summaryrefslogtreecommitdiff
path: root/fs/btrfs
AgeCommit message (Collapse)Author
2022-05-24Merge tag 'folio-5.19' of git://git.infradead.org/users/willy/pagecacheLinus Torvalds
Pull page cache updates from Matthew Wilcox: - Appoint myself page cache maintainer - Fix how scsicam uses the page cache - Use the memalloc_nofs_save() API to replace AOP_FLAG_NOFS - Remove the AOP flags entirely - Remove pagecache_write_begin() and pagecache_write_end() - Documentation updates - Convert several address_space operations to use folios: - is_dirty_writeback - readpage becomes read_folio - releasepage becomes release_folio - freepage becomes free_folio - Change filler_t to require a struct file pointer be the first argument like ->read_folio * tag 'folio-5.19' of git://git.infradead.org/users/willy/pagecache: (107 commits) nilfs2: Fix some kernel-doc comments Appoint myself page cache maintainer fs: Remove aops->freepage secretmem: Convert to free_folio nfs: Convert to free_folio orangefs: Convert to free_folio fs: Add free_folio address space operation fs: Convert drop_buffers() to use a folio fs: Change try_to_free_buffers() to take a folio jbd2: Convert release_buffer_page() to use a folio jbd2: Convert jbd2_journal_try_to_free_buffers to take a folio reiserfs: Convert release_buffer_page() to use a folio fs: Remove last vestiges of releasepage ubifs: Convert to release_folio reiserfs: Convert to release_folio orangefs: Convert to release_folio ocfs2: Convert to release_folio nilfs2: Remove comment about releasepage nfs: Convert to release_folio jfs: Convert to release_folio ...
2022-05-24Merge tag 'for-5.19-tag' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux Pull btrfs updates from David Sterba: "Features: - subpage: - support for PAGE_SIZE > 4K (previously only 64K) - make it work with raid56 - repair super block num_devices automatically if it does not match the number of device items - defrag can convert inline extents to regular extents, up to now inline files were skipped but the setting of mount option max_inline could affect the decision logic - zoned: - minimal accepted zone size is explicitly set to 4MiB - make zone reclaim less aggressive and don't reclaim if there are enough free zones - add per-profile sysfs tunable of the reclaim threshold - allow automatic block group reclaim for non-zoned filesystems, with sysfs tunables - tree-checker: new check, compare extent buffer owner against owner rootid Performance: - avoid blocking on space reservation when doing nowait direct io writes (+7% throughput for reads and writes) - NOCOW write throughput improvement due to refined locking (+3%) - send: reduce pressure to page cache by dropping extent pages right after they're processed Core: - convert all radix trees to xarray - add iterators for b-tree node items - support printk message index - user bulk page allocation for extent buffers - switch to bio_alloc API, use on-stack bios where convenient, other bio cleanups - use rw lock for block groups to favor concurrent reads - simplify workques, don't allocate high priority threads for all normal queues as we need only one - refactor scrub, process chunks based on their constraints and similarity - allocate direct io structures on stack and pass around only pointers, avoids allocation and reduces potential error handling Fixes: - fix count of reserved transaction items for various inode operations - fix deadlock between concurrent dio writes when low on free data space - fix a few cases when zones need to be finished VFS, iomap: - add helper to check if sb write has started (usable for assertions) - new helper iomap_dio_alloc_bio, export iomap_dio_bio_end_io" * tag 'for-5.19-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: (173 commits) btrfs: zoned: introduce a minimal zone size 4M and reject mount btrfs: allow defrag to convert inline extents to regular extents btrfs: add "0x" prefix for unsupported optional features btrfs: do not account twice for inode ref when reserving metadata units btrfs: zoned: fix comparison of alloc_offset vs meta_write_pointer btrfs: send: avoid trashing the page cache btrfs: send: keep the current inode open while processing it btrfs: allocate the btrfs_dio_private as part of the iomap dio bio btrfs: move struct btrfs_dio_private to inode.c btrfs: remove the disk_bytenr in struct btrfs_dio_private btrfs: allocate dio_data on stack iomap: add per-iomap_iter private data iomap: allow the file system to provide a bio_set for direct I/O btrfs: add a btrfs_dio_rw wrapper btrfs: zoned: zone finish unused block group btrfs: zoned: properly finish block group on metadata write btrfs: zoned: finish block group when there are no more allocatable bytes left btrfs: zoned: consolidate zone finish functions btrfs: zoned: introduce btrfs_zoned_bg_is_full btrfs: improve error reporting in lookup_inline_extent_backref ...
2022-05-23Merge tag 'arm64-upstream' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux Pull arm64 updates from Catalin Marinas: - Initial support for the ARMv9 Scalable Matrix Extension (SME). SME takes the approach used for vectors in SVE and extends this to provide architectural support for matrix operations. No KVM support yet, SME is disabled in guests. - Support for crashkernel reservations above ZONE_DMA via the 'crashkernel=X,high' command line option. - btrfs search_ioctl() fix for live-lock with sub-page faults. - arm64 perf updates: support for the Hisilicon "CPA" PMU for monitoring coherent I/O traffic, support for Arm's CMN-650 and CMN-700 interconnect PMUs, minor driver fixes, kerneldoc cleanup. - Kselftest updates for SME, BTI, MTE. - Automatic generation of the system register macros from a 'sysreg' file describing the register bitfields. - Update the type of the function argument holding the ESR_ELx register value to unsigned long to match the architecture register size (originally 32-bit but extended since ARMv8.0). - stacktrace cleanups. - ftrace cleanups. - Miscellaneous updates, most notably: arm64-specific huge_ptep_get(), avoid executable mappings in kexec/hibernate code, drop TLB flushing from get_clear_flush() (and rename it to get_clear_contig()), ARCH_NR_GPIO bumped to 2048 for ARCH_APPLE. * tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (145 commits) arm64/sysreg: Generate definitions for FAR_ELx arm64/sysreg: Generate definitions for DACR32_EL2 arm64/sysreg: Generate definitions for CSSELR_EL1 arm64/sysreg: Generate definitions for CPACR_ELx arm64/sysreg: Generate definitions for CONTEXTIDR_ELx arm64/sysreg: Generate definitions for CLIDR_EL1 arm64/sve: Move sve_free() into SVE code section arm64: Kconfig.platforms: Add comments arm64: Kconfig: Fix indentation and add comments arm64: mm: avoid writable executable mappings in kexec/hibernate code arm64: lds: move special code sections out of kernel exec segment arm64/hugetlb: Implement arm64 specific huge_ptep_get() arm64/hugetlb: Use ptep_get() to get the pte value of a huge page arm64: kdump: Do not allocate crash low memory if not needed arm64/sve: Generate ZCR definitions arm64/sme: Generate defintions for SVCR arm64/sme: Generate SMPRI_EL1 definitions arm64/sme: Automatically generate SMPRIMAP_EL2 definitions arm64/sme: Automatically generate SMIDR_EL1 defines arm64/sme: Automatically generate defines for SMCR ...
2022-05-23Merge tag 'for-5.19/block-2022-05-22' of git://git.kernel.dk/linux-blockLinus Torvalds
Pull block updates from Jens Axboe: "Here are the core block changes for 5.19. This contains: - blk-throttle accounting fix (Laibin) - Series removing redundant assignments (Michal) - Expose bio cache via the bio_set, so that DM can use it (Mike) - Finish off the bio allocation interface cleanups by dealing with the weirdest member of the family. bio_kmalloc combines a kmalloc for the bio and bio_vecs with a hidden bio_init call and magic cleanup semantics (Christoph) - Clean up the block layer API so that APIs consumed by file systems are (almost) only struct block_device based, so that file systems don't have to poke into block layer internals like the request_queue (Christoph) - Clean up the blk_execute_rq* API (Christoph) - Clean up various lose end in the blk-cgroup code to make it easier to follow in preparation of reworking the blkcg assignment for bios (Christoph) - Fix use-after-free issues in BFQ when processes with merged queues get moved to different cgroups (Jan) - BFQ fixes (Jan) - Various fixes and cleanups (Bart, Chengming, Fanjun, Julia, Ming, Wolfgang, me)" * tag 'for-5.19/block-2022-05-22' of git://git.kernel.dk/linux-block: (83 commits) blk-mq: fix typo in comment bfq: Remove bfq_requeue_request_body() bfq: Remove superfluous conversion from RQ_BIC() bfq: Allow current waker to defend against a tentative one bfq: Relax waker detection for shared queues blk-cgroup: delete rcu_read_lock_held() WARN_ON_ONCE() blk-throttle: Set BIO_THROTTLED when bio has been throttled blk-cgroup: Remove unnecessary rcu_read_lock/unlock() blk-cgroup: always terminate io.stat lines block, bfq: make bfq_has_work() more accurate block, bfq: protect 'bfqd->queued' by 'bfqd->lock' block: cleanup the VM accounting in submit_bio block: Fix the bio.bi_opf comment block: reorder the REQ_ flags blk-iocost: combine local_stat and desc_stat to stat block: improve the error message from bio_check_eod block: allow passing a NULL bdev to bio_alloc_clone/bio_init_clone block: remove superfluous calls to blkcg_bio_issue_init kthread: unexport kthread_blkcg blk-cgroup: cleanup blkcg_maybe_throttle_current ...
2022-05-17btrfs: zoned: introduce a minimal zone size 4M and reject mountJohannes Thumshirn
Zoned devices are expected to have zone sizes in the range of 1-2GB for ZNS SSDs and SMR HDDs have zone sizes of 256MB, so there is no need to allow arbitrarily small zone sizes on btrfs. But for testing purposes with emulated devices it is sometimes desirable to create devices with as small as 4MB zone size to uncover errors. So use 4MB as the smallest possible zone size and reject mounts of devices with a smaller zone size. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-17btrfs: allow defrag to convert inline extents to regular extentsQu Wenruo
Btrfs defaults to max_inline=2K to make small writes inlined into metadata. The default value is always a win, as even DUP/RAID1/RAID10 doubles the metadata usage, it should still cause less physical space used compared to a 4K regular extents. But since the introduction of RAID1C3 and RAID1C4 it's no longer the case, users may find inlined extents causing too much space wasted, and want to convert those inlined extents back to regular extents. Unfortunately defrag will unconditionally skip all inline extents, no matter if the user is trying to converting them back to regular extents. So this patch will add a small exception for defrag_collect_targets() to allow defragging inline extents, if and only if the inlined extents are larger than max_inline, allowing users to convert them to regular ones. This also allows us to defrag extents like the following: item 6 key (257 EXTENT_DATA 0) itemoff 15794 itemsize 69 generation 7 type 0 (inline) inline extent data size 48 ram_bytes 4096 compression 1 (zlib) item 7 key (257 EXTENT_DATA 4096) itemoff 15741 itemsize 53 generation 7 type 1 (regular) extent data disk byte 13631488 nr 4096 extent data offset 0 nr 16384 ram 16384 extent compression 1 (zlib) Previously we're unable to do any defrag, since the first extent is inlined, and the second one has no extent to merge. Now we can defrag it to just one single extent, saving 48 bytes metadata space. item 6 key (257 EXTENT_DATA 0) itemoff 15810 itemsize 53 generation 8 type 1 (regular) extent data disk byte 13635584 nr 4096 extent data offset 0 nr 20480 ram 20480 extent compression 1 (zlib) Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-17btrfs: add "0x" prefix for unsupported optional featuresQu Wenruo
The following error message lack the "0x" obviously: cannot mount because of unsupported optional features (4000) Add the prefix to make it less confusing. This can happen on older kernels that try to mount a filesystem with newer features so it makes sense to backport to older trees. CC: stable@vger.kernel.org # 4.14+ Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-17btrfs: do not account twice for inode ref when reserving metadata unitsFilipe Manana
When reserving metadata units for creating an inode, we don't need to reserve one extra unit for the inode ref item because when creating the inode, at btrfs_create_new_inode(), we always insert the inode item and the inode ref item in a single batch (a single btree insert operation, and both ending up in the same leaf). As we have accounted already one unit for the inode item, the extra unit for the inode ref item is superfluous, it only makes us reserve more metadata than necessary and often adding more reclaim pressure if we are low on available metadata space. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-17btrfs: zoned: fix comparison of alloc_offset vs meta_write_pointerNaohiro Aota
The block_group->alloc_offset is an offset from the start of the block group. OTOH, the ->meta_write_pointer is an address in the logical space. So, we should compare the alloc_offset shifted with the block_group->start. Fixes: afba2bc036b0 ("btrfs: zoned: implement active zone tracking") CC: stable@vger.kernel.org # 5.16+ Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-17btrfs: send: avoid trashing the page cacheFilipe Manana
A send operation reads extent data using the buffered IO path for getting extent data to send in write commands and this is both because it's simple and to make use of the generic readahead infrastructure, which results in a massive speedup. However this fills the page cache with data that, most of the time, is really only used by the send operation - once the write commands are sent, it's not useful to have the data in the page cache anymore. For large snapshots, bringing all data into the page cache eventually leads to the need to evict other data from the page cache that may be more useful for applications (and kernel subsystems). Even if extents are shared with the subvolume on which a snapshot is based on and the data is currently on the page cache due to being read through the subvolume, attempting to read the data through the snapshot will always result in bringing a new copy of the data into another location in the page cache (there's currently no shared memory for shared extents). So make send evict the data it has read before if when it first opened the inode, its mapping had no pages currently loaded: when inode->i_mapping->nr_pages has a value of 0. Do this instead of deciding based on the return value of filemap_range_has_page() before reading an extent because the generic readahead mechanism may read pages beyond the range we request (and it very often does it), which means a call to filemap_range_has_page() will return true due to the readahead that was triggered when processing a previous extent - we don't have a simple way to distinguish this case from the case where the data was brought into the page cache through someone else. So checking for the mapping number of pages being 0 when we first open the inode is simple, cheap and it generally accomplishes the goal of not trashing the page cache - the only exception is if part of data was previously loaded into the page cache through the snapshot by some other process, in that case we end up not evicting any data send brings into the page cache, just like before this change - but that however is not the common case. Example scenario, on a box with 32G of RAM: $ btrfs subvolume create /mnt/sv1 $ xfs_io -f -c "pwrite 0 4G" /mnt/sv1/file1 $ btrfs subvolume snapshot -r /mnt/sv1 /mnt/snap1 $ free -m total used free shared buff/cache available Mem: 31937 186 26866 0 4883 31297 Swap: 8188 0 8188 # After this we get less 4G of free memory. $ btrfs send /mnt/snap1 >/dev/null $ free -m total used free shared buff/cache available Mem: 31937 186 22814 0 8935 31297 Swap: 8188 0 8188 The same, obviously, applies to an incremental send. Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16btrfs: send: keep the current inode open while processing itFilipe Manana
Every time we send a write command, we open the inode, read some data to a buffer and then close the inode. The amount of data we read for each write command is at most 48K, returned by max_send_read_size(), and that corresponds to: BTRFS_SEND_BUF_SIZE - 16K = 48K. In practice this does not add any significant overhead, because the time elapsed between every close (iput()) and open (btrfs_iget()) is very short, so the inode is kept in the VFS's cache after the iput() and it's still there by the time we do the next btrfs_iget(). As between processing extents of the current inode we don't do anything else, it makes sense to keep the inode open after we process its first extent that needs to be sent and keep it open until we start processing the next inode. This serves to facilitate the next change, which aims to avoid having send operations trash the page cache with data extents. Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16btrfs: allocate the btrfs_dio_private as part of the iomap dio bioChristoph Hellwig
Create a new bio_set that contains all the per-bio private data needed by btrfs for direct I/O and tell the iomap code to use that instead of separately allocation the btrfs_dio_private structure. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16btrfs: move struct btrfs_dio_private to inode.cChristoph Hellwig
The btrfs_dio_private structure is only used in inode.c, so move the definition there. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16btrfs: remove the disk_bytenr in struct btrfs_dio_privateChristoph Hellwig
This field is never used, so remove it. Last use was probably in 23ea8e5a0767 ("Btrfs: load checksum data once when submitting a direct read io"). Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16btrfs: allocate dio_data on stackChristoph Hellwig
Make use of the new iomap_iter->private field to avoid a memory allocation per iomap range. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16iomap: add per-iomap_iter private dataChristoph Hellwig
Allow the file system to keep state for all iterations. For now only wire it up for direct I/O as there is an immediate need for it there. Reviewed-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16btrfs: add a btrfs_dio_rw wrapperChristoph Hellwig
Add a wrapper around iomap_dio_rw that keeps the direct I/O internals isolated in inode.c. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16btrfs: zoned: zone finish unused block groupNaohiro Aota
While the active zones within an active block group are reset, and their active resource is released, the block group itself is kept in the active block group list and marked as active. As a result, the list will contain more than max_active_zones block groups. That itself is not fatal for the device as the zones are properly reset. However, that inflated list is, of course, strange. Also, a to-appear patch series, which deactivates an active block group on demand, gets confused with the wrong list. So, fix the issue by finishing the unused block group once it gets read-only, so that we can release the active resource in an early stage. Fixes: be1a1d7a5d24 ("btrfs: zoned: finish fully written block group") CC: stable@vger.kernel.org # 5.16+ Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16btrfs: zoned: properly finish block group on metadata writeNaohiro Aota
Commit be1a1d7a5d24 ("btrfs: zoned: finish fully written block group") introduced zone finishing code both for data and metadata end_io path. However, the metadata side is not working as it should. First, it compares logical address (eb->start + eb->len) with offset within a block group (cache->zone_capacity) in submit_eb_page(). That essentially disabled zone finishing on metadata end_io path. Furthermore, fixing the issue above revealed we cannot call btrfs_zone_finish_endio() in end_extent_buffer_writeback(). We cannot call btrfs_lookup_block_group() which require spin lock inside end_io context. Introduce btrfs_schedule_zone_finish_bg() to wait for the extent buffer writeback and do the zone finish IO in a workqueue. Also, drop EXTENT_BUFFER_ZONE_FINISH as it is no longer used. Fixes: be1a1d7a5d24 ("btrfs: zoned: finish fully written block group") CC: stable@vger.kernel.org # 5.16+ Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16btrfs: zoned: finish block group when there are no more allocatable bytes leftNaohiro Aota
Currently, btrfs_zone_finish_endio() finishes a block group only when the written region reaches the end of the block group. We can also finish the block group when no more allocation is possible. Fixes: be1a1d7a5d24 ("btrfs: zoned: finish fully written block group") CC: stable@vger.kernel.org # 5.16+ Reviewed-by: Pankaj Raghav <p.raghav@samsung.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16btrfs: zoned: consolidate zone finish functionsNaohiro Aota
btrfs_zone_finish() and btrfs_zone_finish_endio() have similar code. Introduce do_zone_finish() to factor out the common code. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16btrfs: zoned: introduce btrfs_zoned_bg_is_fullNaohiro Aota
Introduce a wrapper to check if all the space in a block group is allocated or not. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16btrfs: improve error reporting in lookup_inline_extent_backrefNikolay Borisov
When iterating the backrefs in an extent item if the ptr to the 'current' backref record goes beyond the extent item a warning is generated and -ENOENT is returned. However what's more appropriate to debug such cases would be to return EUCLEAN and also print identifying information about the performed search as well as the current content of the leaf containing the possibly corrupted extent item. Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16btrfs: rename bio_ctrl::bio_flags to compress_typeDavid Sterba
The bio_ctrl is the last use of bio_flags that has been converted to compress type everywhere else. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16btrfs: rename bio_flags in parameters and switch typeDavid Sterba
Several functions take parameter bio_flags that was simplified to just compress type, unify it and change the type accordingly. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16btrfs: rename io_failure_record::bio_flags to compress_typeDavid Sterba
The bio_flags is now used to store unchanged compress type, so unify that. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16btrfs: open code extent_set_compress_type helpersDavid Sterba
The helpers extent_set_compress_type and extent_compress_type have become trivial after previous cleanups and can be removed. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16btrfs: simplify handling of bio_ctrl::bio_flagsDavid Sterba
The bio_flags are used only to encode the compression and there are no other EXTENT_BIO_* flags, so the compress type can be stored directly. The struct member name is left unchanged and will be cleaned in later patches. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16btrfs: remove trivial helper update_nr_writtenDavid Sterba
The helper used to do more with the wbc state but now it's just one subtraction, no need to have a special helper. It became trivial in a91326679f2a ("Btrfs: make mapping->writeback_index point to the last written page"). Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16btrfs: remove unused parameter bio_flags from btrfs_wq_submit_bioDavid Sterba
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16btrfs: remove btrfs_delayed_extent_op::is_dataDavid Sterba
The value of btrfs_delayed_extent_op::is_data is always false, we can cascade the change and simplify code that depends on it, removing the structure member eventually. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16btrfs: sink parameter is_data to btrfs_set_disk_extent_flagsDavid Sterba
The parameter has been added in 2009 in the infamous monster commit 5d4f98a28c7d ("Btrfs: Mixed back reference (FORWARD ROLLING FORMAT CHANGE)") but not used ever since. We can sink it and allow further simplifications. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16btrfs: fix deadlock between concurrent dio writes when low on free data spaceFilipe Manana
When reserving data space for a direct IO write we can end up deadlocking if we have multiple tasks attempting a write to the same file range, there are multiple extents covered by that file range, we are low on available space for data and the writes don't expand the inode's i_size. The deadlock can happen like this: 1) We have a file with an i_size of 1M, at offset 0 it has an extent with a size of 128K and at offset 128K it has another extent also with a size of 128K; 2) Task A does a direct IO write against file range [0, 256K), and because the write is within the i_size boundary, it takes the inode's lock (VFS level) in shared mode; 3) Task A locks the file range [0, 256K) at btrfs_dio_iomap_begin(), and then gets the extent map for the extent covering the range [0, 128K). At btrfs_get_blocks_direct_write(), it creates an ordered extent for that file range ([0, 128K)); 4) Before returning from btrfs_dio_iomap_begin(), it unlocks the file range [0, 256K); 5) Task A executes btrfs_dio_iomap_begin() again, this time for the file range [128K, 256K), and locks the file range [128K, 256K); 6) Task B starts a direct IO write against file range [0, 256K) as well. It also locks the inode in shared mode, as it's within the i_size limit, and then tries to lock file range [0, 256K). It is able to lock the subrange [0, 128K) but then blocks waiting for the range [128K, 256K), as it is currently locked by task A; 7) Task A enters btrfs_get_blocks_direct_write() and tries to reserve data space. Because we are low on available free space, it triggers the async data reclaim task, and waits for it to reserve data space; 8) The async reclaim task decides to wait for all existing ordered extents to complete (through btrfs_wait_ordered_roots()). It finds the ordered extent previously created by task A for the file range [0, 128K) and waits for it to complete; 9) The ordered extent for the file range [0, 128K) can not complete because it blocks at btrfs_finish_ordered_io() when trying to lock the file range [0, 128K). This results in a deadlock, because: - task B is holding the file range [0, 128K) locked, waiting for the range [128K, 256K) to be unlocked by task A; - task A is holding the file range [128K, 256K) locked and it's waiting for the async data reclaim task to satisfy its space reservation request; - the async data reclaim task is waiting for ordered extent [0, 128K) to complete, but the ordered extent can not complete because the file range [0, 128K) is currently locked by task B, which is waiting on task A to unlock file range [128K, 256K) and task A waiting on the async data reclaim task. This results in a deadlock between 4 task: task A, task B, the async data reclaim task and the task doing ordered extent completion (a work queue task). This type of deadlock can sporadically be triggered by the test case generic/300 from fstests, and results in a stack trace like the following: [12084.033689] INFO: task kworker/u16:7:123749 blocked for more than 241 seconds. [12084.034877] Not tainted 5.18.0-rc2-btrfs-next-115 #1 [12084.035562] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [12084.036548] task:kworker/u16:7 state:D stack: 0 pid:123749 ppid: 2 flags:0x00004000 [12084.036554] Workqueue: btrfs-flush_delalloc btrfs_work_helper [btrfs] [12084.036599] Call Trace: [12084.036601] <TASK> [12084.036606] __schedule+0x3cb/0xed0 [12084.036616] schedule+0x4e/0xb0 [12084.036620] btrfs_start_ordered_extent+0x109/0x1c0 [btrfs] [12084.036651] ? prepare_to_wait_exclusive+0xc0/0xc0 [12084.036659] btrfs_run_ordered_extent_work+0x1a/0x30 [btrfs] [12084.036688] btrfs_work_helper+0xf8/0x400 [btrfs] [12084.036719] ? lock_is_held_type+0xe8/0x140 [12084.036727] process_one_work+0x252/0x5a0 [12084.036736] ? process_one_work+0x5a0/0x5a0 [12084.036738] worker_thread+0x52/0x3b0 [12084.036743] ? process_one_work+0x5a0/0x5a0 [12084.036745] kthread+0xf2/0x120 [12084.036747] ? kthread_complete_and_exit+0x20/0x20 [12084.036751] ret_from_fork+0x22/0x30 [12084.036765] </TASK> [12084.036769] INFO: task kworker/u16:11:153787 blocked for more than 241 seconds. [12084.037702] Not tainted 5.18.0-rc2-btrfs-next-115 #1 [12084.038540] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [12084.039506] task:kworker/u16:11 state:D stack: 0 pid:153787 ppid: 2 flags:0x00004000 [12084.039511] Workqueue: events_unbound btrfs_async_reclaim_data_space [btrfs] [12084.039551] Call Trace: [12084.039553] <TASK> [12084.039557] __schedule+0x3cb/0xed0 [12084.039566] schedule+0x4e/0xb0 [12084.039569] schedule_timeout+0xed/0x130 [12084.039573] ? mark_held_locks+0x50/0x80 [12084.039578] ? _raw_spin_unlock_irq+0x24/0x50 [12084.039580] ? lockdep_hardirqs_on+0x7d/0x100 [12084.039585] __wait_for_common+0xaf/0x1f0 [12084.039587] ? usleep_range_state+0xb0/0xb0 [12084.039596] btrfs_wait_ordered_extents+0x3d6/0x470 [btrfs] [12084.039636] btrfs_wait_ordered_roots+0x175/0x240 [btrfs] [12084.039670] flush_space+0x25b/0x630 [btrfs] [12084.039712] btrfs_async_reclaim_data_space+0x108/0x1b0 [btrfs] [12084.039747] process_one_work+0x252/0x5a0 [12084.039756] ? process_one_work+0x5a0/0x5a0 [12084.039758] worker_thread+0x52/0x3b0 [12084.039762] ? process_one_work+0x5a0/0x5a0 [12084.039765] kthread+0xf2/0x120 [12084.039766] ? kthread_complete_and_exit+0x20/0x20 [12084.039770] ret_from_fork+0x22/0x30 [12084.039783] </TASK> [12084.039800] INFO: task kworker/u16:17:217907 blocked for more than 241 seconds. [12084.040709] Not tainted 5.18.0-rc2-btrfs-next-115 #1 [12084.041398] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [12084.042404] task:kworker/u16:17 state:D stack: 0 pid:217907 ppid: 2 flags:0x00004000 [12084.042411] Workqueue: btrfs-endio-write btrfs_work_helper [btrfs] [12084.042461] Call Trace: [12084.042463] <TASK> [12084.042471] __schedule+0x3cb/0xed0 [12084.042485] schedule+0x4e/0xb0 [12084.042490] wait_extent_bit.constprop.0+0x1eb/0x260 [btrfs] [12084.042539] ? prepare_to_wait_exclusive+0xc0/0xc0 [12084.042551] lock_extent_bits+0x37/0x90 [btrfs] [12084.042601] btrfs_finish_ordered_io.isra.0+0x3fd/0x960 [btrfs] [12084.042656] ? lock_is_held_type+0xe8/0x140 [12084.042667] btrfs_work_helper+0xf8/0x400 [btrfs] [12084.042716] ? lock_is_held_type+0xe8/0x140 [12084.042727] process_one_work+0x252/0x5a0 [12084.042742] worker_thread+0x52/0x3b0 [12084.042750] ? process_one_work+0x5a0/0x5a0 [12084.042754] kthread+0xf2/0x120 [12084.042757] ? kthread_complete_and_exit+0x20/0x20 [12084.042763] ret_from_fork+0x22/0x30 [12084.042783] </TASK> [12084.042798] INFO: task fio:234517 blocked for more than 241 seconds. [12084.043598] Not tainted 5.18.0-rc2-btrfs-next-115 #1 [12084.044282] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [12084.045244] task:fio state:D stack: 0 pid:234517 ppid:234515 flags:0x00004000 [12084.045248] Call Trace: [12084.045250] <TASK> [12084.045254] __schedule+0x3cb/0xed0 [12084.045263] schedule+0x4e/0xb0 [12084.045266] wait_extent_bit.constprop.0+0x1eb/0x260 [btrfs] [12084.045298] ? prepare_to_wait_exclusive+0xc0/0xc0 [12084.045306] lock_extent_bits+0x37/0x90 [btrfs] [12084.045336] btrfs_dio_iomap_begin+0x336/0xc60 [btrfs] [12084.045370] ? lock_is_held_type+0xe8/0x140 [12084.045378] iomap_iter+0x184/0x4c0 [12084.045383] __iomap_dio_rw+0x2c6/0x8a0 [12084.045406] iomap_dio_rw+0xa/0x30 [12084.045408] btrfs_do_write_iter+0x370/0x5e0 [btrfs] [12084.045440] aio_write+0xfa/0x2c0 [12084.045448] ? __might_fault+0x2a/0x70 [12084.045451] ? kvm_sched_clock_read+0x14/0x40 [12084.045455] ? lock_release+0x153/0x4a0 [12084.045463] io_submit_one+0x615/0x9f0 [12084.045467] ? __might_fault+0x2a/0x70 [12084.045469] ? kvm_sched_clock_read+0x14/0x40 [12084.045478] __x64_sys_io_submit+0x83/0x160 [12084.045483] ? syscall_enter_from_user_mode+0x1d/0x50 [12084.045489] do_syscall_64+0x3b/0x90 [12084.045517] entry_SYSCALL_64_after_hwframe+0x44/0xae [12084.045521] RIP: 0033:0x7fa76511af79 [12084.045525] RSP: 002b:00007ffd6d6b9058 EFLAGS: 00000246 ORIG_RAX: 00000000000000d1 [12084.045530] RAX: ffffffffffffffda RBX: 00007fa75ba6e760 RCX: 00007fa76511af79 [12084.045532] RDX: 0000557b304ff3f0 RSI: 0000000000000001 RDI: 00007fa75ba4c000 [12084.045535] RBP: 00007fa75ba4c000 R08: 00007fa751b76000 R09: 0000000000000330 [12084.045537] R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000001 [12084.045540] R13: 0000000000000000 R14: 0000557b304ff3f0 R15: 0000557b30521eb0 [12084.045561] </TASK> Fix this issue by always reserving data space before locking a file range at btrfs_dio_iomap_begin(). If we can't reserve the space, then we don't error out immediately - instead after locking the file range, check if we can do a NOCOW write, and if we can we don't error out since we don't need to allocate a data extent, however if we can't NOCOW then error out with -ENOSPC. This also implies that we may end up reserving space when it's not needed because the write will end up being done in NOCOW mode - in that case we just release the space after we noticed we did a NOCOW write - this is the same type of logic that is done in the path for buffered IO writes. Fixes: f0bfa76a11e93d ("btrfs: fix ENOSPC failure when attempting direct IO write into NOCOW range") CC: stable@vger.kernel.org # 5.17+ Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16btrfs: derive compression type from extent map during readsGoldwyn Rodrigues
Derive the compression type from extent map as opposed to the bio flags passed. This makes it more precise and not reliant on function parameters. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16btrfs: scrub: move scrub_remap_extent() call into scrub_extent()Qu Wenruo
[SUSPICIOUS CODE] When refactoring scrub code, I noticed a very strange behavior around scrub_remap_extent(): if (sctx->is_dev_replace) scrub_remap_extent(fs_info, cur_logical, scrub_len, &cur_physical, &target_dev, &cur_mirror); As replace target is a 1:1 copy of the source device, thus physical offset inside the target should be the same as physical inside source, thus this remap call makes no sense to me. [REAL FUNCTIONALITY] After more investigation, the function name scrub_remap_extent() doesn't tell anything of the truth, nor does its if () condition. The real story behind this function is that, for scrub_pages() we never expect missing device, even for replacing missing device. What scrub_remap_extent() is really doing is to find a live mirror, and make later scrub_pages() to read data from the good copy, other than from the missing device and increase error counters unnecessarily. [IMPROVEMENT] We have no need to bother scrub_remap_extent() in scrub_simple_mirror() at all, we only need to call it before we call scrub_pages(). And rename the function to scrub_find_live_copy(), add extra comments on them. By this we can remove one parameter from scrub_extent(), and reduce the unnecessary calls to scrub_remap_extent() for regular replace. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16btrfs: scrub: use find_first_extent_item to for extent item searchQu Wenruo
Since we have find_first_extent_item() to iterate the extent items of a certain range, there is no need to use the open-coded version. Replace the final scrub call site with find_first_extent_item(). Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16btrfs: scrub: refactor scrub_raid56_parity()Qu Wenruo
Currently scrub_raid56_parity() has a large double loop, handling the following things at the same time: - Iterate each data stripe - Iterate each extent item in one data stripe Refactor this by: - Introduce a new helper to handle data stripe iteration The new helper is scrub_raid56_data_stripe_for_parity(), which only has one while() loop handling the extent items inside the data stripe. The code is still mostly the same as the old code. - Call cond_resched() for each extent Previously we only call cond_resched() under a complex if () check. I see no special reason to do that, and for other scrub functions, like scrub_simple_mirror() we're already doing the same cond_resched() after scrubbing one extent. - Add more comments Please note that, this patch is only to address the double loop, there are incoming patches to do extra cleanup. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16btrfs: scrub: use scrub_simple_mirror() to handle RAID56 data stripe scrubQu Wenruo
Although RAID56 has complex repair mechanism, which involves reading the whole full stripe, but inside one data stripe, it's in fact no different than SINGLE/RAID1. The point here is, for data stripe we just check the csum for each extent we hit. Only for csum mismatch case, our repair paths divide. So we can still reuse scrub_simple_mirror() for RAID56 data stripes, which saves quite some code. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16btrfs: scrub: cleanup the non-RAID56 branches in scrub_stripe()Qu Wenruo
Since we have moved all other profiles handling into their own functions, now the main body of scrub_stripe() is just handling RAID56 profiles. There is no need to address other profiles in the main loop of scrub_stripe(), so we can remove those dead branches. Since we're here, also slightly change the timing of initialization of variables like @offset, @increment and @logical. Especially for @logical, we don't really need to initialize it for btrfs_extent_root()/btrfs_csum_root(), we can use bg->start for that purpose. Now those variables are only initialize for RAID56 branches. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16btrfs: scrub: introduce dedicated helper to scrub simple-stripe based rangeQu Wenruo
The new entrance will iterate through each data stripe which belongs to the target device. And since inside each data stripe, RAID0 is just SINGLE, while RAID10 is just RAID1, we can reuse scrub_simple_mirror() to do the scrub properly. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16btrfs: scrub: introduce dedicated helper to scrub simple-mirror based rangeQu Wenruo
The new helper, scrub_simple_mirror(), will scrub all extents inside a range which only has simple mirror based duplication. This covers every range of SINGLE/DUP/RAID1/RAID1C*, and inside each data stripe for RAID0/RAID10. Currently we will use this function to scrub SINGLE/DUP/RAID1/RAID1C* profiles. As one can see, the new entrance for those simple-mirror based profiles can be small enough (with comments, just reach 100 lines). This function will be the basis for the incoming scrub refactor. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16btrfs: scrub: introduce a helper to locate an extent itemQu Wenruo
The new helper, find_first_extent_item(), will locate an extent item (either EXTENT_ITEM or METADATA_ITEM) which covers any byte of the search range. This helper will later be used to refactor scrub code. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16btrfs: calculate physical_end using dev_extent_len directly in scrub_stripe()Qu Wenruo
The variable @physical_end is the exclusive stripe end, currently it's calculated using @physical + @dev_extent_len / map->stripe_len * map->stripe_len. And since at allocation time we ensured dev_extent_len is stripe_len aligned, the result is the same as @physical + @dev_extent_len. So this patch will just assign @physical and @physical_end early, without using @nstripes. This is especially helpful for any possible out: label user, as now we only need to initialize @offset before going to out: label. Since we're here, also make @physical_end constant. Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16btrfs: turn fs_roots_radix in btrfs_fs_info into an XArrayGabriel Niebler
… rename it to simply fs_roots and adjust all usages of this object to use the XArray API, because it is notionally easier to use and understand, as it provides array semantics, and also takes care of locking for us, further simplifying the code. Also do some refactoring, esp. where the API change requires largely rewriting some functions, anyway. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Gabriel Niebler <gniebler@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16btrfs: turn fs_info member buffer_radix into XArrayGabriel Niebler
… named 'extent_buffers'. Also adjust all usages of this object to use the XArray API, which greatly simplifies the code as it takes care of locking and is generally easier to use and understand, providing notionally simpler array semantics. Also perform some light refactoring. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Gabriel Niebler <gniebler@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16btrfs: turn name_cache radix tree into XArray in send_ctxGabriel Niebler
… and adjust all usages of this object to use the XArray API for the sake of consistency. XArray API provides array semantics, so it is notionally easier to use and understand, and it also takes care of locking for us. None of this makes a real difference in this particular patch, but it does in other places where similar replacements are or have been made and we want to be consistent in our usage of data structures in btrfs. Signed-off-by: Gabriel Niebler <gniebler@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16btrfs: turn delayed_nodes_tree into an XArrayGabriel Niebler
… in the btrfs_root struct and adjust all usages of this object to use the XArray API, because it is notionally easier to use and understand, as it provides array semantics, and also takes care of locking for us, further simplifying the code. Also use the opportunity to do some light refactoring. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Gabriel Niebler <gniebler@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16btrfs: use ilog2() to replace if () branches for btrfs_bg_flags_to_raid_index()Qu Wenruo
In function btrfs_bg_flags_to_raid_index(), we use quite some if () to convert the BTRFS_BLOCK_GROUP_* bits to a index number. But the truth is, there is really no such need for so many branches at all. Since all BTRFS_BLOCK_GROUP_* flags are just one single bit set inside BTRFS_BLOCK_GROUP_PROFILES_MASK, we can easily use ilog2() to calculate their values. This calculation has an anchor point, the lowest PROFILE bit, which is RAID0. Even it's fixed on-disk format and should never change, here I added extra compile time checks to make it super safe: 1. Make sure RAID0 is always the lowest bit in PROFILE_MASK This is done by finding the first (least significant) bit set of RAID0 and PROFILE_MASK & ~RAID0. 2. Make sure RAID0 bit set beyond the highest bit of TYPE_MASK Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16btrfs: move definition of btrfs_raid_types to volumes.hQu Wenruo
It's only internally used as another way to represent btrfs profiles, it's not exposed through any on-disk format, in fact this btrfs_raid_types is diverted from the on-disk format values. Furthermore, since it's internal structure, its definition can change in the future. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16btrfs: use a normal workqueue for rmw_workersChristoph Hellwig
rmw_workers doesn't need ordered execution or thread disabling threshold (as the thresh parameter is less than DFT_THRESHOLD). Just switch to the normal workqueues that use a lot less resources, especially in the work_struct vs btrfs_work structures. Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>