Age | Commit message (Collapse) | Author |
|
Daniel Borkmann says:
====================
pull-request: bpf-next 2017-12-28
The following pull-request contains BPF updates for your *net-next* tree.
The main changes are:
1) Fix incorrect state pruning related to recognition of zero initialized
stack slots, where stacksafe exploration would mistakenly return a
positive pruning verdict too early ignoring other slots, from Gianluca.
2) Various BPF to BPF calls related follow-up fixes. Fix an off-by-one
in maximum call depth check, and rework maximum stack depth tracking
logic to fix a bypass of the total stack size check reported by Jann.
Also fix a bug in arm64 JIT where prog->jited_len was uninitialized.
Addition of various test cases to BPF selftests, from Alexei.
3) Addition of a BPF selftest to test_verifier that is related to BPF to
BPF calls which demonstrates a late caller stack size increase and
thus out of bounds access. Fixed above in 2). Test case from Jann.
4) Addition of correlating BPF helper calls, BPF to BPF calls as well
as BPF maps to bpftool xlated dump in order to allow for better
BPF program introspection and debugging, from Daniel.
5) Fixing several bugs in BPF to BPF calls kallsyms handling in order
to get it actually to work for subprogs, from Daniel.
6) Extending sparc64 JIT support for BPF to BPF calls and fix a couple
of build errors for libbpf on sparc64, from David.
7) Allow narrower context access for BPF dev cgroup typed programs in
order to adapt to LLVM code generation. Also adjust memlock rlimit
in the test_dev_cgroup BPF selftest, from Yonghong.
8) Add netdevsim Kconfig entry to BPF selftests since test_offload.py
relies on netdevsim device being available, from Jakub.
9) Reduce scope of xdp_do_generic_redirect_map() to being static,
from Xiongwei.
10) Minor cleanups and spelling fixes in BPF verifier, from Colin.
====================
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
fix off by one error in max call depth check
and add a test
Fixes: f4d7e40a5b71 ("bpf: introduce function calls (verification)")
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
|
|
Instead of computing max stack depth for current call chain
during the main verifier pass track stack depth of each
function independently and after do_check() is done do
another pass over all instructions analyzing depth
of all possible call stacks.
Fixes: f4d7e40a5b71 ("bpf: introduce function calls (verification)")
Reported-by: Jann Horn <jannh@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
|
|
Commit cc2b14d51053 ("bpf: teach verifier to recognize zero initialized
stack") introduced a very relaxed check when comparing stacks of different
states, effectively returning a positive result in many cases where it
shouldn't.
This can create problems in cases such as this following C pseudocode:
long var;
long *x = bpf_map_lookup(...);
if (!x)
return;
if (*x != 0xbeef)
var = 0;
else
var = 1;
/* This is the key part, calling a helper causes an explored state
* to be saved with the information that "var" is on the stack as
* STACK_ZERO, since the helper is first met by the verifier after
* the "var = 0" assignment. This state will however be wrongly used
* also for the "var = 1" case, so the verifier assumes "var" is always
* 0 and will replace the NULL assignment with nops, because the
* search pruning prevents it from exploring the faulty branch.
*/
bpf_ktime_get_ns();
if (var)
*(long *)0 = 0xbeef;
Fix the issue by making sure that the stack is fully explored before
returning a positive comparison result.
Also attach a couple tests that highlight the bad behavior. In the first
test, without this fix instructions 16 and 17 are replaced with nops
instead of being rejected by the verifier.
The second test, instead, allows a program to make a potentially illegal
read from the stack.
Fixes: cc2b14d51053 ("bpf: teach verifier to recognize zero initialized stack")
Signed-off-by: Gianluca Borello <g.borello@gmail.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
Lots of overlapping changes. Also on the net-next side
the XDP state management is handled more in the generic
layers so undo the 'net' nfp fix which isn't applicable
in net-next.
Include a necessary change by Jakub Kicinski, with log message:
====================
cls_bpf no longer takes care of offload tracking. Make sure
netdevsim performs necessary checks. This fixes a warning
caused by TC trying to remove a filter it has not added.
Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Reviewed-by: Quentin Monnet <quentin.monnet@netronome.com>
====================
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Pull networking fixes from David Miller"
"What's a holiday weekend without some networking bug fixes? [1]
1) Fix some eBPF JIT bugs wrt. SKB pointers across helper function
calls, from Daniel Borkmann.
2) Fix regression from errata limiting change to marvell PHY driver,
from Zhao Qiang.
3) Fix u16 overflow in SCTP, from Xin Long.
4) Fix potential memory leak during bridge newlink, from Nikolay
Aleksandrov.
5) Fix BPF selftest build on s390, from Hendrik Brueckner.
6) Don't append to cfg80211 automatically generated certs file,
always write new ones from scratch. From Thierry Reding.
7) Fix sleep in atomic in mac80211 hwsim, from Jia-Ju Bai.
8) Fix hang on tg3 MTU change with certain chips, from Brian King.
9) Add stall detection to arc emac driver and reset chip when this
happens, from Alexander Kochetkov.
10) Fix MTU limitng in GRE tunnel drivers, from Xin Long.
11) Fix stmmac timestamping bug due to mis-shifting of field. From
Fredrik Hallenberg.
12) Fix metrics match when deleting an ipv4 route. The kernel sets
some internal metrics bits which the user isn't going to set when
it makes the delete request. From Phil Sutter.
13) mvneta driver loop over RX queues limits on "txq_number" :-) Fix
from Yelena Krivosheev.
14) Fix double free and memory corruption in get_net_ns_by_id, from
Eric W. Biederman.
15) Flush ipv4 FIB tables in the reverse order. Some tables can share
their actual backing data, in particular this happens for the MAIN
and LOCAL tables. We have to kill the LOCAL table first, because
it uses MAIN's backing memory. Fix from Ido Schimmel.
16) Several eBPF verifier value tracking fixes, from Edward Cree, Jann
Horn, and Alexei Starovoitov.
17) Make changes to ipv6 autoflowlabel sysctl really propagate to
sockets, unless the socket has set the per-socket value
explicitly. From Shaohua Li.
18) Fix leaks and double callback invocations of zerocopy SKBs, from
Willem de Bruijn"
[1] Is this a trick question? "Relaxing"? "Quiet"? "Fine"? - Linus.
* git://git.kernel.org/pub/scm/linux/kernel/git/davem/net: (77 commits)
skbuff: skb_copy_ubufs must release uarg even without user frags
skbuff: orphan frags before zerocopy clone
net: reevalulate autoflowlabel setting after sysctl setting
openvswitch: Fix pop_vlan action for double tagged frames
ipv6: Honor specified parameters in fibmatch lookup
bpf: do not allow root to mangle valid pointers
selftests/bpf: add tests for recent bugfixes
bpf: fix integer overflows
bpf: don't prune branches when a scalar is replaced with a pointer
bpf: force strict alignment checks for stack pointers
bpf: fix missing error return in check_stack_boundary()
bpf: fix 32-bit ALU op verification
bpf: fix incorrect tracking of register size truncation
bpf: fix incorrect sign extension in check_alu_op()
bpf/verifier: fix bounds calculation on BPF_RSH
ipv4: Fix use-after-free when flushing FIB tables
s390/qeth: fix error handling in checksum cmd callback
tipc: remove joining group member from congested list
selftests: net: Adding config fragment CONFIG_NUMA=y
nfp: bpf: keep track of the offloaded program
...
|
|
Currently a dump of an xlated prog (post verifier stage) doesn't
correlate used helpers as well as maps. The prog info lists
involved map ids, however there's no correlation of where in the
program they are used as of today. Likewise, bpftool does not
correlate helper calls with the target functions.
The latter can be done w/o any kernel changes through kallsyms,
and also has the advantage that this works with inlined helpers
and BPF calls.
Example, via interpreter:
# tc filter show dev foo ingress
filter protocol all pref 49152 bpf chain 0
filter protocol all pref 49152 bpf chain 0 handle 0x1 foo.o:[ingress] \
direct-action not_in_hw id 1 tag c74773051b364165 <-- prog id:1
* Output before patch (calls/maps remain unclear):
# bpftool prog dump xlated id 1 <-- dump prog id:1
0: (b7) r1 = 2
1: (63) *(u32 *)(r10 -4) = r1
2: (bf) r2 = r10
3: (07) r2 += -4
4: (18) r1 = 0xffff95c47a8d4800
6: (85) call unknown#73040
7: (15) if r0 == 0x0 goto pc+18
8: (bf) r2 = r10
9: (07) r2 += -4
10: (bf) r1 = r0
11: (85) call unknown#73040
12: (15) if r0 == 0x0 goto pc+23
[...]
* Output after patch:
# bpftool prog dump xlated id 1
0: (b7) r1 = 2
1: (63) *(u32 *)(r10 -4) = r1
2: (bf) r2 = r10
3: (07) r2 += -4
4: (18) r1 = map[id:2] <-- map id:2
6: (85) call bpf_map_lookup_elem#73424 <-- helper call
7: (15) if r0 == 0x0 goto pc+18
8: (bf) r2 = r10
9: (07) r2 += -4
10: (bf) r1 = r0
11: (85) call bpf_map_lookup_elem#73424
12: (15) if r0 == 0x0 goto pc+23
[...]
# bpftool map show id 2 <-- show/dump/etc map id:2
2: hash_of_maps flags 0x0
key 4B value 4B max_entries 3 memlock 4096B
Example, JITed, same prog:
# tc filter show dev foo ingress
filter protocol all pref 49152 bpf chain 0
filter protocol all pref 49152 bpf chain 0 handle 0x1 foo.o:[ingress] \
direct-action not_in_hw id 3 tag c74773051b364165 jited
# bpftool prog show id 3
3: sched_cls tag c74773051b364165
loaded_at Dec 19/13:48 uid 0
xlated 384B jited 257B memlock 4096B map_ids 2
# bpftool prog dump xlated id 3
0: (b7) r1 = 2
1: (63) *(u32 *)(r10 -4) = r1
2: (bf) r2 = r10
3: (07) r2 += -4
4: (18) r1 = map[id:2] <-- map id:2
6: (85) call __htab_map_lookup_elem#77408 <-+ inlined rewrite
7: (15) if r0 == 0x0 goto pc+2 |
8: (07) r0 += 56 |
9: (79) r0 = *(u64 *)(r0 +0) <-+
10: (15) if r0 == 0x0 goto pc+24
11: (bf) r2 = r10
12: (07) r2 += -4
[...]
Example, same prog, but kallsyms disabled (in that case we are
also not allowed to pass any relative offsets, etc, so prog
becomes pointer sanitized on dump):
# sysctl kernel.kptr_restrict=2
kernel.kptr_restrict = 2
# bpftool prog dump xlated id 3
0: (b7) r1 = 2
1: (63) *(u32 *)(r10 -4) = r1
2: (bf) r2 = r10
3: (07) r2 += -4
4: (18) r1 = map[id:2]
6: (85) call bpf_unspec#0
7: (15) if r0 == 0x0 goto pc+2
[...]
Example, BPF calls via interpreter:
# bpftool prog dump xlated id 1
0: (85) call pc+2#__bpf_prog_run_args32
1: (b7) r0 = 1
2: (95) exit
3: (b7) r0 = 2
4: (95) exit
Example, BPF calls via JIT:
# sysctl net.core.bpf_jit_enable=1
net.core.bpf_jit_enable = 1
# sysctl net.core.bpf_jit_kallsyms=1
net.core.bpf_jit_kallsyms = 1
# bpftool prog dump xlated id 1
0: (85) call pc+2#bpf_prog_3b185187f1855c4c_F
1: (b7) r0 = 1
2: (95) exit
3: (b7) r0 = 2
4: (95) exit
And finally, an example for tail calls that is now working
as well wrt correlation:
# bpftool prog dump xlated id 2
[...]
10: (b7) r2 = 8
11: (85) call bpf_trace_printk#-41312
12: (bf) r1 = r6
13: (18) r2 = map[id:1]
15: (b7) r3 = 0
16: (85) call bpf_tail_call#12
17: (b7) r1 = 42
18: (6b) *(u16 *)(r6 +46) = r1
19: (b7) r0 = 0
20: (95) exit
# bpftool map show id 1
1: prog_array flags 0x0
key 4B value 4B max_entries 1 memlock 4096B
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
Right now kallsyms handling is not working with JITed subprogs.
The reason is that when in 1c2a088a6626 ("bpf: x64: add JIT support
for multi-function programs") in jit_subprogs() they are passed
to bpf_prog_kallsyms_add(), then their prog type is 0, which BPF
core will think it's a cBPF program as only cBPF programs have a
0 type. Thus, they need to inherit the type from the main prog.
Once that is fixed, they are indeed added to the BPF kallsyms
infra, but their tag is 0. Therefore, since intention is to add
them as bpf_prog_F_<tag>, we need to pass them to bpf_prog_calc_tag()
first. And once this is resolved, there is a use-after-free on
prog cleanup: we remove the kallsyms entry from the main prog,
later walk all subprogs and call bpf_jit_free() on them. However,
the kallsyms linkage was never released on them. Thus, do that
for all subprogs right in __bpf_prog_put() when refcount hits 0.
Fixes: 1c2a088a6626 ("bpf: x64: add JIT support for multi-function programs")
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
Do not allow root to convert valid pointers into unknown scalars.
In particular disallow:
ptr &= reg
ptr <<= reg
ptr += ptr
and explicitly allow:
ptr -= ptr
since pkt_end - pkt == length
1.
This minimizes amount of address leaks root can do.
In the future may need to further tighten the leaks with kptr_restrict.
2.
If program has such pointer math it's likely a user mistake and
when verifier complains about it right away instead of many instructions
later on invalid memory access it's easier for users to fix their progs.
3.
when register holding a pointer cannot change to scalar it allows JITs to
optimize better. Like 32-bit archs could use single register for pointers
instead of a pair required to hold 64-bit scalars.
4.
reduces architecture dependent behavior. Since code:
r1 = r10;
r1 &= 0xff;
if (r1 ...)
will behave differently arm64 vs x64 and offloaded vs native.
A significant chunk of ptr mangling was allowed by
commit f1174f77b50c ("bpf/verifier: rework value tracking")
yet some of it was allowed even earlier.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
|
|
There were various issues related to the limited size of integers used in
the verifier:
- `off + size` overflow in __check_map_access()
- `off + reg->off` overflow in check_mem_access()
- `off + reg->var_off.value` overflow or 32-bit truncation of
`reg->var_off.value` in check_mem_access()
- 32-bit truncation in check_stack_boundary()
Make sure that any integer math cannot overflow by not allowing
pointer math with large values.
Also reduce the scope of "scalar op scalar" tracking.
Fixes: f1174f77b50c ("bpf/verifier: rework value tracking")
Reported-by: Jann Horn <jannh@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
|
|
This could be made safe by passing through a reference to env and checking
for env->allow_ptr_leaks, but it would only work one way and is probably
not worth the hassle - not doing it will not directly lead to program
rejection.
Fixes: f1174f77b50c ("bpf/verifier: rework value tracking")
Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
|
|
Force strict alignment checks for stack pointers because the tracking of
stack spills relies on it; unaligned stack accesses can lead to corruption
of spilled registers, which is exploitable.
Fixes: f1174f77b50c ("bpf/verifier: rework value tracking")
Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
|
|
Prevent indirect stack accesses at non-constant addresses, which would
permit reading and corrupting spilled pointers.
Fixes: f1174f77b50c ("bpf/verifier: rework value tracking")
Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
|
|
32-bit ALU ops operate on 32-bit values and have 32-bit outputs.
Adjust the verifier accordingly.
Fixes: f1174f77b50c ("bpf/verifier: rework value tracking")
Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
|
|
Properly handle register truncation to a smaller size.
The old code first mirrors the clearing of the high 32 bits in the bitwise
tristate representation, which is correct. But then, it computes the new
arithmetic bounds as the intersection between the old arithmetic bounds and
the bounds resulting from the bitwise tristate representation. Therefore,
when coerce_reg_to_32() is called on a number with bounds
[0xffff'fff8, 0x1'0000'0007], the verifier computes
[0xffff'fff8, 0xffff'ffff] as bounds of the truncated number.
This is incorrect: The truncated number could also be in the range [0, 7],
and no meaningful arithmetic bounds can be computed in that case apart from
the obvious [0, 0xffff'ffff].
Starting with v4.14, this is exploitable by unprivileged users as long as
the unprivileged_bpf_disabled sysctl isn't set.
Debian assigned CVE-2017-16996 for this issue.
v2:
- flip the mask during arithmetic bounds calculation (Ben Hutchings)
v3:
- add CVE number (Ben Hutchings)
Fixes: b03c9f9fdc37 ("bpf/verifier: track signed and unsigned min/max values")
Signed-off-by: Jann Horn <jannh@google.com>
Acked-by: Edward Cree <ecree@solarflare.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
|
|
Distinguish between
BPF_ALU64|BPF_MOV|BPF_K (load 32-bit immediate, sign-extended to 64-bit)
and BPF_ALU|BPF_MOV|BPF_K (load 32-bit immediate, zero-padded to 64-bit);
only perform sign extension in the first case.
Starting with v4.14, this is exploitable by unprivileged users as long as
the unprivileged_bpf_disabled sysctl isn't set.
Debian assigned CVE-2017-16995 for this issue.
v3:
- add CVE number (Ben Hutchings)
Fixes: 484611357c19 ("bpf: allow access into map value arrays")
Signed-off-by: Jann Horn <jannh@google.com>
Acked-by: Edward Cree <ecree@solarflare.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
|
|
Incorrect signed bounds were being computed.
If the old upper signed bound was positive and the old lower signed bound was
negative, this could cause the new upper signed bound to be too low,
leading to security issues.
Fixes: b03c9f9fdc37 ("bpf/verifier: track signed and unsigned min/max values")
Reported-by: Jann Horn <jannh@google.com>
Signed-off-by: Edward Cree <ecree@solarflare.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
[jannh@google.com: changed description to reflect bug impact]
Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
|
|
The tools/testing/selftests/bpf test program
test_dev_cgroup fails with the following error
when compiled with llvm 6.0. (I did not try
with earlier versions.)
libbpf: load bpf program failed: Permission denied
libbpf: -- BEGIN DUMP LOG ---
libbpf:
0: (61) r2 = *(u32 *)(r1 +4)
1: (b7) r0 = 0
2: (55) if r2 != 0x1 goto pc+8
R0=inv0 R1=ctx(id=0,off=0,imm=0) R2=inv1 R10=fp0
3: (69) r2 = *(u16 *)(r1 +0)
invalid bpf_context access off=0 size=2
...
The culprit is the following statement in dev_cgroup.c:
short type = ctx->access_type & 0xFFFF;
This code is typical as the ctx->access_type is assigned
as below in kernel/bpf/cgroup.c:
struct bpf_cgroup_dev_ctx ctx = {
.access_type = (access << 16) | dev_type,
.major = major,
.minor = minor,
};
The compiler converts it to u16 access while
the verifier cgroup_dev_is_valid_access rejects
any non u32 access.
This patch permits the field access_type to be accessible
with type u16 and u8 as well.
Signed-off-by: Yonghong Song <yhs@fb.com>
Tested-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
|
|
Function skip_callee is local to the source and does not need to
be in global scope, so make it static. Also return NULL rather than 0.
Cleans up two sparse warnings:
symbol 'skip_callee' was not declared. Should it be static?
Using plain integer as NULL pointer
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
|
|
Trivial fix to spelling mistake in error message text.
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
|
|
Daniel Borkmann says:
====================
pull-request: bpf-next 2017-12-18
The following pull-request contains BPF updates for your *net-next* tree.
The main changes are:
1) Allow arbitrary function calls from one BPF function to another BPF function.
As of today when writing BPF programs, __always_inline had to be used in
the BPF C programs for all functions, unnecessarily causing LLVM to inflate
code size. Handle this more naturally with support for BPF to BPF calls
such that this __always_inline restriction can be overcome. As a result,
it allows for better optimized code and finally enables to introduce core
BPF libraries in the future that can be reused out of different projects.
x86 and arm64 JIT support was added as well, from Alexei.
2) Add infrastructure for tagging functions as error injectable and allow for
BPF to return arbitrary error values when BPF is attached via kprobes on
those. This way of injecting errors generically eases testing and debugging
without having to recompile or restart the kernel. Tags for opting-in for
this facility are added with BPF_ALLOW_ERROR_INJECTION(), from Josef.
3) For BPF offload via nfp JIT, add support for bpf_xdp_adjust_head() helper
call for XDP programs. First part of this work adds handling of BPF
capabilities included in the firmware, and the later patches add support
to the nfp verifier part and JIT as well as some small optimizations,
from Jakub.
4) The bpftool now also gets support for basic cgroup BPF operations such
as attaching, detaching and listing current BPF programs. As a requirement
for the attach part, bpftool can now also load object files through
'bpftool prog load'. This reuses libbpf which we have in the kernel tree
as well. bpftool-cgroup man page is added along with it, from Roman.
5) Back then commit e87c6bc3852b ("bpf: permit multiple bpf attachments for
a single perf event") added support for attaching multiple BPF programs
to a single perf event. Given they are configured through perf's ioctl()
interface, the interface has been extended with a PERF_EVENT_IOC_QUERY_BPF
command in this work in order to return an array of one or multiple BPF
prog ids that are currently attached, from Yonghong.
6) Various minor fixes and cleanups to the bpftool's Makefile as well
as a new 'uninstall' and 'doc-uninstall' target for removing bpftool
itself or prior installed documentation related to it, from Quentin.
7) Add CONFIG_CGROUP_BPF=y to the BPF kernel selftest config file which is
required for the test_dev_cgroup test case to run, from Naresh.
8) Fix reporting of XDP prog_flags for nfp driver, from Jakub.
9) Fix libbpf's exit code from the Makefile when libelf was not found in
the system, also from Jakub.
====================
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Daniel Borkmann says:
====================
pull-request: bpf 2017-12-17
The following pull-request contains BPF updates for your *net* tree.
The main changes are:
1) Fix a corner case in generic XDP where we have non-linear skbs
but enough tailroom in the skb to not miss to linearizing there,
from Song.
2) Fix BPF JIT bugs in s390x and ppc64 to not recache skb data when
BPF context is not skb, from Daniel.
3) Fix a BPF JIT bug in sparc64 where recaching skb data after helper
call would use the wrong register for the skb, from Daniel.
====================
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull timer fix from Thomas Gleixner:
"A single bugfix which prevents arbitrary sigev_notify values in
posix-timers"
* 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
posix-timer: Properly check sigevent->sigev_notify
|
|
Things got moved around between the original bpf_override_return patches
and the final version, and now the ftrace kprobe dispatcher assumes if
you modified the ip that you also enabled preemption. Make a comment of
this and enable preemption, this fixes the lockdep splat that happened
when using this feature.
Fixes: 9802d86585db ("bpf: add a bpf_override_function helper")
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
|
|
Typical JIT does several passes over bpf instructions to
compute total size and relative offsets of jumps and calls.
With multitple bpf functions calling each other all relative calls
will have invalid offsets intially therefore we need to additional
last pass over the program to emit calls with correct offsets.
For example in case of three bpf functions:
main:
call foo
call bpf_map_lookup
exit
foo:
call bar
exit
bar:
exit
We will call bpf_int_jit_compile() indepedently for main(), foo() and bar()
x64 JIT typically does 4-5 passes to converge.
After these initial passes the image for these 3 functions
will be good except call targets, since start addresses of
foo() and bar() are unknown when we were JITing main()
(note that call bpf_map_lookup will be resolved properly
during initial passes).
Once start addresses of 3 functions are known we patch
call_insn->imm to point to right functions and call
bpf_int_jit_compile() again which needs only one pass.
Additional safety checks are done to make sure this
last pass doesn't produce image that is larger or smaller
than previous pass.
When constant blinding is on it's applied to all functions
at the first pass, since doing it once again at the last
pass can change size of the JITed code.
Tested on x64 and arm64 hw with JIT on/off, blinding on/off.
x64 jits bpf-to-bpf calls correctly while arm64 falls back to interpreter.
All other JITs that support normal BPF_CALL will behave the same way
since bpf-to-bpf call is equivalent to bpf-to-kernel call from
JITs point of view.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
|
|
global bpf_jit_enable variable is tested multiple times in JITs,
blinding and verifier core. The malicious root can try to toggle
it while loading the programs. This race condition was accounted
for and there should be no issues, but it's safer to avoid
this race condition.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
|
|
though bpf_call is still the same call instruction and
calling convention 'bpf to bpf' and 'bpf to helper' is the same
the interpreter has to oparate on 'struct bpf_insn *'.
To distinguish these two cases add a kernel internal opcode and
mark call insns with it.
This opcode is seen by interpreter only. JITs will never see it.
Also add tiny bit of debug code to aid interpreter debugging.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
|
|
programs with function calls are often passing various
pointers via stack. When all calls are inlined llvm
flattens stack accesses and optimizes away extra branches.
When functions are not inlined it becomes the job of
the verifier to recognize zero initialized stack to avoid
exploring paths that program will not take.
The following program would fail otherwise:
ptr = &buffer_on_stack;
*ptr = 0;
...
func_call(.., ptr, ...) {
if (..)
*ptr = bpf_map_lookup();
}
...
if (*ptr != 0) {
// Access (*ptr)->field is valid.
// Without stack_zero tracking such (*ptr)->field access
// will be rejected
}
since stack slots are no longer uniform invalid | spill | misc
add liveness marking to all slots, but do it in 8 byte chunks.
So if nothing was read or written in [fp-16, fp-9] range
it will be marked as LIVE_NONE.
If any byte in that range was read, it will be marked LIVE_READ
and stacksafe() check will perform byte-by-byte verification.
If all bytes in the range were written the slot will be
marked as LIVE_WRITTEN.
This significantly speeds up state equality comparison
and reduces total number of states processed.
before after
bpf_lb-DLB_L3.o 2051 2003
bpf_lb-DLB_L4.o 3287 3164
bpf_lb-DUNKNOWN.o 1080 1080
bpf_lxc-DDROP_ALL.o 24980 12361
bpf_lxc-DUNKNOWN.o 34308 16605
bpf_netdev.o 15404 10962
bpf_overlay.o 7191 6679
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
|
|
Allow arbitrary function calls from bpf function to another bpf function.
To recognize such set of bpf functions the verifier does:
1. runs control flow analysis to detect function boundaries
2. proceeds with verification of all functions starting from main(root) function
It recognizes that the stack of the caller can be accessed by the callee
(if the caller passed a pointer to its stack to the callee) and the callee
can store map_value and other pointers into the stack of the caller.
3. keeps track of the stack_depth of each function to make sure that total
stack depth is still less than 512 bytes
4. disallows pointers to the callee stack to be stored into the caller stack,
since they will be invalid as soon as the callee returns
5. to reuse all of the existing state_pruning logic each function call
is considered to be independent call from the verifier point of view.
The verifier pretends to inline all function calls it sees are being called.
It stores the callsite instruction index as part of the state to make sure
that two calls to the same callee from two different places in the caller
will be different from state pruning point of view
6. more safety checks are added to liveness analysis
Implementation details:
. struct bpf_verifier_state is now consists of all stack frames that
led to this function
. struct bpf_func_state represent one stack frame. It consists of
registers in the given frame and its stack
. propagate_liveness() logic had a premature optimization where
mark_reg_read() and mark_stack_slot_read() were manually inlined
with loop iterating over parents for each register or stack slot.
Undo this optimization to reuse more complex mark_*_read() logic
. skip_callee() logic is not necessary from safety point of view,
but without it mark_*_read() markings become too conservative,
since after returning from the funciton call a read of r6-r9
will incorrectly propagate the read marks into callee causing
inefficient pruning later
. mark_*_read() logic is now aware of control flow which makes it
more complex. In the future the plan is to rewrite liveness
to be hierarchical. So that liveness can be done within
basic block only and control flow will be responsible for
propagation of liveness information along cfg and between calls.
. tail_calls and ld_abs insns are not allowed in the programs with
bpf-to-bpf calls
. returning stack pointers to the caller or storing them into stack
frame of the caller is not allowed
Testing:
. no difference in cilium processed_insn numbers
. large number of tests follows in next patches
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
|
|
Allow arbitrary function calls from bpf function to another bpf function.
Since the beginning of bpf all bpf programs were represented as a single function
and program authors were forced to use always_inline for all functions
in their C code. That was causing llvm to unnecessary inflate the code size
and forcing developers to move code to header files with little code reuse.
With a bit of additional complexity teach verifier to recognize
arbitrary function calls from one bpf function to another as long as
all of functions are presented to the verifier as a single bpf program.
New program layout:
r6 = r1 // some code
..
r1 = .. // arg1
r2 = .. // arg2
call pc+1 // function call pc-relative
exit
.. = r1 // access arg1
.. = r2 // access arg2
..
call pc+20 // second level of function call
...
It allows for better optimized code and finally allows to introduce
the core bpf libraries that can be reused in different projects,
since programs are no longer limited by single elf file.
With function calls bpf can be compiled into multiple .o files.
This patch is the first step. It detects programs that contain
multiple functions and checks that calls between them are valid.
It splits the sequence of bpf instructions (one program) into a set
of bpf functions that call each other. Calls to only known
functions are allowed. In the future the verifier may allow
calls to unresolved functions and will do dynamic linking.
This logic supports statically linked bpf functions only.
Such function boundary detection could have been done as part of
control flow graph building in check_cfg(), but it's cleaner to
separate function boundary detection vs control flow checks within
a subprogram (function) into logically indepedent steps.
Follow up patches may split check_cfg() further, but not check_subprogs().
Only allow bpf-to-bpf calls for root only and for non-hw-offloaded programs.
These restrictions can be relaxed in the future.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
|
|
Three sets of overlapping changes, two in the packet scheduler
and one in the meson-gxl PHY driver.
Signed-off-by: David S. Miller <davem@davemloft.net>
|
|
Pull networking fixes from David Miller:
1) Clamp timeouts to INT_MAX in conntrack, from Jay Elliot.
2) Fix broken UAPI for BPF_PROG_TYPE_PERF_EVENT, from Hendrik
Brueckner.
3) Fix locking in ieee80211_sta_tear_down_BA_sessions, from Johannes
Berg.
4) Add missing barriers to ptr_ring, from Michael S. Tsirkin.
5) Don't advertise gigabit in sh_eth when not available, from Thomas
Petazzoni.
6) Check network namespace when delivering to netlink taps, from Kevin
Cernekee.
7) Kill a race in raw_sendmsg(), from Mohamed Ghannam.
8) Use correct address in TCP md5 lookups when replying to an incoming
segment, from Christoph Paasch.
9) Add schedule points to BPF map alloc/free, from Eric Dumazet.
10) Don't allow silly mtu values to be used in ipv4/ipv6 multicast, also
from Eric Dumazet.
11) Fix SKB leak in tipc, from Jon Maloy.
12) Disable MAC learning on OVS ports of mlxsw, from Yuval Mintz.
13) SKB leak fix in skB_complete_tx_timestamp(), from Willem de Bruijn.
14) Add some new qmi_wwan device IDs, from Daniele Palmas.
15) Fix static key imbalance in ingress qdisc, from Jiri Pirko.
* git://git.kernel.org/pub/scm/linux/kernel/git/davem/net: (76 commits)
net: qcom/emac: Reduce timeout for mdio read/write
net: sched: fix static key imbalance in case of ingress/clsact_init error
net: sched: fix clsact init error path
ip_gre: fix wrong return value of erspan_rcv
net: usb: qmi_wwan: add Telit ME910 PID 0x1101 support
pkt_sched: Remove TC_RED_OFFLOADED from uapi
net: sched: Move to new offload indication in RED
net: sched: Add TCA_HW_OFFLOAD
net: aquantia: Increment driver version
net: aquantia: Fix typo in ethtool statistics names
net: aquantia: Update hw counters on hw init
net: aquantia: Improve link state and statistics check interval callback
net: aquantia: Fill in multicast counter in ndev stats from hardware
net: aquantia: Fill ndev stat couters from hardware
net: aquantia: Extend stat counters to 64bit values
net: aquantia: Fix hardware DMA stream overload on large MRRS
net: aquantia: Fix actual speed capabilities reporting
sock: free skb in skb_complete_tx_timestamp on error
s390/qeth: update takeover IPs after configuration change
s390/qeth: lock IP table while applying takeover changes
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull locking fixes from Ingo Molnar:
"Misc fixes:
- Fix a S390 boot hang that was caused by the lock-break logic.
Remove lock-break to begin with, as review suggested it was
unreasonably fragile and our confidence in its continued good
health is lower than our confidence in its removal.
- Remove the lockdep cross-release checking code for now, because of
unresolved false positive warnings. This should make lockdep work
well everywhere again.
- Get rid of the final (and single) ACCESS_ONCE() straggler and
remove the API from v4.15.
- Fix a liblockdep build warning"
* 'locking-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
tools/lib/lockdep: Add missing declaration of 'pr_cont()'
checkpatch: Remove ACCESS_ONCE() warning
compiler.h: Remove ACCESS_ONCE()
tools/include: Remove ACCESS_ONCE()
tools/perf: Convert ACCESS_ONCE() to READ_ONCE()
locking/lockdep: Remove the cross-release locking checks
locking/core: Remove break_lock field when CONFIG_GENERIC_LOCKBREAK=y
locking/core: Fix deadlock during boot on systems with GENERIC_LOCKBREAK
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler fixes from Ingo Molnar:
"Two fixes: a crash fix for an ARM SoC platform, and kernel-doc
warnings fixes"
* 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched/rt: Do not pull from current CPU if only one CPU to pull
sched/core: Fix kernel-doc warnings after code movement
|
|
Some JITs don't cache skb context on stack in prologue, so when
LD_ABS/IND is used and helper calls yield bpf_helper_changes_pkt_data()
as true, then they temporarily save/restore skb pointer. However,
the assumption that skb always has to be in r1 is a bit of a
gamble. Right now it turned out to be true for all helpers listed
in bpf_helper_changes_pkt_data(), but lets enforce that from verifier
side, so that we make this a guarantee and bail out if the func
proto is misconfigured in future helpers.
In case of BPF helper calls from cBPF, bpf_helper_changes_pkt_data()
is completely unrelevant here (since cBPF is context read-only) and
therefore always false.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
Daniel Wagner reported a crash on the BeagleBone Black SoC.
This is a single CPU architecture, and does not have a functional
arch_send_call_function_single_ipi() implementation which can crash
the kernel if that is called.
As it only has one CPU, it shouldn't be called, but if the kernel is
compiled for SMP, the push/pull RT scheduling logic now calls it for
irq_work if the one CPU is overloaded, it can use that function to call
itself and crash the kernel.
Ideally, we should disable the SCHED_FEAT(RT_PUSH_IPI) if the system
only has a single CPU. But SCHED_FEAT is a constant if sched debugging
is turned off. Another fix can also be used, and this should also help
with normal SMP machines. That is, do not initiate the pull code if
there's only one RT overloaded CPU, and that CPU happens to be the
current CPU that is scheduling in a lower priority task.
Even on a system with many CPUs, if there's many RT tasks waiting to
run on a single CPU, and that CPU schedules in another RT task of lower
priority, it will initiate the PULL logic in case there's a higher
priority RT task on another CPU that is waiting to run. But if there is
no other CPU with waiting RT tasks, it will initiate the RT pull logic
on itself (as it still has RT tasks waiting to run). This is a wasted
effort.
Not only does this help with SMP code where the current CPU is the only
one with RT overloaded tasks, it should also solve the issue that
Daniel encountered, because it will prevent the PULL logic from
executing, as there's only one CPU on the system, and the check added
here will cause it to exit the RT pull code.
Reported-by: Daniel Wagner <wagi@monom.org>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-rt-users <linux-rt-users@vger.kernel.org>
Cc: stable@vger.kernel.org
Fixes: 4bdced5c9 ("sched/rt: Simplify the IPI based RT balancing logic")
Link: http://lkml.kernel.org/r/20171202130454.4cbbfe8d@vmware.local.home
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
timer_create() specifies via sigevent->sigev_notify the signal delivery for
the new timer. The valid modes are SIGEV_NONE, SIGEV_SIGNAL, SIGEV_THREAD
and (SIGEV_SIGNAL | SIGEV_THREAD_ID).
The sanity check in good_sigevent() is only checking the valid combination
for the SIGEV_THREAD_ID bit, i.e. SIGEV_SIGNAL, but if SIGEV_THREAD_ID is
not set it accepts any random value.
This has no real effects on the posix timer and signal delivery code, but
it affects show_timer() which handles the output of /proc/$PID/timers. That
function uses a string array to pretty print sigev_notify. The access to
that array has no bound checks, so random sigev_notify cause access beyond
the array bounds.
Add proper checks for the valid notify modes and remove the SIGEV_THREAD_ID
masking from various code pathes as SIGEV_NONE can never be set in
combination with SIGEV_THREAD_ID.
Reported-by: Eric Biggers <ebiggers3@gmail.com>
Reported-by: Dmitry Vyukov <dvyukov@google.com>
Reported-by: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: John Stultz <john.stultz@linaro.org>
Cc: stable@vger.kernel.org
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace
Pull tracing fixes from Steven Rostedt:
"Various fix-ups:
- comment fixes
- build fix
- better memory alloction (don't use NR_CPUS)
- configuration fix
- build warning fix
- enhanced callback parameter (to simplify users of trace hooks)
- give up on stack tracing when RCU isn't watching (it's a lost
cause)"
* tag 'trace-v4.15-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace:
tracing: Have stack trace not record if RCU is not watching
tracing: Pass export pointer as argument to ->write()
ring-buffer: Remove unused function __rb_data_page_index()
tracing: make PREEMPTIRQ_EVENTS depend on TRACING
tracing: Allocate mask_str buffer dynamically
tracing: always define trace_{irq,preempt}_{enable_disable}
tracing: Fix code comments in trace.c
|
|
The stack tracer records a stack dump whenever it sees a stack usage that is
more than what it ever saw before. This can happen at any function that is
being traced. If it happens when the CPU is going idle (or other strange
locations), RCU may not be watching, and in this case, the recording of the
stack trace will trigger a warning. There's been lots of efforts to make
hacks to allow stack tracing to proceed even if RCU is not watching, but
this only causes more issues to appear. Simply do not trace a stack if RCU
is not watching. It probably isn't a bad stack anyway.
Acked-by: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
|
|
gcc toggle -fisolate-erroneous-paths-dereference (default at -O2
onwards) isolates faulty code paths such as null pointer access, divide
by zero etc. If gcc port doesnt implement __builtin_trap, an abort() is
generated which causes kernel link error.
In this case, gcc is generating abort due to 'divide by zero' in
lib/mpi/mpih-div.c.
Currently 'frv' and 'arc' are failing. Previously other arch was also
broken like m32r was fixed by commit d22e3d69ee1a ("m32r: fix build
failure").
Let's define this weak function which is common for all arch and fix the
problem permanently. We can even remove the arch specific 'abort' after
this is done.
Link: http://lkml.kernel.org/r/1513118956-8718-1-git-send-email-sudipm.mukherjee@gmail.com
Signed-off-by: Sudip Mukherjee <sudipm.mukherjee@gmail.com>
Cc: Alexey Brodkin <Alexey.Brodkin@synopsys.com>
Cc: Vineet Gupta <Vineet.Gupta1@synopsys.com>
Cc: Sudip Mukherjee <sudipm.mukherjee@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
In testing, we found that nfsd threads may call set_groups in parallel
for the same entry cached in auth.unix.gid, racing in the call of
groups_sort, corrupting the groups for that entry and leading to
permission denials for the client.
This patch:
- Make groups_sort globally visible.
- Move the call to groups_sort to the modifiers of group_info
- Remove the call to groups_sort from set_groups
Link: http://lkml.kernel.org/r/20171211151420.18655-1-thiago.becker@gmail.com
Signed-off-by: Thiago Rafael Becker <thiago.becker@gmail.com>
Reviewed-by: Matthew Wilcox <mawilcox@microsoft.com>
Reviewed-by: NeilBrown <neilb@suse.com>
Acked-by: "J. Bruce Fields" <bfields@fieldses.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Fix a silly copy-paste bug. We truncated u32 args to u16.
Link: http://lkml.kernel.org/r/20171207101134.107168-1-dvyukov@google.com
Fixes: ded97d2c2b2c ("kcov: support comparison operands collection")
Signed-off-by: Dmitry Vyukov <dvyukov@google.com>
Cc: syzkaller@googlegroups.com
Cc: Alexander Potapenko <glider@google.com>
Cc: Vegard Nossum <vegard.nossum@oracle.com>
Cc: Quentin Casasnovas <quentin.casasnovas@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Commit f371b304f12e ("bpf/tracing: allow user space to
query prog array on the same tp") introduced a perf
ioctl command to query prog array attached to the
same perf tracepoint. The commit introduced a
compilation error under certain config conditions, e.g.,
(1). CONFIG_BPF_SYSCALL is not defined, or
(2). CONFIG_TRACING is defined but neither CONFIG_UPROBE_EVENTS
nor CONFIG_KPROBE_EVENTS is defined.
Error message:
kernel/events/core.o: In function `perf_ioctl':
core.c:(.text+0x98c4): undefined reference to `bpf_event_query_prog_array'
This patch fixed this error by guarding the real definition under
CONFIG_BPF_EVENTS and provided static inline dummy function
if CONFIG_BPF_EVENTS was not defined.
It renamed the function from bpf_event_query_prog_array to
perf_event_query_prog_array and moved the definition from linux/bpf.h
to linux/trace_events.h so the definition is in proximity to
other prog_array related functions.
Fixes: f371b304f12e ("bpf/tracing: allow user space to query prog array on the same tp")
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
|
|
While using large percpu maps, htab_map_alloc() can hold
cpu for hundreds of ms.
This patch adds cond_resched() calls to percpu alloc/free
call sites, all running in process context.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
When tracing and networking programs are both attached in the
system and both use event-output helpers that eventually call
into perf_event_output(), then we could end up in a situation
where the tracing attached program runs in user context while
a cls_bpf program is triggered on that same CPU out of softirq
context.
Since both rely on the same per-cpu perf_sample_data, we could
potentially corrupt it. This can only ever happen in a combination
of the two types; all tracing programs use a bpf_prog_active
counter to bail out in case a program is already running on
that CPU out of a different context. XDP and cls_bpf programs
by themselves don't have this issue as they run in the same
context only. Therefore, split both perf_sample_data so they
cannot be accessed from each other.
Fixes: 20b9d7ac4852 ("bpf: avoid excessive stack usage for perf_sample_data")
Reported-by: Alexei Starovoitov <ast@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Tested-by: Song Liu <songliubraving@fb.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
Error injection is sloppy and very ad-hoc. BPF could fill this niche
perfectly with it's kprobe functionality. We could make sure errors are
only triggered in specific call chains that we care about with very
specific situations. Accomplish this with the bpf_override_funciton
helper. This will modify the probe'd callers return value to the
specified value and set the PC to an override function that simply
returns, bypassing the originally probed function. This gives us a nice
clean way to implement systematic error injection for all of our code
paths.
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
Using BPF we can override kprob'ed functions and return arbitrary
values. Obviously this can be a bit unsafe, so make this feature opt-in
for functions. Simply tag a function with KPROBE_ERROR_INJECT_SYMBOL in
order to give BPF access to that function for error injection purposes.
Signed-off-by: Josef Bacik <jbacik@fb.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
Commit e87c6bc3852b ("bpf: permit multiple bpf attachments
for a single perf event") added support to attach multiple
bpf programs to a single perf event.
Although this provides flexibility, users may want to know
what other bpf programs attached to the same tp interface.
Besides getting visibility for the underlying bpf system,
such information may also help consolidate multiple bpf programs,
understand potential performance issues due to a large array,
and debug (e.g., one bpf program which overwrites return code
may impact subsequent program results).
Commit 2541517c32be ("tracing, perf: Implement BPF programs
attached to kprobes") utilized the existing perf ioctl
interface and added the command PERF_EVENT_IOC_SET_BPF
to attach a bpf program to a tracepoint. This patch adds a new
ioctl command, given a perf event fd, to query the bpf program
array attached to the same perf tracepoint event.
The new uapi ioctl command:
PERF_EVENT_IOC_QUERY_BPF
The new uapi/linux/perf_event.h structure:
struct perf_event_query_bpf {
__u32 ids_len;
__u32 prog_cnt;
__u32 ids[0];
};
User space provides buffer "ids" for kernel to copy to.
When returning from the kernel, the number of available
programs in the array is set in "prog_cnt".
The usage:
struct perf_event_query_bpf *query =
malloc(sizeof(*query) + sizeof(u32) * ids_len);
query.ids_len = ids_len;
err = ioctl(pmu_efd, PERF_EVENT_IOC_QUERY_BPF, query);
if (err == 0) {
/* query.prog_cnt is the number of available progs,
* number of progs in ids: (ids_len == 0) ? 0 : query.prog_cnt
*/
} else if (errno == ENOSPC) {
/* query.ids_len number of progs copied,
* query.prog_cnt is the number of available progs
*/
} else {
/* other errors */
}
Signed-off-by: Yonghong Song <yhs@fb.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
This code (CONFIG_LOCKDEP_CROSSRELEASE=y and CONFIG_LOCKDEP_COMPLETIONS=y),
while it found a number of old bugs initially, was also causing too many
false positives that caused people to disable lockdep - which is arguably
a worse overall outcome.
If we disable cross-release by default but keep the code upstream then
in practice the most likely outcome is that we'll allow the situation
to degrade gradually, by allowing entropy to introduce more and more
false positives, until it overwhelms maintenance capacity.
Another bad side effect was that people were trying to work around
the false positives by uglifying/complicating unrelated code. There's
a marked difference between annotating locking operations and
uglifying good code just due to bad lock debugging code ...
This gradual decrease in quality happened to a number of debugging
facilities in the kernel, and lockdep is pretty complex already,
so we cannot risk this outcome.
Either cross-release checking can be done right with no false positives,
or it should not be included in the upstream kernel.
( Note that it might make sense to maintain it out of tree and go through
the false positives every now and then and see whether new bugs were
introduced. )
Cc: Byungchul Park <byungchul.park@lge.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
When CONFIG_GENERIC_LOCKBEAK=y, locking structures grow an extra int ->break_lock
field which is used to implement raw_spin_is_contended() by setting the field
to 1 when waiting on a lock and clearing it to zero when holding a lock.
However, there are a few problems with this approach:
- There is a write-write race between a CPU successfully taking the lock
(and subsequently writing break_lock = 0) and a waiter waiting on
the lock (and subsequently writing break_lock = 1). This could result
in a contended lock being reported as uncontended and vice-versa.
- On machines with store buffers, nothing guarantees that the writes
to break_lock are visible to other CPUs at any particular time.
- READ_ONCE/WRITE_ONCE are not used, so the field is potentially
susceptible to harmful compiler optimisations,
Consequently, the usefulness of this field is unclear and we'd be better off
removing it and allowing architectures to implement raw_spin_is_contended() by
providing a definition of arch_spin_is_contended(), as they can when
CONFIG_GENERIC_LOCKBREAK=n.
Signed-off-by: Will Deacon <will.deacon@arm.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Sebastian Ott <sebott@linux.vnet.ibm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1511894539-7988-3-git-send-email-will.deacon@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|