Age | Commit message (Collapse) | Author |
|
Simplify the bio completion handler by using bio chaining and submitting
bios as soon as they are full.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Shaohua Li <shli@fb.com>
Signed-off-by: NeilBrown <neilb@suse.com>
|
|
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Shaohua Li <shli@fb.com>
Signed-off-by: NeilBrown <neilb@suse.com>
|
|
Factor out code to reserve log space.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Shaohua Li <shli@fb.com>
Signed-off-by: NeilBrown <neilb@suse.com>
|
|
This is the only user, and keeping all code initializing the io_unit
structure together improves readbility.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Shaohua Li <shli@fb.com>
Signed-off-by: NeilBrown <neilb@suse.com>
|
|
Set up bi_sector properly when we allocate an bio instead of updating it
at submission time.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: NeilBrown <neilb@suse.com>
|
|
Split out a helper to allocate a bio for log writes.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Shaohua Li <shli@fb.com>
Signed-off-by: NeilBrown <neilb@suse.com>
|
|
Remove the only partially used local 'io' variable to simplify the code
flow.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Shaohua Li <shli@fb.com>
Signed-off-by: NeilBrown <neilb@suse.com>
|
|
For devices without a volatile write cache we don't need to send a FLUSH
command to ensure writes are stable on disk, and thus can avoid the whole
step of batching up bios for processing by the MD thread.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Shaohua Li <shli@fb.com>
Signed-off-by: NeilBrown <neilb@suse.com>
|
|
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Shaohua Li <shli@fb.com>
Signed-off-by: NeilBrown <neilb@suse.com>
|
|
After this series we won't nessecarily have flushed the cache for these
I/Os, so give the list a more neutral name.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Shaohua Li <shli@fb.com>
Signed-off-by: NeilBrown <neilb@suse.com>
|
|
There is no good reason to keep the I/O unit structures around after the
stripe has been written back to the RAID array. The only information
we need is the log sequence number, and the checkpoint offset of the
highest successfull writeback. Store those in the log structure, and
free the IO units from __r5l_stripe_write_finished.
Besides simplifying the code this also avoid having to keep the allocation
for the I/O unit around for a potentially long time as superblock updates
that checkpoint the log do not happen very often.
This also fixes the previously incorrect calculation of 'free' in
r5l_do_reclaim as a side effect: previous if took the last unit which
isn't checkpointed into account.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Shaohua Li <shli@fb.com>
Signed-off-by: NeilBrown <neilb@suse.com>
|
|
Move reclaim stop to quiesce handling, where is safer for this stuff.
Signed-off-by: Shaohua Li <shli@fb.com>
Signed-off-by: NeilBrown <neilb@suse.com>
|
|
Journal disk state sysfs entry should indicate it's journal
Signed-off-by: Shaohua Li <shli@fb.com>
Signed-off-by: NeilBrown <neilb@suse.com>
|
|
match_mddev_units is used to check whether 2 RAID arrays share
same disk(s). Arrays that share disk(s) will not do resync at the
same time for better performance (fewer HDD seek). However, this
check should not apply to Spare, Faulty, and Journal disks, as
they do not paticipate in resync.
In this patch, match_mddev_units skips check for disks with flag
"Faulty" or "Journal" or raid_disk < 0.
Signed-off-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Shaohua Li <shli@fb.com>
Signed-off-by: NeilBrown <neilb@suse.com>
|
|
There is a case a stripe gets delayed forever.
1. a stripe finishes construction
2. a new bio hits the stripe
3. handle_stripe runs for the stripe. The stripe gets DELAYED bit set
since construction can't run for new bio (the stripe is locked since
step 1)
Without log, handle_stripe will call ops_run_io. After IO finishes, the
stripe gets unlocked and the stripe will restart and run construction
for the new bio. With log, ops_run_io need to run two times. If the
DELAYED bit set, the stripe can't enter into the handle_list, so the
second ops_run_io doesn't run, which leaves the stripe stalled.
Signed-off-by: Shaohua Li <shli@fb.com>
Signed-off-by: NeilBrown <neilb@suse.com>
|
|
stripes could finish out of order. Hence r5l_move_io_unit_list() of
__r5l_stripe_write_finished might not move any entry and leave
stripe_end_ios list empty.
This applies on top of http://marc.info/?l=linux-raid&m=144122700510667
Signed-off-by: Shaohua Li <shli@fb.com>
Signed-off-by: NeilBrown <neilb@suse.com>
|
|
If a raid array has journal, the journal can guarantee the consistency,
we can skip resync after a unclean shutdown. The exception is raid
creation or user initiated resync, which we still do a raid resync.
Signed-off-by: Shaohua Li <shli@fb.com>
Signed-off-by: NeilBrown <neilb@suse.com>
|
|
With log enabled, bio is written to raid disks after the bio is settled
down in log disk. The recovery guarantees we can recovery the bio data
from log disk, so we we skip FLUSH IO.
Signed-off-by: Shaohua Li <shli@fb.com>
Signed-off-by: NeilBrown <neilb@suse.com>
|
|
Just keep __r5l_set_io_unit_state as a small set the state wrapper, and
remove r5l_set_io_unit_state entirely after moving the real
functionality to the two callers that need it.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Shaohua Li <shli@fb.com>
Signed-off-by: NeilBrown <neilb@suse.com>
|
|
r5l_compress_stripe_end_list() can free an io_unit. This breaks the
assumption only reclaimer can free io_unit. We can add a reference count
based io_unit free, but since only reclaim can wait io_unit becoming to
STRIPE_END state, we use a simple global wait queue here.
Signed-off-by: Shaohua Li <shli@fb.com>
Signed-off-by: NeilBrown <neilb@suse.com>
|
|
Before we write stripe data to raid disks, we must guarantee stripe data
is settled down in log disk. To do this, we flush log disk cache and
wait the flush finish. That wait introduces sleep time in raid5d thread
and impact performance. This patch moves the log disk cache flush
process to the stripe handling state machine, which can remove the wait
in raid5d.
Signed-off-by: Shaohua Li <shli@fb.com>
Signed-off-by: NeilBrown <neilb@suse.com>
|
|
Now log is safe to enable for raid array with cache disk
Signed-off-by: Shaohua Li <shli@fb.com>
Signed-off-by: NeilBrown <neilb@suse.com>
|
|
If cache(log) support is enabled, don't allow resize/reshape in current
stage. In the future, we can flush all data from cache(log) to raid
before resize/reshape and then allow resize/reshape.
Signed-off-by: Shaohua Li <shli@fb.com>
Signed-off-by: NeilBrown <neilb@suse.com>
|
|
With log enabled, r5l_write_stripe will add the stripe to log. With
batch, several stripes are linked together. The stripes must be in the
same state. While with log, the log/reclaim unit is stripe, we can't
guarantee the several stripes are in the same state. Disabling batch for
log now.
Signed-off-by: Shaohua Li <shli@fb.com>
Signed-off-by: NeilBrown <neilb@suse.com>
|
|
crc32c has lower overhead with cpu acceleration. It's a shame I didn't
use it in first post, sorry. This changes disk format, but we are still
ok in current stage.
V2: delete unnecessary type conversion as pointed out by Bart
Signed-off-by: Shaohua Li <shli@fb.com>
Signed-off-by: NeilBrown <neilb@suse.com>
Reviewed-by: Bart Van Assche <bart.vanassche@sandisk.com>
|
|
This is the log recovery support. The process is quite straightforward.
We scan the log and read all valid meta/data/parity into memory. If a
stripe's data/parity checksum is correct, the stripe will be recoveried.
Otherwise, it's discarded and we don't scan the log further. The reclaim
process guarantees stripe which starts to be flushed raid disks has
completed data/parity and has correct checksum. To recovery a stripe, we
just copy its data/parity to corresponding raid disks.
The trick thing is superblock update after recovery. we can't let
superblock point to last valid meta block. The log might look like:
| meta 1| meta 2| meta 3|
meta 1 is valid, meta 2 is invalid. meta 3 could be valid. If superblock
points to meta 1, we write a new valid meta 2n. If crash happens again,
new recovery will start from meta 1. Since meta 2n is valid, recovery
will think meta 3 is valid, which is wrong. The solution is we create a
new meta in meta2 with its seq == meta 1's seq + 10 and let superblock
points to meta2. recovery will not think meta 3 is a valid meta,
because its seq is wrong
Signed-off-by: Shaohua Li <shli@fb.com>
Signed-off-by: NeilBrown <neilb@suse.com>
|
|
This is the reclaim support for raid5 log. A stripe write will have
following steps:
1. reconstruct the stripe, read data/calculate parity. ops_run_io
prepares to write data/parity to raid disks
2. hijack ops_run_io. stripe data/parity is appending to log disk
3. flush log disk cache
4. ops_run_io run again and do normal operation. stripe data/parity is
written in raid array disks. raid core can return io to upper layer.
5. flush cache of all raid array disks
6. update super block
7. log disk space used by the stripe can be reused
In practice, several stripes consist of an io_unit and we will batch
several io_unit in different steps, but the whole process doesn't
change.
It's possible io return just after data/parity hit log disk, but then
read IO will need read from log disk. For simplicity, IO return happens
at step 4, where read IO can directly read from raid disks.
Currently reclaim run if there is specific reclaimable space (1/4 disk
size or 10G) or we are out of space. Reclaim is just to free log disk
spaces, it doesn't impact data consistency. The size based force reclaim
is to make sure log isn't too big, so recovery doesn't scan log too
much.
Recovery make sure raid disks and log disk have the same data of a
stripe. If crash happens before 4, recovery might/might not recovery
stripe's data/parity depending on if data/parity and its checksum
matches. In either case, this doesn't change the syntax of an IO write.
After step 3, stripe is guaranteed recoverable, because stripe's
data/parity is persistent in log disk. In some cases, log disk content
and raid disks content of a stripe are the same, but recovery will still
copy log disk content to raid disks, this doesn't impact data
consistency. space reuse happens after superblock update and cache
flush.
There is one situation we want to avoid. A broken meta in the middle of
a log causes recovery can't find meta at the head of log. If operations
require meta at the head persistent in log, we must make sure meta
before it persistent in log too. The case is stripe data/parity is in
log and we start write stripe to raid disks (before step 4). stripe
data/parity must be persistent in log before we do the write to raid
disks. The solution is we restrictly maintain io_unit list order. In
this case, we only write stripes of an io_unit to raid disks till the
io_unit is the first one whose data/parity is in log.
The io_unit list order is important for other cases too. For example,
some io_unit are reclaimable and others not. They can be mixed in the
list, we shouldn't reuse space of an unreclaimable io_unit.
Includes fixes to problems which were...
Reported-by: kbuild test robot <fengguang.wu@intel.com>
Signed-off-by: Shaohua Li <shli@fb.com>
Signed-off-by: NeilBrown <neilb@suse.com>
|
|
This introduces a simple log for raid5. Data/parity writing to raid
array first writes to the log, then write to raid array disks. If
crash happens, we can recovery data from the log. This can speed up
raid resync and fix write hole issue.
The log structure is pretty simple. Data/meta data is stored in block
unit, which is 4k generally. It has only one type of meta data block.
The meta data block can track 3 types of data, stripe data, stripe
parity and flush block. MD superblock will point to the last valid
meta data block. Each meta data block has checksum/seq number, so
recovery can scan the log correctly. We store a checksum of stripe
data/parity to the metadata block, so meta data and stripe data/parity
can be written to log disk together. otherwise, meta data write must
wait till stripe data/parity is finished.
For stripe data, meta data block will record stripe data sector and
size. Currently the size is always 4k. This meta data record can be made
simpler if we just fix write hole (eg, we can record data of a stripe's
different disks together), but this format can be extended to support
caching in the future, which must record data address/size.
For stripe parity, meta data block will record stripe sector. It's
size should be 4k (for raid5) or 8k (for raid6). We always store p
parity first. This format should work for caching too.
flush block indicates a stripe is in raid array disks. Fixing write
hole doesn't need this type of meta data, it's for caching extension.
Signed-off-by: Shaohua Li <shli@fb.com>
Signed-off-by: NeilBrown <neilb@suse.com>
|
|
When a stripe finishes construction, we write the stripe to raid in
ops_run_io normally. With log, we do a bunch of other operations before
the stripe is written to raid. Mainly write the stripe to log disk,
flush disk cache and so on. The operations are still driven by raid5d
and run in the stripe state machine. We introduce a new state for such
stripe (trapped into log). The stripe is in this state from the time it
first enters ops_run_io (finish construction) to the time it is written
to raid. Since we know the state is only for log, we bypass other
check/operation in handle_stripe.
Signed-off-by: Shaohua Li <shli@fb.com>
Signed-off-by: NeilBrown <neilb@suse.com>
|
|
Next several patches use some raid5 functions, rename them with raid5
prefix and export out.
Signed-off-by: Shaohua Li <shli@fb.com>
Signed-off-by: NeilBrown <neilb@suse.com>
|
|
Journal device stores data in a log structure. We need record the log
start. Here we override md superblock recovery_offset for this purpose.
This field of a journal device is meaningless otherwise.
Signed-off-by: Shaohua Li <shli@fb.com>
Signed-off-by: NeilBrown <neilb@suse.com>
|
|
Next patches will use a disk as raid5/6 journaling. We need a new disk
role to present the journal device and add MD_FEATURE_JOURNAL to
feature_map for backward compability.
Signed-off-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Shaohua Li <shli@fb.com>
Signed-off-by: NeilBrown <neilb@suse.com>
|
|
Add the following two macros for special roles: spare and faulty
MD_DISK_ROLE_SPARE 0xffff
MD_DISK_ROLE_FAULTY 0xfffe
Add MD_DISK_ROLE_MAX 0xff00 as the maximal possible regular role,
and minimal value of special role.
Signed-off-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Shaohua Li <shli@fb.com>
Signed-off-by: NeilBrown <neilb@suse.com>
|
|
To incorporate --grow feature executed on one node, other nodes need to
acknowledge the change in number of disks. Call update_raid_disks()
to update internal data structures.
This leads to call check_reshape() -> md_allow_write() -> md_update_sb(),
this results in a deadlock. This is done so it can safely allocate memory
(which might trigger writeback which might write to raid1). This is
not required for md with a bitmap.
In the clustered case, we don't perform md_update_sb() in md_allow_write(),
but in do_md_run(). Also we disable safemode for clustered mode.
mddev->recovery_cp need not be set in check_sb_changes() because this
is required only when a node reads another node's bitmap. mddev->recovery_cp
(which is read from sb->resync_offset), is set only if mddev is in_sync.
Since we disabled safemode, in_sync is set to zero.
In a clustered environment, the MD may not be in sync because another
node could be writing to it. So make sure that in_sync is not set in
case of clustered node in __md_stop_writes().
Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Signed-off-by: NeilBrown <neilb@suse.com>
|
|
The arg isn't used, so its presence is only confusing.
Signed-off-by: NeilBrown <neilb@suse.com>
|
|
It is common practice in the kernel to leave out this case.
It isn't needed and adds little if any value.
Signed-off-by: NeilBrown <neilb@suse.com>
|
|
Signed-off-by: NeilBrown <neilb@suse.com>
|
|
This patches fixes sparse warnings like incorrect type in assignment
(different base types), cast to restricted __le64.
Reported-by: kbuild test robot <fengguang.wu@intel.com>
Signed-off-by: Guoqing Jiang <gqjiang@suse.com>
Signed-off-by: NeilBrown <neilb@suse.com>
|
|
As cmsg.raid_slot is le32, comparing for >0 is not meaningful.
So introduce cpu-endian 'raid_slot' and only assign to cmsg.raid_slot
when we know value is valid.
Reported-by: kbuild test robot <fengguang.wu@intel.com>
Signed-off-by: NeilBrown <neilb@suse.com>
|
|
md-cluster: A better way for METADATA_UPDATED processing
The processing of METADATA_UPDATED message is too simple and prone to
errors. Besides, it would not update the internal data structures as
required.
This set of patches reads the superblock from one of the device of the MD
and checks for changes in the in-memory data structures. If there is a change,
it performs the necessary actions to keep the internal data structures
as it would be in the primary node.
An example is if a devices turns faulty. The algorithm is:
1. The initiator node marks the device as faulty and updates the superblock
2. The initiator node sends METADATA_UPDATED with an advisory device number to the rest of the nodes.
3. The receiving node on receiving the METADATA_UPDATED message
3.1 Reads the superblock
3.2 Detects a device has failed by comparing with memory structure
3.3 Calls the necessary functions to record the failure and get the device out of the active array.
3.4 Acknowledges the message.
The patch series also fixes adding the disk which was impacted because of
the changes.
Patches can also be found at
https://github.com/goldwynr/linux branch md-next
Changes since V2:
- Fix status synchrnoization after --add and --re-add operations
- Included Guoqing's patches on endian correctness, zeroing cmsg etc
- Restructure add_new_disk() and cancel()
|
|
We shouldn't run related funs of md_cluster_ops in case
metadata_update_start returned failure.
Signed-off-by: Guoqing Jiang <gqjiang@suse.com>
|
|
For cluster raid, we should not kick it from array if the disk can't be
remove from array successfully.
Signed-off-by: Guoqing Jiang <gqjiang@suse.com>
Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
|
|
Signed-off-by: Guoqing Jiang <gqjiang@suse.com>
|
|
Signed-off-by: Guoqing Jiang <gqjiang@suse.com>
|
|
During the past test, the node occasionally received the msg which is
sent from itself, this case should not happen in theory, but it is
better to avoid it in case something wrong happened.
Signed-off-by: Guoqing Jiang <gqjiang@suse.com>
Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
|
|
Since slot will be set within _sendmsg, we can remove
the redundant code in resync_info_update.
Signed-off-by: Guoqing Jiang <gqjiang@suse.com>
|
|
Signed-off-by: Guoqing Jiang <gqjiang@suse.com>
|
|
The receive daemon prints kernel messages for every network message
received. This would fill the kernel message log with unnecessary messages.
Remove the pr_info() messages.
Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
|
|
Adding the disk worked incorrectly with the new reload code. Fix it:
- No operation should be performed on rdev marked as Candidate
- After a metadata update operation, kick disk if role is 0xfffe
else clear Candidate bit and continue with the regular change check.
- Saving the mode of the lock resource to check if token lock is already
locked, because it can be called twice while adding a disk. However,
unlock_comm() must be called only once.
- add_new_disk() is called by the node initiating the --add operation.
If it needs to be canceled, call add_new_disk_cancel(). The operation
is completed by md_update_sb() which will write and unlock the
communication.
Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
|
|
Resync or recovery must be performed by only one node at a time.
A DLM lock resource, resync_lockres provides the mutual exclusion
so that only one node performs the recovery/resync at a time.
If a node is unable to get the resync_lockres, because recovery is
being performed by another node, it set MD_RECOVER_NEEDED so as
to schedule recovery in the future.
Remove the debug message in resync_info_update()
used during development.
Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
|