summaryrefslogtreecommitdiff
path: root/fs/splice.c
AgeCommit message (Collapse)Author
2020-05-20pipe: Fix pipe_full() test in opipe_prep().Tetsuo Handa
syzbot is reporting that splice()ing from non-empty read side to already-full write side causes unkillable task, for opipe_prep() is by error not inverting pipe_full() test. CPU: 0 PID: 9460 Comm: syz-executor.5 Not tainted 5.6.0-rc3-next-20200228-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 RIP: 0010:rol32 include/linux/bitops.h:105 [inline] RIP: 0010:iterate_chain_key kernel/locking/lockdep.c:369 [inline] RIP: 0010:__lock_acquire+0x6a3/0x5270 kernel/locking/lockdep.c:4178 Call Trace: lock_acquire+0x197/0x420 kernel/locking/lockdep.c:4720 __mutex_lock_common kernel/locking/mutex.c:956 [inline] __mutex_lock+0x156/0x13c0 kernel/locking/mutex.c:1103 pipe_lock_nested fs/pipe.c:66 [inline] pipe_double_lock+0x1a0/0x1e0 fs/pipe.c:104 splice_pipe_to_pipe fs/splice.c:1562 [inline] do_splice+0x35f/0x1520 fs/splice.c:1141 __do_sys_splice fs/splice.c:1447 [inline] __se_sys_splice fs/splice.c:1427 [inline] __x64_sys_splice+0x2b5/0x320 fs/splice.c:1427 do_syscall_64+0xf6/0x790 arch/x86/entry/common.c:295 entry_SYSCALL_64_after_hwframe+0x49/0xbe Reported-by: syzbot+b48daca8639150bc5e73@syzkaller.appspotmail.com Link: https://syzkaller.appspot.com/bug?id=9386d051e11e09973d5a4cf79af5e8cedf79386d Fixes: 8cefc107ca54c8b0 ("pipe: Use head and tail pointers for the ring, not cursor and length") Cc: stable@vger.kernel.org # 5.5+ Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-05-07splice: move f_mode checks to do_{splice,tee}()Pavel Begunkov
do_splice() is used by io_uring, as will be do_tee(). Move f_mode checks from sys_{splice,tee}() to do_{splice,tee}(), so they're enforced for io_uring as well. Fixes: 7d67af2c0134 ("io_uring: add splice(2) support") Reported-by: Jann Horn <jannh@google.com> Signed-off-by: Pavel Begunkov <asml.silence@gmail.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2020-03-02splice: make do_splice publicPavel Begunkov
Make do_splice(), so other kernel parts can reuse it Signed-off-by: Pavel Begunkov <asml.silence@gmail.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2020-02-08pipe: use exclusive waits when reading or writingLinus Torvalds
This makes the pipe code use separate wait-queues and exclusive waiting for readers and writers, avoiding a nasty thundering herd problem when there are lots of readers waiting for data on a pipe (or, less commonly, lots of writers waiting for a pipe to have space). While this isn't a common occurrence in the traditional "use a pipe as a data transport" case, where you typically only have a single reader and a single writer process, there is one common special case: using a pipe as a source of "locking tokens" rather than for data communication. In particular, the GNU make jobserver code ends up using a pipe as a way to limit parallelism, where each job consumes a token by reading a byte from the jobserver pipe, and releases the token by writing a byte back to the pipe. This pattern is fairly traditional on Unix, and works very well, but will waste a lot of time waking up a lot of processes when only a single reader needs to be woken up when a writer releases a new token. A simplified test-case of just this pipe interaction is to create 64 processes, and then pass a single token around between them (this test-case also intentionally passes another token that gets ignored to test the "wake up next" logic too, in case anybody wonders about it): #include <unistd.h> int main(int argc, char **argv) { int fd[2], counters[2]; pipe(fd); counters[0] = 0; counters[1] = -1; write(fd[1], counters, sizeof(counters)); /* 64 processes */ fork(); fork(); fork(); fork(); fork(); fork(); do { int i; read(fd[0], &i, sizeof(i)); if (i < 0) continue; counters[0] = i+1; write(fd[1], counters, (1+(i & 1)) *sizeof(int)); } while (counters[0] < 1000000); return 0; } and in a perfect world, passing that token around should only cause one context switch per transfer, when the writer of a token causes a directed wakeup of just a single reader. But with the "writer wakes all readers" model we traditionally had, on my test box the above case causes more than an order of magnitude more scheduling: instead of the expected ~1M context switches, "perf stat" shows 231,852.37 msec task-clock # 15.857 CPUs utilized 11,250,961 context-switches # 0.049 M/sec 616,304 cpu-migrations # 0.003 M/sec 1,648 page-faults # 0.007 K/sec 1,097,903,998,514 cycles # 4.735 GHz 120,781,778,352 instructions # 0.11 insn per cycle 27,997,056,043 branches # 120.754 M/sec 283,581,233 branch-misses # 1.01% of all branches 14.621273891 seconds time elapsed 0.018243000 seconds user 3.611468000 seconds sys before this commit. After this commit, I get 5,229.55 msec task-clock # 3.072 CPUs utilized 1,212,233 context-switches # 0.232 M/sec 103,951 cpu-migrations # 0.020 M/sec 1,328 page-faults # 0.254 K/sec 21,307,456,166 cycles # 4.074 GHz 12,947,819,999 instructions # 0.61 insn per cycle 2,881,985,678 branches # 551.096 M/sec 64,267,015 branch-misses # 2.23% of all branches 1.702148350 seconds time elapsed 0.004868000 seconds user 0.110786000 seconds sys instead. Much better. [ Note! This kernel improvement seems to be very good at triggering a race condition in the make jobserver (in GNU make 4.2.1) for me. It's a long known bug that was fixed back in June 2017 by GNU make commit b552b0525198 ("[SV 51159] Use a non-blocking read with pselect to avoid hangs."). But there wasn't a new release of GNU make until 4.3 on Jan 19 2020, so a number of distributions may still have the buggy version. Some have backported the fix to their 4.2.1 release, though, and even without the fix it's quite timing-dependent whether the bug actually is hit. ] Josh Triplett says: "I've been hammering on your pipe fix patch (switching to exclusive wait queues) for a month or so, on several different systems, and I've run into no issues with it. The patch *substantially* improves parallel build times on large (~100 CPU) systems, both with parallel make and with other things that use make's pipe-based jobserver. All current distributions (including stable and long-term stable distributions) have versions of GNU make that no longer have the jobserver bug" Tested-by: Josh Triplett <josh@joshtriplett.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-12-07pipe: remove 'waiting_writers' merging logicLinus Torvalds
This code is ancient, and goes back to when we only had a single page for the pipe buffers. The exact history is hidden in the mists of time (ie "before git", and in fact predates the BK repository too). At that long-ago point in time, it actually helped to try to merge big back-and-forth pipe reads and writes, and not limit pipe reads to the single pipe buffer in length just because that was all we had at a time. However, since then we've expanded the pipe buffers to multiple pages, and this logic really doesn't seem to make sense. And a lot of it is somewhat questionable (ie "hmm, the user asked for a non-blocking read, but we see that there's a writer pending, so let's wait anyway to get the extra data that the writer will have"). But more importantly, it makes the "go to sleep" logic much less obvious, and considering the wakeup issues we've had, I want to make for less of those kinds of things. Cc: David Howells <dhowells@redhat.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-12-06pipe: fix incorrect caching of pipe state over pipe_wait()Linus Torvalds
Similarly to commit 8f868d68d335 ("pipe: Fix missing mask update after pipe_wait()") this fixes a case where the pipe rewrite ended up caching the pipe state incorrectly over a pipe lock drop event. It wasn't quite as obvious, because you needed to splice data from a pipe to a file, which is a fairly unusual operation, but it's completely wrong. Make sure we load the pipe head/tail/size information only after we've waited for there to be data in the pipe. While in that file, also make one of the splice helper functions use the canonical arghument order for pipe_empty(). That's syntactic - pipe emptiness is just that head and tail are equal, and thus mixing up head and tail doesn't really matter. It's still wrong, though. Reported-by: David Sterba <dsterba@suse.cz> Cc: David Howells <dhowells@redhat.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-11-30Merge tag 'notifications-pipe-prep-20191115' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs Pull pipe rework from David Howells: "This is my set of preparatory patches for building a general notification queue on top of pipes. It makes a number of significant changes: - It removes the nr_exclusive argument from __wake_up_sync_key() as this is always 1. This prepares for the next step: - Adds wake_up_interruptible_sync_poll_locked() so that poll can be woken up from a function that's holding the poll waitqueue spinlock. - Change the pipe buffer ring to be managed in terms of unbounded head and tail indices rather than bounded index and length. This means that reading the pipe only needs to modify one index, not two. - A selection of helper functions are provided to query the state of the pipe buffer, plus a couple to apply updates to the pipe indices. - The pipe ring is allowed to have kernel-reserved slots. This allows many notification messages to be spliced in by the kernel without allowing userspace to pin too many pages if it writes to the same pipe. - Advance the head and tail indices inside the pipe waitqueue lock and use wake_up_interruptible_sync_poll_locked() to poke poll without having to take the lock twice. - Rearrange pipe_write() to preallocate the buffer it is going to write into and then drop the spinlock. This allows kernel notifications to then be added the ring whilst it is filling the buffer it allocated. The read side is stalled because the pipe mutex is still held. - Don't wake up readers on a pipe if there was already data in it when we added more. - Don't wake up writers on a pipe if the ring wasn't full before we removed a buffer" * tag 'notifications-pipe-prep-20191115' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs: pipe: Remove sync on wake_ups pipe: Increase the writer-wakeup threshold to reduce context-switch count pipe: Check for ring full inside of the spinlock in pipe_write() pipe: Remove redundant wakeup from pipe_write() pipe: Rearrange sequence in pipe_write() to preallocate slot pipe: Conditionalise wakeup in pipe_read() pipe: Advance tail pointer inside of wait spinlock in pipe_read() pipe: Allow pipes to have kernel-reserved slots pipe: Use head and tail pointers for the ring, not cursor and length Add wake_up_interruptible_sync_poll_locked() Remove the nr_exclusive argument from __wake_up_sync_key() pipe: Reduce #inclusion of pipe_fs_i.h
2019-11-15pipe: Allow pipes to have kernel-reserved slotsDavid Howells
Split pipe->ring_size into two numbers: (1) pipe->ring_size - indicates the hard size of the pipe ring. (2) pipe->max_usage - indicates the maximum number of pipe ring slots that userspace orchestrated events can fill. This allows for a pipe that is both writable by the general kernel notification facility and by userspace, allowing plenty of ring space for notifications to be added whilst preventing userspace from being able to pin too much unswappable kernel space. Signed-off-by: David Howells <dhowells@redhat.com>
2019-10-31pipe: Use head and tail pointers for the ring, not cursor and lengthDavid Howells
Convert pipes to use head and tail pointers for the buffer ring rather than pointer and length as the latter requires two atomic ops to update (or a combined op) whereas the former only requires one. (1) The head pointer is the point at which production occurs and points to the slot in which the next buffer will be placed. This is equivalent to pipe->curbuf + pipe->nrbufs. The head pointer belongs to the write-side. (2) The tail pointer is the point at which consumption occurs. It points to the next slot to be consumed. This is equivalent to pipe->curbuf. The tail pointer belongs to the read-side. (3) head and tail are allowed to run to UINT_MAX and wrap naturally. They are only masked off when the array is being accessed, e.g.: pipe->bufs[head & mask] This means that it is not necessary to have a dead slot in the ring as head == tail isn't ambiguous. (4) The ring is empty if "head == tail". A helper, pipe_empty(), is provided for this. (5) The occupancy of the ring is "head - tail". A helper, pipe_occupancy(), is provided for this. (6) The number of free slots in the ring is "pipe->ring_size - occupancy". A helper, pipe_space_for_user() is provided to indicate how many slots userspace may use. (7) The ring is full if "head - tail >= pipe->ring_size". A helper, pipe_full(), is provided for this. Signed-off-by: David Howells <dhowells@redhat.com>
2019-10-15splice: only read in as much information as there is pipe buffer spaceDarrick J. Wong
Andreas Grünbacher reports that on the two filesystems that support iomap directio, it's possible for splice() to return -EAGAIN (instead of a short splice) if the pipe being written to has less space available in its pipe buffers than the length supplied by the calling process. Months ago we fixed splice_direct_to_actor to clamp the length of the read request to the size of the splice pipe. Do the same to do_splice. Fixes: 17614445576b6 ("splice: don't read more than available pipe space") Reported-by: syzbot+3c01db6025f26530cf8d@syzkaller.appspotmail.com Reported-by: Andreas Grünbacher <andreas.gruenbacher@gmail.com> Reviewed-by: Andreas Grünbacher <andreas.gruenbacher@gmail.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
2019-05-31uio: make import_iovec()/compat_import_iovec() return bytes on successJens Axboe
Currently these functions return < 0 on error, and 0 for success. Change that so that we return < 0 on error, but number of bytes for success. Some callers already treat the return value that way, others need a slight tweak. Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-05-21treewide: Add SPDX license identifier for missed filesThomas Gleixner
Add SPDX license identifiers to all files which: - Have no license information of any form - Have EXPORT_.*_SYMBOL_GPL inside which was used in the initial scan/conversion to ignore the file These files fall under the project license, GPL v2 only. The resulting SPDX license identifier is: GPL-2.0-only Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-04-26Merge tag 'trace-v5.1-rc6' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace Pull tracing fixes from Steven Rostedt: "Three tracing fixes: - Use "nosteal" for ring buffer splice pages - Memory leak fix in error path of trace_pid_write() - Fix preempt_enable_no_resched() (use preempt_enable()) in ring buffer code" * tag 'trace-v5.1-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace: trace: Fix preempt_enable_no_resched() abuse tracing: Fix a memory leak by early error exit in trace_pid_write() tracing: Fix buffer_ref pipe ops
2019-04-26tracing: Fix buffer_ref pipe opsJann Horn
This fixes multiple issues in buffer_pipe_buf_ops: - The ->steal() handler must not return zero unless the pipe buffer has the only reference to the page. But generic_pipe_buf_steal() assumes that every reference to the pipe is tracked by the page's refcount, which isn't true for these buffers - buffer_pipe_buf_get(), which duplicates a buffer, doesn't touch the page's refcount. Fix it by using generic_pipe_buf_nosteal(), which refuses every attempted theft. It should be easy to actually support ->steal, but the only current users of pipe_buf_steal() are the virtio console and FUSE, and they also only use it as an optimization. So it's probably not worth the effort. - The ->get() and ->release() handlers can be invoked concurrently on pipe buffers backed by the same struct buffer_ref. Make them safe against concurrency by using refcount_t. - The pointers stored in ->private were only zeroed out when the last reference to the buffer_ref was dropped. As far as I know, this shouldn't be necessary anyway, but if we do it, let's always do it. Link: http://lkml.kernel.org/r/20190404215925.253531-1-jannh@google.com Cc: Ingo Molnar <mingo@redhat.com> Cc: Masami Hiramatsu <mhiramat@kernel.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: stable@vger.kernel.org Fixes: 73a757e63114d ("ring-buffer: Return reader page back into existing ring buffer") Signed-off-by: Jann Horn <jannh@google.com> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2019-04-14Merge branch 'page-refs' (page ref overflow)Linus Torvalds
Merge page ref overflow branch. Jann Horn reported that he can overflow the page ref count with sufficient memory (and a filesystem that is intentionally extremely slow). Admittedly it's not exactly easy. To have more than four billion references to a page requires a minimum of 32GB of kernel memory just for the pointers to the pages, much less any metadata to keep track of those pointers. Jann needed a total of 140GB of memory and a specially crafted filesystem that leaves all reads pending (in order to not ever free the page references and just keep adding more). Still, we have a fairly straightforward way to limit the two obvious user-controllable sources of page references: direct-IO like page references gotten through get_user_pages(), and the splice pipe page duplication. So let's just do that. * branch page-refs: fs: prevent page refcount overflow in pipe_buf_get mm: prevent get_user_pages() from overflowing page refcount mm: add 'try_get_page()' helper function mm: make page ref count overflow check tighter and more explicit
2019-04-14fs: prevent page refcount overflow in pipe_buf_getMatthew Wilcox
Change pipe_buf_get() to return a bool indicating whether it succeeded in raising the refcount of the page (if the thing in the pipe is a page). This removes another mechanism for overflowing the page refcount. All callers converted to handle a failure. Reported-by: Jann Horn <jannh@google.com> Signed-off-by: Matthew Wilcox <willy@infradead.org> Cc: stable@kernel.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-12Merge branch 'work.misc' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs Pull misc vfs updates from Al Viro: "Assorted fixes (really no common topic here)" * 'work.misc' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: vfs: Make __vfs_write() static vfs: fix preadv64v2 and pwritev64v2 compat syscalls with offset == -1 pipe: stop using ->can_merge splice: don't merge into linked buffers fs: move generic stat response attr handling to vfs_getattr_nosec orangefs: don't reinitialize result_mask in ->getattr fs/devpts: always delete dcache dentry-s in dput()
2019-03-04fs: Make splice() and tee() take into account O_NONBLOCK flag on pipesSlavomir Kaslev
The current implementation of splice() and tee() ignores O_NONBLOCK set on pipe file descriptors and checks only the SPLICE_F_NONBLOCK flag for blocking on pipe arguments. This is inconsistent since splice()-ing from/to non-pipe file descriptors does take O_NONBLOCK into consideration. Fix this by promoting O_NONBLOCK, when set on a pipe, to SPLICE_F_NONBLOCK. Some context for how the current implementation of splice() leads to inconsistent behavior. In the ongoing work[1] to add VM tracing capability to trace-cmd we stream tracing data over named FIFOs or vsockets from guests back to the host. When we receive SIGINT from user to stop tracing, we set O_NONBLOCK on the input file descriptor and set SPLICE_F_NONBLOCK for the next call to splice(). If splice() was blocked waiting on data from the input FIFO, after SIGINT splice() restarts with the same arguments (no SPLICE_F_NONBLOCK) and blocks again instead of returning -EAGAIN when no data is available. This differs from the splice() behavior when reading from a vsocket or when we're doing a traditional read()/write() loop (trace-cmd's --nosplice argument). With this patch applied we get the same behavior in all situations after setting O_NONBLOCK which also matches the behavior of doing a read()/write() loop instead of splice(). This change does have potential of breaking users who don't expect EAGAIN from splice() when SPLICE_F_NONBLOCK is not set. OTOH programs that set O_NONBLOCK and don't anticipate EAGAIN are arguably buggy[2]. [1] https://github.com/skaslev/trace-cmd/tree/vsock [2] https://github.com/torvalds/linux/blob/d47e3da1759230e394096fd742aad423c291ba48/fs/read_write.c#L1425 Signed-off-by: Slavomir Kaslev <kaslevs@vmware.com> Reviewed-by: Steven Rostedt (VMware) <rostedt@goodmis.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-03-04get rid of legacy 'get_ds()' functionLinus Torvalds
Every in-kernel use of this function defined it to KERNEL_DS (either as an actual define, or as an inline function). It's an entirely historical artifact, and long long long ago used to actually read the segment selector valueof '%ds' on x86. Which in the kernel is always KERNEL_DS. Inspired by a patch from Jann Horn that just did this for a very small subset of users (the ones in fs/), along with Al who suggested a script. I then just took it to the logical extreme and removed all the remaining gunk. Roughly scripted with git grep -l '(get_ds())' -- :^tools/ | xargs sed -i 's/(get_ds())/(KERNEL_DS)/' git grep -lw 'get_ds' -- :^tools/ | xargs sed -i '/^#define get_ds()/d' plus manual fixups to remove a few unusual usage patterns, the couple of inline function cases and to fix up a comment that had become stale. The 'get_ds()' function remains in an x86 kvm selftest, since in user space it actually does something relevant. Inspired-by: Jann Horn <jannh@google.com> Inspired-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-02-01pipe: stop using ->can_mergeJann Horn
Al Viro pointed out that since there is only one pipe buffer type to which new data can be appended, it isn't necessary to have a ->can_merge field in struct pipe_buf_operations, we can just check for a magic type. Suggested-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Jann Horn <jannh@google.com> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2019-02-01splice: don't merge into linked buffersJann Horn
Before this patch, it was possible for two pipes to affect each other after data had been transferred between them with tee(): ============ $ cat tee_test.c int main(void) { int pipe_a[2]; if (pipe(pipe_a)) err(1, "pipe"); int pipe_b[2]; if (pipe(pipe_b)) err(1, "pipe"); if (write(pipe_a[1], "abcd", 4) != 4) err(1, "write"); if (tee(pipe_a[0], pipe_b[1], 2, 0) != 2) err(1, "tee"); if (write(pipe_b[1], "xx", 2) != 2) err(1, "write"); char buf[5]; if (read(pipe_a[0], buf, 4) != 4) err(1, "read"); buf[4] = 0; printf("got back: '%s'\n", buf); } $ gcc -o tee_test tee_test.c $ ./tee_test got back: 'abxx' $ ============ As suggested by Al Viro, fix it by creating a separate type for non-mergeable pipe buffers, then changing the types of buffers in splice_pipe_to_pipe() and link_pipe(). Cc: <stable@vger.kernel.org> Fixes: 7c77f0b3f920 ("splice: implement pipe to pipe splicing") Fixes: 70524490ee2e ("[PATCH] splice: add support for sys_tee()") Suggested-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Jann Horn <jannh@google.com> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2018-12-04splice: don't read more than available pipe spaceDarrick J. Wong
In commit 4721a601099, we tried to fix a problem wherein directio reads into a splice pipe will bounce EFAULT/EAGAIN all the way out to userspace by simulating a zero-byte short read. This happens because some directio read implementations (xfs) will call bio_iov_iter_get_pages to grab pipe buffer pages and issue asynchronous reads, but as soon as we run out of pipe buffers that _get_pages call returns EFAULT, which the splice code translates to EAGAIN and bounces out to userspace. In that commit, the iomap code catches the EFAULT and simulates a zero-byte read, but that causes assertion errors on regular splice reads because xfs doesn't allow short directio reads. The brokenness is compounded by splice_direct_to_actor immediately bailing on do_splice_to returning <= 0 without ever calling ->actor (which empties out the pipe), so if userspace calls back we'll EFAULT again on the full pipe, and nothing ever gets copied. Therefore, teach splice_direct_to_actor to clamp its requests to the amount of free space in the pipe and remove the simulated short read from the iomap directio code. Fixes: 4721a601099 ("iomap: dio data corruption and spurious errors when pipes fill") Reported-by: Murphy Zhou <jencce.kernel@gmail.com> Ranted-by: Amir Goldstein <amir73il@gmail.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
2018-10-24iov_iter: Separate type from direction and use accessor functionsDavid Howells
In the iov_iter struct, separate the iterator type from the iterator direction and use accessor functions to access them in most places. Convert a bunch of places to use switch-statements to access them rather then chains of bitwise-AND statements. This makes it easier to add further iterator types. Also, this can be more efficient as to implement a switch of small contiguous integers, the compiler can use ~50% fewer compare instructions than it has to use bitwise-and instructions. Further, cease passing the iterator type into the iterator setup function. The iterator function can set that itself. Only the direction is required. Signed-off-by: David Howells <dhowells@redhat.com>
2018-06-16Merge branch 'work.compat' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs Pull compat updates from Al Viro: "Some biarch patches - getting rid of assorted (mis)uses of compat_alloc_user_space(). Not much in that area this cycle..." * 'work.compat' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: orangefs: simplify compat ioctl handling signalfd: lift sigmask copyin and size checks to callers of do_signalfd4() vmsplice(): lift importing iovec into vmsplice(2) and compat counterpart
2018-06-12treewide: kmalloc() -> kmalloc_array()Kees Cook
The kmalloc() function has a 2-factor argument form, kmalloc_array(). This patch replaces cases of: kmalloc(a * b, gfp) with: kmalloc_array(a * b, gfp) as well as handling cases of: kmalloc(a * b * c, gfp) with: kmalloc(array3_size(a, b, c), gfp) as it's slightly less ugly than: kmalloc_array(array_size(a, b), c, gfp) This does, however, attempt to ignore constant size factors like: kmalloc(4 * 1024, gfp) though any constants defined via macros get caught up in the conversion. Any factors with a sizeof() of "unsigned char", "char", and "u8" were dropped, since they're redundant. The tools/ directory was manually excluded, since it has its own implementation of kmalloc(). The Coccinelle script used for this was: // Fix redundant parens around sizeof(). @@ type TYPE; expression THING, E; @@ ( kmalloc( - (sizeof(TYPE)) * E + sizeof(TYPE) * E , ...) | kmalloc( - (sizeof(THING)) * E + sizeof(THING) * E , ...) ) // Drop single-byte sizes and redundant parens. @@ expression COUNT; typedef u8; typedef __u8; @@ ( kmalloc( - sizeof(u8) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(__u8) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(char) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(unsigned char) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(u8) * COUNT + COUNT , ...) | kmalloc( - sizeof(__u8) * COUNT + COUNT , ...) | kmalloc( - sizeof(char) * COUNT + COUNT , ...) | kmalloc( - sizeof(unsigned char) * COUNT + COUNT , ...) ) // 2-factor product with sizeof(type/expression) and identifier or constant. @@ type TYPE; expression THING; identifier COUNT_ID; constant COUNT_CONST; @@ ( - kmalloc + kmalloc_array ( - sizeof(TYPE) * (COUNT_ID) + COUNT_ID, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * COUNT_ID + COUNT_ID, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * (COUNT_CONST) + COUNT_CONST, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * COUNT_CONST + COUNT_CONST, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * (COUNT_ID) + COUNT_ID, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * COUNT_ID + COUNT_ID, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * (COUNT_CONST) + COUNT_CONST, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * COUNT_CONST + COUNT_CONST, sizeof(THING) , ...) ) // 2-factor product, only identifiers. @@ identifier SIZE, COUNT; @@ - kmalloc + kmalloc_array ( - SIZE * COUNT + COUNT, SIZE , ...) // 3-factor product with 1 sizeof(type) or sizeof(expression), with // redundant parens removed. @@ expression THING; identifier STRIDE, COUNT; type TYPE; @@ ( kmalloc( - sizeof(TYPE) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(TYPE) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(TYPE) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(TYPE) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(THING) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kmalloc( - sizeof(THING) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kmalloc( - sizeof(THING) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kmalloc( - sizeof(THING) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) ) // 3-factor product with 2 sizeof(variable), with redundant parens removed. @@ expression THING1, THING2; identifier COUNT; type TYPE1, TYPE2; @@ ( kmalloc( - sizeof(TYPE1) * sizeof(TYPE2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kmalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kmalloc( - sizeof(THING1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kmalloc( - sizeof(THING1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kmalloc( - sizeof(TYPE1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) | kmalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) ) // 3-factor product, only identifiers, with redundant parens removed. @@ identifier STRIDE, SIZE, COUNT; @@ ( kmalloc( - (COUNT) * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - (COUNT) * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - (COUNT) * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - (COUNT) * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) ) // Any remaining multi-factor products, first at least 3-factor products, // when they're not all constants... @@ expression E1, E2, E3; constant C1, C2, C3; @@ ( kmalloc(C1 * C2 * C3, ...) | kmalloc( - (E1) * E2 * E3 + array3_size(E1, E2, E3) , ...) | kmalloc( - (E1) * (E2) * E3 + array3_size(E1, E2, E3) , ...) | kmalloc( - (E1) * (E2) * (E3) + array3_size(E1, E2, E3) , ...) | kmalloc( - E1 * E2 * E3 + array3_size(E1, E2, E3) , ...) ) // And then all remaining 2 factors products when they're not all constants, // keeping sizeof() as the second factor argument. @@ expression THING, E1, E2; type TYPE; constant C1, C2, C3; @@ ( kmalloc(sizeof(THING) * C2, ...) | kmalloc(sizeof(TYPE) * C2, ...) | kmalloc(C1 * C2 * C3, ...) | kmalloc(C1 * C2, ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * (E2) + E2, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * E2 + E2, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * (E2) + E2, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * E2 + E2, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - (E1) * E2 + E1, E2 , ...) | - kmalloc + kmalloc_array ( - (E1) * (E2) + E1, E2 , ...) | - kmalloc + kmalloc_array ( - E1 * E2 + E1, E2 , ...) ) Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-11vmsplice(): lift importing iovec into vmsplice(2) and compat counterpartAl Viro
... getting rid of transformations in the latter - just use compat_import_iovec(). Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2018-04-02fs: add do_vmsplice() helper; remove in-kernel call to syscallDominik Brodowski
Using the fs-internal do_vmsplice() helper allows us to get rid of the fs-internal call to the sys_vmsplice() syscall. This patch is part of a series which removes in-kernel calls to syscalls. On this basis, the syscall entry path can be streamlined. For details, see http://lkml.kernel.org/r/20180325162527.GA17492@light.dominikbrodowski.net Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
2017-10-25locking/atomics: COCCINELLE/treewide: Convert trivial ACCESS_ONCE() patterns ↵Mark Rutland
to READ_ONCE()/WRITE_ONCE() Please do not apply this to mainline directly, instead please re-run the coccinelle script shown below and apply its output. For several reasons, it is desirable to use {READ,WRITE}_ONCE() in preference to ACCESS_ONCE(), and new code is expected to use one of the former. So far, there's been no reason to change most existing uses of ACCESS_ONCE(), as these aren't harmful, and changing them results in churn. However, for some features, the read/write distinction is critical to correct operation. To distinguish these cases, separate read/write accessors must be used. This patch migrates (most) remaining ACCESS_ONCE() instances to {READ,WRITE}_ONCE(), using the following coccinelle script: ---- // Convert trivial ACCESS_ONCE() uses to equivalent READ_ONCE() and // WRITE_ONCE() // $ make coccicheck COCCI=/home/mark/once.cocci SPFLAGS="--include-headers" MODE=patch virtual patch @ depends on patch @ expression E1, E2; @@ - ACCESS_ONCE(E1) = E2 + WRITE_ONCE(E1, E2) @ depends on patch @ expression E; @@ - ACCESS_ONCE(E) + READ_ONCE(E) ---- Signed-off-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: davem@davemloft.net Cc: linux-arch@vger.kernel.org Cc: mpe@ellerman.id.au Cc: shuah@kernel.org Cc: snitzer@redhat.com Cc: thor.thayer@linux.intel.com Cc: tj@kernel.org Cc: viro@zeniv.linux.org.uk Cc: will.deacon@arm.com Link: http://lkml.kernel.org/r/1508792849-3115-19-git-send-email-paulmck@linux.vnet.ibm.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-09-04fs: move kernel_write to fs/read_write.cChristoph Hellwig
Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2017-06-29fs: implement vfs_iter_write using do_iter_writeChristoph Hellwig
De-dupliate some code and allow for passing the flags argument to vfs_iter_write. Additionally it now properly updates timestamps. Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2017-05-02Merge branch 'work.splice' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs Pull splice updates from Al Viro: "These actually missed the last cycle; the branch itself is from last December" * 'work.splice' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: make nr_pages calculation in default_file_splice_read() a bit less ugly splice/tee/vmsplice: validate flags splice_pipe_desc: kill ->flags remove spd_release_page()
2017-03-03Merge branch 'WIP.sched-core-for-linus' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull sched.h split-up from Ingo Molnar: "The point of these changes is to significantly reduce the <linux/sched.h> header footprint, to speed up the kernel build and to have a cleaner header structure. After these changes the new <linux/sched.h>'s typical preprocessed size goes down from a previous ~0.68 MB (~22K lines) to ~0.45 MB (~15K lines), which is around 40% faster to build on typical configs. Not much changed from the last version (-v2) posted three weeks ago: I eliminated quirks, backmerged fixes plus I rebased it to an upstream SHA1 from yesterday that includes most changes queued up in -next plus all sched.h changes that were pending from Andrew. I've re-tested the series both on x86 and on cross-arch defconfigs, and did a bisectability test at a number of random points. I tried to test as many build configurations as possible, but some build breakage is probably still left - but it should be mostly limited to architectures that have no cross-compiler binaries available on kernel.org, and non-default configurations" * 'WIP.sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (146 commits) sched/headers: Clean up <linux/sched.h> sched/headers: Remove #ifdefs from <linux/sched.h> sched/headers: Remove the <linux/topology.h> include from <linux/sched.h> sched/headers, hrtimer: Remove the <linux/wait.h> include from <linux/hrtimer.h> sched/headers, x86/apic: Remove the <linux/pm.h> header inclusion from <asm/apic.h> sched/headers, timers: Remove the <linux/sysctl.h> include from <linux/timer.h> sched/headers: Remove <linux/magic.h> from <linux/sched/task_stack.h> sched/headers: Remove <linux/sched.h> from <linux/sched/init.h> sched/core: Remove unused prefetch_stack() sched/headers: Remove <linux/rculist.h> from <linux/sched.h> sched/headers: Remove the 'init_pid_ns' prototype from <linux/sched.h> sched/headers: Remove <linux/signal.h> from <linux/sched.h> sched/headers: Remove <linux/rwsem.h> from <linux/sched.h> sched/headers: Remove the runqueue_is_locked() prototype sched/headers: Remove <linux/sched.h> from <linux/sched/hotplug.h> sched/headers: Remove <linux/sched.h> from <linux/sched/debug.h> sched/headers: Remove <linux/sched.h> from <linux/sched/nohz.h> sched/headers: Remove <linux/sched.h> from <linux/sched/stat.h> sched/headers: Remove the <linux/gfp.h> include from <linux/sched.h> sched/headers: Remove <linux/rtmutex.h> from <linux/sched.h> ...
2017-03-02Merge remote-tracking branch 'ovl/for-viro' into for-linusAl Viro
Overlayfs-related series from Miklos and Amir
2017-03-02sched/headers: Prepare to move signal wakeup & sigpending methods from ↵Ingo Molnar
<linux/sched.h> into <linux/sched/signal.h> Fix up affected files that include this signal functionality via sched.h. Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-02-20vfs: use helpers for calling f_op->{read,write}_iter()Miklos Szeredi
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2017-02-16vfs: fix uninitialized flags in splice_to_pipe()Miklos Szeredi
Flags (PIPE_BUF_FLAG_PACKET, PIPE_BUF_FLAG_GIFT) could remain on the unused part of the pipe ring buffer. Previously splice_to_pipe() left the flags value alone, which could result in incorrect behavior. Uninitialized flags appears to have been there from the introduction of the splice syscall. Signed-off-by: Miklos Szeredi <mszeredi@redhat.com> Cc: <stable@vger.kernel.org> # 2.6.17+ Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-26make nr_pages calculation in default_file_splice_read() a bit less uglyAl Viro
It's an artifact of lousy calling conventions of iov_iter_get_pages_alloc(). Hopefully, we'll get something saner come next cycle; for now that'll do. Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2016-12-26splice/tee/vmsplice: validate flagsAl Viro
Long overdue... Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2016-12-26remove spd_release_page()Al Viro
no users left Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2016-12-21splice: reinstate SIGPIPE/EPIPE handlingLinus Torvalds
Commit 8924feff66f3 ("splice: lift pipe_lock out of splice_to_pipe()") caused a regression when there were no more readers left on a pipe that was being spliced into: rather than the expected SIGPIPE and -EPIPE return value, the writer would end up waiting forever for space to free up (which obviously was not going to happen with no readers around). Fixes: 8924feff66f3 ("splice: lift pipe_lock out of splice_to_pipe()") Reported-and-tested-by: Andreas Schwab <schwab@linux-m68k.org> Debugged-by: Al Viro <viro@zeniv.linux.org.uk> Cc: stable@kernel.org # v4.9 Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-13Merge branch 'for-4.10/block' of git://git.kernel.dk/linux-blockLinus Torvalds
Pull block layer updates from Jens Axboe: "This is the main block pull request this series. Contrary to previous release, I've kept the core and driver changes in the same branch. We always ended up having dependencies between the two for obvious reasons, so makes more sense to keep them together. That said, I'll probably try and keep more topical branches going forward, especially for cycles that end up being as busy as this one. The major parts of this pull request is: - Improved support for O_DIRECT on block devices, with a small private implementation instead of using the pig that is fs/direct-io.c. From Christoph. - Request completion tracking in a scalable fashion. This is utilized by two components in this pull, the new hybrid polling and the writeback queue throttling code. - Improved support for polling with O_DIRECT, adding a hybrid mode that combines pure polling with an initial sleep. From me. - Support for automatic throttling of writeback queues on the block side. This uses feedback from the device completion latencies to scale the queue on the block side up or down. From me. - Support from SMR drives in the block layer and for SD. From Hannes and Shaun. - Multi-connection support for nbd. From Josef. - Cleanup of request and bio flags, so we have a clear split between which are bio (or rq) private, and which ones are shared. From Christoph. - A set of patches from Bart, that improve how we handle queue stopping and starting in blk-mq. - Support for WRITE_ZEROES from Chaitanya. - Lightnvm updates from Javier/Matias. - Supoort for FC for the nvme-over-fabrics code. From James Smart. - A bunch of fixes from a whole slew of people, too many to name here" * 'for-4.10/block' of git://git.kernel.dk/linux-block: (182 commits) blk-stat: fix a few cases of missing batch flushing blk-flush: run the queue when inserting blk-mq flush elevator: make the rqhash helpers exported blk-mq: abstract out blk_mq_dispatch_rq_list() helper blk-mq: add blk_mq_start_stopped_hw_queue() block: improve handling of the magic discard payload blk-wbt: don't throttle discard or write zeroes nbd: use dev_err_ratelimited in io path nbd: reset the setup task for NBD_CLEAR_SOCK nvme-fabrics: Add FC LLDD loopback driver to test FC-NVME nvme-fabrics: Add target support for FC transport nvme-fabrics: Add host support for FC transport nvme-fabrics: Add FC transport LLDD api definitions nvme-fabrics: Add FC transport FC-NVME definitions nvme-fabrics: Add FC transport error codes to nvme.h Add type 0x28 NVME type code to scsi fc headers nvme-fabrics: patch target code in prep for FC transport support nvme-fabrics: set sqe.command_id in core not transports parser: add u64 number parser nvme-rdma: align to generic ib_event logging helper ...
2016-11-26fix default_file_splice_read()Al Viro
Botched calculation of number of pages. As the result, we were dropping pieces when doing splice to pipe from e.g. 9p. Reported-by: Alexei Starovoitov <ast@kernel.org> Tested-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2016-11-10splice: remove detritus from generic_file_splice_read()Al Viro
i_size check is a leftover from the horrors that used to play with the page cache in that function. With the switch to ->read_iter(), it's neither needed nor correct - for gfs2 it ends up being buggy, since i_size is not guaranteed to be correct until later (inside ->read_iter()). Spotted-by: Abhi Das <adas@redhat.com> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2016-11-01mm: only include blk_types in swap.h if CONFIG_SWAP is enabledChristoph Hellwig
It's only needed for the CONFIG_SWAP-only use of bio_end_io_t. Because CONFIG_SWAP implies CONFIG_BLOCK this will allow to drop some ifdefs in blk_types.h. Instead we'll need to add a few explicit includes that were implicit before, though. Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jens Axboe <axboe@fb.com>
2016-10-10fix ITER_PIPE interaction with direct_IOAl Viro
by making sure we call iov_iter_advance() on original iov_iter even if direct_IO (done on its copy) has returned 0. It's a no-op for old iov_iter flavours and does the right thing (== truncation of the stuff we'd allocated, but not filled) in ITER_PIPE case. Failures (e.g. -EIO) get caught and dealt with by cleanup in generic_file_read_iter(). Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2016-10-05pipe: add pipe_buf_confirm() helperMiklos Szeredi
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2016-10-05pipe: add pipe_buf_release() helperMiklos Szeredi
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2016-10-05pipe: add pipe_buf_get() helperMiklos Szeredi
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2016-10-05switch default_file_splice_read() to use of pipe-backed iov_iterAl Viro
we only use iov_iter_get_pages_alloc() and iov_iter_advance() - pages are filled by kernel_readv() via a kvec array (as we used to do all along), so iov_iter here is used only as a way of arranging for those pages to be in pipe. Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2016-10-05switch generic_file_splice_read() to use of ->read_iter()Al Viro
... and kill the ->splice_read() instances that can be switched to it Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>