Age | Commit message (Collapse) | Author |
|
Just check inode_unhashed on the whole device bdev inode instead,
and provide a helper to check for that information.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Link: https://lore.kernel.org/r/20210809064028.1198327-9-hch@lst.de
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
Just retrieve the bdi from the disk.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jan Kara <jack@suse.cz>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Link: https://lore.kernel.org/r/20210809141744.1203023-6-hch@lst.de
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
The backing device information only makes sense for file system I/O,
and thus belongs into the gendisk and not the lower level request_queue
structure. Move it there.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Link: https://lore.kernel.org/r/20210809141744.1203023-5-hch@lst.de
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
Invert they way the holder relations are tracked. This very
slightly reduces the memory overhead for partitioned devices.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Link: https://lore.kernel.org/r/20210804094147.459763-4-hch@lst.de
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
Move the block holder code into a separate file as it is not in any way
related to the other block_dev.c code, and add a new selectable config
option for it so that we don't have to build it without any remapped
drivers selected.
The Kconfig symbol contains a _DEPRECATED suffix to match the comments
added in commit 49731baa41df
("block: restore multiple bd_link_disk_holder() support").
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Mike Snitzer <snitzer@redhat.com>
Link: https://lore.kernel.org/r/20210804094147.459763-2-hch@lst.de
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
Now that we've stopped using inode references for anything meaninful
in the block layer get rid of the helper to put it and just open code
the call to iput on the block_device inode.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Chaitanya Kulkarni <ckulkarnilinux@gmail.com>
Link: https://lore.kernel.org/r/20210722075402.983367-10-hch@lst.de
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
All callers are gone, and no one should grab a pure inode reference to
a block device anymore.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Link: https://lore.kernel.org/r/20210722075402.983367-9-hch@lst.de
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
Instead of acquiring an inode reference on open make sure partitions
always hold device model references to the disk while alive, and switch
open to grab only a device model reference to the opened block device.
If that is a partition the disk reference is transitively held by the
partition already.
Link: https://lore.kernel.org/r/20210722075402.983367-6-hch@lst.de
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
Unhash the whole device inode early in del_gendisk. This allows to
remove the first GENHD_FL_UP check in the open path as we simply
won't find a just removed inode. The second non-racy check after
taking open_mutex is still kept.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Link: https://lore.kernel.org/r/20210722075402.983367-4-hch@lst.de
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
Pull xfs fixes from Darrick Wong:
"This contains a bunch of bug fixes in XFS.
Dave and I have been busy the last couple of weeks to find and fix as
many log recovery bugs as we can find; here are the results so far. Go
fstests -g recoveryloop! ;)
- Fix a number of coordination bugs relating to cache flushes for
metadata writeback, cache flushes for multi-buffer log writes, and
FUA writes for single-buffer log writes
- Fix a bug with incorrect replay of attr3 blocks
- Fix unnecessary stalls when flushing logs to disk
- Fix spoofing problems when recovering realtime bitmap blocks"
* tag 'xfs-5.14-fixes-2' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux:
xfs: prevent spoofing of rtbitmap blocks when recovering buffers
xfs: limit iclog tail updates
xfs: need to see iclog flags in tracing
xfs: Enforce attr3 buffer recovery order
xfs: logging the on disk inode LSN can make it go backwards
xfs: avoid unnecessary waits in xfs_log_force_lsn()
xfs: log forces imply data device cache flushes
xfs: factor out forced iclog flushes
xfs: fix ordering violation between cache flushes and tail updates
xfs: fold __xlog_state_release_iclog into xlog_state_release_iclog
xfs: external logs need to flush data device
xfs: flush data dev on external log write
|
|
Pull cifs fixes from Steve French:
"Three cifs/smb3 fixes, including two for stable, and a fix for an
fallocate problem noticed by Clang"
* tag '5.14-rc3-smb3-fixes' of git://git.samba.org/sfrench/cifs-2.6:
cifs: add missing parsing of backupuid
smb3: rc uninitialized in one fallocate path
SMB3: fix readpage for large swap cache
|
|
Since commit 1b6b26ae7053 ("pipe: fix and clarify pipe write wakeup
logic") we have sanitized the pipe write logic, and would only try to
wake up readers if they needed it.
In particular, if the pipe already had data in it before the write,
there was no point in trying to wake up a reader, since any existing
readers must have been aware of the pre-existing data already. Doing
extraneous wakeups will only cause potential thundering herd problems.
However, it turns out that some Android libraries have misused the EPOLL
interface, and expected "edge triggered" be to "any new write will
trigger it". Even if there was no edge in sight.
Quoting Sandeep Patil:
"The commit 1b6b26ae7053 ('pipe: fix and clarify pipe write wakeup
logic') changed pipe write logic to wakeup readers only if the pipe
was empty at the time of write. However, there are libraries that
relied upon the older behavior for notification scheme similar to
what's described in [1]
One such library 'realm-core'[2] is used by numerous Android
applications. The library uses a similar notification mechanism as GNU
Make but it never drains the pipe until it is full. When Android moved
to v5.10 kernel, all applications using this library stopped working.
The library has since been fixed[3] but it will be a while before all
applications incorporate the updated library"
Our regression rule for the kernel is that if applications break from
new behavior, it's a regression, even if it was because the application
did something patently wrong. Also note the original report [4] by
Michal Kerrisk about a test for this epoll behavior - but at that point
we didn't know of any actual broken use case.
So add the extraneous wakeup, to approximate the old behavior.
[ I say "approximate", because the exact old behavior was to do a wakeup
not for each write(), but for each pipe buffer chunk that was filled
in. The behavior introduced by this change is not that - this is just
"every write will cause a wakeup, whether necessary or not", which
seems to be sufficient for the broken library use. ]
It's worth noting that this adds the extraneous wakeup only for the
write side, while the read side still considers the "edge" to be purely
about reading enough from the pipe to allow further writes.
See commit f467a6a66419 ("pipe: fix and clarify pipe read wakeup logic")
for the pipe read case, which remains that "only wake up if the pipe was
full, and we read something from it".
Link: https://lore.kernel.org/lkml/CAHk-=wjeG0q1vgzu4iJhW5juPkTsjTYmiqiMUYAebWW+0bam6w@mail.gmail.com/ [1]
Link: https://github.com/realm/realm-core [2]
Link: https://github.com/realm/realm-core/issues/4666 [3]
Link: https://lore.kernel.org/lkml/CAKgNAkjMBGeAwF=2MKK758BhxvW58wYTgYKB2V-gY1PwXxrH+Q@mail.gmail.com/ [4]
Link: https://lore.kernel.org/lkml/20210729222635.2937453-1-sspatil@android.com/
Reported-by: Sandeep Patil <sspatil@android.com>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Pull block fixes from Jens Axboe:
- gendisk freeing fix (Christoph)
- blk-iocost wake ordering fix (Tejun)
- tag allocation error handling fix (John)
- loop locking fix. While this isn't the prettiest fix in the world,
nobody has any good alternatives for 5.14. Something to likely
revisit for 5.15. (Tetsuo)
* tag 'block-5.14-2021-07-30' of git://git.kernel.dk/linux-block:
block: delay freeing the gendisk
blk-iocost: fix operation ordering in iocg_wake_fn()
blk-mq-sched: Fix blk_mq_sched_alloc_tags() error handling
loop: reintroduce global lock for safe loop_validate_file() traversal
|
|
Pull io_uring fixes from Jens Axboe:
- A fix for block backed reissue (me)
- Reissue context hardening (me)
- Async link locking fix (Pavel)
* tag 'io_uring-5.14-2021-07-30' of git://git.kernel.dk/linux-block:
io_uring: fix poll requests leaking second poll entries
io_uring: don't block level reissue off completion path
io_uring: always reissue from task_work context
io_uring: fix race in unified task_work running
io_uring: fix io_prep_async_link locking
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
- fix -Warray-bounds warning, to help external patchset to make it
default treewide
- fix writeable device accounting (syzbot report)
- fix fsync and log replay after a rename and inode eviction
- fix potentially lost error code when submitting multiple bios for
compressed range
* tag 'for-5.14-rc3-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: calculate number of eb pages properly in csum_tree_block
btrfs: fix rw device counting in __btrfs_free_extra_devids
btrfs: fix lost inode on log replay after mix of fsync, rename and inode eviction
btrfs: mark compressed range uptodate only if all bio succeed
|
|
Merge misc fixes from Andrew Morton:
"7 patches.
Subsystems affected by this patch series: lib, ocfs2, and mm (slub,
migration, and memcg)"
* emailed patches from Andrew Morton <akpm@linux-foundation.org>:
mm/memcg: fix NULL pointer dereference in memcg_slab_free_hook()
slub: fix unreclaimable slab stat for bulk free
mm/migrate: fix NR_ISOLATED corruption on 64-bit
mm: memcontrol: fix blocking rstat function called from atomic cgroup1 thresholding code
ocfs2: issue zeroout to EOF blocks
ocfs2: fix zero out valid data
lib/test_string.c: move string selftest in the Runtime Testing menu
|
|
For punch holes in EOF blocks, fallocate used buffer write to zero the
EOF blocks in last cluster. But since ->writepage will ignore EOF
pages, those zeros will not be flushed.
This "looks" ok as commit 6bba4471f0cc ("ocfs2: fix data corruption by
fallocate") will zero the EOF blocks when extend the file size, but it
isn't. The problem happened on those EOF pages, before writeback, those
pages had DIRTY flag set and all buffer_head in them also had DIRTY flag
set, when writeback run by write_cache_pages(), DIRTY flag on the page
was cleared, but DIRTY flag on the buffer_head not.
When next write happened to those EOF pages, since buffer_head already
had DIRTY flag set, it would not mark page DIRTY again. That made
writeback ignore them forever. That will cause data corruption. Even
directio write can't work because it will fail when trying to drop pages
caches before direct io, as it found the buffer_head for those pages
still had DIRTY flag set, then it will fall back to buffer io mode.
To make a summary of the issue, as writeback ingores EOF pages, once any
EOF page is generated, any write to it will only go to the page cache,
it will never be flushed to disk even file size extends and that page is
not EOF page any more. The fix is to avoid zero EOF blocks with buffer
write.
The following code snippet from qemu-img could trigger the corruption.
656 open("6b3711ae-3306-4bdd-823c-cf1c0060a095.conv.2", O_RDWR|O_DIRECT|O_CLOEXEC) = 11
...
660 fallocate(11, FALLOC_FL_KEEP_SIZE|FALLOC_FL_PUNCH_HOLE, 2275868672, 327680 <unfinished ...>
660 fallocate(11, 0, 2275868672, 327680) = 0
658 pwrite64(11, "
Link: https://lkml.kernel.org/r/20210722054923.24389-2-junxiao.bi@oracle.com
Signed-off-by: Junxiao Bi <junxiao.bi@oracle.com>
Reviewed-by: Joseph Qi <joseph.qi@linux.alibaba.com>
Cc: Mark Fasheh <mark@fasheh.com>
Cc: Joel Becker <jlbec@evilplan.org>
Cc: Changwei Ge <gechangwei@live.cn>
Cc: Gang He <ghe@suse.com>
Cc: Jun Piao <piaojun@huawei.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
If append-dio feature is enabled, direct-io write and fallocate could
run in parallel to extend file size, fallocate used "orig_isize" to
record i_size before taking "ip_alloc_sem", when
ocfs2_zeroout_partial_cluster() zeroout EOF blocks, i_size maybe already
extended by ocfs2_dio_end_io_write(), that will cause valid data zeroed
out.
Link: https://lkml.kernel.org/r/20210722054923.24389-1-junxiao.bi@oracle.com
Fixes: 6bba4471f0cc ("ocfs2: fix data corruption by fallocate")
Signed-off-by: Junxiao Bi <junxiao.bi@oracle.com>
Reviewed-by: Joseph Qi <joseph.qi@linux.alibaba.com>
Cc: Changwei Ge <gechangwei@live.cn>
Cc: Gang He <ghe@suse.com>
Cc: Joel Becker <jlbec@evilplan.org>
Cc: Jun Piao <piaojun@huawei.com>
Cc: Mark Fasheh <mark@fasheh.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/mattst88/alpha
Pull alpha updates from Matt Turner:
"They're mostly small janitorial fixes but there's also more important
ones:
- drop the alpha-specific x86 binary loader (David Hildenbrand)
- regression fix for at least Marvel platforms (Mike Rapoport)
- fix for a scary-looking typo (Zheng Yongjun)"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mattst88/alpha:
alpha: register early reserved memory in memblock
alpha: fix spelling mistakes
alpha: Remove space between * and parameter name
alpha: fp_emul: avoid init/cleanup_module names
alpha: Add syscall_get_return_value()
binfmt: remove support for em86 (alpha only)
alpha: fix typos in a comment
alpha: defconfig: add necessary configs for boot testing
alpha: Send stop IPI to send to online CPUs
alpha: convert comma to semicolon
alpha: remove undef inline in compiler.h
alpha: Kconfig: Replace HTTP links with HTTPS ones
alpha: __udiv_qrnnd should be exported
|
|
While reviewing the buffer item recovery code, the thought occurred to
me: in V5 filesystems we use log sequence number (LSN) tracking to avoid
replaying older metadata updates against newer log items. However, we
use the magic number of the ondisk buffer to find the LSN of the ondisk
metadata, which means that if an attacker can control the layout of the
realtime device precisely enough that the start of an rt bitmap block
matches the magic and UUID of some other kind of block, they can control
the purported LSN of that spoofed block and thereby break log replay.
Since realtime bitmap and summary blocks don't have headers at all, we
have no way to tell if a block really should be replayed. The best we
can do is replay unconditionally and hope for the best.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com>
|
|
From the department of "generic/482 keeps on giving", we bring you
another tail update race condition:
iclog:
S1 C1
+-----------------------+-----------------------+
S2 EOIC
Two checkpoints in a single iclog. One is complete, the other just
contains the start record and overruns into a new iclog.
Timeline:
Before S1: Cache flush, log tail = X
At S1: Metadata stable, write start record and checkpoint
At C1: Write commit record, set NEED_FUA
Single iclog checkpoint, so no need for NEED_FLUSH
Log tail still = X, so no need for NEED_FLUSH
After C1,
Before S2: Cache flush, log tail = X
At S2: Metadata stable, write start record and checkpoint
After S2: Log tail moves to X+1
At EOIC: End of iclog, more journal data to write
Releases iclog
Not a commit iclog, so no need for NEED_FLUSH
Writes log tail X+1 into iclog.
At this point, the iclog has tail X+1 and NEED_FUA set. There has
been no cache flush for the metadata between X and X+1, and the
iclog writes the new tail permanently to the log. THis is sufficient
to violate on disk metadata/journal ordering.
We have two options here. The first is to detect this case in some
manner and ensure that the partial checkpoint write sets NEED_FLUSH
when the iclog is already marked NEED_FUA and the log tail changes.
This seems somewhat fragile and quite complex to get right, and it
doesn't actually make it obvious what underlying problem it is
actually addressing from reading the code.
The second option seems much cleaner to me, because it is derived
directly from the requirements of the C1 commit record in the iclog.
That is, when we write this commit record to the iclog, we've
guaranteed that the metadata/data ordering is correct for tail
update purposes. Hence if we only write the log tail into the iclog
for the *first* commit record rather than the log tail at the last
release, we guarantee that the log tail does not move past where the
the first commit record in the log expects it to be.
IOWs, taking the first option means that replay of C1 becomes
dependent on future operations doing the right thing, not just the
C1 checkpoint itself doing the right thing. This makes log recovery
almost impossible to reason about because now we have to take into
account what might or might not have happened in the future when
looking at checkpoints in the log rather than just having to
reconstruct the past...
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
|
|
Because I cannot tell if the NEED_FLUSH flag is being set correctly
by the log force and CIL push machinery without it.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
|
|
From the department of "WTAF? How did we miss that!?"...
When we are recovering a buffer, the first thing we do is check the
buffer magic number and extract the LSN from the buffer. If the LSN
is older than the current LSN, we replay the modification to it. If
the metadata on disk is newer than the transaction in the log, we
skip it. This is a fundamental v5 filesystem metadata recovery
behaviour.
generic/482 failed with an attribute writeback failure during log
recovery. The write verifier caught the corruption before it got
written to disk, and the attr buffer dump looked like:
XFS (dm-3): Metadata corruption detected at xfs_attr3_leaf_verify+0x275/0x2e0, xfs_attr3_leaf block 0x19be8
XFS (dm-3): Unmount and run xfs_repair
XFS (dm-3): First 128 bytes of corrupted metadata buffer:
00000000: 00 00 00 00 00 00 00 00 3b ee 00 00 4d 2a 01 e1 ........;...M*..
00000010: 00 00 00 00 00 01 9b e8 00 00 00 01 00 00 05 38 ...............8
^^^^^^^^^^^^^^^^^^^^^^^
00000020: df 39 5e 51 58 ac 44 b6 8d c5 e7 10 44 09 bc 17 .9^QX.D.....D...
00000030: 00 00 00 00 00 02 00 83 00 03 00 cc 0f 24 01 00 .............$..
00000040: 00 68 0e bc 0f c8 00 10 00 00 00 00 00 00 00 00 .h..............
00000050: 00 00 3c 31 0f 24 01 00 00 00 3c 32 0f 88 01 00 ..<1.$....<2....
00000060: 00 00 3c 33 0f d8 01 00 00 00 00 00 00 00 00 00 ..<3............
00000070: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
.....
The highlighted bytes are the LSN that was replayed into the
buffer: 0x100000538. This is cycle 1, block 0x538. Prior to replay,
that block on disk looks like this:
$ sudo xfs_db -c "fsb 0x417d" -c "type attr3" -c p /dev/mapper/thin-vol
hdr.info.hdr.forw = 0
hdr.info.hdr.back = 0
hdr.info.hdr.magic = 0x3bee
hdr.info.crc = 0xb5af0bc6 (correct)
hdr.info.bno = 105448
hdr.info.lsn = 0x100000900
^^^^^^^^^^^
hdr.info.uuid = df395e51-58ac-44b6-8dc5-e7104409bc17
hdr.info.owner = 131203
hdr.count = 2
hdr.usedbytes = 120
hdr.firstused = 3796
hdr.holes = 1
hdr.freemap[0-2] = [base,size]
Note the LSN stamped into the buffer on disk: 1/0x900. The version
on disk is much newer than the log transaction that was being
replayed. That's a bug, and should -never- happen.
So I immediately went to look at xlog_recover_get_buf_lsn() to check
that we handled the LSN correctly. I was wondering if there was a
similar "two commits with the same start LSN skips the second
replay" problem with buffers. I didn't get that far, because I found
a much more basic, rudimentary bug: xlog_recover_get_buf_lsn()
doesn't recognise buffers with XFS_ATTR3_LEAF_MAGIC set in them!!!
IOWs, attr3 leaf buffers fall through the magic number checks
unrecognised, so trigger the "recover immediately" behaviour instead
of undergoing an LSN check. IOWs, we incorrectly replay ATTR3 leaf
buffers and that causes silent on disk corruption of inode attribute
forks and potentially other things....
Git history shows this is *another* zero day bug, this time
introduced in commit 50d5c8d8e938 ("xfs: check LSN ordering for v5
superblocks during recovery") which failed to handle the attr3 leaf
buffers in recovery. And we've failed to handle them ever since...
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
|
|
When we log an inode, we format the "log inode" core and set an LSN
in that inode core. We do that via xfs_inode_item_format_core(),
which calls:
xfs_inode_to_log_dinode(ip, dic, ip->i_itemp->ili_item.li_lsn);
to format the log inode. It writes the LSN from the inode item into
the log inode, and if recovery decides the inode item needs to be
replayed, it recovers the log inode LSN field and writes it into the
on disk inode LSN field.
Now this might seem like a reasonable thing to do, but it is wrong
on multiple levels. Firstly, if the item is not yet in the AIL,
item->li_lsn is zero. i.e. the first time the inode it is logged and
formatted, the LSN we write into the log inode will be zero. If we
only log it once, recovery will run and can write this zero LSN into
the inode.
This means that the next time the inode is logged and log recovery
runs, it will *always* replay changes to the inode regardless of
whether the inode is newer on disk than the version in the log and
that violates the entire purpose of recording the LSN in the inode
at writeback time (i.e. to stop it going backwards in time on disk
during recovery).
Secondly, if we commit the CIL to the journal so the inode item
moves to the AIL, and then relog the inode, the LSN that gets
stamped into the log inode will be the LSN of the inode's current
location in the AIL, not it's age on disk. And it's not the LSN that
will be associated with the current change. That means when log
recovery replays this inode item, the LSN that ends up on disk is
the LSN for the previous changes in the log, not the current
changes being replayed. IOWs, after recovery the LSN on disk is not
in sync with the LSN of the modifications that were replayed into
the inode. This, again, violates the recovery ordering semantics
that on-disk writeback LSNs provide.
Hence the inode LSN in the log dinode is -always- invalid.
Thirdly, recovery actually has the LSN of the log transaction it is
replaying right at hand - it uses it to determine if it should
replay the inode by comparing it to the on-disk inode's LSN. But it
doesn't use that LSN to stamp the LSN into the inode which will be
written back when the transaction is fully replayed. It uses the one
in the log dinode, which we know is always going to be incorrect.
Looking back at the change history, the inode logging was broken by
commit 93f958f9c41f ("xfs: cull unnecessary icdinode fields") way
back in 2016 by a stupid idiot who thought he knew how this code
worked. i.e. me. That commit replaced an in memory di_lsn field that
was updated only at inode writeback time from the inode item.li_lsn
value - and hence always contained the same LSN that appeared in the
on-disk inode - with a read of the inode item LSN at inode format
time. CLearly these are not the same thing.
Before 93f958f9c41f, the log recovery behaviour was irrelevant,
because the LSN in the log inode always matched the on-disk LSN at
the time the inode was logged, hence recovery of the transaction
would never make the on-disk LSN in the inode go backwards or get
out of sync.
A symptom of the problem is this, caught from a failure of
generic/482. Before log recovery, the inode has been allocated but
never used:
xfs_db> inode 393388
xfs_db> p
core.magic = 0x494e
core.mode = 0
....
v3.crc = 0x99126961 (correct)
v3.change_count = 0
v3.lsn = 0
v3.flags2 = 0
v3.cowextsize = 0
v3.crtime.sec = Thu Jan 1 10:00:00 1970
v3.crtime.nsec = 0
After log recovery:
xfs_db> p
core.magic = 0x494e
core.mode = 020444
....
v3.crc = 0x23e68f23 (correct)
v3.change_count = 2
v3.lsn = 0
v3.flags2 = 0
v3.cowextsize = 0
v3.crtime.sec = Thu Jul 22 17:03:03 2021
v3.crtime.nsec = 751000000
...
You can see that the LSN of the on-disk inode is 0, even though it
clearly has been written to disk. I point out this inode, because
the generic/482 failure occurred because several adjacent inodes in
this specific inode cluster were not replayed correctly and still
appeared to be zero on disk when all the other metadata (inobt,
finobt, directories, etc) indicated they should be allocated and
written back.
The fix for this is two-fold. The first is that we need to either
revert the LSN changes in 93f958f9c41f or stop logging the inode LSN
altogether. If we do the former, log recovery does not need to
change but we add 8 bytes of memory per inode to store what is
largely a write-only inode field. If we do the latter, log recovery
needs to stamp the on-disk inode in the same manner that inode
writeback does.
I prefer the latter, because we shouldn't really be trying to log
and replay changes to the on disk LSN as the on-disk value is the
canonical source of the on-disk version of the inode. It also
matches the way we recover buffer items - we create a buf_log_item
that carries the current recovery transaction LSN that gets stamped
into the buffer by the write verifier when it gets written back
when the transaction is fully recovered.
However, this might break log recovery on older kernels even more,
so I'm going to simply ignore the logged value in recovery and stamp
the on-disk inode with the LSN of the transaction being recovered
that will trigger writeback on transaction recovery completion. This
will ensure that the on-disk inode LSN always reflects the LSN of
the last change that was written to disk, regardless of whether it
comes from log recovery or runtime writeback.
Fixes: 93f958f9c41f ("xfs: cull unnecessary icdinode fields")
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
|
|
Before waiting on a iclog in xfs_log_force_lsn(), we don't check to
see if the iclog has already been completed and the contents on
stable storage. We check for completed iclogs in xfs_log_force(), so
we should do the same thing for xfs_log_force_lsn().
This fixed some random up-to-30s pauses seen in unmounting
filesystems in some tests. A log force ends up waiting on completed
iclog, and that doesn't then get flushed (and hence the log force
get completed) until the background log worker issues a log force
that flushes the iclog in question. Then the unmount unblocks and
continues.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
|
|
After fixing the tail_lsn vs cache flush race, generic/482 continued
to fail in a similar way where cache flushes were missing before
iclog FUA writes. Tracing of iclog state changes during the fsstress
workload portion of the test (via xlog_iclog* events) indicated that
iclog writes were coming from two sources - CIL pushes and log
forces (due to fsync/O_SYNC operations). All of the cases where a
recovery problem was triggered indicated that the log force was the
source of the iclog write that was not preceeded by a cache flush.
This was an oversight in the modifications made in commit
eef983ffeae7 ("xfs: journal IO cache flush reductions"). Log forces
for fsync imply a data device cache flush has been issued if an
iclog was flushed to disk and is indicated to the caller via the
log_flushed parameter so they can elide the device cache flush if
the journal issued one.
The change in eef983ffeae7 results in iclogs only issuing a cache
flush if XLOG_ICL_NEED_FLUSH is set on the iclog, but this was not
added to the iclogs that the log force code flushes to disk. Hence
log forces are no longer guaranteeing that a cache flush is issued,
hence opening up a potential on-disk ordering failure.
Log forces should also set XLOG_ICL_NEED_FUA as well to ensure that
the actual iclogs it forces to the journal are also on stable
storage before it returns to the caller.
This patch introduces the xlog_force_iclog() helper function to
encapsulate the process of taking a reference to an iclog, switching
its state if WANT_SYNC and flushing it to stable storage correctly.
Both xfs_log_force() and xfs_log_force_lsn() are converted to use
it, as is xlog_unmount_write() which has an elaborate method of
doing exactly the same "write this iclog to stable storage"
operation.
Further, if the log force code needs to wait on a iclog in the
WANT_SYNC state, it needs to ensure that iclog also results in a
cache flush being issued. This covers the case where the iclog
contains the commit record of the CIL flush that the log force
triggered, but it hasn't been written yet because there is still an
active reference to the iclog.
Note: this whole cache flush whack-a-mole patch is a result of log
forces still being iclog state centric rather than being CIL
sequence centric. Most of this nasty code will go away in future
when log forces are converted to wait on CIL sequence push
completion rather than iclog completion. With the CIL push algorithm
guaranteeing that the CIL checkpoint is fully on stable storage when
it completes, we no longer need to iterate iclogs and push them to
ensure a CIL sequence push has completed and so all this nasty iclog
iteration and flushing code will go away.
Fixes: eef983ffeae7 ("xfs: journal IO cache flush reductions")
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
|
|
We force iclogs in several places - we need them all to have the
same cache flush semantics, so start by factoring out the iclog
force into a common helper.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
|
|
There is a race between the new CIL async data device metadata IO
completion cache flush and the log tail in the iclog the flush
covers being updated. This can be seen by repeating generic/482 in a
loop and eventually log recovery fails with a failures such as this:
XFS (dm-3): Starting recovery (logdev: internal)
XFS (dm-3): bad inode magic/vsn daddr 228352 #0 (magic=0)
XFS (dm-3): Metadata corruption detected at xfs_inode_buf_verify+0x180/0x190, xfs_inode block 0x37c00 xfs_inode_buf_verify
XFS (dm-3): Unmount and run xfs_repair
XFS (dm-3): First 128 bytes of corrupted metadata buffer:
00000000: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00000010: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00000020: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00000030: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00000040: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00000050: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00000060: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00000070: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
XFS (dm-3): metadata I/O error in "xlog_recover_items_pass2+0x55/0xc0" at daddr 0x37c00 len 32 error 117
Analysis of the logwrite replay shows that there were no writes to
the data device between the FUA @ write 124 and the FUA at write @
125, but log recovery @ 125 failed. The difference was the one log
write @ 125 moved the tail of the log forwards from (1,8) to (1,32)
and so the inode create intent in (1,8) was not replayed and so the
inode cluster was zero on disk when replay of the first inode item
in (1,32) was attempted.
What this meant was that the journal write that occurred at @ 125
did not ensure that metadata completed before the iclog was written
was correctly on stable storage. The tail of the log moved forward,
so IO must have been completed between the two iclog writes. This
means that there is a race condition between the unconditional async
cache flush in the CIL push work and the tail LSN that is written to
the iclog. This happens like so:
CIL push work AIL push work
------------- -------------
Add to committing list
start async data dev cache flush
.....
<flush completes>
<all writes to old tail lsn are stable>
xlog_write
.... push inode create buffer
<start IO>
.....
xlog_write(commit record)
.... <IO completes>
log tail moves
xlog_assign_tail_lsn()
start_lsn == commit_lsn
<no iclog preflush!>
xlog_state_release_iclog
__xlog_state_release_iclog()
<writes *new* tail_lsn into iclog>
xlog_sync()
....
submit_bio()
<tail in log moves forward without flushing written metadata>
Essentially, this can only occur if the commit iclog is issued
without a cache flush. If the iclog bio is submitted with
REQ_PREFLUSH, then it will guarantee that all the completed IO is
one stable storage before the iclog bio with the new tail LSN in it
is written to the log.
IOWs, the tail lsn that is written to the iclog needs to be sampled
*before* we issue the cache flush that guarantees all IO up to that
LSN has been completed.
To fix this without giving up the performance advantage of the
flush/FUA optimisations (e.g. g/482 runtime halves with 5.14-rc1
compared to 5.13), we need to ensure that we always issue a cache
flush if the tail LSN changes between the initial async flush and
the commit record being written. THis requires sampling the tail_lsn
before we start the flush, and then passing the sampled tail LSN to
xlog_state_release_iclog() so it can determine if the the tail LSN
has changed while writing the checkpoint. If the tail LSN has
changed, then it needs to set the NEED_FLUSH flag on the iclog and
we'll issue another cache flush before writing the iclog.
Fixes: eef983ffeae7 ("xfs: journal IO cache flush reductions")
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
|
|
Fold __xlog_state_release_iclog into its only caller to prepare
make an upcoming fix easier.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
[hch: split from a larger patch]
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
|
|
The recent journal flush/FUA changes replaced the flushing of the
data device on every iclog write with an up-front async data device
cache flush. Unfortunately, the assumption of which this was based
on has been proven incorrect by the flush vs log tail update
ordering issue. As the fix for that issue uses the
XLOG_ICL_NEED_FLUSH flag to indicate that data device needs a cache
flush, we now need to (once again) ensure that an iclog write to
external logs that need a cache flush to be issued actually issue a
cache flush to the data device as well as the log device.
Fixes: eef983ffeae7 ("xfs: journal IO cache flush reductions")
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
|
|
We incorrectly flush the log device instead of the data device when
trying to ensure metadata is correctly on disk before writing the
unmount record.
Fixes: eef983ffeae7 ("xfs: journal IO cache flush reductions")
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
|
|
Building with -Warray-bounds on systems with 64K pages there's a
warning:
fs/btrfs/disk-io.c: In function ‘csum_tree_block’:
fs/btrfs/disk-io.c:226:34: warning: array subscript 1 is above array bounds of ‘struct page *[1]’ [-Warray-bounds]
226 | kaddr = page_address(buf->pages[i]);
| ~~~~~~~~~~^~~
./include/linux/mm.h:1630:48: note: in definition of macro ‘page_address’
1630 | #define page_address(page) lowmem_page_address(page)
| ^~~~
In file included from fs/btrfs/ctree.h:32,
from fs/btrfs/disk-io.c:23:
fs/btrfs/extent_io.h:98:15: note: while referencing ‘pages’
98 | struct page *pages[1];
| ^~~~~
The compiler has no way to know that in that case the nodesize is exactly
PAGE_SIZE, so the resulting number of pages will be correct (1).
Let's use num_extent_pages that makes the case nodesize == PAGE_SIZE
explicitly 1.
Reported-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
We lost parsing of backupuid in the switch to new mount API.
Add it back.
Signed-off-by: Ronnie Sahlberg <lsahlber@redhat.com>
Reviewed-by: Shyam Prasad N <sprasad@microsoft.com>
Cc: <stable@vger.kernel.org> # v5.11+
Reported-by: Xiaoli Feng <xifeng@redhat.com>
Signed-off-by: Steve French <stfrench@microsoft.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/jack/linux-fs
Pull ext2 and reiserfs fixes from Jan Kara:
"A fix for the ext2 conversion to kmap_local() and two reiserfs
hardening fixes"
* tag 'fixes_for_v5.14-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/jack/linux-fs:
reiserfs: check directory items on read from disk
fs/ext2: Avoid page_address on pages returned by ext2_get_page
reiserfs: add check for root_inode in reiserfs_fill_super
|
|
When removing a writeable device in __btrfs_free_extra_devids, the rw
device count should be decremented.
This error was caught by Syzbot which reported a warning in
close_fs_devices:
WARNING: CPU: 1 PID: 9355 at fs/btrfs/volumes.c:1168 close_fs_devices+0x763/0x880 fs/btrfs/volumes.c:1168
Modules linked in:
CPU: 0 PID: 9355 Comm: syz-executor552 Not tainted 5.13.0-rc1-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
RIP: 0010:close_fs_devices+0x763/0x880 fs/btrfs/volumes.c:1168
RSP: 0018:ffffc9000333f2f0 EFLAGS: 00010293
RAX: ffffffff8365f5c3 RBX: 0000000000000001 RCX: ffff888029afd4c0
RDX: 0000000000000000 RSI: 0000000000000001 RDI: 0000000000000000
RBP: ffff88802846f508 R08: ffffffff8365f525 R09: ffffed100337d128
R10: ffffed100337d128 R11: 0000000000000000 R12: dffffc0000000000
R13: ffff888019be8868 R14: 1ffff1100337d10d R15: 1ffff1100337d10a
FS: 00007f6f53828700(0000) GS:ffff8880b9a00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 000000000047c410 CR3: 00000000302a6000 CR4: 00000000001506f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
btrfs_close_devices+0xc9/0x450 fs/btrfs/volumes.c:1180
open_ctree+0x8e1/0x3968 fs/btrfs/disk-io.c:3693
btrfs_fill_super fs/btrfs/super.c:1382 [inline]
btrfs_mount_root+0xac5/0xc60 fs/btrfs/super.c:1749
legacy_get_tree+0xea/0x180 fs/fs_context.c:592
vfs_get_tree+0x86/0x270 fs/super.c:1498
fc_mount fs/namespace.c:993 [inline]
vfs_kern_mount+0xc9/0x160 fs/namespace.c:1023
btrfs_mount+0x3d3/0xb50 fs/btrfs/super.c:1809
legacy_get_tree+0xea/0x180 fs/fs_context.c:592
vfs_get_tree+0x86/0x270 fs/super.c:1498
do_new_mount fs/namespace.c:2905 [inline]
path_mount+0x196f/0x2be0 fs/namespace.c:3235
do_mount fs/namespace.c:3248 [inline]
__do_sys_mount fs/namespace.c:3456 [inline]
__se_sys_mount+0x2f9/0x3b0 fs/namespace.c:3433
do_syscall_64+0x3f/0xb0 arch/x86/entry/common.c:47
entry_SYSCALL_64_after_hwframe+0x44/0xae
Because fs_devices->rw_devices was not 0 after
closing all devices. Here is the call trace that was observed:
btrfs_mount_root():
btrfs_scan_one_device():
device_list_add(); <---------------- device added
btrfs_open_devices():
open_fs_devices():
btrfs_open_one_device(); <-------- writable device opened,
rw device count ++
btrfs_fill_super():
open_ctree():
btrfs_free_extra_devids():
__btrfs_free_extra_devids(); <--- writable device removed,
rw device count not decremented
fail_tree_roots:
btrfs_close_devices():
close_fs_devices(); <------- rw device count off by 1
As a note, prior to commit cf89af146b7e ("btrfs: dev-replace: fail
mount if we don't have replace item with target device"), rw_devices
was decremented on removing a writable device in
__btrfs_free_extra_devids only if the BTRFS_DEV_STATE_REPLACE_TGT bit
was not set for the device. However, this check does not need to be
reinstated as it is now redundant and incorrect.
In __btrfs_free_extra_devids, we skip removing the device if it is the
target for replacement. This is done by checking whether device->devid
== BTRFS_DEV_REPLACE_DEVID. Since BTRFS_DEV_STATE_REPLACE_TGT is set
only on the device with devid BTRFS_DEV_REPLACE_DEVID, no devices
should have the BTRFS_DEV_STATE_REPLACE_TGT bit set after the check,
and so it's redundant to test for that bit.
Additionally, following commit 82372bc816d7 ("Btrfs: make
the logic of source device removing more clear"), rw_devices is
incremented whenever a writeable device is added to the alloc
list (including the target device in btrfs_dev_replace_finishing), so
all removals of writable devices from the alloc list should also be
accompanied by a decrement to rw_devices.
Reported-by: syzbot+a70e2ad0879f160b9217@syzkaller.appspotmail.com
Fixes: cf89af146b7e ("btrfs: dev-replace: fail mount if we don't have replace item with target device")
CC: stable@vger.kernel.org # 5.10+
Tested-by: syzbot+a70e2ad0879f160b9217@syzkaller.appspotmail.com
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Desmond Cheong Zhi Xi <desmondcheongzx@gmail.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
eviction
When checking if we need to log the new name of a renamed inode, we are
checking if the inode and its parent inode have been logged before, and if
not we don't log the new name. The check however is buggy, as it directly
compares the logged_trans field of the inodes versus the ID of the current
transaction. The problem is that logged_trans is a transient field, only
stored in memory and never persisted in the inode item, so if an inode
was logged before, evicted and reloaded, its logged_trans field is set to
a value of 0, meaning the check will return false and the new name of the
renamed inode is not logged. If the old parent directory was previously
fsynced and we deleted the logged directory entries corresponding to the
old name, we end up with a log that when replayed will delete the renamed
inode.
The following example triggers the problem:
$ mkfs.btrfs -f /dev/sdc
$ mount /dev/sdc /mnt
$ mkdir /mnt/A
$ mkdir /mnt/B
$ echo -n "hello world" > /mnt/A/foo
$ sync
# Add some new file to A and fsync directory A.
$ touch /mnt/A/bar
$ xfs_io -c "fsync" /mnt/A
# Now trigger inode eviction. We are only interested in triggering
# eviction for the inode of directory A.
$ echo 2 > /proc/sys/vm/drop_caches
# Move foo from directory A to directory B.
# This deletes the directory entries for foo in A from the log, and
# does not add the new name for foo in directory B to the log, because
# logged_trans of A is 0, which is less than the current transaction ID.
$ mv /mnt/A/foo /mnt/B/foo
# Now make an fsync to anything except A, B or any file inside them,
# like for example create a file at the root directory and fsync this
# new file. This syncs the log that contains all the changes done by
# previous rename operation.
$ touch /mnt/baz
$ xfs_io -c "fsync" /mnt/baz
<power fail>
# Mount the filesystem and replay the log.
$ mount /dev/sdc /mnt
# Check the filesystem content.
$ ls -1R /mnt
/mnt/:
A
B
baz
/mnt/A:
bar
/mnt/B:
$
# File foo is gone, it's neither in A/ nor in B/.
Fix this by using the inode_logged() helper at btrfs_log_new_name(), which
safely checks if an inode was logged before in the current transaction.
A test case for fstests will follow soon.
CC: stable@vger.kernel.org # 4.14+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
In compression write endio sequence, the range which the compressed_bio
writes is marked as uptodate if the last bio of the compressed (sub)bios
is completed successfully. There could be previous bio which may
have failed which is recorded in cb->errors.
Set the writeback range as uptodate only if cb->errors is zero, as opposed
to checking only the last bio's status.
Backporting notes: in all versions up to 4.4 the last argument is always
replaced by "!cb->errors".
CC: stable@vger.kernel.org # 4.4+
Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
For pure poll requests, it doesn't remove the second poll wait entry
when it's done, neither after vfs_poll() or in the poll completion
handler. We should remove the second poll wait entry.
And we use io_poll_remove_double() rather than io_poll_remove_waitqs()
since the latter has some redundant logic.
Fixes: 88e41cf928a6 ("io_uring: add multishot mode for IORING_OP_POLL_ADD")
Cc: stable@vger.kernel.org # 5.13+
Signed-off-by: Hao Xu <haoxu@linux.alibaba.com>
Link: https://lore.kernel.org/r/20210728030322.12307-1-haoxu@linux.alibaba.com
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
Some setups, like SCSI, can throw spurious -EAGAIN off the softirq
completion path. Normally we expect this to happen inline as part
of submission, but apparently SCSI has a weird corner case where it
can happen as part of normal completions.
This should be solved by having the -EAGAIN bubble back up the stack
as part of submission, but previous attempts at this failed and we're
not just quite there yet. Instead we currently use REQ_F_REISSUE to
handle this case.
For now, catch it in io_rw_should_reissue() and prevent a reissue
from a bogus path.
Cc: stable@vger.kernel.org
Reported-by: Fabian Ebner <f.ebner@proxmox.com>
Tested-by: Fabian Ebner <f.ebner@proxmox.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
blkdev_get_no_open acquires a reference to the block_device through
the block device inode and then tries to acquire a device model
reference to the gendisk. But at this point the disk migh already
be freed (although the race is free). Fix this by only freeing the
gendisk from the whole device bdevs ->free_inode callback as well.
Fixes: 22ae8ce8b892 ("block: simplify bdev/disk lookup in blkdev_get")
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Ming Lei <ming.lei@redhat.com>
Link: https://lore.kernel.org/r/20210722075402.983367-2-hch@lst.de
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup
Pull cgroup fix from Tejun Heo:
"Fix leak of filesystem context root which is triggered by LTP.
Not too likely to be a problem in non-testing environments"
* 'for-5.14-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup:
cgroup1: fix leaked context root causing sporadic NULL deref in LTP
|
|
As a safeguard, if we're going to queue async work, do it from task_work
from the original task. This ensures that we can always sanely create
threads, regards of what the reissue context may be.
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
Clang detected a problem with rc possibly being unitialized
(when length is zero) in a recently added fallocate code path.
Reported-by: kernel test robot <lkp@intel.com>
Reviewed-by: Paulo Alcantara (SUSE) <pc@cjr.nz>
Signed-off-by: Steve French <stfrench@microsoft.com>
|
|
readpage was calculating the offset of the page incorrectly
for the case of large swapcaches.
loff_t offset = (loff_t)page->index << PAGE_SHIFT;
As pointed out by Matthew Wilcox, this needs to use
page_file_offset() to calculate the offset instead.
Pages coming from the swap cache have page->index set
to their index within the swapcache, not within the backing
file. For a sufficiently large swapcache, we could have
overlapping values of page->index within the same backing file.
Suggested by: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: <stable@vger.kernel.org> # v5.7+
Reviewed-by: Ronnie Sahlberg <lsahlber@redhat.com>
Signed-off-by: Steve French <stfrench@microsoft.com>
|
|
We use a bit to manage if we need to add the shared task_work, but
a list + lock for the pending work. Before aborting a current run
of the task_work we check if the list is empty, but we do so without
grabbing the lock that protects it. This can lead to races where
we think we have nothing left to run, where in practice we could be
racing with a task adding new work to the list. If we do hit that
race condition, we could be left with work items that need processing,
but the shared task_work is not active.
Ensure that we grab the lock before checking if the list is empty,
so we know if it's safe to exit the run or not.
Link: https://lore.kernel.org/io-uring/c6bd5987-e9ae-cd02-49d0-1b3ac1ef65b1@tnonline.net/
Cc: stable@vger.kernel.org # 5.11+
Reported-by: Forza <forza@tnonline.net>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
io_prep_async_link() may be called after arming a linked timeout,
automatically making it unsafe to traverse the linked list. Guard
with completion_lock if there was a linked timeout.
Cc: stable@vger.kernel.org # 5.9+
Signed-off-by: Pavel Begunkov <asml.silence@gmail.com>
Link: https://lore.kernel.org/r/93f7c617e2b4f012a2a175b3dab6bc2f27cebc48.1627304436.git.asml.silence@gmail.com
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
We have a fairly specific alpha binary loader in Linux: running x86
(i386, i486) binaries via the em86 [1] emulator. As noted in the Kconfig
option, the same behavior can be achieved via binfmt_misc, for example,
more nowadays used for running qemu-user.
An example on how to get binfmt_misc running with em86 can be found in
Documentation/admin-guide/binfmt-misc.rst
The defconfig does not have CONFIG_BINFMT_EM86=y set. And doing a
make defconfig && make olddefconfig
results in
# CONFIG_BINFMT_EM86 is not set
... as we don't seem to have any supported Linux distirbution for alpha
anymore, there isn't really any "default" user of that feature anymore.
Searching for "CONFIG_BINFMT_EM86=y" reveals mostly discussions from
around 20 years ago, like [2] describing how to get netscape via em86
running via em86, or [3] discussing that running wine or installing
Win 3.11 through em86 would be a nice feature.
The latest binaries available for em86 are from 2000, version 2.2.1 [4] --
which translates to "unsupported"; further, em86 doesn't even work with
glibc-2.x but only with glibc-2.0 [4, 5]. These are clear signs that
there might not be too many em86 users out there, especially users
relying on modern Linux kernels.
Even though the code footprint is relatively small, let's just get rid
of this blast from the past that's effectively unused.
[1] http://ftp.dreamtime.org/pub/linux/Linux-Alpha/em86/v0.4/docs/em86.html
[2] https://static.lwn.net/1998/1119/a/alpha-netscape.html
[3] https://groups.google.com/g/linux.debian.alpha/c/AkGuQHeCe0Y
[4] http://zeniv.linux.org.uk/pub/linux/alpha/em86/v2.2-1/relnotes.2.2.1.html
[5] https://forum.teamspeak.com/archive/index.php/t-1477.html
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: linux-fsdevel@vger.kernel.org
Cc: linux-api@vger.kernel.org
Cc: linux-alpha@vger.kernel.org
Signed-off-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Matt Turner <mattst88@gmail.com>
|
|
Pull cifs fixes from Steve French:
"Five cifs/smb3 fixes, including a DFS failover fix, two fallocate
fixes, and two trivial coverity cleanups"
* tag '5.14-rc2-smb3-fixes' of git://git.samba.org/sfrench/cifs-2.6:
cifs: fix fallocate when trying to allocate a hole.
CIFS: Clarify SMB1 code for POSIX delete file
CIFS: Clarify SMB1 code for POSIX Create
cifs: support share failover when remounting
cifs: only write 64kb at a time when fallocating a small region of a file
|
|
Pull io_uring fixes from Jens Axboe:
- Fix a memory leak due to a race condition in io_init_wq_offload
(Yang)
- Poll error handling fixes (Pavel)
- Fix early fdput() regression (me)
- Don't reissue iopoll requests off release path (me)
- Add a safety check for io-wq queue off wrong path (me)
* tag 'io_uring-5.14-2021-07-24' of git://git.kernel.dk/linux-block:
io_uring: explicitly catch any illegal async queue attempt
io_uring: never attempt iopoll reissue from release path
io_uring: fix early fdput() of file
io_uring: fix memleak in io_init_wq_offload()
io_uring: remove double poll entry on arm failure
io_uring: explicitly count entries for poll reqs
|
|
Merge misc mm fixes from Andrew Morton:
"15 patches.
VM subsystems affected by this patch series: userfaultfd, kfence,
highmem, pagealloc, memblock, pagecache, secretmem, pagemap, and
hugetlbfs"
* akpm:
hugetlbfs: fix mount mode command line processing
mm: fix the deadlock in finish_fault()
mm: mmap_lock: fix disabling preemption directly
mm/secretmem: wire up ->set_page_dirty
writeback, cgroup: do not reparent dax inodes
writeback, cgroup: remove wb from offline list before releasing refcnt
memblock: make for_each_mem_range() traverse MEMBLOCK_HOTPLUG regions
mm: page_alloc: fix page_poison=1 / INIT_ON_ALLOC_DEFAULT_ON interaction
mm: use kmap_local_page in memzero_page
mm: call flush_dcache_page() in memcpy_to_page() and memzero_page()
kfence: skip all GFP_ZONEMASK allocations
kfence: move the size check to the beginning of __kfence_alloc()
kfence: defer kfence_test_init to ensure that kunit debugfs is created
selftest: use mmap instead of posix_memalign to allocate memory
userfaultfd: do not untag user pointers
|