Age | Commit message (Collapse) | Author |
|
The last remaining user of folio_write_one through the write_one_page
wrapper is jfs, so move the functionality there and hard code the
call to metapage_writepage.
Note that the use of the pagecache by the JFS 'metapage' buffer cache
is a bit odd, and we could probably do without VM-level dirty tracking
at all, but that's a change for another time.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Dave Kleikamp <dave.kleikamp@oracle.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
Remove struct posix_acl_{access,default}_handler for all filesystems
that don't depend on the xattr handler in their inode->i_op->listxattr()
method in any way. There's nothing more to do than to simply remove the
handler. It's been effectively unused ever since we introduced the new
posix acl api.
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
Pull jfs update from Dave Kleikamp:
"Just one simple sanity check"
* tag 'jfs-6.3' of https://github.com/kleikamp/linux-shaggy:
fs/jfs: fix shift exponent db_agl2size negative
|
|
Pull legacy dio update from Jens Axboe:
"We only have a few file systems that use the old dio code, make them
select it rather than build it unconditionally"
* tag 'for-6.3/dio-2023-02-16' of git://git.kernel.dk/linux:
fs: build the legacy direct I/O code conditionally
fs: move sb_init_dio_done_wq out of direct-io.c
|
|
Add a new LEGACY_DIRECT_IO config symbol that is only selected by the
file systems that still use the legacy blockdev_direct_IO code, so that
kernels without support for those file systems don't need to build the
code.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jan Kara <jack@suse.cz>
Reviewed-by: Eric Biggers <ebiggers@google.com>
Link: https://lore.kernel.org/r/20230125065839.191256-3-hch@lst.de
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b42 ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b42 ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b42 ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b42 ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b42 ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b42 ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b42 ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b42 ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b42 ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b42 ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b42 ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b42 ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
As a shift exponent, db_agl2size can not be less than 0. Add the missing
check to fix the shift-out-of-bounds bug reported by syzkaller:
UBSAN: shift-out-of-bounds in fs/jfs/jfs_dmap.c:2227:15
shift exponent -744642816 is negative
Reported-by: syzbot+0be96567042453c0c820@syzkaller.appspotmail.com
Fixes: 1da177e4c3f4 ("Linux-2.6.12-rc2")
Signed-off-by: Liu Shixin <liushixin2@huawei.com>
Signed-off-by: Dave Kleikamp <dave.kleikamp@oracle.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
- More userfaultfs work from Peter Xu
- Several convert-to-folios series from Sidhartha Kumar and Huang Ying
- Some filemap cleanups from Vishal Moola
- David Hildenbrand added the ability to selftest anon memory COW
handling
- Some cpuset simplifications from Liu Shixin
- Addition of vmalloc tracing support by Uladzislau Rezki
- Some pagecache folioifications and simplifications from Matthew
Wilcox
- A pagemap cleanup from Kefeng Wang: we have VM_ACCESS_FLAGS, so use
it
- Miguel Ojeda contributed some cleanups for our use of the
__no_sanitize_thread__ gcc keyword.
This series should have been in the non-MM tree, my bad
- Naoya Horiguchi improved the interaction between memory poisoning and
memory section removal for huge pages
- DAMON cleanups and tuneups from SeongJae Park
- Tony Luck fixed the handling of COW faults against poisoned pages
- Peter Xu utilized the PTE marker code for handling swapin errors
- Hugh Dickins reworked compound page mapcount handling, simplifying it
and making it more efficient
- Removal of the autonuma savedwrite infrastructure from Nadav Amit and
David Hildenbrand
- zram support for multiple compression streams from Sergey Senozhatsky
- David Hildenbrand reworked the GUP code's R/O long-term pinning so
that drivers no longer need to use the FOLL_FORCE workaround which
didn't work very well anyway
- Mel Gorman altered the page allocator so that local IRQs can remnain
enabled during per-cpu page allocations
- Vishal Moola removed the try_to_release_page() wrapper
- Stefan Roesch added some per-BDI sysfs tunables which are used to
prevent network block devices from dirtying excessive amounts of
pagecache
- David Hildenbrand did some cleanup and repair work on KSM COW
breaking
- Nhat Pham and Johannes Weiner have implemented writeback in zswap's
zsmalloc backend
- Brian Foster has fixed a longstanding corner-case oddity in
file[map]_write_and_wait_range()
- sparse-vmemmap changes for MIPS, LoongArch and NIOS2 from Feiyang
Chen
- Shiyang Ruan has done some work on fsdax, to make its reflink mode
work better under xfstests. Better, but still not perfect
- Christoph Hellwig has removed the .writepage() method from several
filesystems. They only need .writepages()
- Yosry Ahmed wrote a series which fixes the memcg reclaim target
beancounting
- David Hildenbrand has fixed some of our MM selftests for 32-bit
machines
- Many singleton patches, as usual
* tag 'mm-stable-2022-12-13' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (313 commits)
mm/hugetlb: set head flag before setting compound_order in __prep_compound_gigantic_folio
mm: mmu_gather: allow more than one batch of delayed rmaps
mm: fix typo in struct pglist_data code comment
kmsan: fix memcpy tests
mm: add cond_resched() in swapin_walk_pmd_entry()
mm: do not show fs mm pc for VM_LOCKONFAULT pages
selftests/vm: ksm_functional_tests: fixes for 32bit
selftests/vm: cow: fix compile warning on 32bit
selftests/vm: madv_populate: fix missing MADV_POPULATE_(READ|WRITE) definitions
mm/gup_test: fix PIN_LONGTERM_TEST_READ with highmem
mm,thp,rmap: fix races between updates of subpages_mapcount
mm: memcg: fix swapcached stat accounting
mm: add nodes= arg to memory.reclaim
mm: disable top-tier fallback to reclaim on proactive reclaim
selftests: cgroup: make sure reclaim target memcg is unprotected
selftests: cgroup: refactor proactive reclaim code to reclaim_until()
mm: memcg: fix stale protection of reclaim target memcg
mm/mmap: properly unaccount memory on mas_preallocate() failure
omfs: remove ->writepage
jfs: remove ->writepage
...
|
|
Pull jfs updates from David Kleikamp:
"Assorted JFS fixes for 6.2"
* tag 'jfs-6.2' of https://github.com/kleikamp/linux-shaggy:
jfs: makes diUnmount/diMount in jfs_mount_rw atomic
jfs: Fix a typo in function jfs_umount
fs: jfs: fix shift-out-of-bounds in dbDiscardAG
jfs: Fix fortify moan in symlink
jfs: remove redundant assignments to ipaimap and ipaimap2
jfs: remove unused declarations for jfs
fs/jfs/jfs_xattr.h: Fix spelling typo in comment
MAINTAINERS: git://github -> https://github.com for kleikamp
fs/jfs: replace ternary operator with min_t()
fs: jfs: fix shift-out-of-bounds in dbAllocAG
|
|
->writepage is a very inefficient method to write back data, and only
used through write_cache_pages or a a fallback when no ->migrate_folio
method is present.
Set ->migrate_folio to the generic buffer_head based helper, and remove
the ->writepage implementation.
Link: https://lkml.kernel.org/r/20221202102644.770505-7-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Dave Kleikamp <dave.kleikamp@oracle.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|
jfs_mount_rw can call diUnmount and then diMount. These calls change the
imap pointer. Between these two calls there may be calls of function
jfs_lookup(). The jfs_lookup() function calls jfs_iget(), which, in turn
calls diRead(). The latter references the imap pointer. That may cause
diRead() to refer to a pointer freed in diUnmount(). This commit makes
the calls to diUnmount()/diMount() atomic so that nothing will read the
imap pointer until the whole remount is completed.
Signed-off-by: Oleg Kanatov <okanatov@gmail.com>
Signed-off-by: Dave Kleikamp <dave.kleikamp@oracle.com>
|
|
When closing the block allocation map, an incorrect pointer
was NULL'ed. This commit fixes that.
Signed-off-by: Oleg Kanatov <okanatov@gmail.com>
Signed-off-by: Dave Kleikamp <dave.kleikamp@oracle.com>
|
|
This should be applied to most URSAN bugs found recently by syzbot,
by guarding the dbMount. As syzbot feeding rubbish into the bmap
descriptor.
Signed-off-by: Hoi Pok Wu <wuhoipok@gmail.com>
Signed-off-by: Dave Kleikamp <dave.kleikamp@oracle.com>
|
|
JFS has in jfs_incore.h:
/* _inline may overflow into _inline_ea when needed */
/* _inline_ea may overlay the last part of
* file._xtroot if maxentry = XTROOTINITSLOT
*/
union {
struct {
/* 128: inline symlink */
unchar _inline[128];
/* 128: inline extended attr */
unchar _inline_ea[128];
};
unchar _inline_all[256];
and currently the symlink code copies into _inline;
if this is larger than 128 bytes it triggers a fortify warning of the
form:
memcpy: detected field-spanning write (size 132) of single field
"ip->i_link" at fs/jfs/namei.c:950 (size 18446744073709551615)
when it's actually OK.
Copy it into _inline_all instead.
Reported-by: syzbot+5fc38b2ddbbca7f5c680@syzkaller.appspotmail.com
Signed-off-by: Dr. David Alan Gilbert <linux@treblig.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Dave Kleikamp <dave.kleikamp@oracle.com>
|
|
The current way of setting and getting posix acls through the generic
xattr interface is error prone and type unsafe. The vfs needs to
interpret and fixup posix acls before storing or reporting it to
userspace. Various hacks exist to make this work. The code is hard to
understand and difficult to maintain in it's current form. Instead of
making this work by hacking posix acls through xattr handlers we are
building a dedicated posix acl api around the get and set inode
operations. This removes a lot of hackiness and makes the codepaths
easier to maintain. A lot of background can be found in [1].
The current inode operation for getting posix acls takes an inode
argument but various filesystems (e.g., 9p, cifs, overlayfs) need access
to the dentry. In contrast to the ->set_acl() inode operation we cannot
simply extend ->get_acl() to take a dentry argument. The ->get_acl()
inode operation is called from:
acl_permission_check()
-> check_acl()
-> get_acl()
which is part of generic_permission() which in turn is part of
inode_permission(). Both generic_permission() and inode_permission() are
called in the ->permission() handler of various filesystems (e.g.,
overlayfs). So simply passing a dentry argument to ->get_acl() would
amount to also having to pass a dentry argument to ->permission(). We
should avoid this unnecessary change.
So instead of extending the existing inode operation rename it from
->get_acl() to ->get_inode_acl() and add a ->get_acl() method later that
passes a dentry argument and which filesystems that need access to the
dentry can implement instead of ->get_inode_acl(). Filesystems like cifs
which allow setting and getting posix acls but not using them for
permission checking during lookup can simply not implement
->get_inode_acl().
This is intended to be a non-functional change.
Link: https://lore.kernel.org/all/20220801145520.1532837-1-brauner@kernel.org [1]
Suggested-by/Inspired-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
The current way of setting and getting posix acls through the generic
xattr interface is error prone and type unsafe. The vfs needs to
interpret and fixup posix acls before storing or reporting it to
userspace. Various hacks exist to make this work. The code is hard to
understand and difficult to maintain in it's current form. Instead of
making this work by hacking posix acls through xattr handlers we are
building a dedicated posix acl api around the get and set inode
operations. This removes a lot of hackiness and makes the codepaths
easier to maintain. A lot of background can be found in [1].
Since some filesystem rely on the dentry being available to them when
setting posix acls (e.g., 9p and cifs) they cannot rely on set acl inode
operation. But since ->set_acl() is required in order to use the generic
posix acl xattr handlers filesystems that do not implement this inode
operation cannot use the handler and need to implement their own
dedicated posix acl handlers.
Update the ->set_acl() inode method to take a dentry argument. This
allows all filesystems to rely on ->set_acl().
As far as I can tell all codepaths can be switched to rely on the dentry
instead of just the inode. Note that the original motivation for passing
the dentry separate from the inode instead of just the dentry in the
xattr handlers was because of security modules that call
security_d_instantiate(). This hook is called during
d_instantiate_new(), d_add(), __d_instantiate_anon(), and
d_splice_alias() to initialize the inode's security context and possibly
to set security.* xattrs. Since this only affects security.* xattrs this
is completely irrelevant for posix acls.
Link: https://lore.kernel.org/all/20220801145520.1532837-1-brauner@kernel.org [1]
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
The pointers ipaimap and ipaimap2 are re-assigned with values a second
time with the same values when they were initialized. The re-assignments
are redundant and can be removed.
Cleans up two clang scan build warnings:
fs/jfs/jfs_umount.c:42:16: warning: Value stored to 'ipaimap' during
its initialization is never read [deadcode.DeadStores]
fs/jfs/jfs_umount.c:43:16: warning: Value stored to 'ipaimap2' during
its initialization is never read [deadcode.DeadStores]
Signed-off-by: Colin Ian King <colin.i.king@gmail.com>
Signed-off-by: Dave Kleikamp <dave.kleikamp@oracle.com>
|
|
extRealloc(), xtRelocate(), xtDelete() and extFill() have been
removed since commit e471e5942c00 ("fs/jfs: Remove dead code"),
so remove them.
Signed-off-by: Gaosheng Cui <cuigaosheng1@huawei.com>
Signed-off-by: Dave Kleikamp <dave.kleikamp@oracle.com>
|
|
Fix spelling typo in comment.
Reported-by: k2ci <kernel-bot@kylinos.cn>
Signed-off-by: Jiangshan Yi <yijiangshan@kylinos.cn>
Signed-off-by: Dave Kleikamp <dave.kleikamp@oracle.com>
|
|
Fix the following coccicheck warning:
fs/jfs/super.c:748: WARNING opportunity for min().
fs/jfs/super.c:788: WARNING opportunity for min().
min_t() macro is defined in include/linux/minmax.h. It avoids
multiple evaluations of the arguments when non-constant and performs
strict type-checking.
Signed-off-by: Jiangshan Yi <yijiangshan@kylinos.cn>
Signed-off-by: Dave Kleikamp <dave.kleikamp@oracle.com>
|
|
Syzbot found a crash : UBSAN: shift-out-of-bounds in dbAllocAG. The
underlying bug is the missing check of bmp->db_agl2size. The field can
be greater than 64 and trigger the shift-out-of-bounds.
Fix this bug by adding a check of bmp->db_agl2size in dbMount since this
field is used in many following functions. The upper bound for this
field is L2MAXL2SIZE - L2MAXAG, thanks for the help of Dave Kleikamp.
Note that, for maintenance, I reorganized error handling code of dbMount.
Reported-by: syzbot+15342c1aa6a00fb7a438@syzkaller.appspotmail.com
Signed-off-by: Dongliang Mu <mudongliangabcd@gmail.com>
Signed-off-by: Dave Kleikamp <dave.kleikamp@oracle.com>
|
|
Pull folio updates from Matthew Wilcox:
- Fix an accounting bug that made NR_FILE_DIRTY grow without limit
when running xfstests
- Convert more of mpage to use folios
- Remove add_to_page_cache() and add_to_page_cache_locked()
- Convert find_get_pages_range() to filemap_get_folios()
- Improvements to the read_cache_page() family of functions
- Remove a few unnecessary checks of PageError
- Some straightforward filesystem conversions to use folios
- Split PageMovable users out from address_space_operations into
their own movable_operations
- Convert aops->migratepage to aops->migrate_folio
- Remove nobh support (Christoph Hellwig)
* tag 'folio-6.0' of git://git.infradead.org/users/willy/pagecache: (78 commits)
fs: remove the NULL get_block case in mpage_writepages
fs: don't call ->writepage from __mpage_writepage
fs: remove the nobh helpers
jfs: stop using the nobh helper
ext2: remove nobh support
ntfs3: refactor ntfs_writepages
mm/folio-compat: Remove migration compatibility functions
fs: Remove aops->migratepage()
secretmem: Convert to migrate_folio
hugetlb: Convert to migrate_folio
aio: Convert to migrate_folio
f2fs: Convert to filemap_migrate_folio()
ubifs: Convert to filemap_migrate_folio()
btrfs: Convert btrfs_migratepage to migrate_folio
mm/migrate: Add filemap_migrate_folio()
mm/migrate: Convert migrate_page() to migrate_folio()
nfs: Convert to migrate_folio
btrfs: Convert btree_migratepage to migrate_folio
mm/migrate: Convert expected_page_refs() to folio_expected_refs()
mm/migrate: Convert buffer_migrate_page() to buffer_migrate_folio()
...
|
|
The nobh mode is an obscure feature to save lowlevel for large memory
32-bit configurations while trading for much slower performance and
has been long obsolete. Switch to the regular buffer head based helpers
instead.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
|
|
Pages returned from read_mapping_page() are always uptodate, so
this check is unnecessary.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
|
|
Now that we introduced new infrastructure to increase the type safety
for filesystems supporting idmapped mounts port the first part of the
vfs over to them.
This ports the attribute changes codepaths to rely on the new better
helpers using a dedicated type.
Before this change we used to take a shortcut and place the actual
values that would be written to inode->i_{g,u}id into struct iattr. This
had the advantage that we moved idmappings mostly out of the picture
early on but it made reasoning about changes more difficult than it
should be.
The filesystem was never explicitly told that it dealt with an idmapped
mount. The transition to the value that needed to be stored in
inode->i_{g,u}id appeared way too early and increased the probability of
bugs in various codepaths.
We know place the same value in struct iattr no matter if this is an
idmapped mount or not. The vfs will only deal with type safe
vfs{g,u}id_t. This makes it massively safer to perform permission checks
as the type will tell us what checks we need to perform and what helpers
we need to use.
Fileystems raising FS_ALLOW_IDMAP can't simply write ia_vfs{g,u}id to
inode->i_{g,u}id since they are different types. Instead they need to
use the dedicated vfs{g,u}id_to_k{g,u}id() helpers that map the
vfs{g,u}id into the filesystem.
The other nice effect is that filesystems like overlayfs don't need to
care about idmappings explicitly anymore and can simply set up struct
iattr accordingly directly.
Link: https://lore.kernel.org/lkml/CAHk-=win6+ahs1EwLkcq8apqLi_1wXFWbrPf340zYEhObpz4jA@mail.gmail.com [1]
Link: https://lore.kernel.org/r/20220621141454.2914719-9-brauner@kernel.org
Cc: Seth Forshee <sforshee@digitalocean.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Aleksa Sarai <cyphar@cyphar.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
CC: linux-fsdevel@vger.kernel.org
Reviewed-by: Seth Forshee <sforshee@digitalocean.com>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
Port the is_quota_modification() and dqout_transfer() helper to type
safe vfs{g,u}id_t. Since these helpers are only called by a few
filesystems don't introduce a new helper but simply extend the existing
helpers to pass down the mount's idmapping.
Note, that this is a non-functional change, i.e. nothing will have
happened here or at the end of this series to how quota are done! This
a change necessary because we will at the end of this series make
ownership changes easier to reason about by keeping the original value
in struct iattr for both non-idmapped and idmapped mounts.
For now we always pass the initial idmapping which makes the idmapping
functions these helpers call nops.
This is done because we currently always pass the actual value to be
written to i_{g,u}id via struct iattr. While this allowed us to treat
the {g,u}id values in struct iattr as values that can be directly
written to inode->i_{g,u}id it also increases the potential for
confusion for filesystems.
Now that we are have dedicated types to prevent this confusion we will
ultimately only map the value from the idmapped mount into a filesystem
value that can be written to inode->i_{g,u}id when the filesystem
actually updates the inode. So pass down the initial idmapping until we
finished that conversion at which point we pass down the mount's
idmapping.
Since struct iattr uses an anonymous union with overlapping types as
supported by the C standard, filesystems that haven't converted to
ia_vfs{g,u}id won't see any difference and things will continue to work
as before. In other words, no functional changes intended with this
change.
Link: https://lore.kernel.org/r/20220621141454.2914719-7-brauner@kernel.org
Cc: Seth Forshee <sforshee@digitalocean.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Jan Kara <jack@suse.cz>
Cc: Aleksa Sarai <cyphar@cyphar.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
CC: linux-fsdevel@vger.kernel.org
Reviewed-by: Jan Kara <jack@suse.cz>
Reviewed-by: Seth Forshee <sforshee@digitalocean.com>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
|
|
Pull jfs updates from David Kleikamp:
"One bug fix and some code cleanup"
* tag 'jfs-5.19' of https://github.com/kleikamp/linux-shaggy:
fs/jfs: Remove dead code
fs: jfs: fix possible NULL pointer dereference in dbFree()
|
|
Pull page cache updates from Matthew Wilcox:
- Appoint myself page cache maintainer
- Fix how scsicam uses the page cache
- Use the memalloc_nofs_save() API to replace AOP_FLAG_NOFS
- Remove the AOP flags entirely
- Remove pagecache_write_begin() and pagecache_write_end()
- Documentation updates
- Convert several address_space operations to use folios:
- is_dirty_writeback
- readpage becomes read_folio
- releasepage becomes release_folio
- freepage becomes free_folio
- Change filler_t to require a struct file pointer be the first
argument like ->read_folio
* tag 'folio-5.19' of git://git.infradead.org/users/willy/pagecache: (107 commits)
nilfs2: Fix some kernel-doc comments
Appoint myself page cache maintainer
fs: Remove aops->freepage
secretmem: Convert to free_folio
nfs: Convert to free_folio
orangefs: Convert to free_folio
fs: Add free_folio address space operation
fs: Convert drop_buffers() to use a folio
fs: Change try_to_free_buffers() to take a folio
jbd2: Convert release_buffer_page() to use a folio
jbd2: Convert jbd2_journal_try_to_free_buffers to take a folio
reiserfs: Convert release_buffer_page() to use a folio
fs: Remove last vestiges of releasepage
ubifs: Convert to release_folio
reiserfs: Convert to release_folio
orangefs: Convert to release_folio
ocfs2: Convert to release_folio
nilfs2: Remove comment about releasepage
nfs: Convert to release_folio
jfs: Convert to release_folio
...
|
|
The use of folios should be pushed further down into jfs from here.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Jeff Layton <jlayton@kernel.org>
|
|
This is a "weak" conversion which converts straight back to using pages.
A full conversion should be performed at some point, hopefully by
someone familiar with the filesystem.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
|
|
mpage_readpage still works in terms of pages, and has not been audited
for correctness with large folios, so include an assertion that the
filesystem is not passing it large folios. Convert all the filesystems
to call mpage_read_folio() instead of mpage_readpage().
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
|
|
There are no more aop flags left, so remove the parameter.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
|
|
There are no more aop flags left, so remove the parameter.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
|
|
Since the JFS code was first added to Linux, there has been code hidden
in ifdefs for some potential future features such as defragmentation
and supporting block sizes other than 4KB. There has been no ongoing
development on JFS for many years, so it's past time to remove this dead
code from the source.
Signed-off-by: Dave Kleikamp <dave.kleikamp@oracle.com>
|
|
In our fault-injection testing, the variable "nblocks" in dbFree() can be
zero when kmalloc_array() fails in dtSearch(). In this case, the variable
"mp" in dbFree() would be NULL and then it is dereferenced in
"write_metapage(mp)".
The failure log is listed as follows:
[ 13.824137] BUG: kernel NULL pointer dereference, address: 0000000000000020
...
[ 13.827416] RIP: 0010:dbFree+0x5f7/0x910 [jfs]
[ 13.834341] Call Trace:
[ 13.834540] <TASK>
[ 13.834713] txFreeMap+0x7b4/0xb10 [jfs]
[ 13.835038] txUpdateMap+0x311/0x650 [jfs]
[ 13.835375] jfs_lazycommit+0x5f2/0xc70 [jfs]
[ 13.835726] ? sched_dynamic_update+0x1b0/0x1b0
[ 13.836092] kthread+0x3c2/0x4a0
[ 13.836355] ? txLockFree+0x160/0x160 [jfs]
[ 13.836763] ? kthread_unuse_mm+0x160/0x160
[ 13.837106] ret_from_fork+0x1f/0x30
[ 13.837402] </TASK>
...
This patch adds a NULL check of "mp" before "write_metapage(mp)" is called.
Reported-by: TOTE Robot <oslab@tsinghua.edu.cn>
Signed-off-by: Zixuan Fu <r33s3n6@gmail.com>
Signed-off-by: Dave Kleikamp <dave.kleikamp@oracle.com>
|
|
Abstract away implementation details from file systems by providing a
block_device based helper to retrieve the discard granularity.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com>
Acked-by: Christoph Böhmwalder <christoph.boehmwalder@linbit.com> [drbd]
Acked-by: Ryusuke Konishi <konishi.ryusuke@gmail.com>
Acked-by: David Sterba <dsterba@suse.com> [btrfs]
Link: https://lore.kernel.org/r/20220415045258.199825-26-hch@lst.de
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
Just use a non-zero max_discard_sectors as an indicator for discard
support, similar to what is done for write zeroes.
The only places where needs special attention is the RAID5 driver,
which must clear discard support for security reasons by default,
even if the default stacking rules would allow for it.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com>
Acked-by: Christoph Böhmwalder <christoph.boehmwalder@linbit.com> [drbd]
Acked-by: Jan Höppner <hoeppner@linux.ibm.com> [s390]
Acked-by: Coly Li <colyli@suse.de> [bcache]
Acked-by: David Sterba <dsterba@suse.com> [btrfs]
Reviewed-by: Chaitanya Kulkarni <kch@nvidia.com>
Link: https://lore.kernel.org/r/20220415045258.199825-25-hch@lst.de
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
Pull jfs updates from Dave Kleikamp:
"A couple bug fixes"
* tag 'jfs-5.18' of https://github.com/kleikamp/linux-shaggy:
jfs: prevent NULL deref in diFree
jfs: fix divide error in dbNextAG
|
|
Pull filesystem folio updates from Matthew Wilcox:
"Primarily this series converts some of the address_space operations to
take a folio instead of a page.
Notably:
- a_ops->is_partially_uptodate() takes a folio instead of a page and
changes the type of the 'from' and 'count' arguments to make it
obvious they're bytes.
- a_ops->invalidatepage() becomes ->invalidate_folio() and has a
similar type change.
- a_ops->launder_page() becomes ->launder_folio()
- a_ops->set_page_dirty() becomes ->dirty_folio() and adds the
address_space as an argument.
There are a couple of other misc changes up front that weren't worth
separating into their own pull request"
* tag 'folio-5.18b' of git://git.infradead.org/users/willy/pagecache: (53 commits)
fs: Remove aops ->set_page_dirty
fb_defio: Use noop_dirty_folio()
fs: Convert __set_page_dirty_no_writeback to noop_dirty_folio
fs: Convert __set_page_dirty_buffers to block_dirty_folio
nilfs: Convert nilfs_set_page_dirty() to nilfs_dirty_folio()
mm: Convert swap_set_page_dirty() to swap_dirty_folio()
ubifs: Convert ubifs_set_page_dirty to ubifs_dirty_folio
f2fs: Convert f2fs_set_node_page_dirty to f2fs_dirty_node_folio
f2fs: Convert f2fs_set_data_page_dirty to f2fs_dirty_data_folio
f2fs: Convert f2fs_set_meta_page_dirty to f2fs_dirty_meta_folio
afs: Convert afs_dir_set_page_dirty() to afs_dir_dirty_folio()
btrfs: Convert extent_range_redirty_for_io() to use folios
fs: Convert trivial uses of __set_page_dirty_nobuffers to filemap_dirty_folio
btrfs: Convert from set_page_dirty to dirty_folio
fscache: Convert fscache_set_page_dirty() to fscache_dirty_folio()
fs: Add aops->dirty_folio
fs: Remove aops->launder_page
orangefs: Convert launder_page to launder_folio
nfs: Convert from launder_page to launder_folio
fuse: Convert from launder_page to launder_folio
...
|