Age | Commit message (Collapse) | Author |
|
git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull vfs xattr updates from Al Viro:
"xattr stuff from Andreas
This completes the switch to xattr_handler ->get()/->set() from
->getxattr/->setxattr/->removexattr"
* 'work.xattr' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
vfs: Remove {get,set,remove}xattr inode operations
xattr: Stop calling {get,set,remove}xattr inode operations
vfs: Check for the IOP_XATTR flag in listxattr
xattr: Add __vfs_{get,set,remove}xattr helpers
libfs: Use IOP_XATTR flag for empty directory handling
vfs: Use IOP_XATTR flag for bad-inode handling
vfs: Add IOP_XATTR inode operations flag
vfs: Move xattr_resolve_name to the front of fs/xattr.c
ecryptfs: Switch to generic xattr handlers
sockfs: Get rid of getxattr iop
sockfs: getxattr: Fail with -EOPNOTSUPP for invalid attribute names
kernfs: Switch to generic xattr handlers
hfs: Switch to generic xattr handlers
jffs2: Remove jffs2_{get,set,remove}xattr macros
xattr: Remove unnecessary NULL attribute name check
|
|
|
|
|
|
The IOP_XATTR inode operations flag in inode->i_opflags indicates that
the inode has xattr support. The flag is automatically set by
new_inode() on filesystems with xattr support (where sb->s_xattr is
defined), and cleared otherwise. Filesystems can explicitly clear it
for inodes that should not have xattr support.
Signed-off-by: Andreas Gruenbacher <agruenba@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
On overlayfs relatime_need_update() needs inode times to be correct on
overlay inode. But i_mtime and i_ctime are updated by filesystem code on
underlying inode only, so they will be out-of-date on the overlay inode.
This patch copies the times from the underlying inode if needed. This
can't be done if called from RCU lookup (link following) but link m/ctime
are not updated by fs, so this is all right.
This patch doesn't change functionality for anything but overlayfs.
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull more vfs updates from Al Viro:
"Assorted cleanups and fixes.
In the "trivial API change" department - ->d_compare() losing 'parent'
argument"
* 'for-linus-2' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
cachefiles: Fix race between inactivating and culling a cache object
9p: use clone_fid()
9p: fix braino introduced in "9p: new helper - v9fs_parent_fid()"
vfs: make dentry_needs_remove_privs() internal
vfs: remove file_needs_remove_privs()
vfs: fix deadlock in file_remove_privs() on overlayfs
get rid of 'parent' argument of ->d_compare()
cifs, msdos, vfat, hfs+: don't bother with parent in ->d_compare()
affs ->d_compare(): don't bother with ->d_inode
fold _d_rehash() and __d_rehash() together
fold dentry_rcuwalk_invalidate() into its only remaining caller
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/mszeredi/vfs into for-linus
|
|
Only used by the vfs.
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
|
|
file_remove_privs() is called with inode lock on file_inode(), which
proceeds to calling notify_change() on file->f_path.dentry. Which triggers
the WARN_ON_ONCE(!inode_is_locked(inode)) in addition to deadlocking later
when ovl_setattr tries to lock the underlying inode again.
Fix this mess by not mixing the layers, but doing everything on underlying
dentry/inode.
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
Fixes: 07a2daab49c5 ("ovl: Copy up underlying inode's ->i_mode to overlay inode")
Cc: <stable@vger.kernel.org>
|
|
Radix trees may be used not only for storing page cache pages, so
unconditionally accounting radix tree nodes to the current memory cgroup
is bad: if a radix tree node is used for storing data shared among
different cgroups we risk pinning dead memory cgroups forever.
So let's only account radix tree nodes if it was explicitly requested by
passing __GFP_ACCOUNT to INIT_RADIX_TREE. Currently, we only want to
account page cache entries, so mark mapping->page_tree so.
Fixes: 58e698af4c63 ("radix-tree: account radix_tree_node to memory cgroup")
Link: http://lkml.kernel.org/r/1470057188-7864-1-git-send-email-vdavydov@virtuozzo.com
Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: <stable@vger.kernel.org> [4.6+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace
Pull userns vfs updates from Eric Biederman:
"This tree contains some very long awaited work on generalizing the
user namespace support for mounting filesystems to include filesystems
with a backing store. The real world target is fuse but the goal is
to update the vfs to allow any filesystem to be supported. This
patchset is based on a lot of code review and testing to approach that
goal.
While looking at what is needed to support the fuse filesystem it
became clear that there were things like xattrs for security modules
that needed special treatment. That the resolution of those concerns
would not be fuse specific. That sorting out these general issues
made most sense at the generic level, where the right people could be
drawn into the conversation, and the issues could be solved for
everyone.
At a high level what this patchset does a couple of simple things:
- Add a user namespace owner (s_user_ns) to struct super_block.
- Teach the vfs to handle filesystem uids and gids not mapping into
to kuids and kgids and being reported as INVALID_UID and
INVALID_GID in vfs data structures.
By assigning a user namespace owner filesystems that are mounted with
only user namespace privilege can be detected. This allows security
modules and the like to know which mounts may not be trusted. This
also allows the set of uids and gids that are communicated to the
filesystem to be capped at the set of kuids and kgids that are in the
owning user namespace of the filesystem.
One of the crazier corner casees this handles is the case of inodes
whose i_uid or i_gid are not mapped into the vfs. Most of the code
simply doesn't care but it is easy to confuse the inode writeback path
so no operation that could cause an inode write-back is permitted for
such inodes (aka only reads are allowed).
This set of changes starts out by cleaning up the code paths involved
in user namespace permirted mounts. Then when things are clean enough
adds code that cleanly sets s_user_ns. Then additional restrictions
are added that are possible now that the filesystem superblock
contains owner information.
These changes should not affect anyone in practice, but there are some
parts of these restrictions that are changes in behavior.
- Andy's restriction on suid executables that does not honor the
suid bit when the path is from another mount namespace (think
/proc/[pid]/fd/) or when the filesystem was mounted by a less
privileged user.
- The replacement of the user namespace implicit setting of MNT_NODEV
with implicitly setting SB_I_NODEV on the filesystem superblock
instead.
Using SB_I_NODEV is a stronger form that happens to make this state
user invisible. The user visibility can be managed but it caused
problems when it was introduced from applications reasonably
expecting mount flags to be what they were set to.
There is a little bit of work remaining before it is safe to support
mounting filesystems with backing store in user namespaces, beyond
what is in this set of changes.
- Verifying the mounter has permission to read/write the block device
during mount.
- Teaching the integrity modules IMA and EVM to handle filesystems
mounted with only user namespace root and to reduce trust in their
security xattrs accordingly.
- Capturing the mounters credentials and using that for permission
checks in d_automount and the like. (Given that overlayfs already
does this, and we need the work in d_automount it make sense to
generalize this case).
Furthermore there are a few changes that are on the wishlist:
- Get all filesystems supporting posix acls using the generic posix
acls so that posix_acl_fix_xattr_from_user and
posix_acl_fix_xattr_to_user may be removed. [Maintainability]
- Reducing the permission checks in places such as remount to allow
the superblock owner to perform them.
- Allowing the superblock owner to chown files with unmapped uids and
gids to something that is mapped so the files may be treated
normally.
I am not considering even obvious relaxations of permission checks
until it is clear there are no more corner cases that need to be
locked down and handled generically.
Many thanks to Seth Forshee who kept this code alive, and putting up
with me rewriting substantial portions of what he did to handle more
corner cases, and for his diligent testing and reviewing of my
changes"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace: (30 commits)
fs: Call d_automount with the filesystems creds
fs: Update i_[ug]id_(read|write) to translate relative to s_user_ns
evm: Translate user/group ids relative to s_user_ns when computing HMAC
dquot: For now explicitly don't support filesystems outside of init_user_ns
quota: Handle quota data stored in s_user_ns in quota_setxquota
quota: Ensure qids map to the filesystem
vfs: Don't create inodes with a uid or gid unknown to the vfs
vfs: Don't modify inodes with a uid or gid unknown to the vfs
cred: Reject inodes with invalid ids in set_create_file_as()
fs: Check for invalid i_uid in may_follow_link()
vfs: Verify acls are valid within superblock's s_user_ns.
userns: Handle -1 in k[ug]id_has_mapping when !CONFIG_USER_NS
fs: Refuse uid/gid changes which don't map into s_user_ns
selinux: Add support for unprivileged mounts from user namespaces
Smack: Handle labels consistently in untrusted mounts
Smack: Add support for unprivileged mounts from user namespaces
fs: Treat foreign mounts as nosuid
fs: Limit file caps to the user namespace of the super block
userns: Remove the now unnecessary FS_USERNS_DEV_MOUNT flag
userns: Remove implicit MNT_NODEV fragility.
...
|
|
wait_sb_inodes() currently does a walk of all inodes in the filesystem
to find dirty one to wait on during sync. This is highly inefficient
and wastes a lot of CPU when there are lots of clean cached inodes that
we don't need to wait on.
To avoid this "all inode" walk, we need to track inodes that are
currently under writeback that we need to wait for. We do this by
adding inodes to a writeback list on the sb when the mapping is first
tagged as having pages under writeback. wait_sb_inodes() can then walk
this list of "inodes under IO" and wait specifically just for the inodes
that the current sync(2) needs to wait for.
Define a couple helpers to add/remove an inode from the writeback list
and call them when the overall mapping is tagged for or cleared from
writeback. Update wait_sb_inodes() to walk only the inodes under
writeback due to the sync.
With this change, filesystem sync times are significantly reduced for
fs' with largely populated inode caches and otherwise no other work to
do. For example, on a 16xcpu 2GHz x86-64 server, 10TB XFS filesystem
with a ~10m entry inode cache, sync times are reduced from ~7.3s to less
than 0.1s when the filesystem is fully clean.
Link: http://lkml.kernel.org/r/1466594593-6757-2-git-send-email-bfoster@redhat.com
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Tested-by: Holger Hoffstätte <holger.hoffstaette@applied-asynchrony.com>
Cc: Al Viro <viro@ZenIV.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
When a filesystem outside of init_user_ns is mounted it could have
uids and gids stored in it that do not map to init_user_ns.
The plan is to allow those filesystems to set i_uid to INVALID_UID and
i_gid to INVALID_GID for unmapped uids and gids and then to handle
that strange case in the vfs to ensure there is consistent robust
handling of the weirdness.
Upon a careful review of the vfs and filesystems about the only case
where there is any possibility of confusion or trouble is when the
inode is written back to disk. In that case filesystems typically
read the inode->i_uid and inode->i_gid and write them to disk even
when just an inode timestamp is being updated.
Which leads to a rule that is very simple to implement and understand
inodes whose i_uid or i_gid is not valid may not be written.
In dealing with access times this means treat those inodes as if the
inode flag S_NOATIME was set. Reads of the inodes appear safe and
useful, but any write or modification is disallowed. The only inode
write that is allowed is a chown that sets the uid and gid on the
inode to valid values. After such a chown the inode is normal and may
be treated as such.
Denying all writes to inodes with uids or gids unknown to the vfs also
prevents several oddball cases where corruption would have occurred
because the vfs does not have complete information.
One problem case that is prevented is attempting to use the gid of a
directory for new inodes where the directories sgid bit is set but the
directories gid is not mapped.
Another problem case avoided is attempting to update the evm hash
after setxattr, removexattr, and setattr. As the evm hash includeds
the inode->i_uid or inode->i_gid not knowning the uid or gid prevents
a correct evm hash from being computed. evm hash verification also
fails when i_uid or i_gid is unknown but that is essentially harmless
as it does not cause filesystem corruption.
Acked-by: Seth Forshee <seth.forshee@canonical.com>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
|
|
If one thread does iget_locked(), proceeds to try and set
the new inode up and fails, inode will be unhashed and dropped.
However, another thread doing ilookup/iget_locked in the middle
of that would end up finding a half-set-up inode, grabbing
a reference, waiting for it to come unlocked and getting the
resulting bad inode. It's a race (if that ilookup had been
called just after the failure of setup attempt it wouldn't
have found the sucker at all), particularly unpleasant in
cases when failure is transient/caller-dependent/etc.
While it can be dealt with in the callers, there's no reason
not to handle it in fs/inode.c primitives, especially since
the cost is trivial.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
ta-da!
The main issue is the lack of down_write_killable(), so the places
like readdir.c switched to plain inode_lock(); once killable
variants of rwsem primitives appear, that'll be dealt with.
lockdep side also might need more work
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
We'll need to verify that there's neither a hashed nor in-lookup
dentry with desired parent/name before adding to in-lookup set.
One possible solution would be to hold the parent's ->d_lock through
both checks, but while the in-lookup set is relatively small at any
time, dcache is not. And holding the parent's ->d_lock through
something like __d_lookup_rcu() would suck too badly.
So we leave the parent's ->d_lock alone, which means that we watch
out for the following scenario:
* we verify that there's no hashed match
* existing in-lookup match gets hashed by another process
* we verify that there's no in-lookup matches and decide
that everything's fine.
Solution: per-directory kinda-sorta seqlock, bumped around the times
we hash something that used to be in-lookup or move (and hash)
something in place of in-lookup. Then the above would turn into
* read the counter
* do dcache lookup
* if no matches found, check for in-lookup matches
* if there had been none of those either, check if the
counter has changed; repeat if it has.
The "kinda-sorta" part is due to the fact that we don't have much spare
space in inode. There is a spare word (shared with i_bdev/i_cdev/i_pipe),
so the counter part is not a problem, but spinlock is a different story.
We could use the parent's ->d_lock, and it would be less painful in
terms of contention, for __d_add() it would be rather inconvenient to
grab; we could do that (using lock_parent()), but...
Fortunately, we can get serialization on the counter itself, and it
might be a good idea in general; we can use cmpxchg() in a loop to
get from even to odd and smp_store_release() from odd to even.
This commit adds the counter and updating logics; the readers will be
added in the next commit.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
When get_acl() is called for an inode whose ACL is not cached yet, the
get_acl inode operation is called to fetch the ACL from the filesystem.
The inode operation is responsible for updating the cached acl with
set_cached_acl(). This is done without locking at the VFS level, so
another task can call set_cached_acl() or forget_cached_acl() before the
get_acl inode operation gets to calling set_cached_acl(), and then
get_acl's call to set_cached_acl() results in caching an outdate ACL.
Prevent this from happening by setting the cached ACL pointer to a
task-specific sentinel value before calling the get_acl inode operation.
Move the responsibility for updating the cached ACL from the get_acl
inode operations to get_acl(). There, only set the cached ACL if the
sentinel value hasn't changed.
The sentinel values are chosen to have odd values. Likewise, the value
of ACL_NOT_CACHED is odd. In contrast, ACL object pointers always have
an even value (ACLs are aligned in memory). This allows to distinguish
uncached ACLs values from ACL objects.
In addition, switch from guarding inode->i_acl and inode->i_default_acl
upates by the inode->i_lock spinlock to using xchg() and cmpxchg().
Filesystems that do not want ACLs returned from their get_acl inode
operations to be cached must call forget_cached_acl() to prevent the VFS
from doing so.
(Patch written by Al Viro and Andreas Gruenbacher.)
Signed-off-by: Andreas Gruenbacher <agruenba@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
inode struct members that track cgroup writeback information
should be reinitialized when inode gets allocated from
kmem_cache. Otherwise, their values remain and get used by the
new inode.
Signed-off-by: Tahsin Erdogan <tahsin@google.com>
Acked-by: Tejun Heo <tj@kernel.org>
Fixes: d10c80955265 ("writeback: implement foreign cgroup inode bdi_writeback switching")
Signed-off-by: Jens Axboe <axboe@fb.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull final vfs updates from Al Viro:
- The ->i_mutex wrappers (with small prereq in lustre)
- a fix for too early freeing of symlink bodies on shmem (they need to
be RCU-delayed) (-stable fodder)
- followup to dedupe stuff merged this cycle
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
vfs: abort dedupe loop if fatal signals are pending
make sure that freeing shmem fast symlinks is RCU-delayed
wrappers for ->i_mutex access
lustre: remove unused declaration
|
|
Add support for tracking dirty DAX entries in the struct address_space
radix tree. This tree is already used for dirty page writeback, and it
already supports the use of exceptional (non struct page*) entries.
In order to properly track dirty DAX pages we will insert new
exceptional entries into the radix tree that represent dirty DAX PTE or
PMD pages. These exceptional entries will also contain the writeback
addresses for the PTE or PMD faults that we can use at fsync/msync time.
There are currently two types of exceptional entries (shmem and shadow)
that can be placed into the radix tree, and this adds a third. We rely
on the fact that only one type of exceptional entry can be found in a
given radix tree based on its usage. This happens for free with DAX vs
shmem but we explicitly prevent shadow entries from being added to radix
trees for DAX mappings.
The only shadow entries that would be generated for DAX radix trees
would be to track zero page mappings that were created for holes. These
pages would receive minimal benefit from having shadow entries, and the
choice to have only one type of exceptional entry in a given radix tree
makes the logic simpler both in clear_exceptional_entry() and in the
rest of DAX.
Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: "J. Bruce Fields" <bfields@fieldses.org>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Andreas Dilger <adilger.kernel@dilger.ca>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jan Kara <jack@suse.com>
Cc: Jeff Layton <jlayton@poochiereds.net>
Cc: Matthew Wilcox <willy@linux.intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Matthew Wilcox <matthew.r.wilcox@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
parallel to mutex_{lock,unlock,trylock,is_locked,lock_nested},
inode_foo(inode) being mutex_foo(&inode->i_mutex).
Please, use those for access to ->i_mutex; over the coming cycle
->i_mutex will become rwsem, with ->lookup() done with it held
only shared.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
Mark those kmem allocations that are known to be easily triggered from
userspace as __GFP_ACCOUNT/SLAB_ACCOUNT, which makes them accounted to
memcg. For the list, see below:
- threadinfo
- task_struct
- task_delay_info
- pid
- cred
- mm_struct
- vm_area_struct and vm_region (nommu)
- anon_vma and anon_vma_chain
- signal_struct
- sighand_struct
- fs_struct
- files_struct
- fdtable and fdtable->full_fds_bits
- dentry and external_name
- inode for all filesystems. This is the most tedious part, because
most filesystems overwrite the alloc_inode method.
The list is far from complete, so feel free to add more objects.
Nevertheless, it should be close to "account everything" approach and
keep most workloads within bounds. Malevolent users will be able to
breach the limit, but this was possible even with the former "account
everything" approach (simply because it did not account everything in
fact).
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Greg Thelen <gthelen@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Pull file locking updates from Jeff Layton:
"File locking related changes for v4.5 (pile #1)
Highlights:
- new Kconfig option to allow disabling mandatory locking (which is
racy anyway)
- new tracepoints for setlk and close codepaths
- fix for a long-standing bug in code that handles races between
setting a POSIX lock and close()"
* tag 'locks-v4.5-1' of git://git.samba.org/jlayton/linux:
locks: rename __posix_lock_file to posix_lock_inode
locks: prink more detail when there are leaked locks
locks: pass inode pointer to locks_free_lock_context
locks: sprinkle some tracepoints around the file locking code
locks: don't check for race with close when setting OFD lock
locks: fix unlock when fcntl_setlk races with a close
fs: make locks.c explicitly non-modular
locks: use list_first_entry_or_null()
locks: Don't allow mounts in user namespaces to enable mandatory locking
locks: Allow disabling mandatory locking at compile time
|
|
...so we can print information about it if there are leaked locks.
Signed-off-by: Jeff Layton <jeff.layton@primarydata.com>
Acked-by: "J. Bruce Fields" <bfields@fieldses.org>
|
|
kmap() in page_follow_link_light() needed to go - allowing to hold
an arbitrary number of kmaps for long is a great way to deadlocking
the system.
new helper (inode_nohighmem(inode)) needs to be used for pagecache
symlinks inodes; done for all in-tree cases. page_follow_link_light()
instrumented to yell about anything missed.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
Fix kernel-doc warning in fs/inode.c:
../fs/inode.c:1606: warning: No description found for parameter 'inode'
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
On a box with a lot of ram (148gb) I can make the box softlockup after running
an fs_mark job that creates hundreds of millions of empty files. This is
because we never generate enough memory pressure to keep the number of inodes on
our unused list low, so when we go to unmount we have to evict ~100 million
inodes. This makes one processor a very unhappy person, so add a cond_resched()
in dispose_list() and if we need a resched when processing the s_inodes list do
that and run dispose_list() on what we've currently culled. Thanks,
Signed-off-by: Josef Bacik <jbacik@fb.com>
Reviewed-by: Jan Kara <jack@suse.cz>
|
|
There's a small consistency problem between the inode and writeback
naming. Writeback calls the "for IO" inode queues b_io and
b_more_io, but the inode calls these the "writeback list" or
i_wb_list. This makes it hard to an new "under writeback" list to
the inode, or call it an "under IO" list on the bdi because either
way we'll have writeback on IO and IO on writeback and it'll just be
confusing. I'm getting confused just writing this!
So, rename the inode "for IO" list variable to i_io_list so we can
add a new "writeback list" in a subsequent patch.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Tested-by: Dave Chinner <dchinner@redhat.com>
|
|
The process of reducing contention on per-superblock inode lists
starts with moving the locking to match the per-superblock inode
list. This takes the global lock out of the picture and reduces the
contention problems to within a single filesystem. This doesn't get
rid of contention as the locks still have global CPU scope, but it
does isolate operations on different superblocks form each other.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Tested-by: Dave Chinner <dchinner@redhat.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull more vfs updates from Al Viro:
"Assorted VFS fixes and related cleanups (IMO the most interesting in
that part are f_path-related things and Eric's descriptor-related
stuff). UFS regression fixes (it got broken last cycle). 9P fixes.
fs-cache series, DAX patches, Jan's file_remove_suid() work"
[ I'd say this is much more than "fixes and related cleanups". The
file_table locking rule change by Eric Dumazet is a rather big and
fundamental update even if the patch isn't huge. - Linus ]
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (49 commits)
9p: cope with bogus responses from server in p9_client_{read,write}
p9_client_write(): avoid double p9_free_req()
9p: forgetting to cancel request on interrupted zero-copy RPC
dax: bdev_direct_access() may sleep
block: Add support for DAX reads/writes to block devices
dax: Use copy_from_iter_nocache
dax: Add block size note to documentation
fs/file.c: __fget() and dup2() atomicity rules
fs/file.c: don't acquire files->file_lock in fd_install()
fs:super:get_anon_bdev: fix race condition could cause dev exceed its upper limitation
vfs: avoid creation of inode number 0 in get_next_ino
namei: make set_root_rcu() return void
make simple_positive() public
ufs: use dir_pages instead of ufs_dir_pages()
pagemap.h: move dir_pages() over there
remove the pointless include of lglock.h
fs: cleanup slight list_entry abuse
xfs: Correctly lock inode when removing suid and file capabilities
fs: Call security_ops->inode_killpriv on truncate
fs: Provide function telling whether file_remove_privs() will do anything
...
|
|
currently, get_next_ino() is able to create inodes with inode number = 0.
This have a bad impact in the filesystems relying in this function to generate
inode numbers.
While there is no problem at all in having inodes with number 0, userspace tools
which handle file management tasks can have problems handling these files, like
for example, the impossiblity of users to delete these files, since glibc will
ignore them. So, I believe the best way is kernel to avoid creating them.
This problem has been raised previously, but the old thread didn't have any
other update for a year+, and I've seen too many users hitting the same issue
regarding the impossibility to delete files while using filesystems relying on
this function. So, I'm starting the thread again, with the same patch
that I believe is enough to address this problem.
Signed-off-by: Carlos Maiolino <cmaiolino@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
Pull cgroup writeback support from Jens Axboe:
"This is the big pull request for adding cgroup writeback support.
This code has been in development for a long time, and it has been
simmering in for-next for a good chunk of this cycle too. This is one
of those problems that has been talked about for at least half a
decade, finally there's a solution and code to go with it.
Also see last weeks writeup on LWN:
http://lwn.net/Articles/648292/"
* 'for-4.2/writeback' of git://git.kernel.dk/linux-block: (85 commits)
writeback, blkio: add documentation for cgroup writeback support
vfs, writeback: replace FS_CGROUP_WRITEBACK with SB_I_CGROUPWB
writeback: do foreign inode detection iff cgroup writeback is enabled
v9fs: fix error handling in v9fs_session_init()
bdi: fix wrong error return value in cgwb_create()
buffer: remove unusued 'ret' variable
writeback: disassociate inodes from dying bdi_writebacks
writeback: implement foreign cgroup inode bdi_writeback switching
writeback: add lockdep annotation to inode_to_wb()
writeback: use unlocked_inode_to_wb transaction in inode_congested()
writeback: implement unlocked_inode_to_wb transaction and use it for stat updates
writeback: implement [locked_]inode_to_wb_and_lock_list()
writeback: implement foreign cgroup inode detection
writeback: make writeback_control track the inode being written back
writeback: relocate wb[_try]_get(), wb_put(), inode_{attach|detach}_wb()
mm: vmscan: disable memcg direct reclaim stalling if cgroup writeback support is in use
writeback: implement memcg writeback domain based throttling
writeback: reset wb_domain->dirty_limit[_tstmp] when memcg domain size changes
writeback: implement memcg wb_domain
writeback: update wb_over_bg_thresh() to use wb_domain aware operations
...
|
|
Comment in include/linux/security.h says that ->inode_killpriv() should
be called when setuid bit is being removed and that similar security
labels (in fact this applies only to file capabilities) should be
removed at this time as well. However we don't call ->inode_killpriv()
when we remove suid bit on truncate.
We fix the problem by calling ->inode_need_killpriv() and subsequently
->inode_killpriv() on truncate the same way as we do it on file write.
After this patch there's only one user of should_remove_suid() - ocfs2 -
and indeed it's buggy because it doesn't call ->inode_killpriv() on
write. However fixing it is difficult because of special locking
constraints.
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
Provide function telling whether file_remove_privs() will do anything.
Currently we only have should_remove_suid() and that does something
slightly different.
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
file_remove_suid() is a misnomer since it removes also file capabilities
stored in xattrs and sets S_NOSEC flag. Also should_remove_suid() tells
something else than whether file_remove_suid() call is necessary which
leads to bugs.
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
file_remove_suid() could mistakenly set S_NOSEC inode bit when root was
modifying the file. As a result following writes to the file by ordinary
user would avoid clearing suid or sgid bits.
Fix the bug by checking actual mode bits before setting S_NOSEC.
CC: stable@vger.kernel.org
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
For the planned cgroup writeback support, on each bdi
(backing_dev_info), each memcg will be served by a separate wb
(bdi_writeback). This patch updates bdi so that a bdi can host
multiple wbs (bdi_writebacks).
On the default hierarchy, blkcg implicitly enables memcg. This allows
using memcg's page ownership for attributing writeback IOs, and every
memcg - blkcg combination can be served by its own wb by assigning a
dedicated wb to each memcg. This means that there may be multiple
wb's of a bdi mapped to the same blkcg. As congested state is per
blkcg - bdi combination, those wb's should share the same congested
state. This is achieved by tracking congested state via
bdi_writeback_congested structs which are keyed by blkcg.
bdi->wb remains unchanged and will keep serving the root cgroup.
cgwb's (cgroup wb's) for non-root cgroups are created on-demand or
looked up while dirtying an inode according to the memcg of the page
being dirtied or current task. Each cgwb is indexed on bdi->cgwb_tree
by its memcg id. Once an inode is associated with its wb, it can be
retrieved using inode_to_wb().
Currently, none of the filesystems has FS_CGROUP_WRITEBACK and all
pages will keep being associated with bdi->wb.
v3: inode_attach_wb() in account_page_dirtied() moved inside
mapping_cap_account_dirty() block where it's known to be !NULL.
Also, an unnecessary NULL check before kfree() removed. Both
detected by the kbuild bot.
v2: Updated so that wb association is per inode and wb is per memcg
rather than blkcg.
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: kbuild test robot <fengguang.wu@intel.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Jan Kara <jack@suse.cz>
Signed-off-by: Jens Axboe <axboe@fb.com>
|
|
touch_atime is not RCU-safe, and so cannot be called on an RCU walk.
However, in situations where RCU-walk makes a difference, the symlink
will likely to accessed much more often than it is useful to update
the atime.
So split out the test of "Does the atime actually need to be updated"
into atime_needs_update(), and have get_link() unlazy if it finds that
it will need to do that update.
Signed-off-by: NeilBrown <neilb@suse.de>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
let "fast" symlinks store the pointer to the body into ->i_link and
use simple_follow_link for ->follow_link()
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
do_blockdev_direct_IO() increments and decrements the inode
->i_dio_count for each IO operation. It does this to protect against
truncate of a file. Block devices don't need this sort of protection.
For a capable multiqueue setup, this atomic int is the only shared
state between applications accessing the device for O_DIRECT, and it
presents a scaling wall for that. In my testing, as much as 30% of
system time is spent incrementing and decrementing this value. A mixed
read/write workload improved from ~2.5M IOPS to ~9.6M IOPS, with
better latencies too. Before:
clat percentiles (usec):
| 1.00th=[ 33], 5.00th=[ 34], 10.00th=[ 34], 20.00th=[ 34],
| 30.00th=[ 34], 40.00th=[ 34], 50.00th=[ 35], 60.00th=[ 35],
| 70.00th=[ 35], 80.00th=[ 35], 90.00th=[ 37], 95.00th=[ 80],
| 99.00th=[ 98], 99.50th=[ 151], 99.90th=[ 155], 99.95th=[ 155],
| 99.99th=[ 165]
After:
clat percentiles (usec):
| 1.00th=[ 95], 5.00th=[ 108], 10.00th=[ 129], 20.00th=[ 149],
| 30.00th=[ 155], 40.00th=[ 161], 50.00th=[ 167], 60.00th=[ 171],
| 70.00th=[ 177], 80.00th=[ 185], 90.00th=[ 201], 95.00th=[ 270],
| 99.00th=[ 390], 99.50th=[ 398], 99.90th=[ 418], 99.95th=[ 422],
| 99.99th=[ 438]
In other setups, Robert Elliott reported seeing good performance
improvements:
https://lkml.org/lkml/2015/4/3/557
The more applications accessing the device, the worse it gets.
Add a new direct-io flags, DIO_SKIP_DIO_COUNT, which tells
do_blockdev_direct_IO() that it need not worry about incrementing
or decrementing the inode i_dio_count for this caller.
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Elliott, Robert (Server Storage) <elliott@hp.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Jens Axboe <axboe@fb.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
these should be used on objects already in top layer
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull lazytime mount option support from Al Viro:
"Lazytime stuff from tytso"
* 'lazytime' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
ext4: add optimization for the lazytime mount option
vfs: add find_inode_nowait() function
vfs: add support for a lazytime mount option
|
|
Merge third set of updates from Andrew Morton:
- the rest of MM
[ This includes getting rid of the numa hinting bits, in favor of
just generic protnone logic. Yay. - Linus ]
- core kernel
- procfs
- some of lib/ (lots of lib/ material this time)
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (104 commits)
lib/lcm.c: replace include
lib/percpu_ida.c: remove redundant includes
lib/strncpy_from_user.c: replace module.h include
lib/stmp_device.c: replace module.h include
lib/sort.c: move include inside #if 0
lib/show_mem.c: remove redundant include
lib/radix-tree.c: change to simpler include
lib/plist.c: remove redundant include
lib/nlattr.c: remove redundant include
lib/kobject_uevent.c: remove redundant include
lib/llist.c: remove redundant include
lib/md5.c: simplify include
lib/list_sort.c: rearrange includes
lib/genalloc.c: remove redundant include
lib/idr.c: remove redundant include
lib/halfmd4.c: simplify includes
lib/dynamic_queue_limits.c: simplify includes
lib/sort.c: use simpler includes
lib/interval_tree.c: simplify includes
hexdump: make it return number of bytes placed in buffer
...
|
|
Currently, the isolate callback passed to the list_lru_walk family of
functions is supposed to just delete an item from the list upon returning
LRU_REMOVED or LRU_REMOVED_RETRY, while nr_items counter is fixed by
__list_lru_walk_one after the callback returns. Since the callback is
allowed to drop the lock after removing an item (it has to return
LRU_REMOVED_RETRY then), the nr_items can be less than the actual number
of elements on the list even if we check them under the lock. This makes
it difficult to move items from one list_lru_one to another, which is
required for per-memcg list_lru reparenting - we can't just splice the
lists, we have to move entries one by one.
This patch therefore introduces helpers that must be used by callback
functions to isolate items instead of raw list_del/list_move. These are
list_lru_isolate and list_lru_isolate_move. They not only remove the
entry from the list, but also fix the nr_items counter, making sure
nr_items always reflects the actual number of elements on the list if
checked under the appropriate lock.
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Tejun Heo <tj@kernel.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Dave Chinner <david@fromorbit.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Kmem accounting of memcg is unusable now, because it lacks slab shrinker
support. That means when we hit the limit we will get ENOMEM w/o any
chance to recover. What we should do then is to call shrink_slab, which
would reclaim old inode/dentry caches from this cgroup. This is what
this patch set is intended to do.
Basically, it does two things. First, it introduces the notion of
per-memcg slab shrinker. A shrinker that wants to reclaim objects per
cgroup should mark itself as SHRINKER_MEMCG_AWARE. Then it will be
passed the memory cgroup to scan from in shrink_control->memcg. For
such shrinkers shrink_slab iterates over the whole cgroup subtree under
the target cgroup and calls the shrinker for each kmem-active memory
cgroup.
Secondly, this patch set makes the list_lru structure per-memcg. It's
done transparently to list_lru users - everything they have to do is to
tell list_lru_init that they want memcg-aware list_lru. Then the
list_lru will automatically distribute objects among per-memcg lists
basing on which cgroup the object is accounted to. This way to make FS
shrinkers (icache, dcache) memcg-aware we only need to make them use
memcg-aware list_lru, and this is what this patch set does.
As before, this patch set only enables per-memcg kmem reclaim when the
pressure goes from memory.limit, not from memory.kmem.limit. Handling
memory.kmem.limit is going to be tricky due to GFP_NOFS allocations, and
it is still unclear whether we will have this knob in the unified
hierarchy.
This patch (of 9):
NUMA aware slab shrinkers use the list_lru structure to distribute
objects coming from different NUMA nodes to different lists. Whenever
such a shrinker needs to count or scan objects from a particular node,
it issues commands like this:
count = list_lru_count_node(lru, sc->nid);
freed = list_lru_walk_node(lru, sc->nid, isolate_func,
isolate_arg, &sc->nr_to_scan);
where sc is an instance of the shrink_control structure passed to it
from vmscan.
To simplify this, let's add special list_lru functions to be used by
shrinkers, list_lru_shrink_count() and list_lru_shrink_walk(), which
consolidate the nid and nr_to_scan arguments in the shrink_control
structure.
This will also allow us to avoid patching shrinkers that use list_lru
when we make shrink_slab() per-memcg - all we will have to do is extend
the shrink_control structure to include the target memcg and make
list_lru_shrink_{count,walk} handle this appropriately.
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Suggested-by: Dave Chinner <david@fromorbit.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Greg Thelen <gthelen@google.com>
Cc: Glauber Costa <glommer@gmail.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Pull backing device changes from Jens Axboe:
"This contains a cleanup of how the backing device is handled, in
preparation for a rework of the life time rules. In this part, the
most important change is to split the unrelated nommu mmap flags from
it, but also removing a backing_dev_info pointer from the
address_space (and inode), and a cleanup of other various minor bits.
Christoph did all the work here, I just fixed an oops with pages that
have a swap backing. Arnd fixed a missing export, and Oleg killed the
lustre backing_dev_info from staging. Last patch was from Al,
unexporting parts that are now no longer needed outside"
* 'for-3.20/bdi' of git://git.kernel.dk/linux-block:
Make super_blocks and sb_lock static
mtd: export new mtd_mmap_capabilities
fs: make inode_to_bdi() handle NULL inode
staging/lustre/llite: get rid of backing_dev_info
fs: remove default_backing_dev_info
fs: don't reassign dirty inodes to default_backing_dev_info
nfs: don't call bdi_unregister
ceph: remove call to bdi_unregister
fs: remove mapping->backing_dev_info
fs: export inode_to_bdi and use it in favor of mapping->backing_dev_info
nilfs2: set up s_bdi like the generic mount_bdev code
block_dev: get bdev inode bdi directly from the block device
block_dev: only write bdev inode on close
fs: introduce f_op->mmap_capabilities for nommu mmap support
fs: kill BDI_CAP_SWAP_BACKED
fs: deduplicate noop_backing_dev_info
|
|
Merge misc updates from Andrew Morton:
"Bite-sized chunks this time, to avoid the MTA ratelimiting woes.
- fs/notify updates
- ocfs2
- some of MM"
That laconic "some MM" is mainly the removal of remap_file_pages(),
which is a big simplification of the VM, and which gets rid of a *lot*
of random cruft and special cases because we no longer support the
non-linear mappings that it used.
From a user interface perspective, nothing has changed, because the
remap_file_pages() syscall still exists, it's just done by emulating the
old behavior by creating a lot of individual small mappings instead of
one non-linear one.
The emulation is slower than the old "native" non-linear mappings, but
nobody really uses or cares about remap_file_pages(), and simplifying
the VM is a big advantage.
* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (78 commits)
memcg: zap memcg_slab_caches and memcg_slab_mutex
memcg: zap memcg_name argument of memcg_create_kmem_cache
memcg: zap __memcg_{charge,uncharge}_slab
mm/page_alloc.c: place zone_id check before VM_BUG_ON_PAGE check
mm: hugetlb: fix type of hugetlb_treat_as_movable variable
mm, hugetlb: remove unnecessary lower bound on sysctl handlers"?
mm: memory: merge shared-writable dirtying branches in do_wp_page()
mm: memory: remove ->vm_file check on shared writable vmas
xtensa: drop _PAGE_FILE and pte_file()-related helpers
x86: drop _PAGE_FILE and pte_file()-related helpers
unicore32: drop pte_file()-related helpers
um: drop _PAGE_FILE and pte_file()-related helpers
tile: drop pte_file()-related helpers
sparc: drop pte_file()-related helpers
sh: drop _PAGE_FILE and pte_file()-related helpers
score: drop _PAGE_FILE and pte_file()-related helpers
s390: drop pte_file()-related helpers
parisc: drop _PAGE_FILE and pte_file()-related helpers
openrisc: drop _PAGE_FILE and pte_file()-related helpers
nios2: drop _PAGE_FILE and pte_file()-related helpers
...
|
|
We don't create non-linear mappings anymore. Let's drop code which
handles them in rmap.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Add a new function find_inode_nowait() which is an even more general
version of ilookup5_nowait(). It is designed for callers which need
very fine grained control over when the function is allowed to block
or increment the inode's reference count.
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
Add a new mount option which enables a new "lazytime" mode. This mode
causes atime, mtime, and ctime updates to only be made to the
in-memory version of the inode. The on-disk times will only get
updated when (a) if the inode needs to be updated for some non-time
related change, (b) if userspace calls fsync(), syncfs() or sync(), or
(c) just before an undeleted inode is evicted from memory.
This is OK according to POSIX because there are no guarantees after a
crash unless userspace explicitly requests via a fsync(2) call.
For workloads which feature a large number of random write to a
preallocated file, the lazytime mount option significantly reduces
writes to the inode table. The repeated 4k writes to a single block
will result in undesirable stress on flash devices and SMR disk
drives. Even on conventional HDD's, the repeated writes to the inode
table block will trigger Adjacent Track Interference (ATI) remediation
latencies, which very negatively impact long tail latencies --- which
is a very big deal for web serving tiers (for example).
Google-Bug-Id: 18297052
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|