summaryrefslogtreecommitdiff
path: root/fs/xfs/xfs_mount.c
AgeCommit message (Collapse)Author
2024-04-23xfs: use an XFS_OPSTATE_ flag for detecting if logged xattrs are availableDarrick J. Wong
Per reviewer request, use an OPSTATE flag (+ helpers) to decide if logged xattrs are enabled, instead of querying the xfs_sb. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de>
2024-04-22xfs: support RT inodes in xfs_mod_delallocChristoph Hellwig
To prepare for re-enabling delalloc on RT devices, track the data blocks (which use the RT device when the inode sits on it) and the indirect blocks (which don't) separately to xfs_mod_delalloc, and add a new percpu counter to also track the RT delalloc blocks. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: "Darrick J. Wong" <djwong@kernel.org> Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
2024-04-22xfs: split xfs_mod_freecounterChristoph Hellwig
xfs_mod_freecounter has two entirely separate code paths for adding or subtracting from the free counters. Only the subtract case looks at the rsvd flag and can return an error. Split xfs_mod_freecounter into separate helpers for subtracting or adding the freecounter, and remove all the impossible to reach error handling for the addition case. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: "Darrick J. Wong" <djwong@kernel.org> Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
2024-04-15xfs: only clear log incompat flags at clean unmountDarrick J. Wong
While reviewing the online fsck patchset, someone spied the xfs_swapext_can_use_without_log_assistance function and wondered why we go through this inverted-bitmask dance to avoid setting the XFS_SB_FEAT_INCOMPAT_LOG_SWAPEXT feature. (The same principles apply to the logged extended attribute update feature bit in the since-merged LARP series.) The reason for this dance is that xfs_add_incompat_log_feature is an expensive operation -- it forces the log, pushes the AIL, and then if nobody's beaten us to it, sets the feature bit and issues a synchronous write of the primary superblock. That could be a one-time cost amortized over the life of the filesystem, but the log quiesce and cover operations call xfs_clear_incompat_log_features to remove feature bits opportunistically. On a moderately loaded filesystem this leads to us cycling those bits on and off over and over, which hurts performance. Why do we clear the log incompat bits? Back in ~2020 I think Dave and I had a conversation on IRC[2] about what the log incompat bits represent. IIRC in that conversation we decided that the log incompat bits protect unrecovered log items so that old kernels won't try to recover them and barf. Since a clean log has no protected log items, we could clear the bits at cover/quiesce time. As Dave Chinner pointed out in the thread, clearing log incompat bits at unmount time has positive effects for golden root disk image generator setups, since the generator could be running a newer kernel than what gets written to the golden image -- if there are log incompat fields set in the golden image that was generated by a newer kernel/OS image builder then the provisioning host cannot mount the filesystem even though the log is clean and recovery is unnecessary to mount the filesystem. Given that it's expensive to set log incompat bits, we really only want to do that once per bit per mount. Therefore, I propose that we only clear log incompat bits as part of writing a clean unmount record. Do this by adding an operational state flag to the xfs mount that guards whether or not the feature bit clearing can actually take place. This eliminates the l_incompat_users rwsem that we use to protect a log cleaning operation from clearing a feature bit that a frontend thread is trying to set -- this lock adds another way to fail w.r.t. locking. For the swapext series, I shard that into multiple locks just to work around the lockdep complaints, and that's fugly. Link: https://lore.kernel.org/linux-xfs/20240131230043.GA6180@frogsfrogsfrogs/ Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Dave Chinner <dchinner@redhat.com>
2024-03-13Merge tag 'xfs-6.9-merge-8' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linuxLinus Torvalds
Pull xfs updates from Chandan Babu: - Online repair updates: - More ondisk structures being repaired: - Inode's mode field by trying to obtain file type value from the a directory entry - Quota counters - Link counts of inodes - FS summary counters - Support for in-memory btrees has been added to support repair of rmap btrees - Misc changes: - Report corruption of metadata to the health tracking subsystem - Enable indirect health reporting when resources are scarce - Reduce memory usage while repairing refcount btree - Extend "Bmap update" intent item to support atomic extent swapping on the realtime device - Extend "Bmap update" intent item to support extended attribute fork and unwritten extents - Code cleanups: - Bmap log intent - Btree block pointer checking - Btree readahead - Buffer target - Symbolic link code - Remove mrlock wrapper around the rwsem - Convert all the GFP_NOFS flag usages to use the scoped memalloc_nofs_save() API instead of direct calls with the GFP_NOFS - Refactor and simplify xfile abstraction. Lower level APIs in shmem.c are required to be exported in order to achieve this - Skip checking alignment constraints for inode chunk allocations when block size is larger than inode chunk size - Do not submit delwri buffers collected during log recovery when an error has been encountered - Fix SEEK_HOLE/DATA for file regions which have active COW extents - Fix lock order inversion when executing error handling path during shrinking a filesystem - Remove duplicate ifdefs * tag 'xfs-6.9-merge-8' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux: (183 commits) xfs: shrink failure needs to hold AGI buffer mm/shmem.c: Use new form of *@param in kernel-doc kernel-doc: Add unary operator * to $type_param_ref xfs: use kvfree() in xlog_cil_free_logvec() xfs: xfs_btree_bload_prep_block() should use __GFP_NOFAIL xfs: fix scrub stats file permissions xfs: fix log recovery erroring out on refcount recovery failure xfs: move symlink target write function to libxfs xfs: move remote symlink target read function to libxfs xfs: move xfs_symlink_remote.c declarations to xfs_symlink_remote.h xfs: xfs_bmap_finish_one should map unwritten extents properly xfs: support deferred bmap updates on the attr fork xfs: support recovering bmap intent items targetting realtime extents xfs: add a realtime flag to the bmap update log redo items xfs: add a xattr_entry helper xfs: fix xfs_bunmapi to allow unmapping of partial rt extents xfs: move xfs_bmap_defer_add to xfs_bmap_item.c xfs: reuse xfs_bmap_update_cancel_item xfs: add a bi_entry helper xfs: remove xfs_trans_set_bmap_flags ...
2024-02-13xfs: convert remaining kmem_free() to kfree()Dave Chinner
The remaining callers of kmem_free() are freeing heap memory, so we can convert them directly to kfree() and get rid of kmem_free() altogether. This conversion was done with: $ for f in `git grep -l kmem_free fs/xfs`; do > sed -i s/kmem_free/kfree/ $f > done $ Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: "Darrick J. Wong" <djwong@kernel.org> Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
2024-02-12xfs: add support for FS_IOC_GETFSSYSFSPATHKent Overstreet
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev> Link: https://lore.kernel.org/r/20240207025624.1019754-7-kent.overstreet@linux.dev Signed-off-by: Christian Brauner <brauner@kernel.org>
2024-02-08fs: super_set_uuid()Kent Overstreet
Some weird old filesytems have UUID-like things that we wish to expose as UUIDs, but are smaller; add a length field so that the new FS_IOC_(GET|SET)UUID ioctls can handle them in generic code. And add a helper super_set_uuid(), for setting nonstandard length uuids. Helper is now required for the new FS_IOC_GETUUID ioctl; if super_set_uuid() hasn't been called, the ioctl won't be supported. Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev> Link: https://lore.kernel.org/r/20240207025624.1019754-2-kent.overstreet@linux.dev Signed-off-by: Christian Brauner <brauner@kernel.org>
2023-12-07xfs: clean up the xfs_reserve_blocks interfaceChristoph Hellwig
xfs_reserve_blocks has a very odd interface that can only be explained by it directly deriving from the IRIX fcntl handler back in the day. Split reporting out the reserved blocks out of xfs_reserve_blocks into the only caller that cares. This means that the value reported from XFS_IOC_SET_RESBLKS isn't atomically sampled in the same critical section as when it was set anymore, but as the values could change right after setting them anyway that does not matter. It does provide atomic sampling of both values for XFS_IOC_GET_RESBLKS now, though. Also pass a normal scalar integer value for the requested value instead of the pointless pointer. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: "Darrick J. Wong" <djwong@kernel.org> Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
2023-10-04xfs: dynamically allocate the xfs-inodegc shrinkerQi Zheng
In preparation for implementing lockless slab shrink, use new APIs to dynamically allocate the xfs-inodegc shrinker, so that it can be freed asynchronously via RCU. Then it doesn't need to wait for RCU read-side critical section when releasing the struct xfs_mount. Link: https://lkml.kernel.org/r/20230911094444.68966-36-zhengqi.arch@bytedance.com Signed-off-by: Qi Zheng <zhengqi.arch@bytedance.com> Reviewed-by: Muchun Song <songmuchun@bytedance.com> Cc: Chandan Babu R <chandan.babu@oracle.com> Cc: "Darrick J. Wong" <djwong@kernel.org> Cc: Abhinav Kumar <quic_abhinavk@quicinc.com> Cc: Alasdair Kergon <agk@redhat.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Alyssa Rosenzweig <alyssa.rosenzweig@collabora.com> Cc: Andreas Dilger <adilger.kernel@dilger.ca> Cc: Andreas Gruenbacher <agruenba@redhat.com> Cc: Anna Schumaker <anna@kernel.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Bob Peterson <rpeterso@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Carlos Llamas <cmllamas@google.com> Cc: Chao Yu <chao@kernel.org> Cc: Chris Mason <clm@fb.com> Cc: Christian Brauner <brauner@kernel.org> Cc: Christian Koenig <christian.koenig@amd.com> Cc: Chuck Lever <cel@kernel.org> Cc: Coly Li <colyli@suse.de> Cc: Dai Ngo <Dai.Ngo@oracle.com> Cc: Daniel Vetter <daniel@ffwll.ch> Cc: Daniel Vetter <daniel.vetter@ffwll.ch> Cc: Dave Chinner <david@fromorbit.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: David Airlie <airlied@gmail.com> Cc: David Hildenbrand <david@redhat.com> Cc: David Sterba <dsterba@suse.com> Cc: Dmitry Baryshkov <dmitry.baryshkov@linaro.org> Cc: Gao Xiang <hsiangkao@linux.alibaba.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Huang Rui <ray.huang@amd.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jaegeuk Kim <jaegeuk@kernel.org> Cc: Jani Nikula <jani.nikula@linux.intel.com> Cc: Jan Kara <jack@suse.cz> Cc: Jason Wang <jasowang@redhat.com> Cc: Jeff Layton <jlayton@kernel.org> Cc: Jeffle Xu <jefflexu@linux.alibaba.com> Cc: Joel Fernandes (Google) <joel@joelfernandes.org> Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Cc: Josef Bacik <josef@toxicpanda.com> Cc: Juergen Gross <jgross@suse.com> Cc: Kent Overstreet <kent.overstreet@gmail.com> Cc: Kirill Tkhai <tkhai@ya.ru> Cc: Marijn Suijten <marijn.suijten@somainline.org> Cc: "Michael S. Tsirkin" <mst@redhat.com> Cc: Mike Snitzer <snitzer@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Muchun Song <muchun.song@linux.dev> Cc: Nadav Amit <namit@vmware.com> Cc: Neil Brown <neilb@suse.de> Cc: Oleksandr Tyshchenko <oleksandr_tyshchenko@epam.com> Cc: Olga Kornievskaia <kolga@netapp.com> Cc: Paul E. McKenney <paulmck@kernel.org> Cc: Richard Weinberger <richard@nod.at> Cc: Rob Clark <robdclark@gmail.com> Cc: Rob Herring <robh@kernel.org> Cc: Rodrigo Vivi <rodrigo.vivi@intel.com> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Sean Paul <sean@poorly.run> Cc: Sergey Senozhatsky <senozhatsky@chromium.org> Cc: Song Liu <song@kernel.org> Cc: Stefano Stabellini <sstabellini@kernel.org> Cc: Steven Price <steven.price@arm.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tomeu Vizoso <tomeu.vizoso@collabora.com> Cc: Tom Talpey <tom@talpey.com> Cc: Trond Myklebust <trond.myklebust@hammerspace.com> Cc: Tvrtko Ursulin <tvrtko.ursulin@linux.intel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Xuan Zhuo <xuanzhuo@linux.alibaba.com> Cc: Yue Hu <huyue2@coolpad.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-08-10xfs: track usage statistics of online fsckDarrick J. Wong
Track the usage, outcomes, and run times of the online fsck code, and report these values via debugfs. The columns in the file are: * scrubber name * number of scrub invocations * clean objects found * corruptions found * optimizations found * cross referencing failures * inconsistencies found during cross referencing * incomplete scrubs * warnings * number of time scrub had to retry * cumulative amount of time spent scrubbing (microseconds) * number of repair inovcations * successfully repaired objects * cumuluative amount of time spent repairing (microseconds) Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com>
2022-11-16xfs: fix sb write verify for lazysbcountLong Li
When lazysbcount is enabled, fsstress and loop mount/unmount test report the following problems: XFS (loop0): SB summary counter sanity check failed XFS (loop0): Metadata corruption detected at xfs_sb_write_verify+0x13b/0x460, xfs_sb block 0x0 XFS (loop0): Unmount and run xfs_repair XFS (loop0): First 128 bytes of corrupted metadata buffer: 00000000: 58 46 53 42 00 00 10 00 00 00 00 00 00 28 00 00 XFSB.........(.. 00000010: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00000020: 69 fb 7c cd 5f dc 44 af 85 74 e0 cc d4 e3 34 5a i.|._.D..t....4Z 00000030: 00 00 00 00 00 20 00 06 00 00 00 00 00 00 00 80 ..... .......... 00000040: 00 00 00 00 00 00 00 81 00 00 00 00 00 00 00 82 ................ 00000050: 00 00 00 01 00 0a 00 00 00 00 00 04 00 00 00 00 ................ 00000060: 00 00 0a 00 b4 b5 02 00 02 00 00 08 00 00 00 00 ................ 00000070: 00 00 00 00 00 00 00 00 0c 09 09 03 14 00 00 19 ................ XFS (loop0): Corruption of in-memory data (0x8) detected at _xfs_buf_ioapply +0xe1e/0x10e0 (fs/xfs/xfs_buf.c:1580). Shutting down filesystem. XFS (loop0): Please unmount the filesystem and rectify the problem(s) XFS (loop0): log mount/recovery failed: error -117 XFS (loop0): log mount failed This corruption will shutdown the file system and the file system will no longer be mountable. The following script can reproduce the problem, but it may take a long time. #!/bin/bash device=/dev/sda testdir=/mnt/test round=0 function fail() { echo "$*" exit 1 } mkdir -p $testdir while [ $round -lt 10000 ] do echo "******* round $round ********" mkfs.xfs -f $device mount $device $testdir || fail "mount failed!" fsstress -d $testdir -l 0 -n 10000 -p 4 >/dev/null & sleep 4 killall -w fsstress umount $testdir xfs_repair -e $device > /dev/null if [ $? -eq 2 ];then echo "ERR CODE 2: Dirty log exception during repair." exit 1 fi round=$(($round+1)) done With lazysbcount is enabled, There is no additional lock protection for reading m_ifree and m_icount in xfs_log_sb(), if other cpu modifies the m_ifree, this will make the m_ifree greater than m_icount. For example, consider the following sequence and ifreedelta is postive: CPU0 CPU1 xfs_log_sb xfs_trans_unreserve_and_mod_sb ---------- ------------------------------ percpu_counter_sum(&mp->m_icount) percpu_counter_add_batch(&mp->m_icount, idelta, XFS_ICOUNT_BATCH) percpu_counter_add(&mp->m_ifree, ifreedelta); percpu_counter_sum(&mp->m_ifree) After this, incorrect inode count (sb_ifree > sb_icount) will be writen to the log. In the subsequent writing of sb, incorrect inode count (sb_ifree > sb_icount) will fail to pass the boundary check in xfs_validate_sb_write() that cause the file system shutdown. When lazysbcount is enabled, we don't need to guarantee that Lazy sb counters are completely correct, but we do need to guarantee that sb_ifree <= sb_icount. On the other hand, the constraint that m_ifree <= m_icount must be satisfied any time that there /cannot/ be other threads allocating or freeing inode chunks. If the constraint is violated under these circumstances, sb_i{count,free} (the ondisk superblock inode counters) maybe incorrect and need to be marked sick at unmount, the count will be rebuilt on the next mount. Fixes: 8756a5af1819 ("libxfs: add more bounds checking to sb sanity checks") Signed-off-by: Long Li <leo.lilong@huawei.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2022-09-19xfs: simplify if-else condition in xfs_validate_new_dalignZeng Heng
"else" is not generally useful after a return, so remove them which makes if condition a bit more clear. There is no logical changes. Signed-off-by: Zeng Heng <zengheng4@huawei.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Dave Chinner <david@fromorbit.com>
2022-07-07xfs: Pre-calculate per-AG agbno geometryDave Chinner
There is a lot of overhead in functions like xfs_verify_agbno() that repeatedly calculate the geometry limits of an AG. These can be pre-calculated as they are static and the verification context has a per-ag context it can quickly reference. In the case of xfs_verify_agbno(), we now always have a perag context handy, so we can store the AG length and the minimum valid block in the AG in the perag. This means we don't have to calculate it on every call and it can be inlined in callers if we move it to xfs_ag.h. Move xfs_ag_block_count() to xfs_ag.c because it's really a per-ag function and not an XFS type function. We need a little bit of rework that is specific to xfs_initialise_perag() to allow growfs to calculate the new perag sizes before we've updated the primary superblock during the grow (chicken/egg situation). Note that we leave the original xfs_verify_agbno in place in xfs_types.c as a static function as other callers in that file do not have per-ag contexts so still need to go the long way. It's been renamed to xfs_verify_agno_agbno() to indicate it takes both an agno and an agbno to differentiate it from new function. Future commits will make similar changes for other per-ag geometry validation functions. Further: $ size --totals fs/xfs/built-in.a text data bss dec hex filename before 1483006 329588 572 1813166 1baaae (TOTALS) after 1482185 329588 572 1812345 1ba779 (TOTALS) This rework reduces the binary size by ~820 bytes, indicating that much less work is being done to bounds check the agbno values against on per-ag geometry information. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2022-05-27xfs: don't log every time we clear the log incompat flagsDarrick J. Wong
There's no need to spam the logs every time we clear the log incompat flags -- if someone is periodically using one of these features, they'll be cleared every time the log tries to clean itself, which can get pretty chatty: $ dmesg | grep -i clear [ 5363.894711] XFS (sdd): Clearing log incompat feature flags. [ 5365.157516] XFS (sdd): Clearing log incompat feature flags. [ 5369.388543] XFS (sdd): Clearing log incompat feature flags. [ 5371.281246] XFS (sdd): Clearing log incompat feature flags. These aren't high value messages either -- nothing's gone wrong, and nobody's trying anything tricky. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2022-04-12xfs: use a separate frextents counter for rt extent reservationsDarrick J. Wong
As mentioned in the previous commit, the kernel misuses sb_frextents in the incore mount to reflect both incore reservations made by running transactions as well as the actual count of free rt extents on disk. This results in the superblock being written to the log with an underestimate of the number of rt extents that are marked free in the rtbitmap. Teaching XFS to recompute frextents after log recovery avoids operational problems in the current mount, but it doesn't solve the problem of us writing undercounted frextents which are then recovered by an older kernel that doesn't have that fix. Create an incore percpu counter to mirror the ondisk frextents. This new counter will track transaction reservations and the only time we will touch the incore super counter (i.e the one that gets logged) is when those transactions commit updates to the rt bitmap. This is in contrast to the lazysbcount counters (e.g. fdblocks), where we know that log recovery will always fix any incorrect counter that we log. As a bonus, we only take m_sb_lock at transaction commit time. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2022-04-12xfs: recalculate free rt extents after log recoveryDarrick J. Wong
I've been observing periodic corruption reports from xfs_scrub involving the free rt extent counter (frextents) while running xfs/141. That test uses an error injection knob to induce a torn write to the log, and an arbitrary number of recovery mounts, frextents will count fewer free rt extents than can be found the rtbitmap. The root cause of the problem is a combination of the misuse of sb_frextents in the incore mount to reflect both incore reservations made by running transactions as well as the actual count of free rt extents on disk. The following sequence can reproduce the undercount: Thread 1 Thread 2 xfs_trans_alloc(rtextents=3) xfs_mod_frextents(-3) <blocks> xfs_attr_set() xfs_bmap_attr_addfork() xfs_add_attr2() xfs_log_sb() xfs_sb_to_disk() xfs_trans_commit() <log flushed to disk> <log goes down> Note that thread 1 subtracts 3 from sb_frextents even though it never commits to using that space. Thread 2 writes the undercounted value to the ondisk superblock and logs it to the xattr transaction, which is then flushed to disk. At next mount, log recovery will find the logged superblock and write that back into the filesystem. At the end of log recovery, we reread the superblock and install the recovered undercounted frextents value into the incore superblock. From that point on, we've effectively leaked thread 1's transaction reservation. The correct fix for this is to separate the incore reservation from the ondisk usage, but that's a matter for the next patch. Because the kernel has been logging superblocks with undercounted frextents for a very long time and we don't demand that sysadmins run xfs_repair after a crash, fix the undercount by recomputing frextents after log recovery. Gating this on log recovery is a reasonable balance (I think) between correcting the problem and slowing down every mount attempt. Note that xfs_repair will fix undercounted frextents. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2022-03-29xfs: log shutdown triggers should only shut down the logDave Chinner
We've got a mess on our hands. 1. xfs_trans_commit() cannot cancel transactions because the mount is shut down - that causes dirty, aborted, unlogged log items to sit unpinned in memory and potentially get written to disk before the log is shut down. Hence xfs_trans_commit() can only abort transactions when xlog_is_shutdown() is true. 2. xfs_force_shutdown() is used in places to cause the current modification to be aborted via xfs_trans_commit() because it may be impractical or impossible to cancel the transaction directly, and hence xfs_trans_commit() must cancel transactions when xfs_is_shutdown() is true in this situation. But we can't do that because of #1. 3. Log IO errors cause log shutdowns by calling xfs_force_shutdown() to shut down the mount and then the log from log IO completion. 4. xfs_force_shutdown() can result in a log force being issued, which has to wait for log IO completion before it will mark the log as shut down. If #3 races with some other shutdown trigger that runs a log force, we rely on xfs_force_shutdown() silently ignoring #3 and avoiding shutting down the log until the failed log force completes. 5. To ensure #2 always works, we have to ensure that xfs_force_shutdown() does not return until the the log is shut down. But in the case of #4, this will result in a deadlock because the log Io completion will block waiting for a log force to complete which is blocked waiting for log IO to complete.... So the very first thing we have to do here to untangle this mess is dissociate log shutdown triggers from mount shutdowns. We already have xlog_forced_shutdown, which will atomically transistion to the log a shutdown state. Due to internal asserts it cannot be called multiple times, but was done simply because the only place that could call it was xfs_do_force_shutdown() (i.e. the mount shutdown!) and that could only call it once and once only. So the first thing we do is remove the asserts. We then convert all the internal log shutdown triggers to call xlog_force_shutdown() directly instead of xfs_force_shutdown(). This allows the log shutdown triggers to shut down the log without needing to care about mount based shutdown constraints. This means we shut down the log independently of the mount and the mount may not notice this until it's next attempt to read or modify metadata. At that point (e.g. xfs_trans_commit()) it will see that the log is shutdown, error out and shutdown the mount. To ensure that all the unmount behaviours and asserts track correctly as a result of a log shutdown, propagate the shutdown up to the mount if it is not already set. This keeps the mount and log state in sync, and saves a huge amount of hassle where code fails because of a log shutdown but only checks for mount shutdowns and hence ends up doing the wrong thing. Cleaning up that mess is an exercise for another day. This enables us to address the other problems noted above in followup patches. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2022-03-28xfs: don't include bnobt blocks when reserving free block poolDarrick J. Wong
xfs_reserve_blocks controls the size of the user-visible free space reserve pool. Given the difference between the current and requested pool sizes, it will try to reserve free space from fdblocks. However, the amount requested from fdblocks is also constrained by the amount of space that we think xfs_mod_fdblocks will give us. If we forget to subtract m_allocbt_blks before calling xfs_mod_fdblocks, it will will return ENOSPC and we'll hang the kernel at mount due to the infinite loop. In commit fd43cf600cf6, we decided that xfs_mod_fdblocks should not hand out the "free space" used by the free space btrees, because some portion of the free space btrees hold in reserve space for future btree expansion. Unfortunately, xfs_reserve_blocks' estimation of the number of blocks that it could request from xfs_mod_fdblocks was not updated to include m_allocbt_blks, so if space is extremely low, the caller hangs. Fix this by creating a function to estimate the number of blocks that can be reserved from fdblocks, which needs to exclude the set-aside and m_allocbt_blks. Found by running xfs/306 (which formats a single-AG 20MB filesystem) with an fstests configuration that specifies a 1k blocksize and a specially crafted log size that will consume 7/8 of the space (17920 blocks, specifically) in that AG. Cc: Brian Foster <bfoster@redhat.com> Fixes: fd43cf600cf6 ("xfs: set aside allocation btree blocks from block reservation") Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Dave Chinner <dchinner@redhat.com>
2021-12-21xfs: only run COW extent recovery when there are no live extentsDarrick J. Wong
As part of multiple customer escalations due to file data corruption after copy on write operations, I wrote some fstests that use fsstress to hammer on COW to shake things loose. Regrettably, I caught some filesystem shutdowns due to incorrect rmap operations with the following loop: mount <filesystem> # (0) fsstress <run only readonly ops> & # (1) while true; do fsstress <run all ops> mount -o remount,ro # (2) fsstress <run only readonly ops> mount -o remount,rw # (3) done When (2) happens, notice that (1) is still running. xfs_remount_ro will call xfs_blockgc_stop to walk the inode cache to free all the COW extents, but the blockgc mechanism races with (1)'s reader threads to take IOLOCKs and loses, which means that it doesn't clean them all out. Call such a file (A). When (3) happens, xfs_remount_rw calls xfs_reflink_recover_cow, which walks the ondisk refcount btree and frees any COW extent that it finds. This function does not check the inode cache, which means that incore COW forks of inode (A) is now inconsistent with the ondisk metadata. If one of those former COW extents are allocated and mapped into another file (B) and someone triggers a COW to the stale reservation in (A), A's dirty data will be written into (B) and once that's done, those blocks will be transferred to (A)'s data fork without bumping the refcount. The results are catastrophic -- file (B) and the refcount btree are now corrupt. In the first patch, we fixed the race condition in (2) so that (A) will always flush the COW fork. In this second patch, we move the _recover_cow call to the initial mount call in (0) for safety. As mentioned previously, xfs_reflink_recover_cow walks the refcount btree looking for COW staging extents, and frees them. This was intended to be run at mount time (when we know there are no live inodes) to clean up any leftover staging events that may have been left behind during an unclean shutdown. As a time "optimization" for readonly mounts, we deferred this to the ro->rw transition, not realizing that any failure to clean all COW forks during a rw->ro transition would result in catastrophic corruption. Therefore, remove this optimization and only run the recovery routine when we're guaranteed not to have any COW staging extents anywhere, which means we always run this at mount time. While we're at it, move the callsite to xfs_log_mount_finish because any refcount btree expansion (however unlikely given that we're removing records from the right side of the index) must be fed by a per-AG reservation, which doesn't exist in its current location. Fixes: 174edb0e46e5 ("xfs: store in-progress CoW allocations in the refcount btree") Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Chandan Babu R <chandan.babu@oracle.com> Reviewed-by: Dave Chinner <dchinner@redhat.com>
2021-10-19xfs: compute maximum AG btree height for critical reservation calculationDarrick J. Wong
Compute the actual maximum AG btree height for deciding if a per-AG block reservation is critically low. This only affects the sanity check condition, since we /generally/ will trigger on the 10% threshold. This is a long-winded way of saying that we're removing one more usage of XFS_BTREE_MAXLEVELS. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com>
2021-08-19xfs: convert xfs_sb_version_has checks to use mount featuresDave Chinner
This is a conversion of the remaining xfs_sb_version_has..(sbp) checks to use xfs_has_..(mp) feature checks. This was largely done with a vim replacement macro that did: :0,$s/xfs_sb_version_has\(.*\)&\(.*\)->m_sb/xfs_has_\1\2/g<CR> A couple of other variants were also used, and the rest touched up by hand. $ size -t fs/xfs/built-in.a text data bss dec hex filename before 1127533 311352 484 1439369 15f689 (TOTALS) after 1125360 311352 484 1437196 15ee0c (TOTALS) Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2021-08-19xfs: replace XFS_FORCED_SHUTDOWN with xfs_is_shutdownDave Chinner
Remove the shouty macro and instead use the inline function that matches other state/feature check wrapper naming. This conversion was done with sed. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2021-08-19xfs: convert remaining mount flags to state flagsDave Chinner
The remaining mount flags kept in m_flags are actually runtime state flags. These change dynamically, so they really should be updated atomically so we don't potentially lose an update due to racing modifications. Convert these remaining flags to be stored in m_opstate and use atomic bitops to set and clear the flags. This also adds a couple of simple wrappers for common state checks - read only and shutdown. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2021-08-19xfs: convert mount flags to featuresDave Chinner
Replace m_flags feature checks with xfs_has_<feature>() calls and rework the setup code to set flags in m_features. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2021-08-19xfs: replace xfs_sb_version checks with feature flag checksDave Chinner
Convert the xfs_sb_version_hasfoo() to checks against mp->m_features. Checks of the superblock itself during disk operations (e.g. in the read/write verifiers and the to/from disk formatters) are not converted - they operate purely on the superblock state. Everything else should use the mount features. Large parts of this conversion were done with sed with commands like this: for f in `git grep -l xfs_sb_version_has fs/xfs/*.c`; do sed -i -e 's/xfs_sb_version_has\(.*\)(&\(.*\)->m_sb)/xfs_has_\1(\2)/' $f done With manual cleanups for things like "xfs_has_extflgbit" and other little inconsistencies in naming. The result is ia lot less typing to check features and an XFS binary size reduced by a bit over 3kB: $ size -t fs/xfs/built-in.a text data bss dec hex filenam before 1130866 311352 484 1442702 16038e (TOTALS) after 1127727 311352 484 1439563 15f74b (TOTALS) Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2021-08-19xfs: reflect sb features in xfs_mountDave Chinner
Currently on-disk feature checks require decoding the superblock fileds and so can be non-trivial. We have almost 400 hundred individual feature checks in the XFS code, so this is a significant amount of code. To reduce runtime check overhead, pre-process all the version flags into a features field in the xfs_mount at mount time so we can convert all the feature checks to a simple flag check. There is also a need to convert the dynamic feature flags to update the m_features field. This is required for attr, attr2 and quota features. New xfs_mount based wrappers are added for this. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2021-08-19xfs: rework attr2 feature and mount optionsDave Chinner
The attr2 feature is somewhat unique in that it has both a superblock feature bit to enable it and mount options to enable and disable it. Back when it was first introduced in 2005, attr2 was disabled unless either the attr2 superblock feature bit was set, or the attr2 mount option was set. If the superblock feature bit was not set but the mount option was set, then when the first attr2 format inode fork was created, it would set the superblock feature bit. This is as it should be - the superblock feature bit indicated the presence of the attr2 on disk format. The noattr2 mount option, however, did not affect the superblock feature bit. If noattr2 was specified, the on-disk superblock feature bit was ignored and the code always just created attr1 format inode forks. If neither of the attr2 or noattr2 mounts option were specified, then the behaviour was determined by the superblock feature bit. This was all pretty sane. Fast foward 3 years, and we are dealing with fallout from the botched sb_features2 addition and having to deal with feature mismatches between the sb_features2 and sb_bad_features2 fields. The attr2 feature bit was one of these flags. The reconciliation was done well after mount option parsing and, unfortunately, the feature reconciliation had a bug where it ignored the noattr2 mount option. For reasons lost to the mists of time, it was decided that resolving this issue in commit 7c12f296500e ("[XFS] Fix up noattr2 so that it will properly update the versionnum and features2 fields.") required noattr2 to clear the superblock attr2 feature bit. This greatly complicated the attr2 behaviour and broke rules about feature bits needing to be set when those specific features are present in the filesystem. By complicated, I mean that it introduced problems due to feature bit interactions with log recovery. All of the superblock feature bit checks are done prior to log recovery, but if we crash after removing a feature bit, then on the next mount we see the feature bit in the unrecovered superblock, only to have it go away after the log has been replayed. This means our mount time feature processing could be all wrong. Hence you can mount with noattr2, crash shortly afterwards, and mount again without attr2 or noattr2 and still have attr2 enabled because the second mount sees attr2 still enabled in the superblock before recovery runs and removes the feature bit. It's just a mess. Further, this is all legacy code as the v5 format requires attr2 to be enabled at all times and it cannot be disabled. i.e. the noattr2 mount option returns an error when used on v5 format filesystems. To straighten this all out, this patch reverts the attr2/noattr2 mount option behaviour back to the original behaviour. There is no reason for disabling attr2 these days, so we will only do this when the noattr2 mount option is set. This will not remove the superblock feature bit. The superblock bit will provide the default behaviour and only track whether attr2 is present on disk or not. The attr2 mount option will enable the creation of attr2 format inode forks, and if the superblock feature bit is not set it will be added when the first attr2 inode fork is created. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2021-08-09xfs: allow setting and clearing of log incompat feature flagsDarrick J. Wong
Log incompat feature flags in the superblock exist for one purpose: to protect the contents of a dirty log from replay on a kernel that isn't prepared to handle those dirty contents. This means that they can be cleared if (a) we know the log is clean and (b) we know that there aren't any other threads in the system that might be setting or relying upon a log incompat flag. Therefore, clear the log incompat flags when we've finished recovering the log, when we're unmounting cleanly, remounting read-only, or freezing; and provide a function so that subsequent patches can start using this. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Allison Henderson <allison.henderson@oracle.com> Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
2021-08-09xfs: throttle inode inactivation queuing on memory reclaimDarrick J. Wong
Now that we defer inode inactivation, we've decoupled the process of unlinking or closing an inode from the process of inactivating it. In theory this should lead to better throughput since we now inactivate the queued inodes in batches instead of one at a time. Unfortunately, one of the primary risks with this decoupling is the loss of rate control feedback between the frontend and background threads. In other words, a rm -rf /* thread can run the system out of memory if it can queue inodes for inactivation and jump to a new CPU faster than the background threads can actually clear the deferred work. The workers can get scheduled off the CPU if they have to do IO, etc. To solve this problem, we configure a shrinker so that it will activate the /second/ time the shrinkers are called. The custom shrinker will queue all percpu deferred inactivation workers immediately and set a flag to force frontend callers who are releasing a vfs inode to wait for the inactivation workers. On my test VM with 560M of RAM and a 2TB filesystem, this seems to solve most of the OOMing problem when deleting 10 million inodes. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com>
2021-08-09xfs: don't run speculative preallocation gc when fs is frozenDarrick J. Wong
Now that we have the infrastructure to switch background workers on and off at will, fix the block gc worker code so that we don't actually run the worker when the filesystem is frozen, same as we do for deferred inactivation. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com>
2021-08-09xfs: queue inactivation immediately when free realtime extents are tightDarrick J. Wong
Now that we have made the inactivation of unlinked inodes a background task to increase the throughput of file deletions, we need to be a little more careful about how long of a delay we can tolerate. Similar to the patch doing this for free space on the data device, if the file being inactivated is a realtime file and the realtime volume is running low on free extents, we want to run the worker ASAP so that the realtime allocator can make better decisions. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com>
2021-08-09xfs: queue inactivation immediately when free space is tightDarrick J. Wong
Now that we have made the inactivation of unlinked inodes a background task to increase the throughput of file deletions, we need to be a little more careful about how long of a delay we can tolerate. On a mostly empty filesystem, the risk of the allocator making poor decisions due to fragmentation of the free space on account a lengthy delay in background updates is minimal because there's plenty of space. However, if free space is tight, we want to deallocate unlinked inodes as quickly as possible to avoid fallocate ENOSPC and to give the allocator the best shot at optimal allocations for new writes. Therefore, queue the percpu worker immediately if the filesystem is more than 95% full. This follows the same principle that XFS becomes less aggressive about speculative allocations and lazy cleanup (and more precise about accounting) when nearing full. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com>
2021-08-06xfs: per-cpu deferred inode inactivation queuesDave Chinner
Move inode inactivation to background work contexts so that it no longer runs in the context that releases the final reference to an inode. This will allow process work that ends up blocking on inactivation to continue doing work while the filesytem processes the inactivation in the background. A typical demonstration of this is unlinking an inode with lots of extents. The extents are removed during inactivation, so this blocks the process that unlinked the inode from the directory structure. By moving the inactivation to the background process, the userspace applicaiton can keep working (e.g. unlinking the next inode in the directory) while the inactivation work on the previous inode is done by a different CPU. The implementation of the queue is relatively simple. We use a per-cpu lockless linked list (llist) to queue inodes for inactivation without requiring serialisation mechanisms, and a work item to allow the queue to be processed by a CPU bound worker thread. We also keep a count of the queue depth so that we can trigger work after a number of deferred inactivations have been queued. The use of a bound workqueue with a single work depth allows the workqueue to run one work item per CPU. We queue the work item on the CPU we are currently running on, and so this essentially gives us affine per-cpu worker threads for the per-cpu queues. THis maintains the effective CPU affinity that occurs within XFS at the AG level due to all objects in a directory being local to an AG. Hence inactivation work tends to run on the same CPU that last accessed all the objects that inactivation accesses and this maintains hot CPU caches for unlink workloads. A depth of 32 inodes was chosen to match the number of inodes in an inode cluster buffer. This hopefully allows sequential allocation/unlink behaviours to defering inactivation of all the inodes in a single cluster buffer at a time, further helping maintain hot CPU and buffer cache accesses while running inactivations. A hard per-cpu queue throttle of 256 inode has been set to avoid runaway queuing when inodes that take a long to time inactivate are being processed. For example, when unlinking inodes with large numbers of extents that can take a lot of processing to free. Signed-off-by: Dave Chinner <dchinner@redhat.com> [djwong: tweak comments and tracepoints, convert opflags to state bits] Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2021-08-06xfs: remove the active vs running quota differentiationChristoph Hellwig
These only made a difference when quotaoff supported disabling quota accounting on a mounted file system, so we can switch everyone to use a single set of flags and helpers now. Note that the *QUOTA_ON naming for the helpers is kept as it was the much more commonly used one. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2021-06-21xfs: fix log intent recovery ENOSPC shutdowns when inactivating inodesDarrick J. Wong
During regular operation, the xfs_inactive operations create transactions with zero block reservation because in general we're freeing space, not asking for more. The per-AG space reservations created at mount time enable us to handle expansions of the refcount btree without needing to reserve blocks to the transaction. Unfortunately, log recovery doesn't create the per-AG space reservations when intent items are being recovered. This isn't an issue for intent item recovery itself because they explicitly request blocks, but any inode inactivation that can happen during log recovery uses the same xfs_inactive paths as regular runtime. If a refcount btree expansion happens, the transaction will fail due to blk_res_used > blk_res, and we shut down the filesystem unnecessarily. Fix this problem by making per-AG reservations temporarily so that we can handle the inactivations, and releasing them at the end. This brings the recovery environment closer to the runtime environment. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de>
2021-06-02xfs: move perag structure and setup to libxfs/xfs_ag.[ch]Dave Chinner
Move the xfs_perag infrastructure to the libxfs files that contain all the per AG infrastructure. This helps set up for passing perags around all the code instead of bare agnos with minimal extra includes for existing files. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2021-06-02xfs: prepare for moving perag definitions and support to libxfsDave Chinner
The perag structures really need to be defined with the rest of the AG support infrastructure. The struct xfs_perag and init/teardown has been placed in xfs_mount.[ch] because there are differences in the structure between kernel and userspace. Mainly that userspace doesn't have a lot of the internal stuff that the kernel has for caches and discard and other such structures. However, it makes more sense to move this to libxfs than to keep this separation because we are now moving to use struct perags everywhere in the code instead of passing raw agnumber_t values about. Hence we shoudl really move the support infrastructure to libxfs/xfs_ag.[ch]. To do this without breaking userspace, first we need to rearrange the structures and code so that all the kernel specific code is located together. This makes it simple for userspace to ifdef out the all the parts it does not need, minimising the code differences between kernel and userspace. The next commit will do the move... Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2021-06-02xfs: move xfs_perag_get/put to xfs_ag.[ch]Dave Chinner
They are AG functions, not superblock functions, so move them to the appropriate location. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2021-04-29xfs: set aside allocation btree blocks from block reservationBrian Foster
The blocks used for allocation btrees (bnobt and countbt) are technically considered free space. This is because as free space is used, allocbt blocks are removed and naturally become available for traditional allocation. However, this means that a significant portion of free space may consist of in-use btree blocks if free space is severely fragmented. On large filesystems with large perag reservations, this can lead to a rare but nasty condition where a significant amount of physical free space is available, but the majority of actual usable blocks consist of in-use allocbt blocks. We have a record of a (~12TB, 32 AG) filesystem with multiple AGs in a state with ~2.5GB or so free blocks tracked across ~300 total allocbt blocks, but effectively at 100% full because the the free space is entirely consumed by refcountbt perag reservation. Such a large perag reservation is by design on large filesystems. The problem is that because the free space is so fragmented, this AG contributes the 300 or so allocbt blocks to the global counters as free space. If this pattern repeats across enough AGs, the filesystem lands in a state where global block reservation can outrun physical block availability. For example, a streaming buffered write on the affected filesystem continues to allow delayed allocation beyond the point where writeback starts to fail due to physical block allocation failures. The expected behavior is for the delalloc block reservation to fail gracefully with -ENOSPC before physical block allocation failure is a possibility. To address this problem, set aside in-use allocbt blocks at reservation time and thus ensure they cannot be reserved until truly available for physical allocation. This allows alloc btree metadata to continue to reside in free space, but dynamically adjusts reservation availability based on internal state. Note that the logic requires that the allocbt counter is fully populated at reservation time before it is fully effective. We currently rely on the mount time AGF scan in the perag reservation initialization code for this dependency on filesystems where it's most important (i.e. with active perag reservations). Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com> Reviewed-by: Allison Henderson <allison.henderson@oracle.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2021-04-07xfs: precalculate default inode attribute offsetDave Chinner
Default attr fork offset is based on inode size, so is a fixed geometry parameter of the inode. Move it to the xfs_ino_geometry structure and stop calculating it on every call to xfs_default_attroffset(). Signed-off-by: Dave Chinner <dchinner@redhat.com> Tested-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
2021-03-15xfs: force log and push AIL to clear pinned inodes when aborting mountDarrick J. Wong
If we allocate quota inodes in the process of mounting a filesystem but then decide to abort the mount, it's possible that the quota inodes are sitting around pinned by the log. Now that inode reclaim relies on the AIL to flush inodes, we have to force the log and push the AIL in between releasing the quota inodes and kicking off reclaim to tear down all the incore inodes. Do this by extracting the bits we need from the unmount path and reusing them. As an added bonus, failed writes during a failed mount will not retry forever now. This was originally found during a fuzz test of metadata directories (xfs/1546), but the actual symptom was that reclaim hung up on the quota inodes. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Dave Chinner <dchinner@redhat.com>
2021-02-03xfs: parallelize block preallocation garbage collectionDarrick J. Wong
Split the block preallocation garbage collection work into per-AG work items so that we can take advantage of parallelization. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de>
2021-02-03xfs: rename block gc start and stop functionsDarrick J. Wong
Shorten the names of the two functions that start and stop block preallocation garbage collection and move them up to the other blockgc functions. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de>
2021-01-22xfs: remove xfs_quiesce_attr()Brian Foster
xfs_quiesce_attr() is now a wrapper for xfs_log_clean(). Remove it and call xfs_log_clean() directly. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
2021-01-22xfs: fold sbcount quiesce logging into log coveringBrian Foster
xfs_log_sbcount() calls xfs_sync_sb() to sync superblock counters to disk when lazy superblock accounting is enabled. This occurs on unmount, freeze, and read-only (re)mount and ensures the final values are calculated and persisted to disk before each form of quiesce completes. Now that log covering occurs in all of these contexts and uses the same xfs_sync_sb() mechanism to update log state, there is no need to log the superblock separately for any reason. Update the log quiesce path to sync the superblock at least once for any mount where lazy superblock accounting is enabled. If the log is already covered, it will remain in the covered state. Otherwise, the next sync as part of the normal covering sequence will carry the associated superblock update with it. Remove xfs_log_sbcount() now that it is no longer needed. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
2021-01-22xfs: sync lazy sb accounting on quiesce of read-only mountsBrian Foster
xfs_log_sbcount() syncs the superblock specifically to accumulate the in-core percpu superblock counters and commit them to disk. This is required to maintain filesystem consistency across quiesce (freeze, read-only mount/remount) or unmount when lazy superblock accounting is enabled because individual transactions do not update the superblock directly. This mechanism works as expected for writable mounts, but xfs_log_sbcount() skips the update for read-only mounts. Read-only mounts otherwise still allow log recovery and write out an unmount record during log quiesce. If a read-only mount performs log recovery, it can modify the in-core superblock counters and write an unmount record when the filesystem unmounts without ever syncing the in-core counters. This leaves the filesystem with a clean log but in an inconsistent state with regard to lazy sb counters. Update xfs_log_sbcount() to use the same logic xfs_log_unmount_write() uses to determine when to write an unmount record. This ensures that lazy accounting is always synced before the log is cleaned. Refactor this logic into a new helper to distinguish between a writable filesystem and a writable log. Specifically, the log is writable unless the filesystem is mounted with the norecovery mount option, the underlying log device is read-only, or the filesystem is shutdown. Drop the freeze state check because the update is already allowed during the freezing process and no context calls this function on an already frozen fs. Also, retain the shutdown check in xfs_log_unmount_write() to catch the case where the preceding log force might have triggered a shutdown. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Gao Xiang <hsiangkao@redhat.com> Reviewed-by: Allison Henderson <allison.henderson@oracle.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Bill O'Donnell <billodo@redhat.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2021-01-22xfs: rename xfs_wait_buftarg() to xfs_buftarg_drain()Brian Foster
xfs_wait_buftarg() is vaguely named and somewhat overloaded. Its primary purpose is to reclaim all buffers from the provided buffer target LRU. In preparation to refactor xfs_wait_buftarg() into serialization and LRU draining components, rename the function and associated helpers to something more descriptive. This patch has no functional changes with the minor exception of renaming a tracepoint. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2020-11-18xfs: return corresponding errcode if xfs_initialize_perag() failYu Kuai
In xfs_initialize_perag(), if kmem_zalloc(), xfs_buf_hash_init(), or radix_tree_preload() failed, the returned value 'error' is not set accordingly. Reported-as-fixing: 8b26c5825e02 ("xfs: handle ENOMEM correctly during initialisation of perag structures") Fixes: 9b2471797942 ("xfs: cache unlinked pointers in an rhashtable") Reported-by: Hulk Robot <hulkci@huawei.com> Signed-off-by: Yu Kuai <yukuai3@huawei.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
2020-09-15xfs: remove xfs_getsbChristoph Hellwig
Merge xfs_getsb into its only caller, and clean that one up a little bit as well. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>