Age | Commit message (Collapse) | Author |
|
A previous commit changed the arguments to task_work_cancel_match(), but
didn't document all of them.
Link: https://lkml.kernel.org/r/93938bff-baa3-4091-85f5-784aae297a07@kernel.dk
Fixes: c7aab1a7c52b ("task_work: add helper for more targeted task_work canceling")
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Reported-by: kernel test robot <lkp@intel.com>
Closes: https://lore.kernel.org/oe-kbuild-all/202309120307.zis3yQGe-lkp@intel.com/
Acked-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
task_work_run
Use try_cmpxchg instead of cmpxchg (*ptr, old, new) == old in
task_work_add, task_work_cancel_match and task_work_run. x86 CMPXCHG
instruction returns success in ZF flag, so this change saves a compare
after cmpxchg (and related move instruction in front of cmpxchg).
Also, atomic_try_cmpxchg implicitly assigns old *ptr value to "old"
when cmpxchg fails, enabling further code simplifications.
The patch avoids extra memory read in case cmpxchg fails.
Link: https://lkml.kernel.org/r/20220823152632.4517-1-ubizjak@gmail.com
Signed-off-by: Uros Bizjak <ubizjak@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
Some use cases don't always need an IPI when sending a TWA_SIGNAL
notification. Add TWA_SIGNAL_NO_IPI, which is just like TWA_SIGNAL, except
it doesn't send an IPI to the target task. It merely sets
TIF_NOTIFY_SIGNAL and wakes up the task.
This can be useful in avoiding a forceful transition to the kernel if the
task is running in userspace. Depending on the task_work in question, it
may be quite fine waiting for the next reschedule or kernel enter anyway,
or the use case may even have other mechanisms for hinting to the task
that a transition may be useful. This can drive more cooperative
scheduling of task_work.
Reviewed-by: Pavel Begunkov <asml.silence@gmail.com>
Link: https://lore.kernel.org/r/821f42b6-7d91-8074-8212-d34998097de4@kernel.dk
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
Move set_notify_resume and tracehook_notify_resume into resume_user_mode.h.
While doing that rename tracehook_notify_resume to resume_user_mode_work.
Update all of the places that included tracehook.h for these functions to
include resume_user_mode.h instead.
Update all of the callers of tracehook_notify_resume to call
resume_user_mode_work.
Reviewed-by: Kees Cook <keescook@chromium.org>
Link: https://lkml.kernel.org/r/20220309162454.123006-12-ebiederm@xmission.com
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
|
|
Wrap the test of task->task_works in a helper function to make
it clear what is being tested.
All of the other readers of task->task_work use READ_ONCE and this is
even necessary on current as other processes can update
task->task_work. So for consistency I have added READ_ONCE into
task_work_pending.
Reviewed-by: Kees Cook <keescook@chromium.org>
Link: https://lkml.kernel.org/r/20220309162454.123006-7-ebiederm@xmission.com
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
|
|
Why record task_work_add() call stack? Syzbot reports many use-after-free
issues for task_work, see [1]. After seeing the free stack and the
current auxiliary stack, we think they are useless, we don't know where
the work was registered. This work may be the free call stack, so we miss
the root cause and don't solve the use-after-free.
Add the task_work_add() call stack into the KASAN auxiliary stack in order
to improve KASAN reports. It helps programmers solve use-after-free
issues.
[1]: https://groups.google.com/g/syzkaller-bugs/search?q=kasan%20use-after-free%20task_work_run
Link: https://lkml.kernel.org/r/20210316024410.19967-1-walter-zh.wu@mediatek.com
Signed-off-by: Walter Wu <walter-zh.wu@mediatek.com>
Suggested-by: Dmitry Vyukov <dvyukov@google.com>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Reviewed-by: Jens Axboe <axboe@kernel.dk>
Acked-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Andrey Konovalov <andreyknvl@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Matthias Brugger <matthias.bgg@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The only exported helper we have right now is task_work_cancel(), which
cancels any task_work from a given task where func matches the queued
work item. This is a bit too coarse for some use cases. Add a
task_work_cancel_match() that allows to more specifically target
individual work items outside of purely the callback function used.
task_work_cancel() can be trivially implemented on top of that, hence do
so.
Reviewed-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
All archs now support TIF_NOTIFY_SIGNAL.
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip into tif-task_work.arch
Core changes to support TASK_NOTIFY_SIGNAL
* tag 'core-entry-notify-signal' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
task_work: Use TIF_NOTIFY_SIGNAL if available
entry: Add support for TIF_NOTIFY_SIGNAL
signal: Add task_sigpending() helper
|
|
If the arch supports TIF_NOTIFY_SIGNAL, then use that for TWA_SIGNAL as
it's more efficient than using the signal delivery method. This is
especially true on threaded applications, where ->sighand is shared across
threads, but it's also lighter weight on non-shared cases.
io_uring is a heavy consumer of TWA_SIGNAL based task_work. A test with
threads shows a nice improvement running an io_uring based echo server.
stock kernel:
0.01% <= 0.1 milliseconds
95.86% <= 0.2 milliseconds
98.27% <= 0.3 milliseconds
99.71% <= 0.4 milliseconds
100.00% <= 0.5 milliseconds
100.00% <= 0.6 milliseconds
100.00% <= 0.7 milliseconds
100.00% <= 0.8 milliseconds
100.00% <= 0.9 milliseconds
100.00% <= 1.0 milliseconds
100.00% <= 1.1 milliseconds
100.00% <= 2 milliseconds
100.00% <= 3 milliseconds
100.00% <= 3 milliseconds
1378930.00 requests per second
~1600% CPU
1.38M requests/second, and all 16 CPUs are maxed out.
patched kernel:
0.01% <= 0.1 milliseconds
98.24% <= 0.2 milliseconds
99.47% <= 0.3 milliseconds
99.99% <= 0.4 milliseconds
100.00% <= 0.5 milliseconds
100.00% <= 0.6 milliseconds
100.00% <= 0.7 milliseconds
100.00% <= 0.8 milliseconds
100.00% <= 0.9 milliseconds
100.00% <= 1.2 milliseconds
1666111.38 requests per second
~1450% CPU
1.67M requests/second, and we're no longer just hammering on the sighand
lock. The original reporter states:
"For 5.7.15 my benchmark achieves 1.6M qps and system cpu is at ~80%.
for 5.7.16 or later it achieves only 1M qps and the system cpu is is
at ~100%"
with the only difference there being that TWA_SIGNAL is used
unconditionally in 5.7.16, since it's required to be able to handle the
inability to run task_work if the application is waiting in the kernel
already on an event that needs task_work run to be satisfied. Also see
commit 0ba9c9edcd15.
Reported-by: Roman Gershman <romger@amazon.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Oleg Nesterov <oleg@redhat.com>
Link: https://lore.kernel.org/r/20201026203230.386348-5-axboe@kernel.dk
|
|
A previous commit changed the notification mode from true/false to an
int, allowing notify-no, notify-yes, or signal-notify. This was
backwards compatible in the sense that any existing true/false user
would translate to either 0 (on notification sent) or 1, the latter
which mapped to TWA_RESUME. TWA_SIGNAL was assigned a value of 2.
Clean this up properly, and define a proper enum for the notification
mode. Now we have:
- TWA_NONE. This is 0, same as before the original change, meaning no
notification requested.
- TWA_RESUME. This is 1, same as before the original change, meaning
that we use TIF_NOTIFY_RESUME.
- TWA_SIGNAL. This uses TIF_SIGPENDING/JOBCTL_TASK_WORK for the
notification.
Clean up all the callers, switching their 0/1/false/true to using the
appropriate TWA_* mode for notifications.
Fixes: e91b48162332 ("task_work: teach task_work_add() to do signal_wake_up()")
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
If JOBCTL_TASK_WORK is already set on the targeted task, then we need
not go through {lock,unlock}_task_sighand() to set it again and queue
a signal wakeup. This is safe as we're checking it _after_ adding the
new task_work with cmpxchg().
The ordering is as follows:
task_work_add() get_signal()
--------------------------------------------------------------
STORE(task->task_works, new_work); STORE(task->jobctl);
mb(); mb();
LOAD(task->jobctl); LOAD(task->task_works);
This speeds up TWA_SIGNAL handling quite a bit, which is important now
that io_uring is relying on it for all task_work deliveries.
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Jann Horn <jannh@google.com>
Acked-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
So that the target task will exit the wait_event_interruptible-like
loop and call task_work_run() asap.
The patch turns "bool notify" into 0,TWA_RESUME,TWA_SIGNAL enum, the
new TWA_SIGNAL flag implies signal_wake_up(). However, it needs to
avoid the race with recalc_sigpending(), so the patch also adds the
new JOBCTL_TASK_WORK bit included in JOBCTL_PENDING_MASK.
TODO: once this patch is merged we need to change all current users
of task_work_add(notify = true) to use TWA_RESUME.
Cc: stable@vger.kernel.org # v5.7
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
As Peter pointed out, task_work() can avoid ->pi_lock and cmpxchg()
if task->task_works == NULL && !PF_EXITING.
And in fact the only reason why task_work_run() needs ->pi_lock is
the possible race with task_work_cancel(), we can optimize this code
and make the locking more clear.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
Conflicts:
include/linux/compiler-clang.h
include/linux/compiler-gcc.h
include/linux/compiler-intel.h
include/uapi/linux/stddef.h
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
READ_ONCE() now has an implicit smp_read_barrier_depends() call, so it
can be used instead of lockless_dereference() without any change in
semantics.
Signed-off-by: Will Deacon <will.deacon@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1508840570-22169-4-git-send-email-will.deacon@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
There is no agreed-upon definition of spin_unlock_wait()'s semantics,
and it appears that all callers could do just as well with a lock/unlock
pair. This commit therefore replaces the spin_unlock_wait() call in
task_work_run() with a spin_lock_irq() and a spin_unlock_irq() aruond
the cmpxchg() dequeue loop. This should be safe from a performance
perspective because ->pi_lock is local to the task and because calls to
the other side of the race, task_work_cancel(), should be rare.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
|
|
Change task_work_cancel() to use lockless_dereference(), this is what
the code really wants but we didn't have this helper when it was
written.
Also add the fast-path task->task_works == NULL check, in the likely
case this task has no pending works and we can avoid
spin_lock(task->pi_lock).
While at it, change other users of ACCESS_ONCE() to use READ_ONCE().
Link: http://lkml.kernel.org/r/20160610150042.GA13868@redhat.com
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Cc: Andrea Parri <parri.andrea@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
With the modified semantics of spin_unlock_wait() a number of
explicit barriers can be removed. Also update the comment for the
do_exit() usecase, as that was somewhat stale/obscure.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
In commit f341861fb0b ("task_work: add a scheduling point in
task_work_run()") I fixed a latency problem adding a cond_resched()
call.
Later, commit ac3d0da8f329 added yet another loop to reverse a list,
bringing back the latency spike :
I've seen in some cases this loop taking 275 ms, if for example a
process with 2,000,000 files is killed.
We could add yet another cond_resched() in the reverse loop, or we
can simply remove the reversal, as I do not think anything
would depend on order of task_work_add() submitted works.
Fixes: ac3d0da8f329 ("task_work: Make task_work_add() lockless")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Reported-by: Maciej Żenczykowski <maze@google.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
No functional changes, just comments.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Trivial. Remove the unnecessary "work = NULL" initialization and turn
read_barrier_depends() into smp_read_barrier_depends() in
task_work_cancel().
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
ed3e694d "move exit_task_work() past exit_files() et.al" destroyed
the add/exit synchronization we had, the caller itself should ensure
task_work_add() can't race with the exiting task.
However, this is not convenient/simple, and the only user which tries
to do this is buggy (see the next patch). Unless the task is current,
there is simply no way to do this in general.
Change exit_task_work()->task_work_run() to use the dummy "work_exited"
entry to let task_work_add() know it should fail.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20120826191211.GA4228@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Change task_work's to use llist-like code to avoid pi_lock
in task_work_add(), this makes it useable under rq->lock.
task_work_cancel() and task_work_run() still use pi_lock
to synchronize with each other.
(This is in preparation for a deadlock fix.)
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20120826191209.GA4221@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
It seems commit 4a9d4b024a31 ("switch fput to task_work_add") re-
introduced the problem addressed in 944be0b22472 ("close_files(): add
scheduling point")
If a server process with a lot of files (say 2 million tcp sockets) is
killed, we can spend a lot of time in task_work_run() and trigger a soft
lockup.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
It doesn't matter on normal return to userland path (we'll recheck the
NOTIFY_RESUME flag anyway), but in case of exit_task_work() we'll
need that as soon as we get callbacks capable of triggering more
task_work_add().
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
... and get rid of PF_EXITING check in task_work_add().
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
task_work and rcu_head are identical now; merge them (calling the result
struct callback_head, rcu_head #define'd to it), kill separate allocation
in security/keys since we can just use cred->rcu now.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
layout based on Oleg's suggestion; single-linked list,
task->task_works points to the last element, forward pointer
from said last element points to head. I'd still prefer
much more regular scheme with two pointers in task_work,
but...
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
Provide a simple mechanism that allows running code in the (nonatomic)
context of the arbitrary task.
The caller does task_work_add(task, task_work) and this task executes
task_work->func() either from do_notify_resume() or from do_exit(). The
callback can rely on PF_EXITING to detect the latter case.
"struct task_work" can be embedded in another struct, still it has "void
*data" to handle the most common/simple case.
This allows us to kill the ->replacement_session_keyring hack, and
potentially this can have more users.
Performance-wise, this adds 2 "unlikely(!hlist_empty())" checks into
tracehook_notify_resume() and do_exit(). But at the same time we can
remove the "replacement_session_keyring != NULL" checks from
arch/*/signal.c and exit_creds().
Note: task_work_add/task_work_run abuses ->pi_lock. This is only because
this lock is already used by lookup_pi_state() to synchronize with
do_exit() setting PF_EXITING. Fortunately the scope of this lock in
task_work.c is really tiny, and the code is unlikely anyway.
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: David Howells <dhowells@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Richard Kuo <rkuo@codeaurora.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Alexander Gordeev <agordeev@redhat.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: David Smith <dsmith@redhat.com>
Cc: "Frank Ch. Eigler" <fche@redhat.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Larry Woodman <lwoodman@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|