summaryrefslogtreecommitdiff
path: root/fs/btrfs/ioctl.c
AgeCommit message (Collapse)Author
2019-01-09Btrfs: fix race between reflink/dedupe and relocationFilipe Manana
The recent rework that makes btrfs' remap_file_range operation use the generic helper generic_remap_file_range_prep() introduced a race between relocation and reflinking (for both cloning and deduplication) the file extents between the source and destination inodes. This happens because we no longer lock the source range anymore, and we do not lock it anymore because we wait for direct IO writes and writeback to complete early on the code path right after locking the inodes, which guarantees no other file operations interfere with the reflinking. However there is one exception which is relocation, since it replaces the byte number of file extents items in the fs tree after locking the range the file extent items represent. This is a problem because after finding each file extent to clone in the fs tree, the reflink process copies the file extent item into a local buffer, releases the search path, inserts new file extent items in the destination range and then increments the reference count for the extent mentioned in the file extent item that it previously copied to the buffer. If right after copying the file extent item into the buffer and releasing the path the relocation process updates the file extent item to point to the new extent, the reflink process ends up creating a delayed reference to increment the reference count of the old extent, for which the relocation process already created a delayed reference to drop it. This results in failure to run delayed references because we will attempt to increment the count of a reference that was already dropped. This is illustrated by the following diagram: CPU 1 CPU 2 relocation is running btrfs_clone_files() btrfs_clone() --> finds extent item in source range point to extent at bytenr X --> copies it into a local buffer --> releases path replace_file_extents() --> successfully locks the range represented by the file extent item --> replaces disk_bytenr field in the file extent item with some other value Y --> creates delayed reference to increment reference count for extent at bytenr Y --> creates delayed reference to drop the extent at bytenr X --> starts transaction --> creates delayed reference to increment extent at bytenr X <delayed references are run, due to a transaction commit for example, and the transaction is aborted with -EIO because we attempt to increment reference count for the extent at bytenr X after we freed it> When this race is hit the running transaction ends up getting aborted with an -EIO error and a trace like the following is produced: [ 4382.553858] WARNING: CPU: 2 PID: 3648 at fs/btrfs/extent-tree.c:1552 lookup_inline_extent_backref+0x4f4/0x650 [btrfs] (...) [ 4382.556293] CPU: 2 PID: 3648 Comm: btrfs Tainted: G W 4.20.0-rc6-btrfs-next-41 #1 [ 4382.556294] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.11.2-0-gf9626ccb91-prebuilt.qemu-project.org 04/01/2014 [ 4382.556308] RIP: 0010:lookup_inline_extent_backref+0x4f4/0x650 [btrfs] (...) [ 4382.556310] RSP: 0018:ffffac784408f738 EFLAGS: 00010202 [ 4382.556311] RAX: 0000000000000001 RBX: ffff8980673c3a48 RCX: 0000000000000001 [ 4382.556312] RDX: 0000000000000008 RSI: 0000000000000000 RDI: 0000000000000000 [ 4382.556312] RBP: 0000000000000000 R08: 0000000000000000 R09: 0000000000000001 [ 4382.556313] R10: 0000000000000001 R11: ffff897f40000000 R12: 0000000000001000 [ 4382.556313] R13: 00000000c224f000 R14: ffff89805de9bd40 R15: ffff8980453f4548 [ 4382.556315] FS: 00007f5e759178c0(0000) GS:ffff89807b300000(0000) knlGS:0000000000000000 [ 4382.563130] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 4382.563562] CR2: 00007f2e9789fcbc CR3: 0000000120512001 CR4: 00000000003606e0 [ 4382.564005] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 4382.564451] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 4382.564887] Call Trace: [ 4382.565343] insert_inline_extent_backref+0x55/0xe0 [btrfs] [ 4382.565796] __btrfs_inc_extent_ref.isra.60+0x88/0x260 [btrfs] [ 4382.566249] ? __btrfs_run_delayed_refs+0x93/0x1650 [btrfs] [ 4382.566702] __btrfs_run_delayed_refs+0xa22/0x1650 [btrfs] [ 4382.567162] btrfs_run_delayed_refs+0x7e/0x1d0 [btrfs] [ 4382.567623] btrfs_commit_transaction+0x50/0x9c0 [btrfs] [ 4382.568112] ? _raw_spin_unlock+0x24/0x30 [ 4382.568557] ? block_rsv_release_bytes+0x14e/0x410 [btrfs] [ 4382.569006] create_subvol+0x3c8/0x830 [btrfs] [ 4382.569461] ? btrfs_mksubvol+0x317/0x600 [btrfs] [ 4382.569906] btrfs_mksubvol+0x317/0x600 [btrfs] [ 4382.570383] ? rcu_sync_lockdep_assert+0xe/0x60 [ 4382.570822] ? __sb_start_write+0xd4/0x1c0 [ 4382.571262] ? mnt_want_write_file+0x24/0x50 [ 4382.571712] btrfs_ioctl_snap_create_transid+0x117/0x1a0 [btrfs] [ 4382.572155] ? _copy_from_user+0x66/0x90 [ 4382.572602] btrfs_ioctl_snap_create+0x66/0x80 [btrfs] [ 4382.573052] btrfs_ioctl+0x7c1/0x30e0 [btrfs] [ 4382.573502] ? mem_cgroup_commit_charge+0x8b/0x570 [ 4382.573946] ? do_raw_spin_unlock+0x49/0xc0 [ 4382.574379] ? _raw_spin_unlock+0x24/0x30 [ 4382.574803] ? __handle_mm_fault+0xf29/0x12d0 [ 4382.575215] ? do_vfs_ioctl+0xa2/0x6f0 [ 4382.575622] ? btrfs_ioctl_get_supported_features+0x30/0x30 [btrfs] [ 4382.576020] do_vfs_ioctl+0xa2/0x6f0 [ 4382.576405] ksys_ioctl+0x70/0x80 [ 4382.576776] __x64_sys_ioctl+0x16/0x20 [ 4382.577137] do_syscall_64+0x60/0x1b0 [ 4382.577488] entry_SYSCALL_64_after_hwframe+0x49/0xbe (...) [ 4382.578837] RSP: 002b:00007ffe04bf64c8 EFLAGS: 00000202 ORIG_RAX: 0000000000000010 [ 4382.579174] RAX: ffffffffffffffda RBX: 00005564136f3050 RCX: 00007f5e74724dd7 [ 4382.579505] RDX: 00007ffe04bf64d0 RSI: 000000005000940e RDI: 0000000000000003 [ 4382.579848] RBP: 0000000000000000 R08: 0000000000000000 R09: 0000000000000044 [ 4382.580164] R10: 0000000000000541 R11: 0000000000000202 R12: 00005564136f3010 [ 4382.580477] R13: 0000000000000003 R14: 00005564136f3035 R15: 00005564136f3050 [ 4382.580792] irq event stamp: 0 [ 4382.581106] hardirqs last enabled at (0): [<0000000000000000>] (null) [ 4382.581441] hardirqs last disabled at (0): [<ffffffff8d085842>] copy_process.part.32+0x6e2/0x2320 [ 4382.581772] softirqs last enabled at (0): [<ffffffff8d085842>] copy_process.part.32+0x6e2/0x2320 [ 4382.582095] softirqs last disabled at (0): [<0000000000000000>] (null) [ 4382.582413] ---[ end trace d3c188e3e9367382 ]--- [ 4382.623855] BTRFS: error (device sdc) in btrfs_run_delayed_refs:2981: errno=-5 IO failure [ 4382.624295] BTRFS info (device sdc): forced readonly Fix this by locking the source range before searching for the file extent items in the fs tree, since the relocation process will try to lock the range a file extent item represents before updating it with the new extent location. Fixes: 34a28e3d7753 ("Btrfs: use generic_remap_file_range_prep() for cloning and deduplication") Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2019-01-09Btrfs: fix race between cloning range ending at eof and writebackFilipe Manana
The recent rework that makes btrfs' remap_file_range operation use the generic helper generic_remap_file_range_prep() introduced a race between writeback and cloning a range that covers the eof extent of the source file into a destination offset that is greater then the same file's size. This happens because we now wait for writeback to complete before doing the truncation of the eof block, while previously we did the truncation and then waited for writeback to complete. This leads to a race between writeback of the truncated block and cloning the file extents in the source range, because we copy each file extent item we find in the fs root into a buffer, then release the path and then increment the reference count for the extent referred in that file extent item we copied, which can no longer exist if writeback of the truncated eof block completes after we copied the file extent item into the buffer and before we incremented the reference count. This is illustrated by the following diagram: CPU 1 CPU 2 btrfs_clone_files() btrfs_cont_expand() btrfs_truncate_block() --> zeroes part of the page containg eof, marking it for delalloc btrfs_clone() --> finds extent item covering eof, points to extent at bytenr X --> copies it into a local buffer --> releases path writeback starts btrfs_finish_ordered_io() insert_reserved_file_extent() __btrfs_drop_extents() --> creates delayed reference to drop the extent at bytenr X --> starts transaction --> creates delayed reference to increment extent at bytenr X <delayed references are run, due to a transaction commit for example, and the transaction is aborted with -EIO because we attempt to increment reference count for the extent at bytenr X after we freed it> When this race is hit the running transaction ends up getting aborted with an -EIO error and a trace like the following is produced: [ 4382.553858] WARNING: CPU: 2 PID: 3648 at fs/btrfs/extent-tree.c:1552 lookup_inline_extent_backref+0x4f4/0x650 [btrfs] (...) [ 4382.556293] CPU: 2 PID: 3648 Comm: btrfs Tainted: G W 4.20.0-rc6-btrfs-next-41 #1 [ 4382.556294] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.11.2-0-gf9626ccb91-prebuilt.qemu-project.org 04/01/2014 [ 4382.556308] RIP: 0010:lookup_inline_extent_backref+0x4f4/0x650 [btrfs] (...) [ 4382.556310] RSP: 0018:ffffac784408f738 EFLAGS: 00010202 [ 4382.556311] RAX: 0000000000000001 RBX: ffff8980673c3a48 RCX: 0000000000000001 [ 4382.556312] RDX: 0000000000000008 RSI: 0000000000000000 RDI: 0000000000000000 [ 4382.556312] RBP: 0000000000000000 R08: 0000000000000000 R09: 0000000000000001 [ 4382.556313] R10: 0000000000000001 R11: ffff897f40000000 R12: 0000000000001000 [ 4382.556313] R13: 00000000c224f000 R14: ffff89805de9bd40 R15: ffff8980453f4548 [ 4382.556315] FS: 00007f5e759178c0(0000) GS:ffff89807b300000(0000) knlGS:0000000000000000 [ 4382.563130] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 4382.563562] CR2: 00007f2e9789fcbc CR3: 0000000120512001 CR4: 00000000003606e0 [ 4382.564005] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 4382.564451] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 4382.564887] Call Trace: [ 4382.565343] insert_inline_extent_backref+0x55/0xe0 [btrfs] [ 4382.565796] __btrfs_inc_extent_ref.isra.60+0x88/0x260 [btrfs] [ 4382.566249] ? __btrfs_run_delayed_refs+0x93/0x1650 [btrfs] [ 4382.566702] __btrfs_run_delayed_refs+0xa22/0x1650 [btrfs] [ 4382.567162] btrfs_run_delayed_refs+0x7e/0x1d0 [btrfs] [ 4382.567623] btrfs_commit_transaction+0x50/0x9c0 [btrfs] [ 4382.568112] ? _raw_spin_unlock+0x24/0x30 [ 4382.568557] ? block_rsv_release_bytes+0x14e/0x410 [btrfs] [ 4382.569006] create_subvol+0x3c8/0x830 [btrfs] [ 4382.569461] ? btrfs_mksubvol+0x317/0x600 [btrfs] [ 4382.569906] btrfs_mksubvol+0x317/0x600 [btrfs] [ 4382.570383] ? rcu_sync_lockdep_assert+0xe/0x60 [ 4382.570822] ? __sb_start_write+0xd4/0x1c0 [ 4382.571262] ? mnt_want_write_file+0x24/0x50 [ 4382.571712] btrfs_ioctl_snap_create_transid+0x117/0x1a0 [btrfs] [ 4382.572155] ? _copy_from_user+0x66/0x90 [ 4382.572602] btrfs_ioctl_snap_create+0x66/0x80 [btrfs] [ 4382.573052] btrfs_ioctl+0x7c1/0x30e0 [btrfs] [ 4382.573502] ? mem_cgroup_commit_charge+0x8b/0x570 [ 4382.573946] ? do_raw_spin_unlock+0x49/0xc0 [ 4382.574379] ? _raw_spin_unlock+0x24/0x30 [ 4382.574803] ? __handle_mm_fault+0xf29/0x12d0 [ 4382.575215] ? do_vfs_ioctl+0xa2/0x6f0 [ 4382.575622] ? btrfs_ioctl_get_supported_features+0x30/0x30 [btrfs] [ 4382.576020] do_vfs_ioctl+0xa2/0x6f0 [ 4382.576405] ksys_ioctl+0x70/0x80 [ 4382.576776] __x64_sys_ioctl+0x16/0x20 [ 4382.577137] do_syscall_64+0x60/0x1b0 [ 4382.577488] entry_SYSCALL_64_after_hwframe+0x49/0xbe (...) [ 4382.578837] RSP: 002b:00007ffe04bf64c8 EFLAGS: 00000202 ORIG_RAX: 0000000000000010 [ 4382.579174] RAX: ffffffffffffffda RBX: 00005564136f3050 RCX: 00007f5e74724dd7 [ 4382.579505] RDX: 00007ffe04bf64d0 RSI: 000000005000940e RDI: 0000000000000003 [ 4382.579848] RBP: 0000000000000000 R08: 0000000000000000 R09: 0000000000000044 [ 4382.580164] R10: 0000000000000541 R11: 0000000000000202 R12: 00005564136f3010 [ 4382.580477] R13: 0000000000000003 R14: 00005564136f3035 R15: 00005564136f3050 [ 4382.580792] irq event stamp: 0 [ 4382.581106] hardirqs last enabled at (0): [<0000000000000000>] (null) [ 4382.581441] hardirqs last disabled at (0): [<ffffffff8d085842>] copy_process.part.32+0x6e2/0x2320 [ 4382.581772] softirqs last enabled at (0): [<ffffffff8d085842>] copy_process.part.32+0x6e2/0x2320 [ 4382.582095] softirqs last disabled at (0): [<0000000000000000>] (null) [ 4382.582413] ---[ end trace d3c188e3e9367382 ]--- [ 4382.623855] BTRFS: error (device sdc) in btrfs_run_delayed_refs:2981: errno=-5 IO failure [ 4382.624295] BTRFS info (device sdc): forced readonly Fix this by waiting for writeback to complete after truncating the eof block. Fixes: 34a28e3d7753 ("Btrfs: use generic_remap_file_range_prep() for cloning and deduplication") Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-12-17Btrfs: use generic_remap_file_range_prep() for cloning and deduplicationFilipe Manana
Since cloning and deduplication are no longer Btrfs specific operations, we now have generic code to handle parameter validation, compare file ranges used for deduplication, clear capabilities when cloning, etc. This change makes Btrfs use it, eliminating a lot of code in Btrfs and also fixing a few bugs, such as: 1) When cloning, the destination file's capabilities were not dropped (the fstest generic/513 tests this); 2) We were not checking if the destination file is immutable; 3) Not checking if either the source or destination files are swap files (swap file support is coming soon for Btrfs); 4) System limits were not checked (resource limits and O_LARGEFILE). Note that the generic helper generic_remap_file_range_prep() does start and waits for writeback by calling filemap_write_and_wait_range(), however that is not enough for Btrfs for two reasons: 1) With compression, we need to start writeback twice in order to get the pages marked for writeback and ordered extents created; 2) filemap_write_and_wait_range() (and all its other variants) only waits for the IO to complete, but we need to wait for the ordered extents to finish, so that when we do the actual reflinking operations the file extent items are in the fs tree. This is also important due to the fact that the generic helper, for the deduplication case, compares the contents of the pages in the requested range, which might require reading extents from disk in the very unlikely case that pages get invalidated after writeback finishes (so the file extent items must be up to date in the fs tree). Since these reasons are specific to Btrfs we have to do it in the Btrfs code before calling generic_remap_file_range_prep(). This also results in a simpler way of dealing with existing delalloc in the source/target ranges, specially for the deduplication case where we used to lock all the pages first and then if we found any dealloc for the range, or ordered extent, we would unlock the pages trigger writeback and wait for ordered extents to complete, then lock all the pages again and check if deduplication can be done. So now we get a simpler approach: lock the inodes, then trigger writeback and then wait for ordered extents to complete. So make btrfs use generic_remap_file_range_prep() (XFS and OCFS2 use it) to eliminate duplicated code, fix a few bugs and benefit from future bug fixes done there - for example the recent clone and dedupe bugs involving reflinking a partial EOF block got a counterpart fix in the generic helper, since it affected all filesystems supporting these operations, so we no longer need special checks in Btrfs for them. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-12-17btrfs: Remove fsid/metadata_fsid fields from btrfs_infoNikolay Borisov
Currently btrfs_fs_info structure contains a copy of the fsid/metadata_uuid fields. Same values are also contained in the btrfs_fs_devices structure which fs_info has a reference to. Let's reduce duplication by removing the fields from fs_info and always refer to the ones in fs_devices. No functional changes. Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-12-17btrfs: use tagged writepage to mitigate livelock of snapshotEthan Lien
Snapshot is expected to be fast. But if there are writers steadily creating dirty pages in our subvolume, the snapshot may take a very long time to complete. To fix the problem, we use tagged writepage for snapshot flusher as we do in the generic write_cache_pages(), so we can omit pages dirtied after the snapshot command. This does not change the semantics regarding which data get to the snapshot, if there are pages being dirtied during the snapshotting operation. There's a sync called before snapshot is taken in old/new case, any IO in flight just after that may be in the snapshot but this depends on other system effects that might still sync the IO. We do a simple snapshot speed test on a Intel D-1531 box: fio --ioengine=libaio --iodepth=32 --bs=4k --rw=write --size=64G --direct=0 --thread=1 --numjobs=1 --time_based --runtime=120 --filename=/mnt/sub/testfile --name=job1 --group_reporting & sleep 5; time btrfs sub snap -r /mnt/sub /mnt/snap; killall fio original: 1m58sec patched: 6.54sec This is the best case for this patch since for a sequential write case, we omit nearly all pages dirtied after the snapshot command. For a multi writers, random write test: fio --ioengine=libaio --iodepth=32 --bs=4k --rw=randwrite --size=64G --direct=0 --thread=1 --numjobs=4 --time_based --runtime=120 --filename=/mnt/sub/testfile --name=job1 --group_reporting & sleep 5; time btrfs sub snap -r /mnt/sub /mnt/snap; killall fio original: 15.83sec patched: 10.35sec The improvement is smaller compared to the sequential write case, since we omit only half of the pages dirtied after snapshot command. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Ethan Lien <ethanlien@synology.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-12-17Btrfs: prevent ioctls from interfering with a swap fileOmar Sandoval
A later patch will implement swap file support for Btrfs, but before we do that, we need to make sure that the various Btrfs ioctls cannot change a swap file. When a swap file is active, we must make sure that the extents of the file are not moved and that they don't become shared. That means that the following are not safe: - chattr +c (enable compression) - reflink - dedupe - snapshot - defrag Don't allow those to happen on an active swap file. Additionally, balance, resize, device remove, and device replace are also unsafe if they affect an active swapfile. Add a red-black tree of block groups and devices which contain an active swapfile. Relocation checks each block group against this tree and skips it or errors out for balance or resize, respectively. Device remove and device replace check the tree for the device they will operate on. Note that we don't have to worry about chattr -C (disable nocow), which we ignore for non-empty files, because an active swapfile must be non-empty and can't be truncated. We also don't have to worry about autodefrag because it's only done on COW files. Truncate and fallocate are already taken care of by the generic code. Device add doesn't do relocation so it's not an issue, either. Signed-off-by: Omar Sandoval <osandov@fb.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-11-11Merge tag 'for-4.20-rc1-tag' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux Pull btrfs fixes from David Sterba: "Several fixes to recent release (4.19, fixes tagged for stable) and other fixes" * tag 'for-4.20-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: Btrfs: fix missing delayed iputs on unmount Btrfs: fix data corruption due to cloning of eof block Btrfs: fix infinite loop on inode eviction after deduplication of eof block Btrfs: fix deadlock on tree root leaf when finding free extent btrfs: avoid link error with CONFIG_NO_AUTO_INLINE btrfs: tree-checker: Fix misleading group system information Btrfs: fix missing data checksums after a ranged fsync (msync) btrfs: fix pinned underflow after transaction aborted Btrfs: fix cur_offset in the error case for nocow
2018-11-06Btrfs: fix data corruption due to cloning of eof blockFilipe Manana
We currently allow cloning a range from a file which includes the last block of the file even if the file's size is not aligned to the block size. This is fine and useful when the destination file has the same size, but when it does not and the range ends somewhere in the middle of the destination file, it leads to corruption because the bytes between the EOF and the end of the block have undefined data (when there is support for discard/trimming they have a value of 0x00). Example: $ mkfs.btrfs -f /dev/sdb $ mount /dev/sdb /mnt $ export foo_size=$((256 * 1024 + 100)) $ xfs_io -f -c "pwrite -S 0x3c 0 $foo_size" /mnt/foo $ xfs_io -f -c "pwrite -S 0xb5 0 1M" /mnt/bar $ xfs_io -c "reflink /mnt/foo 0 512K $foo_size" /mnt/bar $ od -A d -t x1 /mnt/bar 0000000 b5 b5 b5 b5 b5 b5 b5 b5 b5 b5 b5 b5 b5 b5 b5 b5 * 0524288 3c 3c 3c 3c 3c 3c 3c 3c 3c 3c 3c 3c 3c 3c 3c 3c * 0786528 3c 3c 3c 3c 00 00 00 00 00 00 00 00 00 00 00 00 0786544 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 * 0790528 b5 b5 b5 b5 b5 b5 b5 b5 b5 b5 b5 b5 b5 b5 b5 b5 * 1048576 The bytes in the range from 786532 (512Kb + 256Kb + 100 bytes) to 790527 (512Kb + 256Kb + 4Kb - 1) got corrupted, having now a value of 0x00 instead of 0xb5. This is similar to the problem we had for deduplication that got recently fixed by commit de02b9f6bb65 ("Btrfs: fix data corruption when deduplicating between different files"). Fix this by not allowing such operations to be performed and return the errno -EINVAL to user space. This is what XFS is doing as well at the VFS level. This change however now makes us return -EINVAL instead of -EOPNOTSUPP for cases where the source range maps to an inline extent and the destination range's end is smaller then the destination file's size, since the detection of inline extents is done during the actual process of dropping file extent items (at __btrfs_drop_extents()). Returning the -EINVAL error is done early on and solely based on the input parameters (offsets and length) and destination file's size. This makes us consistent with XFS and anyone else supporting cloning since this case is now checked at a higher level in the VFS and is where the -EINVAL will be returned from starting with kernel 4.20 (the VFS changed was introduced in 4.20-rc1 by commit 07d19dc9fbe9 ("vfs: avoid problematic remapping requests into partial EOF block"). So this change is more geared towards stable kernels, as it's unlikely the new VFS checks get removed intentionally. A test case for fstests follows soon, as well as an update to filter existing tests that expect -EOPNOTSUPP to accept -EINVAL as well. CC: <stable@vger.kernel.org> # 4.4+ Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-11-06Btrfs: fix infinite loop on inode eviction after deduplication of eof blockFilipe Manana
If we attempt to deduplicate the last block of a file A into the middle of a file B, and file A's size is not a multiple of the block size, we end rounding the deduplication length to 0 bytes, to avoid the data corruption issue fixed by commit de02b9f6bb65 ("Btrfs: fix data corruption when deduplicating between different files"). However a length of zero will cause the insertion of an extent state with a start value greater (by 1) then the end value, leading to a corrupt extent state that will trigger a warning and cause chaos such as an infinite loop during inode eviction. Example trace: [96049.833585] ------------[ cut here ]------------ [96049.833714] WARNING: CPU: 0 PID: 24448 at fs/btrfs/extent_io.c:436 insert_state+0x101/0x120 [btrfs] [96049.833767] CPU: 0 PID: 24448 Comm: xfs_io Not tainted 4.19.0-rc7-btrfs-next-39 #1 [96049.833768] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.11.2-0-gf9626ccb91-prebuilt.qemu-project.org 04/01/2014 [96049.833780] RIP: 0010:insert_state+0x101/0x120 [btrfs] [96049.833783] RSP: 0018:ffffafd2c3707af0 EFLAGS: 00010282 [96049.833785] RAX: 0000000000000000 RBX: 000000000004dfff RCX: 0000000000000006 [96049.833786] RDX: 0000000000000007 RSI: ffff99045c143230 RDI: ffff99047b2168a0 [96049.833787] RBP: ffff990457851cd0 R08: 0000000000000001 R09: 0000000000000000 [96049.833787] R10: ffffafd2c3707ab8 R11: 0000000000000000 R12: ffff9903b93b12c8 [96049.833788] R13: 000000000004e000 R14: ffffafd2c3707b80 R15: ffffafd2c3707b78 [96049.833790] FS: 00007f5c14e7d700(0000) GS:ffff99047b200000(0000) knlGS:0000000000000000 [96049.833791] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [96049.833792] CR2: 00007f5c146abff8 CR3: 0000000115f4c004 CR4: 00000000003606f0 [96049.833795] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [96049.833796] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [96049.833796] Call Trace: [96049.833809] __set_extent_bit+0x46c/0x6a0 [btrfs] [96049.833823] lock_extent_bits+0x6b/0x210 [btrfs] [96049.833831] ? _raw_spin_unlock+0x24/0x30 [96049.833841] ? test_range_bit+0xdf/0x130 [btrfs] [96049.833853] lock_extent_range+0x8e/0x150 [btrfs] [96049.833864] btrfs_double_extent_lock+0x78/0xb0 [btrfs] [96049.833875] btrfs_extent_same_range+0x14e/0x550 [btrfs] [96049.833885] ? rcu_read_lock_sched_held+0x3f/0x70 [96049.833890] ? __kmalloc_node+0x2b0/0x2f0 [96049.833899] ? btrfs_dedupe_file_range+0x19a/0x280 [btrfs] [96049.833909] btrfs_dedupe_file_range+0x270/0x280 [btrfs] [96049.833916] vfs_dedupe_file_range_one+0xd9/0xe0 [96049.833919] vfs_dedupe_file_range+0x131/0x1b0 [96049.833924] do_vfs_ioctl+0x272/0x6e0 [96049.833927] ? __fget+0x113/0x200 [96049.833931] ksys_ioctl+0x70/0x80 [96049.833933] __x64_sys_ioctl+0x16/0x20 [96049.833937] do_syscall_64+0x60/0x1b0 [96049.833939] entry_SYSCALL_64_after_hwframe+0x49/0xbe [96049.833941] RIP: 0033:0x7f5c1478ddd7 [96049.833943] RSP: 002b:00007ffe15b196a8 EFLAGS: 00000202 ORIG_RAX: 0000000000000010 [96049.833945] RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007f5c1478ddd7 [96049.833946] RDX: 00005625ece322d0 RSI: 00000000c0189436 RDI: 0000000000000004 [96049.833947] RBP: 0000000000000000 R08: 00007f5c14a46f48 R09: 0000000000000040 [96049.833948] R10: 0000000000000541 R11: 0000000000000202 R12: 0000000000000000 [96049.833949] R13: 0000000000000000 R14: 0000000000000004 R15: 00005625ece322d0 [96049.833954] irq event stamp: 6196 [96049.833956] hardirqs last enabled at (6195): [<ffffffff91b00663>] console_unlock+0x503/0x640 [96049.833958] hardirqs last disabled at (6196): [<ffffffff91a037dd>] trace_hardirqs_off_thunk+0x1a/0x1c [96049.833959] softirqs last enabled at (6114): [<ffffffff92600370>] __do_softirq+0x370/0x421 [96049.833964] softirqs last disabled at (6095): [<ffffffff91a8dd4d>] irq_exit+0xcd/0xe0 [96049.833965] ---[ end trace db7b05f01b7fa10c ]--- [96049.935816] R13: 0000000000000000 R14: 00005562e5259240 R15: 00007ffff092b910 [96049.935822] irq event stamp: 6584 [96049.935823] hardirqs last enabled at (6583): [<ffffffff91b00663>] console_unlock+0x503/0x640 [96049.935825] hardirqs last disabled at (6584): [<ffffffff91a037dd>] trace_hardirqs_off_thunk+0x1a/0x1c [96049.935827] softirqs last enabled at (6328): [<ffffffff92600370>] __do_softirq+0x370/0x421 [96049.935828] softirqs last disabled at (6313): [<ffffffff91a8dd4d>] irq_exit+0xcd/0xe0 [96049.935829] ---[ end trace db7b05f01b7fa123 ]--- [96049.935840] ------------[ cut here ]------------ [96049.936065] WARNING: CPU: 1 PID: 24463 at fs/btrfs/extent_io.c:436 insert_state+0x101/0x120 [btrfs] [96049.936107] CPU: 1 PID: 24463 Comm: umount Tainted: G W 4.19.0-rc7-btrfs-next-39 #1 [96049.936108] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.11.2-0-gf9626ccb91-prebuilt.qemu-project.org 04/01/2014 [96049.936117] RIP: 0010:insert_state+0x101/0x120 [btrfs] [96049.936119] RSP: 0018:ffffafd2c3637bc0 EFLAGS: 00010282 [96049.936120] RAX: 0000000000000000 RBX: 000000000004dfff RCX: 0000000000000006 [96049.936121] RDX: 0000000000000007 RSI: ffff990445cf88e0 RDI: ffff99047b2968a0 [96049.936122] RBP: ffff990457851cd0 R08: 0000000000000001 R09: 0000000000000000 [96049.936123] R10: ffffafd2c3637b88 R11: 0000000000000000 R12: ffff9904574301e8 [96049.936124] R13: 000000000004e000 R14: ffffafd2c3637c50 R15: ffffafd2c3637c48 [96049.936125] FS: 00007fe4b87e72c0(0000) GS:ffff99047b280000(0000) knlGS:0000000000000000 [96049.936126] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [96049.936128] CR2: 00005562e52618d8 CR3: 00000001151c8005 CR4: 00000000003606e0 [96049.936129] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [96049.936131] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [96049.936131] Call Trace: [96049.936141] __set_extent_bit+0x46c/0x6a0 [btrfs] [96049.936154] lock_extent_bits+0x6b/0x210 [btrfs] [96049.936167] btrfs_evict_inode+0x1e1/0x5a0 [btrfs] [96049.936172] evict+0xbf/0x1c0 [96049.936174] dispose_list+0x51/0x80 [96049.936176] evict_inodes+0x193/0x1c0 [96049.936180] generic_shutdown_super+0x3f/0x110 [96049.936182] kill_anon_super+0xe/0x30 [96049.936189] btrfs_kill_super+0x13/0x100 [btrfs] [96049.936191] deactivate_locked_super+0x3a/0x70 [96049.936193] cleanup_mnt+0x3b/0x80 [96049.936195] task_work_run+0x93/0xc0 [96049.936198] exit_to_usermode_loop+0xfa/0x100 [96049.936201] do_syscall_64+0x17f/0x1b0 [96049.936202] entry_SYSCALL_64_after_hwframe+0x49/0xbe [96049.936204] RIP: 0033:0x7fe4b80cfb37 [96049.936206] RSP: 002b:00007ffff092b688 EFLAGS: 00000246 ORIG_RAX: 00000000000000a6 [96049.936207] RAX: 0000000000000000 RBX: 00005562e5259060 RCX: 00007fe4b80cfb37 [96049.936208] RDX: 0000000000000001 RSI: 0000000000000000 RDI: 00005562e525faa0 [96049.936209] RBP: 00005562e525faa0 R08: 00005562e525f770 R09: 0000000000000015 [96049.936210] R10: 00000000000006b4 R11: 0000000000000246 R12: 00007fe4b85d1e64 [96049.936211] R13: 0000000000000000 R14: 00005562e5259240 R15: 00007ffff092b910 [96049.936211] R13: 0000000000000000 R14: 00005562e5259240 R15: 00007ffff092b910 [96049.936216] irq event stamp: 6616 [96049.936219] hardirqs last enabled at (6615): [<ffffffff91b00663>] console_unlock+0x503/0x640 [96049.936219] hardirqs last disabled at (6616): [<ffffffff91a037dd>] trace_hardirqs_off_thunk+0x1a/0x1c [96049.936222] softirqs last enabled at (6328): [<ffffffff92600370>] __do_softirq+0x370/0x421 [96049.936222] softirqs last disabled at (6313): [<ffffffff91a8dd4d>] irq_exit+0xcd/0xe0 [96049.936223] ---[ end trace db7b05f01b7fa124 ]--- The second stack trace, from inode eviction, is repeated forever due to the infinite loop during eviction. This is the same type of problem fixed way back in 2015 by commit 113e8283869b ("Btrfs: fix inode eviction infinite loop after extent_same ioctl") and commit ccccf3d67294 ("Btrfs: fix inode eviction infinite loop after cloning into it"). So fix this by returning immediately if the deduplication range length gets rounded down to 0 bytes, as there is nothing that needs to be done in such case. Example reproducer: $ mkfs.btrfs -f /dev/sdb $ mount /dev/sdb /mnt $ xfs_io -f -c "pwrite -S 0xe6 0 100" /mnt/foo $ xfs_io -f -c "pwrite -S 0xe6 0 1M" /mnt/bar # Unmount the filesystem and mount it again so that we start without any # extent state records when we ask for the deduplication. $ umount /mnt $ mount /dev/sdb /mnt $ xfs_io -c "dedupe /mnt/foo 0 500K 100" /mnt/bar # This unmount triggers the infinite loop. $ umount /mnt A test case for fstests will follow soon. Fixes: de02b9f6bb65 ("Btrfs: fix data corruption when deduplicating between different files") CC: <stable@vger.kernel.org> # 4.19+ Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-11-02Merge tag 'xfs-4.20-merge-2' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linuxLinus Torvalds
Pull vfs dedup fixes from Dave Chinner: "This reworks the vfs data cloning infrastructure. We discovered many issues with these interfaces late in the 4.19 cycle - the worst of them (data corruption, setuid stripping) were fixed for XFS in 4.19-rc8, but a larger rework of the infrastructure fixing all the problems was needed. That rework is the contents of this pull request. Rework the vfs_clone_file_range and vfs_dedupe_file_range infrastructure to use a common .remap_file_range method and supply generic bounds and sanity checking functions that are shared with the data write path. The current VFS infrastructure has problems with rlimit, LFS file sizes, file time stamps, maximum filesystem file sizes, stripping setuid bits, etc and so they are addressed in these commits. We also introduce the ability for the ->remap_file_range methods to return short clones so that clones for vfs_copy_file_range() don't get rejected if the entire range can't be cloned. It also allows filesystems to sliently skip deduplication of partial EOF blocks if they are not capable of doing so without requiring errors to be thrown to userspace. Existing filesystems are converted to user the new remap_file_range method, and both XFS and ocfs2 are modified to make use of the new generic checking infrastructure" * tag 'xfs-4.20-merge-2' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux: (28 commits) xfs: remove [cm]time update from reflink calls xfs: remove xfs_reflink_remap_range xfs: remove redundant remap partial EOF block checks xfs: support returning partial reflink results xfs: clean up xfs_reflink_remap_blocks call site xfs: fix pagecache truncation prior to reflink ocfs2: remove ocfs2_reflink_remap_range ocfs2: support partial clone range and dedupe range ocfs2: fix pagecache truncation prior to reflink ocfs2: truncate page cache for clone destination file before remapping vfs: clean up generic_remap_file_range_prep return value vfs: hide file range comparison function vfs: enable remap callers that can handle short operations vfs: plumb remap flags through the vfs dedupe functions vfs: plumb remap flags through the vfs clone functions vfs: make remap_file_range functions take and return bytes completed vfs: remap helper should update destination inode metadata vfs: pass remap flags to generic_remap_checks vfs: pass remap flags to generic_remap_file_range_prep vfs: combine the clone and dedupe into a single remap_file_range ...
2018-10-30vfs: make remap_file_range functions take and return bytes completedDarrick J. Wong
Change the remap_file_range functions to take a number of bytes to operate upon and return the number of bytes they operated on. This is a requirement for allowing fs implementations to return short clone/dedupe results to the user, which will enable us to obey resource limits in a graceful manner. A subsequent patch will enable copy_file_range to signal to the ->clone_file_range implementation that it can handle a short length, which will be returned in the function's return value. For now the short return is not implemented anywhere so the behavior won't change -- either copy_file_range manages to clone the entire range or it tries an alternative. Neither clone ioctl can take advantage of this, alas. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Amir Goldstein <amir73il@gmail.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
2018-10-30vfs: combine the clone and dedupe into a single remap_file_rangeDarrick J. Wong
Combine the clone_file_range and dedupe_file_range operations into a single remap_file_range file operation dispatch since they're fundamentally the same operation. The differences between the two can be made in the prep functions. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Amir Goldstein <amir73il@gmail.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Dave Chinner <david@fromorbit.com>
2018-10-15btrfs: Ensure btrfs_trim_fs can trim the whole filesystemQu Wenruo
[BUG] fstrim on some btrfs only trims the unallocated space, not trimming any space in existing block groups. [CAUSE] Before fstrim_range passed to btrfs_trim_fs(), it gets truncated to range [0, super->total_bytes). So later btrfs_trim_fs() will only be able to trim block groups in range [0, super->total_bytes). While for btrfs, any bytenr aligned to sectorsize is valid, since btrfs uses its logical address space, there is nothing limiting the location where we put block groups. For filesystem with frequent balance, it's quite easy to relocate all block groups and bytenr of block groups will start beyond super->total_bytes. In that case, btrfs will not trim existing block groups. [FIX] Just remove the truncation in btrfs_ioctl_fitrim(), so btrfs_trim_fs() can get the unmodified range, which is normally set to [0, U64_MAX]. Reported-by: Chris Murphy <lists@colorremedies.com> Fixes: f4c697e6406d ("btrfs: return EINVAL if start > total_bytes in fitrim ioctl") CC: <stable@vger.kernel.org> # v4.4+ Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-10-15btrfs: defrag: use btrfs_mod_outstanding_extents in cluster_pages_for_defragSu Yue
Since commit 8b62f87bad9c ("Btrfs: rework outstanding_extents"), manual operations of outstanding_extent in btrfs_inode are replaced by btrfs_mod_outstanding_extents(). The one in cluster_pages_for_defrag seems to be lost, so replace it of btrfs_mod_outstanding_extents(). Fixes: 8b62f87bad9c ("Btrfs: rework outstanding_extents") Signed-off-by: Su Yue <suy.fnst@cn.fujitsu.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-10-15btrfs: Remove 'objectid' member from struct btrfs_rootMisono Tomohiro
There are two members in struct btrfs_root which indicate root's objectid: objectid and root_key.objectid. They are both set to the same value in __setup_root(): static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info, u64 objectid) { ... root->objectid = objectid; ... root->root_key.objectid = objecitd; ... } and not changed to other value after initialization. grep in btrfs directory shows both are used in many places: $ grep -rI "root->root_key.objectid" | wc -l 133 $ grep -rI "root->objectid" | wc -l 55 (4.17, inc. some noise) It is confusing to have two similar variable names and it seems that there is no rule about which should be used in a certain case. Since ->root_key itself is needed for tree reloc tree, let's remove 'objecitd' member and unify code to use ->root_key.objectid in all places. Signed-off-by: Misono Tomohiro <misono.tomohiro@jp.fujitsu.com> Reviewed-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-10-15btrfs: Remove root parameter from btrfs_insert_dir_itemLu Fengqi
All callers pass the root tree of dir, we can push that down to the function itself. Signed-off-by: Lu Fengqi <lufq.fnst@cn.fujitsu.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-09-06Merge tag 'for-4.19-rc2-tag' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux Pull btrfs fixes from David Sterba: - fix for improper fsync after hardlink - fix for a corruption during file deduplication - use after free fixes - RCU warning fix - fix for buffered write to nodatacow file * tag 'for-4.19-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: btrfs: Fix suspicious RCU usage warning in btrfs_debug_in_rcu btrfs: use after free in btrfs_quota_enable btrfs: btrfs_shrink_device should call commit transaction at the end btrfs: fix qgroup_free wrong num_bytes in btrfs_subvolume_reserve_metadata Btrfs: fix data corruption when deduplicating between different files Btrfs: sync log after logging new name Btrfs: fix unexpected failure of nocow buffered writes after snapshotting when low on space
2018-08-23Btrfs: fix data corruption when deduplicating between different filesFilipe Manana
If we deduplicate extents between two different files we can end up corrupting data if the source range ends at the size of the source file, the source file's size is not aligned to the filesystem's block size and the destination range does not go past the size of the destination file size. Example: $ mkfs.btrfs -f /dev/sdb $ mount /dev/sdb /mnt $ xfs_io -f -c "pwrite -S 0x6b 0 2518890" /mnt/foo # The first byte with a value of 0xae starts at an offset (2518890) # which is not a multiple of the sector size. $ xfs_io -c "pwrite -S 0xae 2518890 102398" /mnt/foo # Confirm the file content is full of bytes with values 0x6b and 0xae. $ od -t x1 /mnt/foo 0000000 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b * 11467540 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b ae ae ae ae ae ae 11467560 ae ae ae ae ae ae ae ae ae ae ae ae ae ae ae ae * 11777540 ae ae ae ae ae ae ae ae 11777550 # Create a second file with a length not aligned to the sector size, # whose bytes all have the value 0x6b, so that its extent(s) can be # deduplicated with the first file. $ xfs_io -f -c "pwrite -S 0x6b 0 557771" /mnt/bar # Now deduplicate the entire second file into a range of the first file # that also has all bytes with the value 0x6b. The destination range's # end offset must not be aligned to the sector size and must be less # then the offset of the first byte with the value 0xae (byte at offset # 2518890). $ xfs_io -c "dedupe /mnt/bar 0 1957888 557771" /mnt/foo # The bytes in the range starting at offset 2515659 (end of the # deduplication range) and ending at offset 2519040 (start offset # rounded up to the block size) must all have the value 0xae (and not # replaced with 0x00 values). In other words, we should have exactly # the same data we had before we asked for deduplication. $ od -t x1 /mnt/foo 0000000 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b * 11467540 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b ae ae ae ae ae ae 11467560 ae ae ae ae ae ae ae ae ae ae ae ae ae ae ae ae * 11777540 ae ae ae ae ae ae ae ae 11777550 # Unmount the filesystem and mount it again. This guarantees any file # data in the page cache is dropped. $ umount /dev/sdb $ mount /dev/sdb /mnt $ od -t x1 /mnt/foo 0000000 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b * 11461300 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 00 00 00 00 00 11461320 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 * 11470000 ae ae ae ae ae ae ae ae ae ae ae ae ae ae ae ae * 11777540 ae ae ae ae ae ae ae ae 11777550 # The bytes in range 2515659 to 2519040 have a value of 0x00 and not a # value of 0xae, data corruption happened due to the deduplication # operation. So fix this by rounding down, to the sector size, the length used for the deduplication when the following conditions are met: 1) Source file's range ends at its i_size; 2) Source file's i_size is not aligned to the sector size; 3) Destination range does not cross the i_size of the destination file. Fixes: e1d227a42ea2 ("btrfs: Handle unaligned length in extent_same") CC: stable@vger.kernel.org # 4.2+ Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-08-21Merge tag 'ovl-update-4.19' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/mszeredi/vfs Pull overlayfs updates from Miklos Szeredi: "This contains two new features: - Stack file operations: this allows removal of several hacks from the VFS, proper interaction of read-only open files with copy-up, possibility to implement fs modifying ioctls properly, and others. - Metadata only copy-up: when file is on lower layer and only metadata is modified (except size) then only copy up the metadata and continue to use the data from the lower file" * tag 'ovl-update-4.19' of git://git.kernel.org/pub/scm/linux/kernel/git/mszeredi/vfs: (66 commits) ovl: Enable metadata only feature ovl: Do not do metacopy only for ioctl modifying file attr ovl: Do not do metadata only copy-up for truncate operation ovl: add helper to force data copy-up ovl: Check redirect on index as well ovl: Set redirect on upper inode when it is linked ovl: Set redirect on metacopy files upon rename ovl: Do not set dentry type ORIGIN for broken hardlinks ovl: Add an inode flag OVL_CONST_INO ovl: Treat metacopy dentries as type OVL_PATH_MERGE ovl: Check redirects for metacopy files ovl: Move some dir related ovl_lookup_single() code in else block ovl: Do not expose metacopy only dentry from d_real() ovl: Open file with data except for the case of fsync ovl: Add helper ovl_inode_realdata() ovl: Store lower data inode in ovl_inode ovl: Fix ovl_getattr() to get number of blocks from lower ovl: Add helper ovl_dentry_lowerdata() to get lower data dentry ovl: Copy up meta inode data from lowest data inode ovl: Modify ovl_lookup() and friends to lookup metacopy dentry ...
2018-08-17Btrfs: fix unexpected failure of nocow buffered writes after snapshotting ↵Robbie Ko
when low on space Commit e9894fd3e3b3 ("Btrfs: fix snapshot vs nocow writting") forced nocow writes to fallback to COW, during writeback, when a snapshot is created. This resulted in writes made before creating the snapshot to unexpectedly fail with ENOSPC during writeback when success (0) was returned to user space through the write system call. The steps leading to this problem are: 1. When it's not possible to allocate data space for a write, the buffered write path checks if a NOCOW write is possible. If it is, it will not reserve space and success (0) is returned to user space. 2. Then when a snapshot is created, the root's will_be_snapshotted atomic is incremented and writeback is triggered for all inode's that belong to the root being snapshotted. Incrementing that atomic forces all previous writes to fallback to COW during writeback (running delalloc). 3. This results in the writeback for the inodes to fail and therefore setting the ENOSPC error in their mappings, so that a subsequent fsync on them will report the error to user space. So it's not a completely silent data loss (since fsync will report ENOSPC) but it's a very unexpected and undesirable behaviour, because if a clean shutdown/unmount of the filesystem happens without previous calls to fsync, it is expected to have the data present in the files after mounting the filesystem again. So fix this by adding a new atomic named snapshot_force_cow to the root structure which prevents this behaviour and works the following way: 1. It is incremented when we start to create a snapshot after triggering writeback and before waiting for writeback to finish. 2. This new atomic is now what is used by writeback (running delalloc) to decide whether we need to fallback to COW or not. Because we incremented this new atomic after triggering writeback in the snapshot creation ioctl, we ensure that all buffered writes that happened before snapshot creation will succeed and not fallback to COW (which would make them fail with ENOSPC). 3. The existing atomic, will_be_snapshotted, is kept because it is used to force new buffered writes, that start after we started snapshotting, to reserve data space even when NOCOW is possible. This makes these writes fail early with ENOSPC when there's no available space to allocate, preventing the unexpected behaviour of writeback later failing with ENOSPC due to a fallback to COW mode. Fixes: e9894fd3e3b3 ("Btrfs: fix snapshot vs nocow writting") Signed-off-by: Robbie Ko <robbieko@synology.com> Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-08-06btrfs: Use wrapper macro for rcu string to remove duplicate codeMisono Tomohiro
Cleanup patch and no functional changes. Signed-off-by: Misono Tomohiro <misono.tomohiro@jp.fujitsu.com> Reviewed-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-08-06btrfs: Remove fs_info from btrfs_add_root_refLu Fengqi
It can be referenced from the passed transaction handle. Signed-off-by: Lu Fengqi <lufq.fnst@cn.fujitsu.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-08-06btrfs: allow defrag on a file opened read-only that has rw permissionsAdam Borowski
Requiring a read-write descriptor conflicts both ways with exec, returning ETXTBSY whenever you try to defrag a program that's currently being run, or causing intermittent exec failures on a live system being defragged. As defrag doesn't change the file's contents in any way, there's no reason to consider it a rw operation. Thus, let's check only whether the file could have been opened rw. Such access control is still needed as currently defrag can use extra disk space, and might trigger bugs. We return EINVAL when the request is invalid; here it's ok but merely the user has insufficient privileges. Thus, the EPERM return value reflects the error better -- as discussed in the identical case for dedupe. According to codesearch.debian.net, no userspace program distinguishes these values beyond strerror(). Signed-off-by: Adam Borowski <kilobyte@angband.pl> Reviewed-by: David Sterba <dsterba@suse.com> [ fold the EPERM patch from Adam ] Signed-off-by: David Sterba <dsterba@suse.com>
2018-08-06btrfs: qgroup: Drop fs_info parameter from btrfs_qgroup_inheritLu Fengqi
It can be fetched from the transaction handle. Signed-off-by: Lu Fengqi <lufq.fnst@cn.fujitsu.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-08-06btrfs: qgroup: Drop fs_info parameter from btrfs_run_qgroupsLu Fengqi
It can be fetched from the transaction handle. Signed-off-by: Lu Fengqi <lufq.fnst@cn.fujitsu.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-08-06btrfs: qgroup: Drop fs_info parameter from btrfs_limit_qgroupLu Fengqi
It can be fetched from the transaction handle. Signed-off-by: Lu Fengqi <lufq.fnst@cn.fujitsu.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-08-06btrfs: qgroup: Drop fs_info parameter from btrfs_remove_qgroupLu Fengqi
It can be fetched from the transaction handle. Signed-off-by: Lu Fengqi <lufq.fnst@cn.fujitsu.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-08-06btrfs: qgroup: Drop fs_info parameter from btrfs_create_qgroupLu Fengqi
It can be fetched from the transaction handle. Signed-off-by: Lu Fengqi <lufq.fnst@cn.fujitsu.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-08-06btrfs: qgroup: Drop fs_info parameter from btrfs_del_qgroup_relationLu Fengqi
It can be fetched from the transaction handle. Signed-off-by: Lu Fengqi <lufq.fnst@cn.fujitsu.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-08-06btrfs: qgroup: Drop fs_info parameter from btrfs_add_qgroup_relationLu Fengqi
It can be fetched from the transaction handle. Signed-off-by: Lu Fengqi <lufq.fnst@cn.fujitsu.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-08-06btrfs: qgroups: Move transaction management inside btrfs_quota_enable/disableNikolay Borisov
Commit 5d23515be669 ("btrfs: Move qgroup rescan on quota enable to btrfs_quota_enable") not only resulted in an easier to follow code but it also introduced a subtle bug. It changed the timing when the initial transaction rescan was happening: - before the commit: it would happen after transaction commit had occured - after the commit: it might happen before the transaction was committed This results in failure to correctly rescan the quota since there could be data which is still not committed on disk. This patch aims to fix this by moving the transaction creation/commit inside btrfs_quota_enable, which allows to schedule the quota commit after the transaction has been committed. Fixes: 5d23515be669 ("btrfs: Move qgroup rescan on quota enable to btrfs_quota_enable") Reported-by: Misono Tomohiro <misono.tomohiro@jp.fujitsu.com> Link: https://marc.info/?l=linux-btrfs&m=152999289017582 Signed-off-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-08-06btrfs: prune unused includesDavid Sterba
Remove includes if none of the interfaces and exports is used in the given source file. Signed-off-by: David Sterba <dsterba@suse.com>
2018-08-06btrfs: Deduplicate extent_buffer init codeNikolay Borisov
When a new extent buffer is allocated there are a few mandatory fields which need to be set in order for the buffer to be sane: level, generation, bytenr, backref_rev, owner and FSID/UUID. Currently this is open coded in the callers of btrfs_alloc_tree_block, meaning it's fairly high in the abstraction hierarchy of operations. This patch solves this by simply moving this init code in btrfs_init_new_buffer, since this is the function which initializes a newly allocated extent buffer. No functional changes. Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-08-06btrfs: Fix misleading indentation reported by smatchBart Van Assche
This patch avoids that building the BTRFS source code with smatch triggers complaints about inconsistent indenting. Signed-off-by: Bart Van Assche <bart.vanassche@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-07-18Merge tag 'for-4.18-rc5-tag' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux Pull btrfs fixes from David Sterba: "Three regression fixes. They're few-liners and fixing some corner cases missed in the origial patches" * tag 'for-4.18-rc5-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: btrfs: scrub: Don't use inode page cache in scrub_handle_errored_block() btrfs: fix use-after-free of cmp workspace pages btrfs: restore uuid_mutex in btrfs_open_devices
2018-07-13btrfs: fix use-after-free of cmp workspace pagesNaohiro Aota
btrfs_cmp_data_free() puts cmp's src_pages and dst_pages, but leaves their page address intact. Now, if you hit "goto again" in btrfs_extent_same_range() and hit some error in btrfs_cmp_data_prepare(), you'll try to unlock/put already put pages. This is simple fix to reset the address to avoid use-after-free. Fixes: 67b07bd4bec5 ("Btrfs: reuse cmp workspace in EXTENT_SAME ioctl") Signed-off-by: Naohiro Aota <naota@elisp.net> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-07-06vfs: dedupe: rationalize argsMiklos Szeredi
Clean up f_op->dedupe_file_range() interface. 1) Use loff_t for offsets and length instead of u64 2) Order the arguments the same way as {copy|clone}_file_range(). Signed-off-by: Miklos Szeredi <mszeredi@redhat.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
2018-07-06vfs: dedupe: return intMiklos Szeredi
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2018-06-26Merge tag 'for-4.18-rc1-tag' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux Pull btrfs fixes from David Sterba: "Two regression fixes and an incorrect error value propagation fix from 'rename exchange'" * tag 'for-4.18-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: Btrfs: fix return value on rename exchange failure btrfs: fix invalid-free in btrfs_extent_same Btrfs: fix physical offset reported by fiemap for inline extents
2018-06-21btrfs: fix invalid-free in btrfs_extent_sameLu Fengqi
If this condition ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) != (BTRFS_I(dst)->flags & BTRFS_INODE_NODATASUM)) is hit, we will go to free the uninitialized cmp.src_pages and cmp.dst_pages. Fixes: 67b07bd4bec5 ("Btrfs: reuse cmp workspace in EXTENT_SAME ioctl") Signed-off-by: Lu Fengqi <lufq.fnst@cn.fujitsu.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-06-15Merge tag 'vfs-timespec64' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/arnd/playground Pull inode timestamps conversion to timespec64 from Arnd Bergmann: "This is a late set of changes from Deepa Dinamani doing an automated treewide conversion of the inode and iattr structures from 'timespec' to 'timespec64', to push the conversion from the VFS layer into the individual file systems. As Deepa writes: 'The series aims to switch vfs timestamps to use struct timespec64. Currently vfs uses struct timespec, which is not y2038 safe. The series involves the following: 1. Add vfs helper functions for supporting struct timepec64 timestamps. 2. Cast prints of vfs timestamps to avoid warnings after the switch. 3. Simplify code using vfs timestamps so that the actual replacement becomes easy. 4. Convert vfs timestamps to use struct timespec64 using a script. This is a flag day patch. Next steps: 1. Convert APIs that can handle timespec64, instead of converting timestamps at the boundaries. 2. Update internal data structures to avoid timestamp conversions' Thomas Gleixner adds: 'I think there is no point to drag that out for the next merge window. The whole thing needs to be done in one go for the core changes which means that you're going to play that catchup game forever. Let's get over with it towards the end of the merge window'" * tag 'vfs-timespec64' of git://git.kernel.org/pub/scm/linux/kernel/git/arnd/playground: pstore: Remove bogus format string definition vfs: change inode times to use struct timespec64 pstore: Convert internal records to timespec64 udf: Simplify calls to udf_disk_stamp_to_time fs: nfs: get rid of memcpys for inode times ceph: make inode time prints to be long long lustre: Use long long type to print inode time fs: add timespec64_truncate()
2018-06-05vfs: change inode times to use struct timespec64Deepa Dinamani
struct timespec is not y2038 safe. Transition vfs to use y2038 safe struct timespec64 instead. The change was made with the help of the following cocinelle script. This catches about 80% of the changes. All the header file and logic changes are included in the first 5 rules. The rest are trivial substitutions. I avoid changing any of the function signatures or any other filesystem specific data structures to keep the patch simple for review. The script can be a little shorter by combining different cases. But, this version was sufficient for my usecase. virtual patch @ depends on patch @ identifier now; @@ - struct timespec + struct timespec64 current_time ( ... ) { - struct timespec now = current_kernel_time(); + struct timespec64 now = current_kernel_time64(); ... - return timespec_trunc( + return timespec64_trunc( ... ); } @ depends on patch @ identifier xtime; @@ struct \( iattr \| inode \| kstat \) { ... - struct timespec xtime; + struct timespec64 xtime; ... } @ depends on patch @ identifier t; @@ struct inode_operations { ... int (*update_time) (..., - struct timespec t, + struct timespec64 t, ...); ... } @ depends on patch @ identifier t; identifier fn_update_time =~ "update_time$"; @@ fn_update_time (..., - struct timespec *t, + struct timespec64 *t, ...) { ... } @ depends on patch @ identifier t; @@ lease_get_mtime( ... , - struct timespec *t + struct timespec64 *t ) { ... } @te depends on patch forall@ identifier ts; local idexpression struct inode *inode_node; identifier i_xtime =~ "^i_[acm]time$"; identifier ia_xtime =~ "^ia_[acm]time$"; identifier fn_update_time =~ "update_time$"; identifier fn; expression e, E3; local idexpression struct inode *node1; local idexpression struct inode *node2; local idexpression struct iattr *attr1; local idexpression struct iattr *attr2; local idexpression struct iattr attr; identifier i_xtime1 =~ "^i_[acm]time$"; identifier i_xtime2 =~ "^i_[acm]time$"; identifier ia_xtime1 =~ "^ia_[acm]time$"; identifier ia_xtime2 =~ "^ia_[acm]time$"; @@ ( ( - struct timespec ts; + struct timespec64 ts; | - struct timespec ts = current_time(inode_node); + struct timespec64 ts = current_time(inode_node); ) <+... when != ts ( - timespec_equal(&inode_node->i_xtime, &ts) + timespec64_equal(&inode_node->i_xtime, &ts) | - timespec_equal(&ts, &inode_node->i_xtime) + timespec64_equal(&ts, &inode_node->i_xtime) | - timespec_compare(&inode_node->i_xtime, &ts) + timespec64_compare(&inode_node->i_xtime, &ts) | - timespec_compare(&ts, &inode_node->i_xtime) + timespec64_compare(&ts, &inode_node->i_xtime) | ts = current_time(e) | fn_update_time(..., &ts,...) | inode_node->i_xtime = ts | node1->i_xtime = ts | ts = inode_node->i_xtime | <+... attr1->ia_xtime ...+> = ts | ts = attr1->ia_xtime | ts.tv_sec | ts.tv_nsec | btrfs_set_stack_timespec_sec(..., ts.tv_sec) | btrfs_set_stack_timespec_nsec(..., ts.tv_nsec) | - ts = timespec64_to_timespec( + ts = ... -) | - ts = ktime_to_timespec( + ts = ktime_to_timespec64( ...) | - ts = E3 + ts = timespec_to_timespec64(E3) | - ktime_get_real_ts(&ts) + ktime_get_real_ts64(&ts) | fn(..., - ts + timespec64_to_timespec(ts) ,...) ) ...+> ( <... when != ts - return ts; + return timespec64_to_timespec(ts); ...> ) | - timespec_equal(&node1->i_xtime1, &node2->i_xtime2) + timespec64_equal(&node1->i_xtime2, &node2->i_xtime2) | - timespec_equal(&node1->i_xtime1, &attr2->ia_xtime2) + timespec64_equal(&node1->i_xtime2, &attr2->ia_xtime2) | - timespec_compare(&node1->i_xtime1, &node2->i_xtime2) + timespec64_compare(&node1->i_xtime1, &node2->i_xtime2) | node1->i_xtime1 = - timespec_trunc(attr1->ia_xtime1, + timespec64_trunc(attr1->ia_xtime1, ...) | - attr1->ia_xtime1 = timespec_trunc(attr2->ia_xtime2, + attr1->ia_xtime1 = timespec64_trunc(attr2->ia_xtime2, ...) | - ktime_get_real_ts(&attr1->ia_xtime1) + ktime_get_real_ts64(&attr1->ia_xtime1) | - ktime_get_real_ts(&attr.ia_xtime1) + ktime_get_real_ts64(&attr.ia_xtime1) ) @ depends on patch @ struct inode *node; struct iattr *attr; identifier fn; identifier i_xtime =~ "^i_[acm]time$"; identifier ia_xtime =~ "^ia_[acm]time$"; expression e; @@ ( - fn(node->i_xtime); + fn(timespec64_to_timespec(node->i_xtime)); | fn(..., - node->i_xtime); + timespec64_to_timespec(node->i_xtime)); | - e = fn(attr->ia_xtime); + e = fn(timespec64_to_timespec(attr->ia_xtime)); ) @ depends on patch forall @ struct inode *node; struct iattr *attr; identifier i_xtime =~ "^i_[acm]time$"; identifier ia_xtime =~ "^ia_[acm]time$"; identifier fn; @@ { + struct timespec ts; <+... ( + ts = timespec64_to_timespec(node->i_xtime); fn (..., - &node->i_xtime, + &ts, ...); | + ts = timespec64_to_timespec(attr->ia_xtime); fn (..., - &attr->ia_xtime, + &ts, ...); ) ...+> } @ depends on patch forall @ struct inode *node; struct iattr *attr; struct kstat *stat; identifier ia_xtime =~ "^ia_[acm]time$"; identifier i_xtime =~ "^i_[acm]time$"; identifier xtime =~ "^[acm]time$"; identifier fn, ret; @@ { + struct timespec ts; <+... ( + ts = timespec64_to_timespec(node->i_xtime); ret = fn (..., - &node->i_xtime, + &ts, ...); | + ts = timespec64_to_timespec(node->i_xtime); ret = fn (..., - &node->i_xtime); + &ts); | + ts = timespec64_to_timespec(attr->ia_xtime); ret = fn (..., - &attr->ia_xtime, + &ts, ...); | + ts = timespec64_to_timespec(attr->ia_xtime); ret = fn (..., - &attr->ia_xtime); + &ts); | + ts = timespec64_to_timespec(stat->xtime); ret = fn (..., - &stat->xtime); + &ts); ) ...+> } @ depends on patch @ struct inode *node; struct inode *node2; identifier i_xtime1 =~ "^i_[acm]time$"; identifier i_xtime2 =~ "^i_[acm]time$"; identifier i_xtime3 =~ "^i_[acm]time$"; struct iattr *attrp; struct iattr *attrp2; struct iattr attr ; identifier ia_xtime1 =~ "^ia_[acm]time$"; identifier ia_xtime2 =~ "^ia_[acm]time$"; struct kstat *stat; struct kstat stat1; struct timespec64 ts; identifier xtime =~ "^[acmb]time$"; expression e; @@ ( ( node->i_xtime2 \| attrp->ia_xtime2 \| attr.ia_xtime2 \) = node->i_xtime1 ; | node->i_xtime2 = \( node2->i_xtime1 \| timespec64_trunc(...) \); | node->i_xtime2 = node->i_xtime1 = node->i_xtime3 = \(ts \| current_time(...) \); | node->i_xtime1 = node->i_xtime3 = \(ts \| current_time(...) \); | stat->xtime = node2->i_xtime1; | stat1.xtime = node2->i_xtime1; | ( node->i_xtime2 \| attrp->ia_xtime2 \) = attrp->ia_xtime1 ; | ( attrp->ia_xtime1 \| attr.ia_xtime1 \) = attrp2->ia_xtime2; | - e = node->i_xtime1; + e = timespec64_to_timespec( node->i_xtime1 ); | - e = attrp->ia_xtime1; + e = timespec64_to_timespec( attrp->ia_xtime1 ); | node->i_xtime1 = current_time(...); | node->i_xtime2 = node->i_xtime1 = node->i_xtime3 = - e; + timespec_to_timespec64(e); | node->i_xtime1 = node->i_xtime3 = - e; + timespec_to_timespec64(e); | - node->i_xtime1 = e; + node->i_xtime1 = timespec_to_timespec64(e); ) Signed-off-by: Deepa Dinamani <deepa.kernel@gmail.com> Cc: <anton@tuxera.com> Cc: <balbi@kernel.org> Cc: <bfields@fieldses.org> Cc: <darrick.wong@oracle.com> Cc: <dhowells@redhat.com> Cc: <dsterba@suse.com> Cc: <dwmw2@infradead.org> Cc: <hch@lst.de> Cc: <hirofumi@mail.parknet.co.jp> Cc: <hubcap@omnibond.com> Cc: <jack@suse.com> Cc: <jaegeuk@kernel.org> Cc: <jaharkes@cs.cmu.edu> Cc: <jslaby@suse.com> Cc: <keescook@chromium.org> Cc: <mark@fasheh.com> Cc: <miklos@szeredi.hu> Cc: <nico@linaro.org> Cc: <reiserfs-devel@vger.kernel.org> Cc: <richard@nod.at> Cc: <sage@redhat.com> Cc: <sfrench@samba.org> Cc: <swhiteho@redhat.com> Cc: <tj@kernel.org> Cc: <trond.myklebust@primarydata.com> Cc: <tytso@mit.edu> Cc: <viro@zeniv.linux.org.uk>
2018-06-05btrfs: Check error of btrfs_iget in btrfs_search_path_in_tree_userMisono Tomohiro
The patch introducing the ioctl was not the latest version at the time of merging to the mainline and needs a fixup from this patch. Fixes: ba637a252d30 ("btrfs: Check error of btrfs_iget() in btrfs_search_path_in_tree_user") Signed-off-by: Misono Tomohiro <misono.tomohiro@jp.fujitsu.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-05-31btrfs: Add unprivileged version of ino_lookup ioctlTomohiro Misono
Add unprivileged version of ino_lookup ioctl BTRFS_IOC_INO_LOOKUP_USER to allow normal users to call "btrfs subvolume list/show" etc. in combination with BTRFS_IOC_GET_SUBVOL_INFO/BTRFS_IOC_GET_SUBVOL_ROOTREF. This can be used like BTRFS_IOC_INO_LOOKUP but the argument is different. This is because it always searches the fs/file tree correspoinding to the fd with which this ioctl is called and also returns the name of bottom subvolume. The main differences from original ino_lookup ioctl are: 1. Read + Exec permission will be checked using inode_permission() during path construction. -EACCES will be returned in case of failure. 2. Path construction will be stopped at the inode number which corresponds to the fd with which this ioctl is called. If constructed path does not exist under fd's inode, -EACCES will be returned. 3. The name of bottom subvolume is also searched and filled. Note that the maximum length of path is shorter 256 (BTRFS_VOL_NAME_MAX+1) bytes than ino_lookup ioctl because of space of subvolume's name. Reviewed-by: Gu Jinxiang <gujx@cn.fujitsu.com> Reviewed-by: Qu Wenruo <wqu@suse.com> Tested-by: Gu Jinxiang <gujx@cn.fujitsu.com> Signed-off-by: Tomohiro Misono <misono.tomohiro@jp.fujitsu.com> [ style fixes ] Signed-off-by: David Sterba <dsterba@suse.com>
2018-05-31btrfs: Add unprivileged ioctl which returns subvolume's ROOT_REFTomohiro Misono
Add unprivileged ioctl BTRFS_IOC_GET_SUBVOL_ROOTREF which returns ROOT_REF information of the subvolume containing this inode except the subvolume name (this is because to prevent potential name leak). The subvolume name will be gained by user version of ino_lookup ioctl (BTRFS_IOC_INO_LOOKUP_USER) which also performs permission check. The min id of root ref's subvolume to be searched is specified by @min_id in struct btrfs_ioctl_get_subvol_rootref_args. After the search ends, @min_id is set to the last searched root ref's subvolid + 1. Also, if there are more root refs than BTRFS_MAX_ROOTREF_BUFFER_NUM, -EOVERFLOW is returned. Therefore the caller can just call this ioctl again without changing the argument to continue search. Reviewed-by: Qu Wenruo <wqu@suse.com> Reviewed-by: Gu Jinxiang <gujx@cn.fujitsu.com> Tested-by: Gu Jinxiang <gujx@cn.fujitsu.com> Signed-off-by: Tomohiro Misono <misono.tomohiro@jp.fujitsu.com> [ style fixes and struct item renames ] Signed-off-by: David Sterba <dsterba@suse.com>
2018-05-31btrfs: Add unprivileged ioctl which returns subvolume informationTomohiro Misono
Add new unprivileged ioctl BTRFS_IOC_GET_SUBVOL_INFO which returns the information of subvolume containing this inode. (i.e. returns the information in ROOT_ITEM and ROOT_BACKREF.) Reviewed-by: Gu Jinxiang <gujx@cn.fujitsu.com> Tested-by: Gu Jinxiang <gujx@cn.fujitsu.com> Signed-off-by: Tomohiro Misono <misono.tomohiro@jp.fujitsu.com> [ minor style fixes, update struct comments ] Signed-off-by: David Sterba <dsterba@suse.com>
2018-05-30btrfs: drop unused parameter qgroup_reservedGu JinXiang
Since commit 7775c8184ec0 ("btrfs: remove unused parameter from btrfs_subvolume_release_metadata") parameter qgroup_reserved is not used by caller of function btrfs_subvolume_reserve_metadata. So remove it. Signed-off-by: Gu JinXiang <gujx@cn.fujitsu.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-05-30btrfs: Remove fs_info argument from btrfs_uuid_tree_remLu Fengqi
This function always takes a transaction handle which contains a reference to the fs_info. Use that and remove the extra argument. Signed-off-by: Lu Fengqi <lufq.fnst@cn.fujitsu.com> Reviewed-by: Nikolay Borisov <nborisov@suse.com> [ rename the function ] Signed-off-by: David Sterba <dsterba@suse.com>
2018-05-30btrfs: Remove fs_info argument from btrfs_uuid_tree_addLu Fengqi
This function always takes a transaction handle which contains a reference to the fs_info. Use that and remove the extra argument. Signed-off-by: Lu Fengqi <lufq.fnst@cn.fujitsu.com> Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
2018-05-30Btrfs: fix memory and mount leak in btrfs_ioctl_rm_dev_v2()Omar Sandoval
If we have invalid flags set, when we error out we must drop our writer counter and free the buffer we allocated for the arguments. This bug is trivially reproduced with the following program on 4.7+: #include <fcntl.h> #include <stdint.h> #include <stdio.h> #include <stdlib.h> #include <unistd.h> #include <sys/ioctl.h> #include <sys/stat.h> #include <sys/types.h> #include <linux/btrfs.h> #include <linux/btrfs_tree.h> int main(int argc, char **argv) { struct btrfs_ioctl_vol_args_v2 vol_args = { .flags = UINT64_MAX, }; int ret; int fd; if (argc != 2) { fprintf(stderr, "usage: %s PATH\n", argv[0]); return EXIT_FAILURE; } fd = open(argv[1], O_WRONLY); if (fd == -1) { perror("open"); return EXIT_FAILURE; } ret = ioctl(fd, BTRFS_IOC_RM_DEV_V2, &vol_args); if (ret == -1) perror("ioctl"); close(fd); return EXIT_SUCCESS; } When unmounting the filesystem, we'll hit the WARN_ON(mnt_get_writers(mnt)) in cleanup_mnt() and also may prevent the filesystem to be remounted read-only as the writer count will stay lifted. Fixes: 6b526ed70cf1 ("btrfs: introduce device delete by devid") CC: stable@vger.kernel.org # 4.9+ Signed-off-by: Omar Sandoval <osandov@fb.com> Reviewed-by: Su Yue <suy.fnst@cn.fujitsu.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>