Age | Commit message (Collapse) | Author |
|
The switch has support for the 802.1Qbv Time Aware Shaper (TAS). Traffic
schedules may be configured individually on each front port. Each port has eight
egress queues. The traffic is mapped to a traffic class respectively via the PCP
field of a VLAN tagged frame.
The TAPRIO Qdisc already implements that. Therefore, this interface can simply
be reused. Add .port_setup_tc() accordingly.
The activation of a schedule on a port is split into two parts:
* Programming the necessary gate control list (GCL)
* Setup delayed work for starting the schedule
The hardware supports starting a schedule up to eight seconds in the future. The
TAPRIO interface provides an absolute base time. Therefore, periodic delayed
work is leveraged to check whether a schedule may be started or not.
Signed-off-by: Kurt Kanzenbach <kurt@linutronix.de>
Reviewed-by: Vladimir Oltean <olteanv@gmail.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
|
|
As explained in commit 54a0ed0df496 ("net: dsa: provide an option for
drivers to always receive bridge VLANs"), DSA has historically been
skipping VLAN switchdev operations when the bridge wasn't in
vlan_filtering mode, but the reason why it was doing that has never been
clear. So the configure_vlan_while_not_filtering option is there merely
to preserve functionality for existing drivers. It isn't some behavior
that drivers should opt into. Ideally, when all drivers leave this flag
set, we can delete the dsa_port_skip_vlan_configuration() function.
New drivers always seem to omit setting this flag, for some reason. So
let's reverse the logic: the DSA core sets it by default to true before
the .setup() callback, and legacy drivers can turn it off. This way, new
drivers get the new behavior by default, unless they explicitly set the
flag to false, which is more obvious during review.
Remove the assignment from drivers which were setting it to true, and
add the assignment to false for the drivers that didn't previously have
it. This way, it should be easier to see how many we have left.
The following drivers: lan9303, mv88e6060 were skipped from setting this
flag to false, because they didn't have any VLAN offload ops in the
first place.
The Broadcom Starfighter 2 driver calls the common b53_switch_alloc and
therefore also inherits the configure_vlan_while_not_filtering=true
behavior.
Also, print a message through netlink extack every time a VLAN has been
skipped. This is mildly annoying on purpose, so that (a) it is at least
clear that VLANs are being skipped - the legacy behavior in itself is
confusing, and the extack should be much more difficult to miss, unlike
kernel logs - and (b) people have one more incentive to convert to the
new behavior.
No behavior change except for the added prints is intended at this time.
$ ip link add br0 type bridge vlan_filtering 0
$ ip link set sw0p2 master br0
[ 60.315148] br0: port 1(sw0p2) entered blocking state
[ 60.320350] br0: port 1(sw0p2) entered disabled state
[ 60.327839] device sw0p2 entered promiscuous mode
[ 60.334905] br0: port 1(sw0p2) entered blocking state
[ 60.340142] br0: port 1(sw0p2) entered forwarding state
Warning: dsa_core: skipping configuration of VLAN. # This was the pvid
$ bridge vlan add dev sw0p2 vid 100
Warning: dsa_core: skipping configuration of VLAN.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Kurt Kanzenbach <kurt@linutronix.de>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Link: https://lore.kernel.org/r/20210115231919.43834-1-vladimir.oltean@nxp.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
|
|
It should be the driver's business to logically separate its VLAN
offloading into a preparation and a commit phase, and some drivers don't
need / can't do this.
So remove the transactional shim from DSA and let drivers propagate
errors directly from the .port_vlan_add callback.
It would appear that the code has worse error handling now than it had
before. DSA is the only in-kernel user of switchdev that offloads one
switchdev object to more than one port: for every VLAN object offloaded
to a user port, that VLAN is also offloaded to the CPU port. So the
"prepare for user port -> check for errors -> prepare for CPU port ->
check for errors -> commit for user port -> commit for CPU port"
sequence appears to make more sense than the one we are using now:
"offload to user port -> check for errors -> offload to CPU port ->
check for errors", but it is really a compromise. In the new way, we can
catch errors from the commit phase that we previously had to ignore.
But we have our hands tied and cannot do any rollback now: if we add a
VLAN on the CPU port and it fails, we can't do the rollback by simply
deleting it from the user port, because the switchdev API is not so nice
with us: it could have simply been there already, even with the same
flags. So we don't even attempt to rollback anything on addition error,
just leave whatever VLANs managed to get offloaded right where they are.
This should not be a problem at all in practice.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Acked-by: Linus Walleij <linus.walleij@linaro.org>
Acked-by: Jiri Pirko <jiri@nvidia.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
|
|
Since the introduction of the switchdev API, port attributes were
transmitted to drivers for offloading using a two-step transactional
model, with a prepare phase that was supposed to catch all errors, and a
commit phase that was supposed to never fail.
Some classes of failures can never be avoided, like hardware access, or
memory allocation. In the latter case, merely attempting to move the
memory allocation to the preparation phase makes it impossible to avoid
memory leaks, since commit 91cf8eceffc1 ("switchdev: Remove unused
transaction item queue") which has removed the unused mechanism of
passing on the allocated memory between one phase and another.
It is time we admit that separating the preparation from the commit
phase is something that is best left for the driver to decide, and not
something that should be baked into the API, especially since there are
no switchdev callers that depend on this.
This patch removes the struct switchdev_trans member from switchdev port
attribute notifier structures, and converts drivers to not look at this
member.
In part, this patch contains a revert of my previous commit 2e554a7a5d8a
("net: dsa: propagate switchdev vlan_filtering prepare phase to
drivers").
For the most part, the conversion was trivial except for:
- Rocker's world implementation based on Broadcom OF-DPA had an odd
implementation of ofdpa_port_attr_bridge_flags_set. The conversion was
done mechanically, by pasting the implementation twice, then only
keeping the code that would get executed during prepare phase on top,
then only keeping the code that gets executed during the commit phase
on bottom, then simplifying the resulting code until this was obtained.
- DSA's offloading of STP state, bridge flags, VLAN filtering and
multicast router could be converted right away. But the ageing time
could not, so a shim was introduced and this was left for a further
commit.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Acked-by: Linus Walleij <linus.walleij@linaro.org>
Acked-by: Jiri Pirko <jiri@nvidia.com>
Reviewed-by: Kurt Kanzenbach <kurt@linutronix.de> # hellcreek
Reviewed-by: Linus Walleij <linus.walleij@linaro.org> # RTL8366RB
Reviewed-by: Ido Schimmel <idosch@nvidia.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
|
|
The call path of a switchdev VLAN addition to the bridge looks something
like this today:
nbp_vlan_init
| __br_vlan_set_default_pvid
| | |
| | br_afspec |
| | | |
| | v |
| | br_process_vlan_info |
| | | |
| | v |
| | br_vlan_info |
| | / \ /
| | / \ /
| | / \ /
| | / \ /
v v v v v
nbp_vlan_add br_vlan_add ------+
| ^ ^ | |
| / | | |
| / / / |
\ br_vlan_get_master/ / v
\ ^ / / br_vlan_add_existing
\ | / / |
\ | / / /
\ | / / /
\ | / / /
\ | / / /
v | | v /
__vlan_add /
/ | /
/ | /
v | /
__vlan_vid_add | /
\ | /
v v v
br_switchdev_port_vlan_add
The ranges UAPI was introduced to the bridge in commit bdced7ef7838
("bridge: support for multiple vlans and vlan ranges in setlink and
dellink requests") (Jan 10 2015). But the VLAN ranges (parsed in br_afspec)
have always been passed one by one, through struct bridge_vlan_info
tmp_vinfo, to br_vlan_info. So the range never went too far in depth.
Then Scott Feldman introduced the switchdev_port_bridge_setlink function
in commit 47f8328bb1a4 ("switchdev: add new switchdev bridge setlink").
That marked the introduction of the SWITCHDEV_OBJ_PORT_VLAN, which made
full use of the range. But switchdev_port_bridge_setlink was called like
this:
br_setlink
-> br_afspec
-> switchdev_port_bridge_setlink
Basically, the switchdev and the bridge code were not tightly integrated.
Then commit 41c498b9359e ("bridge: restore br_setlink back to original")
came, and switchdev drivers were required to implement
.ndo_bridge_setlink = switchdev_port_bridge_setlink for a while.
In the meantime, commits such as 0944d6b5a2fa ("bridge: try switchdev op
first in __vlan_vid_add/del") finally made switchdev penetrate the
br_vlan_info() barrier and start to develop the call path we have today.
But remember, br_vlan_info() still receives VLANs one by one.
Then Arkadi Sharshevsky refactored the switchdev API in 2017 in commit
29ab586c3d83 ("net: switchdev: Remove bridge bypass support from
switchdev") so that drivers would not implement .ndo_bridge_setlink any
longer. The switchdev_port_bridge_setlink also got deleted.
This refactoring removed the parallel bridge_setlink implementation from
switchdev, and left the only switchdev VLAN objects to be the ones
offloaded from __vlan_vid_add (basically RX filtering) and __vlan_add
(the latter coming from commit 9c86ce2c1ae3 ("net: bridge: Notify about
bridge VLANs")).
That is to say, today the switchdev VLAN object ranges are not used in
the kernel. Refactoring the above call path is a bit complicated, when
the bridge VLAN call path is already a bit complicated.
Let's go off and finish the job of commit 29ab586c3d83 by deleting the
bogus iteration through the VLAN ranges from the drivers. Some aspects
of this feature never made too much sense in the first place. For
example, what is a range of VLANs all having the BRIDGE_VLAN_INFO_PVID
flag supposed to mean, when a port can obviously have a single pvid?
This particular configuration _is_ denied as of commit 6623c60dc28e
("bridge: vlan: enforce no pvid flag in vlan ranges"), but from an API
perspective, the driver still has to play pretend, and only offload the
vlan->vid_end as pvid. And the addition of a switchdev VLAN object can
modify the flags of another, completely unrelated, switchdev VLAN
object! (a VLAN that is PVID will invalidate the PVID flag from whatever
other VLAN had previously been offloaded with switchdev and had that
flag. Yet switchdev never notifies about that change, drivers are
supposed to guess).
Nonetheless, having a VLAN range in the API makes error handling look
scarier than it really is - unwinding on errors and all of that.
When in reality, no one really calls this API with more than one VLAN.
It is all unnecessary complexity.
And despite appearing pretentious (two-phase transactional model and
all), the switchdev API is really sloppy because the VLAN addition and
removal operations are not paired with one another (you can add a VLAN
100 times and delete it just once). The bridge notifies through
switchdev of a VLAN addition not only when the flags of an existing VLAN
change, but also when nothing changes. There are switchdev drivers out
there who don't like adding a VLAN that has already been added, and
those checks don't really belong at driver level. But the fact that the
API contains ranges is yet another factor that prevents this from being
addressed in the future.
Of the existing switchdev pieces of hardware, it appears that only
Mellanox Spectrum supports offloading more than one VLAN at a time,
through mlxsw_sp_port_vlan_set. I have kept that code internal to the
driver, because there is some more bookkeeping that makes use of it, but
I deleted it from the switchdev API. But since the switchdev support for
ranges has already been de facto deleted by a Mellanox employee and
nobody noticed for 4 years, I'm going to assume it's not a biggie.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Ido Schimmel <idosch@nvidia.com> # switchdev and mlxsw
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Reviewed-by: Kurt Kanzenbach <kurt@linutronix.de> # hellcreek
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
|
|
Fix build errors when LEDS_CLASS=m and NET_DSA_HIRSCHMANN_HELLCREEK=y.
This limits the latter to =m when LEDS_CLASS=m.
microblaze-linux-ld: drivers/net/dsa/hirschmann/hellcreek_ptp.o: in function `hellcreek_ptp_setup':
(.text+0xf80): undefined reference to `led_classdev_register_ext'
microblaze-linux-ld: (.text+0xf94): undefined reference to `led_classdev_register_ext'
microblaze-linux-ld: drivers/net/dsa/hirschmann/hellcreek_ptp.o: in function `hellcreek_ptp_free':
(.text+0x1018): undefined reference to `led_classdev_unregister'
microblaze-linux-ld: (.text+0x1024): undefined reference to `led_classdev_unregister'
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Reported-by: kernel test robot <lkp@intel.com>
Link: lore.kernel.org/r/202101060655.iUvMJqS2-lkp@intel.com
Cc: Kurt Kanzenbach <kurt@linutronix.de>
Link: https://lore.kernel.org/r/20210106021815.31796-1-rdunlap@infradead.org
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
|
|
When DSA is not loaded when the driver is probed an error message is
printed. But, that's not really an error, just a defer. Use dev_err_probe()
instead.
Signed-off-by: Kurt Kanzenbach <kurt@linutronix.de>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Reviewed-by: Vladimir Oltean <olteanv@gmail.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
|
|
The left shift of u16 variable high is promoted to the type int and
then sign extended to a 64 bit u64 value. If the top bit of high is
set then the upper 32 bits of the result end up being set by the
sign extension. Fix this by explicitly casting the value in high to
a u64 before left shifting by 16 places.
Also, remove the initialisation of variable value to 0 at the start
of each loop iteration as the value is never read and hence the
assignment it is redundant.
Addresses-Coverity: ("Unintended sign extension")
Fixes: e4b27ebc780f ("net: dsa: Add DSA driver for Hirschmann Hellcreek switches")
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Reviewed-by: Kurt Kanzenbach <kurt@linutronix.de>
Link: https://lore.kernel.org/r/20201109124008.2079873-1-colin.king@canonical.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
|
|
The switch has two controllable I/Os which are usually connected to LEDs. This
is useful to immediately visually see the PTP status.
These provide two signals:
* is_gm
This LED can be activated if the current device is the grand master in that
PTP domain.
* sync_good
This LED can be activated if the current device is in sync with the network
time.
Expose these via the LED framework to be controlled via user space
e.g. linuxptp.
Signed-off-by: Kurt Kanzenbach <kurt@linutronix.de>
Reviewed-by: Andrew Lunn <andrew@lunn.ch>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
|
|
The switch has the ability to take hardware generated time stamps per port for
PTPv2 event messages in Rx and Tx direction. That is useful for achieving needed
time synchronization precision for TSN devices/switches. So add support for it.
There are two directions:
* RX
The switch has a single register per port to capture a timestamp. That
mechanism is not used due to correlation problems. If the software processing
is too slow and a PTPv2 event message is received before the previous one has
been processed, false timestamps will be captured. Therefore, the switch can
do "inline" timestamping which means it can insert the nanoseconds part of
the timestamp directly into the PTPv2 event message. The reserved field (4
bytes) is leveraged for that. This might not be in accordance with (older)
PTP standards, but is the only way to get reliable results.
* TX
In Tx direction there is no correlation problem, because the software and the
driver has to ensure that only one event message is "on the fly". However,
the switch provides also a mechanism to check whether a timestamp is
lost. That can only happen when a timestamp is read and at this point another
message is timestamped. So, that lost bit is checked just in case to indicate
to the user that the driver or the software is somewhat buggy.
Signed-off-by: Kamil Alkhouri <kamil.alkhouri@hs-offenburg.de>
Signed-off-by: Kurt Kanzenbach <kurt@linutronix.de>
Acked-by: Richard Cochran <richardcochran@gmail.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
|
|
The switch has internal PTP hardware clocks. Add support for it. There are three
clocks:
* Synchronized
* Syntonized
* Free running
Currently the synchronized clock is exported to user space which is a good
default for the beginning. The free running clock might be exported later
e.g. for implementing 802.1AS-2011/2020 Time Aware Bridges (TAB). The switch
also supports cross time stamping for that purpose.
The implementation adds support setting/getting the time as well as offset and
frequency adjustments. However, the clock only holds a partial timeofday
timestamp. This is why we track the seconds completely in software (see overflow
work and last_ts).
Furthermore, add the PTP multicast addresses into the FDB to forward that
packages only to the CPU port where they are processed by a PTP program.
Signed-off-by: Kamil Alkhouri <kamil.alkhouri@hs-offenburg.de>
Signed-off-by: Kurt Kanzenbach <kurt@linutronix.de>
Acked-by: Richard Cochran <richardcochran@gmail.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
|
|
Add a basic DSA driver for Hirschmann Hellcreek switches. Those switches are
implementing features needed for Time Sensitive Networking (TSN) such as support
for the Time Precision Protocol and various shapers like the Time Aware Shaper.
This driver includes basic support for networking:
* VLAN handling
* FDB handling
* Port statistics
* STP
* Phylink
Signed-off-by: Kurt Kanzenbach <kurt@linutronix.de>
Reviewed-by: Vladimir Oltean <olteanv@gmail.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
|