Age | Commit message (Collapse) | Author |
|
For clarity of review, KSM and page migration have separate refcounts on
the anon_vma. While clear, this is a waste of memory. This patch gets
KSM and page migration to share their toys in a spirit of harmony.
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Christoph Lameter <cl@linux-foundation.org>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
This patchset is a memory compaction mechanism that reduces external
fragmentation memory by moving GFP_MOVABLE pages to a fewer number of
pageblocks. The term "compaction" was chosen as there are is a number of
mechanisms that are not mutually exclusive that can be used to defragment
memory. For example, lumpy reclaim is a form of defragmentation as was
slub "defragmentation" (really a form of targeted reclaim). Hence, this
is called "compaction" to distinguish it from other forms of
defragmentation.
In this implementation, a full compaction run involves two scanners
operating within a zone - a migration and a free scanner. The migration
scanner starts at the beginning of a zone and finds all movable pages
within one pageblock_nr_pages-sized area and isolates them on a
migratepages list. The free scanner begins at the end of the zone and
searches on a per-area basis for enough free pages to migrate all the
pages on the migratepages list. As each area is respectively migrated or
exhausted of free pages, the scanners are advanced one area. A compaction
run completes within a zone when the two scanners meet.
This method is a bit primitive but is easy to understand and greater
sophistication would require maintenance of counters on a per-pageblock
basis. This would have a big impact on allocator fast-paths to improve
compaction which is a poor trade-off.
It also does not try relocate virtually contiguous pages to be physically
contiguous. However, assuming transparent hugepages were in use, a
hypothetical khugepaged might reuse compaction code to isolate free pages,
split them and relocate userspace pages for promotion.
Memory compaction can be triggered in one of three ways. It may be
triggered explicitly by writing any value to /proc/sys/vm/compact_memory
and compacting all of memory. It can be triggered on a per-node basis by
writing any value to /sys/devices/system/node/nodeN/compact where N is the
node ID to be compacted. When a process fails to allocate a high-order
page, it may compact memory in an attempt to satisfy the allocation
instead of entering direct reclaim. Explicit compaction does not finish
until the two scanners meet and direct compaction ends if a suitable page
becomes available that would meet watermarks.
The series is in 14 patches. The first three are not "core" to the series
but are important pre-requisites.
Patch 1 reference counts anon_vma for rmap_walk_anon(). Without this
patch, it's possible to use anon_vma after free if the caller is
not holding a VMA or mmap_sem for the pages in question. While
there should be no existing user that causes this problem,
it's a requirement for memory compaction to be stable. The patch
is at the start of the series for bisection reasons.
Patch 2 merges the KSM and migrate counts. It could be merged with patch 1
but would be slightly harder to review.
Patch 3 skips over unmapped anon pages during migration as there are no
guarantees about the anon_vma existing. There is a window between
when a page was isolated and migration started during which anon_vma
could disappear.
Patch 4 notes that PageSwapCache pages can still be migrated even if they
are unmapped.
Patch 5 allows CONFIG_MIGRATION to be set without CONFIG_NUMA
Patch 6 exports a "unusable free space index" via debugfs. It's
a measure of external fragmentation that takes the size of the
allocation request into account. It can also be calculated from
userspace so can be dropped if requested
Patch 7 exports a "fragmentation index" which only has meaning when an
allocation request fails. It determines if an allocation failure
would be due to a lack of memory or external fragmentation.
Patch 8 moves the definition for LRU isolation modes for use by compaction
Patch 9 is the compaction mechanism although it's unreachable at this point
Patch 10 adds a means of compacting all of memory with a proc trgger
Patch 11 adds a means of compacting a specific node with a sysfs trigger
Patch 12 adds "direct compaction" before "direct reclaim" if it is
determined there is a good chance of success.
Patch 13 adds a sysctl that allows tuning of the threshold at which the
kernel will compact or direct reclaim
Patch 14 temporarily disables compaction if an allocation failure occurs
after compaction.
Testing of compaction was in three stages. For the test, debugging,
preempt, the sleep watchdog and lockdep were all enabled but nothing nasty
popped out. min_free_kbytes was tuned as recommended by hugeadm to help
fragmentation avoidance and high-order allocations. It was tested on X86,
X86-64 and PPC64.
Ths first test represents one of the easiest cases that can be faced for
lumpy reclaim or memory compaction.
1. Machine freshly booted and configured for hugepage usage with
a) hugeadm --create-global-mounts
b) hugeadm --pool-pages-max DEFAULT:8G
c) hugeadm --set-recommended-min_free_kbytes
d) hugeadm --set-recommended-shmmax
The min_free_kbytes here is important. Anti-fragmentation works best
when pageblocks don't mix. hugeadm knows how to calculate a value that
will significantly reduce the worst of external-fragmentation-related
events as reported by the mm_page_alloc_extfrag tracepoint.
2. Load up memory
a) Start updatedb
b) Create in parallel a X files of pagesize*128 in size. Wait
until files are created. By parallel, I mean that 4096 instances
of dd were launched, one after the other using &. The crude
objective being to mix filesystem metadata allocations with
the buffer cache.
c) Delete every second file so that pageblocks are likely to
have holes
d) kill updatedb if it's still running
At this point, the system is quiet, memory is full but it's full with
clean filesystem metadata and clean buffer cache that is unmapped.
This is readily migrated or discarded so you'd expect lumpy reclaim
to have no significant advantage over compaction but this is at
the POC stage.
3. In increments, attempt to allocate 5% of memory as hugepages.
Measure how long it took, how successful it was, how many
direct reclaims took place and how how many compactions. Note
the compaction figures might not fully add up as compactions
can take place for orders other than the hugepage size
X86 vanilla compaction
Final page count 913 916 (attempted 1002)
pages reclaimed 68296 9791
X86-64 vanilla compaction
Final page count: 901 902 (attempted 1002)
Total pages reclaimed: 112599 53234
PPC64 vanilla compaction
Final page count: 93 94 (attempted 110)
Total pages reclaimed: 103216 61838
There was not a dramatic improvement in success rates but it wouldn't be
expected in this case either. What was important is that fewer pages were
reclaimed in all cases reducing the amount of IO required to satisfy a
huge page allocation.
The second tests were all performance related - kernbench, netperf, iozone
and sysbench. None showed anything too remarkable.
The last test was a high-order allocation stress test. Many kernel
compiles are started to fill memory with a pressured mix of unmovable and
movable allocations. During this, an attempt is made to allocate 90% of
memory as huge pages - one at a time with small delays between attempts to
avoid flooding the IO queue.
vanilla compaction
Percentage of request allocated X86 98 99
Percentage of request allocated X86-64 95 98
Percentage of request allocated PPC64 55 70
This patch:
rmap_walk_anon() does not use page_lock_anon_vma() for looking up and
locking an anon_vma and it does not appear to have sufficient locking to
ensure the anon_vma does not disappear from under it.
This patch copies an approach used by KSM to take a reference on the
anon_vma while pages are being migrated. This should prevent rmap_walk()
running into nasty surprises later because anon_vma has been freed.
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
There are two types of zonelist ordering methodologies:
- node order, preferring allocations on a node to stay local to and
- zone order, preferring allocations come from a higher zone to avoid
allocating in lowmem zones even though they may not be local.
The ordering technique used by the kernel is configurable on the command
line, but also has some logic to determine what the default should be.
This logic currently lacks knowledge of systems where a node may only have
lowmem. For such systems, it is necessary to use node order so that
GFP_KERNEL allocations may be satisfied by nodes consisting of only
lowmem.
If zone order is used, GFP_KERNEL allocations to such nodes are actually
allocated on a node with local affinity that includes ZONE_NORMAL.
This change defaults to node zonelist ordering if any node lacks
ZONE_NORMAL.
To force zone order, append 'numa_zonelist_order=zone' to the kernel
command line.
Signed-off-by: David Rientjes <rientjes@google.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
If !CONFIG_HUGETLB_PAGE, pagemap_hugetlb_range() is never called. So put
it (and its calling function) into #ifdef block.
Signed-off-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Matt Mackall <mpm@selenic.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Do page table walks with the well-known nested loops we use in several
other places already.
This avoids doing full page table walks after every pte range and also
allows to handle unmapped areas bigger than one pte range in one go.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Instead of passing a start address and a number of pages into the helper
functions, convert them to use a start and an end address.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Split out functions to handle hugetlb ranges, pte ranges and unmapped
ranges, to improve readability but also to prepare the file structure for
nested page table walks.
No semantic changes intended.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
This fixes some minor issues that bugged me while going over the code:
o adjust argument order of do_mincore() to match the syscall
o simplify range length calculation
o drop superfluous shift in huge tlb calculation, address is page aligned
o drop dead nr_huge calculation
o check pte_none() before pte_present()
o comment and whitespace fixes
No semantic changes intended.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Before applying this patch, cpuset updates task->mems_allowed and
mempolicy by setting all new bits in the nodemask first, and clearing all
old unallowed bits later. But in the way, the allocator may find that
there is no node to alloc memory.
The reason is that cpuset rebinds the task's mempolicy, it cleans the
nodes which the allocater can alloc pages on, for example:
(mpol: mempolicy)
task1 task1's mpol task2
alloc page 1
alloc on node0? NO 1
1 change mems from 1 to 0
1 rebind task1's mpol
0-1 set new bits
0 clear disallowed bits
alloc on node1? NO 0
...
can't alloc page
goto oom
This patch fixes this problem by expanding the nodes range first(set newly
allowed bits) and shrink it lazily(clear newly disallowed bits). So we
use a variable to tell the write-side task that read-side task is reading
nodemask, and the write-side task clears newly disallowed nodes after
read-side task ends the current memory allocation.
[akpm@linux-foundation.org: fix spello]
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Paul Menage <menage@google.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: Ravikiran Thirumalai <kiran@scalex86.org>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Andi Kleen <andi@firstfloor.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Nick Piggin reported that the allocator may see an empty nodemask when
changing cpuset's mems[1]. It happens only on the kernel that do not do
atomic nodemask_t stores. (MAX_NUMNODES > BITS_PER_LONG)
But I found that there is also a problem on the kernel that can do atomic
nodemask_t stores. The problem is that the allocator can't find a node to
alloc page when changing cpuset's mems though there is a lot of free
memory. The reason is like this:
(mpol: mempolicy)
task1 task1's mpol task2
alloc page 1
alloc on node0? NO 1
1 change mems from 1 to 0
1 rebind task1's mpol
0-1 set new bits
0 clear disallowed bits
alloc on node1? NO 0
...
can't alloc page
goto oom
I can use the attached program reproduce it by the following step:
# mkdir /dev/cpuset
# mount -t cpuset cpuset /dev/cpuset
# mkdir /dev/cpuset/1
# echo `cat /dev/cpuset/cpus` > /dev/cpuset/1/cpus
# echo `cat /dev/cpuset/mems` > /dev/cpuset/1/mems
# echo $$ > /dev/cpuset/1/tasks
# numactl --membind=`cat /dev/cpuset/mems` ./cpuset_mem_hog <nr_tasks> &
<nr_tasks> = max(nr_cpus - 1, 1)
# killall -s SIGUSR1 cpuset_mem_hog
# ./change_mems.sh
several hours later, oom will happen though there is a lot of free memory.
This patchset fixes this problem by expanding the nodes range first(set
newly allowed bits) and shrink it lazily(clear newly disallowed bits). So
we use a variable to tell the write-side task that read-side task is
reading nodemask, and the write-side task clears newly disallowed nodes
after read-side task ends the current memory allocation.
This patch:
In order to fix no node to alloc memory, when we want to update mempolicy
and mems_allowed, we expand the set of nodes first (set all the newly
nodes) and shrink the set of nodes lazily(clean disallowed nodes), But the
mempolicy's rebind functions may breaks the expanding.
So we restructure the mempolicy's rebind functions and split the rebind
work to two steps, just like the update of cpuset's mems: The 1st step:
expand the set of the mempolicy's nodes. The 2nd step: shrink the set of
the mempolicy's nodes. It is used when there is no real lock to protect
the mempolicy in the read-side. Otherwise we can do rebind work at once.
In order to implement it, we define
enum mpol_rebind_step {
MPOL_REBIND_ONCE,
MPOL_REBIND_STEP1,
MPOL_REBIND_STEP2,
MPOL_REBIND_NSTEP,
};
If the mempolicy needn't be updated by two steps, we can pass
MPOL_REBIND_ONCE to the rebind functions. Or we can pass
MPOL_REBIND_STEP1 to do the first step of the rebind work and pass
MPOL_REBIND_STEP2 to do the second step work.
Besides that, it maybe long time between these two step and we have to
release the lock that protects mempolicy and mems_allowed. If we hold the
lock once again, we must check whether the current mempolicy is under the
rebinding (the first step has been done) or not, because the task may
alloc a new mempolicy when we don't hold the lock. So we defined the
following flag to identify it:
#define MPOL_F_REBINDING (1 << 2)
The new functions will be used in the next patch.
Signed-off-by: Miao Xie <miaox@cn.fujitsu.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Nick Piggin <npiggin@suse.de>
Cc: Paul Menage <menage@google.com>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: Ravikiran Thirumalai <kiran@scalex86.org>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Andi Kleen <andi@firstfloor.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Update Documentation/filesystems/tmpfs.txt to describe the interaction of
tmpfs mount option memory policy with tasks' cpuset mems_allowed.
Note: the mount(8) man page [in the util-linux-ng package] requires
similiar updates.
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: Ravikiran Thirumalai <kiran@scalex86.org>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Factor out duplicate put/frees in mpol_shared_policy_init() to a common
return path.
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: Ravikiran Thirumalai <kiran@scalex86.org>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Rename 'policy_types[]' to 'policy_modes[]' to better match the array
contents.
Use designated intializer syntax for policy_modes[].
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: Ravikiran Thirumalai <kiran@scalex86.org>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
We don't really need the extra variable 'i' in mpol_parse_str(). The only
use is as the the loop variable. Then, it's assigned to 'mode'. Just use
mode, and loose the 'uninitialized_var()' macro.
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: Ravikiran Thirumalai <kiran@scalex86.org>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
No need to call mpol_set_nodemask() when we have no context for the
mempolicy. This can occur when we're parsing a tmpfs 'mpol' mount option.
Just save the raw nodemask in the mempolicy's w.user_nodemask member for
use when a tmpfs/shmem file is created. mpol_shared_policy_init() will
"contextualize" the policy for the new file based on the creating task's
context.
Signed-off-by: Lee Schermerhorn <lee.schermerhorn@hp.com>
Cc: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Cc: Ravikiran Thirumalai <kiran@scalex86.org>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Lee's patch "mempolicy: use MPOL_PREFERRED for system-wide default policy"
has made the MPOL_DEFAULT only used in the memory policy APIs. So, no
need to check in __mpol_equal also. Also get rid of mpol_match_intent()
and move its logic directly into __mpol_equal().
Signed-off-by: Bob Liu <lliubbo@gmail.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
In policy_zonelist() mode MPOL_INTERLEAVE shouldn't happen, so fall
through to BUG() instead of break to return. I also fixed the comment.
Signed-off-by: Bob Liu <lliubbo@gmail.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Lee Schermerhorn <lee.schermerhorn@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
1. In funtion is_valid_nodemask(), varibable k will be inited to 0 in
the following loop, needn't init to policy_zone anymore.
2. (MPOL_F_STATIC_NODES | MPOL_F_RELATIVE_NODES) has already defined
to MPOL_MODE_FLAGS in mempolicy.h.
Signed-off-by: Bob Liu <lliubbo@gmail.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
putback_lru_page() never can fail. So it doesn't matter count of "the
number of pages put back".
In addition, users of this functions don't use return value.
Let's remove unnecessary code.
Signed-off-by: Minchan Kim <minchan.kim@gmail.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
prep_new_page() will call set_page_private(page, 0) to initialise the
page, so the code is redundant.
Signed-off-by: Huang Shijie <shijie8@gmail.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Acked-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
We need to put mem_map high when virtual memmap is not used.
before this patch
free mem pfn range on first node:
[ 0.000000] 19 - 1f
[ 0.000000] 28 40 - 80 95
[ 0.000000] 702 740 - 1000 1000
[ 0.000000] 347c - 347e
[ 0.000000] 34e7 3500 - 3b80 3b8b
[ 0.000000] 73b8b 73bc0 - 73c00 73c00
[ 0.000000] 73ddd - 73e00
[ 0.000000] 73fdd - 74000
[ 0.000000] 741dd - 74200
[ 0.000000] 743dd - 74400
[ 0.000000] 745dd - 74600
[ 0.000000] 747dd - 74800
[ 0.000000] 749dd - 74a00
[ 0.000000] 74bdd - 74c00
[ 0.000000] 74ddd - 74e00
[ 0.000000] 74fdd - 75000
[ 0.000000] 751dd - 75200
[ 0.000000] 753dd - 75400
[ 0.000000] 755dd - 75600
[ 0.000000] 757dd - 75800
[ 0.000000] 759dd - 75a00
[ 0.000000] 79bdd 79c00 - 7d540 7d550
[ 0.000000] 7f745 - 7f750
[ 0.000000] 10000b 100040 - 2080000 2080000
so only 79c00 - 7d540 are major free block under 4g...
after this patch, we will get
[ 0.000000] 19 - 1f
[ 0.000000] 28 40 - 80 95
[ 0.000000] 702 740 - 1000 1000
[ 0.000000] 347c - 347e
[ 0.000000] 34e7 3500 - 3600 3600
[ 0.000000] 37dd - 3800
[ 0.000000] 39dd - 3a00
[ 0.000000] 3bdd - 3c00
[ 0.000000] 3ddd - 3e00
[ 0.000000] 3fdd - 4000
[ 0.000000] 41dd - 4200
[ 0.000000] 43dd - 4400
[ 0.000000] 45dd - 4600
[ 0.000000] 47dd - 4800
[ 0.000000] 49dd - 4a00
[ 0.000000] 4bdd - 4c00
[ 0.000000] 4ddd - 4e00
[ 0.000000] 4fdd - 5000
[ 0.000000] 51dd - 5200
[ 0.000000] 53dd - 5400
[ 0.000000] 95dd 9600 - 7d540 7d550
[ 0.000000] 7f745 - 7f750
[ 0.000000] 17000b 170040 - 2080000 2080000
we will have 9600 - 7d540 for major free block...
sparse-vmemmap path already used __alloc_bootmem_node_high()
Signed-off-by: Yinghai Lu <yinghai@kernel.org>
Cc: Jiri Slaby <jirislaby@gmail.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Greg Thelen <gthelen@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
that are merging to the tail of the free lists
In order to reduce fragmentation, this patch classifies freed pages in two
groups according to their probability of being part of a high order merge.
Pages belonging to a compound whose next-highest buddy is free are more
likely to be part of a high order merge in the near future, so they will
be added at the tail of the freelist. The remaining pages are put at the
front of the freelist.
In this way, the pages that are more likely to cause a big merge are kept
free longer. Consequently there is a tendency to aggregate the
long-living allocations on a subset of the compounds, reducing the
fragmentation.
This heuristic was tested on three machines, x86, x86-64 and ppc64 with
3GB of RAM in each machine. The tests were kernbench, netperf, sysbench
and STREAM for performance and a high-order stress test for huge page
allocations.
KernBench X86
Elapsed mean 374.77 ( 0.00%) 375.10 (-0.09%)
User mean 649.53 ( 0.00%) 650.44 (-0.14%)
System mean 54.75 ( 0.00%) 54.18 ( 1.05%)
CPU mean 187.75 ( 0.00%) 187.25 ( 0.27%)
KernBench X86-64
Elapsed mean 94.45 ( 0.00%) 94.01 ( 0.47%)
User mean 323.27 ( 0.00%) 322.66 ( 0.19%)
System mean 36.71 ( 0.00%) 36.50 ( 0.57%)
CPU mean 380.75 ( 0.00%) 381.75 (-0.26%)
KernBench PPC64
Elapsed mean 173.45 ( 0.00%) 173.74 (-0.17%)
User mean 587.99 ( 0.00%) 587.95 ( 0.01%)
System mean 60.60 ( 0.00%) 60.57 ( 0.05%)
CPU mean 373.50 ( 0.00%) 372.75 ( 0.20%)
Nothing notable for kernbench.
NetPerf UDP X86
64 42.68 ( 0.00%) 42.77 ( 0.21%)
128 85.62 ( 0.00%) 85.32 (-0.35%)
256 170.01 ( 0.00%) 168.76 (-0.74%)
1024 655.68 ( 0.00%) 652.33 (-0.51%)
2048 1262.39 ( 0.00%) 1248.61 (-1.10%)
3312 1958.41 ( 0.00%) 1944.61 (-0.71%)
4096 2345.63 ( 0.00%) 2318.83 (-1.16%)
8192 4132.90 ( 0.00%) 4089.50 (-1.06%)
16384 6770.88 ( 0.00%) 6642.05 (-1.94%)*
NetPerf UDP X86-64
64 148.82 ( 0.00%) 154.92 ( 3.94%)
128 298.96 ( 0.00%) 312.95 ( 4.47%)
256 583.67 ( 0.00%) 626.39 ( 6.82%)
1024 2293.18 ( 0.00%) 2371.10 ( 3.29%)
2048 4274.16 ( 0.00%) 4396.83 ( 2.79%)
3312 6356.94 ( 0.00%) 6571.35 ( 3.26%)
4096 7422.68 ( 0.00%) 7635.42 ( 2.79%)*
8192 12114.81 ( 0.00%)* 12346.88 ( 1.88%)
16384 17022.28 ( 0.00%)* 17033.19 ( 0.06%)*
1.64% 2.73%
NetPerf UDP PPC64
64 49.98 ( 0.00%) 50.25 ( 0.54%)
128 98.66 ( 0.00%) 100.95 ( 2.27%)
256 197.33 ( 0.00%) 191.03 (-3.30%)
1024 761.98 ( 0.00%) 785.07 ( 2.94%)
2048 1493.50 ( 0.00%) 1510.85 ( 1.15%)
3312 2303.95 ( 0.00%) 2271.72 (-1.42%)
4096 2774.56 ( 0.00%) 2773.06 (-0.05%)
8192 4918.31 ( 0.00%) 4793.59 (-2.60%)
16384 7497.98 ( 0.00%) 7749.52 ( 3.25%)
The tests are run to have confidence limits within 1%. Results marked
with a * were not confident although in this case, it's only outside by
small amounts. Even with some results that were not confident, the
netperf UDP results were generally positive.
NetPerf TCP X86
64 652.25 ( 0.00%)* 648.12 (-0.64%)*
23.80% 22.82%
128 1229.98 ( 0.00%)* 1220.56 (-0.77%)*
21.03% 18.90%
256 2105.88 ( 0.00%) 1872.03 (-12.49%)*
1.00% 16.46%
1024 3476.46 ( 0.00%)* 3548.28 ( 2.02%)*
13.37% 11.39%
2048 4023.44 ( 0.00%)* 4231.45 ( 4.92%)*
9.76% 12.48%
3312 4348.88 ( 0.00%)* 4396.96 ( 1.09%)*
6.49% 8.75%
4096 4726.56 ( 0.00%)* 4877.71 ( 3.10%)*
9.85% 8.50%
8192 4732.28 ( 0.00%)* 5777.77 (18.10%)*
9.13% 13.04%
16384 5543.05 ( 0.00%)* 5906.24 ( 6.15%)*
7.73% 8.68%
NETPERF TCP X86-64
netperf-tcp-vanilla-netperf netperf-tcp
tcp-vanilla pgalloc-delay
64 1895.87 ( 0.00%)* 1775.07 (-6.81%)*
5.79% 4.78%
128 3571.03 ( 0.00%)* 3342.20 (-6.85%)*
3.68% 6.06%
256 5097.21 ( 0.00%)* 4859.43 (-4.89%)*
3.02% 2.10%
1024 8919.10 ( 0.00%)* 8892.49 (-0.30%)*
5.89% 6.55%
2048 10255.46 ( 0.00%)* 10449.39 ( 1.86%)*
7.08% 7.44%
3312 10839.90 ( 0.00%)* 10740.15 (-0.93%)*
6.87% 7.33%
4096 10814.84 ( 0.00%)* 10766.97 (-0.44%)*
6.86% 8.18%
8192 11606.89 ( 0.00%)* 11189.28 (-3.73%)*
7.49% 5.55%
16384 12554.88 ( 0.00%)* 12361.22 (-1.57%)*
7.36% 6.49%
NETPERF TCP PPC64
netperf-tcp-vanilla-netperf netperf-tcp
tcp-vanilla pgalloc-delay
64 594.17 ( 0.00%) 596.04 ( 0.31%)*
1.00% 2.29%
128 1064.87 ( 0.00%)* 1074.77 ( 0.92%)*
1.30% 1.40%
256 1852.46 ( 0.00%)* 1856.95 ( 0.24%)
1.25% 1.00%
1024 3839.46 ( 0.00%)* 3813.05 (-0.69%)
1.02% 1.00%
2048 4885.04 ( 0.00%)* 4881.97 (-0.06%)*
1.15% 1.04%
3312 5506.90 ( 0.00%) 5459.72 (-0.86%)
4096 6449.19 ( 0.00%) 6345.46 (-1.63%)
8192 7501.17 ( 0.00%) 7508.79 ( 0.10%)
16384 9618.65 ( 0.00%) 9490.10 (-1.35%)
There was a distinct lack of confidence in the X86* figures so I included
what the devation was where the results were not confident. Many of the
results, whether gains or losses were within the standard deviation so no
solid conclusion can be reached on performance impact. Looking at the
figures, only the X86-64 ones look suspicious with a few losses that were
outside the noise. However, the results were so unstable that without
knowing why they vary so much, a solid conclusion cannot be reached.
SYSBENCH X86
sysbench-vanilla pgalloc-delay
1 7722.85 ( 0.00%) 7756.79 ( 0.44%)
2 14901.11 ( 0.00%) 13683.44 (-8.90%)
3 15171.71 ( 0.00%) 14888.25 (-1.90%)
4 14966.98 ( 0.00%) 15029.67 ( 0.42%)
5 14370.47 ( 0.00%) 14865.00 ( 3.33%)
6 14870.33 ( 0.00%) 14845.57 (-0.17%)
7 14429.45 ( 0.00%) 14520.85 ( 0.63%)
8 14354.35 ( 0.00%) 14362.31 ( 0.06%)
SYSBENCH X86-64
1 17448.70 ( 0.00%) 17484.41 ( 0.20%)
2 34276.39 ( 0.00%) 34251.00 (-0.07%)
3 50805.25 ( 0.00%) 50854.80 ( 0.10%)
4 66667.10 ( 0.00%) 66174.69 (-0.74%)
5 66003.91 ( 0.00%) 65685.25 (-0.49%)
6 64981.90 ( 0.00%) 65125.60 ( 0.22%)
7 64933.16 ( 0.00%) 64379.23 (-0.86%)
8 63353.30 ( 0.00%) 63281.22 (-0.11%)
9 63511.84 ( 0.00%) 63570.37 ( 0.09%)
10 62708.27 ( 0.00%) 63166.25 ( 0.73%)
11 62092.81 ( 0.00%) 61787.75 (-0.49%)
12 61330.11 ( 0.00%) 61036.34 (-0.48%)
13 61438.37 ( 0.00%) 61994.47 ( 0.90%)
14 62304.48 ( 0.00%) 62064.90 (-0.39%)
15 63296.48 ( 0.00%) 62875.16 (-0.67%)
16 63951.76 ( 0.00%) 63769.09 (-0.29%)
SYSBENCH PPC64
-sysbench-pgalloc-delay-sysbench
sysbench-vanilla pgalloc-delay
1 7645.08 ( 0.00%) 7467.43 (-2.38%)
2 14856.67 ( 0.00%) 14558.73 (-2.05%)
3 21952.31 ( 0.00%) 21683.64 (-1.24%)
4 27946.09 ( 0.00%) 28623.29 ( 2.37%)
5 28045.11 ( 0.00%) 28143.69 ( 0.35%)
6 27477.10 ( 0.00%) 27337.45 (-0.51%)
7 26489.17 ( 0.00%) 26590.06 ( 0.38%)
8 26642.91 ( 0.00%) 25274.33 (-5.41%)
9 25137.27 ( 0.00%) 24810.06 (-1.32%)
10 24451.99 ( 0.00%) 24275.85 (-0.73%)
11 23262.20 ( 0.00%) 23674.88 ( 1.74%)
12 24234.81 ( 0.00%) 23640.89 (-2.51%)
13 24577.75 ( 0.00%) 24433.50 (-0.59%)
14 25640.19 ( 0.00%) 25116.52 (-2.08%)
15 26188.84 ( 0.00%) 26181.36 (-0.03%)
16 26782.37 ( 0.00%) 26255.99 (-2.00%)
Again, there is little to conclude here. While there are a few losses,
the results vary by +/- 8% in some cases. They are the results of most
concern as there are some large losses but it's also within the variance
typically seen between kernel releases.
The STREAM results varied so little and are so verbose that I didn't
include them here.
The final test stressed how many huge pages can be allocated. The
absolute number of huge pages allocated are the same with or without the
page. However, the "unusability free space index" which is a measure of
external fragmentation was slightly lower (lower is better) throughout the
lifetime of the system. I also measured the latency of how long it took
to successfully allocate a huge page. The latency was slightly lower and
on X86 and PPC64, more huge pages were allocated almost immediately from
the free lists. The improvement is slight but there.
[mel@csn.ul.ie: Tested, reworked for less branches]
[czoccolo@gmail.com: fix oops by checking pfn_valid_within()]
Signed-off-by: Mel Gorman <mel@csn.ul.ie>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Acked-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Corrado Zoccolo <czoccolo@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Shaohua Li reported parallel file copy on tmpfs can lead to OOM killer.
This is regression of caused by commit 9ff473b9a7 ("vmscan: evict
streaming IO first"). Wow, It is 2 years old patch!
Currently, tmpfs file cache is inserted active list at first. This means
that the insertion doesn't only increase numbers of pages in anon LRU, but
it also reduces anon scanning ratio. Therefore, vmscan will get totally
confused. It scans almost only file LRU even though the system has plenty
unused tmpfs pages.
Historically, lru_cache_add_active_anon() was used for two reasons.
1) Intend to priotize shmem page rather than regular file cache.
2) Intend to avoid reclaim priority inversion of used once pages.
But we've lost both motivation because (1) Now we have separate anon and
file LRU list. then, to insert active list doesn't help such priotize.
(2) In past, one pte access bit will cause page activation. then to
insert inactive list with pte access bit mean higher priority than to
insert active list. Its priority inversion may lead to uninteded lru
chun. but it was already solved by commit 645747462 (vmscan: detect
mapped file pages used only once). (Thanks Hannes, you are great!)
Thus, now we can use lru_cache_add_anon() instead.
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reported-by: Shaohua Li <shaohua.li@intel.com>
Reviewed-by: Wu Fengguang <fengguang.wu@intel.com>
Reviewed-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: Henrique de Moraes Holschuh <hmh@hmh.eng.br>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
fix the following 'make includecheck' warnings:
arch/xtensa/kernel/vectors.S: asm/processor.h is included more than once.
arch/xtensa/kernel/vectors.S: asm/ptrace.h is included more than once.
Signed-off-by: Jaswinder Singh Rajput <jaswinderrajput@gmail.com>
Cc: Chris Zankel <chris@zankel.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Also remove lots of unused irq_cpustat fields.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Cc: Chris Zankel <chris@zankel.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Architectures that handle DMA-non-coherent memory need to set
ARCH_KMALLOC_MINALIGN to make sure that kmalloc'ed buffer is DMA-safe: the
buffer doesn't share a cache with the others.
Signed-off-by: FUJITA Tomonori <fujita.tomonori@lab.ntt.co.jp>
Cc: Chris Zankel <chris@zankel.net>
Acked-by: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: <stable@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
* git://git.kernel.org/pub/scm/linux/kernel/git/davem/ide-2.6:
cmd640: fix kernel oops in test_irq() method
pdc202xx_old: ignore "FIFO empty" bit in test_irq() method
pdc202xx_old: wire test_irq() method for PDC2026x
IDE: pass IRQ flags to the IDE core
ide: fix comment typo in ide.h
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/vapier/blackfin
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/vapier/blackfin: (30 commits)
Blackfin: SMP: fix continuation lines
Blackfin: acvilon: fix timeout usage for I2C
Blackfin: fix typo in BF537 IRQ comment
Blackfin: unify duplicate MEM_MT48LC32M8A2_75 kconfig options
Blackfin: set ARCH_KMALLOC_MINALIGN
Blackfin: use atomic kmalloc in L1 alloc so it too can be atomic
Blackfin: another year of changes (update copyright in boot log)
Blackfin: optimize strncpy a bit
Blackfin: isram: clean up ITEST_COMMAND macro and improve the selftests
Blackfin: move string functions to normal lib/ assembly
Blackfin: SIC: cut down on IAR MMR reads a bit
Blackfin: bf537-minotaur: fix build errors due to header changes
Blackfin: kgdb: pass up the CC register instead of a 0 stub
Blackfin: handle HW errors in the new "FAULT" printing code
Blackfin: show the whole accumulator in the pseudo DBG insn
Blackfin: support all possible registers in the pseudo instructions
Blackfin: add support for the DBG (debug output) pseudo insn
Blackfin: change the BUG opcode to an unused 16-bit opcode
Blackfin: allow NMI watchdog to be used w/RETN as a scratch reg
Blackfin: add support for the DBGA (debug assert) pseudo insn
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/frederic/random-tracing
* 'bkl/ioctl' of git://git.kernel.org/pub/scm/linux/kernel/git/frederic/random-tracing:
uml: Pushdown the bkl from harddog_kern ioctl
sunrpc: Pushdown the bkl from sunrpc cache ioctl
sunrpc: Pushdown the bkl from ioctl
autofs4: Pushdown the bkl from ioctl
uml: Convert to unlocked_ioctls to remove implicit BKL
ncpfs: BKL ioctl pushdown
coda: Clean-up whitespace problems in pioctl.c
coda: BKL ioctl pushdown
drivers: Push down BKL into various drivers
isdn: Push down BKL into ioctl functions
scsi: Push down BKL into ioctl functions
dvb: Push down BKL into ioctl functions
smbfs: Push down BKL into ioctl function
coda/psdev: Remove BKL from ioctl function
um/mmapper: Remove BKL usage
sn_hwperf: Kill BKL usage
hfsplus: Push down BKL into ioctl function
|
|
* git://git.infradead.org/battery-2.6:
ds2760_battery: Document ABI change
ds2760_battery: Make charge_now and charge_full writeable
power_supply: Add support for writeable properties
power_supply: Use attribute groups
power_supply: Add test_power driver
tosa_battery: Fix build error due to direct driver_data usage
wm97xx_battery: Quieten sparse warning (bat_set_pdata not declared)
ds2782_battery: Get rid of magic numbers in driver_data
ds2782_battery: Add support for ds2786 battery gas gauge
pda_power: Add function callbacks for suspend and resume
wm831x_power: Use genirq
Driver for Zipit Z2 battery chip
ds2782_battery: Fix clientdata on removal
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip
* 'timers-for-linus-urgent' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
timers: Fix slack calculation for expired timers
timekeeping: Fix timezone update
|
|
* git://git.kernel.org/pub/scm/linux/kernel/git/lethal/sh-2.6: (25 commits)
sh: fix up sh7785lcr_32bit_defconfig.
arch/sh/lib/strlen.S: Checkpatch cleanup
sh: fix up sh7786 dmaengine build.
sh: guard cookie consistency across termination in the DMA driver
sh: prevent the DMA driver from unloading, while in use
sh: fix Oops in the serial SCI driver
sh: allow platforms to specify SD-card supported voltages
mmc: let MFD's provide supported Vdd card voltages to tmio_mmc
sh: disable SD-card write-protection detection on kfr2r09
mfd: pass platform flags down to the tmio_mmc driver
tmio: add a platform flag to disable card write-protection detection
sh: Add SDHI DMA support to migor
sh: Add SDHI DMA support to kfr2r09
sh: Add SDHI DMA support to ms7724se
sh: Add SDHI DMA support to ecovec
mmc: add DMA support to tmio_mmc driver, when used on SuperH
sh: prepare the SDHI MFD driver to pass DMA configuration to tmio_mmc.c
mmc: prepare tmio_mmc for passing of DMA configuration from the MFD cell
sh: add DMA slave definitions to sh7724
sh: add DMA slaves for two SDHI controllers to sh7722
...
|
|
* 'for-linus' of git://git.open-osd.org/linux-open-osd:
exofs: confusion between kmap() and kmap_atomic() api
exofs: Add default address_space_operations
|
|
This reverts commit 03ceedea972a82d343fa5c2528b3952fa9e615d5, since it
breaks resume from suspend-to-ram on Rafael's Acer Ferrari One.
NetworkManager thinks everything is ok, but it can't connect to the AP
to get an IP address after the resume.
In fact, it even breaks resume for non-ath9k chipsets: reverting it also
fixes Rafael's Toshiba Protege R500 with the iwlagn driver. As Johannes
says:
"Indeed, this patch needs to be reverted. That mac80211 change is wrong
and completely unnecessary."
Reported-and-requested-by: Rafael J. Wysocki <rjw@sisk.pl>
Acked-by: Johannes Berg <johannes@sipsolutions.net>
Cc: Daniel Yingqiang Ma <yma.cool@gmail.com>
Cc: John W. Linville <linville@tuxdriver.com>
Cc: David Miller <davem@davemloft.net>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
* git://git.kernel.org/pub/scm/linux/kernel/git/hirofumi/fatfs-2.6:
fat: convert to unlocked_ioctl
fat: Cleanup nls_unload() usage
fat: use pack_hex_byte() instead of custom one
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/ericvh/v9fs
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ericvh/v9fs:
9p: Optimize TCREATE by eliminating a redundant fid clone.
9p: cleanup: remove unneeded assignment
9p: Add mksock support
fs/9p: Make sure we properly instantiate dentry.
9p: add 9P2000.L rename operation
9p: add 9P2000.L statfs operation
9p: VFS switches for 9p2000.L: VFS switches
9p: VFS switches for 9p2000.L: protocol and client changes
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/sage/ceph-client
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/sage/ceph-client: (59 commits)
ceph: reuse mon subscribe message instead of allocated anew
ceph: avoid resending queued message to monitor
ceph: Storage class should be before const qualifier
ceph: all allocation functions should get gfp_mask
ceph: specify max_bytes on readdir replies
ceph: cleanup pool op strings
ceph: Use kzalloc
ceph: use common helper for aborted dir request invalidation
ceph: cope with out of order (unsafe after safe) mds reply
ceph: save peer feature bits in connection structure
ceph: resync headers with userland
ceph: use ceph. prefix for virtual xattrs
ceph: throw out dirty caps metadata, data on session teardown
ceph: attempt mds reconnect if mds closes our session
ceph: clean up send_mds_reconnect interface
ceph: wait for mds OPEN reply to indicate reconnect success
ceph: only send cap releases when mds is OPEN|HUNG
ceph: dicard cap releases on mds restart
ceph: make mon client statfs handling more generic
ceph: drop src address(es) from message header [new protocol feature]
...
|
|
* 'next-devicetree' of git://git.secretlab.ca/git/linux-2.6:
of: change of_match_device to work with struct device
of: Remove duplicate fields from of_platform_driver
drivercore: Add of_match_table to the common device drivers
arch/microblaze: Move dma_mask from of_device into pdev_archdata
arch/powerpc: Move dma_mask from of_device into pdev_archdata
of: eliminate of_device->node and dev_archdata->{of,prom}_node
of: Always use 'struct device.of_node' to get device node pointer.
i2c/of: Allow device node to be passed via i2c_board_info
driver-core: Add device node pointer to struct device
of: protect contents of of_platform.h and of_device.h
of/flattree: Make unflatten_device_tree() safe to call from any arch
of/flattree: make of_fdt.h safe to unconditionally include.
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/penberg/slab-2.6
* 'slab-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/penberg/slab-2.6:
slub: Use alloc_pages_exact_node() for page allocation
slub: __kmalloc_node_track_caller should trace kmalloc_large_node case
slub: Potential stack overflow
crypto: Use ARCH_KMALLOC_MINALIGN for CRYPTO_MINALIGN now that it's exposed
mm: Move ARCH_SLAB_MINALIGN and ARCH_KMALLOC_MINALIGN to <linux/slub_def.h>
mm: Move ARCH_SLAB_MINALIGN and ARCH_KMALLOC_MINALIGN to <linux/slob_def.h>
mm: Move ARCH_SLAB_MINALIGN and ARCH_KMALLOC_MINALIGN to <linux/slab_def.h>
slab: Fix missing DEBUG_SLAB last user
slab: add memory hotplug support
slab: Fix continuation lines
|
|
Add build testing using 'O=builddir'.
Add build testing with various kconfig symbols disabled, listing
common ones that are known to cause build problems.
Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The function name must be followed by a space, hypen, space, and a
short description.
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com>
Cc: Eric Moore <Eric.Moore@lsi.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
scsi_scan.c: fix incorrectly formatted kernel-doc notation
& convert documentation of 2 functions into kernel-doc.
Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
documentation: slightly more correct value for MAP_HUGETLB in map_hugetlb.c
still not correct for alpha, mips, parisc or xtensa but working out of
the box in the most common architectures without having to deal with
complicated macros or including architecture specific headers.
Signed-off-by: Carlo Marcelo Arenas Belon <carenas@sajinet.com.pe>
Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Documentation/timers/hpet_example.c: fcntl.h is included more than once.
Documentation/timers/hpet_example.c: signal.h is included more than once.
Signed-off-by: Andrea Gelmini <andrea.gelmini@gelma.net>
Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Update explanation of mmotm.
Add explanation of drivers/staging/.
Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com>
Acked-by: Jonathan Corbet <corbet@lwn.net>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Add info on maintainers and persistent posting.
Update git home page.
Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com>
Acked-by: Jonathan Corbet <corbet@lwn.net>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
In the example the module_init function should be static.
Signed-off-by: H Hartley Sweeten <hsweeten@visionengravers.com>
Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com>
Cc: David Woodhouse <dwmw2@infradead.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
commit 3bbb9ec946 (timers: Introduce the concept of timer slack for
legacy timers) does not take the case into account when the timer is
already expired. This broke wireless drivers.
The solution is not to apply slack to already expired timers.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Arjan van de Ven <arjan@linux.intel.com>
|
|
commit 64ce4c2f (time: Clean up warp_clock()) breaks the timezone
update in a very subtle way. To avoid the direct access to timekeeping
internals it adds the timezone delta to the current time with
timespec_add_safe(). This works nicely when the timezone delta is > 0.
If timezone delta is < 0 then the wrap check in timespec_add_safe()
triggers and timespec_add_safe() returns TIME_MAX and screws up
timekeeping completely.
The comment above timespec_add_safe() says:
It's assumed that both values are valid (>= 0)
Add the timezone seconds adjustment directly.
Reported-by: Rafael J. Wysocki <rjw@sisk.pl>
Tested-by: Rafael J. Wysocki <rjw@sisk.pl>
Acked-by: John Stultz <johnstul@us.ibm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
|
|
The build scripts inadvertently dropped this down to 29-bit, fix it
back up.
Reported-by: Raul Porcel <armin76@gentoo.org>
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
|