Age | Commit message (Collapse) | Author |
|
Pages with no migration handler use a fallback handler which sometimes
works and sometimes persistently retries. A historical example was
blockdev pages but there are others such as odd refcounting when
page->private is used. These are retried multiple times which is
wasteful during compaction so this patch will fail migration faster
unless the caller specifies MIGRATE_SYNC.
This is not expected to help THP allocation success rates but it did
reduce latencies very slightly in some cases.
1-socket thpfioscale
4.20.0 4.20.0
noreserved-v2r15 failfast-v2r15
Amean fault-both-1 0.00 ( 0.00%) 0.00 * 0.00%*
Amean fault-both-3 3839.67 ( 0.00%) 3833.72 ( 0.15%)
Amean fault-both-5 5177.47 ( 0.00%) 4967.15 ( 4.06%)
Amean fault-both-7 7245.03 ( 0.00%) 7139.19 ( 1.46%)
Amean fault-both-12 11534.89 ( 0.00%) 11326.30 ( 1.81%)
Amean fault-both-18 16241.10 ( 0.00%) 16270.70 ( -0.18%)
Amean fault-both-24 19075.91 ( 0.00%) 19839.65 ( -4.00%)
Amean fault-both-30 22712.11 ( 0.00%) 21707.05 ( 4.43%)
Amean fault-both-32 21692.92 ( 0.00%) 21968.16 ( -1.27%)
The 2-socket results are not materially different. Scan rates are
similar as expected.
Link: http://lkml.kernel.org/r/20190118175136.31341-7-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: YueHaibing <yuehaibing@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
It's non-obvious that high-order free pages are split into order-0 pages
from the function name. Fix it.
Link: http://lkml.kernel.org/r/20190118175136.31341-6-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: YueHaibing <yuehaibing@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
A zone parameter is passed into a number of top-level compaction
functions despite the fact that it's already in compact_control. This
is harmless but it did need an audit to check if zone actually ever
changes meaningfully. This patches removes the parameter in a number of
top-level functions. The change could be much deeper but this was
enough to briefly clarify the flow.
No functional change.
Link: http://lkml.kernel.org/r/20190118175136.31341-5-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: YueHaibing <yuehaibing@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The last_migrated_pfn field is a bit dubious as to whether it really
helps but either way, the information from it can be inferred without
increasing the size of compact_control so remove the field.
Link: http://lkml.kernel.org/r/20190118175136.31341-4-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: YueHaibing <yuehaibing@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
compact_control spans two cache lines with write-intensive lines on
both. Rearrange so the most write-intensive fields are in the same
cache line. This has a negligible impact on the overall performance of
compaction and is more a tidying exercise than anything.
Link: http://lkml.kernel.org/r/20190118175136.31341-3-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: YueHaibing <yuehaibing@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Patch series "Increase success rates and reduce latency of compaction", v3.
This series reduces scan rates and success rates of compaction,
primarily by using the free lists to shorten scans, better controlling
of skip information and whether multiple scanners can target the same
block and capturing pageblocks before being stolen by parallel requests.
The series is based on mmotm from January 9th, 2019 with the previous
compaction series reverted.
I'm mostly using thpscale to measure the impact of the series. The
benchmark creates a large file, maps it, faults it, punches holes in the
mapping so that the virtual address space is fragmented and then tries
to allocate THP. It re-executes for different numbers of threads. From
a fragmentation perspective, the workload is relatively benign but it
does stress compaction.
The overall impact on latencies for a 1-socket machine is
baseline patches
Amean fault-both-3 3832.09 ( 0.00%) 2748.56 * 28.28%*
Amean fault-both-5 4933.06 ( 0.00%) 4255.52 ( 13.73%)
Amean fault-both-7 7017.75 ( 0.00%) 6586.93 ( 6.14%)
Amean fault-both-12 11610.51 ( 0.00%) 9162.34 * 21.09%*
Amean fault-both-18 17055.85 ( 0.00%) 11530.06 * 32.40%*
Amean fault-both-24 19306.27 ( 0.00%) 17956.13 ( 6.99%)
Amean fault-both-30 22516.49 ( 0.00%) 15686.47 * 30.33%*
Amean fault-both-32 23442.93 ( 0.00%) 16564.83 * 29.34%*
The allocation success rates are much improved
baseline patches
Percentage huge-3 85.99 ( 0.00%) 97.96 ( 13.92%)
Percentage huge-5 88.27 ( 0.00%) 96.87 ( 9.74%)
Percentage huge-7 85.87 ( 0.00%) 94.53 ( 10.09%)
Percentage huge-12 82.38 ( 0.00%) 98.44 ( 19.49%)
Percentage huge-18 83.29 ( 0.00%) 99.14 ( 19.04%)
Percentage huge-24 81.41 ( 0.00%) 97.35 ( 19.57%)
Percentage huge-30 80.98 ( 0.00%) 98.05 ( 21.08%)
Percentage huge-32 80.53 ( 0.00%) 97.06 ( 20.53%)
That's a nearly perfect allocation success rate.
The biggest impact is on the scan rates
Compaction migrate scanned 55893379 19341254
Compaction free scanned 474739990 11903963
The number of pages scanned for migration was reduced by 65% and the
free scanner was reduced by 97.5%. So much less work in exchange for
lower latency and better success rates.
The series was also evaluated using a workload that heavily fragments
memory but the benefits there are also significant, albeit not
presented.
It was commented that we should be rethinking scanning entirely and to a
large extent I agree. However, to achieve that you need a lot of this
series in place first so it's best to make the linear scanners as best
as possible before ripping them out.
This patch (of 22):
The isolate and migrate scanners should never isolate more than a
pageblock of pages so unsigned int is sufficient saving 8 bytes on a
64-bit build.
Link: http://lkml.kernel.org/r/20190118175136.31341-2-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Cc: YueHaibing <yuehaibing@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The 'end_byte' parameter of filemap_range_has_page is required to be
inclusive, so follow the rule.
Link: http://lkml.kernel.org/r/1548678679-18122-1-git-send-email-zhengbin13@huawei.com
Fixes: 6be96d3ad34a ("fs: return if direct I/O will trigger writeback")
Signed-off-by: zhengbin <zhengbin13@huawei.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Matthew Wilcox <willy@infradead.org>
Acked-by: Christoph Hellwig <hch@lst.de>
Cc: "Darrick J. Wong" <darrick.wong@oracle.com>
Cc: Amir Goldstein <amir73il@gmail.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Hou Tao <houtao1@huawei.com>
Cc: zhangyi (F) <yi.zhang@huawei.com>
Cc: Jan Kara <jack@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
GFP_KERNEL is one of the most used constant but on archs like arm with
fixed length instruction some constants are more equal than the others.
Constants with tightly packed bits can be injected directly into
instruction stream:
0: e3a00d33 mov r0, #3264 ; 0xcc0
Others require multiple instructions or even loading out of instruction
stream:
0: e3a000c0 mov r0, #192 ; 0xc0
4: e3400060 movt r0, #96 ; 0x60
Shuffle GFP_* flags so that GFP_KERNEL/GFP_ATOMIC + __GFP_ZERO bits are
close to each other.
Savings on arm configs are ~0.1%.
Link: http://lkml.kernel.org/r/20190109201838.GA9140@avx2
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
swap_vma_readahead()'s comment is missing, just add it.
Link: http://lkml.kernel.org/r/1546543673-108536-2-git-send-email-yang.shi@linux.alibaba.com
Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Tim Chen <tim.c.chen@intel.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Hugh Dickins <hughd@google.com
Cc: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Swap readahead would read in a few pages regardless if the underlying
device is busy or not. It may incur long waiting time if the device is
congested, and it may also exacerbate the congestion.
Use inode_read_congested() to check if the underlying device is busy or
not like what file page readahead does. Get inode from
swap_info_struct.
Although we can add inode information in swap_address_space
(address_space->host), it may lead some unexpected side effect, i.e. it
may break mapping_cap_account_dirty(). Using inode from
swap_info_struct seems simple and good enough.
Just does the check in vma_cluster_readahead() since
swap_vma_readahead() is just used for non-rotational device which much
less likely has congestion than traditional HDD.
Although swap slots may be consecutive on swap partition, it still may
be fragmented on swap file. This check would help to reduce excessive
stall for such case.
The test with page_fault1 of will-it-scale (sometimes tracing may just
show runtest.py that is the wrapper script of page_fault1), which
basically launches NR_CPU threads to generate 128MB anonymous pages for
each thread, on my virtual machine with congested HDD shows long tail
latency is reduced significantly.
Without the patch
page_fault1_thr-1490 [023] 129.311706: funcgraph_entry: #57377.796 us | do_swap_page();
page_fault1_thr-1490 [023] 129.369103: funcgraph_entry: 5.642us | do_swap_page();
page_fault1_thr-1490 [023] 129.369119: funcgraph_entry: #1289.592 us | do_swap_page();
page_fault1_thr-1490 [023] 129.370411: funcgraph_entry: 4.957us | do_swap_page();
page_fault1_thr-1490 [023] 129.370419: funcgraph_entry: 1.940us | do_swap_page();
page_fault1_thr-1490 [023] 129.378847: funcgraph_entry: #1411.385 us | do_swap_page();
page_fault1_thr-1490 [023] 129.380262: funcgraph_entry: 3.916us | do_swap_page();
page_fault1_thr-1490 [023] 129.380275: funcgraph_entry: #4287.751 us | do_swap_page();
With the patch
runtest.py-1417 [020] 301.925911: funcgraph_entry: #9870.146 us | do_swap_page();
runtest.py-1417 [020] 301.935785: funcgraph_entry: 9.802us | do_swap_page();
runtest.py-1417 [020] 301.935799: funcgraph_entry: 3.551us | do_swap_page();
runtest.py-1417 [020] 301.935806: funcgraph_entry: 2.142us | do_swap_page();
runtest.py-1417 [020] 301.935853: funcgraph_entry: 6.938us | do_swap_page();
runtest.py-1417 [020] 301.935864: funcgraph_entry: 3.765us | do_swap_page();
runtest.py-1417 [020] 301.935871: funcgraph_entry: 3.600us | do_swap_page();
runtest.py-1417 [020] 301.935878: funcgraph_entry: 7.202us | do_swap_page();
[akpm@linux-foundation.org: code cleanup]
[yang.shi@linux.alibaba.com: add comment]
Link: http://lkml.kernel.org/r/bbc7bda7-62d0-df1a-23ef-d369e865bdca@linux.alibaba.com
Link: http://lkml.kernel.org/r/1546543673-108536-1-git-send-email-yang.shi@linux.alibaba.com
Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com>
Acked-by: Tim Chen <tim.c.chen@intel.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Daniel Jordan <daniel.m.jordan@oracle.com>
Cc: Hugh Dickins <hughd@google.com
Cc: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
After we establish a reference on the page, we check the pointer
continues to be in the correct position in i_pages. Checking
page->index afterwards is unnecessary; if it were to change, then the
pointer to it from the page cache would also move. The check used to be
done before grabbing a reference on the page which was racy (see commit
9cbb4cb21b19f ("mm: find_get_pages_contig fixlet")), but nobody noticed
that moving the check after grabbing the reference was redundant.
Link: http://lkml.kernel.org/r/20190107200224.13260-1-willy@infradead.org
Signed-off-by: Matthew Wilcox <willy@infradead.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
One of the more common cases of allocation size calculations is finding
the size of a structure that has a zero-sized array at the end, along
with memory for some number of elements for that array. For example:
struct foo {
int stuff;
void *entry[];
};
instance = kmalloc(sizeof(struct foo) + sizeof(void *) * count, GFP_KERNEL);
Instead of leaving these open-coded and prone to type mistakes, we can
now use the new struct_size() helper:
instance = kmalloc(struct_size(instance, entry, count), GFP_KERNEL);
This code was detected with the help of Coccinelle.
Link: http://lkml.kernel.org/r/20190104183726.GA6374@embeddedor
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
In the current implementation, there are two places to isolate a range
of page: __offline_pages() and alloc_contig_range(). During this
procedure, it will drain pages on pcp list.
Below is a brief call flow:
__offline_pages()/alloc_contig_range()
start_isolate_page_range()
set_migratetype_isolate()
drain_all_pages()
drain_all_pages() <--- A
This snippet shows the current logic is isolate and drain pcp list for
each pageblock and drain pcp list again for the whole range.
start_isolate_page_range is responsible for isolating the given pfn
range. One part of that job is to make sure that also pages that are on
the allocator pcp lists are properly isolated. Otherwise they could be
reused and the range wouldn't be completely isolated until the memory is
freed back. While there is no strict guarantee here because pages might
get allocated at any time before drain_all_pages is called there doesn't
seem to be any strong demand for such a guarantee.
In any case, draining is already done at the isolation level and there
is no need to do it again later by start_isolate_page_range callers
(memory hotplug and CMA allocator currently). Therefore remove
pointless draining in existing callers to make the code more clear and
functionally correct.
[mhocko@suse.com: provide a clearer changelog for the last two paragraphs]
Link: http://lkml.kernel.org/r/20190105233141.2329-1-richard.weiyang@gmail.com
Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Let arm64 subscribe to the previously added framework in which
architecture can inform whether a given huge page size is supported for
migration. This just overrides the default function
arch_hugetlb_migration_supported() and enables migration for all
possible HugeTLB page sizes on arm64.
With this, HugeTLB migration support on arm64 now covers all possible
HugeTLB options.
CONT PTE PMD CONT PMD PUD
-------- --- -------- ---
4K: 64K 2M 32M 1G
16K: 2M 32M 1G
64K: 2M 512M 16G
Link: http://lkml.kernel.org/r/1545121450-1663-6-git-send-email-anshuman.khandual@arm.com
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Reviewed-by: Steve Capper <steve.capper@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Let arm64 subscribe to generic HugeTLB page migration framework. Right
now this only works on the following PMD and PUD level HugeTLB page
sizes with various kernel base page size combinations.
CONT PTE PMD CONT PMD PUD
-------- --- -------- ---
4K: NA 2M NA 1G
16K: NA 32M NA
64K: NA 512M NA
Link: http://lkml.kernel.org/r/1545121450-1663-5-git-send-email-anshuman.khandual@arm.com
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Reviewed-by: Steve Capper <steve.capper@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Architectures like arm64 have HugeTLB page sizes which are different
than generic sizes at PMD, PUD, PGD level and implemented via contiguous
bits. At present these special size HugeTLB pages cannot be identified
through macros like (PMD|PUD|PGDIR)_SHIFT and hence chosen not be
migrated.
Enabling migration support for these special HugeTLB page sizes along
with the generic ones (PMD|PUD|PGD) would require identifying all of
them on a given platform. A platform specific hook can precisely
enumerate all huge page sizes supported for migration. Instead of
comparing against standard huge page orders let
hugetlb_migration_support() function call a platform hook
arch_hugetlb_migration_support(). Default definition for the platform
hook maintains existing semantics which checks standard huge page order.
But an architecture can choose to override the default and provide
support for a comprehensive set of huge page sizes.
Link: http://lkml.kernel.org/r/1545121450-1663-4-git-send-email-anshuman.khandual@arm.com
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Reviewed-by: Steve Capper <steve.capper@arm.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Architectures like arm64 have PUD level HugeTLB pages for certain configs
(1GB huge page is PUD based on ARM64_4K_PAGES base page size) that can
be enabled for migration. It can be achieved through checking for
PUD_SHIFT order based HugeTLB pages during migration.
Link: http://lkml.kernel.org/r/1545121450-1663-3-git-send-email-anshuman.khandual@arm.com
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Reviewed-by: Steve Capper <steve.capper@arm.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Patch series "arm64/mm: Enable HugeTLB migration", v4.
This patch series enables HugeTLB migration support for all supported
huge page sizes at all levels including contiguous bit implementation.
Following HugeTLB migration support matrix has been enabled with this
patch series. All permutations have been tested except for the 16GB.
CONT PTE PMD CONT PMD PUD
-------- --- -------- ---
4K: 64K 2M 32M 1G
16K: 2M 32M 1G
64K: 2M 512M 16G
First the series adds migration support for PUD based huge pages. It
then adds a platform specific hook to query an architecture if a given
huge page size is supported for migration while also providing a default
fallback option preserving the existing semantics which just checks for
(PMD|PUD|PGDIR)_SHIFT macros. The last two patches enables HugeTLB
migration on arm64 and subscribe to this new platform specific hook by
defining an override.
The second patch differentiates between movability and migratability
aspects of huge pages and implements hugepage_movable_supported() which
can then be used during allocation to decide whether to place the huge
page in movable zone or not.
This patch (of 5):
During huge page allocation it's migratability is checked to determine
if it should be placed under movable zones with GFP_HIGHUSER_MOVABLE.
But the movability aspect of the huge page could depend on other factors
than just migratability. Movability in itself is a distinct property
which should not be tied with migratability alone.
This differentiates these two and implements an enhanced movability check
which also considers huge page size to determine if it is feasible to be
placed under a movable zone. At present it just checks for gigantic pages
but going forward it can incorporate other enhanced checks.
Link: http://lkml.kernel.org/r/1545121450-1663-2-git-send-email-anshuman.khandual@arm.com
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Reviewed-by: Steve Capper <steve.capper@arm.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Suggested-by: Michal Hocko <mhocko@kernel.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
sysctl_extfrag_handler() neglects to propagate the return value from
proc_dointvec_minmax() to its caller. It's a wrapper that doesn't need
to exist, so just use proc_dointvec_minmax() directly.
Link: http://lkml.kernel.org/r/20190104032557.3056-1-willy@infradead.org
Signed-off-by: Matthew Wilcox <willy@infradead.org>
Reported-by: Aditya Pakki <pakki001@umn.edu>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Add the test script for the kernel test driver to analyse vmalloc
allocator for benchmarking and stressing purposes. It is just a kernel
module loader. You can specify and pass different parameters in order
to investigate allocations behaviour. See "usage" output for more
details.
Also add basic vmalloc smoke test to the "run_vmtests" suite.
Link: http://lkml.kernel.org/r/20190103142108.20744-4-urezki@gmail.com
Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Reviewed-by: Shuah Khan <shuah@kernel.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Oleksiy Avramchenko <oleksiy.avramchenko@sonymobile.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
This adds a new kernel module for analysis of vmalloc allocator. It is
only enabled as a module. There are two main reasons this module should
be used for: performance evaluation and stressing of vmalloc subsystem.
It consists of several test cases. As of now there are 8. The module
has five parameters we can specify to change its the behaviour.
1) run_test_mask - set of tests to be run
id: 1, name: fix_size_alloc_test
id: 2, name: full_fit_alloc_test
id: 4, name: long_busy_list_alloc_test
id: 8, name: random_size_alloc_test
id: 16, name: fix_align_alloc_test
id: 32, name: random_size_align_alloc_test
id: 64, name: align_shift_alloc_test
id: 128, name: pcpu_alloc_test
By default all tests are in run test mask. If you want to select some
specific tests it is possible to pass the mask. For example for first,
second and fourth tests we go 11 value.
2) test_repeat_count - how many times each test should be repeated
By default it is one time per test. It is possible to pass any number.
As high the value is the test duration gets increased.
3) test_loop_count - internal test loop counter. By default it is set
to 1000000.
4) single_cpu_test - use one CPU to run the tests
By default this parameter is set to false. It means that all online
CPUs execute tests. By setting it to 1, the tests are executed by
first online CPU only.
5) sequential_test_order - run tests in sequential order
By default this parameter is set to false. It means that before running
tests the order is shuffled. It is possible to make it sequential, just
set it to 1.
Performance analysis:
In order to evaluate performance of vmalloc allocations, usually it
makes sense to use only one CPU that runs tests, use sequential order,
number of repeat tests can be different as well as set of test mask.
For example if we want to run all tests, to use one CPU and repeat each
test 3 times. Insert the module passing following parameters:
single_cpu_test=1 sequential_test_order=1 test_repeat_count=3
with following output:
<snip>
Summary: fix_size_alloc_test passed: 3 failed: 0 repeat: 3 loops: 1000000 avg: 901177 usec
Summary: full_fit_alloc_test passed: 3 failed: 0 repeat: 3 loops: 1000000 avg: 1039341 usec
Summary: long_busy_list_alloc_test passed: 3 failed: 0 repeat: 3 loops: 1000000 avg: 11775763 usec
Summary: random_size_alloc_test passed 3: failed: 0 repeat: 3 loops: 1000000 avg: 6081992 usec
Summary: fix_align_alloc_test passed: 3 failed: 0 repeat: 3, loops: 1000000 avg: 2003712 usec
Summary: random_size_align_alloc_test passed: 3 failed: 0 repeat: 3 loops: 1000000 avg: 2895689 usec
Summary: align_shift_alloc_test passed: 0 failed: 3 repeat: 3 loops: 1000000 avg: 573 usec
Summary: pcpu_alloc_test passed: 3 failed: 0 repeat: 3 loops: 1000000 avg: 95802 usec
All test took CPU0=192945605995 cycles
<snip>
The align_shift_alloc_test is expected to be failed.
Stressing:
In order to stress the vmalloc subsystem we run all available test cases
on all available CPUs simultaneously. In order to prevent constant behaviour
pattern, the test cases array is shuffled by default to randomize the order
of test execution.
For example if we want to run all tests(default), use all online CPUs(default)
with shuffled order(default) and to repeat each test 30 times. The command
would be like:
modprobe vmalloc_test test_repeat_count=30
Expected results are the system is alive, there are no any BUG_ONs or Kernel
Panics the tests are completed, no memory leaks.
[urezki@gmail.com: fix 32-bit builds]
Link: http://lkml.kernel.org/r/20190106214839.ffvjvmrn52uqog7k@pc636
[urezki@gmail.com: make CONFIG_TEST_VMALLOC depend on CONFIG_MMU]
Link: http://lkml.kernel.org/r/20190219085441.s6bg2gpy4esny5vw@pc636
Link: http://lkml.kernel.org/r/20190103142108.20744-3-urezki@gmail.com
Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Oleksiy Avramchenko <oleksiy.avramchenko@sonymobile.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Export __vmaloc_node_range() function if CONFIG_TEST_VMALLOC_MODULE is
enabled. Some test cases in vmalloc test suite module require and make
use of that function. Please note, that it is not supposed to be used
for other purposes.
We need it only for performance analysis, stressing and stability check
of vmalloc allocator.
Link: http://lkml.kernel.org/r/20190103142108.20744-2-urezki@gmail.com
Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Oleksiy Avramchenko <oleksiy.avramchenko@sonymobile.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
vmalloc_user*() calls differ from normal vmalloc() only in that they set
VM_USERMAP flags for the area. During the whole history of vmalloc.c
changes now it is possible simply to pass VM_USERMAP flags directly to
__vmalloc_node_range() call instead of finding the area (which obviously
takes time) after the allocation.
Link: http://lkml.kernel.org/r/20190103145954.16942-4-rpenyaev@suse.de
Signed-off-by: Roman Penyaev <rpenyaev@suse.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Joe Perches <joe@perches.com>
Cc: "Luis R. Rodriguez" <mcgrof@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
__vmalloc_area_node() calls vfree() on error path, which in turn calls
kmemleak_free(), but area is not yet accounted by kmemleak_vmalloc().
Link: http://lkml.kernel.org/r/20190103145954.16942-3-rpenyaev@suse.de
Signed-off-by: Roman Penyaev <rpenyaev@suse.de>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Joe Perches <joe@perches.com>
Cc: "Luis R. Rodriguez" <mcgrof@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
When VM_NO_GUARD is not set area->size includes adjacent guard page,
thus for correct size checking get_vm_area_size() should be used, but
not area->size.
This fixes possible kernel oops when userspace tries to mmap an area on
1 page bigger than was allocated by vmalloc_user() call: the size check
inside remap_vmalloc_range_partial() accounts non-existing guard page
also, so check successfully passes but vmalloc_to_page() returns NULL
(guard page does not physically exist).
The following code pattern example should trigger an oops:
static int oops_mmap(struct file *file, struct vm_area_struct *vma)
{
void *mem;
mem = vmalloc_user(4096);
BUG_ON(!mem);
/* Do not care about mem leak */
return remap_vmalloc_range(vma, mem, 0);
}
And userspace simply mmaps size + PAGE_SIZE:
mmap(NULL, 8192, PROT_WRITE|PROT_READ, MAP_PRIVATE, fd, 0);
Possible candidates for oops which do not have any explicit size
checks:
*** drivers/media/usb/stkwebcam/stk-webcam.c:
v4l_stk_mmap[789] ret = remap_vmalloc_range(vma, sbuf->buffer, 0);
Or the following one:
*** drivers/video/fbdev/core/fbmem.c
static int
fb_mmap(struct file *file, struct vm_area_struct * vma)
...
res = fb->fb_mmap(info, vma);
Where fb_mmap callback calls remap_vmalloc_range() directly without any
explicit checks:
*** drivers/video/fbdev/vfb.c
static int vfb_mmap(struct fb_info *info,
struct vm_area_struct *vma)
{
return remap_vmalloc_range(vma, (void *)info->fix.smem_start, vma->vm_pgoff);
}
Link: http://lkml.kernel.org/r/20190103145954.16942-2-rpenyaev@suse.de
Signed-off-by: Roman Penyaev <rpenyaev@suse.de>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Joe Perches <joe@perches.com>
Cc: "Luis R. Rodriguez" <mcgrof@kernel.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
This patch repeats the original one from David S Miller:
2dca6999eed5 ("mm, perf_event: Make vmalloc_user() align base kernel virtual address to SHMLBA")
but for missed vmalloc_32_user() case, which also requires correct
alignment of virtual address on kernel side to avoid D-caches aliases.
A bit of copy-paste from original patch to recover in memory of what is
all about:
When a vmalloc'd area is mmap'd into userspace, some kind of
co-ordination is necessary for this to work on platforms with cpu
D-caches which can have aliases.
Otherwise kernel side writes won't be seen properly in userspace and
vice versa.
If the kernel side mapping and the user side one have the same
alignment, modulo SHMLBA, this can work as long as VM_SHARED is shared
of VMA and for all current users this is true. VM_SHARED will force
SHMLBA alignment of the user side mmap on platforms with D-cache
aliasing matters.
David S. Miller
> What are the user-visible runtime effects of this change?
In simple words: proper alignment avoids possible difference in data,
seen by different virtual mapings: userspace and kernel in our case.
I.e. userspace reads cache line A, kernel writes to cache line B. Both
cache lines correspond to the same physical memory (thus aliases).
So this should fix data corruption for archs with vivt and vipt caches,
e.g. armv6. Personally I've never worked with this archs, I just
spotted the strange difference in code: for one case we do alignment,
for another - not. I have a strong feeling that David simply missed
vmalloc_32_user() case.
>
> Is a -stable backport needed?
No, I do not think so. The only one user of vmalloc_32_user() is
virtual frame buffer device drivers/video/fbdev/vfb.c, which has in the
description "The main use of this frame buffer device is testing and
debugging the frame buffer subsystem. Do NOT enable it for normal
systems!".
And it seems to me that this vfb.c does not need 32bit addressable pages
(vmalloc_32_user() case), because it is virtual device and should not
care about things like dma32 zones, etc. Probably is better to clean
the code and switch vfb.c from vmalloc_32_user() to vmalloc_user() case
and wipe out vmalloc_32_user() from vmalloc.c completely. But I'm not
very much sure that this is worth to do, that's so minor, so we can
leave it as is.
Link: http://lkml.kernel.org/r/20190108110944.23591-1-rpenyaev@suse.de
Signed-off-by: Roman Penyaev <rpenyaev@suse.de>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Michal Hocko <mhocko@suse.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Move the memcg_kmem_enabled() checks into memcg kmem charge/uncharge
functions, so, the users don't have to explicitly check that condition.
This is purely code cleanup patch without any functional change. Only
the order of checks in memcg_charge_slab() can potentially be changed
but the functionally it will be same. This should not matter as
memcg_charge_slab() is not in the hot path.
Link: http://lkml.kernel.org/r/20190103161203.162375-1-shakeelb@google.com
Signed-off-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
There are two cases when put_cpu_partial() is invoked.
* __slab_free
* get_partial_node
This patch just makes it cover these two cases.
Link: http://lkml.kernel.org/r/20181025094437.18951-3-richard.weiyang@gmail.com
Signed-off-by: Wei Yang <richard.weiyang@gmail.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Add an optimization for KSM pages almost in the same way that we have
for ordinary anonymous pages. If there is a write fault in a page,
which is mapped to an only pte, and it is not related to swap cache; the
page may be reused without copying its content.
[ Note that we do not consider PageSwapCache() pages at least for now,
since we don't want to complicate __get_ksm_page(), which has nice
optimization based on this (for the migration case). Currenly it is
spinning on PageSwapCache() pages, waiting for when they have
unfreezed counters (i.e., for the migration finish). But we don't want
to make it also spinning on swap cache pages, which we try to reuse,
since there is not a very high probability to reuse them. So, for now
we do not consider PageSwapCache() pages at all. ]
So in reuse_ksm_page() we check for 1) PageSwapCache() and 2)
page_stable_node(), to skip a page, which KSM is currently trying to
link to stable tree. Then we do page_ref_freeze() to prohibit KSM to
merge one more page into the page, we are reusing. After that, nobody
can refer to the reusing page: KSM skips !PageSwapCache() pages with
zero refcount; and the protection against of all other participants is
the same as for reused ordinary anon pages pte lock, page lock and
mmap_sem.
[akpm@linux-foundation.org: replace BUG_ON()s with WARN_ON()s]
Link: http://lkml.kernel.org/r/154471491016.31352.1168978849911555609.stgit@localhost.localdomain
Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Reviewed-by: Yang Shi <yang.shi@linux.alibaba.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Hugh Dickins <hughd@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Christian Koenig <christian.koenig@amd.com>
Cc: Claudio Imbrenda <imbrenda@linux.vnet.ibm.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Kirill Tkhai <ktkhai@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
This replaces all open encodings in tools with NUMA_NO_NODE. Also
linux/numa.h is now needed for the perf build.
[sfr@canb.auug.org.au: fix for replace open encodings for NUMA_NO_NODE]
Link: http://lkml.kernel.org/r/20190108131141.730e9c4f@canb.auug.org.au
Link: http://lkml.kernel.org/r/1545127933-10711-3-git-send-email-anshuman.khandual@arm.com
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: David Hildenbrand <david@redhat.com>
Cc: Doug Ledford <dledford@redhat.com> [drivers/infiniband]
Cc: Hans Verkuil <hverkuil@xs4all.nl>
Cc: Jeff Kirsher <jeffrey.t.kirsher@intel.com> [ixgbe]
Cc: Jens Axboe <axboe@kernel.dk> [mtip32xx]
Cc: Joseph Qi <jiangqi903@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au> [powerpc]
Cc: Vinod Koul <vkoul@kernel.org> [dmaengine.c]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Patch series "Replace all open encodings for NUMA_NO_NODE", v3.
All these places for replacement were found by running the following
grep patterns on the entire kernel code. Please let me know if this
might have missed some instances. This might also have replaced some
false positives. I will appreciate suggestions, inputs and review.
1. git grep "nid == -1"
2. git grep "node == -1"
3. git grep "nid = -1"
4. git grep "node = -1"
This patch (of 2):
At present there are multiple places where invalid node number is
encoded as -1. Even though implicitly understood it is always better to
have macros in there. Replace these open encodings for an invalid node
number with the global macro NUMA_NO_NODE. This helps remove NUMA
related assumptions like 'invalid node' from various places redirecting
them to a common definition.
Link: http://lkml.kernel.org/r/1545127933-10711-2-git-send-email-anshuman.khandual@arm.com
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com> [ixgbe]
Acked-by: Jens Axboe <axboe@kernel.dk> [mtip32xx]
Acked-by: Vinod Koul <vkoul@kernel.org> [dmaengine.c]
Acked-by: Michael Ellerman <mpe@ellerman.id.au> [powerpc]
Acked-by: Doug Ledford <dledford@redhat.com> [drivers/infiniband]
Cc: Joseph Qi <jiangqi903@gmail.com>
Cc: Hans Verkuil <hverkuil@xs4all.nl>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
find_vmap_area() can return a NULL pointer and we're going to
dereference it without checking it first. Use the existing
find_vm_area() function which does exactly what we want and checks for
the NULL pointer.
Link: http://lkml.kernel.org/r/20181228171009.22269-1-liviu@dudau.co.uk
Fixes: f3c01d2f3ade ("mm: vmalloc: avoid racy handling of debugobjects in vunmap")
Signed-off-by: Liviu Dudau <liviu@dudau.co.uk>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Chintan Pandya <cpandya@codeaurora.org>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The content of pages that are marked PG_offline is not of interest (e.g.
inflated by a balloon driver), let's skip these pages.
In saveable_highmem_page(), move the PageReserved() check to a new check
along with the PageOffline() check to separate it from the swsusp
checks.
[david@redhat.com: v2]
Link: http://lkml.kernel.org/r/20181122100627.5189-9-david@redhat.com
Link: http://lkml.kernel.org/r/20181119101616.8901-9-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Acked-by: Pavel Machek <pavel@ucw.cz>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Len Brown <len.brown@intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: "Michael S. Tsirkin" <mst@redhat.com>
Cc: Alexander Duyck <alexander.h.duyck@linux.intel.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Baoquan He <bhe@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Christian Hansen <chansen3@cisco.com>
Cc: Dave Young <dyoung@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Juergen Gross <jgross@suse.com>
Cc: Julien Freche <jfreche@vmware.com>
Cc: Kairui Song <kasong@redhat.com>
Cc: Kazuhito Hagio <k-hagio@ab.jp.nec.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Lianbo Jiang <lijiang@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Miles Chen <miles.chen@mediatek.com>
Cc: Nadav Amit <namit@vmware.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Omar Sandoval <osandov@fb.com>
Cc: Pankaj gupta <pagupta@redhat.com>
Cc: Pavel Tatashin <pasha.tatashin@oracle.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Stefano Stabellini <sstabellini@kernel.org>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Xavier Deguillard <xdeguillard@vmware.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Let's use pfn_to_online_page() instead of pfn_to_page() when checking
for saveable pages to not save/restore offline memory sections.
Link: http://lkml.kernel.org/r/20181119101616.8901-8-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Suggested-by: Michal Hocko <mhocko@kernel.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Pavel Machek <pavel@ucw.cz>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: Len Brown <len.brown@intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: "Michael S. Tsirkin" <mst@redhat.com>
Cc: Alexander Duyck <alexander.h.duyck@linux.intel.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Baoquan He <bhe@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Christian Hansen <chansen3@cisco.com>
Cc: Dave Young <dyoung@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Juergen Gross <jgross@suse.com>
Cc: Julien Freche <jfreche@vmware.com>
Cc: Kairui Song <kasong@redhat.com>
Cc: Kazuhito Hagio <k-hagio@ab.jp.nec.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Lianbo Jiang <lijiang@redhat.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Miles Chen <miles.chen@mediatek.com>
Cc: Nadav Amit <namit@vmware.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Omar Sandoval <osandov@fb.com>
Cc: Pankaj gupta <pagupta@redhat.com>
Cc: Pavel Tatashin <pasha.tatashin@oracle.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Stefano Stabellini <sstabellini@kernel.org>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Xavier Deguillard <xdeguillard@vmware.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Mark inflated and never onlined pages PG_offline, to tell the world that
the content is stale and should not be dumped.
[david@redhat.com: use vmballoon_page_in_frames more widely]
Link: http://lkml.kernel.org/r/20181122100627.5189-7-david@redhat.com
Link: http://lkml.kernel.org/r/20181119101616.8901-7-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Acked-by: Nadav Amit <namit@vmware.com>
Cc: Xavier Deguillard <xdeguillard@vmware.com>
Cc: Nadav Amit <namit@vmware.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Julien Freche <jfreche@vmware.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: "Michael S. Tsirkin" <mst@redhat.com>
Cc: Alexander Duyck <alexander.h.duyck@linux.intel.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Christian Hansen <chansen3@cisco.com>
Cc: Dave Young <dyoung@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Juergen Gross <jgross@suse.com>
Cc: Kairui Song <kasong@redhat.com>
Cc: Kazuhito Hagio <k-hagio@ab.jp.nec.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Len Brown <len.brown@intel.com>
Cc: Lianbo Jiang <lijiang@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Miles Chen <miles.chen@mediatek.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Omar Sandoval <osandov@fb.com>
Cc: Pankaj gupta <pagupta@redhat.com>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Pavel Tatashin <pasha.tatashin@oracle.com>
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Stefano Stabellini <sstabellini@kernel.org>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Mark inflated and never onlined pages PG_offline, to tell the world that
the content is stale and should not be dumped.
Link: http://lkml.kernel.org/r/20181119101616.8901-6-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Acked-by: Pankaj gupta <pagupta@redhat.com>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: Kairui Song <kasong@redhat.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: "Michael S. Tsirkin" <mst@redhat.com>
Cc: Alexander Duyck <alexander.h.duyck@linux.intel.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Baoquan He <bhe@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Christian Hansen <chansen3@cisco.com>
Cc: Dave Young <dyoung@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Juergen Gross <jgross@suse.com>
Cc: Julien Freche <jfreche@vmware.com>
Cc: Kazuhito Hagio <k-hagio@ab.jp.nec.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Len Brown <len.brown@intel.com>
Cc: Lianbo Jiang <lijiang@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Miles Chen <miles.chen@mediatek.com>
Cc: Nadav Amit <namit@vmware.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Omar Sandoval <osandov@fb.com>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Pavel Tatashin <pasha.tatashin@oracle.com>
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Stefano Stabellini <sstabellini@kernel.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Xavier Deguillard <xdeguillard@vmware.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Mark inflated and never onlined pages PG_offline, to tell the world that
the content is stale and should not be dumped.
Link: http://lkml.kernel.org/r/20181119101616.8901-5-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Juergen Gross <jgross@suse.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Stefano Stabellini <sstabellini@kernel.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: "Michael S. Tsirkin" <mst@redhat.com>
Cc: Alexander Duyck <alexander.h.duyck@linux.intel.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Baoquan He <bhe@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Christian Hansen <chansen3@cisco.com>
Cc: Dave Young <dyoung@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Julien Freche <jfreche@vmware.com>
Cc: Kairui Song <kasong@redhat.com>
Cc: Kazuhito Hagio <k-hagio@ab.jp.nec.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Len Brown <len.brown@intel.com>
Cc: Lianbo Jiang <lijiang@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Miles Chen <miles.chen@mediatek.com>
Cc: Nadav Amit <namit@vmware.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Omar Sandoval <osandov@fb.com>
Cc: Pankaj gupta <pagupta@redhat.com>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Pavel Tatashin <pasha.tatashin@oracle.com>
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Xavier Deguillard <xdeguillard@vmware.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Right now, pages inflated as part of a balloon driver will be dumped by
dump tools like makedumpfile. While XEN is able to check in the crash
kernel whether a certain pfn is actuall backed by memory in the
hypervisor (see xen_oldmem_pfn_is_ram) and optimize this case, dumps of
other balloon inflated memory will essentially result in zero pages
getting allocated by the hypervisor and the dump getting filled with
this data.
The allocation and reading of zero pages can directly be avoided if a
dumping tool could know which pages only contain stale information not
to be dumped.
We now have PG_offline which can be (and already is by virtio-balloon)
used for marking pages as logically offline. Follow up patches will
make use of this flag also in other balloon implementations.
Let's export PG_offline via PAGE_OFFLINE_MAPCOUNT_VALUE, so makedumpfile
can directly skip pages that are logically offline and the content
therefore stale.
Please note that this is also helpful for a problem we were seeing under
Hyper-V: Dumping logically offline memory (pages kept fake offline while
onlining a section via online_page_callback) would under some condicions
result in a kernel panic when dumping them.
Link: http://lkml.kernel.org/r/20181119101616.8901-4-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Acked-by: Dave Young <dyoung@redhat.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Omar Sandoval <osandov@fb.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Lianbo Jiang <lijiang@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Kazuhito Hagio <k-hagio@ab.jp.nec.com>
Cc: Alexander Duyck <alexander.h.duyck@linux.intel.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Christian Hansen <chansen3@cisco.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Juergen Gross <jgross@suse.com>
Cc: Julien Freche <jfreche@vmware.com>
Cc: Kairui Song <kasong@redhat.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Len Brown <len.brown@intel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Miles Chen <miles.chen@mediatek.com>
Cc: Nadav Amit <namit@vmware.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Pankaj gupta <pagupta@redhat.com>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Pavel Tatashin <pasha.tatashin@oracle.com>
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Stefano Stabellini <sstabellini@kernel.org>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Xavier Deguillard <xdeguillard@vmware.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
PG_balloon was introduced to implement page migration/compaction for
pages inflated in virtio-balloon. Nowadays, it is only a marker that a
page is part of virtio-balloon and therefore logically offline.
We also want to make use of this flag in other balloon drivers - for
inflated pages or when onlining a section but keeping some pages offline
(e.g. used right now by XEN and Hyper-V via set_online_page_callback()).
We are going to expose this flag to dump tools like makedumpfile. But
instead of exposing PG_balloon, let's generalize the concept of marking
pages as logically offline, so it can be reused for other purposes later
on.
Rename PG_balloon to PG_offline. This is an indicator that the page is
logically offline, the content stale and that it should not be touched
(e.g. a hypervisor would have to allocate backing storage in order for
the guest to dump an unused page). We can then e.g. exclude such pages
from dumps.
We replace and reuse KPF_BALLOON (23), as this shouldn't really harm
(and for now the semantics stay the same). In following patches, we
will make use of this bit also in other balloon drivers. While at it,
document PGTABLE.
[akpm@linux-foundation.org: fix comment text, per David]
Link: http://lkml.kernel.org/r/20181119101616.8901-3-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Acked-by: Konstantin Khlebnikov <koct9i@gmail.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Acked-by: Pankaj gupta <pagupta@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Christian Hansen <chansen3@cisco.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Pavel Tatashin <pasha.tatashin@oracle.com>
Cc: Alexander Duyck <alexander.h.duyck@linux.intel.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Miles Chen <miles.chen@mediatek.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Kazuhito Hagio <k-hagio@ab.jp.nec.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Baoquan He <bhe@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Dave Young <dyoung@redhat.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Julien Freche <jfreche@vmware.com>
Cc: Kairui Song <kasong@redhat.com>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Len Brown <len.brown@intel.com>
Cc: Lianbo Jiang <lijiang@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Nadav Amit <namit@vmware.com>
Cc: Omar Sandoval <osandov@fb.com>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Stefano Stabellini <sstabellini@kernel.org>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Xavier Deguillard <xdeguillard@vmware.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Patch series "mm/kdump: allow to exclude pages that are logically
offline"
Right now, pages inflated as part of a balloon driver will be dumped by
dump tools like makedumpfile. While XEN is able to check in the crash
kernel whether a certain pfn is actuall backed by memory in the
hypervisor (see xen_oldmem_pfn_is_ram) and optimize this case, dumps of
virtio-balloon, hv-balloon and VMWare balloon inflated memory will
essentially result in zero pages getting allocated by the hypervisor and
the dump getting filled with this data.
The allocation and reading of zero pages can directly be avoided if a
dumping tool could know which pages only contain stale information not
to be dumped.
Also for XEN, calling into the kernel and asking the hypervisor if a pfn
is backed can be avoided if the duming tool would skip such pages right
from the beginning.
Dumping tools have no idea whether a given page is part of a balloon
driver and shall not be dumped. Esp. PG_reserved cannot be used for
that purpose as all memory allocated during early boot is also
PG_reserved, see discussion at [1]. So some other way of indication is
required and a new page flag is frowned upon.
We have PG_balloon (MAPCOUNT value), which is essentially unused now. I
suggest renaming it to something more generic (PG_offline) to mark pages
as logically offline. This flag can than e.g. also be used by
virtio-mem in the future to mark subsections as offline. Or by other
code that wants to put pages logically offline (e.g. later maybe
poisoned pages that shall no longer be used).
This series converts PG_balloon to PG_offline, allows dumping tools to
query the value to detect such pages and marks pages in the hv-balloon
and XEN balloon properly as PG_offline. Note that virtio-balloon
already set pages to PG_balloon (and now PG_offline).
Please note that this is also helpful for a problem we were seeing under
Hyper-V: Dumping logically offline memory (pages kept fake offline while
onlining a section via online_page_callback) would under some condicions
result in a kernel panic when dumping them.
As I don't have access to neither XEN nor Hyper-V nor VMWare
installations, this was only tested with the virtio-balloon and pages
were properly skipped when dumping. I'll also attach the makedumpfile
patch to this series.
[1] https://lkml.org/lkml/2018/7/20/566
This patch (of 8):
Commit b1123ea6d3b3 ("mm: balloon: use general non-lru movable page
feature") reworked balloon handling to make use of the general non-lru
movable page feature. The big comment block in balloon_compaction.h
contains quite some outdated information. Let's fix this.
Link: http://lkml.kernel.org/r/20181119101616.8901-2-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Alexander Duyck <alexander.h.duyck@linux.intel.com>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Baoquan He <bhe@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Christian Hansen <chansen3@cisco.com>
Cc: Dave Young <dyoung@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Juergen Gross <jgross@suse.com>
Cc: Julien Freche <jfreche@vmware.com>
Cc: Kairui Song <kasong@redhat.com>
Cc: Kazuhito Hagio <k-hagio@ab.jp.nec.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Len Brown <len.brown@intel.com>
Cc: Lianbo Jiang <lijiang@redhat.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Miles Chen <miles.chen@mediatek.com>
Cc: Nadav Amit <namit@vmware.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Omar Sandoval <osandov@fb.com>
Cc: Pankaj gupta <pagupta@redhat.com>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Pavel Tatashin <pasha.tatashin@oracle.com>
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Stefano Stabellini <sstabellini@kernel.org>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Xavier Deguillard <xdeguillard@vmware.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
When freeing pages are done with higher order, time spent on coalescing
pages by buddy allocator can be reduced. With section size of 256MB,
hot add latency of a single section shows improvement from 50-60 ms to
less than 1 ms, hence improving the hot add latency by 60 times. Modify
external providers of online callback to align with the change.
[arunks@codeaurora.org: v11]
Link: http://lkml.kernel.org/r/1547792588-18032-1-git-send-email-arunks@codeaurora.org
[akpm@linux-foundation.org: remove unused local, per Arun]
[akpm@linux-foundation.org: avoid return of void-returning __free_pages_core(), per Oscar]
[akpm@linux-foundation.org: fix it for mm-convert-totalram_pages-and-totalhigh_pages-variables-to-atomic.patch]
[arunks@codeaurora.org: v8]
Link: http://lkml.kernel.org/r/1547032395-24582-1-git-send-email-arunks@codeaurora.org
[arunks@codeaurora.org: v9]
Link: http://lkml.kernel.org/r/1547098543-26452-1-git-send-email-arunks@codeaurora.org
Link: http://lkml.kernel.org/r/1538727006-5727-1-git-send-email-arunks@codeaurora.org
Signed-off-by: Arun KS <arunks@codeaurora.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Alexander Duyck <alexander.h.duyck@linux.intel.com>
Cc: K. Y. Srinivasan <kys@microsoft.com>
Cc: Haiyang Zhang <haiyangz@microsoft.com>
Cc: Stephen Hemminger <sthemmin@microsoft.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Mathieu Malaterre <malat@debian.org>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Souptick Joarder <jrdr.linux@gmail.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Aaron Lu <aaron.lu@intel.com>
Cc: Srivatsa Vaddagiri <vatsa@codeaurora.org>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
"addr" function argument is not used in alloc_consistency_checks() at
all, so remove it.
Link: http://lkml.kernel.org/r/20190211123214.35592-1-cai@lca.pw
Fixes: becfda68abca ("slub: convert SLAB_DEBUG_FREE to SLAB_CONSISTENCY_CHECKS")
Signed-off-by: Qian Cai <cai@lca.pw>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Capitialize comment string, use C89 comment style, correct
grammar/punctuation in comments.
Link: http://lkml.kernel.org/r/20190204005713.9463-2-tobin@kernel.org
Link: http://lkml.kernel.org/r/20190204005713.9463-3-tobin@kernel.org
Link: http://lkml.kernel.org/r/20190204005713.9463-4-tobin@kernel.org
Signed-off-by: Tobin C. Harding <tobin@kernel.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: William Kucharski <william.kucharski@oracle.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Kmemleak throws endless warnings during boot due to in
__alloc_alien_cache(),
alc = kmalloc_node(memsize, gfp, node);
init_arraycache(&alc->ac, entries, batch);
kmemleak_no_scan(ac);
Kmemleak does not track the array cache (alc->ac) but the alien cache
(alc) instead, so let it track the latter by lifting kmemleak_no_scan()
out of init_arraycache().
There is another place that calls init_arraycache(), but
alloc_kmem_cache_cpus() uses the percpu allocation where will never be
considered as a leak.
kmemleak: Found object by alias at 0xffff8007b9aa7e38
CPU: 190 PID: 1 Comm: swapper/0 Not tainted 5.0.0-rc2+ #2
Call trace:
dump_backtrace+0x0/0x168
show_stack+0x24/0x30
dump_stack+0x88/0xb0
lookup_object+0x84/0xac
find_and_get_object+0x84/0xe4
kmemleak_no_scan+0x74/0xf4
setup_kmem_cache_node+0x2b4/0x35c
__do_tune_cpucache+0x250/0x2d4
do_tune_cpucache+0x4c/0xe4
enable_cpucache+0xc8/0x110
setup_cpu_cache+0x40/0x1b8
__kmem_cache_create+0x240/0x358
create_cache+0xc0/0x198
kmem_cache_create_usercopy+0x158/0x20c
kmem_cache_create+0x50/0x64
fsnotify_init+0x58/0x6c
do_one_initcall+0x194/0x388
kernel_init_freeable+0x668/0x688
kernel_init+0x18/0x124
ret_from_fork+0x10/0x18
kmemleak: Object 0xffff8007b9aa7e00 (size 256):
kmemleak: comm "swapper/0", pid 1, jiffies 4294697137
kmemleak: min_count = 1
kmemleak: count = 0
kmemleak: flags = 0x1
kmemleak: checksum = 0
kmemleak: backtrace:
kmemleak_alloc+0x84/0xb8
kmem_cache_alloc_node_trace+0x31c/0x3a0
__kmalloc_node+0x58/0x78
setup_kmem_cache_node+0x26c/0x35c
__do_tune_cpucache+0x250/0x2d4
do_tune_cpucache+0x4c/0xe4
enable_cpucache+0xc8/0x110
setup_cpu_cache+0x40/0x1b8
__kmem_cache_create+0x240/0x358
create_cache+0xc0/0x198
kmem_cache_create_usercopy+0x158/0x20c
kmem_cache_create+0x50/0x64
fsnotify_init+0x58/0x6c
do_one_initcall+0x194/0x388
kernel_init_freeable+0x668/0x688
kernel_init+0x18/0x124
kmemleak: Not scanning unknown object at 0xffff8007b9aa7e38
CPU: 190 PID: 1 Comm: swapper/0 Not tainted 5.0.0-rc2+ #2
Call trace:
dump_backtrace+0x0/0x168
show_stack+0x24/0x30
dump_stack+0x88/0xb0
kmemleak_no_scan+0x90/0xf4
setup_kmem_cache_node+0x2b4/0x35c
__do_tune_cpucache+0x250/0x2d4
do_tune_cpucache+0x4c/0xe4
enable_cpucache+0xc8/0x110
setup_cpu_cache+0x40/0x1b8
__kmem_cache_create+0x240/0x358
create_cache+0xc0/0x198
kmem_cache_create_usercopy+0x158/0x20c
kmem_cache_create+0x50/0x64
fsnotify_init+0x58/0x6c
do_one_initcall+0x194/0x388
kernel_init_freeable+0x668/0x688
kernel_init+0x18/0x124
ret_from_fork+0x10/0x18
Link: http://lkml.kernel.org/r/20190129184518.39808-1-cai@lca.pw
Fixes: 1fe00d50a9e8 ("slab: factor out initialization of array cache")
Signed-off-by: Qian Cai <cai@lca.pw>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
new_slab_objects() will return immediately if freelist is not NULL.
if (freelist)
return freelist;
One more assignment operation could be avoided.
Link: http://lkml.kernel.org/r/20181229062512.30469-1-rocking@whu.edu.cn
Signed-off-by: Peng Wang <rocking@whu.edu.cn>
Reviewed-by: Pekka Enberg <penberg@kernel.org>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
(Taken from https://bugzilla.kernel.org/show_bug.cgi?id=200647)
'get_unused_fd_flags' in kthread cause kernel crash. It works fine on
4.1, but causes crash after get 64 fds. It also cause crash on
ubuntu1404/1604/1804, centos7.5, and the crash messages are almost the
same.
The crash message on centos7.5 shows below:
start fd 61
start fd 62
start fd 63
BUG: unable to handle kernel NULL pointer dereference at (null)
IP: __wake_up_common+0x2e/0x90
PGD 0
Oops: 0000 [#1] SMP
Modules linked in: test(OE) xt_CHECKSUM iptable_mangle ipt_MASQUERADE nf_nat_masquerade_ipv4 iptable_nat nf_nat_ipv4 nf_nat nf_conntrack_ipv4 nf_defrag_ipv4 xt_conntrack nf_conntrack ipt_REJECT nf_reject_ipv4 tun bridge stp llc ebtable_filter ebtables ip6table_filter ip6_tables iptable_filter devlink sunrpc kvm_intel kvm irqbypass crc32_pclmul ghash_clmulni_intel aesni_intel lrw gf128mul glue_helper ablk_helper cryptd sg ppdev pcspkr virtio_balloon parport_pc parport i2c_piix4 joydev ip_tables xfs libcrc32c sr_mod cdrom sd_mod crc_t10dif crct10dif_generic ata_generic pata_acpi virtio_scsi virtio_console virtio_net cirrus drm_kms_helper syscopyarea sysfillrect sysimgblt fb_sys_fops ttm crct10dif_pclmul crct10dif_common crc32c_intel drm ata_piix serio_raw libata virtio_pci virtio_ring i2c_core
virtio floppy dm_mirror dm_region_hash dm_log dm_mod
CPU: 2 PID: 1820 Comm: test_fd Kdump: loaded Tainted: G OE ------------ 3.10.0-862.3.3.el7.x86_64 #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.10.2-0-g5f4c7b1-prebuilt.qemu-project.org 04/01/2014
task: ffff8e92b9431fa0 ti: ffff8e94247a0000 task.ti: ffff8e94247a0000
RIP: 0010:__wake_up_common+0x2e/0x90
RSP: 0018:ffff8e94247a2d18 EFLAGS: 00010086
RAX: 0000000000000000 RBX: ffffffff9d09daa0 RCX: 0000000000000000
RDX: 0000000000000000 RSI: 0000000000000003 RDI: ffffffff9d09daa0
RBP: ffff8e94247a2d50 R08: 0000000000000000 R09: ffff8e92b95dfda8
R10: 0000000000000000 R11: 0000000000000000 R12: ffffffff9d09daa8
R13: 0000000000000003 R14: 0000000000000000 R15: 0000000000000003
FS: 0000000000000000(0000) GS:ffff8e9434e80000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000000 CR3: 000000017c686000 CR4: 00000000000207e0
Call Trace:
__wake_up+0x39/0x50
expand_files+0x131/0x250
__alloc_fd+0x47/0x170
get_unused_fd_flags+0x30/0x40
test_fd+0x12a/0x1c0 [test]
kthread+0xd1/0xe0
ret_from_fork_nospec_begin+0x21/0x21
Code: 66 90 55 48 89 e5 41 57 41 89 f7 41 56 41 89 ce 41 55 41 54 49 89 fc 49 83 c4 08 53 48 83 ec 10 48 8b 47 08 89 55 cc 4c 89 45 d0 <48> 8b 08 49 39 c4 48 8d 78 e8 4c 8d 69 e8 75 08 eb 3b 4c 89 ef
RIP __wake_up_common+0x2e/0x90
RSP <ffff8e94247a2d18>
CR2: 0000000000000000
This issue exists since CentOS 7.5 3.10.0-862 and CentOS 7.4
(3.10.0-693.21.1 ) is ok. Root cause: the item 'resize_wait' is not
initialized before being used.
Reported-by: Richard Zhang <zhang.zijian@h3c.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
It seems that commits 5f16f3225b0624 and 00a1a053ebe5, both with same
commitlog ("ext4: atomically set inode->i_flags in ext4_set_inode_flags()")
introduced the set_mask_bits API, but somehow missed not using it in ext4
in the end.
Also, set_mask_bits() is used in fs quite a bit and we can possibly come
up with a generic llsc based implementation (w/o the cmpxchg loop)
Link: http://lkml.kernel.org/r/1548275584-18096-3-git-send-email-vgupta@synopsys.com
Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
Reviewed-by: Anthony Yznaga <anthony.yznaga@oracle.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Jani Nikula <jani.nikula@intel.com>
Cc: Miklos Szeredi <mszeredi@redhat.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Update the code to use a zero-sized array instead of a pointer in
structure ocfs2_slot_info and use struct_size() in kzalloc().
Notice that one of the more common cases of allocation size calculations
is finding the size of a structure that has a zero-sized array at the
end, along with memory for some number of elements for that array. For
example:
struct foo {
int stuff;
void *entry[];
};
instance = kzalloc(sizeof(struct foo) + sizeof(void *) * count, GFP_KERNEL);
Instead of leaving these open-coded and prone to type mistakes, we can
now use the new struct_size() helper:
instance = kzalloc(struct_size(instance, entry, count), GFP_KERNEL);
This code was detected with the help of Coccinelle.
Link: http://lkml.kernel.org/r/20190108191903.GA22056@embeddedor
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Mark Fasheh <mfasheh@versity.com>
Cc: Joel Becker <jlbec@evilplan.org>
Cc: Junxiao Bi <junxiao.bi@oracle.com>
Cc: Joseph Qi <joseph.qi@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The user reported this problem, the upper application IO was timeout
when fstrim was running on this ocfs2 partition. the application
monitoring resource agent considered that this application did not work,
then this node was fenced by the cluster brain (e.g. pacemaker).
The root cause is that fstrim thread always holds main_bm meta-file
related locks until all the cluster groups are trimmed. This patch will
make fstrim thread release main_bm meta-file related locks when each
cluster group is trimmed, this will let the current application IO has a
chance to claim the clusters from main_bm meta-file.
Link: http://lkml.kernel.org/r/20190111090014.31645-1-ghe@suse.com
Signed-off-by: Gang He <ghe@suse.com>
Reviewed-by: Changwei Ge <ge.changwei@h3c.com>
Cc: Mark Fasheh <mfasheh@versity.com>
Cc: Joel Becker <jlbec@evilplan.org>
Cc: Junxiao Bi <junxiao.bi@oracle.com>
Cc: Joseph Qi <joseph.qi@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
In the process of creating a node, it will cause NULL pointer
dereference in kernel if o2cb_ctl failed in the interval (mkdir,
o2cb_set_node_attribute(node_num)] in function o2cb_add_node.
The node num is initialized to 0 in function o2nm_node_group_make_item,
o2nm_node_group_drop_item will mistake the node number 0 for a valid
node number when we delete the node before the node number is set
correctly. If the local node number of the current host happens to be
0, cluster->cl_local_node will be set to O2NM_INVALID_NODE_NUM while
o2hb_thread still running. The panic stack is generated as follows:
o2hb_thread
\-o2hb_do_disk_heartbeat
\-o2hb_check_own_slot
|-slot = ®->hr_slots[o2nm_this_node()];
//o2nm_this_node() return O2NM_INVALID_NODE_NUM
We need to check whether the node number is set when we delete the node.
Link: http://lkml.kernel.org/r/133d8045-72cc-863e-8eae-5013f9f6bc51@huawei.com
Signed-off-by: Jia Guo <guojia12@huawei.com>
Reviewed-by: Joseph Qi <jiangqi903@gmail.com>
Acked-by: Jun Piao <piaojun@huawei.com>
Cc: Mark Fasheh <mark@fasheh.com>
Cc: Joel Becker <jlbec@evilplan.org>
Cc: Junxiao Bi <junxiao.bi@oracle.com>
Cc: Changwei Ge <ge.changwei@h3c.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|