Age | Commit message (Collapse) | Author |
|
We don't need the upper layers to deal with the physical offset. It's
_always_ c->nextblock->offset + c->sector_size - c->nextblock->free_size
so we might as well just let the actual write functions deal with that.
Signed-off-by: David Woodhouse <dwmw2@infradead.org>
|
|
o Add a flag MTD_BIT_WRITEABLE for devices that allow single bits to be
cleared.
o Replace MTD_PROGRAM_REGIONS with a cleared MTD_BIT_WRITEABLE flag for
STMicro and Intel Sibley flashes with internal ECC. Those flashes
disallow clearing of single bits, unlike regular NOR flashes, so the
new flag models their behaviour better.
o Remove MTD_ECC. After the STMicro/Sibley merge, this flag is only set
and never checked.
Signed-off-by: Joern Engel <joern@wh.fh-wedel.de>
|
|
In 2002, STMicro started producing NOR flashes with internal ECC protection
for small blocks (8 or 16 bytes). Support for those flashes was added by me.
In 2005, Intel Sibley flashes copied this strategy and Nico added support for
those. Merge the code for both.
Signed-off-by: Joern Engel <joern@wh.fh-wedel.de>
|
|
At least two flashes exists that have the concept of a minimum write unit,
similar to NAND pages, but no other NAND characteristics. Therefore, rename
the minimum write unit to "writesize" for all flashes, including NAND.
Signed-off-by: Joern Engel <joern@wh.fh-wedel.de>
|
|
Two flags exist to decide whether a device is writeable or not. None of
those two flags is checked for independently, so they are clearly redundant,
if not an invitation to bugs. This patch removed both of them, replacing
them with a single new flag.
Signed-off-by: Joern Engel <joern@wh.fh-wedel.de>
|
|
We'll be using a proper list of nodes in the jffs2_xattr_datum and
jffs2_xattr_ref structures, because the existing code to overwrite
them is just broken. Put it in the common part at the front of the
structure which is shared with the jffs2_inode_cache, so that the
jffs2_link_node_ref() function can do the right thing.
Signed-off-by: David Woodhouse <dwmw2@infradead.org>
|
|
In a couple of places, we assume that what's at the end of the
->next_in_ino list is a struct jffs2_inode_cache. Let's check
for that, since we expect it to change soon.
Signed-off-by: David Woodhouse <dwmw2@infradead.org>
|
|
Let's avoid the potential for forgetting to set ref->next_in_ino, by doing
it within jffs2_link_node_ref() instead.
This highlights the ugliness of what we're currently doing with
xattr_datum and xattr_ref structures -- we should find a nicer way of
dealing with that.
Signed-off-by: David Woodhouse <dwmw2@infradead.org>
|
|
Signed-off-by: David Woodhouse <dwmw2@infradead.org>
|
|
When filing REF_OBSOLETE nodes, we'd add their size to the global
'dirty_size' count, but then to the eraseblock's 'used_size' count.
That's not clever.
Signed-off-by: David Woodhouse <dwmw2@infradead.org>
|
|
I added an argument to the real function...
Signed-off-by: David Woodhouse <dwmw2@infradead.org>
|
|
|
|
Signed-off-by: David Woodhouse <dwmw2@infradead.org>
|
|
The previous code wouldn't work correctly on architectures which have a
non-empty MODULE_SYMBOL_PREFIX, and this version is neater if slightly
less optimal in the built-in case.
Signed-off-by: David Woodhouse <dwmw2@infradead.org>
|
|
The patch below adds support for the NAND device on the Amstrad Delta.
This is a 32MiB 8bit Toshiba device, with the data bus connected to the
OMAP MPUIO pins and ALE, CLE, NCE, NRE, NWE and NWP all connected to the
Delta's latch2 16bit latch.
Signed-Off-By: Jonathan McDowell <noodles@earth.li>
Signed-off-by: David Woodhouse <dwmw2@infradead.org>
|
|
Well, almost. We'll actually keep a 'TEST_TOTLEN' macro set for now, and keep
doing some paranoia checks to make sure it's all working correctly. But if
TEST_TOTLEN is unset, the size of struct jffs2_raw_node_ref drops from 16
bytes to 12 on 32-bit machines. That's a saving of about half a megabyte of
memory on the OLPC prototype board, with 125K or so nodes in its 512MiB of
flash.
Signed-off-by: David Woodhouse <dwmw2@infradead.org>
|
|
We can't use jffs2_scan_dirty_space() because it doesn't do any locking; it's
only for use at scan time -- hence the 'scan' in the name.
Also, don't allocate refs while we have c->erase_completion_lock held.
Signed-off-by: David Woodhouse <dwmw2@infradead.org>
|
|
We don't allocate this locally any more -- it's given to us and owner by
our caller. Also improve the debug messages a little.
Signed-off-by: David Woodhouse <dwmw2@infradead.org>
|
|
Next step in ongoing campaign to file a struct jffs2_raw_node_ref for every
piece of dirty space in the system, so that __totlen can be killed off....
Signed-off-by: David Woodhouse <dwmw2@infradead.org>
|
|
If __totlen is going away, we need to pass the length in separately.
Also stop callers from needlessly setting ref->next_phys to NULL,
since that's done for them... and since that'll also be going away soon.
Signed-off-by: David Woodhouse <dwmw2@infradead.org>
|
|
Make sure we allocate a ref for any dirty space which exists between nodes
which we find in an eraseblock summary.
Signed-off-by: David Woodhouse <dwmw2@infradead.org>
|
|
The incoming ref_totlen() calculation is going to rely on the existence
of nodes which cover all dirty space. We can't just tweak the accounting
data any more; we have to call jffs2_scan_dirty_space() to do it.
Signed-off-by: David Woodhouse <dwmw2@infradead.org>
|
|
To eliminate the __totlen field from struct jffs2_raw_node_ref, we need
to allocate nodes for dirty space instead of just tweaking the accounting
data. Introduce jffs2_scan_dirty_space() in preparation for that.
Signed-off-by: David Woodhouse <dwmw2@infradead.org>
|
|
For RWCOMPAT and ROCOMPAT nodes, we should still allow the mount to
succeed. Just abandon the summary and fall through to the full scan.
Signed-off-by: David Woodhouse <dwmw2@infradead.org>
|
|
If we had to allocate extra space for the summary node, we weren't
correctly freeing it when jffs2_sum_scan_sumnode() returned nonzero --
which is both the success and the failure case. Only when it returned
zero, which means fall through to the full scan, were we correctly freeing
the buffer.
Document the meaning of those return codes while we're at it.
Signed-off-by: David Woodhouse <dwmw2@infradead.org>
|
|
We should preserve these when we come to garbage collect them, not let
them get erased. Use jffs2_garbage_collect_pristine() for this, and make
sure the summary code copes -- just refrain from writing a summary for any
block which contains a node we don't understand.
Signed-off-by: David Woodhouse <dwmw2@infradead.org>
|
|
It should all be counted as dirty space, not wasted and _definitely_ not
unchecked.
Signed-off-by: David Woodhouse <dwmw2@infradead.org>
|
|
The same sequence of code was repeated in many places, to add a new
struct jffs2_raw_node_ref to an eraseblock and adjust the space accounting
accordingly. Move it out-of-line.
Signed-off-by: David Woodhouse <dwmw2@infradead.org>
|
|
Signed-off-by: David Woodhouse <dwmw2@infradead.org>
|
|
We were calling ref_totlen() 18 times. Even before that becomes a real
function rather than just a dereference, apparently some compilers still
suck anyway. It'll _certainly_ suck after ref_totlen() becomes more
complicated, so calculate it once and don't rely on CSE.
Signed-off-by: David Woodhouse <dwmw2@infradead.org>
|
|
This improves the time to mount 512MiB of NAND flash on my OLPC prototype
by about 4%. We used to read the last page of the eraseblock twice -- once
to find the offset of the summary node, and again to actually _read_ the
summary node. Now we read the last page only once, and read more only if
we need to.
We also don't allocate a new buffer just for the summary code -- we use
the buffer which was already allocated for the scan. Better still, if the
'buffer' for the scan is actually just a pointer directly into NOR flash,
we use that too, avoiding the memcpy() which we used to do.
Signed-off-by: David Woodhouse <dwmw2@infradead.org>
|
|
WARNING: "__moddi3" [drivers/mtd/mtdconcat.ko] undefined!
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: David Woodhouse <dwmw2@infradead.org>
|
|
Signed-off-by: David Woodhouse <dwmw2@infradead.org>
|
|
drivers/mtd/devices/docprobe.c: In function `DoC_Probe':
drivers/mtd/devices/docprobe.c:338: warning: assignment from incompatible pointer type
drivers/mtd/devices/docprobe.c:341: warning: assignment from incompatible pointer type
Cc: David Woodhouse <dwmw2@infradead.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: David Woodhouse <dwmw2@infradead.org>
|
|
Remove forgotten lines from jffs2_scan_eraseblock() which
were unnecessary and may cause problem in some environments.
Thanks to Alexander Belyakov <alexander.belyakov@intel.com>.
Signed-off-by: Ferenc Havasi <havasi@inf.u-szeged.hu>
Signed-off-by: David Woodhouse <dwmw2@infradead.org>
|
|
Device node major/minor numbers are just stored in the payload of a single
data node. Just extend that to 4 bytes and use new_encode_dev() for it.
We only use the 4-byte format if we _need_ to, if !old_valid_dev(foo).
This preserves backwards compatibility with older code as much as
possible. If we do make devices with major or minor numbers above 255, and
then mount the file system with the old code, it'll just read the first
two bytes and get the numbers wrong. If it comes to garbage-collect it,
it'll then write back those wrong numbers. But that's about the best we
can expect.
Signed-off-by: David Woodhouse <dwmw2@infradead.org>
|
|
|
|
Signed-off-by: David Woodhouse <dwmw2@infradead.org>
|
|
Signed-off-by: David Woodhouse <dwmw2@infradead.org>
|
|
There is a second revision of "mtdconcat NAND/Sibley" patch. I hope
the patch will not get damaged as I'm posting it from gmail account,
thanks to Jorn.
The patch adds previously missing concat_writev(),
concat_writev_ecc(), concat_block_isbad(), concat_block_markbad()
functions to make concatenation layer compatible with Sibley and NAND
chips.
Patch has been cleared from whitespaces, fixed some lines of code as
requested. Also I have added code for alignment check that should
support Jorn's "writesize" patch.
Signed-off-by: Alexander Belyakov <alexander.belyakov@intel.com>
Signed-off-by: David Woodhouse <dwmw2@infradead.org>
|
|
The following difference was found between the mainline and linux-mips
kernel. LASAT depends on MTD_CFI.
Signed-off-by: Martin Michlmayr <tbm@cyrius.com>
Signed-off-by: David Woodhouse <dwmw2@infradead.org>
|
|
In an unrelated MTD commit, a description about the ms02-nv module
got removed from Kconfig. While I personally agree with this
removal, the module maintainer (Maciej W. Rozycki) would like to
see it added back. In the absense of any consistency regarding
Kconfig descriptions his wish should be followed.
Signed-off-by: Martin Michlmayr <tbm@cyrius.com>
Acked-by: Maciej W. Rozycki <macro@linux-mips.org>
Signed-off-by: David Woodhouse <dwmw2@infradead.org>
|
|
Signed-off-by: Sean Young <sean@mess.org>
Signed-off-by: David Woodhouse <dwmw2@infradead.org>
|
|
'oobavail' parameter of mtd_info structure is now propagated to the MTD
partitions
Signed-off-by: Vitaly Wool <vwool@ru.mvista.com>
Signed-off-by: David Woodhouse <dwmw2@infradead.org>
|
|
Signed-off-by: Sean Young <sean@mess.org>
Signed-off-by: David Woodhouse <dwmw2@infradead.org>
|
|
This allows for much better abstraction and separation of the XIP and
non-XIP cases with their own specific implementations. This fixes the
case where a timeout was tripped on in the XIP case by the code that
was meant for the non-XIP case only.
This also makes for a nice code reduction.
Signed-off-by: Nicolas Pitre <nico@cam.org>
CC: "Alexey, Korolev" <alexey.korolev@intel.com>
Signed-off-by: David Woodhouse <dwmw2@infradead.org>
|
|
... otherwise xip_enable() won't do the right thing.
Signed-off-by: Nicolas Pitre <nico@cam.org>
Signed-off-by: David Woodhouse <dwmw2@infradead.org>
|
|
The patch below fixes a potential starvation issue that can arise when
there is contention on a chip during a period when a process is
currently writing to it. The starvation is avoided by conditionally
rescheduling when the chip is left in a state usable by other processes.
Signed-off-by: Josh Boyer <jdub@us.ibm.com>
Signed-off-by: Tom Gall <tom_gall@vnet.ibm.com>
Signed-off-by: David Woodhouse <dwmw2@infradead.org>
|
|
We have to pack at least the jint16_t structure, because otherwise it'll
be four bytes in size. Thankfully, we can do that and _not_ pack the
actual node structures, and the compiler still doesn't emit stupid code.
Signed-off-by: David Woodhouse <dwmw2@infradead.org>
|
|
On AMD Au1550 the static bus controller fails to keep -CE asserted during
chip ready delay on read commands and the NAND chip being used requires this.
So, the current driver allows nand_base.c to drive -CE manually during the
entire sector read. When the PCMCIA driver is enabled however, occasionally
the ECC errors occur on NAND reads. This happens because the PCMCIA driver
polls sockets periodically and reads one of the board's control/status regs
(BCSRs) which are on the same static bus as the NAND flash, and just use
another chip select (and the NOR flash also resides on that bus), so as the
NAND driver forces NAND chip select asserted and the -RE signal is shared, a
contention occurs on the static bus when BCSR or NOR flash is read while we're
reading from NAND.
So, we either can't keep interrupts enabled during the whole NAND sector
read (which is hardly acceptable), or have to implement some interlocking
scheme between multiple drivers (which is painful, and makes me shudder :-).
There's a third way which has proven to work: to force -CE asserted only
while we're waiting for a NAND chip to become ready after a read command,
disabling interrupts for a maximum of 25 microseconds (according to Toshiba
TC58DVM92A1FT00 datasheet -- this chip is mentioned in the board schematics);
for Samsung NAND chip which seems to be actually used this delay is even less,
12 us.
Signed-off-by: Konstantin Baydarov <kbaidarov@ru.mvista.com>
Signed-off-by: Sergei Shtylyov <sshtylyov@ru.mvista.com>
Signed-off-by: David Woodhouse <dwmw2@infradead.org>
|