse <walken@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Tejun Heo <tj@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will.deacon@arm.com> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Russell King <rmk@arm.linux.org.uk> Cc: Sergei Shtylyov <sergei.shtylyov@cogentembedded.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-03mm/hugetlb: use already existing interface huge_page_shiftWanpeng Li
Use the already existing interface huge_page_shift instead of h->order + PAGE_SHIFT. Signed-off-by: Wanpeng Li <liwanp@linux.vnet.ibm.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Reviewed-by: Michal Hocko <mhocko@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-07-03Merge tag 'arm64-upstream' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/cmarinas/linux-aarch64 Pull ARM64 updates from Catalin Marinas: "Main features: - KVM and Xen ports to AArch64 - Hugetlbfs and transparent huge pages support for arm64 - Applied Micro X-Gene Kconfig entry and dts file - Cache flushing improvements For arm64 huge pages support, there are x86 changes moving part of arch/x86/mm/hugetlbpage.c into mm/hugetlb.c to be re-used by arm64" * tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/cmarinas/linux-aarch64: (66 commits) arm64: Add initial DTS for APM X-Gene Storm SOC and APM Mustang board arm64: Add defines for APM ARMv8 implementation arm64: Enable APM X-Gene SOC family in the defconfig arm64: Add Kconfig option for APM X-Gene SOC family arm64/Makefile: provide vdso_install target ARM64: mm: THP support. ARM64: mm: Raise MAX_ORDER for 64KB pages and THP. ARM64: mm: HugeTLB support. ARM64: mm: Move PTE_PROT_NONE bit. ARM64: mm: Make PAGE_NONE pages read only and no-execute. ARM64: mm: Restore memblock limit when map_mem finished. mm: thp: Correct the HPAGE_PMD_ORDER check. x86: mm: Remove general hugetlb code from x86. mm: hugetlb: Copy general hugetlb code from x86 to mm. x86: mm: Remove x86 version of huge_pmd_share. mm: hugetlb: Copy huge_pmd_share from x86 to mm. arm64: KVM: document kernel object mappings in HYP arm64: KVM: MAINTAINERS update arm64: KVM: userspace API documentation arm64: KVM: enable initialization of a 32bit vcpu ...