Age | Commit message (Collapse) | Author |
|
On a 10TB filesystem where the free space in each AG is heavily
fragmented, I noticed some very high runtimes on a FITRIM call for the
entire filesystem. xfs_scrub likes to report progress information on
each phase of the scrub, which means that a strace for the entire
filesystem:
ioctl(3, FITRIM, {start=0x0, len=10995116277760, minlen=0}) = 0 <686.209839>
shows that scrub is uncommunicative for the entire duration. Reducing
the size of the FITRIM requests to a single AG at a time produces lower
times for each individual call, but even this isn't quite acceptable,
because the time between progress reports are still very high:
Strace for the first 4x 1TB AGs looks like (2):
ioctl(3, FITRIM, {start=0x0, len=1099511627776, minlen=0}) = 0 <68.352033>
ioctl(3, FITRIM, {start=0x10000000000, len=1099511627776, minlen=0}) = 0 <68.760323>
ioctl(3, FITRIM, {start=0x20000000000, len=1099511627776, minlen=0}) = 0 <67.235226>
ioctl(3, FITRIM, {start=0x30000000000, len=1099511627776, minlen=0}) = 0 <69.465744>
I then had the idea to limit the length parameter of each call to a
smallish amount (~11GB) so that we could report progress relatively
quickly, but much to my surprise, each FITRIM call still took ~68
seconds!
Unfortunately, the by-length fstrim implementation handles this poorly
because it walks the entire free space by length index (cntbt), which is
a very inefficient way to walk a subset of the blocks of an AG.
Therefore, create a second implementation that will walk the bnobt and
perform the trims in block number order. This implementation avoids the
worst problems of the original code, though it lacks the desirable
attribute of freeing the biggest chunks first.
On the other hand, this second implementation will be much easier to
constrain the system call latency, and makes it much easier to report
fstrim progress to anyone who's running xfs_scrub.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com
|
|
Split xfs_allocbt_init_cursor into separate routines for the by-bno
and by-cnt btrees to prepare for the removal of the xfs_btnum global
enumeration of btree types.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
|
|
Whenever we encounter XFS_IS_CORRUPT failures, we should report that to
the health monitoring system for later reporting.
I started with this semantic patch and massaged everything until it
built:
@@
expression mp, test;
@@
- if (XFS_IS_CORRUPT(mp, test)) return -EFSCORRUPTED;
+ if (XFS_IS_CORRUPT(mp, test)) { xfs_btree_mark_sick(cur); return -EFSCORRUPTED; }
@@
expression mp, test;
identifier label, error;
@@
- if (XFS_IS_CORRUPT(mp, test)) { error = -EFSCORRUPTED; goto label; }
+ if (XFS_IS_CORRUPT(mp, test)) { xfs_btree_mark_sick(cur); error = -EFSCORRUPTED; goto label; }
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
|
|
We currently use a btree walk in the fstrim code. This requires a
btree cursor and btree cursors are only used inside transactions
except for the fstrim code. This means that all the btree operations
that allocate memory operate in both GFP_KERNEL and GFP_NOFS
contexts.
This causes problems with lockdep being unable to determine the
difference between objects that are safe to lock both above and
below memory reclaim. Free space btree buffers are definitely locked
both above and below reclaim and that means we have to mark all
btree infrastructure allocations with GFP_NOFS to avoid potential
lockdep false positives.
If we wrap this btree walk in an empty cursor, all btree walks are
now done under transaction context and so all allocations inherit
GFP_NOFS context from the tranaction. This enables us to move all
the btree allocations to GFP_KERNEL context and hence help remove
the explicit use of GFP_NOFS in XFS.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
|
|
The remaining callers of kmem_free() are freeing heap memory, so
we can convert them directly to kfree() and get rid of kmem_free()
altogether.
This conversion was done with:
$ for f in `git grep -l kmem_free fs/xfs`; do
> sed -i s/kmem_free/kfree/ $f
> done
$
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Signed-off-by: Chandan Babu R <chandanbabu@kernel.org>
|
|
A recent ext4 patch posting from Jan Kara reminded me of a
discussion a year ago about fstrim in progress preventing kernels
from suspending. The fix is simple, we should do the same for XFS.
This removes the -ERESTARTSYS error return from this code, replacing
it with either the last error seen or the number of blocks
successfully trimmed up to the point where we detected the stop
condition.
References: https://bugzilla.kernel.org/show_bug.cgi?id=216322
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
|
|
fstrim will hold the AGF lock for as long as it takes to walk and
discard all the free space in the AG that meets the userspace trim
criteria. For AGs with lots of free space extents (e.g. millions)
or the underlying device is really slow at processing discard
requests (e.g. Ceph RBD), this means the AGF hold time is often
measured in minutes to hours, not a few milliseconds as we normal
see with non-discard based operations.
This can result in the entire filesystem hanging whilst the
long-running fstrim is in progress. We can have transactions get
stuck waiting for the AGF lock (data or metadata extent allocation
and freeing), and then more transactions get stuck waiting on the
locks those transactions hold. We can get to the point where fstrim
blocks an extent allocation or free operation long enough that it
ends up pinning the tail of the log and the log then runs out of
space. At this point, every modification in the filesystem gets
blocked. This includes read operations, if atime updates need to be
made.
To fix this problem, we need to be able to discard free space
extents safely without holding the AGF lock. Fortunately, we already
do this with online discard via busy extents. We can mark free space
extents as "busy being discarded" under the AGF lock and then unlock
the AGF, knowing that nobody will be able to allocate that free
space extent until we remove it from the busy tree.
Modify xfs_trim_extents to use the same asynchronous discard
mechanism backed by busy extents as is used with online discard.
This results in the AGF only needing to be held for short periods of
time and it is never held while we issue discards. Hence if discard
submission gets throttled because it is slow and/or there are lots
of them, we aren't preventing other operations from being performed
on AGF while we wait for discards to complete...
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
|
|
Because we are going to use the same list-based discard submission
interface for fstrim-based discards, too.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
|
|
To convert it to using active perag references and hence make it
shrink safe.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
|
|
xfs_alloc_read_agf() initialises the perag if it hasn't been done
yet, so it makes sense to pass it the perag rather than pull a
reference from the buffer. This allows callers to be per-ag centric
rather than passing mount/agno pairs everywhere.
Whilst modifying the xfs_reflink_find_shared() function definition,
declare it static and remove the extern declaration as it is an
internal function only these days.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
|
|
Secure erase is a very different operation from discard in that it is
a data integrity operation vs hint. Fully split the limits and helper
infrastructure to make the separation more clear.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com>
Acked-by: Christoph Böhmwalder <christoph.boehmwalder@linbit.com> [drbd]
Acked-by: Ryusuke Konishi <konishi.ryusuke@gmail.com> [nifs2]
Acked-by: Jaegeuk Kim <jaegeuk@kernel.org> [f2fs]
Acked-by: Coly Li <colyli@suse.de> [bcache]
Acked-by: David Sterba <dsterba@suse.com> [btrfs]
Acked-by: Chao Yu <chao@kernel.org>
Reviewed-by: Chaitanya Kulkarni <kch@nvidia.com>
Link: https://lore.kernel.org/r/20220415045258.199825-27-hch@lst.de
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
Abstract away implementation details from file systems by providing a
block_device based helper to retrieve the discard granularity.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com>
Acked-by: Christoph Böhmwalder <christoph.boehmwalder@linbit.com> [drbd]
Acked-by: Ryusuke Konishi <konishi.ryusuke@gmail.com>
Acked-by: David Sterba <dsterba@suse.com> [btrfs]
Link: https://lore.kernel.org/r/20220415045258.199825-26-hch@lst.de
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
Just use a non-zero max_discard_sectors as an indicator for discard
support, similar to what is done for write zeroes.
The only places where needs special attention is the RAID5 driver,
which must clear discard support for security reasons by default,
even if the default stacking rules would allow for it.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com>
Acked-by: Christoph Böhmwalder <christoph.boehmwalder@linbit.com> [drbd]
Acked-by: Jan Höppner <hoeppner@linux.ibm.com> [s390]
Acked-by: Coly Li <colyli@suse.de> [bcache]
Acked-by: David Sterba <dsterba@suse.com> [btrfs]
Reviewed-by: Chaitanya Kulkarni <kch@nvidia.com>
Link: https://lore.kernel.org/r/20220415045258.199825-25-hch@lst.de
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
Replace m_flags feature checks with xfs_has_<feature>() calls and
rework the setup code to set flags in m_features.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
|
|
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
|
|
Which will eventually completely replace the agno in it.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Brian Foster <bfoster@redhat.com>
|
|
All of the callers of the busy extent API either have perag
references available to use so we can pass a perag to the busy
extent functions rather than having them have to do unnecessary
lookups.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
|
|
They are AG functions, not superblock functions, so move them to the
appropriate location.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
|
|
Just dereference bp->b_addr directly and make the code a little
simpler and more clear.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
|
|
Drop the null buffer pointer checks in all code that calls
xfs_alloc_read_agf and doesn't pass XFS_ALLOC_FLAG_TRYLOCK because
they're no longer necessary.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
|
|
The XFS_WANT_CORRUPT_* macros conceal subtle side effects such as the
creation of local variables and redirections of the code flow. This is
pretty ugly, so replace them with explicit XFS_IS_CORRUPT tests that
remove both of those ugly points. The change was performed with the
following coccinelle script:
@@
expression mp, test;
identifier label;
@@
- XFS_WANT_CORRUPTED_GOTO(mp, test, label);
+ if (XFS_IS_CORRUPT(mp, !test)) { error = -EFSCORRUPTED; goto label; }
@@
expression mp, test;
@@
- XFS_WANT_CORRUPTED_RETURN(mp, test);
+ if (XFS_IS_CORRUPT(mp, !test)) return -EFSCORRUPTED;
@@
expression mp, lval, rval;
@@
- XFS_IS_CORRUPT(mp, !(lval == rval))
+ XFS_IS_CORRUPT(mp, lval != rval)
@@
expression mp, e1, e2;
@@
- XFS_IS_CORRUPT(mp, !(e1 && e2))
+ XFS_IS_CORRUPT(mp, !e1 || !e2)
@@
expression e1, e2;
@@
- !(e1 == e2)
+ e1 != e2
@@
expression e1, e2, e3, e4, e5, e6;
@@
- !(e1 == e2 && e3 == e4) || e5 != e6
+ e1 != e2 || e3 != e4 || e5 != e6
@@
expression e1, e2, e3, e4, e5, e6;
@@
- !(e1 == e2 || (e3 <= e4 && e5 <= e6))
+ e1 != e2 && (e3 > e4 || e5 > e6)
@@
expression mp, e1, e2;
@@
- XFS_IS_CORRUPT(mp, !(e1 <= e2))
+ XFS_IS_CORRUPT(mp, e1 > e2)
@@
expression mp, e1, e2;
@@
- XFS_IS_CORRUPT(mp, !(e1 < e2))
+ XFS_IS_CORRUPT(mp, e1 >= e2)
@@
expression mp, e1;
@@
- XFS_IS_CORRUPT(mp, !!e1)
+ XFS_IS_CORRUPT(mp, e1)
@@
expression mp, e1, e2;
@@
- XFS_IS_CORRUPT(mp, !(e1 || e2))
+ XFS_IS_CORRUPT(mp, !e1 && !e2)
@@
expression mp, e1, e2, e3, e4;
@@
- XFS_IS_CORRUPT(mp, !(e1 == e2) && !(e3 == e4))
+ XFS_IS_CORRUPT(mp, e1 != e2 && e3 != e4)
@@
expression mp, e1, e2, e3, e4;
@@
- XFS_IS_CORRUPT(mp, !(e1 <= e2) || !(e3 >= e4))
+ XFS_IS_CORRUPT(mp, e1 > e2 || e3 < e4)
@@
expression mp, e1, e2, e3, e4;
@@
- XFS_IS_CORRUPT(mp, !(e1 == e2) && !(e3 <= e4))
+ XFS_IS_CORRUPT(mp, e1 != e2 && e3 > e4)
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
|
|
Some of the xfs source files are missing header includes, so add them
back. Sparse complains about non-static functions that don't have a
forward declaration anywhere.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
|
|
There are many, many xfs header files which are included but
unneeded (or included twice) in the xfs code, so remove them.
nb: xfs_linux.h includes about 9 headers for everyone, so those
explicit includes get removed by this. I'm not sure what the
preference is, but if we wanted explicit includes everywhere,
a followup patch could remove those xfs_*.h includes from
xfs_linux.h and move them into the files that need them.
Or it could be left as-is.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
|
|
The inode geometry structure isn't related to ondisk format; it's
support for the mount structure. Move it to xfs_shared.h.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
|
|
This patch tries to address two problems:
1) return @minlen we used to trim to
user space.
2) return EINVAL if granularity is larger than
avg size, even most of cases, granularity is small(4K),
but if devices return a lager granularity for some reaons
(testing, bugs etc), fstrim should return failure directly.
Signed-off-by: Wang Shilong <wshilong@ddn.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
|
|
The xfs fstrim implementation uses the free space btrees to find free
space that can be discarded. If we haven't recovered the log, the bnobt
will be stale and we absolutely *cannot* use stale metadata to zap the
underlying storage.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
|
|
The error argument to xfs_btree_del_cursor already understands the
"nonzero for error" semantics, so remove pointless error testing in the
callers and pass it directly.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
|
|
Remove the verbose license text from XFS files and replace them
with SPDX tags. This does not change the license of any of the code,
merely refers to the common, up-to-date license files in LICENSES/
This change was mostly scripted. fs/xfs/Makefile and
fs/xfs/libxfs/xfs_fs.h were modified by hand, the rest were detected
and modified by the following command:
for f in `git grep -l "GNU General" fs/xfs/` ; do
echo $f
cat $f | awk -f hdr.awk > $f.new
mv -f $f.new $f
done
And the hdr.awk script that did the modification (including
detecting the difference between GPL-2.0 and GPL-2.0+ licenses)
is as follows:
$ cat hdr.awk
BEGIN {
hdr = 1.0
tag = "GPL-2.0"
str = ""
}
/^ \* This program is free software/ {
hdr = 2.0;
next
}
/any later version./ {
tag = "GPL-2.0+"
next
}
/^ \*\// {
if (hdr > 0.0) {
print "// SPDX-License-Identifier: " tag
print str
print $0
str=""
hdr = 0.0
next
}
print $0
next
}
/^ \* / {
if (hdr > 1.0)
next
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
next
}
/^ \*/ {
if (hdr > 0.0)
next
print $0
next
}
// {
if (hdr > 0.0) {
if (str != "")
str = str "\n"
str = str $0
next
}
print $0
}
END { }
$
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
|
|
Forcing the log to disk after reading the agf is wrong, we might be
calling xfs_log_force with XFS_LOG_SYNC with a metadata lock held.
This can cause a deadlock when racing a fstrim with a filesystem
shutdown.
The deadlock has been identified due a miscalculation bug in device-mapper
dm-thin, which returns lack of space to its users earlier than the device itself
really runs out of space, changing the device-mapper volume into an error state.
The problem happened while filling the filesystem with a single file,
triggering the bug in device-mapper, consequently causing an IO error
and shutting down the filesystem.
If such file is removed, and fstrim executed before the XFS finishes the
shut down process, the fstrim process will end up holding the buffer
lock, and going to sleep on the cil wait queue.
At this point, the shut down process will try to wake up all the threads
waiting on the cil wait queue, but for this, it will try to hold the
same buffer log already held my the fstrim, locking up the filesystem.
Signed-off-by: Carlos Maiolino <cmaiolino@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
|
|
This is a purely mechanical patch that removes the private
__{u,}int{8,16,32,64}_t typedefs in favor of using the system
{u,}int{8,16,32,64}_t typedefs. This is the sed script used to perform
the transformation and fix the resulting whitespace and indentation
errors:
s/typedef\t__uint8_t/typedef __uint8_t\t/g
s/typedef\t__uint/typedef __uint/g
s/typedef\t__int\([0-9]*\)_t/typedef int\1_t\t/g
s/__uint8_t\t/__uint8_t\t\t/g
s/__uint/uint/g
s/__int\([0-9]*\)_t\t/__int\1_t\t\t/g
s/__int/int/g
/^typedef.*int[0-9]*_t;$/d
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
|
|
fstrim can take really long time on big, slow device or on file system
with a lots of allocation groups. Currently there is no way for the user
to cancell the operation. This patch makes it possible for the user to
kill fstrim pocess by adding the check for fatal_signal_pending() in
xfs_trim_extents().
Signed-off-by: Lukas Czerner <lczerner@redhat.com>
Reported-by: Zdenek Kabelac <zkabelac@redhat.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
|
|
Instead we submit the discard requests and use another workqueue to
release the extents from the extent busy list.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
|
|
Originally-From: Dave Chinner <dchinner@redhat.com>
The rmap btree is allocated from the AGFL, which means we have to
ensure ENOSPC is reported to userspace before we run out of free
space in each AG. The last allocation in an AG can cause a full
height rmap btree split, and that means we have to reserve at least
this many blocks *in each AG* to be placed on the AGFL at ENOSPC.
Update the various space calculation functions to handle this.
Also, because the macros are now executing conditional code and are
called quite frequently, convert them to functions that initialise
variables in the struct xfs_mount, use the new variables everywhere
and document the calculations better.
[darrick.wong@oracle.com: don't reserve blocks if !rmap]
[dchinner@redhat.com: update m_ag_max_usable after growfs]
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
|
|
busyp->bno is printed with a %llu format specifier when the
intention is to print a hexadecimal value. Trivial fix to
use %llx instead. Found with smatch static analysis:
fs/xfs/xfs_discard.c:229 xfs_discard_extents() warn: '0x'
prefix is confusing together with '%llu' specifier
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
|
|
Today, if we hit an XFS_WANT_CORRUPTED_GOTO we don't print any
information about which filesystem hit it. Passing in the mp allows
us to print the filesystem (device) name, which is a pretty critical
piece of information.
Tested by running fsfuzzer 'til I hit some.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
|
|
More on-disk format consolidation. A few declarations that weren't on-disk
format related move into better suitable spots.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
|
|
Convert all the errors the core XFs code to negative error signs
like the rest of the kernel and remove all the sign conversion we
do in the interface layers.
Errors for conversion (and comparison) found via searches like:
$ git grep " E" fs/xfs
$ git grep "return E" fs/xfs
$ git grep " E[A-Z].*;$" fs/xfs
Negation points found via searches like:
$ git grep "= -[a-z,A-Z]" fs/xfs
$ git grep "return -[a-z,A-D,F-Z]" fs/xfs
$ git grep " -[a-z].*;" fs/xfs
[ with some bits I missed from Brian Foster ]
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
|
|
XFS_ERROR was designed long ago to trap return values, but it's not
runtime configurable, it's not consistently used, and we can do
similar error trapping with ftrace scripts and triggers from
userspace.
Just nuke XFS_ERROR and associated bits.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Dave Chinner <david@fromorbit.com>
|
|
For discard operation, we should return EINVAL if the given range length
is less than a block size, otherwise it will go through the file system
to discard data blocks as the end range might be evaluated to -1, e.g,
# fstrim -v -o 0 -l 100 /xfs7
/xfs7: 9811378176 bytes were trimmed
This issue can be triggered via xfstests/generic/288.
Also, it seems to get the request queue pointer via bdev_get_queue()
instead of the hard code pointer dereference is not a bad thing.
Signed-off-by: Jie Liu <jeff.liu@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ben Myers <bpm@sgi.com>
(cherry picked from commit f9fd0135610084abef6867d984e9951c3099950d)
|
|
Currently the xfs_inode.h header has a dependency on the definition
of the BMAP btree records as the inode fork includes an array of
xfs_bmbt_rec_host_t objects in it's definition.
Move all the btree format definitions from xfs_btree.h,
xfs_bmap_btree.h, xfs_alloc_btree.h and xfs_ialloc_btree.h to
xfs_format.h to continue the process of centralising the on-disk
format definitions. With this done, the xfs inode definitions are no
longer dependent on btree header files.
The enables a massive culling of unnecessary includes, with close to
200 #include directives removed from the XFS kernel code base.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
xfs_trans.h has a dependency on xfs_log.h for a couple of
structures. Most code that does transactions doesn't need to know
anything about the log, but this dependency means that they have to
include xfs_log.h. Decouple the xfs_trans.h and xfs_log.h header
files and clean up the includes to be in dependency order.
In doing this, remove the direct include of xfs_trans_reserve.h from
xfs_trans.h so that we remove the dependency between xfs_trans.h and
xfs_mount.h. Hence the xfs_trans.h include can be moved to the
indicate the actual dependencies other header files have on it.
Note that these are kernel only header files, so this does not
translate to any userspace changes at all.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Ben Myers <bpm@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
The transaction reservation size calculations is used by both kernel
and userspace, but most of the transaction code in xfs_trans.c is
kernel specific. Split all the transaction reservation code out into
it's own files to make sharing with userspace simpler. This just
leaves kernel-only definitions in xfs_trans.h, so it doesn't need to
be shared with userspace anymore, either.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
The on disk format definitions of the on-disk dquot, log formats and
quota off log formats are all intertwined with other definitions for
quotas. Separate them out into their own header file so they can
easily be shared with userspace.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
If range.start or range.minlen is bigger than filesystem size, return
invalid value error. This fixes possible overflow in BTOBB macro when
passed value was nearly ULLONG_MAX.
Signed-off-by: Tomas Racek <tracek@redhat.com>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
Now that the busy extent tracking has been moved out of the
allocation files, clean up the namespace it uses to
"xfs_extent_busy" rather than a mix of "xfs_busy" and
"xfs_alloc_busy".
Signed-off-by: Dave Chinner<dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
To make it easier to handle userspace code merges, move all the busy
extent handling out of the allocation code and into it's own file.
The userspace code does not need the busy extent code, so this
simplifies the merging of the kernel code into the userspace
xfsprogs library.
Because the busy extent code has been almost completely rewritten
over the past couple of years, also update the copyright on this new
file to include the authors that made all those changes.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
Untangle the header file includes a bit by moving the definition of
xfs_agino_t to xfs_types.h. This removes the dependency that xfs_ag.h has on
xfs_inum.h, meaning we don't need to include xfs_inum.h everywhere we include
xfs_ag.h.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Mark Tinguely <tinguely@sgi.com>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
xfs_ioc_fstrim() doesn't treat the incoming offset and length
correctly. It treats them as a filesystem block address, rather than
a disk address. This is wrong because the range passed in is a
linear representation, while the filesystem block address notation
is a sparse representation. Hence we cannot convert the range direct
to filesystem block units and then use that for calculating the
range to trim.
While this sounds dangerous, the problem is limited to calculating
what AGs need to be trimmed. The code that calcuates the actual
ranges to trim gets the right result (i.e. only ever discards free
space), even though it uses the wrong ranges to limit what is
trimmed. Hence this is not a bug that endangers user data.
Fix this by treating the range as a disk address range and use the
appropriate functions to convert the range into the desired formats
for calculations.
Further, fix the first free extent lookup (the longest) to actually
find the largest free extent. Currently this lookup uses a <=
lookup, which results in finding the extent to the left of the
largest because we can never get an exact match on the largest
extent. This is due to the fact that while we know it's size, we
don't know it's location and so the exact match fails and we move
one record to the left to get the next largest extent. Instead, use
a >= search so that the lookup returns the largest extent regardless
of the fact we don't get an exact match on it.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
When finding the longest extent in an AG, we read the value directly
out of the AGF buffer without endian conversion. This will give an
incorrect length, resulting in FITRIM operations potentially not
trimming everything that it should.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Ben Myers <bpm@sgi.com>
|
|
In xfs_ioc_trim it is possible that computing the last allocation group
to discard might overflow for big start & len values, because the result
might be bigger then xfs_agnumber_t which is 32 bit long. Fix this by not
allowing the start and end block of the range to be beyond the end of the
file system.
Note that if the start is beyond the end of the file system we have to
return -EINVAL, but in the "end" case we have to truncate it to the fs
size.
Also introduce "end" variable, rather than using start+len which which
might be more confusing to get right as this bug shows.
Signed-off-by: Lukas Czerner <lczerner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Alex Elder <aelder@sgi.com>
|