diff options
Diffstat (limited to 'rust/kernel/init/macros.rs')
-rw-r--r-- | rust/kernel/init/macros.rs | 971 |
1 files changed, 971 insertions, 0 deletions
diff --git a/rust/kernel/init/macros.rs b/rust/kernel/init/macros.rs new file mode 100644 index 000000000000..541cfad1d8be --- /dev/null +++ b/rust/kernel/init/macros.rs @@ -0,0 +1,971 @@ +// SPDX-License-Identifier: Apache-2.0 OR MIT + +//! This module provides the macros that actually implement the proc-macros `pin_data` and +//! `pinned_drop`. +//! +//! These macros should never be called directly, since they expect their input to be +//! in a certain format which is internal. Use the proc-macros instead. +//! +//! This architecture has been chosen because the kernel does not yet have access to `syn` which +//! would make matters a lot easier for implementing these as proc-macros. +//! +//! # Macro expansion example +//! +//! This section is intended for readers trying to understand the macros in this module and the +//! `pin_init!` macros from `init.rs`. +//! +//! We will look at the following example: +//! +//! ```rust +//! # use kernel::init::*; +//! #[pin_data] +//! #[repr(C)] +//! struct Bar<T> { +//! #[pin] +//! t: T, +//! pub x: usize, +//! } +//! +//! impl<T> Bar<T> { +//! fn new(t: T) -> impl PinInit<Self> { +//! pin_init!(Self { t, x: 0 }) +//! } +//! } +//! +//! #[pin_data(PinnedDrop)] +//! struct Foo { +//! a: usize, +//! #[pin] +//! b: Bar<u32>, +//! } +//! +//! #[pinned_drop] +//! impl PinnedDrop for Foo { +//! fn drop(self: Pin<&mut Self>) { +//! println!("{self:p} is getting dropped."); +//! } +//! } +//! +//! let a = 42; +//! let initializer = pin_init!(Foo { +//! a, +//! b <- Bar::new(36), +//! }); +//! ``` +//! +//! This example includes the most common and important features of the pin-init API. +//! +//! Below you can find individual section about the different macro invocations. Here are some +//! general things we need to take into account when designing macros: +//! - use global paths, similarly to file paths, these start with the separator: `::core::panic!()` +//! this ensures that the correct item is used, since users could define their own `mod core {}` +//! and then their own `panic!` inside to execute arbitrary code inside of our macro. +//! - macro `unsafe` hygiene: we need to ensure that we do not expand arbitrary, user-supplied +//! expressions inside of an `unsafe` block in the macro, because this would allow users to do +//! `unsafe` operations without an associated `unsafe` block. +//! +//! ## `#[pin_data]` on `Bar` +//! +//! This macro is used to specify which fields are structurally pinned and which fields are not. It +//! is placed on the struct definition and allows `#[pin]` to be placed on the fields. +//! +//! Here is the definition of `Bar` from our example: +//! +//! ```rust +//! # use kernel::init::*; +//! #[pin_data] +//! #[repr(C)] +//! struct Bar<T> { +//! t: T, +//! pub x: usize, +//! } +//! ``` +//! +//! This expands to the following code: +//! +//! ```rust +//! // Firstly the normal definition of the struct, attributes are preserved: +//! #[repr(C)] +//! struct Bar<T> { +//! t: T, +//! pub x: usize, +//! } +//! // Then an anonymous constant is defined, this is because we do not want any code to access the +//! // types that we define inside: +//! const _: () = { +//! // We define the pin-data carrying struct, it is a ZST and needs to have the same generics, +//! // since we need to implement access functions for each field and thus need to know its +//! // type. +//! struct __ThePinData<T> { +//! __phantom: ::core::marker::PhantomData<fn(Bar<T>) -> Bar<T>>, +//! } +//! // We implement `Copy` for the pin-data struct, since all functions it defines will take +//! // `self` by value. +//! impl<T> ::core::clone::Clone for __ThePinData<T> { +//! fn clone(&self) -> Self { +//! *self +//! } +//! } +//! impl<T> ::core::marker::Copy for __ThePinData<T> {} +//! // For every field of `Bar`, the pin-data struct will define a function with the same name +//! // and accessor (`pub` or `pub(crate)` etc.). This function will take a pointer to the +//! // field (`slot`) and a `PinInit` or `Init` depending on the projection kind of the field +//! // (if pinning is structural for the field, then `PinInit` otherwise `Init`). +//! #[allow(dead_code)] +//! impl<T> __ThePinData<T> { +//! unsafe fn t<E>( +//! self, +//! slot: *mut T, +//! init: impl ::kernel::init::Init<T, E>, +//! ) -> ::core::result::Result<(), E> { +//! unsafe { ::kernel::init::Init::__init(init, slot) } +//! } +//! pub unsafe fn x<E>( +//! self, +//! slot: *mut usize, +//! init: impl ::kernel::init::Init<usize, E>, +//! ) -> ::core::result::Result<(), E> { +//! unsafe { ::kernel::init::Init::__init(init, slot) } +//! } +//! } +//! // Implement the internal `HasPinData` trait that associates `Bar` with the pin-data struct +//! // that we constructed beforehand. +//! unsafe impl<T> ::kernel::init::__internal::HasPinData for Bar<T> { +//! type PinData = __ThePinData<T>; +//! unsafe fn __pin_data() -> Self::PinData { +//! __ThePinData { +//! __phantom: ::core::marker::PhantomData, +//! } +//! } +//! } +//! // Implement the internal `PinData` trait that marks the pin-data struct as a pin-data +//! // struct. This is important to ensure that no user can implement a rouge `__pin_data` +//! // function without using `unsafe`. +//! unsafe impl<T> ::kernel::init::__internal::PinData for __ThePinData<T> { +//! type Datee = Bar<T>; +//! } +//! // Now we only want to implement `Unpin` for `Bar` when every structurally pinned field is +//! // `Unpin`. In other words, whether `Bar` is `Unpin` only depends on structurally pinned +//! // fields (those marked with `#[pin]`). These fields will be listed in this struct, in our +//! // case no such fields exist, hence this is almost empty. The two phantomdata fields exist +//! // for two reasons: +//! // - `__phantom`: every generic must be used, since we cannot really know which generics +//! // are used, we declere all and then use everything here once. +//! // - `__phantom_pin`: uses the `'__pin` lifetime and ensures that this struct is invariant +//! // over it. The lifetime is needed to work around the limitation that trait bounds must +//! // not be trivial, e.g. the user has a `#[pin] PhantomPinned` field -- this is +//! // unconditionally `!Unpin` and results in an error. The lifetime tricks the compiler +//! // into accepting these bounds regardless. +//! #[allow(dead_code)] +//! struct __Unpin<'__pin, T> { +//! __phantom_pin: ::core::marker::PhantomData<fn(&'__pin ()) -> &'__pin ()>, +//! __phantom: ::core::marker::PhantomData<fn(Bar<T>) -> Bar<T>>, +//! } +//! #[doc(hidden)] +//! impl<'__pin, T> +//! ::core::marker::Unpin for Bar<T> where __Unpin<'__pin, T>: ::core::marker::Unpin {} +//! // Now we need to ensure that `Bar` does not implement `Drop`, since that would give users +//! // access to `&mut self` inside of `drop` even if the struct was pinned. This could lead to +//! // UB with only safe code, so we disallow this by giving a trait implementation error using +//! // a direct impl and a blanket implementation. +//! trait MustNotImplDrop {} +//! // Normally `Drop` bounds do not have the correct semantics, but for this purpose they do +//! // (normally people want to know if a type has any kind of drop glue at all, here we want +//! // to know if it has any kind of custom drop glue, which is exactly what this bound does). +//! #[allow(drop_bounds)] +//! impl<T: ::core::ops::Drop> MustNotImplDrop for T {} +//! impl<T> MustNotImplDrop for Bar<T> {} +//! // Here comes a convenience check, if one implemented `PinnedDrop`, but forgot to add it to +//! // `#[pin_data]`, then this will error with the same mechanic as above, this is not needed +//! // for safety, but a good sanity check, since no normal code calls `PinnedDrop::drop`. +//! #[allow(non_camel_case_types)] +//! trait UselessPinnedDropImpl_you_need_to_specify_PinnedDrop {} +//! impl<T: ::kernel::init::PinnedDrop> +//! UselessPinnedDropImpl_you_need_to_specify_PinnedDrop for T {} +//! impl<T> UselessPinnedDropImpl_you_need_to_specify_PinnedDrop for Bar<T> {} +//! }; +//! ``` +//! +//! ## `pin_init!` in `impl Bar` +//! +//! This macro creates an pin-initializer for the given struct. It requires that the struct is +//! annotated by `#[pin_data]`. +//! +//! Here is the impl on `Bar` defining the new function: +//! +//! ```rust +//! impl<T> Bar<T> { +//! fn new(t: T) -> impl PinInit<Self> { +//! pin_init!(Self { t, x: 0 }) +//! } +//! } +//! ``` +//! +//! This expands to the following code: +//! +//! ```rust +//! impl<T> Bar<T> { +//! fn new(t: T) -> impl PinInit<Self> { +//! { +//! // We do not want to allow arbitrary returns, so we declare this type as the `Ok` +//! // return type and shadow it later when we insert the arbitrary user code. That way +//! // there will be no possibility of returning without `unsafe`. +//! struct __InitOk; +//! // Get the pin-data type from the initialized type. +//! // - the function is unsafe, hence the unsafe block +//! // - we `use` the `HasPinData` trait in the block, it is only available in that +//! // scope. +//! let data = unsafe { +//! use ::kernel::init::__internal::HasPinData; +//! Self::__pin_data() +//! }; +//! // Use `data` to help with type inference, the closure supplied will have the type +//! // `FnOnce(*mut Self) -> Result<__InitOk, Infallible>`. +//! let init = ::kernel::init::__internal::PinData::make_closure::< +//! _, +//! __InitOk, +//! ::core::convert::Infallible, +//! >(data, move |slot| { +//! { +//! // Shadow the structure so it cannot be used to return early. If a user +//! // tries to write `return Ok(__InitOk)`, then they get a type error, since +//! // that will refer to this struct instead of the one defined above. +//! struct __InitOk; +//! // This is the expansion of `t,`, which is syntactic sugar for `t: t,`. +//! unsafe { ::core::ptr::write(&raw mut (*slot).t, t) }; +//! // Since initialization could fail later (not in this case, since the error +//! // type is `Infallible`) we will need to drop this field if it fails. This +//! // `DropGuard` will drop the field when it gets dropped and has not yet +//! // been forgotten. We make a reference to it, so users cannot `mem::forget` +//! // it from the initializer, since the name is the same as the field. +//! let t = &unsafe { +//! ::kernel::init::__internal::DropGuard::new(&raw mut (*slot).t) +//! }; +//! // Expansion of `x: 0,`: +//! // Since this can be an arbitrary expression we cannot place it inside of +//! // the `unsafe` block, so we bind it here. +//! let x = 0; +//! unsafe { ::core::ptr::write(&raw mut (*slot).x, x) }; +//! let x = &unsafe { +//! ::kernel::init::__internal::DropGuard::new(&raw mut (*slot).x) +//! }; +//! +//! // Here we use the type checker to ensuer that every field has been +//! // initialized exactly once, since this is `if false` it will never get +//! // executed, but still type-checked. +//! // Additionally we abuse `slot` to automatically infer the correct type for +//! // the struct. This is also another check that every field is accessible +//! // from this scope. +//! #[allow(unreachable_code, clippy::diverging_sub_expression)] +//! if false { +//! unsafe { +//! ::core::ptr::write( +//! slot, +//! Self { +//! // We only care about typecheck finding every field here, +//! // the expression does not matter, just conjure one using +//! // `panic!()`: +//! t: ::core::panic!(), +//! x: ::core::panic!(), +//! }, +//! ); +//! }; +//! } +//! // Since initialization has successfully completed, we can now forget the +//! // guards. +//! unsafe { ::kernel::init::__internal::DropGuard::forget(t) }; +//! unsafe { ::kernel::init::__internal::DropGuard::forget(x) }; +//! } +//! // We leave the scope above and gain access to the previously shadowed +//! // `__InitOk` that we need to return. +//! Ok(__InitOk) +//! }); +//! // Change the return type of the closure. +//! let init = move |slot| -> ::core::result::Result<(), ::core::convert::Infallible> { +//! init(slot).map(|__InitOk| ()) +//! }; +//! // Construct the initializer. +//! let init = unsafe { +//! ::kernel::init::pin_init_from_closure::<_, ::core::convert::Infallible>(init) +//! }; +//! init +//! } +//! } +//! } +//! ``` +//! +//! ## `#[pin_data]` on `Foo` +//! +//! Since we already took a look at `#[pin_data]` on `Bar`, this section will only explain the +//! differences/new things in the expansion of the `Foo` definition: +//! +//! ```rust +//! #[pin_data(PinnedDrop)] +//! struct Foo { +//! a: usize, +//! #[pin] +//! b: Bar<u32>, +//! } +//! ``` +//! +//! This expands to the following code: +//! +//! ```rust +//! struct Foo { +//! a: usize, +//! b: Bar<u32>, +//! } +//! const _: () = { +//! struct __ThePinData { +//! __phantom: ::core::marker::PhantomData<fn(Foo) -> Foo>, +//! } +//! impl ::core::clone::Clone for __ThePinData { +//! fn clone(&self) -> Self { +//! *self +//! } +//! } +//! impl ::core::marker::Copy for __ThePinData {} +//! #[allow(dead_code)] +//! impl __ThePinData { +//! unsafe fn b<E>( +//! self, +//! slot: *mut Bar<u32>, +//! // Note that this is `PinInit` instead of `Init`, this is because `b` is +//! // structurally pinned, as marked by the `#[pin]` attribute. +//! init: impl ::kernel::init::PinInit<Bar<u32>, E>, +//! ) -> ::core::result::Result<(), E> { +//! unsafe { ::kernel::init::PinInit::__pinned_init(init, slot) } +//! } +//! unsafe fn a<E>( +//! self, +//! slot: *mut usize, +//! init: impl ::kernel::init::Init<usize, E>, +//! ) -> ::core::result::Result<(), E> { +//! unsafe { ::kernel::init::Init::__init(init, slot) } +//! } +//! } +//! unsafe impl ::kernel::init::__internal::HasPinData for Foo { +//! type PinData = __ThePinData; +//! unsafe fn __pin_data() -> Self::PinData { +//! __ThePinData { +//! __phantom: ::core::marker::PhantomData, +//! } +//! } +//! } +//! unsafe impl ::kernel::init::__internal::PinData for __ThePinData { +//! type Datee = Foo; +//! } +//! #[allow(dead_code)] +//! struct __Unpin<'__pin> { +//! __phantom_pin: ::core::marker::PhantomData<fn(&'__pin ()) -> &'__pin ()>, +//! __phantom: ::core::marker::PhantomData<fn(Foo) -> Foo>, +//! // Since this field is `#[pin]`, it is listed here. +//! b: Bar<u32>, +//! } +//! #[doc(hidden)] +//! impl<'__pin> ::core::marker::Unpin for Foo where __Unpin<'__pin>: ::core::marker::Unpin {} +//! // Since we specified `PinnedDrop` as the argument to `#[pin_data]`, we expect `Foo` to +//! // implement `PinnedDrop`. Thus we do not need to prevent `Drop` implementations like +//! // before, instead we implement it here and delegate to `PinnedDrop`. +//! impl ::core::ops::Drop for Foo { +//! fn drop(&mut self) { +//! // Since we are getting dropped, no one else has a reference to `self` and thus we +//! // can assume that we never move. +//! let pinned = unsafe { ::core::pin::Pin::new_unchecked(self) }; +//! // Create the unsafe token that proves that we are inside of a destructor, this +//! // type is only allowed to be created in a destructor. +//! let token = unsafe { ::kernel::init::__internal::OnlyCallFromDrop::new() }; +//! ::kernel::init::PinnedDrop::drop(pinned, token); +//! } +//! } +//! }; +//! ``` +//! +//! ## `#[pinned_drop]` on `impl PinnedDrop for Foo` +//! +//! This macro is used to implement the `PinnedDrop` trait, since that trait is `unsafe` and has an +//! extra parameter that should not be used at all. The macro hides that parameter. +//! +//! Here is the `PinnedDrop` impl for `Foo`: +//! +//! ```rust +//! #[pinned_drop] +//! impl PinnedDrop for Foo { +//! fn drop(self: Pin<&mut Self>) { +//! println!("{self:p} is getting dropped."); +//! } +//! } +//! ``` +//! +//! This expands to the following code: +//! +//! ```rust +//! // `unsafe`, full path and the token parameter are added, everything else stays the same. +//! unsafe impl ::kernel::init::PinnedDrop for Foo { +//! fn drop(self: Pin<&mut Self>, _: ::kernel::init::__internal::OnlyCallFromDrop) { +//! println!("{self:p} is getting dropped."); +//! } +//! } +//! ``` +//! +//! ## `pin_init!` on `Foo` +//! +//! Since we already took a look at `pin_init!` on `Bar`, this section will only explain the +//! differences/new things in the expansion of `pin_init!` on `Foo`: +//! +//! ```rust +//! let a = 42; +//! let initializer = pin_init!(Foo { +//! a, +//! b <- Bar::new(36), +//! }); +//! ``` +//! +//! This expands to the following code: +//! +//! ```rust +//! let a = 42; +//! let initializer = { +//! struct __InitOk; +//! let data = unsafe { +//! use ::kernel::init::__internal::HasPinData; +//! Foo::__pin_data() +//! }; +//! let init = ::kernel::init::__internal::PinData::make_closure::< +//! _, +//! __InitOk, +//! ::core::convert::Infallible, +//! >(data, move |slot| { +//! { +//! struct __InitOk; +//! unsafe { ::core::ptr::write(&raw mut (*slot).a, a) }; +//! let a = &unsafe { ::kernel::init::__internal::DropGuard::new(&raw mut (*slot).a) }; +//! let b = Bar::new(36); +//! // Here we use `data` to access the correct field and require that `b` is of type +//! // `PinInit<Bar<u32>, Infallible>`. +//! unsafe { data.b(&raw mut (*slot).b, b)? }; +//! let b = &unsafe { ::kernel::init::__internal::DropGuard::new(&raw mut (*slot).b) }; +//! +//! #[allow(unreachable_code, clippy::diverging_sub_expression)] +//! if false { +//! unsafe { +//! ::core::ptr::write( +//! slot, +//! Foo { +//! a: ::core::panic!(), +//! b: ::core::panic!(), +//! }, +//! ); +//! }; +//! } +//! unsafe { ::kernel::init::__internal::DropGuard::forget(a) }; +//! unsafe { ::kernel::init::__internal::DropGuard::forget(b) }; +//! } +//! Ok(__InitOk) +//! }); +//! let init = move |slot| -> ::core::result::Result<(), ::core::convert::Infallible> { +//! init(slot).map(|__InitOk| ()) +//! }; +//! let init = unsafe { +//! ::kernel::init::pin_init_from_closure::<_, ::core::convert::Infallible>(init) +//! }; +//! init +//! }; +//! ``` + +/// Creates a `unsafe impl<...> PinnedDrop for $type` block. +/// +/// See [`PinnedDrop`] for more information. +#[doc(hidden)] +#[macro_export] +macro_rules! __pinned_drop { + ( + @impl_sig($($impl_sig:tt)*), + @impl_body( + $(#[$($attr:tt)*])* + fn drop($($sig:tt)*) { + $($inner:tt)* + } + ), + ) => { + unsafe $($impl_sig)* { + // Inherit all attributes and the type/ident tokens for the signature. + $(#[$($attr)*])* + fn drop($($sig)*, _: $crate::init::__internal::OnlyCallFromDrop) { + $($inner)* + } + } + } +} + +/// This macro first parses the struct definition such that it separates pinned and not pinned +/// fields. Afterwards it declares the struct and implement the `PinData` trait safely. +#[doc(hidden)] +#[macro_export] +macro_rules! __pin_data { + // Proc-macro entry point, this is supplied by the proc-macro pre-parsing. + (parse_input: + @args($($pinned_drop:ident)?), + @sig( + $(#[$($struct_attr:tt)*])* + $vis:vis struct $name:ident + $(where $($whr:tt)*)? + ), + @impl_generics($($impl_generics:tt)*), + @ty_generics($($ty_generics:tt)*), + @body({ $($fields:tt)* }), + ) => { + // We now use token munching to iterate through all of the fields. While doing this we + // identify fields marked with `#[pin]`, these fields are the 'pinned fields'. The user + // wants these to be structurally pinned. The rest of the fields are the + // 'not pinned fields'. Additionally we collect all fields, since we need them in the right + // order to declare the struct. + // + // In this call we also put some explaining comments for the parameters. + $crate::__pin_data!(find_pinned_fields: + // Attributes on the struct itself, these will just be propagated to be put onto the + // struct definition. + @struct_attrs($(#[$($struct_attr)*])*), + // The visibility of the struct. + @vis($vis), + // The name of the struct. + @name($name), + // The 'impl generics', the generics that will need to be specified on the struct inside + // of an `impl<$ty_generics>` block. + @impl_generics($($impl_generics)*), + // The 'ty generics', the generics that will need to be specified on the impl blocks. + @ty_generics($($ty_generics)*), + // The where clause of any impl block and the declaration. + @where($($($whr)*)?), + // The remaining fields tokens that need to be processed. + // We add a `,` at the end to ensure correct parsing. + @fields_munch($($fields)* ,), + // The pinned fields. + @pinned(), + // The not pinned fields. + @not_pinned(), + // All fields. + @fields(), + // The accumulator containing all attributes already parsed. + @accum(), + // Contains `yes` or `` to indicate if `#[pin]` was found on the current field. + @is_pinned(), + // The proc-macro argument, this should be `PinnedDrop` or ``. + @pinned_drop($($pinned_drop)?), + ); + }; + (find_pinned_fields: + @struct_attrs($($struct_attrs:tt)*), + @vis($vis:vis), + @name($name:ident), + @impl_generics($($impl_generics:tt)*), + @ty_generics($($ty_generics:tt)*), + @where($($whr:tt)*), + // We found a PhantomPinned field, this should generally be pinned! + @fields_munch($field:ident : $($($(::)?core::)?marker::)?PhantomPinned, $($rest:tt)*), + @pinned($($pinned:tt)*), + @not_pinned($($not_pinned:tt)*), + @fields($($fields:tt)*), + @accum($($accum:tt)*), + // This field is not pinned. + @is_pinned(), + @pinned_drop($($pinned_drop:ident)?), + ) => { + ::core::compile_error!(concat!( + "The field `", + stringify!($field), + "` of type `PhantomPinned` only has an effect, if it has the `#[pin]` attribute.", + )); + $crate::__pin_data!(find_pinned_fields: + @struct_attrs($($struct_attrs)*), + @vis($vis), + @name($name), + @impl_generics($($impl_generics)*), + @ty_generics($($ty_generics)*), + @where($($whr)*), + @fields_munch($($rest)*), + @pinned($($pinned)* $($accum)* $field: ::core::marker::PhantomPinned,), + @not_pinned($($not_pinned)*), + @fields($($fields)* $($accum)* $field: ::core::marker::PhantomPinned,), + @accum(), + @is_pinned(), + @pinned_drop($($pinned_drop)?), + ); + }; + (find_pinned_fields: + @struct_attrs($($struct_attrs:tt)*), + @vis($vis:vis), + @name($name:ident), + @impl_generics($($impl_generics:tt)*), + @ty_generics($($ty_generics:tt)*), + @where($($whr:tt)*), + // We reached the field declaration. + @fields_munch($field:ident : $type:ty, $($rest:tt)*), + @pinned($($pinned:tt)*), + @not_pinned($($not_pinned:tt)*), + @fields($($fields:tt)*), + @accum($($accum:tt)*), + // This field is pinned. + @is_pinned(yes), + @pinned_drop($($pinned_drop:ident)?), + ) => { + $crate::__pin_data!(find_pinned_fields: + @struct_attrs($($struct_attrs)*), + @vis($vis), + @name($name), + @impl_generics($($impl_generics)*), + @ty_generics($($ty_generics)*), + @where($($whr)*), + @fields_munch($($rest)*), + @pinned($($pinned)* $($accum)* $field: $type,), + @not_pinned($($not_pinned)*), + @fields($($fields)* $($accum)* $field: $type,), + @accum(), + @is_pinned(), + @pinned_drop($($pinned_drop)?), + ); + }; + (find_pinned_fields: + @struct_attrs($($struct_attrs:tt)*), + @vis($vis:vis), + @name($name:ident), + @impl_generics($($impl_generics:tt)*), + @ty_generics($($ty_generics:tt)*), + @where($($whr:tt)*), + // We reached the field declaration. + @fields_munch($field:ident : $type:ty, $($rest:tt)*), + @pinned($($pinned:tt)*), + @not_pinned($($not_pinned:tt)*), + @fields($($fields:tt)*), + @accum($($accum:tt)*), + // This field is not pinned. + @is_pinned(), + @pinned_drop($($pinned_drop:ident)?), + ) => { + $crate::__pin_data!(find_pinned_fields: + @struct_attrs($($struct_attrs)*), + @vis($vis), + @name($name), + @impl_generics($($impl_generics)*), + @ty_generics($($ty_generics)*), + @where($($whr)*), + @fields_munch($($rest)*), + @pinned($($pinned)*), + @not_pinned($($not_pinned)* $($accum)* $field: $type,), + @fields($($fields)* $($accum)* $field: $type,), + @accum(), + @is_pinned(), + @pinned_drop($($pinned_drop)?), + ); + }; + (find_pinned_fields: + @struct_attrs($($struct_attrs:tt)*), + @vis($vis:vis), + @name($name:ident), + @impl_generics($($impl_generics:tt)*), + @ty_generics($($ty_generics:tt)*), + @where($($whr:tt)*), + // We found the `#[pin]` attr. + @fields_munch(#[pin] $($rest:tt)*), + @pinned($($pinned:tt)*), + @not_pinned($($not_pinned:tt)*), + @fields($($fields:tt)*), + @accum($($accum:tt)*), + @is_pinned($($is_pinned:ident)?), + @pinned_drop($($pinned_drop:ident)?), + ) => { + $crate::__pin_data!(find_pinned_fields: + @struct_attrs($($struct_attrs)*), + @vis($vis), + @name($name), + @impl_generics($($impl_generics)*), + @ty_generics($($ty_generics)*), + @where($($whr)*), + @fields_munch($($rest)*), + // We do not include `#[pin]` in the list of attributes, since it is not actually an + // attribute that is defined somewhere. + @pinned($($pinned)*), + @not_pinned($($not_pinned)*), + @fields($($fields)*), + @accum($($accum)*), + // Set this to `yes`. + @is_pinned(yes), + @pinned_drop($($pinned_drop)?), + ); + }; + (find_pinned_fields: + @struct_attrs($($struct_attrs:tt)*), + @vis($vis:vis), + @name($name:ident), + @impl_generics($($impl_generics:tt)*), + @ty_generics($($ty_generics:tt)*), + @where($($whr:tt)*), + // We reached the field declaration with visibility, for simplicity we only munch the + // visibility and put it into `$accum`. + @fields_munch($fvis:vis $field:ident $($rest:tt)*), + @pinned($($pinned:tt)*), + @not_pinned($($not_pinned:tt)*), + @fields($($fields:tt)*), + @accum($($accum:tt)*), + @is_pinned($($is_pinned:ident)?), + @pinned_drop($($pinned_drop:ident)?), + ) => { + $crate::__pin_data!(find_pinned_fields: + @struct_attrs($($struct_attrs)*), + @vis($vis), + @name($name), + @impl_generics($($impl_generics)*), + @ty_generics($($ty_generics)*), + @where($($whr)*), + @fields_munch($field $($rest)*), + @pinned($($pinned)*), + @not_pinned($($not_pinned)*), + @fields($($fields)*), + @accum($($accum)* $fvis), + @is_pinned($($is_pinned)?), + @pinned_drop($($pinned_drop)?), + ); + }; + (find_pinned_fields: + @struct_attrs($($struct_attrs:tt)*), + @vis($vis:vis), + @name($name:ident), + @impl_generics($($impl_generics:tt)*), + @ty_generics($($ty_generics:tt)*), + @where($($whr:tt)*), + // Some other attribute, just put it into `$accum`. + @fields_munch(#[$($attr:tt)*] $($rest:tt)*), + @pinned($($pinned:tt)*), + @not_pinned($($not_pinned:tt)*), + @fields($($fields:tt)*), + @accum($($accum:tt)*), + @is_pinned($($is_pinned:ident)?), + @pinned_drop($($pinned_drop:ident)?), + ) => { + $crate::__pin_data!(find_pinned_fields: + @struct_attrs($($struct_attrs)*), + @vis($vis), + @name($name), + @impl_generics($($impl_generics)*), + @ty_generics($($ty_generics)*), + @where($($whr)*), + @fields_munch($($rest)*), + @pinned($($pinned)*), + @not_pinned($($not_pinned)*), + @fields($($fields)*), + @accum($($accum)* #[$($attr)*]), + @is_pinned($($is_pinned)?), + @pinned_drop($($pinned_drop)?), + ); + }; + (find_pinned_fields: + @struct_attrs($($struct_attrs:tt)*), + @vis($vis:vis), + @name($name:ident), + @impl_generics($($impl_generics:tt)*), + @ty_generics($($ty_generics:tt)*), + @where($($whr:tt)*), + // We reached the end of the fields, plus an optional additional comma, since we added one + // before and the user is also allowed to put a trailing comma. + @fields_munch($(,)?), + @pinned($($pinned:tt)*), + @not_pinned($($not_pinned:tt)*), + @fields($($fields:tt)*), + @accum(), + @is_pinned(), + @pinned_drop($($pinned_drop:ident)?), + ) => { + // Declare the struct with all fields in the correct order. + $($struct_attrs)* + $vis struct $name <$($impl_generics)*> + where $($whr)* + { + $($fields)* + } + + // We put the rest into this const item, because it then will not be accessible to anything + // outside. + const _: () = { + // We declare this struct which will host all of the projection function for our type. + // it will be invariant over all generic parameters which are inherited from the + // struct. + $vis struct __ThePinData<$($impl_generics)*> + where $($whr)* + { + __phantom: ::core::marker::PhantomData< + fn($name<$($ty_generics)*>) -> $name<$($ty_generics)*> + >, + } + + impl<$($impl_generics)*> ::core::clone::Clone for __ThePinData<$($ty_generics)*> + where $($whr)* + { + fn clone(&self) -> Self { *self } + } + + impl<$($impl_generics)*> ::core::marker::Copy for __ThePinData<$($ty_generics)*> + where $($whr)* + {} + + // Make all projection functions. + $crate::__pin_data!(make_pin_data: + @pin_data(__ThePinData), + @impl_generics($($impl_generics)*), + @ty_generics($($ty_generics)*), + @where($($whr)*), + @pinned($($pinned)*), + @not_pinned($($not_pinned)*), + ); + + // SAFETY: We have added the correct projection functions above to `__ThePinData` and + // we also use the least restrictive generics possible. + unsafe impl<$($impl_generics)*> + $crate::init::__internal::HasPinData for $name<$($ty_generics)*> + where $($whr)* + { + type PinData = __ThePinData<$($ty_generics)*>; + + unsafe fn __pin_data() -> Self::PinData { + __ThePinData { __phantom: ::core::marker::PhantomData } + } + } + + unsafe impl<$($impl_generics)*> + $crate::init::__internal::PinData for __ThePinData<$($ty_generics)*> + where $($whr)* + { + type Datee = $name<$($ty_generics)*>; + } + + // This struct will be used for the unpin analysis. Since only structurally pinned + // fields are relevant whether the struct should implement `Unpin`. + #[allow(dead_code)] + struct __Unpin <'__pin, $($impl_generics)*> + where $($whr)* + { + __phantom_pin: ::core::marker::PhantomData<fn(&'__pin ()) -> &'__pin ()>, + __phantom: ::core::marker::PhantomData< + fn($name<$($ty_generics)*>) -> $name<$($ty_generics)*> + >, + // Only the pinned fields. + $($pinned)* + } + + #[doc(hidden)] + impl<'__pin, $($impl_generics)*> ::core::marker::Unpin for $name<$($ty_generics)*> + where + __Unpin<'__pin, $($ty_generics)*>: ::core::marker::Unpin, + $($whr)* + {} + + // We need to disallow normal `Drop` implementation, the exact behavior depends on + // whether `PinnedDrop` was specified as the parameter. + $crate::__pin_data!(drop_prevention: + @name($name), + @impl_generics($($impl_generics)*), + @ty_generics($($ty_generics)*), + @where($($whr)*), + @pinned_drop($($pinned_drop)?), + ); + }; + }; + // When no `PinnedDrop` was specified, then we have to prevent implementing drop. + (drop_prevention: + @name($name:ident), + @impl_generics($($impl_generics:tt)*), + @ty_generics($($ty_generics:tt)*), + @where($($whr:tt)*), + @pinned_drop(), + ) => { + // We prevent this by creating a trait that will be implemented for all types implementing + // `Drop`. Additionally we will implement this trait for the struct leading to a conflict, + // if it also implements `Drop` + trait MustNotImplDrop {} + #[allow(drop_bounds)] + impl<T: ::core::ops::Drop> MustNotImplDrop for T {} + impl<$($impl_generics)*> MustNotImplDrop for $name<$($ty_generics)*> + where $($whr)* {} + // We also take care to prevent users from writing a useless `PinnedDrop` implementation. + // They might implement `PinnedDrop` correctly for the struct, but forget to give + // `PinnedDrop` as the parameter to `#[pin_data]`. + #[allow(non_camel_case_types)] + trait UselessPinnedDropImpl_you_need_to_specify_PinnedDrop {} + impl<T: $crate::init::PinnedDrop> + UselessPinnedDropImpl_you_need_to_specify_PinnedDrop for T {} + impl<$($impl_generics)*> + UselessPinnedDropImpl_you_need_to_specify_PinnedDrop for $name<$($ty_generics)*> + where $($whr)* {} + }; + // When `PinnedDrop` was specified we just implement `Drop` and delegate. + (drop_prevention: + @name($name:ident), + @impl_generics($($impl_generics:tt)*), + @ty_generics($($ty_generics:tt)*), + @where($($whr:tt)*), + @pinned_drop(PinnedDrop), + ) => { + impl<$($impl_generics)*> ::core::ops::Drop for $name<$($ty_generics)*> + where $($whr)* + { + fn drop(&mut self) { + // SAFETY: Since this is a destructor, `self` will not move after this function + // terminates, since it is inaccessible. + let pinned = unsafe { ::core::pin::Pin::new_unchecked(self) }; + // SAFETY: Since this is a drop function, we can create this token to call the + // pinned destructor of this type. + let token = unsafe { $crate::init::__internal::OnlyCallFromDrop::new() }; + $crate::init::PinnedDrop::drop(pinned, token); + } + } + }; + // If some other parameter was specified, we emit a readable error. + (drop_prevention: + @name($name:ident), + @impl_generics($($impl_generics:tt)*), + @ty_generics($($ty_generics:tt)*), + @where($($whr:tt)*), + @pinned_drop($($rest:tt)*), + ) => { + compile_error!( + "Wrong parameters to `#[pin_data]`, expected nothing or `PinnedDrop`, got '{}'.", + stringify!($($rest)*), + ); + }; + (make_pin_data: + @pin_data($pin_data:ident), + @impl_generics($($impl_generics:tt)*), + @ty_generics($($ty_generics:tt)*), + @where($($whr:tt)*), + @pinned($($(#[$($p_attr:tt)*])* $pvis:vis $p_field:ident : $p_type:ty),* $(,)?), + @not_pinned($($(#[$($attr:tt)*])* $fvis:vis $field:ident : $type:ty),* $(,)?), + ) => { + // For every field, we create a projection function according to its projection type. If a + // field is structurally pinned, then it must be initialized via `PinInit`, if it is not + // structurally pinned, then it can be initialized via `Init`. + // + // The functions are `unsafe` to prevent accidentally calling them. + #[allow(dead_code)] + impl<$($impl_generics)*> $pin_data<$($ty_generics)*> + where $($whr)* + { + $( + $pvis unsafe fn $p_field<E>( + self, + slot: *mut $p_type, + init: impl $crate::init::PinInit<$p_type, E>, + ) -> ::core::result::Result<(), E> { + unsafe { $crate::init::PinInit::__pinned_init(init, slot) } + } + )* + $( + $fvis unsafe fn $field<E>( + self, + slot: *mut $type, + init: impl $crate::init::Init<$type, E>, + ) -> ::core::result::Result<(), E> { + unsafe { $crate::init::Init::__init(init, slot) } + } + )* + } + }; +} |