Age | Commit message (Collapse) | Author |
|
cpumask_parse() finds first occurrence of either or strchr() and
strlen(). We can do it better with a single call of strchrnul().
[akpm@linux-foundation.org: remove unneeded cast]
Link: http://lkml.kernel.org/r/20190409204208.12190-1-ynorov@marvell.com
Signed-off-by: Yury Norov <ynorov@marvell.com>
Acked-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
struct linux_binprm::buf is the first field and it is exactly 128 bytes
in size. It means that on x86_64 all accesses to other fields will go
though [r64 + disp32] addressing mode which is 3 bytes bloatier than
[r64 + disp8] addressing mode. Given that accesses to other fields
outnumber accesses to ->buf, move it down.
Space savings (x86_64 defconfig):
more on distro configs because LSMs actively dereference "bprm"
but do not care about first 128 bytes of the executable itself.
add/remove: 0/0 grow/shrink: 0/24 up/down: 0/-492 (-492)
Function old new delta
selinux_bprm_committing_creds 552 549 -3
finalize_exec 94 91 -3
__audit_log_bprm_fcaps 283 280 -3
__audit_bprm 39 36 -3
perf_trace_sched_process_exec 347 341 -6
install_exec_creds 105 99 -6
cap_bprm_set_creds.cold 60 54 -6
would_dump 137 128 -9
load_script 637 628 -9
bprm_change_interp 61 52 -9
trace_event_raw_event_sched_process_exec 260 250 -10
search_binary_handler 255 240 -15
remove_arg_zero 295 277 -18
free_bprm 119 101 -18
prepare_binprm 379 360 -19
setup_new_exec 336 315 -21
flush_old_exec 1638 1617 -21
copy_strings.isra 746 724 -22
setup_arg_pages 559 530 -29
load_misc_binary 1151 1118 -33
selinux_bprm_set_creds 792 753 -39
load_elf_binary 11111 11072 -39
cap_bprm_set_creds 1496 1454 -42
__do_execve_file.isra 2395 2286 -109
Link: http://lkml.kernel.org/r/20190421165025.GA26843@avx2
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The ror32 implementation (word >> shift) | (word << (32 - shift) has
undefined behaviour if shift is outside the [1, 31] range. Similarly
for the 64 bit variants. Most callers pass a compile-time constant
(naturally in that range), but there's an UBSAN report that these may
actually be called with a shift count of 0.
Instead of special-casing that, we can make them DTRT for all values of
shift while also avoiding UB. For some reason, this was already partly
done for rol32 (which was well-defined for [0, 31]). gcc 8 recognizes
these patterns as rotates, so for example
__u32 rol32(__u32 word, unsigned int shift)
{
return (word << (shift & 31)) | (word >> ((-shift) & 31));
}
compiles to
0000000000000020 <rol32>:
20: 89 f8 mov %edi,%eax
22: 89 f1 mov %esi,%ecx
24: d3 c0 rol %cl,%eax
26: c3 retq
Older compilers unfortunately do not do as well, but this only affects
the small minority of users that don't pass constants.
Due to integer promotions, ro[lr]8 were already well-defined for shifts
in [0, 8], and ro[lr]16 were mostly well-defined for shifts in [0, 16]
(only mostly - u16 gets promoted to _signed_ int, so if bit 15 is set,
word << 16 is undefined). For consistency, update those as well.
Link: http://lkml.kernel.org/r/20190410211906.2190-1-linux@rasmusvillemoes.dk
Signed-off-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Reported-by: Ido Schimmel <idosch@mellanox.com>
Tested-by: Ido Schimmel <idosch@mellanox.com>
Reviewed-by: Will Deacon <will.deacon@arm.com>
Cc: Vadim Pasternak <vadimp@mellanox.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Jacek Anaszewski <jacek.anaszewski@gmail.com>
Cc: Pavel Machek <pavel@ucw.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The integer exponentiation is used in few places and might be used in
the future by other call sites. Move it to wider use.
Link: http://lkml.kernel.org/r/20190323172531.80025-2-andriy.shevchenko@linux.intel.com
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Daniel Thompson <daniel.thompson@linaro.org>
Cc: Lee Jones <lee.jones@linaro.org>
Cc: Ray Jui <rjui@broadcom.com>
Cc: Thierry Reding <thierry.reding@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Rather than a fixed-size array of pending sorted runs, use the ->prev
links to keep track of things. This reduces stack usage, eliminates
some ugly overflow handling, and reduces the code size.
Also:
* merge() no longer needs to handle NULL inputs, so simplify.
* The same applies to merge_and_restore_back_links(), which is renamed
to the less ponderous merge_final(). (It's a static helper function,
so we don't need a super-descriptive name; comments will do.)
* Document the actual return value requirements on the (*cmp)()
function; some callers are already using this feature.
x86-64 code size 1086 -> 739 bytes (-347)
(Yes, I see checkpatch complaining about no space after comma in
"__attribute__((nonnull(2,3,4,5)))". Checkpatch is wrong.)
Feedback from Rasmus Villemoes, Andy Shevchenko and Geert Uytterhoeven.
[akpm@linux-foundation.org: remove __pure usage due to mysterious warning]
Link: http://lkml.kernel.org/r/f63c410e0ff76009c9b58e01027e751ff7fdb749.1552704200.git.lkml@sdf.org
Signed-off-by: George Spelvin <lkml@sdf.org>
Acked-by: Andrey Abramov <st5pub@yandex.ru>
Acked-by: Rasmus Villemoes <linux@rasmusvillemoes.dk>
Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Daniel Wagner <daniel.wagner@siemens.com>
Cc: Dave Chinner <dchinner@redhat.com>
Cc: Don Mullis <don.mullis@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
This is a lot more appropriate than PI_LIST, which in the kernel one
would assume that it has to do with priority-inheritance; which is not
-- furthermore futexes make use of plists so this can be even more
confusing, albeit the debug nature of the config option.
Link: http://lkml.kernel.org/r/20190317185434.1626-1-dave@stgolabs.net
Signed-off-by: Davidlohr Bueso <dbueso@suse.de>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
clear_tsk_latency_tracing
The name clear_all_latency_tracing is misleading, in fact which only
clear per task's latency_record[], and we do have another function named
clear_global_latency_tracing which clear the global latency_record[]
buffer.
Link: http://lkml.kernel.org/r/20190226114602.16902-1-linf@wangsu.com
Signed-off-by: Lin Feng <linf@wangsu.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Fabian Frederick <fabf@skynet.be>
Cc: Arjan van de Ven <arjan@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Commit 60a3cdd06394 ("x86: add optimized inlining") introduced
CONFIG_OPTIMIZE_INLINING, but it has been available only for x86.
The idea is obviously arch-agnostic. This commit moves the config entry
from arch/x86/Kconfig.debug to lib/Kconfig.debug so that all
architectures can benefit from it.
This can make a huge difference in kernel image size especially when
CONFIG_OPTIMIZE_FOR_SIZE is enabled.
For example, I got 3.5% smaller arm64 kernel for v5.1-rc1.
dec file
18983424 arch/arm64/boot/Image.before
18321920 arch/arm64/boot/Image.after
This also slightly improves the "Kernel hacking" Kconfig menu as
e61aca5158a8 ("Merge branch 'kconfig-diet' from Dave Hansen') suggested;
this config option would be a good fit in the "compiler option" menu.
Link: http://lkml.kernel.org/r/20190423034959.13525-12-yamada.masahiro@socionext.com
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Acked-by: Borislav Petkov <bp@suse.de>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Boris Brezillon <bbrezillon@kernel.org>
Cc: Brian Norris <computersforpeace@gmail.com>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Marek Vasut <marek.vasut@gmail.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Malaterre <malat@debian.org>
Cc: Miquel Raynal <miquel.raynal@bootlin.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Richard Weinberger <richard@nod.at>
Cc: Russell King <rmk+kernel@arm.linux.org.uk>
Cc: Stefan Agner <stefan@agner.ch>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The "WITH Linux-syscall-note" should be added to headers exported to the
user-space.
Some kernel-space headers have "WITH Linux-syscall-note", which seems a
mistake.
[1] arch/x86/include/asm/hyperv-tlfs.h
Commit 5a4858032217 ("x86/hyper-v: move hyperv.h out of uapi") moved
this file out of uapi, but missed to update the SPDX License tag.
[2] include/asm-generic/shmparam.h
Commit 76ce2a80a28e ("Rename include/{uapi => }/asm-generic/shmparam.h
really") moved this file out of uapi, but missed to update the SPDX
License tag.
[3] include/linux/qcom-geni-se.h
Commit eddac5af0654 ("soc: qcom: Add GENI based QUP Wrapper driver")
added this file, but I do not see a good reason why its license tag must
include "WITH Linux-syscall-note".
Link: http://lkml.kernel.org/r/1554196104-3522-1-git-send-email-yamada.masahiro@socionext.com
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The select() implementation is carefully tuned to put a sensible amount
of data on the stack for holding a copy of the user space fd_set, but
not too large to risk overflowing the kernel stack.
When building a 32-bit kernel with clang, we need a little more space
than with gcc, which often triggers a warning:
fs/select.c:619:5: error: stack frame size of 1048 bytes in function 'core_sys_select' [-Werror,-Wframe-larger-than=]
int core_sys_select(int n, fd_set __user *inp, fd_set __user *outp,
I experimentally found that for 32-bit ARM, reducing the maximum stack
usage by 64 bytes keeps us reliably under the warning limit again.
Link: http://lkml.kernel.org/r/20190307090146.1874906-1-arnd@arndb.de
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Cc: Nick Desaulniers <ndesaulniers@google.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Eric Dumazet <edumazet@google.com>
Cc: "Darrick J. Wong" <darrick.wong@oracle.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
When freeing a page with an order >= shuffle_page_order randomly select
the front or back of the list for insertion.
While the mm tries to defragment physical pages into huge pages this can
tend to make the page allocator more predictable over time. Inject the
front-back randomness to preserve the initial randomness established by
shuffle_free_memory() when the kernel was booted.
The overhead of this manipulation is constrained by only being applied
for MAX_ORDER sized pages by default.
[akpm@linux-foundation.org: coding-style fixes]
Link: http://lkml.kernel.org/r/154899812788.3165233.9066631950746578517.stgit@dwillia2-desk3.amr.corp.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Keith Busch <keith.busch@intel.com>
Cc: Robert Elliott <elliott@hpe.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
In preparation for runtime randomization of the zone lists, take all
(well, most of) the list_*() functions in the buddy allocator and put
them in helper functions. Provide a common control point for injecting
additional behavior when freeing pages.
[dan.j.williams@intel.com: fix buddy list helpers]
Link: http://lkml.kernel.org/r/155033679702.1773410.13041474192173212653.stgit@dwillia2-desk3.amr.corp.intel.com
[vbabka@suse.cz: remove del_page_from_free_area() migratetype parameter]
Link: http://lkml.kernel.org/r/4672701b-6775-6efd-0797-b6242591419e@suse.cz
Link: http://lkml.kernel.org/r/154899812264.3165233.5219320056406926223.stgit@dwillia2-desk3.amr.corp.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Tested-by: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Keith Busch <keith.busch@intel.com>
Cc: Robert Elliott <elliott@hpe.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Patch series "mm: Randomize free memory", v10.
This patch (of 3):
Randomization of the page allocator improves the average utilization of
a direct-mapped memory-side-cache. Memory side caching is a platform
capability that Linux has been previously exposed to in HPC
(high-performance computing) environments on specialty platforms. In
that instance it was a smaller pool of high-bandwidth-memory relative to
higher-capacity / lower-bandwidth DRAM. Now, this capability is going
to be found on general purpose server platforms where DRAM is a cache in
front of higher latency persistent memory [1].
Robert offered an explanation of the state of the art of Linux
interactions with memory-side-caches [2], and I copy it here:
It's been a problem in the HPC space:
http://www.nersc.gov/research-and-development/knl-cache-mode-performance-coe/
A kernel module called zonesort is available to try to help:
https://software.intel.com/en-us/articles/xeon-phi-software
and this abandoned patch series proposed that for the kernel:
https://lkml.kernel.org/r/20170823100205.17311-1-lukasz.daniluk@intel.com
Dan's patch series doesn't attempt to ensure buffers won't conflict, but
also reduces the chance that the buffers will. This will make performance
more consistent, albeit slower than "optimal" (which is near impossible
to attain in a general-purpose kernel). That's better than forcing
users to deploy remedies like:
"To eliminate this gradual degradation, we have added a Stream
measurement to the Node Health Check that follows each job;
nodes are rebooted whenever their measured memory bandwidth
falls below 300 GB/s."
A replacement for zonesort was merged upstream in commit cc9aec03e58f
("x86/numa_emulation: Introduce uniform split capability"). With this
numa_emulation capability, memory can be split into cache sized
("near-memory" sized) numa nodes. A bind operation to such a node, and
disabling workloads on other nodes, enables full cache performance.
However, once the workload exceeds the cache size then cache conflicts
are unavoidable. While HPC environments might be able to tolerate
time-scheduling of cache sized workloads, for general purpose server
platforms, the oversubscribed cache case will be the common case.
The worst case scenario is that a server system owner benchmarks a
workload at boot with an un-contended cache only to see that performance
degrade over time, even below the average cache performance due to
excessive conflicts. Randomization clips the peaks and fills in the
valleys of cache utilization to yield steady average performance.
Here are some performance impact details of the patches:
1/ An Intel internal synthetic memory bandwidth measurement tool, saw a
3X speedup in a contrived case that tries to force cache conflicts.
The contrived cased used the numa_emulation capability to force an
instance of the benchmark to be run in two of the near-memory sized
numa nodes. If both instances were placed on the same emulated they
would fit and cause zero conflicts. While on separate emulated nodes
without randomization they underutilized the cache and conflicted
unnecessarily due to the in-order allocation per node.
2/ A well known Java server application benchmark was run with a heap
size that exceeded cache size by 3X. The cache conflict rate was 8%
for the first run and degraded to 21% after page allocator aging. With
randomization enabled the rate levelled out at 11%.
3/ A MongoDB workload did not observe measurable difference in
cache-conflict rates, but the overall throughput dropped by 7% with
randomization in one case.
4/ Mel Gorman ran his suite of performance workloads with randomization
enabled on platforms without a memory-side-cache and saw a mix of some
improvements and some losses [3].
While there is potentially significant improvement for applications that
depend on low latency access across a wide working-set, the performance
may be negligible to negative for other workloads. For this reason the
shuffle capability defaults to off unless a direct-mapped
memory-side-cache is detected. Even then, the page_alloc.shuffle=0
parameter can be specified to disable the randomization on those systems.
Outside of memory-side-cache utilization concerns there is potentially
security benefit from randomization. Some data exfiltration and
return-oriented-programming attacks rely on the ability to infer the
location of sensitive data objects. The kernel page allocator, especially
early in system boot, has predictable first-in-first out behavior for
physical pages. Pages are freed in physical address order when first
onlined.
Quoting Kees:
"While we already have a base-address randomization
(CONFIG_RANDOMIZE_MEMORY), attacks against the same hardware and
memory layouts would certainly be using the predictability of
allocation ordering (i.e. for attacks where the base address isn't
important: only the relative positions between allocated memory).
This is common in lots of heap-style attacks. They try to gain
control over ordering by spraying allocations, etc.
I'd really like to see this because it gives us something similar
to CONFIG_SLAB_FREELIST_RANDOM but for the page allocator."
While SLAB_FREELIST_RANDOM reduces the predictability of some local slab
caches it leaves vast bulk of memory to be predictably in order allocated.
However, it should be noted, the concrete security benefits are hard to
quantify, and no known CVE is mitigated by this randomization.
Introduce shuffle_free_memory(), and its helper shuffle_zone(), to perform
a Fisher-Yates shuffle of the page allocator 'free_area' lists when they
are initially populated with free memory at boot and at hotplug time. Do
this based on either the presence of a page_alloc.shuffle=Y command line
parameter, or autodetection of a memory-side-cache (to be added in a
follow-on patch).
The shuffling is done in terms of CONFIG_SHUFFLE_PAGE_ORDER sized free
pages where the default CONFIG_SHUFFLE_PAGE_ORDER is MAX_ORDER-1 i.e. 10,
4MB this trades off randomization granularity for time spent shuffling.
MAX_ORDER-1 was chosen to be minimally invasive to the page allocator
while still showing memory-side cache behavior improvements, and the
expectation that the security implications of finer granularity
randomization is mitigated by CONFIG_SLAB_FREELIST_RANDOM. The
performance impact of the shuffling appears to be in the noise compared to
other memory initialization work.
This initial randomization can be undone over time so a follow-on patch is
introduced to inject entropy on page free decisions. It is reasonable to
ask if the page free entropy is sufficient, but it is not enough due to
the in-order initial freeing of pages. At the start of that process
putting page1 in front or behind page0 still keeps them close together,
page2 is still near page1 and has a high chance of being adjacent. As
more pages are added ordering diversity improves, but there is still high
page locality for the low address pages and this leads to no significant
impact to the cache conflict rate.
[1]: https://itpeernetwork.intel.com/intel-optane-dc-persistent-memory-operating-modes/
[2]: https://lkml.kernel.org/r/AT5PR8401MB1169D656C8B5E121752FC0F8AB120@AT5PR8401MB1169.NAMPRD84.PROD.OUTLOOK.COM
[3]: https://lkml.org/lkml/2018/10/12/309
[dan.j.williams@intel.com: fix shuffle enable]
Link: http://lkml.kernel.org/r/154943713038.3858443.4125180191382062871.stgit@dwillia2-desk3.amr.corp.intel.com
[cai@lca.pw: fix SHUFFLE_PAGE_ALLOCATOR help texts]
Link: http://lkml.kernel.org/r/20190425201300.75650-1-cai@lca.pw
Link: http://lkml.kernel.org/r/154899811738.3165233.12325692939590944259.stgit@dwillia2-desk3.amr.corp.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Qian Cai <cai@lca.pw>
Reviewed-by: Kees Cook <keescook@chromium.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Keith Busch <keith.busch@intel.com>
Cc: Robert Elliott <elliott@hpe.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Pressure metrics are already recorded and exposed in procfs for the
entire system, but any tool which monitors cgroup pressure has to
special case the root cgroup to read from procfs. This patch exposes
the already recorded pressure metrics on the root cgroup.
Link: http://lkml.kernel.org/r/20190510174938.3361741-1-dschatzberg@fb.com
Signed-off-by: Dan Schatzberg <dschatzberg@fb.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Li Zefan <lizefan@huawei.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Psi monitor aims to provide a low-latency short-term pressure detection
mechanism configurable by users. It allows users to monitor psi metrics
growth and trigger events whenever a metric raises above user-defined
threshold within user-defined time window.
Time window and threshold are both expressed in usecs. Multiple psi
resources with different thresholds and window sizes can be monitored
concurrently.
Psi monitors activate when system enters stall state for the monitored
psi metric and deactivate upon exit from the stall state. While system
is in the stall state psi signal growth is monitored at a rate of 10
times per tracking window. Min window size is 500ms, therefore the min
monitoring interval is 50ms. Max window size is 10s with monitoring
interval of 1s.
When activated psi monitor stays active for at least the duration of one
tracking window to avoid repeated activations/deactivations when psi
signal is bouncing.
Notifications to the users are rate-limited to one per tracking window.
Link: http://lkml.kernel.org/r/20190319235619.260832-8-surenb@google.com
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Li Zefan <lizefan@huawei.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
kthread.h can't be included in psi_types.h because it creates a circular
inclusion with kthread.h eventually including psi_types.h and
complaining on kthread structures not being defined because they are
defined further in the kthread.h. Resolve this by removing psi_types.h
inclusion from the headers included from kthread.h.
Link: http://lkml.kernel.org/r/20190319235619.260832-7-surenb@google.com
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Li Zefan <lizefan@huawei.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Rename psi_group structure member fields used for calculating psi totals
and averages for clear distinction between them and for trigger-related
fields that will be added by "psi: introduce psi monitor".
[surenb@google.com: v6]
Link: http://lkml.kernel.org/r/20190319235619.260832-4-surenb@google.com
Link: http://lkml.kernel.org/r/20190124211518.244221-5-surenb@google.com
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Li Zefan <lizefan@huawei.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Patch series "psi: pressure stall monitors", v6.
This is a respin of:
https://lwn.net/ml/linux-kernel/20190308184311.144521-1-surenb%40google.com/
Android is adopting psi to detect and remedy memory pressure that
results in stuttering and decreased responsiveness on mobile devices.
Psi gives us the stall information, but because we're dealing with
latencies in the millisecond range, periodically reading the pressure
files to detect stalls in a timely fashion is not feasible. Psi also
doesn't aggregate its averages at a high-enough frequency right now.
This patch series extends the psi interface such that users can
configure sensitive latency thresholds and use poll() and friends to be
notified when these are breached.
As high-frequency aggregation is costly, it implements an aggregation
method that is optimized for fast, short-interval averaging, and makes
the aggregation frequency adaptive, such that high-frequency updates
only happen while monitored stall events are actively occurring.
With these patches applied, Android can monitor for, and ward off,
mounting memory shortages before they cause problems for the user. For
example, using memory stall monitors in userspace low memory killer
daemon (lmkd) we can detect mounting pressure and kill less important
processes before device becomes visibly sluggish. In our memory stress
testing psi memory monitors produce roughly 10x less false positives
compared to vmpressure signals. Having ability to specify multiple
triggers for the same psi metric allows other parts of Android framework
to monitor memory state of the device and act accordingly.
The new interface is straight-forward. The user opens one of the
pressure files for writing and writes a trigger description into the
file descriptor that defines the stall state - some or full, and the
maximum stall time over a given window of time. E.g.:
/* Signal when stall time exceeds 100ms of a 1s window */
char trigger[] = "full 100000 1000000"
fd = open("/proc/pressure/memory")
write(fd, trigger, sizeof(trigger))
while (poll() >= 0) {
...
};
close(fd);
When the monitored stall state is entered, psi adapts its aggregation
frequency according to what the configured time window requires in order
to emit event signals in a timely fashion. Once the stalling subsides,
aggregation reverts back to normal.
The trigger is associated with the open file descriptor. To stop
monitoring, the user only needs to close the file descriptor and the
trigger is discarded.
Patches 1-6 prepare the psi code for polling support. Patch 7
implements the adaptive polling logic, the pressure growth detection
optimized for short intervals, and hooks up write() and poll() on the
pressure files.
The patches were developed in collaboration with Johannes Weiner.
This patch (of 7):
The psi monitoring patches will need to determine the same states as
record_times(). To avoid calculating them twice, maintain a state mask
that can be consulted cheaply. Do this in a separate patch to keep the
churn in the main feature patch at a minimum.
This adds 4-byte state_mask member into psi_group_cpu struct which
results in its first cacheline-aligned part becoming 52 bytes long. Add
explicit values to enumeration element counters that affect
psi_group_cpu struct size.
Link: http://lkml.kernel.org/r/20190124211518.244221-4-surenb@google.com
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Li Zefan <lizefan@huawei.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/lee/backlight
Pull backlight updates from Lee Jones:
"Fix-ups:
- Remove unused BACKLIGHT_LCD_SUPPORT symbol
- Remove unused BACKLIGHT_CLASS_DEVICE dependencies
- Add DT support to lm3630a_bl
Bug Fixes:
- Fix error path issues in lm3630a_bl"
* tag 'backlight-next-5.2' of git://git.kernel.org/pub/scm/linux/kernel/git/lee/backlight:
backlight: lm3630a: Add firmware node support
dt-bindings: backlight: Add lm3630a bindings
backlight: lm3630a: Return 0 on success in update_status functions
video: lcd: Remove useless BACKLIGHT_CLASS_DEVICE dependencies
video: backlight: Remove useless BACKLIGHT_LCD_SUPPORT kernel symbol
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/lee/mfd
Pull MFD updates from Lee Jones:
"Core Framework:
- Document (kerneldoc) core mfd_add_devices() API
New Drivers:
- Altera SOCFPGA System Manager
- Maxim MAX77650/77651 PMIC
- Maxim MAX77663 PMIC
- ST Multi-Function eXpander (STMFX)
New Device Support:
- LEDs support in Intel Cherry Trail Whiskey Cove PMIC
- RTC support in SAMSUNG Electronics S2MPA01 PMIC
- SAM9X60 support in Atmel HLCDC (High-end LCD Controller)
- USB X-Powers AXP 8xx PMICs
- Integrated Sensor Hub (ISH) in ChromeOS EC
- USB PD Logger in ChromeOS EC
- AXP223 in X-Powers AXP series PMICs
- Power Supply in X-Powers AXP 803 PMICs
- Comet Lake in Intel Low Power Subsystem
- Fingerprint MCU in ChromeOS EC
- Touchpad MCU in ChromeOS EC
- Move TI LM3532 support to LED
New Functionality:
- max77650, max77620: Add/extend DT support
- max77620 power-off
- syscon clocking
- croc_ec host sleep event
Fix-ups:
- Trivial; Formatting, spelling, etc; Kconfig, sec-core, ab8500-debugfs
- Remove unused functionality; rk808, da9063-*
- SPDX conversion; da9063-*, atmel-*,
- Adapt/add new register definitions; cs47l35-tables, cs47l90-tables, imx6q-iomuxc-gpr
- Fix-up DT bindings; ti-lmu, cirrus,lochnagar
- Simply obtaining driver data; ssbi, t7l66xb, tc6387xb, tc6393xb
Bug Fixes:
- Fix incorrect defined values; max77620, da9063
- Fix device initialisation; twl6040
- Reset device on init; intel-lpss
- Fix build warnings when !OF; sun6i-prcm
- Register OF match tables; tps65912-spi
- Fix DMI matching; intel_quark_i2c_gpio"
* tag 'mfd-next-5.2' of git://git.kernel.org/pub/scm/linux/kernel/git/lee/mfd: (65 commits)
mfd: Use dev_get_drvdata() directly
mfd: cros_ec: Instantiate properly CrOS Touchpad MCU device
mfd: cros_ec: Instantiate properly CrOS FP MCU device
mfd: cros_ec: Update the EC feature codes
mfd: intel-lpss: Add Intel Comet Lake PCI IDs
mfd: lochnagar: Add links to binding docs for sound and hwmon
mfd: ab8500-debugfs: Fix a typo ("deubgfs")
mfd: imx6sx: Add MQS register definition for iomuxc gpr
dt-bindings: mfd: LMU: Fix lm3632 dt binding example
mfd: intel_quark_i2c_gpio: Adjust IOT2000 matching
mfd: da9063: Fix OTP control register names to match datasheets for DA9063/63L
mfd: tps65912-spi: Add missing of table registration
mfd: axp20x: Add USB power supply mfd cell to AXP803
mfd: sun6i-prcm: Fix build warning for non-OF configurations
mfd: intel-lpss: Set the device in reset state when init
platform/chrome: Add support for v1 of host sleep event
mfd: cros_ec: Add host_sleep_event_v1 command
mfd: cros_ec: Instantiate the CrOS USB PD logger driver
mfd: cs47l90: Make DAC_AEC_CONTROL_2 readable
mfd: cs47l35: Make DAC_AEC_CONTROL_2 readable
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/helgaas/pci
Pull PCI updates from Bjorn Helgaas:
"Enumeration changes:
- Add _HPX Type 3 settings support, which gives firmware more
influence over device configuration (Alexandru Gagniuc)
- Support fixed bus numbers from bridge Enhanced Allocation
capabilities (Subbaraya Sundeep)
- Add "external-facing" DT property to identify cases where we
require IOMMU protection against untrusted devices (Jean-Philippe
Brucker)
- Enable PCIe services for host controller drivers that use managed
host bridge alloc (Jean-Philippe Brucker)
- Log PCIe port service messages with pci_dev, not the pcie_device
(Frederick Lawler)
- Convert pciehp from pciehp_debug module parameter to generic
dynamic debug (Frederick Lawler)
Peer-to-peer DMA:
- Add whitelist of Root Complexes that support peer-to-peer DMA
between Root Ports (Christian König)
Native controller drivers:
- Add PCI host bridge DMA ranges for bridges that can't DMA
everywhere, e.g., iProc (Srinath Mannam)
- Add Amazon Annapurna Labs PCIe host controller driver (Jonathan
Chocron)
- Fix Tegra MSI target allocation so DMA doesn't generate unwanted
MSIs (Vidya Sagar)
- Fix of_node reference leaks (Wen Yang)
- Fix Hyper-V module unload & device removal issues (Dexuan Cui)
- Cleanup R-Car driver (Marek Vasut)
- Cleanup Keystone driver (Kishon Vijay Abraham I)
- Cleanup i.MX6 driver (Andrey Smirnov)
Significant bug fixes:
- Reset Lenovo ThinkPad P50 GPU so nouveau works after reboot (Lyude
Paul)
- Fix Switchtec firmware update performance issue (Wesley Sheng)
- Work around Pericom switch link retraining erratum (Stefan Mätje)"
* tag 'pci-v5.2-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaas/pci: (141 commits)
MAINTAINERS: Add Karthikeyan Mitran and Hou Zhiqiang for Mobiveil PCI
PCI: pciehp: Remove pointless MY_NAME definition
PCI: pciehp: Remove pointless PCIE_MODULE_NAME definition
PCI: pciehp: Remove unused dbg/err/info/warn() wrappers
PCI: pciehp: Log messages with pci_dev, not pcie_device
PCI: pciehp: Replace pciehp_debug module param with dyndbg
PCI: pciehp: Remove pciehp_debug uses
PCI/AER: Log messages with pci_dev, not pcie_device
PCI/DPC: Log messages with pci_dev, not pcie_device
PCI/PME: Replace dev_printk(KERN_DEBUG) with dev_info()
PCI/AER: Replace dev_printk(KERN_DEBUG) with dev_info()
PCI: Replace dev_printk(KERN_DEBUG) with dev_info(), etc
PCI: Replace printk(KERN_INFO) with pr_info(), etc
PCI: Use dev_printk() when possible
PCI: Cleanup setup-bus.c comments and whitespace
PCI: imx6: Allow asynchronous probing
PCI: dwc: Save root bus for driver remove hooks
PCI: dwc: Use devm_pci_alloc_host_bridge() to simplify code
PCI: dwc: Free MSI in dw_pcie_host_init() error path
PCI: dwc: Free MSI IRQ page in dw_pcie_free_msi()
...
|
|
Merge misc updates from Andrew Morton:
- a few misc things and hotfixes
- ocfs2
- almost all of MM
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (139 commits)
kernel/memremap.c: remove the unused device_private_entry_fault() export
mm: delete find_get_entries_tag
mm/huge_memory.c: make __thp_get_unmapped_area static
mm/mprotect.c: fix compilation warning because of unused 'mm' variable
mm/page-writeback: introduce tracepoint for wait_on_page_writeback()
mm/vmscan: simplify trace_reclaim_flags and trace_shrink_flags
mm/Kconfig: update "Memory Model" help text
mm/vmscan.c: don't disable irq again when count pgrefill for memcg
mm: memblock: make keeping memblock memory opt-in rather than opt-out
hugetlbfs: always use address space in inode for resv_map pointer
mm/z3fold.c: support page migration
mm/z3fold.c: add structure for buddy handles
mm/z3fold.c: improve compression by extending search
mm/z3fold.c: introduce helper functions
mm/page_alloc.c: remove unnecessary parameter in rmqueue_pcplist
mm/hmm: add ARCH_HAS_HMM_MIRROR ARCH_HAS_HMM_DEVICE Kconfig
mm/vmscan.c: simplify shrink_inactive_list()
fs/sync.c: sync_file_range(2) may use WB_SYNC_ALL writeback
xen/privcmd-buf.c: convert to use vm_map_pages_zero()
xen/gntdev.c: convert to use vm_map_pages()
...
|
|
I removed the only user of this and hadn't noticed it was now unused.
Link: http://lkml.kernel.org/r/20190430152929.21813-1-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Ross Zwisler <zwisler@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Recently there have been some hung tasks on our server due to
wait_on_page_writeback(), and we want to know the details of this
PG_writeback, i.e. this page is writing back to which device. But it is
not so convenient to get the details.
I think it would be better to introduce a tracepoint for diagnosing the
writeback details.
Link: http://lkml.kernel.org/r/1556274402-19018-1-git-send-email-laoar.shao@gmail.com
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Jan Kara <jack@suse.cz>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
trace_reclaim_flags and trace_shrink_flags are almost the same.
We can simplify them to avoid redundant code.
Link: http://lkml.kernel.org/r/1556169203-5858-1-git-send-email-laoar.shao@gmail.com
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Most architectures do not need the memblock memory after the page
allocator is initialized, but only few enable ARCH_DISCARD_MEMBLOCK in the
arch Kconfig.
Replacing ARCH_DISCARD_MEMBLOCK with ARCH_KEEP_MEMBLOCK and inverting the
logic makes it clear which architectures actually use memblock after
system initialization and skips the necessity to add ARCH_DISCARD_MEMBLOCK
to the architectures that are still missing that option.
Link: http://lkml.kernel.org/r/1556102150-32517-1-git-send-email-rppt@linux.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Acked-by: Michael Ellerman <mpe@ellerman.id.au> (powerpc)
Cc: Russell King <linux@armlinux.org.uk>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Richard Kuo <rkuo@codeaurora.org>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Paul Burton <paul.burton@mips.com>
Cc: James Hogan <jhogan@kernel.org>
Cc: Ley Foon Tan <lftan@altera.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: Rich Felker <dalias@libc.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Eric Biederman <ebiederm@xmission.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
23d0127096cb ("fs/sync.c: make sync_file_range(2) use WB_SYNC_NONE
writeback") claims that sync_file_range(2) syscall was "created for
userspace to be able to issue background writeout and so waiting for
in-flight IO is undesirable there" and changes the writeback (back) to
WB_SYNC_NONE.
This claim is only partially true. It is true for users that use the flag
SYNC_FILE_RANGE_WRITE by itself, as does PostgreSQL, the user that was the
reason for changing to WB_SYNC_NONE writeback.
However, that claim is not true for users that use that flag combination
SYNC_FILE_RANGE_{WAIT_BEFORE|WRITE|_WAIT_AFTER}. Those users explicitly
requested to wait for in-flight IO as well as to writeback of dirty pages.
Re-brand that flag combination as SYNC_FILE_RANGE_WRITE_AND_WAIT and use
WB_SYNC_ALL writeback to perform the full range sync request.
Link: http://lkml.kernel.org/r/20190409114922.30095-1-amir73il@gmail.com
Link: http://lkml.kernel.org/r/20190419072938.31320-1-amir73il@gmail.com
Fixes: 23d0127096cb ("fs/sync.c: make sync_file_range(2) use WB_SYNC_NONE")
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Acked-by: Jan Kara <jack@suse.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Patch series "mm: Use vm_map_pages() and vm_map_pages_zero() API", v5.
This patch (of 5):
Previouly drivers have their own way of mapping range of kernel
pages/memory into user vma and this was done by invoking vm_insert_page()
within a loop.
As this pattern is common across different drivers, it can be generalized
by creating new functions and using them across the drivers.
vm_map_pages() is the API which can be used to map kernel memory/pages in
drivers which have considered vm_pgoff
vm_map_pages_zero() is the API which can be used to map a range of kernel
memory/pages in drivers which have not considered vm_pgoff. vm_pgoff is
passed as default 0 for those drivers.
We _could_ then at a later "fix" these drivers which are using
vm_map_pages_zero() to behave according to the normal vm_pgoff offsetting
simply by removing the _zero suffix on the function name and if that
causes regressions, it gives us an easy way to revert.
Tested on Rockchip hardware and display is working, including talking to
Lima via prime.
Link: http://lkml.kernel.org/r/751cb8a0f4c3e67e95c58a3b072937617f338eea.1552921225.git.jrdr.linux@gmail.com
Signed-off-by: Souptick Joarder <jrdr.linux@gmail.com>
Suggested-by: Russell King <linux@armlinux.org.uk>
Suggested-by: Matthew Wilcox <willy@infradead.org>
Reviewed-by: Mike Rapoport <rppt@linux.ibm.com>
Tested-by: Heiko Stuebner <heiko@sntech.de>
Cc: Michal Hocko <mhocko@suse.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Rik van Riel <riel@surriel.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Robin Murphy <robin.murphy@arm.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Thierry Reding <treding@nvidia.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Stefan Richter <stefanr@s5r6.in-berlin.de>
Cc: Sandy Huang <hjc@rock-chips.com>
Cc: David Airlie <airlied@linux.ie>
Cc: Oleksandr Andrushchenko <oleksandr_andrushchenko@epam.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Pawel Osciak <pawel@osciak.com>
Cc: Kyungmin Park <kyungmin.park@samsung.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Mauro Carvalho Chehab <mchehab@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
All callers of arch_remove_memory() ignore errors. And we should really
try to remove any errors from the memory removal path. No more errors are
reported from __remove_pages(). BUG() in s390x code in case
arch_remove_memory() is triggered. We may implement that properly later.
WARN in case powerpc code failed to remove the section mapping, which is
better than ignoring the error completely right now.
Link: http://lkml.kernel.org/r/20190409100148.24703-5-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Cc: Rich Felker <dalias@libc.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Oscar Salvador <osalvador@suse.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Stefan Agner <stefan@agner.ch>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Arun KS <arunks@codeaurora.org>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Masahiro Yamada <yamada.masahiro@socionext.com>
Cc: Rob Herring <robh@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Qian Cai <cai@lca.pw>
Cc: Mathieu Malaterre <malat@debian.org>
Cc: Andrew Banman <andrew.banman@hpe.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Mike Travis <mike.travis@hpe.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Failing while removing memory is mostly ignored and cannot really be
handled. Let's treat errors in unregister_memory_section() in a nice way,
warning, but continuing.
Link: http://lkml.kernel.org/r/20190409100148.24703-3-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Andrew Banman <andrew.banman@hpe.com>
Cc: Mike Travis <mike.travis@hpe.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Qian Cai <cai@lca.pw>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Arun KS <arunks@codeaurora.org>
Cc: Mathieu Malaterre <malat@debian.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Masahiro Yamada <yamada.masahiro@socionext.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Oscar Salvador <osalvador@suse.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rich Felker <dalias@libc.org>
Cc: Rob Herring <robh@kernel.org>
Cc: Stefan Agner <stefan@agner.ch>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
arch_add_memory, __add_pages take a want_memblock which controls whether
the newly added memory should get the sysfs memblock user API (e.g.
ZONE_DEVICE users do not want/need this interface). Some callers even
want to control where do we allocate the memmap from by configuring
altmap.
Add a more generic hotplug context for arch_add_memory and __add_pages.
struct mhp_restrictions contains flags which contains additional features
to be enabled by the memory hotplug (MHP_MEMBLOCK_API currently) and
altmap for alternative memmap allocator.
This patch shouldn't introduce any functional change.
[akpm@linux-foundation.org: build fix]
Link: http://lkml.kernel.org/r/20190408082633.2864-3-osalvador@suse.de
Signed-off-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
check_pages_isolated_cb currently accounts the whole pfn range as being
offlined if test_pages_isolated suceeds on the range. This is based on
the assumption that all pages in the range are freed which is currently
the case in most cases but it won't be with later changes, as pages marked
as vmemmap won't be isolated.
Move the offlined pages counting to offline_isolated_pages_cb and rely on
__offline_isolated_pages to return the correct value.
check_pages_isolated_cb will still do it's primary job and check the pfn
range.
While we are at it remove check_pages_isolated and offline_isolated_pages
and use directly walk_system_ram_range as do in online_pages.
Link: http://lkml.kernel.org/r/20190408082633.2864-2-osalvador@suse.de
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Oscar Salvador <osalvador@suse.de>
Cc: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Add yet another iterator, for_each_free_mem_range_in_zone_from, and then
use it to support initializing and freeing pages in groups no larger than
MAX_ORDER_NR_PAGES. By doing this we can greatly improve the cache
locality of the pages while we do several loops over them in the init and
freeing process.
We are able to tighten the loops further as a result of the "from"
iterator as we can perform the initial checks for first_init_pfn in our
first call to the iterator, and continue without the need for those checks
via the "from" iterator. I have added this functionality in the function
called deferred_init_mem_pfn_range_in_zone that primes the iterator and
causes us to exit if we encounter any failure.
On my x86_64 test system with 384GB of memory per node I saw a reduction
in initialization time from 1.85s to 1.38s as a result of this patch.
Link: http://lkml.kernel.org/r/20190405221231.12227.85836.stgit@localhost.localdomain
Signed-off-by: Alexander Duyck <alexander.h.duyck@linux.intel.com>
Reviewed-by: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: <yi.z.zhang@linux.intel.com>
Cc: Khalid Aziz <khalid.aziz@oracle.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Laurent Dufour <ldufour@linux.vnet.ibm.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: David S. Miller <davem@davemloft.net>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Pavel Tatashin <pavel.tatashin@microsoft.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Introduce a new iterator for_each_free_mem_pfn_range_in_zone.
This iterator will take care of making sure a given memory range provided
is in fact contained within a zone. It takes are of all the bounds
checking we were doing in deferred_grow_zone, and deferred_init_memmap.
In addition it should help to speed up the search a bit by iterating until
the end of a range is greater than the start of the zone pfn range, and
will exit completely if the start is beyond the end of the zone.
Link: http://lkml.kernel.org/r/20190405221225.12227.22573.stgit@localhost.localdomain
Signed-off-by: Alexander Duyck <alexander.h.duyck@linux.intel.com>
Reviewed-by: Pavel Tatashin <pasha.tatashin@soleen.com>
Reviewed-by: Mike Rapoport <rppt@linux.ibm.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Khalid Aziz <khalid.aziz@oracle.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Laurent Dufour <ldufour@linux.vnet.ibm.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Pavel Tatashin <pavel.tatashin@microsoft.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: <yi.z.zhang@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Patch series "Deferred page init improvements", v7.
This patchset is essentially a refactor of the page initialization logic
that is meant to provide for better code reuse while providing a
significant improvement in deferred page initialization performance.
In my testing on an x86_64 system with 384GB of RAM I have seen the
following. In the case of regular memory initialization the deferred init
time was decreased from 3.75s to 1.38s on average. This amounts to a 172%
improvement for the deferred memory initialization performance.
I have called out the improvement observed with each patch.
This patch (of 4):
Use the same approach that was already in use on Sparc on all the
architectures that support a 64b long.
This is mostly motivated by the fact that 7 to 10 store/move instructions
are likely always going to be faster than having to call into a function
that is not specialized for handling page init.
An added advantage to doing it this way is that the compiler can get away
with combining writes in the __init_single_page call. As a result the
memset call will be reduced to only about 4 write operations, or at least
that is what I am seeing with GCC 6.2 as the flags, LRU pointers, and
count/mapcount seem to be cancelling out at least 4 of the 8 assignments
on my system.
One change I had to make to the function was to reduce the minimum page
size to 56 to support some powerpc64 configurations.
This change should introduce no change on SPARC since it already had this
code. In the case of x86_64 I saw a reduction from 3.75s to 2.80s when
initializing 384GB of RAM per node. Pavel Tatashin tested on a system
with Broadcom's Stingray CPU and 48GB of RAM and found that
__init_single_page() takes 19.30ns / 64-byte struct page before this patch
and with this patch it takes 17.33ns / 64-byte struct page. Mike Rapoport
ran a similar test on a OpenPower (S812LC 8348-21C) with Power8 processor
and 128GB or RAM. His results per 64-byte struct page were 4.68ns before,
and 4.59ns after this patch.
Link: http://lkml.kernel.org/r/20190405221213.12227.9392.stgit@localhost.localdomain
Signed-off-by: Alexander Duyck <alexander.h.duyck@linux.intel.com>
Reviewed-by: Pavel Tatashin <pavel.tatashin@microsoft.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Khalid Aziz <khalid.aziz@oracle.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Laurent Dufour <ldufour@linux.vnet.ibm.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: <yi.z.zhang@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Helper to test if a range is updated to read only (it is still valid to
read from the range). This is useful for device driver or anyone who wish
to optimize out update when they know that they already have the range map
read only.
Link: http://lkml.kernel.org/r/20190326164747.24405-9-jglisse@redhat.com
Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
Reviewed-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Cc: Christian König <christian.koenig@amd.com>
Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Cc: Jani Nikula <jani.nikula@linux.intel.com>
Cc: Rodrigo Vivi <rodrigo.vivi@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Felix Kuehling <Felix.Kuehling@amd.com>
Cc: Jason Gunthorpe <jgg@mellanox.com>
Cc: Ross Zwisler <zwisler@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krcmar <rkrcmar@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Christian Koenig <christian.koenig@amd.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
CPU page table update can happens for many reasons, not only as a result
of a syscall (munmap(), mprotect(), mremap(), madvise(), ...) but also as
a result of kernel activities (memory compression, reclaim, migration,
...).
Users of mmu notifier API track changes to the CPU page table and take
specific action for them. While current API only provide range of virtual
address affected by the change, not why the changes is happening
This patch is just passing down the new informations by adding it to the
mmu_notifier_range structure.
Link: http://lkml.kernel.org/r/20190326164747.24405-8-jglisse@redhat.com
Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
Reviewed-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Cc: Christian König <christian.koenig@amd.com>
Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Cc: Jani Nikula <jani.nikula@linux.intel.com>
Cc: Rodrigo Vivi <rodrigo.vivi@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Felix Kuehling <Felix.Kuehling@amd.com>
Cc: Jason Gunthorpe <jgg@mellanox.com>
Cc: Ross Zwisler <zwisler@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krcmar <rkrcmar@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Christian Koenig <christian.koenig@amd.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
CPU page table update can happens for many reasons, not only as a result
of a syscall (munmap(), mprotect(), mremap(), madvise(), ...) but also as
a result of kernel activities (memory compression, reclaim, migration,
...).
Users of mmu notifier API track changes to the CPU page table and take
specific action for them. While current API only provide range of virtual
address affected by the change, not why the changes is happening.
This patchset do the initial mechanical convertion of all the places that
calls mmu_notifier_range_init to also provide the default MMU_NOTIFY_UNMAP
event as well as the vma if it is know (most invalidation happens against
a given vma). Passing down the vma allows the users of mmu notifier to
inspect the new vma page protection.
The MMU_NOTIFY_UNMAP is always the safe default as users of mmu notifier
should assume that every for the range is going away when that event
happens. A latter patch do convert mm call path to use a more appropriate
events for each call.
This is done as 2 patches so that no call site is forgotten especialy
as it uses this following coccinelle patch:
%<----------------------------------------------------------------------
@@
identifier I1, I2, I3, I4;
@@
static inline void mmu_notifier_range_init(struct mmu_notifier_range *I1,
+enum mmu_notifier_event event,
+unsigned flags,
+struct vm_area_struct *vma,
struct mm_struct *I2, unsigned long I3, unsigned long I4) { ... }
@@
@@
-#define mmu_notifier_range_init(range, mm, start, end)
+#define mmu_notifier_range_init(range, event, flags, vma, mm, start, end)
@@
expression E1, E3, E4;
identifier I1;
@@
<...
mmu_notifier_range_init(E1,
+MMU_NOTIFY_UNMAP, 0, I1,
I1->vm_mm, E3, E4)
...>
@@
expression E1, E2, E3, E4;
identifier FN, VMA;
@@
FN(..., struct vm_area_struct *VMA, ...) {
<...
mmu_notifier_range_init(E1,
+MMU_NOTIFY_UNMAP, 0, VMA,
E2, E3, E4)
...> }
@@
expression E1, E2, E3, E4;
identifier FN, VMA;
@@
FN(...) {
struct vm_area_struct *VMA;
<...
mmu_notifier_range_init(E1,
+MMU_NOTIFY_UNMAP, 0, VMA,
E2, E3, E4)
...> }
@@
expression E1, E2, E3, E4;
identifier FN;
@@
FN(...) {
<...
mmu_notifier_range_init(E1,
+MMU_NOTIFY_UNMAP, 0, NULL,
E2, E3, E4)
...> }
---------------------------------------------------------------------->%
Applied with:
spatch --all-includes --sp-file mmu-notifier.spatch fs/proc/task_mmu.c --in-place
spatch --sp-file mmu-notifier.spatch --dir kernel/events/ --in-place
spatch --sp-file mmu-notifier.spatch --dir mm --in-place
Link: http://lkml.kernel.org/r/20190326164747.24405-6-jglisse@redhat.com
Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
Reviewed-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Cc: Christian König <christian.koenig@amd.com>
Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Cc: Jani Nikula <jani.nikula@linux.intel.com>
Cc: Rodrigo Vivi <rodrigo.vivi@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Felix Kuehling <Felix.Kuehling@amd.com>
Cc: Jason Gunthorpe <jgg@mellanox.com>
Cc: Ross Zwisler <zwisler@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krcmar <rkrcmar@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Christian Koenig <christian.koenig@amd.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
CPU page table update can happens for many reasons, not only as a result
of a syscall (munmap(), mprotect(), mremap(), madvise(), ...) but also as
a result of kernel activities (memory compression, reclaim, migration,
...).
This patch introduce a set of enums that can be associated with each of
the events triggering a mmu notifier. Latter patches take advantages of
those enum values.
- UNMAP: munmap() or mremap()
- CLEAR: page table is cleared (migration, compaction, reclaim, ...)
- PROTECTION_VMA: change in access protections for the range
- PROTECTION_PAGE: change in access protections for page in the range
- SOFT_DIRTY: soft dirtyness tracking
Being able to identify munmap() and mremap() from other reasons why the
page table is cleared is important to allow user of mmu notifier to update
their own internal tracking structure accordingly (on munmap or mremap it
is not longer needed to track range of virtual address as it becomes
invalid).
Link: http://lkml.kernel.org/r/20190326164747.24405-5-jglisse@redhat.com
Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
Reviewed-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Cc: Christian König <christian.koenig@amd.com>
Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Cc: Jani Nikula <jani.nikula@linux.intel.com>
Cc: Rodrigo Vivi <rodrigo.vivi@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Felix Kuehling <Felix.Kuehling@amd.com>
Cc: Jason Gunthorpe <jgg@mellanox.com>
Cc: Ross Zwisler <zwisler@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krcmar <rkrcmar@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Christian Koenig <christian.koenig@amd.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Use an unsigned field for flags other than blockable and convert the
blockable field to be one of those flags.
Link: http://lkml.kernel.org/r/20190326164747.24405-4-jglisse@redhat.com
Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
Reviewed-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Cc: Christian König <christian.koenig@amd.com>
Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Cc: Jani Nikula <jani.nikula@linux.intel.com>
Cc: Rodrigo Vivi <rodrigo.vivi@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Felix Kuehling <Felix.Kuehling@amd.com>
Cc: Jason Gunthorpe <jgg@mellanox.com>
Cc: Ross Zwisler <zwisler@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krcmar <rkrcmar@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Christian Koenig <christian.koenig@amd.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Patch series "mmu notifier provide context informations", v6.
Here I am not posting users of this, they already have been posted to
appropriate mailing list [6] and will be merge through the appropriate
tree once this patchset is upstream.
Note that this serie does not change any behavior for any existing code.
It just pass down more information to mmu notifier listener.
The rationale for this patchset:
CPU page table update can happens for many reasons, not only as a result
of a syscall (munmap(), mprotect(), mremap(), madvise(), ...) but also as
a result of kernel activities (memory compression, reclaim, migration,
...).
This patchset introduce a set of enums that can be associated with each of
the events triggering a mmu notifier:
- UNMAP: munmap() or mremap()
- CLEAR: page table is cleared (migration, compaction, reclaim, ...)
- PROTECTION_VMA: change in access protections for the range
- PROTECTION_PAGE: change in access protections for page in the range
- SOFT_DIRTY: soft dirtyness tracking
Being able to identify munmap() and mremap() from other reasons why the
page table is cleared is important to allow user of mmu notifier to update
their own internal tracking structure accordingly (on munmap or mremap it
is not longer needed to track range of virtual address as it becomes
invalid). Without this serie, driver are force to assume that every
notification is an munmap which triggers useless trashing within drivers
that associate structure with range of virtual address. Each driver is
force to free up its tracking structure and then restore it on next device
page fault. With this series we can also optimize device page table update. Patches to use this are at
https://lkml.org/lkml/2019/1/23/833
https://lkml.org/lkml/2019/1/23/834
https://lkml.org/lkml/2019/1/23/832
https://lkml.org/lkml/2019/1/23/831
Moreover this can also be used to optimize out some page table updates
such as for KVM where we can update the secondary MMU directly from the
callback instead of clearing it.
ACKS AMD/RADEON https://lkml.org/lkml/2019/2/1/395
ACKS RDMA https://lkml.org/lkml/2018/12/6/1473
This patch (of 8):
Simple helpers to test if range invalidation is blockable. Latter patches
use cocinnelle to convert all direct dereference of range-> blockable to
use this function instead so that we can convert the blockable field to an
unsigned for more flags.
Link: http://lkml.kernel.org/r/20190326164747.24405-2-jglisse@redhat.com
Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
Reviewed-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Cc: Christian König <christian.koenig@amd.com>
Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Cc: Jani Nikula <jani.nikula@linux.intel.com>
Cc: Rodrigo Vivi <rodrigo.vivi@intel.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Felix Kuehling <Felix.Kuehling@amd.com>
Cc: Jason Gunthorpe <jgg@mellanox.com>
Cc: Ross Zwisler <zwisler@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krcmar <rkrcmar@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Christian Koenig <christian.koenig@amd.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Convert hmm_pfn_* to device_entry_* as here we are dealing with device
driver specific entry format and hmm provide helpers to allow differents
components (including HMM) to create/parse device entry.
We keep wrapper with the old name so that we can convert driver to use the
new API in stages in each device driver tree. This will get remove once
all driver are converted.
Link: http://lkml.kernel.org/r/20190403193318.16478-13-jglisse@redhat.com
Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Souptick Joarder <jrdr.linux@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
This is a all in one helper that fault pages in a range and map them to a
device so that every single device driver do not have to re-implement this
common pattern.
This is taken from ODP RDMA in preparation of ODP RDMA convertion. It
will be use by nouveau and other drivers.
[jglisse@redhat.com: Was using wrong field and wrong enum]
Link: http://lkml.kernel.org/r/20190409175340.26614-1-jglisse@redhat.com
Link: http://lkml.kernel.org/r/20190403193318.16478-12-jglisse@redhat.com
Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Souptick Joarder <jrdr.linux@gmail.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The device driver can have kernel thread or worker doing work against a
process mm and it is useful for those to test wether the mm is dead or
alive to avoid doing useless work. Add an helper to test that so that
driver can bail out early if a process is dying.
Note that the helper does not perform any lock synchronization and thus is
just a hint ie a process might be dying but the helper might still return
the process as alive. All HMM functions are safe to use in that case as
HMM internal properly protect itself with lock. If driver use this helper
with non HMM functions it should ascertain that it is safe to do so.
Link: http://lkml.kernel.org/r/20190403193318.16478-11-jglisse@redhat.com
Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Souptick Joarder <jrdr.linux@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
HMM mirror is a device driver helpers to mirror range of virtual address.
It means that the process jobs running on the device can access the same
virtual address as the CPU threads of that process. This patch adds
support for hugetlbfs mapping (ie range of virtual address that are mmap
of a hugetlbfs).
[rcampbell@nvidia.com: fix initial PFN for hugetlbfs pages]
Link: http://lkml.kernel.org/r/20190419233536.8080-1-rcampbell@nvidia.com
Link: http://lkml.kernel.org/r/20190403193318.16478-9-jglisse@redhat.com
Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
Signed-off-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Souptick Joarder <jrdr.linux@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The HMM mirror API can be use in two fashions. The first one where the
HMM user coalesce multiple page faults into one request and set flags per
pfns for of those faults. The second one where the HMM user want to
pre-fault a range with specific flags. For the latter one it is a waste
to have the user pre-fill the pfn arrays with a default flags value.
This patch adds a default flags value allowing user to set them for a
range without having to pre-fill the pfn array.
Link: http://lkml.kernel.org/r/20190403193318.16478-8-jglisse@redhat.com
Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
Reviewed-by: Ralph Campbell <rcampbell@nvidia.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Souptick Joarder <jrdr.linux@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
A common use case for HMM mirror is user trying to mirror a range and
before they could program the hardware it get invalidated by some core mm
event. Instead of having user re-try right away to mirror the range
provide a completion mechanism for them to wait for any active
invalidation affecting the range.
This also changes how hmm_range_snapshot() and hmm_range_fault() works by
not relying on vma so that we can drop the mmap_sem when waiting and
lookup the vma again on retry.
Link: http://lkml.kernel.org/r/20190403193318.16478-7-jglisse@redhat.com
Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
Reviewed-by: Ralph Campbell <rcampbell@nvidia.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: Souptick Joarder <jrdr.linux@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Minor optimization around hmm_pte_need_fault(). Rename for consistency
between code, comments and documentation. Also improves the comments on
all the possible returns values. Improve the function by returning the
number of populated entries in pfns array.
Link: http://lkml.kernel.org/r/20190403193318.16478-6-jglisse@redhat.com
Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
Reviewed-by: Ralph Campbell <rcampbell@nvidia.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Souptick Joarder <jrdr.linux@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Rename for consistency between code, comments and documentation. Also
improves the comments on all the possible returns values. Improve the
function by returning the number of populated entries in pfns array.
Link: http://lkml.kernel.org/r/20190403193318.16478-5-jglisse@redhat.com
Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
Reviewed-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Souptick Joarder <jrdr.linux@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Every time I read the code to check that the HMM structure does not vanish
before it should thanks to the many lock protecting its removal i get a
headache. Switch to reference counting instead it is much easier to
follow and harder to break. This also remove some code that is no longer
needed with refcounting.
Link: http://lkml.kernel.org/r/20190403193318.16478-3-jglisse@redhat.com
Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
Reviewed-by: Ralph Campbell <rcampbell@nvidia.com>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Souptick Joarder <jrdr.linux@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|