Age | Commit message (Collapse) | Author |
|
Based on 1 normalized pattern(s):
this program is free software you can redistribute it and or modify
it under the terms of the gnu general public license version 2 as
published by the free software foundation this program is
distributed in the hope that it will be useful but without any
warranty without even the implied warranty of merchantability or
fitness for a particular purpose see the gnu general public license
for more details you should have received a copy of the gnu general
public license along with this program if not see http www gnu org
licenses
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-only
has been chosen to replace the boilerplate/reference in 503 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexios Zavras <alexios.zavras@intel.com>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Enrico Weigelt <info@metux.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190602204653.811534538@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Commit 1cf24a2cc3fd
("arm64/module: deal with ambiguity in PRELxx relocation ranges")
updated the overflow checking logic in the relocation handling code to
ensure that PREL16/32 relocations don't overflow signed quantities.
However, the same code path is used for absolute relocations, where the
interpretation is the opposite: the only current use case for absolute
relocations operating on non-native word size quantities is the CRC32
handling in the CONFIG_MODVERSIONS code, and these CRCs are unsigned
32-bit quantities, which are now being rejected by the module loader
if bit 31 happens to be set.
So let's use different ranges for quanties subject to absolute vs.
relative relocations:
- ABS16/32 relocations should be in the range [0, Uxx_MAX)
- PREL16/32 relocations should be in the range [Sxx_MIN, Sxx_MAX)
- otherwise, print an error since no other 16 or 32 bit wide data
relocations are currently supported.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
|
|
The R_AARCH64_PREL16 and R_AARCH64_PREL32 relocations are
documented as permitting a range of [-2^15 .. 2^16), resp.
[-2^31 .. 2^32). It is also documented that this means we
cannot detect overflow in some cases, which is bad.
Since we always interpret the targets of these relocations as
signed quantities (e.g., in the ksymtab handling code), let's
tighten the overflow checks so that targets that are out of
range for our signed interpretation of the relocated quantity
get flagged.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
|
|
The following commit
7290d5809571 ("module: use relative references for __ksymtab entries")
updated the ksymtab handling of some KASLR capable architectures
so that ksymtab entries are emitted as pairs of 32-bit relative
references. This reduces the size of the entries, but more
importantly, it gets rid of statically assigned absolute
addresses, which require fixing up at boot time if the kernel
is self relocating (which takes a 24 byte RELA entry for each
member of the ksymtab struct).
Since ksymtab entries are always part of the same module as the
symbol they export, it was assumed at the time that a 32-bit
relative reference is always sufficient to capture the offset
between a ksymtab entry and its target symbol.
Unfortunately, this is not always true: in the case of per-CPU
variables, a per-CPU variable's base address (which usually differs
from the actual address of any of its per-CPU copies) is allocated
in the vicinity of the ..data.percpu section in the core kernel
(i.e., in the per-CPU reserved region which follows the section
containing the core kernel's statically allocated per-CPU variables).
Since we randomize the module space over a 4 GB window covering
the core kernel (based on the -/+ 4 GB range of an ADRP/ADD pair),
we may end up putting the core kernel out of the -/+ 2 GB range of
32-bit relative references of module ksymtab entries that refer to
per-CPU variables.
So reduce the module randomization range a bit further. We lose
1 bit of randomization this way, but this is something we can
tolerate.
Cc: <stable@vger.kernel.org> # v4.19+
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
|
|
Now that we have switched to the small code model entirely, and
reduced the extended KASLR range to 4 GB, we can be sure that the
targets of relative branches that are out of range are in range
for a ADRP/ADD pair, which is one instruction shorter than our
current MOVN/MOVK/MOVK sequence, and is more idiomatic and so it
is more likely to be implemented efficiently by micro-architectures.
So switch over the ordinary PLT code and the special handling of
the Cortex-A53 ADRP errata, as well as the ftrace trampline
handling.
Reviewed-by: Torsten Duwe <duwe@lst.de>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
[will: Added a couple of comments in the plt equality check]
Signed-off-by: Will Deacon <will.deacon@arm.com>
|
|
Instead of saving a pointer to the .plt and .init.plt sections to apply
plt-based relocations, save and use their section indices instead.
The mod->arch.{core,init}.plt pointers were problematic for livepatch
because they pointed within temporary section headers (provided by the
module loader via info->sechdrs) that would be freed after module load.
Since livepatch modules may need to apply relocations post-module-load
(for example, to patch a module that is loaded later), using section
indices to offset into the section headers (instead of accessing them
through a saved pointer) allows livepatch modules on arm64 to pass in
their own copy of the section headers to apply_relocate_add() to apply
delayed relocations.
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Miroslav Benes <mbenes@suse.cz>
Signed-off-by: Jessica Yu <jeyu@kernel.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
|
|
The implementation of flush_icache_range() includes instruction sequences
which are themselves patched at runtime, so it is not safe to call from
the patching framework.
This patch reworks the alternatives cache-flushing code so that it rolls
its own internal D-cache maintenance using DC CIVAC before invalidating
the entire I-cache after all alternatives have been applied at boot.
Modules don't cause any issues, since flush_icache_range() is safe to
call by the time they are loaded.
Acked-by: Mark Rutland <mark.rutland@arm.com>
Reported-by: Rohit Khanna <rokhanna@nvidia.com>
Cc: Alexander Van Brunt <avanbrunt@nvidia.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
Commit a257e02579e ("arm64/kernel: don't ban ADRP to work around
Cortex-A53 erratum #843419") introduced a function whose name ends with
"_veneer".
This clashes with commit bd8b22d2888e ("Kbuild: kallsyms: ignore veneers
emitted by the ARM linker"), which removes symbols ending in "_veneer"
from kallsyms.
The problem was manifested as 'perf test -vvvvv vmlinux' failed,
correctly claiming the symbol 'module_emit_adrp_veneer' was present in
vmlinux, but not in kallsyms.
...
ERR : 0xffff00000809aa58: module_emit_adrp_veneer not on kallsyms
...
test child finished with -1
---- end ----
vmlinux symtab matches kallsyms: FAILED!
Fix the problem by renaming module_emit_adrp_veneer to
module_emit_veneer_for_adrp. Now the test passes.
Fixes: a257e02579e ("arm64/kernel: don't ban ADRP to work around Cortex-A53 erratum #843419")
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Michal Marek <mmarek@suse.cz>
Signed-off-by: Kim Phillips <kim.phillips@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
|
|
Omit patching of ADRP instruction at module load time if the current
CPUs are not susceptible to the erratum.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
[will: Drop duplicate initialisation of .def_scope field]
Signed-off-by: Will Deacon <will.deacon@arm.com>
|
|
Working around Cortex-A53 erratum #843419 involves special handling of
ADRP instructions that end up in the last two instruction slots of a
4k page, or whose output register gets overwritten without having been
read. (Note that the latter instruction sequence is never emitted by
a properly functioning compiler, which is why it is disregarded by the
handling of the same erratum in the bfd.ld linker which we rely on for
the core kernel)
Normally, this gets taken care of by the linker, which can spot such
sequences at final link time, and insert a veneer if the ADRP ends up
at a vulnerable offset. However, linux kernel modules are partially
linked ELF objects, and so there is no 'final link time' other than the
runtime loading of the module, at which time all the static relocations
are resolved.
For this reason, we have implemented the #843419 workaround for modules
by avoiding ADRP instructions altogether, by using the large C model,
and by passing -mpc-relative-literal-loads to recent versions of GCC
that may emit adrp/ldr pairs to perform literal loads. However, this
workaround forces us to keep literal data mixed with the instructions
in the executable .text segment, and literal data may inadvertently
turn into an exploitable speculative gadget depending on the relative
offsets of arbitrary symbols.
So let's reimplement this workaround in a way that allows us to switch
back to the small C model, and to drop the -mpc-relative-literal-loads
GCC switch, by patching affected ADRP instructions at runtime:
- ADRP instructions that do not appear at 4k relative offset 0xff8 or
0xffc are ignored
- ADRP instructions that are within 1 MB of their target symbol are
converted into ADR instructions
- remaining ADRP instructions are redirected via a veneer that performs
the load using an unaffected movn/movk sequence.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
[will: tidied up ADRP -> ADR instruction patching.]
[will: use ULL suffix for 64-bit immediate]
Signed-off-by: Will Deacon <will.deacon@arm.com>
|
|
We currently have to rely on the GCC large code model for KASLR for
two distinct but related reasons:
- if we enable full randomization, modules will be loaded very far away
from the core kernel, where they are out of range for ADRP instructions,
- even without full randomization, the fact that the 128 MB module region
is now no longer fully reserved for kernel modules means that there is
a very low likelihood that the normal bottom-up allocation of other
vmalloc regions may collide, and use up the range for other things.
Large model code is suboptimal, given that each symbol reference involves
a literal load that goes through the D-cache, reducing cache utilization.
But more importantly, literals are not instructions but part of .text
nonetheless, and hence mapped with executable permissions.
So let's get rid of our dependency on the large model for KASLR, by:
- reducing the full randomization range to 4 GB, thereby ensuring that
ADRP references between modules and the kernel are always in range,
- reduce the spillover range to 4 GB as well, so that we fallback to a
region that is still guaranteed to be in range
- move the randomization window of the core kernel to the middle of the
VMALLOC space
Note that KASAN always uses the module region outside of the vmalloc space,
so keep the kernel close to that if KASAN is enabled.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
|
|
When PLTs are emitted at relocation time, we really should not exceed
the number that we counted when parsing the relocation tables, and so
currently, we BUG() on this condition. However, even though this is a
clear bug in this particular piece of code, we can easily recover by
failing to load the module.
So instead, return 0 from module_emit_plt_entry() if this condition
occurs, which is not a valid kernel address, and can hence serve as
a flag value that makes the relocation routine bail out.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
|
|
Here the functions reloc_insn_movw() & reloc_insn_imm() are used
to read, modify and write back ARM instructions, which are always
stored in memory in little-endian order. These values are thus
correctly converted to/from native order but the pointers used to
hold their addresses are declared as for native order values.
Fix this by declaring the pointers as __le32* and remove the
casts that are now unneeded.
Signed-off-by: Luc Van Oostenryck <luc.vanoostenryck@gmail.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
|
|
Currently, dynamic ftrace support in the arm64 kernel assumes that all
core kernel code is within range of ordinary branch instructions that
occur in module code, which is usually the case, but is no longer
guaranteed now that we have support for module PLTs and address space
randomization.
Since on arm64, all patching of branch instructions involves function
calls to the same entry point [ftrace_caller()], we can emit the modules
with a trampoline that has unlimited range, and patch both the trampoline
itself and the branch instruction to redirect the call via the trampoline.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
[will: minor clarification to smp_wmb() comment]
Signed-off-by: Will Deacon <will.deacon@arm.com>
|
|
When CONFIG_ARM64_MODULE_PLTS is enabled, the first allocation using the
module space fails, because the module is too big, and then the module
allocation is attempted from vmalloc space. Silence the first allocation
failure in that case by setting __GFP_NOWARN.
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
The arm64 module PLT code allocates all PLT entries in a single core
section, since the overhead of having a separate init PLT section is
not justified by the small number of PLT entries usually required for
init code.
However, the core and init module regions are allocated independently,
and there is a corner case where the core region may be allocated from
the VMALLOC region if the dedicated module region is exhausted, but the
init region, being much smaller, can still be allocated from the module
region. This leads to relocation failures if the distance between those
regions exceeds 128 MB. (In fact, this corner case is highly unlikely to
occur on arm64, but the issue has been observed on ARM, whose module
region is much smaller).
So split the core and init PLT regions, and name the latter ".init.plt"
so it gets allocated along with (and sufficiently close to) the .init
sections that it serves. Also, given that init PLT entries may need to
be emitted for branches that target the core module, modify the logic
that disregards defined symbols to only disregard symbols that are
defined in the same section as the relocated branch instruction.
Since there may now be two PLT entries associated with each entry in
the symbol table, we can no longer hijack the symbol::st_size fields
to record the addresses of PLT entries as we emit them for zero-addend
relocations. So instead, perform an explicit comparison to check for
duplicate entries.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
This adds support for KASLR is implemented, based on entropy provided by
the bootloader in the /chosen/kaslr-seed DT property. Depending on the size
of the address space (VA_BITS) and the page size, the entropy in the
virtual displacement is up to 13 bits (16k/2 levels) and up to 25 bits (all
4 levels), with the sidenote that displacements that result in the kernel
image straddling a 1GB/32MB/512MB alignment boundary (for 4KB/16KB/64KB
granule kernels, respectively) are not allowed, and will be rounded up to
an acceptable value.
If CONFIG_RANDOMIZE_MODULE_REGION_FULL is enabled, the module region is
randomized independently from the core kernel. This makes it less likely
that the location of core kernel data structures can be determined by an
adversary, but causes all function calls from modules into the core kernel
to be resolved via entries in the module PLTs.
If CONFIG_RANDOMIZE_MODULE_REGION_FULL is not enabled, the module region is
randomized by choosing a page aligned 128 MB region inside the interval
[_etext - 128 MB, _stext + 128 MB). This gives between 10 and 14 bits of
entropy (depending on page size), independently of the kernel randomization,
but still guarantees that modules are within the range of relative branch
and jump instructions (with the caveat that, since the module region is
shared with other uses of the vmalloc area, modules may need to be loaded
further away if the module region is exhausted)
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
This adds support for emitting PLTs at module load time for relative
branches that are out of range. This is a prerequisite for KASLR, which
may place the kernel and the modules anywhere in the vmalloc area,
making it more likely that branch target offsets exceed the maximum
range of +/- 128 MB.
In this version, I removed the distinction between relocations against
.init executable sections and ordinary executable sections. The reason
is that it is hardly worth the trouble, given that .init.text usually
does not contain that many far branches, and this version now only
reserves PLT entry space for jump and call relocations against undefined
symbols (since symbols defined in the same module can be assumed to be
within +/- 128 MB)
For example, the mac80211.ko module (which is fairly sizable at ~400 KB)
built with -mcmodel=large gives the following relocation counts:
relocs branches unique !local
.text 3925 3347 518 219
.init.text 11 8 7 1
.exit.text 4 4 4 1
.text.unlikely 81 67 36 17
('unique' means branches to unique type/symbol/addend combos, of which
!local is the subset referring to undefined symbols)
IOW, we are only emitting a single PLT entry for the .init sections, and
we are better off just adding it to the core PLT section instead.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
Compilers may engage the improbability drive when encountering shifts
by a distance that is a multiple of the size of the operand type. Since
the required bounds check is very simple here, we can get rid of all the
fuzzy masking, shifting and comparing, and use the documented bounds
directly.
Reported-by: David Binderman <dcb314@hotmail.com>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
|
|
The test whether a movz instruction with a signed immediate should be
turned into a movn instruction (i.e., when the immediate is negative)
is flawed, since the value of imm is always positive. Also, the
subsequent bounds check is incorrect since the limit update never
executes, due to the fact that the imm_type comparison will always be
false for negative signed immediates.
Let's fix this by performing the sign test on sval directly, and
replacing the bounds check with a simple comparison against U16_MAX.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
[will: tidied up use of sval, renamed MOVK enum value to MOVKZ]
Signed-off-by: Will Deacon <will.deacon@arm.com>
|
|
This patch adds arch specific code for kernel address sanitizer
(see Documentation/kasan.txt).
1/8 of kernel addresses reserved for shadow memory. There was no
big enough hole for this, so virtual addresses for shadow were
stolen from vmalloc area.
At early boot stage the whole shadow region populated with just
one physical page (kasan_zero_page). Later, this page reused
as readonly zero shadow for some memory that KASan currently
don't track (vmalloc).
After mapping the physical memory, pages for shadow memory are
allocated and mapped.
Functions like memset/memmove/memcpy do a lot of memory accesses.
If bad pointer passed to one of these function it is important
to catch this. Compiler's instrumentation cannot do this since
these functions are written in assembly.
KASan replaces memory functions with manually instrumented variants.
Original functions declared as weak symbols so strong definitions
in mm/kasan/kasan.c could replace them. Original functions have aliases
with '__' prefix in name, so we could call non-instrumented variant
if needed.
Some files built without kasan instrumentation (e.g. mm/slub.c).
Original mem* function replaced (via #define) with prefixed variants
to disable memory access checks for such files.
Signed-off-by: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Tested-by: Linus Walleij <linus.walleij@linaro.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
Cortex-A53 processors <= r0p4 are affected by erratum #843419 which can
lead to a memory access using an incorrect address in certain sequences
headed by an ADRP instruction.
There is a linker fix to generate veneers for ADRP instructions, but
this doesn't work for kernel modules which are built as unlinked ELF
objects.
This patch adds a new config option for the erratum which, when enabled,
builds kernel modules with the mcmodel=large flag. This uses absolute
addressing for all kernel symbols, thereby removing the use of ADRP as
a PC-relative form of addressing. The ADRP relocs are removed from the
module loader so that we fail to load any potentially affected modules.
Cc: <stable@vger.kernel.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
|
|
For instrumenting global variables KASan will shadow memory backing memory
for modules. So on module loading we will need to allocate memory for
shadow and map it at address in shadow that corresponds to the address
allocated in module_alloc().
__vmalloc_node_range() could be used for this purpose, except it puts a
guard hole after allocated area. Guard hole in shadow memory should be a
problem because at some future point we might need to have a shadow memory
at address occupied by guard hole. So we could fail to allocate shadow
for module_alloc().
Now we have VM_NO_GUARD flag disabling guard page, so we need to pass into
__vmalloc_node_range(). Add new parameter 'vm_flags' to
__vmalloc_node_range() function.
Signed-off-by: Andrey Ryabinin <a.ryabinin@samsung.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Konstantin Serebryany <kcc@google.com>
Cc: Dmitry Chernenkov <dmitryc@google.com>
Signed-off-by: Andrey Konovalov <adech.fo@gmail.com>
Cc: Yuri Gribov <tetra2005@gmail.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
On next-20150105, defconfig compilation breaks with:
arch/arm64/kernel/module.c:408:4: error: implicit declaration of function ‘apply_alternatives’ [-Werror=implicit-function-declaration]
Fix by including asm/alternative.h, where the apply_alternatives()
prototype is declared.
This second version incorporates a comment from Mark Rutland
<mark.rutland@arm.com> to keep the includes in alphabetical order
by filename.
Signed-off-by: Paul Walmsley <paul@pwsan.com>
Cc: Paul Walmsley <pwalmsley@nvidia.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
|
|
Currently the kernel patches all necessary instructions once at boot
time, so modules are not covered by this.
Change the apply_alternatives() function to take a beginning and an
end pointer and introduce a new variant (apply_alternatives_all()) to
cover the existing use case for the static kernel image section.
Add a module_finalize() function to arm64 to check for an
alternatives section in a module and patch only the instructions from
that specific area.
Since that module code is not touched before the module
initialization has ended, we don't need to halt the machine before
doing the patching in the module's code.
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
|
|
Function encode_insn_immediate() will be used by other instruction
manipulate related functions, so move it into insn.c and rename it
as aarch64_insn_encode_immediate().
Reviewed-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Jiang Liu <liuj97@gmail.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
Use more appropriate NUMA_NO_NODE instead of -1 in all archs' module_alloc()
Signed-off-by: Jianguo Wu <wujianguo@huawei.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Relocations that require an instruction immediate to be re-encoded must
ensure that the instruction pattern is represented in a little-endian
format for the manipulation code to work correctly.
This patch converts the loaded instruction into native-endianess prior
to encoding and then converts back to little-endian byteorder before
updating memory.
Signed-off-by: Will Deacon <will.deacon@arm.com>
Tested-by: Matthew Leach <matthew.leach@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
This patch adds support for loadable modules. Loadable modules are
loaded 64MB below the kernel image due to branch relocation restrictions
(see Documentation/arm64/memory.txt).
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Tony Lindgren <tony@atomide.com>
Acked-by: Nicolas Pitre <nico@linaro.org>
Acked-by: Olof Johansson <olof@lixom.net>
Acked-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
|