Age | Commit message (Collapse) | Author |
|
Merge the state of the locking kcsan branch before the read/write_once()
and the atomics modifications got merged.
Squash the fallout of the rebase on top of the read/write once and atomic
fallback work into the merge. The history of the original branch is
preserved in tag locking-kcsan-2020-06-02.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
|
|
Patch series "mm: consolidate definitions of page table accessors", v2.
The low level page table accessors (pXY_index(), pXY_offset()) are
duplicated across all architectures and sometimes more than once. For
instance, we have 31 definition of pgd_offset() for 25 supported
architectures.
Most of these definitions are actually identical and typically it boils
down to, e.g.
static inline unsigned long pmd_index(unsigned long address)
{
return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1);
}
static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
{
return (pmd_t *)pud_page_vaddr(*pud) + pmd_index(address);
}
These definitions can be shared among 90% of the arches provided
XYZ_SHIFT, PTRS_PER_XYZ and xyz_page_vaddr() are defined.
For architectures that really need a custom version there is always
possibility to override the generic version with the usual ifdefs magic.
These patches introduce include/linux/pgtable.h that replaces
include/asm-generic/pgtable.h and add the definitions of the page table
accessors to the new header.
This patch (of 12):
The linux/mm.h header includes <asm/pgtable.h> to allow inlining of the
functions involving page table manipulations, e.g. pte_alloc() and
pmd_alloc(). So, there is no point to explicitly include <asm/pgtable.h>
in the files that include <linux/mm.h>.
The include statements in such cases are remove with a simple loop:
for f in $(git grep -l "include <linux/mm.h>") ; do
sed -i -e '/include <asm\/pgtable.h>/ d' $f
done
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Cain <bcain@codeaurora.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Ungerer <gerg@linux-m68k.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Guo Ren <guoren@kernel.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Helge Deller <deller@gmx.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Ley Foon Tan <ley.foon.tan@intel.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Nick Hu <nickhu@andestech.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Stafford Horne <shorne@gmail.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vincent Chen <deanbo422@gmail.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Will Deacon <will@kernel.org>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Link: http://lkml.kernel.org/r/20200514170327.31389-1-rppt@kernel.org
Link: http://lkml.kernel.org/r/20200514170327.31389-2-rppt@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Will Deacon:
"A sizeable pile of arm64 updates for 5.8.
Summary below, but the big two features are support for Branch Target
Identification and Clang's Shadow Call stack. The latter is currently
arm64-only, but the high-level parts are all in core code so it could
easily be adopted by other architectures pending toolchain support
Branch Target Identification (BTI):
- Support for ARMv8.5-BTI in both user- and kernel-space. This allows
branch targets to limit the types of branch from which they can be
called and additionally prevents branching to arbitrary code,
although kernel support requires a very recent toolchain.
- Function annotation via SYM_FUNC_START() so that assembly functions
are wrapped with the relevant "landing pad" instructions.
- BPF and vDSO updates to use the new instructions.
- Addition of a new HWCAP and exposure of BTI capability to userspace
via ID register emulation, along with ELF loader support for the
BTI feature in .note.gnu.property.
- Non-critical fixes to CFI unwind annotations in the sigreturn
trampoline.
Shadow Call Stack (SCS):
- Support for Clang's Shadow Call Stack feature, which reserves
platform register x18 to point at a separate stack for each task
that holds only return addresses. This protects function return
control flow from buffer overruns on the main stack.
- Save/restore of x18 across problematic boundaries (user-mode,
hypervisor, EFI, suspend, etc).
- Core support for SCS, should other architectures want to use it
too.
- SCS overflow checking on context-switch as part of the existing
stack limit check if CONFIG_SCHED_STACK_END_CHECK=y.
CPU feature detection:
- Removed numerous "SANITY CHECK" errors when running on a system
with mismatched AArch32 support at EL1. This is primarily a concern
for KVM, which disabled support for 32-bit guests on such a system.
- Addition of new ID registers and fields as the architecture has
been extended.
Perf and PMU drivers:
- Minor fixes and cleanups to system PMU drivers.
Hardware errata:
- Unify KVM workarounds for VHE and nVHE configurations.
- Sort vendor errata entries in Kconfig.
Secure Monitor Call Calling Convention (SMCCC):
- Update to the latest specification from Arm (v1.2).
- Allow PSCI code to query the SMCCC version.
Software Delegated Exception Interface (SDEI):
- Unexport a bunch of unused symbols.
- Minor fixes to handling of firmware data.
Pointer authentication:
- Add support for dumping the kernel PAC mask in vmcoreinfo so that
the stack can be unwound by tools such as kdump.
- Simplification of key initialisation during CPU bringup.
BPF backend:
- Improve immediate generation for logical and add/sub instructions.
vDSO:
- Minor fixes to the linker flags for consistency with other
architectures and support for LLVM's unwinder.
- Clean up logic to initialise and map the vDSO into userspace.
ACPI:
- Work around for an ambiguity in the IORT specification relating to
the "num_ids" field.
- Support _DMA method for all named components rather than only PCIe
root complexes.
- Minor other IORT-related fixes.
Miscellaneous:
- Initialise debug traps early for KGDB and fix KDB cacheflushing
deadlock.
- Minor tweaks to early boot state (documentation update, set
TEXT_OFFSET to 0x0, increase alignment of PE/COFF sections).
- Refactoring and cleanup"
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (148 commits)
KVM: arm64: Move __load_guest_stage2 to kvm_mmu.h
KVM: arm64: Check advertised Stage-2 page size capability
arm64/cpufeature: Add get_arm64_ftr_reg_nowarn()
ACPI/IORT: Remove the unused __get_pci_rid()
arm64/cpuinfo: Add ID_MMFR4_EL1 into the cpuinfo_arm64 context
arm64/cpufeature: Add remaining feature bits in ID_AA64PFR1 register
arm64/cpufeature: Add remaining feature bits in ID_AA64PFR0 register
arm64/cpufeature: Add remaining feature bits in ID_AA64ISAR0 register
arm64/cpufeature: Add remaining feature bits in ID_MMFR4 register
arm64/cpufeature: Add remaining feature bits in ID_PFR0 register
arm64/cpufeature: Introduce ID_MMFR5 CPU register
arm64/cpufeature: Introduce ID_DFR1 CPU register
arm64/cpufeature: Introduce ID_PFR2 CPU register
arm64/cpufeature: Make doublelock a signed feature in ID_AA64DFR0
arm64/cpufeature: Drop TraceFilt feature exposure from ID_DFR0 register
arm64/cpufeature: Add explicit ftr_id_isar0[] for ID_ISAR0 register
arm64: mm: Add asid_gen_match() helper
firmware: smccc: Fix missing prototype warning for arm_smccc_version_init
arm64: vdso: Fix CFI directives in sigreturn trampoline
arm64: vdso: Don't prefix sigreturn trampoline with a BTI C instruction
...
|
|
This change adds generic support for Clang's Shadow Call Stack,
which uses a shadow stack to protect return addresses from being
overwritten by an attacker. Details are available here:
https://clang.llvm.org/docs/ShadowCallStack.html
Note that security guarantees in the kernel differ from the ones
documented for user space. The kernel must store addresses of
shadow stacks in memory, which means an attacker capable reading
and writing arbitrary memory may be able to locate them and hijack
control flow by modifying the stacks.
Signed-off-by: Sami Tolvanen <samitolvanen@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Miguel Ojeda <miguel.ojeda.sandonis@gmail.com>
[will: Numerous cosmetic changes]
Signed-off-by: Will Deacon <will@kernel.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu into locking/kcsan
Pull KCSAN updates from Paul McKenney.
|
|
This commit splits ->trc_reader_need_end by using the rcu_special union.
This change permits readers to check to see if a memory barrier is
required without any added overhead in the common case where no such
barrier is required. This commit also adds the read-side checking.
Later commits will add the machinery to properly set the new
->trc_reader_special.b.need_mb field.
This commit also makes rcu_read_unlock_trace_special() tolerate nested
read-side critical sections within interrupt and NMI handlers.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
|
|
Because RCU does not watch exception early-entry/late-exit, idle-loop,
or CPU-hotplug execution, protection of tracing and BPF operations is
needlessly complicated. This commit therefore adds a variant of
Tasks RCU that:
o Has explicit read-side markers to allow finite grace periods in
the face of in-kernel loops for PREEMPT=n builds. These markers
are rcu_read_lock_trace() and rcu_read_unlock_trace().
o Protects code in the idle loop, exception entry/exit, and
CPU-hotplug code paths. In this respect, RCU-tasks trace is
similar to SRCU, but with lighter-weight readers.
o Avoids expensive read-side instruction, having overhead similar
to that of Preemptible RCU.
There are of course downsides:
o The grace-period code can send IPIs to CPUs, even when those
CPUs are in the idle loop or in nohz_full userspace. This is
mitigated by later commits.
o It is necessary to scan the full tasklist, much as for Tasks RCU.
o There is a single callback queue guarded by a single lock,
again, much as for Tasks RCU. However, those early use cases
that request multiple grace periods in quick succession are
expected to do so from a single task, which makes the single
lock almost irrelevant. If needed, multiple callback queues
can be provided using any number of schemes.
Perhaps most important, this variant of RCU does not affect the vanilla
flavors, rcu_preempt and rcu_sched. The fact that RCU Tasks Trace
readers can operate from idle, offline, and exception entry/exit in no
way enables rcu_preempt and rcu_sched readers to do so.
The memory ordering was outlined here:
https://lore.kernel.org/lkml/20200319034030.GX3199@paulmck-ThinkPad-P72/
This effort benefited greatly from off-list discussions of BPF
requirements with Alexei Starovoitov and Andrii Nakryiko. At least
some of the on-list discussions are captured in the Link: tags below.
In addition, KCSAN was quite helpful in finding some early bugs.
Link: https://lore.kernel.org/lkml/20200219150744.428764577@infradead.org/
Link: https://lore.kernel.org/lkml/87mu8p797b.fsf@nanos.tec.linutronix.de/
Link: https://lore.kernel.org/lkml/20200225221305.605144982@linutronix.de/
Cc: Alexei Starovoitov <alexei.starovoitov@gmail.com>
Cc: Andrii Nakryiko <andriin@fb.com>
[ paulmck: Apply feedback from Steve Rostedt and Joel Fernandes. ]
[ paulmck: Decrement trc_n_readers_need_end upon IPI failure. ]
[ paulmck: Fix locking issue reported by rcutorture. ]
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
|
|
This adds support for scoped accesses, where the memory range is checked
for the duration of the scope. The feature is implemented by inserting
the relevant access information into a list of scoped accesses for
the current execution context, which are then checked (until removed)
on every call (through instrumentation) into the KCSAN runtime.
An alternative, more complex, implementation could set up a watchpoint for
the scoped access, and keep the watchpoint set up. This, however, would
require first exposing a handle to the watchpoint, as well as dealing
with cases such as accesses by the same thread while the watchpoint is
still set up (and several more cases). It is also doubtful if this would
provide any benefit, since the majority of delay where the watchpoint
is set up is likely due to the injected delays by KCSAN. Therefore,
the implementation in this patch is simpler and avoids hurting KCSAN's
main use-case (normal data race detection); it also implicitly increases
scoped-access race-detection-ability due to increased probability of
setting up watchpoints by repeatedly calling __kcsan_check_access()
throughout the scope of the access.
The implementation required adding an additional conditional branch to
the fast-path. However, the microbenchmark showed a *speedup* of ~5%
on the fast-path. This appears to be due to subtly improved codegen by
GCC from moving get_ctx() and associated load of preempt_count earlier.
Suggested-by: Boqun Feng <boqun.feng@gmail.com>
Suggested-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
|
|
Resolve these conflicts:
arch/x86/Kconfig
arch/x86/kernel/Makefile
Do a minor "evil merge" to move the KCSAN entry up a bit by a few lines
in the Kconfig to reduce the probability of future conflicts.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
The cred_guard_mutex is problematic as it is held over possibly
indefinite waits for userspace. The possible indefinite waits for
userspace that I have identified are: The cred_guard_mutex is held in
PTRACE_EVENT_EXIT waiting for the tracer. The cred_guard_mutex is
held over "put_user(0, tsk->clear_child_tid)" in exit_mm(). The
cred_guard_mutex is held over "get_user(futex_offset, ...") in
exit_robust_list. The cred_guard_mutex held over copy_strings.
The functions get_user and put_user can trigger a page fault which can
potentially wait indefinitely in the case of userfaultfd or if
userspace implements part of the page fault path.
In any of those cases the userspace process that the kernel is waiting
for might make a different system call that winds up taking the
cred_guard_mutex and result in deadlock.
Holding a mutex over any of those possibly indefinite waits for
userspace does not appear necessary. Add exec_update_mutex that will
just cover updating the process during exec where the permissions and
the objects pointed to by the task struct may be out of sync.
The plan is to switch the users of cred_guard_mutex to
exec_update_mutex one by one. This lets us move forward while still
being careful and not introducing any regressions.
Link: https://lore.kernel.org/lkml/20160921152946.GA24210@dhcp22.suse.cz/
Link: https://lore.kernel.org/lkml/AM6PR03MB5170B06F3A2B75EFB98D071AE4E60@AM6PR03MB5170.eurprd03.prod.outlook.com/
Link: https://lore.kernel.org/linux-fsdevel/20161102181806.GB1112@redhat.com/
Link: https://lore.kernel.org/lkml/20160923095031.GA14923@redhat.com/
Link: https://lore.kernel.org/lkml/20170213141452.GA30203@redhat.com/
Ref: 45c1a159b85b ("Add PTRACE_O_TRACEVFORKDONE and PTRACE_O_TRACEEXIT facilities.")
Ref: 456f17cd1a28 ("[PATCH] user-vm-unlock-2.5.31-A2")
Reviewed-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Signed-off-by: Bernd Edlinger <bernd.edlinger@hotmail.de>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
|
|
When setting up an access mask with kcsan_set_access_mask(), KCSAN will
only report races if concurrent changes to bits set in access_mask are
observed. Conveying access_mask via a separate call avoids introducing
overhead in the common-case fast-path.
Acked-by: John Hubbard <jhubbard@nvidia.com>
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Kernel Concurrency Sanitizer (KCSAN) is a dynamic data-race detector for
kernel space. KCSAN is a sampling watchpoint-based data-race detector.
See the included Documentation/dev-tools/kcsan.rst for more details.
This patch adds basic infrastructure, but does not yet enable KCSAN for
any architecture.
Signed-off-by: Marco Elver <elver@google.com>
Acked-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull core timer updates from Thomas Gleixner:
"Timers and timekeeping updates:
- A large overhaul of the posix CPU timer code which is a preparation
for moving the CPU timer expiry out into task work so it can be
properly accounted on the task/process.
An update to the bogus permission checks will come later during the
merge window as feedback was not complete before heading of for
travel.
- Switch the timerqueue code to use cached rbtrees and get rid of the
homebrewn caching of the leftmost node.
- Consolidate hrtimer_init() + hrtimer_init_sleeper() calls into a
single function
- Implement the separation of hrtimers to be forced to expire in hard
interrupt context even when PREEMPT_RT is enabled and mark the
affected timers accordingly.
- Implement a mechanism for hrtimers and the timer wheel to protect
RT against priority inversion and live lock issues when a (hr)timer
which should be canceled is currently executing the callback.
Instead of infinitely spinning, the task which tries to cancel the
timer blocks on a per cpu base expiry lock which is held and
released by the (hr)timer expiry code.
- Enable the Hyper-V TSC page based sched_clock for Hyper-V guests
resulting in faster access to timekeeping functions.
- Updates to various clocksource/clockevent drivers and their device
tree bindings.
- The usual small improvements all over the place"
* 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (101 commits)
posix-cpu-timers: Fix permission check regression
posix-cpu-timers: Always clear head pointer on dequeue
hrtimer: Add a missing bracket and hide `migration_base' on !SMP
posix-cpu-timers: Make expiry_active check actually work correctly
posix-timers: Unbreak CONFIG_POSIX_TIMERS=n build
tick: Mark sched_timer to expire in hard interrupt context
hrtimer: Add kernel doc annotation for HRTIMER_MODE_HARD
x86/hyperv: Hide pv_ops access for CONFIG_PARAVIRT=n
posix-cpu-timers: Utilize timerqueue for storage
posix-cpu-timers: Move state tracking to struct posix_cputimers
posix-cpu-timers: Deduplicate rlimit handling
posix-cpu-timers: Remove pointless comparisons
posix-cpu-timers: Get rid of 64bit divisions
posix-cpu-timers: Consolidate timer expiry further
posix-cpu-timers: Get rid of zero checks
rlimit: Rewrite non-sensical RLIMIT_CPU comment
posix-cpu-timers: Respect INFINITY for hard RTTIME limit
posix-cpu-timers: Switch thread group sampling to array
posix-cpu-timers: Restructure expiry array
posix-cpu-timers: Remove cputime_expires
...
|
|
Put it where it belongs and clean up the ifdeffery in fork completely.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190821192922.743229404@linutronix.de
|
|
CONFIG_PREEMPTION is selected by CONFIG_PREEMPT and by
CONFIG_PREEMPT_RT. Both PREEMPT and PREEMPT_RT require the same
functionality which today depends on CONFIG_PREEMPT.
Switch the preemption code, scheduler and init task over to use
CONFIG_PREEMPTION.
That's the first step towards RT in that area. The more complex changes are
coming separately.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Paul E. McKenney <paulmck@linux.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Link: http://lkml.kernel.org/r/20190726212124.117528401@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar:
- Remove the unused per rq load array and all its infrastructure, by
Dietmar Eggemann.
- Add utilization clamping support by Patrick Bellasi. This is a
refinement of the energy aware scheduling framework with support for
boosting of interactive and capping of background workloads: to make
sure critical GUI threads get maximum frequency ASAP, and to make
sure background processing doesn't unnecessarily move to cpufreq
governor to higher frequencies and less energy efficient CPU modes.
- Add the bare minimum of tracepoints required for LISA EAS regression
testing, by Qais Yousef - which allows automated testing of various
power management features, including energy aware scheduling.
- Restructure the former tsk_nr_cpus_allowed() facility that the -rt
kernel used to modify the scheduler's CPU affinity logic such as
migrate_disable() - introduce the task->cpus_ptr value instead of
taking the address of &task->cpus_allowed directly - by Sebastian
Andrzej Siewior.
- Misc optimizations, fixes, cleanups and small enhancements - see the
Git log for details.
* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (33 commits)
sched/uclamp: Add uclamp support to energy_compute()
sched/uclamp: Add uclamp_util_with()
sched/cpufreq, sched/uclamp: Add clamps for FAIR and RT tasks
sched/uclamp: Set default clamps for RT tasks
sched/uclamp: Reset uclamp values on RESET_ON_FORK
sched/uclamp: Extend sched_setattr() to support utilization clamping
sched/core: Allow sched_setattr() to use the current policy
sched/uclamp: Add system default clamps
sched/uclamp: Enforce last task's UCLAMP_MAX
sched/uclamp: Add bucket local max tracking
sched/uclamp: Add CPU's clamp buckets refcounting
sched/fair: Rename weighted_cpuload() to cpu_runnable_load()
sched/debug: Export the newly added tracepoints
sched/debug: Add sched_overutilized tracepoint
sched/debug: Add new tracepoint to track PELT at se level
sched/debug: Add new tracepoints to track PELT at rq level
sched/debug: Add a new sched_trace_*() helper functions
sched/autogroup: Make autogroup_path() always available
sched/wait: Deduplicate code with do-while
sched/topology: Remove unused 'sd' parameter from arch_scale_cpu_capacity()
...
|
|
Chain keys are computed using Jenkins hash function, which needs an initial
hash to start with. Dedicate a macro to make this clear and configurable. A
later patch changes this initial chain key.
Signed-off-by: Yuyang Du <duyuyang@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: bvanassche@acm.org
Cc: frederic@kernel.org
Cc: ming.lei@redhat.com
Cc: will.deacon@arm.com
Link: https://lkml.kernel.org/r/20190506081939.74287-9-duyuyang@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Despite that there is a lockdep_init_task() which does nothing, lockdep
initiates tasks by assigning lockdep fields and does so inconsistently. Fix
this by using lockdep_init_task().
Signed-off-by: Yuyang Du <duyuyang@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: bvanassche@acm.org
Cc: frederic@kernel.org
Cc: ming.lei@redhat.com
Cc: will.deacon@arm.com
Link: https://lkml.kernel.org/r/20190506081939.74287-8-duyuyang@gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
In commit:
4b53a3412d66 ("sched/core: Remove the tsk_nr_cpus_allowed() wrapper")
the tsk_nr_cpus_allowed() wrapper was removed. There was not
much difference in !RT but in RT we used this to implement
migrate_disable(). Within a migrate_disable() section the CPU mask is
restricted to single CPU while the "normal" CPU mask remains untouched.
As an alternative implementation Ingo suggested to use:
struct task_struct {
const cpumask_t *cpus_ptr;
cpumask_t cpus_mask;
};
with
t->cpus_ptr = &t->cpus_mask;
In -RT we then can switch the cpus_ptr to:
t->cpus_ptr = &cpumask_of(task_cpu(p));
in a migration disabled region. The rules are simple:
- Code that 'uses' ->cpus_allowed would use the pointer.
- Code that 'modifies' ->cpus_allowed would use the direct mask.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20190423142636.14347-1-bigeasy@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/pcmoore/audit
Pull audit updates from Paul Moore:
"A lucky 13 audit patches for v5.1.
Despite the rather large diffstat, most of the changes are from two
bug fix patches that move code from one Kconfig option to another.
Beyond that bit of churn, the remaining changes are largely cleanups
and bug-fixes as we slowly march towards container auditing. It isn't
all boring though, we do have a couple of new things: file
capabilities v3 support, and expanded support for filtering on
filesystems to solve problems with remote filesystems.
All changes pass the audit-testsuite. Please merge for v5.1"
* tag 'audit-pr-20190305' of git://git.kernel.org/pub/scm/linux/kernel/git/pcmoore/audit:
audit: mark expected switch fall-through
audit: hide auditsc_get_stamp and audit_serial prototypes
audit: join tty records to their syscall
audit: remove audit_context when CONFIG_ AUDIT and not AUDITSYSCALL
audit: remove unused actx param from audit_rule_match
audit: ignore fcaps on umount
audit: clean up AUDITSYSCALL prototypes and stubs
audit: more filter PATH records keyed on filesystem magic
audit: add support for fcaps v3
audit: move loginuid and sessionid from CONFIG_AUDITSYSCALL to CONFIG_AUDIT
audit: add syscall information to CONFIG_CHANGE records
audit: hand taken context to audit_kill_trees for syscall logging
audit: give a clue what CONFIG_CHANGE op was involved
|
|
Merge misc updates from Andrew Morton:
- a few misc things
- ocfs2 updates
- most of MM
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (159 commits)
tools/testing/selftests/proc/proc-self-syscall.c: remove duplicate include
proc: more robust bulk read test
proc: test /proc/*/maps, smaps, smaps_rollup, statm
proc: use seq_puts() everywhere
proc: read kernel cpu stat pointer once
proc: remove unused argument in proc_pid_lookup()
fs/proc/thread_self.c: code cleanup for proc_setup_thread_self()
fs/proc/self.c: code cleanup for proc_setup_self()
proc: return exit code 4 for skipped tests
mm,mremap: bail out earlier in mremap_to under map pressure
mm/sparse: fix a bad comparison
mm/memory.c: do_fault: avoid usage of stale vm_area_struct
writeback: fix inode cgroup switching comment
mm/huge_memory.c: fix "orig_pud" set but not used
mm/hotplug: fix an imbalance with DEBUG_PAGEALLOC
mm/memcontrol.c: fix bad line in comment
mm/cma.c: cma_declare_contiguous: correct err handling
mm/page_ext.c: fix an imbalance with kmemleak
mm/compaction: pass pgdat to too_many_isolated() instead of zone
mm: remove zone_lru_lock() function, access ->lru_lock directly
...
|
|
Patch series "Replace all open encodings for NUMA_NO_NODE", v3.
All these places for replacement were found by running the following
grep patterns on the entire kernel code. Please let me know if this
might have missed some instances. This might also have replaced some
false positives. I will appreciate suggestions, inputs and review.
1. git grep "nid == -1"
2. git grep "node == -1"
3. git grep "nid = -1"
4. git grep "node = -1"
This patch (of 2):
At present there are multiple places where invalid node number is
encoded as -1. Even though implicitly understood it is always better to
have macros in there. Replace these open encodings for an invalid node
number with the global macro NUMA_NO_NODE. This helps remove NUMA
related assumptions like 'invalid node' from various places redirecting
them to a common definition.
Link: http://lkml.kernel.org/r/1545127933-10711-2-git-send-email-anshuman.khandual@arm.com
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com> [ixgbe]
Acked-by: Jens Axboe <axboe@kernel.dk> [mtip32xx]
Acked-by: Vinod Koul <vkoul@kernel.org> [dmaengine.c]
Acked-by: Michael Ellerman <mpe@ellerman.id.au> [powerpc]
Acked-by: Doug Ledford <dledford@redhat.com> [drivers/infiniband]
Cc: Joseph Qi <jiangqi903@gmail.com>
Cc: Hans Verkuil <hverkuil@xs4all.nl>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
atomic_t variables are currently used to implement reference
counters with the following properties:
- counter is initialized to 1 using atomic_set()
- a resource is freed upon counter reaching zero
- once counter reaches zero, its further
increments aren't allowed
- counter schema uses basic atomic operations
(set, inc, inc_not_zero, dec_and_test, etc.)
Such atomic variables should be converted to a newly provided
refcount_t type and API that prevents accidental counter overflows
and underflows. This is important since overflows and underflows
can lead to use-after-free situation and be exploitable.
The variable task_struct.stack_refcount is used as pure reference counter.
Convert it to refcount_t and fix up the operations.
** Important note for maintainers:
Some functions from refcount_t API defined in lib/refcount.c
have different memory ordering guarantees than their atomic
counterparts.
The full comparison can be seen in
https://lkml.org/lkml/2017/11/15/57 and it is hopefully soon
in state to be merged to the documentation tree.
Normally the differences should not matter since refcount_t provides
enough guarantees to satisfy the refcounting use cases, but in
some rare cases it might matter.
Please double check that you don't have some undocumented
memory guarantees for this variable usage.
For the task_struct.stack_refcount it might make a difference
in following places:
- try_get_task_stack(): increment in refcount_inc_not_zero() only
guarantees control dependency on success vs. fully ordered
atomic counterpart
- put_task_stack(): decrement in refcount_dec_and_test() only
provides RELEASE ordering and control dependency on success
vs. fully ordered atomic counterpart
Suggested-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Elena Reshetova <elena.reshetova@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: David Windsor <dwindsor@gmail.com>
Reviewed-by: Hans Liljestrand <ishkamiel@gmail.com>
Reviewed-by: Andrea Parri <andrea.parri@amarulasolutions.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: akpm@linux-foundation.org
Cc: viro@zeniv.linux.org.uk
Link: https://lkml.kernel.org/r/1547814450-18902-6-git-send-email-elena.reshetova@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
atomic_t variables are currently used to implement reference
counters with the following properties:
- counter is initialized to 1 using atomic_set()
- a resource is freed upon counter reaching zero
- once counter reaches zero, its further
increments aren't allowed
- counter schema uses basic atomic operations
(set, inc, inc_not_zero, dec_and_test, etc.)
Such atomic variables should be converted to a newly provided
refcount_t type and API that prevents accidental counter overflows
and underflows. This is important since overflows and underflows
can lead to use-after-free situation and be exploitable.
The variable task_struct.usage is used as pure reference counter.
Convert it to refcount_t and fix up the operations.
** Important note for maintainers:
Some functions from refcount_t API defined in lib/refcount.c
have different memory ordering guarantees than their atomic
counterparts.
The full comparison can be seen in
https://lkml.org/lkml/2017/11/15/57 and it is hopefully soon
in state to be merged to the documentation tree.
Normally the differences should not matter since refcount_t provides
enough guarantees to satisfy the refcounting use cases, but in
some rare cases it might matter.
Please double check that you don't have some undocumented
memory guarantees for this variable usage.
For the task_struct.usage it might make a difference
in following places:
- put_task_struct(): decrement in refcount_dec_and_test() only
provides RELEASE ordering and control dependency on success
vs. fully ordered atomic counterpart
Suggested-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Elena Reshetova <elena.reshetova@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: David Windsor <dwindsor@gmail.com>
Reviewed-by: Hans Liljestrand <ishkamiel@gmail.com>
Reviewed-by: Andrea Parri <andrea.parri@amarulasolutions.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: akpm@linux-foundation.org
Cc: viro@zeniv.linux.org.uk
Link: https://lkml.kernel.org/r/1547814450-18902-5-git-send-email-elena.reshetova@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
atomic_t variables are currently used to implement reference
counters with the following properties:
- counter is initialized to 1 using atomic_set()
- a resource is freed upon counter reaching zero
- once counter reaches zero, its further
increments aren't allowed
- counter schema uses basic atomic operations
(set, inc, inc_not_zero, dec_and_test, etc.)
Such atomic variables should be converted to a newly provided
refcount_t type and API that prevents accidental counter overflows
and underflows. This is important since overflows and underflows
can lead to use-after-free situation and be exploitable.
The variable signal_struct.sigcnt is used as pure reference counter.
Convert it to refcount_t and fix up the operations.
** Important note for maintainers:
Some functions from refcount_t API defined in lib/refcount.c
have different memory ordering guarantees than their atomic
counterparts.
The full comparison can be seen in
https://lkml.org/lkml/2017/11/15/57 and it is hopefully soon
in state to be merged to the documentation tree.
Normally the differences should not matter since refcount_t provides
enough guarantees to satisfy the refcounting use cases, but in
some rare cases it might matter.
Please double check that you don't have some undocumented
memory guarantees for this variable usage.
For the signal_struct.sigcnt it might make a difference
in following places:
- put_signal_struct(): decrement in refcount_dec_and_test() only
provides RELEASE ordering and control dependency on success
vs. fully ordered atomic counterpart
Suggested-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Elena Reshetova <elena.reshetova@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: David Windsor <dwindsor@gmail.com>
Reviewed-by: Hans Liljestrand <ishkamiel@gmail.com>
Reviewed-by: Andrea Parri <andrea.parri@amarulasolutions.com>
Reviewed-by: Oleg Nesterov <oleg@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: akpm@linux-foundation.org
Cc: viro@zeniv.linux.org.uk
Link: https://lkml.kernel.org/r/1547814450-18902-3-git-send-email-elena.reshetova@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
loginuid and sessionid (and audit_log_session_info) should be part of
CONFIG_AUDIT scope and not CONFIG_AUDITSYSCALL since it is used in
CONFIG_CHANGE, ANOM_LINK, FEATURE_CHANGE (and INTEGRITY_RULE), none of
which are otherwise dependent on AUDITSYSCALL.
Please see github issue
https://github.com/linux-audit/audit-kernel/issues/104
Signed-off-by: Richard Guy Briggs <rgb@redhat.com>
[PM: tweaked subject line for better grep'ing]
Signed-off-by: Paul Moore <paul@paul-moore.com>
|
|
Wen Yang <wen.yang99@zte.com.cn> and majiang <ma.jiang@zte.com.cn>
report that a periodic signal received during fork can cause fork to
continually restart preventing an application from making progress.
The code was being overly pessimistic. Fork needs to guarantee that a
signal sent to multiple processes is logically delivered before the
fork and just to the forking process or logically delivered after the
fork to both the forking process and it's newly spawned child. For
signals like periodic timers that are always delivered to a single
process fork can safely complete and let them appear to logically
delivered after the fork().
While examining this issue I also discovered that fork today will miss
signals delivered to multiple processes during the fork and handled by
another thread. Similarly the current code will also miss blocked
signals that are delivered to multiple process, as those signals will
not appear pending during fork.
Add a list of each thread that is currently forking, and keep on that
list a signal set that records all of the signals sent to multiple
processes. When fork completes initialize the new processes
shared_pending signal set with it. The calculate_sigpending function
will see those signals and set TIF_SIGPENDING causing the new task to
take the slow path to userspace to handle those signals. Making it
appear as if those signals were received immediately after the fork.
It is not possible to send real time signals to multiple processes and
exceptions don't go to multiple processes, which means that that are
no signals sent to multiple processes that require siginfo. This
means it is safe to not bother collecting siginfo on signals sent
during fork.
The sigaction of a child of fork is initially the same as the
sigaction of the parent process. So a signal the parent ignores the
child will also initially ignore. Therefore it is safe to ignore
signals sent to multiple processes and ignored by the forking process.
Signals sent to only a single process or only a single thread and delivered
during fork are treated as if they are received after the fork, and generally
not dealt with. They won't cause any problems.
V2: Added removal from the multiprocess list on failure.
V3: Use -ERESTARTNOINTR directly
V4: - Don't queue both SIGCONT and SIGSTOP
- Initialize signal_struct.multiprocess in init_task
- Move setting of shared_pending to before the new task
is visible to signals. This prevents signals from comming
in before shared_pending.signal is set to delayed.signal
and being lost.
V5: - rework list add and delete to account for idle threads
v6: - Use sigdelsetmask when removing stop signals
Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=200447
Reported-by: Wen Yang <wen.yang99@zte.com.cn> and
Reported-by: majiang <ma.jiang@zte.com.cn>
Fixes: 4a2c7a7837da ("[PATCH] make fork() atomic wrt pgrp/session signals")
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
|
|
Everywhere except in the pid array we distinguish between a tasks pid and
a tasks tgid (thread group id). Even in the enumeration we want that
distinction sometimes so we have added __PIDTYPE_TGID. With leader_pid
we almost have an implementation of PIDTYPE_TGID in struct signal_struct.
Add PIDTYPE_TGID as a first class member of the pid_type enumeration and
into the pids array. Then remove the __PIDTYPE_TGID special case and the
leader_pid in signal_struct.
The net size increase is just an extra pointer added to struct pid and
an extra pair of pointers of an hlist_node added to task_struct.
The effect on code maintenance is the removal of a number of special
cases today and the potential to remove many more special cases as
PIDTYPE_TGID gets used to it's fullest. The long term potential
is allowing zombie thread group leaders to exit, which will remove
a lot more special cases in the code.
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
|
|
To access these fields the code always has to go to group leader so
going to signal struct is no loss and is actually a fundamental simplification.
This saves a little bit of memory by only allocating the pid pointer array
once instead of once for every thread, and even better this removes a
few potential races caused by the fact that group_leader can be changed
by de_thread, while signal_struct can not.
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
|
|
This is cheap and no cost so we might as well.
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
|
|
Use a macro, "AUDIT_SID_UNSET", to replace each instance of
initialization and comparison to an audit session ID.
Signed-off-by: Richard Guy Briggs <rgb@redhat.com>
Signed-off-by: Paul Moore <paul@paul-moore.com>
|
|
There doesn't seem to be any need to have the INIT_SIGNALS and INIT_SIGHAND
macros, so expand them in their single places of use and remove them.
Signed-off-by: David Howells <dhowells@redhat.com>
Tested-by: Tony Luck <tony.luck@intel.com>
Tested-by: Will Deacon <will.deacon@arm.com> (arm64)
Tested-by: Palmer Dabbelt <palmer@sifive.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
|
|
Expand various INIT_* macros into the single places they're used in
init/init_task.c and remove them.
Signed-off-by: David Howells <dhowells@redhat.com>
Tested-by: Tony Luck <tony.luck@intel.com>
Tested-by: Will Deacon <will.deacon@arm.com> (arm64)
Tested-by: Palmer Dabbelt <palmer@sifive.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
|
|
It's no longer necessary to have an INIT_TASK() macro, and this can be
expanded into the one place it is now used and removed.
Signed-off-by: David Howells <dhowells@redhat.com>
Tested-by: Tony Luck <tony.luck@intel.com>
Tested-by: Will Deacon <will.deacon@arm.com> (arm64)
Tested-by: Palmer Dabbelt <palmer@sifive.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
|
|
Construct the init thread stack in the linker script rather than doing it
by means of a union so that ia64's init_task.c can be got rid of.
The following symbols are then made available from INIT_TASK_DATA() linker
script macro:
init_thread_union
init_stack
INIT_TASK_DATA() also expands the region to THREAD_SIZE to accommodate the
size of the init stack. init_thread_union is given its own section so that
it can be placed into the stack space in the right order. I'm assuming
that the ia64 ordering is correct and that the task_struct is first and the
thread_info second.
Signed-off-by: David Howells <dhowells@redhat.com>
Tested-by: Tony Luck <tony.luck@intel.com>
Tested-by: Will Deacon <will.deacon@arm.com> (arm64)
Tested-by: Palmer Dabbelt <palmer@sifive.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
|
|
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
<linux/sched.h> to <linux/sched/task.h>
Update all usage sites first.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
This was entirely automated, using the script by Al:
PATT='^[[:blank:]]*#[[:blank:]]*include[[:blank:]]*<asm/uaccess.h>'
sed -i -e "s!$PATT!#include <linux/uaccess.h>!" \
$(git grep -l "$PATT"|grep -v ^include/linux/uaccess.h)
to do the replacement at the end of the merge window.
Requested-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
If an arch opts in by setting CONFIG_THREAD_INFO_IN_TASK_STRUCT,
then thread_info is defined as a single 'u32 flags' and is the first
entry of task_struct. thread_info::task is removed (it serves no
purpose if thread_info is embedded in task_struct), and
thread_info::cpu gets its own slot in task_struct.
This is heavily based on a patch written by Linus.
Originally-from: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Jann Horn <jann@thejh.net>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/a0898196f0476195ca02713691a5037a14f2aac5.1473801993.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Move rt scheduler definitions out of include/linux/sched.h into
new file include/linux/sched/rt.h
Signed-off-by: Clark Williams <williams@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Link: http://lkml.kernel.org/r/20130207094707.7b9f825f@riff.lan
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Move the sysctl-related bits from include/linux/sched.h into
a new file: include/linux/sched/sysctl.h. Then update source
files requiring access to those bits by including the new
header file.
Signed-off-by: Clark Williams <williams@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Link: http://lkml.kernel.org/r/20130207094659.06dced96@riff.lan
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
All archs define init_task in the same way (except ia64, but there is
no particular reason why ia64 cannot use the common version). Create a
generic instance so all archs can be converted over.
The config switch is temporary and will be removed when all archs are
converted over.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Chen Liqin <liqin.chen@sunplusct.com>
Cc: Chris Metcalf <cmetcalf@tilera.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: David Howells <dhowells@redhat.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Guan Xuetao <gxt@mprc.pku.edu.cn>
Cc: Haavard Skinnemoen <hskinnemoen@gmail.com>
Cc: Hirokazu Takata <takata@linux-m32r.org>
Cc: James E.J. Bottomley <jejb@parisc-linux.org>
Cc: Jesper Nilsson <jesper.nilsson@axis.com>
Cc: Jonas Bonn <jonas@southpole.se>
Cc: Mark Salter <msalter@redhat.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Mike Frysinger <vapier@gentoo.org>
Cc: Paul Mundt <lethal@linux-sh.org>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Richard Kuo <rkuo@codeaurora.org>
Cc: Richard Weinberger <richard@nod.at>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Link: http://lkml.kernel.org/r/20120503085034.092585287@linutronix.de
|