Age | Commit message (Collapse) | Author |
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull SMP cross-CPU function-call updates from Ingo Molnar:
- Remove diagnostics and adjust config for CSD lock diagnostics
- Add a generic IPI-sending tracepoint, as currently there's no easy
way to instrument IPI origins: it's arch dependent and for some major
architectures it's not even consistently available.
* tag 'smp-core-2023-04-27' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
trace,smp: Trace all smp_function_call*() invocations
trace: Add trace_ipi_send_cpu()
sched, smp: Trace smp callback causing an IPI
smp: reword smp call IPI comment
treewide: Trace IPIs sent via smp_send_reschedule()
irq_work: Trace self-IPIs sent via arch_irq_work_raise()
smp: Trace IPIs sent via arch_send_call_function_ipi_mask()
sched, smp: Trace IPIs sent via send_call_function_single_ipi()
trace: Add trace_ipi_send_cpumask()
kernel/smp: Make csdlock_debug= resettable
locking/csd_lock: Remove per-CPU data indirection from CSD lock debugging
locking/csd_lock: Remove added data from CSD lock debugging
locking/csd_lock: Add Kconfig option for csd_debug default
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull objtool updates from Ingo Molnar:
- Mark arch_cpu_idle_dead() __noreturn, make all architectures &
drivers that did this inconsistently follow this new, common
convention, and fix all the fallout that objtool can now detect
statically
- Fix/improve the ORC unwinder becoming unreliable due to
UNWIND_HINT_EMPTY ambiguity, split it into UNWIND_HINT_END_OF_STACK
and UNWIND_HINT_UNDEFINED to resolve it
- Fix noinstr violations in the KCSAN code and the lkdtm/stackleak code
- Generate ORC data for __pfx code
- Add more __noreturn annotations to various kernel startup/shutdown
and panic functions
- Misc improvements & fixes
* tag 'objtool-core-2023-04-27' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (52 commits)
x86/hyperv: Mark hv_ghcb_terminate() as noreturn
scsi: message: fusion: Mark mpt_halt_firmware() __noreturn
x86/cpu: Mark {hlt,resume}_play_dead() __noreturn
btrfs: Mark btrfs_assertfail() __noreturn
objtool: Include weak functions in global_noreturns check
cpu: Mark nmi_panic_self_stop() __noreturn
cpu: Mark panic_smp_self_stop() __noreturn
arm64/cpu: Mark cpu_park_loop() and friends __noreturn
x86/head: Mark *_start_kernel() __noreturn
init: Mark start_kernel() __noreturn
init: Mark [arch_call_]rest_init() __noreturn
objtool: Generate ORC data for __pfx code
x86/linkage: Fix padding for typed functions
objtool: Separate prefix code from stack validation code
objtool: Remove superfluous dead_end_function() check
objtool: Add symbol iteration helpers
objtool: Add WARN_INSN()
scripts/objdump-func: Support multiple functions
context_tracking: Fix KCSAN noinstr violation
objtool: Add stackleak instrumentation to uaccess safe list
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/mcgrof/linux
Pull module updates from Luis Chamberlain:
"The summary of the changes for this pull requests is:
- Song Liu's new struct module_memory replacement
- Nick Alcock's MODULE_LICENSE() removal for non-modules
- My cleanups and enhancements to reduce the areas where we vmalloc
module memory for duplicates, and the respective debug code which
proves the remaining vmalloc pressure comes from userspace.
Most of the changes have been in linux-next for quite some time except
the minor fixes I made to check if a module was already loaded prior
to allocating the final module memory with vmalloc and the respective
debug code it introduces to help clarify the issue. Although the
functional change is small it is rather safe as it can only *help*
reduce vmalloc space for duplicates and is confirmed to fix a bootup
issue with over 400 CPUs with KASAN enabled. I don't expect stable
kernels to pick up that fix as the cleanups would have also had to
have been picked up. Folks on larger CPU systems with modules will
want to just upgrade if vmalloc space has been an issue on bootup.
Given the size of this request, here's some more elaborate details:
The functional change change in this pull request is the very first
patch from Song Liu which replaces the 'struct module_layout' with a
new 'struct module_memory'. The old data structure tried to put
together all types of supported module memory types in one data
structure, the new one abstracts the differences in memory types in a
module to allow each one to provide their own set of details. This
paves the way in the future so we can deal with them in a cleaner way.
If you look at changes they also provide a nice cleanup of how we
handle these different memory areas in a module. This change has been
in linux-next since before the merge window opened for v6.3 so to
provide more than a full kernel cycle of testing. It's a good thing as
quite a bit of fixes have been found for it.
Jason Baron then made dynamic debug a first class citizen module user
by using module notifier callbacks to allocate / remove module
specific dynamic debug information.
Nick Alcock has done quite a bit of work cross-tree to remove module
license tags from things which cannot possibly be module at my request
so to:
a) help him with his longer term tooling goals which require a
deterministic evaluation if a piece a symbol code could ever be
part of a module or not. But quite recently it is has been made
clear that tooling is not the only one that would benefit.
Disambiguating symbols also helps efforts such as live patching,
kprobes and BPF, but for other reasons and R&D on this area is
active with no clear solution in sight.
b) help us inch closer to the now generally accepted long term goal
of automating all the MODULE_LICENSE() tags from SPDX license tags
In so far as a) is concerned, although module license tags are a no-op
for non-modules, tools which would want create a mapping of possible
modules can only rely on the module license tag after the commit
8b41fc4454e ("kbuild: create modules.builtin without
Makefile.modbuiltin or tristate.conf").
Nick has been working on this *for years* and AFAICT I was the only
one to suggest two alternatives to this approach for tooling. The
complexity in one of my suggested approaches lies in that we'd need a
possible-obj-m and a could-be-module which would check if the object
being built is part of any kconfig build which could ever lead to it
being part of a module, and if so define a new define
-DPOSSIBLE_MODULE [0].
A more obvious yet theoretical approach I've suggested would be to
have a tristate in kconfig imply the same new -DPOSSIBLE_MODULE as
well but that means getting kconfig symbol names mapping to modules
always, and I don't think that's the case today. I am not aware of
Nick or anyone exploring either of these options. Quite recently Josh
Poimboeuf has pointed out that live patching, kprobes and BPF would
benefit from resolving some part of the disambiguation as well but for
other reasons. The function granularity KASLR (fgkaslr) patches were
mentioned but Joe Lawrence has clarified this effort has been dropped
with no clear solution in sight [1].
In the meantime removing module license tags from code which could
never be modules is welcomed for both objectives mentioned above. Some
developers have also welcomed these changes as it has helped clarify
when a module was never possible and they forgot to clean this up, and
so you'll see quite a bit of Nick's patches in other pull requests for
this merge window. I just picked up the stragglers after rc3. LWN has
good coverage on the motivation behind this work [2] and the typical
cross-tree issues he ran into along the way. The only concrete blocker
issue he ran into was that we should not remove the MODULE_LICENSE()
tags from files which have no SPDX tags yet, even if they can never be
modules. Nick ended up giving up on his efforts due to having to do
this vetting and backlash he ran into from folks who really did *not
understand* the core of the issue nor were providing any alternative /
guidance. I've gone through his changes and dropped the patches which
dropped the module license tags where an SPDX license tag was missing,
it only consisted of 11 drivers. To see if a pull request deals with a
file which lacks SPDX tags you can just use:
./scripts/spdxcheck.py -f \
$(git diff --name-only commid-id | xargs echo)
You'll see a core module file in this pull request for the above, but
that's not related to his changes. WE just need to add the SPDX
license tag for the kernel/module/kmod.c file in the future but it
demonstrates the effectiveness of the script.
Most of Nick's changes were spread out through different trees, and I
just picked up the slack after rc3 for the last kernel was out. Those
changes have been in linux-next for over two weeks.
The cleanups, debug code I added and final fix I added for modules
were motivated by David Hildenbrand's report of boot failing on a
systems with over 400 CPUs when KASAN was enabled due to running out
of virtual memory space. Although the functional change only consists
of 3 lines in the patch "module: avoid allocation if module is already
present and ready", proving that this was the best we can do on the
modules side took quite a bit of effort and new debug code.
The initial cleanups I did on the modules side of things has been in
linux-next since around rc3 of the last kernel, the actual final fix
for and debug code however have only been in linux-next for about a
week or so but I think it is worth getting that code in for this merge
window as it does help fix / prove / evaluate the issues reported with
larger number of CPUs. Userspace is not yet fixed as it is taking a
bit of time for folks to understand the crux of the issue and find a
proper resolution. Worst come to worst, I have a kludge-of-concept [3]
of how to make kernel_read*() calls for modules unique / converge
them, but I'm currently inclined to just see if userspace can fix this
instead"
Link: https://lore.kernel.org/all/Y/kXDqW+7d71C4wz@bombadil.infradead.org/ [0]
Link: https://lkml.kernel.org/r/025f2151-ce7c-5630-9b90-98742c97ac65@redhat.com [1]
Link: https://lwn.net/Articles/927569/ [2]
Link: https://lkml.kernel.org/r/20230414052840.1994456-3-mcgrof@kernel.org [3]
* tag 'modules-6.4-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/mcgrof/linux: (121 commits)
module: add debugging auto-load duplicate module support
module: stats: fix invalid_mod_bytes typo
module: remove use of uninitialized variable len
module: fix building stats for 32-bit targets
module: stats: include uapi/linux/module.h
module: avoid allocation if module is already present and ready
module: add debug stats to help identify memory pressure
module: extract patient module check into helper
modules/kmod: replace implementation with a semaphore
Change DEFINE_SEMAPHORE() to take a number argument
module: fix kmemleak annotations for non init ELF sections
module: Ignore L0 and rename is_arm_mapping_symbol()
module: Move is_arm_mapping_symbol() to module_symbol.h
module: Sync code of is_arm_mapping_symbol()
scripts/gdb: use mem instead of core_layout to get the module address
interconnect: remove module-related code
interconnect: remove MODULE_LICENSE in non-modules
zswap: remove MODULE_LICENSE in non-modules
zpool: remove MODULE_LICENSE in non-modules
x86/mm/dump_pagetables: remove MODULE_LICENSE in non-modules
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core
Pull driver core updates from Greg KH:
"Here is the large set of driver core changes for 6.4-rc1.
Once again, a busy development cycle, with lots of changes happening
in the driver core in the quest to be able to move "struct bus" and
"struct class" into read-only memory, a task now complete with these
changes.
This will make the future rust interactions with the driver core more
"provably correct" as well as providing more obvious lifetime rules
for all busses and classes in the kernel.
The changes required for this did touch many individual classes and
busses as many callbacks were changed to take const * parameters
instead. All of these changes have been submitted to the various
subsystem maintainers, giving them plenty of time to review, and most
of them actually did so.
Other than those changes, included in here are a small set of other
things:
- kobject logging improvements
- cacheinfo improvements and updates
- obligatory fw_devlink updates and fixes
- documentation updates
- device property cleanups and const * changes
- firwmare loader dependency fixes.
All of these have been in linux-next for a while with no reported
problems"
* tag 'driver-core-6.4-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core: (120 commits)
device property: make device_property functions take const device *
driver core: update comments in device_rename()
driver core: Don't require dynamic_debug for initcall_debug probe timing
firmware_loader: rework crypto dependencies
firmware_loader: Strip off \n from customized path
zram: fix up permission for the hot_add sysfs file
cacheinfo: Add use_arch[|_cache]_info field/function
arch_topology: Remove early cacheinfo error message if -ENOENT
cacheinfo: Check cache properties are present in DT
cacheinfo: Check sib_leaf in cache_leaves_are_shared()
cacheinfo: Allow early level detection when DT/ACPI info is missing/broken
cacheinfo: Add arm64 early level initializer implementation
cacheinfo: Add arch specific early level initializer
tty: make tty_class a static const structure
driver core: class: remove struct class_interface * from callbacks
driver core: class: mark the struct class in struct class_interface constant
driver core: class: make class_register() take a const *
driver core: class: mark class_release() as taking a const *
driver core: remove incorrect comment for device_create*
MIPS: vpe-cmp: remove module owner pointer from struct class usage.
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Will Deacon:
"ACPI:
- Improve error reporting when failing to manage SDEI on AGDI device
removal
Assembly routines:
- Improve register constraints so that the compiler can make use of
the zero register instead of moving an immediate #0 into a GPR
- Allow the compiler to allocate the registers used for CAS
instructions
CPU features and system registers:
- Cleanups to the way in which CPU features are identified from the
ID register fields
- Extend system register definition generation to handle Enum types
when defining shared register fields
- Generate definitions for new _EL2 registers and add new fields for
ID_AA64PFR1_EL1
- Allow SVE to be disabled separately from SME on the kernel
command-line
Tracing:
- Support for "direct calls" in ftrace, which enables BPF tracing for
arm64
Kdump:
- Don't bother unmapping the crashkernel from the linear mapping,
which then allows us to use huge (block) mappings and reduce TLB
pressure when a crashkernel is loaded.
Memory management:
- Try again to remove data cache invalidation from the coherent DMA
allocation path
- Simplify the fixmap code by mapping at page granularity
- Allow the kfence pool to be allocated early, preventing the rest of
the linear mapping from being forced to page granularity
Perf and PMU:
- Move CPU PMU code out to drivers/perf/ where it can be reused by
the 32-bit ARM architecture when running on ARMv8 CPUs
- Fix race between CPU PMU probing and pKVM host de-privilege
- Add support for Apple M2 CPU PMU
- Adjust the generic PERF_COUNT_HW_BRANCH_INSTRUCTIONS event
dynamically, depending on what the CPU actually supports
- Minor fixes and cleanups to system PMU drivers
Stack tracing:
- Use the XPACLRI instruction to strip PAC from pointers, rather than
rolling our own function in C
- Remove redundant PAC removal for toolchains that handle this in
their builtins
- Make backtracing more resilient in the face of instrumentation
Miscellaneous:
- Fix single-step with KGDB
- Remove harmless warning when 'nokaslr' is passed on the kernel
command-line
- Minor fixes and cleanups across the board"
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (72 commits)
KVM: arm64: Ensure CPU PMU probes before pKVM host de-privilege
arm64: kexec: include reboot.h
arm64: delete dead code in this_cpu_set_vectors()
arm64/cpufeature: Use helper macro to specify ID register for capabilites
drivers/perf: hisi: add NULL check for name
drivers/perf: hisi: Remove redundant initialized of pmu->name
arm64/cpufeature: Consistently use symbolic constants for min_field_value
arm64/cpufeature: Pull out helper for CPUID register definitions
arm64/sysreg: Convert HFGITR_EL2 to automatic generation
ACPI: AGDI: Improve error reporting for problems during .remove()
arm64: kernel: Fix kernel warning when nokaslr is passed to commandline
perf/arm-cmn: Fix port detection for CMN-700
arm64: kgdb: Set PSTATE.SS to 1 to re-enable single-step
arm64: move PAC masks to <asm/pointer_auth.h>
arm64: use XPACLRI to strip PAC
arm64: avoid redundant PAC stripping in __builtin_return_address()
arm64/sme: Fix some comments of ARM SME
arm64/signal: Alloc tpidr2 sigframe after checking system_supports_tpidr2()
arm64/signal: Use system_supports_tpidr2() to check TPIDR2
arm64/idreg: Don't disable SME when disabling SVE
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull timers and timekeeping updates from Thomas Gleixner:
- Improve the VDSO build time checks to cover all dynamic relocations
VDSO does not allow dynamic relocations, but the build time check is
incomplete and fragile.
It's based on architectures specifying the relocation types to search
for and does not handle R_*_NONE relocation entries correctly.
R_*_NONE relocations are injected by some GNU ld variants if they
fail to determine the exact .rel[a]/dyn_size to cover trailing zeros.
R_*_NONE relocations must be ignored by dynamic loaders, so they
should be ignored in the build time check too.
Remove the architecture specific relocation types to check for and
validate strictly that no other relocations than R_*_NONE end up in
the VSDO .so file.
- Prefer signal delivery to the current thread for
CLOCK_PROCESS_CPUTIME_ID based posix-timers
Such timers prefer to deliver the signal to the main thread of a
process even if the context in which the timer expires is the current
task. This has the downside that it might wake up an idle thread.
As there is no requirement or guarantee that the signal has to be
delivered to the main thread, avoid this by preferring the current
task if it is part of the thread group which shares sighand.
This not only avoids waking idle threads, it also distributes the
signal delivery in case of multiple timers firing in the context of
different threads close to each other better.
- Align the tick period properly (again)
For a long time the tick was starting at CLOCK_MONOTONIC zero, which
allowed users space applications to either align with the tick or to
place a periodic computation so that it does not interfere with the
tick. The alignement of the tick period was more by chance than by
intention as the tick is set up before a high resolution clocksource
is installed, i.e. timekeeping is still tick based and the tick
period advances from there.
The early enablement of sched_clock() broke this alignement as the
time accumulated by sched_clock() is taken into account when
timekeeping is initialized. So the base value now(CLOCK_MONOTONIC) is
not longer a multiple of tick periods, which breaks applications
which relied on that behaviour.
Cure this by aligning the tick starting point to the next multiple of
tick periods, i.e 1000ms/CONFIG_HZ.
- A set of NOHZ fixes and enhancements:
* Cure the concurrent writer race for idle and IO sleeptime
statistics
The statitic values which are exposed via /proc/stat are updated
from the CPU local idle exit and remotely by cpufreq, but that
happens without any form of serialization. As a consequence
sleeptimes can be accounted twice or worse.
Prevent this by restricting the accumulation writeback to the CPU
local idle exit and let the remote access compute the accumulated
value.
* Protect idle/iowait sleep time with a sequence count
Reading idle/iowait sleep time, e.g. from /proc/stat, can race
with idle exit updates. As a consequence the readout may result
in random and potentially going backwards values.
Protect this by a sequence count, which fixes the idle time
statistics issue, but cannot fix the iowait time problem because
iowait time accounting races with remote wake ups decrementing
the remote runqueues nr_iowait counter. The latter is impossible
to fix, so the only way to deal with that is to document it
properly and to remove the assertion in the selftest which
triggers occasionally due to that.
* Restructure struct tick_sched for better cache layout
* Some small cleanups and a better cache layout for struct
tick_sched
- Implement the missing timer_wait_running() callback for POSIX CPU
timers
For unknown reason the introduction of the timer_wait_running()
callback missed to fixup posix CPU timers, which went unnoticed for
almost four years.
While initially only targeted to prevent livelocks between a timer
deletion and the timer expiry function on PREEMPT_RT enabled kernels,
it turned out that fixing this for mainline is not as trivial as just
implementing a stub similar to the hrtimer/timer callbacks.
The reason is that for CONFIG_POSIX_CPU_TIMERS_TASK_WORK enabled
systems there is a livelock issue independent of RT.
CONFIG_POSIX_CPU_TIMERS_TASK_WORK=y moves the expiry of POSIX CPU
timers out from hard interrupt context to task work, which is handled
before returning to user space or to a VM. The expiry mechanism moves
the expired timers to a stack local list head with sighand lock held.
Once sighand is dropped the task can be preempted and a task which
wants to delete a timer will spin-wait until the expiry task is
scheduled back in. In the worst case this will end up in a livelock
when the preempting task and the expiry task are pinned on the same
CPU.
The timer wheel has a timer_wait_running() mechanism for RT, which
uses a per CPU timer-base expiry lock which is held by the expiry
code and the task waiting for the timer function to complete blocks
on that lock.
This does not work in the same way for posix CPU timers as there is
no timer base and expiry for process wide timers can run on any task
belonging to that process, but the concept of waiting on an expiry
lock can be used too in a slightly different way.
Add a per task mutex to struct posix_cputimers_work, let the expiry
task hold it accross the expiry function and let the deleting task
which waits for the expiry to complete block on the mutex.
In the non-contended case this results in an extra
mutex_lock()/unlock() pair on both sides.
This avoids spin-waiting on a task which is scheduled out, prevents
the livelock and cures the problem for RT and !RT systems
* tag 'timers-core-2023-04-24' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
posix-cpu-timers: Implement the missing timer_wait_running callback
selftests/proc: Assert clock_gettime(CLOCK_BOOTTIME) VS /proc/uptime monotonicity
selftests/proc: Remove idle time monotonicity assertions
MAINTAINERS: Remove stale email address
timers/nohz: Remove middle-function __tick_nohz_idle_stop_tick()
timers/nohz: Add a comment about broken iowait counter update race
timers/nohz: Protect idle/iowait sleep time under seqcount
timers/nohz: Only ever update sleeptime from idle exit
timers/nohz: Restructure and reshuffle struct tick_sched
tick/common: Align tick period with the HZ tick.
selftests/timers/posix_timers: Test delivery of signals across threads
posix-timers: Prefer delivery of signals to the current thread
vdso: Improve cmd_vdso_check to check all dynamic relocations
|
|
In preparation for improving objtool's handling of weak noreturn
functions, mark start_kernel(), arch_call_rest_init(), and rest_init()
__noreturn.
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Link: https://lore.kernel.org/r/7194ed8a989a85b98d92e62df660f4a90435a723.1681342859.git.jpoimboe@kernel.org
|
|
We need the fixes in here for testing, as well as the driver core
changes for documentation updates to build on.
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Return -EFAULT if put_user() for the PTRACE_GET_LAST_BREAK
request fails, instead of silently ignoring it.
Reviewed-by: Sven Schnelle <svens@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
|
|
To be able to trace invocations of smp_send_reschedule(), rename the
arch-specific definitions of it to arch_smp_send_reschedule() and wrap it
into an smp_send_reschedule() that contains a tracepoint.
Changes to include the declaration of the tracepoint were driven by the
following coccinelle script:
@func_use@
@@
smp_send_reschedule(...);
@include@
@@
#include <trace/events/ipi.h>
@no_include depends on func_use && !include@
@@
#include <...>
+
+ #include <trace/events/ipi.h>
[csky bits]
[riscv bits]
Signed-off-by: Valentin Schneider <vschneid@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Guo Ren <guoren@kernel.org>
Acked-by: Palmer Dabbelt <palmer@rivosinc.com>
Link: https://lore.kernel.org/r/20230307143558.294354-6-vschneid@redhat.com
|
|
The actual intention is that no dynamic relocation exists in the VDSO. For
this the VDSO build validates that the resulting .so file does not have any
relocations which are specified via $(ARCH_REL_TYPE_ABS) per architecture,
which is fragile as e.g. ARM64 lacks an entry for R_AARCH64_RELATIVE. Aside
of that ARCH_REL_TYPE_ABS is a misnomer as it checks for relative
relocations too.
However, some GNU ld ports produce unneeded R_*_NONE relocation entries. If
a port fails to determine the exact .rel[a].dyn size, the trailing zeros
become R_*_NONE relocations. E.g. ld's powerpc port recently fixed
https://sourceware.org/bugzilla/show_bug.cgi?id=29540). R_*_NONE are
generally a no-op in the dynamic loaders. So just ignore them.
Remove the ARCH_REL_TYPE_ABS defines and just validate that the resulting
.so file does not contain any R_* relocation entries except R_*_NONE.
Signed-off-by: Fangrui Song <maskray@google.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Vincenzo Frascino <vincenzo.frascino@arm.com> # for aarch64
Reviewed-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Reviewed-by: Vincenzo Frascino <vincenzo.frascino@arm.com> # for vDSO, aarch64
Acked-by: Michael Ellerman <mpe@ellerman.id.au> (powerpc)
Link: https://lore.kernel.org/r/20230310190750.3323802-1-maskray@google.com
|
|
The ftrace selftest code has a trace_direct_tramp() function which it
uses as a direct call trampoline. This happens to work on x86, since the
direct call's return address is in the usual place, and can be returned
to via a RET, but in general the calling convention for direct calls is
different from regular function calls, and requires a trampoline written
in assembly.
On s390, regular function calls place the return address in %r14, and an
ftrace patch-site in an instrumented function places the trampoline's
return address (which is within the instrumented function) in %r0,
preserving the original %r14 value in-place. As a regular C function
will return to the address in %r14, using a C function as the trampoline
results in the trampoline returning to the caller of the instrumented
function, skipping the body of the instrumented function.
Note that the s390 issue is not detcted by the ftrace selftest code, as
the instrumented function is trivial, and returning back into the caller
happens to be equivalent.
On arm64, regular function calls place the return address in x30, and
an ftrace patch-site in an instrumented function saves this into r9
and places the trampoline's return address (within the instrumented
function) in x30. A regular C function will return to the address in
x30, but will not restore x9 into x30. Consequently, using a C function
as the trampoline results in returning to the trampoline's return
address having corrupted x30, such that when the instrumented function
returns, it will return back into itself.
To avoid future issues in this area, remove the trace_direct_tramp()
function, and require that each architecture with direct calls provides
a stub trampoline, named ftrace_stub_direct_tramp. This can be written
to handle the architecture's trampoline calling convention, and in
future could be used elsewhere (e.g. in the ftrace ops sample, to
measure the overhead of direct calls), so we may as well always build it
in.
Link: https://lkml.kernel.org/r/20230321140424.345218-8-revest@chromium.org
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Li Huafei <lihuafei1@huawei.com>
Cc: Xu Kuohai <xukuohai@huawei.com>
Signed-off-by: Florent Revest <revest@chromium.org>
Acked-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
|
|
Direct access to the struct bus_type dev_root pointer is going away soon
so replace that with a call to bus_get_dev_root() instead, which is what
it is there for.
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Christian Borntraeger <borntraeger@linux.ibm.com>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Ilya Leoshkevich <iii@linux.ibm.com>
Cc: linux-s390@vger.kernel.org
Acked-by: Heiko Carstens <hca@linux.ibm.com>
Link: https://lore.kernel.org/r/20230313182918.1312597-19-gregkh@linuxfoundation.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Direct access to the struct bus_type dev_root pointer is going away soon
so replace that with a call to bus_get_dev_root() instead, which is what
it is there for.
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Alexander Gordeev <agordeev@linux.ibm.com>
Cc: Christian Borntraeger <borntraeger@linux.ibm.com>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: linux-s390@vger.kernel.org
Acked-by: Heiko Carstens <hca@linux.ibm.com>
Link: https://lore.kernel.org/r/20230313182918.1312597-18-gregkh@linuxfoundation.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
module_layout manages different types of memory (text, data, rodata, etc.)
in one allocation, which is problematic for some reasons:
1. It is hard to enable CONFIG_STRICT_MODULE_RWX.
2. It is hard to use huge pages in modules (and not break strict rwx).
3. Many archs uses module_layout for arch-specific data, but it is not
obvious how these data are used (are they RO, RX, or RW?)
Improve the scenario by replacing 2 (or 3) module_layout per module with
up to 7 module_memory per module:
MOD_TEXT,
MOD_DATA,
MOD_RODATA,
MOD_RO_AFTER_INIT,
MOD_INIT_TEXT,
MOD_INIT_DATA,
MOD_INIT_RODATA,
and allocating them separately. This adds slightly more entries to
mod_tree (from up to 3 entries per module, to up to 7 entries per
module). However, this at most adds a small constant overhead to
__module_address(), which is expected to be fast.
Various archs use module_layout for different data. These data are put
into different module_memory based on their location in module_layout.
IOW, data that used to go with text is allocated with MOD_MEM_TYPE_TEXT;
data that used to go with data is allocated with MOD_MEM_TYPE_DATA, etc.
module_memory simplifies quite some of the module code. For example,
ARCH_WANTS_MODULES_DATA_IN_VMALLOC is a lot cleaner, as it just uses a
different allocator for the data. kernel/module/strict_rwx.c is also
much cleaner with module_memory.
Signed-off-by: Song Liu <song@kernel.org>
Cc: Luis Chamberlain <mcgrof@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Guenter Roeck <linux@roeck-us.net>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Reviewed-by: Luis Chamberlain <mcgrof@kernel.org>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
|
|
Before commit 076cbf5d2163 ("x86/xen: don't let xen_pv_play_dead()
return"), in Xen, when a previously offlined CPU was brought back
online, it unexpectedly resumed execution where it left off in the
middle of the idle loop.
There were some hacks to make that work, but the behavior was surprising
as do_idle() doesn't expect an offlined CPU to return from the dead (in
arch_cpu_idle_dead()).
Now that Xen has been fixed, and the arch-specific implementations of
arch_cpu_idle_dead() also don't return, give it a __noreturn attribute.
This will cause the compiler to complain if an arch-specific
implementation might return. It also improves code generation for both
caller and callee.
Also fixes the following warning:
vmlinux.o: warning: objtool: do_idle+0x25f: unreachable instruction
Reported-by: Paul E. McKenney <paulmck@kernel.org>
Tested-by: Paul E. McKenney <paulmck@kernel.org>
Link: https://lore.kernel.org/r/60d527353da8c99d4cf13b6473131d46719ed16d.1676358308.git.jpoimboe@kernel.org
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux
Pull more s390 updates from Heiko Carstens:
- Add empty command line parameter handling stubs to kernel for all
command line parameters which are handled in the decompressor. This
avoids invalid "Unknown kernel command line parameters" messages from
the kernel, and also avoids that these will be incorrectly passed to
user space. This caused already confusion, therefore add the empty
stubs
- Add missing phys_to_virt() handling to machine check handler
- Introduce and use a union to be used for zcrypt inline assemblies.
This makes sure that only a register wide member of the union is
passed as input and output parameter to inline assemblies, while
usual C code uses other members of the union to access bit fields of
it
- Add and use a READ_ONCE_ALIGNED_128() macro, which can be used to
atomically read a 128-bit value from memory. This replaces the
(mis-)use of the 128-bit cmpxchg operation to do the same in cpum_sf
code. Currently gcc does not generate the used lpq instruction if
__READ_ONCE() is used for aligned 128-bit accesses, therefore use
this s390 specific helper
- Simplify machine check handler code if a task needs to be killed
because of e.g. register corruption due to a machine malfunction
- Perform CPU reset to clear pending interrupts and TLB entries on an
already stopped target CPU before delegating work to it
- Generate arch/s390/boot/vmlinux.map link map for the decompressor,
when CONFIG_VMLINUX_MAP is enabled for debugging purposes
- Fix segment type handling for dcssblk devices. It incorrectly always
returned type "READ/WRITE" even for read-only segements, which can
result in a kernel panic if somebody tries to write to a read-only
device
- Sort config S390 select list again
- Fix two kprobe reenter bugs revealed by a recently added kprobe kunit
test
* tag 's390-6.3-2' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux:
s390/kprobes: fix current_kprobe never cleared after kprobes reenter
s390/kprobes: fix irq mask clobbering on kprobe reenter from post_handler
s390/Kconfig: sort config S390 select list again
s390/extmem: return correct segment type in __segment_load()
s390/decompressor: add link map saving
s390/smp: perform cpu reset before delegating work to target cpu
s390/mcck: cleanup user process termination path
s390/cpum_sf: use READ_ONCE_ALIGNED_128() instead of 128-bit cmpxchg
s390/rwonce: add READ_ONCE_ALIGNED_128() macro
s390/ap,zcrypt,vfio: introduce and use ap_queue_status_reg union
s390/nmi: fix virtual-physical address confusion
s390/setup: do not complain about parameters handled in decompressor
|
|
Recent test_kprobe_missed kprobes kunit test uncovers the following
problem. Once kprobe is triggered from another kprobe (kprobe reenter),
all future kprobes on this cpu are considered as kprobe reenter, thus
pre_handler and post_handler are not being called and kprobes are counted
as "missed".
Commit b9599798f953 ("[S390] kprobes: activation and deactivation")
introduced a simpler scheme for kprobes (de)activation and status
tracking by using push_kprobe/pop_kprobe, which supposed to work for
both initial kprobe entry as well as kprobe reentry and helps to avoid
handling those two cases differently. The problem is that a sequence of
calls in case of kprobes reenter:
push_kprobe() <- NULL (current_kprobe)
push_kprobe() <- kprobe1 (current_kprobe)
pop_kprobe() -> kprobe1 (current_kprobe)
pop_kprobe() -> kprobe1 (current_kprobe)
leaves "kprobe1" as "current_kprobe" on this cpu, instead of setting it
to NULL. In fact push_kprobe/pop_kprobe can only store a single state
(there is just one prev_kprobe in kprobe_ctlblk). Which is a hack but
sufficient, there is no need to have another prev_kprobe just to store
NULL. To make a simple and backportable fix simply reset "prev_kprobe"
when kprobe is poped from this "stack". No need to worry about
"kprobe_status" in this case, because its value is only checked when
current_kprobe != NULL.
Cc: stable@vger.kernel.org
Fixes: b9599798f953 ("[S390] kprobes: activation and deactivation")
Reviewed-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
|
|
Recent test_kprobe_missed kprobes kunit test uncovers the following error
(reported when CONFIG_DEBUG_ATOMIC_SLEEP is enabled):
BUG: sleeping function called from invalid context at kernel/locking/mutex.c:580
in_atomic(): 0, irqs_disabled(): 1, non_block: 0, pid: 662, name: kunit_try_catch
preempt_count: 0, expected: 0
RCU nest depth: 0, expected: 0
no locks held by kunit_try_catch/662.
irq event stamp: 280
hardirqs last enabled at (279): [<00000003e60a3d42>] __do_pgm_check+0x17a/0x1c0
hardirqs last disabled at (280): [<00000003e3bd774a>] kprobe_exceptions_notify+0x27a/0x318
softirqs last enabled at (0): [<00000003e3c5c890>] copy_process+0x14a8/0x4c80
softirqs last disabled at (0): [<0000000000000000>] 0x0
CPU: 46 PID: 662 Comm: kunit_try_catch Tainted: G N 6.2.0-173644-g44c18d77f0c0 #2
Hardware name: IBM 3931 A01 704 (LPAR)
Call Trace:
[<00000003e60a3a00>] dump_stack_lvl+0x120/0x198
[<00000003e3d02e82>] __might_resched+0x60a/0x668
[<00000003e60b9908>] __mutex_lock+0xc0/0x14e0
[<00000003e60bad5a>] mutex_lock_nested+0x32/0x40
[<00000003e3f7b460>] unregister_kprobe+0x30/0xd8
[<00000003e51b2602>] test_kprobe_missed+0xf2/0x268
[<00000003e51b5406>] kunit_try_run_case+0x10e/0x290
[<00000003e51b7dfa>] kunit_generic_run_threadfn_adapter+0x62/0xb8
[<00000003e3ce30f8>] kthread+0x2d0/0x398
[<00000003e3b96afa>] __ret_from_fork+0x8a/0xe8
[<00000003e60ccada>] ret_from_fork+0xa/0x40
The reason for this error report is that kprobes handling code failed
to restore irqs.
The problem is that when kprobe is triggered from another kprobe
post_handler current sequence of enable_singlestep / disable_singlestep
is the following:
enable_singlestep <- original kprobe (saves kprobe_saved_imask)
enable_singlestep <- kprobe triggered from post_handler (clobbers kprobe_saved_imask)
disable_singlestep <- kprobe triggered from post_handler (restores kprobe_saved_imask)
disable_singlestep <- original kprobe (restores wrong clobbered kprobe_saved_imask)
There is just one kprobe_ctlblk per cpu and both calls saves and
loads irq mask to kprobe_saved_imask. To fix the problem simply move
resume_execution (which calls disable_singlestep) before calling
post_handler. This also fixes the problem that post_handler is called
with pt_regs which were not yet adjusted after single-stepping.
Cc: stable@vger.kernel.org
Fixes: 4ba069b802c2 ("[S390] add kprobes support.")
Reviewed-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
|
|
Clear CPU state (e.g. all TLB entries, prefetched instructions, etc.)
of the target CPU, however without clearing register contents before
starting any work on it.
This puts the target CPU in a more defined state compared to the
current Stop + Restart sigp orders.
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
|
|
If a machine check interrupt hits while user process is
running __s390_handle_mcck() helper function is called
directly from the interrupt handler and terminates the
current process by calling make_task_dead() routine.
The make_task_dead() is not allowed to be called from
interrupt context which forces the machine check handler
switch to the kernel stack and enable local interrupts
first.
The __s390_handle_mcck() could also be called to service
pending work, but this time from the external interrupts
handler. It is the machine check handler that establishes
the work and schedules the external interrupt, therefore
the machine check interrupt itself should be disabled
while reading out the corresponding variable:
local_mcck_disable();
mcck = *this_cpu_ptr(&cpu_mcck);
memset(this_cpu_ptr(&cpu_mcck), 0, sizeof(mcck));
local_mcck_enable();
However, local_mcck_disable() does not have effect when
__s390_handle_mcck() is called directly form the machine
check handler, since the machine check interrupt is still
disabled. Therefore, it is not the opening bracket to the
following local_mcck_enable() function.
Simplify the user process termination flow by scheduling
the external interrupt and killing the affected process
from the interrupt context.
Assume a kernel-generated signal is always delivered and
ignore a value returned by do_send_sig_info() funciton.
Reviewed-by: Heiko Carstens <hca@linux.ibm.com>
Reviewed-by: Sven Schnelle <svens@linux.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
|
|
Use READ_ONCE_ALIGNED_128() to read the previous value in front of a
128-bit cmpxchg loop, instead of (mis-)using a 128-bit cmpxchg operation to
do the same.
This makes the code more readable and is faster.
Link: https://lore.kernel.org/r/20230224100237.3247871-3-hca@linux.ibm.com
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
|
|
When a machine check is received while in SIE, it is reinjected into the
guest in some cases. The respective code needs to access the sie_block,
which is taken from the backed up R14.
Since reinjection only occurs while we are in SIE (i.e. between the
labels sie_entry and sie_leave in entry.S and thus if CIF_MCCK_GUEST is
set), the backed up R14 will always contain a physical address in
s390_backup_mcck_info.
This currently works, because virtual and physical addresses are
the same.
Add phys_to_virt() to resolve the virtual-physical confusion.
Signed-off-by: Nico Boehr <nrb@linux.ibm.com>
Reviewed-by: Claudio Imbrenda <imbrenda@linux.ibm.com>
Reviewed-by: Alexander Gordeev <agordeev@linux.ibm.com>
Link: https://lore.kernel.org/r/20230216121208.4390-2-nrb@linux.ibm.com
Signed-off-by: Janosch Frank <frankja@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
|
|
Currently there are several kernel command line parameters which are
only parsed and handled in decompressor and not known to the kernel.
This leads to the following error message during kernel boot:
Unknown kernel command line parameters "mem=3G nokaslr", will be passed
to user space.
To avoid confusion, register those parameters with an empty stub so that
kernel does not complain about them.
Reported-by: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Reviewed-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild
Pull Kbuild updates from Masahiro Yamada:
- Change V=1 option to print both short log and full command log
- Allow V=1 and V=2 to be combined as V=12
- Make W=1 detect wrong .gitignore files
- Tree-wide cleanups for unused command line arguments passed to Clang
- Stop using -Qunused-arguments with Clang
- Make scripts/setlocalversion handle only correct release tags instead
of any arbitrary annotated tag
- Create Debian and RPM source packages without cleaning the source
tree
- Various cleanups for packaging
* tag 'kbuild-v6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild: (74 commits)
kbuild: rpm-pkg: remove unneeded KERNELRELEASE from modules/headers_install
docs: kbuild: remove description of KBUILD_LDS_MODULE
.gitattributes: use 'dts' diff driver for *.dtso files
kbuild: deb-pkg: improve the usability of source package
kbuild: deb-pkg: fix binary-arch and clean in debian/rules
kbuild: tar-pkg: use tar rules in scripts/Makefile.package
kbuild: make perf-tar*-src-pkg work without relying on git
kbuild: deb-pkg: switch over to source format 3.0 (quilt)
kbuild: deb-pkg: make .orig tarball a hard link if possible
kbuild: deb-pkg: hide KDEB_SOURCENAME from Makefile
kbuild: srcrpm-pkg: create source package without cleaning
kbuild: rpm-pkg: build binary packages from source rpm
kbuild: deb-pkg: create source package without cleaning
kbuild: add a tool to list files ignored by git
Documentation/llvm: add Chimera Linux, Google and Meta datacenters
setlocalversion: use only the correct release tag for git-describe
setlocalversion: clean up the construction of version output
.gitignore: ignore *.cover and *.mbx
kbuild: remove --include-dir MAKEFLAG from top Makefile
kbuild: fix trivial typo in comment
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
- Daniel Verkamp has contributed a memfd series ("mm/memfd: add
F_SEAL_EXEC") which permits the setting of the memfd execute bit at
memfd creation time, with the option of sealing the state of the X
bit.
- Peter Xu adds a patch series ("mm/hugetlb: Make huge_pte_offset()
thread-safe for pmd unshare") which addresses a rare race condition
related to PMD unsharing.
- Several folioification patch serieses from Matthew Wilcox, Vishal
Moola, Sidhartha Kumar and Lorenzo Stoakes
- Johannes Weiner has a series ("mm: push down lock_page_memcg()")
which does perform some memcg maintenance and cleanup work.
- SeongJae Park has added DAMOS filtering to DAMON, with the series
"mm/damon/core: implement damos filter".
These filters provide users with finer-grained control over DAMOS's
actions. SeongJae has also done some DAMON cleanup work.
- Kairui Song adds a series ("Clean up and fixes for swap").
- Vernon Yang contributed the series "Clean up and refinement for maple
tree".
- Yu Zhao has contributed the "mm: multi-gen LRU: memcg LRU" series. It
adds to MGLRU an LRU of memcgs, to improve the scalability of global
reclaim.
- David Hildenbrand has added some userfaultfd cleanup work in the
series "mm: uffd-wp + change_protection() cleanups".
- Christoph Hellwig has removed the generic_writepages() library
function in the series "remove generic_writepages".
- Baolin Wang has performed some maintenance on the compaction code in
his series "Some small improvements for compaction".
- Sidhartha Kumar is doing some maintenance work on struct page in his
series "Get rid of tail page fields".
- David Hildenbrand contributed some cleanup, bugfixing and
generalization of pte management and of pte debugging in his series
"mm: support __HAVE_ARCH_PTE_SWP_EXCLUSIVE on all architectures with
swap PTEs".
- Mel Gorman and Neil Brown have removed the __GFP_ATOMIC allocation
flag in the series "Discard __GFP_ATOMIC".
- Sergey Senozhatsky has improved zsmalloc's memory utilization with
his series "zsmalloc: make zspage chain size configurable".
- Joey Gouly has added prctl() support for prohibiting the creation of
writeable+executable mappings.
The previous BPF-based approach had shortcomings. See "mm: In-kernel
support for memory-deny-write-execute (MDWE)".
- Waiman Long did some kmemleak cleanup and bugfixing in the series
"mm/kmemleak: Simplify kmemleak_cond_resched() & fix UAF".
- T.J. Alumbaugh has contributed some MGLRU cleanup work in his series
"mm: multi-gen LRU: improve".
- Jiaqi Yan has provided some enhancements to our memory error
statistics reporting, mainly by presenting the statistics on a
per-node basis. See the series "Introduce per NUMA node memory error
statistics".
- Mel Gorman has a second and hopefully final shot at fixing a CPU-hog
regression in compaction via his series "Fix excessive CPU usage
during compaction".
- Christoph Hellwig does some vmalloc maintenance work in the series
"cleanup vfree and vunmap".
- Christoph Hellwig has removed block_device_operations.rw_page() in
ths series "remove ->rw_page".
- We get some maple_tree improvements and cleanups in Liam Howlett's
series "VMA tree type safety and remove __vma_adjust()".
- Suren Baghdasaryan has done some work on the maintainability of our
vm_flags handling in the series "introduce vm_flags modifier
functions".
- Some pagemap cleanup and generalization work in Mike Rapoport's
series "mm, arch: add generic implementation of pfn_valid() for
FLATMEM" and "fixups for generic implementation of pfn_valid()"
- Baoquan He has done some work to make /proc/vmallocinfo and
/proc/kcore better represent the real state of things in his series
"mm/vmalloc.c: allow vread() to read out vm_map_ram areas".
- Jason Gunthorpe rationalized the GUP system's interface to the rest
of the kernel in the series "Simplify the external interface for
GUP".
- SeongJae Park wishes to migrate people from DAMON's debugfs interface
over to its sysfs interface. To support this, we'll temporarily be
printing warnings when people use the debugfs interface. See the
series "mm/damon: deprecate DAMON debugfs interface".
- Andrey Konovalov provided the accurately named "lib/stackdepot: fixes
and clean-ups" series.
- Huang Ying has provided a dramatic reduction in migration's TLB flush
IPI rates with the series "migrate_pages(): batch TLB flushing".
- Arnd Bergmann has some objtool fixups in "objtool warning fixes".
* tag 'mm-stable-2023-02-20-13-37' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (505 commits)
include/linux/migrate.h: remove unneeded externs
mm/memory_hotplug: cleanup return value handing in do_migrate_range()
mm/uffd: fix comment in handling pte markers
mm: change to return bool for isolate_movable_page()
mm: hugetlb: change to return bool for isolate_hugetlb()
mm: change to return bool for isolate_lru_page()
mm: change to return bool for folio_isolate_lru()
objtool: add UACCESS exceptions for __tsan_volatile_read/write
kmsan: disable ftrace in kmsan core code
kasan: mark addr_has_metadata __always_inline
mm: memcontrol: rename memcg_kmem_enabled()
sh: initialize max_mapnr
m68k/nommu: add missing definition of ARCH_PFN_OFFSET
mm: percpu: fix incorrect size in pcpu_obj_full_size()
maple_tree: reduce stack usage with gcc-9 and earlier
mm: page_alloc: call panic() when memoryless node allocation fails
mm: multi-gen LRU: avoid futile retries
migrate_pages: move THP/hugetlb migration support check to simplify code
migrate_pages: batch flushing TLB
migrate_pages: share more code between _unmap and _move
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux
Pull s390 updates from Heiko Carstens:
- Large cleanup of the con3270/tty3270 driver. Among others this fixes:
- Background Color Support
- ASCII Line Character Support
- VT100 Support
- Geometries other than 80x24
- Cleanup and improve cmpxchg() code. Also add cmpxchg_user_key() to
uaccess functions, which will be used by KVM to access KVM guest
memory with a specific storage key
- Add support for user space events counting to CPUMF
- Cleanup the vfio/ccw code, which also allows now to properly support
2K Format-2 IDALs
- Move kernel page table allocation and initialization to decompressor,
which finally allows to enter the kernel with dynamic address
translation enabled. This in turn allows to get rid of code with
special handling in the kernel, which has to distinguish if DAT is on
or off
- Replace kretprobe with rethook
- Various improvements to vfio/ap queue resets:
- Use TAPQ to verify completion of a reset in progress rather than
multiple invocations of ZAPQ.
- Check TAPQ response codes when verifying successful completion of
ZAPQ.
- Fix erroneous handling of some error response codes.
- Increase the maximum amount of time to wait for successful
completion of ZAPQ
- Rework system call wrappers to get rid of alias functions, which were
only left on s390
- Cleanup diag288_wdt watchdog driver. It has been agreed on with
Guenter Roeck that this goes upstream via the s390 tree
- Add missing loadparm parameter handling for list-directed ECKD
ipl/reipl
- Various improvements to memory detection code
- Remove arch_cpu_idle_time() since the current implementation is
broken, and allows user space observable accounted idle times which
can temporarily decrease
- Add Reset DAT-Protection support: (only) allow to change PTEs from RO
to RW with a new RDP instruction. Unlike the currently used IPTE
instruction, this does not necessarily guarantee that TLBs of all
CPUs are synchronously flushed; and that remote CPUs can see spurious
protection faults. The overall improvement for not requiring an all
CPU synchronization, like it is required with IPTE, should be
beneficial
- Fix KFENCE page fault reporting
- Smaller cleanups and improvement all over the place
* tag 's390-6.3-1' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux: (182 commits)
s390/irq,idle: simplify idle check
s390/processor: add test_and_set_cpu_flag() and test_and_clear_cpu_flag()
s390/processor: let cpu helper functions return boolean values
s390/kfence: fix page fault reporting
s390/zcrypt: introduce ctfm field in struct CPRBX
s390: remove confusing comment from uapi types header file
vfio/ccw: remove WARN_ON during shutdown
s390/entry: remove toolchain dependent micro-optimization
s390/mem_detect: do not truncate online memory ranges info
s390/vx: remove __uint128_t type from __vector128 struct again
s390/mm: add support for RDP (Reset DAT-Protection)
s390/mm: define private VM_FAULT_* reasons from top bits
Documentation: s390: correct spelling
s390/ap: fix status returned by ap_qact()
s390/ap: fix status returned by ap_aqic()
s390: vfio-ap: tighten the NIB validity check
Revert "s390/mem_detect: do not update output parameters on failure"
s390/idle: remove arch_cpu_idle_time() and corresponding code
s390/vx: use simple assignments to access __vector128 members
s390/vx: add 64 and 128 bit members to __vector128 struct
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar:
- Improve the scalability of the CFS bandwidth unthrottling logic with
large number of CPUs.
- Fix & rework various cpuidle routines, simplify interaction with the
generic scheduler code. Add __cpuidle methods as noinstr to objtool's
noinstr detection and fix boatloads of cpuidle bugs & quirks.
- Add new ABI: introduce MEMBARRIER_CMD_GET_REGISTRATIONS, to query
previously issued registrations.
- Limit scheduler slice duration to the sysctl_sched_latency period, to
improve scheduling granularity with a large number of SCHED_IDLE
tasks.
- Debuggability enhancement on sys_exit(): warn about disabled IRQs,
but also enable them to prevent a cascade of followup problems and
repeat warnings.
- Fix the rescheduling logic in prio_changed_dl().
- Micro-optimize cpufreq and sched-util methods.
- Micro-optimize ttwu_runnable()
- Micro-optimize the idle-scanning in update_numa_stats(),
select_idle_capacity() and steal_cookie_task().
- Update the RSEQ code & self-tests
- Constify various scheduler methods
- Remove unused methods
- Refine __init tags
- Documentation updates
- Misc other cleanups, fixes
* tag 'sched-core-2023-02-20' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (110 commits)
sched/rt: pick_next_rt_entity(): check list_entry
sched/deadline: Add more reschedule cases to prio_changed_dl()
sched/fair: sanitize vruntime of entity being placed
sched/fair: Remove capacity inversion detection
sched/fair: unlink misfit task from cpu overutilized
objtool: mem*() are not uaccess safe
cpuidle: Fix poll_idle() noinstr annotation
sched/clock: Make local_clock() noinstr
sched/clock/x86: Mark sched_clock() noinstr
x86/pvclock: Improve atomic update of last_value in pvclock_clocksource_read()
x86/atomics: Always inline arch_atomic64*()
cpuidle: tracing, preempt: Squash _rcuidle tracing
cpuidle: tracing: Warn about !rcu_is_watching()
cpuidle: lib/bug: Disable rcu_is_watching() during WARN/BUG
cpuidle: drivers: firmware: psci: Dont instrument suspend code
KVM: selftests: Fix build of rseq test
exit: Detect and fix irq disabled state in oops
cpuidle, arm64: Fix the ARM64 cpuidle logic
cpuidle: mvebu: Fix duplicate flags assignment
sched/fair: Limit sched slice duration
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull perf updates from Ingo Molnar:
- Optimize perf_sample_data layout
- Prepare sample data handling for BPF integration
- Update the x86 PMU driver for Intel Meteor Lake
- Restructure the x86 uncore code to fix a SPR (Sapphire Rapids)
discovery breakage
- Fix the x86 Zhaoxin PMU driver
- Cleanups
* tag 'perf-core-2023-02-20' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (27 commits)
perf/x86/intel/uncore: Add Meteor Lake support
x86/perf/zhaoxin: Add stepping check for ZXC
perf/x86/intel/ds: Fix the conversion from TSC to perf time
perf/x86/uncore: Don't WARN_ON_ONCE() for a broken discovery table
perf/x86/uncore: Add a quirk for UPI on SPR
perf/x86/uncore: Ignore broken units in discovery table
perf/x86/uncore: Fix potential NULL pointer in uncore_get_alias_name
perf/x86/uncore: Factor out uncore_device_to_die()
perf/core: Call perf_prepare_sample() before running BPF
perf/core: Introduce perf_prepare_header()
perf/core: Do not pass header for sample ID init
perf/core: Set data->sample_flags in perf_prepare_sample()
perf/core: Add perf_sample_save_brstack() helper
perf/core: Add perf_sample_save_raw_data() helper
perf/core: Add perf_sample_save_callchain() helper
perf/core: Save the dynamic parts of sample data size
x86/kprobes: Use switch-case for 0xFF opcodes in prepare_emulation
perf/core: Change the layout of perf_sample_data
perf/x86/msr: Add Meteor Lake support
perf/x86/cstate: Add Meteor Lake support
...
|
|
Use the per-cpu CIF_ENABLED_WAIT flag to decide if an interrupt
occurred while a cpu was idle, instead of checking two conditions
within the old psw.
Also move clearing of the CIF_ENABLED_WAIT bit to the early interrupt
handler, which in turn makes arch_vcpu_is_preempted() also a bit more
precise, since the flag is now cleared before interrupt handlers have
been called.
Reviewed-by: Sven Schnelle <svens@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
|
|
Get rid of CONFIG_AS_IS_LLVM in entry.S to make the code a bit more
readable. This removes a micro-optimization, but given that the llvm IAS
limitation will likely stay, just use the version that works with llvm.
See commit 4c25f0ff6336 ("s390/entry: workaround llvm's IAS limitations")
for further details.
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
|
|
Commit bf64f0517e5d ("s390/mem_detect: handle online memory limit
just once") introduced truncation of mem_detect online ranges
based on identity mapping size. For kdump case however the full
set of online memory ranges has to be feed into memblock_physmem_add
so that crashed system memory could be extracted.
Instead of truncating introduce a "usable limit" which is respected by
mem_detect api. Also add extra online memory ranges iterator which still
provides full set of online memory ranges disregarding the "usable limit".
Fixes: bf64f0517e5d ("s390/mem_detect: handle online memory limit just once")
Reported-by: Alexander Egorenkov <egorenar@linux.ibm.com>
Tested-by: Alexander Egorenkov <egorenar@linux.ibm.com>
Reviewed-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
|
|
RDP instruction allows to reset DAT-protection bit in a PTE, with less
CPU synchronization overhead than IPTE instruction. In particular, IPTE
can cause machine-wide synchronization overhead, and excessive IPTE usage
can negatively impact machine performance.
RDP can be used instead of IPTE, if the new PTE only differs in SW bits
and _PAGE_PROTECT HW bit, for PTE protection changes from RO to RW.
SW PTE bit changes are allowed, e.g. for dirty and young tracking, but none
of the other HW-defined part of the PTE must change. This is because the
architecture forbids such changes to an active and valid PTE, which
is why invalidation with IPTE is always used first, before writing a new
entry.
The RDP optimization helps mainly for fault-driven SW dirty-bit tracking.
Writable PTEs are initially always mapped with HW _PAGE_PROTECT bit set,
to allow SW dirty-bit accounting on first write protection fault, where
the DAT-protection would then be reset. The reset is now done with RDP
instead of IPTE, if RDP instruction is available.
RDP cannot always guarantee that the DAT-protection reset is propagated
to all CPUs immediately. This means that spurious TLB protection faults
on other CPUs can now occur. For this, common code provides a
flush_tlb_fix_spurious_fault() handler, which will now be used to do a
CPU-local TLB flush. However, this will clear the whole TLB of a CPU, and
not just the affected entry. For more fine-grained flushing, by simply
doing a (local) RDP again, flush_tlb_fix_spurious_fault() would need to
also provide the PTE pointer.
Note that spurious TLB protection faults cannot really be distinguished
from racing pagetable updates, where another thread already installed the
correct PTE. In such a case, the local TLB flush would be unnecessary
overhead, but overall reduction of CPU synchronization overhead by not
using IPTE is still expected to be beneficial.
Reviewed-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
|
|
arch_cpu_idle_time() returns the idle time of any given cpu if it is in
idle, or zero if not. All if this is racy and partially incorrect. Time
stamps taken with store clock extended and store clock fast from different
cpus are compared, while the architecture states that this is nothing which
can be relied on (see Principles of Operation; Chapter 4, "Setting and
Inspecting the Clock").
A more fundamental problem is that the timestamp when a cpu is leaving idle
is taken early in the assembler part of the interrupt handler, and this
value is only transferred many cycles later to the cpu's per-cpu idle data
structure.
This per cpu data structure is read by arch_cpu_idle() to tell for which
period of time a remote cpu is idle: if only an idle_enter value is
present, the assumed idle time of the cpu is calculated by taking a local
timestamp and returning the difference of the local timestamp and the
idle_enter value. This is potentially incorrect, since the remote cpu may
have already left idle, but the taken timestamp may not have been
transferred to the per-cpu data structure. This in turn means that too much
idle time may be reported for a cpu, and a subsequent calculation of system
idle time may result in a smaller value.
Instead of coming up with even more complex code trying to fix this, just
remove this code, and only account idle time of a cpu, after idle state is
left.
Another minor bug is that it is assumed that timestamps are non-zero, which
is not necessarily the case for timestamps taken with store clock
fast. This however is just a very minor problem, since this can only happen
when the epoch increases.
Reviewed-by: Sven Schnelle <svens@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
|
|
Use simple assignments to access __vector128 members instead of hard
to read casts.
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
|
|
linux-next commit ("cpuidle: tracing: Warn about !rcu_is_watching()")
adds a new warning which hits on s390's arch_cpu_idle() function:
RCU not on for: arch_cpu_idle+0x0/0x28
WARNING: CPU: 2 PID: 0 at include/linux/trace_recursion.h:162 arch_ftrace_ops_list_func+0x24c/0x258
Modules linked in:
CPU: 2 PID: 0 Comm: swapper/2 Not tainted 6.2.0-rc6-next-20230202 #4
Hardware name: IBM 8561 T01 703 (z/VM 7.3.0)
Krnl PSW : 0404d00180000000 00000000002b55c0 (arch_ftrace_ops_list_func+0x250/0x258)
R:0 T:1 IO:0 EX:0 Key:0 M:1 W:0 P:0 AS:3 CC:1 PM:0 RI:0 EA:3
Krnl GPRS: c0000000ffffbfff 0000000080000002 0000000000000026 0000000000000000
0000037ffffe3a28 0000037ffffe3a20 0000000000000000 0000000000000000
0000000000000000 0000000000f4acf6 00000000001044f0 0000037ffffe3cb0
0000000000000000 0000000000000000 00000000002b55bc 0000037ffffe3bb8
Krnl Code: 00000000002b55b0: c02000840051 larl %r2,0000000001335652
00000000002b55b6: c0e5fff512d1 brasl %r14,0000000000157b58
#00000000002b55bc: af000000 mc 0,0
>00000000002b55c0: a7f4ffe7 brc 15,00000000002b558e
00000000002b55c4: 0707 bcr 0,%r7
00000000002b55c6: 0707 bcr 0,%r7
00000000002b55c8: eb6ff0480024 stmg %r6,%r15,72(%r15)
00000000002b55ce: b90400ef lgr %r14,%r15
Call Trace:
[<00000000002b55c0>] arch_ftrace_ops_list_func+0x250/0x258
([<00000000002b55bc>] arch_ftrace_ops_list_func+0x24c/0x258)
[<0000000000f5f0fc>] ftrace_common+0x1c/0x20
[<00000000001044f6>] arch_cpu_idle+0x6/0x28
[<0000000000f4acf6>] default_idle_call+0x76/0x128
[<00000000001cc374>] do_idle+0xf4/0x1b0
[<00000000001cc6ce>] cpu_startup_entry+0x36/0x40
[<0000000000119d00>] smp_start_secondary+0x140/0x150
[<0000000000f5d2ae>] restart_int_handler+0x6e/0x90
Mark arch_cpu_idle() noinstr like all other architectures with
CONFIG_ARCH_WANTS_NO_INSTR (should) have it to fix this.
Reviewed-by: Sven Schnelle <svens@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
|
|
There is no reason to do idle time accounting in arch_cpu_idle().
Do idle time accounting in account_idle_time_irq(), where it belongs
to. The accounted values don't change between account_idle_time_irq() and
arch_cpu_idle(); so the result is the same.
Reviewed-by: Sven Schnelle <svens@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
|
|
Introduce mem_detect_truncate() to cut any online memory ranges above
established identity mapping size, so that mem_detect users wouldn't
have to do it over and over again.
Suggested-by: Alexander Gordeev <agordeev@linux.ibm.com>
Reviewed-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
|
|
Get rid of this sparse warning:
arch/s390/kernel/diag.c:69:29: warning: symbol '__diag8c_tmp_amode31' was not declared. Should it be static?
Fixes: fbaee7464fbb ("s390/tty3270: add support for diag 8c")
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
|
|
Compiling the kernel with CONFIG_KPROBES disabled, but CONFIG_RETHOOK
enabled, results in this sparse warning:
arch/s390/kernel/rethook.c:26:15: warning: no previous prototype for 'arch_rethook_trampoline_callback' [-Wmissing-prototypes]
26 | unsigned long arch_rethook_trampoline_callback(struct pt_regs *regs)
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Add a local rethook header file similar to riscv to address this.
Reported-by: kernel test robot <lkp@intel.com>
Fixes: 1a280f48c0e4 ("s390/kprobes: replace kretprobe with rethook")
Link: https://lore.kernel.org/all/202302030102.69dZIuJk-lkp@intel.com
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
|
|
commit 87fd22e0ae92 ("s390/ipl: add eckd support") missed to add the
loadparm attribute to the new eckd ipl/reipl data.
Fixes: 87fd22e0ae92 ("s390/ipl: add eckd support")
Cc: <stable@vger.kernel.org>
Signed-off-by: Sven Schnelle <svens@linux.ibm.com>
Reviewed-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
|
|
In the current code each reipl type implements its own pair of loadparm
show/store functions. Add a macro to deduplicate the code a bit.
Reviewed-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Sven Schnelle <svens@linux.ibm.com>
Fixes: 87fd22e0ae92 ("s390/ipl: add eckd support")
Cc: <stable@vger.kernel.org>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
|
|
Pick up fixes before merging another batch of cpuidle updates.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
When clang's -Qunused-arguments is dropped from KBUILD_CPPFLAGS, it
points out that there is a linking phase flag added to CFLAGS, which
will only be used for compiling
clang-16: error: argument unused during compilation: '-shared' [-Werror,-Wunused-command-line-argument]
'-shared' is already present in ldflags-y so it can just be dropped.
Fixes: 2b2a25845d53 ("s390/vdso: Use $(LD) instead of $(CC) to link vDSO")
Signed-off-by: Nathan Chancellor <nathan@kernel.org>
Acked-by: Heiko Carstens <hca@linux.ibm.com>
Reviewed-by: Sven Schnelle <svens@linux.ibm.com>
Tested-by: Linux Kernel Functional Testing <lkft@linaro.org>
Tested-by: Anders Roxell <anders.roxell@linaro.org>
Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
|
|
When clang's -Qunused-arguments is dropped from KBUILD_CPPFLAGS, it
warns:
clang-16: error: argument unused during compilation: '-s' [-Werror,-Wunused-command-line-argument]
The compiler's '-s' flag is a linking option (it is passed along to the
linker directly), which means it does nothing when the linker is not
invoked by the compiler. The kernel builds all .o files with '-c', which
stops the compilation pipeline before linking, so '-s' can be safely
dropped from KBUILD_AFLAGS_64.
Signed-off-by: Nathan Chancellor <nathan@kernel.org>
Acked-by: Heiko Carstens <hca@linux.ibm.com>
Reviewed-by: Sven Schnelle <svens@linux.ibm.com>
Tested-by: Linux Kernel Functional Testing <lkft@linaro.org>
Tested-by: Anders Roxell <anders.roxell@linaro.org>
Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
|
|
When debugging vmlinux with QEMU + GDB, the following GDB error may
occur:
(gdb) c
Continuing.
Warning:
Cannot insert breakpoint -1.
Cannot access memory at address 0xffffffffffff95c0
Command aborted.
(gdb)
The reason is that, when .interp section is present, GDB tries to
locate the file specified in it in memory and put a number of
breakpoints there (see enable_break() function in gdb/solib-svr4.c).
Sometimes GDB finds a bogus location that matches its heuristics,
fails to set a breakpoint and stops. This makes further debugging
impossible.
The .interp section contains misleading information anyway (vmlinux
does not need ld.so), so fix by discarding it.
Signed-off-by: Ilya Leoshkevich <iii@linux.ibm.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
|
|
Simplify the use of constants PMC_INIT and PMC_RELEASE.
Suggested-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Thomas Richter <tmricht@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
|
|
With no in-kernel user, the source files can be merged.
Move all functions and the variable definitions to file perf_cpum_cf.c
This file now contains all the necessary functions and definitions
for the CPU Measurement counter facility device driver.
The files cpu_mcf.h and perf_cpum_cf_common.c are deleted.
Signed-off-by: Thomas Richter <tmricht@linux.ibm.com>
Acked-by: Hendrik Brueckner <brueckner@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
|
|
Commit 17bebcc68eee ("s390/cpum_cf: Add minimal in-kernel interface for
counter measurements") introduced a small in-kernel interface for CPU
Measurement counter facility.
There are no users of this interface, therefore remove it.
The following functions are removed:
kernel_cpumcf_alert(),
kernel_cpumcf_begin(),
kernel_cpumcf_end(),
kernel_cpumcf_avail()
there is no need for them anymore.
With the removal of function kernel_cpumcf_alert(), also remove
member alert in struct cpu_cf_events. Its purpose was to counter
measurement alert interrupts for the in-kernel interface.
Signed-off-by: Thomas Richter <tmricht@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
|
|
Function stccm_avail() is defined in a header file and the
only user is one single source file. Move this function to the source
file where it is also used and remove it from the header file.
No functional change.
Signed-off-by: Thomas Richter <tmricht@linux.ibm.com>
Acked-by: Hendrik Brueckner <brueckner@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
|