summaryrefslogtreecommitdiff
path: root/lib/crypto
diff options
context:
space:
mode:
Diffstat (limited to 'lib/crypto')
-rw-r--r--lib/crypto/Kconfig25
-rw-r--r--lib/crypto/Makefile5
-rw-r--r--lib/crypto/curve25519-fiat32.c864
-rw-r--r--lib/crypto/curve25519-hacl64.c788
-rw-r--r--lib/crypto/curve25519.c25
5 files changed, 1707 insertions, 0 deletions
diff --git a/lib/crypto/Kconfig b/lib/crypto/Kconfig
index 7ad98b624e55..b1d830dc1c9e 100644
--- a/lib/crypto/Kconfig
+++ b/lib/crypto/Kconfig
@@ -59,6 +59,31 @@ config CRYPTO_LIB_CHACHA
by either the generic implementation or an arch-specific one, if one
is available and enabled.
+config CRYPTO_ARCH_HAVE_LIB_CURVE25519
+ tristate
+ help
+ Declares whether the architecture provides an arch-specific
+ accelerated implementation of the Curve25519 library interface,
+ either builtin or as a module.
+
+config CRYPTO_LIB_CURVE25519_GENERIC
+ tristate
+ help
+ This symbol can be depended upon by arch implementations of the
+ Curve25519 library interface that require the generic code as a
+ fallback, e.g., for SIMD implementations. If no arch specific
+ implementation is enabled, this implementation serves the users
+ of CRYPTO_LIB_CURVE25519.
+
+config CRYPTO_LIB_CURVE25519
+ tristate "Curve25519 scalar multiplication library"
+ depends on CRYPTO_ARCH_HAVE_LIB_CURVE25519 || !CRYPTO_ARCH_HAVE_LIB_CURVE25519
+ select CRYPTO_LIB_CURVE25519_GENERIC if CRYPTO_ARCH_HAVE_LIB_CURVE25519=n
+ help
+ Enable the Curve25519 library interface. This interface may be
+ fulfilled by either the generic implementation or an arch-specific
+ one, if one is available and enabled.
+
config CRYPTO_LIB_DES
tristate
diff --git a/lib/crypto/Makefile b/lib/crypto/Makefile
index 8ca66b5f9807..273c55d5e147 100644
--- a/lib/crypto/Makefile
+++ b/lib/crypto/Makefile
@@ -16,6 +16,11 @@ libblake2s-generic-y += blake2s-generic.o
obj-$(CONFIG_CRYPTO_LIB_BLAKE2S) += libblake2s.o
libblake2s-y += blake2s.o
+obj-$(CONFIG_CRYPTO_LIB_CURVE25519_GENERIC) += libcurve25519.o
+libcurve25519-y := curve25519-fiat32.o
+libcurve25519-$(CONFIG_ARCH_SUPPORTS_INT128) := curve25519-hacl64.o
+libcurve25519-y += curve25519.o
+
obj-$(CONFIG_CRYPTO_LIB_DES) += libdes.o
libdes-y := des.o
diff --git a/lib/crypto/curve25519-fiat32.c b/lib/crypto/curve25519-fiat32.c
new file mode 100644
index 000000000000..1c455207341d
--- /dev/null
+++ b/lib/crypto/curve25519-fiat32.c
@@ -0,0 +1,864 @@
+// SPDX-License-Identifier: GPL-2.0 OR MIT
+/*
+ * Copyright (C) 2015-2016 The fiat-crypto Authors.
+ * Copyright (C) 2018-2019 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
+ *
+ * This is a machine-generated formally verified implementation of Curve25519
+ * ECDH from: <https://github.com/mit-plv/fiat-crypto>. Though originally
+ * machine generated, it has been tweaked to be suitable for use in the kernel.
+ * It is optimized for 32-bit machines and machines that cannot work efficiently
+ * with 128-bit integer types.
+ */
+
+#include <asm/unaligned.h>
+#include <crypto/curve25519.h>
+#include <linux/string.h>
+
+/* fe means field element. Here the field is \Z/(2^255-19). An element t,
+ * entries t[0]...t[9], represents the integer t[0]+2^26 t[1]+2^51 t[2]+2^77
+ * t[3]+2^102 t[4]+...+2^230 t[9].
+ * fe limbs are bounded by 1.125*2^26,1.125*2^25,1.125*2^26,1.125*2^25,etc.
+ * Multiplication and carrying produce fe from fe_loose.
+ */
+typedef struct fe { u32 v[10]; } fe;
+
+/* fe_loose limbs are bounded by 3.375*2^26,3.375*2^25,3.375*2^26,3.375*2^25,etc
+ * Addition and subtraction produce fe_loose from (fe, fe).
+ */
+typedef struct fe_loose { u32 v[10]; } fe_loose;
+
+static __always_inline void fe_frombytes_impl(u32 h[10], const u8 *s)
+{
+ /* Ignores top bit of s. */
+ u32 a0 = get_unaligned_le32(s);
+ u32 a1 = get_unaligned_le32(s+4);
+ u32 a2 = get_unaligned_le32(s+8);
+ u32 a3 = get_unaligned_le32(s+12);
+ u32 a4 = get_unaligned_le32(s+16);
+ u32 a5 = get_unaligned_le32(s+20);
+ u32 a6 = get_unaligned_le32(s+24);
+ u32 a7 = get_unaligned_le32(s+28);
+ h[0] = a0&((1<<26)-1); /* 26 used, 32-26 left. 26 */
+ h[1] = (a0>>26) | ((a1&((1<<19)-1))<< 6); /* (32-26) + 19 = 6+19 = 25 */
+ h[2] = (a1>>19) | ((a2&((1<<13)-1))<<13); /* (32-19) + 13 = 13+13 = 26 */
+ h[3] = (a2>>13) | ((a3&((1<< 6)-1))<<19); /* (32-13) + 6 = 19+ 6 = 25 */
+ h[4] = (a3>> 6); /* (32- 6) = 26 */
+ h[5] = a4&((1<<25)-1); /* 25 */
+ h[6] = (a4>>25) | ((a5&((1<<19)-1))<< 7); /* (32-25) + 19 = 7+19 = 26 */
+ h[7] = (a5>>19) | ((a6&((1<<12)-1))<<13); /* (32-19) + 12 = 13+12 = 25 */
+ h[8] = (a6>>12) | ((a7&((1<< 6)-1))<<20); /* (32-12) + 6 = 20+ 6 = 26 */
+ h[9] = (a7>> 6)&((1<<25)-1); /* 25 */
+}
+
+static __always_inline void fe_frombytes(fe *h, const u8 *s)
+{
+ fe_frombytes_impl(h->v, s);
+}
+
+static __always_inline u8 /*bool*/
+addcarryx_u25(u8 /*bool*/ c, u32 a, u32 b, u32 *low)
+{
+ /* This function extracts 25 bits of result and 1 bit of carry
+ * (26 total), so a 32-bit intermediate is sufficient.
+ */
+ u32 x = a + b + c;
+ *low = x & ((1 << 25) - 1);
+ return (x >> 25) & 1;
+}
+
+static __always_inline u8 /*bool*/
+addcarryx_u26(u8 /*bool*/ c, u32 a, u32 b, u32 *low)
+{
+ /* This function extracts 26 bits of result and 1 bit of carry
+ * (27 total), so a 32-bit intermediate is sufficient.
+ */
+ u32 x = a + b + c;
+ *low = x & ((1 << 26) - 1);
+ return (x >> 26) & 1;
+}
+
+static __always_inline u8 /*bool*/
+subborrow_u25(u8 /*bool*/ c, u32 a, u32 b, u32 *low)
+{
+ /* This function extracts 25 bits of result and 1 bit of borrow
+ * (26 total), so a 32-bit intermediate is sufficient.
+ */
+ u32 x = a - b - c;
+ *low = x & ((1 << 25) - 1);
+ return x >> 31;
+}
+
+static __always_inline u8 /*bool*/
+subborrow_u26(u8 /*bool*/ c, u32 a, u32 b, u32 *low)
+{
+ /* This function extracts 26 bits of result and 1 bit of borrow
+ *(27 total), so a 32-bit intermediate is sufficient.
+ */
+ u32 x = a - b - c;
+ *low = x & ((1 << 26) - 1);
+ return x >> 31;
+}
+
+static __always_inline u32 cmovznz32(u32 t, u32 z, u32 nz)
+{
+ t = -!!t; /* all set if nonzero, 0 if 0 */
+ return (t&nz) | ((~t)&z);
+}
+
+static __always_inline void fe_freeze(u32 out[10], const u32 in1[10])
+{
+ { const u32 x17 = in1[9];
+ { const u32 x18 = in1[8];
+ { const u32 x16 = in1[7];
+ { const u32 x14 = in1[6];
+ { const u32 x12 = in1[5];
+ { const u32 x10 = in1[4];
+ { const u32 x8 = in1[3];
+ { const u32 x6 = in1[2];
+ { const u32 x4 = in1[1];
+ { const u32 x2 = in1[0];
+ { u32 x20; u8/*bool*/ x21 = subborrow_u26(0x0, x2, 0x3ffffed, &x20);
+ { u32 x23; u8/*bool*/ x24 = subborrow_u25(x21, x4, 0x1ffffff, &x23);
+ { u32 x26; u8/*bool*/ x27 = subborrow_u26(x24, x6, 0x3ffffff, &x26);
+ { u32 x29; u8/*bool*/ x30 = subborrow_u25(x27, x8, 0x1ffffff, &x29);
+ { u32 x32; u8/*bool*/ x33 = subborrow_u26(x30, x10, 0x3ffffff, &x32);
+ { u32 x35; u8/*bool*/ x36 = subborrow_u25(x33, x12, 0x1ffffff, &x35);
+ { u32 x38; u8/*bool*/ x39 = subborrow_u26(x36, x14, 0x3ffffff, &x38);
+ { u32 x41; u8/*bool*/ x42 = subborrow_u25(x39, x16, 0x1ffffff, &x41);
+ { u32 x44; u8/*bool*/ x45 = subborrow_u26(x42, x18, 0x3ffffff, &x44);
+ { u32 x47; u8/*bool*/ x48 = subborrow_u25(x45, x17, 0x1ffffff, &x47);
+ { u32 x49 = cmovznz32(x48, 0x0, 0xffffffff);
+ { u32 x50 = (x49 & 0x3ffffed);
+ { u32 x52; u8/*bool*/ x53 = addcarryx_u26(0x0, x20, x50, &x52);
+ { u32 x54 = (x49 & 0x1ffffff);
+ { u32 x56; u8/*bool*/ x57 = addcarryx_u25(x53, x23, x54, &x56);
+ { u32 x58 = (x49 & 0x3ffffff);
+ { u32 x60; u8/*bool*/ x61 = addcarryx_u26(x57, x26, x58, &x60);
+ { u32 x62 = (x49 & 0x1ffffff);
+ { u32 x64; u8/*bool*/ x65 = addcarryx_u25(x61, x29, x62, &x64);
+ { u32 x66 = (x49 & 0x3ffffff);
+ { u32 x68; u8/*bool*/ x69 = addcarryx_u26(x65, x32, x66, &x68);
+ { u32 x70 = (x49 & 0x1ffffff);
+ { u32 x72; u8/*bool*/ x73 = addcarryx_u25(x69, x35, x70, &x72);
+ { u32 x74 = (x49 & 0x3ffffff);
+ { u32 x76; u8/*bool*/ x77 = addcarryx_u26(x73, x38, x74, &x76);
+ { u32 x78 = (x49 & 0x1ffffff);
+ { u32 x80; u8/*bool*/ x81 = addcarryx_u25(x77, x41, x78, &x80);
+ { u32 x82 = (x49 & 0x3ffffff);
+ { u32 x84; u8/*bool*/ x85 = addcarryx_u26(x81, x44, x82, &x84);
+ { u32 x86 = (x49 & 0x1ffffff);
+ { u32 x88; addcarryx_u25(x85, x47, x86, &x88);
+ out[0] = x52;
+ out[1] = x56;
+ out[2] = x60;
+ out[3] = x64;
+ out[4] = x68;
+ out[5] = x72;
+ out[6] = x76;
+ out[7] = x80;
+ out[8] = x84;
+ out[9] = x88;
+ }}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}
+}
+
+static __always_inline void fe_tobytes(u8 s[32], const fe *f)
+{
+ u32 h[10];
+ fe_freeze(h, f->v);
+ s[0] = h[0] >> 0;
+ s[1] = h[0] >> 8;
+ s[2] = h[0] >> 16;
+ s[3] = (h[0] >> 24) | (h[1] << 2);
+ s[4] = h[1] >> 6;
+ s[5] = h[1] >> 14;
+ s[6] = (h[1] >> 22) | (h[2] << 3);
+ s[7] = h[2] >> 5;
+ s[8] = h[2] >> 13;
+ s[9] = (h[2] >> 21) | (h[3] << 5);
+ s[10] = h[3] >> 3;
+ s[11] = h[3] >> 11;
+ s[12] = (h[3] >> 19) | (h[4] << 6);
+ s[13] = h[4] >> 2;
+ s[14] = h[4] >> 10;
+ s[15] = h[4] >> 18;
+ s[16] = h[5] >> 0;
+ s[17] = h[5] >> 8;
+ s[18] = h[5] >> 16;
+ s[19] = (h[5] >> 24) | (h[6] << 1);
+ s[20] = h[6] >> 7;
+ s[21] = h[6] >> 15;
+ s[22] = (h[6] >> 23) | (h[7] << 3);
+ s[23] = h[7] >> 5;
+ s[24] = h[7] >> 13;
+ s[25] = (h[7] >> 21) | (h[8] << 4);
+ s[26] = h[8] >> 4;
+ s[27] = h[8] >> 12;
+ s[28] = (h[8] >> 20) | (h[9] << 6);
+ s[29] = h[9] >> 2;
+ s[30] = h[9] >> 10;
+ s[31] = h[9] >> 18;
+}
+
+/* h = f */
+static __always_inline void fe_copy(fe *h, const fe *f)
+{
+ memmove(h, f, sizeof(u32) * 10);
+}
+
+static __always_inline void fe_copy_lt(fe_loose *h, const fe *f)
+{
+ memmove(h, f, sizeof(u32) * 10);
+}
+
+/* h = 0 */
+static __always_inline void fe_0(fe *h)
+{
+ memset(h, 0, sizeof(u32) * 10);
+}
+
+/* h = 1 */
+static __always_inline void fe_1(fe *h)
+{
+ memset(h, 0, sizeof(u32) * 10);
+ h->v[0] = 1;
+}
+
+static void fe_add_impl(u32 out[10], const u32 in1[10], const u32 in2[10])
+{
+ { const u32 x20 = in1[9];
+ { const u32 x21 = in1[8];
+ { const u32 x19 = in1[7];
+ { const u32 x17 = in1[6];
+ { const u32 x15 = in1[5];
+ { const u32 x13 = in1[4];
+ { const u32 x11 = in1[3];
+ { const u32 x9 = in1[2];
+ { const u32 x7 = in1[1];
+ { const u32 x5 = in1[0];
+ { const u32 x38 = in2[9];
+ { const u32 x39 = in2[8];
+ { const u32 x37 = in2[7];
+ { const u32 x35 = in2[6];
+ { const u32 x33 = in2[5];
+ { const u32 x31 = in2[4];
+ { const u32 x29 = in2[3];
+ { const u32 x27 = in2[2];
+ { const u32 x25 = in2[1];
+ { const u32 x23 = in2[0];
+ out[0] = (x5 + x23);
+ out[1] = (x7 + x25);
+ out[2] = (x9 + x27);
+ out[3] = (x11 + x29);
+ out[4] = (x13 + x31);
+ out[5] = (x15 + x33);
+ out[6] = (x17 + x35);
+ out[7] = (x19 + x37);
+ out[8] = (x21 + x39);
+ out[9] = (x20 + x38);
+ }}}}}}}}}}}}}}}}}}}}
+}
+
+/* h = f + g
+ * Can overlap h with f or g.
+ */
+static __always_inline void fe_add(fe_loose *h, const fe *f, const fe *g)
+{
+ fe_add_impl(h->v, f->v, g->v);
+}
+
+static void fe_sub_impl(u32 out[10], const u32 in1[10], const u32 in2[10])
+{
+ { const u32 x20 = in1[9];
+ { const u32 x21 = in1[8];
+ { const u32 x19 = in1[7];
+ { const u32 x17 = in1[6];
+ { const u32 x15 = in1[5];
+ { const u32 x13 = in1[4];
+ { const u32 x11 = in1[3];
+ { const u32 x9 = in1[2];
+ { const u32 x7 = in1[1];
+ { const u32 x5 = in1[0];
+ { const u32 x38 = in2[9];
+ { const u32 x39 = in2[8];
+ { const u32 x37 = in2[7];
+ { const u32 x35 = in2[6];
+ { const u32 x33 = in2[5];
+ { const u32 x31 = in2[4];
+ { const u32 x29 = in2[3];
+ { const u32 x27 = in2[2];
+ { const u32 x25 = in2[1];
+ { const u32 x23 = in2[0];
+ out[0] = ((0x7ffffda + x5) - x23);
+ out[1] = ((0x3fffffe + x7) - x25);
+ out[2] = ((0x7fffffe + x9) - x27);
+ out[3] = ((0x3fffffe + x11) - x29);
+ out[4] = ((0x7fffffe + x13) - x31);
+ out[5] = ((0x3fffffe + x15) - x33);
+ out[6] = ((0x7fffffe + x17) - x35);
+ out[7] = ((0x3fffffe + x19) - x37);
+ out[8] = ((0x7fffffe + x21) - x39);
+ out[9] = ((0x3fffffe + x20) - x38);
+ }}}}}}}}}}}}}}}}}}}}
+}
+
+/* h = f - g
+ * Can overlap h with f or g.
+ */
+static __always_inline void fe_sub(fe_loose *h, const fe *f, const fe *g)
+{
+ fe_sub_impl(h->v, f->v, g->v);
+}
+
+static void fe_mul_impl(u32 out[10], const u32 in1[10], const u32 in2[10])
+{
+ { const u32 x20 = in1[9];
+ { const u32 x21 = in1[8];
+ { const u32 x19 = in1[7];
+ { const u32 x17 = in1[6];
+ { const u32 x15 = in1[5];
+ { const u32 x13 = in1[4];
+ { const u32 x11 = in1[3];
+ { const u32 x9 = in1[2];
+ { const u32 x7 = in1[1];
+ { const u32 x5 = in1[0];
+ { const u32 x38 = in2[9];
+ { const u32 x39 = in2[8];
+ { const u32 x37 = in2[7];
+ { const u32 x35 = in2[6];
+ { const u32 x33 = in2[5];
+ { const u32 x31 = in2[4];
+ { const u32 x29 = in2[3];
+ { const u32 x27 = in2[2];
+ { const u32 x25 = in2[1];
+ { const u32 x23 = in2[0];
+ { u64 x40 = ((u64)x23 * x5);
+ { u64 x41 = (((u64)x23 * x7) + ((u64)x25 * x5));
+ { u64 x42 = ((((u64)(0x2 * x25) * x7) + ((u64)x23 * x9)) + ((u64)x27 * x5));
+ { u64 x43 = (((((u64)x25 * x9) + ((u64)x27 * x7)) + ((u64)x23 * x11)) + ((u64)x29 * x5));
+ { u64 x44 = (((((u64)x27 * x9) + (0x2 * (((u64)x25 * x11) + ((u64)x29 * x7)))) + ((u64)x23 * x13)) + ((u64)x31 * x5));
+ { u64 x45 = (((((((u64)x27 * x11) + ((u64)x29 * x9)) + ((u64)x25 * x13)) + ((u64)x31 * x7)) + ((u64)x23 * x15)) + ((u64)x33 * x5));
+ { u64 x46 = (((((0x2 * ((((u64)x29 * x11) + ((u64)x25 * x15)) + ((u64)x33 * x7))) + ((u64)x27 * x13)) + ((u64)x31 * x9)) + ((u64)x23 * x17)) + ((u64)x35 * x5));
+ { u64 x47 = (((((((((u64)x29 * x13) + ((u64)x31 * x11)) + ((u64)x27 * x15)) + ((u64)x33 * x9)) + ((u64)x25 * x17)) + ((u64)x35 * x7)) + ((u64)x23 * x19)) + ((u64)x37 * x5));
+ { u64 x48 = (((((((u64)x31 * x13) + (0x2 * (((((u64)x29 * x15) + ((u64)x33 * x11)) + ((u64)x25 * x19)) + ((u64)x37 * x7)))) + ((u64)x27 * x17)) + ((u64)x35 * x9)) + ((u64)x23 * x21)) + ((u64)x39 * x5));
+ { u64 x49 = (((((((((((u64)x31 * x15) + ((u64)x33 * x13)) + ((u64)x29 * x17)) + ((u64)x35 * x11)) + ((u64)x27 * x19)) + ((u64)x37 * x9)) + ((u64)x25 * x21)) + ((u64)x39 * x7)) + ((u64)x23 * x20)) + ((u64)x38 * x5));
+ { u64 x50 = (((((0x2 * ((((((u64)x33 * x15) + ((u64)x29 * x19)) + ((u64)x37 * x11)) + ((u64)x25 * x20)) + ((u64)x38 * x7))) + ((u64)x31 * x17)) + ((u64)x35 * x13)) + ((u64)x27 * x21)) + ((u64)x39 * x9));
+ { u64 x51 = (((((((((u64)x33 * x17) + ((u64)x35 * x15)) + ((u64)x31 * x19)) + ((u64)x37 * x13)) + ((u64)x29 * x21)) + ((u64)x39 * x11)) + ((u64)x27 * x20)) + ((u64)x38 * x9));
+ { u64 x52 = (((((u64)x35 * x17) + (0x2 * (((((u64)x33 * x19) + ((u64)x37 * x15)) + ((u64)x29 * x20)) + ((u64)x38 * x11)))) + ((u64)x31 * x21)) + ((u64)x39 * x13));
+ { u64 x53 = (((((((u64)x35 * x19) + ((u64)x37 * x17)) + ((u64)x33 * x21)) + ((u64)x39 * x15)) + ((u64)x31 * x20)) + ((u64)x38 * x13));
+ { u64 x54 = (((0x2 * ((((u64)x37 * x19) + ((u64)x33 * x20)) + ((u64)x38 * x15))) + ((u64)x35 * x21)) + ((u64)x39 * x17));
+ { u64 x55 = (((((u64)x37 * x21) + ((u64)x39 * x19)) + ((u64)x35 * x20)) + ((u64)x38 * x17));
+ { u64 x56 = (((u64)x39 * x21) + (0x2 * (((u64)x37 * x20) + ((u64)x38 * x19))));
+ { u64 x57 = (((u64)x39 * x20) + ((u64)x38 * x21));
+ { u64 x58 = ((u64)(0x2 * x38) * x20);
+ { u64 x59 = (x48 + (x58 << 0x4));
+ { u64 x60 = (x59 + (x58 << 0x1));
+ { u64 x61 = (x60 + x58);
+ { u64 x62 = (x47 + (x57 << 0x4));
+ { u64 x63 = (x62 + (x57 << 0x1));
+ { u64 x64 = (x63 + x57);
+ { u64 x65 = (x46 + (x56 << 0x4));
+ { u64 x66 = (x65 + (x56 << 0x1));
+ { u64 x67 = (x66 + x56);
+ { u64 x68 = (x45 + (x55 << 0x4));
+ { u64 x69 = (x68 + (x55 << 0x1));
+ { u64 x70 = (x69 + x55);
+ { u64 x71 = (x44 + (x54 << 0x4));
+ { u64 x72 = (x71 + (x54 << 0x1));
+ { u64 x73 = (x72 + x54);
+ { u64 x74 = (x43 + (x53 << 0x4));
+ { u64 x75 = (x74 + (x53 << 0x1));
+ { u64 x76 = (x75 + x53);
+ { u64 x77 = (x42 + (x52 << 0x4));
+ { u64 x78 = (x77 + (x52 << 0x1));
+ { u64 x79 = (x78 + x52);
+ { u64 x80 = (x41 + (x51 << 0x4));
+ { u64 x81 = (x80 + (x51 << 0x1));
+ { u64 x82 = (x81 + x51);
+ { u64 x83 = (x40 + (x50 << 0x4));
+ { u64 x84 = (x83 + (x50 << 0x1));
+ { u64 x85 = (x84 + x50);
+ { u64 x86 = (x85 >> 0x1a);
+ { u32 x87 = ((u32)x85 & 0x3ffffff);
+ { u64 x88 = (x86 + x82);
+ { u64 x89 = (x88 >> 0x19);
+ { u32 x90 = ((u32)x88 & 0x1ffffff);
+ { u64 x91 = (x89 + x79);
+ { u64 x92 = (x91 >> 0x1a);
+ { u32 x93 = ((u32)x91 & 0x3ffffff);
+ { u64 x94 = (x92 + x76);
+ { u64 x95 = (x94 >> 0x19);
+ { u32 x96 = ((u32)x94 & 0x1ffffff);
+ { u64 x97 = (x95 + x73);
+ { u64 x98 = (x97 >> 0x1a);
+ { u32 x99 = ((u32)x97 & 0x3ffffff);
+ { u64 x100 = (x98 + x70);
+ { u64 x101 = (x100 >> 0x19);
+ { u32 x102 = ((u32)x100 & 0x1ffffff);
+ { u64 x103 = (x101 + x67);
+ { u64 x104 = (x103 >> 0x1a);
+ { u32 x105 = ((u32)x103 & 0x3ffffff);
+ { u64 x106 = (x104 + x64);
+ { u64 x107 = (x106 >> 0x19);
+ { u32 x108 = ((u32)x106 & 0x1ffffff);
+ { u64 x109 = (x107 + x61);
+ { u64 x110 = (x109 >> 0x1a);
+ { u32 x111 = ((u32)x109 & 0x3ffffff);
+ { u64 x112 = (x110 + x49);
+ { u64 x113 = (x112 >> 0x19);
+ { u32 x114 = ((u32)x112 & 0x1ffffff);
+ { u64 x115 = (x87 + (0x13 * x113));
+ { u32 x116 = (u32) (x115 >> 0x1a);
+ { u32 x117 = ((u32)x115 & 0x3ffffff);
+ { u32 x118 = (x116 + x90);
+ { u32 x119 = (x118 >> 0x19);
+ { u32 x120 = (x118 & 0x1ffffff);
+ out[0] = x117;
+ out[1] = x120;
+ out[2] = (x119 + x93);
+ out[3] = x96;
+ out[4] = x99;
+ out[5] = x102;
+ out[6] = x105;
+ out[7] = x108;
+ out[8] = x111;
+ out[9] = x114;
+ }}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}
+}
+
+static __always_inline void fe_mul_ttt(fe *h, const fe *f, const fe *g)
+{
+ fe_mul_impl(h->v, f->v, g->v);
+}
+
+static __always_inline void fe_mul_tlt(fe *h, const fe_loose *f, const fe *g)
+{
+ fe_mul_impl(h->v, f->v, g->v);
+}
+
+static __always_inline void
+fe_mul_tll(fe *h, const fe_loose *f, const fe_loose *g)
+{
+ fe_mul_impl(h->v, f->v, g->v);
+}
+
+static void fe_sqr_impl(u32 out[10], const u32 in1[10])
+{
+ { const u32 x17 = in1[9];
+ { const u32 x18 = in1[8];
+ { const u32 x16 = in1[7];
+ { const u32 x14 = in1[6];
+ { const u32 x12 = in1[5];
+ { const u32 x10 = in1[4];
+ { const u32 x8 = in1[3];
+ { const u32 x6 = in1[2];
+ { const u32 x4 = in1[1];
+ { const u32 x2 = in1[0];
+ { u64 x19 = ((u64)x2 * x2);
+ { u64 x20 = ((u64)(0x2 * x2) * x4);
+ { u64 x21 = (0x2 * (((u64)x4 * x4) + ((u64)x2 * x6)));
+ { u64 x22 = (0x2 * (((u64)x4 * x6) + ((u64)x2 * x8)));
+ { u64 x23 = ((((u64)x6 * x6) + ((u64)(0x4 * x4) * x8)) + ((u64)(0x2 * x2) * x10));
+ { u64 x24 = (0x2 * ((((u64)x6 * x8) + ((u64)x4 * x10)) + ((u64)x2 * x12)));
+ { u64 x25 = (0x2 * (((((u64)x8 * x8) + ((u64)x6 * x10)) + ((u64)x2 * x14)) + ((u64)(0x2 * x4) * x12)));
+ { u64 x26 = (0x2 * (((((u64)x8 * x10) + ((u64)x6 * x12)) + ((u64)x4 * x14)) + ((u64)x2 * x16)));
+ { u64 x27 = (((u64)x10 * x10) + (0x2 * ((((u64)x6 * x14) + ((u64)x2 * x18)) + (0x2 * (((u64)x4 * x16) + ((u64)x8 * x12))))));
+ { u64 x28 = (0x2 * ((((((u64)x10 * x12) + ((u64)x8 * x14)) + ((u64)x6 * x16)) + ((u64)x4 * x18)) + ((u64)x2 * x17)));
+ { u64 x29 = (0x2 * (((((u64)x12 * x12) + ((u64)x10 * x14)) + ((u64)x6 * x18)) + (0x2 * (((u64)x8 * x16) + ((u64)x4 * x17)))));
+ { u64 x30 = (0x2 * (((((u64)x12 * x14) + ((u64)x10 * x16)) + ((u64)x8 * x18)) + ((u64)x6 * x17)));
+ { u64 x31 = (((u64)x14 * x14) + (0x2 * (((u64)x10 * x18) + (0x2 * (((u64)x12 * x16) + ((u64)x8 * x17))))));
+ { u64 x32 = (0x2 * ((((u64)x14 * x16) + ((u64)x12 * x18)) + ((u64)x10 * x17)));
+ { u64 x33 = (0x2 * ((((u64)x16 * x16) + ((u64)x14 * x18)) + ((u64)(0x2 * x12) * x17)));
+ { u64 x34 = (0x2 * (((u64)x16 * x18) + ((u64)x14 * x17)));
+ { u64 x35 = (((u64)x18 * x18) + ((u64)(0x4 * x16) * x17));
+ { u64 x36 = ((u64)(0x2 * x18) * x17);
+ { u64 x37 = ((u64)(0x2 * x17) * x17);
+ { u64 x38 = (x27 + (x37 << 0x4));
+ { u64 x39 = (x38 + (x37 << 0x1));
+ { u64 x40 = (x39 + x37);
+ { u64 x41 = (x26 + (x36 << 0x4));
+ { u64 x42 = (x41 + (x36 << 0x1));
+ { u64 x43 = (x42 + x36);
+ { u64 x44 = (x25 + (x35 << 0x4));
+ { u64 x45 = (x44 + (x35 << 0x1));
+ { u64 x46 = (x45 + x35);
+ { u64 x47 = (x24 + (x34 << 0x4));
+ { u64 x48 = (x47 + (x34 << 0x1));
+ { u64 x49 = (x48 + x34);
+ { u64 x50 = (x23 + (x33 << 0x4));
+ { u64 x51 = (x50 + (x33 << 0x1));
+ { u64 x52 = (x51 + x33);
+ { u64 x53 = (x22 + (x32 << 0x4));
+ { u64 x54 = (x53 + (x32 << 0x1));
+ { u64 x55 = (x54 + x32);
+ { u64 x56 = (x21 + (x31 << 0x4));
+ { u64 x57 = (x56 + (x31 << 0x1));
+ { u64 x58 = (x57 + x31);
+ { u64 x59 = (x20 + (x30 << 0x4));
+ { u64 x60 = (x59 + (x30 << 0x1));
+ { u64 x61 = (x60 + x30);
+ { u64 x62 = (x19 + (x29 << 0x4));
+ { u64 x63 = (x62 + (x29 << 0x1));
+ { u64 x64 = (x63 + x29);
+ { u64 x65 = (x64 >> 0x1a);
+ { u32 x66 = ((u32)x64 & 0x3ffffff);
+ { u64 x67 = (x65 + x61);
+ { u64 x68 = (x67 >> 0x19);
+ { u32 x69 = ((u32)x67 & 0x1ffffff);
+ { u64 x70 = (x68 + x58);
+ { u64 x71 = (x70 >> 0x1a);
+ { u32 x72 = ((u32)x70 & 0x3ffffff);
+ { u64 x73 = (x71 + x55);
+ { u64 x74 = (x73 >> 0x19);
+ { u32 x75 = ((u32)x73 & 0x1ffffff);
+ { u64 x76 = (x74 + x52);
+ { u64 x77 = (x76 >> 0x1a);
+ { u32 x78 = ((u32)x76 & 0x3ffffff);
+ { u64 x79 = (x77 + x49);
+ { u64 x80 = (x79 >> 0x19);
+ { u32 x81 = ((u32)x79 & 0x1ffffff);
+ { u64 x82 = (x80 + x46);
+ { u64 x83 = (x82 >> 0x1a);
+ { u32 x84 = ((u32)x82 & 0x3ffffff);
+ { u64 x85 = (x83 + x43);
+ { u64 x86 = (x85 >> 0x19);
+ { u32 x87 = ((u32)x85 & 0x1ffffff);
+ { u64 x88 = (x86 + x40);
+ { u64 x89 = (x88 >> 0x1a);
+ { u32 x90 = ((u32)x88 & 0x3ffffff);
+ { u64 x91 = (x89 + x28);
+ { u64 x92 = (x91 >> 0x19);
+ { u32 x93 = ((u32)x91 & 0x1ffffff);
+ { u64 x94 = (x66 + (0x13 * x92));
+ { u32 x95 = (u32) (x94 >> 0x1a);
+ { u32 x96 = ((u32)x94 & 0x3ffffff);
+ { u32 x97 = (x95 + x69);
+ { u32 x98 = (x97 >> 0x19);
+ { u32 x99 = (x97 & 0x1ffffff);
+ out[0] = x96;
+ out[1] = x99;
+ out[2] = (x98 + x72);
+ out[3] = x75;
+ out[4] = x78;
+ out[5] = x81;
+ out[6] = x84;
+ out[7] = x87;
+ out[8] = x90;
+ out[9] = x93;
+ }}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}
+}
+
+static __always_inline void fe_sq_tl(fe *h, const fe_loose *f)
+{
+ fe_sqr_impl(h->v, f->v);
+}
+
+static __always_inline void fe_sq_tt(fe *h, const fe *f)
+{
+ fe_sqr_impl(h->v, f->v);
+}
+
+static __always_inline void fe_loose_invert(fe *out, const fe_loose *z)
+{
+ fe t0;
+ fe t1;
+ fe t2;
+ fe t3;
+ int i;
+
+ fe_sq_tl(&t0, z);
+ fe_sq_tt(&t1, &t0);
+ for (i = 1; i < 2; ++i)
+ fe_sq_tt(&t1, &t1);
+ fe_mul_tlt(&t1, z, &t1);
+ fe_mul_ttt(&t0, &t0, &t1);
+ fe_sq_tt(&t2, &t0);
+ fe_mul_ttt(&t1, &t1, &t2);
+ fe_sq_tt(&t2, &t1);
+ for (i = 1; i < 5; ++i)
+ fe_sq_tt(&t2, &t2);
+ fe_mul_ttt(&t1, &t2, &t1);
+ fe_sq_tt(&t2, &t1);
+ for (i = 1; i < 10; ++i)
+ fe_sq_tt(&t2, &t2);
+ fe_mul_ttt(&t2, &t2, &t1);
+ fe_sq_tt(&t3, &t2);
+ for (i = 1; i < 20; ++i)
+ fe_sq_tt(&t3, &t3);
+ fe_mul_ttt(&t2, &t3, &t2);
+ fe_sq_tt(&t2, &t2);
+ for (i = 1; i < 10; ++i)
+ fe_sq_tt(&t2, &t2);
+ fe_mul_ttt(&t1, &t2, &t1);
+ fe_sq_tt(&t2, &t1);
+ for (i = 1; i < 50; ++i)
+ fe_sq_tt(&t2, &t2);
+ fe_mul_ttt(&t2, &t2, &t1);
+ fe_sq_tt(&t3, &t2);
+ for (i = 1; i < 100; ++i)
+ fe_sq_tt(&t3, &t3);
+ fe_mul_ttt(&t2, &t3, &t2);
+ fe_sq_tt(&t2, &t2);
+ for (i = 1; i < 50; ++i)
+ fe_sq_tt(&t2, &t2);
+ fe_mul_ttt(&t1, &t2, &t1);
+ fe_sq_tt(&t1, &t1);
+ for (i = 1; i < 5; ++i)
+ fe_sq_tt(&t1, &t1);
+ fe_mul_ttt(out, &t1, &t0);
+}
+
+static __always_inline void fe_invert(fe *out, const fe *z)
+{
+ fe_loose l;
+ fe_copy_lt(&l, z);
+ fe_loose_invert(out, &l);
+}
+
+/* Replace (f,g) with (g,f) if b == 1;
+ * replace (f,g) with (f,g) if b == 0.
+ *
+ * Preconditions: b in {0,1}
+ */
+static __always_inline void fe_cswap(fe *f, fe *g, unsigned int b)
+{
+ unsigned i;
+ b = 0 - b;
+ for (i = 0; i < 10; i++) {
+ u32 x = f->v[i] ^ g->v[i];
+ x &= b;
+ f->v[i] ^= x;
+ g->v[i] ^= x;
+ }
+}
+
+/* NOTE: based on fiat-crypto fe_mul, edited for in2=121666, 0, 0.*/
+static __always_inline void fe_mul_121666_impl(u32 out[10], const u32 in1[10])
+{
+ { const u32 x20 = in1[9];
+ { const u32 x21 = in1[8];
+ { const u32 x19 = in1[7];
+ { const u32 x17 = in1[6];
+ { const u32 x15 = in1[5];
+ { const u32 x13 = in1[4];
+ { const u32 x11 = in1[3];
+ { const u32 x9 = in1[2];
+ { const u32 x7 = in1[1];
+ { const u32 x5 = in1[0];
+ { const u32 x38 = 0;
+ { const u32 x39 = 0;
+ { const u32 x37 = 0;
+ { const u32 x35 = 0;
+ { const u32 x33 = 0;
+ { const u32 x31 = 0;
+ { const u32 x29 = 0;
+ { const u32 x27 = 0;
+ { const u32 x25 = 0;
+ { const u32 x23 = 121666;
+ { u64 x40 = ((u64)x23 * x5);
+ { u64 x41 = (((u64)x23 * x7) + ((u64)x25 * x5));
+ { u64 x42 = ((((u64)(0x2 * x25) * x7) + ((u64)x23 * x9)) + ((u64)x27 * x5));
+ { u64 x43 = (((((u64)x25 * x9) + ((u64)x27 * x7)) + ((u64)x23 * x11)) + ((u64)x29 * x5));
+ { u64 x44 = (((((u64)x27 * x9) + (0x2 * (((u64)x25 * x11) + ((u64)x29 * x7)))) + ((u64)x23 * x13)) + ((u64)x31 * x5));
+ { u64 x45 = (((((((u64)x27 * x11) + ((u64)x29 * x9)) + ((u64)x25 * x13)) + ((u64)x31 * x7)) + ((u64)x23 * x15)) + ((u64)x33 * x5));
+ { u64 x46 = (((((0x2 * ((((u64)x29 * x11) + ((u64)x25 * x15)) + ((u64)x33 * x7))) + ((u64)x27 * x13)) + ((u64)x31 * x9)) + ((u64)x23 * x17)) + ((u64)x35 * x5));
+ { u64 x47 = (((((((((u64)x29 * x13) + ((u64)x31 * x11)) + ((u64)x27 * x15)) + ((u64)x33 * x9)) + ((u64)x25 * x17)) + ((u64)x35 * x7)) + ((u64)x23 * x19)) + ((u64)x37 * x5));
+ { u64 x48 = (((((((u64)x31 * x13) + (0x2 * (((((u64)x29 * x15) + ((u64)x33 * x11)) + ((u64)x25 * x19)) + ((u64)x37 * x7)))) + ((u64)x27 * x17)) + ((u64)x35 * x9)) + ((u64)x23 * x21)) + ((u64)x39 * x5));
+ { u64 x49 = (((((((((((u64)x31 * x15) + ((u64)x33 * x13)) + ((u64)x29 * x17)) + ((u64)x35 * x11)) + ((u64)x27 * x19)) + ((u64)x37 * x9)) + ((u64)x25 * x21)) + ((u64)x39 * x7)) + ((u64)x23 * x20)) + ((u64)x38 * x5));
+ { u64 x50 = (((((0x2 * ((((((u64)x33 * x15) + ((u64)x29 * x19)) + ((u64)x37 * x11)) + ((u64)x25 * x20)) + ((u64)x38 * x7))) + ((u64)x31 * x17)) + ((u64)x35 * x13)) + ((u64)x27 * x21)) + ((u64)x39 * x9));
+ { u64 x51 = (((((((((u64)x33 * x17) + ((u64)x35 * x15)) + ((u64)x31 * x19)) + ((u64)x37 * x13)) + ((u64)x29 * x21)) + ((u64)x39 * x11)) + ((u64)x27 * x20)) + ((u64)x38 * x9));
+ { u64 x52 = (((((u64)x35 * x17) + (0x2 * (((((u64)x33 * x19) + ((u64)x37 * x15)) + ((u64)x29 * x20)) + ((u64)x38 * x11)))) + ((u64)x31 * x21)) + ((u64)x39 * x13));
+ { u64 x53 = (((((((u64)x35 * x19) + ((u64)x37 * x17)) + ((u64)x33 * x21)) + ((u64)x39 * x15)) + ((u64)x31 * x20)) + ((u64)x38 * x13));
+ { u64 x54 = (((0x2 * ((((u64)x37 * x19) + ((u64)x33 * x20)) + ((u64)x38 * x15))) + ((u64)x35 * x21)) + ((u64)x39 * x17));
+ { u64 x55 = (((((u64)x37 * x21) + ((u64)x39 * x19)) + ((u64)x35 * x20)) + ((u64)x38 * x17));
+ { u64 x56 = (((u64)x39 * x21) + (0x2 * (((u64)x37 * x20) + ((u64)x38 * x19))));
+ { u64 x57 = (((u64)x39 * x20) + ((u64)x38 * x21));
+ { u64 x58 = ((u64)(0x2 * x38) * x20);
+ { u64 x59 = (x48 + (x58 << 0x4));
+ { u64 x60 = (x59 + (x58 << 0x1));
+ { u64 x61 = (x60 + x58);
+ { u64 x62 = (x47 + (x57 << 0x4));
+ { u64 x63 = (x62 + (x57 << 0x1));
+ { u64 x64 = (x63 + x57);
+ { u64 x65 = (x46 + (x56 << 0x4));
+ { u64 x66 = (x65 + (x56 << 0x1));
+ { u64 x67 = (x66 + x56);
+ { u64 x68 = (x45 + (x55 << 0x4));
+ { u64 x69 = (x68 + (x55 << 0x1));
+ { u64 x70 = (x69 + x55);
+ { u64 x71 = (x44 + (x54 << 0x4));
+ { u64 x72 = (x71 + (x54 << 0x1));
+ { u64 x73 = (x72 + x54);
+ { u64 x74 = (x43 + (x53 << 0x4));
+ { u64 x75 = (x74 + (x53 << 0x1));
+ { u64 x76 = (x75 + x53);
+ { u64 x77 = (x42 + (x52 << 0x4));
+ { u64 x78 = (x77 + (x52 << 0x1));
+ { u64 x79 = (x78 + x52);
+ { u64 x80 = (x41 + (x51 << 0x4));
+ { u64 x81 = (x80 + (x51 << 0x1));
+ { u64 x82 = (x81 + x51);
+ { u64 x83 = (x40 + (x50 << 0x4));
+ { u64 x84 = (x83 + (x50 << 0x1));
+ { u64 x85 = (x84 + x50);
+ { u64 x86 = (x85 >> 0x1a);
+ { u32 x87 = ((u32)x85 & 0x3ffffff);
+ { u64 x88 = (x86 + x82);
+ { u64 x89 = (x88 >> 0x19);
+ { u32 x90 = ((u32)x88 & 0x1ffffff);
+ { u64 x91 = (x89 + x79);
+ { u64 x92 = (x91 >> 0x1a);
+ { u32 x93 = ((u32)x91 & 0x3ffffff);
+ { u64 x94 = (x92 + x76);
+ { u64 x95 = (x94 >> 0x19);
+ { u32 x96 = ((u32)x94 & 0x1ffffff);
+ { u64 x97 = (x95 + x73);
+ { u64 x98 = (x97 >> 0x1a);
+ { u32 x99 = ((u32)x97 & 0x3ffffff);
+ { u64 x100 = (x98 + x70);
+ { u64 x101 = (x100 >> 0x19);
+ { u32 x102 = ((u32)x100 & 0x1ffffff);
+ { u64 x103 = (x101 + x67);
+ { u64 x104 = (x103 >> 0x1a);
+ { u32 x105 = ((u32)x103 & 0x3ffffff);
+ { u64 x106 = (x104 + x64);
+ { u64 x107 = (x106 >> 0x19);
+ { u32 x108 = ((u32)x106 & 0x1ffffff);
+ { u64 x109 = (x107 + x61);
+ { u64 x110 = (x109 >> 0x1a);
+ { u32 x111 = ((u32)x109 & 0x3ffffff);
+ { u64 x112 = (x110 + x49);
+ { u64 x113 = (x112 >> 0x19);
+ { u32 x114 = ((u32)x112 & 0x1ffffff);
+ { u64 x115 = (x87 + (0x13 * x113));
+ { u32 x116 = (u32) (x115 >> 0x1a);
+ { u32 x117 = ((u32)x115 & 0x3ffffff);
+ { u32 x118 = (x116 + x90);
+ { u32 x119 = (x118 >> 0x19);
+ { u32 x120 = (x118 & 0x1ffffff);
+ out[0] = x117;
+ out[1] = x120;
+ out[2] = (x119 + x93);
+ out[3] = x96;
+ out[4] = x99;
+ out[5] = x102;
+ out[6] = x105;
+ out[7] = x108;
+ out[8] = x111;
+ out[9] = x114;
+ }}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}
+}
+
+static __always_inline void fe_mul121666(fe *h, const fe_loose *f)
+{
+ fe_mul_121666_impl(h->v, f->v);
+}
+
+void curve25519_generic(u8 out[CURVE25519_KEY_SIZE],
+ const u8 scalar[CURVE25519_KEY_SIZE],
+ const u8 point[CURVE25519_KEY_SIZE])
+{
+ fe x1, x2, z2, x3, z3;
+ fe_loose x2l, z2l, x3l;
+ unsigned swap = 0;
+ int pos;
+ u8 e[32];
+
+ memcpy(e, scalar, 32);
+ curve25519_clamp_secret(e);
+
+ /* The following implementation was transcribed to Coq and proven to
+ * correspond to unary scalar multiplication in affine coordinates given
+ * that x1 != 0 is the x coordinate of some point on the curve. It was
+ * also checked in Coq that doing a ladderstep with x1 = x3 = 0 gives
+ * z2' = z3' = 0, and z2 = z3 = 0 gives z2' = z3' = 0. The statement was
+ * quantified over the underlying field, so it applies to Curve25519
+ * itself and the quadratic twist of Curve25519. It was not proven in
+ * Coq that prime-field arithmetic correctly simulates extension-field
+ * arithmetic on prime-field values. The decoding of the byte array
+ * representation of e was not considered.
+ *
+ * Specification of Montgomery curves in affine coordinates:
+ * <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Spec/MontgomeryCurve.v#L27>
+ *
+ * Proof that these form a group that is isomorphic to a Weierstrass
+ * curve:
+ * <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/AffineProofs.v#L35>
+ *
+ * Coq transcription and correctness proof of the loop
+ * (where scalarbits=255):
+ * <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/XZ.v#L118>
+ * <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/XZProofs.v#L278>
+ * preconditions: 0 <= e < 2^255 (not necessarily e < order),
+ * fe_invert(0) = 0
+ */
+ fe_frombytes(&x1, point);
+ fe_1(&x2);
+ fe_0(&z2);
+ fe_copy(&x3, &x1);
+ fe_1(&z3);
+
+ for (pos = 254; pos >= 0; --pos) {
+ fe tmp0, tmp1;
+ fe_loose tmp0l, tmp1l;
+ /* loop invariant as of right before the test, for the case
+ * where x1 != 0:
+ * pos >= -1; if z2 = 0 then x2 is nonzero; if z3 = 0 then x3
+ * is nonzero
+ * let r := e >> (pos+1) in the following equalities of
+ * projective points:
+ * to_xz (r*P) === if swap then (x3, z3) else (x2, z2)
+ * to_xz ((r+1)*P) === if swap then (x2, z2) else (x3, z3)
+ * x1 is the nonzero x coordinate of the nonzero
+ * point (r*P-(r+1)*P)
+ */
+ unsigned b = 1 & (e[pos / 8] >> (pos & 7));
+ swap ^= b;
+ fe_cswap(&x2, &x3, swap);
+ fe_cswap(&z2, &z3, swap);
+ swap = b;
+ /* Coq transcription of ladderstep formula (called from
+ * transcribed loop):
+ * <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/XZ.v#L89>
+ * <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/XZProofs.v#L131>
+ * x1 != 0 <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/XZProofs.v#L217>
+ * x1 = 0 <https://github.com/mit-plv/fiat-crypto/blob/2456d821825521f7e03e65882cc3521795b0320f/src/Curves/Montgomery/XZProofs.v#L147>
+ */
+ fe_sub(&tmp0l, &x3, &z3);
+ fe_sub(&tmp1l, &x2, &z2);
+ fe_add(&x2l, &x2, &z2);
+ fe_add(&z2l, &x3, &z3);
+ fe_mul_tll(&z3, &tmp0l, &x2l);
+ fe_mul_tll(&z2, &z2l, &tmp1l);
+ fe_sq_tl(&tmp0, &tmp1l);
+ fe_sq_tl(&tmp1, &x2l);
+ fe_add(&x3l, &z3, &z2);
+ fe_sub(&z2l, &z3, &z2);
+ fe_mul_ttt(&x2, &tmp1, &tmp0);
+ fe_sub(&tmp1l, &tmp1, &tmp0);
+ fe_sq_tl(&z2, &z2l);
+ fe_mul121666(&z3, &tmp1l);
+ fe_sq_tl(&x3, &x3l);
+ fe_add(&tmp0l, &tmp0, &z3);
+ fe_mul_ttt(&z3, &x1, &z2);
+ fe_mul_tll(&z2, &tmp1l, &tmp0l);
+ }
+ /* here pos=-1, so r=e, so to_xz (e*P) === if swap then (x3, z3)
+ * else (x2, z2)
+ */
+ fe_cswap(&x2, &x3, swap);
+ fe_cswap(&z2, &z3, swap);
+
+ fe_invert(&z2, &z2);
+ fe_mul_ttt(&x2, &x2, &z2);
+ fe_tobytes(out, &x2);
+
+ memzero_explicit(&x1, sizeof(x1));
+ memzero_explicit(&x2, sizeof(x2));
+ memzero_explicit(&z2, sizeof(z2));
+ memzero_explicit(&x3, sizeof(x3));
+ memzero_explicit(&z3, sizeof(z3));
+ memzero_explicit(&x2l, sizeof(x2l));
+ memzero_explicit(&z2l, sizeof(z2l));
+ memzero_explicit(&x3l, sizeof(x3l));
+ memzero_explicit(&e, sizeof(e));
+}
diff --git a/lib/crypto/curve25519-hacl64.c b/lib/crypto/curve25519-hacl64.c
new file mode 100644
index 000000000000..771d82dc5f14
--- /dev/null
+++ b/lib/crypto/curve25519-hacl64.c
@@ -0,0 +1,788 @@
+// SPDX-License-Identifier: GPL-2.0 OR MIT
+/*
+ * Copyright (C) 2016-2017 INRIA and Microsoft Corporation.
+ * Copyright (C) 2018-2019 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
+ *
+ * This is a machine-generated formally verified implementation of Curve25519
+ * ECDH from: <https://github.com/mitls/hacl-star>. Though originally machine
+ * generated, it has been tweaked to be suitable for use in the kernel. It is
+ * optimized for 64-bit machines that can efficiently work with 128-bit
+ * integer types.
+ */
+
+#include <asm/unaligned.h>
+#include <crypto/curve25519.h>
+#include <linux/string.h>
+
+typedef __uint128_t u128;
+
+static __always_inline u64 u64_eq_mask(u64 a, u64 b)
+{
+ u64 x = a ^ b;
+ u64 minus_x = ~x + (u64)1U;
+ u64 x_or_minus_x = x | minus_x;
+ u64 xnx = x_or_minus_x >> (u32)63U;
+ u64 c = xnx - (u64)1U;
+ return c;
+}
+
+static __always_inline u64 u64_gte_mask(u64 a, u64 b)
+{
+ u64 x = a;
+ u64 y = b;
+ u64 x_xor_y = x ^ y;
+ u64 x_sub_y = x - y;
+ u64 x_sub_y_xor_y = x_sub_y ^ y;
+ u64 q = x_xor_y | x_sub_y_xor_y;
+ u64 x_xor_q = x ^ q;
+ u64 x_xor_q_ = x_xor_q >> (u32)63U;
+ u64 c = x_xor_q_ - (u64)1U;
+ return c;
+}
+
+static __always_inline void modulo_carry_top(u64 *b)
+{
+ u64 b4 = b[4];
+ u64 b0 = b[0];
+ u64 b4_ = b4 & 0x7ffffffffffffLLU;
+ u64 b0_ = b0 + 19 * (b4 >> 51);
+ b[4] = b4_;
+ b[0] = b0_;
+}
+
+static __always_inline void fproduct_copy_from_wide_(u64 *output, u128 *input)
+{
+ {
+ u128 xi = input[0];
+ output[0] = ((u64)(xi));
+ }
+ {
+ u128 xi = input[1];
+ output[1] = ((u64)(xi));
+ }
+ {
+ u128 xi = input[2];
+ output[2] = ((u64)(xi));
+ }
+ {
+ u128 xi = input[3];
+ output[3] = ((u64)(xi));
+ }
+ {
+ u128 xi = input[4];
+ output[4] = ((u64)(xi));
+ }
+}
+
+static __always_inline void
+fproduct_sum_scalar_multiplication_(u128 *output, u64 *input, u64 s)
+{
+ output[0] += (u128)input[0] * s;
+ output[1] += (u128)input[1] * s;
+ output[2] += (u128)input[2] * s;
+ output[3] += (u128)input[3] * s;
+ output[4] += (u128)input[4] * s;
+}
+
+static __always_inline void fproduct_carry_wide_(u128 *tmp)
+{
+ {
+ u32 ctr = 0;
+ u128 tctr = tmp[ctr];
+ u128 tctrp1 = tmp[ctr + 1];
+ u64 r0 = ((u64)(tctr)) & 0x7ffffffffffffLLU;
+ u128 c = ((tctr) >> (51));
+ tmp[ctr] = ((u128)(r0));
+ tmp[ctr + 1] = ((tctrp1) + (c));
+ }
+ {
+ u32 ctr = 1;
+ u128 tctr = tmp[ctr];
+ u128 tctrp1 = tmp[ctr + 1];
+ u64 r0 = ((u64)(tctr)) & 0x7ffffffffffffLLU;
+ u128 c = ((tctr) >> (51));
+ tmp[ctr] = ((u128)(r0));
+ tmp[ctr + 1] = ((tctrp1) + (c));
+ }
+
+ {
+ u32 ctr = 2;
+ u128 tctr = tmp[ctr];
+ u128 tctrp1 = tmp[ctr + 1];
+ u64 r0 = ((u64)(tctr)) & 0x7ffffffffffffLLU;
+ u128 c = ((tctr) >> (51));
+ tmp[ctr] = ((u128)(r0));
+ tmp[ctr + 1] = ((tctrp1) + (c));
+ }
+ {
+ u32 ctr = 3;
+ u128 tctr = tmp[ctr];
+ u128 tctrp1 = tmp[ctr + 1];
+ u64 r0 = ((u64)(tctr)) & 0x7ffffffffffffLLU;
+ u128 c = ((tctr) >> (51));
+ tmp[ctr] = ((u128)(r0));
+ tmp[ctr + 1] = ((tctrp1) + (c));
+ }
+}
+
+static __always_inline void fmul_shift_reduce(u64 *output)
+{
+ u64 tmp = output[4];
+ u64 b0;
+ {
+ u32 ctr = 5 - 0 - 1;
+ u64 z = output[ctr - 1];
+ output[ctr] = z;
+ }
+ {
+ u32 ctr = 5 - 1 - 1;
+ u64 z = output[ctr - 1];
+ output[ctr] = z;
+ }
+ {
+ u32 ctr = 5 - 2 - 1;
+ u64 z = output[ctr - 1];
+ output[ctr] = z;
+ }
+ {
+ u32 ctr = 5 - 3 - 1;
+ u64 z = output[ctr - 1];
+ output[ctr] = z;
+ }
+ output[0] = tmp;
+ b0 = output[0];
+ output[0] = 19 * b0;
+}
+
+static __always_inline void fmul_mul_shift_reduce_(u128 *output, u64 *input,
+ u64 *input21)
+{
+ u32 i;
+ u64 input2i;
+ {
+ u64 input2i = input21[0];
+ fproduct_sum_scalar_multiplication_(output, input, input2i);
+ fmul_shift_reduce(input);
+ }
+ {
+ u64 input2i = input21[1];
+ fproduct_sum_scalar_multiplication_(output, input, input2i);
+ fmul_shift_reduce(input);
+ }
+ {
+ u64 input2i = input21[2];
+ fproduct_sum_scalar_multiplication_(output, input, input2i);
+ fmul_shift_reduce(input);
+ }
+ {
+ u64 input2i = input21[3];
+ fproduct_sum_scalar_multiplication_(output, input, input2i);
+ fmul_shift_reduce(input);
+ }
+ i = 4;
+ input2i = input21[i];
+ fproduct_sum_scalar_multiplication_(output, input, input2i);
+}
+
+static __always_inline void fmul_fmul(u64 *output, u64 *input, u64 *input21)
+{
+ u64 tmp[5] = { input[0], input[1], input[2], input[3], input[4] };
+ {
+ u128 b4;
+ u128 b0;
+ u128 b4_;
+ u128 b0_;
+ u64 i0;
+ u64 i1;
+ u64 i0_;
+ u64 i1_;
+ u128 t[5] = { 0 };
+ fmul_mul_shift_reduce_(t, tmp, input21);
+ fproduct_carry_wide_(t);
+ b4 = t[4];
+ b0 = t[0];
+ b4_ = ((b4) & (((u128)(0x7ffffffffffffLLU))));
+ b0_ = ((b0) + (((u128)(19) * (((u64)(((b4) >> (51))))))));
+ t[4] = b4_;
+ t[0] = b0_;
+ fproduct_copy_from_wide_(output, t);
+ i0 = output[0];
+ i1 = output[1];
+ i0_ = i0 & 0x7ffffffffffffLLU;
+ i1_ = i1 + (i0 >> 51);
+ output[0] = i0_;
+ output[1] = i1_;
+ }
+}
+
+static __always_inline void fsquare_fsquare__(u128 *tmp, u64 *output)
+{
+ u64 r0 = output[0];
+ u64 r1 = output[1];
+ u64 r2 = output[2];
+ u64 r3 = output[3];
+ u64 r4 = output[4];
+ u64 d0 = r0 * 2;
+ u64 d1 = r1 * 2;
+ u64 d2 = r2 * 2 * 19;
+ u64 d419 = r4 * 19;
+ u64 d4 = d419 * 2;
+ u128 s0 = ((((((u128)(r0) * (r0))) + (((u128)(d4) * (r1))))) +
+ (((u128)(d2) * (r3))));
+ u128 s1 = ((((((u128)(d0) * (r1))) + (((u128)(d4) * (r2))))) +
+ (((u128)(r3 * 19) * (r3))));
+ u128 s2 = ((((((u128)(d0) * (r2))) + (((u128)(r1) * (r1))))) +
+ (((u128)(d4) * (r3))));
+ u128 s3 = ((((((u128)(d0) * (r3))) + (((u128)(d1) * (r2))))) +
+ (((u128)(r4) * (d419))));
+ u128 s4 = ((((((u128)(d0) * (r4))) + (((u128)(d1) * (r3))))) +
+ (((u128)(r2) * (r2))));
+ tmp[0] = s0;
+ tmp[1] = s1;
+ tmp[2] = s2;
+ tmp[3] = s3;
+ tmp[4] = s4;
+}
+
+static __always_inline void fsquare_fsquare_(u128 *tmp, u64 *output)
+{
+ u128 b4;
+ u128 b0;
+ u128 b4_;
+ u128 b0_;
+ u64 i0;
+ u64 i1;
+ u64 i0_;
+ u64 i1_;
+ fsquare_fsquare__(tmp, output);
+ fproduct_carry_wide_(tmp);
+ b4 = tmp[4];
+ b0 = tmp[0];
+ b4_ = ((b4) & (((u128)(0x7ffffffffffffLLU))));
+ b0_ = ((b0) + (((u128)(19) * (((u64)(((b4) >> (51))))))));
+ tmp[4] = b4_;
+ tmp[0] = b0_;
+ fproduct_copy_from_wide_(output, tmp);
+ i0 = output[0];
+ i1 = output[1];
+ i0_ = i0 & 0x7ffffffffffffLLU;
+ i1_ = i1 + (i0 >> 51);
+ output[0] = i0_;
+ output[1] = i1_;
+}
+
+static __always_inline void fsquare_fsquare_times_(u64 *output, u128 *tmp,
+ u32 count1)
+{
+ u32 i;
+ fsquare_fsquare_(tmp, output);
+ for (i = 1; i < count1; ++i)
+ fsquare_fsquare_(tmp, output);
+}
+
+static __always_inline void fsquare_fsquare_times(u64 *output, u64 *input,
+ u32 count1)
+{
+ u128 t[5];
+ memcpy(output, input, 5 * sizeof(*input));
+ fsquare_fsquare_times_(output, t, count1);
+}
+
+static __always_inline void fsquare_fsquare_times_inplace(u64 *output,
+ u32 count1)
+{
+ u128 t[5];
+ fsquare_fsquare_times_(output, t, count1);
+}
+
+static __always_inline void crecip_crecip(u64 *out, u64 *z)
+{
+ u64 buf[20] = { 0 };
+ u64 *a0 = buf;
+ u64 *t00 = buf + 5;
+ u64 *b0 = buf + 10;
+ u64 *t01;
+ u64 *b1;
+ u64 *c0;
+ u64 *a;
+ u64 *t0;
+ u64 *b;
+ u64 *c;
+ fsquare_fsquare_times(a0, z, 1);
+ fsquare_fsquare_times(t00, a0, 2);
+ fmul_fmul(b0, t00, z);
+ fmul_fmul(a0, b0, a0);
+ fsquare_fsquare_times(t00, a0, 1);
+ fmul_fmul(b0, t00, b0);
+ fsquare_fsquare_times(t00, b0, 5);
+ t01 = buf + 5;
+ b1 = buf + 10;
+ c0 = buf + 15;
+ fmul_fmul(b1, t01, b1);
+ fsquare_fsquare_times(t01, b1, 10);
+ fmul_fmul(c0, t01, b1);
+ fsquare_fsquare_times(t01, c0, 20);
+ fmul_fmul(t01, t01, c0);
+ fsquare_fsquare_times_inplace(t01, 10);
+ fmul_fmul(b1, t01, b1);
+ fsquare_fsquare_times(t01, b1, 50);
+ a = buf;
+ t0 = buf + 5;
+ b = buf + 10;
+ c = buf + 15;
+ fmul_fmul(c, t0, b);
+ fsquare_fsquare_times(t0, c, 100);
+ fmul_fmul(t0, t0, c);
+ fsquare_fsquare_times_inplace(t0, 50);
+ fmul_fmul(t0, t0, b);
+ fsquare_fsquare_times_inplace(t0, 5);
+ fmul_fmul(out, t0, a);
+}
+
+static __always_inline void fsum(u64 *a, u64 *b)
+{
+ a[0] += b[0];
+ a[1] += b[1];
+ a[2] += b[2];
+ a[3] += b[3];
+ a[4] += b[4];
+}
+
+static __always_inline void fdifference(u64 *a, u64 *b)
+{
+ u64 tmp[5] = { 0 };
+ u64 b0;
+ u64 b1;
+ u64 b2;
+ u64 b3;
+ u64 b4;
+ memcpy(tmp, b, 5 * sizeof(*b));
+ b0 = tmp[0];
+ b1 = tmp[1];
+ b2 = tmp[2];
+ b3 = tmp[3];
+ b4 = tmp[4];
+ tmp[0] = b0 + 0x3fffffffffff68LLU;
+ tmp[1] = b1 + 0x3ffffffffffff8LLU;
+ tmp[2] = b2 + 0x3ffffffffffff8LLU;
+ tmp[3] = b3 + 0x3ffffffffffff8LLU;
+ tmp[4] = b4 + 0x3ffffffffffff8LLU;
+ {
+ u64 xi = a[0];
+ u64 yi = tmp[0];
+ a[0] = yi - xi;
+ }
+ {
+ u64 xi = a[1];
+ u64 yi = tmp[1];
+ a[1] = yi - xi;
+ }
+ {
+ u64 xi = a[2];
+ u64 yi = tmp[2];
+ a[2] = yi - xi;
+ }
+ {
+ u64 xi = a[3];
+ u64 yi = tmp[3];
+ a[3] = yi - xi;
+ }
+ {
+ u64 xi = a[4];
+ u64 yi = tmp[4];
+ a[4] = yi - xi;
+ }
+}
+
+static __always_inline void fscalar(u64 *output, u64 *b, u64 s)
+{
+ u128 tmp[5];
+ u128 b4;
+ u128 b0;
+ u128 b4_;
+ u128 b0_;
+ {
+ u64 xi = b[0];
+ tmp[0] = ((u128)(xi) * (s));
+ }
+ {
+ u64 xi = b[1];
+ tmp[1] = ((u128)(xi) * (s));
+ }
+ {
+ u64 xi = b[2];
+ tmp[2] = ((u128)(xi) * (s));
+ }
+ {
+ u64 xi = b[3];
+ tmp[3] = ((u128)(xi) * (s));
+ }
+ {
+ u64 xi = b[4];
+ tmp[4] = ((u128)(xi) * (s));
+ }
+ fproduct_carry_wide_(tmp);
+ b4 = tmp[4];
+ b0 = tmp[0];
+ b4_ = ((b4) & (((u128)(0x7ffffffffffffLLU))));
+ b0_ = ((b0) + (((u128)(19) * (((u64)(((b4) >> (51))))))));
+ tmp[4] = b4_;
+ tmp[0] = b0_;
+ fproduct_copy_from_wide_(output, tmp);
+}
+
+static __always_inline void fmul(u64 *output, u64 *a, u64 *b)
+{
+ fmul_fmul(output, a, b);
+}
+
+static __always_inline void crecip(u64 *output, u64 *input)
+{
+ crecip_crecip(output, input);
+}
+
+static __always_inline void point_swap_conditional_step(u64 *a, u64 *b,
+ u64 swap1, u32 ctr)
+{
+ u32 i = ctr - 1;
+ u64 ai = a[i];
+ u64 bi = b[i];
+ u64 x = swap1 & (ai ^ bi);
+ u64 ai1 = ai ^ x;
+ u64 bi1 = bi ^ x;
+ a[i] = ai1;
+ b[i] = bi1;
+}
+
+static __always_inline void point_swap_conditional5(u64 *a, u64 *b, u64 swap1)
+{
+ point_swap_conditional_step(a, b, swap1, 5);
+ point_swap_conditional_step(a, b, swap1, 4);
+ point_swap_conditional_step(a, b, swap1, 3);
+ point_swap_conditional_step(a, b, swap1, 2);
+ point_swap_conditional_step(a, b, swap1, 1);
+}
+
+static __always_inline void point_swap_conditional(u64 *a, u64 *b, u64 iswap)
+{
+ u64 swap1 = 0 - iswap;
+ point_swap_conditional5(a, b, swap1);
+ point_swap_conditional5(a + 5, b + 5, swap1);
+}
+
+static __always_inline void point_copy(u64 *output, u64 *input)
+{
+ memcpy(output, input, 5 * sizeof(*input));
+ memcpy(output + 5, input + 5, 5 * sizeof(*input));
+}
+
+static __always_inline void addanddouble_fmonty(u64 *pp, u64 *ppq, u64 *p,
+ u64 *pq, u64 *qmqp)
+{
+ u64 *qx = qmqp;
+ u64 *x2 = pp;
+ u64 *z2 = pp + 5;
+ u64 *x3 = ppq;
+ u64 *z3 = ppq + 5;
+ u64 *x = p;
+ u64 *z = p + 5;
+ u64 *xprime = pq;
+ u64 *zprime = pq + 5;
+ u64 buf[40] = { 0 };
+ u64 *origx = buf;
+ u64 *origxprime0 = buf + 5;
+ u64 *xxprime0;
+ u64 *zzprime0;
+ u64 *origxprime;
+ xxprime0 = buf + 25;
+ zzprime0 = buf + 30;
+ memcpy(origx, x, 5 * sizeof(*x));
+ fsum(x, z);
+ fdifference(z, origx);
+ memcpy(origxprime0, xprime, 5 * sizeof(*xprime));
+ fsum(xprime, zprime);
+ fdifference(zprime, origxprime0);
+ fmul(xxprime0, xprime, z);
+ fmul(zzprime0, x, zprime);
+ origxprime = buf + 5;
+ {
+ u64 *xx0;
+ u64 *zz0;
+ u64 *xxprime;
+ u64 *zzprime;
+ u64 *zzzprime;
+ xx0 = buf + 15;
+ zz0 = buf + 20;
+ xxprime = buf + 25;
+ zzprime = buf + 30;
+ zzzprime = buf + 35;
+ memcpy(origxprime, xxprime, 5 * sizeof(*xxprime));
+ fsum(xxprime, zzprime);
+ fdifference(zzprime, origxprime);
+ fsquare_fsquare_times(x3, xxprime, 1);
+ fsquare_fsquare_times(zzzprime, zzprime, 1);
+ fmul(z3, zzzprime, qx);
+ fsquare_fsquare_times(xx0, x, 1);
+ fsquare_fsquare_times(zz0, z, 1);
+ {
+ u64 *zzz;
+ u64 *xx;
+ u64 *zz;
+ u64 scalar;
+ zzz = buf + 10;
+ xx = buf + 15;
+ zz = buf + 20;
+ fmul(x2, xx, zz);
+ fdifference(zz, xx);
+ scalar = 121665;
+ fscalar(zzz, zz, scalar);
+ fsum(zzz, xx);
+ fmul(z2, zzz, zz);
+ }
+ }
+}
+
+static __always_inline void
+ladder_smallloop_cmult_small_loop_step(u64 *nq, u64 *nqpq, u64 *nq2, u64 *nqpq2,
+ u64 *q, u8 byt)
+{
+ u64 bit0 = (u64)(byt >> 7);
+ u64 bit;
+ point_swap_conditional(nq, nqpq, bit0);
+ addanddouble_fmonty(nq2, nqpq2, nq, nqpq, q);
+ bit = (u64)(byt >> 7);
+ point_swap_conditional(nq2, nqpq2, bit);
+}
+
+static __always_inline void
+ladder_smallloop_cmult_small_loop_double_step(u64 *nq, u64 *nqpq, u64 *nq2,
+ u64 *nqpq2, u64 *q, u8 byt)
+{
+ u8 byt1;
+ ladder_smallloop_cmult_small_loop_step(nq, nqpq, nq2, nqpq2, q, byt);
+ byt1 = byt << 1;
+ ladder_smallloop_cmult_small_loop_step(nq2, nqpq2, nq, nqpq, q, byt1);
+}
+
+static __always_inline void
+ladder_smallloop_cmult_small_loop(u64 *nq, u64 *nqpq, u64 *nq2, u64 *nqpq2,
+ u64 *q, u8 byt, u32 i)
+{
+ while (i--) {
+ ladder_smallloop_cmult_small_loop_double_step(nq, nqpq, nq2,
+ nqpq2, q, byt);
+ byt <<= 2;
+ }
+}
+
+static __always_inline void ladder_bigloop_cmult_big_loop(u8 *n1, u64 *nq,
+ u64 *nqpq, u64 *nq2,
+ u64 *nqpq2, u64 *q,
+ u32 i)
+{
+ while (i--) {
+ u8 byte = n1[i];
+ ladder_smallloop_cmult_small_loop(nq, nqpq, nq2, nqpq2, q,
+ byte, 4);
+ }
+}
+
+static void ladder_cmult(u64 *result, u8 *n1, u64 *q)
+{
+ u64 point_buf[40] = { 0 };
+ u64 *nq = point_buf;
+ u64 *nqpq = point_buf + 10;
+ u64 *nq2 = point_buf + 20;
+ u64 *nqpq2 = point_buf + 30;
+ point_copy(nqpq, q);
+ nq[0] = 1;
+ ladder_bigloop_cmult_big_loop(n1, nq, nqpq, nq2, nqpq2, q, 32);
+ point_copy(result, nq);
+}
+
+static __always_inline void format_fexpand(u64 *output, const u8 *input)
+{
+ const u8 *x00 = input + 6;
+ const u8 *x01 = input + 12;
+ const u8 *x02 = input + 19;
+ const u8 *x0 = input + 24;
+ u64 i0, i1, i2, i3, i4, output0, output1, output2, output3, output4;
+ i0 = get_unaligned_le64(input);
+ i1 = get_unaligned_le64(x00);
+ i2 = get_unaligned_le64(x01);
+ i3 = get_unaligned_le64(x02);
+ i4 = get_unaligned_le64(x0);
+ output0 = i0 & 0x7ffffffffffffLLU;
+ output1 = i1 >> 3 & 0x7ffffffffffffLLU;
+ output2 = i2 >> 6 & 0x7ffffffffffffLLU;
+ output3 = i3 >> 1 & 0x7ffffffffffffLLU;
+ output4 = i4 >> 12 & 0x7ffffffffffffLLU;
+ output[0] = output0;
+ output[1] = output1;
+ output[2] = output2;
+ output[3] = output3;
+ output[4] = output4;
+}
+
+static __always_inline void format_fcontract_first_carry_pass(u64 *input)
+{
+ u64 t0 = input[0];
+ u64 t1 = input[1];
+ u64 t2 = input[2];
+ u64 t3 = input[3];
+ u64 t4 = input[4];
+ u64 t1_ = t1 + (t0 >> 51);
+ u64 t0_ = t0 & 0x7ffffffffffffLLU;
+ u64 t2_ = t2 + (t1_ >> 51);
+ u64 t1__ = t1_ & 0x7ffffffffffffLLU;
+ u64 t3_ = t3 + (t2_ >> 51);
+ u64 t2__ = t2_ & 0x7ffffffffffffLLU;
+ u64 t4_ = t4 + (t3_ >> 51);
+ u64 t3__ = t3_ & 0x7ffffffffffffLLU;
+ input[0] = t0_;
+ input[1] = t1__;
+ input[2] = t2__;
+ input[3] = t3__;
+ input[4] = t4_;
+}
+
+static __always_inline void format_fcontract_first_carry_full(u64 *input)
+{
+ format_fcontract_first_carry_pass(input);
+ modulo_carry_top(input);
+}
+
+static __always_inline void format_fcontract_second_carry_pass(u64 *input)
+{
+ u64 t0 = input[0];
+ u64 t1 = input[1];
+ u64 t2 = input[2];
+ u64 t3 = input[3];
+ u64 t4 = input[4];
+ u64 t1_ = t1 + (t0 >> 51);
+ u64 t0_ = t0 & 0x7ffffffffffffLLU;
+ u64 t2_ = t2 + (t1_ >> 51);
+ u64 t1__ = t1_ & 0x7ffffffffffffLLU;
+ u64 t3_ = t3 + (t2_ >> 51);
+ u64 t2__ = t2_ & 0x7ffffffffffffLLU;
+ u64 t4_ = t4 + (t3_ >> 51);
+ u64 t3__ = t3_ & 0x7ffffffffffffLLU;
+ input[0] = t0_;
+ input[1] = t1__;
+ input[2] = t2__;
+ input[3] = t3__;
+ input[4] = t4_;
+}
+
+static __always_inline void format_fcontract_second_carry_full(u64 *input)
+{
+ u64 i0;
+ u64 i1;
+ u64 i0_;
+ u64 i1_;
+ format_fcontract_second_carry_pass(input);
+ modulo_carry_top(input);
+ i0 = input[0];
+ i1 = input[1];
+ i0_ = i0 & 0x7ffffffffffffLLU;
+ i1_ = i1 + (i0 >> 51);
+ input[0] = i0_;
+ input[1] = i1_;
+}
+
+static __always_inline void format_fcontract_trim(u64 *input)
+{
+ u64 a0 = input[0];
+ u64 a1 = input[1];
+ u64 a2 = input[2];
+ u64 a3 = input[3];
+ u64 a4 = input[4];
+ u64 mask0 = u64_gte_mask(a0, 0x7ffffffffffedLLU);
+ u64 mask1 = u64_eq_mask(a1, 0x7ffffffffffffLLU);
+ u64 mask2 = u64_eq_mask(a2, 0x7ffffffffffffLLU);
+ u64 mask3 = u64_eq_mask(a3, 0x7ffffffffffffLLU);
+ u64 mask4 = u64_eq_mask(a4, 0x7ffffffffffffLLU);
+ u64 mask = (((mask0 & mask1) & mask2) & mask3) & mask4;
+ u64 a0_ = a0 - (0x7ffffffffffedLLU & mask);
+ u64 a1_ = a1 - (0x7ffffffffffffLLU & mask);
+ u64 a2_ = a2 - (0x7ffffffffffffLLU & mask);
+ u64 a3_ = a3 - (0x7ffffffffffffLLU & mask);
+ u64 a4_ = a4 - (0x7ffffffffffffLLU & mask);
+ input[0] = a0_;
+ input[1] = a1_;
+ input[2] = a2_;
+ input[3] = a3_;
+ input[4] = a4_;
+}
+
+static __always_inline void format_fcontract_store(u8 *output, u64 *input)
+{
+ u64 t0 = input[0];
+ u64 t1 = input[1];
+ u64 t2 = input[2];
+ u64 t3 = input[3];
+ u64 t4 = input[4];
+ u64 o0 = t1 << 51 | t0;
+ u64 o1 = t2 << 38 | t1 >> 13;
+ u64 o2 = t3 << 25 | t2 >> 26;
+ u64 o3 = t4 << 12 | t3 >> 39;
+ u8 *b0 = output;
+ u8 *b1 = output + 8;
+ u8 *b2 = output + 16;
+ u8 *b3 = output + 24;
+ put_unaligned_le64(o0, b0);
+ put_unaligned_le64(o1, b1);
+ put_unaligned_le64(o2, b2);
+ put_unaligned_le64(o3, b3);
+}
+
+static __always_inline void format_fcontract(u8 *output, u64 *input)
+{
+ format_fcontract_first_carry_full(input);
+ format_fcontract_second_carry_full(input);
+ format_fcontract_trim(input);
+ format_fcontract_store(output, input);
+}
+
+static __always_inline void format_scalar_of_point(u8 *scalar, u64 *point)
+{
+ u64 *x = point;
+ u64 *z = point + 5;
+ u64 buf[10] __aligned(32) = { 0 };
+ u64 *zmone = buf;
+ u64 *sc = buf + 5;
+ crecip(zmone, z);
+ fmul(sc, x, zmone);
+ format_fcontract(scalar, sc);
+}
+
+void curve25519_generic(u8 mypublic[CURVE25519_KEY_SIZE],
+ const u8 secret[CURVE25519_KEY_SIZE],
+ const u8 basepoint[CURVE25519_KEY_SIZE])
+{
+ u64 buf0[10] __aligned(32) = { 0 };
+ u64 *x0 = buf0;
+ u64 *z = buf0 + 5;
+ u64 *q;
+ format_fexpand(x0, basepoint);
+ z[0] = 1;
+ q = buf0;
+ {
+ u8 e[32] __aligned(32) = { 0 };
+ u8 *scalar;
+ memcpy(e, secret, 32);
+ curve25519_clamp_secret(e);
+ scalar = e;
+ {
+ u64 buf[15] = { 0 };
+ u64 *nq = buf;
+ u64 *x = nq;
+ x[0] = 1;
+ ladder_cmult(nq, scalar, q);
+ format_scalar_of_point(mypublic, nq);
+ memzero_explicit(buf, sizeof(buf));
+ }
+ memzero_explicit(e, sizeof(e));
+ }
+ memzero_explicit(buf0, sizeof(buf0));
+}
diff --git a/lib/crypto/curve25519.c b/lib/crypto/curve25519.c
new file mode 100644
index 000000000000..0106bebe6900
--- /dev/null
+++ b/lib/crypto/curve25519.c
@@ -0,0 +1,25 @@
+// SPDX-License-Identifier: GPL-2.0 OR MIT
+/*
+ * Copyright (C) 2015-2019 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
+ *
+ * This is an implementation of the Curve25519 ECDH algorithm, using either
+ * a 32-bit implementation or a 64-bit implementation with 128-bit integers,
+ * depending on what is supported by the target compiler.
+ *
+ * Information: https://cr.yp.to/ecdh.html
+ */
+
+#include <crypto/curve25519.h>
+#include <linux/module.h>
+#include <linux/init.h>
+
+const u8 curve25519_null_point[CURVE25519_KEY_SIZE] __aligned(32) = { 0 };
+const u8 curve25519_base_point[CURVE25519_KEY_SIZE] __aligned(32) = { 9 };
+
+EXPORT_SYMBOL(curve25519_null_point);
+EXPORT_SYMBOL(curve25519_base_point);
+EXPORT_SYMBOL(curve25519_generic);
+
+MODULE_LICENSE("GPL v2");
+MODULE_DESCRIPTION("Curve25519 scalar multiplication");
+MODULE_AUTHOR("Jason A. Donenfeld <Jason@zx2c4.com>");