Age | Commit message (Collapse) | Author |
|
Issue:
As a master, the PCI IP block can combine a memory write to the last PCI
double word (4 bytes) of a cacheline with a 4 byte memory write to the
first PCI double word of the subsequent cacheline. This affects 32-bit
PCI target devices that blindly assert STOP on memory-write transactions,
without detecting that the data beat being transferred is the last data
beat of the transaction. It can cause a hang. PCI-X operation is not
affected by this erratum.
Workaround:
Setting the bit MDS in the PCI Bus Function Register will disable the
combining of crossing cacheline boundary requests into one burst
transaction. Therefore, it can prevent the errata scenario from
occurring.
This errata exists in MPC8543, MPC8543E, MPC8545, MPC8545E, MPC8547,
MPC8547E, MPC8548 and MPC8548E. Refer to PCI 5 in MPC8548 errata
document.
Signed-off-by: Zhao Chenhui <chenhui.zhao@freescale.com>
Signed-off-by: Zhiqiang Hou <Zhiqiang.Hou@freescale.com>
[scottwood: whitespace fix]
Signed-off-by: Scott Wood <oss@buserror.net>
|
|
On the t208xrdb and t1040rdb, the SPI device is n25q512ax3
instead of n25q512a.
Signed-off-by: Hou Zhiqiang <Zhiqiang.Hou@freescale.com>
Signed-off-by: Scott Wood <oss@buserror.net>
|
|
Some wakeups should not be considered a sucessful poll. For example on
s390 I/O interrupts are usually floating, which means that _ALL_ CPUs
would be considered runnable - letting all vCPUs poll all the time for
transactional like workload, even if one vCPU would be enough.
This can result in huge CPU usage for large guests.
This patch lets architectures provide a way to qualify wakeups if they
should be considered a good/bad wakeups in regard to polls.
For s390 the implementation will fence of halt polling for anything but
known good, single vCPU events. The s390 implementation for floating
interrupts does a wakeup for one vCPU, but the interrupt will be delivered
by whatever CPU checks first for a pending interrupt. We prefer the
woken up CPU by marking the poll of this CPU as "good" poll.
This code will also mark several other wakeup reasons like IPI or
expired timers as "good". This will of course also mark some events as
not sucessful. As KVM on z runs always as a 2nd level hypervisor,
we prefer to not poll, unless we are really sure, though.
This patch successfully limits the CPU usage for cases like uperf 1byte
transactional ping pong workload or wakeup heavy workload like OLTP
while still providing a proper speedup.
This also introduced a new vcpu stat "halt_poll_no_tuning" that marks
wakeups that are considered not good for polling.
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Acked-by: Radim Krčmář <rkrcmar@redhat.com> (for an earlier version)
Cc: David Matlack <dmatlack@google.com>
Cc: Wanpeng Li <kernellwp@gmail.com>
[Rename config symbol. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/paulus/powerpc into HEAD
|
|
cprm->written is redundant with cprm->file->f_pos, so use that instead.
Signed-off-by: Omar Sandoval <osandov@fb.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
Device tree update for the Applied micro processor 460ex on-chip SATA to use
"dmas" property.
Acked-by: Rob Herring <robh@kernel.org>
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
|
|
Before commit 3e68dc57 "powerpc/powernv: Remove DMA32 PE list", NPU PEs
were linked to the NPU PHB via phb->ioda.pe_dma_list; after that fix,
the phb->ioda.pe_list is used.
During the pe_dma_list removal, list_add_tail(&phb->ioda.pe_dma_list)
was removed, however no list_add() was added so does this patch.
Fixes: 3e68dc57219a ("powerpc/powernv: Remove DMA32 PE list")
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Reviewed-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
The pnv_pci_init_ioda_phb() helper allocates a blob to store auxilary
data such PE and M32/M64 segment allocation maps; this single blob has
few partitions, size of each is derived from the PE number -
phb->ioda.total_pe_num.
It was assumed that the minimum PE number is 8, however it is 4 for NPU
so the pe_alloc part was missing in the allocated blob. It was invisible
till recently as we were not tracking used M64 segments and NPUs do not
use M32 segments so the phb->ioda.m32_segmap (which was pointing to the
same address as phb->ioda.pe_alloc) has never been written to leaving
the pe_alloc memory intact.
After commit 401203ac2d "powerpc/powernv: Track M64 segment consumption"
the pe_alloc gets corrupted and PE allocation cannot work. This fixes
the issue by enforcing the minimum PE number to 8.
Fixes: 401203ac2d15 ("powerpc/powernv: Track M64 segment consumption")
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Reviewed-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
Commit 39baadbf36ce ("powerpc/eeh: Remove eeh information from pci_dn")
changed the pci_dn struct by removing its EEH-related members.
As part of this clean-up, DDW mechanism was modified to read the device
configuration address from eeh_dev struct.
As a consequence, now if we disable EEH mechanism on kernel command-line
for example, the DDW mechanism will fail, generating a kernel oops by
dereferencing a NULL pointer (which turns to be the eeh_dev pointer).
This patch just changes the configuration address calculation on DDW
functions to a manual calculation based on pci_dn members instead of
using eeh_dev-based address.
No functional changes were made. This was tested on pSeries, both
in PHyp and qemu guest.
Fixes: 39baadbf36ce ("powerpc/eeh: Remove eeh information from pci_dn")
Cc: stable@vger.kernel.org # v3.4+
Reviewed-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Guilherme G. Piccoli <gpiccoli@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
This reverts commit 89a51df5ab1d38b257300b8ac940bbac3bb0eb9b.
The function eeh_add_device_early() is used to perform EEH
initialization in devices added later on the system, like in
hotplug/DLPAR scenarios. Since the commit 89a51df5ab1d ("powerpc/eeh:
Fix crash in eeh_add_device_early() on Cell") a new check was introduced
in this function - Cell has no EEH capabilities which led to kernel oops
if hotplug was performed, so checking for eeh_enabled() was introduced
to avoid the issue.
However, in architectures that EEH is present like pSeries or PowerNV,
we might reach a case in which no PCI devices are present on boot time
and so EEH is not initialized. Then, if a device is added via DLPAR for
example, eeh_add_device_early() fails because eeh_enabled() is false,
and EEH end up not being enabled at all.
This reverts the aforementioned patch since a new verification was
introduced by the commit d91dafc02f42 ("powerpc/eeh: Delay probing EEH
device during hotplug") and so the original Cell issue does not happen
anymore.
Cc: stable@vger.kernel.org # v4.1+
Reviewed-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Guilherme G. Piccoli <gpiccoli@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
The label "reset" in eeh_pe_change_owner() is used only for once.
No need to keep it and just drop it. No logical changes introduced.
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Russell Currey <ruscur@russell.cc>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
The function eeh_pe_reset_and_recover() is used to recover EEH
error when the passthrough device are transferred to guest and
backwards, meaning the device's driver is vfio-pci or none. In
both cases, the handlers triggered by eeh_report_reset() and
eeh_report_resume() shouldn't be called.
This ignores the error handlers from eeh_report_reset() and
eeh_report_resume().
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Reviewed-by: Russell Currey <ruscur@russell.cc>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
The function eeh_pe_reset_and_recover() is used to recover EEH
error when the passthrou device are transferred to guest and
backwards. The content in the device's config space will be lost
on PE reset issued in the middle of the recovery. The function
saves/restores it before/after the reset. However, config access
to some adapters like Broadcom BCM5719 at this point will causes
fenced PHB. The config space is always blocked and we save 0xFF's
that are restored at late point. The memory BARs are totally
corrupted, causing another EEH error upon access to one of the
memory BARs.
This restores the config space on those adapters like BCM5719
from the content saved to the EEH device when it's populated,
to resolve above issue.
Fixes: 5cfb20b9 ("powerpc/eeh: Emulate EEH recovery for VFIO devices")
Cc: stable@vger.kernel.org #v3.18+
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Reviewed-by: Russell Currey <ruscur@russell.cc>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
The function eeh_pe_reset_and_recover() is used to recover EEH
error when the passthrough device are transferred to guest and
backwards, meaning the device's driver is vfio-pci or none.
When the driver is vfio-pci that provides error_detected() error
handler only, the handler simply stops the guest and it's not
expected behaviour. On the other hand, no error handlers will
be called if we don't have a bound driver.
This ignores the error handler in eeh_pe_reset_and_recover()
that reports the error to device driver to avoid the exceptional
behaviour.
Fixes: 5cfb20b9 ("powerpc/eeh: Emulate EEH recovery for VFIO devices")
Cc: stable@vger.kernel.org #v3.18+
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Reviewed-by: Russell Currey <ruscur@russell.cc>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
This reverts commit c8ceacc22bce95d3a9cff198c9c27a30105a16b8.
Gavin says: I missed the fact that it affects the PCI passthrou path as
reported by Alexey: When passing GPU (0003:01:00.0) which seats behind
the root port, the reset request is routed to skiboot in original code.
In skiboot, the link bouncing events are masked during the reset. So we
don't see EEH (freeze all) error even link bouncing happens. With the
changes included, the reset is done by kernel and the link bouncing
events aren't masked by altering content of PHB3 (or P7IOC) specific
hardware registers which are invisible to kernel (skiboot hides the
hardware specific). It means the link bouncing is seen by the root port
and it causes a EEH (freeze all) error. The PCI passthrough on GPU
device cannot work.
Requested-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Requested-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
Conflicts:
kernel/sched/core.c
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
Commit c9a5eccac1ab ("kvm/eventfd: add arch-specific set_irq",
2015-10-16) added the possibility for architecture-specific code
to handle the generation of virtual interrupts in atomic context
where possible, without having to schedule a work function.
Since we can easily generate virtual interrupts on XICS without
having to do anything worse than take a spinlock, we define a
kvm_arch_set_irq_inatomic() for XICS. We also remove kvm_set_msi()
since it is not used any more.
The one slightly tricky thing is that with the new interface, we
don't get told whether the interrupt is an MSI (or other edge
sensitive interrupt) vs. level-sensitive. The difference as far
as interrupt generation is concerned is that for LSIs we have to
set the asserted flag so it will continue to fire until it is
explicitly cleared.
In fact the XICS code gets told which interrupts are LSIs by userspace
when it configures the interrupt via the KVM_DEV_XICS_GRP_SOURCES
attribute group on the XICS device. To store this information, we add
a new "lsi" field to struct ics_irq_state. With that we can also do a
better job of returning accurate values when reading the attribute
group.
Signed-off-by: Paul Mackerras <paulus@samba.org>
|
|
The KVM_MAX_VCPUS define provides the maximum number of vCPUs per guest, and
also the upper limit for vCPU ids. This is okay for all archs except PowerPC
which can have higher ids, depending on the cpu/core/thread topology. In the
worst case (single threaded guest, host with 8 threads per core), it limits
the maximum number of vCPUS to KVM_MAX_VCPUS / 8.
This patch separates the vCPU numbering from the total number of vCPUs, with
the introduction of KVM_MAX_VCPU_ID, as the maximal valid value for vCPU ids
plus one.
The corresponding KVM_CAP_MAX_VCPU_ID allows userspace to validate vCPU ids
before passing them to KVM_CREATE_VCPU.
This patch only implements KVM_MAX_VCPU_ID with a specific value for PowerPC.
Other archs continue to return KVM_MAX_VCPUS instead.
Suggested-by: Radim Krcmar <rkrcmar@redhat.com>
Signed-off-by: Greg Kurz <gkurz@linux.vnet.ibm.com>
Reviewed-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
IBM POWER8 NVlink systems come with Tesla K40-ish GPUs each of which
also has a couple of fast speed links (NVLink). The interface to links
is exposed as an emulated PCI bridge which is included into the same
IOMMU group as the corresponding GPU.
In the kernel, NPUs get a separate PHB of the PNV_PHB_NPU type and a PE
which behave pretty much as the standard IODA2 PHB except NPU PHB has
just a single TVE in the hardware which means it can have either
32bit window or 64bit window or DMA bypass but never two of these.
In order to make these links work when GPU is passed to the guest,
these bridges need to be passed as well; otherwise performance will
degrade.
This implements and exports API to manage NPU state in regard to VFIO;
it replicates iommu_table_group_ops.
This defines a new pnv_pci_ioda2_npu_ops which is assigned to
the IODA2 bridge if there are NPUs for a GPU on the bridge.
The new callbacks call the default IODA2 callbacks plus new NPU API.
This adds a gpe_table_group_to_npe() helper to find NPU PE for the IODA2
table_group, it is not expected to fail as the helper is only called
from the pnv_pci_ioda2_npu_ops.
This does not define NPU-specific .release_ownership() so after
VFIO is finished, DMA on NPU is disabled which is ok as the nvidia
driver sets DMA mask when probing which enable 32 or 64bit DMA on NPU.
This adds a pnv_pci_npu_setup_iommu() helper which adds NPUs to
the GPU group if any found. The helper uses helpers to look for
the "ibm,gpu" property in the device tree which is a phandle of
the corresponding GPU.
This adds an additional loop over PEs in pnv_ioda_setup_dma() as the main
loop skips NPU PEs as they do not have 32bit DMA segments.
As pnv_npu_set_window() and pnv_npu_unset_window() are started being used
by the new IODA2-NPU IOMMU group, this makes the helpers public and
adds the DMA window number parameter.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Reviewed-By: Alistair Popple <alistair@popple.id.au>
[mpe: Add pnv_pci_ioda_setup_iommu_api() to fix build with IOMMU_API=n]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
The pnv_ioda_pe struct keeps an array of peers. At the moment it is only
used to link GPU and NPU for 2 purposes:
1. Access NPU quickly when configuring DMA for GPU - this was addressed
in the previos patch by removing use of it as DMA setup is not what
the kernel would constantly do.
2. Invalidate TCE cache for NPU when it is invalidated for GPU.
GPU and NPU are in different PE. There is already a mechanism to
attach multiple iommu_table_group to the same iommu_table (used for VFIO),
we can reuse it here so does this patch.
This gets rid of peers[] array and PNV_IODA_PE_PEER flag as they are
not needed anymore.
While we are here, add TCE cache invalidation after enabling bypass.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Reviewed-By: Alistair Popple <alistair@popple.id.au>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
The upcoming NVLink passthrough support will require NPU code to cope
with two DMA windows.
This adds a pnv_npu_set_window() helper which programs 32bit window to
the hardware. This also adds multilevel TCE support.
This adds a pnv_npu_unset_window() helper which removes the DMA window
from the hardware. This does not make difference now as the caller -
pnv_npu_dma_set_bypass() - enables bypass in the hardware but the next
patch will use it to manage TCE table lists for TCE Kill handling.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Reviewed-By: Alistair Popple <alistair@popple.id.au>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
This exports debugging helper pe_level_printk() and corresponding macroses
so they can be used in npu-dma.c.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Reviewed-By: Alistair Popple <alistair@popple.id.au>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
NPU devices are emulated in firmware and mainly used for NPU NVLink
training; one NPU device is per a hardware link. Their DMA/TCE setup
must match the GPU which is connected via PCIe and NVLink so any changes
to the DMA/TCE setup on the GPU PCIe device need to be propagated to
the NVLink device as this is what device drivers expect and it doesn't
make much sense to do anything else.
This makes NPU DMA setup explicit.
pnv_npu_ioda_controller_ops::pnv_npu_dma_set_mask is moved to pci-ioda,
made static and prints warning as dma_set_mask() should never be called
on this function as in any case it will not configure GPU; so we make
this explicit.
Instead of using PNV_IODA_PE_PEER and peers[] (which the next patch will
remove), we test every PCI device if there are corresponding NVLink
devices. If there are any, we propagate bypass mode to just found NPU
devices by calling the setup helper directly (which takes @bypass) and
avoid guessing (i.e. calculating from DMA mask) whether we need bypass
or not on NPU devices. Since DMA setup happens in very rare occasion,
this will not slow down booting or VFIO start/stop much.
This renames pnv_npu_disable_bypass to pnv_npu_dma_set_32 to make it
more clear what the function really does which is programming 32bit
table address to the TVT ("disabling bypass" means writing zeroes to
the TVT).
This removes pnv_npu_dma_set_bypass() from pnv_npu_ioda_fixup() as
the DMA configuration on NPU does not matter until dma_set_mask() is
called on GPU and that will do the NPU DMA configuration.
This removes phb->dma_dev_setup initialization for NPU as
pnv_pci_ioda_dma_dev_setup is no-op for it anyway.
This stops using npe->tce_bypass_base as it never changes and values
other than zero are not supported.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Alistair Popple <alistair@popple.id.au>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
This uses the page size from iommu_table instead of hard-coded 4K.
This should cause no change in behavior.
While we are here, move bits around to prepare for further rework
which will define and use iommu_table_group_ops.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Alistair Popple <alistair@popple.id.au>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
NPU PHB TCE Kill register is exactly the same as in the rest of POWER8
so let's reuse the existing code for NPU. The only bit missing is
a helper to reset the entire TCE cache so this moves such a helper
from NPU code and renames it.
Since pnv_npu_tce_invalidate() does really invalidate the entire cache,
this uses pnv_pci_ioda2_tce_invalidate_entire() directly for NPU.
This adds an explicit comment for workaround for invalidating NPU TCE
cache.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Alistair Popple <alistair@popple.id.au>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
This replaces magic constants for TCE Kill IODA2 register with macros.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
As in fact pnv_pci_ioda2_tce_invalidate_entire() invalidates TCEs for
the specific PE rather than the entire cache, rename it to
pnv_pci_ioda2_tce_invalidate_pe(). In later patches we will add
a proper pnv_pci_ioda2_tce_invalidate_entire().
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
The function pnv_pci_reset_secondary_bus() is called like below.
It's impossible for call the function on root bus. So it's safe
to remove the root bus case in the function. No functional changes
introduced.
pci_parent_bus_reset() / pci_bus_reset() / pci_try_reset_bus()
pci_reset_bridge_secondary_bus()
pcibios_reset_secondary_bus()
pnv_pci_reset_secondary_bus()
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Reviewed-by: Daniel Axtens <dja@axtens.net>
Reviewed-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
This drops unnecessary nested if statements in pnv_eeh_reset() to
improve the code readability. After the changes, the unused local
variable "ret" is dropped as well. No logical changes introduced.
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Reviewed-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com>
Reviewed-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
In hotplug case, function pci_add_pci_devices() is called to rescan
the specified PCI bus, which might not have any child devices. Access
to the PCI bus's child device node will cause kernel crash without
exception.
This adds one more check to skip scanning PCI bus that doesn't have
any subordinate devices from device-tree, in order to avoid kernel
crash.
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Reviewed-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
This renames traverse_pci_devices() to pci_traverse_device_nodes().
The function traverses all subordinate device nodes of the specified
one. Also, below cleanup applied to the function. No logical changes
introduced.
* Rename "pre" to "fn".
* Avoid assignment in if condition reported from checkpatch.pl.
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Reviewed-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
This implements and exports pci_remove_device_node_info(). It's
used to remove the pdn (struct pci_dn) for the indicated device
node. The function is going to be used by PowerNV PCI hotplug
driver.
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Reviewed-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
This renames update_dn_pci_info() to pci_add_device_node_info()
with corresponding adjustment on the parameter type and exports it.
The function is used to create pdn (struct pci_dn) for the indicated
device node. Another function add_pdn(), almost wrapper of
pci_add_device_node_info(), to be used in traverse_pci_devices(). No
logical changes introduced.
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Reviewed-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
This moves pci_find_bus_by_node() from arch/powerpc/platforms/
pseries/pci_dlpar.c to arch/powerpc/kernel/pci-hotplug.c so that
the function can be used by pSeries and PowerNV platform at the
same time. Also, below cleanup applied. No functional changes
introduced.
* Remove variable "busdn" in find_bus_among_children()
* Use PCI_DN() to convert device node to pci_dn
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Reviewed-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com>
Reviewed-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
This renames pcibios_find_pci_bus() to pci_find_bus_by_node() to
avoid conflicts with those PCI subsystem weak function names, which
have prefix "pcibios". No logical changes introduced.
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Reviewed-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
This renames pcibios_{add,remove}_pci_devices() to avoid conflicts
with names of the weak functions in PCI subsystem, which have the
prefix "pcibios". No logical changes introduced.
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Reviewed-By: Alistair Popple <alistair@popple.id.au>
Reviewed-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com>
Reviewed-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
In current implementation, the PEs that are allocated or picked
from the reserved list are identified by PE number. The PE instance
has to be picked according to the PE number eventually. We have
same issue when PE is released.
For pnv_ioda_pick_m64_pe() and pnv_ioda_alloc_pe(), this returns
PE instance so that pnv_ioda_setup_bus_PE() can use the allocated
or reserved PE instance directly. Also, pnv_ioda_setup_bus_PE()
returns the reserved/allocated PE instance to be used in subsequent
patches. On the other hand, pnv_ioda_free_pe() uses PE instance
(not number) as its argument. No logical changes introduced.
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Reviewed-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
In current implementation, the DMA32 segments required by one specific
PE isn't calculated with the information hold in the PE independently.
It conflicts with the PCI hotplug design: PE centralized, meaning the
PE's DMA32 segments should be calculated from the information hold in
the PE independently.
This introduces an array (@dma32_segmap) for every PHB to track the
DMA32 segmeng usage. Besides, this moves the logic calculating PE's
consumed DMA32 segments to pnv_pci_ioda1_setup_dma_pe() so that PE's
DMA32 segments are calculated/allocated from the information hold in
the PE (DMA32 weight). Also the logic is improved: we try to allocate
as much DMA32 segments as we can. It's acceptable that number of DMA32
segments less than the expected number are allocated.
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Reviewed-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
PEs are put into PHB DMA32 list (phb->ioda.pe_dma_list) according
to their DMA32 weight. The PEs on the list are iterated to setup
their TCE32 tables at system booting time. The list is used for
once at boot time and no need to keep it.
This moves the logic calculating DMA32 weight of PHB and PE to
pnv_ioda_setup_dma() to drop PHB's DMA32 list. Also, every PE
traces the consumed DMA32 segment by @tce32_seg and @tce32_segcount
are useless and they're removed.
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Reviewed-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
Currently, there is one macro (TCE32_TABLE_SIZE) representing the
TCE table size for one DMA32 segment. The constant representing
the DMA32 segment size (1 << 28) is still used in the code.
This defines PNV_IODA1_DMA32_SEGSIZE representing one DMA32
segment size. the TCE table size can be calcualted when the page
has fixed 4KB size. So all the related calculation depends on one
macro (PNV_IODA1_DMA32_SEGSIZE). No logical changes introduced.
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Reviewed-By: Alistair Popple <alistair@popple.id.au>
Reviewed-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
This renames pnv_pci_ioda_setup_dma_pe() to pnv_pci_ioda1_setup_dma_pe()
as it's the counter-part of IODA2's pnv_pci_ioda2_setup_dma_pe().
No logical changes introduced.
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Reviewed-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
This enables M64 window on P7IOC, which has been enabled on PHB3.
Different from PHB3 where 16 M64 BARs are supported and each of
them can be owned by one particular PE# exclusively or divided
evenly to 256 segments, every P7IOC PHB has 16 M64 BARs and each
of them are divided to 8 segments. So every P7IOC PHB supports
128 M64 segments in total. P7IOC has M64DT, which helps mapping
one particular M64 segment# to arbitrary PE#. PHB3 doesn't have
M64DT, indicating that one M64 segment can only be pinned to the
fixed PE#.
In order to unified M64 support M64 on P7IOC and PHB3, we just
provide 128 M64 segments on every P7IOC PHB and each of them is
pinned to the fixed PE# by bypassing the function of M64DT. In
turn, we just need different phb->init_m64() for P7IOC and PHB3
and maps M64 segment in pnv_ioda_reserve_m64_pe() for P7IOC, most
of the code are shared by them.
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Reviewed-by: Alistair Popple <alistair@popple.id.au>
Reviewed-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
This renames those functions picking PE number based on consumed
M64 segments, mapping M64 segments to PEs as those functions are
going to be shared by IODA1/IODA2 in next patch. No logical changes
introduced.
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Reviewed-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
When unplugging PCI devices, their parent PEs might be offline.
The consumed M64 resource by the PEs should be released at that
time. As we track M32 segment consumption, this introduces an
array to the PHB to track the mapping between M64 segment and
PE number.
Note: M64 mapping isn't covered by pnv_ioda_setup_pe_seg() as
IODA2 doesn't support the mapping explicitly while it's supported
on IODA1. Until now, no M64 is supported on IODA1 in software.
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Reviewed-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
Currently, the IO and M32 segments are mapped to the corresponding
PE based on the windows of the parent bridge of PE's primary bus.
It's not going to work when the windows of root port or upstream
port of the PCIe switch behind root port are extended to PHB's
apertures in order to support hotplug in subsequent patch.
This fixes the issue by mapping IO and M32 segments based on the
resources of the PCI devices included in the PE, instead of the
windows of the parent bridge of the PE's primary bus.
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Reviewed-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
pnv_ioda_setup_pe_seg() associates the IO and M32 segments with the
owner PE. The code mapping segments should be fixed and immune from
logic changes introduced to pnv_ioda_setup_pe_seg().
This moves the code mapping segments to helper pnv_ioda_setup_pe_res().
The data type for @rc is changed to "int64_t". Also, argument @hose is
removed from pnv_ioda_setup_pe() as it can be got from @pe. No functional
changes introduced.
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Reviewed-By: Alistair Popple <alistair@popple.id.au>
Reviewed-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
There are two arrays for IO and M32 segment maps on every PHB.
The index of the arrays are segment number and the value stored
in the corresponding element is PE number, indicating the segment
is assigned to the PE. Initially, all elements in those two arrays
are zeroes, meaning all segments are assigned to PE#0. It's wrong.
This fixes the initial values in the elements of those two arrays
to IODA_INVALID_PE, meaning all segments aren't assigned to any
PE.
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Reviewed-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
This changes the data type of PE number from "int" to "unsigned int"
in order to match the fact PE number is never negative:
* The number of PE to which the specified PCI device is attached.
* The PE number map for SRIOV VFs.
* The returned PE number from pnv_ioda_alloc_pe().
* The returned PE number from pnv_ioda2_pick_m64_pe().
Suggested-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Reviewed-By: Alistair Popple <alistair@popple.id.au>
Reviewed-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
This renames the fields related to PE number in "struct pnv_phb"
for better reflecting of their usages as Alexey suggested. No
logical changes introduced.
Signed-off-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Reviewed-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|